In Discrete Mathematics, a proposition logically implies in if and only if, each value of the hypothesis makes the conclusion a truth. When this logical equivalency exists, it’s denoted as , meaning that while and are not equal (because they represent different statements), they share the same truth value.


Tautology and Contradiction

By definition, a tautology is a proposition that is always true, regardless of the truth value of the variables it contains, while a contradiction is a proposition that is always false.


Logical equivalency properties

  • Commutative: $$\begin{align}

p \vee q \equiv q \vee p \ p \wedge q \equiv q \wedge p \end{align}$$

  • Associative: $$\begin{align}

(p\vee q) \vee r \equiv p \vee (q\vee r) \ (p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \end{align}$$

  • Distributive:
  • Idempotent laws:
  • De Morgan’s laws:
\overline{p \vee q} \equiv \neg p \wedge \neg q \\ \overline{p \wedge q} \equiv \neg p \vee \neg q \end{align}$$ - ##### Double negation: $$\neg \neg p \equiv p
  • Contrapositive
  • Conditional elimination
&p \rightarrow q \equiv \neg p \rightarrow q \\ &p \rightarrow q \equiv \neg (p \wedge \neg q) \end{align}$$ - ##### Bi-conditional elimination

\begin{align} &p \leftrightarrow q \equiv (p \wedge q) \vee (\neg p \wedge \neg q) \ & p \leftrightarrow q \equiv (\neg p \vee q) \wedge (\neg p \vee q) \end{align}