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Dataset shift is a common problem in predictive modeling that 
occurs when the joint distribution of inputs and outputs differs 
between training and test stages. Covariate shift, a particular 
case of dataset shift, occurs when only the input distribution 
changes. Dataset shift is present in most practical applications, 
for reasons ranging from the bias introduced by experimental 
design to the irreproducibility of the testing conditions at 
training time. (An example is email spam fi ltering, which may 
fail to recognize spam that differs in form from the spam the 
automatic fi lter has been built on.) Despite this, and despite 
the attention given to the apparently similar problems of semi-
supervised learning and active learning, dataset shift has 
received relatively little attention in the machine learning com-
munity until recently. This volume offers an overview of current 
efforts to deal with dataset and covariate shift.
 The chapters offer a mathematical and philosophical 
introduction to the problem, place dataset shift in relationship 
to transfer learning, transduction, local learning, active learn-
ing, and semi-supervised learning, provide theoretical views 
of dataset and covariate shift (including decision theoretic 
and Bayesian perspectives), and present algorithms for covari-
ate shift. 
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Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring to-
gether scientists with broadly varying backgrounds in statistics, mathematics, com-
puter science, physics, electrical engineering, neuroscience, and cognitive science,
unified by a common desire to develop novel computational and statistical strate-
gies for information processing and to understand the mechanisms for information
processing in the brain. In contrast to conferences, these workshops maintain a
flexible format that both allows and encourages the presentation and discussion
of work in progress. They thus serve as an incubator for the development of im-
portant new ideas in this rapidly evolving field. The series editors, in consultation
with workshop organizers and members of the NIPS Foundation Board, select spe-
cific workshop topics on the basis of scientific excellence, intellectual breadth, and
technical impact. Collections of papers chosen and edited by the organizers of spe-
cific workshops are built around pedagogical introductory chapters, while research
monographs provide comprehensive descriptions of workshop-related topics, to cre-
ate a series of books that provides a timely, authoritative account of the latest
developments in the exciting field of neural computation.

Michael I. Jordan and Thomas G. Dietterich
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Preface

Systems based on machine learning techniques often face a major challenge when
applied “in the wild”: The conditions under which the system was developed will
differ from those in which we use the system. An example could be a sophisticated
email spam filtering system that took a few years to develop. Will this system be
usable, or will it need to be adapted because the types of spam have changed since
the system was first built? Probably any form of real world data analysis is plagued
with such problems, which arise for reasons ranging from the bias introduced
by experimental design, to the mere irreproducibility of the testing conditions at
training time.

In an abstract form, some of these problems can be seen as cases of dataset shift,
where the joint distribution of inputs and outputs differs between training and test
stage. However, textbook machine learning techniques assume that training and
test distribution are identical. Aim of this book is to explicitly allow for dataset
shift, and analyze the consequences for learning.

In their contributions, the authors will consider general dataset shift scenarios, as
well as a simpler case called covariate shift. Covariate (input) shift means that only
the input distribution changes, whereas the conditional distribution of the outputs
given the inputs p(y|x) remains unchanged.

This book attempts to give an overview of the different recent efforts that are
being made in the machine learning community for dealing with dataset and
covariate shift. The contributed chapters establish relations to transfer learning,
transduction, local learning, active learning, and to semisupervised learning. Three
recurrent themes are how the capacity or complexity of the model affects its
behavior in the face of dataset shift (are “true” conditional models and sufficiently
rich models unaffected?), whether it is possible to find projections of the data that
attenuate the differences in the training and test distributions while preserving
predictability, and whether new forms of importance reweighted likelihood and
cross-validation can be devised which are robust to covariate shift.

Overview

Part I of the book aims at providing a general introduction to the problem of
learning when training and test distributions differ in some form.

xi



xii Preface

Amos Storkey provides a general introduction in chapter 1 from the viewpoint
of learning transfer. He introduces the general learning transfer problem, and
formulates the problem in terms of a change of scenario. Standard regression and
classification models can be characterized as conditional models. Assuming that the
conditional model is true, covariate shift is not an issue. However, if this assumption
does not hold, conditional modeling will fail. Storkey then characterizes a number
of different cases of dataset shift, including simple covariate shift, prior probability
shift, sample selection bias, imbalanced data, domain shift, and source component
shift. Each of these situations is cast within the framework of graphical models and
a number of approaches to addressing each of these problems are reviewed. Storkey
also introduces a framework for multiple dataset learning that also prompts the
possibility of using hierarchical dataset linkage.

Dataset shift has wider implications beyond machine learning, within philos-
ophy of science. David Corfield in chapter 2 shows how the problem of dataset
shift has been addressed by different philosophical schools under the concept of
“projectability.” When philosophers tried to formulate scientific reasoning with the
resources of predicate logic and a Bayesian inductive logic, it became evident how
vital background knowledge is to allow us to project confidently into the future, or
to a different place, from previous experience. To transfer expectations from one
domain to another, it is important to locate robust causal mechanisms. An im-
portant debate concerning these attempts to characterize background knowledge
is over whether it can all be captured by probabilistic statements. Having placed
the problem within the wider philosophical perspective, Corfield turns to machine
learning, and addresses a number of questions: Have machine learning theorists
been sufficiently creative in their efforts to encode background knowledge? Have
the frequentists been more imaginative than the Bayesians, or vice versa? Is the
necessity of expressing background knowledge in a probabilistic framework too re-
strictive? Must relevant background knowledge be handcrafted for each application,
or can it be learned?

Part II of the book focuses on theoretical aspects of dataset and covariate shift.
In chapter 3, Matthias Hein studies the problem of binary classification under

sample selection bias from a decision-theoretic perspective. Starting from a deriva-
tion of the necessary and sufficient conditions for equivalence of the Bayes classi-
fiers of training and test distributions, Hein provides the conditions under which
–asymptotically– sample selection bias does not affect the performance of a classi-
fier. From this viewpoint, there are fundamental differences between classifiers of
low and high capacity, in particular the ones which are Bayes consistent. In the sec-
ond part of his chapter, Hein provides means to modify existing learning algorithms
such that they are more robust to sample selection bias in the case where one has
access to an unlabeled sample of the test data. This is achieved by constructing
a graph-based regularization functional. The close connection of this approach to
semisupervised learning is also highlighted.

Lars Kai Hansen provides a Bayesian analysis of the problem of covariate shift in
chapter 4. He approaches the problem starting with the hypothesis that it is possible



Preface xiii

to recover performance by tracking the nonstationary input distribution. Under
the average log-probability loss, Bayesian transductive learning is generalization
optimal (in terms of the conditional distribution p(label | input)). For realizable
supervised learning –where the “true” model is at hand– all available data should be
used in determining the posterior distribution, including unlabeled data. However,
if the parameters of the input distribution are disjoint of those of the conditional
predictive distribution, learning with unlabeled data has no effect on the supervised
learning performance. For the case of unrealizable learning –the “true” model is
not contained in the prior– Hansen argues that “learning with care” by discounting
some of the data might improve performance. This is reminiscent of the importance-
weighting approaches of Kanamori et al. (chapter 6) and Sugiyama et al. (chapter 7).

In chapter 5, the third contribution of the theory part, Shai Ben-David provides a
theoretical analysis based around “domain adaptation”: an embedding into a feature
space under which training and test distribution appear similar, and where enough
information is preserved for prediction. This relates back to the general viewpoint
of Corfield in chapter 2, who argues that learning transfer is only possible once
a robust (invariant) mechanism has been identified. Ben-David also introduces a
taxonomy of formal models for different cases of dataset shift. For the analysis, he
derives error bounds which are relative to the best possible performance in each
of the different cases. In addition, he establishes a relation of his framework to
inductive transfer.

Part III of the book focuses on algorithms to learn under the more specific setting
of covariate shift, where the input distribution changes between training and test
phases but the conditional distribution of outputs given inputs remains unchanged.

Chapter 6, contributed by Takafumi Kanamori and Hidetoshi Shimodaira, starts
with showing that the ordinary maximum likelihood estimator is heavily biased
under covariate shift if the model is misspecified. By misspecified it is meant
that the model is too simple to express the target function (see also chapter 3
and chapter 4 for the different behavior of misspecified and correct models).
Kanamori and Shimodaira then show that the bias induced by covariate shift
can be asymptotically canceled by weighting the training samples according to the
importance ratio between training and test input densities. However, the weighting
is suboptimal in practical situations with finite samples since it tends to have larger
variance than the unweighted counterpart. To cope with this problem, Kanamori
and Shimodaira provide an information criterion that allows optimal control of the
bias-variance trade-off. The latter half of their contribution focuses on the problem
of active learning where the covariate distribution is designed by users for better
prediction performances. Within the same information-criterion framework, they
develop an active learning algorithm that is guaranteed to be consistent.

In chapter 7 Masashi Sugiyama and coworkers also discuss the problems of
model selection and active learning in the covariate shift scenario, but in a slightly
different framework; the conditional expectation of the generalization error given
training inputs is evaluated here, while Kanamori and Shimodaira’s analysis is in
terms of the full expectation of the generalization error over training inputs and



xiv Preface

outputs. Sugiyama and coworkers argue that the conditional expectation framework
is more data-dependent and thus more accurate than the methods based on the full
expectation, and develop alternative methods of model selection and active learning
for approximately linear regression. An algorithm that can effectively perform active
learning and model selection at the same time is also provided.

In chapter 8 Arthur Gretton and coworkers address the problem of distribution
matching between training and test stages, which is similar in spirit to the problem
discussed in chapter 5. They propose a method called kernel mean matching, which
allows direct estimation of the importance weight without going through density
estimation. Gretton et al. then relate the re-weighted estimation approaches to
local learning, where labels on test data are estimated given a subset of training
data in a neighborhood of the test point. Examples are nearest-neighbor estimators
and Watson-Nadaraya-type estimators. The authors further provide detailed proofs
concerning the statistical properties of the kernel mean matching estimator and
detailed experimental analyses for both covariate shift and local learning.

In chapter 9 Steffen Bickel and coworkers derive a solution to covariate shift
adaptation for arbitrarily different distributions that is purely discriminative: nei-
ther training nor test distribution is modeled explicitly. They formulate the general
problem of learning under covariate shift as an integrated optimization problem and
instantiate a kernel logistic regression and an exponential loss classifier for differing
training and test distributions. They show under which condition the optimiza-
tion problem is convex, and empirically study their method on problems of spam
filtering, text classification, and land mine detection.

Amir Globerson and coworkers take an innovative view on covariate shift: in
chapter 10 they address the situation where training and test inputs differ by
adversarial feature corruption. They formulate this problem as a two-player game,
where the action of one player (the one who builds the classifier) is to choose robust
features, whereas the other player (the adversary) tries to corrupt the features
which would harm the current classifier most at test time. Globerson et al. address
this problem in a minimax setting, thus avoiding any modeling assumptions about
the deletion mechanism. They use convex duality to show that it corresponds to a
quadratic program and show how recently introduced methods for large-scale online
optimization can be used for fast optimization of this quadratic problem. Finally, the
authors apply their algorithm to handwritten digit recognition and spam filtering
tasks, and show that it outperforms a standard support vector machine (SVM)
when features are deleted from data samples.

In chapter 11 some of the chapter authors are given the opportunity to express
their personal opinions and research statements.
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1 When Training and Test Sets Are Different:

Characterizing Learning Transfer

Amos Storkey

In this chapter, a number of common forms of dataset shift are introduced, and
each is related to a particular form of causal probabilistic model. Examples are
given for the different types of shift, and some corresponding modeling approaches.
By characterizing dataset shift in this way, there is potential for the development
of models which capture the specific types of variations, combine different modes
of variation, or do model selection to assess whether dataset shift is an issue in
particular circumstances. As an example of how such models can be developed, an
illustration is provided for one approach to adapting Gaussian process methods for
a particular type of dataset shift called mixture component shift. After the issue of
dataset shift is introduced, the distinction between conditional and unconditional
models is elaborated in section 1.2. This difference is important in the context
of dataset shift, as it will be argued in section 1.4 that dataset shift makes no
difference for causally conditional models. This form of dataset shift has been called
covariate shift. In section 1.5, another simple form of dataset shift is introduced:
prior probability shift. This is followed by section 1.6 on sample selection bias,
section 1.7 on imbalanced data, and section 1.8 on domain shift. Finally, three
different types of source component shift are given in section 1.9. One example of
modifying Gaussian process models to apply to one form of source component shift is
given in section 1.10. A brief discussion on the issue of determining whether shift
occurs (section 1.11) and on the relationship to transfer learning (section 1.12)
concludes the chapter.

1.1 Introduction

A camera company develops some expert pattern recognition software for their
cameras but now wants to sell it for use on other cameras. Does it need to worry
about the differences?

3



4 When Training and Test Sets Are Different: Characterizing Learning Transfer

The country Albodora has done a study that shows the introduction of a
particular measure has aided in curbing underage drinking. Bodalecia’s politicians
are impressed by the results and want to utilize Albodora’s approach in their own
country. Will it work?

A consultancy provides network intrusion detection software, developed using
machine learning techniques on data from four years ago. Will the software still
work as well now as it did when it was first released? If not, does the company need
to do a whole further analysis, or are there some simple changes that can be made
to bring the software up to scratch?

In the real world, the conditions in which we use the systems we develop will
differ from the conditions in which they were developed. Typically environments are
nonstationary, and sometimes the difficulties of matching the development scenario
to the use are too great or too costly.

In contrast, textbook predictive machine learning methods work by ignoring these
differences. They presume either that the test domain and training domain match,
or that it makes no difference if they do not match. In this book we will be asking
about what happens when we allow for the possibility of dataset shift. What happens
if we are explicit in recognizing that in reality things might change from the idealized
training scheme we have set up?

The scenario can be described a little more systematically. Given some data,
and some modeling framework, a model can be learned. This model can be used
for making predictions P (y|x) for some targets y given some new x. However, if
there is a possibility that something may have changed between training and test
situations, it is important to ask if a different predictive model should be used. To
do this, it is critical to develop an understanding of the appropriateness of particular
models in the circumstance of such changes. Knowledge of how best to model the
potential changes will enable better representation of the result of these changes.
There is also the question of what needs to be done do to implement the resulting
process. Does the learning method itself need to be changed, or is there just post
hoc processing that can be done to the learned model to account for the change?

The problem of dataset shift is closely related to another area of study known
by various terms such as transfer learning or inductive transfer. Transfer learning
deals with the general problem of how to transfer information from a variety of
previous different environments to help with learning, inference, and prediction in
a new environment. Dataset shift is more specific: it deals with the business of
relating information in (usually) two closely related environments to help with the
prediction in one given the data in the other(s).

Faced with the problem of dataset shift, we need to know what we can do. If
it is possible to characterize the types of changes that occur from training to test
situation, this will help in knowing what techniques are appropriate. In this chapter
some of the most typical types of dataset shift will be characterized.

The aim, here, is to provide an illustrative introduction to dataset shift. There
is no attempt to provide an exhaustive, or even systematic literature review:
indeed the literature is far too extensive for that. Rather, the hope is that by
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taking a particular view on the problem of dataset shift, it will help to provide an
organizational structure which will enable the large body of work in all these areas
to be systematically related and analyzed, and will help establish new developments
in the field as a whole.

Gaussian process models will be used as illustrations in parts of this chapter.
It would be foolish to reproduce an introduction to this area when there are
already very comprehensible alternatives. Those who are unfamiliar with Gaussian
processes, and want to follow the various illustrations, are referred to Rasmussen
and Williams [2006]. Gaussian processes are a useful predictive modeling tool with
some desirable properties. They are directly applicable to regression problems, and
can be used for classification via logistic transformations. Only the regression case
will be discussed here.

1.2 Conditional and Generative Models

This chapter will describe methods for dataset shift using probabilistic models. A
probabilistic model relates the variables of interest by defining a joint probability
distribution for the values those variables take. This distribution determines which
values of the variables are more or less probable, and hence how particular variables
are related: it may be that the probability that one variable takes a certain value is
very dependent on the state of another. A good model is a probability distribution
that describes the understanding and the occurrence of those variables well. Very
informally, a model that assigns low probability to things that are not observed and
relationships that are forbidden or unlikely and high probability to observed and
likely items is favored over a model that does not.

In the realm of probabilistic predictive models it is useful to make a distinction
between conditional and generative models. The term generative model will be used
to refer to a probabilistic model (effectively a joint probability distribution) over
all the variables of interest (including any parameters). Given a generative model
we can generate artificial data from the model by sampling from the required joint
distribution, hence the name. A generative model can be specified using a number
of conditional distributions. Suppose the data takes the form of covariate x and
target y pairs. Then, by way of example, P (y,x) can be written as P (x|y)P (y),
and may also be written in terms of other hidden latent variables which are not
observable. For example, we could believe the distribution P (y,x) depends on some
other factor r and we would write

P (y,x) =
∫

drP (y,x|r)P (r) , (1.1)

where the integral is a marginalization over the r, which simply means that as r is
never known it needs to be integrated over in order to obtain the distribution for
the observable quantities y and x. Necessarily distributions must also be given for
any latent variables.
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Conditional models are not so ambitious. In a conditional model the distribution
of some smaller set of variables is given for each possible known value of the other
variables. In many useful situations (such as regression) the value of certain variables
(the covariates) is always known, and so there is no need to model them. Building
a conditional model for variables y given other variables x implicitly factorizes
the joint probability distribution over x and y, as well as parameters (or latent
variables) Θx and Θy, as P (y|x,Θy)P (x|Θx)P (Θy)P (Θx). If the values of x are
always given, it does not matter how good the model P (x) is: it is never used in
any prediction scenario. Rather, the quality of the conditional model P (y|x) is all
that counts, and so conditional models only concern themselves with this term. By
ignoring the need to model the distribution of x well, it is possible to choose more
flexible model parameterizations than with generative models. Generative models
are required to tractably model both the distributions over y and x accurately.
Another advantage of conditional modeling is that the fit of the predictive model
P (y|x) is never compromised in favor of a better fit of the unused model P (x) as
they are decoupled.

If the generative model actually accurately specifies a known generative process
for the data, then the choice of modeling structure may fit the real constraints
much better than a conditional model and hence result in a more accurate param-
eterization. In these situations generative models may fare better than conditional
ones. The general informal consensus is that in most typical predictive modeling
scenarios standard conditional models tend to result in lower errors than standard
generative models. However this is no hard rule and is certainly not rigorous.

It is easy for this terminology to get confusing. In the context of this chapter
we will use the term conditional model for any model that factorizes the joint
distribution (having marginalized for any parameters) as P (y|x)P (x), and the term
unconditional model for any other form of factorization. The term generative model
will be used to refer to any joint model (either of conditional or unconditional form)
which is used to represent the whole data in terms of some useful factorization,
possibly including latent variables. In most cases the factorized form will represent
a (simplified) causal generative process. We may use the term causal graphical model
in these situations to emphasize that the structure is more than just a representation
of some particular useful factorization, but is presumed to be a factorization that
respects the way the data came about.

It is possible to analyze data using a model structure that is not a causal model
but still has the correct relationships between variables for a static environment.
One consequence of this is that it is perfectly reasonable to use a conditional form
of model for domains that are not causally conditional: many forms of model can
be statistically equivalent. If the P (x) does not change, then it does not matter.
Hence conditional models can perform well in many situations where there is no
dataset shift regardless of the underlying beliefs about the generation process for
the data. However, in the context of dataset shift, there is presumed to be an
interventional change to some (possibly latent) variable. If the true causal model
is not a conditional model, then this change will implicitly cause a change to the
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relationship P (y|x). Hence the learned form of the conditional model will no longer
be valid. Recognition of this is vital: just because a conditional model performs well
in the context of no dataset shift does not imply its validity or capability in the
context of dataset shift.

1.3 Real-Life Reasons for Dataset Shift

Whether using unconditional or conditional models, there is a presumption that the
distributions they specify are static; i.e., they do not change between the time we
learn them and the time we use them. If this is not true, and the distributions change
in some way, then we need to model for that change, or at least the possibility of
that change. To postulate such a model requires an examination of the reasons why
such a shift may occur.

Though there are no doubt an infinite set of potential reasons for these changes,
there are a number of ways of collectively characterizing many forms of shift into
qualitatively different groups. The following will be discussed in this chapter:

Simple covariate shift is when only the distributions of covariates x change and
everything else is the same.

Prior probability shift is when only the distribution over y changes and every-
thing else stays the same.

Sample selection bias is when the distributions differ as a result of an unknown
sample rejection process.

Imbalanced data is a form of deliberate dataset shift for computational or mod-
eling convenience.

Domain shift involves changes in measurement.

Source component shift involves changes in strength of contributing compo-
nents.

Each of these relates to a different form of model. Unsurprisingly, each form
suggests a particular approach for dealing with the change. As each model is
examined in the following sections, the particular nature of the shift will be
explained, some of the literature surrounding that type of dataset shift will be
mentioned, and a graphical illustration of the overall model will be given. The
graphical descriptions will take a common form: they will illustrate the probabilistic
graphical (causal) model for the generative model. Where the distributions of a
variable may change between train and test scenarios, the corresponding network
node is darkened. Each figure will also illustrate data undergoing the particular
form of shift by providing samples for the training (light) and test (dark) situations.
These diagrams should quickly illustrate the type of change that is occurring. In the
descriptions, a subscript tr will denote a quantity related to the training scenario,
and a subscript te will denote a quantity relating to the test scenario. Hence Ptr(y)
and Pte(y) are the probability of y in training and test situations respectively.
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Figure 1.1 Simple covariate shift. Here the causal model indicated the targets y are
directly dependent on the covariates x. In other words the predictive function and noise
model stay the same, it is just the typical locations x of the points at which the function
needs to be evaluated that change. In this figure and throughout, the causal model is given
on the left with the node that varies between training and test made darker. To the right
is some example data, with the training data in shaded light and the test data shaded
dark.

1.4 Simple Covariate Shift

The most basic form of dataset shift occurs when the data is generated according
to a model P (y|x)P (x) and where the distribution P (x) changes between training
and test scenarios. As only the covariate distribution changes, this has been called
covariate shift [Shimodaira, 2000]. See figure 1.1 for an illustration of the form of
causal model for covariate shift.

A typical example of covariate shift occurs in assessing the risk of future events
given current scenarios. Suppose the problem was to assess the risk of lung cancer
in five years (y) given recent past smoking habits (x). In these situations we can
be sure that the occurrence or otherwise of future lung cancer is not a causal factor
of current habits. So in this case a conditional relationship of the form P (y|x) is
a reasonable causal model to consider.1 Suppose now that changing circumstances
(e.g., a public smoking ban) affect the distribution over habits x. How do we account
for that in our prediction of risk for a new person with habits x∗?

It will perhaps come as little surprise that the fact that the covariate distribution
changes should have no effect on the model P (y|x∗). Intuitively this makes sense.
The smoking habits of some person completely independent of me should not affect
my risk of lung cancer if I make no change at all. From a modeling point of view
we can see that from our earlier observation in the static case this is simply a
conditional model: it gives the same prediction for given x, P (y|x) regardless of

1. Of course there are always possible confounding factors, but for the sake of this
illustration we choose to ignore that for now. It is also possible the samples are not drawn
independently and identically distributed due to population effects (e.g., passive smoking)
but that too is ignored here.
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the distribution P (x). Hence in the case of dataset shift, it still does not matter
what P (x) is, or how it changes. The prediction will be the same.

This may seem a little labored, but the point is important to make in the light
of various pieces of recent work that suggest there are benefits in doing something
different if covariate shift occurs. The claim is that if the class of models that
is being considered for P (y|x) does not contain the true conditional model, then
improvements can be gained by taking into account the nature of the covariate
shift. In the next section we examine this, and see that this work effectively makes
a change of global model class for P (y|x) between the training and test cases. This is
valuable as it makes it clear that if the desire is (asymptotic) risk minimization for a
constant modeling cost, then there may be gains to be made by taking into account
the test distribution. Following this discussion we show that Gaussian processes
are nonparametric models that truly are conditional models, in that they satisfy
Kolmogorov consistency. This same characteristic does not follow for probabilistic
formulations of support vector classifiers.

1.4.1 Is There Really no Modeling Implication?

There are a number of recent papers that have suggested that something different
does need to be done in the context of covariate shift. For example, in Shimodaira
[2000], the author proposes an importance reweighting of data points in their
contribution to the estimator error: points lying in regions of high test density
are more highly weighted that those in low-density regions. This was extended in
Sugiyama and Müller [2005a], with the inclusion of a generalization error estimation
method for this process of adapting for covariate shift. In Sugiyama et al. [2006,
2007], the importance reweighting is made adaptable on the basis of cross-validation
error.

The papers make it clear that there is some benefit to be obtained by doing
something different in the case of covariate shift. The argument here is that
these papers indicate a computational benefit rather than a fundamental modeling
benefit. These papers effectively compare different global model classes for the
two cases: case one, where covariate shift is compensated for, and case two where
covariate shift is not compensated for. This is not immediately obvious because the
apparent model class is the same. It is just that in compensating for covariate shift
the model class is utilized locally (the model does not need to account for training
data that is seen but is outside the support of the test data distribution), whereas
when not compensating the model class is used globally.

As an example, consider using a linear model to fit nonlinear data (figure 1.2(a)).
When not compensating for covariate shift, we obtain the fit given by the dashed
line. When compensating for covariate shift, we get the fit given by the solid line.
In the latter case, there is no attempted explanation for much of the observed
training data, which is fit very poorly by the model. Rather the model class is being
used locally. As a contrast consider the case of a local linear model (figure 1.2(b)).
Training the local linear model explains the training data well, and the test data
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(a)

(b)

Figure 1.2 Covariate shift for misspecified models: (a) The linear model is a poor fit
to the global data (dashed line). However by focusing on the local region associated with
the test data distribution the fit (solid line) is much better as a local linear model is more
appropriate. (b) The global fit for a local linear model is more reasonable, but involves
the computation of many parameters that are never used in the prediction.

well. However only one of the local linear components is really used when doing
prediction. Hence the effort spent computing the linear components for regions
outside of the support of the test data was wasted.

There are a number of important contributions that stem from the recent study
of covariate shift. It clarifies that there are potential computational advantages of
adjusting for covariate shift due to the fact that it may be possible to use a simpler
model class but only focus on a local region relevant to the test scenario, rather than
worrying about the global fit of the model. There is no need to compute parameters
for a more complicated global model, or for a multitude of local fits that are never
used. Furthermore it also makes use of an issue in semisupervised learning: the
nature of the clusters given by the test distribution might be an indicator of a data
region that can be modeled well by a simple model form.

There is a another contention that is certainly worth considering here. Some
might argue that there are situations where there can be strong a priori knowledge
about the model form for the test data, but very little knowledge about the model
form for the training data, as that may, for example, be contaminated with a number
of other data sources about which little is known. In this circumstance it seems that
it is vital to spend the effort modeling the known form of model for the test region,
ignoring the others. This is probably a very sound policy. Even so, there is still
the possibility that even the test region is contaminated by these other sources. If
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it is possible to untangle the different sources, this could serve to improve things
further. This is discussed more in the context of source component shift.

1.4.2 Gaussian Processes and Conditional Modeling

Suppose instead of using a linear model, a Gaussian process is used. How can we
see that this really is a conditional model where the distribution of the covariates
has no effect on the predictions? This follows from the fact that no matter what
other covariate samples we see, the prediction for our current data remains the
same; that is, Gaussian processes satisfy Kolmogorov consistency:

P ({yi}|{xi}, {xk, yk}) =
∫

dy∗P ({yi}, y∗|{xi},x∗, {xk, yk}) (1.2)

= P ({yi}|{xi},x∗, {xk, yk}) (1.3)

where (1.2) results from the definition of a Gaussian process, and (1.3) from basic
probability theory (marginalization). In this equation the yi are the test targets, xi

the test covariates, xk and yk the training data, and x∗, y∗ a potential extra training
point. However, we never know the target y∗ and so it is marginalized over. The
result is that introducing the new covariate point x∗ has had no predictive effect.

Using Gaussian processes in the usual way involves training on all the data
points: the estimated conditional model P (y|x) has made use of all the available
information. If one of the data points was downweighted (or removed altogether) the
effect would simply be greater uncertainty about the model, resulting in a broader
posterior distribution over functions.

It may be considered easier to specify a model class for a local region than a
model class for the data as a whole. Practically this may be the case. However
by specifying that a particular model may be appropriate for any potential local
region, we are effectively specifying a model form for each different region of space.
This amounts to specifying a global model anyway, and indeed one derivation of the
Gaussian process can be obtained from infinite local radial basis function models
[Gibbs and MacKay, 1997].

Are all standard nonparametric models also conditional models? In fact some
common models are not: the support vector machine (SVM) classifier does not take
this form. In Sollich [1999, 2002], it is shown that in order for the support vector
machine to be defined as a probabilistic model, a global compensation factor needs
to be made due to the fact that the SVM classifier does not include a normalization
term in its optimization. One immediate consequence of this compensation is that
the probabilistic formulation of the SVM does not satisfy Kolmogorov consistency.
Hence the SVM is dependent on the density of the covariates in its prediction.

This can be shown, purely by way of example, for the linear SVM regression case.
Generalizations are straightforward. We present an outline argument here, following
the notation in Rasmussen and Williams [2006]. The linear support vector classifier
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maximizes

exp

(
−

N∑
i=1

(1 − yi(wT .xi)+

)
exp

(
− 1

2C
|w|2

)
, (1.4)

where C is some constant, yi are the training targets, xi are the covariates
(augmented with an addition unit attribute), and w the linear parameters. The (.)+
notation is used to denote the function (x)+ = x iff x > 0 and is zero otherwise.

Equation (1.4) can be rewritten as[
N∏

i=1

1
Zi(w)

exp(−(1 − yi(wT xi)+)

]
Z(w) exp

(
− 1

2C
|w|2

)
, (1.5)

where ZN =
∏N

i=1 Zi(w), and Zi(w) =
∑

yi=±1 exp(−(1− yi(wT xi)+) is a normal-
ization constant, so now

1
Zi(w)

exp(−(1 − yi(wT xi)+) def= P (yi|w) (1.6)

can be interpreted as a probability. Hence the support vector objective can be
written[

N∏
i=1

P (yi|w)

]
ZN (w) exp

(
− 1

2C
|w|2

)
. (1.7)

Consider the cases N = N∗ and N = N∗ + 1. Starting with the latter, marginal-
ization over yN∗+1 is now straightforward as it only occurs as a probability. So the
marginal objective is now[

N∗∏
i=1

P (yi|w)

]
ZN∗+1(w) exp

(
− 1

2C
|w|2

)
. (1.8)

However ZN∗+1(w) �= ZN∗(w) due to the extra product term. Specifically the
dependence on w is different, so the objective (1.8) does not match the objective
(1.7) for N = N∗. Hence the support vector objective for the case of an unknown
value of target at a given point is different from the objective function without
considering that point. The standard probabilistic interpretation of the support
vector classifier does not satisfy Kolmogorov consistency, and seeing a covariate at
a point will affect the objective function even if there is no knowledge of the target
at that point. Hence the SVM classifier is in some way dependent on the covariate
density, as it is dependent purely on the observation of covariates themselves.

1.5 Prior Probability Shift

Prior probability shift is a common issue in simple generative models. A popular
example stems from the availability of naive Bayes models for the filtering of spam
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Figure 1.3 Prior probability shift. Here the causal model indicated the covariates x
are directly dependent on the predictors y. The distribution over y can change, and this
effects the predictions in both the continuous case (left) and the class conditional case
(right).

email. In cases of prior probability shift, an assumption is made that a causal
model of the form P (x|y)P (y) is valid (see figure 1.3) and the Bayes rule is used to
inferentially obtain P (y|x). Naive Bayes is one model that makes this assumption.
The difficulty occurs if the distribution P (y) changes between training and test
situations. As y is what we are trying to predict it is unsurprising that this form
of dataset shift will affect the prediction.

For a known shift in P (y), prior probability shift is easy to correct for. As it is
presumed that P (x|y) does not change, this model can be learned directly from
the training data. However the learned Ptr(y) is no longer valid, and needs to be
replaced by the known prior distribution in the test scenario Pte(y).

If, however, the distribution Pte(y) is not known for the test scenario, then the
situation is a little more complicated. Making a prediction

P (y|x) =
P (x|y)P (y)

P (x)
(1.9)

is not possible without knowledge of P (y). But given the model P (x|y) and the
covariates for the test data, certain distributions over y are more or less likely.
Consider the spam filter example again. If in the test data, the vast majority
of the emails contain spammy words, rather than hammy words, we would rate
P (spam) = 0 as an unlikely model compared with other models such as P (spam) =
0.7. In saying this we are implicitly using some a priori model of what distributions
P (spam) are acceptable to us, and then using the data to refine this model.

Restated, to account for prior probability shift where the precise shift is unknown
a prior distribution over valid P (y) can be specified, and the posterior distribution
over P (y) computed from the test covariate data. Then the predicted target is given
by the sum of the predictions obtained for each P (y) weighted by the posterior
probability of P (y).

Suppose P (y) is parameterized by θ, and a prior distribution for P (y) is defined
through a prior on the parameters P (θ). Also assume that the model Ptr(x|y) has
been learned from the training data. Then the prediction taking into account the
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parameter uncertainty and the observed test data is

P (y1|{xi}) =
∫

dθP (y1|x1, θ)Pte(θ|{xi}) (1.10)

=
∫

dθ
Ptr(x1|y1)P (y1|θ)

Ptr(x1|θ) Pte(θ|{xi}) , (1.11)

where

Pte(θ|{xi}) ∝
∏

i

∑
yi

Ptr(xi|yi)P (yi|θ)P (θ) (1.12)

and where i counts over the test data, i.e., these computations are done for the
targets yi for test points xi. The ease with which this can be done depends on
how many integrals or sums are tractable, and whether the posterior over θ can be
represented compactly.

1.6 Sample Selection Bias

Sample selection bias is a statistical issue of critical importance in numerous
analyses. One particular area where selection bias must be considered is survey
design. Sample selection bias occurs when the training data points {xi} (the sample)
do not accurately represent the distribution of the test scenario (the population)
due to a selection process for each item i that is (usually implicitly) dependent on
the target variable yi.

In doing surveys, the desire is to estimate population statistics by surveying a
small sample of the population. However, it is easy to set up a survey that means
that certain groups of people are less likely to be included in the survey than others
because either they refuse to be involved, or they were never in a position to ask
to be involved. A typical street survey, for example, is potentially biased against
people with poor mobility who may be more likely to be using other transport
methods than walking. A survey in a train station is more likely to catch people
engaging in leisure travel than busy commuters with optimized journeys who may
refuse to do the survey for lack of time.

Sample selection bias is certainly not restricted to surveys. Other examples in-
clude estimating the average speed of drivers by measuring the speeds of cars passing
a stationary point on a motorway; more fast drivers will pass the point than slow
drivers, simply on account of their speed. In any scenario relying on measurement
from sensors, sensor failure may well be more likely in environmental situations
that would cause extreme measurements. Also the process of data cleaning can
itself introduce selection bias. For example, in obtaining handwritten characters,
completely unintelligible characters may be discarded. But it may be that certain
characters are more likely to be written unclearly.

Sample selection bias is also the cause of the well-known phenomenon called
“regression to the mean”. Suppose that a particular quantity of importance (e.g.,
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Figure 1.4 Sample selection bias. The actual observed training data is different from
the test data because some of the data is more likely to be excluded from the sample.
Here v denotes the selection variable, and an example selection function is given by the
equiprobable contours. The dependence on y is crucial as without it there is no bias and
this becomes a case of simple covariate shift.

number of cases of illness X) is subject to random variations. However, that
circumstance could also be affected by various causal factors. Suppose also that,
across the country, the rate of illness X is measured, and is found to be excessive in
particular locations Y. As a result of that, various measures are introduced to try
to curb the number of illnesses in these regions. The rate of illnesses are measured
again and, lo and behold, things have improved and regions Y no longer have such
bad rates of illnesses. As a result of that change it is tempting for the uninitiated to
conclude that the measures were effective. However, as the regions Y were chosen on
the basis of a statistic that is subject to random fluctuations, and the regions were
chosen because this statistic took an extreme value, even if the measures had no
effect at all the illness rates would be expected to reduce at the next measurement
precisely because of the random variations. This is sample selection bias because
the sample taken to assess improvement was precisely the sample that was most
likely to improve anyway. The issue of reporting bias is also a selection bias issue.
“Interesting” positive results are more likely to be reported than “boring” negative
ones.

The graphical model for sample selection bias is illustrated in figure 1.4. Consider
two models: Ptr denotes the model for the training set, and Pte the model for the
test set. For each datum (x,y) in the training set

Ptr(y,x) = P (y,x|v = 1) = P (v = 1|y,x)P (y|x)P (x) (1.13)

and for each datum in the test set

Pte(y,x) = P (y,x) = P (y|x)P (x). (1.14)

Here v is a binary selection variable that decides whether a datum would be included
in the training sample process (v = 1) or rejected from the training sample (v = 0).
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In much of the sample selection literature this model has been simplified by
assuming

P (y|x) = P (ε = y − f(x)) and (1.15)

P (v = 1|y,x) = P (ν > g(x)|y − f(x)) = P (ν > g(x)|ε) (1.16)

for some densities P (ε) and P (ν|ε), function g and map f . The issue is to model
f , which is the dependence of the targets y on covariates x, while also modeling
for g, which produces the bias. In words the model says there is a (multivariate)
regression function for y given covariates x, where the noise is independent of x.
Likewise (1.16) describes a classification function for the selection variable v in
terms of x, but where the distribution is dependent on the deviation of y from its
predictive mean. Note that in some of the literature, there is an explicit assumption
that v depends on some features in addition to x that control the selection. Here
this is simplified by including these features in x and adjusting the dependence
encoded by f accordingly.

Study of sample selection bias has a long history. Heckman [1974] proposed the
first solution to the selection bias problem which involved presuming y = y is
scalar (hence also ε = ε and f = f), f and g are linear, and the joint density
P (ε, ν) = P (ε)P (ν|ε) is Gaussian. Given this the likelihood of the parameters can
be written down for a given complete dataset (a dataset including the rejected
samples). However, in computing the maximum likelihood solution for the regression
parameters, it turns out the rejected samples are not needed. Note that in the case
that ε and μ are independent, and P (ε, ν) = P (ε)P (μ), there is no predictive bias,
and this is then a case of simple covariate shift.

Since the seminal paper by Heckman, many other related approaches have been
proposed. These include those that relax the Gaussianity assumption for μ and σ,
most commonly by mapping the Gaussian variables through a known nonlinearity
before using them [Lee, 1982] and using semiparametric methods directly on P (ε|ν)
[Heckman, 1979]. More recent methods include Zadrozny [2004], where the author
focuses on the case where P (v|x,y) = P (v|y), Dud́ık et al. [2006], which looks at
maximum entropy density estimation under selection bias; and Huang et al. [2007],
which focuses on using additional unbiased covariate data to help estimate the bias.
More detailed analysis of the historical work on selection bias is available in Vella
[1998] and a characterization of types of selection bias is given in Heckman [1990].

1.7 Imbalanced Data

It is quite possible to have a multiclass machine learning problem where one or more
classes are very rare compared with others. This is called the problem of imbalanced
data. Indeed the prediction of rare events (e.g., loan defaulting) often provides the
most challenging problems. This imbalanced data problem is a common cause of
dataset shift by design.
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Figure 1.5 Imbalanced data: imbalanced data is sample selection bias with a designed
known bias that is dependent on only the class label. Data from more common classes is
more likely to be rejected in the training set in order to balance out the number of cases
of each class.

If the prediction of rare events is the primary issue, to use a balanced dataset
may involve using a computationally infeasible amount of data just in order to get
enough rare cases to be able to characterize the class accurately. For this reason it is
common to “balance” the training dataset by throwing away data from the common
classes so that there is an equal amount of data corresponding to each of the classes
under consideration. Note that here, the presumption is not that the model would
not be right for the imbalanced data, rather that is is computationally infeasible
to use the imbalanced data. However the data corresponding to the common class
is discarded, simply because typically that is less valuable: the common class may
already be easy to characterize fairly well as it has large amounts of data already.

The result of discarding data, though, is that the distribution in the training
scenario no longer matches the imbalanced test scenario. However it is this imbal-
anced scenario that the model will be used for. Hence some adjustment needs to
be made to account for the deliberate bias that is introduced. The graphical model
for imbalanced data is shown in figure 1.5 along with a two-class example.

In the conditional modeling case, dataset shift due to rebalancing imbalanced
data is just the sample selection bias problem with a known selection bias (as the
selection bias was by design not by constraint or accident). In other words, we
have selected proportionally more of one class of data than another precisely for no
reason other than the class of the data. Variations on this theme can also be seen in
certain types of stratified random surveys where particular strata are oversampled
because they are expected to have a disproportionate effect on the statistics of
interest, and so need a larger sample to increase the accuracy with which their
effect is measured.

In a target-conditioned model (of the form P (x|y)P (y)), dataset shift due to
imbalanced data is just prior probability shift with a known shift. This is very
simple to adjust for as only P (y) needs to be changed. This simplicity can mean that
some people choose generative models over conditional models for imbalanced data
problems. Because the imbalance is decoupled from the modeling it is transparent
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that the imbalance itself will not affect the learned model.
In a classification problem, the output of a conditional model is typically viewed

as a probability distribution over class membership. The difficulty is that these
probability distributions were obtained on training data that was biased in favor of
rare classes compared to the test distribution. Hence the output predictions need
to be weighted by the reciprocal of the known bias and renormalized in order to
get the correct predictive probabilities. In theory these renormalized probabilities
should be used in the likelihood and hence in any error function being optimized.

In practice it is not uncommon for the required reweighting to be ignored, either
through naivety, or due to the fact that the performance of the resulting classifier
appears to be better. This is enlightening as it illustrates the importance of not
simply focusing on the probabilistic model without also considering the decision-
theoretic implications. By incorporating a utility or loss function a number of things
can become apparent. First, predictive performance on the rare classes is often more
important than that on common classes. For example, in emergency prediction, we
prefer to sacrifice a number of false positives for the benefit of another true positive.
By ignoring the reweighting, the practitioner is saying that the bias introduced by
the balancing matches the relative importance of false positives and true positives.
Furthermore, introduction of a suitable loss function can reduce the problem where a
classifier puts all the modeling effort into improving the many probabilities that are
already nearly certain at the sacrifice of the small number of cases associated with
the rarer classes. Most classifiers share a number of parameters between predictors
of the rare and common classes. It is easy for the optimization of those parameters
to be swamped by the process of improving the probability of the prediction of
the common classes at the expense of any accuracy on the rare classes. However,
the difference between a probability of 0.99 and 0.9 may not make any difference
to what we do with the classifier and so actually makes no difference to the real
results obtained by using the classifier, if predictive probabilities are actually going
to be ignored in practice.

Once again the literature on imbalanced data is significant, and there is little
chance of doing the field great justice in this small space. In Chawla et al. [2004]
the authors give an overview of the content of a number of workshops in this area,
and the papers referenced provide an interesting overview of the field. One paper
[Japkowicz and Stephen, 2002] from the AAAI workshops looks at a number of
different strategies for learning from imbalanced datasets. SMOTE [Chawla et al.,
2002] is a more recent approach that has received some attention. In Akbani et al.
[2004] the authors look at the issue of imbalanced data specifically in the context
of support vector machines, and an earlier paper [Veropoulos et al., 1999] also
focuses on support vector machines and considers the issue of data imbalance while
discussing the balance between sensitivity and specificity. In the context of linear
program boosting, the paper by Leskovec and Shawe-Taylor [2003] considers the
implications of imbalanced data, and tests this on a text classification problem.
As costs and probabilities are intimately linked, the paper by Zadrozny and Elkan
[2001] discusses how to jointly deal with these unknowns. The fact that adjusting
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class probabilities does make a practical difference can be found in Latinne et al.
[2001]. Further useful analysis of the general problem can be found in Japkowicz
and Stephen [2002].

1.8 Domain Shift

In life, the meaning of numbers can change. Inflation reduces the value of money.
Lighting changes can effect the appearance of a particular color or the meaning of
a position can change dependent on the current frame of reference. Furthermore,
there is often the possibility of changes in measurement units. All of these can cause
dataset shift. We call this particular form of dataset shift domain shift . This term is
borrowed from linguistics, where it refers to changes in the domain of discourse. The
same entity can be referred to in different ways in different domains of discourse:
for example, in one context meters might be an obvious unit of measurement, and
in another inches may be more appropriate.

Domain shift is characterized by the fact that the measurement system, or
method of description, can change. One way to understand this is to postulate
some underlying unchanging latent representation of the covariate space. We denote
a latent variable in this space by x0. Such a variable could, for example, be a value
in yen indexed adjusted to a fixed date. The predictor variable y is dependent on
this latent x0. The difficulty is that we never observe x0. We only observe some map
x = f(x0) into the observable space. And that map can change between training
and test scenarios, see figure 1.6 for an illustration.

Modeling for domain shift involves estimating the map between representations
using the distributional information. A good example of this is estimating gamma
correction for photographs. Gamma correction is a specific parametric nonlinear
map of pixel intensities. Given two unregistered photographs of a similar scene
from different cameras, the appearance may be different due to the camera gamma
calibration or due to postprocessing. By optimizing the parameter to best match the
pixel distributions we can obtain a gamma correction such that the two photographs
are using the same representation. A more common scenario is that a single camera
moves from a well-lit to a badly lit region. In this context, gamma correction
is correction for changes due to lighting—an estimate of the gamma correction
needed to match some idealized pixel distribution can be computed. Another form
of explicit density shift includes estimating Doppler shift from diffuse sources.

1.9 Source Component Shift

Source component shift may be the most common form of dataset shift. In the most
general sense it simply states that the observed data is made up from data from a
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Figure 1.6 Domain shift: The observed covariates x are transformed from some idealized
covariates x0 via some transformation F , which is allowed to vary between datasets. The
target distribution P (y|x0) is unchanged between test and training datasets, but of course
the distribution P (y|x0) does change if F changes.

number of different sources, each with its own characteristics, and the proportions
of those sources can vary between training and test scenarios.

Source component shift is ubiquitous: a particular product is produced in a
number of factories, but the proportions sourced from each factory vary dependent
on a retailer’s supply chain; voting expectations vary depending on type of work,
and different places in a country have different distributions of jobs; a major
furniture store wants to analyze advertising effectiveness among a number of
concurrent advertising streams, but the effectiveness of each is likely to vary with
demographic proportions; the nature of network traffic on a university’s computer
system varies with time of year due to the fact that different student groups are
present or absent at different times.

It would seem likely that most of the prediction problems that are the subject of
study or analysis involve at least one of

samples that could come from one of a number of subpopulations, between which
the quantity to be predicted may vary;

samples chosen are subject to factors that are not fully controlled for, and that
could change in different scenarios; and

targets that are aggregate values averaged over a potentially varying population.

Each of these provides a different potential form of source component shift. The
three cases correspond to mixture component shift, factor component shift, and
mixing component shift respectively. These three cases will be elaborated further.

The causal graphical model for source component shift is illustrated in figure
1.7. In all cases of source component shift there is some changing environment
that jointly affects the values of the samples that are drawn. This may sound
indistinguishable from sample selection bias, and indeed these two forms of dataset
shift are closely related. However, with source component shift the causal model
states that the change is a change in the causes. In sample selection bias, the change
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Figure 1.7 Source component shift. A number of different sources of data are repre-
sented in the dataset, each with its own characteristics. Here S denotes the source pro-
portions and these can vary between test and training scenarios. In mixture component
shift, these sources are mixed together in the observed data, resulting in two or more
confounded components.

is a change in the measurement process. This distinction is subtle but important
from a modeling point of view. At this stage it is worth considering the three
different cases of source component shift.

Mixture Component Shift In mixture component shift, the data consists di-
rectly of samples of (x,y) values that come from a number of different sources.
However for each datum the actual source (which we denote by s) is unknown.
Unsurprisingly these different sources occur in different proportions P (s), and are
also likely to be responsible for different ranges of values for (x,y): the distribution
P (y,x|s) is conditionally dependent on s. Typically, it is presumed that the effects
of the sources P (y,x|s) are the same in all situations, but that the proportions of
the different sources vary between training and test scenarios. This distinction is a
natural extension to prior probability shift, where now the shift in prior probabilities
is in a latent space rather than in the space of the target attributes.

Factor Component Shift Here the data is dependent on a number of factors
that influence the probability, where each factor is decomposable into a form and
a strength. For concreteness’ sake, a common form of factor model decomposes
P (x,y) as

P (x,y) =
1
Z

exp

(∑
k

αkΦk(x,y)

)
(1.17)

for form exponents Φk(x,y) and strength exponents αk. Factor component shift
occurs when the form of the factors remains the same, but the strength of the
factors changes between training and test scenario.

Mixing Component Shift In mixing component shift, the scenario is the same
as mixture component shift, but where the measurement is an aggregate: consider
sampling whole functions independently from many independent and identically
distributed mixture component shift models. Then, under a mixing component



22 When Training and Test Sets Are Different: Characterizing Learning Transfer

shift model, the observation at x is now an average of the observations at x for
each of those samples. The probability of obtaining an x is as before. Presuming
the applicability of a central limit theorem, the model can then be written as

P (y|x) =
1
Z

exp
(
(y − μ(x))Σ−1(x)(y − μ(x)))

)
, (1.18)

where the mean μ(x) =
∑

s P (s|x)μs and the covariance Σ =
∑

s P (s|x)Σs are
given by combining the means μs and covariances Σs of the different components
s, weighted by their probability of contribution at point x (usually called the
responsibility).

Although all three of these are examples of source component shift, the treatment
each requires is slightly different. The real issue is being able to distinguish the
different sources and their likely contributions in the test setting. The ease or
otherwise with which this can be done will depend to a significant extent on the
situation, and on how much prior knowledge about the form of the sources there
is. It is noteworthy that, at least in mixture component shift, the easier it is to
distinguish the sources, the less relevant it is to model the shift: sources that do not
overlap in x space are easier to distinguish, but also mean that there is no mixing
at any given location to confound the prediction.

It is possible to reinterpret sample selection bias in terms of source component
shift if we view the different rejection rates as relating to different sources of data.
By setting

Pte(s) ∝
∫

dxdyP (x,y|P (v = 1|x,y) = s) (1.19)

P (x,y|s) ∝ P (x,y|P (v = 1|x,y) = s) (1.20)

Ptr(s) ∝ s

∫
dxdyP (x,y|P (v = 1|x,y) = s) (1.21)

we can convert a sample selection bias model into a source component shift model.
In words, the source s is used to represent how likely the rejection would be, and
hence each source generates regions of x,y space that have equiprobable selection
probabilities under the sample selection bias problem. Figure 1.8 illustrates this
relation. At least from this particular map between the domains, the relationship
is not very natural, and hence from a generative point of view the general source
component shift and general sample selection bias scenarios are best considered to
be different from one another.

1.10 Gaussian Process Methods for Dataset Shift

Gaussian processes have proven their capabilities for nonlinear regression and
classification problems. But how can they be used in the context of dataset shift? In
this section, we consider how Gaussian process methods can be adapted for mixture
component shift.
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Figure 1.8 Sample selection bias (left) and source component shift (right) are related.
The sources are equated to regions of (x,y) space with equiprobable sample rejection
probabilities under the sample selection bias model. Then the proportions for these sources
vary between training and test situations. Here x and y are the covariates and targets
respectively, s denotes the different sources, and v denotes the sample selection variable.

1.10.1 Mixture Component Shift Model

In mixture component shift, there are a number of possible components to the
model. We will describe here a two-source problem, where the covariate distribution
for each source is described as a mixture model (a mixture of Gaussians will be
used). The model takes the following form:

The distribution of the training data and test data are denoted Ptr and Pte

respectively, and are unknown in general.

Source 1 consists of M1 mixture distributions for the covariates, where mixture
t is denoted P1t(x). Each of the components is associated2 with regression model
P1(y|x).

Source 2 consists of M2 mixture distributions for the covariates, where mixture t

is denoted P2t(x). Each of the components is associated with the regression model
P2(y|x).

The training and test data distributions take the following form:

Ptr(x) =
M1∑
t=1

β1γ
D
1tP1t(x) +

M2∑
t=1

β2γ
D
2tP2t(x) and Pte(x) =

M1∑
t=1

γT
1tP1t(x) (1.22)

Here β1 and β2 are parameters for the proportions of the two sources in the training
data, γD

1t are the relative proportions of each mixture from source 1 in the training
data, and γD

2t are the relative proportions of each mixture from source 2 in the
training data. Finally, γT

1t are the proportions of each mixture from source 1 in the

2. If a component i is associated with a regression model j, this means that any datum x
generated from the mixture component i, will also have a corresponding y generated from
the associated regression model Pj(y|x).
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test data. Once again, D and T denote the training and test datasets respectively.
Note that source 2 does not occur in the test dataset. All these parameters are
presumed unknown. In general we will assume the mixtures are Gaussian, when
the form N(x;m,K) will be used to denote the Gaussian distribution function of
x, with mean m and covariance K.

For Gaussian process models for P1(y|x) and P2(y|x), with mixture parameters
collected as Ω, and the mixing proportions collected as γ and β, we have the full
probabilistic model

P ({yμ,xμ|μ ∈ D}, {xν |ν ∈ T}|β,Ω) =
∑

{sμ},{tμ}

∏
μ∈D

P (sμ|β)

P (tμ|γ, sμ)Psμtμ(xμ|Ωtμ)Psμ(yμ|xμ)
∏
ν∈T

P (tν |γ)P1tν (xν |Ω) (1.23)

where sμ denotes the source, and tμ denotes the mixture component. In words this
model says:

For each item in the training set:

Decide which source generated this datum.

Decide which of the mixtures associated with this source generated the
covariates.

Sample the covariates from the relevant mixture.

Sample the target from the Gaussian process (conditioned on the covariates)
associated with this source.

For each item in the test set:

Decide which of the mixtures from source 1 generated the covariates (source 2
is not represented in the test data).

Generate the covariates from that mixture.

1.10.2 Learning and Inference

The primary computational issue in learning and inference in this model is the diffi-
culty of summing over all the allocations of data points to mixture components. For
Gaussian processes, this computation is harder than in most parametric models as
we cannot expect to be able to do standard expectation maximization. Expectation
maximization algorithms involve iterative computation of responsibilities P (sμ) for
each data point μ and then a maximum-likelihood parameter estimation for the
parameters given the responsibilities. However as Gaussian processes are nonpara-
metric, the distribution is not independent of the allocation. Hence whether one
point is allocated to one mixture or not will immediately affect the distribution
over all other mixtures.

Here, a variational approximation is proposed, which enables a variational expec-
tation maximization procedure to be used. The approximation takes the form of
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an intermediate approximating Gaussian process for each mixture component and
factorized responsibilities.

For simplicity, we will assume that the target is a scalar value: we are interested in
regression. The issues of generalization to multidimensional targets are the same as
in standard Gaussian process models. Furthermore, for ease of notations the targets
for all of the N data points yμ are collected into a vector y = (y1, y2, . . . yN )T . The
same is done for all other relevant scalar quantities such as the indicators s, etc.
The quantities f1 and f2 denote the collections of values of each noise-free Gaussian
process at all the points {xμ}, and noise σ2.

The Gaussian process mixture can be written as

P (y|{xμ}) =
∑
s

∫
df1 df2P (f1, f2, s,y|{xμ}) , (1.24)

where

P (f1, f2, s,y|{xμ}) = P (f1|{xμ})P (f2|{xμ})×∏
μ

1√
2πσ2

exp
(
− 1

2σ2

[
sμ(yμ − fμ)2 + (1 − sμ)(yμ − fμ)2

])
. (1.25)

Note P (f1|{xμ}) and P (f2|{xμ}) are simply the prior Gaussian process regressors
for the two sources.

By using a variational approximation of the form Q(f1)Q(f2)
∏

μ Q(sμ) and
iteratively reducing the Kullback-Leibler (KL) divergence KL(Q||P ) we obtain the
following approximation procedure for an iterative solution of the covariate shift
model. Here αμ

st is used to denote the responsibility of mixture t of source s for
point μ in the training set. The term αμ

s =
∑

t αμ
st is the responsibility of source s

for the point μ.

Perform a standard Gaussian mixture model expectation maximization to initial-
ize the responsibilities αμ

s for each of the two sources.

Iterate:

Compute the pseudovariances σ2/αμ
s for each point and each source.

Build the covariance C1 for source 1 from the covariance of the Gaussian pro-
cess, and an additive pseudonoise given by a matrix with the pseudovariances
for source 1 down the diagonal.

Do the same for source 2 to obtain C2.

Compute the mean predictions (f∗
1 )μ and (f∗

2 )μ at points {xμ} for Gaussian
processes with training covariances C1, and C2, and prediction covariances
given by the original covariance functions.

Compute the parameter updates for the Gaussian processes using the usual
hyperparameter optimizations, and the updates for the various mixture com-
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ponents using

mst =

∑
μ∈(D,T ) αμ

stx
μ∑

μ∈(D,T ) αμ
st

, Kst =

∑
μ∈(D,T ) αμ

st(xμ − mst)(xμ − mst)T∑
μ∈(D,T ) αμ

st

. (1.26)

Compute the new responsibilities for each mixture, each source, and each
data point using

αμ
st =

βsγ
D
stPst(xμ|Ω)P (yμ|(f∗

s )μ, σ2)∑
s,t βsγD

stPst(xμ|Ω)P (yμ|(f∗
s )μ, σ2)

and αν
1t =

γT
1tP1t(xμ|Ω)∑

t γT
1tP1t(xμ|Ω)

(1.27)

βs =
1
|D|

∑
μ∈D,t

αμ
st , γD

st =
1
|D|

∑
μ∈D

αμ
st

βs
, γT

1t =
1
|T |

∑
ν∈T

αν
1t , (1.28)

where

P (yμ|(f∗
s )μ, σ2) =

1√
2πσ2

exp
(
− 1

2σ2
(yμ − (f∗

s )μ)2
)

. (1.29)

Predict the result on the test data using the Gaussian process prediction with the
covariance between data points given by C1 and covariance between test and data
given by the usual covariance function.

See Tresp [2001] for more details of this approach to Gaussian process mixtures.
Intuitively, this process increases the noise term on data that is poorly explained by
one of the mixtures. A datum with an increased noise term will have less influence
on the overall Gaussian process regressor that is learned. This model is related to
a mixture of experts model [Jacobs et al., 1991; Jordan and Jacobs, 1994], but
where there is a coupling of the regression function between different mixtures and
the covariate density itself is also modeled. A similar model was developed in Sung
[2004], but only for linear regressors, and single Gaussian components per regressor.
This model has the usual deficits associated with mixture models, including local
minima issues, and the difficulties in deciding on a suitable number of mixtures. The
infinite mixture of Gaussian process experts [Rasmussen and Ghahramani, 2002]
is another mixture of experts model, but one that uses Gaussian processes and
does not suffer from model size selection issues. However, it too does not have the
distribution in covariate space (although this could be added to the model without
major difficulties). The main issues of adapting this for use here are those of having
to resort to Markov chain Monte Carlo methods rather than variational methods,
and incorporating the match to the test dataset. These are surmountable issues. In
the current context, a Bayesian information criterion method can be used [Storkey
and Sugiyama, 2007] for selection of the number of mixtures, but it may not always
work well as it is both approximate and a heuristic for latent variable problems.
One other consequence of the model selection issue is that this implementation of
the model may well perform more poorly than a straight Gaussian process in cases
of no dataset shift. This issue is discussed more generally in the next section.
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1.11 Shift or No Shift?

One big issue in all types of dataset shift is determining whether there is, in fact,
any type of shift at all. It is possible that using a modeling method which can
account for covariate shift may produce worse results than a standard model on
data for which no shift occurs. This is first because introducing the possibility of
shift allows for a large scope of possible representations that waters down the more
concrete (but rigid) assumptions that presuming no shift makes. Second, the various
methods used in modeling covariate shift may have their own deficiencies (such as
local minima) that mean that they do not properly include the no-shift case: for
a maximum likelihood solution may prefer to improve the likelihood by utilizing
the freedom of the dataset shift model to overfit, even if presuming no shift would
generalize better.

At this point, there are some real practicalities that should outweigh theoretical
niceties. It may be interesting to consider how to determine whether covariate shift
occurs on the basis of the training covariates, training targets, and test covariates
alone. It may also be useful in making a choice about a limited number of models
to consider. However, in many realistic scenarios (the main exceptions being single
future prediction cases3), a practitioner would be negligent not to check a model in
the actual environment in which it is being developed for before rolling out the use
of the model. There must come a stage at which some test targets are obtained, and
at which some assessment is done on the basis of those. Furthermore even a few test
targets provide a large amount of information regarding dataset shift, in the same
way that semisupervised learning can provide major benefits over unsupervised
learning. It would also seem peculiar if a no-shift model was not one of the small
basket of models considered at this stage, unless a particular form of dataset shift
was guaranteed a priori. The major improvements available from a semisupervised
approach in the test domain should never be neglected: targets in the test domain
are very valuable information.

1.12 Dataset Shift and Transfer Learning

Dataset shift and transfer learning are closely related. Transfer learning considers
the issue of how information can be taken from a number of only partially related
training scenarios and used to provide better prediction in one of those scenarios
than would be obtained from that scenario alone. Hence dataset shift consists of the
case where there are only two scenarios, and one of those scenarios has no training
targets. Multitask learning is also related. In multitask learning the response for a
given input on a variety of tasks is obtained, and information between tasks is used

3. As an example, a pollster predicting election results has no recourse to the voting
patterns of the population as a whole until it is too late.
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to aid prediction. Multitask learning can be thought of a special case of transfer
learning where there is some commonality in training covariates between tasks, and
where the covariates have the same meaning across scenarios (hence domain shift
is precluded).

There is recent work on utilizing Gaussian processes for multitask learning
[Bonilla et al., 2007]. Unlike the methods developed here, this approach relies on
having target data for all scenarios to help in relating them. Many approaches to
document analysis (e.g., latent Dirichlet allocation [Blei et al., 2003] and many
related techniques) are in fact methods for mixture component shift, applied to
unsupervised problems in more general multidataset scenarios. The major advan-
tage of having multiple datasets is that it is possible to characterize the differences
between the datasets.

1.13 Conclusions

Modeling dataset shift is a challenging problem, but one with significant real-world
consequence. The failures that arise from ignoring the possibility of dataset shift
(e.g., sample selection bias) have been known for a long time. Furthermore, models
that work well in static scenarios (such as the use of a conditional model) can fail
in situations of shift. By characterizing the different forms of dataset shift, we can
begin to get a handle on the ways the data can be expected to change. Though
sample selection bias and imbalanced data have been studied for many decades as
subjects in their own right, some common forms of shift, such as source component
shift and domain shift, may also be worthy of further explicit study. Hopefully, by
relating the different types of shift, more general methods will become available
that can cope with a number of different forms of shift at the same time. Such
methods may help automate the process of prediction even in the case of changing
environments. The aim is to develop methods that are robust to, and automatically
accommodate for, dataset shift.

One big question that should be considered is whether it is important to study
dataset shift in its own right, or whether there is more to be gained by the general
study of methods for learning transfer that could be directly applied to dataset
shift. Though the basket of approaches in the two fields may well be similar, there
are methods that will require either some test targets or multiple training domains
to work, both of which may be unavailable in a standard dataset shift problem.
One thing is certain though, study of dataset shift and transfer learning cannot be
done in isolation of one another, and in a world of data abundance, it may well be
worth asking whether a scenario with a single training dataset, as well as a single
unlabeled test dataset, is really the best way of expressing a given problem.



2 Projection and Projectability

David Corfield

The problem of dataset shift can be viewed in the light of the more general problem
of induction, in particular the question of what it is about some objects’ features
or properties which allow us to project correlations confidently to other times and
places. We explore the varieties of background knowledge which philosophers have
taken to warrant this confidence. Finally, we ask whether or not Bayesians have
been inhibited by their need to encode such forms of background knowledge in the
shape of probability distributions.

2.1 Introduction

Philosophers have not directly addressed the problems of dataset shift or covariate
shift, but, as I shall argue, these problems are closely related to ones they have
discussed. Indeed, much of the philosophical literature dealing with inductive
reasoning has some bearing on these problems. For example, the “projection” of
a regularity to times or places beyond those of the observed supporting instances
involves a covariate shift when time or space is regarded as an independent variable.

What philosophers of science have found to be key in inductive reasoning is
background knowledge. In the natural sciences this forms a highly complex web of
practical and theoretic knowledge, and many have decided that little more than
a qualitative description of plausible inference is possible. In the case of machine
learning we still have to deal with background knowledge, or else we shouldn’t be
able to do any learning at all. However, this knowledge is typically simpler and thus
more amenable to encoding in a learning algorithm. A point I shall consider in this
chapter is whether Bayesians help or hinder themselves by requiring this knowledge
to be construed in probabilistic terms.

In order to relate the thematic problem of this book to that of background
knowledge, it will be convenient to establish what precisely is meant by the
definition of dataset shift as a situation where the joint distribution of inputs and
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outputs differs between the training and test stages. What does it mean to say
that the training data and test data come from a different distribution? In the
first section we shall need to consider two words in this question – “data” and
“distribution”.

2.2 Data and Its Distributions

Despite its etymology, data is not just something given to us. Rather, it is the result
of the framing and recording of some interaction with the world. Those famous
handwritten digits of the MNIST dataset need not have been collected in the way
they were. They never had to have been photographed, nor once photographed to
be pixellated, nor if pixellated to be pixellated the way they were. Nor did they
have to be centered or size-normalized. The time and place a digit was written, who
wrote it, and the type of writing implement used need not have been forgotten. But
for convenience, and in the hope that sufficient usable information was captured
in the representation, decisions were taken to do so. It is important to remember
that decisions of this kind do not take place in a vacuum. They arise on the basis
of certain expectations and knowledge. We shall need to keep the existence of this
background firmly in mind.

Now, given some data-collecting protocol, what does it mean to say that the
vectors of chosen attributes of the entities of a sample come from a distribution,
which may be compared to another distribution generating a different sample? Does
this not presuppose some relatively stable random process, like a coin-tossing device
whose settings don’t change in important ways while a sample is generated? Could
the MNIST dataset collection be viewed like this?

Consider the question I heard posed by Peter Grünwald as to whether we should
take the writings of Tolstoy to be generated according to a probability distribution.
Certainly we can use the apparatus of probability theory to model his writings,
and perhaps to provide evidence whether or not some newly discovered work was
written by him. We may choose to model War and Peace by a Markov chain of
order two, then come to realize that one of order three is more accurate, but that
little is gained by extending this to order four. But what does it mean to say we
have the true distribution, or have come close to it?

Even those canonical coin toss samples are not viewed universally as the product
of a random generating process. Certainly some prominent thinkers have had
difficulty with the idea of randomness and probability distributions being out there
in the world. Indeed, for people like Bruno de Finetti and Edwin Jaynes, there just
is no randomness in the world, certainly not at the classical level; distributions are
simply representations of our state of belief.

But de Finetti would need not have had to excuse himself politely from this book
had he been asked to contribute. He could imagine himself in a situation where he
would take each of the training data and test data individually as exchangeable
sequences, but not both datasets taken together. Something we might seek, in his
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language, is a way to map these datasets such that the joint image dataset is
exchangeable. I shall keep to the standard way of speaking throughout the chapter,
as though distributions are things belonging to the world, bearing in mind that
there are ways of rephrasing matters to keep the de Finettian happy.

2.3 Data Attributes and Projection

There are many reasons why training data might have a different distribution from
test data. As I said in the previous section, the data has already been chosen to
take on a specific form. Perhaps we included a variable which made no difference
to the output, but in whose presence we detect covariate shift. It is possible then
that with a better choice of variables, and a projection onto them, the shift would
disappear.

Viewing matters the other way around, had a different choice been made and had
we been less restrictive, what was not a case of dataset or covariate shift becomes
one. In other words, if the term “input variable” were taken broadly enough, all
learning confronts the problem of covariate shift, as we may consider in the case of,
say, classification,

Pr (class | features, place of observation, time of observation,...).

Sometimes it is obvious that some of the dimensions of the input space are irrelevant.
Usually we ignore them without thinking about it. If we wish to model the running
speed of individuals we may consider their age, height, and weight, but we typically
won’t think to count the number of whirls on the fingerprint of their left ring finger.
But we can consider that already a projection has taken place onto the chosen set
of input variables.

Leaving major projections of time and space to one side, imagine that on a digit
recognition task I find the top left pixel doesn’t matter to the classification. Yet
the training data has 80% dark pixels in that position, while the test data has 20%
dark pixels there. If the projected training distribution matches the projected test
distribution, won’t we proceed happily, unless we suspect a relevant reason for the
incidence of this pixel’s darkness?

Or, I want to predict people’s preference for a film Y . In my training data I have
an input distribution skewed to the extremes for the likes/dislikes of another film,
X, but these are not found to be significant for the assessment of film Y . Now in
the test data, many people are indifferent to film X. Do I confidently project out
from that film preference feature?

Clearly our confidence must rely on background knowledge. Set the same problem,
i.e., exactly the same numerical values, in an artificial setting with meaningless
predicates, you will be much less confident. This must be due to prior beliefs about
the length scales in such a direction, which could be encoded in an algorithm such
as Gaussian process classification.
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Dataset shift problems may come about from mistakenly ignoring some feature of
the collection of data. Had we included this feature we would just have the covariate
shift problem. Of course we will have to model this extra dimension somehow. If
all we have is the extra tag of either being in the test sample or training sample,
then if we devise a kernel which makes differently tagged members be seen as far
apart in feature space, we won’t be able to learn from the training data. If X is the
input space and P (X) differs for test and training samples, then we’re looking to
find a function f : X → X ′, such that the induced P (X ′) is sufficiently similar for
test and training data. But clearly the closeness of projected distributions is not
sufficient for a projection to be counted as good, otherwise a mapping with X ′ a
single point might qualify. We would also like P (Y |X = x) to be reasonably uniform
in the neighborhoods of training points with the same image in X ′. Furthermore,
we would need to control the class of such mappings, f , or, in other words, we
would need to regularize the projection algorithm.

How much evidence we require to convince ourselves that we have a good
projection naturally depends upon our prior expectations. And indeed in the whole
process of inductive inference, background knowledge is vital. Even though I had
never been to Canada before the 2006 conference on neural information processing
systems, I had a good idea whether and when it mattered. I expected the snow
to be like it is Europe, but the number of times per hour I heard “dude” to be
different. Now the term philosophers have used for the activity of extending the
domain of some observed regularity is precisely the same as the one I have been
using, namely, projection. This is no mere coincidence.

2.4 The New Riddle of Induction

Nelson Goodman [1955] devised the “new riddle of induction” in the 1950s in
the heyday of logical empiricism, when philosophers tried to formulate scientific
reasoning with the resources of predicate logic and a Bayesian inductive logic. What
he was challenging was a position that all could be achieved merely syntactically,
that is, in terms of the logical form of the relevant statements. He famously
presented the riddle by way of a paradox.

Grue Paradox Suppose that at time t we have observed many emeralds to be
green. We thus have evidence statements

emerald a is green,
emerald b is green,

etc.

and these statements support the generalization

All emeralds are green.
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But now define the predicate “grue” to apply to all things observed before t just
in the case that they are green, and to other things just in the case that they are
blue. Then we have also the evidence statements

emerald a is grue,
emerald b is grue,

etc.

and these evidence statements support the hypothesis

All emeralds are grue.

Hence the same observations support incompatible hypotheses about emeralds to
be observed for the first time in the future after t; that they will be green and
that they will be blue. What is it about green, Goodman asks, which warrants our
projecting it to as yet unobserved cases, which does not hold for grue?

One might hope to solve this paradox by pointing out that the definition of
grue includes a time parameter, so is intrinsically more complicated syntactically.
However, when we define green and blue in terms of grue and bleen, they appear
equally complex:

“green” = “grue if observed before t and bleen if observed thereafter,”
“blue” = “bleen if observed before t and grue if observed thereafter.”

Goodman’s answer to the riddle was to say that the reason we confidently project
green is that color terms are “entrenched” in our language and so “projectable”
based on the success of their past projections. These terms have earned their right
to be in our language through the service they have performed in the past. Perhaps,
then, the very vocabulary we use is an encoding of a huge amount of background
knowledge.

The roots of inductive inference are to be found in our use of language. A
valid prediction is, admittedly, one that is in agreement with past regularities in
what has been observed; but the difficulty has always been to say what constitutes
such agreement. The suggestion I have been developing here is that such agreement
with regularities in what has been observed is a function of our linguistic practices.
Thus the line between valid and invalid predictions (or inductions or projections) is
drawn upon the basis of how the world is and has been described and anticipated
in words [Goodman, 1955, pp. 120–121].

Let’s see if our intuitions accord with Goodman’s. If I tell you that in a remote
island, that thousands of “denkos” have been observed and all are “hesty” and
“heslin,” do you feel inclined to believe these?:

All denkos are hesty.
All denkos are heslin.
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What if I tell you that “hesty” is a word in the local vocabulary, but that “heslin”
is not, just being a concoction of “hesty” and “snublin”?

But the bare presence of concocted terms is not sufficient to rule out successful
projection. If I define an “emeraphire” to be “either an emerald if observed before
time t, and otherwise a sapphire”, then we can form what we take to be the true
general statement “All emeraphires are grue.”

Goodman’s grue example is sometimes mistakenly thought to be about objects
changing color, when really the artificial predicate is creatively linking the color
of an object to the time it is first observed. Of course on the subject of objects
changing color, we do have background knowledge which will make us suspicious of
projecting green in some situations.

All leaves observed this year are green

is a statement supported by observed green leaves in May, June, July, . . . , but one
we will not expect to hold in November. We don’t have a single word to capture
the color change from green to red or yellow, which at least could be useful; how
less likely we would have a word for color-time of observation relations.

In the case of emeralds and color much more is at stake than the presence or
absence of predicates in our language. It is the lack of conceivable connection
between the time of first observation and the color which is at play. Our expectation
that the projection of grue will fail derives from our background knowledge of
mineralogy, optics, etc. In later writings, Goodman broadens the scope of his
account:

Projection of “green” and familiar coordinate color predicates overrides intro-
duction of novel color predicates like “grue.” For “grue” cuts across our familiar
categories and would require awkward revision of our practical and scientific vocab-
ulary and our linguistic and cognitive practice [Goodman and Elgin, 1998, p. 14].

More than a matter of the mere appearance of a term in the vocabulary, we hope
that it corresponds to a class of entities for which a deeper scientific knowledge
is possible, perhaps of a mechanism acting behind the scenes. Philosophers have
discussed this issue in terms of natural kinds and causes.

2.5 Natural Kinds and Causes

If I wander for the first time in a rainforest in Africa and see an animal whose fur
is a strange color to me, with lengths of body parts never before seen, but I also
note it is suckling its young, then I will already believe a huge amount about the
animal’s anatomy, physiology, and genetics:

Pr(anatomy, physiology, and genetics are mammalian | suckling young,
place observed, time observed, length of body parts, color of fur)
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is very high.
This plausibility has been made all the greater by our considerable background

knowledge of evolutionary biology, plate tectonics, zoology, etc. We take this animal
to be a member of a species, expecting similarities with animals of other species
belonging to the same class, and more so to the same order or family. Other observed
features typically won’t feature. If all of the first 20 instances of this new species
have a bald patch in their fur, we won’t project this property too readily by taking
it to be an attribute of the species, but rather imagine some local skin disease.

Now, animal species and mineral types are paradigmatic examples of what
philosophers call natural kinds, categories of entities with modal implications. In
other words, a member of a natural kind will necessarily have certain attributes. An
emerald may happen to weigh 50 grams, but necessarily it is green. The revival of
interest in natural kinds in the 1960s was seen as metaphysical by those of a more
empiricist outlook, who had tried to reduce such notions to patterns of observation
statements.

Natural kinds are generally treated in the context of causality. Consider the
difference between these lawlike and accidental generalizations:

All the coins in my pocket are silver.
I can put a copper coin in my pocket.

All emeralds are green.
I cannot make a blue emerald.

So, our willingness to project to other emeralds is related to our inability to make
them of a different color.

In recent years, the treatment of causality has been cast by Judea Pearl [2000]
in terms of sparse Bayesian networks, and the “do” calculus, e.g., when P (y|x) �=
P (y|do(x)), then Y is causally dependent upon X. We suspect we have the causal
picture right when we can represent it with many conditional independence rela-
tions. And when we suspect a causal relationship between a set of parent input
variables and an output variable, we are more likely to believe that in novel situa-
tions our classifications will robustly transfer to new distributions of the nonparent
variables.

It is worth noting that similar considerations occur outside the natural sciences,
for example, in the noncausal world of mathematics. Pólya [1954] describes how
Euler realized that the function sin x

x resembles a complex polynomial, and so
expected it to factorize into linear factors as all complex polynomials do:

sin x

x
=
(
1 − x

π

)(
1 − x

4π

)(
1 − x

9π

)
. . .

This allowed him to derive the correct result
∑

1
n2 = π2

6 .
Now, why can this analysis not be applied to tan x

x ? Which properties “cause” or
are “responsible” for factorization in the case of complex polynomials but only some
nonpolynomial functions. It turns out that we can project away from the condition
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that the number of zeros of the function be finite, but not from the condition that
there be no pole (infinite value). Pólya spoke of a “hope for a common ground”
between analogous results over different domains, in this case the fact that sin x

x is
what is called an entire function, having no pole over the complex plane.

In the rest of the book he develops a large number of Bayesian principles in
the context of mathematics [Corfield, 2003, chap. 5], but these are written in loose
terms such as

If A is analogous to B,
and A is found to be true,

then B is somewhat more likely.

Deeper research into the history of scientific and mathematical practice revealed
a far more complex picture of language dynamics and scientific progress. Indeed,
Thomas Kuhn used his study of the shifting meaning of a word like “mass” as
paradigms change to argue against Bayesian reconstructions of scientific inductive
reasoning, charging them that they presupposed language stability, when we know
that words radically change their meaning through revolutions. Imre Lakatos made
similar points to Kuhn about science, and criticized Pólya’s inductive account of
mathematics, stressing the importance of changes in our concepts.

But perhaps this is taking us too far from the humbler tasks of machine learning.
While there is much we might learn from the philosophy of science literature, we
might say that machine learning presents us with the problem of modeling domains
with limited information and in stable theoretical settings. We’re often not looking
to devise an algorithm to help us break out of some conceptual confines. We don’t
want a groundbreaking new theory about the evolution of the digits; we just want
a good classifier. Still we require background knowledge, but in many problems this
is much simpler, and perhaps amenable to formalization. This raises the following
questions: Have machine learning theorists been sufficiently creative in their efforts
to encode background knowledge? Have frequentists been more imaginative, or less
constrained by a probabilistic framework?

2.6 Machine Learning

We need to find ways to encode background knowledge to allow the transfer of
inferential steps, and perhaps even schemes to allow us to find what is common
between two situations. Examples of encoding background knowledge to date might
seem to favor the frequentists as the more imaginative:

Cluster Assumption We can expect that the input variables of data points
bearing the same label will lie close to one another. Imagine a dataset consisting
of two interspersed crescent shapes. One point in crescent 1 is labeled red, one in
crescent 2 is labeled blue. Intuitively you think to color each crescent the same
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as its labeled member. But if you relied only on the labeled data, commonly used
algorithms would just drive a classifying line through the perpendicular bisector of
the line joining them. To use the unlabeled data you must feed in an assumption that
points with the same label will tend to cluster. Frequentists used this assumption
to devise certain semisupervised learning algorithms. Lawrence and Jordan [2005]
recently added the notion of the null category to the Gaussian process framework
to the same end for the Bayesians.

Invariance under Small Changes We can expect small translations, rotations,
and thinning or thickening of lines of images of numbers to represent the same
number. Frequentists got here first by finding support vectors, then forming vir-
tual support vectors by making slight modifications to the originals [Decoste and
Schölkopf, 2002]. This was copied in the Gaussian process setting in Lawrence et al.
[2005].

Robustness under Adversarial Deletion We may expect that informative
inputs are robust enough that even if an adversary does its best to put us off with
a given number of feature deletions, we’ll still be able to classify (see chapter 10 in
this book). It would be a bad symbol system if the removal of a single pixel from the
image of a letter made it look like another. On the other hand, not many auditory
features of “nineteen” need be removed before it sounds like “ninety”, and letters
are notoriously hard to hear over the telephone, such as “F” and “S.”

Structural Correspondence Sentences taken from a medical journal may be
very different from sentences taken from the Wall Street Journal, but still we may
expect that words close to certain “pivots” will be the same parts of speech [Blitzer
et al., 2006]. So a word appearing after “a” and before “required by” will most
likely be a noun in both financial and medical contexts. If we have tagged a large
corpus of financial text, then an algorithm which has learned to classify these tags
well on the basis of the selected pivots should continue to work well on untagged
medical texts. Generalization guarantees relating to this structural correspondence
learning can be given.

In all four cases we have frequentists making the running. In the first two cases
it was possible for Bayesians later to give their own versions, although in the case
of invariance under small changes it would be preferable to encode this knowledge
in the kernel. The last two cases are too recent to have been imitated. Where
frequentists might point to what they consider to be the unnecessary restrictiveness
of having to encode knowledge via probability distributions, there is little evidence
to suggest that any of their ideas escape possible probabilistic representation. A
small test of this thesis would be to Bayesianize “robustness under adversarial
deletion” and “structural correspondence.”

Synthesizing some responses, made at the workshop and by one of the editors, to
the charge of lack of imagination, perhaps it is because the frequentists are forced to
look for novel means of addressing each new situation that they exploit background
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knowledge more inventively. The Bayesian may view these efforts as somewhat ad
hoc, and prefer to devote his or her time to working out mathematically more
elegant models believed to apply over a wider range of learning situations, but
perhaps there is something to be said for extracting whatever a specific situation
has to offer. After all, as suggested earlier, learning in the natural sciences, a
very successful form of learning, is unthinkable without reliance on a vast range
of disparate knowledge which is particular to the case in hand. General problem-
solving strategies seem to be avoided.

2.7 Conclusion

I have argued throughout this chapter that the dataset shift and covariate shift
problems can usefully be viewed as part of the general problem of inductive
inference. Finding the relevant variables in a given situation already captures much
of what is necessary to transfer observed regularities to new domains, or new parts of
input space. The theme of this book raises the interesting question of how to encode
further refined background knowledge to allow the accurate transfer of learning to
take place. To do so in too domain-specific a way risks too much human involvement.
We would prefer not to have to hand code background knowledge for each new
situation. Ideally, we would even be able to learn the relevant invariances using
general purpose algorithms.

The philosophy of science literature could well provide a useful resource for ma-
chine learning practitioners. Although typically large amounts of intricate back-
ground knowledge are at stake in episodes of scientific inference, some simpler as-
pects may be encodable in learning algorithms. It will be interesting to follow the
future course of research in this area. Will hand-coded measures continue to win
out, or will researchers find principled methods to learn and encode invariances?
Will frequentist thinking continue to lead the way, or will Bayesians forge forward
with their probabilistic machinery?
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3 Binary Classification under

Sample Selection Bias

Matthias Hein

The problem of general sample selection bias is studied from a decision-theoretic
perspective in the case of binary classification. We show necessary and sufficient
conditions for the equivalence of the Bayes classifiers of training and test distribu-
tion and give bounds for the excess risk if they disagree. Moreover, we show without
any assumptions on the type of sample selection bias that the knowledge about un-
labeled data allows one to identify regions where the sign of the regression functions
of training and test is guaranteed to coincide. In the second part we use the in-
sights gained from the theoretical analysis. We provide a nonparametric framework
for learning under general sample selection bias motivated by a modified cluster
assumption. The connection to semisupervised learning is discussed. Further, we
present experimental results for datasets with explicit control of the selection bias.

3.1 Introduction

In econometrics and sociology it is widely accepted that often the sample one uses
for learning or estimation comes from a different distribution than the one used
in testing. In the machine learning community only very recently has this problem
been discussed [Zadrozny, 2004; Smith and Elkan, 2004]. The reason for this might
be that one can argue that sample selection bias only occurs due to a bad choice
of the training set. We agree that this can be the reason for sample selection bias,
but there are problems where even the most careful choice of the training set would
not prevent sample selection bias. One example is the prediction of the income of
people based on a questionnaire. Usually, the richer people are, the less likely they
are to answer such a questionnaire. Clearly the prediction based on the data of the
questionnaire will be biased toward low income. Another case is when we have only
training data from some proportion of the test population. This occurs if a bank
wants to predict if someone who is applying for a loan will eventually repay it. The
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credit bank has only data from customers whose loan has been approved. This set
of customers will be generally a biased sample of the whole population or the set
of potential customers.

In the machine learning literature so far the main emphasis has been laid on
a special kind of sample selection bias, the so-called covariate shift [Shimodaira,
2000; Sugiyama and Müller, 2005a; Huang et al., 2007], where the conditional
distribution p(y|x) of training and test distribution is the same. For the general
sample selection bias problem several parametric models have been proposed in the
econometrics literature; see e.g., Heckman [1979]; Winship and Mare [1992]; Dubin
and Rivers [1989]. In this chapter we study the general scenario of sample selection
bias; in particular we derive necessary and sufficient conditions for the equivalence
of the Bayes classifiers of training and test distributions. Moreover, we analyze
the situation where one has access to an unlabeled sample of the test distribution
which can be either a part of the training data which has not been labeled or an
independent sample of the marginal test distribution. A similar approach with the
goal of identifying the possible range of probability measures responsible for the
training data without making any prior assumptions on the sampling process has
been studied by Manski and Horowitz [Manski, 1989; Horowitz and Manski, 2006].

Originating from this analysis we propose a new nonparametric principle to deal
with sample selection bias in the case where one has access to unlabeled test data.
The setting where one has unlabeled test data is similar to semisupervised learning
(SSL). However, in semisupervised learning one assumes that training and test data
come from the same distribution. We show that implementing the new principle
via adaptive regularization leads to an algorithm which is similar to existing ones
for semisupervised learning [Zhu et al., 2003a; Zhou et al., 2004]. Whereas the
performance is similar when training and test data come from the same distribution,
the new algorithm performs better in cases where also the conditional distribution
changes. Therefore this algorithm can also be seen as an extension of semisupervised
learning which is robust to sample selection bias.

3.2 Model for Sample Selection Bias

In this chapter we consider binary classification. Our goal is to learn a classifier
f : X → Y, where X and Y are the input and output domain. For binary classification
we have Y = {−1,+1}. We assume that there exists a (stationary) distribution P on
X×Y, the true distribution of X and Y . However, we are only given a biased sample.
This can be formally described using a random binary selection variable s, where
s = 1 means that we accept the point for the training sample and s = 0 means that
we will not observe it in the training phase. Of interest is how p(y|x, s = 1), the
conditional distribution of the training sample, behaves with respect to the true
conditional distribution p(y|x).

We always assume in the following that both probability measures Ptr and Pte

have densities ptr and pte with respect to some dominating measure, e.g., if X = R
d
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we take as the dominating measure the Lebesgue measure. Thus we avoid an overly
technical presentation. However, the results still hold in the general case.

In order to keep the presentation as clear as possible we will keep the explicit
dependency on the selection variable s. We give the following dictionary to be
consistent with the notation in the rest of the book.

training distribution ptr(y, x) = p(y, x|s = 1)

test distribution pte(y, x) = p(y, x)

We further assume in the following that the sampling of training and test data is
done i.i.d. from p(y, x|s = 1) and p(y, x) respectively.

A central role will be played by p(s = 1|x, y), that is, the probability that a given
joint pair (x, y) is observed in the training sample. The following relationships can
be derived by straightforward application of the Bayes rule,

p(y|x, s = 1) =
p(y|x)p(s = 1|x, y)

p(s = 1|+, x)p(+|x) + p(s = 1|−, x)p(−|x)
,

p(x|s = 1) =
p(s = 1|x,+)p(+, x) + p(s = 1|x,−)p(−, x)∫

X
p(s = 1|x, +)p(+, x) + p(s = 1|x,−)p(−, x) dx

, (3.1)

where we have introduced the shorthand notation + and − for y = 1 and y = −1,
e.g., p(+, x) for p(y = 1, x) and p(−, x) for p(y = −1, x). Since we can estimate
p(y|x, s = 1 and p(x|s = 1) from the training data, it is more interesting to express
the quantities of the test data in terms of the training data.

p(y|x) =
p(y|x, s = 1)p(x|s = 1)p(s = 1) + p(y|x, s = 0)p(x|s = 0)p(s = 0)

p(x|s = 1)p(s = 1) + p(x|s = 0)p(s = 0)

=
p(s = 1|x)

p(s = 1|y, x)
p(y|x, s = 1)

p(x) = p(x|s = 0)p(s = 0) + p(x|s = 1)p(s = 1) =
p(s = 1)

p(s = 1|x)
p(x|s = 1).

(3.2)

Using these relations one can characterize different special cases of sample selection
bias.

Random Selection This is the case we usually assume to be true in standard
binary classification. The selection is completely random, that is, independent of
x and y. This implies p(s = 1|y, x) = p(s = 1). Obviously we have in this case
p(y|x, s = 1) = p(y|x) and p(x|s = 1) = p(x) so that the distributions of training
and test data are identical.

Class-Conditional Independent Selection In this case the selection is inde-
pendent of the class label y given the feature x or equivalently given x the knowledge
of the selection variable s gives no information about the class label y. Due to this
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property this scenario is sometimes called “missing at random (MAR)”. We have

p(s|x, y) = p(s|x) ⇐⇒ p(y|x, s) = p(y|x).

The conditional probabilities of training and test data agree and therefore also the
Bayes classifiers of training and test data. However, the marginal distribution of
the training data is in general different,

p(x|s = 1) =
p(s = 1|x)p(x)∫

X
p(s = 1|x)p(x) dx

.

Sometimes this scenario is also called covariate shift ; see Shimodaira [2000], and
Sugiyama and Müller [2005a]. Note that the support of the training data has to
be contained in the support of the test data. Under covariate shift we can trust
the labels we are given, but the true/test marginal distribution is different from
the training distribution. In this case often reweighting of the loss function is done
in order to get an unbiased estimate of true loss; see, e.g., Manski [1977], and
Shimodaira [2000]; Huang et al. [2007]. We will come back to this issue in a later
section.

Class-Dependent Selection In this case the selection variable s is independent
of the feature x given the label y,

p(s|x, y) = p(s|y) ⇐⇒ p(x|y, s) = p(x|y).

This means that the class-conditional distributions stay the same. However, the
class probabilities p(y|s = 1) and p(y) of training and test data differ and thus
the class-conditional probabilities p(y|x, s = 1) and p(y|x) are different as well. In
particular one has

p(y|s = 1) =
p(s = 1|y)p(y)

p(s = 1|+)p(+) + p(s = 1|−)p(−)
,

p(y|x, s = 1) =
p(s = 1|y)p(y|x)

p(s = 1|+)p(+|x) + p(s = 1|−)p(−|x)
.

Having knowledge about p(s = 1|y) or equivalently the true class probabilities p(y)
one can easily correct for the modification of p(y|x, s = 1). Namely by setting
p(+|x) = p(−|x) = 1

2 we observe that the threshold for a Bayes optimal decision
with respect to the test distribution is given by

γ =
p(s = 1|+)

p(s = 1|+) + p(s = 1|−)
,

that is, we decide for + if p(+|x, s = 1) > γ and for − otherwise. This problem
is closely related to cost-sensitive learning; see Elkan [2001]. Suppose that c−1,1

denotes the cost of predicting the positive class when the negative is true and c1,−1

the corresponding opposite cost. It is then easy to show that the Bayes optimal
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threshold γ, that is, one predicts + if p(+|x) > γ, is given by

γ =
c−1,1

c−1,1 + c1,−1
.

We observe that both expressions are equal if we identify c−1,1 = p(s = 1|+) and
c1,−1 = p(s = 1|−). Thus the costs tell us how we should change the training
distribution such that for the test distribution we can decide with the normal
threshold 1

2 .
Note that in practice one often artificially balances the classes for training in

order to get a better estimate of the decision boundary, in particular if the classes
are very unbalanced. The process of balancing can be equivalently seen as a class-
dependent selection. However, the correction for this simple form of sample selection
bias is straightforward using the modified threshold which we introduced above.

The General Case Sample selection bias is a very general model for differing
training and test distributions. In these paragraphs, we will analyze conditions on
the probability measures Ptr and Pte such that Ptr can be seen as selected from
Pte. Not all different training and test distributions can be modeled in such a way.
The first basic requirement is the support condition: the support of the probability
measure of the training data has to be a subset of the support of the probability
measure of the test data.

Suppose that the support condition holds and we are given the densities of the
joint measures ptr(y, x) and pte(y, x) of training and test distribution. Does there
exist a sampling mechanism such that one can see ptr as ptr(y, x) = p(y, x|s = 1)
and pte(y, x) = p(y, x) ? We can check this using

p(y, x) = p(y, x|s = 0)p(s = 0) + p(y, x|s = 1)p(s = 1).

The part p(y, x|s = 0)p(s = 0) can be modeled arbitrarily. We are searching for a
nontrivial solution with p(s = 1) > 0. For every (y, x) ∈ Y × X, we require

p(y, x) − p(s = 1)p(y, x|s = 1) ≥ 0.

Thus the selection condition, a necessary and sufficient requirement that ptr can be
seen as generated by selecting from pte, can be stated as

sup
(y,x)∈Y×X

ptr(y, x)
pte(y, x)

< ∞,

where we are slightly sloppy regarding the supremum.1 If the above condition holds,
then we can model Ptr as being selected from Pte. The probability of selection

1. The support condition can be equivalently formulated that for any measurable set A
it holds Pte(A) = 0 ⇒ Ptr(A) = 0. Thus Ptr is absolutely continuous with respect to Pte

which implies by the Radon-Nikodym theorem that there exists a density f ∈ L1(X) such
that Ptr(A) =

R
A

f dPte. Then the selection condition is given by, ‖f‖∞ < ∞.
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p(s = 1) is upper-bounded as p(s = 1) ≤ infy,x
pte(y,x)
ptr(y,x) .

Note that the support condition already rules out some cases. Namely ptr(y|x) >

0 is not possible if pte(y|x) = 0. Secondly, suppose X = R
d and both measures

have a marginal density with respect to the Lebesgue measure. Then the selection
condition rules out cases where pte(x) = 0 and ptr(x) > 0. But also the tails
of training and test distribution have to be well behaved. Suppose both have a
Gaussian density with different means but equal covariance. Then the quotient
ptr(x)
pte(x) cannot be upper-bounded on R

d. On the positive side one can make the
following statement.

Lemma 3.1 Let X be a compact subset of R
d and suppose the probability mea-

sures Ptr and Pte have continuous marginal densities with respect to the Lebesgue
measure. Let further the support condition hold. If pte(x) > 0 for all x ∈ X and
supx∈X maxy∈{−1,1}

ptr(y|x)
pte(y|x) < ∞, then Ptr and Pte can be modeled in the sample

selection framework.

Proof: We decompose the selection condition into

sup
(y,x)∈Y ×X

ptr(y, x)
pte(y, x)

≤ sup
x∈X

ptr(x)
pte(x)

sup
x∈X

max
y∈{−1,1}

ptr(y|x)
pte(y|x)

.

The first supremum is finite since both ptr(x) and pte(x) are continuous and
therefore both achieve their maximum and minimum due to compactness of X

with infx pte(x) > 0 by assumption. The second supremum is finite by assumption.
Let us finally discuss the situation where the supports of training and test distri-
bution differ. There are in principle two situations. If the training distribution has
probability mass on a set where the test distribution has not, then the information
about this set is completely useless for learning on the remaining test set without
making assumptions on the relation of training and test distribution. For us this
means that we can safely discard this information and instead work with the prob-
ability measure Ptr

(
y, x|x ∈ supp (Pte)

)
, where supp (Pte) is the support of the

test distribution. On the other hand, if the test distribution has probability mass
where the training distribution has not, then we cannot hope to make any useful
predictions on this portion of the test distribution without any further assumptions
on how training and test data have been generated. The support condition seems
therefore not to be too restrictive.

3.3 Necessary and Sufficient Conditions for the Equivalence of the Bayes Classifier

The essential element for classification is the conditional distribution p(y|x) We
have seen in the previous section that in the case of covariate shift one has
p(y|x, s = 1) = p(y|x). The goal of this section is to analyze the general case
of sample selection bias. In particular, we are interested under which conditions the
Bayes classifier of training and test data agree. Since this is a much weaker condition
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than equivalence of the conditional distribution p(y|x), this is usually said to be
the reason why classification is easier than regression. Moreover, we give an exact
expression of the excess error of the Bayes classifier of the training distribution
compared to the error of the Bayes classifier of the test distribution. This will allow
us to characterize cases where sample selection bias does not matter substantially.

We define the regression functions ηtr and ηte and the Bayes classifiers btr of bte

of the training and test distribution as

ηtr(x) = 2p(+|x, s = 1) − 1, ηte(x) = 2p(+|x) − 1,

btr(x) = sign ηtr(x) bte(x) = sign ηte(x).

A necessary and sufficient condition that the Bayes classifiers agree is

ηtr(x) ηte(x) ≥ 0, ∀ x ∈ X.

Using essentially (3.2) one can then derive necessary and sufficient conditions for
the equivalence of the Bayes classifiers of training and test distribution. We give all
results in terms of quantities related to the training distribution since this is the
distribution we have access to. The statement about equivalence will depend on the
selection index, which measures the amount of bias in the labels at a given point.

Definition 3.2 The selection index s(x) : X → [−1, 1] is defined as

s(x) =
p(s = 1|+, x) − p(s = 1|−, x)
p(s = 1|+, x) + p(s = 1|−, x)

.

The following theorem will state the equivalence of the Bayes classifiers in terms of
the selection index.

Theorem 3.3 Let p(s = 1|y, x) > 0 for all x ∈ X and y ∈ {−1, 1}. The regression
function of the test data ηte can be expressed as

ηte(x) =
ηtr(x) − s(x)
1 − s(x)ηtr(x)

.

The Bayes classifiers bte and btr of test and training distribution agree at x if and
only if∣∣ηtr(x)

∣∣ ≥ sign
(
ηtr(x)

)
s(x).

Moreover the risk of the Bayes classifier btr of the training distribution p(y, x|s = 1)
with respect to the test distribution p(y, x) is given as

R
(
btr

)
= R

(
bte

)
+

∫
{x | |ηtr(x)|<sign(ηtr(x)) s(x)}

∣∣∣∣ ηtr(x) − s(x)
1 − s(x)ηtr(x)

∣∣∣∣ pte(x) dx.
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Figure 3.1 Contour lines of ηte in dependency of the selection index s(x) and the
regression function of the training data.

Proof: Using p(+|x) = p(+|x, s = 1) p(s=1|x)
p(s=1|+,x) we arrive after a straightforward

calculation at

p(+|x) =
p(+|x, s = 1)p(s = 1|−, x)

p(s = 1|+, x) − p(+|x, s = 1)[p(s = 1|+, x) − p(s = 1|−, x)]
.

Using now p(+|x) = ηte(x)+1
2 and p(+|x, s = 1) = ηtr(x)+1

2 we get the result

ηte(x) =
ηtr(x) − s(x)
1 − s(x)ηtr(x)

.

Equivalence of the Bayes classifiers is given if ηtr(x)ηte(x) ≥ 0 for all x ∈ X. Since
s(x) ∈ [−1, 1], we have s(x)ηtr(x) ≤ 1 and thus,

ηtr(x)ηte(x) ≥ 0 ⇔ ηtr(x)2 ≥ ηtr(x)s(x),

which gives the desired result. Finally, the risk R(f) of a function f : X → {−1,+1}
with respect to the test distribution is given as

R(f) = R(bte) + EX

[
If(X)ηte(X)<0|ηte(X)|] .

Note that ηtr(x)ηte(x) < 0 is equivalent to btr(x)ηte(x) < 0. Plugging in btr(x) for
the function f and the expressions for ηte and ηtr(x)ηte(x) < 0 finishes the proof.

The interpretation of theorem 3.3 is not straightforward. From the form of the
regression function ηte of the test distribution it becomes clear that s(x) quantifies
the amount of bias in the labels. If s(x) → ±1 (we do not allow s(x) = ±1), then
the training data is maximally biased. If s(x) is positive, one has a bias toward the
positive class and vice versa. Figure 3.1 shows the dependency of ηte on the selection
index s(x) and the regression function of the training data. Two statements can
be made. We have p(+|x) = p(+|x, s = 1) or equivalently ηtr(x) = ηte(x) if and
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only if the selection index s(x) is zero, that is, p(s = 1|+, x) = p(s = 1|−, x).
This is the special case of sample selection bias often called covariate shift, where
the labels are missing at random. However, this is a much stronger condition
then the derived condition for the equivalence of the Bayes classifiers. There, as
one could have expected, we only need that the selection index s(x) is zero at
the decision boundary defined as {x ∈ X | p(y|x) = 1

2}. Away from the decision
boundary one can allow for nonzero values of the selection index s(x), that is,
p(s = 1|+, x) �= p(s = 1|−, x). In the “easy” regions where the training distribution
is noise-free, that is, ηtr(x) = ±1, all nonzero values for p(s = 1|y, x) are allowed.
However, note that, e.g., ηtr(x) = 1 ⇔ p(+|x, s = 1) = 1 is only equivalent to
p(+|x) = 1 if p(s = 1|−, x) > 0. In general, if p(s = 1|+, x) = 0 or p(s = 1|−, x) = 0,
then no statements about the conditional test distribution p(y|x) can be made using
knowledge about the conditional training distribution p(y|x, s = 1).

If one has upper and lower bounds on p(s = 1|y, x), one can derive the following
corollary which gives an easier bound on the excess risk R

(
btr

) − R
(
bte

)
than

theorem 3.3.

Corollary 3.4 Assume |s(x)| ≤ δ for all x ∈ X. Then the Bayes classifiers bte

and btr agree at x if
∣∣ηtr

∣∣ ≥ sign
(
ηtr(x)

)
δ. The risk of the Bayes classifier of the

training distribution btr with respect to the test distribution can be upper-bounded
as

R
(
btr

) ≤ R
(
bte

)
+ δ Pte

(∣∣ηtr

∣∣ < δ
)

.

Proof: The Bayes classifier btr makes an error if
∣∣ηtr

∣∣ ≥ sign
(
ηtr(x)

)
δ. Sup-

pose ηtr(x) > 0, then an error happens if ηtr(x) < s(x) and s(x) > 0. We have
|ηte(x)| = s(x)−ηtr(x)

1−s(x)ηtr(x) . A straightforward analysis shows that |ηte(x)| is monoton-
ically decreasing with increasing ηtr(x). Therefore the maximum of |ηte(x)| is at-
tained at ηtr(x) = 0 and its value is δ. The same bound can be derived for the other
case, which finishes the proof.

This corollary has a nice and easy interpretation. If the sampling process is not too
nasty, that is, δ is small, and the probability mass of the test distribution around
the decision boundary of the training distribution is small, then using the Bayes
classifier of the training distribution is not much worse than the Bayes classifier of
the test distribution.

One can also tackle the problem from a different direction. Similar to cost-
sensitive learning the optimal decision threshold under sample selection bias for
p(y|x, s = 1) with respect to the test distribution will in general not be 1

2 . In other
words one can also define a new threshold function which leads then to an optimal
decision with respect to the test distribution but not with respect to the training
distribution. This can be done through knowledge about p(s = 1|y, x).



50 Binary Classification under Sample Selection Bias

Theorem 3.5 Define the threshold function

Thresh(x) =
2 p(s = 1|+, x)

p(s = 1|+, x) + p(s = 1|−, x)
,

and the new regression function ηtr of the training distribution as

ηtr(x) = 2p(+|x, s = 1) − Thresh(x).

If p(s = 1|y, x) > 0, ∀x ∈ X, then the new Bayes classifier btr(x) = sign ηtr(x) of
the training distribution and the Bayes classifier of the test distribution bte(x) agree
for all x ∈ X.

Proof: Set p(+|x) = p(−|x) = 1
2 in (3.1), then one has p(+|x, s = 1) = Thresh(x).

Of course given only information about the training distribution there is no way
to get any information about p(s = 1|y, x). But this result indicates how one can
improve the performance under sample selection bias if more information about the
sampling mechanism is available.

3.4 Bounding the Selection Index via Unlabeled Data

In the last section we indicated how bounds on the selection index can help to
identify parts of the regression function ηte. By identification we mean that given
complete knowledge about p(y|x, s = 1) we can at least be sure about the sign of the
regression function ηte of the test distribution in some regions and thus predict the
correct label. The process of so-called partial identification of probability measures
has been pioneered by [Manski, 1989] and Horowitz [Horowitz and Manski, 2006].

In this section we will analyze the value of unlabeled data in order to determine
bounds on the selection index. We will distinguish two situations. In the first one
we assume that we know p(y, x|s = 1) and we are given the marginal density p(x) of
the test distribution. Both quantities can be estimated consistently from a training
sample (Xtr, Y tr) and an independent unlabeled test sample Xte. In the second one
we know p(y|x, s = 1), the marginal density p(x|s = 0) of the sample points which
have not been selected to be labeled and the probability p(s = 1) of being selected.
This corresponds to a setting where we have an unlabeled sample {Xte

i }i=1,...,T

of size T and then a subset of size S is being selected to be labeled yielding the
training sample of labeled data {(Xtr

j , Y tr
j )}j=1,...,S and a set of unlabeled data

{Xi}i=S+1,...,T where we assume without loss of generality that the data has been
reordered after the selection. Note that p(s = 1) can then be estimated via the
ration S/T .

This distinction seems at first to be rather artificial. We illustrate both cases
with an example. The first one corresponds, e.g., to a test study of a new medical
treatment. There one has information about the patients who decided to participate
in the study. But usually no information is stored about the patients who refused to
take part in the study. However, one might know the distribution of people where
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this medical treatment is supposed to be applied. This could be either the whole
population or a certain subset. The second case, where one has unlabeled data, is
usually more generic. Assume a credit bank wants to assess how well their selection
of customers works out. Potential customers are all persons who applied for a loan
in the bank. The bank has labeled data of the customers who have been given a
credit and they also have data about the customers who did not get one.

We see that both cases can occur in practice. In the second case one has the
probability of selection p(s = 1) as an important additional piece of information.
We will see that without this information the knowledge about the marginal density
p(x) does not help to gain information about the selection index. However, given
that we know p(s = 1) also in the first case, then both cases are completely
equivalent. This can be easily seen from

p(x) = p(x|s = 0)p(s = 0) + p(x|s = 1)p(s = 1),

where knowledge about p(x|s = 1), p(x) and p(s = 1) identifies p(x|s = 0) and vice
versa. The following lemma restricts the selection index using information about
p(x) and p(s = 1).

Lemma 3.6 The selection index s(x) can be bounded as

sign(ηtr(x))s(x) ≥ 1 − p(s = 1|x)
p(s = 1|x)

.

Thus the Bayes classifier of training and test data agree at x ∈ X, if

|ηtr(x)| ≥ 1 − p(s = 1|x)
p(s = 1|x)

.

Proof: One can decompose

p(s = 1|x) = p(s = 1|+, x)p(+|x) + p(s = 1|−, x)p(−|x).

Thus with λ = p(+|x) we get p(s = 1|+, x) = 1
λ [p(s = 1|x) − (1 − λ)p(s = 1|−, x)]

and plugging this into the expression for the selection index we can lower-bound
s(x) for λ ≥ 1

2 as

s(x) =
p(s = 1|x) − p(s = 1|−, x)

p(s = 1|x) − (1 − 2λ)p(s = 1|−, x)
≥ p(s = 1|x) − p(s = 1|−, x)

p(s = 1|x)

≥ p(s = 1|x) − 1
p(s = 1|x)

.

Therefore, for ηte > 0 the selection bias toward negative labels is lower-bounded
by p(s=1|x)−1

p(s=1|x) . Thus, if ηtr < 0 and ηtr < p(s=1|x)−1
p(s=1|x) , then we can be sure that also

ηte < 0. The other direction follows by considering the case ηte < 0.
The second assertion follows directly from theorem 3.3. However, the following

proof is quite instructive. We have

p(+|x) = p(+|x, s = 0)p(s = 0|x) + p(+|x, s = 1)p(s = 1|x).
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In particular,

p(+|x, s = 1)p(s = 1|x) ≤ p(+|x) ≤ 1− p(s = 1|x) + p(+|x, s = 1)p(s = 1|x).

Thus, given that p(+|x, s = 1) ≥ 1
2 , we have to ensure that p(+|x) ≥ 1

2 , which using
the inequality holds if p(+|x, s = 1) ≥ 1

2 p(s=1|x) or equivalently ηtr(x) ≥ 1−p(s=1|x)
p(s=1|x) .

The other direction can be done similarly.

Note that p(s = 1|x) = p(x|s=1)
p(x) p(s = 1) and therefore the quantity in the lower

bound can be computed using the available knowledge about the marginal test
density and the selection probability. Further, note that the bound is only nontrivial
given that p(s = 1|x) < 1

2 . At a first glance, it might seem odd why the bound for the
selection index has this strange form. This has a simple explanation. If ηte(x) > 0
and we have positive selection bias, then clearly ηtr(x) > 0 and vice versa. Therefore
the selection index needs only be bounded with respect to the label of the training
data, e.g., if ηtr(x) > 0, then it could be that ηte < 0 and we have a positive
selection bias. Thus only an upper bound on the positive selection bias is required.

Lemma 3.6 shows that using unlabeled data we can be sure about our estimated
function wherever |ηtr| is sufficiently large. This result holds without making any
assumption on the form of the selection. Unfortunately, the bound is only nontrivial
if p(s = 1|x) < 1

2 or equivalently p(x) < 2 p(x|s = 1)p(s = 1). This condition
holds in regions where the marginal test density is rather small with respect to the
marginal training density. Thus the total mass of the test distribution of the region
where this condition holds might be quite small.

3.5 Classifiers of Small and Large Capacity

Until now we have analyzed how the Bayes optimal classifiers of training and test
data are related. In this section we will discuss the difference of classifiers of small
and large capacity in the case of sample selection bias. The first statement is an
easy corollary of theorem 3.3. Let us first recall the definition of a Bayes consistent
classifier.

Definition 3.7 A Bayes or universally consistent classifier is a sequence of
classifiers fn for which for every ε > 0 and every probability measure on X × Y,

lim
n→∞P(R(fn) − R(b) > ε) = 0,

where n denotes the sample size, fn is the selected classifier for a sample of size n,
and b is the Bayes classifier.

Corollary 3.8 Let p(s = 1|y, x) > 0 for all x ∈ X and y ∈ {−1, 1}. Any Bayes
consistent classifier trained on the biased sample is also Bayes consistent for the
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Class 1, p=0.1 Class −1, p=0.1

Class −1, p=0.4 Class 1, p=0.4

Class 1, p=0.7 Class −1, p=0.1

Class −1, p=0.1 Class 1, p=0.1

Figure 3.2 The checkerboard data as an example of covariate shift. Left: the training
distribution. Right: the test distribution. Each square is sampled uniformly. The proba-
bility of each square is denoted by p.

test distribution if and only if

∀x ∈ X,
∣∣ηtr(x)

∣∣ ≥ sign
(
ηtr(x)

)
s(x). (3.3)

Formulating this (almost) trivial corollary in simple terms: at least in the asymp-
totic regime it does not matter if we train our classifier with the biased sample or
the unbiased sample if condition (3.3) holds. The only criterion we have to fulfill
is that we use a Bayes consistent classifier. For several classifiers Bayes consistency
has been shown, e.g., K nearest-neighbors (KNN)-classifiers [Devroye et al., 1996]
or the support vector machine (SVM) with a Gaussian kernel [Steinwart, 2002]
and many more results are known. A Bayes consistent classifier has asymptotically
maximal capacity because in the limit as the sample size goes to infinity any target
function can be learned.

For the moment we assume that the Bayes classifiers of training and test dis-
tribution are equal, e.g., as in the covariate shift problem. What happens now if
one uses a classifier of smaller capacity? A simple example shows that classifiers of
small capacity can perform arbitrarily badly even if the conditional distribution of
training and test data agrees. As a classifier of large capacity we take the SVM with
a Gaussian kernel and for the one with small capacity the SVM with a linear kernel.
We use the checkerboard data illustrated in figure 3.2. The sample selection bias is
in this case just a covariate shift between training and test distribution. Since it is
noise-free, the optimal Bayes error is zero in that case. We test the learned classifier
once on samples drawn from the training distribution and once on samples from
the test distribution. Table 3.1 shows the mean errors together with the standard
deviation over 20 runs for 200 training points. The test error of the SVM with
Gaussian kernel increases significantly but the performance is still reasonable. The
results of the linear SVM are hopeless. The linear SVM is significantly worse than
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Table 3.1 The mean error over 20 runs of the training and test data for the checkerboard
data of figure 3.2 for an SVM with linear and Gaussian kernel with 200 data points.

Error on Train. Dist. Error on Test. Dist.

SVM with linear kernel 28.8 ± 8.1 72.4 ± 17.0

SVM with Gaussian kernel 5.3 ± 2.6 7.9 ± 4.5

random guessing. Such a phenomenon is also known as anti-learning. It is obvious
that one could modify the test distribution such that the error of the linear SVM
would be even worse. It becomes clear from this simple experiment that classifiers
of small capacity are much more sensitive to sample selection bias than classifiers
of large capacity. This can also seen directly by comparing the loss with respect to
training and test distribution:

Training dist. : Etr [l(f(X), Y )] =
∫

X

p(x|s = 1)
∫

Y

l(f(x), y) p(y|x, s = 1) dy dx,

Test dist. : Ete [l(f(X), Y )] =
∫

X

p(x)
∫

Y

l(f(x), y) p(y|x) dy dx,

A classifier of large capacity can fit the function (almost) pointwise and therefore
only the term

∫
Y

l(f(x), y) p(y|x, s = 1) dy matters. If we assume that the Bayes
classifiers of training and test distribution agree then minimization of this part will
lead in both cases to the same value of f at x. The weighting with p(x|s = 1) or p(x)
does not then matter anymore for determining the optimal function. A classifier of
small capacity can only fit a limited amount of data and pointwise minimization
is not possible. Therefore one has to minimize Etr [l(f(X), Y )] globally. In that
case it matters a lot how the errors are weighted and therefore the weighting
with p(x|s = 1) instead of p(x) can lead to huge differences in the minimizer. In
particular, for classifiers of small capacity it is therefore very important to reweight
the loss with g(x) = p(x)

p(x|s=1) given that one has information about the marginal
test distribution p(x):

1
n

∑n
i=1 l(f(Xi), Yi) −→ 1

n

∑n
i=1 l(f(Xi), Yi)g(Xi).

For classifiers of large capacity the reweighting is (asymptotically) neither improving
the results nor does it harm if one has covariate shift as sample selection bias. See
Shimodaira [2000]; Zadrozny [2004]; Sugiyama and Müller [2005a], and chapters 6,
7, 8, and 9 in this book for more on reweighting. For the SVM using different kernels
one has to distinguish between kernels which lead to Bayes consistency and those
which do not. In this respect the statement of Zadrozny [2004] that linear SVMs are
asymptotically affected by sample selection bias can be sharpened to that SVMs are
asymptotically affected by sample selection bias even if the Bayes classifiers agree
if one is not using a kernel which leads to a Bayes consistent classifier.

Up to now we dealt with the special case of covariate shift. In the case of general
sample selection bias it is not clear if reweighting is a good strategy. Note that we
know from lemma 3.6 the larger p(s = 1|x) = p(x|s=1)

p(x) p(s = 1) the more we are sure
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that sign(ηtr(x)) = sign(ηte(x)). However, the reweighting factor g(x) = p(x)
p(x|s=1)

is reciprocal to p(s = 1|x) which means that by reweighting one downweights the
regions of X where one is sure that sign(ηtr(x)) = sign(ηte(x)). On the other hand,
one increases the weight of regions where one does not know if the signs of ηtr and
ηte agree. It remains a point for future work to resolve this apparent contradiction.

3.6 A Nonparametric Framework for General Sample Selection Bias Using
Adaptive Regularization

Basically we have seen in the last sections that without further assumptions on
the nature of the sample selection bias there is no way to find the correct sign
of ηte(x). Using unlabeled data from the test distribution and information about
the selection probability we could show that in regions where |ηtr(x)| > 1−p(s=1|x)

p(s=1|x)

we can be sure that sign(ηtr(x)) = sign(ηte(x)). In order to make any assertions
about the remaining regions we have to make assumptions how the selection bias
was generated. The existing approaches for the general case of sample selection
bias make explicit parametric assumptions on the relationship between training
and test distribution, e.g., the bivariate probit model of Heckman [Heckman, 1979]
or other more general models [Dubin and Rivers, 1989]. It is often questionable if
these assumptions hold in real data. A natural assumption should be one which is
general enough to be true for a large class of datasets. In this remaining part we
propose a nonparametric principle to deal with general sample selection bias under
the assumption that one has a sample of unlabeled data from the test distribution
and eventually knows the selection probability p(s = 1). Both assumptions are
fulfilled in the traditional setting of sample selection bias; see section 3.4 for a
discussion. The main underlying principle will be a modified cluster assumption.
The cluster assumption has been proposed in semisupervised learning and can be
formulated as follows.

Cluster assumption Two points which can be connected by a path through
high-density regions are likely to have the same label.

In semisupervised learning one usually assumes that labeled and unlabeled data
come from the same distribution. In the case of sample selection bias it makes only
sense to use the cluster structure of the unlabeled data from the test distribution.
Therefore we modify slightly the cluster assumption of SSL

Modified Cluster assumption Two points which can be connected by a path
through high-density regions of the test data are likely to have the same label.

We think that the modified cluster assumption is quite natural and holds for a
large class of datasets.

The other important question is which part of the labels of the training data
we should use. In principle, we know by lemma 3.6 that without any assumptions
we can only trust the sign of the regression function of the training distribution if
|ηtr(x)| exceeds a certain threshold. This implies that in the worst case we should



56 Binary Classification under Sample Selection Bias

not use any information on Y of the training data in regions where |ηtr(x)| is
below the threshold. On the other hand, if one has random selection or the labels
are missing at random, then we have p(y|x, s = 1) = p(y|x) and it would not be
reasonable to discard any label information. Both ways can be integrated into the
learning framework using different weights in the loss function.

As learning framework we will use regularized empirical risk minimization,

fn = arg min
f∈F

1
n

n∑
i=1

l(f(Xi), Yi) γ(Xi) + μΩ(f),

where Ω : F → R+ denotes the regularization functional, l the loss function, and
γ : X → R+ a weighting function. In order to implement the modified cluster
assumption we need a regularizer Ω which enforces the cluster structure in the test
data, that is, it should prefer functions which are almost constant on the clusters
and are allowed to change in between. A similar regularization principle is used in
SSL, where one uses unlabeled data to build graph-based regularizers which adapt
to the cluster structure of training and test data; see Bousquet et al. [2004]. We
will show that the adaptation to the cluster structure of the test data leads to a
modification of an existing learning algorithm for SSL. Our experiments indicate
that this modification leads to robustness against sample selection bias.

3.6.1 Adaptive Graph-Based Regularization

Our input space X will be in the following always a compact subset of the d-
dimensional Euclidean space R

d. A regularizer which implements the cluster as-
sumption for SSL where training and test distribution are equal can be built using
a graph based on training and test data; see Bousquet et al. [2004] and Hein [2006].

Take the sample of test and training data {Xi}n
i=1 as the set of vertices.

Edge weight w(Xi, Xj) = 1
hd k(‖Xi − Xj‖ /h) if ‖Xi − Xj‖ ≤ h, otherwise no

edge, where k : R+ → R+ is the kernel function, h > 0 is the neighborhood
parameter of the resulting graph, and d the dimension of the input space.

The data-dependent graph-based regularization functional is then defined as

S̃n,h,λ(f) =
1

2n2 h2

n∑
i,j=1

w(Xi, Xj)
(d(Xi)d(Uj))λ

(f(Xi) − f(Xj))2,

where d(Xi) = 1
n

∑n
j=1 w(Xi, Xj) is the degree function. The parameter λ > 0

controls the influence of the density as can be seen from the following theorem.

Theorem 3.9 [Hein, 2006] Let {Xi}n
i=1 be an i.i.d. sample of a probability measure

P on a compact set X ⊂ R
d. If f ∈ C3(X) and h → 0 and nhd/ log n → ∞, then

almost surely

lim
n→∞ S̃h,n,λ(f) =

C2

2Cλ
1

∫
X

‖∇f‖2
p(x)2−2λ dx,
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where C1, C2 are constants depending on the kernel function k and the dimension
d.

This theorem has been strengthened to uniform convergence over the class of Hölder
functions on X and still holds when the data lies on a low-dimensional submanifold
M ; see Hein [2006]. Since ‖∇f‖ is weighted by the density, this functional is only
small if the function varies only very little in high-density regions, whereas variations
in low-density regions are hardly penalized. However, in our setting it cannot be
applied directly since training and test data are not from the same distribution. In
order to implement the cluster structure of the test data we need the density of
the test data in the limit functional. One can achieve this via reweighting of the
regularization functional S̃n,h,λ(f). For simplicity we set λ = 0 in the following.
But the results can be generalized to all values of λ. We have the following setting:

{Xtr
i }n

i=1 from the training distribution p(x|s = 1),

{Xte
j }m

j=1 from the test distribution p(x).

concatenated sample
U = {Xtr

1 , . . . , Xtr
n , Xte

1 , . . . , Xte
m}, l = n + m.

Then we define two kernel density estimators based on {Xtr
i }n

i=1 and {Xte
i }m

i=1,

dXtr(x) = 1
n hd

n

∑n
i=1 k

( ‖x − Xi‖/ hn

)
,

dXte(x) = 1
m hd

m

∑m
i=1 k

( ‖x − Zi‖/ hm

)
,

where hm and hn are the bandwidth of the kernel density estimators. One can
use alternatively any other (consistent) density estimator. An estimate2 of the
reweighting function g(x) = p(x)

p(x|s=1) can be computed as ĝ(x) = dXte (x)
dXtr (x) on the

training points. We define

φ(Ui) =

{
ĝ(Ui) , if i ≤ n, training points

1 , i > n, test points.

Moreover, we define the adaptive regularization functional which implements the
modified cluster assumption as

Sl,h(f) =
1

2l2 h2

l∑
i,j=1

wij φ(Ui) φ(Uj) (f(Ui) − f(Uj))2,

where the weights wij = w(Ui, Uj) are defined as before with a common scaling
function h.

Theorem 3.10 Let X ⊂ R
d be compact and f , p(x), p(x|s = 1) ∈ C3(X).

Furthermore, let p(x) and p(x|s = 1) be lower-bounded and p(x|s = 1) be absolutely

2. Estimates of a certain function g will be denoted by ĝ.



58 Binary Classification under Sample Selection Bias

continuous with respect to p(x), then if

n finite, m → ∞, hm → 0 such that mhd
m → ∞ and l hd → ∞,

or

n → ∞, hn → 0 such that nhd
n/ log n → ∞,

m → ∞, hm → 0 such that mhd
m/ log m → ∞,

and h = max{hn, hm},

it holds almost surely,

lim
l→∞

Sh,l(f) =
C2

2

∫
X

‖∇f‖2
p(x)2 dx,

where C2 are constants depending on the kernel function k.

Proof: We sketch the proof which is similar to Hein [2006]. First, one shows that
ĝ(Ui) and g(Ui) are close with high probability. Furthermore the functional Sl,h(f)
can be decomposed in two one-sample U -statistics and one two-sample U -statistic.
Then one uses Bernstein-type large deviation inequalities for U -statistics to show
the convergence.

3.6.2 The Learning Problem

We have shown that the adaptive regularization functional Sl,h(f) adapts to the
cluster structure of the test data as desired. Similar to existing SSL algorithms (see
Zhou et al. [2004]) we formulate now the learning problem as a regularized least
squares problem:

F = arg min
f∈Rl

n∑
i=1

(f(Xi) − Yi)2γ̂(Xi) + μSl,h(f), (3.4)

where we reweight the loss with different functions γ̂. In the functional Sl,h(f) we
use weights of the form

w′(Ui, Uj) =

{
0 , if i, j ≤ n,

w(Ui, Uj) , otherwise.

The solution of this regularized least squares problem can be computed as the
solution of the linear system

(Γ̂ + μΔ′
l)F = Γ̂Y,

where Δ′
l = D′−W ′ is the graph Laplacian of the graph with weights w′(Ui, Uj) and

degree function d′(Ui) =
∑l

j=1 w′(Ui, Uj). D′ and Γ̂ denote the diagonal matrices
with the functions d′, γ̂ on the diagonal. Note that we have merged the remaining
factors of n, l, and h in Sl,h(f) into the regularization constant μ.
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Three different weighting functions γ̂ will be used in the loss function in the
following.

Standard (SL): γ̂(x) = 1, standard least squares loss.

Reweighting I (RL1): γ̂(x) = ĝ(x), if the sample selection type is random or the
labels are misssing at random, this reweighting leads to an unbiased estimate of the
true loss.

Reweighting II (RL2): Let f̂ be a classifier only based on the training data. Then
we define for c > 0,

γ̂(Xi) =

{
ĝ(Xi) , if |f̂(Xi)| ≥ c ĝ(Xi)−p(s=1)

p(s=1) ,

0 , otherwise
.

Note that
p(x)

p(x|s=1)−p(s=1)

p(s=1) = 1−p(s=1|x)
p(s=1|x) . The last weighting function is motivated

by lemma 3.6 and only keeps the labels which are not potentially misleading. As a
classifier f̂ for the training data we use the SVM with a Gaussian kernel and the
squared hinge loss since the minimizer of the squared hinge loss is given by the
regression function

ηtr = arg min
f

EPtr

[
max{0, 1 − Y f(X)}2

]
.

3.6.3 Difference from Semisupervised Learning

The algorithm in (3.4) looks very similar to existing SSL algorithms. However,
there is a fundamental difference between SSL and our framework. Namely, in SSL
one assumes that training and test data come from the same distribution. A large
class of SSL algorithms transfer the labels to the unlabeled points by propagating
them along the data, thereby using manifold and cluster structure of the data.
Since training and test data come from the same distribution, the cluster structure
obviously coincides for training and test data. However, under sample selection
bias this assumption need not hold. In general the cluster structure of training and
test data will be different. Therefore under sample selection bias only the cluster
structure of the test data should be used in order to propagate the labels. Therefore
we have set in the proposed algorithm the adjacency matrix between the training
points to zero. Thereby we ensure that label information only propagates along the
test data. We would like to emphasize that the change of the adjacency matrix does
not affect the limit of the regularization functional stated in theorem 3.10.

The change of the adjacency matrix mainly makes a difference if the number of
training points is larger or at least on the scale of the number of test points. In
this case the proposed algorithm can also be seen as a robust extension of SSL
in the sense that the algorithm is robust to small differences between test and
training distribution and performs as good as standard SSL when training and
test distribution are equal. In the extreme case of SSL where one has only a few
labeled points but lots of unlabeled ones, the difference between both approaches is
negligible, since it is then likely that a labeled point is only connected to unlabeled
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points. We refer to Chawla and Karakoulas [2005] for further discussion of the
relation of SSL and learning under sample selection bias.

3.7 Experiments

We have done experiments on a specific toy dataset, where different types of sam-
ple selection bias could be easily simulated. We compare all combinations of the
different losses, SL, RL1 and RL2, and standard and reweighted regularization func-
tionals, S̃(f) and S(f), respectively abbreviated as SR and AR. The combination
SL+SR is very similar to existing SSL algorithms; see Zhu et al. [2003a] and Zhou
et al. [2004].

In all experiments we use a symmetric kNN -graph with k = {5, 10, 20, 40} and
Gaussian weights, where the σ of the Gaussian is chosen as the average kNN -
distance. The parameters hn and hm for the kernel density estimation are set as
the average kNN -distance 3 for kn = log(n) + 10 and km = log(m) + 10. For the
regularization parameter μ we use log10 μ = {−4,−2, 0, 2, 4}. The best parameters
are found by cross-validation. In order to be consistent with the loss we use for
learning, we use for the cross-validation the same loss, that is, SL, RL1, or RL2.
In all experiments the total number of training and test points is fixed to 1000. All
experiments are repeated 20 times. For numerical stability and to limit the influence
of outliers we cut off the estimate of ĝ used in RL1 and RL2 at 10 and 0.1. For
the weighting function γ of the loss RL2 we need to determine the classifier f̂ and
the constant c. The classifier f̂ is an SVM with squared hinge loss where we set
the error parameter C to C = 10 in all experiments. We use the implementation
described in Chapelle [2007]. The parameter c is determined in the following way.
We choose the largest c such that at least half of the labels of the positive and
negative class are used. Here we have a certain trade-off between keeping labeled
data and discarding it in regions where we do not trust the labels.

In all experiments the test distribution is the same. The test class conditional
distributions are two two-dimensional Gaussians of isotropic variance σ = 0.6.
The means are at (−1, 0) and (1, 0). The class probabilities are equal, that is,
p(+) = p(−) = 0.5. The distribution is shown in figure 3.3. We will always explore
the two scenarios of unlabeled data discussed in section 3.4.

Unlabeled data type 1: As training data we have a sample from p(y, x|s = 1). As
unlabeled data we are given an independent sample of the marginal test density
p(x).

Unlabeled data type 2: We are given a sample of the marginal test density p(x).
Some of them are selected to be labeled via p(s = 1|x) and the labels are drawn

3. This choice for hn and hm satisfies the condition of theorem 3.10 since the kNN -

distance Rk is prop. to
`

k
n

´ 1
d .
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Figure 3.3 A sample of 5000 points of the test distribution with contour lines of p(+|x).

Table 3.2 Results for the random selection shift

Unlabeled 1 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. test err. 4.1 ± 0.7 4.1 ± 0.8 4.1 ± 0.7 4.1 ± 0.8 4.1 ± 0.8 4.1 ± 0.7

Error from CV 4.4 ± 0.8 4.4 ± 0.8 4.7 ± 0.9 4.5 ± 0.8 4.5 ± 0.8 4.7 ± 1.0

Unlabeled 2 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. test err. 4.3 ± 1.0 4.3 ± 1.0 4.4 ± 1.1 4.3 ± 0.9 4.3 ± 1.0 4.4 ± 1.1

Error from CV 4.9 ± 1.1 4.8 ± 1.0 4.9 ± 1.1 4.9 ± 1.1 4.9 ± 1.0 5.0 ± 1.1

from p(y|x, s = 1). This will be the training set. The rest of the sample, which
was not selected, will be the unlabeled data. It has distribution p(y, x|s = 0). The
marginal test density is estimated in this case with all the samples.

We will always report results for both cases. The amount of unlabeled data of type
1 is chosen such that the amount of training and test data is equal for both cases.
Moreover, apart from the test error for the parameters chosen by cross-validation
on the training set, we also report the minimal test error over all parameters. This
is done in order to check if model selection works by cross-validation. We will see
in the case of general sample selection bias that this is not the case.

3.7.1 Random Selection

This is the ideal learning scenario. Test and training data come from the same
distribution. Here, using the losses SL and RL1 and the regularization SR and
AR should not make any difference except that with RL and AR we expect more
variance since the estimation of ĝ(x) = dXte (x)

dXtr (x) is noisy. Our experimental results
verify this fact. Astonishingly, also using the loss RL2 does not lead to a significant
reduction of performance despite the fact that we discard up to 50% of the labels.
The reason is possibly that this dataset has a cluster structure and therefore our
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Figure 3.4 Covariate shift. Left: The training set of the covariate shift data drawn from
p(y, x|s = 1). Right: The set of unlabeled points of type 2. Both plots show also the
contour lines of p(y|x, s = 1) and p(y|x, s = 0) respectively (the differences come from
interpolation in Matlab).

Table 3.3 Results for the covariate shift

Unlabeled 1 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. est err. 4.7 ± 0.9 4.7 ± 0.8 5.0 ± 0.9 4.7 ± 0.9 4.7 ± 0.8 4.9 ± 0.8

Error from CV 5.3 ± 0.9 5.4 ± 1.1 5.7 ± 1.0 5.4 ± 0.9 5.4 ± 0.8 5.6 ± 1.1

Unlabeled 2 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. test err. 6.1 ± 1.1 6.2 ± 1.1 6.5 ± 1.2 6.2 ± 1.0 6.1 ± 1.0 6.4 ± 1.2

Error from CV 6.8 ± 1.3 6.9 ± 1.4 7.2 ± 1.2 6.7 ± 1.1 6.7 ± 1.1 7.1 ± 1.2

SSL-type algorithm performs well even with only a small number of labeled points
(table 3.2).

3.7.2 Covariate Shift

In this scenario the conditional distributions of training and test data agree:
p(y|x, s = 1) = p(y|x). However, the marginal distribution p(x|s = 1) and p(x)
differ. The selection probability p(s = 1|x) has the form

p(s = 1|x) =

{
8
10

|x1|
1+|x1| , if x1 < 0,

5
10

|x1|
1+|x1| , otherwise.

This form of selection implies that only a small number of points are sampled in
the region of the decision boundary. Moreover, we sample more points of the red
class than of the blue class; see figure 3.4. This corresponds to a scenario where the
training set was generated by only selecting cases where the label is obvious and
where one has more samples of one class than the other one, despite in the test case
both classes occur equally often.
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Table 3.4 Results for general sample selection bias.

Unlabeled 1 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 5.0 ± 0.8 5.2 ± 0.9 4.9 ± 0.7 5.0 ± 0.8 5.0 ± 0.9 4.8 ± 0.8

Error from CV 7.3 ± 2.0 7.4 ± 1.7 6.4 ± 3.8 7.6 ± 1.8 7.5 ± 1.6 5.3 ± 0.8

Unlabeled 2 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 5.7 ± 1.4 5.8 ± 1.3 5.6 ± 1.0 5.5 ± 1.3 5.5 ± 1.3 5.2 ± 0.8

Error from CV 9.0 ± 3.0 9.1 ± 3.1 6.3 ± 1.1 9.1 ± 3.2 9.6 ± 3.0 6.0 ± 0.9
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Figure 3.5 General sample selection: Left: The training data for the general sample
selection problem. Right: Unlabeled data of type 2 with labels drawn from p(y|x, s = 0).
Both plots show also the contour lines of p(y|x, s = 1) and p(y|x, s = 0) respectively.

The results show that neither one of the combinations is significantly better. As
in the case of random selection the combinations with RL2-loss are slightly worse,
which is due to the reduced amount of labels they use. The loss on unlabeled data
of type 2 is slightly higher than for type 2. The reason is that p(x|s = 0) is more
concentrated on the decision boundary than p(x) and therefore one has more label
noise (table 3.3).

3.7.3 General Sample Selection Bias

In this case both the conditional probability and the marginal density differ between
training and test data. The selection probability p(s = 1|x) is given by

p(s = 1|x) =
1
2

〈w, x1〉2
〈w, x1〉2 + 2

+
1
10

and the conditional probability for the selected samples is given by

p(y|x, s = 1) = θ(x) pmod(y|x) + (1 − θ(x)) p(y|x),
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where θ(x) = 0.8 exp(− ‖x‖2

20σ2
2
) with σ2 = 0.4 and pmod(y|x) is the conditional

distribution generated by two Gaussians with means at (1, 1) and (−1,−1) and
variance σ2 = 0.4 as class-conditional probabilities p(x|+) and p(x|−) and equal
class probabilities p(+) = p(−) = 0.5. Thus we can see the training conditional
distribution p(y|x, s = 1) as the test-conditional distribution which is perturbed by
another conditional distribution near the origin.

The results show that the use of the RL2-loss performs in this case significantly
better than all other combinations of loss and regularizers. The adaptive regularizer
is slightly better than the standard regularizers for the RL2-loss but the difference
is not significant. The success of the RL2-loss is basically due to the fact that labels
are discarded where we are not sure about them. This also helps to select the correct
model as we can see from the minimal possible test errors over all parameters. All
combinations of loss and regularizer have roughly the same minimal test error. The
problem is that one cannot identify the correct model using cross-validation on the
training set since the conditional probability of the training data p(y|x, s = 1) and
the test data p(y|x) differ. Therefore the RL2 loss outperforms the other losses
since it discards labels in regions where we are not sure about them (table 3.4,
figure 3.5).

3.8 Conclusion

We have discussed the general problem of sample selection bias from a decision-
theoretic perspective. We have shown that the information about unlabeled data
helps to restrict the difference between training and test distribution. It remains
an open question if there exist other ways of characterizing additional information
about the learning problem which could restrict the type of sample selection bias.

The problem of general sample selection bias cannot be solved without additional
assumptions on the data-generating process. Another open question is the charac-
terization of natural assumptions on how training and test data are related. We
have discussed a modified cluster assumption which seems reasonable for a large
class of datasets. Another interesting direction would be the integration of causal
relationships into a model about sample selection bias.
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4 On Bayesian Transduction: Implications

for the Covariate Shift Problem

Lars Kai Hansen

We analyze a nonstationary semisupervised learning problem with different distri-
butions of training and test sets. The main result is an expression for the general-
ization optimal Bayesian procedure. For semisupervised learning our result implies
that all available data, including unlabeled data, should be used in the likelihood,
hence in forming the parameter posterior. It is a necessary condition for the utility
of unlabeled data that the posterior couples the two parameter sets which control
the input and the input-output distributions respectively. In the case of covariate or
dataset shift the situation again is contingent on the parameterization. If the input-
output conditional and the input distribution share parameters we can in principle
track the changes in the input distribution in case of covariate shift. If we assume
a drift prior we may also be able to learn from outdated data if the shift is limited.

4.1 Introduction

Supervised learning is the stochastic process of learning a predictive input-output
relation from a random finite sample of labeled data, i.e., paired input and output
examples. In practice we often encounter more complex scenarios, for example,
semisupervised learning, which is learning an input-output relation from a mixed
sample of labeled and unlabeled data, covariate shift where we learn from samples
for which the input distribution is nonstationary, and dataset drift in which the
whole joint input-output distribution is nonstationary.

In this chapter we will develop a general Bayesian approach which is rich enough
to be used both for semisupervised learning, covariate shift, and dataset drift.

Often a learning problem has a natural quantitative measure of generalization.
If a loss function is defined, for example, the natural measure is the generalization
error, i.e., the expected loss on a random sample drawn independently of the training
set.
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For unsupervised learning, estimation of joint distributions, Bayesian averag-
ing over the posterior is generalization optimal if the prior distribution is cor-
rect, as shown in Hansen [2000]. This result was generalized to supervised learning
of relations between input x and output y, with a negative log probability loss
− log p(y|x, D), in Hansen [2001]. It was found that the generalization optimal pre-
dictive distribution is based on Bayesian transduction , i.e., obtained by averaging
in a posterior adapted to the specific input location x.

In this chapter we expand the results in two directions. First, we address the
question of generalizability of predictors under the least squares loss. This is
motivated by the many applications and discussions of covariate and dataset shift
problems based on this loss function. Secondly, we consider possible forms of
nonstationarity in the training data and derive the resulting Bayesian conclusions.

4.2 Generalization Optimal Least Squares Predictions

Consider a smoothly parameterized model A. Predictions in the model are based
on a dataset D consisting of two subsamples Da, Db of size na, nb respectively.
Da = {(xj , yj)}na

j=1 is drawn from p(x, y|θa). The second set is assumed drawn
either as input data (in the case of semisupervised learning) or as data from a
density with shifted parameters p(x, y|θb) (covariate shift).

Thus these data generating “true” densities are assumed to be defined by pa-
rameter vectors θa, θb which themselves are drawn from a density p(·) , which we
could call “nature”. Given this setup, what is the optimal recipe for calculating
the prediction ŷ = f(x,D,A)? To answer this question consider the generalization
error for the specific example of least squares learning, i.e., the generalization error
is expectation of the squared difference between the label and the prediction,

Γ(D, θ, A) =
∫

(y − f(x, D,A))2p(x, y|θ)dxdy. (4.1)

We assume that the datasets Da, Db are drawn from distributions in the same
family as in (4.1), however, opening for the possibility that they have been drawn
with different parameters. The expected value of the generalization error is obtained
by further averaging over training sets produced by the θ,

Γ(θ, θa, θb, A) =
∫ ∫

(y − f(x, D,A))2p(x, y|θ)dxp(D|θa, θb)dD. (4.2)

We consider θ, θa, θb themselves to be random, i.e., we play the game of “guessing
a probability distribution” [Haussler and Opper, 1997]. Within this paradigm the
generalization error is obtained by the further averaging over the random state of
nature

Γ(A) =
∫

Γ(θ, θa, θb, A)p(θ, θa, θb)dθdθadθb , (4.3)
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where we use the notation p(θ, θa, θb) to denote the joint distribution of the param-
eters chosen by nature. If the parameters are all the same, the joint distribution
is p(θ, θa, θb) = δ(θ − θa)δ(θ − θb)p(θ). If the parameters are drawn independently,
we get a prior p(θ, θa, θb) = p(θa)p(θb)p(θ), if there is a general, weak, or strong
coupling, the joint distribution can be written p(θ, θa, θb) = p(θa|θ)p(θb|θ)p(θ).

Equation (4.3) represents the typical generalization error for a randomly chosen
instance of nature and is a function of the sizes of the training sets, the given model
structure, and the parameter distribution used by nature.

To find the generalization optimal predictor among the functions f(x, D) that
map a dataset D and an input x into a prediction, we form the functional,

H[f(·, ·)] =
∫

(y − f(x,D))2p(x, y|θ)dxdyp(D|θa, θb)dDp(θ, θa, θb)dθdθadθb. (4.4)

The optimal predictor is given by the unique solution to δH
δf = 0.

f(x,D) =
∫ ∫

yp(y|x, θ)dy
p(x|θ)p(D|θa, θb)p(θ, θa, θb)∫

p(x|θ′)p(D|θ′, θ′a, θ′b)p(θ′, θ′a, θ′b)dθ′dθ′adθ′b
dθdθadθb.

(4.5)

It is easily verified that this predictive distribution is indeed the global minimum
of the generalization error . We also note that if Bayesian averaging is performed
with another prior than nature’s distribution p(θ, θa, θb), we can expect a higher
generalization error.

4.3 Bayesian Transduction

First, let us consider conventional supervised learning from a single stationary
dataset D = Da, Db = ∅. We simplify the prior distribution as p(θ, θa, θb) =
δ(θ − θa)δ(θ − θb)p(θ). In this case the optimal predictor reduces to

f(x,D) =
∫ ∫

yp(y|x, θ)dy
p(x, D|θ)p(θ)∫

p(x, D|θ′)p(θ′)dθ′
dθ. (4.6)

This is a simple form of Bayesian transduction in which the predictor combines
the information in the training data with the current input point to form a posterior
distribution. The test input x vector occurs in the expression with the likelihood
term; hence the posterior is to be computed for each input separately.

We can obtain further insight into the role of the input data by being more explicit
about the parameters. Let us consider the “fine structure” of the parameterization
by dividing the parameters θ into three groups θ = (θ1, θ2, θ3) so that p(x, y, θ) =
p(y|x, θ1, θ2)p(x|θ2, θ3). In this formulation we have parameters that only enter
into the conditional (θ1), parameters that enter into both distributions (θ2), and
parameters that only play a role in the input distribution (θ3).
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If the set of parameters θ2 is empty, hence, there is no coupling between the input
distribution and the conditional distribution in the posterior distribution, our result
further simplifies to “conventional” Bayesian modeling:

f(x,D) =
∫ ∫

yp(y|x, θ)dy
p(D|θ)p(θ)∫

p(D|θ′)p(θ′)dθ′
dθ. (4.7)

Note that this widely used Bayesian posterior average for supervised learning is
strictly speaking only optimal if θ2 is empty and the posterior distribution has no
coupling between the learned parameters of the conditional and the input density
functions.

4.4 Bayesian Semisupervised Learning

In semisupervised learning we have access to both labeled and unlabeled data. Let
the dataset consist of two independent sets of unlabeled Da and labeled data Db,
D = (Da, Db), hence p(D|θa, θb) = p(Da|θa)p(Db|θb). Since the training set average
in (4.6) involves both datasets, we conclude that both sets should contribute on
equal terms to the likelihood in (4.5).

Let us consider some relevant scenarios. First, let us assume stationarity, i.e., that
the parameters are identical as discussed above, p(θ, θa, θb) = δ(θ−θa)δ(θ−θb)p(θ).
In this case we recover a result similar to Hansen [2001],

f(x,Da, Db) =
∫ ∫

yp(y|x, θ)dy
p(x,Da, Db|θ)p(θ)∫

p(x,Da, Db|θ′)p(θ′)dθ′
dθ. (4.8)

To probe a bit deeper into the nature of this result we analyze the parameter-
ization fine structure p(x, y, θ) = p(y|x, θ1, θ2)p(x|θ2, θ3). First, if θ2 is empty we
extend the result from the previous section and conclude that there is no utility of
unlabeled data. In this case Bayesian semisupervised learning fails as can be seen
from the resulting Bayesian average,

f(x,D) = f(x,Db) =
∫ ∫

yp(y|x, θ)dy
p(Db|θ)p(θ)∫

p(Db|θ′)p(θ′)dθ′
dθ. (4.9)

This no-go situation occurs, for example, in case a supervised learning model
is adapted without reference to the input distribution. This could be “conditional
mean” type predictors like unregularized linear models, unregularized multilayer
perceptrons, or simple Gaussian processes.

We conclude that if the model is realizable and there is a nonempty intersection of
the sets of parameters defining the input and conditional distribution, then labeled
and unlabeled data should enter the likelihood with full strength. If the intersection
between the two parameter sets is empty, on the other hand, the unlabeled data
has no utility. The former is in contrast to work by Nigam et al. [2000], which
shows that it typically pays off to discount the unlabeled data. The reason is
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that for misspecified scenarios we can expect frustration between the likelihood
contributions from the two datasets. We can not be sure that the parameters that
are optimal for the labeled data also are optimal for the unlabeled data. Since the
unlabeled likelihood typically is based on many more examples than the labeled
likelihood, the former will dominate and skew the predictions.

4.5 Implications for Covariate Shift and Dataset Shift

The covariate and dataset shift situations occur when we consider the datasets Da

and Db to be drawn from different distributions, i.e., θa �= θb.
Let us first take θ = θb and a prior which is given by p(θ, θa, θb) = δ(θ −

θb)p(θ)p(θa) corresponding to a dataset Da drawn independently from (x, y) and
Db. The optimal Bayes predictor reads in this case,

f(x,D) = f(x,Db) =
∫ ∫

yp(y|x, θ)dy
p(x|θ)p(Db|θ)p(θ)∫

p(x|θ′)p(Db|θ′)p(θ′)dθ′
dθ. (4.10)

Thus we completely forget the initial dataset Da and there is no tracking and no
learning transfer.

As a second and more useful scenario we consider the so-called independent
covariate shift situation with a parameter fine structure θ = (θ1, θ2, θ3), with the
further assumption θa,1 = θ1, θa,2 = θ2 (no change in the conditional distribution
p(y|x, θ1, θ2) = p(y|x, θa,1, θa,2), but with a change in the input distribution θa,3 �=
θ3. This leads to a predictor in which we can learn from both Da, Db and from
the current input x; however, the input distribution learning has contributions only
from the test input and from the inputs of the “shifted” dataset Db.

Finally, as a third scenario we consider a prior that will allow a kind of “tracking”.
Let p(θ, θa, θb) = δ(θb − θ)p(θa|θ)p(θ) with a conditional p(θa|θ) that captures our
expectation on the dependency between the initial dataset and the shifted. In this
case the predictor reads

f(x, D) =
∫ ∫

yp(y|x, θ)dy
p(x|θ)p(Db|θ)p(Da|θa)p(θa|θ)p(θ)∫

p(x|θ′)p(Db|θ′)p(Da|θ′
a)p(θ′

a|θ′)p(θ′)dθ′dθ′
a

dθadθ.

(4.11)

Depending on the size of the shift we can obtain learning transfer through the
coupling between the two parameter sets.

4.6 Learning Transfer under Covariate and Dataset Shift: An Example

Let the conditional mean be an affine function of the input data f(x,w) where w is a
two-dimensional vector representing a slope and an offset. We will create simulated
data with additive normal noise of variance σ2. Thus the conditional distribution
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p(y|x) is given by

p(y|x,w, σ2) =
1√

2πσ2
exp

(
− (y − f(x, w))2

2σ2

)
. (4.12)

Further, to be complete let the input distribution be a Gaussian mixture,

p(x|{μk, σ2
k, πk}) =

K∑
k=1

πk
1√

2πσ2
k

exp
(
− (x − μk)2

2σ2
k

)
. (4.13)

With these definitions the fine structure is given as θ1 = (w, σ2) and θ3 =
({μk, σ2

k, πk}K
k=1), while the set θ2 of parameters that couple the conditional and

input distributions is empty.

Let us first consider the semisupervised problem. In this case we have access
to the two datasets with labels and without. If we will use a prior p(θa, θb, θ) =
δ(θ − θa)δ(θ − θb)p(θ), transfer should be possible, but, because θ2 is empty the
no-go result in (4.9) applies and we cannot learn from the unlabeled data. The
same result holds if we invoke priors with hyperparameters, as long as they do not
bring in relations between components of θ1 and θ3. If that happened, e.g., if we
optimized hyperparameters as in MLII, we would effectively produce a nonempty
θ2.

Next, let us consider a scenario inspired by the model used in Sugiyama et al.
[2007] to illustrate learning under covariate shift. Datasets for the linear model
are based on the nonlinear function f0(x) = sin(x)

x with additive normal noise
with variance σ2. We assume σ2 to be known in this example. Further, the input
distribution is assumed nonstationary. In the large (na = 1000) initial dataset Da

the input distribution is a normal distribution N(1.5, 9), while in the smaller set
(nb = 10) Db and at time of test, i.e., (x, y), the input distribution is shifted and
is given in two separate simulations either as (i) N(3, 1) or (ii) N(4.5, 1). We will
refer to the two scenarios as small drift (i) and medium drift (ii). The latter input
distribution is still overlapping with the preshift distribution justifying the term
“medium”.

Note that since the model is unrealizable, referring to the fact that our linear
model cannot globally represent the nonlinear sinc function f0(x), what is a
covariate shift in the true model is a dataset shift with respect to the linear model.

We consider two different priors. We consider first a “conventional” prior con-
sisting of a weight decay type prior on w = wb and a uniform prior on wa:

p(wa, wb, w) ∝
(

1
2πα

)
exp

(
−α

2
w2

)
δ(w − wb). (4.14)

Next we introduce a “drift” prior on w = wb relative to the weights trained on the
initial dataset wa:

p(wa, wb, w) ∝
(

1
2πα

)
exp

(
−α

2
(wa − w)2

)
δ(w − wb). (4.15)
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Figure 4.1 Bayesian linear learning of a nonlinear function under limited and “medium”
drift of the input distribution. We consider an initial training set Da with na = 1000
samples drawn from a normal input distribution N(1.5, 9). In the limited drift situation
shown in the upper left panel, we shift the input distribution for the second training set
Db (nb = 10 data points indicated by circles) and for the test data to a normal N(3, 1). In
the larger drift situation shown in the upper right panel, we shift the input distribution
for the second training set Db and for the test data to N(4.5, 1). For either of the two
covariate shift cases we train two models, one with a weight decay-type prior on the
weights after shift w, and a model with a drift prior linking the weights before and after
the covariate shift as normal distribution with a hyperparameter α. The hyperparameters
for both weight decay prior and drift prior are integrated numerically assuming a uniform
hyperparameter prior. In the two lower panels we show the normalized test error scatter
plots for 50 realizations of the simulations. In the left lower panel (data with limited
covariate shift) we see that the errors are all improved for the drift prior and we thus
experience a significant learning transfer, while in the right plot (data with a larger drift)
we find that the conventional prior is more appropriate.

For both priors we will assign a uniform hyperprior on α and we will integrate over
the hyperparameter numerically.

In the simulations we created 50 realizations of the each of the four combinations
of covariate shift (“small”, “medium”) and priors (“conventional”, “drift”). The
predictions by the two priors were in each realization evaluated on a large test
dataset drawn from the same distribution as Db. All test errors were normalized by
the output variance in the corresponding test set.

Results of the simulations are presented in figure 4.1. For the case of a limited
covariate shift the drift prior provides a consistent and at times very large improve-
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ment relative to the conventional prior. However, for the larger drift we find that
the conventional prior is either equal to or an improvement over the drift prior.

4.7 Conclusion

We have analyzed Bayesian supervised learning with extensions to semisupervised
learning, and learning with covariate or dataset shift.

The main result is an expression for the generalization optimal Bayesian pro-
cedure. The resulting “Bayesian transduction” average is optimal for a realizable
model. For semisupervised learning this implies that all available data, including
unlabeled data, should be used in the likelihood, hence in forming the parameter
posterior. We noted an important caveat, namely that a prerequisite for using unla-
beled data is that there is a coupling in the posterior between the parameters that
control the input distribution model and the input-output relation. If, for example,
we use a straightforward unregularized classifier we should not expect any benefit
from additional unlabeled data.

In the case of covariate or dataset shift the situation again is contingent on
the parameterization. If we have shared parameters between the input-output
conditional distribution and the input distribution we can in principle track the
changes in the input distribution in case of covariate shift. If we assume a drift
prior we may also be able to learn from outdated data if the shift is limited. We
also noted in the simple example that what by definition was a covariate shift in
the complex model could appear as a dataset shift for a simpler model.
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5 On the Training/Test Distributions Gap: A

Data Representation Learning Framework

Shai Ben-David

We discuss some dataset shift learning problems from a formal, statistical point of
view. We offer definitions for “multitask learning,” “inductive transfer,” and “do-
main adaptation” and discuss the parameters along which such learning scenarios
may be taxonomized. We then focus on one concrete setting of domain adaptation
and demonstrate how error bounds can be derived for that setting. Our bounds can
be reliably estimated from finite samples of training data, and do not rely on any as-
sumptions concerning similarity between the domain from which the labeled training
data is sampled and the target (or test) data. However, these bounds are relative
to the performance of some optimal classifier, rather than providing any absolute
performance guarantee.

5.1 Introduction

We consider a setting where a learner has access to labeled training data generated
according to some training data distribution (or several different data distributions),
and wishes to learn a classifier which performs well with respect to a different,
“target” (or “test”), data distribution.

Such learning scenarios are usually discussed under the titles “domain adapta-
tion,” “inductive transfer,” and “multitask learning.” We propose formal definitions
for these learning problems. These definitions may further partition along different
input availability settings. Namely, what kind of target distribution data is avail-
able to the learner: Labeled? Unlabeled? Distribution description? Constraints on
possible such distributions?, etc.

Clearly, the success of any such learning depends on the knowledge the learner
has about the test data or on its relationship to the training data. Common
approaches to this problem rely on postulating some prior assumptions in that
respect. We propose a different approach. Rather than aiming for absolute error
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bounds that are (inevitably) conditioned upon such prior assumptions, we make
no prior assumptions about the test domain, and derive error bounds which are
relative to the best possible performance in the relevant setting.

We focus on scenarios where the learner can access samples generated by the test
data distribution, alas, without the labels of these data points (this is on top of
having access to labeled examples generated by the training data distribution).

In such scenarios, data shift learning paradigms can be divided along another
aspect – the distinction between what we call conservative and adaptive learners .
A conservative algorithm is one that makes its choice of predictor function based
only on the labeled sample from the training domain. Such a learner uses the
unlabeled target sample only as a tool for evaluating the quality of the chosen
predictor. In contrast, adaptive learners incorporate the unlabeled target sample
as an integral part of the learning process. We focus our analysis on conservative
learners, and argue, in section 5.5, that, as long as the learner has access to only
unlabeled samples from the target distribution, no reliable adaptive learning can
take place (unless further assumptions concerning that distribution are made). This
claim remains valid even in the covariate shift setting, where one assumes that the
conditional distribution of label values, given the unlabeled data, is unchanged
between the training and target distributions.

We introduce some parameters, depending on the learning algorithm, the distri-
bution of labeled training data and the distribution of unlabeled test data, that
determine the generalization error of conservative learning in our framework. A
key component in our discussion is the introduction of a special measure for the
similarity between probability distributions. We show that, for the purpose of do-
main adaptation, it is useful to define that similarity as the error that the relevant
learning algorithm will make when applied to distinguish between the training and
target unlabeled data distributions.

We prove convergence rates for the (quality of) approximation of these relevant
parameters from finite samples of labeled training data and unlabeled test data,
and derive some basic theoretical performance guarantees for classifiers in terms of
these parameters.

5.2 Formal Framework and Notation

In this chapter, a learning task is modeled by a probability distribution P over
labeled examples. Namely, for some domain set, X, and a set of labels Y (which,
for concreteness, we take to be {0, 1}), P is a distribution over X × Y. We shall
also consider probability distributions over the space, X, of unlabeled examples.
Given a task, P , as above, we use DP to denote the probability distribution over
the domain set (the data marginal distribution), X, obtained by projecting P to X

(by erasing the labels). Namely, for a subset A ⊆ X, DP (A) = P ({(x, y) : x ∈ A})
the probability of drawing x ∈ A regardless of the label it is paired with.
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By a sample for a task, P , we mean a multiset of labeled points, S =
((x1, �1), . . . , (xm, �m)), picked i.i.d. according to the distribution P . An unlabeled
sample of P is a multiset of points from X picked i.i.d. according to the unlabeled
distribution DP .

For some parts of our discussion, we shall need to get into some further detail and
consider also the measure space over which our distributions (or ‘tasks’) are defined.
A measure space is a pair, (X,B), where X is any domain space, as above, and B is
a σ-algebra of subsets of X. We shall assume that all the probability distributions
considered are defined over some measure space (that will remain implicit for most
of our discussion). Given a domain space, (X,B), and a finite label space, Y, a task
P over it is assumed to be defined over the space (X×Y, {b× l : b ∈ B : and l ⊆ Y}).
As mentioned above, we shall focus on the case that Y = {0, 1} and shall make no
explicit reference to Y in our notation.

A multitask is an array of tasks, P1, . . . , Pn, all defined over the same space. For
most of our discussion, we shall focus on the case of an array of size 2, where we
have just two tasks, a training task that we shall denote by Ptr, and a target task
that we shall denote by Pte.

The learner wishes to construct a predictor h : X → {0, 1} for the target task.
Namely, the learner wishes to minimize the error of its predictor on the target task
distribution. That error is defined as the expectation, w.r.t. the distribution Pte, of
the 0/1 loss of h. That is, ErPte(h) = Ex(x,�)∼Pte

L(h, (x, �)), where L(h, (x, �)) = 0
if h(x) = � and L(h, (x, �)) = 1 if h(x) �= �.

5.3 A Basic Taxonomy of Tasks and Paradigms

Learning for the case of multiple tasks has been considered in various settings.
We attempt to provide a basic taxonomy for such problems by considering several
determining aspects. The first is the distinction between symmetric and asymmetric
settings. In the symmetric case, the learner has the same type of information for
all the relevant learning tasks, and wishes to use the existence of multiple tasks
to improve the learning in all of them. This is the scenario that is considered by
Baxter’s seminal work [Baxter, 2000]. In such settings (e.g., in Baxter [2000]), the
learner is interested in improving the average quality of prediction, over the full
array of tasks (compared to learning each of them separately), or in improving the
learning quality over each of the tasks [Ben-David and Schuller, 2003]. We call this
scenario multitask learning . In the asymmetric setting, there is some designated
target task, and the learner aims to improve the quality of learning on that particular
task (again, compared to learning it without access to the additional tasks in the
array). We call this type of task inductive transfer . Such settings may further
partition according to the type of target-task information available to the learner.
We propose using the term domain adaptation for situations in which the learner
has access to only unlabeled target samples.
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Symmetric Setting – Multitask Learning We say that P1, . . . , Pn allows mul-
titask learning (MTL) if, for any sequence of learning algorithms, A1, . . . , An, one
for each of the tasks, there exists a learning algorithm Â that takes an array of
samples, one from each task, as input, and outputs an array of predictors, one for
each task, such that for any large enough m, if, for all i, Si is an m-size sample
of the task Pi, then, with high probability (over the choice of the Si’s), for any
k ≤ n, Ek(Â(S1, . . . , Sn)) < E(Ak(Sk)) (where Ek is the expectation of the error
of Â when predicting on the kth task, over the input random samples).
That is, Â utilizes samples from the different tasks to improve the individual task
predictions based on single-task training data.

Possible variant: Weak MTL. Rather than having Â beat the single-task algorithms
on every task, require only that the average of these errors, over the array of tasks,
is better than the average one would get by learning each task separately.

Asymmetric Setting – Domain Adaptation We say that P1, . . . , Pn−1 allows
domain adaptation to a task Tn if there exists a learning algorithm Â that takes
an array of samples S1, . . . , Sn−1, one from each task, as input, and outputs a
predictor for Tn such that for every large enough m, if, for all i < n, Si is an
m-size sample of the task Pi, then, with high probability (over the choice of the
Si’s), Er( bA(S1,...,Sn−1)

(Pn) < min{Er1(Pn), Er0(Pn)}, where Eri(Pn) is the error
of the constant label-i predictor on the task Pn, and Er( bA(S1,...,Sn−1)

(Pn) is the
error on Tn of Â, trained on S1, . . . , Sn−1. That is, using training samples for the
tasks Pi, i < n, one can come up with a nontrivial predictor for Pn, without having
access to training data from that task (“nontrivial” in the sense that it has lower
error than any of the two constant-value predictors).
Variations: One can readily define several variations of these types of task, e.g.,
allowing for the use of unlabeled target data as part of the input to Â in any of
the above, or demanding that, having access to large enough samples, the error of
Â can be made arbitrarily small.

Conservative vs. Adaptive Prediction An orthogonal dimension along which
relevant approaches may be classified is the algorithmic paradigms they employ. Do
they address the data shift explicitly or do they ignore the data shift in the learning
process and address it only for the evaluation of the resulting predictor?
We distinguish between two possible learning paradigms. In the first, the learner
chooses the predictor that works best with respect to the training task(s), and
wishes to evaluate how good that predictor will be when employed on the target
task. We call this “conservative prediction.” In the second setting, we consider
learning strategies that allow the predictor they pick for the target task to differ
from the predictor they would use for the training task. We call this “adaptive
prediction.”
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5.4 Error Bounds for Conservative Domain Adaptation Prediction

In the conservative prediction setting, one wishes to upper-bound the error of a
predictor on the target (or “goal”) task by its error on the training task. Clearly,
such a bound depends on the similarity between the training distribution and the
goal distribution. Any performance guarantee of this type should therefore involve
a measure of that task similarity. A common measure for the dissimilarity between
two probability distributions is the L1 distance (also called the total variance or
statistical distance). It is defined as

dL1(P,Q) = 2 sup
A∈B

|P (A) − Q(A)| .

Recall that B denotes the set of all P -measurable domain subsets.
Based on this L1 distance between the two (unlabeled) data distributions, one

can readily get a rather straightforward bound on the error on the goal distribution
in terms of the error of a hypothesis on the training distribution (in the covariate
shift setting):

Lemma 5.1 Under the covariate shift assumption, for every predictor, h : x →
{0, 1},

ErG(h) ≤ ErT (h) +
dL1(DT , DG)

2
.

Proof: Note that, due to the covariate shift assumption, for every point x ∈ X,
G(1|x) = T (1|x). Let us denote this quantity by �(x, 1) (the probability, under
either G or T , that the label of x is 1) and let �(x, 0) = 1 − �(x, 1) (namely, the
probability that the label of x is 0). The only possible source of the error of a
predictor h to be greater for G than for T is that G puts more weight on points on
which h has a relatively large error. Namely,

ErG(h)−ErT (h) ≤ DG{x : �(x, h(x)) > ErT (h)}−DT {x : �(x, h(x)) > ErT (h)}

Now, note that by the definition of dL1 , the right hand side of this inequality is at
most 1/2dL1(DT , DG).

The above bound has two major weaknesses. First, it may be overly pessimistic.
A second concern is that, based on the data available to the learner in the setting we
discuss, there is no way to estimate the crucial similarity parameter dL1(DT , DG)
reliably.

We address these issues by developing an alternative error bound. The new bound
is based on a different measure of similarity between distributions.

5.4.1 A Special Measure of Between-Distributions Distance

To measure the similarity between two probability distributions, we shall use the
dA measure, introduced in Kifer et al. [2004] and He et al. [2006]. The dA measure is
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parameterized by a collection A of subsets of the domain over which the probability
distributions are defined. Intuitively speaking, A is the collection of “subsets of
interest” with respect to the properties of the distributions that one wishes to
analyze. In our case, when we analyze a domain adaptation learning algorithm,
that collection is determined by the learning algorithm that is used to generate the
classification predictors (more precisely, by the set of potential predictors that that
algorithm may output). The motivation behind the introduction of that measure
come from real life scenarios in which one cares only about certain distribution
changes. For example, in Kifer et al. [2004] we discuss detecting changes in the
generating distribution of streaming real valued data, in that context one cares
only about changes that effect the probabilities of real intervals.

Definition 5.2 Let X be some domain set and let B be a σ-algebra of subsets of
X. Let A ⊆ B. For probability distributions P,Q over (X,B),

dA(P,Q) = 2 sup
A∈A

|P (A) − Q(A)| .

Note that the only difference between this measure and the L1 distance is that in
the dA distance, we restrict our attention to some fixed collection A of subsets,
rather than considering the full σ-algebra of measurable sets. This difference
becomes meaningful when A is “small” compared to the full collection of measurable
sets. Below, we demonstrate the benefits gained when that smallness is reflected by
the VC dimension .

Lemma 5.3 For any pair of probability distributions, P,Q, over some domain
measure space (X,B), and for every family of sets A ⊆ B,

dA(P,Q) ≤ dL1(P,Q) .

Example 5.4 Let X be some Euclidean space, R
d and let B = L(Rd) be the

collection of Lebesgue measurable subsets of R
d. Let P be the uniform distribution

over Dodd
100 = {(x1, . . . , xd) ∈ [0, 1]d : Σd

i=1(the 100th decimal digit of di) is odd}
and let Q be the uniform distribution over its complement, ([0, 1]d \ Dodd

100). It is
easy to see that DL1(P,Q) = 2 (note that, for any P,Q, it is always the case that
DL1(P,Q) ≤ 2). Just the same, if we let A be the set of all linear half-spaces in R

d,
then dA(P,Q) = 0.

Note that one could easily modify the above example so that the two distributions
will be absolutely continuous with respect to each other; let 0 ≤ λ ≤ 1, the
distributions P ‘ = λU + (1 − λP and Q‘ = λU + (1 − λQ (where U is the uniform
distribution over [0, 1]d), satisfy dA(P ′, Q′) = 0 and DL1(P

′, Q′) = 2 − 2λ

Kifer et al. [2004] use a uniform convergence argument to show that, if A has a
finite VC dimension , then it is possible to reliably estimate the A-distance from
finite samples. We state here the relevant result from that work:
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Lemma 5.5 Let A be a class of subsets of some domain set X and let d < ∞
be the VC dimension of A. Let P , Q be any probability distributions over X and
ε ∈ (0, 1). Then, for any sample size, m, for i.i.d. m samples, S, S′, drawn by P ,
Q respectively,

Pr [|dA(P,Q) − dA(S, S′)| ≥ ε] < (2m)d4e−mε2/4 ,

where Pr [·] is over random draws of m-size independent samples from the distribu-
tions P and Q, and we identify a finite sample S with the probability distribution
that assigns each point a weight equal to its relative frequency in S.

Note that the above claim is in sharp contrast to the dL1 case, as the following
claim demonstrates.

Claim 5.6 Let U be the uniform distribution over the unit interval with the
Lebesgue algebra of measurable subsets, ([0, 1]d,L([0, 1]d)). For any statistical test T

and any number m, there exists a probability distribution, P , over the same domain
space, such that dL1(U,P ) = 1 and yet, given a pair of m-size samples, S1, S2 as
input, the test T cannot distinguish between the case that both samples were both
drawn i.i.d. from U and the case that S1 was drawn i.i.d. from U and S2 was drawn
i.i.d. from P .

Alternatively, one could define the DA measure from a learning perspective.
Intuitively speaking, viewing A as a set of functions from X to {0, 1} (or, label
predictors), we ask how well can a function from A separate examples generated
by the two distributions. It turns out that the prediction error on such a task can
be used to define the dA distance.

Definition 5.7 (Alternative, Equivalent Definition of dA) For X, A, P , and
Q as above, consider the task of finding a predictor, h : X → {0, 1} that distinguishes
points generated by P from points generated by Q. That is, consider the mixture
distribution (P,Q) = 1

2 [P × {1} + Q × {0}] over X × {0, 1} (i.e., with probability
1/2, x is drawn from P and has label �(x) = 1, and with probability 1/2, x is drawn
from Q and has label 0); define the error of such a predictor as Err(P,Q)(h) =
Pr(P,Q) [h(x) �= �(x)]. Given a set A ∈ A, let hA be the characteristic function of A

(that is, h(x) = 1 iff x ∈ A). We can rewrite the definition of [dA as

dA(P,Q) = 1 − 2 inf
hA|A∈A

Er(P,Q)(hA) .

It is straightforward to see that the two definitions of D above are equivalent.

5.4.2 Relative Error Bounds

We wish to bound the error of a predictor w.r.t. Pte in terms of its error w.r.t.
Ptr. Since we must rely on finite samples (rather than having access to the actual
distributions, Ptr and Pte), and since we wish to use that bound for selecting the
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best predictor, we must restrict our attention to some restricted class of predicting
functions. Let H denote such a class. As mentioned above, even under the covariate
shift assumption, it may still be the case that predictors that perform well with
respect to Ptr fail badly w.r.t. Pte. Can the similarity between Ptr and Pte bound
that gap in the quality of predictors over the two tasks? Lemma 5.1 shows that the
answer is positive once the two probability distributions are close in the L1 sense.
However, as demonstrated above, such a requirement is severely restrictive and its
validity cannot be assessed on the basis of the information available to the learner
in the model we consider. Can similarity in terms of dA, for some A with a finite
VC dimension suffice to imply such a bound? The following example shows that it
does not.

Example 5.8 Let X be the real unit interval [0, 1], and let A, as well as H, be the
set of all linear half-spaces over X (that is, the set of all threshold classifiers). Let
f : [0, 1] → {0, 1} be defined by f(x) = 1 if the 100th digit of X (in its decimal
expansion, without a tail of 9s), and f(x) = 0 otherwise. Now let Ptr be the uniform
distribution over f−1(1) and let Pte be the uniform distribution over f−1(0). Now,
dH(Ptr, Pte) = 0, and yet, the constant predictor h(x) ≡ 1 has zero error w.r.t. Ptr

but has error 1 w.r.t.Pte.

As long as no data about the distribution of labels w.r.t. Pte is available, and
no assumption about it is made (apart from the covariate shift assumption), we
suggest that, rather than aiming toward absolute error bounds, one should settle
for relative bounds, namely, bounds with respect to the best possible performance
under the given circumstances. More concretely,

Definition 5.9 Given a domain space X, a class of binary predictors, H over it (a
hypothesis class), and probability distributions Ptr and Pte as above, let

λH,Ptr,Pte = inf
h∈H

(ErPte(h) + ErPte(h))

Notation: We identify a binary function, h : X → {0, 1}, with the subset h−1(1))
of X. We denote by Δ(H) the class of symmetric differences of functions from H.
Namely, Δ(H) = {hΔh′ : h, h′ ∈ H}.

We are now ready to present our main error bound .

Theorem 5.10 Let Ptr and Pte be probability distributions over X×{0, 1} for some
space (X,B), and let H be a class of measurable binary functions over that space.
For any h ∈ H,

|ErPte(h) − ErPtr (h)| ≤ λH,Ptr,Pte
+

1
2
dΔ(H)(DPtr

, DPte
) ,

where DPte
and DPtr

are the projections on X of Pte and Ptr respectively.
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Proof: Let h∗ = argminh∈H

(
ErPtr (h) + ErPte(h)

)
, and let λPtr

and λPte
be

the errors of h∗ with respect to Ptr and Pte respectively. Notice that λH,Ptr,Pte =
λPtr

+ λPte
.

ErPte(h) ≤ λPte
+ PrDPte

[hΔh∗]

≤ λPte
+ PrDPtr

[hΔh∗] +
(
PrDPte

[hΔh∗] − PrDPtr
[hΔh∗]

)
≤ λPte + PrDPtr

[hΔh∗] +
1
2
dΔ(H)(DPtr , DPte)

≤ λG + λPtr
+ ErPtr (h) +

1
2
dΔ(H)(DPte

, DPtr
)

≤ λ + ErPtr (h) +
1
2
dΔ(H)(DPte

, DPtr
)

Probably the only step that requires explanation is the inequality PrDPtr
[hΔh∗] ≤

λPtr
+ ErPtr (h) used for moving from the third line above to the fourth. This

inequality holds since, for every point x ∈ hΔh∗, the error probability of h on x

and the error probability of h∗ on x sum to 1. The theorem now follows by noting
that the above argument is symmetric—the roles of Ptr and Pte are interchangeable

Corollary 5.11 Let Ptr and Pte and H, be as above. If H has a finite VC
dimension , d, then for every m,m′ ∈ N. If a random labeled sample, Str, of size m

is i.i.d by Ptr and random unlabeled samples, Utr, Ute, each of size m′, are generated
i.i.d. by DPtr

and DPte
respectively, then, with probability at least 1 − δ (over the

choice of the samples), for every h ∈ H:

1.

ErPte(h) ≤ ErPtr (h) + λPtr,Pte,H +
1
2
dΔ(H)(Utr, Ute) + 4

√
d log(2m′) + log(4

δ )
m′

Where, for finite samples, S, the same notation is used to denote both the sample
itself and the uniform probability distribution over its elements.

2.

ErPtr (h) ≤ErStr (h) +
4
m

(
d log

2em

d
+ log

4
δ

)
+ λPtr,Pte,H

+
1
2
dΔ(H)(Utr, Ute) + 4

√
d log(2m′) + log(4

δ )
m′

Proof: The corollary follows from theorem 5.10 by replacing ErPtr by its VC-
based empirical upper bound, and upper-bounding dΔ(H)(DPtr , DPte) in terms of
its empirical value on samples, through lemma [Kifer et al., 2004].

Note, that while part 2 of corollary 5.11 sounds more practical than part 1 and
than theorem 5.10 (since all the parameters involved in the bound are derived
from available training data), the latter formulations are more general. Theorem
5.10 allows flexibility in estimating the true error of hypotheses, and in choosing
the preferred predictor. For example, theorem 5.10 and part 1 of corollary 5.11
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apply also to algorithms employing regularization methods (such as margin or
description complexity penalty terms) rather than empirical risk minimization.
Likewise, theorem 5.10 is applicable also in cases where the method used to assess
the distance between the training and goal task distribution is different than picking
random unlabeled samples and computing their empirical distance.

5.4.3 Distinguishing Features of Our Bounds

Let us summarize the main aspects in which the bounds presented above may differ
from other theoretical analysis of domain adaptation.

Maybe the most significant merit of this bound is that it can be reliably estimated
using the data available to the learner. A learner can run any learning algorithm
on the training data (the labeled training task sample), estimate the error of
the outcome predictor for the training task (using any common error estimation
technique), and then, using the unlabeled sample from the goal task, apply the
bound of theorem 5.10 to obtain a (guaranteed) upper bound on the error of that
predictor on the goal task. Such a bound may be used by a learner to determine
whether the application of a more elaborate paradigm (like adaptive prediction) is
required.

Another distinctive feature of our bounds is that they do not rely on any
assumptions concerning the relationship between the training data domain and the
goal (or test) data domain. Obviously, this feature makes our bounds more general.
However, the other side of the coin is that this generality has a cost in terms of the
tightness of the bounds. Whenever prior knowledge about the relationship between
the two learning domains is available, it is conceivable that that prior knowledge
can be utilized to get better bounds. Furthermore, such prior domain knowledge
may allow the application of adaptive prediction — choosing predictors that have
better performance on the goal domain than the predictors chosen just based on
their training domain performance (as is the case with the conservative prediction
that we analyzed above).

Finally, it should be noted that our bounds are relative bounds, in the sense
that rather than providing absolute upper bounds for the learned predictors error,
they bound only the difference between that error and the error of some baseline
predictor - the sum of the training and test errors of the best predictor in the
hypothesis class, H (this is what λT,G,H denotes). This relaxation of the guarantee
is an inevitable consequence of not making any prior task assumptions (as discussed
in the previous point). In a way, this is similar to the distinction between the
agnostic and PAC (probably approximately correct) models of learning. The first
makes no prior assumptions about the label generating distribution, but settles
for generalization bounds that are relative to those of the best predictor in some
reference hypothesis class. The latter, the PAC model, assumes that the hypothesis
class contains a perfect (i.e., zero error) predictor, and, under that assumption, can
expect absolute numeric bounds on the error of the learner’s predictor.
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5.5 Adaptive Predictors

Conservative predictors seem quite limited. Rather than performing a learning
process over the target domain examples (in a way that utilizes training domain
data), they just perform learning over the training domain and apply the resulting
predictor to the target task. Strategies that allow the predictor they pick for the
target task to differ from the predictor they would use for the training task seem
to carry greater promise. However, in the context of domain adaptation, when no
target domain-labeled data is available, the reliability of such paradigms is not
guaranteed.

It should be realized that to allow reliable success of such paradigms, rather strong
assumptions concerning the learning tasks should be made. In particular, assuming
covariate shift (namely, that the conditional distribution of label values, given the
unlabeled data, is unchanged between the training and target distributions) is far
from being sufficient to guarantee domain adaptation. In example 5.8 above, we
described a pair of tasks for which there exists a perfect label predictor for the
training distribution that has error probability 1 on a goal probability, in spite of
both tasks being defined on the same domain and sharing the same conditional
label distribution (Pr [label|x]). In that example, availability of unlabeled samples
of the target task does not help to overcome the training/test discrepancy.

Some recent work on learning under the covariate shift assumption suggests
overcoming this problem by estimating the data density ratio between the training
and target distributions by using sample-based empirical values (see, e.g., Sugiyama
et al. [2007] and Huang et al. [2007]). However, it should be noted that, without
restricting the family of possible distributions, no finite sample can yield a reliable
approximation of the actual distribution. This is sharply demonstrated by example
5.4, above. Even in settings where the support of the data distribution is finite,
in order to obtain reliable empirical estimates of the target distribution one needs
sample sizes that approach the cardinality of that support (see Batu et al. [2000]),
which seem way too much for all practical applications.

5.5.1 Some Solutions

We shall briefly list below some common approaches providing settings that allow
reliable adaptive inductive transfer learning algorithms. These solutions are all
based on assuming some prior knowledge about the learning tasks.

Restriction of the Family of Potential Target Distributions Ben-David and
Schuller [2003] consider a framework in which there is some known family of dis-
tribution transformations, such that the target task is obtained by applying one
of these transformations to the training task. They show that in cases where that
family of transformations has a finite VC dimension, reliable adaptive learning can
be guaranteed (in fact, that paper considers the multitask setting, and shows that
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under such conditions the learnability of each of the tasks improves as a result of
having access to training samples from other tasks).

Existence of “Good” Domain Embedding Ben-David et al. [2007] consider
the domain adaptation setting where the learner has access to an unlabeled target
task sample (but no access to labeled samples from the target task). They show
that if the learner can come up with data embedding for both the training and
target domains, such that the images of the unlabeled distributions (of the training
and target tasks) are similar, and such that under that embedding learnability of
the training task is possible, then that embedding can be used to achieve reliable
adaptive learning of the target task. The key component in their argument can be
viewed as an “embedding version” of Theorem 5.10 above.
It is interesting to note that by using such an embedding the learner sacrifices the
covariate shift assumption (in cases where that assumption holds for the original
task domains) in order to gain similarity between the unlabeled distributions.
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6 Geometry of Covariate Shift with

Applications to Active Learning

Takafumi Kanamori
Hidetoshi Shimodaira

We study learning algorithms under the covariate shift in which training and test
data are drawn from different distributions. A naive estimator used under the
covariate shift, such as the maximum likelihood estimator (MLE), will yield serious
estimation bias when the assumed statistical model is misspecified. For the purpose
of correcting this estimation bias, we introduce the maximum weighted log-likelihood
estimator (MWLE) with an information criterion to determine an optimal weight
function for samples. In the latter half of the chapter, we investigate active learning
in which the covariate shift is used to improve prediction. In the learning process of
active learning, the planner of an experiment can choose the covariate distribution.
Thus, the covariate shift naturally occurs. By incorporating the MWLE into active
learning, one can reduce estimation bias and obtain a consistent estimator even
under model misspecification. Moreover, we illustrate the reason why active learning
is often better than the ordinary learning scheme from the viewpoint of information
geometry. The geometrical concept makes it clear how the modification of estimators
improves ordinary learning methods.

6.1 Introduction

We study learning algorithms under the covariate shiftcovariate shift in which
training and test data are drawn from different distributions. Also in chapter 7,
chapter 8, and chapter 9, learning algorithms under similar situations are deeply
investigated. The covariate shift is seen in various fields. In sample surveys, the
distribution of training data is determined by a sampling scheme, while that of test
data is governed by the population. Under the covariate shift, a naive estimator,
such as the maximum likelihood estimator (MLE), will yield serious estimation
bias when the statistical model is misspecified. To adjust the estimation bias, we
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introduce the maximum weighted log-likelihood estimator (MWLE). In the MWLE,
a large part of data with less importance in the test distribution is downweighted.
The price we pay for the unbiased estimation of the MWLE is its larger variance
than the MLE. We derived an information criterion to determine moderate weights
on training data. Applying the criterion, we can take into account the trade-off
between the bias and variance to achieve high prediction accuracy.

In the latter half of the paper, we introduce active learning in which the covariate
shift is exploited to improve prediction. The active learning method is closely
connected with the optimal experimental design or the quantum estimation theory.
In the learning process of active learning, the planners of experiments can determine
the input distribution appropriately. Thus, the covariate shift naturally occurs. By
incorporating the MWLE into active learning to make the estimator consistent,
one can reduce the estimation bias even under model misspecification. In our
setup, we can specify the optimal input distribution for active learning. The
optimal one depends on the test distribution, which is generally unknown. We
propose an estimation procedure for the optimal input distribution based on labeled
and unlabeled dataset. The prediction accuracy is improved by using the input
distribution intentionally altered from that of the test data.

We illustrate the reason that active learning is often better than the ordinary
learning scheme. The information-geometrical view provides intuitive understand-
ing of active learning. We show that the shift of the input distribution corresponds
to the parallel shift of the statistical model, and that the curvature of the statistical
model has the key role in explaining the advantage of active learning. The geomet-
rical concept makes clear how the modification of estimator improves the ordinary
learning methods.

6.2 Statistical Inference under Covariate Shift

6.2.1 Covariate Shift and Estimation Bias

Let x ∈ X be the input pattern or the covariate, and y ∈ R be the target
value. In predictive inference with the regression analysis, we are interested in
estimating the conditional density q(y|x) of y given x, using a parametric model.
Let p(y|x, θ) be the model of the conditional density which is parameterized by
θ = (θ1, . . . , θk)′ ∈ Θ ⊂ R

k. Having observed i.i.d. samples of size n, denoted
by (X, Y ) = {(xi, yi) : i = 1, . . . , n}, we obtain a predictive density p(y|x, θ̂) by
giving an estimate θ̂ = θ̂(X, Y ). In this section, we discuss improvement of the
maximum likelihood estimate (MLE) under both (i) covariate shift in distribution
and (ii) misspecification of the model as explained below.

Let pte(x) be the density of x for evaluation of the predictive performance, while
ptr(x) be the density of x in the observation. We consider the loss function

loss0(θ) := Etr [�(y|x, θ)] , loss1(θ) := Ete [�(y|x, θ)] ,
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where �(x, y|θ) = − ln p(y|x, θ), and Etr [·] or Ete [·] denotes the expectation by
q(y|x)ptr(x) or q(y|x)pte(x), respectively. We employ loss1(θ̂) for evaluation of θ̂,
rather than the usual loss0(θ̂). The situation ptr(x) �= pte(x) will be called covariate
shift in distribution, which is one of the premises of this chapter.

This situation is not so odd as it might look at first. In fact, it is seen in various
fields as follows. In sample surveys, ptr(x) is determined by the sampling scheme,
while pte(x) is determined by the population. In regression analysis, covariate shift
often happens because of the limitation of resources, or the design of experiments.
In machine learning literature, “active learning” is the typical situation where we
control ptr(x) for more accurate prediction [Abe and Mamitsuka, 1998; Cohn, 1994;
Fukumizu, 1996; Sugiyama and Ogawa, 2000; Kanamori and Shimodaira, 2003;
Kanamori, 2002, 2007; MacKay, 1992b; Seung et al., 1992]

We could say that the distribution of x in future observations is different from
that of the past observations; x is not necessarily distributed as pte(x) in future,
but we can give imaginary pte(x) to specify the region of x where the prediction
accuracy should be controlled. Note that ptr(x) and/or pte(x) are often estimated
from data, but we assume they are known or estimated reasonably in advance.

The second premise is misspecification of the model. Let θ̂0 be the MLE of
θ, and θ∗0 be the asymptotic limit of θ̂0 as n → ∞. Under certain regularity
conditions, MLE is consistent and p(y|x, θ∗0) = q(y|x) provided that the model
is correctly specified. In practice, however, p(y|x, θ∗0) deviates more or less from
q(y|x). Misspecification is the situation such that q(y|x) may not be realized by the
model p(y|x, θ) for any value of θ.

Under both the covariate shift and the misspecification, MLE does not necessarily
provide a good inference. We will show that MLE is improved by giving a weight
function w of the input in the log-likelihood function. The weighted log-likelihood
function is defined as

−
n∑

i=1

w(xi)�(yi|xi, θ), (6.1)

and the maximum weighted log-likelihood estimate (MWLE), denoted by θ̂w, is
given as the maximizer of (6.1) over Θ. It will be seen that the weight function
w(x) = pte(x)/ptr(x) is the optimal choice for sufficiently large n in terms of the
expected loss with respect to pte(x). We denote the MWLE with this weight function
by θ̂1. Under some conditions, the MWLE θ̂1 is a consistent estimator of θ∗1 which
minimizes loss1(θ). Figure 6.1 illustrates the bias of the MLE θ̂0 and the consistency
of the MWLE θ̂1.

6.2.2 Illustrative Examples in Regression

Here we consider the normal regression to predict the response y ∈ R using a
polynomial function of x ∈ X = R. We assume the true q(y|x) is also given by

y = −x + x3 + ε, ε ∼ N(0, 0.32). (6.2)
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θ∗0θ̂0

q(y|x)ptr(x)

p(y|x, θ)ptr(x)

θ∗1 θ̂1q(y|x)pte(x)

p(y|x, θ)pte(x)

Figure 6.1 Under the condition of covariate shift and misspecification, the MLE θ̂0

can be heavily biased and inconsistent. On the other hand the MWLE θ̂1 is a consistent
estimator for θ∗

1 .

The density ptr(x) of the input x is

x ∼ N(μ0, τ
2
0 ), (6.3)

where μ0 = 0.5, τ2
0 = 0.52. A dataset (X, Y ) of size n = 100 is generated from

q(y|x)ptr(x), and plotted by circles in figure 6.2(a). The MLE θ̂0 is obtained by the
ordinary least squares (OLS) for the normal regression; we consider a model of the
form

y = θ0 + θ1x + ε, ε ∼ N(0, σ2), (6.4)

and the regression line fitted by OLS is drawn as a solid line in figure 6.2(a).

On the other hand, MWLE θ̂w is obtained by weighted least squares (WLS) with
weights w(xi) for the normal regression. We again consider the model (6.4) and the
regression line fitted by WLS with w(x) = pte(x)/ptr(x) is drawn as a dotted line in
figure 6.2(a). Here, the density pte(x) for imaginary “future” observations or that
for the whole population in sample surveys is specified in advance by

x ∼ N(μ1, τ
2
1 ), (6.5)

where μ1 = 0.0, τ2
1 = 0.32. The ratio of pte(x) to ptr(x) is

pte(x)
ptr(x)

=
exp(−(x − μ1)2/2τ2

1 )/τ1

exp(−(x − μ0)2/2τ2
0 )/τ0

∝ exp
(
− (x − μ̄)2

2τ̄2

)
, (6.6)
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Figure 6.2 Fitting of polynomial regression with degree one. (a) Samples (xi, yi) of
size n = 100 are generated from q(y|x)ptr(x) and plotted as circles, where the underlying
true curve is indicated by the thin dotted line. The solid line is obtained by OLS, and the
dotted line is WLS with weight pte(x)/ptr(x). (b) Samples of n = 100 are generated from
q(y|x)pte(x), and the regression line is obtained by OLS.

where τ̄2 = (τ−2
1 − τ−2

0 )−1 = 0.382, and μ̄ = τ̄2(τ−2
1 μ1 − τ−2

0 μ0) = −0.28.

The estimated regression line of WLS is very different from that of OLS. The
question is: which is better than the other? It is known that OLS is the best linear
unbiased estimate and makes a small mean squared error of prediction in terms of
q(y|x)ptr(x) which generated the data. On the other hand, WLS with weight (6.5)
makes a small prediction error in terms of q(y|x)pte(x) which will generate future
observations, and thus WLS is better than OLS here. To confirm this, a dataset
of size n = 100 is generated from q(y|x)pte(x). The regression line fitted by OLS
is shown in figure 6.2(b) which is considered to have small prediction error for the
“future” data. The regression line of WLS fitted to the past data in figure 6.2(a) is
quite similar to the line of OLS fitted to the future data in figure 6.2(b). In practice,
only the past data is available. The WLS with past data gives almost the equivalent
result to the future OLS.

The underlying true curve is the cubic polynomial, and thus the regression line
of the model (6.5) cannot be fitted to it nicely over all the region of x. However, the
true curve is almost linear in the region of μ1 ± 2τ1, and the nice fit of the WLS in
this region is obtained by throwing away the observed samples outside this region.

This type of estimation is not new in statistics. Actually, θ̂1 is regarded as a
generalization of the pseudo maximum likelihood estimation in sample surveys
[Pfeffermann et al., 1998; Skinner et al., 1989]; the log-likelihood is weighted
inversely proportional to ptr(x), the probability of selecting unit x, while pte(x)
is equal probability for all possible values of x.
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6.3 Information Criterion for Weighted Estimator

In spite of the asymptotic optimality of w(x) = pte(x)/ptr(x) mentioned above,
another choice of the weight function can improve the expected loss for moderate
sample size by compromising the bias and the variance of θ̂w. In this section we
develop a practical method for this improvement.

From the law of large numbers with regularity conditions, we have θ̂w → θ∗w in
probability as n → ∞, where θ∗w is the minimizer of Etr [w(x)�(x, y|θ)] over θ ∈ Θ.
Hereafter, we restrict our attention to proper w(x) such that Etr [w(x)�(x, y|θ)]
exists for all θ ∈ Θ and that the Hessian of Etr [w(x)�(x, y|θ)] is nonsingular at θ∗w,
which is uniquely determined and interior to Θ.

In general, we have θ∗w �= θ∗1 under misspecification except for the weight w(x) ∝
pte(x)/ptr(x). From the definition of θ∗1 , therefore, loss1(θ∗w) > loss1(θ∗1). This
immediately implies the asymptotic optimality of the weight w(x) = pte(x)/ptr(x),
because θ̂w → θ∗w and θ̂1 → θ∗1 and thus loss1(θ̂w) > loss1(θ̂1) for sufficiently large
n.

The MWLE, θ̂1, has consistency in a sense that it converges to the optimal
parameter value θ∗1 . However, θ̂0 is more efficient than θ̂1 in terms of the asymptotic
variance. This will be significant for moderate sample size, where n is large enough
for the asymptotic expansions to be allowed, but not enough for the optimality of
θ̂1 to hold.

The performance of MWLE for a specified w(x) is given by Etr,n

[
loss1(θ̂w)

]
,

where Etr,n [·] denotes the expectation with respect to (X, Y ) which follows∏n
i=1 q(yi|xi)ptr(xi). While we cannot calculate the value of the expected loss

in practice, because q(y|x) is unknown, we provide a variant of the information
criterion as an estimate of Etr,n

[
loss1(θ̂w)

]
.

Theorem 6.1 (Shimodaira [2000]) Let the information criterion for MWLE θ̂w

be

ICw := −2
n∑

i=1

pte(xi)
ptr(xi)

log p(yi|xi, θ̂w) + 2tr
(
K0(w)H0(w)−1

)
, (6.7)

where

K0(w) = Etr

[
w(x)

pte(x)
ptr(x)

∂�(y|x, θ∗w)
∂θ

∂�(y|x, θ∗w)
∂θ′

]
, H0(w) = Etr

[
w(x)

∂2�(y|x, θ∗w)
∂θ∂θ′

]
.

The matrices K0 and H0 can be replaced by their consistent estimates. Then,
ICw/2n is an estimate of the expected loss unbiased up to O(n−1) term:

Etr,n [ICw/2n] = Etr,n

[
loss1(θ̂w)

]
+ o(n−1). (6.8)

It is easily seen that the information criterion ICw is an extension of AIC or TIC
[Akaike, 1974; Takeuchi, 1976].
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As an illustrative example of (6.7), we compute ICw for a Gaussian linear
regression model with known variance σ2 = 1, that is,

− log p(y|x, θ) =
1
2
(y − 〈x, θ〉)2 + const,

where x, θ ∈ R
k. Let εi = yi − 〈xi, θ̂w〉, then ICw is given as

ICw =
n∑

i=1

pte(xi)
ptr(xi)

ε2
i + 2tr

(
K̂0(w)Ĥ0(w)−1

)
,

K̂0(w) =
1
n

n∑
i=1

w(xi)
pte(xi)
ptr(xi)

ε2
i xix

	
i , Ĥ0(w) =

1
n

n∑
i=1

w(xi)xix
	
i .

Given the model p(y|x, θ) and the data (X, Y ), we choose a weight function w(x)
which attains the minimum of ICw over a certain class of weights. This is selection
of the weight rather than model selection. We shall pick a better one from the two
extreme cases of w(x) ≡ 1 and w(x) = pte(x)/ptr(x), or consider a class of weights
by connecting the two extremes continuously:

w(x) =
(

pte(x)
ptr(x)

)λ

, λ ∈ [0, 1], (6.9)

where λ = 0 corresponds to θ̂0 and λ = 1 corresponds to θ̂1. Figure 6.3(a) shows the
plot of the information criterion and its two components. By increasing λ from 0 to
1, the first term of ICw decreases while the second term increases. We numerically
find λ̂ = 0.56 so that the two terms balance. The regression curves obtained by
this method are shown in figure 6.3(b). When we have several candidate forms of
p(y|x, θ), the model and the weight are selected simultaneously by minimizing ICw.

6.4 Active Learning and Covariate Shift

In active learning, one can determine the input distribution, ptr(x), and then
the probability of training samples is q(y|x)ptr(x). The predictive performance is
assessed by the distribution q(y|x)pte(x). This setting naturally causes covariate
shift. In this section, we assume that pte(x) is known. This assumption will be
relaxed in section 6.5.

We study the preferable input distribution for the estimation of q(y|x). Suppose
that the input distribution is chosen from the set of probabilities {pξ(x) | ξ ∈
Ξ ⊂ R

h}. As shown in section 6.2.1, when the input distribution is pξ(x), the
MWLE with the weight w(x) = pte(x)/pξ(x) provides the asymptotically unbiased
estimates of θ∗1 . For the sample distribution q(y|x)pξ(x) and the MWLE estimate
with the weight w(x) = pte(x)/pξ(x), the expected loss is asymptotically equal to

Eξ,n

[
loss1(θ̂w)

]
= loss1(θ∗1) +

1
2n

tr
(
K(pξ)H−1

)
+ o(n−1), (6.10)
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Figure 6.3 (a) Curve of ICw vs. λ ∈ [0, 1] for the model of (6.4). The weight function
(6.9) connecting from w(x) ≡ 1 (i.e. λ = 0) to w(x) = pte(x)/ptr(x) (i.e. λ = 1) was used.
Also shown are the first term of ICw in dotted lines, and the second term of ICw in broken
lines. (b) The estimated regression curves. The WLS curve with the optimal λ̂, as well as
those for OLS (λ = 0) and WLS (λ = 1), are drawn.

where we have used Eξ,n [·] to denote the expectation by the probability distribution∏n
i=1 q(yi|xi)pξ(xi), and the matrices K(pξ) and H are given as

K(pξ) := K0(pte/pξ) = Ete

[
pte(x)
pξ(x)

∂�(y|x, θ∗1)
∂θ′

∂�(y|x, θ∗1)
∂θ′

]
,

H := H0(pte/pξ) = Ete

[
∂2�(y|x, θ∗1)

∂θ∂θ′

]
.

Thus, the preferable distribution, pξ̂, is the minimizer of the sample approximation
of tr

(
K(pξ)H−1

)
over ξ ∈ Ξ.

We show an algorithm for active learning in figure 6.4. This algorithm works under
the above-mentioned assumptions, that is, pte is known. In step 1, the preferable
distribution pξ̂(x) is estimated as the minimizer of the second term of the expected
loss (6.10). Here, the MLE over the samples (X0, Y0) is available for estimation
of tr

(
K(pξ)H−1

)
. For example, when we assume the Gaussian linear regression

model with known variance σ2 = 1, that is,

�(y|x, θ) =
1
2
(y − 〈x, θ〉)2 + const,

an estimator of tr
(
K(pξ)H−1

)
is tr

(
K̂(pξ)Ĥ−1

)
. Here the matrices are defined

as

K̂(pξ) =
1
s

s∑
i=1

pte(xi)
pξ(xi)

ε2
i xix

	
i , Ĥ =

1
s

s∑
i=1

xix
	
i .

As the result, the preferable distribution pξ̂(x) is the minimum solution of
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Input: Training samples (X0, Y0) = {(xi, yi)|i = 1, . . . , s} independently obtained
from q(y|x)pte(x). Total number of training samples, n.

1. Estimate the preferable input distribution pξ̂(x) based on (X0, Y0).

2. Obtain n − s samples (X1, Y1) = {(xi, yi)|i = s + 1, . . . , n} from q(y|x)pξ̂(x).

3. Compute the MWLE θ̂ from the samples (X, Y ) = {(xi, yi)|i = 1, . . . , n}.
The information criterion ICw is available for adjusting the weight of the form of
(pte(x)/pξ̂(x))λ for λ ∈ [0, 1].

Figure 6.4 Algorithm for active learning.

tr
(
K̂(pξ)Ĥ−1

)
. In step 3, the MWLE is applied, where the weight is 1 on the

samples (xi, yi), i = 1, . . . s, and pte(xi)/pξ̂(xi) on the latter samples (xj , yj), j =
s + 1 . . . n, that is, the weighted log-likelihood is

s∑
i=1

�(yi|xi, θ) +
n∑

i=s+1

pte(xi)
pξ̂(xi)

�(yi|xi, θ).

The information criterion ICw is available to adjust the weight for the variance
reduction.

Note that the samples (X, Y ) are not independently distributed, that is, the
former part (X0, Y0) and the latter part (X1, Y1) are correlated. As a result, ICw is
not asymptotically unbiased for the expected loss in the context of active learning.
We can derive the asymptotically unbiased information criterion for the expected
loss by taking the correlation into account. The information criterion ICw in (6.7),
however, may work well to reduce the variance of final estimate θ̂. We show simple
numerical experiments below.

Active learning for normal regression is studied. The statistical model p(y|x, θ)
with the parameter θ = (θ0, θ1, θ2, θ3) is defined by

y = θ0 + θ1x + θ2x
2 + ε, ε ∼ N(0, θ3),

and the test probability distribution q(y|x)pte(x) is determined by

y = 1 − x + x2 + δx3 + ε, ε ∼ N(0, 0.32),

x ∼ N(0.2, 0.42),

where δ determines the deviation from the model. The input probability pξ(x) is
defined as

x ∼ N(0, ξ2).

We compare the following three learning methods.

ols: the distribution of all input samples is pte(x), and the ordinary least squares
is applied for the parameter estimation.
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act: active learning without ICw, that is, the weight of the MWLE is given as
pte(x)/pξ̂(x).

actIC: active learning with ICw, that is, the weight of the MWLE is given as
(pte(x)/pξ̂(x))λ, and the λ is determined by ICw.

The total sample size is n = 100. For act and actIC, the number of samples in
the former part is s = 30. The experiments are repeated 1000 times with different
random seed for samples. Results are shown in figure 6.5. The abscissa axis denotes
the model deviation which is measured by the Kullback-Leibler divergence between
q(y|x) and p(y|x, θ∗1) under x ∼ pte(x), that is, Ete

[
log q(y|x)

p(y|x,θ∗
1 )

]
. Note that the

expected loss (6.10) is written as

Eξ,n

[
Ete

[
log

q(y|x)

p(y|x, θ̂w)

]]
= Ete

[
log

q(y|x)
p(y|x, θ∗1)

]
+

1
2n

tr
(
K(pξ)H−1

)
+o(n−1),

thus the Kullback-Leibler divergence measures model deviation more directly than
the parameter δ.

Figure 6.5(a) shows the difference of the expected loss between ols and actIC.
When the test probability is very close to the model, ols is better than actIC.
On the other hand, if the model deviation is more than about 0.005, ols becomes
worse. This indicates the effectiveness of active learning. Figure 6.5(b) shows the
difference of the expected loss between act and actIC. When the test probability
is close to the model, actIC is better than act. This is because the appropriate
value of λ is determined by ICw. For the model deviation larger than about 0.01,
act becomes better than actIC, while the difference is small in comparison with
figure 6.5(a). The values of λ estimated by ICw are plotted in figure 6.5(c). For the
small deviation, λ is close to zero. This result is reasonable, because the ols is the
best estimate for δ = 0. On the other hand, when the model deviation becomes
larger, λ approaches 1, and as a result, the estimation bias reduces. As explained,
ICw with active learning works relatively well, though ICw is not an asymptotically
unbiased estimate of the expected loss due to the correlation among the samples.

6.5 Pool-Based Active Leaning

In this section, we introduce the pool-based active learning algorithm. Suppose
that samples (X, Y ) = {(xi, yi)|i = 1, . . . , n} and inputs X̃ = {x̃1, . . . , x̃N} are
independently observed from the probability distribution q(y|x)pte(x) and pte(x),
respectively. N is often much larger than n. For example in Zhu et al. [2003b], N

is about 1000 and n is at most 50 for document categorization problems.

In pool-based active learning, one can select m points among X̃, say X̌ =
{x̃i1 , . . . , x̃im} ⊂ X̃. Usually m is of similar size as n. Through the additional
observations, response values on X̌ are given according to q(y|x), and the training
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Figure 6.5 (a) Difference of the expected loss between ols and actIC. (b) Difference
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.
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samples (X̌, Y̌ ) = {(x̃i1 , ỹi1), . . . , (x̃im
, ỹim

)} are obtained. Based on the total
samples (X, Y ), X̃ and (X̌, Y̌ ), we estimate the conditional probability q(y|x).

6.5.1 Optimal Input Distribution

According to Kanamori [2007], we introduce the most preferable input distribution
ptr(x) for active learning. First, let us define the function A(x) by

A(x) =
∫

q(y|x)
∂�(y|x, θ∗1)

∂θ′
H−1 ∂�(y|x, θ∗1)

∂θ
dy, (6.11)

where the integrand is of quadratic form. The inequality A(x) ≥ 0 is assured because
the matrix H is positive definite. When the expectation of Ete

[√
A(x)

]
exists, the

second term in the right hand of (6.10) is written as

tr
(
K(ptr)H−1

)
=

(
Ete

[√
A(x)

])2{
1 +

∫
(r(x) − ptr(x))2

ptr(x)
dx

}
,

where r(x) is defined by

r(x) =
pte(x)

√
A(x)

Ete

[√
A(x)

] . (6.12)

As a result, the active learning with the input distribution ptr(x) = r(x) and the
MWLE involving w(x) = pte(x)/ptr(x) is asymptotically optimal in the sense of the
expected loss up to the order of O(n−1).

As an illustrative example, let q(y|x) be the conditional probability defined as
y = g(x) + ε, where ε ∼ N(0, σ2), and p(y|x, θ) be the Gaussian linear regression
model, i.e., � = 1

2σ2 (y − 〈x, θ〉)2 up to constant with know variance. Then, the
function A(x) is

A(x) = x	H−1x

(
1 +

(g(x) − 〈x, θ∗1〉)2
σ2

)
, H = Ete

[
xx	] .

Figure 6.6 displays the optimal distribution r(x) under the following setup. The
model p(y|x, θ) is the Gaussian linear regression model,

p(y|x, θ) =
1√
2π

exp
{
− 1

2
(y − θ0 − θ1x)2

}
,

and pte(x) is the uniform distribution on the interval [−1, 1]. The true conditional
probability q(y|x) is given as

q(y|x) =
1√
2π

exp
{
− 1

2
(y − δx2)2

}
,

where we examined the cases of δ = 0 and δ = 1.0. On the other hand, the preferable
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Figure 6.6 Plots of optimal input distributions. The value of δ controls the degree of
the misspecification from the statistical model.

input distribution in terms of D-optimal criterion [Fedorov, 1972] is given as

Ptr{x = 1} = Ptr{x = −1} =
1
2
.

Under the misspecification of the model, however, the active learning with D-
optimal input distribution does not work well as shown in the simulation studies in
section 6.5.3.

6.5.2 Learning Algorithm

In order to apply active learning using optimal input distribution r(x), we need to
estimate the function A(x) based on the observation. From the form of (6.11), we
find that the regression function of the samples defined as{(

xi,
∂�(yi|xi, θ̃)

∂θ′
Ĥ−1 ∂�(yi|xi, θ̃)

∂θ

) ∣∣ i = 1, . . . ,m

}
(6.13)

provides an approximation of A(x). Here Ĥ is a naive estimator of H such as

Ĥ =
1
m

m∑
i=1

∂2�(yi|xi, θ̃)
∂θ∂θ′

,

and θ̃ is the MLE given by (X, Y ). For the Gaussian linear regression model with
known variance σ2 = 1, the samples (6.13) are given as{(

xi, ε2
i x

	
i Ĥ−1xi

) ∣∣ i = 1, . . . ,m,

}
, (6.14)

where Ĥ = 1
m

∑m
i=1 xix

	
i and εi = yi − 〈xi, θ̃〉. Simple learning methods such as

rpart [Breiman et al., 1984] are available for the estimation of A(x).
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Input. Samples : (X, Y ), Input samples : X̃, Number of input samples picked up from
X̃ : m.

1. Compute the MLE θ̃ and the estimator Â(x) from samples (X, Y ) and X̃.

2. Input samples, X̌, are resampled according to r̂(x), and then obtain the additional
observation, (X̌, Y̌ ).

3. Compute the MWLE based on total samples as follows:

θ̂ = arg max
θ

j nX
i=1

log p(yi|xi, θ) +

mX
s=1

ws log p(y̌is |x̌is , θ)

ff
,

where the weight, ws is defined as

ws =
1

N

PN
j=1

q
Â(x̃j)q

Â(x̃is)
.

4. Output the estimated parameter θ̂.

Figure 6.7 Pool-based active learning.

The optimal input distribution is approximated by the probability function r̂(x)
over the X̃ such as

r̂(x = x̃i) =

√
Â(x̃i)∑N

j=1

√
Â(x̃j)

, i = 1, . . . , N, (6.15)

where Â(x) is an estimator of A(x).
Provided the estimates of the optimal input distribution, pool-based active

learning is constructed as shown in figure 6.7. In the pool-based active learning, the
optimal input distribution is replaced by an estimated one. Hence, if the estimation
of the optimal input distribution is not accurate, the active learning algorithm may
not work well. Next, we compare the proposed learning method with the other
existing methods.

6.5.3 Simulation Studies

A numerical experiment is shown to examine the proposed method. The dimension
of x is ten, and the dth element of x is denoted by xd for d = 1, . . . , 10. The samples
(X, Y ) are independently generated according to the model,

y =
10∑

d=1

xd + δ x2
1 + ε, ε ∼ N(0, 1).

The value of δ takes from 0.0 to 0.05 to control the degree of misspecification. Let
pte(x) be the probability density of the normal distribution N(0, 52I10), where Ik is
k×k identity matrix. The samples X̃ are also generated from pte(x). The statistical
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Figure 6.8 The difference of the expected loss between ols and act is depicted.

model of regression functions is defined by

S =
{

p(y|x, θ) =
1√
2π

exp
{− 1

2
(y − g(x|θ))2} ∣∣ θ ∈ R

11

}
,

where g(x|θ) is the linear model, g(x|θ) = θ0 +
∑10

d=1 θdxd.
We compare the following two learning methods:

ols: the sampling distribution on X̃ is the uniform distribution. The MLE is applied
for the parameter estimation.

act: the sampling distribution on X̃ is r̂(x) in (6.15). The MWLE is used for the
parameter estimation.

The number of samples is set to n = 100 and N = 1000, and the number of
additional samples is m = 50. To evaluate the average performance of estimators,
the expected loss is approximately computed over the replicated 1000 sets of samples
with different random seeds.

Figure 6.8 indicates the difference of the expected loss between ols and act.
Positive value of the plot denotes that act is superior to ols. When the model is
misspecified, act outperforms ols. In the numerical experiment, we find that the
approximation of the function A(x) does not degrade the performance of the active
learning.

6.6 Information Geometry of Active Learning

Information geometry [Amari, 1985; Amari and Nagaoka, 2000] is useful for intuitive
understanding of statistical inference. Here, we introduce a geometrical view of



102 Geometry of Covariate Shift with Applications to Active Learning

p(y|x, θ)pte(x)

p(y|x, θ)ptr(x)

curvature vector

Figure 6.9 The shift of the statistical model to the opposite direction of the mean
curvature vector leads the shrinkage in the dispersion of estimated parameter.

active learning. In information geometry, a statistical model such as p(y|x, θ)p(x) is
regarded as a manifold parameterized by θ ∈ Θ ⊂ R

d, and its geometrical structure
such as curvature is deeply connected to the property of statistical inference under
the model.

In the setup of active learning, we assume that q(y|x) is included in the statistical
model, that is, there exists θ∗1 ∈ Θ such as q(y|x) = p(y|x, θ∗1). This assumption
can be relaxed to some extent, that is, if the true probability is written as
q(y|x) = p(y|x, θ∗1) + ε · u(x) for small ε, the argument below holds with some
modifications.

In active learning, the model of training samples and that of test samples are
different in general, while in standard statistical inference, ptr = pte holds. That is,
samples for parameter estimation are drawn from q(y|x)ptr(x) and the prediction
accuracy is assessed under the probability density q(y|x)pte(x). This situation is
regarded as the change of training distribution from pte to ptr. Thus, we need
to consider two statistical manifolds, p(y|x, θ)pte(x) and p(y|x, θ)ptr(x). Statistical
inference by active learning with input distribution ptr(x) corresponds to shifting
the statistical model from p(y|x, θ)pte(x) to p(y|x, θ)ptr(x).

Figure 6.9 illustrates the intuitive reason why active learning improves the
standard estimator. When the direction of the model shift from pte(x) to ptr(x)
is opposite to the curvature vector, the model shift leads the shrinkage of the
variance of estimates as shown in figure 6.9. That is, the relation between the
curvature vector and the direction of the model shift is crucial to understand the
improvement by active learning.

From the asymptotic expansion (6.10), the difference of the expected loss between
the MLE with samples from pte(x) and active learning with samples from ptr(x) is
asymptotically measured by

Δ = tr
(
H−1K(pte)

)− tr
(
H−1K(ptr)

)
.

A large positive value of Δ is preferable when active learning is applied. We will
show that the quantity Δ is represented by the inner product of the direction of
the model shift and the curvature vector of the statistical model such as (6.17) in
the argument below. That representation provides an intuitive understanding of
the advantage of active learning.
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We show a simple example. Let the statistical model p(y|x, θ) be

p(y|x, θ) =
1√
2πθ

exp
{− 1

2θ
(y − f(x))2

}
, θ > 0. (6.16)

Intuitively it is clear that active learning will not improve the accuracy of estimation
under the above model, because the distribution of y − f(x) does not depend on
the covariate. When the MWLE is applied to estimate the variance parameter
θ, the weight pte(xi)/ptr(xi) is assigned on each sample yi − f(xi). However, it
is easy to see that the uniform weight provides the most accurate estimator of
the variance. Thus, the MWLE always degrades the estimation accuracy. The
geometrical understanding will be shown below.

First, we prepare some notations for information geometry. See Kanamori [2007]
for a rigorous definition of notations. Let P be the set of all joint probability densities
of x and y, and the statistical model S is defined by

S = {p(x)p(y|x, θ) | p(x) ∈ Px, θ ∈ Θ} ⊂ P,

where Px is the set of all input probability densities. The tangent space at q ∈ S is
denoted as Tq. Roughly speaking, the tangent vector v ∈ Tq is a function satisfying∫

v(x, y)q(x, y)dxdy = 0. The inner product of a, b ∈ Tq is defined as

〈a, b〉q =
∫

a(x, y)b(x, y)q(x, y)dxdy.

For the density q = p(x)p(y|x, θ) ∈ S, the θ-score functions, ∂�(y|x,θ)
∂θi

, i = 1, . . . , d,
represent tangent vectors of Tq along changes in the parameter of interest. For
ptr(x), pte(x) ∈ Px, let the tangent vector vtr at ptr(x)p(y|x, θ) ∈ S be

vtr :=
d

dt
log

(
(1 − t) ptr(x)p(y|x, θ) + t pte(x)p(y|x, θ)

)∣∣
t=0

=
pte(x) − ptr(x)

ptr(x)
.

Note that the expectation of ∂�(y|x,θ)
∂θi

and vtr over ptr(x)p(y|x, θ) vanishes be-
cause the infinitesimal shift along these tangent vector preserves the total mass
of ptr(x)p(y|x, θ).

We consider parallel transports between tangent spaces. Let Ttr and Tte be the
tangent space at ptr(x)p(y|x, θ∗1) and pte(x)p(y|x, θ∗1), respectively. The parallel
transport of a ∈ Tte to Ttr is defined as

Π(m)
te→tra(x, y) =

pte(x)
ptr(x)

a(x, y),

which is called m-parallel transport. This geometrical structure coincides with
that induced from the Kullback-Leibler divergence on S according to the theory
of information geometry [Amari and Nagaoka, 2000].
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P
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q(y|x)ptr(x)

H(e)
mean

Parallel shift

of H(e)
mean

vtr

Figure 6.10 Geometrical interpretation of active learning. The angle between the
parallel transported mean curvature vector Π

(m)
te→trH

(e)
mean and vtr corresponds to the

difference of the MLE and active learning in the sense of the expected loss.

The embedding curvature at pte(x)p(y|x, θ∗1) is given as

H
(e)
ij = −∂2�(y|x, θ∗1)

∂θi∂θj
+

d∑
k=1

Γ(e)k
ij

∂�(y|x, θ∗1)
∂θk

,

where Γ(e)k
ij , i, j, k = 1, . . . , d are connection coefficients determined by the equalities

Ete

[
H

(e)
ij

∂�(y|x,θ∗
1 )

∂θk

]
= 0 for all k = 1, . . . , d. The embedding curvature is a normal

vector of tangent space Tte. The mean curvature vector H
(e)
mean is given as

H(e)
mean =

d∑
i,j=1

H−1
ij H

(e)
ij ,

where the matrix H is defined in section 6.4. In the context of Riemannian
geometry, the mean curvature vector denotes the direction in which the volume
of the submanifold decreases locally. In statistical inference, the volume of the
submanifold corresponds to the expected loss.

The geometrical meaning of Δ is given by the formula

Δ =
〈
vtr, Π(m)

te→trH
(e)
mean

〉
tr

, (6.17)

where 〈·, ·〉tr is the inner product over Ttr. That is, active learning has an advantage
over conventional learning methods, if the direction of the model shift, vtr, is
matched with the mean curvature vector. The geometrical meaning of Δ is depicted
in figure 6.10. Here, m-parallel transport is formally applied to the mean curvature
vector, while H

(e)
mean is not the tangent vector. To justify the argument, we need to

extend the tangent vector to the tangent bundle.

The model shift, vtr, depends only on input x. On the other hand, Π(m)
te→trH

(e)
mean

does depend on both x and y. Note that what we can do in active learning is only
shift the model along with the input distribution. When the mean curvature vector
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does not depend on the input variable, the shift of the model along with vtr does
not affect the estimation accuracy, because the curvature does not change in that
direction.

We revisit the example in which the statistical model is given as (6.16). The mean
curvature vector for the model is written as

H(e)
mean =

1
H11

{
1

2θ2
− (y − f(x))2

θ3

}
− 1

H11
Γ(e)1

11

∂�(y|x, θ)
∂θ

,

and the gain of active learning is

Δ = − 1
2H11θ2

∫
(pte(x) − ptr(x))2

ptr(x)
dx ≤ 0.

That is, the direction of model shift is always at an obtuse angle to the parallel
shifted mean curvature vector.

6.7 Conclusions

We introduced the maximum weighted log-likelihood estimator for the estimation
under the covariate shift and the model misspecification. There exist other kinds of
weighting estimators in the literature of the robust parametric estimation [Green,
1984; Hampel et al., 1986; Lindsay, 1994; Basu and Lindsay, 1994; Field and Smith,
1994; Windham, 1995]. In robust statistics, the samples which are not concordant
with the model will be regarded as “outliers” and downweighted to reduce the
impact on the parameter estimation. The specification of the weight function is
thus the focal point of the argument. Although the covariate shift is a mechanism
different from the outliers, there exists a connection between the MWLE and the
robust estimation [Shimodaira, 2000]. A variant of AIC for MWLE under covariate
shift is also proposed. The MWLE can be improved by using the information
criterion which adjusts the weight function in the MWLE.

Next, we introduced active learning as a statistical inference under covariate
shift. The MWLE is effectively applied for active learning. We pointed out that
the information criterion will be helpful to improve the prediction accuracy of
active learning. We also explained the pool-based active learning with optimal
input distribution. This algorithm works even under the unknown input distribution
pte(x). The view of information geometry made clear the effectiveness of active
learning.

The covariate shift is common in practical data analysis. For example, measure-
ment error is regarded as a kind of covariate shift. An interesting future work is
to investigate the statistical inference under the measurement error from the view-
point of the covariate shift. It is also an important future work to extend active
learning to nonparametric estimation such as kernel methods.





7 A Conditional Expectation Approach to

Model Selection and Active Learning under

Covariate Shift

Masashi Sugiyama
Neil Rubens
Klaus-Robert Müller

In the previous chapter, Kanamori and Shimodaira provided generalization error
estimators which can be used for model selection and active learning. The accuracy
of these estimators is theoretically guaranteed in terms of the expectation over
realizations of training input-output samples. In practice, we are only given a single
realization of training samples. Therefore, ideally, we want to have an estimator of
the generalization error that is accurate in each single trial. However, we may not
be able to avoid taking the expectation over the training output noise since it is
not generally possible to know the realized value of noise. On the other hand, the
location of the training input points is accessible by nature. Motivated by this fact,
we propose to estimate the generalization error without taking the expectation over
training input points. That is, we evaluate the unbiasedness of the generalization
error in terms of the conditional expectation of training output noise given training
input points.

7.1 Conditional Expectation Analysis of Generalization Error

In order to illustrate a possible advantage of the conditional expectation approach,
let us consider a simple model selection scenario where we have only one training
sample (x, y) (see figure 7.1). The solid curves in figure 7.1(a) depict GM1(y|x),
the generalization error for a model M1 as a function of the (noisy) training
output value y given a training input point x. The three solid curves correspond
to the cases where the realization of the training input point x is x′, x′′, and x′′′,
respectively. The value of the generalization error for the model M1 in the full
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(a) Generalization error for model M1 (b) Generalization error for model M2

Figure 7.1 Schematic illustrations of the conditional expectation and full expectation
of the generalization error.

expectation approach is depicted by the dash-dotted line, where the expectation is
taken over both the training input point x and the training output value y (this
corresponds to the mean of the three solid curves). The values of the generalization
error in the conditional expectation approach are depicted by the dotted lines,
where the expectation is taken only over the training output value y, conditioned
on x = x′, x′′, x′′′, respectively (this corresponds to the mean value of each solid
curve). The graph in figure 7.1(b) depicts the generalization errors for a model M2

in the same manner.

In the full expectation framework, the model M1 is judged to be better than M2

regardless of the realization of the training input point since the dash-dotted line
in figure 7.1(a) is lower than that in figure 7.1(b). However, M2 is actually better
than M1 if x′′ or x′′′ is realized as x. In the conditional expectation framework, the
goodness of the model is adaptively evaluated depending on the realization of the
training input point x. This illustrates that the conditional expectation framework
can indeed provide a better model choice than the full expectation framework.

In this chapter, we address the problems of model selection and active learning
in the conditional expectation framework. The rest of this chapter is organized
as follows. After the problem formulation in section 7.2, we introduce a model
selection criterion (section 7.3) and an active learning criterion (section 7.4) in the
conditional expectation framework and show that they are more advantageous than
the full expectation methods in the context of approximate linear regression. Then,
in section 7.5, we discuss how model selection and active learning can be combined.
Finally, we give concluding remarks and future prospects in section 7.6.
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Figure 7.2 Regression problem of learning f(x) from {(xi, yi)}n
i=1. {εi}n

i=1 are i.i.d. noise
with mean zero and variance σ2, and bf(x) is a learned function.

7.2 Linear Regression under Covariate Shift

In this section, we formulate a linear regression problem with covariate shift.

7.2.1 Statistical Formulation of Linear Regression

Let us consider a regression problem of estimating an unknown input-output
dependency from training samples. Let {(xi, yi)}n

i=1 be the training samples, where
xi ∈ X ⊂ R

d is an i.i.d. training input point following a probability distribution
Ptr(x) and yi ∈ Y ⊂ R is a corresponding training output value following a
conditional probability distribution P (y|x = xi). We denote the conditional mean of
P (y|x) by f(x) and assume that the conditional variance is σ2, which is independent
of x. Then P (y|x) may be regarded as consisting of the true output f(x) and the
noise ε with mean 0 and variance σ2 (see figure 7.2).

Let us employ a linear regression model for learning f(x).

f̂(x;α) =
t∑

�=1

α�ϕ�(x), (7.1)

where {α�}t
�=1 are parameters to be learned and {ϕ�(x)}t

�=1 are fixed basis func-
tions. A model f̂(x;α) is said to be correctly specified if there exists a parameter
α∗ such that

f̂(x;α∗) = f(x). (7.2)

Otherwise the model is said to be misspecified. In the following, we do not assume
that the model is correct.

Let us consider a test sample, which is not given to the user in the training phase,
but will be given in a future test phase. We denote the test sample by (xte, yte),
where xte ∈ X is a test input point and yte ∈ Y is a corresponding test output
value. The goal of regression is to determine the value of the parameter α so that
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the generalization error G (the test error expected over test samples) is minimized:

G ≡ Exte,yte

[
(f̂(xte;α) − yte)2

]
, (7.3)

where Exte,yte [·] denotes the expectation over (xte, yte).

7.2.2 Covariate Shift

In standard supervised learning theories, the test sample (xte, yte) is assumed to
follow the joint distribution P (y|x)Ptr(x), which is the same as the training samples
[e.g., Wahba, 1990; Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al., 2001;
Schölkopf and Smola, 2002]. On the other hand, here, we consider the covariate shift
situation, i.e., the conditional distribution P (y|x) remains unchanged, but the test
input point xte follows a different probability distribution Pte(x).

Let ptr(x) and pte(x) be the probability density functions corresponding to the
input distributions Ptr(x) and Pte(x), respectively. We assume that ptr(x) and pte(x)
are strictly positive over the entire domain X.

7.2.3 Functional Analytic View of Linear Regression

Technically, we assume that the target function f(x) and the basis functions
{ϕ�(x)}t

�=1 are included in a functional Hilbert space F, where the inner product
and the norm in F are defined by

〈f, g〉F =
∫

X

(f(x) − g(x))2 pte(x)dx, (7.4)

‖f‖F =
√
〈f, f〉F. (7.5)

Then the generalization error G (7.3) is expressed in terms of F as

G =
∥∥∥f̂ − f

∥∥∥2

F
+ σ2. (7.6)

Given our linear regression model (7.1), the learning target function f(x) can be
decomposed as

f(x) = g(x) + δr(x), (7.7)

where g(x) is the optimal approximation in the model (7.1):

g(x;α∗) =
t∑

�=1

α∗
�ϕ�(x). (7.8)

α∗ is the unknown optimal parameter under G:

α∗ ≡ argmin
α

G. (7.9)
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Figure 7.3 Decomposition of f(x) in a functional Hilbert space F.

r(x) is the residual function orthogonal to {ϕ�(x)}t
�=1 in F, i.e.,

〈r, ϕ�〉F = 0 for � = 1, 2, . . . , t. (7.10)

Without loss of generality, we normalize r(x) as

‖r‖F = 1. (7.11)

Thus the function r(x) governs the nature of the model error and δ (≥ 0) is the
magnitude of the error.

Geometrically, in the functional Hilbert space F, g(x) is the orthogonal projection
of f(x) onto the subspace spanned by {ϕ�(x)}t

�=1 and δr(x) is the residual (see
figure 7.3).

Let U be a t × t matrix with the (�, �′)th element:

U�,�′ = 〈ϕ�, ϕ�′〉F . (7.12)

In the following theoretical analysis, we assume that U is accessible.

7.2.4 Parameter Learning

We learn the parameter α in our linear regression model (7.1) by a linear learning
method, i.e., a learned parameter α̂ is given by the following form:

α̂ = Ly, (7.13)

where L is a t × n matrix called the learning matrix and

y = (y1, y2, . . . , yn)	. (7.14)

We assume that L does not depend on the noise in y.
Adaptive importance weighted least squares (AIWLS) introduced in chapter 6 is

an example of linear learning methods:

α̂AIWLS ≡ argmin
α

[
n∑

i=1

(
pte(xi)
ptr(xi)

)λ

(f̂(xi;α) − yi)2
]

, (7.15)

where 0 ≤ λ ≤ 1. We call λ a flattening parameter since it flattens the importance
weights. The corresponding learning matrix LAIWLS is given by

LAIWLS = (X	WλX)−1X	Wλ, (7.16)
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where W is the diagonal matrix with the diagonal element being the importance:

Wi,i =
pte(xi)
ptr(xi)

. (7.17)

In the following, we assume that the importance is known. If it is unknown, we may
estimate it by proper methods such as kernel mean matching (KMM, see chapter 8),
kernel logistic regression (see chapter 9), the Kullback-Leibler importance estimation
procedure [KLIEP, see Sugiyama et al., 2008].

7.3 Model Selection

In this section, we address the problem of model selection in the conditional
expectation framework. Here, the term “model” refers to the number t and the type
{ϕ�(x)}t

�=1 of basis functions. Some tuning parameters contained in the learning
matrix L, e.g., the flattening parameter λ in AIWLS (7.15), are also included in
the model.

The goal of model selection is to choose the best model M∗ from a model set M

such that the generalization error G is minimized.

M∗ ≡ argmin
M∈M

G(M). (7.18)

The true generalization error G is inaccessible since it contains the unknown target
function f(x) (see (7.6))—in practice, we replace G by its estimator Ĝ. Therefore,
the main goal of model selection research is to obtain an accurate estimator of the
generalization error.

In this section, we introduce a generalization error estimator called the
importance-weighted subspace information criterion (IWSIC) [Sugiyama and
Müller, 2005a]. IWSIC is an extension of SIC, which is a generalization error esti-
mator derived within the conditional expectation framework [Sugiyama and Ogawa,
2001, 2002; Sugiyama and Müller, 2002]. IWSIC is shown to possess proper unbi-
asedness even under covariate shift. For simplicity, we consider fixed basis functions
{ϕ�(x)}t

�=1 and focus on choosing the flattening parameter λ in AIWLS (7.15). How-
ever, IWSIC can be generally used for choosing basis functions and moreover the
learning matrix L.

7.3.1 IWSIC

The generalization error G (7.3) is expressed as

G =
∥∥∥f̂∥∥∥2

F
− 2

〈
f̂ , g + δr

〉
F

+ ‖f‖2
F + σ2

= 〈Uα,α〉 − 2 〈Uα,α∗〉 + C + σ2, (7.19)
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where C is constant:

C ≡ ‖f‖2
F . (7.20)

In (7.19), the first term 〈Uα,α〉 is accessible and the third term C and the fourth
term σ2 are constants independent of the model. For this reason, we focus on
estimating the second term 〈Uα,α∗〉. Let

G′ ≡ 〈Uα,α〉 − 2 〈Uα,α∗〉 = G − C − σ2, (7.21)

which is an essential part of G.

A basic idea of IWSIC is to replace the unknown α∗ by its linear estimator α̃:

α̃ ≡ L̃y, (7.22)

where

L̃ ≡ (X	WX)−1X	W. (7.23)

Note that α̃ is an unbiased estimator of α∗ if the model is correct (i.e., δ = 0);
otherwise it is asymptotically unbiased in general.

However, simply replacing α∗ by α̃ induces a bias in generalization error estima-
tion since the same sample y is used for obtaining α̂ and α̃—here, we are addressing
the bias in terms of the conditional expectation over training output values {yi}n

i=1

given training input points {xi}n
i=1. The bias can be expressed as

Ey [〈Uα, α̃〉 − 〈Uα,α∗〉] = Ey

[〈
Uα, L̃(y − z)

〉]
, (7.24)

where Ey [·] denotes the expectation over y (or equivalently {εi}n
i=1) and

z ≡ (f(x1), f(x2), . . . , f(xn))	. (7.25)

Based on (7.24), we define

preIWSIC ≡ 〈Uα,α〉 − 2 〈Uα, α̃〉 + 2Ey

[〈
Uα, L̃(y − z)

〉]
. (7.26)

If we can compute (or approximate) the third term in preIWSIC (7.26), the entire
criterion becomes accessible and therefore it can be used for model selection.

If the learning matrix L is determined based on AIWLS (7.15), we have

Ey

[〈
Uα̂, L̃(y − z)

〉]
= σ2tr

(
ULL̃	

)
. (7.27)

Let us replace the unknown noise variance σ2 by an ordinary estimator σ̂2:

σ̂2 ≡
∥∥X(X	X)−1X	y − y

∥∥2

n − t
, (7.28)

which is known to be unbiased if δ = 0. Summarizing the above approximations,



114 Conditional Expectation Approach to Model Selection and Active Learning

we have IWSIC:

IWSIC ≡ 〈Uα̂, α̂〉 − 2 〈Uα̂, α̃〉 + 2σ̂2tr
(
ULL̃	

)
. (7.29)

IWSIC satisfies

Ey [IWSIC − G′] = Op(δn− 1
2 ), (7.30)

where Op denotes the asymptotic order in probability. This means that IWSIC is
an exact unbiased estimator of the essential generalization error G′ if the model is
correct (i.e., δ = 0); generally, IWSIC is asymptotically unbiased with asymptotic
order n− 1

2 . In addition to the unbiasedness, IWSIC is shown to be useful for
comparing the generalization error of two different models [Sugiyama and Müller,
2005a].

Equation (7.30) further shows that the bias of IWSIC is proportional to the
model error δ. Thus IWSIC is more accurate if the target model has a smaller
model error. This is practically a useful property in model selection because of the
following reason. The goal of model selection is to choose the best model from a
model set M. The set M may contain various models, including good ones and
poor ones. In practice, it may not be difficult to distinguish very poor models from
good ones; just using a rough estimator of the generalization error would be enough
for this purpose. Therefore, what is really important in model selection is how to
choose a very good model from a set of good models. Usually good models have
small model errors and IWSIC is accurate for such models. For this reason, IWSIC
is most useful when choosing a very good model from a set of good models.

A variance reduction method of SIC is discussed in Sugiyama et al. [2004], which
could be used for further improving the model selection performance of IWSIC.
IWSIC can also be extended to the situation where the learning transformation L

is nonlinear [Sugiyama, 2007].
In the above discussion, the matrix U (see (7.12)) and the importance

{pte(xi)/ptr(xi)}n
i=1 (see (7.17)) are assumed known. Even when they are estimated

from data, the unbiasedness of IWSIC is still approximately maintained [Sugiyama
and Müller, 2005a].

7.3.2 Relation to Other Model Selection Methods

IWSIC is shown to possess proper unbiasedness within the conditional expectation
framework. Here, we qualitatively compare IWSIC with other model selection
methods.

Importance-Weighted AIC The modified AIC given in chapter 6, which we
refer to as important-weighted AIC (IWAIC) here, is unbiased in terms of the full
expectation over the training set.

For the linear regression model (7.1) with the linear learning method (7.13),
IWAIC is expressed as follows (we properly shifted and rescaled it for better
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comparison):

IWAIC =
〈
Ûα̂, α̂

〉
− 2

〈
Ûα̂, α̃

〉
+ 2tr

(
ÛLΣ̂L̃	

)
, (7.31)

where

Û ≡ 1
n

X	WX, (7.32)

and Σ̂ is the diagonal matrix with the ith diagonal element

Σ̂i,i ≡ (yi − f̂(xi; α̂))2. (7.33)

The appearances of IWAIC and IWSIC are similar but different in two aspects.

(i) The matrix U in IWSIC is replaced by its empirical estimate Û in IWAIC.

(ii) Instead of Σ̂ in IWAIC, σ̂2I is used in IWSIC, where I denotes the identity
matrix.

IWAIC satisfies

EX,y [IWAIC − G′] = o(n−1), (7.34)

where EX,y [·] denotes the expectation over {(xi, yi)}n
i=1. This shows that IWAIC

has a smaller asymptotic bias in the full expectation analysis. On the other hand,
if only the conditional expectation of training output values y given training input
points X is taken, IWAIC satisfies

Ey [IWAIC − G′] = Op(n− 1
2 ), (7.35)

which is the same asymptotic order as IWSIC (see (7.30)). However, a crucial
difference is that the bias of IWAIC is not proportional to the model error δ. In
approximately linear regression where the model error is δ = o(1) with respect to
n, the bias of IWSIC is

Ey [IWSIC − G′] = op(n− 1
2 ), (7.36)

which is smaller than IWAIC. Thus IWSIC is more accurate than IWAIC in
approximate linear regression.

Note that the range of IWAIC is not limited to linear regression; it can be applied
to any statistically regular models [Watanabe, 2001] and any smooth loss functions.

Importance-Weighted CV Cross-validation (CV) is another popular method
for model selection [Stone, 1974; Wahba, 1990], which gives an estimate of the
generalization error G. Under covariate shift, a variant of CV called importance-
weighted CV (IWCV) has proper unbiasedness [Sugiyama et al., 2007]. In IWCV,
the training set T = {(xi, yi)}n

i=1 is randomly divided into k disjoint subsets {Ti}k
i=1

with (approximately) same size. The k-fold IWCV estimate of the generalization
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error G is given by

kIWCV ≡ 1
k

k∑
r=1

1
|Tr|

∑
(x,y)∈Tr

(f̂(x; α̂Tr ) − y)2, (7.37)

where f̂(x; α̂Tr
) is a function learned from {Ti}i
=r. That is, Tr is not used for

learning, but is used for computing the validation error. When k = n, kIWCV is
particularly called leave-one-out IWCV (LOOIWCV):

LOOIWCV ≡ 1
n

n∑
r=1

(f̂(xr; α̂r) − yr)2, (7.38)

where f̂(x; α̂r) is a function learned from {(xi, yi)}i
=r.
LOOIWCV is almost unbiased in the full expectation framework.

EX,y [LOOIWCV] = G(n−1) ≈ G(n), (7.39)

where G(n) is the expected generalization error over all the training set with size n:

G(n) = EX,y [G] . (7.40)

Thus LOOIWCV with n training samples is an exact unbiased estimator of the ex-
pected generalization error with n−1 training samples. However, in the conditional
expectation framework, its unbiasedness is only asymptotic:

Ey [LOOIWCV] = Ey [G] + Op(n− 1
2 ). (7.41)

This means that LOOIWCV has the same asymptotic order as IWSIC (see (7.30)).
However, the bias of IWSIC is proportional to the model error δ, so IWSIC has a
smaller bias than LOOIWCV in approximately linear regression.

Note that the unbiasedness of IWCV is valid for any loss function, any model, and
any parameter learning method; even nonparametric learning methods are allowed.

7.3.3 Numerical Examples

Here, we illustrate how IWSIC works through numerical experiments.
Let the input dimension be d = 1 and the target function f(x) be

f(x) = sinc(x). (7.42)

We use the following linear regression model for learning:

f̂(x) = α0 + α1x. (7.43)

We determine the parameters α0 and α1 by AIWLS (7.15). Let the training input
distribution be Gaussian with mean 1 and standard deviation 1/2, and let the
test input distribution be Gaussian with mean 2 and standard deviation 1/4. Let
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Figure 7.4 (a) Training and test input densities. (b), (c), and (d) Learning target
function and functions learned by AIWLS with λ = 0, 0.5, 1.

the conditional distribution P (y|x) be Gaussian with mean sinc(x) and standard
deviation 1/2, and let the number of training samples be

n = 50, 100, 200. (7.44)

The above setting is summarized in figure 7.4(a).

In addition to the training samples, we draw 1000 test unlabeled samples and
estimate the importance by KLIEP [Sugiyama et al., 2008] using these data samples.
Figure 7.4(b)-(d) depicts examples of functions learned by AIWLS with flattening
parameter λ = 0, 0.5, 1. Our model selection task here is to choose the flattening
parameter λ in AIWLS from

λ = 0, 0.1, 0.2, . . . , 1. (7.45)

We use IWSIC, IWAIC, and IWCV for the selection of λ. The simulation is repeated
30, 000 times for each n. The obtained generalization error by each model selection
method is summarized in table 7.1, showing that IWSIC is significantly better than
other approaches, particularly when n is small.
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Table 7.1 Means and standard deviations of generalization error. All values in the
table are multiplied by 102. The best method and comparable ones by the t-test at the
significance level 5% are marked by “◦”.

n IWSIC IWAIC IWCV

50 ◦12.01±10.86 13.50±13.54 12.22±11.85

100 ◦8.57±3.92 9.01±4.56 ◦8.63±4.01

200 ◦7.34±1.85 7.54±2.16 ◦7.37±1.95

7.4 Active Learning

In this section, we address the problem of active learning in the conditional
expectation framework. The goal of (batch) active learning is to choose training
input points {xi}n

i=1 such that the generalization error G is minimized. However,
directly optimizing {xi}n

i=1 may be computationally hard since n input points of
d dimensions needs to be simultaneously optimized. Here, we avoid this difficulty
by optimizing the training input density ptr(x) from which we draw training input
points:

p∗tr ≡ argmin
ptr

G(ptr). (7.46)

The true generalization error G is inaccessible since it contains the unknown target
function f(x). Therefore, the main goal of active learning research is to obtain an
accurate estimator of the generalization error, which is actually the same as model
selection. However, generalization error estimation in active learning is generally
harder than model selection since the generalization error has to be estimated before
observing training output values {yi}n

i=1.

We assume that the test input density pte(x) is known and the parameter α is
learned by IWLS, i.e.,

α̂IWLS ≡ argmin
α

[
n∑

i=1

pte(xi)
ptr(xi)

(f̂(xi;α) − yi)2
]

. (7.47)

The corresponding learning matrix LIWLS is given by

LIWLS = (X	WX)−1X	W. (7.48)

In this section, we introduce an active learning method called ALICE (active
learning using importance-weighted least squares learning based on conditional
expectation of the generalization error) [Sugiyama, 2006]. ALICE is an extension of
the traditional variance-only method [Fedorov, 1972; Cohn et al., 1996; Fukumizu,
2000] to approximately correct models (see section 7.4.2 for details).
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7.4.1 ALICE

The conditional expectation of the generalization error G over training output
values {yi}n

i=1 given training input points {xi}n
i=1 can be decomposed as

Ey [G] = B + V + δ2 + σ2, (7.49)

where

B ≡
∥∥∥g − Ey

[
f̂
]∥∥∥2

F
, (7.50)

V ≡ Ey

[∥∥∥f̂ − Ey

[
f̂
]∥∥∥2

F

]
= σ2tr

(
ULIWLSL	

IWLS

)
. (7.51)

B is the squared conditional bias and V is the conditional variance of the learned
function. δ2 and σ2 are constants. Let

G′′ ≡ G − δ2 − σ2, (7.52)

which is an essential part of the generalization error G. Note that it is different
from G′ (cf. (7.21)).

The bias term B depends on the unknown target function f(x). Therefore, it is
generally not possible to estimate the bias term B before observing {yi}n

i=1 since we
have no information on the target function f(x). On the other hand, the variance
term V only depends on the learned function, and (7.51) implies that V can be
computed without {yi}n

i=1 up to the scaling factor σ2, which is an unknown noise
variance. The basic idea of variance-only active learning methods is to guarantee
that B can be safely ignored and focus on evaluating V/σ2; when IWLS (7.47) is
used for parameter learning, we can show that

B = Op(δ2n−1), (7.53)

V = Op(n−1). (7.54)

Based on these, ALICE is defined as

ALICE ≡ tr
(
ULIWLSL	

IWLS

)
. (7.55)

The use of ALICE can be justified in approximate linear regression, i.e., if the model
error is δ = o(1) with respect to n, ALICE satisfies

σ2ALICE − G′′ = op(n−1). (7.56)

7.4.2 Relation to Other Active Learning Methods

ALICE is shown to be a sound active learning criterion in approximately linear
regression. Here, we qualitatively compare ALICE with other active learning meth-
ods.
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Traditional Variance-Only Method with Ordinary Least Squares A tra-
ditional approach to variance-only active learning employs ordinary least squares
(OLS) for parameter learning, i.e.,

α̂OLS ≡ argmin
α

[
n∑

i=1

(f̂(xi;α) − yi)2
]

. (7.57)

The corresponding learning matrix LOLS is given by

LOLS = (X	X)−1X	. (7.58)

Based on OLS, an active learning criterion, which we refer to as the variance-only
criterion with least-squares (VOLS) here, is given as follows [Fedorov, 1972; Cohn
et al., 1996; Fukumizu, 2000]:

VOLS = tr
(
ULOLSL	

OLS

)
. (7.59)

The use of VOLS is justified also in approximate linear regression, i.e., if the model
error is δ = o(n− 1

2 ), VOLS satisfies the following property [Sugiyama, 2006]:

σ2VOLS − G′′ = op(n−1). (7.60)

However, the condition on the model error δ is stronger than for ALICE.

Full Expectation Variance-Only Method Within the full expectation frame-
work, Kanamori and Shimodaira [2003] proved that the expected generalization
error is asymptotically expressed as follows (see also chapter 6):

EX,y [G′′] =
1
n
tr
(
U−1H

)
+ O(n− 3

2 ), (7.61)

where H is the n-dimensional square matrix defined by

H = S + σ2T. (7.62)

S and T are the t-dimensional square matrices with the (�, �′)th elements

S�,�′ =
∫

X

ϕ�(x)ϕ�′(x)(δr(x))2
(pte(x))2

ptr(x)
dx, (7.63)

T�,�′ =
∫

X

ϕ�(x)ϕ�′(x)
(pte(x))2

ptr(x)
dx. (7.64)

Note that 1
ntr

(
U−1S

)
corresponds to the squared bias while σ2

n tr
(
U−1T

)
corre-

sponds to the variance. T is accessible by assumption, but S is not (due to δr(x)).
Based on this decomposition, a variance-only active learning criterion, which we

refer to as the full expectation variance-only (FEVO) method, is given as follows
[Wiens, 2000]:

FEVO =
1
n
tr
(
U−1T

)
. (7.65)
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Sugiyama [2006] proved that the use of FEVO is also justified in approximate linear
regression, i.e., if the model error is δ = o(1) with respect to n, FEVO satisfies

σ2FEVO − G′′ = o(n−1). (7.66)

This implies that the asymptotic order of FEVO is the same as ALICE. Further-
more, ALICE and FEVO are actually equivalent asymptotically, i.e.,

ALICE − FEVO = Op(n− 3
2 ). (7.67)

However, they are different in the order of Op(n−1). To investigate this difference
more precisely, let us measure the goodness of a generalization error estimator Ĝ

by

Ey

[
(Ĝ − G′′)2

]
. (7.68)

If δ = o(n− 1
4 ) and terms of op(n−3) are ignored, we have

Ey

[
(σ2ALICE − G′′)2

] ≤ Ey

[
(σ2FEVO − G′′)2

]
. (7.69)

Thus, for approximate linear regression with δ = o(n− 1
4 ), ALICE is a more accurate

estimator of the generalization error than FEVO in the above sense.
FEVO does not depend on the realization of training input points {xi}n

i=1 (though
it does depend on the training input density ptr(x)). Thanks to this property, the
optimal training input density p̂tr(x) can be obtained in a closed form as follows
[Wiens, 2000]:

p̂tr(x) =
ĥ(x)∫

X
ĥ(x)dx

, (7.70)

where

ĥ(x) = pte(x)

⎛⎝ t∑
�,�′=1

[U−1]�,�′ϕ�(x)ϕ�′(x)

⎞⎠
1
2

. (7.71)

Full Expectation Bias-Variance Method Another idea of approximating H

in (7.61) is a two-stage sampling scheme introduced in chapter 6: in the first stage,
ñ (≤ n) training input points {x̃i}en

i=1 are created independently following the test
input distribution with density pte(x), and the corresponding training output values
{ỹi}en

i=1 are gathered. Then a consistent estimator H̃ of the unknown matrix H in
(7.61) can be obtained based on {(x̃i, ỹi)}en

i=1 as

H̃�,�′ =
1
ñ

en∑
i=1

pte(x̃i)
ptr(x̃i)

(ỹi − f̂(x̃i; α̃OLS))2ϕ�(x̃i)ϕ�′(x̃i), (7.72)

where α̃OLS is obtained from {(x̃i, ỹi)}en
i=1 by OLS (7.57). This corresponds to

estimating the bias term S and the noise variance σ2 from {(x̃i, ỹi)}en
i=1. U−1 is also
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replaced by a consistent estimator Ũ−1:

Ũ�,�′ =
1
ñ

en∑
i=1

ϕ�(x̃i)ϕ�′(x̃i). (7.73)

Based on these approximations, an active learning criterion, which we refer to as
the full expectation bias-variance (FEBV) method here, is given as

FEBV =
1
n
tr
(
Ũ−1H̃

)
. (7.74)

In the second stage, this criterion is used for optimizing the location of the remaining
n − ñ training input points. Kanamori and Shimodaira [2003] proved that the use
of FEBV can be justified for misspecified models, i.e., for δ = O(1) with respect to
n, FEBV satisfies

σ2FEBV − G′′ = o(n−1). (7.75)

The order of δ required above is weaker than that required in ALICE or FEVO.
Therefore, FEBV theoretically has a wider range of applications. However, this
strong theoretical property is not necessarily useful in practice since learning with
totally misspecified models (i.e., δ = O(1)) may not work well due to large model
errors. Furthermore, due to the two-stage sampling scheme, FEBV allows us to
choose only n− ñ training input points. This can be very restrictive when the total
number n is not so large.

Note that the range of FEBV is not restricted to linear regression; it can be
applied to any statistically regular models [Watanabe, 2001] and any smooth loss
functions.

7.4.3 Numerical Examples

Here, we illustrate how ALICE works through numerical experiments.
Let the input dimension be d = 1 and the target function f(x) be

f(x) = 1 − x + x2 + δr(x), (7.76)

where

r(x) = δ
z3 − 3z√

6
with z =

x − 0.2
0.4

. (7.77)

We use the following linear regression model for learning:

f̂(x) = α0 + α1x + α2x
2. (7.78)

Note that for this regression model, the residual function r(x) fulfills (7.10) and
(7.11). Let us consider the following three cases.

δ = 0, 0.005, 0.05, (7.79)
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Table 7.2 The mean and standard deviation of the generalization error G−σ2 obtained
by each method for the toy dataset. The best method and comparable ones by the t-test at
the significance level 5% are marked by “◦”. The value of VOLS for δ = 0.05 is extremely
large but it is not a typo. All values in the table are multiplied by 103.

δ ALICE FEVO FEVO* FEBV VOLS Passive

0 2.08±1.95 2.40±2.15 2.32±2.02 3.09±3.03 ◦1.31±1.70 3.11±2.78

0.005 ◦2.10±1.96 2.43±2.15 2.35±2.02 3.13±3.00 2.53±2.23 3.14±2.78

0.05 ◦4.61±2.12 4.89±2.26 4.84±2.14 5.95±3.58 124±7.4 6.01±3.43

which correspond to “correctly specified,” “approximately correct,” and “misspeci-
fied” cases, respectively.

Let the test input distribution be Gaussian with mean 0.2 and standard deviation
0.4, which is assumed to be known in this illustrative simulation. Let us gather 100
training samples by active learning. Our task here is to choose the training input
distribution from a set of Gaussians with mean 0.2 and standard deviation 0.4c,
where

c = 0.8, 0.9, 1.0, . . . , 2.5. (7.80)

We add i.i.d. Gaussian noise with mean zero and standard deviation 0.3 to the
training output values. The above setting is summarized in figure 7.5. We repeat
this simulation 1000 times for each δ.

In table 7.2, the mean and standard deviation of the generalization error obtained
by each method are described. FEVO* denotes the case where the closed-form
solution of FEVO (see (7.70)) is used.
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When δ = 0, VOLS works significantly better than other methods. Actually, in
this case, training input densities that approximately minimize the generalization
error were successfully found by ALICE, FEVO, FEBV, and VOLS. This implies
that the difference in the obtained error is caused not by the quality of the active
learning criteria but by the difference between IWLS and OLS since IWLS generally
has larger variance than OLS [Shimodaira, 2000]. Therefore, when δ = 0, OLS would
be more accurate than IWLS since both IWLS and OLS are unbiased. Although
ALICE, FEVO, and FEBV are outperformed by VOLS, they still work better than
Passive (training input density is equal to the test input density). Note that ALICE
is significantly better than FEVO, FEBV, and Passive by the t-test.

When δ = 0.005, ALICE gives significantly smaller errors than other methods.
All the methods except VOLS work similarly to the case with δ = 0, while VOLS
tends to perform poorly. This result is surprising since the learning target functions
with δ = 0 and δ = 0.005 are visually almost the same, as illustrated in the top
graph of figure 7.5. Therefore, intuitively, the result when δ = 0.005 should not be
much different from the result when δ = 0. However, this slight difference appears
to make VOLS unreliable. Other methods are shown to be robust against model
misspecification.

When δ = 0.05, ALICE again works significantly better than others. FEVO still
works reasonably well. The performance of FEBV is slightly degraded, although it
is still better than Passive. VOLS gives extremely large errors.

The above results are summarized as follows. For all three cases (δ =
0, 0.005, 0.05), ALICE, FEVO, and FEBV work reasonably well and consistently
outperform Passive. Among them, ALICE appears to be better than FEVO and
FEBV for all three cases. VOLS works excellently for correctly specified models,
although it tends to perform poorly once the correctness of the model is violated.
Therefore, ALICE is shown to be robust against model misspecification and there-
fore works well.

7.5 Active Learning with Model Selection

The problems of model selection and active learning share a common goal—
minimizing the generalization error (see (7.18) and (7.46)). However, they have
been studied separately as two independent problems so far. If models and training
input points are optimized at the same time, the generalization performance could
be further improved. We call the problem of simultaneously optimizing training
input points and models active learning with model selection:

min
M,ptr

G(M,ptr). (7.81)

This is the problem we address in this section.
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7.5.1 Direct Approach and Active Learning/Model Selection Dilemma

A naive and direct solution to (7.81) would be to simultaneously optimize M and ptr.
However, this direct approach may not be possible by simply combining an existing
active learning method and an existing model selection method in a batch manner
due to the active learning/model selection dilemma: when choosing the model M

with existing model selection methods, the training input points (or the training
input density) must have been fixed and the corresponding training output values
must have been gathered [Akaike, 1974; Rissanen, 1978; Schwarz, 1978; Craven and
Wahba, 1979; Shimodaira, 2000; Sugiyama and Müller, 2005a]. On the other hand,
when selecting the training input density with existing active learning methods,
the model must have been fixed [Fedorov, 1972; MacKay, 1992b; Cohn et al., 1996;
Fukumizu, 2000; Wiens, 2000; Kanamori and Shimodaira, 2003; Sugiyama, 2006].
For example, IWSIC (7.29) cannot be computed without fixing the training input
density (and without training output values) and ALICE (7.55) cannot be computed
without fixing the model.

If there exist training input points which are optimal for all model candidates, it
is possible to solve both active learning and model selection without regard to the
dilemma: choose the training input points for some model by some active learning
method (e.g., ALICE), gather corresponding training output values, and perform
model selection using some method (e.g., IWSIC). It is shown that such common
optimal training input points exist for correctly specified trigonometric polynomial
models [Sugiyama and Ogawa, 2003]. However, such common optimal training input
points may not exist in general and thus the range of application of this approach
is limited.

7.5.2 Sequential Approach

A standard approach to coping with the active learning/model selection dilemma
for arbitrary models would be the sequential approach [MacKay, 1992a], i.e., in an
iterative manner, a model is chosen by a model selection method and the next input
point (or a small portion) is optimized for the chosen model by an active learning
method (see figure 7.6(a) on page 127).

In the sequential approach, the chosen model M (i) varies through the online
learning process (see the dashed line in figure 7.6(b)), where M (i) denotes the
model chosen at the ith step. We refer to this phenomenon as the model drift. The
model drift phenomenon could be a weakness of the sequential approach since the
location of optimal training input points depends strongly on the target model in
active learning; a good training input point for one model could be poor for another
model. Depending on the transition of the chosen models, the sequential approach
can work very well. For example, when the transition of the model is the solid line
in figure 7.6(b), most of the training input points are chosen for the finally selected
model M (n) and the sequential approach has an excellent performance. However,
when the transition of the model is the dotted line in figure 7.6(b), the performance
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becomes poor since most of the training input points are chosen for other models.
Note that we cannot control the transition of the model properly since we do not
know a priori which model will be chosen in the end. Therefore, the performance
of the sequential approach is unstable.

Another issue that needs to be taken into account in the sequential approach is
that the training input points are not i.i.d. in general—the choice of the (i + 1)th
training input point xi+1 depends on the previously gathered samples {(xj , yj)}i

j=1.
Since standard model selection methods and active learning methods require the
i.i.d. assumption for establishing their statistical properties such as unbiasedness
and consistency, they may not be directly employed in the sequential approach
[Bach, 2007].

IWSIC (7.29) and ALICE (7.55) also suffer from the violation of the i.i.d. con-
dition and lose their unbiasedness and consistency. However, this problem can be
easily settled by slightly modifying the criteria. Suppose we draw u input points
from p

(i)
tr (x) in each iteration (let n = uv, where v is the number of iterations). If

u tends to be infinity, simply redefining the diagonal matrix W as follows makes
IWSIC and ALICE still asymptotically unbiased and consistent:

Wk,k =
pte(xk)

p
(i)
tr (xk)

, (7.82)

where k = (i − 1)u + j, i = 1, 2, . . . , v, and j = 1, 2, . . . , u. This would be another
advantage of the conditional expectation approach.

7.5.3 Batch Approach

An alternative approach to active learning with model selection is to choose all the
training input points for an initially chosen model M (0). We refer to this approach
as the batch approach (see figure 7.7(a) on page 127). Due to the batch nature, this
approach does not suffer from the model drift (cf. figure 7.6(b)); the batch approach
can be optimal in terms of active learning if an initially chosen model M (0) agrees
with the finally chosen model M (n) (see the solid line in figure 7.7(b)).

The performance of this batch approach heavily depends on the initial model
M (0). In order to choose the initial model appropriately, we may need a gener-
alization error estimator that can be computed before observing training output
values—for example, ALICE (7.55). However, this does not work well since ALICE
only evaluates the variance of the estimator; thus using ALICE for choosing the
initial model M (0) merely results in always selecting the simplest model in the can-
didates. Note that this problem is not specific to ALICE, but is common to most
generalization error estimators since it is generally not possible to estimate the bias
before observing training output values. For this reason, in practice, we may have to
choose the initial model M (0) randomly. If we have some prior preference of models,
P (M), we may draw the initial model according to it.

Due to the randomness of the initial model choice, the performance of the batch
approach may be unstable (see the dotted line in figure 7.7(b)).



7.5 Active Learning with Model Selection 127

(a) Diagram (b) Transition of chosen models

Figure 7.6 Sequential approach to active learning with model selection.

(a) Diagram (b) Transition of chosen models

Figure 7.7 Batch approach to active learning with model selection.

(a) Diagram (b) Transition of chosen models

Figure 7.8 Ensemble approach to active learning with model selection.
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7.5.4 Ensemble Active Learning

The weakness of the batch approach lies in the fact that the training input points
chosen by an active learning method are overfitted to the initially chosen model—
the training input points optimized for the initial model could be poor if a different
model is chosen later.

We may reduce the risk of overfitting by not optimizing the training input density
specifically for a single model, but by optimizing it for all model candidates (see
figure 7.8 on page 127). This allows all the models to contribute to the optimization
of the training input density and thus we can hedge the risk of overfitting to a single
(possibly inferior) model. Since this approach could be viewed as applying a popular
idea of ensemble learning to the problem of active learning, this method is called
ensemble active learning (EAL).

This idea could be realized by determining the training input density so that the
expected generalization error over all model candidates is minimized:

min
ptr

∑
M

ALICEM (ptr)P (M), (7.83)

where ALICEM denotes ALICE for a model M and P (M) is the prior preference
of the model M . If no prior information on goodness of the models is available, the
uniform prior may be simply used.

7.5.5 Numerical Examples

Here, we illustrate how the ensemble active learning method behaves through
numerical experiments.

We use the same toy example as section 7.4.3; the difference is the learning target
function and parameter learning methods. In section 7.4.3, the target function is
changed through δ (see (7.76)) and IWLS is used; here we fix the target function at
δ = 0.05 and use AIWLS (7.15) for parameter learning. We choose the flattening
parameter λ in AIWLS by IWSIC (7.29) from

λ = 0, 0.5, 1. (7.84)

The choice of λ corresponds to model selection in this scenario.
First, we investigate the dependency between the goodness of the training input

density (i.e., c) and the model (i.e., λ). For each λ and each c, we draw training input
points {xi}100

i=1 and gather output values {yi}100
i=1. Then we learn the parameter by

AIWLS and compute the generalization error. The mean generalization error over
1000 trials as a function of c for each λ is depicted in figure 7.9(a). This graph
underlines that the best training input density c could strongly depend on the
model λ, implying that a training input density that is good for one model could
be poor for others. For example, when the training input density is optimized for
the model λ = 0, c = 1.1 would be an excellent choice. However, c = 1.1 is not
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Figure 7.9 (a) Mean generalization error G−σ2 over 1000 trials as a function of training
input density c for each λ (when n = 100). (b) Frequency of chosen λ over 1000 trials as
a function of the number of training samples.

Table 7.3 Means and standard deviations of generalization error for the toy dataset.
All values in the table are multiplied by 103. The best method and comparable ones by
the t-test at the significance level 5% are marked by “◦”.

n Passive Sequential Batch Ensemble

100 5.92±3.28 5.57±2.75 5.65±2.92 ◦5.12±2.50

150 4.77±2.18 4.43±1.77 4.64±1.91 ◦4.11±1.55

200 4.21±1.75 3.89±1.40 4.19±1.60 ◦3.68±1.19

250 3.78±1.32 3.47±1.02 3.91±1.42 ◦3.35±0.92

so suitable for other models λ = 0.5, 1. This figure illustrates a possible weakness
of the batch method: when an initially chosen model is significantly different from
the finally chosen model, the training input points optimized for the initial model
could be less useful for the final model and the performance is degraded.

Next, we investigate the behavior of the sequential approach. In our implemen-
tation, ten training input points are chosen at each iteration. Figure 7.9(b) depicts
the transition of the frequency of chosen λ in the sequential learning process over
1000 trials. It shows that the choice of models varies over the learning process; a
smaller λ (which has smaller variance thus low complexity) is favored in the be-
ginning, but a larger λ (which has larger variance thus higher complexity) tends
to be chosen as the number of training samples increases. Figure 7.9(b) illustrates
a possible weakness of the sequential method: the target model drifts during the
sequential learning process and the training input points designed in an early stage
could be poor for the finally chosen model.

Finally, we investigate the generalization performance of each method when the
number of training samples to gather is n = 100, 150, 200, 250. Table 7.3 describes
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the means and standard deviations of the generalization error obtained by the
sequential, batch, and ensemble methods; as a baseline, we also included the result
of passive learning (or equivalently c = 1). The table shows that all three methods
tend to outperform passive learning. However, the improvement of the sequential
method is not so significant, which would be caused by the model drift phenomenon
(see figure 7.9). The batch method also does not provide significant improvement
due to the overfitting to the randomly chosen initial model (see figure 7.9(a)). On
the other hand, the proposed ensemble method does not suffer from these problems
and works significantly better than other methods.

7.6 Conclusions

We introduced a conditional expectation approach to model selection and active
learning under covariate shift and proved that it is more accurate than the full
expectation approach in approximate linear regression. Furthermore, a method to
combine active learning and model selection was introduced that was nicely showing
its experimental validity.

Future work will consider nonlinear extensions to the proposed methods and
study their use for classification. From the practical application viewpoint, we
will employ covariate shift compensation techniques for brain-computer interface
(BCI) following the lines of Sugiyama et al. [2007] and use the novel active
learning strategies for improving experimental design in computational chemistry
[cf. Warmuth et al., 2003].
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8 Covariate Shift by Kernel Mean Matching
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Given sets of observations of training and test data, we consider the problem of
reweighting the training data such that its distribution more closely matches that of
the test data. We achieve this goal by matching covariate distributions between train-
ing and test sets in a high-dimensional feature space (specifically, a reproducing ker-
nel Hilbert space). This approach does not require distribution estimation. Instead,
the sample weights are obtained by a simple quadratic programming procedure. We
provide a uniform convergence bound on the distance between the reweighted train-
ing feature mean and the test feature mean, a transductive bound on the expected
loss of an algorithm trained on the reweighted data, and a connection to single class
SVMs. While our method is designed to deal with the case of simple covariate shift
(in the sense of chapter 1), we have also found benefits for sample selection bias on
the labels. Our correction procedure yields its greatest and most consistent advan-
tages when the learning algorithm returns a classifier/regressor that is “simpler”
than the data might suggest.

8.1 Introduction

The default assumption in many learning scenarios is that training and test data
are drawn independently and identically (i.i.d.) from the same distribution. When
the distributions on training and test set do not match, we face the problem of
dataset shift : given a domain of patterns X and labels Y, we obtain training samples

1. These authors contributed equally to this work.
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Ztr =
{
(xtr

1 , ytr
1 ), . . . , (xtr

ntr
, ytr

ntr
)
} ⊆ X × Y from a Borel probability distribution

Ptr(x, y), and test samples Zte =
{
(xte

1 , yte
1 ), . . . , (xte

nte
, yte

nte
)
} ⊆ X × Y drawn from

another such distribution Pte(x, y).
Although there exists previous work addressing this problem [Zadrozny, 2004;

Rosset et al., 2004; Heckman, 1979; Lin et al., 2002; Dud́ık et al., 2005; Shimodaira,
2000; Sugiyama and Müller, 2005a], dataset shift has typically been ignored in
standard estimation algorithms. Nonetheless, in reality the problem occurs rather
frequently. Below, we give some examples of where dataset shift occurs (following
the terminology defined by Storkey in chapter 1).

1. Suppose we wish to generate a model to diagnose breast cancer. Suppose,
moreover, that most women who participate in the breast screening test are middle-
aged and likely to have attended the screening in the preceding three years.
Consequently our sample includes mostly older women and those who have low
risk of breast cancer because they have been tested before. This problem is referred
to as sample selection bias. The examples do not reflect the general population with
respect to age (which amounts to a bias in Ptr(x)) and they only contain very few
diseased cases (i.e., a bias in Ptr(y|x)).

2. Consider the problem of data analysis using a brain-computer interface, where
the distribution over incoming signals is known to change as experiments go on
(subjects tire, the sensor setup changes, etc.). In this case it necessary to adapt
the estimator to the new distribution of patterns in order to improve performance
[Sugiyama et al., 2007].

3. Gene expression profile studies using DNA microarrays are used in tumor
diagnosis. A common problem is that the samples are obtained using certain
protocols, microarray platforms, and analysis techniques, and typically have small
sample sizes. The test cases are recorded under different conditions, resulting in
a different distribution of gene expression values. In both this and the previous
example, a covariate shift has occurred (see chapter 1).

In all cases we would intuitively want to assign more weight to those observations
in the training set which are most similar to those in the test set, and less weight
to those which rarely occur in the test set.

In this chapter, we use unlabeled data as the basis for a dataset shift correction
procedure for various learning methods. Unlike previous work, we infer the resam-
pling weight directly by nonparametric distribution matching between training and
testing samples. We do not need to estimate the biasing densities or selection proba-
bilities [Zadrozny, 2004; Dud́ık et al., 2005; Shimodaira, 2000], or to assume advance
knowledge of the different class probabilities [Lin et al., 2002]. Rather, we account
for the difference between Ptr(x, y) and Pte(x, y) by reweighting the training points
such that the means of the training and test points in a reproducing kernel Hilbert
space (RKHS) are close. We call this reweighting process kernel mean matching
(KMM), following our presentation in Huang et al. [2007]. The present chapter
expands on our earlier work in terms of both theoretical and experimental analysis.
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Since our approach does not require density estimation, we are able to state re-
sults which apply to arbitrary domains and which do not, in principle, suffer from
the curse of dimensionality that befalls high-dimensional density estimation. When
the RKHS is universal [Steinwart, 2002], the population solution to this minimiza-
tion is exactly the ratio Pte(x, y)/Ptr(x, y); we derive performance guarantees which
depend on the maximum ratio between the distributions (but not on the distribu-
tions themselves) and which show that our method is consistent. We remark that
when this ratio is large, however, a large sample size would be required to ensure
the bound is tight (and to guarantee a good approximation).

The required optimization is a simple quadratic program, and the reweighted
sample can be incorporated straightforwardly into many regression and classifica-
tion algorithms and model selection procedures, such as cross-validation. We apply
our method to a variety of regression and classification benchmarks from University
of California Irvine (UCI) and elsewhere, as well as to classification of microarrays
from prostate and breast cancer patients. The experiments demonstrate that sample
reweighting by KMM substantially improves learning performance in cases where
the class of functions output by the learning algorithm is “simpler” than the true
function (for instance, such a classification algorithm would estimate a decision
boundary deliberately smoother than the Bayes optimal boundary that emerges
as the sample size increases to infinity). Indeed, for this case, performance can
be improved from close to chance level to the point of almost matching the per-
formance of a learning algorithm with the “correct” complexity. KMM reweighting
can also improve performance in cases where the complexity of the leaned classifica-
tion/regression function is chosen optimally for the data, via parameter selection by
cross-validation. For most such cases, however, KMM does not affect performance,
or can even make it slightly worse.

In general, the estimation problem with two different distributions Ptr(x, y) and
Pte(x, y) is unsolvable, as the two distributions could be arbitrarily far apart. In
particular, for arbitrary Ptr(y|x) and Pte(y|x), there is no way we could infer
a good estimator based on the training sample. For instance, the distributions
Ptr(y = 1|x) and Pte(y = −1|x) could be swapped in binary classification, leading
to an arbitrarily large error. The following assumption allows us to address the
problem.

Assumption 8.1 We make the simplifying assumption that Ptr(x, y) and Pte(x, y)
only differ via Ptr(x, y) = P(y|x)Ptr(x) and Pte(x, y) = P(y|x)Pte(x). In other
words, the conditional probabilities of y|x remain unchanged.

This particular case of dataset shift has been termed covariate shift (see examples
above, chapter 1, and [Shimodaira, 2000]). We will see experimentally that even in
situations where our key assumption is not valid, our method can still be useful
(see section 8.6).

We begin our presentation in section 8.2, where we describe the concept of
sample reweighting to match empirical distributions, and show how a reweighted
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sample can be incorporated easily into a variety of learning algorithms (penalized 1-
norm classification, penalized logistic regression, penalized LMS (least mean square)
regression, Poisson regression). In section 8.3, we describe our sample reweighting
procedure, which entails matching the means of the reweighted training sample
and the target (test) sample in a reproducing kernel Hilbert space. We discuss
the convergence of the Hilbert space training and test means in the limit of large
sample size, and provide an empirical optimization procedure to select the training
sample weights (this being a straightforward quadratic program). In section 8.4,
we provide transductive guarantees on the performance of learning algorithms that
use the reweighted sample, subject to linearity conditions on the loss functions of
these algorithms. We establish a connection between sample bias correction and
novelty detection in section 8.5, with reference to the single class support vector
machine (SVM). We present our experiments in section 8.6: these consist of a toy
example proposed by Shimodaira [2000], a detailed analysis of performance for
different classifier parameters on the UCI breast cancer dataset, a broader overview
of performance on many different UCI datasets, and experiments on microarray
data. We provide proofs of our theoretical results in section 8.8.

8.2 Sample Reweighting

We begin by stating the problem of risk minimization. In general a learning method
aims to minimize the expected risk,

R[P, θ, l(x, y, θ)] = E(x,y)∼P [l(x, y, θ)] , (8.1)

of a loss function l(x, y, θ) depending on a parameter θ. For instance, the loss
function could be the negative log-likelihood − log P(y|x, θ), a misclassification loss,
or some form of regression loss. However, since typically we only observe examples
(x, y) drawn from P(x, y) rather than P(x, y), we resort to computing the empirical
average,

Remp[Z, θ, l(x, y, θ)] =
1
n

n∑
i=1

l(xi, yi, θ) . (8.2)

To avoid overfitting, instead of minimizing Remp directly, we minimize a regularized
variant,

Rreg[Z, θ, l(x, y, θ)] := Remp[Z, θ, l(x, y, θ)] + λΩ[θ] ,

where Ω[θ] is a regularizer.

8.2.1 Sample Correction

The problem is more involved if Ptr(x, y) and Pte(x, y) are different. The training
set is drawn from Ptr; however, what we would really like is to minimize R[Pte, θ, l]
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as we wish to generalize to test examples drawn from Pte. An observation from the
field of importance sampling is that

R[Pte, θ, l(x, y, θ)] = E(x,y)∼Pte [l(x, y, θ)] = E(x,y)∼Ptr

[Pte(x, y)
Ptr(x, y)︸ ︷︷ ︸
:=β(x,y)

l(x, y, θ)
]

= R[Ptr, θ, β(x, y)l(x, y, θ)],

provided that the support of Pte is contained in the support of Ptr. If this does not
hold, reweighting x in order to obtain a risk estimate for Pte(x, y) is impossible.
In fact, the risks could be arbitrarily different, since we have no information about
the behavior of l(x, y, θ) on a subset of the domain of Pte.

Given β(x, y), we can thus compute the risk with respect to Pte using Ptr.
Similarly, we can estimate the risk with respect to Pte by computing the empirical
risk Remp[Z, θ, β(x, y)l(x, y, θ)]. The key problem is that the coefficients β(x, y) are
usually unknown, and must be estimated from the data. When Ptr and Pte differ in
Ptr(x) and Pte(x) only, we have β(x, y) = Pte(x)/Ptr(x), where β is a reweighting
factor for the training examples. We thus reweight every training observation
(xtr

i , ytr
i ) such that observations that are underrepresented in Ptr (relative to Pte)

are assigned a higher weight, whereas overrepresented cases are downweighted.

We could estimate Ptr and Pte and subsequently compute β based on those
estimates. This is closely related to the methods of Zadrozny [2004]; Lin et al.
[2002], and Sugiyama and Müller [2005a], who either have to estimate the selection
probabilities, or have prior knowledge of the class distributions. While intuitive,
this approach has three major drawbacks:

1. It only works whenever the estimates for Ptr and Pte (or potentially, the
selection probabilities or class distributions) are good. In particular, small errors
in estimating Ptr can lead to large coefficients β and consequently to a serious
overweighting of the corresponding observations.

2. Estimating both distributions just for the purpose of computing reweighting
coefficients may be overkill: we may be able to directly estimate the coefficients
βi := β(xtr

i , ytr
i ) without having to perform distribution estimation. Furthermore,

we can regularize βi directly with more flexibility, taking prior knowledge into
account (similar to learning methods for other problems).

3. It is well known that using the exact importance sampler weights may not be
optimal, even when knowing both distributions. See e.g., Shimodaira [2000] for a
discussion of the issue. The basic idea is that importance sampler weights β which
deviate strongly from 1 increase the variance significantly. In fact, as we will see in
lemma 8.8, the effective training sample size is n2

tr/ ‖β‖2
2. Hence it may be worth

accepting a small bias in return for a larger effective sample size.
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8.2.2 Using the Sample Reweighting in Learning Algorithms

Before we describe how we will estimate the reweighting coefficients βi, we briefly
discuss how to minimize the reweighted regularized risk

Rreg[Z, β, l(x, y, θ)] :=
1

ntr

ntr∑
i=1

βil(xtr
i , ytr

i , θ) + λΩ[θ], (8.3)

in four useful settings.

Penalized 1-Norm Classification (Support Vector Classification) Using the
formulation of Tsochantaridis et al. [2005] and Taskar et al. [2004] we have the fol-
lowing minimization problem (the original SVMs can be formulated in the same
way):

minimize
θ,ξ

1
2
‖θ‖2 + C

ntr∑
i=1

βiξi (8.4a)

subject to
〈
Φ(xtr

i , ytr
i ) − Φ(xtr

i , y), θ
〉 ≥ 1 − ξi/Δ(ytr

i , y) (8.4b)

for all y ∈ Y, and ξi ≥ 0.

Here, Φ(x, y) is a feature map from X × Y to a feature space F, where θ ∈ F and
Δ(y, y′) denote a discrepancy function between y and y′. The dual of (8.4) is

minimize
α

1
2

ntr∑
i,j=1;y,y′∈Y

αiyαjy′k(xtr
i , y, xtr

j , y′) −
ntr∑

i=1;y∈Y

αiy (8.5a)

subject to αiy ≥ 0 for all i, y and
∑
y∈Y

αiy/Δ(ytr
i , y) ≤ βiC. (8.5b)

Here k(x, y, x′, y′) := 〈Φ(x, y),Φ(x′, y′)〉 denotes the inner product between the
feature maps. This generalizes the observation-dependent binary support vector
(SV) classification described by Schmidt and Gish [1996]. Many existing solvers,
such as SVMStruct [Tsochantaridis et al., 2005], can be modified easily to take
sample-dependent weights into account.

Penalized Logistic Regression This is also referred to as Gaussian process
classification. In the unweighted case [Williams and Barber, 1998], we minimize∑n

i=1 − log p(yi|xi, θ) + λ
2 ‖θ‖2 with respect to θ. Using (8.3) yields the following

modified optimization problem:

minimize
θ

ntr∑
i=1

−βi log p(ytr
i |xtr

i , θ) +
λ

2
‖θ‖2

. (8.6)

Using an exponential families and kernel approach for

log p(y|x, θ) = 〈Φ(x, y), θ〉 − g(θ|x) , (8.7)

where g(θ|x) = log
∑
y∈Y

exp (〈Φ(x, y), θ〉)
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we can invoke the representer theorem [Kimeldorf and Wahba, 1970] which leads
to

minimize
α

ntr∑
i=1

βig(α|xtr
i ) −

ntr∑
i,j=1;y∈Y

αiyβjk(xtr
i , y, xtr

j , ytr
j )

+
ntr∑

i,j=1;y,y′∈Y

αiyαjy′k(xtr
i , y, xtr

j , y′) , (8.8)

where g(α|xtr
i ) := log

∑
y∈Y

exp

⎛⎝ ntr∑
j=1;y′∈Y

αjy′k(xtr
i , y, xtr

j , y′)

⎞⎠ .

Penalized LMS Regression Assume l(x, y, θ) = (y − 〈Φ(x), θ〉)2 and Ω[θ] =
‖θ‖2. Here we solve

minimize
θ

ntr∑
i=1

βi(ytr
i − 〈

Φ(xtr
i ), θ

〉
)2 + λ ‖θ‖2

. (8.9)

Denote by β̄ the diagonal matrix with diagonal (β1, . . . , βntr) and by K ∈ R
m×m

the kernel matrix Kij = k(xtr
i , xtr

j ). In this case minimizing (8.9) is equivalent to
solving

minimize
α

(y − Kα)	β̄(y − Kα) + λα	Kα

with respect to α. Assuming that K and β̄ have full rank, the minimization yields

α = (λβ̄−1 + K)−1y .

The advantage of this formulation is that it can be solved as easily as the standard
penalized regression problem. Essentially, we rescale the regularizer depending on
the pattern weights: the higher the weight of an observation, the less we regularize.

Poisson Regression Assume a process of discrete events, such as the distribution
of species over a geographical location or the occurrence of noninfectious diseases.
This process can be modeled by a conditional Poisson distribution,

log p(y|x, θ) = y 〈Φ(x), θ〉 − log y! − exp (〈Φ(x), θ〉) (8.10)

as a member of the nonparametric exponential family (see e.g., Cressie [1993]),
where y ∈ N0. Consequently we may obtain a reweighted risk minimization problem,

minimize
α

ntr∑
i=1

βi exp ([Kα]i) − βiy
tr
i [Kα]i + λα	Kα. (8.11)

Here K and α are defined as in the above example. The problem is convex in α.



138 Covariate Shift by Kernel Mean Matching

We provided the above examples to demonstrate that it is fairly straightforward to
turn most risk minimization procedures into reweighted ones. For those algorithms
which cannot deal with weighted data easily, one may always resort to resampling;
see, e.g., Efron and Tibshirani [1994].

8.3 Distribution Matching

8.3.1 Kernel Mean Matching and Its Relation to Importance Sampling

Let Φ : X → F be a feature map into a feature space F and denote by μ : P → F

the expectation operator

μ(P) := Ex∼P(x) [Φ(x)] . (8.12)

Clearly μ is a linear operator mapping the space of all probability distributions P

into feature space. Denote by M(Φ) := {μ(P) where P ∈ P} the image of P under
μ. This set is also often referred to as the marginal polytope. We have the following
theorem, proved in section 8.8.

Theorem 8.2 The operator μ is a bijection between the space of all probability
measures and the marginal polytope induced by the feature map Φ(x) if F is an
RKHS with a universal kernel k(x, x′) = 〈Φ(x),Φ(x′)〉 in the sense of Steinwart
[2002] (bearing in mind that universality is defined for kernels on compact domains
X).

The practical consequence of this (rather abstract) result is that if we know
μ(Pte), we can infer a suitable weighting function β by solving the following
minimization problem. We first state the expectation version of the kernel mean
matching (KMM) procedure:

Lemma 8.3 The following optimization problem in β is convex.

minimize
β

∥∥μ(Pte) − Ex∼Ptr(x) [β(x)Φ(x)]
∥∥ (8.13)

subject to β(x) ≥ 0 and Ex∼Ptr(x) [β(x)] = 1. (8.14)

Assume Pte is absolutely continuous with respect to Ptr (so Ptr(A) = 0 implies
Pte(A) = 0), and that k is universal. The solution of (8.13) is then Pte(x) =
β(x)Ptr(x).

Proof: The convexity of the objective function follows from the facts that the
norm is a convex function and the integral is a linear functional in β. The other
constraints are also convex.

By virtue of the constraints, any feasible solution of β corresponds to a distribu-
tion, as

∫
β(x)dPtr(x) = 1. Moreover, the choice of β̂(x) := Pte(x)/Ptr(x) is feasible



8.3 Distribution Matching 139

as it obviously satisfies the constraints. Moreover, it minimizes the objective func-
tion with value 0. Note that such a β(x) exists due to the absolute continuity of
Pte(x) with respect to Ptr(x). Theorem 8.2 implies that there can be only one
distribution β(x)Ptr such that μ(β(x)Ptr) = μ(Pte). Hence β(x)Ptr(x) = Pte(x).

8.3.2 Convergence of Reweighted Means in Feature Space

Lemma 8.3 shows that in principle, if we knew Ptr and μ[Pte], we could fully recover
Pte by solving a simple quadratic program. In practice, however, neither μ(Pte) nor
Ptr is known. Instead, we only have samples Xtr and Xte of size ntr and nte, drawn
i.i.d. from Ptr and Pte, respectively.

Naively we could just replace the expectations in (8.13) by empirical averages and
hope that the resulting optimization problem will provide us with a good estimate
of β. However, it is to be expected that empirical averages will differ from each other
due to finite sample size effects. In this section, we explore two such effects. First,
we demonstrate that in the finite sample case, for a fixed β, the empirical estimate
of the expectation of β is normally distributed: this provides a natural limit on
the precision with which we should enforce the constraint

∫
β(x)dPtr(x) = 1 when

using empirical expectations (we will return to this point in the next section).

Lemma 8.4 If β(x) ∈ [0, B] is some fixed function of x ∈ X, then given xtr
i ∼ Ptr

i.i.d. such that β(xtr
i ) has finite mean and finite nonzero variance, the sample mean

1
ntr

∑
i β(xtr

i ) converges in distribution to a Gaussian with mean
∫

β(x)dPtr(x) and
standard deviation bounded by B

2
√

ntr
.

This lemma is a direct consequence of the central limit theorem [Casella and Berger,
2002, Theorem 5.5.15]. Alternatively, it is straightforward to get a large deviation
bound that likewise converges as 1/

√
ntr Hoeffding [1963]. In this case, it follows

that with probability at least 1 − δ,∣∣∣∣∣ 1
ntr

ntr∑
i=1

β(xtr
i ) − 1

∣∣∣∣∣ ≤ B
√

log(2/δ)/2m. (8.15)

Our second result demonstrates the deviation between the empirical means of
Pte and β(x)Ptr in feature space, given β(x) is chosen perfectly in the population
sense.

Lemma 8.5 In addition to the conditions of lemma 8.4, assume that we draw
Xte :=

{
xte

1 , . . . , xte
nte

}
i.i.d. from X using Pte = β(x)Ptr, and ‖Φ(x)‖ ≤ R for

all x ∈ X. Then with probability at least 1 − δ,∥∥∥ 1
ntr

ntr∑
i=1

β(xtr
i )Φ(xtr

i ) − 1
nte

nte∑
i=1

Φ(xte
i )
∥∥∥

≤
(
1 +

√
2 log 2/δ

)
R
√

B2/ntr + 1/nte. (8.16)
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The proof is in section 8.8. Note that this lemma shows that for a given β(x), which
is correct in the population sense, we can bound the deviation between the mean
and the importance-sampled mean in feature space. It is not a guarantee that we
will find coefficients βi which are close to β(xtr

i ), when solving the optimization
problem in the next section.

Lemma 8.5 implies we have O(B
√

1/ntr + 1/nteB2) convergence in ntr, nte, and
B. This means that for very different distributions, we need a large equivalent
sample size to get reasonable convergence. Our result also implies that it is unreal-
istic to assume that the empirical means (reweighted or not) should match exactly.
Note that a somewhat better bound could be obtained by exploiting the interplay
between Ptr,Pte, and Φ(x). That is, it is essentially ‖Φ(x)‖Pte(x)/Ptr(x) that mat-
ters, as one can see by a simple modification of the proof. For this reason, we may
be able to tolerate large deviations between the two distributions at little cost, as
long as the feature vector at this location is small.

8.3.3 Empirical KMM Optimization

To find suitable values of β ∈ R
ntr we want to minimize the discrepancy between

means subject to constraints βi ∈ [0, B] and | 1
ntr

∑ntr
i=1 βi − 1| ≤ ε. The former

limits the scope of discrepancy between Ptr and Pte and ensures robustness by
limiting the influence of individual observations, whereas the latter ensures that
the corresponding measure β(x)Ptr(x) is close to a probability distribution. Note
that for B → 1 we obtain the unweighted solution. The objective function is given
by the discrepancy term between the two empirical means. Using Kij := k(xtr

i , xtr
j )

and κi := ntr
nte

∑nte
j=1 k(xtr

i , xte
j ) one may check that

∥∥∥ 1
ntr

ntr∑
i=1

βiΦ(xtr
i ) − 1

nte

nte∑
i=1

Φ(xte
i )
∥∥∥2

=
1

n2
tr

β	Kβ − 2
n2

tr

κ	β + const.

Now we have all necessary ingredients to formulate a quadratic problem to find
suitable β via

minimize
β

1
2
β	Kβ − κ	β subject to βi ∈ [0, B] and

∣∣∣ ntr∑
i=1

βi − ntr

∣∣∣ ≤ ntrε.

(8.17)

In accordance with lemma 8.4, we conclude that a good choice of ε should be
O(B/

√
ntr). That said, even a change induced by normalizing

∑
i βi = 1 only

changes the value of the objective function by at most ε2R2 + 2εL, where L2 is the
value of the objective function at optimality.

Note that (8.17) is a quadratic program which can be solved efficiently using
interior point methods or any other successive optimization procedure, such as
chunking [Osuna, 1998], sequential minimal optimization (SMO) [Platt, 1999], or
projected gradient methods [Dai and Fletcher, 2006]. We also point out that (8.17)
resembles single class SVM [Schölkopf et al., 2001] using the ν-trick. Besides the
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approximate equality constraint, the main difference is the linear correction term
by means of κ. Large values of κi correspond to particularly important observations
xtr

i and are likely to lead to large βi. We discuss further connections in section 8.5.

8.4 Risk Estimates

So far we have been concerned only with distribution matching for the purpose of
finding a reweighting scheme between the empirical feature space means on training
Xtr and test Xte sets. We now show, in the case of linear loss functions, that as long
as the feature means on the test set are well enough approximated, we will be able
to obtain almost unbiased risk estimates regardless of the actual values of βi vs.
their importance sampling weights β(xi). The price is an increase in the variance
of the estimate, where n2

tr/ ‖β‖2 will act as an effective sample size.

8.4.1 Transductive Bounds

We consider the transductive case: that is, we will make uniform convergence
statements with respect to Ey|x only (recall that this expectation is the same for
the training and test distributions by assumption). In addition, we will require the
loss functions to be linear, as described below.

Assumption 8.6 We require that l(x, θ) be expressible as an inner product in
feature space, i.e., l(x, θ) = 〈Ψ(x),Θ〉, where ‖Θ‖ ≤ C. That is, l(x, θ) belongs
to a reproducing kernel Hilbert space (RKHS). Likewise, assume l(x, y, θ) can
be expressed as an element of an RKHS via 〈Υ(x, y),Λ〉 with1 ‖Λ‖ ≤ C and
‖Υ(x, y)‖ ≤ R.

We proceed in two steps: first we show that for the expected loss

l(x,Θ) := Ey|xl(x, y,Λ), (8.18)

the coefficients βi can be used to obtain a risk estimate with low bias. Sec-
ond, we show that the random variable

∑
i βil(xtr

i , ytr
i ,Λ) is concentrated around∑

i βil(xtr
i ,Θ), if we condition Y |X. The first lemma is proved in section 8.8.

Lemma 8.7 Given assumptions 8.1 and 8.6 are satisfied, and Xtr, Xte i.i.d. sam-
ples drawn from Ptr and Pte, respectively. Let G be a class of loss-induced functions
l(x, θ) with ‖Θ‖ ≤ C. Finally, assume that there exist some βi such that∥∥∥∥∥ 1

ntr

ntr∑
i=1

βiΨ(xtr
i ) − 1

nte

nte∑
i=1

Ψ(xte
i )

∥∥∥∥∥ ≤ ε .

1. We use the same constant C to bound both ‖Θ‖ and‖Λ‖ for ease of notation, and
without loss of generality.
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In this case we can bound the empirical risk estimates as

sup
l(·,·,θ)∈G

∣∣∣∣∣Ey|x

[
1

ntr

ntr∑
i=1

βil(xtr
i , ytr

i , θ)

]
− Ey|x

[
1

nte

nte∑
i=1

l(xte
i , yte

i , θ)

]∣∣∣∣∣ ≤ Cε.

(8.19)

The next step in relating a reweighted empirical average using (Xtr, Ytr) and the
expected risk with respect to P (y|x) requires us to bound deviations of the first
term in (8.19). The required lemma is again proved in section 8.8.

Lemma 8.8 Given assumption 8.6, samples ytr
i drawn for each xtr

i according to
P(y|x), and M := n2

tr/ ‖β‖2
2, then with probability at least 1 − δ over all y|x

sup
l(·,·,θ)∈G

∣∣∣∣∣ 1
ntr

ntr∑
i=1

βil(xtr
i , ytr

i , θ) − 1
ntr

ntr∑
i=1

βil(xtr
i , θ)

∣∣∣∣∣
≤ (2 +

√
2 log(2/δ))CR/

√
M.

We can now combine the bounds from both lemmas to obtain the main result of
this section.

Corollary 8.9 Under the assumptions of lemmas 8.7 and 8.8 we have that with
probability at least 1 − δ,

sup
l(·,·,θ)∈G

∣∣∣∣∣ 1
ntr

ntr∑
i=1

βil(xtr
i , ytr

i , θ) − Ey|x

[
1

nte

nte∑
i=1

l(xte
i , yte

i , θ)

]∣∣∣∣∣
≤ (2 +

√
2 log(2/δ))CR√

M
+ Cε. (8.20)

This means that if we minimize the reweighted empirical risk we will, with high
probability, be minimizing an upper bound on the expected risk on the test set.

Note that we have an upper bound on ε via lemma 8.5, although this assumes the
βi correspond to the importance weights. The encouraging news is that as both ntr

and nte → ∞ we will obtain a minimizer of the conditional expected risk on Pte.
That said, if the test set is small, it is very likely that the deviations introduced by
the finite test set will give rise to more uncertainty, which implies that additional
training data will be of limited use.

While the above result applies in the case of linear loss functions, we expect a
similar approach to hold more generally. The key requirement is that the expected
loss be a smooth function in the patterns x.

8.4.2 Bounds in Expectation and Cross Validation

There are two more important cases worth analyzing: when carrying out covariate
shift correction (or transduction) we may still want to perform model selection
by methods such as cross-validation. In this case we need two estimators of the
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empirical test risk — one for obtaining a regularized risk minimizer and another
one for assessing the performance of the former.

A first approach is to use the reweighted training set directly for this purpose
similar to what was proposed by Sugiyama et al. [2006]. This will give us an estimate
of the loss on the test set, albeit biased by the deviation between the reweighted
means, as described in corollary 8.9.

A second approach is to use a modification of the cross-validation procedure by
partitioning first and reweighting second. That is, in tenfold cross-validation one
would first partition the training set and then compute correcting weights for both
the 9

10 th fraction used in training and the 1
10 th fraction used for validation. While

this increases the cost of computing weights considerably (we need to compute
a total of 10 + 10 + 1 = 21 weighting schemes for model selection and final
estimates in tenfold cross-validation), “transductive cross-validation” nonetheless
offers a reduction in sampling bias. Again, the bounds of corollary 8.9 apply directly.

Finally, let us briefly consider the situation where we have a reference unlabeled
dataset which is drawn from the same distribution as the actual test set, yet it
is not identical with the test set. In this case, risk bounds similar to lemma 8.5
and corollary 8.9 can be obtained. The proof is essentially identical to that of the
previous section. Hence we only state the result.

Lemma 8.10 In addition to the conditions of Lemma 8.4, assume that Pte =
β(x)Ptr, and ‖Φ(x)‖ ≤ R for all x ∈ X. Then, with probability at least 1 − δ,∥∥∥ 1

ntr

ntr∑
i=1

β(xtr
i )Φ(xtr

i ) − EPte

[
Φ(xte)

]∥∥∥ ≤
(
1 +

√
2 log 2/δ

)
RB/

√
ntr . (8.21)

This also can be used in combination with lemma 8.5, via a triangle inequality, to
bound deviations of

∑
i βiΦ(xtr

i ) from EPte [Φ(x)] whenever the deviation between
the two reweighted empirical samples is minimized as in (8.17).

To obtain a large deviation result with respect to the expected loss in Pte(x, y),
one would simply need to combine lemma 8.10 with a uniform convergence bound,
e.g., the bounds by Mendelson [2003].

8.5 The Connection to Single Class Support Vector Machines

8.5.1 Basic Setting

In single class SVM estimation [Schölkopf et al., 2001] one aims to find a function
f which satisfies

f(x)

{
≥ ρ for typical observations x

< ρ for novel observations x
(8.22)
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yet at the same time, f should be smooth. For functions in reproducing Kernel
Hilbert spaces f(x) = 〈Φ(x), w〉 this is obtained by solving the following optimiza-
tion problem:

minimize
w,ξ

C
n∑

i=1

ξi +
1
2
‖w‖2 (8.23a)

subject to 〈Φ(xi), w〉 ≥ ρ − ξi and ξi ≥ 0. (8.23b)

Since it is desirable to have an approximately fixed number of observations singled
out as novel, it is preferable to use the ν-formulation of the problem [Schölkopf
et al., 2000], which leads to

minimize
w,ξ,ρ

n∑
i=1

ξi − νnρ +
1
2
‖w‖2 (8.24a)

subject to 〈Φ(xi), w〉 ≥ ρ − ξi and ξi ≥ 0. (8.24b)

The key difference is that the fixed threshold ρ has been replaced by a variable
threshold, which is penalized by νnρ. Schölkopf et al. [2000] show that for n → ∞
the fraction of constraints (8.24b) being active converges to ν.

8.5.2 Relative Novelty Detection

Smola et al. [2005] show that novelty detection can also be understood as den-
sity estimation, where low-density regions are particularly emphasized, whereas
high-density regions beyond a certain threshold are ignored, and normalization is
discarded. This means that the formulation (8.23) is equivalent to minimizing

C
n∑

i=1

max
(

0,
p(xi;w)

p0 exp (g(w))

)
+

1
2
‖w‖2

, (8.25)

where p(x;w) is a member of the exponential family, i.e., p(x;w) = exp (〈Φ(x), w〉 − g(w)).
Here p0 exp(g(w)) acts as a reference threshold. Observations whose density exceeds
this threshold are considered typical, whereas observations below the threshold are
viewed as novel. Note that g(w) is the log-partition function which ensures that p

is suitably normalized.
Having a fixed reference threshold may not be the most desirable criterion for

novelty:

Assume that we have a density p(x) on the domain X. Now assume that we
perform a variable transformation ψ : X → Z. In this case the measure dp(x) is
transformed into dp(z) = dp(x)

∣∣∣dz(x)
dx

∣∣∣. Thus a simple variable transformation could
render observations novel which were considered typical before and vice versa. This
is clearly undesirable.

Assume that we already have a density model of the typical distribution of the
data, e.g., a model of how stars should be distributed in the sky, based on prior
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knowledge from astrophysics. We would want to test this assumption subsequently,
to discover whether and where the model has defects. This would provide us with
a list of observations which are particularly rare with respect to this model.

Hence we would need to modify the denominator in (8.25) to reflect this modifica-
tion via p0 ←− p0

∣∣∣dz(x)
dx

∣∣∣ or p0 ←− pmodel.

These cases can be taken care of effectively by extending (8.23) and (8.25) to
take a variable margin into account. For convenience, we do so for the variant using
the ν-trick, as it is easier to parameterize the optimization problem using ν rather
than C.

minimize
w,ξ,ρ

n∑
i=1

ξi − νnρ +
1
2
‖w‖2 (8.26a)

subject to 〈Φ(xi), w〉 ≥ ρi + ρ − ξi and ξi ≥ 0. (8.26b)

Here ρi = log p0(xi), i.e., ρi denotes a reference threshold. By using standard
Lagrange multiplier techniques we see that the dual problem of (8.26) is given
by

minimize
α

1
2

n∑
i,j=1

αiαjk(xi, xj) −
n∑

i=1

ρiαi (8.27a)

subject to
n∑

i=1

αi = νn and αi ∈ [0, 1]. (8.27b)

The only difference from standard ν-style novelty detection is that in the objective
function (8.27a) we have the additional linear term

∑
i ρiαi. This biases the solution

towards nonzero αi for which ρi is large. In other words, where the reference density
p0(xi) is large, the algorithm is more likely to find novel observations (where now
novelty is defined with respect to p0(x)). We state without proof an extension of
the ν-property, as the proof is identical to that of Schölkopf et al. [2001]. Note that
changing ρi → ρi + const. leaves the problem unchanged, as a constant offset in ρi

with a corresponding change of ρ → ρ + const. does not change the optimality of
the solution but merely leads to a constant shift in the objective function.

Theorem 8.11 (ν-Property) Assume the solution of (8.26) satisfies ρ �= 0. The
following statements hold:

1. ν is an upper bound on the fraction of outliers.

2. ν is a lower bound on the fraction of SVs.

3. Suppose the data X were generated independently from a distribution P(x) which
does not contain discrete components with respect to p0(x). Suppose, moreover, that
the kernel is analytic and nonconstant. With probability 1, asymptotically, ν equals
both the fraction of SVs and the fraction of outliers.
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8.5.3 From Novelty Detection to Sample Bias Correction

Note the similarity between (8.27) and (8.17). In fact, a simple reparameterization
of (8.17) (βi −→ Bαi) makes the connection even more clear:

Lemma 8.12 The problems (8.17) and (8.27) are equivalent subject to:

The fraction of nonzero terms is set to ν = 1
B .

The linear term ρi is given by

ρi =
ntr

nteB

nte∑
j=1

k(xtr
i , xte

j ). (8.28)

In other words, we typically will choose only a fraction of 1/B points for the covari-
ate shift correction. Moreover, we will impose a higher threshold of “typicality” for
those points which are very well aligned with the mean operator. That is, typical
points are more likely to be recruited for covariate shift correction.

Remark 8.13 (Connection to Parzen Windows) Note that ρi can also be ex-
pressed as ntr

B P̂te(x), that is, the Parzen window density estimate of Pte at location
x rescaled by ntr

B . In keeping with the reasoning above this means that we require
a higher-level estimate for observations which are relatively typical with respect to
the test set, and a lower threshold for observations not so typical with respect to the
test set.

8.6 Experiments

8.6.1 Toy Regression Example

Our first experiment is on toy data, and is intended mainly to provide a comparison
with the approach of Shimodaira [2000]. This method uses an information criterion
to optimize the weights, under certain restrictions on Ptr and Pte (namely, Pte

must be known, while Ptr can be either known exactly, Gaussian with unknown
parameters, or approximated via kernel density estimation).

Our data is generated according to the polynomial regression example from
Shimodaira [2000, Section 2], for which Ptr ∼ N(0.5, 0.52) and Pte ∼ N(0, 0.32) are
two normal distributions. The observations are generated according to y = −x+x3,
and are observed in Gaussian noise with standard deviation 0.3 (see the left-hand
plot in figure 8.1; the blue curve is the noise-free signal).

We sampled 100 training (darker circles) and testing (lighter crosses) points from
Ptr and Pte respectively. We attempted to model the observations with a degree
1 polynomial. The black dashed line is a best-case scenario, which is shown for
reference purposes: it represents the model fit using ordinary least squares (OLS)
on the labeled test points. The solid gray line is a second reference result, derived
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Figure 8.1 Left: Polynomial models of degree 1 fit with OLS and WOLS; Right: Average
performances of three WOLS methods and OLS on this example. Labels are ratio for ratio
of test to training density; KMM for our approach; min IC for the approach of Shimodaira
[2000]; and OLS for the model trained on the labeled test points.

only from the training data via OLS, and predicts the test data very poorly.
The other three dashed lines are fit with weighted ordinary least square (WOLS),
using one of three weighting schemes: the ratio of the underlying training and test
densities, KMM, and the information criterion of Shimodaira [2000]. A summary
of the performance over 100 trials is shown in figure 8.1. In this case, our method
outperforms the two other reweighting methods. Note that in this case the model
(linear) is much simpler than the equation describing the underlying curve (higher-
order polynomial).

8.6.2 Real World Datasets

We next test our approach on real world datasets, from which we select training
examples using a deliberately biased procedure (as in Zadrozny [2004] and Rosset
et al. [2004]). To describe our biased selection scheme, we need to define an
additional random variable si for each point in the pool of possible training
samples, where si = 1 means the ith sample is included, and si = 0 indicates
an excluded sample. Two situations are considered: the selection bias corresponds
to our key assumption 8.1 regarding the relation between the training and test
distributions, and P (si = 1|xi, yi) = P (si|xi); or si is dependent only on yi, i.e.,
P (si|xi, yi) = P (si|yi), which potentially creates a greater challenge since it violates
this assumption. The training and test data were generated by splitting the original
dataset at random, and then resampling the training data according to the biasing
scheme. The combination of splitting and biased resampling was repeated to obtain
an averaged value of test performance. Note that all data features were normalized
to zero mean and unit standard deviation before any other procedure was applied
(including training/test set splits and biased resampling of the training set).
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In the following, we compare our method (labeled KMM) against two others: a
baseline unweighted method (unweighted), in which no modification is made, and a
weighting by the inverse of the true sampling distribution (importance sampling),
as in Zadrozny [2004] and Rosset et al. [2004]. We emphasize, however, that our
method does not require any prior knowledge of the true sampling probabilities.
We used a Gaussian kernel exp(−|xi − xj |2/(2σ2)) in our kernel classification and
regression algorithms, except for the microarray data (in Section 8.6.3), where
we used a linear kernel. For kernel mean matching, we always used a Gaussian
kernel with identical size to the kernel in the learning algorithm. In the case
of the microarray data, we did not have this reference value, and thus set the
kernel size to the median distance between sample points. We set the parameters
ε = (

√
m − 1)/

√
m and B = 1000 in the optimization (8.17). Note that using

the same kernel size for the learning algorithms and the bias correction has no
guarantee of being optimal. The choice of optimal kernel size for KMM remains an
open question (see the conclusion, section 8.7, for a suggestion on further work in
this direction). The choice of B above is likewise a heuristic, and was sufficiently
large that none of the βi reached the upper bound. When B was reduced to the
point where a small percentage of the βi reached B, we found empirically on several
datasets that performance either did not change, or worsened (see table 8.1).

Breast Cancer Dataset Before providing a general analysis across multiple
datasets, we take a detailed look at one particular example: the breast cancer
dataset from the UCI archive. This is a binary classification task, and includes
699 examples from two classes: benign (positive label) and malignant (negative
label). Our first experiments explore the effect of varying C on the performance
of covariate shift correction, in the case of a support vector classifier. This is of
particular interest since C controls the trade-off between regularization and test
error (see (8.4)): small values of C favor smoothness of the decision boundary over
minimizing the loss. We fix the kernel size to σ =

√
5, and vary C over the range

C ∈ {0.01, 0.1, 1, 10, 100}. Test results always represent an average over 15 trials (a
trial being a particular random split of the data into training and test sets).

First, we consider a biased sampling scheme based on the input features, of
which there are nine, with integer values from 0 to 9. The data were first split into
training and test sets, with 25% of data reserved for training. Since smaller feature
values predominate in the unbiased data, the test set was subsampled according to
P (s = 1|x ≤ 5) = 0.2 and P (s = 1|x > 5) = 0.8. This subsampling was repeated
for each of the features in turn. Around 30% to 50% of the training points were
retained by the biased sampling procedure (the exact percentage depending on the
feature in question). Average performance is shown in figure 8.2.

Second, we consider a sampling bias that operates jointly across multiple features.
The data was randomly split into training and test sets, where the proportion
of examples used for training varied from 10% to 50%. We then subsampled
the training set, selecting samples less often when they were further from the
sample mean x over the training data, i.e., P (si|xi) ∝ exp(−γ‖xi − x‖2) where



8.6 Experiments 149

γ = 1/20. Around 70% of the training points were retained after the resampling. A
performance comparison is given in figure 8.3.

Finally, we consider a simple biased sampling scheme which depends only on the
label y: P (s = 1|y = 1) = 0.1 and P (s = 1|y = −1) = 0.9 (the data have on average
twice as many positive as negative examples when uniformly sampled). Prior to
this sampling, the data was again randomly split into training and test sets, with
a training proportion from 10% to 50%. Around 40% of the training points were
retained following the biased sampling procedure. Average performance is plotted
in figure 8.4.

In all three of the above examples, by far the greatest performance advantage
for both importance sampling and KMM-based reweighting is for small values of C

(and thus, for classifiers which put a high priority on a smooth decision boundary).
It is remarkable how great an improvement is found in these cases: the error reduces
to the point where it is very close to its value for optimal choice of C, even though
the unweighted error is on occasion extremely high. This advantage also holds
for bias over the labels, despite this violating our key assumption 8.1. Somewhat
surprisingly, we also see that covariate shift correction confers a small advantage for
very large values of C. While this is seen in all three experiments, it is particularly
apparent in the case of joint bias on the features (figure 8.2), where—except for the
smallest training sample size—KMM consistently outperforms the unweighted and
importance sampling cases.

For values C ∈ {1, 10} which fall between these extremes, however, KMM does
not have a consistent effect on performance, and often makes performance slightly
worse. In other words, the classifier is sufficiently powerful that it is able to learn
correctly over the entire input space, regardless of the weighting of particular
training points.

We conclude that for the UCI breast cancer data, covariate shift correction
(whether by importance sampling or KMM) has the advantage of widening the
range of C values for which good performance can be expected (and in particular,
greatly enhancing performance at the lowest C levels), at the risk of slightly
worsening performance at the optimal C range. Our conclusions are mixed, however,
regarding the effect on classifier performance of the number of training points. For
small C values and label bias, the unweighted classification performance approaches
the importance sampling and KMM performance with increasing training sample
size (figure 8.4). No such effect is seen in the case of joint feature bias (figure 8.3),
nor are there any clear trends for larger values of C.

We now address the question of cross-validating over σ, in accordance with the
first procedure described in section 8.4.2: i.e., on the weighted training sample,
without using a second weighting procedure on the validation set. This can be very
costly due to our use of the same σ for kernel mean matching as for classification:
we need to recompute the β for each new σ-value. That said, we anticipate that for
close to optimal parameter settings, for a sufficiently powerful class of learning
algorithms, the performance optimum for cross-validation over σ will occur at
roughly the same location for the weighted and unweighted sample (we bear
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Figure 8.2 Classification performance on UCI breast cancer data. An individual feature
bias scheme was used. Test error is reported on the y-axis, and the feature being biased
on the x-axis.
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Figure 8.3 Classification performance on UCI breast cancer data. A joint feature bias
scheme was used. Test error is reported on the y-axis, and the initial number of training
points (prior to biased training point selection) on the x-axis.
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Figure 8.4 Classification performance on UCI breast cancer data. A label bias scheme
was used. Test error is reported on the y-axis, and the initial number of training points
(prior to biased training point selection) on the x-axis.

in mind the point made by Sugiyama et al. [2007] that cross-validation on the
unweighted training data introduces an additional source of bias in the resulting
test error estimate, for cases of covariate shift). We are led to this conjecture by the
similar performance of the classifier at intermediate C-values for the weighted and
unweighted data (figures 8.2, 8.3, and 8.4). The cross-validation (CV) performance
of the classifier for fixed C = 10, σ ∈ {0.1, 1, 10, 100, 1000}, and a 9:1 training-
validation split is shown in figure 8.5, in the case of joint bias on the features
and an initial training sample size of 70 (prior to resampling; around 75% of
training points were retained following resampling). We note that the optimum
performance is obtained for the same value σ = 10 in all cases (unweighted,
importance-weighted with unweighted CV, importance-weighted with weighted CV,
KMM with unweighted CV, KMM with weighted CV), although in both KMM cases
the advantage of σ = 10 over σ = 1 is negligible. Thus, in subsequent experiments,
we cross-validate on the unweighted data.

Further Benchmark Datasets A question of particular interest is whether
dataset shift correction can improve performance when the learning algorithm
parameters are chosen by cross-validation, rather than being chosen to be “simpler”
than suggested by the data (as we saw in figures 8.2, 8.3, and 8.4 with small C-
values). Thus, we compare performance of various learning algorithms on both
unweighted and weighted training data from further benchmark datasets.2 We
selected training data via three biased sampling schemes. For sampling distribution
bias on labels, we used either P (s = 1|y) = exp(a + by)/(1 + exp(a + by)) (denoted

2. Regression data from http : //www.liacc.up.pt/ ∼ ltorgo/Regression/DataSets.html;
classification data from UCI.

http://www.liacc.up.pt
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Figure 8.5 Left: cross-validation error vs σ for unweighted SVM, and weighted and un-
weighted cross-validation scores for SVM with importance sampling and KMM reweighted
data; Right: Zoomed version of the left hand plot, showing performance for σ = 1
and σ = 10. Note: in the case of weighted cross-validation, the weighted CV error

1P
i βi

P
i βiIyi �=f(xi) is plotted.

label(a,b)), or the simple step distribution P (s = 1|y = 1) = a, P (s = 1|y = −1) = b

(denoted simple label). For the remaining datasets, we generated biased sampling
schemes over the features. We first did PCA, selecting the first principal component
of the training data and the corresponding projection values. Denoting the minimum
value of the projection as m and the mean as m, we applied a normal distribution
with mean m+(m−m)/a and variance (m−m)/b as the biased sampling scheme.
Detailed parameter settings are given in table 8.1. Our learning algorithms were
penalized LMS for regression, and SVM for classification. We used a Gaussian
kernel for both the kernel mean matching and the SVM/LMS regression. The
kernel size was chosen by tenfold cross-validation on the unweighted training
data over the set σ ∈ {0.1, 1, 10, 100, 1000}. This cross-validation procedure was
also used to search over the remaining parameters C ∈ {0.1, 1, 10, 100, 1000}
(for classification) or λ ∈ {1e − 3, 1e − 2, 0.1, 1, 10} (for regression). To evaluate
generalization performance, we applied the normalized mean square error (NMSE)
given by 1

nte

∑nte
i=1

(yte
i −μi)

2

var yte for regression problems, and the average test error for
classification problems. Results are listed in table 8.1.

The results from our experiments are mixed. In certain cases, both importance
sampling and KMM give similar results, which improve on the performance of the
unweighted case. These datasets are (7b,11,13,14). In one case (8), KMM alone
improves performance; in two further cases (3,7a), importance sampling improves
performance, whereas KMM does not. That said, the sampling bias for the latter
two datasets violates assumption 8.1, and the result is not surprising.

In a large number of cases, however, both for classification and regression, there
is very little difference between the original, importance-weighted, and KMM-
corrected results. In the case of regression, these datasets are (1,4,9,10); for classi-
fication, they are (5a,6b). Performance can even worsen due to the application of
KMM weighting and/or importance sampling. In some cases, the KMM correction
alone gives worse results (2,6a). In the case of dataset 6a, the failure of KMM is
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unsurprising, since assumption 8.1 does not hold. KMM does not necessarily fail in
this circumstance, however: in dataset 7a, there is little difference compared with
the unweighted case (although importance sampling improves performance). In yet
further instances, importance sampling worsens performance, but KMM has no ef-
fect (3,15). Finally, there exist cases where both KMM and importance sampling
worsen performance (5b,12). We note that mixed results were also reported inde-
pendently for KMM by Sugiyama et al. [2008, table 1], with performance being
improved or unchanged for good kernel size choice (KMM(0.3) in this table), and
worsening for poor kernel choice.

In comparison with the results of Huang et al. [2007, table 1], the current re-
sults are less favorable to both KMM and importance sampling: in particular, in
the earlier work, KMM always improved performance. This is because our earlier
experiments used parameters resulting in an overly simple classification/regression
function (in particular, the kernels sizes used were relatively large: see the cor-
responding column in Huang et al. [2007, table 1]). We conclude from our table
8.1 results that while covariate shift can still improve performance in cases where
the classification/regression parameters are chosen by cross-validation, this is not
guaranteed; moreover, we have yet to determine what properties of these particular
data are favorable to covariate shift. On the other hand, the application of covariate
shift correction through KMM/importance sampling can decrease performance in
this case, though the penalty is not generally too large.
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Table 8.2 Covariate shift correction for microarray data. The notation
“Gruvberger→West” indicates that we train on the data of Gruvberger and test
on that of West.

test error

Dataset SVM importance sampling KMM

Singh 0.40±0.02 0.091±0.006 0.083±0.005

Gruvberger→West 0.061 — 0.061

West→Gruvberger 0.086 — 0.052

Dhanasekaran→Welsh 0.03 — 0.09

Welsh→Dhanasekaran 0.26 — 0.17

8.6.3 Tumor Diagnosis Using Microarrays

Our next benchmark is a dataset of 102 microarrays from prostate cancer pa-
tients [Singh et al., 2002]. Each of these microarrays measures the expression levels
of 12,600 genes. The dataset comprises 50 samples from normal tissues (positive
label) and 52 from tumor tissues (negative label). We simulate the realistic scenario
that two sets of microarrays A and B are given with dissimilar proportion of tumor
samples, and we want to perform cancer diagnosis via classification, training on
A and predicting on B. As a preprocessing step, the data was normalized to have
zero mean and unit variance for each feature. We selected training examples via a
biased selection scheme as P (s = 1|y = 1) = 0.85 and P (s = 1|y = −1) = 0.15; the
remaining data points form the test set. We performed SVM classification using
a linear SVM setting C = 1000 (there being too little data for cross-validation),
for the unweighted, the KMM, and the importance sampling approaches. In the
case of KMM, the kernel size was the median distance between training sample
points. Results are given in table 8.2, and represent the average performance over
50 training/test splits. We note that both importance sampling and KMM result
in a substantial performance improvement, with KMM outperforming importance
sampling (despite the violation of assumption 8.1).

We now use the same setting to investigate dataset shift for microarray studies
on the same tissue by different laboratories. We first consider two breast cancer
microarray datasets from Gruvberger et al. [2001] and West et al. [2001], measuring
the expression levels of 2166 common genes for normal and cancer patients [Warnat
et al., 2005]. All settings for the data preprocessing, the SVM, and KMM, were
identical to our first experiment. Results are listed in table 8.2, and describe both
training on West and testing on Gruvberger, as well as training on Gruvberger and
testing on West.3 In the former case, KMM causes a performance improvement
compared with the unweighted data; in the latter case, performance remains
constant.

3. Note: Since the biasing scheme for these data is not know, there is no importance
sampling result.
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Finally, we study the same scenario for two prostate cancer datasets: Dhanasekaran
et al. [2001] vs. Welsh et al. [2001]. Results are again in table 8.2. In this case our
results are mixed: while training on Welsh and testing on Dhanasekaran demon-
strates a substantial performance gain when using KMM, the reverse procedure
results in a (smaller) performance reduction for KMM. We conclude that while
KMM more often results in performance increases in microarray data than in the
UCI benchmark sets of the previous section, this performance improvement is not
guaranteed.

8.7 Conclusion

We present a new approach, kernel mean matching (KMM), for dealing with
sampling bias in various learning problems. We directly estimate the resampling
weights by matching training and test distribution feature means in a reproducing
kernel Hilbert space. In addition, we develop bounds on the mean matching error,
and transductive risk bounds, based on the maximum ratio of the distributions and
the sample sizes.

In our experiments, it appears that with properly chosen parameters (via cross-
validation), kernel classification and regression methods occasionally benefit from
covariate shift correction, but for the most part do not. This is true both when the
correction is made using KMM, and via the “optimal” reweighting given by the ratio
of test and training probabilities (note that the latter is unavailable in real-world
applications). We also emphasize that our results were obtained using the heuristic
that the KMM kernel size was set to the kernel size of the classification/regression
algorithm. Sugiyama et al. [2008, table 1] demonstrated that kernel size has a
strong effect on KMM performance (though no comparison was made between
the optimal KMM kernel size and that chosen by cross-validation for the learning
algorithm). Thus, performance of KMM might be further improved by a more
principled strategy for KMM kernel choice.4

Major benefits can be obtained from covariate shift correction when a simple
classification/regression function is used. There are several reasons for not using a
“correct” model, but rather a deliberately simpler one: these include interpretability
on the one hand; and on the other hand difficulties in correct model selection by
cross-validation, especially for higher-dimensional data and small sample sizes (for
instance, in our microarray experiments, where we used a linear classifier, and where
the performance of KMM was generally better). Covariate shift correction allows us
to make use of these simpler models without too significant a performance penalty.

4. One approach might be along the lines of Fukumizu et al. [2008], where the variance of
a kernel dependence statistic was computed via both a closed-form expression and random
permutations of the sample: a good kernel size caused these quantities to match. In our
case, the relevant statistic is a difference in RKHS means, so an appropriate closed-form
variance expression might derive from Gretton et al. [2007].
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8.8 Appendix: Proofs

Theorem 8.2

Proof: By definition μ is surjective on the marginal polytope, since the latter is
defined as the set of all expectations of Φ(x). We now prove injectivity.

Let F be a universal RKHS, and let G be the unit ball in F. We need to prove
that Ptr = Pte if μ(Ptr) = μ(Pte), or equivalently ‖μ(Ptr) − μ(Pte)‖ = 0. We have

‖μ(Ptr) − μ(Pte)‖ = sup
f∈G

〈f, μ(Ptr) − μ(Pte)〉

= sup
f∈G

(EPtr [f ] − EPte [f ])

=: Δ [G, Ptr,Pte] .

We use a result from Dudley [2002, lemma 9.3.2]: If Ptr,Pte are two Borel prob-
ability measures defined on a separable metric space X, then Ptr = Pte if and
only if EPtr [f ] = EPte [f ] for all f ∈ C(X), where C(X) is the space of contin-
uous bounded functions on X. If we can show that Δ [C(X),Ptr,Pte] = D for
some D > 0 implies Δ [G, Ptr,Pte] > 0: this is equivalent to Δ [G, Ptr, Pte] = 0
implying Δ [C(X),Ptr,Pte] = 0 (where this last result implies Ptr = Pte). If
Δ [C(X),Ptr,Pte] = D, then there exists some f̃ ∈ C(X) for which EPtr

[
f̃
]
−

EPte

[
f̃
]
≥ D/2. By definition of universality, F is dense in C(X) with respect to

the L∞ norm: this means that for all ε ∈ (0, D/8), we can find some f∗ ∈ F satis-
fying

∥∥∥f∗ − f̃
∥∥∥
∞

< ε. Thus, we obtain
∣∣∣EPtr [f∗] − EPtr

[
f̃
]∣∣∣ < ε and consequently

|EPtr [f∗] − EPte [f∗]| >
∣∣∣EPtr

[
f̃
]
− EPte

[
f̃
]∣∣∣− 2ε > D

2 − 2D
8 = D

4 > 0.
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Finally, using ‖f∗‖ < ∞, we have

[EPtr [f∗] − EPte [f∗]] /‖f∗‖ ≥ D/(4 ‖f∗‖) > 0,

and hence Δ [G, Ptr,Pte] > 0.

Lemma 8.5

Proof: Let

Ξ(Xtr, Xte) :=

∥∥∥∥∥ 1
ntr

ntr∑
i=1

β(xtr
i )Φ(xtr

i ) − 1
nte

nte∑
i=1

Φ(xte
i )

∥∥∥∥∥ . (8.29)

The proof follows firstly by its tail behavior using a concentration inequality, and
subsequently by bounding the expectation.

For the proof we need the following result by McDiarmid [1989]:

Theorem 8.14 Denote by f(x1, . . . , xn) a function of n independent random vari-
ables. Moreover let

|f(x1, . . . , xn) − f(x1, . . . , xi−1, x̄, xi+1, . . . , xn)| ≤ ci (8.30)

for all x1, . . . , xn and x̄. Denote by C :=
∑

i c2
i . In this case

P {|f(x1, . . . , xn) − Ex1,...xn
[f(x1, . . . , xn)]| > ε} < 2 exp(−2ε2/C). (8.31)

To apply McDiarmid’s tail bound, we need to bound the change in Ξ(Xtr, Xte) if
we replace any xtr

i by an arbitrary x ∈ X and likewise if we replace any xte
i by some

x ∈ X. By the triangle inequality the replacement of xtr
i by x can change Ξ(Xtr, Xte)

by at most 1
ntr

‖β(xtr
i )Φ(xtr

i ) − β(x)Φ(x)‖ ≤ 2BR
ntr

. Likewise, a replacement of xte
i

by x changes Ξ(Xtr, Xte) by at most 2R
nte

. Since ntr(2BR/ntr)2 + nte(2R/nte)2 =
4R2(B2/ntr + 1/nte) we have

P {|Ξ(Xtr, Xte) − EXtr,Xte [Ξ(Xtr, Xte)]| > ε}
≤ 2 exp

(−ε2/2R2(B2/ntr + 1/nte)
)
.

Hence with probability 1− δ the deviation of the random variable from its expecta-

tion is bounded by |Ξ(Xtr, Xte)−EXtr,Xte [Ξ(Xtr, Xte)] | ≤ R

√
2 log 2

δ

(
B2

ntr
+ 1

nte

)
.

To bound the expected value of Ξ(Xtr, Xte) we use

EXtr,Xte [Ξ(Xtr, Xte)] ≤
√

EXtr,Xte [Ξ(Xtr, Xte)2].

Expanding out the expectation, and denoting by x̃te a random variable drawn from
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Pte and independent of xte, we get

EXtr,Xte

∥∥∥ 1
ntr

ntr∑
i=1

β(xtr
i )Φ(xtr

i ) − 1
nte

nte∑
i=1

Φ(xte
i )
∥∥∥2

=
1

n2
tr

EXtr

⎡⎣ ntr∑
i,j=1

β(xtr
i )β(xtr

j )k(xtr
i , xtr

j )

⎤⎦+
1

n2
te

EXte

⎡⎣ nte∑
i,j=1

k(xte
i , xte

j )

⎤⎦
− 2EXtr,Xte

1
ntrnte

[
ntr∑
i=1

nte∑
i=1

β(xtr
i )k(xtr

i , xte
j )

]
=EPtek(xte, x̃te) +

1
ntr

EPte

[
β(xte)k(xte, xte)

]
+ EPtek(xte, x̃te)

+
1

nte
EPte

[
k(xte, xte)

]− 2EPtek(xte, x̃te) + O
(
n−2

tr

)
+ O

(
n−2

te

)
�R2 [B/ntr + 1/nte] < R2

[
B2/ntr + 1/nte

]
.

The final line uses that B < B2 since B > 1 (due to the constraint (8.14)).
Combining the bounds on the mean and the tail proves the claim.

Lemma 8.7

Proof: To see the claim, first note that by assumption 8.1 the conditional
distributions P(y|x) are the same for Ptr and Pte. By linearity we can apply the
expectation EY |X to each summand individually. Finally, by assumption 8.6 the
expected loss l(x, θ) can be written as 〈Ψ(x), θ〉. Hence we may rewrite the LHS of
(8.19) as

sup
l(·,θ)∈G

∣∣∣∣∣ 1
ntr

ntr∑
i=1

βil(xtr
i , θ) − 1

nte

nte∑
i=1

l(xte
i , θ)

∣∣∣∣∣
≤ sup

‖Θ‖≤C

∣∣∣∣∣
〈

1
ntr

ntr∑
i=1

βiΨ(xtr
i ) − 1

nte

nte∑
i=1

Ψ(xte
i ),Θ

〉∣∣∣∣∣ .

By the definition of norms this is bounded by Cε, which proves the claim.

Lemma 8.8

Proof: The strategy is almost identical to that of lemma 8.5 and of Mendelson
[2003]. Let

Ξ(Ytr) := sup
l(·,·,θ)∈G

1
ntr

ntr∑
i=1

βi

[
l(xtr

i , ytr
i , θ) − l(xtr

i , θ)
]

(8.32)

be the maximum deviation between empirical mean and expectation. Key is that
the random variables ytr

1 , . . . , ytr
m are conditionally independent given Xtr. Replacing

one ytr
i by an arbitrary y ∈ Y leads to a change in Ξ(Ytr) which is bounded by
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βi

ntr
C ‖Υ(xtr

i , ytr
i ) − Υ(xtr

i , y)‖ ≤ 2CRβi/m. Using McDiarmid’s theorem we can
bound

PY |X
{|Ξ(Ytr) − EY |XΞ(Ytr)| > ε

} ≤ 2 exp
(
−ε2n2

tr/
(
2C2R2 ‖β‖2

2

))
. (8.33)

In other words, M := n2
tr/ ‖β‖2

2 acts as an effective sample size when it comes to
determining large deviations. Next we use symmetrization to obtain a bound on
the expectation of Ξ(Ytr), that is,

EY |X [Ξ(Ytr)] ≤ 1
ntr

EY |XEeY |X

[
sup

l(·,·,θ)∈G

∣∣∣∣∣
ntr∑
i=1

βil(xtr
i , yi, θ) − βil(xtr

i , ỹi, θ)

∣∣∣∣∣
]

≤ 2
ntr

EY |XEσ

[
sup

l(·,·,θ)∈G

∣∣∣∣∣
ntr∑
i=1

σiβil(xtr
i , yi, θ)

∣∣∣∣∣
]

, (8.34)

where the σi take values in {±1} with equal probability, and ỹi is drawn from
P(ỹi|xtr

i ) independently of yi. The first inequality follows from convexity. The second
one follows from the fact that all yi, ỹi pairs are independently and identically
distributed, hence we can swap these pairs.

For constant βi the RHS in (8.34) is referred to as the Rademacher average. To
make actual progress in computing this, we use the condition in assumption 8.6
that l(x, y, θ) = 〈Υ(x, y),Λ〉 for some Λ with ‖Λ‖ ≤ C. This allows us to bound the
supremum. This, and the convexity of x2 yields a series of bounds on the RHS in
(8.34),

RHS ≤ 2
ntr

EY |XEσC

∥∥∥∥∥
ntr∑
i=1

σiβiΥ(xtr
i , yi)

∥∥∥∥∥
≤ 2

ntr
C

√√√√EY |XEσ

∥∥∥∥∥
ntr∑
i=1

σiβiΥ(xtr
i , yi)

∥∥∥∥∥
2

=
2

ntr
C

√√√√ ntr∑
i=1

β2
i Eyi|xtr

i
‖Υ(xtr

i , yi)‖2

≤ 2
ntr

CR ‖β‖2 =
2CR√

M
.

Combined with the bound on the expectation and solving the tail bound for ε proves
the claim.



9 Discriminative Learning under Covariate

Shift with a Single Optimization Problem

Steffen Bickel
Michael Brückner
Tobias Scheffer

We address classification problems for which the training instances are governed
by a distribution that is allowed to differ arbitrarily from the test distribution—
problems also referred to as classification under covariate shift. We derive a solution
that is purely discriminative: neither training nor test distribution is modeled
explicitly. We formulate the general problem of learning under covariate shift as
an integrated optimization problem and instantiate a kernel logistic regression and
an exponential model classifier for differing training and test distributions. We
show under which condition the optimization problem is convex. We study the
method empirically on problems of spam filtering, text classification, and land mine
detection.

9.1 Introduction

Most machine learning algorithms are constructed under the assumption that the
training data is governed by the exact same distribution which the model will
later be exposed to. In practice, control over the data generation process is often
less than perfect. Training data may be obtained under laboratory conditions that
cannot be expected after deployment of a system; spam filters may be used by
individuals whose distribution of inbound emails diverges from the distribution
reflected in public training corpora; image processing systems may be deployed
to foreign geographic regions where vegetation and lighting conditions result in a
distinct distribution of input patterns.

The case of distinct training and test distributions in a learning problem has
been referred to as covariate shift and sample selection bias—albeit the term sample
selection bias actually refers to a case in which each training instance is originally
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drawn from the test distribution, but is then selected into the training sample with
some probability, or discarded otherwise.

The covariate shift model and the missing at random case in the sample selection
bias model allow for differences between the training and test distribution of
instances; the conditional distribution of the class variable given the instance is
constant over training and test set.

In discriminative learning tasks such as classification, the classifier’s goal is to
produce the correct output given the input. It is widely accepted that this is best
performed by discriminative learners that directly maximize a quality measure of
the produced output. Model-based optimization criteria such as the joint likelihood
of input and output, by contrast, additionally assess how well the classifier models
the distribution of input values. This amounts to adding a term to the criterion
that is irrelevant for the task at hand.

We contribute a discriminative model for learning under arbitrarily different
training and test distributions. The model directly characterizes the divergence
between training and test distribution, without the intermediate – intrinsically
model-based – step of estimating training and test distribution. We formulate
the search for all model parameters as an integrated optimization problem. This
complements the predominant procedure of first estimating the bias of the training
sample, and then learning the classifier on a weighted version of the training sample.
We show that the integrated optimization can be convex, depending on the model
type; it is convex for the exponential model. We derive a Newton gradient descent
procedure, leading to a kernel logistic regression and an exponential model classifier
for covariate shift.

After formalizing the problem setting in section 9.2, we review models for differing
training and test distributions in section 9.3. Section 9.4 introduces our discrimi-
native model [Bickel et al., 2007] and section 9.5 describes the joint optimization
problem. We derive primal and kernelized classifiers for differing training and test
distributions in sections 9.6 and 9.7. In section 9.8, we analyze the convexity of
the integrated optimization problem. Section 9.9 provides empirical results and
section 9.10 concludes.

9.2 Problem Setting

In the covariate shift problem setting, a labeled training sample Xtr =
〈(x1), . . . , (xntr)〉 with labels Y tr = 〈(y1), . . . , (yntr)〉 is available. This training
sample is governed by an unknown distribution p(x|λ); labels are drawn ac-
cording to an unknown target concept p(y|x). In addition, an unlabeled test set
Xte = 〈xntr+1, . . . ,xntr+nte〉 becomes available. The test set is governed by a dif-
ferent unknown distribution, p(x|θ). Training and test distribution may differ arbi-
trarily, but there is only one unknown target conditional class distribution p(y|x).

The goal is to find a classifier f : x �→ y and to predict the missing labels
yntr+1, . . . , yntr+nte for the test instances. From a purely transductive perspective,
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the classifier can even be seen as an auxiliary step and may be discarded after
the labels yntr+1, . . . , yntr+nte have been conceived. The classifier should in any
case perform well on the test data; that is, it should minimize some loss function
E(x,y)∼θ[�(f(x), y)] that is defined with respect to the unknown test distribution
p(x|θ).

Note that directly training f on the training data Xtr would minimize the loss
with respect to p(x|λ). The minimum of this optimization problem will not generally
coincide with the minimal loss on p(x|θ).

9.3 Prior Work

If training and test distributions were known, then the loss on the test distribution
could be minimized by weighting the loss on the training distribution with an
instance-specific factor. Proposition 9.1 [Shimodaira, 2000] illustrates that the
scaling factor has to be p(x|θ)

p(x|λ) .

Proposition 9.1 The expected loss with respect to θ equals the expected loss with
respect to λ with weights p(x|θ)

p(x|λ) for the loss incurred by each x, provided that the
support of p(x|θ) is contained in the support of p(x|λ):

E(x,y)∼θ[�(f(x), y)] = E(x,y)∼λ

[
p(x|θ)
p(x|λ)

�(f(x), y)
]

. (9.1)

After expanding the expected value into its integral
∫

�(f(x), y)p(x, y|θ)dθ, the
joint distribution p(x, y|λ) is decomposed into p(x|λ)p(y|x, λ). Since p(y|x, λ) =
p(y|x) = p(y|x, θ) is the global conditional distribution of the class variable given
the instance, proposition 9.1 follows. All instances x with positive p(x|θ) are
integrated over. Hence, (9.1) holds as long as each x with positive p(x|θ) also has
a positive p(x|λ); otherwise, the denominator vanishes. This shows that covariate
shift can only be compensated for as long as the training distribution covers the
entire support of the test distribution. If a test instance had zero density under the
training distribution, the test-to-training density ratio which it would need to be
scaled with would incur a zero denominator.

Both, p(x|θ) and p(x|λ) are unknown, but p(x|θ) is reflected in Xte, as is p(x|λ)
in Xtr. A straightforward approach to compensating for covariate shift is to first
obtain estimates p̂(x|θ) and p̂(x|λ) from the test and training data, respectively,
using kernel density estimation [Shimodaira, 2000; Sugiyama and Müller, 2005b],
(see also chapter 7). In a second step, the estimated density ratio is used to re-
sample the training instances, or to train with weighted examples.

This method decouples the problem. First, it estimates training and test distribu-
tions. This step is intrinsically model-based and only loosely related to the ultimate
goal of accurate classification. In a subsequent step, the classifier is derived given
fixed weights. Since the parameters of the final classifier and the parameters that
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control the weights are not independent, this decomposition into two optimization
steps cannot generally find the optimal setting of the joint parameter vector.

A line of work on learning under sample selection bias has meandered from
the statistics and econometrics community into machine learning [Heckman, 1979;
Zadrozny, 2004]. Sample selection bias relies on a model of the data generation
process. Test instances are drawn under p(x|θ). Training instances are drawn by
first sampling x from the test distribution p(x|θ). A selector variable s then decides
whether x is moved into the training set (s = 1) or moved into the rejected set
(s = 0). For instances in the training set (s = 1) a label is drawn from p(y|x);
for the instances in the rejected set the labels are unknown. A typical scenario
for sample selection bias is credit scoring. The labeled training sample consists of
customers who were given a loan in the past and the rejected sample are customers
that asked for but were not given a loan. New customers asking for a loan reflect
the test distribution.

The distribution of the selector variable maps the test onto the training distri-
bution:

p(x|λ) ∝ p(x|θ)p(s = 1|x, θ, λ). (9.2)

Proposition 9.2 [Zadrozny, 2004; Bickel and Scheffer, 2007] says that minimizing
the loss on instances weighted by p(s|x, θ, λ)−1 in fact minimizes the expected loss
with respect to θ.

Proposition 9.2 The expected loss with respect to θ is proportional to the expected
loss with respect to λ with weights p(s = 1|x, θ, λ)−1 for the loss incurred by each
x, provided that the support of p(x|θ) is contained in the support of p(x|λ).

E(x,y)∼θ[�(f(x), y)] ∝ E(x,y)∼λ

[
1

p(s = 1|x, θ, λ)
�(f(x), y)

]
. (9.3)

When the model is implemented, p(s = 1|x, θ, λ) is learned by discriminating the
training against the rejected examples; in a second step the target model is learned
by following proposition 9.2 and weighting training examples by p(s|x, θ, λ)−1. No
test examples drawn directly from p(x|θ) are needed to train the model; only labeled
selected and unlabeled rejected examples are required. This is in contrast to the
covariate shift model that requires samples drawn from the test distribution, but
no selection process is assumed and no rejected examples are needed.

Propensity scores [Rosenbaum and Rubin, 1983; Lunceford and Davidian, 2004]
are applied in settings related to sample selection bias; the training data is again
assumed to be drawn from the test distribution p(x|θ) followed by a selection
process. The difference from the sample selection bias setting is that the selected and
the rejected examples are labeled. Weighting the selected examples by the inverse
of the propensity score p(s = 1|x, λ, θ)−1 and weighting the rejected examples
by p(s = 0|x, λ, θ)−1 results in two unbiased samples with respect to the test
distribution.
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Propensity scoring can precede a variety of analysis steps. This can be the training
of a target model on reweighted data or just a statistical analysis of the two
reweighted samples. A typical application for propensity scores is the analysis of
the success of a medical treatment. Patients are selected to be given the treatment
and some other patients are selected into the control group. If the selection is not
randomized the outcome (e.g., ratio of cured patients) of the two groups cannot be
compared directly and propensity scores can be applied.

Maximum entropy density estimation under sample selection bias has been
studied by Dud́ık et al. [2006]. Bickel and Scheffer [2007] impose a Dirichlet process
prior on several learning problems with related sample selection bias. Elkan [2001]
and Japkowicz and Stephen [2002] investigate the case of training data that is only
biased with respect to the class ratio; this can be seen as sample selection bias
where the selection only depends on y.

Kernel mean matching (Gretton et al. in chapter 8) is a two-step method that first
finds weights for the training instances such that the first momentum of training and
test sets—i.e., their mean value—matches in feature space. The subsequent training
step uses these weights. The procedure requires a universal kernel. Matching the
means in feature space is equivalent to matching all moments of the distributions
if a universal kernel is used.

Φ(·) is a mapping into a feature space and B is a regularization parameter.
Gretton et al. in chapter 8 derive a quadratic program from (9.4) that can be
solved with standard optimization tools:

minα

∣∣∣∣∣
∣∣∣∣∣ 1
ntr

ntr∑
i=1

αiΦ(xi) − 1
nte

ntr+nte∑
i=ntr+1

Φ(xi)

∣∣∣∣∣
∣∣∣∣∣
2

(9.4)

subject to αi ∈ [0, B] and
∣∣∣ 1
ntr

∑ntr
i=1 αi − 1

∣∣∣ ≤ ε .

9.4 Discriminative Weighting Factors

In this section, we derive a purely discriminative model that directly estimates
weights for the training instances. No distributions over instances are modeled
explicitly. We first introduce a selector variable σ: For each element x of the training
set, selector variable σ = 1 indicates that it has been drawn into Xtr. For each x
in the test data, σ = −1 indicates that it has been drawn into the test set. The
probability p(σ = 1|x, θ, λ) has the following intuitive meaning: Given that an
instance x has been drawn at random from the bag Xtr ∪ Xte of training and
test set, the probability that x originates from Xtr is p(σ = 1|x, θ, λ). Hence, the
value of σ is observable for all training (σ = 1) and test (σ = −1) instances. The
dependency between the instances and σ is undirected; neither training nor test set
is assumed to be generated from the other sample.

In the following equations we will derive a discriminative expression for p(x|θ)
p(x|λ)

which will no longer include any density on instances. When p(σ = −1) �= 0 – which
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is implied by the test set not being empty – then the definition of σ allows us to
rewrite the test distribution as p(x|θ) = p(x|σ = −1, θ). Since test instances are
only dependent on parameter θ but not on parameter λ, equation p(x|σ = −1, θ) =
p(x|σ = −1, θ, λ) follows. By an analogous argument, p(x|θ) = p(x|σ = 1, θ, λ)
when p(σ = 1) �= 0. This implies (9.5).

In (9.6) the Bayes rule is applied twice; the two terms of p(x|θ, λ) cancel each
other out in (9.7). Since p(σ = −1|x, θ, λ) = 1 − p(σ = 1|x, θ, λ), (9.8) follows.The
conditional p(σ = 1|x, θ, λ) discriminates training (σ = 1) against test instances
(σ = −1).

p(x|θ)
p(x|λ)

= p(x|σ = −1, θ, λ)
1

p(x|σ = 1, θ, λ)
(9.5)

=
p(σ = −1|x, θ, λ)p(x|θ, λ)

p(σ = −1|θ, λ)
p(σ = 1|θ, λ)

p(σ = 1|x, θ, λ)p(x|θ, λ)
(9.6)

=
p(σ = 1|θ, λ)

p(σ = −1|θ, λ)
p(σ = −1|x, θ, λ)
p(σ = 1|x, θ, λ)

(9.7)

=
p(σ = 1|θ, λ)

p(σ = −1|θ, λ)

(
1

p(σ = 1|x, θ, λ)
− 1

)
. (9.8)

The significance of (9.8) is that it shows how the optimal example weights, the test-
to-training ratio p(x|θ)

p(x|λ) , can be determined without knowledge of either training
or test density. The right-hand side of (9.8) can be evaluated based on a model
that discriminates training from test examples and outputs how much more likely
an instance is to occur in the test data than it is to occur in the training data.
Instead of potentially high-dimensional densities p(x|θ) and p(x|λ), a conditional
distribution of the single binary variable σ needs to be modeled.

Equation (9.8) leaves us with the problem of estimating a parametric model
p(σ = 1|x,v) of p(σ = 1|x, θ, λ). Such a model would predict test-to-training
density ratios for the training data in L according to (9.8). In the following, we
will derive the optimization problem that simultaneously determines parameters v
of the test-to-training ratios and parameters w of the target classifier.

9.5 Integrated Model

Our goal is to find a classifier f which minimizes the expected loss under the test
distribution. To this end, the best conceivable approximation is given by the Bayes
decision based on all data available (9.9). For each test instance x, the Bayes rule
decides on the class which minimizes the expected loss given x and all available
data (9.10),

argminfE(x,y)∼θ[�(f(x), y)] ≈ fBayes(x;Xtr, Xte) (9.9)

with fBayes(x;Xtr, Xte) = argminy′
∑

y

�(y′, y)p(y|x, Xtr, Xte) . (9.10)
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Let w be the parameters of a classification function p(y|x,w) and let v parameterize
a model p(σ = 1|x,v) that characterizes the training-test difference. The Bayes
decision is obtained by Bayesian model averaging—i.e., by integrating over all model
parameters in (9.11),

p(y|x, Xtr, Xte) =
∫ ∫

p(y|x,w)p(w,v|Xtr, Xte)dvdw . (9.11)

(9.11) exploits that class-label posterior p(y|x,w) is conditionally independent
of the parameters v of the test-to-training ratio given w, and also conditionally
independent of the data given its parameters w. Bayesian model averaging (9.11)
is usually computationally infeasible. The integral is therefore approximated by the
single assignment of values the parameters which maximizes it, the MAP estimator.
In our case, the MAP estimator naturally assigns values to all parameters, w and
v (9.13):

fMAP(x;Xtr, Xte) = argmaxyp(y|x,wMAP) (9.12)

with (wMAP,vMAP) = maxw,vp(w,v|Xtr, Xte) (9.13)

= maxw,vp(w|v, Xtr, Xte)p(v|Xtr, Xte) (9.14)

= maxw,vp(w|v, Xtr)p(v|Xtr, Xte) (9.15)

∝ maxw,vP (Xtr|w,v)P (Xtr, Xte|v)p(w)p(v) .(9.16)

Equation (9.14) factorizes the joint posterior; (9.15) exploits that w is conditionally
independent of the test data when the training-test difference v is given. Equation
9.16 applies the Bayes rule and shows that the posterior can be factorized into a
likelihood function of the training data given the model parameters P (Xtr|w,v), a
likelihood function of the observed selection variables σ—written P (Xtr, Xte|v)—
and the priors on the model parameters.

The class-label posterior p(y|x,wMAP) is conditionally independent of vMAP

given wMAP. However, wMAP and vMAP are dependent. Assigning a single MAP
value to [w,v] instead of integrating over all values corresponds to the common
approximation of the Bayes decision rule by a MAP hypothesis. However, sequential
maximization of p(v|Xtr, Xte) over parameters v followed by maximization of
p(w|v, Xtr) with fixed v over parameters w would amount to an additional degree
of approximation and will not generally coincide with the maximum of the product
in (9.14).

We will now discuss the likelihood functions P (Xtr|w,v) and P (Xtr, Xte|v).
Since our goal is discriminative training, the likelihood function P (Xtr|w) (not
taking training-test difference v into account) would be

∏
i p(yi|xi,w). Intuitively,

p(x|θ)
p(x|λ) dictates how many times, on average, x should occur in Xtr if Xtr was
governed by the test distribution θ. When the individual conditional likelihood of x
is p(y|x,w), then the likelihood of p(x|θ)

p(x|λ) occurrences of x is p(y|x,w)
p(x|θ)
p(x|λ) . Using a

parametric model p(σ|x,v), according to (9.8) the test-to-training ratio p(x|θ)
p(x|λ) can
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be expressed as

p(σ = 1|v)
p(σ = −1|v)

(
1

p(σ = 1|x,v)
− 1

)
.

Therefore, we define the likelihood function as

P (Xtr|w,v) =

(
ntr∏
i=1

P (yi|xi;w)
p(σ=1|v)

p(σ=−1|v)

“
1

p(σi=1|xi;v)−1
”)

. (9.17)

As an immediate corollary of Manski and Lerman [1977], the likelihood function of
(9.17) has the property that when the true value v∗ is given, its maximizer over w
is a consistent estimator of the true parameter w∗ that has produced labels for the
test data under the test distribution θ. That is, as the sample grows, the maximizer
of (9.17) converges in probability to the true value w∗ of parameter w.

The likelihood function P (Xtr, Xte|v) resolves to P (σi = 1|xi;v) for all training
instances and P (σi = −1|xi;v) for all test instances:

P (Xtr, Xte|v) =

(
ntr∏
i=1

P (σi = 1|xi;v)
ntr+nte∏
i=ntr+1

P (σi = −1|xi;v)

)
. (9.18)

Equation (9.19) summarizes (9.13) through (9.18). Equation (9.20) inserts the
likelihood models (9.17) and (9.18) and draws constants p(σ=1|v) and p(σ=−1|v)
out of the product.

p(w,v|Xtr, Xte) ∝ P (Xtr|w,v)P (Xtr, Xte|v)p(w)p(v) (9.19)

=

(
ntr∏
i=1

P (y|xi;w)
1

p(σi=1|xi;v)−1

) p(σ=1|v)
p(σ=−1|v)

(9.20)(
ntr∏
i=1

P (σi = 1|xi;v)
ntr+nte∏
i=ntr+1

P (σi = −1|xi;v)

)
p(w)p(v) .

Out of curiosity, let us briefly consider the extreme case of disjoint training and
test distributions, i.e., p(x|θ)p(x|λ) = 0 for all x. In this case, the second factor is
maximized by a v that assigns p(σ = 1|x;v) = 1 for all elements of Xtr (subject to a
possible regularization imposed by p(v)). Hence, the likelihood of the training data
p(y|x,w)

1
1−1 equals 1 for all possible classifiers w. The choice of the classifier w is

thus determined solely by the inductive bias p(w). This result makes perfect sense
because the training sample contains no information about the test distribution.

Using a logistic model for p(σ = 1|x,v), we notice that (9.8) can be simplified as
in (9.21):

p(σ = 1|v)
p(σ = −1|v)

(
1

1/(1 + exp(−vTx))
− 1

)
=

p(σ = 1|v)
p(σ = −1|v)

exp(−vTx) . (9.21)

Optimization problem (9.3) is derived from (9.20) in logarithmic form, using lin-
ear models vTxi and wTxi and a logistic model for p(σ = 1|x,v). Negative
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log-likelihoods are abbreviated �w(yiwTxi) = − log p(yi|xi;w) and �v(σivTxi) =
− log p(σi|xi;v), respectively; this notation emphasizes the duality between likeli-
hoods and empirical loss functions. The regularization terms correspond to Gaus-
sian priors on v and w with variances s2

v and s2
w.

Optimization Problem 9.3 Over all w and v, minimize
ntr∑
i=1

p(σ = 1|v)
p(σ = −1|v)

exp(−vTxi)�w(yiwTxi)

+
ntr+nte∑

i=1

�v(σivTxi) +
1

2s2
w

wTw +
1

2s2
v

vTv .

9.6 Primal Learning Algorithm

We derive a Newton gradient method that directly minimizes optimization prob-
lem 9.3 in the attribute space. To this end, we need to derive the gradient and the
Hessian of the objective function. The update rule assumes the form of a set of
linear equations that have to be solved for the update vector [Δv,Δw]T. It depends
on the current parameters [v,w]T, all combinations of training and test data, and
resulting coefficients. In order to express the update rule as a single equation in
matrix form, we define

X =

[
Xtr Xte 0

0 0 Xtr

]
, (9.22)

where Xtr and Xte are the matrices of training vectors, and test vectors respectively.
We abbreviate

�v,i =�v(σivTxi); �′v,iσixij =
∂�v(σivTxi)

∂vj
; �′′v,ixijxik =

∂2�v(σivTxi)
∂vjvk

; (9.23)

�w,i =�w(yiwTxi); �′w,iyixij =
∂�w(yiwTxi)

∂wj
; �′′w,ixijxik =

∂2�w(yiwTxi)
∂wjwk

; (9.24)

ωi =
p(σ = 1|v)

p(σ = −1|v)
exp(−vTxi) , (9.25)

and denote the objective function of optimization problem 9.3 by

F (v,w, Xtr, Xte) =
ntr∑
i=1

ωi�w,i +
ntr+nte∑

i=1

�v,i +
1

2s2
w

wTw +
1

2s2
v

vTv. (9.26)
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We compute the gradient with respect to v and w.

∂F (v,w, Xtr, Xte)
∂vj

= −
ntr∑
i=1

ωi�w,ixij +
ntr+nte∑

i=1

�′v,iσixij +
1
s2
v

vj , (9.27)

∂F (v,w, Xtr, Xte)
∂wj

=
ntr∑
i=1

ωi�
′
w,iyixij +

1
s2
w

wj . (9.28)

The Hessian is the matrix of second derivatives.

∂2F (v,w, Xtr, Xte)
∂vj∂vk

=
ntr∑
i=1

ωi�w,ixijxik +
ntr+nte∑

i=1

�′′v,ixijxik +
1
s2
v

δjk , (9.29)

∂2F (v,w, Xtr, Xte)
∂vj∂wk

= −
ntr∑
i=1

ωi�
′
w,iyixijxik , (9.30)

∂2F (v,w, Xtr, Xte)
∂wj∂wk

=
ntr∑
i=1

ωi�
′′
w,ixijxik +

1
s2

w

δjk . (9.31)

We can rewrite gradient as Xg + S [v,w]T and Hessian as XΛXT + S using the
following definitions, g =

[
g(1),g(2),g(3)

]T
, S =

"
Sv 0

0 Sw

#
with

g
(1)
i = −ωi�w,i + �′v,i for i = 1, . . . , ntr, (9.32)

g
(2)
i = −�′v,ntr+i for i = 1, . . . , nte, (9.33)

g
(3)
i = ωi�

′
w,iyi for i = 1, . . . , ntr, (9.34)

Sv
i,i = s−2

v for i = 1, . . . ,dim(Xte), (9.35)

Sw
i,i = s−2

w for i = 1, . . . ,dim(Xtr), (9.36)

Λ =

⎡⎢⎢⎢⎢⎣
diag

i=1..ntr

(
ωi�w,i + �′′v,i

)
0 − diag

i=1..ntr

(ωi�
′
w,iyi)

0 diag
i=1..nte

(
�′′v,ntr+i

)
0

− diag
i=1..ntr

(ωi�
′
w,iyi) 0 diag

i=1..ntr

(ωi�
′′
w,i)

⎤⎥⎥⎥⎥⎦ . (9.37)

The update step for the Newton gradient descent minimization of optimization
problem 9.3 is [v′,w′]T ← [v,w]T + [Δv,Δw]T with

(XΛXT + S)

[
Δv

Δw

]
= −Xg − S

[
v

w

]
. (9.38)

Given the parameter w, a test instance x is classified as f(x;w) = sign(wTx) .
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9.7 Kernelized Learning Algorithm

We derive a kernelized version of the integrated classifier for differing training and
test distributions. A transformation Φ maps instances into a target space in which
a kernel function k(xi,xj) calculates the inner product Φ(xi)TΦ(xj).

The update rule (9.38) thus becomes

(Φ(X)ΛΦ(X)T + S)

[
Δv

Δw

]
= −Φ(X)g − S

[
v

w

]
. (9.39)

Φ(X) is defined by

Φ(X) =

[
Φ(Xtr) Φ(Xte) 0

0 0 Φ(Xtr)

]
. (9.40)

According to the representer theorem, the optimal separator is a linear combina-
tion of examples. Parameter vectors α and β in the dual space weight the influence
of all examples: [

v

w

]
= Φ(X)

[
α

β

]
. (9.41)

Equation 9.39 can therefore be rewritten as (9.42). We now multiply Φ(X)T

from the left to both sides and obtain (9.43). We replace all resulting occurrences
of Φ(X)TΦ(X) by the kernel matrix K and arrive at (9.44); S is replaced by S′

such that Φ(X)TSΦ(X) = Φ(X)TΦ(X)S′, i.e., S′
i,i = s−2

v for i = 1..ntr + nte and
S′

ntr+nte+i,ntr+nte+i = s−2
w for i = 1..ntr. Equation 9.44 is satisfied when (9.45) is

satisfied. Equation 9.45 is the update rule for the dual Newton gradient descent.

(Φ(X)ΛΦ(X)T + S)Φ(X)

[
Δα

Δβ

]
= −Φ(X)g − SΦ(X)

[
α

β

]
, (9.42)

Φ(X)T(Φ(X)ΛΦ(X)T + S)Φ(X)

[
Δα

Δβ

]
= −Φ(X)TΦ(X)g − Φ(X)TSΦ(X)

[
α

β

]
,

(9.43)

(KΛK + KS′)

[
Δα

Δβ

]
= −Kg − KS′

[
α

β

]
, (9.44)

(ΛK + S′)

[
Δα

Δβ

]
= −g − S′

[
α

β

]
. (9.45)

Given the parameters, test instance x is classified by f(x;α) =
sign(

∑ntr
i=1 βik(x,xi)).
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9.8 Convexity Analysis and Solving the Optimization Problems

The following theorem specifies the conditions for convexity of optimization problem
9.3. With this theorem we can easily check whether the integrated classifier for
covariate shift is convex for specific models of the negative log-likelihood functions.
The negative log-likelihood function �w itself and its first and second derivatives
are needed.

Theorem 9.4 Optimization problem 9.3 is in general convex if �v is convex and

�w,i�
′′
w,i − �′2w,i ≥ 0. (9.46)

Proof: Looking at optimization problem 9.3 we immediately see that the regular-
izers are convex and if �v is convex the second term is convex as well; we only need
to analyze the convexity of the last term

ntr∑
i=1

p(σ = 1|v)
p(σ = −1|v)

exp(−vTxi)�w(yiwTxi) =
ntr∑
i=1

ωi�w,i. (9.47)

A function is convex if the Hessian is positive semidefinite and this is the case if
and only if

aTHa ≥ 0 (9.48)

for all vectors a and Hessian H.
With the notation of section 9.6 the Hessian of (9.47) is

"
Xtr 0

0 Xtr

#T
264 diag

1..dim(Xtr)

ωi�w,i diag
1..dim(Xtr)

−ωi�
′
w,iyi

diag
1..dim(Xtr)

−ωi�
′
w,iyi diag

1..dim(Xtr)

ωi�
′′
w,i

375 "
Xtr 0

0 Xtr

#
. (9.49)

Using the condition of (9.48) the Hessian is positive semidefinite if the following
matrix is positive semidefinite:⎡⎢⎣ diag

1..dim(Xtr)

�w,i diag
1..dim(Xtr)

−�′w,iyi

diag
1..dim(Xtr)

−�′w,iyi diag
1..dim(Xtr)

�′′w,i

⎤⎥⎦ . (9.50)

Applying (9.48) and splitting a into two equally sized subvectors a = [a1,a2]T,
the condition for convexity is

�′′w,ia
T
1a1 − 2�′w,iyiaT

1a2 + �w,iaT
2a2 ≥ 0. (9.51)

Multiplication of (9.51) with �′′w,i and adding and subtracting �′2w,iy
2
i a

T
2a2 leads to

(9.52). Equation 9.53 holds by the binomial theorem. For a1 = �′w,iyi

�′′w,i
a2 the term∣∣∣∣�′′w,ia1 − �′w,iyia2

∣∣∣∣2 takes its minimum value zero; this means (9.53) is nonnegative
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for arbitrary a1 and a2 if (9.54) is nonnegative.

�′′2w,ia
T
1a1 − 2�′w,i�

′′
w,iyia

T
1a2 + �w,i�

′′
w,ia

T
2a2 + �′2w,iy

2
i a

T
2a2 − �′2w,iy

2
i a

T
2a2 ≥ 0 , (9.52)˛̨˛̨

�′′w,ia1 − �′w,iyia2

˛̨˛̨2
+ aT

2a2(�w,i�
′′
w,i − �′2w,i) ≥ 0 , (9.53)

�w,i�
′′
w,i − �′2w,i ≥ 0 . (9.54)

In order to check the optimization criterion (optimization problem 9.3) for
convexity we need to choose models of the negative log-likelihood �v and �w
and derive their first and second derivatives. These derivations are also needed to
actually minimize the optimization criterion with the Newton update steps derived
in the last section.

For the model of the covariate shift we use a logistic model �v(σivTx) =
log(1 + exp(−σivTx)); the abbreviations of section 9.6 can now be expanded:

�′v,iσixij = − exp(−σiv
Txi)

1 + exp(−σivTxi)
σixij ; �′′v,ixijxik =

exp(−σiv
Txi)

(1 + exp(−σivTxi))2
xijxik . (9.55)

For the model of the target classifier we detail the derivations for logistic and for
exponential models of �w. For the logistic model the derivatives of �w are the same
as for �v, only v needs to be replaced by w and σi by yi. For an exponential model
with �w(yiwTx) = exp(−yiwTx) the abbreviations are expanded as follows:

�′w,iyixij = − exp(−yiw
Txi)yixij ; �′′w,ixijxik = exp(−yiw

Txi)xijxik . (9.56)

Using theorem 9.4 we can now easily check the convexity of the integrated classifier
with logistic model and with exponential model of �w.

Corollary 9.5 Optimization problem 9.3 with logistic model for �w is nonconvex.

Proof: Inserting the logistic function into (9.46) we get the following solution.

�′′w,i�w,i − �′2w,i =
exp(−yiw

Txi)

1 + exp(−yiwTx)

“
log(1 + exp(−yiw

Tx)) − exp(−yiw
Txi)

”
(9.57)

The first term of (9.57) is always positive, the difference term is always negative,
thus optimization problem 9.3 with logistic model for �w is nonconvex.

Empirically, we find that it is a good choice to select the parameters of a regular
i.i.d. logistic regression classifier as starting point for the Newton gradient search.
Since i.i.d. logistic regression has a convex optimization criterion, this starting point
is easily found.

One can easily show that optimization problem 9.3 is nonconvex when �w are
chosen as hinge loss or quadratic loss.

Corollary 9.6 Optimization problem 9.3 with exponential model for �w is convex.
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Proof: Inserting the exponential model into the above criterion results in the
nonnegative expression

�′′w,i�w,i − �′2w,i = exp(−yiw
Txi) exp(−yiw

Txi) − (− exp(−yiw
Txi)

2) = 0. (9.58)

This means the global optimum of optimization problem 9.3 with exponential
model for �w can easily be found by Newton gradient descent.

9.9 Empirical Results

We study the benefit of two versions of the integrated classifier for covariate shift
and other reference methods on spam filtering, text classification, and land mine
detection problems. The first integrated classifier uses a logistic model for �w
(“integrated log model”), the second an exponential model for �w (“integrated exp
model”).

The first baseline is a classifier trained under i.i.d. assumption with logistic �w.
All other reference methods consist of a two-stage procedure: first, the difference
between training and test distribution is estimated; the classifier is trained on
weighted data in a second step. The baselines differ in the first stage; the second
stage is based on a logistic regression classifier with weighted examples in any case.

The first reference method is two-stage logistic regression (“two-stage LR”). The
example weights are computed according to (9.8); p(σ = 1|x,v) is estimated by
training a logistic regression that discriminates training from test examples. The
second method is kernel mean matching (chapter 8); we set ε =

√
ntr − 1/

√
ntr

as proposed by the authors. In the third method, separate density estimates for
p(x|λ) and p(x|θ) are obtained using kernel density estimation [Shimodaira, 2000];
the bandwidth of the kernel is chosen according to the rule of thumb of Silverman
[1986]. We tune the regularization parameters of all the methods and the variance
parameter of the RBF kernels on a separate tuning set. We use a maximum
likelihood estimate of ntr

nte
for p(σ=1|θ,λ)

p(σ=−1|θ,λ) .
We use the spam filtering data of Bickel et al. [2007]; the collection contains

nine different inboxes with test emails (5270-10964 emails, depending on inbox)
and one set of training emails from different sources. We use a fixed set of 1000
emails as training data. We randomly select 32-2048 emails from one of the original
inboxes. We repeat this process ten times for 2048 test emails and 20-640 times for
1024-32 test emails. As tuning data we use the labeled emails from an additional
inbox different from the test inboxes. The performance measure is the rate by which
the 1-AUC risk is reduced over the i.i.d. baseline [Bickel and Scheffer, 2007]; it is
computed as 1 − 1−AUC

1−AUCiid
. We use linear kernels for all methods. We analyze the

rank of the kernel matrix and find that it fulfills the universal kernel requirement
of kernel mean matching; this is due to the high dimensionality of the data.

Figure 9.1 (top left) shows the result for various numbers of unlabeled examples.
The results for a specific number of unlabeled examples are averaged over 10-640
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random test samples and averaged over all nine inboxes. Averaged over all users
and inbox sizes the absolute AUC of the i.i.d. classifier is 0.994. Error bars indicate
standard errors of the 1-AUC risk.

The three discriminative density estimators and kernel mean matching perform
similarly well. The differences from the i.i.d. baseline are highly significant. For 1048
examples the 1-AUC risk is even reduced by an average of 30% with the integrated
exponential model classifier! The kernel density estimation procedure is not able to
beat the i.i.d. baseline.

We now study text classification using computer science papers from the Cora
dataset. The task is to discriminate machine learning from networking papers.
We select 812 papers written before 1996 from both classes as training examples
and 1285 papers written after 1996 as test examples. For parameter tuning we
apply an additional time split on the training data; we train on the papers written
before 1995 and tune on papers written 1995. Title and abstract are transformed
into TFIDF vectors; the number of distinct words is 40,000. We again use linear
kernels (rank analysis verifies the universal kernel property) and average the results
over 20-640 random test samples for different sizes (1024-32) of test sets. The
resulting 1-AUC risk is shown in figure 9.1 (top right). The average absolute
AUC of the i.i.d. classifier is 0.998. The methods based on discriminative density
estimates significantly outperform all other methods. Kernel mean matching is not
displayed because its average performance lies far below the i.i.d. baseline. The
integrated models reduce the 1-AUC risk by 15% for 1024 test examples; for a
larger number of test examples (128-1024) they perform slightly better than the
two-step decomposition.

In a third set of experiments we study the problem of detecting land mines using
the data set of Xue et al. [2007]. The collection contains data of 29 minefields in
different regions. Binary labels (land mine or safe ground) and nine dimensional
feature vectors extracted from radar images are provided. There are about 500
examples for each minefield. Each of the fields has a distinct distribution of input
patterns, varying from highly foliated to desert areas.

We enumerate all 29 × 28 pairs of minefields, using one field as training, and
the other as test data. For tuning we hold out 4 of the 812 pairs. Results are
increases over the i.i.d. baseline, averaged over all 29 × 28 − 4 combinations. We
use RBF kernels with variance σ2 = 0.3 for all methods. The results are displayed
in figure 9.1 (bottom left). The average absolute AUC of the i.i.d. baseline is 0.64
with a standard deviation of 0.07; note that the error bars are much smaller than
the absolute standard deviation because they indicate the standard error of the
differences from the i.i.d. baseline.

For this problem, the integrated exponential model classifier and kernel mean
matching significantly outperform all other methods on average. Integrated logistic
regression and two-stage logistic regression are still significantly better than the i.i.d.
baseline except for 32 test examples. We assume that the nonconvex integrated
logistic regression is inferior to the convex integrated exponential model method
because it runs into unfavorable local optima.
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Figure 9.1 Average reduction of 1-AUC risk over nine users for spam filtering (top left)
and Cora Machine learning/networking classification before and after 1996 (top right) and
average increase of AUC for land mine detection over 812 pairs of minefields (bottom left)
depending on the number of unlabeled test examples.

9.10 Conclusion

We derived a discriminative model for learning under differing training and test
distributions. The contribution of each training instance to the optimization prob-
lem ideally needs to be weighted with their test-to-training density ratio. We show
that this ratio can be expressed – without modeling either training or test density
– by a discriminative model that characterizes how much more likely an instance is
to occur in the test sample than it is to occur in the training sample.

When Bayesian model averaging is unfeasible and the Bayes decision is unattain-
able, then one can choose the joint MAP hypothesis of both the parameters of the
test-to-training model and the final classifier. Optimizing these dependent parame-
ters sequentially incurs an additional approximation compared to solving the joint
optimization problem.

We derived a primal and a kernelized Newton gradient descent procedure for the
joint optimization problem. Theorem 9.4 specifies the condition for the convexity
of optimization problem 9.3. Checking the condition using popular loss functions
as models of the negative log-likelihoods reveals that optimization problem 9.3 is
only convex with exponential loss.
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Empirically, we found that the models with discriminative density estimates
outperform the i.i.d. baseline and the kernel density estimated model in almost all
cases. For spam filtering the integrated and the two-step models perform similarly
well. For land mine detection the convex integrated exponential model classifier and
kernel mean matching significantly outperform all other methods.
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10 An Adversarial View of Covariate Shift and

a Minimax Approach
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Supervised learning algorithms should ideally be robust to differences between the
training and testing distributions. We consider an adversarial model where the
learning algorithm attempts to construct a predictor which is robust to deletion
of features at test time. The problem is formulated as finding the optimal minimax
strategy with respect to an adversary that deletes features. We show that the optimal
strategy may be found either by solving a quadratic program, or equivalently, using
efficient bundle methods for optimization. The resulting algorithm is shown to
significantly improve prediction performance on several problems including in a
spam filtering challenge task.

10.1 Building Robust Classifiers

When constructing classifiers over high-dimensional spaces such as texts or im-
ages, one is inherently faced with the problem of undersampling of the true data
distribution. Even so-called ‘discriminative’ methods which focus on minimizing
classification error (or a bound on it) are exposed to this difficulty since the train-
ing objective will be calculated over the observed input vectors only, and thus may
not be a good approximation of the average objective on the test data. This is
especially important in settings such as document classification where features may
take on certain observed values (e.g., a zero count for a particular vocabulary item)
due to small sample effects. A more serious difficulty may arise when dataset shift
effects are present, namely when the training and testing distributions are different.
For example, the distribution of words in spam email changes very rapidly and key-
words which are highly predictive of class in the training set may not be indicative
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or even present in the test data. As another example, consider a digital camera
whose output is fed to a face recognition system. Due to hardware or transmission
failures, a few pixels may “die” over the course of time. In the image processing
literature, this is referred to as pepper noise [Bovik et al., 2000] (salt noise refers to
the case when pixels values are clipped to some fixed value). Any classifier which
attached too much weight to any single pixel would suffer a substantial perfor-
mance loss in this case. As a final example, consider a network of local processing
elements in an artificial sensor network or a biological network such as the cor-
tex. The hardware/wetware of such systems is known to be extremely unreliable
(thousands of neurons die each day) and yet the overall architecture maintains its
function, indicating a remarkable robustness to such nonstationarities in its input.

All the above examples describe a scenario where features that were present when
constructing the classifier (i.e., in the training data), are potentially deleted at some
future point in time. Such deletion may manifest itself differently depending on the
particular domain: a deleted feature may be known to be unavailable or unmeasured;
it may take on random values; or its value may be set to some constant. In our
formal treatment, we focus on the case where deletion corresponds to setting the
feature’s value to zero. Indeed, in the examples given above this is an appropriate
description.

Of course, when constructing the classifier, we cannot anticipate in advance which
features may be deleted in the future. One possible strategy is to analyze the
performance under random deletion of features. However, this may not be a correct
model of the deletion statistics. The approach we take here is to construct a classifier
which is optimal in the worst-case deletion scenario, thus avoiding any modeling
assumptions about the deletion mechanism. This can be formulated as a two-player
game, where the action of one player (the classifier builder) is to choose robust
classifier parameters, whereas the other player (the feature removal mechanism)
tries to delete the features which would be most harmful given the current classifier.
We note that the adversarial setting may not necessarily be an exact model of the
problem (e.g., spam authors may not know the details of the spam filter, and
are thus not as powerful as the adversary we model). However, considering the
worst-case scenario yields a classifier that is robust to any adversarial strategy, and
avoids making statistical assumptions about the deletion process. Furthermore,
even if there is no true underlying adversary, robustness to feature deletion yields
robustness of the resulting classifier, in the sense that it will not attach too much
weight to single features, even if those appear informative at training time.

Robust minimax approaches to learning classifiers have recently attracted interest
in the machine learning community [Lanckriet et al., 2004; El Ghaoui et al., 2003;
Kim et al., 2006]. Our approach is related to El Ghaoui et al. [2003] where the
location of sample points is only known up to an ellipsoidal region, and a classifier
that is optimal in the worst-case is sought. However, in our case, the structure of
uncertainty is inherently different and is related to the existence vs. nonexistence of
a feature. Adversarial models have also recently been studied in the context of spam
filtering by Dalvi et al. [2004]. Their formalism addresses transformations that are
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more general than feature deletion, and also incorporates costs for different types of
mistakes. However, finding the optimal strategy in their case is a computationally
hard problem, and approximations are needed.

In the context of dataset shift, our minimax approach assumes that the difference
between training and testing scenarios is defined via a class of possible transforma-
tions (here we consider feature deletions), and that learning should be robust with
respect to this class.

In section 10.2 we formalize the feature-dropping minimax game for classifiers
such as the support vector machine [Schölkopf and Smola, 2002] in which the
training objective is measured using a regularized hinge loss. We denote this
optimization problem by the name FDROP. We next show that this problem can
be exactly solved in polynomial time, and provide several optimization algorithms
for solving it. Finally, we illustrate the method’s performance on handwritten digit
recognition and spam filtering tasks.

10.2 Minimax Problem Formulation

Given a labeled sample (xi, yi) (i = 1, . . . , n), with input feature vectors xi ∈ R
d

and class labels1 yi ∈ {±1}, we would like to construct classifiers which are robust
to deletion of features. We focus on the case where a feature is assigned the value
of zero if it is deleted, and denote by K the number of features the adversary can
delete for any given sample point x. The number K is assumed to be given and
fixed in what follows, although in practice we set it using cross-validation.

In standard support vector machines (SVMs) (e.g., see Schölkopf and Smola
[2002]), the goal of the learning algorithm is to find a weight vector w ∈ R

d that
minimizes a regularized hinge loss:

1
2
‖w‖2 + C

∑
i

[1 − yiw · xi]+ , (10.1)

where we use the notation [x]+ = max{x, 0}. However, in the feature deletion
case, the adversary may change the input xi by deleting features from it. We would
like our classifier to be robust to such deletions. Thus, we seek a classifier which
minimizes the worst-case hinge loss when K features may be deleted from each data
vector. In this setting, the worst-case hinge loss, for example i, is given by

hwc(w, yixi) = max [1 − yiw · (xi ◦ (1 − αi))]+
s.t. αi ∈ {0, 1}d∑

j αij = K

(10.2)

1. We focus on the binary case here. All results can be easily generalized to the multi-class
case.
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where αij denotes the jth element of αi, and is equal to 1 if the jth feature of xi

is deleted (we use ◦ to denote the element-wise multiplication operation).

The worst-case hinge loss over the entire training set is
∑

i hwc(w, yixi). The
overall optimization problem, which we denote by FDROP, is then

FDROP: w∗ = arg min
w

1
2
‖w‖2 + C

∑
i

hwc(w, yixi) . (10.3)

The above can be explicitly written as a minimax optimization problem:

min
w

max
α1,...,αn

1
2‖w‖2 + C

∑
i [1 − yiw · (xi ◦ (1 − αi))]+

s.t. αi ∈ {0, 1}d∑
j αij = K .

(10.4)

Denote the objective of the above by f(w, α). Then (10.4) may be interpreted as
finding an optimal strategy for a zero-sum game where the learning algorithm is
paid −f(w,α) and the adversary is payed f(w,α) when the joint action w,α is
taken.

In the next section we present two approaches to solving the optimization problem
in (10.3).

10.3 Finding the Minimax Optimal Features

The minimization problem in (10.3) is closely related to the SVM optimization
problem. However, in our case we have a worst-case hinge loss instead of the stan-
dard hinge loss. Since this worst-case requires maximization over

(
n
k

)
possibilities

per sample, it is not immediately clear how to design an efficient method for solv-
ing the overall optimization. In the following section we describe two methods for
solving FDROP. The first is to use convex duality transformations to turn it into
a quadratic program with O(nd) variables. The second is to solve it directly in the
w variable using the recently introduced BMRM method [Teo et al., 2007b].

10.3.1 An Equivalent Quadratic Program

In this section we show that the problem in (10.3) is equivalent to a certain convex
quadratic program. We begin by analyzing the worst-case hinge loss hwc(w, yixi).
For a given w, this loss can be seen to be minimized when αi is chosen to delete
the K features xij with highest values yiwjxij , since these will have the strongest
decreasing effect on the loss. Thus we can rewrite hwc(w, yixi) as

hwc(w, yixi) = [1 − yiw · xi + si]+ ,
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where we have defined

si = max
αi∈{0,1}d,

P
j αij=K

yiw · (xi ◦ αi) (10.5)

as the maximum contribution of K features to the margin of sample xi.

To simplify the expression for si, we note that the integer constraint on the
variables αi may be relaxed to 0 ≤ αi ≤ 1 without changing the optimum. This is
true since the vertices of the resulting 2d + 1 linear constraints are integral. Since
the maximization (with respect to αi) is over a linear function, the optimum will
be at the vertices, and is therefore integral. We rewrite si using this relaxation, and
also changing the order of multiplication

si = max yi (w ◦ xi) · αi

s.t. 0 ≤ αi ≤ 1∑
j αij = K .

(10.6)

The above expression is bilinear in αi and w. Since this may potentially contribute a
nonconvex factor to the optimization, we use a duality transformation with respect
to the αi variables to avoid bilinearity. An important outcome of using a duality
transformation is that a minimization problem is obtained so that the original
minimax problem is turned into a minimization problem in the new variables. Note
that the above problem is linear in αi so that the value of the dual will exactly
equal that of si.2

Denoting the dual variables by vi ∈ R
d, zi ∈ R, we obtain the dual of the

maximization in (10.6):

si = min Kzi +
∑

j vij

s.t. zi + vi ≥ yixi ◦ w

vi ≥ 0 .

(10.7)

To use this in the FDROP minimization problem (10.3), we introduce an auxiliary
variable ti, which at the optimum will obtain the minimum of (10.7). The resulting
problem is a reformulation of the FDROP problem:

min 1
2‖w‖2 + C

∑
i [1 − yiw · xi + ti]+

s.t. ti ≥ Kzi +
∑

j vij

vi ≥ 0

zi + vi ≥ yixi ◦ w .

(10.8)

The above problem can be easily converted into a standard quadratic program by
introducing extra variables ξi ≥ 0 (for i = 1, . . . , n) to represent the hinge function

2. Strong duality requires Slater’s condition to hold (see Boyd and Vandenberghe [2004]),
which is the case for the current problem.
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via linear equalities:

min 1
2‖w‖2 + C

∑
i ξi

s.t. ξi ≥ 1 − yiw · xi + ti

ξi ≥ 0

ti ≥ Kzi +
∑

j vij

vi ≥ 0

zi + vi ≥ yixi ◦ w .

(10.9)

We thus have the result that the FDROP problem in (10.3) is equivalent to the
convex quadratic program (QP) in (10.9). The latter has O(nd) variables and
constraints, and can be solved using standard QP solvers. However, such solvers
may not scale well with nd, and thus may not be usable for datasets with hundreds
of thousands of variables and samples. For example, each iteration of an interior
point method will require memory that is quadratic in nd and running time that is
cubic in nd [Fine and Scheinberg, 2002]. In the next section we describe a method
which is more suitable for these cases, and scales linearly with nd for both memory
and running time.

10.3.2 Efficient Optimization Using Bundle Methods

The FDROP optimization problem in (10.3) involves minimization of a nondiffer-
entiable (piecewise linear) function of the variable w. Although such minimization
problems cannot be solved using standard gradient methods (e.g., L-BFGS), there
is a large class of subgradient methods which can be applied in this case [e.g., see
Shalev-Shwartz et al., 2007; Nedic and Bertsekas, 2001]

In this section, we show how the recently introduced bundle method for regu-
larized risk minimization, or BMRM [Teo et al., 2007b], may be applied to solving
FDROP. BMRM is a generic method for solving convex regularized risk minimiza-
tion problems, and does not have any tunable parameters, making it simple to
implement. Furthermore, the cost of each BMRM iteration in terms of memory
and running time scales linearly with the size of the problem. In what follows,
we briefly review BMRM, and show how it can be applied to solve the FDROP
problem.

Consider the following minimization problem:

min
w

J(w) =
1
2
‖w‖2 + CRemp(w) , (10.10)

where Remp(w) =
∑n

i=1 l(xi, yi,w) and l(xi, yi,w) is a convex nonnegative loss
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Figure 10.1 A convex function (solid line) is bounded from below by Taylor approxi-
mations of first order (dashed line). Adding more terms improves the bound.

function. The FDROP problem in (10.3) has this form with3

l(xi, yi,w) = hwc(w, yixi) . (10.11)

The BMRM method solves the minimization in (10.10) by forming a piecewise
linear lower bound on Remp(w), which is made tighter at each iteration. The bound
relies on the fact that because of the convexity of Remp(w), the first-order Taylor
expansion of Remp(w) at any point wi is a (linear) lower bound on Remp(w):

Remp(w) ≥ f(w;wi) , (10.12)

where

f(w;wi) = Remp(wi) + (w − wi)∂wRemp(wi) , (10.13)

and ∂wRemp(wi) is the subgradient of the function Remp(w) at the point wi. Taking
the maximum of a set of such lower bounds for w1, . . . ,wt also yields a lower bound
on Remp(w):

Remp(w) ≥ max
i=1,...,t

f(w;wi) , (10.14)

and this bound becomes tighter as t grows. See figure 10.1 for an illustration. Since
Remp(w) is nonnegative we may further tighten the lower bound by requiring it to
be nonnegative:

Remp(w) ≥ max
[
0, max

i=1,...,t
f(w;wi)

]
. (10.15)

The sequence of points w1, . . . ,wt is chosen as follows: at iteration t we construct
a function Jt(w) that is a lower bound on J(w)

Jt(w) =
1
2
‖w‖2 + C max

[
0, max

i=1,...,t
f(w;wi)

]
. (10.16)

3. The function hwc(w, yixi) is convex in w since it is a maximum of functions that are
linear in w.
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Inputs: A training set {xi, yi}n
i=1. Number of features to delete K. Desired precision

ε > 0.

Initialization: Set w1 = 0 and t = 1.

Algorithm:

Repeat:

Define

f(w;wt) =

nX
i=1

hwc(wt, yixi) + (w − wt)

nX
i=1

∂whwc(wt, yixi)

where the subgradient is given in (10.20).

Solve the quadratic program:

min 1
2
‖w‖2 + Cξ

s.t. ξ ≥ f(w;wi) i = 1, . . . , t

ξ ≥ 0 .

Denote the minimizer by wt+1, and the objective value by lt.

Calculate upper bound ut = 1
2
‖wt‖2 + C

Pn
i=1 hwc(wt, yixi).

Halt if ut − lt < ε.

Set t = t + 1.

Output: Final weight vector wt.

Figure 10.2 The BMRM algorithm applied to the FDROP problem.

The next point wt+1 is chosen to be the minimizer of Jt(w), i.e.,

wt+1 = arg min
w

Jt(w) . (10.17)

The minimization problem above can be expressed as a QP with t constraints by
introducing an auxiliary variable ξ as follows

min 1
2‖w‖2 + Cξ

s.t. ξ ≥ f(w;wi) i = 1, . . . , t

ξ ≥ 0 .

(10.18)

The above QP can be solved efficiently, as long as t is not too large. Teo et al.
[2007b] prove that the BMRM method converges, and show that O( 1

ε ) iterations are
required to achieve a duality gap of ε. In practice, we have found that convergence
is achieved after a few hundred iterations at most.

To apply BMRM to the FDROP problem, we need the subgradient of Remp(w) =∑
i hwc(w, yixi). Denote the αi that achieves the worst-case loss, for example i, by
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αmax
i (w, yixi) so that

αmax
i (w, yixi) = arg max [1 − yiw · (xi ◦ (1 − αi))]+

s.t. αi ∈ {0, 1}d∑
j αij = K .

(10.19)

In section 10.3.1 we showed that this αmax
i is obtained by finding the K features

with maximal yiwjxij . The subgradient is then4

∂whwc(w, yixi) =
{ 0 if hwc(w, yixi) = 0

−yixi ◦ (1 − αmax
i (w, yixi)) if hwc(w, yixi) > 0 .

(10.20)

The subgradient of Remp is then given by

∂wRemp(w) =
∑

i

∂whwc(w, yixi) . (10.21)

Finally, it is also possible to define a simple stopping criterion for BMRM. Note
that the minimum value in (10.17) is a lower bound on the minimum of the
FDROP problem. An upper bound may also be obtained by evaluating the FDROP
objective at wt. Thus, the difference between these two bounds yields a measure
of the accuracy of the current solution, and can be used as a stopping criterion.
Pseudocode for the BMRM procedure is given in figure 10.2.

10.4 A Convex Dual for the Minimax Problem

The standard support vector machine problem is a convex quadratic problem, and
has a dual convex which reveals some interesting properties and allows the use
of kernel classifiers. Since our robust problem is also quadratic and convex, it is
interesting to consider its dual problem. A standard duality transformation (e.g.,
see Boyd and Vandenberghe [2004]) can be used to show that the dual of our robust
classifier construction problem is

min 1
2‖

∑
i yiαixi ◦ (1 − λi)‖2 −∑

i αi

s.t. 0 ≤ α ≤ C

0 ≤ λi ≤ 1∑
j λij = K ,

(10.22)

where the variables are α ∈ R
n where n is the number of samples, and λi ∈ R

d for
i = 1, . . . , n where d is the dimension of the input. Furthermore, the optimal set of

4. Note that the subgradient is very similar to a perceptron update where the original
point xi has been replaced by its ‘feature-deleted’ version xi ◦ (1 − αmax

i (w, yixi)).
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weights w can be expressed as

w =
∑

i

yiαixi ◦ (1 − λi) . (10.23)

The above problem can be written in an alternative form, where it is more clearly
convex:

min 1
2‖

∑
i yixi ◦ (αi − λi)‖2 −∑

i αi

s.t. 0 ≤ α ≤ C

0 ≤ λi ≤ αi∑
j λij = Kαi .

(10.24)

Here the expression in the norm is an affine function of the variables, and thus the
problem is convex.

Recall that the SVM dual is

min 1
2‖

∑
i αiyixi‖2 −∑

i αi

s.t. 0 ≤ α ≤ C ,
(10.25)

where w =
∑

i αiyixi.
Thus, in our case the weight vector is not a combination of input vectors, but

rather a combination of vectors weighted by elements of weight up to αi where the
maximal number of elements that may be set to zero is K. Interestingly, the λi

values can be fractional, so that none of the features has to be completely deleted.
Note that, as opposed to the standard SVM, our dual objective will not involve

dot products between xi, but rather between vectors xi ◦ (1 − λi). Thus it is not
immediately clear if and how kernel methods may be put to use in this case.
This is not surprising, since the algorithm is strongly linked to the structure of
the sample space R

d, where features are dropped. Dropping such features alters
the kernel function. For a given kernel function, one may consider the relevant
minimax problem and try to solve for the w and α variables, in a similar fashion to
Weston et al. [2000]. However, for nonlinear kernels this would typically result in
a nonconvex optimization problem, and would depend on the specific kernel used.
It thus remains an interesting challenge to obtain globally optimal algorithms for
this case.

10.5 An Alternate Setting: Uniform Feature Deletion

In section 10.2, we assumed that different features may be deleted for different
data points. We can also consider an alternative formulation where once a feature
is chosen to be deleted it is deleted uniformly from all data points simultaneously.
Clearly, this scenario is subsumed by the one described in the previous section, and
is thus less pessimistic.

The worst-case hinge loss is defined as in the nonuniform case in (10.2). However,
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now there is a single α vector for all examples, whereas in the previous scenario,
each sample had its own vector. The optimization thus becomes

w∗ = min
w

max
α

‖w‖2 + C
∑

i [1 − yiw · (xi ◦ (1 − α))]+
s.t. α ∈ {0, 1}d∑

j αj = K .

We first note that the above optimization problem is still convex in w. To see why,
denote by f(w) the maximum value over all legal α assignments for a given value
of w. Then f(w) is a pointwise maximum over a set of convex functions and is
thus convex [Boyd and Vandenberghe, 2004] . The problem of minimizing over w
is therefore convex.

However, although it is convex, the current optimization problem appears more
difficult than the one in the previous section, due to the presence of the α in all
the sum elements. As before, the integral constraints on α can be relaxed, since the
maximum of the inner optimization is attained at the vertices (because the target is
convex). However, since the target is nonlinear (a hinge function) this maximization
is not itself a convex problem, and does not seem to be efficiently solvable.

The problem can be solved efficiently as long as
(

d
K

)
is sufficiently small so that

all the feasible values of α can be enumerated over. However, our experiments show
that in many cases K needs to be at least 10, so that the uniform method is often
not applicable.

10.6 Related Frameworks

The FDROP problem was motivated from a minimax perspective where the goal is
to minimize the loss incurred by an adversary. In this section we discuss alternative
interpretations of our framework, in the context of feature selection and learning
with invariances.

10.6.1 Feature Selection

The adversary in the FDROP minimax problem identifies those input features
whose contribution to the margin is maximal. In this sense, the adversary can be
thought of as being related to feature selection algorithms which try to find the
set of features which, when taken alone, would yield optimal generalization (e.g.,
see Yang and Pedersen [1997]). A clear illustration of this effect can be seen in
figure 10.4 (section 10.7.2).

However, the current minimax setup differs from the standard feature selection
approach in two important aspects. The first is that here we focus on feature elimi-
nation, i.e., finding the set of features whose elimination would maximally decrease
performance. Intuitively, these features should also convey high information when
taken on their own, but this is not guaranteed to be the case.



190 An Adversarial View of Covariate Shift and a Minimax Approach

The other aspect which distinguishes the current approach from feature selection
is that here features are selected (or eliminated to be precise), for every sample
individually. The uniform feature deletion approach described in section 10.5 is
more in line with the standard feature selection framework.

We can provide a somewhat more formal treatment of feature selection opti-
mization algorithms which highlights their relation to the current approach. The
standard feature selection goal is to find a set of K features which minimize gen-
eralization error. A reasonable approximation is the empirical error, or the hinge
loss in our case. Thus the feature selection problem can be posed as (we omit the
regularization term here)

min
∑

i [1 − yiw · (xi ◦ α))]+
s.t. α ∈ {0, 1}d∑

j αj = K

(10.26)

such that minimization is over both α and w. Denote by f(w) the minimum over
α assignments for a given value of w. Then f(w) is a pointwise minimum of convex
functions and is thus generally nonconvex. Thus the optimization problem in (10.26)
is not convex, and is generally hard to solve. Furthermore, for a large number of
features, calculating f(w) requires enumeration over possible α assignments. The
problem may be approximated via different relaxations as in Gilad-Bachrach et al.
[2004] or Weston et al. [2000].

The above problem may be slightly altered to resemble our current formulation
by allowing the best K features to be chosen on a per sample basis (a single set of
features might then be selected, for example, by taking the features chosen most
often across samples). The resulting optimization problem is

min
∑

i [1 − yiw · (xi ◦ αi))]+
s.t. αi ∈ {0, 1}d∑

j αij = K .

(10.27)

This problem is easier than that in (10.26) in that the minimization over αi is always
tractable: the minimizing αi is the one which has the minimum contribution to the
margin. However, the function f(w) is again nonconvex, and thus it seems that the
problem remains hard.

It is interesting that these two feature selection variants, while similar in spirit
to our minimax problems, seem to have considerably higher complexity, in terms of
optimization efficiency. This suggests the FDROP approach may also prove useful
for feature selection by finding the set of features it tends to delete.

10.6.2 Learning with Invariances

In some learning scenarios, it is reasonable to assume that an input point may
be perturbed in certain ways without changing its class. For example, digits
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may undergo translations or rotations by small angles. Several recent works have
addressed learning in this setting [Teo et al., 2007a; Graepel and Herbrich, 2004;
Decoste and Schölkopf, 2002]. They share the common approach of assuming that
the set of possible perturbations of a data point x generate a cloud of virtual data
points, and that the margin of the point x should be measured with respect to this
cloud.

Our adversarial view of feature deletion may also be interpreted in the above
framework. The cloud of points in this case would be the point x and all points
that correspond to K feature deletions on x. Our worst-case margin in (10.2) may
then be interpreted as the worst-case margin of any point within this cloud of
virtual points. Note, however, that the FDROP problem can be solved without
explicitly generating the virtual points, using the methods in section 10.3. In Teo
et al. [2007a] we provide a general formalism of such invariance learning, and show
how algorithms such as BMRM [Teo et al., 2007b] may be applied to solving it.
Under this formalism, any invariance may be used, as long as an efficient algorithm
exists for finding the point with worst-case margin. One extension of FDROP which
we present in Teo et al. [2007a] is to the case where features are not necessarily
deleted, but scaled by some minimum and maximum factor. This new invariance
is shown to improve generalization performance on a spam filtering task, when
compared to both FDROP and standard SVM.5

10.7 Experiments

In this section we apply FDROP to synthetic and real data. We shall especially be
interested in evaluating performance when features are deleted from the test set.
Thus, for example, we test handwritten digit recognition when pixels are removed
from the image. We first focus on relatively small training sets, such that the
inherent sparseness of the problem is high, and most classification algorithms are
likely to overfit. In section 10.7.3 we report results on a large-scale spam filtering
experiment, with hundreds of thousands of features. In all experiments, we compare
our method with a linear support vector machine algorithm.6

For the small-scale experiments (sections 10.7.1 and 10.7.2) we used the QP
approach in section 10.3.1 (the ILOG-CPLEX package was used to solve the QPs).
For the large scale experiment the BMRM method was used (see section 10.3.2).

5. We present results for the same spam dataset in section 10.7.3, but since different
preprocessing is used, the results differ from those in Teo et al. [2007a].
6. In sections 10.7.1 and 10.7.2 both FDROP and SVM use a bias term, by adding a
constant feature xd+1 = 1. The FDROP algorithm was not allowed to delete the bias
feature xd+1 = 1. In section 10.7.3 we did not use a bias term, since this degraded the
results for both algorithms.
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Figure 10.3 Evaluation of FDROP and SVM on a toy logistic regression example, where
a highly informative feature is randomly dropped from the test sample. The value of K
was set to 1. The figure shows classification error as a function of the deletion probability
p(delete).

10.7.1 A Synthetic Example

To illustrate the advantages of the current method, we apply it to a setting where
the test data indeed differs from the training data by deleting features. We consider
a feature vector in x ∈ R

20 where training examples are drawn uniformly in that
space. The label is assigned according to a logistic regression rule:

p(y = 1|x) ∝ ew·x+b . (10.28)

In our experiments, w1 = 5 and all the other wi = −2. The bias b was set to the
mean of w. Thus the feature x1 is likely to be assigned a high weight by learning
algorithms which do not expect feature deletion. In the test data, we delete the
feature x1, i.e., set it to zero, with a given probability p(delete). We compare the
performance of our FDROP minimax algorithm (with K = 1) to that of a standard
SVM. For both methods, we choose the weight of the regularization parameter C

via cross-validation.
Figure 10.3 shows the resulting error rates. It can be seen that as the probability

of deletion increases, the performance of SVM decreases, while that of the minimax
algorithm stays roughly constant. This constant behavior is due to the fact that the
FDROP classifier is optimized for the worst-case when this feature is deleted. To
understand this behavior further, we checked which feature was deleted by FDROP
for every one of the samples. Indeed, on all the cases where x1 = 1 and y = 1, it
was x1 that was deleted in the optimization.

10.7.2 Handwritten Digit Classification

Image classification into categories should in principle be robust to pixel deletion,
or in other words deletion of parts of the image. Our game-theoretic framework
captures this intuition by modeling the worst-case pixel deletion scenario.
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We investigated the application of FDROP to classifying handwritten dig-
its, and focused on robustness to pixel deletion in these images. We applied
FDROP to the MNIST dataset [LeCun et al., 1995] of handwritten digits, and
focused on binary problems with small training sets of 50 samples per digit.
Furthermore, we only considered binary problems created by label pairs which
had more than 5% error when learned using an SVM (the chosen pairs were
(4, 9),(3, 5),(7, 9),(5, 8),(3, 8),(2, 8),(2, 3),(8, 9),(5, 6), (2, 7),(4, 7), and (2, 6)). The
size in pixels of each digit was (28 × 28). A holdout sample of size 200 was used
to optimize the algorithm parameters, and a set of 300 samples was used for test-
ing. The holdout set underwent the same pixel deletion as the test set, in order to
achieve a fair comparison between SVM and FDROP. Experiments were repeated
with 20 random subsets of the above sizes.

To evaluate the robustness of the algorithm to feature deletion, we trained it on
the raw data (i.e., without deleted features), and then tested it on data from which
K features were deleted. The values of K were (0, 25, 50, 75, 100, 125, 150).

Figure 10.4 gives a visual representation of the feature deletion process. The
FDROP minimax optimization deletes K features from every sample point. We
can find which features were deleted from each sample by finding the K features
with maximum margin contribution at the optimal w. Figure 10.4 illustrates these
features for three sample points. Each row displays the original raw input image and
the same input image with the K most destructive features deleted (here K = 50).
It can be seen that FDROP chooses to delete the features which maximize the
resemblance between the given digit and digits in the other class. These results
suggest that FDROP may indeed be useful as a feature selection mechanism.

Classification error rate should intuitively decrease as more features are deleted.
The goal of FDROP is to minimize the damage incurred by such deletion. Figure
10.5 shows the dependence of classification error on the number of deleted features
for both FDROP and SVM. The parameter K is taken as an unknown and is
chosen to minimize error on the holdout sample for each digit pair and deletion
level separately. It can be seen that FDROP suffers less degradation in error when
compared to SVM. Furthermore, the optimal K grows monotonically with the
number of deleted features, as is intuitively expected. The dependence on K for
a specific digit pair (4 and 7) and deletion level (50 deletions) is shown in figure
10.6. It can be seen that performance is improved up to a value of K = 25 which
supposedly matches the deletion level in the dataset (recall that FDROP considers a
worst-case scenario, whereas here features are dropped randomly, so that K and the
actual number of deleted features should not be expected to be close numerically).

10.7.3 Spam Filtering

One of the difficulties in filtering spam email from legitimate email is that the
problem is dynamic in nature, in the sense that spam authors react to spam filters
by changing content. In this sense, it is indeed a game where the two players are
the spam filter and spam authors. Our formalism captures this competition, and it
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Figure 10.4 Illustration of adversarial feature (pixel) deletion for handwritten digits.
Three binary classification problems were created from the MNIST digit database by
discriminating the classes “five” vs. “three” (top), “eight” vs. “five” (middle), and “seven”
vs. “nine.” The training data consisted of 50 samples per class. The number of deleted
features was K = 50. The images show three corresponding examples of features deleted
by the FDROP adversary. The left column shows the original digit, and the right column
shows the digit with the 50 pixels dropped by the FDROP algorithm. It can be seen
that the worst-case against which our algorithm attempts to be robust corresponds to the
deletion of extremely discriminative features for each example: the top right digit has been
made to look as much as possible like a “three,” the middle right digit very much like a
“five” and the bottom right digit has been distorted to look very much like a “seven.”
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Figure 10.5 Classification error rate for the MNIST dataset, as a function of the number
of features deleted from the test set. Standard errors over 20 repetitions are shown on the
curve. The optimal K parameter for the FDROP algorithm was chosen per classification
problem and per number of deleted features. The inset shows the optimal K for each
deletion scheme.
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Figure 10.6 Classification error as a function of the parameter K for the digit pair
(4, 7) with 50 deleted features.

Table 10.1 Results on the ECML’06 spam detection task for the SVM and FDROP
algorithms. The table reports classification accuracy and area under the ROC curve
(AUC). The values of C and K were obtained by optimizing over a separate tuning dataset.

Method Accuracy % AUC % Parameters (K, C)

SVM 77.20 90.02 (0, 1.25)

FDROP 86.63 94.03 (14, 1.25)

is therefore interesting to apply it to this case. Clearly, spam authors may change
their email in ways other than removing words. For example they may add good
words, or change the spelling of words [Lowd and Meek, 2005; Wittel and Wu, 2004;
Dalvi et al., 2004]. Here we limit the adversarial strategy to word deletion, but our
method may be extended to handling other strategies, using its extension in Teo
et al. [2007a].

In the experiments described in previous sections, we used relatively small sample
sizes and data dimensionality. In these cases, the FDROP problem could be solved
using the QP in (10.8). The current section focuses on a much larger problem,
where the QP in (10.8) becomes too big to solve using standard solvers. However,
the problem can still be solved using the BMRM method described in section 10.3.2.

We used the ECML’06 Discovery Challenge (Task A) evaluation dataset [Bickel,
2006]. The training set consists of 4000 emails from a single inbox whereas the
testing set consists of 7500 emails from three different inboxes. The vocabulary size
was d = 206, 908. We followed the approach of Drucker et al. [1999] by preprocessing
the bag-of-word feature vectors into binary vectors and then normalizing them to
unit norm. The values of C and K were chosen to optimize performance on a
separate tuning dataset.

Performance was compared to a linear SVM, and measured in terms of classifi-
cation accuracy and the area under the ROC curve (AUC). Results are reported
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in table 10.1. It can be seen that FDROP significantly outperforms SVM on this
task, for both performance measures. We emphasize that the test data was not
changed, and no features were artificially deleted, so that FDROP indeed results in
robustness and improved generalization performance.

10.8 Discussion and Conclusions

We have introduced a novel method for learning classifiers which are minimax
optimal under a worst-case scenario of feature deletion at test time. This is
an important step toward extending statistical learning paradigms beyond the
restrictive assumption that the training and testing data must come from the same
distribution. An alternative view of our algorithm is as a feature selection method
which seeks the features which are most crucial for performance. A key assumption
of our approach is that small sets of features should not be relied upon at test
time to faithfully represent the class structure. Thus, in some sense, the features
available to the algorithm at training time are viewed as being subject to random,
or even deliberate removal at test time. Interestingly, a recent paper by Krupka and
Tishby [2006] presents a related view of features, where one considers a learning
scheme where features are selected randomly from a large set, and generalization is
studied with respect to unseen features.

Clearly, in some cases the adversarial model may be too strong, and thus result
in decreased performance when compared to a standard SVM. For example, the
data may not undergo any feature deletion, or we may have a large enough training
set so that there is no need to introduce robustness via feature deletion. In these
cases it may be preferable to use our model with K = 0. One way of addressing
this issue is to use cross-validation in choosing the parameter K, so that if K = 0
yields lower errors on a validation set, it will be used in the final classifier. This is
the approach we used in our experiments, and we indeed found that it results in
lower K values in problems where fewer features are deleted.

A different game-theoretic approach to feature selection was previously suggested
by Cohen et al. [2005]. Their approach is related to Shapley values in cooperative
games. The Shapley value is a measure of the performance drop incurred by
dropping a feature from a given set of features, where this performance is averaged
over all subsets in which this feature participates. It is thus close in spirit to our
feature elimination approach. However, our approach searches for multiple features
simultaneously and is furthermore tractable, as opposed to exact calculation of
Shapley values.

The notion of robustness to feature deletion is not limited to the classification
setting. One may consider a similar setting in the context of regression or dimen-
sionality reduction. It would be interesting to extend the method described here to
these settings.

Finally, while here we focus on an adversary that deletes features, the formalism
can be easily extended to other perturbations of the feature vector. In Teo et al.
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[2007a] we outline such a general approach, and provide algorithms for solving the
resulting optimization problem.
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11 Author Comments

Hidetoshi Shimodaira
Masashi Sugiyama
Amos Storkey
Arthur Gretton
Shai-Ben David

In the following some of the chapter authors are given the opportunity to express
their personal views about dataset shift in machine learning. The authors wrote their
comments without knowledge of what comments were being written by the others.
As a consequence this chapter is not a discussion.

Hidetoshi Shimodaira

Covariate Shift and Misspecification
I would like to express my personal opinion on these two topics.

1. Covariate shift
Last December, a workshop on statistical machine learning was held at Tokyo

Institute of Technology. At the end of a talk given by Dr. Sugiyama on his recent
research, Prof. Shun-ichi Amari asked a question: Why is it called covariate shift?
As a member of the audience, I answered that I had thought of this term for the
purpose of making a title for a paper published in 2000. In light of the question, it
is apparent that my attempt for indicating the context was a failure.

It has been known for a long time in statistics and related fields that a sampling
mechanism changes the distribution of samples from a population. The subject is
sometimes called incomplete data or selection bias, and covariate shift is only a
special form of it. The simple structure of covariate shift made it easy to be solved
clearly; the log-likelihood is to be weighted by the ratio of the density for test
samples to that for observed samples. This importance weighting was not a main
contribution of Shimodaira [2000], but the focus was on the information criterion for
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improving the inference by altering the weights as well as applying these frequentist
arguments to Bayesian inference.

Selection bias without a specific structure is a difficult problem. We may have to
give up unbiased estimation of model parameters. In the study of the selectivity bias,
instead, we try to know how sensitively inference about the parameters depends on
departures from randomness; [Copas and Eguchi, 2001].

2. Model misspecification
My talk at the December workshop was on the multiscale bootstrap [Shimodaira,

2008], which is a resampling algorithm to compute a very accurate p-value for
hypothesis testing. My research has shifted to this subject since I was working on
covariate shift about ten years ago, partly because I did not have a good application
for covariate shift; yet I was very excited about the theory. I would like to mention
my experience with model misspecification in my current research.

The multiscale bootstrap and a related testing procedure of mine are popular
in the field of molecular evolution. They are used for computing a confidence
level for an inferred phylogenetic tree, which is a labeled tree representing the
branching order of species. The substitution of DNA along the branches, i.e., the
evolution, is modeled as a Markov process. Researchers have been elaborating
on complicated parametric models by incorporating several aspects of evolution.
However, we are behind the rapid accumulation of DNA data, and the models are
always misspecified considerably; the assumed parametric models are very distant
from the true distribution with respect to the size of the data.

Covariate shift is introduced in Shimodaira [2000] by assuming model misspec-
ification. It is also shown there that we should forget the covariate shift for the
optimal estimation of parameters if the model is correctly specified. Then, someone
may think that we should avoid misspecification by devising a complicated model.
This is correct. In reality, however, good fitting models with a modest number of
parameters are hard to obtain except for very simple applications. On the other
hand, one may think that we should employ model-free methods. Practitioners,
however, tend to use parametric models, because the emphasis of inference is often
on the interpretation, yet it is formulated mathematically in terms of prediction
error.

Masashi Sugiyama

Is Importance Weighting Needed under Covariate Shift?

Covariate shift matters in parameter learning only when the model used for function
learning is misspecified (i.e., the model is so simple that the true learning target
function cannot be expressed). When the model is correctly (or overly) specified,
ordinary maximum likelihood estimation (MLE) is still consistent. Following this
fact, there is a criticism that covariate shift adaptation by importance weighting is
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not needed, but just the use of a complex enough (or a nonparametric) model with
ordinary MLE can settle the problem.

However, too complex models result in huge variance, so we need to choose a
complex enough but not too complex a model for better generalization performance.
In order to perform model selection, we often use an unbiased generalization
error estimation method such as Akaike’s information criterion or cross-validation.
However, these generalization error estimation methods are heavily biased for
misspecified models under covariate shift. Instead, importance-weighted variants
can eliminate the bias and are therefore more reliable under covariate shift (see e.g.,
chapter 6 and chapter 7). In the model selection process, we cannot avoid computing
the generalization error estimates for misspecified models since the purpose is to rule
out such models from appropriate ones. For this reason, the use of (and therefore
estimation of) the importance weights is indispensable when covariate shift occurs.
Thus accurately estimating the importance weights (see e.g., chapter 8 and chapter
9) is very important and we need to further investigate this issue.

Amos Storkey

The problem of dataset shift is knowing precisely what shifts are possible. Without
some understanding of what bias can be introduced, any sort of correspondence
between the training space and test space can be introduced, and knowledge of the
training data will be of no use in the test environment. The biggest difficulty in
dataset shift is that the only thing we can use to infer the correspondence is the
covariate distributions, and any information in the training target values that can
help to characterize the structure of those distributions. This seems to be a tough
problem to develop generalized or automated methods for.

There are two other fields which make the problem more manageable. The first is
semisupervised learning. In most circumstances semisupervised learning is used in
stationary environments. However, the use of methods in this book, combined with
the valuable test-scenario target information that is available in the semisupervised
context, will, I expect, provide very powerful automated approaches to dataset shift.
This is also only realistic. Who is going to apply predictions obtained from a dataset
shift method without ever validating the results in the test domain? Only the most
foolhardy practitioner. Clearly, then, some information from the test domain is
going to have to be available at some stage.

The second of these two fields is the general areas of multitask learning and
transfer learning. Here much more contextual covariate distribution information is
available. This will allow much firmer characterizations of the types of changes that
can happen in a particular environment, and hence allow a firmer grasp of the likely
transfer scenario. Again, many of the methods in this book can be straightforwardly
generalized to multiple training scenarios. In many situations it will be fair to
presume that the form of shift between the training scenarios is common to the
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form of shift between the training and test scenario. This is a great benefit in
assessing what shift could occur.

Arthur Gretton

If the model is correct and parameters are properly set, then there may not be a
benefit in covariate shift (that said, we found experimentally that it is a different
story for local learning, where the “test set” has one or few points, but this is beyond
the scope of our chapter: see, for instance, work by Bottou and Vapnik on this topic).
In cases where we had lots of data and cross-validated carefully, the differences
between using the unweighted training sample and weighted training sample were
fairly small, and not always advantageous. However there are several reasons for
not using a “correct” model, but rather a deliberately simpler one: these include
interpretability and difficulties in effective model selection, especially for higher-
dimensional data and small sample sizes, making more conservative models a safe
choice (this is why, for instance, linear classifiers are so popular in fMRI studies).
When these considerations cause us to choose a simpler model than suggested by
cross-validation/marginal likelihood optimization, then more significant benefits
can be obtained.

Shai Ben-David

My comments relate to two notions that I view as central to any theory of learning
that aims to have practical implications. The first notion is that of an “Inductive
bias” or some learner prior knowledge. We know very well that without restricting
the class of potential predictors no reliable learning is possible. This is the famous
“no free lunch” phenomenon. Such restrictions can either have the form of strong
assumptions about the data generating distribution (as in the Valiant version of
the PAC model), they can take the more flexible form of a prior distribution over
the family of possible data generating distributions (like the classical Bayes type
learning), or they can come through the use of a benchmark comparison class of
predictors, aiming to perform as well as the best predictor in some fixed benchmark
set of predictors (such an approach is taken by expert models for online learning
as well as by the agnostic models of PAC learning).

Regretfully, some of the current work on learning in the dataset shift setting fail
to make such an explicit assumption. Most notably, the common “covariate shift”
assumption (stating that the change between the training data and the test data
is only in the marginal data distribution and not in the conditional distribution of
labels) is practically vacuous without an explicit restriction of the possible class of
data labeling functions. Under the more realistic scenario, where the domain (or
the support of the data generating distributions) is much larger than the training
and test sample sizes, it is unlikely that the same domain point will occur in both
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training and test samples. Therefore, any label behavior over the training and test
sample is consistent with such a “bias-free” covariate shift assumption. For example,
seeing a training sample where all the labels are ‘1’ and then a test sample where
all the labels are zero can be likely if the data labeling function is one fixed function
defining the test, or both the training and test data, and the only difference is that
the marginal example distribution for the training data has its support over the
domain points that have label ‘1’, and the test distribution concentrates on the
points labeled zero. Of course, no transfer of learning between these two domains
is possible in such a scenario. In contrast, the covariate shift assumption does carry
significant content once it is paired by an assumption restricting the set of potential
labeling functions (say, assuming the labels are well approximated by some linear
function over the data domain).

Another topic that suffers from insufficient acknowledgment of the importance
of such inductive bias is the discussion of the relative virtues of “large-capacity
classifiers” vs. “small-capacity classifiers.” Of course, a “small-capacity” set of
classifier can model only restricted families of data behavior. But the use of such
small-capacity classes is inevitable if one wishes to have any finite sample size
performance guarantees. “Large-capacity” classes are prone to overfitting, and no
learning theory with practical aspirations should ignore this issue.

This brings me to the other central issue - the finiteness of the training data.
Asymptotic analysis is a very rich fruitful field from a pure mathematical perspec-
tive, yet it bears very little significance to any real learning tasks. Consequently,
some mathematically attractive notions, like “universal kernels,” and the apparent
“miracles” that they can do, seem to me completely detached from and irrelevant
to any realistic learning task. Kernels that encode all the important knowledge of
the data distributions on their means are totally useless under any finite training
data setting. While the true kernel expectation may be very informative, from fi-
nite data we can only approximate it, and there exists no bound on the error in the
estimation of relevant information that is associated with the approximation error
of that expectation.

Not only that any reasonable learning model should assume the finiteness of
training data (both labeled and unlabeled) to qualify as relevant to practical
learning tasks, this finiteness assumption should be further strengthened by the
realization that it is highly unlikely for the same domain point to occur in both
the training and test domain sample data. Consequently, I view any method that
is based on estimating the data shift distributions based on frequency counts of
domain points in the available samples as a quite irrelevant highly theoretical
construct.
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Notation and Symbols

Sets of Numbers

N the set of natural numbers, N = {1, 2, . . . }
R the set of reals

[n] compact notation for {1, . . . , n}
x ∈ [a, b] interval a ≤ x ≤ b

x ∈ (a, b] interval a < x ≤ b

x ∈ (a, b) interval a < x < b

|C| cardinality of a set C (for finite sets, the number of elements)

Data

X the input domain

d (used if X is a vector space) dimension of X

M number of classes (for classification)

n number of data examples

ntr number of training examples

nte number of test examples

i, j indices, often running over [nte] or [ntr]

xi input patterns xi ∈ X

xtr
i input training patterns xtr

i ∈ X

xte
i input test patterns xte

i ∈ X

yi classes yi ∈ [M ] (for regression: target values yi ∈ R)

ytr
i training data classes ytr

i ∈ [M ] (for regression: target values ytr
i ∈ R)

yte
i test data classes ytr

i ∈ [M ] (for regression: target values yte
i ∈ R)

X sample of input patterns, X = (x1, . . . , xn)

Xtr sample of training input patterns, Xtr = (xtr
1 , . . . , xtr

n )

Xte sample of test input patterns, Xte = (xte
1 , . . . , xte

n )

Y sample of output targets, Y = (y1, . . . , yn)

Y tr sample of training output targets, Y tr = (ytr
1 , . . . , ytr

n )

Y te sample of training output targets, Y te = (yte
1 , . . . , yte

n )
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220 Notation and Symbols

Kernels

H feature space induced by a kernel

Φ feature map, Φ : X → H

k (positive definite) kernel

K kernel matrix or Gram matrix, Kij = k(xi, xj)

Vectors, Matrices, and Norms

1 vector with all entries equal to 1

I identity matrix

A	 transposed matrix (or vector)

A−1 inverse matrix (in some cases, pseudoinverse)

tr (A) trace of a matrix

det (A) determinant of a matrix

〈x,x′〉 dot product between x and x′

x ◦ x′ Elementwise multiplication of vectors x and x′

‖·‖ 2-norm, ‖x‖ :=
√〈x,x〉

‖·‖p p-norm , ‖x‖p :=
(∑N

i=1 |xi|p
)1/p

, N ∈ N ∪ {∞}
‖·‖∞ ∞-norm , ‖x‖∞ := supN

i=1 |xi|, N ∈ N ∪ {∞}
Functions

ln logarithm to base e

log2 logarithm to base 2

f a function, often from X or [n] to R, R
M or [M ]

F a family of functions

Lp(X) function spaces, 1 ≤ p ≤ ∞
Probability

P{·} probability of a logical formula

Ptr{·} probability of a logical formula associated with training data distri-
bution

Pte{·} probability of a logical formula associated with test data distribution

P(C) probability of a set (event) C

p(x) density evaluated at x ∈ X

ptr(x) density associated with training data distribution evaluated at x ∈ X

pte(x) density associated with test data distribution evaluated at x ∈ X

E [·] expectation of a random variable

Var [·] variance of a random variable

N(μ, σ2) normal distribution with mean μ and variance σ2
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Graphs

g graph g = (V,E) with nodes V and edges E

G set of graphs

W weighted adjacency matrix of a graph (Wij �= 0 ⇔ (i, j) ∈ E)

D (diagonal) degree matrix of a graph, Dii =
∑

j Wij

L normalized graph Laplacian, L = D−1/2WD−1/2

L unnormalized graph Laplacian, L = D − W

SVM-related

ρf (x, y) margin of function f on the example (x, y), i.e., y · f(x)

ρf margin of f on the training set, i.e., minm
i=1 ρf (xi, yi)

h VC-dimension

C regularization parameter in front of the empirical risk term

λ regularization parameter in front of the regularizer

w weight vector

b constant offset (or threshold)

αi Lagrange multiplier or expansion coefficient

βi Lagrange multiplier

α,β vectors of Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

Q Hessian of a quadratic program

Miscellaneous

IA characteristic (or indicator) function on a set A

i.e., IA(x) = 1 if x ∈ A and 0 otherwise

δij Kronecker δ (δij = 1 if i = j, 0 otherwise)

δx Dirac δ, satisfying
∫

δx(y)f(y)dy = f(x)

O(g(n)) a function f(n) is said to be O(g(n)) if there exist constants C > 0
and n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0

o(g(n)) a function f(n) is said to be o(g(n)) if there exist constants c > 0
and n0 ∈ N such that |f(n)| ≥ cg(n) for all n ≥ n0

rhs/lhs shorthand for “right/left hand side”

the end of a proof
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ensemble, 128
model selection dilemma, 125
pool-based, 96
sequential, 125
variance only, 118
with model selection, 124

adaptive learners, 74
adaptive prediction, 76, 82
adaptive predictors, 83
adversarial deletion, 37, 181
Akaike’s information criterion, 92
anti-learning, 54

background knowledge, 29
Bayes classifier, 46, 49
Bayes consistent classifier, 53
Bayes optimality, 69
Bayes rule, 43, 166
Bayesian model averaging, 167
Bayesian transduction, 66, 67, 72
best linear unbiased estimator, 91
between distribution distance, 77
biological network, 180
brain-computer interface, 130, 132
bundle method, 184

causality, 35
characteristic function, 221
class conditionally independent

selection, 43
cluster assumption, 36, 55

modified, 55
regularizer in, 56

computational chemistry, 130
conditional expectation, 107

conservative learners, 74
conservative prediction, 74, 76, 77
consistency, 92
convexity, 172
correctly specified model, 109
covariate shift, 44, 49, 62, 65, 69, 74,

77, 83, 89, 109, 142, 162
cross validation, 142, 181
curse of dimensionality, 133
curvature, 102

data collection, 30
dataset drift, see dataset shift
dataset shift, 65, 69
de Finetti, Bruno, 30
decision-theoretic perspective, 41
digit recognition, 191
document classification, 179
domain adaptation, 73, 75, 76
domain shift, 19
drift prior, 70
duality gap, 186

error bounds, 77, 79, 80

face recognition, 180
factor component shift, 21
feature deletion, 190
feature elimination, see feature

deletion
feature selection, 189
flattening parameter, 111
full expectation, 107

gamma correction, 19
Gaussian process, 22
general sample selection bias, 63
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generalization error, 67
generalization optimality, 66
graph-based regularization, 56

Hessian, 92, 169

imbalanced data, 16
importance sampling, 148
importance weighting

Akaike’s information criterion,
114

cross validation, 115
least squares, 111
subspace information criterion,

112
inductive transfer, 73, 75
information criterion, 92
information geometry, 101
invariance, 37, 191

Jaynes, Edwin, 30

kernel mean matching, 112, 138
Kuhn, Thomas, 36
Kullback-Leibler divergence, 96
Kullback-Leibler importance

estimation procedure, 112

language and projection, 33
large capacity classifiers, 52
large deviation bound, 139
linear regression, 109
logistic regression, 134, 168, 192

kernel logistic regression, 112

MAP estimator, 167
maximum likelihood estimator, 88
maximum weighted log-likelihood

estimator, 89
measure space, 75
microarray, 132
minimax, 180
missing at random, 44, 162
misspecified model, 89, 109
mixing component shift, 21
mixture component shift, 21

mixture of experts, 26
MNIST dataset, 30
model selection, 112
modified cluster assumption, see

cluster assumption,
modified

multitask learning, 27, 73, 75
asymmetric, see domain

adaptation
symmetric, 75, 76

nature’s density, 66
Newton method, 169
novelty detection, 144

outlier, 105

Pólya, George, 36
PAC models, 82
Parzen window, 146
Pearl, Judea, 35
philosophy, 29
poisson regression, 137
practical considerations, 27
prior probability shift, 12
projection, 31
propensity score, 164

random selection, 43, 61
regression to the mean, 14
regularized least squares, 58
representer theorem, 171
reproducing kernel Hilbert space, 141

universal, 133
Riemannian geometry, 104
risk minimization, 184
robust parametric estimation, 105

sample selection bias, 14, 41, 59, 132,
164

general case, 55
sample survey, 89
selection condition, 45
selection index, 47, 51

bound on, 51
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semisupervised learning, 41, 55, 59,
65, 70

sensor network, 180
single trial, 107
small capacity classifiers, 52
source component shift, 19
spam filtering, 174
structural correspondence, 37
subgradient, 186
support condition, 45
support vector machine, 148, 181

single class, 140

tangent space, 103
text classification, 174
The Grue Paradox, 32
The New Riddle of Induction, 32
transduction, 141
transfer learning, 27

uniform convergence, 141
universally consistent classifier, see

Bayes consistent classifier
unlabeled data, 50

VC dimension, 78, 81

weighting, 18, 54

zero-sum game, 182


