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preface
When I first entered the world of Big Data, it felt like the Wild West of software devel-
opment. Many were abandoning the relational database and its familiar comforts for
NoSQL databases with highly restricted data models designed to scale to thousands of
machines. The number of NoSQL databases, many of them with only minor differ-
ences between them, became overwhelming. A new project called Hadoop began to
make waves, promising the ability to do deep analyses on huge amounts of data. Mak-
ing sense of how to use these new tools was bewildering.

 At the time, I was trying to handle the scaling problems we were faced with at the
company at which I worked. The architecture was intimidatingly complex—a web of
sharded relational databases, queues, workers, masters, and slaves. Corruption had
worked its way into the databases, and special code existed in the application to han-
dle the corruption. Slaves were always behind. I decided to explore alternative Big
Data technologies to see if there was a better design for our data architecture.

 One experience from my early software-engineering career deeply shaped my view
of how systems should be architected. A coworker of mine had spent a few weeks col-
lecting data from the internet onto a shared filesystem. He was waiting to collect
enough data so that he could perform an analysis on it. One day while doing some
routine maintenance, I accidentally deleted all of my coworker’s data, setting him
behind weeks on his project.

 I knew I had made a big mistake, but as a new software engineer I didn’t know
what the consequences would be. Was I going to get fired for being so careless? I sent
out an email to the team apologizing profusely—and to my great surprise, everyone
was very sympathetic. I’ll never forget when a coworker came to my desk, patted my
back, and said “Congratulations. You’re now a professional software engineer.”
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 In his joking statement lay a deep unspoken truism in software development: we
don’t know how to make perfect software. Bugs can and do get deployed to production.
If the application can write to the database, a bug can write to the database as well.
When I set about redesigning our data architecture, this experience profoundly
affected me. I knew our new architecture not only had to be scalable, tolerant to
machine failure, and easy to reason about—but tolerant of human mistakes as well.

 My experience re-architecting that system led me down a path that caused me to
question everything I thought was true about databases and data management. I came
up with an architecture based on immutable data and batch computation, and I was
astonished by how much simpler the new system was compared to one based solely on
incremental computation. Everything became easier, including operations, evolving
the system to support new features, recovering from human mistakes, and doing per-
formance optimization. The approach was so generic that it seemed like it could be
used for any data system.

 Something confused me though. When I looked at the rest of the industry, I saw
that hardly anyone was using similar techniques. Instead, daunting amounts of com-
plexity were embraced in the use of architectures based on huge clusters of incremen-
tally updated databases. So many of the complexities in those architectures were
either completely avoided or greatly softened by the approach I had developed.

 Over the next few years, I expanded on the approach and formalized it into what I
dubbed the Lambda Architecture. When working on a startup called BackType, our team
of five built a social media analytics product that provided a diverse set of realtime
analytics on over 100 TB of data. Our small team also managed deployment, opera-
tions, and monitoring of the system on a cluster of hundreds of machines. When we
showed people our product, they were astonished that we were a team of only five
people. They would often ask “How can so few people do so much?” My answer was
simple: “It’s not what we’re doing, but what we’re not doing.” By using the Lambda
Architecture, we avoided the complexities that plague traditional architectures. By
avoiding those complexities, we became dramatically more productive.

 The Big Data movement has only magnified the complexities that have existed in
data architectures for decades. Any architecture based primarily on large databases
that are updated incrementally will suffer from these complexities, causing bugs, bur-
densome operations, and hampered productivity. Although SQL and NoSQL data-
bases are often painted as opposites or as duals of each other, at a fundamental level
they are really the same. They encourage this same architecture with its inevitable
complexities. Complexity is a vicious beast, and it will bite you regardless of whether
you acknowledge it or not.

 This book is the result of my desire to spread the knowledge of the Lambda Archi-
tecture and how it avoids the complexities of traditional architectures. It is the book I
wish I had when I started working with Big Data. I hope you treat this book as a jour-
ney—a journey to challenge what you thought you knew about data systems, and to
discover that working with Big Data can be elegant, simple, and fun.

 NATHAN MARZ
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about this book
Services like social networks, web analytics, and intelligent e-commerce often need to
manage data at a scale too big for a traditional database. Complexity increases with
scale and demand, and handling Big Data is not as simple as just doubling down on
your RDBMS or rolling out some trendy new technology. Fortunately, scalability and
simplicity are not mutually exclusive—you just need to take a different approach. Big
Data systems use many machines working in parallel to store and process data, which
introduces fundamental challenges unfamiliar to most developers.

 Big Data teaches you to build these systems using an architecture that takes advan-
tage of clustered hardware along with new tools designed specifically to capture and
analyze web-scale data. It describes a scalable, easy-to-understand approach to Big
Data systems that can be built and run by a small team. Following a realistic example,
this book guides readers through the theory of Big Data systems and how to imple-
ment them in practice.

 Big Data requires no previous exposure to large-scale data analysis or NoSQL tools.
Familiarity with traditional databases is helpful, though not required. The goal of the
book is to teach you how to think about data systems and how to break down difficult
problems into simple solutions. We start from first principles and from those deduce
the necessary properties for each component of an architecture. 

Roadmap
An overview of the 18 chapters in this book follows.

 Chapter 1 introduces the principles of data systems and gives an overview of the
Lambda Architecture: a generalized approach to building any data system. Chapters 2
through 17 dive into all the pieces of the Lambda Architecture, with chapters
alternating between theory and illustration chapters. Theory chapters demonstrate the
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concepts that hold true regardless of existing tools, while illustration chapters use
real-world tools to demonstrate the concepts. Don’t let the names fool you, though—
all chapters are highly example-driven.

 Chapters 2 through 9 focus on the batch layer of the Lambda Architecture. Here you
will learn about modeling your master dataset, using batch processing to create arbitrary
views of your data, and the trade-offs between incremental and batch processing.

 Chapters 10 and 11 focus on the serving layer, which provides low latency access to
the views produced by the batch layer. Here you will learn about specialized databases
that are only written to in bulk. You will discover that these databases are dramatically
simpler than traditional databases, giving them excellent performance, operational,
and robustness properties.

 Chapters 12 through 17 focus on the speed layer, which compensates for the batch
layer’s high latency to provide up-to-date results for all queries. Here you will learn
about NoSQL databases, stream processing, and managing the complexities of incre-
mental computation.

 Chapter 18 uses your new-found knowledge to review the Lambda Architecture
once more and fill in any remaining gaps. You’ll learn about incremental batch pro-
cessing, variants of the basic Lambda Architecture, and how to get the most out of
your resources. 

Code downloads and conventions
The source code for the book can be found at https://github.com/Big-Data-Manning.
We have provided source code for the running example SuperWebAnalytics.com.

 Much of the source code is shown in numbered listings. These listings are meant
to provide complete segments of code. Some listings are annotated to help highlight
or explain certain parts of the code. In other places throughout the text, code frag-
ments are used when necessary. Courier typeface is used to denote code for Java. In
both the listings and fragments, we make use of a bold code font to help identify key
parts of the code that are being explained in the text.

Author Online
Purchase of Big Data includes free access to a private web forum run by Manning Pub-
lications where you can make comments about the book, ask technical questions, and
receive help from the authors and other users. To access the forum and subscribe to
it, point your web browser to www.manning.com/BigData. This Author Online (AO)
page provides information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog among individual readers and between readers and the authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!
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 The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of Big Data is captioned “Le Raccommodeur de Fiance,”
which means a mender of clayware. His special talent was mending broken or chipped
pots, plates, cups, and bowls, and he traveled through the countryside, visiting the
towns and villages of France, plying his trade. 

 The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs published in France. Each illus-
tration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just 200
years ago. Isolated from each other, people spoke different dialects and languages. In
the streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
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1

A new
 paradigm for Big Data

In the past decade the amount of data being created has skyrocketed. More than
30,000 gigabytes of data are generated every second, and the rate of data creation is
only accelerating.

 The data we deal with is diverse. Users create content like blog posts, tweets,
social network interactions, and photos. Servers continuously log messages about
what they’re doing. Scientists create detailed measurements of the world around
us. The internet, the ultimate source of data, is almost incomprehensibly large. 

 This astonishing growth in data has profoundly affected businesses. Traditional
database systems, such as relational databases, have been pushed to the limit. In an

This chapter covers
■ Typical problems encountered when scaling a 

traditional database
■ Why NoSQL is not a panacea
■ Thinking about Big Data systems from first 

principles
■ Landscape of Big Data tools
■ Introducing SuperWebAnalytics.com
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increasing number of cases these systems are breaking under the pressures of “Big
Data.” Traditional systems, and the data management techniques associated with
them, have failed to scale to Big Data. 

 To tackle the challenges of Big Data, a new breed of technologies has emerged.
Many of these new technologies have been grouped under the term NoSQL. In some
ways, these new technologies are more complex than traditional databases, and in
other ways they’re simpler. These systems can scale to vastly larger sets of data, but
using these technologies effectively requires a fundamentally new set of techniques.
They aren’t one-size-fits-all solutions. 

 Many of these Big Data systems were pioneered by Google, including distributed
filesystems, the MapReduce computation framework, and distributed locking services.
Another notable pioneer in the space was Amazon, which created an innovative dis-
tributed key/value store called Dynamo. The open source community responded in
the years following with Hadoop, HBase, MongoDB, Cassandra, RabbitMQ, and count-
less other projects. 

 This book is about complexity as much as it is about scalability. In order to meet
the challenges of Big Data, we’ll rethink data systems from the ground up. You’ll dis-
cover that some of the most basic ways people manage data in traditional systems like
relational database management systems (RDBMSs) are too complex for Big Data sys-
tems. The simpler, alternative approach is the new paradigm for Big Data that you’ll
explore. We have dubbed this approach the Lambda Architecture.

 In this first chapter, you’ll explore the “Big Data problem” and why a new para-
digm for Big Data is needed. You’ll see the perils of some of the traditional techniques
for scaling and discover some deep flaws in the traditional way of building data sys-
tems. By starting from first principles of data systems, we’ll formulate a different way
to build data systems that avoids the complexity of traditional techniques. You’ll take a
look at how recent trends in technology encourage the use of new kinds of systems,
and finally you’ll take a look at an example Big Data system that we’ll build through-
out this book to illustrate the key concepts. 

1.1 How this book is structured
You should think of this book as primarily a theory book, focusing on how to
approach building a solution to any Big Data problem. The principles you’ll learn
hold true regardless of the tooling in the current landscape, and you can use these
principles to rigorously choose what tools are appropriate for your application. 

 This book is not a survey of database, computation, and other related technolo-
gies. Although you’ll learn how to use many of these tools throughout this book,
such as Hadoop, Cassandra, Storm, and Thrift, the goal of this book is not to learn
those tools as an end in themselves. Rather, the tools are a means of learning the
underlying principles of architecting robust and scalable data systems. Doing an
involved compare-and-contrast between the tools would not do you justice, as that
just distracts from learning the underlying principles. Put another way, you’re going
to learn how to fish, not just how to use a particular fishing rod. 
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3Scaling with a traditional database

 In that vein, we have structured the book into theory and illustration chapters. You
can read just the theory chapters and gain a full understanding of how to build Big
Data systems—but we think the process of mapping that theory onto specific tools
in the illustration chapters will give you a richer, more nuanced understanding of
the material. 

 Don’t be fooled by the names though—the theory chapters are very much example-
driven. The overarching example in the book—SuperWebAnalytics.com—is used in
both the theory and illustration chapters. In the theory chapters you’ll see the algo-
rithms, index designs, and architecture for SuperWebAnalytics.com. The illustration
chapters will take those designs and map them onto functioning code with specific tools. 

1.2 Scaling with a traditional database 
Let’s begin our exploration of Big Data by starting from where many developers start:
hitting the limits of traditional database technologies. 

 Suppose your boss asks you to build a simple web analytics application. The appli-
cation should track the number of pageviews for any URL a customer wishes to track.
The customer’s web page pings the application’s web server with its URL every time a
pageview is received. Additionally, the application should be able to tell you at any point
what the top 100 URLs are by number of pageviews. 

 You start with a traditional relational schema for
the pageviews that looks something like figure 1.1.
Your back end consists of an RDBMS with a table of
that schema and a web server. Whenever someone
loads a web page being tracked by your application,
the web page pings your web server with the
pageview, and your web server increments the corre-
sponding row in the database. 

 Let’s see what problems emerge as you evolve the
application. As you’re about to see, you’ll run into
problems with both scalability and complexity. 

1.2.1 Scaling with a queue

The web analytics product is a huge success, and traffic to your application is growing
like wildfire. Your company throws a big party, but in the middle of the celebration
you start getting lots of emails from your monitoring system. They all say the same
thing: “Timeout error on inserting to the database.” 

 You look at the logs and the problem is obvious. The database can’t keep up with
the load, so write requests to increment pageviews are timing out. 

 You need to do something to fix the problem, and you need to do something
quickly. You realize that it’s wasteful to only perform a single increment at a time to the
database. It can be more efficient if you batch many increments in a single request. So
you re-architect your back end to make this possible.

Column name Type

id

user_id

url

pageviews

integer

integer

varchar(255)

bigint

Figure 1.1 Relational schema for 
simple analytics application
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 Instead of having the web server hit the database directly, you insert a queue
between the web server and the database. Whenever you receive a new pageview, that
event is added to the queue. You then create a
worker process that reads 100 events at a time
off the queue, and batches them into a single
database update. This is illustrated in figure 1.2. 

 This scheme works well, and it resolves the
timeout issues you were getting. It even has the
added bonus that if the database ever gets
overloaded again, the queue will just get big-
ger instead of timing out to the web server and
potentially losing data. 

1.2.2 Scaling by sharding the database

Unfortunately, adding a queue and doing batch updates was only a band-aid for the
scaling problem. Your application continues to get more and more popular, and again
the database gets overloaded. Your worker can’t keep up with the writes, so you try
adding more workers to parallelize the updates. Unfortunately that doesn’t help; the
database is clearly the bottleneck. 

 You do some Google searches for how to scale a write-heavy relational database.
You find that the best approach is to use multiple database servers and spread the
table across all the servers. Each server will have a subset of the data for the table. This
is known as horizontal partitioning or sharding. This technique spreads the write load
across multiple machines. 

 The sharding technique you use is to choose the shard for each key by taking the
hash of the key modded by the number of shards. Mapping keys to shards using a
hash function causes the keys to be uniformly distributed across the shards. You write
a script to map over all the rows in your single database instance, and split the data
into four shards. It takes a while to run, so you turn off the worker that increments
pageviews to let it finish. Otherwise you’d lose increments during the transition. 

 Finally, all of your application code needs to know how to find the shard for each
key. So you wrap a library around your database-handling code that reads the number
of shards from a configuration file, and you redeploy all of your application code. You
have to modify your top-100-URLs query to get the top 100 URLs from each shard and
merge those together for the global top 100 URLs. 

 As the application gets more and more popular, you keep having to reshard the
database into more shards to keep up with the write load. Each time gets more and
more painful because there’s so much more work to coordinate. And you can’t just
run one script to do the resharding, as that would be too slow. You have to do all the
resharding in parallel and manage many active worker scripts at once. You forget to
update the application code with the new number of shards, and it causes many of the
increments to be written to the wrong shards. So you have to write a one-off script to
manually go through the data and move whatever was misplaced. 

Web server

Pageview

Queue
100 at a time

Worker

DB

Figure 1.2 Batching updates with queue 
and worker
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1.2.3 Fault-tolerance issues begin 

Eventually you have so many shards that it becomes a not-infrequent occurrence for
the disk on one of the database machines to go bad. That portion of the data is
unavailable while that machine is down. You do a couple of things to address this: 

■ You update your queue/worker system to put increments for unavailable shards on
a separate “pending” queue that you attempt to flush once every five minutes. 

■ You use the database’s replication capabilities to add a slave to each shard so
you have a backup in case the master goes down. You don’t write to the slave,
but at least customers can still view the stats in the application. 

You think to yourself, “In the early days I spent my time building new features for cus-
tomers. Now it seems I’m spending all my time just dealing with problems reading and
writing the data.”

1.2.4 Corruption issues 

While working on the queue/worker code, you accidentally deploy a bug to produc-
tion that increments the number of pageviews by two, instead of by one, for every
URL. You don’t notice until 24 hours later, but by then the damage is done. Your
weekly backups don’t help because there’s no way of knowing which data got cor-
rupted. After all this work trying to make your system scalable and tolerant of machine
failures, your system has no resilience to a human making a mistake. And if there’s
one guarantee in software, it’s that bugs inevitably make it to production, no matter
how hard you try to prevent it. 

1.2.5 What went wrong?

As the simple web analytics application evolved, the system continued to get more and
more complex: queues, shards, replicas, resharding scripts, and so on. Developing
applications on the data requires a lot more than just knowing the database schema.
Your code needs to know how to talk to the right shards, and if you make a mistake,
there’s nothing preventing you from reading from or writing to the wrong shard. 

 One problem is that your database is not self-aware of its distributed nature, so it
can’t help you deal with shards, replication, and distributed queries. All that complexity
got pushed to you both in operating the database and developing the application code.

 But the worst problem is that the system is not engineered for human mistakes.
Quite the opposite, actually: the system keeps getting more and more complex, mak-
ing it more and more likely that a mistake will be made. Mistakes in software are inevi-
table, and if you’re not engineering for it, you might as well be writing scripts that
randomly corrupt data. Backups are not enough; the system must be carefully thought
out to limit the damage a human mistake can cause. Human-fault tolerance is not
optional. It’s essential, especially when Big Data adds so many more complexities to
building applications. 
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1.2.6 How will Big Data techniques help? 

The Big Data techniques you’re going to learn will address these scalability and com-
plexity issues in a dramatic fashion. First of all, the databases and computation systems
you use for Big Data are aware of their distributed nature. So things like sharding and
replication are handled for you. You’ll never get into a situation where you acciden-
tally query the wrong shard, because that logic is internalized in the database. When it
comes to scaling, you’ll just add nodes, and the systems will automatically rebalance
onto the new nodes. 

 Another core technique you’ll learn about is making your data immutable. Instead
of storing the pageview counts as your core dataset, which you continuously mutate as
new pageviews come in, you store the raw pageview information. That raw pageview
information is never modified. So when you make a mistake, you might write bad
data, but at least you won’t destroy good data. This is a much stronger human-fault tol-
erance guarantee than in a traditional system based on mutation. With traditional
databases, you’d be wary of using immutable data because of how fast such a dataset
would grow. But because Big Data techniques can scale to so much data, you have the
ability to design systems in different ways. 

1.3 NoSQL is not a panacea
The past decade has seen a huge amount of innovation in scalable data systems.
These include large-scale computation systems like Hadoop and databases such as
Cassandra and Riak. These systems can handle very large amounts of data, but with
serious trade-offs.

 Hadoop, for example, can parallelize large-scale batch computations on very large
amounts of data, but the computations have high latency. You don’t use Hadoop for
anything where you need low-latency results. 

 NoSQL databases like Cassandra achieve their scalability by offering you a much
more limited data model than you’re used to with something like SQL. Squeezing
your application into these limited data models can be very complex. And because the
databases are mutable, they’re not human-fault tolerant. 

 These tools on their own are not a panacea. But when intelligently used in con-
junction with one another, you can produce scalable systems for arbitrary data prob-
lems with human-fault tolerance and a minimum of complexity. This is the Lambda
Architecture you’ll learn throughout the book.

1.4 First principles
To figure out how to properly build data systems, you must go back to first principles.
At the most fundamental level, what does a data system do? 

 Let’s start with an intuitive definition: A data system answers questions based on infor-
mation that was acquired in the past up to the present. So a social network profile answers
questions like “What is this person’s name?” and “How many friends does this person
have?” A bank account web page answers questions like “What is my current balance?”
and “What transactions have occurred on my account recently?” 
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 Data systems don’t just memorize and regurgitate information. They combine bits
and pieces together to produce their answers. A bank account balance, for example, is
based on combining the information about all the transactions on the account. 

 Another crucial observation is that not all bits of information are equal. Some infor-
mation is derived from other pieces of information. A bank account balance is derived
from a transaction history. A friend count is derived from a friend list, and a friend list
is derived from all the times a user added and removed friends from their profile. 

 When you keep tracing back where information is derived from, you eventually
end up at information that’s not derived from anything. This is the rawest information
you have: information you hold to be true simply because it exists. Let’s call this infor-
mation data.

 You may have a different conception of what the word data means. Data is often
used interchangeably with the word information. But for the remainder of this book,
when we use the word data, we’re referring to that special information from which
everything else is derived.

 If a data system answers questions by looking at past data, then the most general-
purpose data system answers questions by looking at the entire dataset. So the most
general-purpose definition we can give for a data system is the following:

Anything you could ever imagine doing with data can be expressed as a function that
takes in all the data you have as input. Remember this equation, because it’s the crux
of everything you’ll learn. We’ll refer to this equation over and over. 

 The Lambda Architecture provides a general-purpose approach to implementing
an arbitrary function on an arbitrary dataset and having the function return its results
with low latency. That doesn’t mean you’ll always use the exact same technologies
every time you implement a data system. The specific technologies you use might
change depending on your requirements. But the Lambda Architecture defines a con-
sistent approach to choosing those technologies and to wiring them together to meet
your requirements. 

 Let’s now discuss the properties a data system must exhibit. 

1.5 Desired properties of a Big Data system
The properties you should strive for in Big Data systems are as much about complexity as
they are about scalability. Not only must a Big Data system perform well and be resource-
efficient, it must be easy to reason about as well. Let’s go over each property one by one.

1.5.1 Robustness and fault tolerance

Building systems that “do the right thing” is difficult in the face of the challenges of
distributed systems. Systems need to behave correctly despite machines going down
randomly, the complex semantics of consistency in distributed databases, duplicated
data, concurrency, and more. These challenges make it difficult even to reason about

query function all data =
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8 CHAPTER 1 A new paradigm for Big Data

what a system is doing. Part of making a Big Data system robust is avoiding these com-
plexities so that you can easily reason about the system. 

 As discussed before, it’s imperative for systems to be human-fault tolerant. This is an
oft-overlooked property of systems that we’re not going to ignore. In a production sys-
tem, it’s inevitable that someone will make a mistake sometime, such as by deploying
incorrect code that corrupts values in a database. If you build immutability and
recomputation into the core of a Big Data system, the system will be innately resilient
to human error by providing a clear and simple mechanism for recovery. This is
described in depth in chapters 2 through 7. 

1.5.2 Low latency reads and updates
The vast majority of applications require reads to be satisfied with very low latency, typi-
cally between a few milliseconds to a few hundred milliseconds. On the other hand, the
update latency requirements vary a great deal between applications. Some applications
require updates to propagate immediately, but in other applications a latency of a few
hours is fine. Regardless, you need to be able to achieve low latency updates when you need
them in your Big Data systems. More importantly, you need to be able to achieve low latency
reads and updates without compromising the robustness of the system. You’ll learn how
to achieve low latency updates in the discussion of the speed layer, starting in chapter 12. 

1.5.3 Scalability
Scalability is the ability to maintain performance in the face of increasing data or load
by adding resources to the system. The Lambda Architecture is horizontally scalable
across all layers of the system stack: scaling is accomplished by adding more machines. 

1.5.4 Generalization
A general system can support a wide range of applications. Indeed, this book wouldn’t
be very useful if it didn’t generalize to a wide range of applications! Because the
Lambda Architecture is based on functions of all data, it generalizes to all applica-
tions, whether financial management systems, social media analytics, scientific appli-
cations, social networking, or anything else.

1.5.5 Extensibility
You don’t want to have to reinvent the wheel each time you add a related feature or
make a change to how your system works. Extensible systems allow functionality to be
added with a minimal development cost. 

 Oftentimes a new feature or a change to an existing feature requires a migration of
old data into a new format. Part of making a system extensible is making it easy to do
large-scale migrations. Being able to do big migrations quickly and easily is core to the
approach you’ll learn. 

1.5.6 Ad hoc queries 
Being able to do ad hoc queries on your data is extremely important. Nearly every
large dataset has unanticipated value within it. Being able to mine a dataset arbitrarily
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gives opportunities for business optimization and new applications. Ultimately, you
can’t discover interesting things to do with your data unless you can ask arbitrary ques-
tions of it. You’ll learn how to do ad hoc queries in chapters 6 and 7 when we discuss
batch processing. 

1.5.7 Minimal maintenance
Maintenance is a tax on developers. Maintenance is the work required to keep a system
running smoothly. This includes anticipating when to add machines to scale, keeping
processes up and running, and debugging anything that goes wrong in production. 

 An important part of minimizing maintenance is choosing components that have as
little implementation complexity as possible. You want to rely on components that have sim-
ple mechanisms underlying them. In particular, distributed databases tend to have very
complicated internals. The more complex a system, the more likely something will go
wrong, and the more you need to understand about the system to debug and tune it.

 You combat implementation complexity by relying on simple algorithms and sim-
ple components. A trick employed in the Lambda Architecture is to push complexity
out of the core components and into pieces of the system whose outputs are discard-
able after a few hours. The most complex components used, like read/write distrib-
uted databases, are in this layer where outputs are eventually discardable. We’ll discuss
this technique in depth when we discuss the speed layer in chapter 12. 

1.5.8 Debuggability

A Big Data system must provide the information necessary to debug the system when
things go wrong. The key is to be able to trace, for each value in the system, exactly
what caused it to have that value. 

 “Debuggability” is accomplished in the Lambda Architecture through the func-
tional nature of the batch layer and by preferring to use recomputation algorithms
when possible. 

 Achieving all these properties together in one system may seem like a daunting
challenge. But by starting from first principles, as the Lambda Architecture does,
these properties emerge naturally from the resulting system design. 

 Before diving into the Lambda Architecture, let’s take a look at more traditional
architectures—characterized by a reliance on incremental computation—and at why
they’re unable to satisfy many of these properties. 

1.6 The problems with fully incremental architectures
At the highest level, traditional architectures look like figure 1.3. What characterizes
these architectures is the use of read/write databases and maintaining the state in those
databases incrementally as new data is seen. For
example, an incremental approach to count-
ing pageviews would be to process a new
pageview by adding one to the counter for its
URL. This characterization of architectures is a

DatabaseApplication

Figure 1.3 Fully incremental architecture
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lot more fundamental than just relational versus non-relational—in fact, the vast major-
ity of both relational and non-relational database deployments are done as fully incre-
mental architectures. This has been true for many decades. 

 It’s worth emphasizing that fully incremental architectures are so widespread that
many people don’t realize it’s possible to avoid their problems with a different archi-
tecture. These are great examples of familiar complexity—complexity that’s so
ingrained, you don’t even think to find a way to avoid it. 

 The problems with fully incremental architectures are significant. We’ll begin our
exploration of this topic by looking at the general complexities brought on by any
fully incremental architecture. Then we’ll look at two contrasting solutions for the
same problem: one using the best possible fully incremental solution, and one using a
Lambda Architecture. You’ll see that the fully incremental version is significantly
worse in every respect. 

1.6.1 Operational complexity

There are many complexities inherent in fully incremental architectures that create
difficulties in operating production infrastructure. Here we’ll focus on one: the need
for read/write databases to perform online compaction, and what you have to do
operationally to keep things running smoothly. 

 In a read/write database, as a disk index is incrementally added to and modified,
parts of the index become unused. These unused parts take up space and eventually
need to be reclaimed to prevent the disk from filling up. Reclaiming space as soon as
it becomes unused is too expensive, so the space is occasionally reclaimed in bulk in a
process called compaction. 

 Compaction is an intensive operation. The server places substantially higher
demand on the CPU and disks during compaction, which dramatically lowers the per-
formance of that machine during that time period. Databases such as HBase and Cas-
sandra are well-known for requiring careful configuration and management to avoid
problems or server lockups during compaction. The performance loss during com-
paction is a complexity that can even cause cascading failure—if too many machines
compact at the same time, the load they were supporting will have to be handled by
other machines in the cluster. This can potentially overload the rest of your cluster,
causing total failure. We have seen this failure mode happen many times. 

 To manage compaction correctly, you have to schedule compactions on each node
so that not too many nodes are affected at once. You have to be aware of how long a
compaction takes—as well as the variance—to avoid having more nodes undergoing
compaction than you intended. You have to make sure you have enough disk capacity
on your nodes to last them between compactions. In addition, you have to make sure
you have enough capacity on your cluster so that it doesn’t become overloaded when
resources are lost during compactions. 

 All of this can be managed by a competent operational staff, but it’s our contention
that the best way to deal with any sort of complexity is to get rid of that complexity
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altogether. The fewer failure modes you have in your system, the less likely it is that
you’ll suffer unexpected downtime. Dealing with online compaction is a complexity
inherent to fully incremental architectures, but in a Lambda Architecture the primary
databases don’t require any online compaction. 

1.6.2 Extreme complexity of achieving eventual consistency

Another complexity of incremental architectures results when trying to make systems
highly available. A highly available system allows for queries and updates even in the
presence of machine or partial network failure. 

 It turns out that achieving high availability competes directly with another impor-
tant property called consistency. A consistent system returns results that take into
account all previous writes. A theorem called the CAP theorem has shown that it’s
impossible to achieve both high availability and consistency in the same system in the
presence of network partitions. So a highly available system sometimes returns stale
results during a network partition. 

 The CAP theorem is discussed in depth in chapter 12—here we wish to focus on
how the inability to achieve full consistency and high availability at all times affects
your ability to construct systems. It turns out that if your business requirements
demand high availability over full consistency, there is a huge amount of complexity
you have to deal with. 

 In order for a highly available system to return to consistency once a network parti-
tion ends (known as eventual consistency), a lot of help is required from your applica-
tion. Take, for example, the basic use case of maintaining a count in a database. The
obvious way to go about this is to store a number in the database and increment that
number whenever an event is received that requires the count to go up. You may be
surprised that if you were to take this approach, you’d suffer massive data loss during
network partitions. 

 The reason for this is due to the way distributed databases achieve high availability
by keeping multiple replicas of all information stored. When you keep many copies of
the same information, that information is still available even if a machine goes down
or the network gets partitioned, as shown in figure 1.4. During a network partition, a
system that chooses to be highly available has clients update whatever replicas are
reachable to them. This causes replicas to diverge and receive different sets of
updates. Only when the partition goes away can the replicas be merged together into
a common value. 

 Suppose you have two replicas with a count of 10 when a network partition begins.
Suppose the first replica gets two increments and the second gets one increment.
When it comes time to merge these replicas together, with values of 12 and 11, what
should the merged value be? Although the correct answer is 13, there’s no way to
know just by looking at the numbers 12 and 11. They could have diverged at 11 (in
which case the answer would be 12), or they could have diverged at 0 (in which case
the answer would be 23). 
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To do highly available counting correctly, it’s not enough to just store a count. You
need a data structure that’s amenable to merging when values diverge, and you need
to implement the code that will repair values once partitions end. This is an amazing
amount of complexity you have to deal with just to maintain a simple count. 

 In general, handling eventual consistency in incremental, highly available systems
is unintuitive and prone to error. This complexity is innate to highly available, fully
incremental systems. You’ll see later how the Lambda Architecture structures itself in
a different way that greatly lessens the burdens of achieving highly available, eventu-
ally consistent systems.

1.6.3 Lack of human-fault tolerance

The last problem with fully incremental architectures we wish to point out is their
inherent lack of human-fault tolerance. An incremental system is constantly modify-
ing the state it keeps in the database, which means a mistake can also modify the state
in the database. Because mistakes are inevitable, the database in a fully incremental
architecture is guaranteed to be corrupted. 

 It’s important to note that this is one of the few complexities of fully incremental
architectures that can be resolved without a complete rethinking of the architecture.
Consider the two architectures shown in figure 1.5: a synchronous architecture,
where the application makes updates directly to the database, and an asynchronous
architecture, where events go to a queue before updating the database in the back-
ground. In both cases, every event is permanently logged to an events datastore. By
keeping every event, if a human mistake causes database corruption, you can go back

Replica 1

x -> 10
y -> 12

Replica 2

x -> 10
y -> 12

Network partition
ClientClient

Query Query

Figure 1.4 Using replication to increase availability
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to the events store and reconstruct the proper state for the database. Because the
events store is immutable and constantly growing, redundant checks, like permis-
sions, can be put in to make it highly unlikely for a mistake to trample over the events
store. This technique is also core to the Lambda Architecture and is discussed in
depth in chapters 2 and 3.

 Although fully incremental architectures with logging can overcome the human-
fault tolerance deficiencies of fully incremental architectures without logging, the log-
ging does nothing to handle the other complexities that have been discussed. And as
you’ll see in the next section, any architecture based purely on fully incremental com-
putation, including those with logging, will struggle to solve many problems. 

1.6.4 Fully incremental solution vs. Lambda Architecture solution

One of the example queries that is implemented throughout the book serves as a
great contrast between fully incremental and Lambda architectures. There’s nothing
contrived about this query—in fact, it’s based on real-world problems we have faced in
our careers multiple times. The query has to do with pageview analytics and is done
on two kinds of data coming in: 

■ Pageviews, which contain a user ID, URL, and timestamp.
■ Equivs, which contain two user IDs. An equiv indicates the two user IDs refer to the

same person. For example, you might have an equiv between the email
sally@gmail.com  and the username sally. If sally@gmail.com also registers for the user-
name sally2, then you would have an equiv between sally@gmail.com and sally2. By
transitivity, you know that the usernames sally and sally2 refer to the same person.

The goal of the query is to compute the number of unique visitors to a URL over a
range of time. Queries should be up to date with all data and respond with minimal
latency (less than 100 milliseconds). Here’s the interface for the query: 

long uniquesOverTime(String url, int startHour, int endHour)

Application Database

Event log

Application

Event log

Stream
processor

Database

Synchronous Asynchronous

Figure 1.5 Adding logging to 
fully incremental architec-
tures
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What makes implementing this query tricky are those equivs. If a person visits the
same URL in a time range with two user IDs connected via equivs (even transitively),
that should only count as one visit. A new equiv coming in can change the results for
any query over any time range for any URL. 

 We’ll refrain from showing the details of the solutions at this point, as too many
concepts must be covered to understand them: indexing, distributed databases, batch
processing, HyperLogLog, and many more. Overwhelming you with all these concepts
at this point would be counterproductive. Instead, we’ll focus on the characteristics of
the solutions and the striking differences between them. The best possible fully incre-
mental solution is shown in detail in chapter 10, and the Lambda Architecture solu-
tion is built up in chapters 8, 9, 14, and 15. 

 The two solutions can be compared on three axes: accuracy, latency, and through-
put. The Lambda Architecture solution is significantly better in all respects. Both
must make approximations, but the fully incremental version is forced to use an infe-
rior approximation technique with a 3–5x worse error rate. Performing queries is sig-
nificantly more expensive in the fully incremental version, affecting both latency and
throughput. But the most striking difference between the two approaches is the fully
incremental version’s need to use special hardware to achieve anywhere close to rea-
sonable throughput. Because the fully incremental version must do many random
access lookups to resolve queries, it’s practically required to use solid state drives to
avoid becoming bottlenecked on disk seeks. 

 That a Lambda Architecture can produce solutions with higher performance in
every respect, while also avoiding the complexity that plagues fully incremental archi-
tectures, shows that something very fundamental is going on. The key is escaping the
shackles of fully incremental computation and embracing different techniques. Let’s
now see how to do that. 

1.7 Lambda Architecture
Computing arbitrary functions on an arbitrary dataset in real time is a daunting prob-
lem. There’s no single tool that provides a complete solution. Instead, you have to use
a variety of tools and techniques to build a complete Big Data system. 

 The main idea of the Lambda Architecture is to build Big Data systems as a series of
layers, as shown in figure 1.6. Each layer satisfies a subset of the
properties and builds upon the functionality provided by the lay-
ers beneath it. You’ll spend the whole book learning how to
design, implement, and deploy each layer, but the high-level ideas
of how the whole system fits together are fairly easy to understand. 

 Everything starts from the query = function(all data) equation.
Ideally, you could run the functions on the fly to get the results.
Unfortunately, even if this were possible, it would take a huge
amount of resources to do and would be unreasonably expensive.

Batch layer

Serving layer

Speed layer

Figure 1.6 Lambda 
Architecture
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Imagine having to read a petabyte dataset every time you wanted to answer the query of
someone’s current location. 

 The most obvious alternative approach is to precompute the query function. Let’s
call the precomputed query function the batch view. Instead of computing the query
on the fly, you read the results from the precomputed view. The precomputed view is
indexed so that it can be accessed with random reads. This system looks like this:

In this system, you run a function on all the data to get the batch view. Then, when
you want to know the value for a query, you run a function on that batch view. The
batch view makes it possible to get the values you need from it very quickly, without
having to scan everything in it. 

 Because this discussion is somewhat abstract, let’s ground it with an example. Sup-
pose you’re building a web analytics application (again), and you want to query the
number of pageviews for a URL on any range of days. If you were computing the query
as a function of all the data, you’d scan the dataset for pageviews for that URL within
that time range, and return the count of those results. 

 The batch view approach instead runs a function on all the pageviews to precom-
pute an index from a key of [url, day] to the count of the number of pageviews for
that URL for that day. Then, to resolve the query, you retrieve all values from that view
for all days within that time range, and sum up the counts to get the result. This
approach is shown in figure 1.7.

 It should be clear that there’s something missing from this approach, as described
so far. Creating the batch view is clearly going to be a high-latency operation, because
it’s running a function on all the data you have. By the time it finishes, a lot of new
data will have collected that’s not represented in the batch views, and the queries will
be out of date by many hours. But let’s ignore this issue for the moment, because we’ll

batch view function all data =

       query function batch view =

Batch view

Batch viewBatch
layer

Batch view

All data

Figure 1.7
Architecture of 
the batch layer
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Batch layer

Serving layer

Speed layer

1. master datasetStores
2. Computes arbitrary

views

Figure 1.8 Batch layer

be able to fix it. Let’s pretend that it’s okay for queries to be out of date by a few hours
and continue exploring this idea of precomputing a batch view by running a function
on the complete dataset. 

1.7.1 Batch layer

The portion of the Lambda Architecture
that implements the batch view = function(all
data) equation is called the batch layer. The
batch layer stores the master copy of the
dataset and precomputes batch views on that
master dataset (see figure 1.8). The master
dataset can be thought of as a very large list
of records. 

 The batch layer needs to be able to do two
things: store an immutable, constantly growing master dataset, and compute arbitrary
functions on that dataset. This type of processing is best done using batch-processing
systems. Hadoop is the canonical example of a batch-processing system, and Hadoop is
what we’ll use in this book to demonstrate the concepts of the batch layer. 

 The simplest form of the batch layer can be represented in pseudo-code like this: 

function runBatchLayer():
while(true):
recomputeBatchViews()

The batch layer runs in a while(true) loop and continuously recomputes the batch
views from scratch. In reality, the batch layer is a little more involved, but we’ll come to
that later in the book. This is the best way to think about the batch layer at the
moment. 

 The nice thing about the batch layer is that it’s so simple to use. Batch computa-
tions are written like single-threaded programs, and you get parallelism for free. It’s
easy to write robust, highly scalable computations on the batch layer. The batch layer
scales by adding new machines. 

 Here’s an example of a batch layer computation. Don’t worry about understanding
this code—the point is to show what an inherently parallel program looks like:

Api.execute(Api.hfsSeqfile("/tmp/pageview-counts"),
new Subquery("?url", "?count")

.predicate(Api.hfsSeqfile("/data/pageviews"),
"?url", "?user", "?timestamp")

.predicate(new Count(), "?count");

This code computes the number of pageviews for every URL given an input dataset of
raw pageviews. What’s interesting about this code is that all the concurrency chal-
lenges of scheduling work and merging results is done for you. Because the algorithm
is written in this way, it can be arbitrarily distributed on a MapReduce cluster, scaling
to however many nodes you have available. At the end of the computation, the output
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directory will contain some number of files with the results. You’ll learn how to write
programs like this in chapter 7. 

1.7.2 Serving layer 

The batch layer emits batch views as the
result of its functions. The next step is to
load the views somewhere so that they can
be queried. This is where the serving layer
comes in. The serving layer is a specialized
distributed database that loads in a batch
view and makes it possible to do random
reads on it (see figure 1.9). When new
batch views are available, the serving layer
automatically swaps those in so that more
up-to-date results are available. 

 A serving layer database supports batch updates and random reads. Most notably,
it doesn’t need to support random writes. This is a very important point, as random
writes cause most of the complexity in databases. By not supporting random writes,
these databases are extremely simple. That simplicity makes them robust, predictable,
easy to configure, and easy to operate. ElephantDB, the serving layer database you’ll
learn to use in this book, is only a few thousand lines of code.

1.7.3 Batch and serving layers satisfy almost all properties 

The batch and serving layers support arbitrary queries on an arbitrary dataset with the
trade-off that queries will be out of date by a few hours. It takes a new piece of data a
few hours to propagate through the batch layer into the serving layer where it can be
queried. The important thing to notice is that other than low latency updates, the
batch and serving layers satisfy every property desired in a Big Data system, as outlined
in section 1.5. Let’s go through them one by one:

■ Robustness and fault tolerance—Hadoop handles failover when machines go
down. The serving layer uses replication under the hood to ensure availability
when servers go down. The batch and serving layers are also human-fault toler-
ant, because when a mistake is made, you can fix your algorithm or remove the
bad data and recompute the views from scratch.

■ Scalability—Both the batch and serving layers are easily scalable. They’re both
fully distributed systems, and scaling them is as easy as adding new machines. 

■ Generalization—The architecture described is as general as it gets. You can com-
pute and update arbitrary views of an arbitrary dataset. 

■ Extensibility—Adding a new view is as easy as adding a new function of the mas-
ter dataset. Because the master dataset can contain arbitrary data, new types of
data can be easily added. If you want to tweak a view, you don’t have to worry

Batch layer

Speed layer 1. Random access to
batch views

2. Updated by batch layer

Serving layer

Figure 1.9 Serving layer
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about supporting multiple versions of the view in the application. You can sim-
ply recompute the entire view from scratch. 

■ Ad hoc queries—The batch layer supports ad hoc queries innately. All the data is
conveniently available in one location. 

■ Minimal maintenance—The main component to maintain in this system is
Hadoop. Hadoop requires some administration knowledge, but it’s fairly
straightforward to operate. As explained before, the serving layer databases are
simple because they don’t do random writes. Because a serving layer database
has so few moving parts, there’s lots less that can go wrong. As a consequence,
it’s much less likely that anything will go wrong with a serving layer database, so
they’re easier to maintain. 

■ Debuggability—You’ll always have the inputs and outputs of computations run
on the batch layer. In a traditional database, an output can replace the original
input—such as when incrementing a value. In the batch and serving layers, the
input is the master dataset and the output is the views. Likewise, you have the
inputs and outputs for all the intermediate steps. Having the inputs and outputs
gives you all the information you need to debug when something goes wrong. 

The beauty of the batch and serving layers is that they satisfy almost all the properties
you want with a simple and easy-to-understand approach. There are no concurrency
issues to deal with, and it scales trivially. The only property missing is low latency
updates. The final layer, the speed layer, fixes this problem. 

1.7.4 Speed layer

The serving layer updates whenever the batch layer finishes precomputing a batch
view. This means that the only data not represented in the batch view is the data that
came in while the precomputation was running. All that’s left to do to have a fully real-
time data system—that is, to have arbitrary functions computed on arbitrary data in
real time—is to compensate for those last few hours of data. This is the purpose of the
speed layer. As its name suggests, its goal is to ensure new data is represented in query
functions as quickly as needed for the application requirements (see figure 1.10). 

 You can think of the speed layer as being similar to the batch layer in that it produces
views based on data it receives. One big difference is that the speed layer only looks at
recent data, whereas the batch layer looks at all the data at once. Another big difference
is that in order to achieve the smallest
latencies possible, the speed layer
doesn’t look at all the new data at once.
Instead, it updates the realtime views as
it receives new data instead of recomput-
ing the views from scratch like the batch
layer does. The speed layer does incre-
mental computation instead of the
recomputation done in the batch layer. 

Batch layer

Serving layer

1. Compensate for high latency
of updates to serving layer

2. Fast, incremental algorithms
3. Batch layer eventually

overrides speed layer

Speed layer

Figure 1.10 Speed layer
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 We can formalize the data flow on the speed layer with the following equation:

A realtime view is updated based on new data and the existing realtime view. 
 The Lambda Architecture in full is summarized by these three equations: 

A pictorial representation of these ideas is shown in figure 1.11. Instead of resolving
queries by just doing a function of the batch view, you resolve queries by looking at
both the batch and realtime views and merging the results together. 

 The speed layer uses databases that support random reads and random writes.
Because these databases support random writes, they’re orders of magnitude more
complex than the databases you use in the serving layer, both in terms of implementa-
tion and operation. 

realtime view function realtime view, new data =

batch view function all data =

realtime view function realtime view, new data =

            query function batch view. realtime view =

Batch layer

Serving layer

Speed layer

Realtime
view

Batch
view

Master dataset

New data:
011010010...

Query:
“How many...?”

Realtime
view

Realtime
view

Batch
view

Batch
view

Figure 1.11 Lambda Architecture diagram
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The beauty of the Lambda Architecture is that once data makes it through the batch
layer into the serving layer, the corresponding results in the realtime views are no longer
needed. This means you can discard pieces of the realtime view as they’re no longer
needed. This is a wonderful result, because the speed layer is far more complex than
the batch and serving layers. This property of the Lambda Architecture is called com-
plexity isolation, meaning that complexity is pushed into a layer whose results are only
temporary. If anything ever goes wrong, you can discard the state for the entire speed
layer, and everything will be back to normal within a few hours. 

 Let’s continue the example of building a web analytics application that supports
queries about the number of pageviews over a range of days. Recall that the batch
layer produces batch views from [url, day] to the number of pageviews. 

 The speed layer keeps its own separate view of [url, day] to number of pageviews.
Whereas the batch layer recomputes its views by literally counting the pageviews, the
speed layer updates its views by incrementing the count in the view whenever it
receives new data. To resolve a query, you query both the batch and realtime views as
necessary to satisfy the range of dates specified, and you sum up the results to get the
final count. There’s a little work that needs to be done to properly synchronize the
results, but we’ll cover that in a future chapter. 

 Some algorithms are difficult to compute incrementally. The batch/speed layer
split gives you the flexibility to use the exact algorithm on the batch layer and an
approximate algorithm on the speed layer. The batch layer repeatedly overrides the
speed layer, so the approximation gets corrected and your system exhibits the prop-
erty of eventual accuracy. Computing unique counts, for example, can be challenging if
the sets of uniques get large. It’s easy to do the unique count on the batch layer,
because you look at all the data at once, but on the speed layer you might use a Hyper-
LogLog set as an approximation.

 What you end up with is the best of both worlds of performance and robustness. A
system that does the exact computation in the batch layer and an approximate compu-
tation in the speed layer exhibits eventual accuracy, because the batch layer corrects
what’s computed in the speed layer. You still get low latency updates, but because the
speed layer is transient, the complexity of achieving this doesn’t affect the robustness of
your results. The transient nature of the speed layer gives you the flexibility to be very
aggressive when it comes to making trade-offs for performance. Of course, for compu-
tations that can be done exactly in an incremental fashion, the system is fully accurate. 

1.8 Recent trends in technology
It’s helpful to understand the background behind the tools we’ll use throughout this
book. There have been a number of trends in technology that deeply influence the
ways in which you can build Big Data systems. 

1.8.1 CPUs aren’t getting faster 

We’ve started to hit the physical limits of how fast a single CPU can go. That means that
if you want to scale to more data, you must be able to parallelize your computation.
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This has led to the rise of shared-nothing parallel algorithms and their corre-
sponding systems, such as MapReduce. Instead of just trying to scale by buying a better
machine, known as vertical scaling, systems scale by adding more machines, known as hor-
izontal scaling.

1.8.2 Elastic clouds

Another trend in technology has been the rise of elastic clouds, also known as Infra-
structure as a Service. Amazon Web Services (AWS) is the most notable elastic cloud.
Elastic clouds allow you to rent hardware on demand rather than own your own hard-
ware in your own location. Elastic clouds let you increase or decrease the size of your
cluster nearly instantaneously, so if you have a big job you want to run, you can allo-
cate the hardware temporarily. 

 Elastic clouds dramatically simplify system administration. They also provide addi-
tional storage and hardware allocation options that can significantly drive down the
price of your infrastructure. For example, AWS has a feature called spot instances in
which you bid on instances rather than pay a fixed price. If someone bids a higher
price than you, you’ll lose the instance. Because spot instances can disappear at any
moment, they tend to be significantly cheaper than normal instances. For distributed
computation systems like MapReduce, they’re a great option because fault tolerance is
handled at the software layer. 

1.8.3 Vibrant open source ecosystem for Big Data

The open source community has created a plethora of Big Data technologies over the
past few years. All the technologies taught in this book are open source and free to use.

 There are five categories of open source projects you’ll learn about. Remember,
this is not a survey book—the intent is not to just teach a bunch of technologies. The
goal is to learn the fundamental principles so that you’ll be able to evaluate and
choose the right tools for your needs: 

■ Batch computation systems—Batch computation systems are high throughput, high
latency systems. Batch computation systems can do nearly arbitrary computa-
tions, but they may take hours or days to do so. The only batch computation sys-
tem we’ll use is Hadoop. The Hadoop project has two subprojects: the Hadoop
Distributed File System (HDFS) and Hadoop MapReduce. HDFS is a distributed,
fault-tolerant storage system that can scale to petabytes of data. MapReduce is a
horizontally scalable computation framework that integrates with HDFS. 

■ Serialization frameworks—Serialization frameworks provide tools and libraries for
using objects between languages. They can serialize an object into a byte array
from any language, and then deserialize that byte array into an object in any lan-
guage. Serialization frameworks provide a Schema Definition Language for
defining objects and their fields, and they provide mechanisms to safely version
objects so that a schema can be evolved without invalidating existing objects. The
three notable serialization frameworks are Thrift, Protocol Buffers, and Avro. 
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■ Random-access NoSQL databases—There has been a plethora of NoSQL databases
created in the past few years. Between Cassandra, HBase, MongoDB, Voldemort,
Riak, CouchDB, and others, it’s hard to keep track of them all. These databases
all share one thing in common: they sacrifice the full expressiveness of SQL and
instead specialize in certain kinds of operations. They all have different seman-
tics and are meant to be used for specific purposes. They’re not meant to be
used for arbitrary data warehousing. In many ways, choosing a NoSQL database
to use is like choosing between a hash map, sorted map, linked list, or vector
when choosing a data structure to use in a program. You know beforehand
exactly what you’re going to do, and you choose appropriately. Cassandra will
be used as part of the example application we’ll build.

■ Messaging/queuing systems—A messaging/queuing system provides a way to send
and consume messages between processes in a fault-tolerant and asynchronous
manner. A message queue is a key component for doing realtime processing.
We’ll use Apache Kafka in this book. 

■ Realtime computation system—Realtime computation systems are high throughput,
low latency, stream-processing systems. They can’t do the range of computations
a batch-processing system can, but they process messages extremely quickly. We’ll
use Storm in this book. Storm topologies are easy to write and scale.

As these open source projects have matured, companies have formed around some of
them to provide enterprise support. For example, Cloudera provides Hadoop support,
and DataStax provides Cassandra support. Other projects are company products. For
example, Riak is a product of Basho technologies, MongoDB is a product of 10gen, and
RabbitMQ is a product of SpringSource, a division of VMWare. 

1.9 Example application: SuperWebAnalytics.com 
We’ll build an example Big Data application throughout this book to illustrate the
concepts. We’ll build the data management layer for a Google Analytics–like service.
The service will be able to track billions of pageviews per day. 

 The service will support a variety of different metrics. Each metric will be sup-
ported in real time. The metrics range from simple counting metrics to complex anal-
yses of how visitors are navigating a website. 

 These are the metrics we’ll support: 

■ Pageview counts by URL sliced by time—Example queries are “What are the
pageviews for each day over the past year?” and “How many pageviews have
there been in the past 12 hours?” 

■ Unique visitors by URL sliced by time—Example queries are “How many unique
people visited this domain in 2010?” and “How many unique people visited this
domain each hour for the past three days?” 

■ Bounce-rate analysis—“What percentage of people visit the page without visiting
any other pages on this website?” 
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We’ll build out the layers that store, process, and serve queries to the application.

1.10 Summary 
You saw what can go wrong when scaling a relational system with traditional tech-
niques like sharding. The problems faced go beyond scaling as the system becomes
more complex to manage, extend, and even understand. As you learn how to build
Big Data systems in the upcoming chapters, we’ll focus as much on robustness as we
do on scalability. As you’ll see, when you build things the right way, both robustness
and scalability are achievable in the same system. 

 The benefits of data systems built using the Lambda Architecture go beyond just
scaling. Because your system will be able to handle much larger amounts of data,
you’ll be able to collect even more data and get more value out of it. Increasing the
amount and types of data you store will lead to more opportunities to mine your data,
produce analytics, and build new applications. 

 Another benefit of using the Lambda Architecture is how robust your applications
will be. There are many reasons for this; for example, you’ll have the ability to run
computations on your whole dataset to do migrations or fix things that go wrong.
You’ll never have to deal with situations where there are multiple versions of a schema
active at the same time. When you change your schema, you’ll have the capability to
update all data to the new schema. Likewise, if an incorrect algorithm is accidentally
deployed to production and corrupts the data you’re serving, you can easily fix things
by recomputing the corrupted values. As you’ll see, there are many other reasons why
your Big Data applications will be more robust. 

 Finally, performance will be more predictable. Although the Lambda Architecture
as a whole is generic and flexible, the individual components comprising the system
are specialized. There is very little “magic” happening behind the scenes, as compared
to something like a SQL query planner. This leads to more predictable performance. 

 Don’t worry if a lot of this material still seems uncertain. We have a lot of ground
yet to cover and we’ll revisit every topic introduced in this chapter in depth through-
out the course of the book. In the next chapter you’ll start learning how to build the
Lambda Architecture. You’ll start at the very core of the stack with how you model and
schematize the master copy of your dataset. 
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Part 1

Batch layer

Part 1 focuses on the batch layer of the Lambda Architecture. Chapters alter-
nate between theory and illustration.

 Chapter 2 discusses how you model and schematize the data in your master
dataset. Chapter 3 illustrates these concepts using the tool Apache Thrift.

 Chapter 4 discusses the requirements for storage of your master dataset. You’ll
see that many features typically provided by database solutions are not needed for
the master dataset, and in fact get in the way of optimizing master dataset storage.
A simpler and less feature-full storage solution meets the requirements better.
Chapter 5 illustrates practical storage of a master dataset using the Hadoop Dis-
tributed Filesystem.

 Chapter 6 discusses computing arbitrary functions on your master dataset
using the MapReduce paradigm. MapReduce is general enough to compute any
scalable function. Although MapReduce is powerful, you’ll see that higher-level
abstractions make it far easier to use. Chapter 7 shows a powerful high-level
abstraction to MapReduce called JCascalog.

 To connect all the concepts together, chapters 8 and 9 implement the com-
plete batch layer for the running example SuperWebAnalytics.com. Chapter 8
shows the overall architecture and algorithms, while chapter 9 shows the working
code in all its details.
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Data model for Big Data

In the last chapter you saw what can go wrong when using traditional tools for
building data systems, and we went back to first principles to derive a better design.
You saw that every data system can be formulated as computing functions on data,
and you learned the basics of the Lambda Architecture, which provides a practical
way to implement an arbitrary function on arbitrary data in real time. 

 At the core of the Lambda Architecture is the master dataset, which is high-
lighted in figure 2.1. The master dataset is the source of truth in the Lambda Archi-
tecture. Even if you were to lose all your serving layer datasets and speed layer
datasets, you could reconstruct your application from the master dataset. This is
because the batch views served by the serving layer are produced via functions on
the master dataset, and since the speed layer is based only on recent data, it can
construct itself within a few hours.

 The master dataset is the only part of the Lambda Architecture that absolutely
must be safeguarded from corruption. Overloaded machines, failing disks, and

This chapter covers
■ Properties of data 
■ The fact-based data model 
■ Benefits of a fact-based model for Big Data 
■ Graph schemas
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power outages all could cause errors, and human error with dynamic data systems is
an intrinsic risk and inevitable eventuality. You must carefully engineer the master
dataset to prevent corruption in all these cases, as fault tolerance is essential to the
health of a long-running data system. 

 There are two components to the master dataset: the data model you use and how
you physically store the master dataset. This chapter is about designing a data model
for the master dataset and the properties such a data model should have. You’ll learn
about physically storing a master dataset in the next chapter. 

 In this chapter you’ll do the following:

■ Learn the key properties of data 
■ See how these properties are maintained in the fact-based model 
■ Examine the advantages of the fact-based model for the master dataset 
■ Express a fact-based model using graph schemas 

Let’s begin with a discussion of the rather general term data. 

Batch layer

Serving layer

Speed layer

Realtime
view

Batch
view

Master dataset

New data:
011010010...

Query:
“How many...?”

The master dataset is
the source of truth in
your system and cannot
withstand corruption.

The data in the
speed layer
realtime views has
a high turnover
rate, so any
errors are quickly
expelled.

Any errors introduced
into the serving layer
batch views are overwritten
because they are continually
rebuilt from the master
dataset.

c

b

d

Realtime
view

Realtime
view

Batch
view

Batch
view

Figure 2.1 The master dataset in the Lambda Architecture serves as the source of truth for your Big 
Data system. Errors at the serving and speed layers can be corrected, but corruption of the master dataset 
is irreparable.
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2.1 The properties of data
In keeping with the applied focus of the book, we’ll center our discussion around an
example application. Suppose you’re designing the next big social network—Face-
Space. When a new user—let’s call him Tom—joins your site, he starts to invite his
friends and family. What information should you store regarding Tom’s connections?
You have a number of choices, including the following: 

■ The sequence of Tom’s friend and unfriend events 
■ Tom’s current list of friends 
■ Tom’s current number of friends 

Figure 2.2 exhibits these options and their relationships. 
 This example illustrates information dependency. Note that each layer of informa-

tion can be derived from the previous one (the one to its left), but it’s a one-way pro-
cess. From the sequence of friend and unfriend events, you can determine the other
quantities. But if you only have the number of friends, it’s impossible to determine
exactly who they are. Similarly, from the list of current friends, it’s impossible to deter-
mine if Tom was previously a friend with Jerry, or whether Tom’s network has been
growing as of late. 

 The notion of dependency shapes the definitions of the terms we’ll use: 

■ Information is the general collection of knowledge relevant to your Big Data sys-
tem. It’s synonymous with the colloquial usage of the word data. 

■ Data refers to the information that can’t be derived from anything else. Data
serves as the axioms from which everything else derives. 

■ Queries are questions you ask of your data. For example, you query your finan-
cial transaction history to determine your current bank account balance. 

■ Views are information that has been derived from your base data. They are built
to assist with answering specific types of queries. 

4/10 Add Alice

4/12 Add Jerry

4/15 Add Charlie

4/27 Remove Jerry

5/2 Add David

5/10 Remove Charlie

5/13 Add Bob
...

Alice

Bob

David

3

Friend list
changes

Current
friend list

Current
friend count

Compile Count

Non-invertible
operations

Figure 2.2 Three possible options for storing friendship information for FaceSpace. Each 
option can be derived from the one to its left, but it’s a one-way process.
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Figure 2.3 illustrates the FaceSpace information dependency in terms of data, views,
and queries. 

 It’s important to observe that one person’s data can be another’s view. Suppose Face-
Space becomes a monstrous hit, and an advertising firm creates a crawler that scrapes
demographic information from user profiles. FaceSpace has complete access to all the
information Tom provided—for example, his complete birthdate of March 13, 1984.
But Tom is sensitive about his age, and he only makes his birthday (March 13) available
on his public profile. His birthday is a view from FaceSpace’s perspective because it’s
derived from his birthdate, but it’s data to the advertiser because they have limited infor-
mation about Tom. This relationship is shown in figure 2.4.

 Having established a shared vocabulary, we can now introduce the key properties
of data: rawness, immutability, and perpetuity (or the “eternal trueness of data”).

Friend list
changes

Number of
friends

Current
friend list

“Are Tom and
Jerry friends?”

“How many friends
does Tom have?”

Your data is
information that
cannot be derived
from anything else.

The views are
computed from
the data to help
answer queries.

The queries you want
answered access the
information stored in
the views.

dB C

Figure 2.3 The relationships between data, views, and queries

Profile
information

(birthdate,
friends, …) Number of

friends

Birthday
Targeting

information

(birthday,
number

of friends)

Potential
ads

(Web scraping)

FaceSpace Advertiser

Tom provides detailed profile information
to FaceSpace (data), but chooses to limit
what is publicly accessible (views).

Only the public information about Tom
becomes data to the advertiser after
scraping his profile.

b c

Figure 2.4 Classifying information as data or a view depends on your perspective. To FaceSpace, Tom’s 
birthday is a view because it’s derived from the user’s birthdate. But the birthday is considered data to 
a third-party advertiser.
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Foundational to your understanding of Big Data systems is your understanding of
these three key concepts.

 If you’re coming from a relational background, this could be confusing. Typically
you constantly update and summarize your information to reflect the current state of
the world; you’re not concerned with immutability or perpetuity. But that approach
limits the questions you can answer with your data, and it fails to robustly discourage
errors and corruption. By enforcing these properties in the world of Big Data, you
achieve a more robust system and gain powerful capabilities.

 We’ll delve further into this topic as we discuss the rawness of data. 

2.1.1 Data is raw

A data system answers questions about information you’ve acquired in the past. When
designing your Big Data system, you want to be able to answer as many questions as
possible. In the FaceSpace example, your FaceSpace data is more valuable than the
advertiser’s because you can deduce more information about Tom. We’ll colloquially
call this property rawness. If you can, you want to store the rawest data you can get your
hands on. The rawer your data, the more questions you can ask of it. 

 The FaceSpace example helps illustrate the value of rawness, but let’s consider
another example to help drive the point home. Stock market trading is a fountain of
information, with millions of shares and billions of dollars changing hands on a daily
basis. With so many trades taking place, stock prices are historically recorded daily as an
opening price, high price, low price, and closing price. But those bits of data often don’t
provide the big picture and can potentially skew your perception of what happened. For
instance, look at figure 2.5. It records the price data for Google, Apple, and Amazon
stocks on a day when Google announced new products targeted at their competitors.

 This data suggests that Amazon may not have been affected by Google’s announce-
ment, as its stock price moved only slightly. It also suggests that the announcement
had either no effect on Apple, or a positive effect. 

 But if you have access to data stored at a finer time granularity, you can get a
clearer picture of the events on that day and probe further into potential cause and

Financial reporting promotes daily net change in closing prices.
What conclusions would you draw about the impact of

Google’s announcements?

Company Symbol Previous Open High Low Close Net

Google GOOG 564.68 567.70 573.99 566.02 569.30 +4.62

Apple AAPL 572.02 575.00 576.74 571.92 574.50 +2.48

Amazon AMZN 225.61 225.01 227.50 223.30 225.62 +0.01

Figure 2.5 A summary of one day of trading for Google, Apple, and Amazon stocks: previous close, open-
ing, high, low, close, and net change.
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effect relationships. Figure 2.6 depicts the minute-by-minute relative changes in the
stock prices of all three companies, which suggests that both Amazon and Apple were
indeed affected by the announcement, Amazon more so than Apple.

 Also note that the additional data can suggest new ideas you may not have considered
when examining the original daily stock price summary. For instance, the more granular
data makes you wonder if Amazon was more greatly affected because the new Google
products compete with Amazon in both the tablet and cloud-computing markets.

 Storing raw data is hugely valuable because you rarely know in advance all the ques-
tions you want answered. By keeping the rawest data possible, you maximize your ability
to obtain new insights, whereas summarizing, overwriting, or deleting information lim-
its what your data can tell you. The trade-off is that rawer data typically entails more of
it—sometimes much more. But Big Data technologies are designed to manage peta-
bytes and exabytes of data. Specifically, they manage the storage of your data in a dis-
tributed, scalable manner while supporting the ability to directly query the data. 

 Although the concept is straightforward, it’s not always clear what information you
should store as your raw data. We’ll provide a couple of examples to help guide you in
making this decision. 

UNSTRUCTURED DATA IS RAWER THAN NORMALIZED DATA

When deciding what raw data to store, a common hazy area is the line between parsing
and semantic normalization. Semantic normalization is the process of reshaping free-
form information into a structured form of data. 

Google’s stock price had a slight boost
on the day of the announcement.

Amazon’s stock dipped
in late-day   trading.

Apple held steady
throughout the day.

Figure 2.6 Relative stock price changes of Google, Apple, and Amazon on June 27, 2012, compared to 
closing prices on June 26 (www.google.com/finance). Short-term analysis isn’t supported by daily records 
but can be performed by storing data at finer time resolutions.
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For example, FaceSpace may request Tom’s location. He may input anything for that
field, such as San Francisco, CA, SF, North Beach, and so forth. A semantic normalization
algorithm would try to match the input with a known place—see figure 2.7. 

 If you come across a form of data such as an unstructured location string, should
you store the unstructured string or the semantically normalized form? We argue that
it’s better to store the unstructured string, because your semantic normalization algo-
rithm may improve over time. If you store the unstructured string, you can renormal-
ize that data at a later time when you have improved your algorithms. In the
preceding example, you may later adapt the algorithm to recognize North Beach as a
neighborhood in San Francisco, or you may want to use the neighborhood informa-
tion for another purpose. 

STORE UNSTRUCTURED DATA WHEN... As a rule of thumb, if your algorithm for
extracting the data is simple and accurate, like extracting an age from an
HTML page, you should store the results of that algorithm. If the algorithm is
subject to change, due to improvements or broadening the requirements,
store the unstructured form of the data. 

MORE INFORMATION DOESN’T NECESSARILY MEAN RAWER DATA 

It’s easy to presume that more data equates to rawer data, but that’s not always the
case. Let’s say that Tom is a blogger, and he wants to add his posts to his FaceSpace
profile. What exactly should you store once Tom provides the URL of his blog? 

 Storing the pure text of the blog entries is certainly a possibility. But any phrases in
italics, boldface, or large font were deliberately emphasized by Tom and could prove
useful in text analysis. For example, you could use this additional information for an
index to make FaceSpace searchable. We’d thus argue that the annotated text entries
are a rawer form of data than ASCII text strings. 

 At the other end of the spectrum, you could also store the full HTML of Tom’s blog
as your data. While it’s considerably more information in terms of total bytes, the
color scheme, stylesheets, and JavaScript code of the site can’t be used to derive any
additional information about Tom. They serve only as the container for the contents
of the site and shouldn’t be part of your raw data. 

San Francisco

SF

North Beach

San Francisco, CA, USA

San Francisco, CA, USA

NULL

The normalization algorithm may
not recognize North Beach as part
of San Francisco, but this could be

refined at a later date.

Figure 2.7 Semantic normalization of unstructured location responses to city, state, and country. A 
simple algorithm will normalize “North Beach” to NULL if it doesn’t recognize it as a San Francisco neigh-
borhood.
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2.1.2 Data is immutable

Immutable data may seem like a strange concept if you’re well versed in relational
databases. After all, in the relational database world—and most other databases as
well—update is one of the fundamental operations. But for immutability you don’t
update or delete data, you only add more.1 By using an immutable schema for Big
Data systems, you gain two vital advantages: 

■ Human-fault tolerance—This is the most important advantage of the immutable
model. As we discussed in chapter 1, human-fault tolerance is an essential prop-
erty of data systems. People will make mistakes, and you must limit the impact
of such mistakes and have mechanisms for recovering from them. With a muta-
ble data model, a mistake can cause data to be lost, because values are actually
overridden in the database. With an immutable data model, no data can be lost. If
bad data is written, earlier (good) data units still exist. Fixing the data system is
just a matter of deleting the bad data units and recomputing the views built
from the master dataset. 

■ Simplicity—Mutable data models imply that the data must be indexed in some
way so that specific data objects can be retrieved and updated. In contrast, with
an immutable data model you only need the ability to append new data units to
the master dataset. This doesn’t require an index for your data, which is a huge
simplification. As you’ll see in the next chapter, storing a master dataset is as
simple as using flat files. 

The advantages of keeping your data immutable become evident when comparing
with a mutable schema. Consider the basic mutable schema shown in figure 2.8, which
you could use for FaceSpace.

1 There are a few scenarios in which you can delete data, but these are special cases and not part of the day-to-
day workflow of your system. We’ll discuss these scenarios in section 2.1.3. 

User information

id name age gender employer location

1 Alice 25 female Apple Atlanta, GA

2 Bob 36 male SAS Chicago, IL

4 Charlie 25 male Microsoft Washington, DC

... ... ... ... ... ...

Tom 28 male Google San Francisco, CA3

Should Tom move to
 a different city, this value 

would be owerwritten.

Figure 2.8 A mutable schema for FaceSpace user information. When details change—say, Tom 
moves to Los Angeles—previous values are overwritten and lost.
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Should Tom move to Los Angeles, you’d update the highlighted entry to reflect his
current location—but in the process, you’d also lose all knowledge that Tom ever
lived in San Francisco. 

 With an immutable schema, things look different. Rather than storing a current
snapshot of the world, as done by the mutable schema, you create a separate record
every time a user’s information evolves. Accomplishing this requires two changes.
First, you track each field of user information in a separate table. Second, you tie each
unit of data to a moment in time when the information is known to be true. Figure 2.9
shows a corresponding immutable schema for storing FaceSpace information. 

 Tom first joined FaceSpace on April 4, 2012, and provided his profile information.
The time you first learn this data is reflected in the record’s timestamp. When he sub-
sequently moves to Los Angeles on June 17, 2012, you add a new record to the loca-
tion table, timestamped by when he changed his profile—see figure 2.10. 

 You now have two location records for Tom (user ID #3), and because the data
units are tied to particular times, they can both be true. Tom’s current location involves
a simple query on the data: look at all the locations, and pick the one with the most
recent timestamp. By keeping each field in a separate table, you only record the infor-
mation that changed. This requires less space for storage and guarantees that each
record is new information and is not simply carried over from the last record. 

 One of the trade-offs of the immutable approach is that it uses more storage than a
mutable schema. First, the user ID is specified for every property, rather than just once
per row, as with a mutable approach. Additionally, the entire history of events is stored
rather than just the current view of the world. But Big Data isn’t called “Big Data” for

4
...

user id
2012/03/29 08:12:24
2012/04/12 14:47:51Bob
2012/04/04 18:31:24

timestamp
Alice

Charlie
3

2012/04/09 11:52:30

name

Tom
2

...

1

...
4
...

user id
2012/03/29 08:12:24
2012/04/12 14:47:5136
2012/04/04 18:31:24

timestamp
25

25
3

2012/04/09 11:52:30

age

28
2

...

1

...

4
...

user id
2012/03/29 08:12:24
2012/04/12 14:47:51Chicago, IL
2012/04/04 18:31:24

timestamp
Atlanta, GA

Washington, DC
3

2012/04/09 11:52:30

location

San Francisco, CA
2

...

1

...

Age dataName data

Location data

Each field of user
information is

kept separately.

Each record is
timestamped

when it is stored.

b

c

Figure 2.9 An equivalent immutable schema for FaceSpace user information. Each field is tracked in 
a separate table, and each row has a timestamp for when it’s known to be true. (Gender and employer 
data are omitted for space, but are stored similarly.)
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nothing. You should take advantage of the ability to store large amounts of data using
Big Data technologies to get the benefits of immutability. The importance of having a
simple and strongly human-fault tolerant master dataset can’t be overstated. 

2.1.3 Data is eternally true

The key consequence of immutability is that each piece of data is true in perpetuity.
That is, a piece of data, once true, must always be true. Immutability wouldn’t make
sense without this property, and you saw how tagging each piece of data with a time-
stamp is a practical way to make data eternally true. 

 This mentality is the same as when you learned history in school. The fact The
United States consisted of thirteen states on July 4, 1776, is always true due to the specific
date; the fact that the number of states has increased since then is captured in addi-
tional (also perpetual) data. 

 In general, your master dataset consistently grows by adding new immutable and
eternally true pieces of data. There are some special cases, though, in which you do
delete data, and these cases are not incompatible with data being eternally true. Let’s
consider the cases: 

■ Garbage collection—When you perform garbage collection, you delete all data
units that have low value. You can use garbage collection to implement data-
retention policies that control the growth of the master dataset. For example,
you may decide to implement a policy that keeps only one location per person
per year instead of the full history of each time a user changes locations. 

■ Regulations—Government regulations may require you to purge data from your
databases under certain conditions. 

In both of these cases, deleting the data is not a statement about the truthfulness of
the data. Instead, it’s a statement about the value of the data. Although the data is
eternally true, you may prefer to “forget” the information either because you must or
because it doesn’t provide enough value for the storage cost. 

 We’ll proceed by introducing a data model that uses these key properties of data. 

2012/06/17 20:09:48

...

2012/04/09 11:52:30

1

2012/04/12 14:47:51

Atlanta, GA

4

timestamp

Los Angeles, CA

2

... ...

location

3

Chicago, IL

2012/03/29 08:12:24

Washington, DC

user id

Location data
1

The initial information
provided by Tom (user id 3),
timestamped when he first
joined FaceSpace.

When Tom later moves to a
new location, you add an additional
record timestamped by when you
received the new data.

b

c
San Francisco, CA3 2012/04/04 18:31:24

Figure 2.10 Instead of updating preexisting records, an immutable schema uses new records to 
represent changed information. An immutable schema thus can store multiple records for the same 
user. (Other tables omitted because they remain unchanged.)

Licensed to Mark Watson <nordickan@gmail.com>



37The fact-based model for representing data

2.2 The fact-based model for representing data
Data is the set of information that can’t be derived from anything else, but there are
many ways you could choose to represent it within the master dataset. Besides tradi-
tional relational tables, structured XML and semistructured JSON documents are
other possibilities for storing data. We, however, recommend the fact-based model for
this purpose. In the fact-based model, you deconstruct the data into fundamental
units called (unsurprisingly) facts. 

 In the discussion of immutability, you got a glimpse of the fact-based model, in that
the master dataset continually grows with the addition of immutable, timestamped
data. We’ll now expand on what we already discussed to explain the fact-based model
in full. We’ll first introduce the model in the context of the FaceSpace example and
discuss its basic properties. We’ll then continue with discussing how and why you
should make your facts identifiable. To wrap up, we’ll explain the benefits of using the
fact-based model and why it’s an excellent choice for your master dataset. 

2.2.1 Example facts and their properties 

Figure 2.11 depicts examples of facts about Tom from the FaceSpace data, as well as
two core properties of facts—they are atomic and timestamped. 

 Facts are atomic because they can’t be subdivided further into meaningful compo-
nents. Collective data, such as Tom’s friend list in the figure, are represented as multi-
ple, independent facts. As a consequence of being atomic, there’s no redundancy of
information across distinct facts. Facts having timestamps should come as no surprise,
given our earlier discussion about data—the timestamps make each fact immutable
and eternally true. 

 These properties make the fact-based model a simple and expressive model for
your dataset, yet there is an additional property we recommend imposing on your
facts: identifiability. 

MAKING FACTS IDENTIFIABLE 

Besides being atomic and timestamped, facts should be associated with a uniquely
identifiable piece of data. This is most easily explained by example. 

Deleting immutable data?
You may be wondering how it is possible to delete immutable data. On the face of it,
this seems like a contradiction. It is important to distinguish that the deleting we are
referring to is a special and rare case. In normal usage, data is immutable, and you
enforce that property by taking actions such as setting the appropriate permissions.
Since deleting data is rare, the utmost care can be taken to ensure that it is done
safely. We believe deleting data is most safely accomplished by producing a second
copy of the master dataset with the offending data filtered out, running analytic jobs
to verify that the correct data was filtered, and then and only then replacing the old
version of the master dataset.
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Suppose you want to store data about pageviews on FaceSpace. Your first approach
might look something like this (in pseudo-code): 

struct PageView:
DateTime timestamp
String url
String ip_address

Facts using this structure don’t uniquely identify a particular pageview event. If multi-
ple pageviews come in at the same time for the same URL from the same IP address,
each pageview will have the exact same data record. Consequently, if you encounter
two identical pageview records, there’s no way to tell whether they refer to two distinct
events or if a duplicate entry was accidentally introduced into your dataset. 

 To distinguish different pageviews, you can add a nonce to your schema—a 64-bit
number randomly generated for each pageview:

struct PageView:
Datetime timestamp
String url
String ip_address 
Long nonce

The addition of the nonce makes it possible to distinguish pageview events from each
other, and if two pageview data units are identical (all fields, including the nonce),
you know they refer to the exact same event. 

 Making facts identifiable means that you can write the same fact to the master data-
set multiple times without changing the semantics of the master dataset. Your queries
can filter out the duplicate facts when doing their computations. As it turns out, and
as you’ll see later, having distinguishable facts makes implementing the rest of the
Lambda Architecture much easier.  

Tom is friends with David
(2012/05/16 18:31:24)

Tom is friends with Alice
(2012/05/23 22:06:16)

Tom lives in Los Angeles, CA
(2012/06/17 20:09:48)

Tom lives in San Francisco, CA
(2012/04/04 18:31:24)

Tom works for Google
(2012/04/04 18:31:24)

Facts are atomic and cannot
be subdivided into smaller
meaningful components.

b

Facts are timestamped to
make them immutable and
eternally true.

cRaw data
about Tom

Figure 2.11 All of the raw data concerning Tom is deconstructed into timestamped, atomic units 
we call facts.

The nonce, combined with the 
other fields, uniquely identifies 
a particular pageview.
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To quickly recap, the fact-based model 

■ Stores your raw data as atomic facts
■ Keeps the facts immutable and eternally true by using timestamps 
■ Ensures each fact is identifiable so that query processing can identify duplicates

Next we’ll discuss the benefits of choosing the fact-based model for your master dataset. 

2.2.2 Benefits of the fact-based model

With a fact-based model, the master dataset will be an ever-growing list of immutable,
atomic facts. This isn’t a pattern that relational databases were built to support—if you
come from a relational background, your head may be spinning. The good news is
that by changing your data model paradigm, you gain numerous advantages. Specifi-
cally, your data 

■ Is queryable at any time in its history 
■ Tolerates human errors 
■ Handles partial information 
■ Has the advantages of both normalized and denormalized forms 

Let’s look at each of these advantages in turn. 

Duplicates aren’t as rare as you might think
At a first look, it may not be obvious why we care so much about identity and dupli-
cates. After all, to avoid duplicates, the first inclination would be to ensure that an
event is recorded just once. Unfortunately life isn’t always so simple when dealing
with Big Data. 

Once FaceSpace becomes a hit, it will require hundreds, then thousands, of web serv-
ers. Building the master dataset will require aggregating the data from each of these
servers to a central system—no trivial task. There are data collection tools suitable
for this situation—Facebook’s Scribe, Apache Flume, syslog-ng, and many others—
but any solution must be fault tolerant. 

One common “fault” these systems must anticipate is a network partition where the
destination datastore becomes unavailable. For these situations, fault-tolerant sys-
tems commonly handle failed operations by retrying until they succeed. Because the
sender will not know which data was last received, a standard approach is to resend
all data yet to be acknowledged by the recipient. But if part of the original attempt did
make it to the metastore, you’d end up with duplicates in your dataset. 

There are ways to make these kinds of operations transactional, but it can be fairly
tricky and entail performance costs. An important part of ensuring correctness in your
systems is avoiding tricky solutions. By embracing distinguishable facts, you remove
the need for transactional appends to the master dataset and make it easier to reason
about the correctness of the full system. After all, why place difficult burdens on your-
self when a small tweak to your data model can avoid those challenges altogether?
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THE DATASET IS QUERYABLE AT ANY TIME IN ITS HISTORY 

Instead of storing only the current state of the world, as you would using a mutable,
relational schema, you have the ability to query your data for any time covered by your
dataset. This is a direct consequence of facts being timestamped and immutable.
“Updates” and “deletes” are performed by adding new facts with more recent time-
stamps, but because no data is actually removed, you can reconstruct the state of the
world at the time specified by your query. 

THE DATA IS HUMAN-FAULT TOLERANT

Human-fault tolerance is achieved by simply deleting any erroneous facts. Suppose you
mistakenly stored that Tom moved from San Francisco to Los Angeles—see figure 2.12. 

 By removing the Los Angeles fact, Tom’s location is automatically “reset” because
the San Francisco fact becomes the most recent information. 

THE DATASET EASILY HANDLES PARTIAL INFORMATION

Storing one fact per record makes it easy to handle partial information about an entity
without introducing NULL values into your dataset. Suppose Tom provided his age
and gender but not his location or profession. Your dataset would only have facts for
the known information—any “absent” fact would be logically equivalent to NULL.
Additional information that Tom provides at a later time would naturally be intro-
duced via new facts. 

THE DATA STORAGE AND QUERY PROCESSING LAYERS ARE SEPARATE

There is another key advantage of the fact-based model that is in part due to the struc-
ture of the Lambda Architecture itself. By storing the information at both the batch
and serving layers, you have the benefit of keeping your data in both normalized and
denormalized forms and reaping the benefits of both. 

NORMALIZATION IS AN OVERLOADED TERM Data normalization is completely
unrelated to the semantic normalization term that we used earlier. In this case,
data normalization refers to storing data in a structured manner to minimize
redundancy and promote consistency.

2012/06/17 20:09:48
...

2012/04/09 11:52:30

1

2012/04/12 14:47:51

Atlanta, GA

4

timestamp

Los Angeles, CA

2

... ...

location

3

Chicago, IL

2012/03/29 08:12:24

Washington, DC

user id

Location data

Human faults can easily
be corrected by simply deleting
erroneous facts. The record is
automatically reset by using
earlier timestamps.

3 San Francisco, CA 2012/04/04 18:31:24

Figure 2.12 To correct for human errors, simply remove the incorrect facts. This process automatically 
resets to an earlier state by “uncovering” any relevant previous facts.
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Let’s set the stage with an example involving relational tables—the context where data
normalization is most frequently encountered. Relational tables require you to choose
between normalized and denormalized schemas based on what’s most important to
you: query efficiency or data consistency. Suppose you wanted to store the employ-
ment information for various people of interest. Figure 2.13 offers a simple denormal-
ized schema suitable for this purpose. 

 In this denormalized schema, the same company name could potentially be stored
in multiple rows. This would allow you to quickly determine the number of employees
for each company, but you would need to update many rows should a company
change its name. Having information stored in multiple locations increases the risk of
it becoming inconsistent. 

 In comparison, consider the normalized schema in figure 2.14. 
 Data in a normalized schema is stored in only one location. If BackRub should

change its name to Google, there’s a single row in the Company table that needs to be
altered. This removes the risk of inconsistency, but you must join the tables to answer
queries—a potentially expensive computation. 

...... ...

Steve

3 Sergey

namerow id

Larry BackRub

BackRub

company

4

Bill1

2

Microsoft

Apple

Employment Data in this table is denormalized
because the same information is stored
redundantly—in this case, the company
name can be repeated.

With this table, you can quickly determine
the number of employees at each company,
but many rows must be updated when
change occurs—in this case, when
BackRub changed to Google.

Figure 2.13 A simple denormalized schema for storing employment information

company iduser id name

2

Steve 14

31

2

Sergey

Bill

2

......

3

...

Larry

......

IBM4

3 Microsoft

company id

Apple

2

name

BackRub

1

CompanyUser

For normalized data, each fact is stored in only one location and
relationships between datasets are used to answer queries. This simplifies

the consistency of data, but joining tables could be expensive..

Figure 2.14 Two normalized tables for storing the same employment information
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The mutually exclusive choice between normalized and denormalized schemas is nec-
essary because, for relational databases, queries are performed directly on the data at
the storage level. You must therefore weigh the importance of query efficiency versus
data consistency and choose between the two schema types. 

 In contrast, the objectives of query processing and data storage are cleanly sepa-
rated in the Lambda Architecture. Take a look at the batch and server layers in fig-
ure 2.15. 

 In the Lambda Architecture, the master dataset is fully normalized. As you saw in the
discussion of the fact-based model, no data is stored redundantly. Updates are easily
handled because adding a new fact with a current timestamp “overrides” any previous
related facts. 

 Similarly, the batch views are like denormalized tables in that one piece of data from
the master dataset may get indexed into many batch views. The key difference is that the
batch views are defined as functions on the master dataset. Accordingly, there is no need
to update a batch view because it will be continually rebuilt from the master dataset. This
has the additional benefit that the batch views and master dataset will never be out of
sync. The Lambda Architecture gives you the conceptual benefits of full normalization
with the performance benefits of indexing data in different ways to optimize queries. 

 In summary, all of these benefits make the fact-based model an excellent choice
for your master dataset. But that’s enough discussion at the theoretical level—let’s
dive into the details of practically implementing a fact-based data model. 

Batch layer

Serving layer

Batch
view

Batch
view

Master dataset

Query:
“How many...?”

Data is normalized in
the master dataset for
compactness and
consistency…

… but is redundantly
stored (denormalized)
in the batch views for
efficient querying.

The batch views are continually
rebuilt from the master dataset,
so all changes are consistent
across the batch views.

b

c

d

Figure 2.15 The Lambda Architecture has the benefits of both normalization and 
denormalization by separating objectives at different layers.
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2.3 Graph schemas
Each fact within a fact-based model captures a single piece of information. But the
facts alone don’t convey the structure behind the data. That is, there’s no description
of the types of facts contained in the dataset, nor any explanation of the relationships
between them. In this section we’ll introduce graph schemas—graphs that capture the
structure of a dataset stored using the fact-based model. We’ll discuss the elements of
a graph schema and the need to make a schema enforceable. 

 Let’s begin by first structuring our FaceSpace facts as a graph. 

2.3.1 Elements of a graph schema

In the last section we discussed FaceSpace facts in great detail. Each fact represents
either a piece of information about a user or a relationship between two users. Fig-
ure 2.16 depicts a graph schema representing the relationships between the Face-
Space facts. It provides a useful visualization of your users, their individual
information, and the friendships between them. 

 The figure highlights the three core components of a graph schema—nodes, edges,
and properties:

■ Nodes are the entities in the system. In this example, the nodes are the FaceSpace
users, represented by a user ID. As another example, if FaceSpace allows users
to identify themselves as part of a group, then the groups would also be repre-
sented by nodes. 

■ Edges are relationships between nodes. The connotation in FaceSpace is straightfor-
ward—an edge between users represents a FaceSpace friendship. You could

Person ID: 3

Name:
Tom

Gender:
Male

Person ID: 1

Person ID: 4

Location:
Atlanta, GA

Age:
25

Name:
Charlie

Location:
Washington, DC

Ovals represent entities
of the graph—in this case,
FaceSpace users.

Solid lines between entities
are edges, representing
FaceSpace connections.

Dashed lines connect entities
(users) with their properties,
denoted by rectangles.b

c

d

Figure 2.16 Visualizing the relationship between FaceSpace facts
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later add additional edge types between users to identify coworkers, family
members, or classmates. 

■ Properties are information about entities. In this example, age, gender, location, and
all other pieces of individual information are properties. 

EDGES ARE STRICTLY BETWEEN NODES Even though properties and nodes are
visually connected in the figure, these lines are not edges. They are present
only to help illustrate the association between users and their personal infor-
mation. We denote the difference by using solid lines for edges and dashed
lines for property connections. 

The graph schema provides a complete description of all the data contained within a
dataset. Next we’ll discuss the need to ensure that all facts within a dataset rigidly
adhere to the schema. 

2.3.2 The need for an enforceable schema

At this point, information is stored as facts, and a graph schema describes the types of
facts contained in the dataset. You’re all set, right? Well, not quite. You still need to
decide in what format you’ll store your facts. 

 A first idea might be to use a semistructured text format like JSON. This would pro-
vide simplicity and flexibility, allowing essentially anything to be written to the master
dataset. But in this case it’s too flexible for our needs. 

 To illustrate this problem, suppose you chose to represent Tom’s age using JSON:

{"id": 3, "field":"age", "value":28, "timestamp": 1333589484}

There are no issues with the representation of this single fact, but there’s no way to
ensure that all subsequent facts will follow the same format. As a result of human
error, the dataset could also possibly include facts like these:

{"name":"Alice", "field":"age", "value":25,
"timestamp":"2012/03/29 08:12:24"}

{"id":2, "field":"age", "value":36}

Both of these examples are valid JSON, but they have inconsistent formats or missing
data. In particular, in the last section we stressed the importance of having a time-
stamp for each fact, but a text format can’t enforce this requirement. To effectively
use your data, you must provide guarantees about the contents of your dataset. 

 The alternative is to use an enforceable schema that rigorously defines the struc-
ture of your facts. Enforceable schemas require a bit more work up front, but they
guarantee all required fields are present and ensure all values are of the expected
type. With these assurances, a developer will be confident about what data they can
expect—that each fact will have a timestamp, that a user’s name will always be a string,
and so forth. The key is that when a mistake is made creating a piece of data, an
enforceable schema will give errors at that time, rather than when someone is trying
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to use the data later in a different system. The closer the error appears to the bug, the
easier it is to catch and fix. 

 In the next chapter you’ll see how to implement an enforceable schema using a
serialization framework. A serialization framework provides a language-neutral way to
define the nodes, edges, and properties of your schema. It then generates code
(potentially in many different languages) that serializes and deserializes the objects in
your schema so they can be stored in and retrieved from your master dataset. 

 We’re aware that at this point you may be hungry for details. Not to worry—we
believe the best way to learn is by doing. In the next section we’ll design the fact-based
model for SuperWebAnalytics.com in its entirety, and in the following chapter we’ll
implement it using a serialization framework. 

2.4 A complete data model for SuperWebAnalytics.com
In this section we aim to tie together all the material from the chapter using the
SuperWebAnalytics.com example. We’ll begin with figure 2.17, which contains a
graph schema suitable for our purpose. 

 In this schema there are two types of nodes: people and pages. As you can see, there
are two distinct categories of people nodes to distinguish people with a known identity
from people you can only identify using a web browser cookie. 

Person (Cookie):
ABCDE

Person (UserID):
123

Page:
http://mysite.com/

Page:
http://mysite.com/blog

Location:
San Francisco, CA

Pageview PageviewPageview

Name:
Tom

Total views:
25

Gender:
Female

Total views:
452

Person (UserID):
200

Equiv

The graph schema has two
node types: people and the
pages they have viewed.

Edges between people nodes
denote the same user identified by
different means. Edges between
a person and a page represent
a single pageview.

Properties are view counts
for a page and demographic
information for a person.

c

b

d

Figure 2.17 The graph schema for SuperWebAnalytics.com. There are two node types: people and pag-
es. People nodes and their properties are slightly shaded to distinguish the two.
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Edges in the schema are rather simple. A pageview edge occurs between a person and a
page for each distinct view, whereas an equiv edge occurs between two person nodes
when they represent the same individual. The latter would occur when a person ini-
tially identified by only a cookie is fully identified at a later time. 

 Properties are also self-explanatory. Pages have total pageview counts, and people
have basic demographic information: name, gender, and location. 

 One of the beauties of the fact-based model and graph schemas is that they can
evolve as different types of data become available. A graph schema provides a
consistent interface to arbitrarily diverse data, so it’s easy to incorporate new types of
information. Schema additions are done by defining new node, edge, and property
types. Due to the atomicity of facts, these additions do not affect previously existing
fact types. 

2.5 Summary
How you model your master dataset creates the foundation for your Big Data system.
The decisions made about the master dataset determine the kind of analytics you can
perform on your data and how you’ll consume that data. The structure of the master
dataset must support evolution of the kinds of data stored, because your company’s
data types may change considerably over the years. 

 The fact-based model provides a simple yet expressive representation of your data
by naturally keeping a full history of each entity over time. Its append-only nature
makes it easy to implement in a distributed system, and it can easily evolve as your data
and your needs change. You’re not just implementing a relational system in a more
scalable way—you’re adding whole new capabilities to your system as well.
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Data model for
 Big Data: Illustration

In the last chapter you saw the principles of forming a data model—the value of
raw data, dealing with semantic normalization, and the critical importance of
immutability. You saw how a graph schema can satisfy all these properties and saw
what the graph schema looks like for SuperWebAnalytics.com. 

 This is the first of the illustration chapters, in which we demonstrate the concepts of
the previous chapter using real-world tools. You can read just the theory chapters of
the book and learn the whole Lambda Architecture, but the illustration chapters show
you the nuances of mapping the theory to real code. In this chapter we’ll implement
the SuperWebAnalytics.com data model using Apache Thrift, a serialization frame-
work. You’ll see that even in a task as straightforward as writing a schema, there is fric-
tion between the idealized theory and what you can achieve in practice. 

This chapter covers
■ Apache Thrift 
■ Implementing a graph schema using Apache 

Thrift
■ Limitations of serialization frameworks
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3.1 Why a serialization framework? 
Many developers go down the path of writing their raw data in a schemaless format
like JSON. This is appealing because of how easy it is to get started, but this approach
quickly leads to problems. Whether due to bugs or misunderstandings between differ-
ent developers, data corruption inevitably occurs. It’s our experience that data cor-
ruption errors are some of the most time-consuming to debug. 

 Data corruption issues are hard to debug because you have very little context on
how the corruption occurred. Typically you’ll only notice there’s a problem when
there’s an error downstream in the processing—long after the corrupt data was writ-
ten. For example, you might get a null pointer exception due to a mandatory field
being missing. You’ll quickly realize that the problem is a missing field, but you’ll have
absolutely no information about how that data got there in the first place. 

 When you create an enforceable schema, you get errors at the time of writing the
data—giving you full context as to how and why the data became invalid (like a stack
trace). In addition, the error prevents the program from corrupting the master data-
set by writing that data. 

 Serialization frameworks are an easy approach to making an enforceable schema.
If you’ve ever used an object-oriented, statically typed language, using a serialization
framework will be immediately familiar. Serialization frameworks generate code for
whatever languages you wish to use for reading, writing, and validating objects that
match your schema. 

 However, serialization frameworks are limited when it comes to achieving a fully
rigorous schema. After discussing how to apply a serialization framework to the Super-
WebAnalytics.com data model, we’ll discuss these limitations and how to work around
them. 

3.2 Apache Thrift 
Apache Thrift (http://thrift.apache.org/) is a tool that can be used to define statically
typed, enforceable schemas. It provides an interface definition language to describe the
schema in terms of generic data types, and this description can later be used to auto-
matically generate the actual implementation in multiple programming languages. 

OUR USE OF APACHE THRIFT Thrift was initially developed at Facebook for
building cross-language services. It can be used for many purposes, but we’ll
limit our discussion to its usage as a serialization framework.

Other serialization frameworks
There are other tools similar to Apache Thrift, such as Protocol Buffers and Avro.
Remember, the purpose of this book is not to provide a survey of all possible tools
for every situation, but to use an appropriate tool to illustrate the fundamental con-
cepts. As a serialization framework, Thrift is practical, thoroughly tested, and
widely used.
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The workhorses of Thrift are the struct and union type definitions. They’re composed
of other fields, such as 

■ Primitive data types (strings, integers, longs, and doubles)
■ Collections of other types (lists, maps, and sets)
■ Other structs and unions 

In general, unions are useful for representing nodes, structs are natural representa-
tions of edges, and properties use a combination of both. This will become evident
from the type definitions needed to represent the SuperWebAnalytics.com schema
components. 

3.2.1 Nodes

For our SuperWebAnalytics.com user nodes, an individual is identified either by a
user ID or a browser cookie, but not both. This pattern is common for nodes, and it
matches exactly with a union data type—a single value that may have any of several
representations. 

 In Thrift, unions are defined by listing all possible representations. The following
code defines the SuperWebAnalytics.com nodes using Thrift unions:

union PersonID {
1: string cookie;
2: i64 user_id;

}

union PageID {
1: string url;

}

Note that unions can also be used for nodes with a single representation. Unions
allow the schema to evolve as the data evolves—we’ll discuss this further later in this
section. 

3.2.2 Edges 

Each edge can be represented as a struct containing two nodes. The name of an edge
struct indicates the relationship it represents, and the fields in the edge struct contain
the entities involved in the relationship. 

 The schema definition is very simple:

struct EquivEdge {
1: required PersonID id1;
2: required PersonID id2;

}

struct PageViewEdge {
1: required PersonID person;
2: required PageID page;
3: required i64 nonce;

}
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The fields of a Thrift struct can be denoted as required or optional. If a field is
defined as required, then a value for that field must be provided, or else Thrift will
give an error upon serialization or deserialization. Because each edge in a graph
schema must have two nodes, they are required fields in this example. 

3.2.3 Properties 

Last, let’s define the properties. A property contains a node and a value for the property.
The value can be one of many types, so it’s best represented using a union structure. 

 Let’s start by defining the schema for page properties. There’s only one property
for pages, so it’s really simple:

union PagePropertyValue {
1: i32 page_views;

}

struct PageProperty {
1: required PageID id;
2: required PagePropertyValue property;

}

Next let’s define the properties for people. As you can see, the location property is
more complex and requires another struct to be defined:

struct Location {
1: optional string city;
2: optional string state;
3: optional string country;

}

enum GenderType {
MALE = 1,
FEMALE = 2

}

union PersonPropertyValue {
1: string full_name;
2: GenderType gender;
3: Location location;

}

struct PersonProperty {
1: required PersonID id;
2: required PersonPropertyValue property;

}

The location struct is interesting because the city, state, and country fields could have
been stored as separate pieces of data. In this case, they’re so closely related it makes
sense to put them all into one struct as optional fields. When consuming location
information, you’ll almost always want all of those fields. 
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3.2.4 Tying everything together into data objects 

At this point, the edges and properties are defined as separate types. Ideally you’d
want to store all of the data together to provide a single interface to access your infor-
mation. Furthermore, it also makes your data easier to manage if it’s stored in a single
dataset. This is accomplished by wrapping every property and edge type into a
DataUnit union—see the following code listing. 

union DataUnit {
1: PersonProperty person_property;
2: PageProperty page_property;
3: EquivEdge equiv;
4: PageViewEdge page_view;

}

struct Pedigree {
1: required i32 true_as_of_secs;

}

struct Data {
1: required Pedigree pedigree;
2: required DataUnit dataunit;

}

Each DataUnit is paired with its metadata, which is kept in a Pedigree struct. The
pedigree contains the timestamp for the information, but could also potentially con-
tain debugging information or the source of the data. The final Data struct corre-
sponds to a fact from the fact-based model. 

3.2.5 Evolving your schema

Thrift is designed so that schemas can evolve over time. This is a crucial property,
because as your business requirements change you’ll need to add new kinds of data,
and you’ll want to do so as effortlessly as possible. 

 The key to evolving Thrift schemas is the numeric identifiers associated with each
field. Those IDs are used to identify fields in their serialized form. When you want to
change the schema but still be backward compatible with existing data, you must obey
the following rules: 

■ Fields may be renamed. This is because the serialized form of an object uses the
field IDs, not the names, to identify fields.

■ A field may be removed, but you must never reuse that field ID. When deserializing
existing data, Thrift will ignore all fields with field IDs not included in the
schema. If you were to reuse a previously removed field ID, Thrift would try to
deserialize that old data into the new field, which will lead to either invalid or
incorrect data. 

Listing 3.1 Completing the SuperWebAnalytics.com schema
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■ Only optional fields can be added to existing structs. You can’t add required fields
because existing data won’t have those fields and thus won’t be deserializable.
(Note that this doesn’t apply to unions, because unions have no notion of
required and optional fields.) 

As an example, should you want to change the SuperWebAnalytics.com schema to
store a person’s age and the links between web pages, you’d make the following
changes to your Thrift definition file (changes in bold font). 

union PersonPropertyValue {
1: string full_name;
2: GenderType gender;
3: Location location;
4: i16 age;

}
struct LinkedEdge { 

1: required PageID source; 
2: required PageID target; 

}

union DataUnit {
1: PersonProperty person_property;
2: PageProperty page_property;
3: EquivEdge equiv;
4: PageViewEdge page_view;
5: LinkedEdge page_link;

}

Notice that adding a new age property is done by adding it to the corresponding
union structure, and a new edge is incorporated by adding it into the DataUnit union. 

3.3 Limitations of serialization frameworks 
Serialization frameworks only check that all required fields are present and are of the
expected type. They’re unable to check richer properties like “Ages should be non-
negative” or “true-as-of timestamps should not be in the future.” Data not matching
these properties would indicate a problem in your system, and you wouldn’t want
them written to your master dataset. 

 This may not seem like a limitation because serialization frameworks seem some-
what similar to how schemas work in relational databases. In fact, you may have found
relational database schemas a pain to work with and worry that making schemas even
stricter would be even more painful. But we urge you not to confuse the incidental
complexities of working with relational database schemas with the value of schemas
themselves. The difficulties of representing nested objects and doing schema migra-
tions with relational databases are non-existent when applying serialization frame-
works to represent immutable objects using graph schemas. 

Listing 3.2 Extending the SuperWebAnalytics.com schema
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 The right way to think about a schema is as a function that takes in a piece of data
and returns whether it’s valid or not. The schema language for Apache Thrift lets you
represent a subset of these functions where only field existence and field types are
checked. The ideal tool would let you implement any possible schema function. 

 Such an ideal tool—particularly one that is language neutral—doesn’t exist, but
there are two approaches you can take to work around these limitations with a serial-
ization framework like Apache Thrift: 

■ Wrap your generated code in additional code that checks the additional properties you care
about, like ages being non-negative. This approach works well as long as you’re only
reading/writing data from/to a single language—if you use multiple languages,
you have to duplicate the logic in many languages. 

■ Check the extra properties at the very beginning of your batch-processing workflow. This
step would split your dataset into “valid data” and “invalid data” and send a noti-
fication if any invalid data was found. This approach makes it easier to imple-
ment the rest of your workflow, because anything getting past the validity check
can be assumed to have the stricter properties you care about. But this approach
doesn’t prevent the invalid data from being written to the master dataset and
doesn’t help with determining the context in which the corruption happened. 

Neither approach is ideal, but it’s hard to see how you can do better if your organiza-
tion reads/writes data in multiple languages. You have to decide whether you’d rather
maintain the same logic in multiple languages or lose the context in which corruption
was introduced. The only approach that would be perfect would be a serialization
framework that is also a general-purpose programming language that translates itself
into whatever languages it’s targeting. Such a tool doesn’t exist, though it’s theoreti-
cally possible. 

3.4 Summary
For the most part, implementing the enforceable graph schema for SuperWebAnalyt-
ics.com was straightforward. You saw the friction that appears when using a serializa-
tion framework for this purpose—namely, the inability to enforce every property you
care about. The tooling will rarely capture your requirements perfectly, but it’s impor-
tant to know what would be possible with ideal tools. That way you’re cognizant of the
trade-offs you’re making and can keep an eye out for better tools (or make your own).
This will be a common theme as we go through the theory and illustration chapters. 

 In the next chapter you’ll learn how to physically store a master dataset in the
batch layer so that it can be processed easily and efficiently. 
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Data storage
 on the batch layer

In the last two chapters you learned about a data model for the master dataset and
how you can translate that data model into a graph schema. You saw the impor-
tance of making data immutable and eternal. The next step is to learn how to phys-
ically store that data in the batch layer. Figure 4.1 recaps where we are in the
Lambda Architecture.

 Like the last two chapters, this chapter is dedicated to the master dataset. The
master dataset is typically too large to exist on a single server, so you must choose
how you’ll distribute your data across multiple machines. The way you store your
master dataset will impact how you consume it, so it’s vital to devise your storage
strategy with your usage patterns in mind. 

 
 
 

This chapter covers
■ Storage requirements for the master dataset 
■ Distributed filesystems 
■ Improving efficiency with vertical partitioning
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In this chapter you’ll do the following:

■ Determine the requirements for storing the master dataset 
■ See why distributed filesystems are a natural fit for storing a master dataset 
■ See how the batch layer storage for the SuperWebAnalytics.com project maps to

distributed filesystems 

We’ll begin by examining how the role of the batch layer within the Lambda Architec-
ture affects how you should store your data. 

4.1 Storage requirements for the master dataset 
To determine the requirements for data storage, you must consider how your data will
be written and how it will be read. The role of the batch layer within the Lambda
Architecture affects both areas—we’ll discuss each at a high level before providing a
full list of requirements. 

 In chapter 2 we emphasized two key properties of data: data is immutable and eter-
nally true. Consequently, each piece of your data will be written once and only once.
There is no need to ever alter your data—the only write operation will be to add a new
data unit to your dataset. The storage solution must therefore be optimized to handle
a large, constantly growing set of data. 

Batch layer

Serving layer

Speed layer

Realtime
view

Batch
view

Master dataset

New data:
011010010...

Query:
“How many...?”

Realtime
view

Realtime
view

Batch
view

Batch
view

Figure 4.1 The batch layer must structure 
large, continually growing datasets in a man-
ner that supports low maintenance as well as 
efficient creation of the batch views.
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 The batch layer is also responsible for computing functions on the dataset to pro-
duce the batch views. This means the batch layer storage system needs to be good at
reading lots of data at once. In particular, random access to individual pieces of data is
not required. 

 With this “write once, bulk read many times” paradigm in mind, we can create a
checklist of requirements for the data storage—see table 4.1. 

Let’s now take a look at a class of technologies that meets these requirements. 

4.2 Choosing a storage solution for the batch layer
With the requirements checklist in hand, you can now consider options for batch
layer storage. With such loose requirements—not even needing random access to the
data—it seems like you could use pretty much any distributed database for the master
dataset. So let’s first consider the viability of using a key/value store, the most com-
mon type of distributed database, for the master dataset. 

4.2.1 Using a key/value store for the master dataset

We haven’t discussed distributed key/value stores yet, but you can essentially think of
them as giant persistent hashmaps that are distributed among many machines. If
you’re storing a master dataset on a key/value store, the first thing you have to figure
out is what the keys should be and what the values should be. 

 What a value should be is obvious—it’s a piece of data you want to store—but what
should a key be? There’s no natural key in the data model, nor is one necessary because

Table 4.1 A checklist of storage requirements for the master dataset

Operation Requisite Discussion

Write Efficient 
appends of 
new data

The only write operation is to add new pieces of data, so it must be easy 
and efficient to append a new set of data objects to the master dataset.

Scalable 
storage

The batch layer stores the complete dataset—potentially terabytes or peta-
bytes of data. It must therefore be easy to scale the storage as your dataset 
grows.

Read Support 
for parallel 
processing

Constructing the batch views requires computing functions on the entire 
master dataset. The batch storage must consequently support parallel pro-
cessing to handle large amounts of data in a scalable manner.

Both Tunable 
storage and 
processing 
costs

Storage costs money. You may choose to compress your data to help mini-
mize your expenses, but decompressing your data during computations can 
affect performance. The batch layer should give you the flexibility to decide 
how to store and compress your data to suit your specific needs.

Enforce-
able immu-
tability

It’s critical that you’re able to enforce the immutability property on your mas-
ter dataset. Of course, computers by their very nature are mutable, so there 
will always be a way to mutate the data you’re storing. The best you can do 
is put checks in place to disallow mutable operations. These checks should 
prevent bugs or other random errors from trampling over existing data. 

Licensed to Mark Watson <nordickan@gmail.com>



57Choosing a storage solution for the batch layer

the data is meant to be consumed in bulk. So you immediately hit an impedance mis-
match between the data model and how key/value stores work. The only really viable
idea is to generate a UUID to use as a key. 

 But this is only the start of the problems with using key/value stores for a master
dataset. Because key/value stores need fine-grained access to key/value pairs to do ran-
dom reads and writes, you can’t compress multiple key/value pairs together. So you’re
severely limited in tuning the trade-off between storage costs and processing costs.

 Key/value stores are meant to be used as mutable stores, which is a problem if
enforcing immutability is so crucial for the master dataset. Unless you modify the code
of the key/value store you’re using, you typically can’t disable the ability to modify
existing key/value pairs. 

 The biggest problem, though, is that a key/value store has a lot of things you don’t
need: random reads, random writes, and all the machinery behind making those
work. In fact, most of the implementation of a key/value store is dedicated to these
features you don’t need at all. This means the tool is enormously more complex than
it needs to be to meet your requirements, making it much more likely you’ll have a
problem with it. Additionally, the key/value store indexes your data and provides
unneeded services, which will increase your storage costs and lower your performance
when reading and writing data. 

4.2.2 Distributed filesystems

It turns out there’s a type of technology that you’re already intimately familiar with
that’s a perfect fit for batch layer storage: filesystems. 

 Files are sequences of bytes, and the most efficient way to consume them is by scan-
ning through them. They’re stored sequentially on disk (sometimes they’re split into
blocks, but reading and writing is still essentially sequential). You have full control
over the bytes of a file, and you have the full freedom to compress them however you
want. Unlike a key/value store, a filesystem gives you exactly what you need and no
more, while also not limiting your ability to tune storage cost versus processing cost.
On top of that, filesystems implement fine-grained permissions systems, which are per-
fect for enforcing immutability. 

 The problem with a regular filesystem is that it exists on just a single machine, so you
can only scale to the storage limits and processing power of that one machine. But it turns
out that there’s a class of technologies called distributed filesystems that is quite similar to
the filesystems you’re familiar with, except they spread their storage across a cluster of
computers. They scale by adding more machines to the cluster. Distributed filesystems
are designed so that you have fault tolerance when a machine goes down, meaning that
if you lose one machine, all your files and data will still be accessible.

 There are some differences between distributed filesystems and regular filesys-
tems. The operations you can do with a distributed filesystem are often more limited
than you can do with a regular filesystem. For instance, you may not be able to write to
the middle of a file or even modify a file at all after creation. Oftentimes having small
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files can be inefficient, so you want to make sure you keep your file sizes relatively
large to make use of the distributed filesystem properly (the details depend on the
tool, but 64 MB is a good rule of thumb). 

4.3 How distributed filesystems work
It’s tough to talk in the abstract about how any distributed filesystem works, so we’ll
ground our explanation with a specific tool: the Hadoop Distributed File System
(HDFS). We feel the design of HDFS is sufficiently representative of how distributed file-
systems work to demonstrate how such a tool can be used for the batch layer. 

 HDFS and Hadoop MapReduce are the two prongs of the Hadoop project: a Java
framework for distributed storage and distributed processing of large amounts of
data. Hadoop is deployed across multiple servers, typically called a cluster, and HDFS is
a distributed and scalable filesystem that manages how data is stored across the clus-
ter. Hadoop is a project of significant size and depth, so we’ll only provide a high-
level description. 

 In an HDFS cluster, there are two types of nodes: a single namenode and multiple
datanodes. When you upload a file to HDFS, the file is first chunked into blocks of a
fixed size, typically between 64 MB and 256 MB. Each block is then replicated across
multiple datanodes (typically three) that are chosen at random. The namenode keeps
track of the file-to-block mapping and where each block is located. This design is
shown in figure 4.2. 

Data file:
logs.txt

Datanode 1

Namenode: logs.txt

Datanode 5

Datanode 3Datanode 2

Datanode 4 Datanode 6

1, 4, 5

1, 3, 6

2, 4, 6

2, 3, 5

All (typically large) files are broken
into blocks, usually 64 to 256 MB.

These blocks are replicated
(typically with 3 copies) among
the HDFS servers (datanodes).

The namenode provides a lookup
service for clients accessing the
data and ensures the blocks are
correctly replicated across the cluster.

b

c

d

Figure 4.2 Files are chunked into blocks, which are dispersed to datanodes in the cluster.
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59Storing a master dataset with a distributed filesystem

Distributing a file in this way across many nodes allows it to be easily processed in par-
allel. When a program needs to access a file stored in HDFS, it contacts the namenode
to determine which datanodes host the file contents. This process is illustrated in fig-
ure 4.3.

 Additionally, with each block replicated across multiple nodes, your data remains
available even when individual nodes are offline. Of course, there are limits to this
fault tolerance: if you have a replication factor of three, three nodes go down at once,
and you’re storing millions of blocks, chances are that some blocks happened to exist
on exactly those three nodes and will be unavailable. 

 Implementing a distributed filesystem is a difficult task, but you’ve now learned
what’s important from a user perspective. To summarize, these are the important
things to know: 

■ Files are spread across multiple machines for scalability and also to enable par-
allel processing.

■ File blocks are replicated across multiple nodes for fault tolerance.

Let’s now explore how to store a master dataset using a distributed filesystem. 

4.4 Storing a master dataset with a distributed filesystem
Distributed filesystems vary in the kinds of operations they permit. Some distributed
filesystems let you modify existing files, and others don’t. Some allow you to append to
existing files, and some don’t have that feature. In this section we’ll look at how you
can store a master dataset on a distributed filesystem with only the most bare-boned of
features, where a file can’t be modified at all after being created. 

 Clearly, with unmodifiable files you can’t store the entire master dataset in a single
file. What you can do instead is spread the master dataset among many files, and store

Datanode 1
Namenode: logs.txt

Datanode 2
1, 4, 5

1, 3, 6

2, 4, 6

2, 3, 5

Client
application

When an application processes
a file stored in HDFS, it first
queries the namenode for
the block locations.

Once the locations are known,
the application contacts the
datanodes directly to access
the file contents.

B C

Figure 4.3 Clients communicate with the namenode to determine which datanodes hold the 
blocks for the desired file.
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60 CHAPTER 4 Data storage on the batch layer

all those files in the same folder. Each file would contain many serialized data objects,
as illustrated in figure 4.4. 

 To append to the master dataset, you simply add a new file containing the new data
objects to the master dataset folder, as is shown in figure 4.5. 

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

File: /data/file1

File: /data/file2

Folder: /data/

Figure 4.4 Spreading the master dataset throughout many files

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

File: /data/file1

File: /data/file2

Folder: /data/

Serialized data object

Serialized data object

Serialized data object

File: /data/file3

Upload

Figure 4.5 Appending to the master dataset by uploading a new file with new data records 
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Let’s now go over the requirements for master dataset storage and verify that a distrib-
uted filesystem matches those requirements. This is shown in table 4.2. 

At a high level, distributed filesystems are straightforward and a natural fit for the mas-
ter dataset. Of course, like any tool they have their quirks, and these are discussed in
the following illustration chapter. But it turns out that there’s a little more you can
exploit with the files and folders abstraction to improve storage of the master dataset,
so let’s now talk about using folders to enable vertical partitioning. 

4.5 Vertical partitioning
Although the batch layer is built to run functions on the entire dataset, many compu-
tations don’t require looking at all the data. For example, you may have a computa-
tion that only requires information collected during the past two weeks. The batch
storage should allow you to partition your data so that a function only accesses data
relevant to its computation. This process is called vertical partitioning, and it can greatly
contribute to making the batch layer more efficient. While it’s not strictly necessary
for the batch layer, as the batch layer is capable of looking at all the data at once and
filtering out what it doesn’t need, vertical partitioning enables large performance
gains, so it’s important to know how to use the technique. 

 Vertically partitioning data on a distributed filesystem can be done by sorting your
data into separate folders. For example, suppose you’re storing login information on a

Table 4.2 How distributed filesystems meet the storage requirement checklist

Operation Requisite Discussion

Write Efficient 
appends of 
new data

Appending new data is as simple as adding a new file to the folder contain-
ing the master dataset.

Scalable 
storage

Distributed filesystems evenly distribute the storage across a cluster of 
machines. You increase storage space and I/O throughput by adding more 
machines.

Read Support 
for parallel 
processing

Distributed filesystems spread all data across many machines, making it 
possible to parallelize the processing across many machines. Distributed 
filesystems typically integrate with computation frameworks like MapReduce 
to make that processing easy to do (discussed in chapter 6).

Both Tunable 
storage and 
processing 
costs

Just like regular filesystems, you have full control over how you store your 
data units within the files. You choose the file format for your data as well 
as the level of compression. You’re free to do individual record compres-
sion, block-level compression, or neither. 

Enforceable 
immutability

Distributed filesystems typically have the same permissions systems you’re 
used to using in regular filesystems. To enforce immutability, you can dis-
able the ability to modify or delete files in the master dataset folder for the 
user with which your application runs. This redundant check will protect your 
previously existing data against bugs or other human mistakes.
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distributed filesystem. Each login contains a username, IP address, and timestamp. To
vertically partition by day, you can create a separate folder for each day of data. Each day
folder would have many files containing the logins for that day. This is illustrated in fig-
ure 4.6. 

 Now if you only want to look at a particular subset of your dataset, you can just look
at the files in those particular folders and ignore the other files. 

4.6 Low-level nature of distributed filesystems
While distributed filesystems provide the storage and fault-tolerance properties you
need for storing a master dataset, you’ll find using their APIs directly too low-level for
the tasks you need to run. We’ll illustrate this using regular Unix filesystem operations
and show the difficulties you can get into when doing tasks like appending to a master
dataset or vertically partitioning a master dataset. 

 Let’s start with appending to a master dataset. Suppose your master dataset is in
the folder /master and you have a folder of data in /new-data that you want to put
inside your master dataset. Suppose the data in the folders is contained in files, as
shown in figure 4.7. 

Folder: /logins

Folder: /logins/2012-10-25

Folder: /logins/2012-10-26

File: /logins/2012-10-25/logins-2012-10-25.txt

alex  192.168.12.125   Thu Oct 25 22:33 - 22:46 (00:12)
bob   192.168.8.251    Thu Oct 25 21:04 - 21:28 (00:24)
...

File: /logins/2012-10-26/logins-2012-10-26-part1.txt

File: /logins/2012-10-26/logins-2012-10-26-part2.txt

Figure 4.6 A vertical partitioning scheme for login data. By sorting information for each date 
in separate folders, a function can select only the folders containing data relevant to its com-
putation.

Folder: /new-data/

File: /new-data/file2

File: /new-data/file3

File: /new-data/file9

File: /master/file1

File: /master/file2

File: /master/file8

Folder: /master/

Figure 4.7 An example of a folder 
of data you may want to append to 
a master dataset. It’s possible for 
filenames to overlap.
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The most obvious thing to try is something like the following pseudo-code: 

foreach file : "/new-data"
mv file "/master/"

Unfortunately, this code has serious problems. If the master dataset folder contains
any files of the same name, then the mv operation will fail. To do it correctly, you have
to be sure you rename the file to a random filename and so avoid conflicts. 

 There’s another problem. One of the core requirements of storage for the master
dataset is the ability to tune the trade-offs between storage costs and processing costs.
When storing a master dataset on a distributed filesystem, you choose a file format and
compression format that makes the trade-off you desire. What if the files in /new-data
are of a different format than in /master? Then the mv operation won’t work at all—you
instead need to copy the records out of /new-data and into a brand new file with the file
format used in /master. 

 Let’s now take a look at doing the same operation but with a vertically partitioned
master dataset. Suppose now /new-data and /master look like figure 4.8. 

 Just putting the files from /new-data into the root of /master is wrong because it
wouldn’t respect the vertical partitioning of /master. Either the append operation
should be disallowed—because /new-data isn’t correctly vertically partitioned—or
/new-data should be vertically partitioned as part of the append operation. But
when you’re just using a files-and-folders API directly, it’s very easy to make a mis-
take and break the vertical partitioning constraints of a dataset. 

 All the operations and checks that need to happen to get these operations working
correctly strongly indicate that files and folders are too low-level of an abstraction for
manipulating datasets. In the following illustration chapter, you’ll see an example of a
library that automates these operations. 

Iterate over all 
files in /new-data

Move the file into 
the /master folder

Folder: /new-data/

File: /new-data/file2

File: /new-data/file3

File: /new-data/file9

File: /master/age/file1

File: /master/age/file2

Folder: /master/age/

File: /master/bday/file1

File: /master/bday/file2

Folder: /master/bday/

Folder: /master/

Figure 4.8 If the target dataset is vertically partitioned, appending data to it is 
not as simple as just adding files to the dataset folder.
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4.7 Storing the SuperWebAnalytics.com master dataset on 
a distributed filesystem
Let’s now look at how you can make use of a distributed filesystem to store the master
dataset for SuperWebAnalytics.com. 

 When you last left this project, you had created a graph schema to represent the
dataset. Every edge and property is represented via its own independent DataUnit.
Figure 4.9 recaps what the graph schema looks like. 

 A key observation is that a graph schema provides a natural vertical partitioning of
the data. You can store all edge and property types in their own folders. Vertically par-
titioning the data this way lets you efficiently run computations that only look at cer-
tain properties and edges. 

4.8 Summary
The high-level requirements for storing data in the Lambda Architecture batch layer are
straightforward. You observed that these requirements could be mapped to a required
checklist for a storage solution, and you saw that a distributed filesystem is a natural fit
for this purpose. Using and applying a distributed filesystem should feel very familiar. 

 In the next chapter you’ll see how to handle the nitty-gritty details of using a dis-
tributed filesystem in practice, and how to deal with the low-level nature of files and
folders with a higher-level abstraction. 

Person (Cookie):
ABCDE

Person (UserID):
123

Page:
http://mysite.com/

Page:
http://mysite.com/blog

Location:
San Francisco, CA

Pageview PageviewPageview

Name:
Tom

Total views:
25

Gender:
Female

Total views:
452

Person (UserID):
200

Equiv

The graph schema has two
node types: people and the
pages they have viewed.

Edges between people nodes
denote the same user identified by
different means. Edges between
a person and a page represent
a single pageview.

Properties are view counts
for a page and demographic
information for a person.

c

b

d

Figure 4.9 The graph schema for SuperWebAnalytics.com
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Data storage on the
 batch layer: Illustration

In the last chapter you saw the requirements for storing a master dataset and how a
distributed filesystem is a great fit for those requirements. But you also saw how
using a filesystem API directly felt way too low-level for the kinds of operations you
need to do on the master dataset. In this chapter we’ll show you how to use a spe-
cific distributed filesystem—HDFS—and then show how to automate the tasks you
need to do with a higher-level API. 

 Like all illustration chapters, we’ll focus on specific tools to show the nitty-gritty
of applying the higher-level concepts of the previous chapter. As always, our goal is
not to compare and contrast all the possible tools but to reinforce the higher-level
concepts. 

This chapter covers
■ Using the Hadoop Distributed File System 

(HDFS)
■ Pail, a higher-level abstraction for manipulating 

datasets
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5.1 Using the Hadoop Distributed File System 
You’ve already learned the basics of how HDFS works. Let’s quickly review those: 

■ Files are split into blocks that are spread among many nodes in the cluster.
■ Blocks are replicated among many nodes so the data is still available even when

machines go down.
■ The namenode keeps track of the blocks for each file and where those blocks

are stored.

Let’s take a look at using HDFS’s API to manipulate files and folders. Suppose you wanted
to store all logins on a server. Following are some example logins:

$ cat logins-2012-10-25.txt
alex 192.168.12.125 Thu Oct 25 22:33 - 22:46 (00:12)
bob 192.168.8.251 Thu Oct 25 21:04 - 21:28 (00:24)
charlie 192.168.12.82 Thu Oct 25 21:02 - 23:14 (02:12)
doug 192.168.8.13 Thu Oct 25 20:30 - 21:03 (00:33)
...

To store this data on HDFS, you can create a directory for the dataset and upload the
file:

$ hadoop fs -mkdir /logins
$ hadoop fs -put logins-2012-10-25.txt /logins

You can list the directory contents: 

$ hadoop fs -ls -R /logins
-rw-r--r-- 3 hdfs hadoop 175802352 2012-10-26 01:38

/logins/logins-2012-10-25.txt

Getting started with Hadoop
Setting up Hadoop can be an arduous task. Hadoop has numerous configuration
parameters that should be tuned for your hardware to perform optimally. To avoid get-
ting bogged down in details, we recommend downloading a preconfigured virtual
machine for your first encounter with Hadoop. A virtual machine will accelerate your
learning of HDFS and MapReduce, and you’ll have a better understanding when set-
ting up your own cluster. 

At the time of this writing, Hadoop vendors Cloudera, Hortonworks, and MapR all have
images publicly available. We recommend having access to Hadoop so you can follow
along with the examples in this and later chapters. 

The “hadoop fs” commands are 
Hadoop shell commands that interact 
directly with HDFS. A full list is 
available at http://hadoop.apache.org/.

Uploading a file automatically 
chunks and distributes the 
blocks across the datanodes.

The ls command is based 
on the Unix command of 
the same name.
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And you can verify the contents of the file: 

$ hadoop fs -cat /logins/logins-2012-10-25.txt
alex 192.168.12.125 Thu Oct 25 22:33 - 22:46 (00:12)
bob 192.168.8.251 Thu Oct 25 21:04 - 21:28 (00:24)
...

As we mentioned earlier, the file was automatically chunked into blocks and distrib-
uted among the datanodes when it was uploaded. You can identify the blocks and
their locations through the following command: 

$ hadoop fsck /logins/logins-2012-10-25.txt -files -blocks -locations

/logins/logins-2012-10-25.txt 175802352 bytes, 2 block(s):
OK
0. blk_-1821909382043065392_1523 len=134217728

repl=3 [10.100.0.249:50010, 10.100.1.4:50010, 10.100.0.252:50010]
1. blk_2733341693279525583_1524 len=41584624

repl=3 [10.100.0.255:50010, 10.100.1.2:50010, 10.100.1.5:50010]

5.1.1 The small-files problem 

Hadoop HDFS and MapReduce are tightly integrated to form a framework for storing
and processing large amounts of data. We’ll discuss MapReduce in detail in the follow-
ing chapters, but a characteristic of Hadoop is that computing performance is signifi-
cantly degraded when data is stored in many small files in HDFS. There can be an
order of magnitude difference in performance between a MapReduce job that con-
sumes 10 GB stored in many small files versus a job processing that same data stored in
a few large files. 

 The reason is that a MapReduce job launches multiple tasks, one for each block in
the input dataset. Each task requires some overhead to plan and coordinate its execu-
tion, and because each small file requires a separate task, the cost is repeatedly
incurred. This property of MapReduce means you’ll want to consolidate your data
should small files become abundant within your dataset. You can achieve this either by
writing code that uses the HDFS API or by using a custom MapReduce job, but both
approaches require considerable work and knowledge of Hadoop internals. 

5.1.2 Towards a higher-level abstraction

It’s an important emphasis of this book that solutions be not only scalable, fault-tolerant,
and performant, but elegant as well. One part of a solution being elegant is that it must
be able to express the computations you care about in a concise manner. 

 When it comes to manipulating a master dataset, you saw in the last chapter the
following two important operations:

■ Appending to a dataset 
■ Vertically partitioning a dataset and not allowing an existing partitioning to be

violated 

The file is stored 
in two blocks.

The IP addresses and port numbers 
of the datanodes hosting each block
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In addition to these requirements, we’ll add an HDFS-specific requirement: efficiently
consolidating small files together into larger files.

 As you saw in the last chapter, accomplishing these tasks with files and folders
directly is tedious and error-prone. So we’ll present a library for accomplishing these
tasks in an elegant manner. 

 In contrast to the code that used the HDFS API, consider the following listing,
which uses the Pail library.

import java.io.IOException;
import backtype.hadoop.pail.Pail;

public class PailMove {

public static void mergeData(String masterDir, String updateDir)
throws IOException

{
Pail target = new Pail(masterDir);
Pail source = new Pail(updateDir);
target.absorb(source);
target.consolidate();

}
}

With Pail, you can append folders in one line of code and consolidate small files in
another. When appending, if the data of the target folder is of a different file format,
Pail will automatically coerce the new data to the correct file format. If the target
folder has a different vertical partitioning scheme, Pail will throw an exception. Most
importantly, a higher-level abstraction like Pail allows you to work with your data
directly rather than using low-level containers like files and directories. 

A QUICK RECAP 

Before you learn more about Pail, now is a good time to step back and regain the big-
ger perspective. Recall that the master dataset is the source of truth within the
Lambda Architecture, and as such the batch layer must handle a large, growing data-
set without fail. Furthermore, there must be an easy and effective means of transform-
ing the data into batch views to answer actual queries. 

 This chapter is more technical than the previous ones, but always keep in mind
how everything integrates within the Lambda Architecture. 

5.2 Data storage in the batch layer with Pail 
Pail is a thin abstraction over files and folders from the dfs-datastores library (http://
github.com/nathanmarz/dfs-datastores). This abstraction makes it significantly easier
to manage a collection of records for batch processing. As the name suggests, Pail uses
pails, folders that keep metadata about the dataset. By using this metadata, Pail allows

Listing 5.1 Abstractions of HDFS maintenance tasks

Pails are
wrappers

around
HDFS

folders. With the Pail library, 
appends are one-line 
operations.

Small data files within the pail 
can also be consolidated with 
a single function call.
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you to safely act on the batch layer without worrying about violating its integrity. The
goal of Pail is simply to make the operations you care about—appending to a dataset,
vertical partitioning, and consolidation—safe, easy, and performant. 

 Under the hood, Pail is just a Java library that uses the standard Hadoop APIs. It
handles the low-level filesystem interaction, providing an API that isolates you from
the complexity of Hadoop’s internals. The intent is to allow you to focus on the data
itself instead of concerning yourself with how it’s stored and maintained. 

You’ve already seen the characteristics of HDFS that make it a viable choice for stor-
ing the master dataset in the batch layer. As you explore Pail, keep in mind how it
preserves the advantages of HDFS while streamlining operations on the data. After
we’ve covered the basic operations of Pail, we’ll summarize the overall value provided
by the library.

 Now let’s dive right in and see how Pail works by creating and writing data to a pail. 

5.2.1 Basic Pail operations

The best way to understand how Pail works is to follow along and run the presented
code on your computer. To do this, you’ll need to download the source from GitHub
and build the dfs-datastores library. If you don’t have a Hadoop cluster or virtual
machine available, your local filesystem will be treated as HDFS in the examples. You’ll
then be able to see the results of these commands by inspecting the relevant directo-
ries on your filesystem. 

 Let’s start off by creating a new pail and storing some data: 

public static void simpleIO() throws IOException {
Pail pail = Pail.create("/tmp/mypail");
TypedRecordOutputStream os = pail.openWrite();
os.writeObject(new byte[] {1, 2, 3});
os.writeObject(new byte[] {1, 2, 3, 4});
os.writeObject(new byte[] {1, 2, 3, 4, 5});
os.close();

}

Why the focus on Pail?
Pail, along with many other packages covered in this book, was written by Nathan
while developing the Lambda Architecture. We introduce these technologies not to
promote them, but to discuss the context of their origins and the problems they
solve. Because Pail was developed by Nathan, it perfectly matches the requirements
of the master dataset as laid out so far, and those requirements naturally emerge
from the first principles of queries as a function of all data. Feel free to use other
libraries or to develop your own—our emphasis is to show a specific way to bridge
the concepts of building Big Data systems with the available tooling.

Creates a default 
pail in the specified 
directory

Provides an
output stream to a
new file in the Pail

A pail without 
metadata is 
limited to storing 
byte arrays.Closes the

current
file
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When you check your filesystem, you’ll see that a folder for /tmp/mypail was created
and contains two files: 

root:/ $ ls /tmp/mypail
f2fa3af0-5592-43e0-a29c-fb6b056af8a0.pailfile
pail.meta

The pailfile contains the records you just stored. The file is created atomically, so all
the records you created will appear at once—that is, an application that reads from
the pail won’t see the file until the writer closes it. Furthermore, pailfiles use globally
unique names (so it’ll be named differently on your filesystem). These unique names
allow multiple sources to write concurrently to the same pail without conflict. 

 The other file in the directory contains the pail’s metadata. This metadata
describes the type of the data as well as how it’s stored within the pail. The example
didn’t specify any metadata when constructing the pail, so this file contains the default
settings: 

root:/ $ cat /tmp/mypail/pail.meta
---
format: SequenceFile
args: {}

Later in the chapter you’ll see another pail.meta file containing more-substantial
metadata, but the overall structure will remain the same. We’ll next cover how to store
real objects in Pail, not just binary records. 

5.2.2 Serializing objects into pails

To store objects within a pail, you must provide Pail with instructions for serializing
and deserializing your objects to and from binary data. Let’s return to the server log-
ins example to demonstrate how this is done. 

 The following listing has a simplified class to represent a login. 

public class Login {
public String userName;
public long loginUnixTime;

public Login(String _user, long _login) {
userName = _user;
loginUnixTime = _login;

}
}

Listing 5.2 A no-frills class for logins

The records are stored 
within pailfiles.

The metadata describes the 
contents and structure of 
the pail.

The format of files in the pail; a 
default pail stores data in key/value 
pairs within Hadoop SequenceFiles.

The arguments describe the contents of the 
pail; an empty map directs Pail to treat the 
data as uncompressed byte arrays.
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To store these Login objects in a pail, you need to create a class that implements the
PailStructure interface. The next listing defines a LoginPailStructure that describes
how serialization should be performed. 

public class LoginPailStructure implements PailStructure<Login>{

public Class getType() {
return Login.class;

}

public byte[] serialize(Login login) {
ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
DataOutputStream dataOut = new DataOutputStream(byteOut);
byte[] userBytes = login.userName.getBytes();
try {
dataOut.writeInt(userBytes.length);
dataOut.write(userBytes);
dataOut.writeLong(login.loginUnixTime);
dataOut.close();

} catch(IOException e) {
throw new RuntimeException(e);

}
return byteOut.toByteArray();

}

public Login deserialize(byte[] serialized) {
DataInputStream dataIn =

new DataInputStream(new ByteArrayInputStream(serialized));
try {
byte[] userBytes = new byte[dataIn.readInt()];
dataIn.read(userBytes);
return new Login(new String(userBytes), dataIn.readLong());

} catch(IOException e) {
throw new RuntimeException(e);

}
}

public List<String> getTarget(Login object) {
return Collections.EMPTY_LIST;

}

public boolean isValidTarget(String... dirs) {
return true;

}
}

By passing this LoginPailStructure to the Pail create function, the resulting pail will
use these serialization instructions. You can then give it Login objects directly, and Pail
will handle the serialization automatically. 

Listing 5.3 Implementing the PailStructure interface

A pail with
this structure
will only store
Login objects.

Login objects must 
be serialized when 
stored in pailfiles.

Logins are later 
reconstructed when 
read from pailfiles.

The getTarget
method

defines the
vertical

partitioning
scheme, but

it’s not used in
this example.

isValidTarget 
determines whether 
the given path 
matches the vertical 
partitioning scheme, 
but it’s also not used 
in this example.
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public static void writeLogins() throws IOException {
Pail<Login> loginPail = Pail.create("/tmp/logins",

new LoginPailStructure());
TypedRecordOutputStream out = loginPail.openWrite();
out.writeObject(new Login("alex", 1352679231));
out.writeObject(new Login("bob", 1352674216));
out.close();

}

Likewise, when you read the data, Pail will deserialize the records for you. Here’s how
you can iterate through all the objects you just wrote: 

public static void readLogins() throws IOException {
Pail<Login> loginPail = new Pail<Login>("/tmp/logins");
for(Login l : loginPail) {
System.out.println(l.userName + " " + l.loginUnixTime);

}
}

Once your data is stored within a pail, you can use Pail’s built-in operations to safely
act on it. 

5.2.3 Batch operations using Pail

Pail has built-in support for a number of common operations. These operations are
where you’ll see the benefits of managing your records with Pail rather than doing it
manually. The operations are all implemented using MapReduce, so they scale regard-
less of the amount of data in your pail, whether gigabytes or terabytes. We’ll talk about
MapReduce a lot more in later chapters, but the key takeaway is that the operations
are automatically parallelized and executed across a cluster of worker machines. 

 In the previous section we discussed the importance of append and consolidate
operations. As you’d expect, Pail has support for both. The append operation is par-
ticularly smart. It checks the pails to verify that it’s valid to append the pails together.
For example, it won’t allow you to append a pail containing strings to a pail contain-
ing integers. If the pails store the same type of records but in different file formats, it
coerces the data to match the format of the target pail. This means the trade-off you
decided on between storage costs and processing performance will be enforced for
that pail. 

 By default, the consolidate operation merges small files to create new files that are
as close to 128 MB as possible—a standard HDFS block size. This operation also paral-
lelizes itself via MapReduce. 

 For our logins example, suppose you had additional logins in a separate pail and
wanted to merge the data into the original pail. The following code performs both the
append and consolidate operations:

public static void appendData() throws IOException {
Pail<Login> loginPail = new Pail<Login>("/tmp/logins");
Pail<Login> updatePail = new Pail<Login>("/tmp/updates");

Creates a pail
with the new

pail structure

A pail supports
the Iterable
interface for

its object type.
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loginPail.absorb(updatePail);
loginPail.consolidate();

}

The major upstroke is that these built-in functions let you focus on what you want to
do with your data rather than worry about how to manipulate files correctly. 

5.2.4 Vertical partitioning with Pail

We mentioned earlier that you can vertically partition your data in HDFS by using mul-
tiple folders. Imagine trying to manage the vertical partitioning manually. It’s all too
easy to forget that two datasets are partitioned differently and mistakenly append
them. Similarly, it wouldn’t be hard to accidentally violate the partitioning structure
when consolidating your data. Thankfully, Pail is smart about enforcing the structure
of a pail and protects you from making these kinds of mistakes. 

 To create a partitioned directory structure for a pail, you must implement two
additional methods of the PailStructure interface:

■ getTarget—Given a record, getTarget determines the directory structure
where the record should be stored and returns the path as a list of Strings. 

■ isValidTarget—Given an array of Strings, isValidTarget builds a directory
path and determines if it’s consistent with the vertical partitioning scheme. 

Pail uses these methods to enforce its structure and automatically map records to
their correct subdirectories. 

 The following code demonstrates how to partition Login objects so that records
are grouped by the login date. 

public class PartitionedLoginPailStructure extends LoginPailStructure {
SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd");

public List<String> getTarget(Login object) {
ArrayList<String> directoryPath = new ArrayList<String>();
Date date = new Date(object.loginUnixTime * 1000L);
directoryPath.add(formatter.format(date));
return directoryPath;

}

public boolean isValidTarget(String... strings) {
if(strings.length != 1) return false;
try {

return (formatter.parse(strings[0]) != null);
}
catch(ParseException e) {

return false;
}

}
}

Listing 5.4 A vertical partitioning scheme for Login records

Logins are
vertically

partitioned in
folders

corresponding
to the login

date.

The timestamp of the Login
object is converted to an

understandable form.

isValidTarget 
verifies that the 
directory 
structure has a 
depth of one and 
that the folder 
name is a date.
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With this new pail structure, Pail determines the correct subfolder whenever it writes a
new Login object: 

public static void partitionData() throws IOException {
Pail<Login> pail = Pail.create("/tmp/partitioned_logins",

new PartitionedLoginPailStructure());
TypedRecordOutputStream os = pail.openWrite();
os.writeObject(new Login("chris", 1352702020));
os.writeObject(new Login("david", 1352788472));
os.close();

}

Examining this new pail directory confirms the data was partitioned correctly:

root:/ $ ls -R /tmp/partitioned_logins
2012-11-11 2012-11-12 pail.meta

/tmp/partitioned_logins/2012-11-11:
d8c0822b-6caf-4516-9c74-24bf805d565c.pailfile

/tmp/partitioned_logins/2012-11-12:
d8c0822b-6caf-4516-9c74-24bf805d565c.pailfile

5.2.5 Pail file formats and compression 

Pail stores data in multiple files within its directory structure. You can control how Pail
stores records in those files by specifying the file format Pail should be using. This lets
you control the trade-off between the amount of storage space Pail uses and the per-
formance of reading records from Pail. As discussed earlier in the chapter, this is a
fundamental control you need to dial up or down to match your application needs. 

 You can implement your own custom file format, but by default Pail uses Hadoop
SequenceFiles. This format is very widely used, allows an individual file to be pro-
cessed in parallel via MapReduce, and has native support for compressing the records
in the file. 

 To demonstrate these options, here’s how to create a pail that uses the Sequence-
File format with gzip block compression: 

public static void createCompressedPail() throws IOException {
Map<String, Object> options = new HashMap<String, Object>();
options.put(SequenceFileFormat.CODEC_ARG,

SequenceFileFormat.CODEC_ARG_GZIP);
options.put(SequenceFileFormat.TYPE_ARG,

SequenceFileFormat.TYPE_ARG_BLOCK);
LoginPailStructure struct = new LoginPailStructure();
Pail compressed = Pail.create("/tmp/compressed",

new PailSpec("SequenceFile", options, struct));
}

1352702020 is the timestamp 
for 2012-11-11, 22:33:40 PST.

1352788472 is the timestamp
for 2012-11-12, 22:34:32 PST.

Folders for the different 
login dates are created 
within the pail.

Contents of
the pail will

be gzip
compressed. Blocks of records 

will be compressed 
together (as com-
pared to compressing 
rows individually).

Creates a new pail to store Login 
options with the desired format
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You can then observe these properties in the pail’s metadata. 

root:/ $ cat /tmp/compressed/pail.meta
---
format: SequenceFile
structure: manning.LoginPailStructure
args:

compressionCodec: gzip
compressionType: block

Whenever records are added to this pail, they’ll be automatically compressed. This
pail will use significantly less space but will have a higher CPU cost for reading and
writing records. 

5.2.6 Summarizing the benefits of Pail 

Having invested the time probing the inner workings of Pail, it’s important to under-
stand the benefits it provides over raw HDFS. Table 5.1 summarizes the impact of Pail
in regard to our earlier checklist of batch layer storage requirements. 

That concludes our whirlwind tour of Pail. It’s a useful and powerful abstraction for
interacting with your data in the batch layer, while isolating you from the details of the
underlying filesystem. 

Table 5.1 The advantages of Pail for storing the master dataset

Operation Criteria Discussion

Write Efficient appends 
of new data

Pail has a first-class interface for appending data and prevents you 
from performing invalid operations—something the raw HDFS API 
won’t do for you.

Scalable storage The namenode holds the entire HDFS namespace in memory and can 
be taxed if the filesystem contains a vast number of small files. Pail’s 
consolidate operator decreases the total number of HDFS blocks and 
eases the demand on the namenode.

Read Support for paral-
lel processing

The number of tasks in a MapReduce job is determined by the num-
ber of blocks in the dataset. Consolidating the contents of a pail low-
ers the number of required tasks and increases the efficiency of 
processing the data.

Ability to vertically 
partition data

Output written into a pail is automatically partitioned with each fact 
stored in its appropriate directory. This directory structure is strictly 
enforced for all Pail operations.

Both Tunable storage/ 
processing costs

Pail has built-in support to coerce data into the format specified by 
the pail structure. This coercion occurs automatically while perform-
ing operations on the pail.

Enforceable 
immutability

Because Pail is just a thin wrapper around files and folders, you can 
enforce immutability, just as you can with HDFS directly, by setting 
the appropriate permissions.

The full class name of 
the LoginPailStructure

The compression 
options for the pailfiles
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5.3 Storing the master dataset for SuperWebAnalytics.com
You saw in the last chapter how straightforward the high-level concepts are for storing
the SuperWebAnalytics.com data: use a distributed filesystem and vertically partition
by storing different properties and edges in different subfolders. Let’s now make use
of the tools you’ve learned about to make this a reality. 

 Recall the Thrift schema we developed for SuperWebAnalytics.com. Here’s an
excerpt of the schema: 

struct Data {
1: required Pedigree pedigree;
2: required DataUnit dataunit;

}

union DataUnit {
1: PersonProperty person_property;
2: PageProperty page_property;
3: EquivEdge equiv;
4: PageViewEdge page_view;

}

union PersonPropertyValue {
1: string full_name;
2: GenderType gender;
3: Location location;

}

How we want to map this schema to folders is shown in figure 5.1. 

All facts in the dataset are 
represented as a timestamp 
and a base unit of data.

The fundamental data unit 
describes the edges and 
properties of the dataset.

Property value can 
be of multiple types.

/data/
1/

1/
2/
3/

2/
1/

3/
4/

union DataUnit {
1: PersonProperty person_property;
2: PageProperty page_property;
3: EquivEdge equiv;
4: PageViewEdge page_view;

}

/data/
1/

1/
2/
3/

2/
1/

3/
4/

union PersonPropertyValue {
1: string full_name;
2: GenderType gender;
3: Location location;

}

union PagePropertyValue {
1: i32 page_views;

}

The set of possible values for unions
naturally partitions the dataset.The
top- level directories correspond to
the different fact types of the DataUnit.

Properties are also unions,
so their directories are further
partitioned by each value type.

b

c

Figure 5.1 The unions within a graph schema provide a natural vertical partitioning scheme for a dataset.
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To use HDFS and Pail for SuperWebAnalytics.com, you must define a structured pail to
store Data objects that also enforces this vertical partitioning scheme. This code is a
bit involved, so we’ll present it in steps: 

1 First, you’ll create an abstract pail structure for storing Thrift objects. Thrift
serialization is independent of the type of data being stored, and the code is
cleaner by separating this logic. 

2 Next, you’ll derive a pail structure from the abstract class for storing SuperWeb-
Analytics.com Data objects. 

3 Finally, you’ll define a further subclass that will implement the desired vertical
partitioning scheme. 

Throughout this section, don’t worry about the details of the code. What matters is
that this code works for any graph schema, and it continues to work even as the
schema evolves over time. 

5.3.1 A structured pail for Thrift objects 

Creating a pail structure for Thrift objects is surprisingly easy because Thrift does the
heavy lifting for you. The following listing demonstrates how to use Thrift utilities to
serialize and deserialize your data. 

public abstract class ThriftPailStructure<T extends Comparable>
implements PailStructure<T>

{
private transient TSerializer ser;
private transient TDeserializer des;

private TSerializer getSerializer() {
if(ser==null) ser = new TSerializer();
return ser;

}

private TDeserializer getDeserializer() {
if(des==null) des = new TDeserializer();
return des;

}

public byte[] serialize(T obj) {
try {
return getSerializer().serialize((TBase)obj);

} catch (TException e) {
throw new RuntimeException(e);

}
}

public T deserialize(byte[] record) {
T ret = createThriftObject();
try {

Listing 5.5 A generic abstract pail structure for serializing Thrift objects

Java generics allow
the pail structure
to be used for any

Thrift object. TSerializer and 
TDeserializer are Thrift 
utilities for serializing 
objects to and from 
binary arrays.The Thrift utilities

are lazily built,
constructed only

when required.

The object is 
cast to a basic 
Thrift object for 
serialization.

A new
Thrift object is

constructed prior
to deserialization.
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getDeserializer().deserialize((TBase)ret, record);
} catch (TException e) {
throw new RuntimeException(e);

}
return ret;

}

protected abstract T createThriftObject();
}

5.3.2 A basic pail for SuperWebAnalytics.com 

Next, you can define a basic class for storing SuperWebAnalytics.com Data objects by
creating a concrete subclass of ThriftPailStructure, shown next. 

public class DataPailStructure extends ThriftPailStructure<Data> {
public Class getType() {
return Data.class;

}

protected Data createThriftObject() {
return new Data();

}

public List<String> getTarget(Data object) {
return Collections.EMPTY_LIST;

}

public boolean isValidTarget(String... dirs) {
return true;

}
}

5.3.3 A split pail to vertically partition the dataset 

The last step is to create a pail structure that implements the vertical partitioning strat-
egy for a graph schema. It’s also the most involved step. All of the following snippets
are extracted from the SplitDataPailStructure class that accomplishes this task. 

 At a high level, the SplitDataPailStructure code inspects the DataUnit class to cre-
ate a map between Thrift IDs and classes to process the corresponding type. Figure 5.2
demonstrates this map for SuperWebAnalytics.com. 

Listing 5.6 A concrete implementation for Data objects

The constructor 
of the Thrift 
object must be 
implemented in 
the child class.

Specifies
that the pail
stores Data

objects Needed by ThriftPailStructure to 
create an object for deserialization

This pail structure 
doesn’t use vertical 
partitioning. 

union DataUnit {
1: PersonProperty person_property;
2: PageProperty page_property;
3: EquivEdge equiv;
4: PageViewEdge page_view;

}

Map<Short, FieldStructure>
{{1: PropertyStructure},
{2: PropertyStructure},
{3: EdgeStructure},
{4: EdgeStructure}}

Figure 5.2 The SplitDataPailStructure field map for the DataUnit class of SuperWebAnalyt-
ics.com
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The next listing contains the code that generates the field map. It works for any graph
schema, not just this example. 

public class SplitDataPailStructure extends DataPailStructure {

public static HashMap<Short, FieldStructure> validFieldMap =
new HashMap<Short, FieldStructure>();

static {
for(DataUnit._Fields k: DataUnit.metaDataMap.keySet()) {

FieldValueMetaData md = DataUnit.metaDataMap.get(k).valueMetaData;
FieldStructure fieldStruct;
if(md instanceof StructMetaData &&

((StructMetaData) md).structClass
.getName().endsWith("Property"))

{
fieldStruct = new PropertyStructure(

((StructMetaData) md).structClass);
} else {

fieldStruct = new EdgeStructure();
}
validFieldMap.put(k.getThriftFieldId(), fieldStruct);

}
}

// remainder of class elided
}

As mentioned in the code annotation, FieldStructure is an interface shared by both
PropertyStructure and EdgeStructure. The definition of the interface is as follows: 

protected static interface FieldStructure {
public boolean isValidTarget(String[] dirs);
public void fillTarget(List<String> ret, Object val);

}

Later we’ll provide the details for the EdgeStructure and PropertyStructure classes.
For now, we’re just looking at how this interface is used to accomplish the vertical par-
titioning of the table:

// methods are from SplitDataPailStructure

public List<String> getTarget(Data object) {
List<String> ret = new ArrayList<String>();
DataUnit du = object.get_dataunit();
short id = du.getSetField().getThriftFieldId();
ret.add("" + id);
validFieldMap.get(id).fillTarget(ret, du.getFieldValue());
return ret;

}

Listing 5.7 Code to generate the field map for a graph schema

FieldStructure 
is an interface 
for both edges 
and properties.

Thrift
code to
inspect

and
iterate

over the
DataUnit

object

Properties are 
identified by the 
class name of the 
inspected object.

If class
name

doesn’t
end with

“Property”,
it must be

an edge.

The top-level
directory is

determined by
inspecting the

DataUnit.

Any further
partitioning is
passed to the

FieldStructure.
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public boolean isValidTarget(String[] dirs) {
if(dirs.length==0) return false;
try {

short id = Short.parseShort(dirs[0]);
FieldStructure s = validFieldMap.get(id);
if(s==null)
return false;

else
return s.isValidTarget(dirs);

} catch(NumberFormatException e) {
return false;

}
}

The SplitDataPailStructure is responsible for the top-level directory of the verti-
cal partitioning, and it passes the responsibility of any additional subdirectories to
the FieldStructure classes. Therefore, once you define the EdgeStructure and
PropertyStructure classes, your work will be done. 

 Edges are structs and hence cannot be further partitioned. This makes the Edge-
Structure class trivial:

protected static class EdgeStructure implements FieldStructure {
public boolean isValidTarget(String[] dirs) { return true; }
public void fillTarget(List<String> ret, Object val) { }

}

But properties are unions, like the DataUnit class. The code similarly uses inspection
to create a set of valid Thrift field IDs for the given property class. For completeness
we provide the full listing of the class here, but the key points are the construction of
the set and the use of this set in fulfilling the FieldStructure contract.

protected static class PropertyStructure implements FieldStructure {
private TFieldIdEnum valueId;
private HashSet<Short> validIds;

public PropertyStructure(Class prop) {
try {

Map<TFieldIdEnum, FieldMetaData> propMeta = getMetadataMap(prop);
Class valClass = Class.forName(prop.getName() + "Value");
valueId = getIdForClass(propMeta, valClass);

validIds = new HashSet<Short>();
Map<TFieldIdEnum, FieldMetaData> valMeta

= getMetadataMap(valClass);
for(TFieldIdEnum valId: valMeta.keySet()) {

validIds.add(valId.getThriftFieldId());
}

} catch(Exception e) {
throw new RuntimeException(e);

}
}

Listing 5.8 The PropertyStructure class

The validity
check first

verifies the
DataUnit field

ID is in the
field map.

Any additional checks 
are passed to the 
FieldStructure.

A Property is a Thrift struct 
containing a property value 
field; this is the ID for that field.

The set of
Thrift IDs of

the property
value types

Parses the Thrift
metadata to get

the field ID of the
property value

Parses the 
metadata to get 
all valid field IDs 
of the property 
value
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public boolean isValidTarget(String[] dirs) {
if(dirs.length < 2) return false;
try { 1((check))

short s = Short.parseShort(dirs[1]);
return validIds.contains(s);

} catch(NumberFormatException e) {
return false;

}
}

public void fillTarget(List<String> ret, Object val) {
ret.add("" + ((TUnion) ((TBase)val)

.getFieldValue(valueId))

.getSetField()

.getThriftFieldId());
}

}

private static Map<TFieldIdEnum, FieldMetaData>
getMetadataMap(Class c)

{
try {

Object o = c.newInstance();
return (Map) c.getField("metaDataMap").get(o);

} catch (Exception e) {
throw new RuntimeException(e);

}
}

private static TFieldIdEnum getIdForClass(
Map<TFieldIdEnum, FieldMetaData> meta, Class toFind)

{
for(TFieldIdEnum k: meta.keySet()) {

FieldValueMetaData md = meta.get(k).valueMetaData;
if(md instanceof StructMetaData) {

if(toFind.equals(((StructMetaData) md).structClass)) {
return k;

}
}

}

throw new RuntimeException("Could not find " + toFind.toString() +
" in " + meta.toString());

}

After that last bit of code, take a break—you’ve earned it. The good news is that this
was a one-time cost. Once you’ve defined a pail structure for your master dataset,
future interaction with the batch layer will be straightforward. Moreover, this code can
be applied to any project where you’ve created a Thrift graph schema. 

The vertical 
partitioning of a 
property value has a 
depth of at least two.

Uses the Thrift IDs to 
create the directory 
path for the current 
fact

getMetadataMap 
and getIdForClass 
are helper functions 
for inspecting Thrift 
objects.
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5.4 Summary 
You learned that maintaining a dataset within HDFS involves the common tasks of
appending new data to the master dataset, vertically partitioning data into many fold-
ers, and consolidating small files. You witnessed that accomplishing these tasks using
the HDFS API directly is tedious and prone to human error. 

 You then were introduced to the Pail abstraction. Pail isolates you from the file for-
mats and directory structure of HDFS, making it easy to do robust, enforced vertical
partitioning and perform common operations on your dataset. Using the Pail abstrac-
tion ultimately takes very few lines of code. Vertical partitioning happens automati-
cally, and tasks like appends and consolidation are simple one-liners. This means you
can focus on how you want to process your records rather than on the details of how
to store those records. 

 With HDFS and Pail, we’ve presented a way of storing the master dataset that meets
all the requirements and is elegant to use. Whether you choose to use these tools or
not, we hope we’ve set a bar for how elegant this piece of an architecture can be, and
that you’ll aim to achieve at least the same level of elegance. 

 In the next chapter you’ll learn how to leverage the record storage to accomplish
the next key step of the Lambda Architecture: computing batch views. 
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Batch layer

The goal of a data system is to answer arbitrary questions about your data. Any
question you could ask of your dataset can be implemented as a function that takes
all of your data as input. Ideally, you could run these functions on the fly whenever
you query your dataset. Unfortunately, a function that uses your entire dataset as
input will take a very long time to run. You need a different strategy if you want
your queries answered quickly. 

 In the Lambda Architecture, the batch layer precomputes the master dataset
into batch views so that queries can be resolved with low latency. This requires strik-
ing a balance between what will be precomputed and what will be computed at exe-
cution time to complete the query. By doing a little bit of computation on the fly to
complete queries, you save yourself from needing to precompute absurdly large

This chapter covers
■ Computing functions on the batch layer 
■ Splitting a query into precomputed and on-the-

fly components 
■ Recomputation versus incremental algorithms 
■ The meaning of scalability 
■ The MapReduce paradigm 
■ A higher-level way of thinking about MapReduce
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batch views. The key is to precompute just enough information so that the query can
be completed quickly. 

 In the last two chapters, you learned how to form a data model for your dataset
and how to store your data in the batch layer in a scalable way. In this chapter you’ll
take the next step of learning how to compute arbitrary functions on that data. We’ll
start by introducing some motivating examples that we’ll use to illustrate the concepts
of computation on the batch layer. Then you’ll learn in detail how to compute
indexes of the master dataset that the application layer will use to complete queries.
You’ll examine the trade-offs between recomputation algorithms, the style of algorithm
emphasized in the batch layer, and incremental algorithms, the kind of algorithms typi-
cally used with relational databases. You’ll see what it means for the batch layer to be
scalable, and then you’ll learn about MapReduce, a paradigm for scalable and nearly
arbitrary batch computation. You’ll see that although MapReduce is a great primitive,
it’s quite a low-level abstraction. We’ll finish things off by showing you a higher-level
paradigm that can be executed via MapReduce. 

6.1 Motivating examples
Let’s consider some example queries to motivate the theoretical discussions in this
chapter. These queries illustrate the concepts of batch computation—each example
shows how you would compute the query as a function that takes the entire master
dataset as input. Later you’ll modify these implementations to use precomputation
rather than execute them completely on the fly. 

6.1.1 Number of pageviews over time 

The first example query operates over a dataset of pageviews, where each pageview
record contains a URL and timestamp. The goal of the query is to determine the total
number of pageviews of a URL for a range given in hours. 

 This query can be written in pseudo-code like so: 

function pageviewsOverTime(masterDataset, url, startHour, endHour) {
pageviews = 0
for(record in masterDataset) {

if(record.url == url &&
record.time >= startHour &&
record.time <= endHour) {
pageviews += 1
}

}
return pageviews

}

To compute this query using a function of the entire dataset, you simply iterate
through every record, and keep a counter of all the pageviews for that URL that fall
within the specified range. After exhausting all the records, you then return the final
value of the counter. 
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6.1.2 Gender inference

The next example query operates over a dataset of name records and predicts the
likely gender for a person. The algorithm first performs semantic normalization on
the names for the person, doing conversions like Bob to Robert and Bill to William. The
algorithm then makes use of a model that provides the probability of a gender for
each name. 

 The resulting inference algorithm looks like this: 

function genderInference(masterDataset, personId) {
names = new Set()
for(record in masterDataset) {

if(record.personId == personId) {
names.add(normalizeName(record.name))

}
}
maleProbSum = 0.0
for(name in names) {

maleProbSum += maleProbabilityOfName(name)
}
maleProb = maleProbSum / names.size()
if(maleProb > 0.5) {

return "male"
} else {

return "female"
}

}

An interesting aspect of this query is that the results can change as the name normal-
ization algorithm and name-to-gender model improve over time, and not just when
new data is received. 

6.1.3 Influence score 

The final example operates over a Twitter-inspired dataset containing reaction records.
Each reaction record contains sourceId and responderId fields, indicating that
responderId retweeted or replied to sourceId’s post. 

 The query determines an influencer score for each person in the social network.
The score is computed in two steps. First, the top influencer for each person is
selected based on the number of reactions the influencer caused in that person.
Then, someone’s influence score is set to the number of people for which he or she
was the top influencer. 

 The algorithm to determine a user’s influence score is as follows: 

function influence_score(masterDataset, personId) {
influence = new Map()
for(record in masterDataset) {

curr = influence.get(record.responderId) || new Map(default=0)
curr[record.sourceId] += 1

Normalizes all
names

associated with
the person

Averages each name’s 
probability of being male

Returns the gender with 
the highest likelihood

Computes amount of influence 
between all pairs of people
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influence.set(record.sourceId, curr)
}

score = 0
for(entry in influence) {

if(topKey(entry.value) == personId) {
score += 1

}
}
return score

}

In this code, the topKey function is mocked because it’s straightforward to imple-
ment. Otherwise, the algorithm simply counts the number of reactions between each
pair of people and then counts the number of people for whom the queried user is
the top influencer. 

6.2 Computing on the batch layer
Let’s take a step back and review how the Lambda Architecture works at a high level.
When processing queries, each layer in the Lambda Architecture has a key, comple-
mentary role, as shown in figure 6.1. 

Counts the number of people for 
whom personId is the top influencer

Batch layer

Serving layer

Speed layer

Realtime
view

Batch
view

Master dataset

New data:
011010010...

Query:
“How many...?”

The serving layer serves
the precomputed results
with low-latency reads.

The speed layer fills the
latency gap by querying
recently obtained data.

c

b

d

Realtime
view

Realtime
view Batch

view
Batch
view

The batch layer precomputes functions 
over the master dataset. Processing the 
entire dataset introduces high latency.

Figure 6.1 The roles of the Lambda Architecture layers in servicing queries on the dataset
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The batch layer runs functions over the master dataset to precompute intermediate
data called batch views. The batch views are loaded by the serving layer, which indexes
them to allow rapid access to that data. The speed layer compensates for the high
latency of the batch layer by providing low-latency updates using data that has yet to
be precomputed into a batch view. Queries are then satisfied by processing data from
the serving layer views and the speed layer views, and merging the results. 

 A linchpin of the architecture is that for any query, it’s possible to precompute the
data in the batch layer to expedite its processing by the serving layer. These precompu-
tations over the master dataset take time, but you should view the high latency of the
batch layer as an opportunity to do deep analyses of the data and connect diverse pieces
of data together. Remember, low-latency query serving is achieved through other parts
of the Lambda Architecture. 

 A naive strategy for computing on
the batch layer would be to precompute
all possible queries and cache the results
in the serving layer. Such an approach is
illustrated in figure 6.2. 

 Unfortunately you can’t always pre-
compute everything. Consider the
pageviews-over-time query as an exam-
ple. If you wanted to precompute every
potential query, you’d need to deter-
mine the answer for every possible range of hours for every URL. But the number of
ranges of hours within a given time frame can be huge. In a one-year period, there are
approximately 380 million distinct hour ranges. To precompute the query, you’d need
to precompute and index 380 million values for every URL. This is obviously infeasible
and an unworkable solution. 

 Instead, you can precompute intermediate results and then use these results to
complete queries on the fly, as shown in figure 6.3. 

Master
dataset Function

Batch
viewFunction

Function

Query
resultsFunctionBatch

view

Batch
view

Precomputation Low-latency query

Figure 6.3
Splitting a 
query into pre-
computation and 
on-the-fly compo-
nents

Master
dataset

Query
resultsFunction

Figure 6.2 Precomputing a query by running a 
function on the master dataset directly
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For the pageviews-over-time query, you can precompute the number of pageviews for
every hour for each URL. This is illustrated in figure 6.4. 

 To complete a query, you retrieve from the index the number of pageviews for
every hour in the range, and sum the results. For a single year, you only need to pre-
compute and index 8,760 values per URL (365 days, 24 hours per day). This is cer-
tainly a more manageable number. 

6.3 Recomputation algorithms vs. incremental algorithms
Because your master dataset is continually growing, you must have a strategy for
updating your batch views when new data becomes available. You could choose a
recomputation algorithm, throwing away the old batch views and recomputing func-
tions over the entire master dataset. Alternatively, an incremental algorithm will update
the views directly when new data arrives. 

 As a basic example, consider a batch view containing the total number of records
in your master dataset. A recomputation algorithm would update the count by first
appending the new data to the master dataset and then counting all the records from
scratch. This strategy is shown in figure 6.5. 

2012/12/08 21:00 101foo.com/blog

6572012/12/08 20:00foo.com/blog

10982012/12/08 19:00foo.com/blog

4132012/12/08 18:00foo.com/blog

762foo.com/blog 2012/12/08 17:00

foo.com/blog 2012/12/08 16:00 987

foo.com/blog 2012/12/08 15:00 876

# PageviewsHourURL

Function:
sum

Results:
2930

Figure 6.4 Computing the number of pageviews by querying an indexed batch view

Master
dataset

New data

Merged
dataset

Recomputed
view:

20,612,788
records

Count

Figure 6.5 A recomputing algorithm to update the number of records in the master data-
set. New data is appended to the master dataset, and then all records are counted.
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An incremental algorithm, on the other hand, would count the number of new data
records and add it to the existing count, as demonstrated in figure 6.6. 

 You might be wondering why you would ever use a recomputation algorithm when
you can use a vastly more efficient incremental algorithm instead. But efficiency is not
the only factor to be considered. The key trade-offs between the two approaches are
performance, human-fault tolerance, and the generality of the algorithm. We’ll dis-
cuss both types of algorithms in regard to each of these issues. You’ll discover that
although incremental approaches can provide additional efficiency, you must also
have recomputation versions of your algorithms. 

6.3.1 Performance 

There are two aspects to the performance of a batch-layer algorithm: the amount of
resources required to update a batch view with new data, and the size of the batch
views produced. 

 An incremental algorithm almost always uses significantly less resources to update
a view because it uses new data and the current state of the batch view to perform an
update. For a task such as computing pageviews over time, the view will be significantly
smaller than the master dataset because of the aggregation. A recomputation algo-
rithm looks at the entire master dataset, so the amount of resources needed for an
update can be multiple orders of magnitude higher than an incremental algorithm.
But the size of the batch view for an incremental algorithm can be significantly larger
than the corresponding batch view for a recomputation algorithm. This is because the
view needs to be formulated in such a way that it can be incrementally updated.

 We’ll demonstrate through two separate examples. 
 First, suppose you need to compute the average number of pageviews for each URL

within a particular domain. The batch view generated by a recomputation algorithm
would contain a map from each URL to its corresponding average. But this isn’t suit-
able for an incremental algorithm, because updating the average incrementally
requires that you also know the number of records used for computing the previous
average. An incremental view would therefore store both the average and the total

Batch update:
187,596
records

Count Updated
view:

20,612,788
recordsOld view:

20,425,192
records

New data

Figure 6.6 An incremental algorithm to update the number of records in the master 
dataset. Only the new dataset is counted, with the total used to update the batch 
view directly.
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count for each URL, increasing the size of the incremental view over the recomputa-
tion-based view by a constant factor. 

 In other scenarios, the increase in the batch view size for an incremental algorithm
is much more severe. Consider a query that computes the number of unique visitors
for each URL. Figure 6.7 demonstrates the differences between batch views using
recomputation and incremental algorithms. 

 A recomputation view only requires a map from the URL to the unique count. In
contrast, an incremental algorithm only examines the new pageviews, so its view must
contain the full set of visitors for each URL so it can determine which records in the
new data correspond to return visits. As such, the incremental view could potentially
be as large as the master dataset! 

 The batch view generated by an incremental algorithm isn’t always this large, but it
can be far larger than the corresponding recomputation-based view. 

6.3.2 Human-fault tolerance

The lifetime of a data system is extremely long, and bugs can and will be deployed to
production during that time period. You therefore must consider how your batch
update algorithm will tolerate such mistakes. In this regard, recomputation algo-
rithms are inherently human-fault tolerant, whereas with an incremental algorithm,
human mistakes can cause serious problems. 

 Consider as an example a batch-layer algorithm that computes a global count of
the number of records in the master dataset. Now suppose you make a mistake and
deploy an algorithm that increments the global count for each record by two instead
of by one. If your algorithm is recomputation-based, all that’s required is to fix the
algorithm and redeploy the code—your batch view will be correct the next time the
batch layer runs. This is because the recomputation-based algorithm recomputes the
batch view from scratch. 

......

1212foo.com/faq

413foo.com/careers

524foo.com/about

foo.com/blog 1899

foo.com 2217

# Unique
visitorsURL

3,6,7,19,24,42,51,...

...

8,10,21,37,39,46,55,...

Visitor IDs

12,17,19,29,40,42,...

1,4,5,7,10,12,14,….

2,3,5,17,22,23,27,...

......

1212foo.com/faq

413foo.com/careers

524foo.com/about

foo.com/blog 1899

foo.com 2217

# Unique
visitorsURL

Recomputation batch view Incremental batch view

Figure 6.7 A comparison between a recomputation view and an incremental view for determining 
the number of unique visitors per URL
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 But if your algorithm is incremental, then correcting your view isn’t so simple. The
only option is to identify the records that were overcounted, determine how many
times each one was overcounted, and then correct the count for each affected record.
Accomplishing this with a high degree of confidence is not always possible. You may
have detailed logging that helps you with these tasks, but your logs may not always
have the required information, because you can’t anticipate every type of mistake that
will be made in the future. Many times you’ll have to do an ad hoc, best-guess modifi-
cation of your view—and you have to make certain you don’t mess that up as well. 

 Hoping you have the right logs to fix mistakes is not sound engineering practice. It
bears repeating: human mistakes are inevitable. As you’ve seen, recomputation-based
algorithms have much stronger human-fault tolerance than incremental algorithms. 

6.3.3 Generality of the algorithms 

Although incremental algorithms can be faster to run, they must often be tailored to
address the problem at hand. For example, you’ve seen that an incremental algorithm
for computing the number of unique visitors can generate prohibitively large batch
views. This cost can be offset by probabilistic counting algorithms, such as HyperLog-
Log, that store intermediate statistics to estimate the overall unique count.1 This
reduces the storage cost of the batch view, but at the price of making the algorithm
approximate instead of exact. 

 The gender-inference query introduced in the beginning of this chapter illustrates
another issue: incremental algorithms shift complexity to on-the-fly computations. As
you improve your semantic normalization algorithm, you’ll want to see those improve-
ments reflected in the results of your queries. Yet, if you do the normalization as part
of the precomputation, your batch view will be out of date whenever you improve the
normalization. The normalization must occur during the on-the-fly portion of the
query when using an incremental algorithm. Your view will have to contain every
name seen for each person, and your on-the-fly code will have to renormalize each
name every time a query is performed. This increases the latency of the on-the-fly
component and could very well take too long for your application’s requirements. 

 Because a recomputation algorithm continually rebuilds the entire batch view, the
structure of the batch view and the complexity of the on-the-fly component are both
simpler, leading to a more general algorithm. 

6.3.4 Choosing a style of algorithm 

Table 6.1 summarizes this section in terms of recomputation and incremental
algorithms.

 The key takeaway is that you must always have recomputation versions of your
algorithms. This is the only way to ensure human-fault tolerance for your system,
and human-fault tolerance is a non-negotiable requirement for a robust system.

1 We’ll discuss HyperLogLog further in subsequent chapters.
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Additionally, you have the option to add incremental versions of your algorithms to
make them more resource-efficient. 

 For the remainder of this chapter, we’ll focus solely on recomputation algorithms,
though in chapter 18 we’ll come back to the topic of incrementalizing the batch layer. 

6.4 Scalability in the batch layer 
The word scalability gets thrown around a lot, so let’s carefully define what it means in
a data systems context. Scalability is the ability of a system to maintain performance
under increased load by adding more resources. Load in a Big Data context is a combi-
nation of the total amount of data you have, how much new data you receive every
day, how many requests per second your application serves, and so forth. 

 More important than a system being scalable is a system being linearly scalable. A
linearly scalable system can maintain performance under increased load by adding
resources in proportion to the
increased load. A nonlinearly scal-
able system, despite being “scal-
able,” isn’t particular useful.
Suppose the number of machines
you need in relation to the load
on your system has a quadratic
relationship, like in figure 6.8.
The costs of running your system
would rise dramatically over time.
Increasing your load ten-fold
would increase your costs by a
hundred. Such a system isn’t feasi-
ble from a cost perspective. 

Table 6.1 Comparing recomputation and incremental algorithms

Recomputation algorithms Incremental algorithms

Performance Requires computational effort to process the 
entire master dataset

Requires less computational resources 
but may generate much larger batch views

Human-fault 
tolerance

Extremely tolerant of human errors because 
the batch views are continually rebuilt

Doesn’t facilitate repairing errors in the 
batch views; repairs are ad hoc and may 
require estimates

Generality Complexity of the algorithm is addressed dur-
ing precomputation, resulting in simple batch 
views and low-latency, on-the-fly processing

Requires special tailoring; may shift 
complexity to on-the-fly query processing

Conclusion Essential to supporting a robust data-
processing system

Can increase the efficiency of your sys-
tem, but only as a supplement to recom-
putation algorithms

Number of
machines needed

Load

Figure 6.8 Nonlinear scalability
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 When a system is linearly scalable, costs rise in proportion to the load. This is a crit-
ically important property of a data system. 

We delved into this discussion about scalability to set the scene for introducing Map-
Reduce, a distributed computing paradigm that can be used to implement a batch
layer. As we cover the details of its workings, keep in mind that it’s linearly scalable:
should the size of your master dataset double, then twice the number of servers will be
able to build the batch views with the same latency. 

6.5 MapReduce: a paradigm for Big Data computing
MapReduce is a distributed computing paradigm originally pioneered by Google that
provides primitives for scalable and fault-tolerant batch computation. With Map-
Reduce, you write your computations in terms of map and reduce functions that manip-
ulate key/value pairs. These primitives are expressive enough to implement nearly
any function, and the MapReduce framework executes those functions over the mas-
ter dataset in a distributed and robust manner. Such properties make MapReduce an
excellent paradigm for the precomputation needed in the batch layer, but it’s also a
low-level abstraction where expressing computations can be a large amount of work. 

 The canonical MapReduce example is word count. Word count takes a dataset of
text and determines the number of times each word appears throughout the text. The
map function in MapReduce executes once per line of text and emits any number of
key/value pairs. For word count, the map function emits a key/value pair for every
word in the text, setting the key to the word and the value to 1: 

function word_count_map(sentence) {
for(word in sentence.split(" ")) {

emit(word, 1)
}

}

What scalability doesn’t mean...
Counterintuitively, a scalable system doesn’t necessarily have the ability to increase
performance by adding more machines. For an example of this, suppose you have a
website that serves a static HTML page. Let’s say that every web server you have can
serve 1,000 requests/sec within a latency requirement of 100 milliseconds. You
won’t be able to lower the latency of serving the web page by adding more ma-
chines—an individual request is not parallelizable and must be satisfied by a single
machine. But you can scale your website to increased requests per second by adding
more web servers to spread the load of serving the HTML. 

More practically, with algorithms that are parallelizable, you might be able to increase
performance by adding more machines, but the improvements will diminish the more
machines you add. This is because of the increased overhead and communication
costs associated with having more machines. 
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MapReduce then arranges the output from the map functions so that all values from
the same key are grouped together. 

 The reduce function then takes the full list of values sharing the same key and
emits new key/value pairs as the final output. In word count, the input is a list of 1 val-
ues for each word, and the reducer simply sums the values to compute the count for
that word:

function word_count_reduce(word, values) {
sum = 0
for(val in values) {

sum += val
}
emit(word, sum)

}

There’s a lot happening under the hood to run a program like word count across a
cluster of machines, but the MapReduce framework handles most of the details for
you. The intent is for you to focus on what needs to be computed without worrying
about the details of how it’s computed. 

6.5.1 Scalability 

The reason why MapReduce is such a powerful paradigm is because programs written
in terms of MapReduce are inherently scalable. A program that runs on 10 gigabytes
of data will also run on 10 petabytes of data. MapReduce automatically parallelizes the
computation across a cluster of machines regardless of input size. All the details of
concurrency, transferring data between machines, and execution planning are
abstracted for you by the framework. 

 Let’s walk through how a program like word count executes on a MapReduce clus-
ter. The input to your MapReduce program is stored within a distributed filesystem
such as the Hadoop Distributed File System (HDFS) you encountered in the last chap-
ter. Before processing the data, the program first determines which machines in your
cluster host the blocks containing the input—see figure 6.9. 

Distributed filesystemData file:
input.txt

Server 1

Server 5

Server 3Server 2

Server 4 Server 6
File block
locations:

1, 3

2, 3

Before a MapReduce program begins processing data, it first
determines the block locations within the distributed filesystem.

Figure 6.9 Locating the servers hosting the input files for a MapReduce program
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After determining the locations of the input, MapReduce launches a number of map
tasks proportional to the input data size. Each of these tasks is assigned a subset of the
input and executes your map function on that data. Because the amount of the code
is typically far less than the amount of the data, MapReduce attempts to assign tasks to
servers that host the data to be processed. As shown in figure 6.10, moving the code to
the data avoids the need to transfer all that data across the network. 

 Like map tasks, there are also reduce tasks spread across the cluster. Each of these
tasks is responsible for computing the reduce function for a subset of keys generated
by the map tasks. Because the reduce function requires all values associated with a
given key, a reduce task can’t begin until all map tasks are complete. 

 Once the map tasks finish executing, each emitted key/value pair is sent to the
reduce task responsible for processing that key. Therefore, each map task distributes
its output among all the reducer tasks. This transfer of the intermediate key/value
pairs is called shuffling and is illustrated in figure 6.11. 

 Once a reduce task receives all of the key/value pairs from every map task, it sorts
the key/value pairs by key. This has the effect of organizing all the values for any given

Map
code

Map task:
server 1

Map task:
server 3

<to,1>, <be,1>,
<or,1>, <not,1>,
<to,1>, <be,1>,
...

<brevity,1>, <is,1>,
<the,1>, <soul,1>
<of,1>, <wit,1>,
...

Code is sent to the servers
hosting the input files to limit
network traffic across the cluster.

The map tasks generate
intermediate key/value pairs that
will be redirected to reduce tasks.

B C

Figure 6.10 MapReduce promotes data locality, running tasks on the servers that host the input data.

Reduce task 1 Reduce task 2

<to,1>, <be,1>,
<or,1>, <not,1>,
<to,1>, <be,1>,
...

<brevity,1>, <is,1>,
<the,1>, <soul,1>
<of,1>, <wit,1>,
...

<once,1>, <more,1>,
<unto,1>, <the,1>,
<breach,1>,
...

During the shuffle phase, all of the key/value pairs generated by the map tasks are distributed among
the reduce tasks. In this process, all of the pairs with the same key are sent to the same reducer.

Figure 6.11 The shuffle phase distributes the output of the map tasks to the reduce tasks.
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key to be together. The reduce function is then called for each key and its group of
values, as demonstrated in figure 6.12. 

 As you can see, there are many moving parts to a MapReduce program. The impor-
tant takeaways from this overview are the following: 

■ MapReduce programs execute in a fully distributed fashion with no central
point of contention.

■ MapReduce is scalable: the map and reduce functions you provide are executed
in parallel across the cluster.

■ The challenges of concurrency and assigning tasks to machines is handled for
you. 

6.5.2 Fault-tolerance

Distributed systems are notoriously testy. Network partitions, server crashes, and disk
failures are relatively rare for a single server, but the likelihood of something going
wrong greatly increases when coordinating computation over a large cluster of
machines. Thankfully, in addition to being easily parallelizable and inherently scal-
able, MapReduce computations are also fault tolerant. 

 A program can fail for a variety of reasons: a hard disk can reach capacity, the process
can exceed available memory, or the hardware can break down. MapReduce watches
for these errors and automatically retries that portion of the computation on another
node. An entire application (commonly called a job) will fail only if a task fails more
than a configured number of times—typically four. The idea is that a single failure may
arise from a server issue, but a repeated failure is likely a problem with your code.

 Because tasks can be retried, MapReduce requires that your map and reduce func-
tions be deterministic. This means that given the same inputs, your functions must
always produce the same outputs. It’s a relatively light constraint but important for
MapReduce to work correctly. An example of a non-deterministic function is one that
generates random numbers. If you want to use random numbers in a MapReduce job,
you need to make sure to explicitly seed the random number generator so that it
always produces the same outputs. 

<to, 1>
<and, 1>
<from, 1>
<to, 1>
<here, 1>
<from, 1>
<and, 1>
...

<and, 1>
<and, 1>
<from, 1>
<from, 1>
<here, 1>
<to, 1>
<to, 1>
...

<and, 2>
<from, 2>
<here, 1>
<to, 2>
...

Sort Reduce

Figure 6.12 A reduce task sorts the incoming data by key, and then performs the re-
duce function on the resulting groups of values.
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6.5.3 Generality of MapReduce

It’s not immediately obvious, but the computational model supported by MapReduce
is expressive enough to compute almost any functions on your data. To illustrate this,
let’s look at how you could use MapReduce to implement the batch view functions for
the queries introduced at the beginning of this chapter. 

IMPLEMENTING NUMBER OF PAGEVIEWS OVER TIME 

The following MapReduce code produces a batch view for pageviews over time:

function map(record) {
key = [record.url, toHour(record.timestamp)]
emit(key, 1)

}

function reduce(key, vals) {
emit(new HourPageviews(key[0], key[1], sum(vals)))

}

This code is very similar to the word count code, but the key emitted from the mapper
is a struct containing the URL and the hour of the pageview. The output of the
reducer is the desired batch view containing a mapping from [url, hour] to the num-
ber of pageviews for that hour. 

IMPLEMENTING GENDER INFERENCE 

The following MapReduce code infers the gender of supplied names:

function map(record) {
emit(record.userid, normalizeName(record.name))

}

function reduce(userid, vals) {
allNames = new Set()
for(normalizedName in vals) {

allNames.add(normalizedName)
}
maleProbSum = 0.0
for(name in allNames) {

maleProbSum += maleProbabilityOfName(name)
}
maleProb = maleProbSum / allNames.size()
if(maleProb > 0.5) {

gender = "male"
} else {

gender = "female"
}
emit(new InferredGender(userid, gender))

}

Gender inference is similarly straightforward. The map function performs the name
semantic normalization, and the reduce function computes the predicted gender for
each user. 

Semantic normalization 
occurs during the 
mapping stage.

A set is used 
to remove any 
potential duplicates.

Averages the 
probabilities 
of being male.

Returns the most 
likely gender.

Licensed to Mark Watson <nordickan@gmail.com>



98 CHAPTER 6 Batch layer

IMPLEMENTING INFLUENCE SCORE 

The influence-score precomputation is more complex than the previous two exam-
ples and requires two MapReduce jobs to be chained together to implement the logic.
The idea is that the output of the first MapReduce job is fed as the input to the second
MapReduce job. The code is as follows: 

function map1(record) {
emit(record.responderId, record.sourceId)

}

function reduce1(userid, sourceIds) {
influence = new Map(default=0)
for(sourceId in sourceIds) {

influence[sourceId] += 1
}
emit(topKey(influence))

}

function map2(record) {
emit(record, 1)

}

function reduce2(influencer, vals) {
emit(new InfluenceScore(influencer, sum(vals)))

}

It’s typical for computations to require multiple MapReduce jobs—that just means
multiple levels of grouping were required. Here the first job requires grouping all
reactions for each user to determine that user’s top influencer. The second job then
groups the records by top influencer to determine the influence scores. 

 Take a step back and look at what MapReduce is doing at a fundamental level: 

■ It arbitrarily partitions your data through the key you emit in the map phase.
Arbitrary partitioning lets you connect your data together for later processing
while still processing everything in parallel. 

■ It arbitrarily transforms your data through the code you provide in the map and
reduce phases. 

It’s hard to envision anything more general that could still be a scalable, distributed
system. 

The first job determines 
the top influencer for 
each user.

The top influencer data is 
then used to determine 
the number of people 
each user influences.

MapReduce vs. Spark
Spark is a relatively new computation system that has gained a lot of attention.
Spark’s computation model is “resilient distributed datasets.” Spark isn’t any more
general or scalable than MapReduce, but its model allows it to have much higher per-
formance for algorithms that have to repeatedly iterate over the same dataset
(because Spark is able to cache that data in memory rather than read it from disk
every time). Many machine-learning algorithms iterate over the same data repeatedly,
making Spark particularly well suited for that use case. 
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6.6 Low-level nature of MapReduce
Unfortunately, although MapReduce is a great primitive for batch computation—pro-
viding you a generic, scalable, and fault-tolerant way to compute functions of large
datasets—it doesn’t lend itself to particularly elegant code. You’ll find that Map-
Reduce programs written manually tend to be long, unwieldy, and difficult to under-
stand. Let’s explore some of the reasons why this is the case. 

6.6.1 Multistep computations are unnatural 

The influence-score example showed a computation that required two MapReduce
jobs. What’s missing from that code is what connects the two jobs together. Running a
MapReduce job requires more than just a mapper and a reducer—it also needs to know
where to read its input and where to write its output. And that’s the catch—to get that
code to work, you’d need a place to put the intermediate output between step 1 and
step 2. Then you’d need to clean up the intermediate output to prevent it from using
up valuable disk space for longer than necessary. 

 This should immediately set off alarm bells, as it’s a clear indication that you’re
working at a low level of abstraction. You want an abstraction where the whole compu-
tation can be represented as a single conceptual unit and details like temporary path
management are automatically handled for you. 

6.6.2 Joins are very complicated to implement manually 

Let’s look at a more complicated example: implementing a join via MapReduce. Sup-
pose you have two separate datasets: one containing records with the fields id and age,
and another containing records with the fields user_id, gender, and location. You
wish to compute, for every id that exists in both datasets, the age, gender, and loca-
tion. This operation is called an inner join and is illustrated in figure 6.13. Joins are
extremely common operations, and you’re likely familiar with them from tools like SQL.

id age

3 25

1 71

7 37

8 21

id age gender location

1 71 m USA

3 25 m Japan

Inner join

user_id gender location

1 m USA

9 f Brazil

3 m Japan

Figure 6.13 Example of 
a two-sided inner join
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To do a join via MapReduce, you need to read two independent datasets in a single
MapReduce job, so the job needs to be able to distinguish between records from the
two datasets. Although we haven’t shown it in our pseudo-code so far, MapReduce
frameworks typically provide context as to where a record comes from, so we’ll extend
our pseudo-code to include this context. This is the code to implement an inner join: 

function join_map(sourcedir, record) {
if(sourcedir=="/data/age") {
emit(record.id, {"side" = "l"

, "values" = [record.age]})
} else {
emit(record.user_id,

         {"side" = "r",
          "values" = [record.gender, record.location])

}
}

function join_reduce(id, records) {
side_l = []
side_r = []

for(record : records) {
values = record.get("values")
if(record.get("side") == "l") {

side_l.add(values)
} else {

side_r.add(values)
}

}

for(l : side_l) {
for(r : side_r) {

emit(concat([id], l, r), null)
}

}
}

Although this is not a terrible amount of code, it’s still quite a bit of grunt work to get
the mechanics working correctly. There’s complexity here: determining which side of
the join a record belongs to is tied to specific directories, so you have to tweak the
code to do a join on different directories. Additionally, MapReduce forcing everything
to be in terms of key/value pairs feels inappropriate for the output of this job, which is
just a list of values. 

 And this is only a simple two-sided inner join joining on a single field. Imagine
joining on multiple fields, with five sides to the join, with some sides as outer joins and
some as inner joins. You obviously don’t want to manually write out the join code
every time, so you should be able to specify the join at a higher level of abstraction. 

Use the source directory the record 
came from to determine if the record 
is on the left or right side of the join.

Set the MapReduce key to be the id or 
user_id, respectively. This will cause 
all records of those ids on either side 
of the join to get to the same reduce 
invocation. If you were joining on 
multiple keys at once, you’d put a 
collection as the MapReduce key.The values you

care to put in
the output

record are put
into a list here.
Later they’ll be

concatenated
with records

from the other
side of the join
to produce the

output.

When reducing, first split 
records from either side of the 
join into “left” and “right” lists.

To achieve the
semantics of

joining,
concatenate

every record on
each side of the
join with every
record on the
other side of

the join.

The id is added to the concatenated 
values to produce the final result. 
Note that because MapReduce always 
operates in terms of key/value pairs, 
in this case you emit the result as the 
key and set the value to null. You 
could also do it the other way around.
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6.6.3 Logical and physical execution tightly coupled

Let’s look at one more example to really nail down why MapReduce is a low level of
abstraction. Let’s extend the word-count example to filter out the words the and a, and
have it emit the doubled count rather than the count. Here’s the code to accomplish
this: 

EXCLUDE_WORDS = Set("a", "the")

function map(sentence) {
for(word : sentence) {
if(not EXCLUDE_WORDS.contains(word)) {

emit(word, 1)
}

}
}

function reduce(word, amounts) {
result = 0
for(amt : amounts) {
result += amt

}

emit(result * 2)
}

This code works, but it seems to be mixing together multiple tasks into the same func-
tion. Good programming practice involves separating independent functionality into
their own functions. The way you really think about this computation is illustrated in
figure 6.14. 

 You could split this code so that each MapReduce job is doing just a single one of
those functions. But a MapReduce job implies a specific physical execution: first a set
of mapper processes runs to execute the map portion, then disk and network I/O hap-
pens to get the intermediate records to the reducer, and then a set of reducer pro-
cesses runs to produce the output. Modularizing the code would create more
MapReduce jobs than necessary, making the computation hugely inefficient. 

 And so you have a tough trade-off to make—either weave all the functionality
together, engaging in bad software-engineering practices, or modularize the code,
leading to poor resource usage. In reality, you shouldn’t have to make this trade-off at
all and should instead get the best of both worlds: full modularity with the code com-
piling to the optimal physical execution. Let’s now see how you can accomplish this. 

Split sentences
into words

Filter “a”
and “the”

Count number of
times each word

appears

Double the
count values Figure 6.14 Decomposing modi-

fied word-count problem
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6.7 Pipe diagrams: a higher-level way of thinking about 
batch computation
In this section we’ll introduce a much more natural way of thinking about batch com-
putation called pipe diagrams. Pipe diagrams can be compiled to execute as an efficient
series of MapReduce jobs. As you’ll see, every example we show—including all of
SuperWebAnalytics.com—can be concisely represented via pipe diagrams. 

 The motivation for pipe diagrams is simply to enable us to talk about batch compu-
tation within the Lambda Architecture without getting lost in the details of Map-
Reduce pseudo-code. Conciseness and intuitiveness are key here—both of which
MapReduce lacks, and both of which pipe diagrams excel at. Additionally, pipe dia-
grams let us talk about the specific algorithms and data-processing transformations for
solving example problems without getting mired in the details of specific tooling. 

6.7.1 Concepts of pipe diagrams

The idea behind pipe diagrams is to think of processing in
terms of tuples, functions, filters, aggregators, joins, and
merges—concepts you’re likely already familiar with from
SQL. For example, figure 6.15 shows the pipe diagram for
the modified word-count example from section 6.6.3 with
filtering and doubling added.

 The computation starts with tuples with a single field
named sentence. The split function transforms a single
sentence tuple into many tuples with the additional field
word. split takes as input the sentence field and creates
the word field as output. 

 Figure 6.16 shows an example of what happens to a set
of sentence tuples after applying split to them. As you
can see, the sentence field gets duplicated among all the
new tuples. 

 Of course, functions in pipe diagrams aren’t limited to
a set of prespecified functions. They can be any function
you can implement in any general-purpose programming
language. The same applies to filters and aggregators. 

 Next, the filter to remove a and the is applied, having the
effect shown in figure 6.17. 

Pipe diagrams in practice
Pipe diagrams aren’t a hypothetical concept; all of the higher-level MapReduce tools
are a fairly direct mapping of pipe diagrams, including Cascading, Pig, Hive, and Cas-
calog. Spark is too, to some extent, though its data model doesn’t natively include
the concept of tuples with an arbitrary number of named fields. 

Input:
[sentence]

Function:
Split

(sentence) -> (word)

Filter:
FilterAandThe

(word)

Group by:
[word]

Aggregator:
Count

() -> (count)

Output:
[word, count]

Function:
Double

(count) -> (double)

Figure 6.15 Modified 
word-count pipe diagram
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Next, the entire set of tuples is grouped by the word field, and the count aggregator is
applied to each group. This transformation is illustrated in figure 6.18. 

Function:
Split

(sentence) -> (word)

sentence

the dog

fly to the moon

dog

sentence word
the dog the
the dog dog

fly to the moon fly
fly to the moon to
fly to the moon the
fly to the moon moon

dog dog

Filter:
FilterAandThe

(word)

sentence word
the dog the
the dog dog

fly to the moon fly
fly to the moon to
fly to the moon the
fly to the moon moon

dog dog

sentence word
the dog dog

fly to the moon fly
fly to the moon to
fly to the moon moon

dog dog

Figure 6.16 Illustration of a pipe dia-
gram function

Figure 6.17 Illustration of a pipe dia-
gram filter

sentence word
the dog dog

dog dog

fly to the moon fly

fly to the moon to

fly to the moon moon

sentence word
the dog dog

fly to the moon fly
fly to the moon to
fly to the moon moon

dog dog

word count

dog 2

fly 1

to 1

moon 1

Group by:
[word]

Aggregator:
count

() -> (count)

Figure 6.18 Illustration of pipe diagram group by and aggregation
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Next, the count is doubled to create the new field
double, as shown in figure 6.19. 

 Finally, at the end the desired fields for output
are chosen and the rest of the fields are discarded. 

 As you can see, one of the keys to pipe diagrams
is that fields are immutable once created. One obvi-
ous optimization that you can make is to discard
fields as soon as they’re no longer needed (prevent-
ing unnecessary serialization and network I/O).
For the most part, tools that implement pipe dia-
grams do this optimization for you automatically.
So in reality, the preceding example would execute
as shown in figure 6.20. 

 There are two other important operations in
pipe diagrams, and both these operations are used
for combining independent tuple sets. 

 The first is the join operator, which allows you
to do inner and outer joins among any number of
tuple sets. Tools vary in how you specify the join
fields for each side, but we find the simplest nota-
tion is to choose as join fields whatever fields are common on all sides of the join. This
requires you to make sure the fields you want to join on are all named exactly the
same. Then, each side of the join is marked as inner or outer. Figure 6.21 shows some
example joins.  

sentence
the dog

fly to the moon
dog

word
the
dog
fly
to
the

moon

dog

word
dog
fly
to

moon

dog

word
dog
dog

fly

to

moon

Function:
split

(sentence) -> (word)

Filter:
FilterAandThe

(word)

Group by
[word]

Aggregator:
count

() -> (count)

Function:
double

(count) -> (double)

word count

dog 2

fly 1

to 1

moon 1

word double

dog 4

fly 2

to 2

moon 2

Figure 6.20 Fields are automatically discarded when no longer needed.

word count double

dog 2 4

fly 1 2

to 1 2

moon 1 2

word count

dog

fly

to 1

moon 1

Function:
double

(count) -> (double)

1

2

Figure 6.19 Illustration of 
running function double
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The second operation is the merge operation, which combines independent tuple
sets into a single tuple set. The merge operation requires all tuple sets to have the
same number of fields and specifies new names for the tuples. Figure 6.22 shows an
example merge. 

name age
bob 25
alex 71
bob 37
sally 21

name gender
bob m
sally f

george m
bob m

name location
maria USA
sally Brazil

george Japan

name age gender
bob 25 m
bob 25 m
bob 37 m
bob 37 m
sally 21 f

name gender location

bob m

sally f

george m

bob m

name age gender location

sally 21 f Brazil

george null m Japan

Join Join Join

Inner
Inner

Outer
InnerOuter

Inner Inner

null

Brazil

Japan

null

Figure 6.21 Examples of inner, 
outer, and mixed joins

id age

3 25

1 71

7 37

user_id age

21

22

ID AGE
3 25
1 71
7 37
1 21
2 22

MERGE:
[ID, AGE]

2

1

Figure 6.22 Example of pipe diagram merge operation
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Let’s now look at a more interesting example. Suppose you have one dataset with
fields [person, gender], and another dataset of [person, follower]. Now suppose
you want to compute the number of males each person follows. The pipe diagram for
this computation looks like figure 6.23. 

6.7.2 Executing pipe diagrams via MapReduce

Pipe diagrams are a high-level way of thinking about batch computation, but they can
be straightforwardly compiled to a series of MapReduce jobs. That means they can be
executed in a scalable manner. Every pipe diagram operation can be translated to
MapReduce: 

■ Functions and filters—Functions and filters look at one record at a time, so they
can be run either in a map step or in a reduce step following a join or aggrega-
tion. 

■ Group by—Group by is easily translated to MapReduce via the key emitted in the
map step. If you’re grouping by multiple values, the key will be a list of those
values. 

■ Aggregators—Aggregation happens in the reduce step because it looks at all
tuples for a group. 

Input:
[person, gender]

Filter:
KeepMale
(gender)

Group by:
[follower]

Aggregator:
count

() -> (count)

Output:
[follower, count]

Input:
[person, follower]

Join

Figure 6.23 Pipe diagram
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■ Join—You’ve already seen the basics of implementing joins, and you’ve seen
they require some code in the map step and some code in the reduce step. The
code you saw in section 6.6.2 for a two-sided inner join can be extended to han-
dle any number of sides and any mixture of inner and outer joins. 

■ Merge—A merge operation just means the same code will run on multiple sets
of data.

Most importantly, a smart compiler will pack as many operations into the same map or
reduce step as possible to minimize MapReduce steps and maximize efficiency. This
lets you decompose your computation into independent steps without sacrificing per-
formance in the process. Figure 6.24 shows an abbreviated pipe diagram and uses
boxes to show how it would compile to MapReduce jobs. The reduce step following
other reduce steps implies a map step in between to set up the join.  

6.7.3 Combiner aggregators

There’s a specialized kind of aggregator that can execute a lot more efficiently than
normal aggregators: combiner aggregators. There are a few situations in which using

Input

Function

Filter

Join

Function

Group by

Aggregator

Filter

Filter

Join

Output

Function

Map

Map

Reduce
Reduce

Reduce

Input

Figure 6.24 Pipe diagram compiled to MapReduce jobs
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combiner aggregators is essential for scalability, and these situa-
tions come up often enough that it’s important to learn how
these aggregators work. 

 For example, let’s say you want to compute the count of all
the records in your dataset. The pipe diagram would look like fig-
ure 6.25. 

 The GroupBy GLOBAL step indicates that every tuple should go
into the same group and the aggregator should run on every sin-
gle tuple in your dataset. The way this would normally execute is
that every tuple would go to the same machine and then the
aggregator code would run on that machine. This isn’t scalable
because you lose any semblance of parallelism. 

 Count, however, can be executed a lot more efficiently.
Instead of sending every tuple to a single machine, you can com-
pute partial counts on each machine that has a piece of the data-
set. Then you send the partial counts to a single machine to sum
them together and produce your global count. Because the num-
ber of partial counts will be equal to the number of machines in your cluster, this is a
very small amount of work for the global portion of the computation. 

 All combiner aggregators work this way—doing a par-
tial aggregation first and then combining the partial
results to get the desired result. Not every aggregator can
be expressed this way, but when it’s possible you get huge
performance and scalability boosts when doing global
aggregations or aggregations with very few groups. Count-
ing and summing, two of the most common aggregators,
can be implemented as combiner aggregators. 

6.7.4 Pipe diagram examples

In the beginning of the chapter, we introduced three
example problems for batch computation. Now let’s take
a look at how you can solve these problems in a practical
and scalable manner with pipe diagrams. 

 Pageviews over time is straightforward, as shown in fig-
ure 6.26. Simply convert each timestamp to a time bucket,
and then count the number of pageviews per URL/
bucket. 

 Gender inference is also easy, as shown in figure 6.27.
Simply normalize each name, use the maleProbabilityOf-
Name function to get the probability of each name, and then
compute the average male probability per person. Finally,

Group by:
GLOBAL

Aggregator:
count

() -> (count)

Output:
[count]

Input:
[value]

Figure 6.25 Global 
aggregation

Function:
ToHourBucket

(timestamp) -> (bucket)

Group by:
[url, bucket]

Aggregator:
count

() -> (count)

Output:
[url, bucket, count]

Input:
[url, timestamp]

Figure 6.26 Pipe diagram 
for pageviews over time
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run a function that classifies people with average prob-
abilities greater than 0.5 as male, and lower as female. 

 Finally, we come to the influence-score problem.
The pipe diagram for this is shown in figure 6.28.
First, the top influencer is chosen for each person by
grouping by responder-id and selecting the influ-
encer who that person responded to the most. The
second step simply counts how many times each influ-
encer appeared as someone else’s top influencer. 

 As you can see, these example problems all decom-
pose very nicely into pipe diagrams, and the pipe dia-
grams map nicely to how you think about the data
transformations. When we build out the batch layer
for SuperWebAnalytics.com in chapter 8—which
requires much more involved computations—you’ll
see how much time and effort are saved by using this
higher level of abstraction. 

6.8 Summary
The batch layer is the core of the Lambda Architec-
ture. The batch layer is high latency by its nature, and
you should use the high latency as an opportunity to
do deep analysis and expensive calculations you can’t
do in real time. You saw that when designing batch

Function:
NormalizeName

(name) -> (normed-name)

Group by:
[id]

Aggregator:
average

(prob) -> (avg)

Output:
[id, gender]

Input:
[id, name]

Function:
maleProbabilityofName

(normed-name) -> (prob)

Function:
ClassifyGender

(avg) -> (gender)

Figure 6.27 Pipe diagram 
for gender inference

Input:
[source-id, responder-id]

Group by:
[responder-id]

Aggregator:
TopInfluencer

(source-id) -> (influencer)

Group by:
[influencer]

Aggregator:
Count

() -> (score)

Output:
[influencer, score]

Figure 6.28 Pipe diagram for in-
fluence score
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views, there’s a trade-off between the size of the generated view and the amount of
work that will be required at query time to finish the query. 

 The MapReduce paradigm provides general primitives for precomputing query
functions across all your data in a scalable manner. However, it can be hard to think in
MapReduce. Although MapReduce provides fault tolerance, parallelization, and task
scheduling, it’s clear that working with raw MapReduce is tedious and limiting. You
saw that thinking in terms of pipe diagrams is a much more concise and natural way to
think about batch computation. In the next chapter you’ll explore a higher-level
abstraction called JCascalog that implements pipe diagrams. 
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Batch layer: Illustration

In the last chapter you saw how pipe diagrams are a natural and concise way to specify
computations that operate over large amounts of data. You saw that pipe diagrams
can be executed as a series of MapReduce jobs for parallelism and scalability. 

 In this illustration chapter, we’ll look at a tool that’s a fairly direct mapping of
pipe diagrams: JCascalog. There’s a lot to cover in JCascalog, so this chapter is a lot
more involved than the previous illustration chapters. Like always, you can still
learn the full theory of the Lambda Architecture without reading the illustration
chapters. But with JCascalog, in particular, we aim to open your minds as to what is
possible with data-processing tools. A key point is that your data-processing code is
no different than any other code you write. As such, it requires good abstractions
that are reusable and composable. Abstraction and composition are the corner-
stones of good software engineering. 

This chapter covers
■ Sources of complexity in data-processing code 
■ JCascalog as a practical implementation of 

pipe diagrams 
■ Applying abstraction and composition 

techniques to data processing
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 Rather than just focus on how JCascalog lets you implement pipe diagrams, we’ll go
beyond that and show how JCascalog enables a whole range of abstraction and compo-
sition techniques that just aren’t possible with other tools. We’ve found that most devel-
opers think in terms of SQL being the gold standard of data manipulation tools, and we
find that mindset to be severely limiting. Many data-processing tools suffer from inci-
dental complexities that arise, not from the nature of the problem, but from the design
of the tool itself. We’ll discuss some of these complexities, and then show how JCascalog
gets around these classic pitfalls. You’ll see that JCascalog enables programming tech-
niques that allow you to write very concise, very elegant code. 

7.1 An illustrative example
Word count is the canonical MapReduce example, so let’s take a look at how it’s
implemented using JCascalog. 

 For introductory purposes, we’ll explicitly store the input dataset—the Gettysburg
address—in an in-memory list where each phrase is stored separately:

List SENTENCE = Arrays.asList(
Arrays.asList("Four score and seven years ago our fathers"),
Arrays.asList("brought forth on this continent a new nation"),
Arrays.asList("conceived in Liberty and dedicated to"),
Arrays.asList("the proposition that all men are created equal"),
...

The following snippet is a complete JCascalog implementation of word count for this
dataset. 

Api.execute(new StdoutTap(),
new Subquery("?word", "?count")

.predicate(SENTENCE, "?sentence")

.predicate(new Split(), "?sentence").out("?word")

.predicate(new Count(), "?count"));

The first thing to note is that this code is really concise! JCascalog’s high-level nature
may make it difficult to believe it’s a MapReduce interface, but when this code is exe-
cuted, it runs as a MapReduce job. 

 Upon running this code, it would print the output to your console, returning
results similar to the following partial listing (for brevity): 

RESULTS
----------
But 1
Four 1
God 1
It 3

Truncated
for brevity

Queries output
to be written

to the console

Specifies the output types
returned by the query

Reads each 
sentence from 
the input

Tokenizes each
sentence into

separate words
Determines the count

for each word
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Liberty 1
Now 1
The 2
We 2

Let’s go through this word-count code line by line to understand what it’s doing. If
every detail isn’t completely clear, don’t worry. We’ll look at JCascalog in much greater
depth later in the chapter. 

 In JCascalog, inputs and outputs are defined via an abstraction called a tap. The tap
abstraction allows results to be displayed on the console, stored in HDFS, or written to
a database. The first line reads “execute the following computation and direct the
results to the console.” 

Api.execute(new StdoutTap(), ...

The second line begins the definition of the computation. Computations are repre-
sented via instances of the Subquery class. This subquery will emit a set of tuples con-
taining two fields named ?word and ?count:

new Subquery("?word", "?count")

The next line sources the input data for the query. It reads from the SENTENCE dataset
and emits tuples containing one field named ?sentence. As with outputs, the tap
abstraction allows inputs from different sources, such as in-memory values, HDFS files,
or the results from other queries:

.predicate(SENTENCE, "?sentence")

The fourth line splits each sentence into a set of words, giving the Split function the
?sentence field as input and storing the output in a new field called ?word:

.predicate(new Split(), "?sentence").out("?word")

The Split function is not part of the JCascalog API but demonstrates how new user-
defined functions can be integrated into queries. Its operation is defined via the fol-
lowing class. Its definition should be fairly intuitive; it takes in input sentences and
emits a new tuple for each word in the sentence:

public static class Split extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
String sentence = call.getArguments().getString(0);
for (String word: sentence.split(" ")) {

call.getOutputCollector().add(new Tuple(word));
}

}
}

Finally, the last line counts the number of times each word appears and stores the
result in the ?count variable:

.predicate(new Count(), "?count"));

Now that you’ve had a taste of JCascalog, let’s take a look at some of the common pitfalls
of data-processing tools that can lead to unnecessary complexity. 

Partitions 
a sentence 
into words

Emits each word
in its own tuple
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7.2 Common pitfalls of data-processing tools
As with any code, keeping your data-processing code simple is essential so that you can
reason about your system and ensure correctness. Complexity in code arises in two
forms: essential complexity that is inherent in the problem to be solved, and accidental
complexity that arises solely from the approach to the solution. By minimizing acciden-
tal complexity, your code will be easier to maintain and you’ll have greater confidence
in its correctness. 

 In this section we’ll look at two sources of accidental complexity in data-processing
code: custom languages and poorly composable abstractions. 

7.2.1 Custom languages 

A common source of complexity in data-processing tools is the use of custom lan-
guages. Examples of this include SQL for relational databases or Pig and Hive for
Hadoop. Using a custom language for data processing, while tempting, introduces a
number of serious complexity problems. 

 The use of custom languages introduces a language barrier that requires an inter-
face to interact with other parts of your code. This interface is a common source of
errors and an unavoidable source of complexity. As an example, SQL injection attacks
take advantage of an improperly defined interface between user-facing code and the
generated SQL statements for querying a relational database. Because of this inter-
face, you have to be constantly on your guard to ensure you don’t make any mistakes. 

 The language barrier also causes all kinds of other complexity issues. Modulariza-
tion can become painful—the custom language may support namespaces and func-
tions, but ultimately these are not going to be as good as their general-purpose
language counterparts. Furthermore, if you want to incorporate your own business
logic into queries, you must create your own user-defined functions (UDFs) and regis-
ter them with the language. 

 Lastly, you have to coordinate switching between your general-purpose language
and your data-processing language. For instance, you may write a query using a cus-
tom language and then want to use the Pail class from chapter 5 to append the result-
ing data to an existing store. The Pail invocation is just standard Java code, so you’ll
need to write shell scripts that perform tasks in the correct order. Because you’re
working in multiple languages stitched together via scripts, mechanisms like excep-
tions and exception handling break down—you have to check return codes to make
sure you don’t continue to the next step when the prior step failed. 

 These are all examples of accidental complexity that can be avoided completely
when your data-processing tool is a library for your general-purpose language. You
can then freely intermix regular code with data-processing code, use your normal
mechanisms for modularization, and have exceptions work properly. As you’ll see, it’s
possible for a regular library to be concise and just as pleasant to work with as a cus-
tom language. 
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7.2.2 Poorly composable abstractions

Another common source of accidental complexity can occur when using multiple
abstractions in conjunction. It’s important that your abstractions can be composed
together to create new and greater abstractions—otherwise you’re unable to reuse
code and you keep reinventing the wheel in slightly different ways. 

 A good example of this is the Average aggregator in Apache Pig (another abstrac-
tion for MapReduce). At the time of this writing, the implementation has over 300 lines
of code and 15 separate method definitions. Its intricacy is due to code optimizations
for improved performance that coordinate work in both map and reduce phases. 

 The problem with Pig’s implementation is that it re-implements the functionality
of the Count and Sum aggregators without being able to reuse the code written for
those aggregators. This is unfortunate because it’s more code to maintain, and every
time an improvement is made to Count and Sum, those changes need to be incorpo-
rated into Average as well. It’s much better to define Average as the composition of a
count aggregation, a sum aggregation, and the division function. 

 Unfortunately, Pig’s abstractions don’t allow you to define Average in that way. In
JCascalog though, that is exactly how Average is defined: 

PredicateMacroTemplate Average =
PredicateMacroTemplate.build("?val")
.out("?avg")
.predicate(new Count(), "?count")
.predicate(new Sum(), "?val").out("?sum")
.predicate(new Div(), "?sum", "?count").out("?avg");

In addition to its simplicity, this definition of Average is as efficient as the Pig imple-
mentation because it reuses the previously optimized Count and Sum aggregators. The
reason JCascalog allows this sort of composition but Pig doesn’t is entirely due to fun-
damental differences in how computations are expressed in JCascalog versus Pig. We’ll
cover this functionality of JCascalog in depth later—the takeaway here is the impor-
tance of abstractions being composable. There are many other examples of composi-
tion that we’ll explore throughout this chapter. 

 Now that you’ve seen some common sources of complexity in data-processing
tools, let’s begin our exploration of JCascalog. 

7.3 An introduction to JCascalog
JCascalog is a Java library that provides composable abstractions for expressing
MapReduce computations. Recall that the goal of this book is to illustrate the con-
cepts of Big Data, using specific tools to ground those concepts. There are other tools
that provide higher-level interfaces to MapReduce—Hive, Pig, and Cascading among
the most popular—but many of them still have limitations in their ability to abstract
and compose data-processing code. We’ve chosen JCascalog because it was specifically
written to enable new abstraction and composition techniques to reduce the complex-
ity of batch processing. 
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 JCascalog is a declarative abstraction where computations are expressed via logical
constraints. Rather than providing explicit instructions on how to derive the desired
output, you instead describe the output in terms of the input. From that description,
JCascalog determines the most efficient way to perform the calculation via a series of
MapReduce jobs. 

 If you’re experienced with relational databases, JCascalog will seem both strange
and familiar at the same time. You’ll recognize familiar concepts like declarative pro-
gramming, joins, and aggregations, albeit in different packaging. But it may seem dif-
ferent because rather than SQL, it’s an API based on logic programming. 

7.3.1 The JCascalog data model 

JCascalog’s data model is the same as that of the pipe diagrams in the last chapter.
JCascalog manipulates and transforms tuples—named lists of values where each value
can be any type of object. A set of tuples shares a schema that specifies how many fields
are in each tuple and the name of each field. Figure 7.1 illustrates an example set of
tuples with a shared schema. 

 When executing a query, JCascalog represents the initial data as tuples and trans-
forms the input into a succession of other tuple sets at each stage of the computation. 

The shared schema defines names
for each field contained in a tuple.

Each tuple corresponds to a separate
record and can contain different
types of data.

?gender

"f"

"m"

"m"

"f"

?name ?age

"david" 25

"emily" 21

"jim" 48

28"alice"

b

c
Figure 7.1 An ex-
ample set of tuples 
with a schema de-
scribing their con-
tents

An abundance of punctuation?!
After seeing examples of JCascalog, a natural question is, “What’s the meaning of
all those question marks?” We’re glad you asked. 

Fields whose names start with a question mark (?) are non-nullable. If JCascalog en-
counters a tuple with a null value for a non-nullable field, it’s immediately filtered from
the working dataset. Conversely, field names beginning with an exclamation mark (!)
may contain null values. 

Additionally, field names starting with a double exclamation mark (!!) are also nul-
lable and are needed to perform outer joins between datasets. For joins involving
these kinds of field names, records that do not satisfy the join condition between
datasets are still included in the result set, but with null values for these fields where
data is not present. 
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The best way to introduce JCascalog is through a variety of examples. Along with the
SENTENCE dataset you saw earlier, we’ll use a few other in-memory datasets to demon-
strate the different aspects of JCascalog. Examples from these datasets are shown
in figure 7.2, with the full set available in the source code bundle that accompanies
this book. 

 JCascalog benefits from a simple syntax that’s capable of expressing complex que-
ries. We’ll examine JCascalog’s query structure next. 

7.3.2 The structure of a JCascalog query 

JCascalog queries have a uniform structure consisting of a destination tap and a sub-
query that defines the actual computation. Consider the following example, which
finds all people from the AGE dataset younger than 30: 

Api.execute(new StdoutTap(),
new Subquery("?person")

.predicate(AGE, "?person", "?age")

.predicate(new LT(), "?age", 30));

Note that instead of expressing how to perform a computation, JCascalog uses predi-
cates to describe the desired output. These predicates are capable of expressing all
possible operations on tuple sets—transformations, filters, joins, and so forth—and
they can be categorized into four main types: 

■ A function predicate specifies a relationship between a set of input fields and a set
of output fields. Mathematical functions such as addition and multiplication fall
into this category, but a function can also emit multiple tuples from a single input. 

■ A filter predicate specifies a constraint on a set of input fields and removes all
tuples that don’t meet the constraint. The less-than and greater-than operations
are examples of this type. 

?person ?age

"david" 25

"chris" 40

"bob" 33

28"alice"

?person ?follows

"emily" "gary"

"bob" "david"

"alice" “bob"

“david""alice"

1

?num

2

-1

0

?person ?gender

"emily" "f"

"chris" "m"

"bob" "m"

"f""alice"

AGE GENDER FOLLOWS INTEGER

Figure 7.2 Example datasets we’ll use to demonstrate the JCascalog API: a set of people’s ages, 
a separate set for gender, a person-following relationship (as in Twitter), and a set of integers

The destination tap

The output fields

Predicates that define 
the desired output
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■ An aggregator predicate is a function on a group of tuples. For example, an aggre-
gator could compute an average, which emits a single output for an entire group.

■ A generator predicate is simply a finite set of tuples. A generator can either be a
concrete source of data, such as an in-memory data structure or file on HDFS, or
it can be the result from another subquery. 

Additional example predicates are shown in figure 7.3.

A key design decision for JCascalog was to make all predicates share a common struc-
ture. The first argument to a predicate is the predicate operation, and the remaining
arguments are parameters for that operation. For function and aggregator predicates,
the labels for the outputs are specified using the out method. 

 Being able to represent every piece of your computation via the same simple, con-
sistent mechanism is the key to enabling highly composable abstractions. Despite
their simple structure, predicates provide extremely rich semantics. This is best illus-
trated by examples, as shown in figure 7.4.

 As we earlier mentioned, joins between datasets are also expressed via predicates—
we’ll expand on this next. 

Type Example Description

.predicate(new Multiply(), 2, "?x").out("?z")

Generator .predicate(SENTENCE, "?sentence") A generator that creates
tuples from the SENTENCE
dataset, with each tuple
consisting of a single field
called .?sentence

Function This function doubles the
value of and stores the?x
result as .?z

.predicate(new LT(), "?y", 50) This filter removes all tuples
unless the value of is?y
less than 50.

Filter

Figure 7.3 Example generator, function, and filter predicates. We’ll discuss aggregators later in the chap-
ter, but they share the same structure.

Type Example Description

.predicate(new Plus(), 2, "?x").out(6)Function
as filter

Although is aPlus()
function, this predicate
filters all tuples where
the value of ≠ .?x 4

.predicate(new Multiply(), 2, "?a").out("?z")

.predicate(new Multiply(), 3, "?b").out("?z")
In concert, these
predicates filter all tuples
where ≠ .2(?a) 3(?b)

Compound
filter

Figure 7.4 The simple predicate structure can express deep semantic relationships to describe the de-
sired query output.
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7.3.3 Querying multiple datasets

Many queries will require that you combine multiple datasets. In relational databases,
this is most commonly done via a join operation, and joins exist in JCascalog as well. 

 Suppose you want to combine the AGE and GENDER datasets to create a new set of
tuples that contains the age and gender of all people that exist in both datasets. This is
a standard inner join on the ?person field, and it’s illustrated in figure 7.5.

In a language like SQL, joins are expressed explicitly. Joins in JCascalog are implicit
based on the variable names. Figure 7.6 highlights the differences.

 The way joins work in JCascalog is exactly how joins work in pipe diagrams: tuple
sets are joined using the common field names as the join key. In this query, the same
field name, ?person, is used as the output of two different generator predicates, AGE
and GENDER. Because each instance of the variable must have the same value for any
resulting tuples, JCascalog knows that the right way to resolve the query is to do an
inner join between the AGE and GENDER datasets. 

?name ?age

"jim" 32

"david" 25

"chris" 40

33"bob"

?name ?gender

"emily" "f"

"chris" "m"

"bob" "m"

"f""alice"

AGE GENDER

"m"

"m"

?gender?name ?age

"chris" 40

33"bob"

Inner join on ?name

Figure 7.5 This inner join of the AGE and 
GENDER datasets merges the data for tu-
ples for values of ?person that are pres-
ent in both datasets.

SELECT AGE.person, AGE.age, GENDER.gender
FROM AGE
INNER JOIN GENDER
ON AGE.person = GENDER.person

new Subquery("?person", "?age", "?gender")
.predicate(AGE, "?person", "?age")
.predicate(GENDER, "?person", "?gender);

SQL

JCascalog By specifying as?person
a field name for both datasets,
JCascalog does an implicit
join using the shared name.

This clause explicitly defines
the join condition.

Language Query Description

Figure 7.6 A comparison between SQL and JCascalog syntax for an inner join between the AGE and 
GENDER datasets
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Inner joins only emit tuples for join fields that exist for all sides of the join. But there
are circumstances where you may want results for records that don’t exist in one data-
set or the other, resulting in a null value for the non-existing data. These operations
are called outer joins and are just as easy to do in JCascalog. Consider the join exam-
ples in figure 7.7.

 As mentioned earlier, for outer joins, JCascalog uses fields beginning with !! to
generate null values for non-existing data. In the left outer join, a person must have
an age to be included in the result set, with null values being introduced for missing
gender data. For the full outer join, all people present in either dataset are included
in the results, with null values being used for any missing age or gender data. 

 Besides joins, there are a few other ways to combine datasets. Occasionally you
have two datasets that contain the same type of data, and you want to merge them into
a single dataset. For this, JCascalog provides the combine and union functions. The
combine function concatenates the datasets together, whereas union will remove any
duplicate records during the combining process. Figure 7.8 illustrates the difference
between the two functions.

 So far you’ve seen transformations that act on one tuple at a time or that combine
datasets together. We’ll next cover operations that process groups of tuples. 

null32"jim"

null"david" 25

"m"

"m"

?gender?name ?age

"chris" 40

33"bob"

32 null"jim"

null "f""emily"

null25"david"

"m""chris" 40

"m"

"f"

?gender?name ?age

"bob" 33

null"alice"

new Subquery("?person", "?age", "!!gender")
.predicate(AGE, "?person", "?age")
.predicate(GENDER, "?person", "!!gender);

new Subquery("?person", "!!age", "!!gender")
.predicate(AGE, "?person", "!!age")
.predicate(GENDER, "?person", "!!gender);

Left outer
join

Full outer
join

Join type Query Results

Figure 7.7 JCascalog queries to implement two types of outer joins between the AGE and GENDER data-
sets
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7.3.4 Grouping and aggregators

There are many types of queries where you want to aggregate information for specific
groups: “What is the average salary for different professions?” or “What age group
writes the most tweets?” In SQL you explicitly state how records should be grouped
and the operations to be performed on the resulting sets. 

 There is no explicit GROUP BY command in JCascalog to indicate how to partition
tuples for aggregation. Instead, as with joins, the grouping is implicit based on the
desired query output. To illustrate this, let’s look at a couple of examples. 

 The first example uses the Count aggregator to find the number of people each
person follows:

new Subquery("?person", "?count")
.predicate(FOLLOWS, "?person", "_")
.predicate(new Count(), "?count");

?x ?y

"a"

1

"b"

1

4

"a"

TEST1
?x ?y

"b"

5

"b"

3

4

"d"

TEST2

?x ?y

"d" 5

"b"

1

"b"

3

4

"a"

UNION
?y?x

3"b"

4

1

"b"

"a"

5

4

"a"

"d"

"b"

1

COMBINE

Api.combine(TEST1, TEST2)Api.union(TEST1, TEST2)

Figure 7.8 JCascalog provides two different means to merge compatible datasets: combine and union. 
combine does a simple aggregation of the two sets, whereas union removes any duplicate tuples.

The output field names
define all potential

groupings.The underscore
informs

JCascalog to
ignore this field.

When executing the 
aggregator, the 
output fields imply 
tuples should be 
grouped by ?person.
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When JCascalog executes the count predicate, it deduces from the declared output
that a grouping on ?person must be done first. 

 The second example is similar, but performs a couple of other operations before
applying the aggregator:

new Subquery("?gender", "?count")
.predicate(GENDER, "?person", "?gender")
.predicate(AGE, "?person", "?age")
.predicate(new LT(), "?age", 30)
.predicate(new Count(), "?count");

After the AGE and GENDER datasets are joined, JCascalog filters all people with age 30 or
above. At this point, the tuples are grouped by gender and the count aggregator is applied. 

 JCascalog actually supports three types of aggregators: aggregators, buffers, and paral-
lel aggregators. We’re only introducing the notion for now; we’ll delve into the differ-
ences between these aggregators when we cover implementing custom predicates in
section 7.3.6.

 We’ve spoken at length about the different types of JCascalog predicates. Next, let’s
step through the execution of a query to see how tuple sets are manipulated at differ-
ent stages of the query’s computation. 

7.3.5 Stepping though an example query 

For this exercise, we’ll start with two test
datasets, as shown in figure 7.9.

 We’ll use the following query to explain
the execution of a JCascalog query, observ-
ing how the sets of tuples change at each
stage in the execution:

new Subquery("?a", "?avg")
.predicate(VAL1, "?a", "?b")
.predicate(VAL2, "?a", "?c")
.predicate(new Multiply(), 2, "?b").out("?double-b")
.predicate(new LT(), "?b", "?c")
.predicate(new Count(), "?count")
.predicate(new Sum(), "?double-b").out("?sum")
.predicate(new Div(), "?sum", "?count").out("?avg")
.predicate(new Multiply(), 2, "?avg").out("?double-avg")
.predicate(new LT(), "?double-avg", 50);

This query
will group
tuples by
?gender.

Before the aggregator, 
the AGE and GENDER 
datasets are joined.

Tuples are then
filtered on ?age. Even though the ?person and ?age 

fields were used in earlier 
predicates, they are discarded by 
the aggregator because they aren’t 
included in the specified output.

Generators
for the test

datasets Pre-aggregator 
function and 
filter

Multiple
aggregators

Post-aggregator predicates

"d" 1

?a ?b

"d" 12

"c" 5

"b" 2

1"a"

VAL1

"b"

?a

"c"

15

?c

3

"d"

"b" 6

4

VAL2

Figure 7.9 Test data for our query-execution 
walkthrough
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At the start of a JCascalog query, the generator datasets exist in independent branches
of the computation. In the first stage of execution, JCascalog applies functions, filters
tuples, and joins datasets until it can no longer do so. A function or filter can be
applied if all the input variables for the operation are available. This stage of the query
is illustrated in figure 7.10. 

 Note that some predicates require other predicates to be applied first. In the
example, the less-than filter couldn’t be applied until after the join was performed. 

 Eventually this phase reaches a point where no more predicates can be applied
because the remaining predicates are either aggregators or require variables that are
not yet available. At this point, JCascalog enters the aggregation phase of the query.

"d" 1

?a ?b

"d" 12

"c" 5

"b" 2

1"a"

VAL1

"b"

?a

"c"

15

?c

3

"d"

"b" 6

4

VAL2

4

2

10

2

?double-b

24

"d" 1

?a ?b

"d" 12

"c" 5

"b" 2

1"a"

.predicate(new Multiply(), 2, "?b")
.out("?double-b")

<implicit join with VAL2 on "?a">

?c

4

15

15

3

64

4

10

2

?double-b

24

"d" 1

?a ?b

"d" 12

"c" 5

"b" 2

2"b"

.predicate(new LT(), "?b", "?c")

?c

4

15

15

64

4

2

?double-b

24

"d" 1

?a ?b

"d" 12

"b" 2

2"b"

These operations can
be applied immediately
and in either order.

Conversely, this filter
cannot be applied
until after the join.

b

c

Figure 7.10 The first stage of execution entails applying all functions, filters, and joins where the input 
variables are available.
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JCascalog groups the tuples by any available variables that are declared as output vari-
ables for the query and then applies the aggregators to each group of tuples. This is
illustrated in figure 7.11.

 After the aggregation phase, all remaining functions and filters are applied. The
end of this phase drops any variables from the tuples that aren’t declared in the out-
put fields for the query. 

 You’ve now seen how to use predicates to construct arbitrarily complex queries
that filter, join, transform, and aggregate your data. You’ve seen how JCascalog imple-
ments every operation in pipe diagrams and provides a concise way for specifying a

?c?double-b?a ?b

1521"d"

152412"d"

642"b"

442"b"

?c

4

15

15

64

4

2

?double-b

24

"d" 1

?a ?b

"d" 12

"b" 2

2"b"

26

8

?sum?a ?count

"d" 2

2"b"

8

?double-avg

26

4

?avg

1326

8

?sum?a ?count

"d" 2

2"b"

?a

"d"

"b" 4

?avg

13

<implicit group by ?a>

.predicate(new Count(), "?count")

.predicate(new Sum(), "?double-b")
.out("?sum)

.predicate(new Div(), "?sum", "?count")
.out("?avg")

.predicate(new Multiply(), 2, "?avg")
.out("?double-avg")

.predicate(new LT(), "?double-avg", 50)

In the aggregation
stage, JCascalog
groups tuples by
the output variables
declared in the query.

After the grouping, the
aggregator operators
are applied.

All remaining predicates
are applied to the
resulting tuples.

The desired output
variables are sent to
the specified tap.

e

d

c

b

Figure 7.11 The aggregation and post-aggregation stages for the query. The tuples are grouped based 
on the desired output variables, and then all aggregators are applied. All remaining predicates are then 
executed, and the desired output is returned.

Licensed to Mark Watson <nordickan@gmail.com>



125An introduction to JCascalog

pipe diagram. We’ll next demonstrate how you can implement your own custom fil-
ters, functions, and aggregators for use as JCascalog predicates. 

7.3.6 Custom predicate operations 

You’ll frequently need to create additional predicate types to implement your business
logic. Toward this end, JCascalog exposes simple interfaces to define new filters, func-
tions, and aggregators. Most importantly, this is all done with regular Java code by
implementing the appropriate interfaces. 

FILTERS 

We’ll begin with filters. A filter predicate requires a single method named isKeep that
returns true if the input tuple should be kept, and false if it should be filtered. The fol-
lowing is a filter that keeps all tuples where the input is greater than 10:

public static class GreaterThanTenFilter extends CascalogFilter {
public boolean isKeep(FlowProcess process, FilterCall call) {
return call.getArguments().getInteger(0) > 10;

}
}

FUNCTIONS 

Next up are functions. Like filters, a function predicate implements a single
method—in this case named operate. A function takes in a set of inputs and then
emits zero or more tuples as output. Here’s a simple function that increments its
input value by one: 

public static class IncrementFunction extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {

int v = call.getArguments().getInteger(0);
call.getOutputCollector().add(new Tuple(v + 1));

}
}

A verbose explanation
You may have noticed that this example computes an average by doing a count, sum,
and division. This was solely for the purposes of illustration—these operations can
be abstracted into an Average aggregator, as you saw earlier in this chapter. 

You may have also noticed that some variables are never used after a point, yet still
remain in the resulting tuple sets. For example, the ?b variable is not used after the
LT predicate is applied, but it’s still grouped along with the other variables. In reality,
JCascalog will drop any variables once they’re no longer needed so that they aren’t
serialized or transferred over the network. This is the optimization mentioned in the
previous chapter that can be applied to any pipe diagram. 

Obtains the first 
element of the 
input tuple and 
treats the value 
as an integer 

Obtains the
value from the

input tuple

Emits a new 
tuple with the 
incremented value
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Figure 7.12 shows the result of applying this function to a set of tuples. 
 Recall from earlier that a function can act as a filter if it emits zero tuples for a

given tuple. Here’s a function that attempts to parse an integer from a string, filtering
out the tuple if the parsing fails: 

public static class TryParseInteger extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
String s = call.getArguments().getString(0);
try {

int i = Integer.parseInt(s);
call.getOutputCollector().add(new Tuple(i));

}
catch(NumberFormatException e) {}

}
}

Figure 7.13 illustrates this function applied to a tuple set. You can observe that one
tuple is filtered by the process. 

 Finally, if a function emits multiple output tuples, each output tuple is appended
to its own copy of the input arguments. As an example, here’s the Split function
from word count: 

public static class Split extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
String sentence = call.getArguments().getString(0);
for(String word: sentence.split(" ")) {

call.getOutputCollector().add(new Tuple(word));
}

}
}

?a

"a"

"a" 1

4

?b

1

"b" 5

?c

2

2

?a

"a"

"a" 1

4

?b

1

"b"
.predicate(new IncrementFunction(), "?b")

.out("?c")

Figure 7.12 The IncrementFunction predicate applied to some sample tuples

Regards
input value
as a string

Emits value as 
integer if parsing 
succeeds

Emits nothing if 
parsing fails

?a

"aaa"

"3" 1

4

?b

1

"2"
3

2

1

"2"

?c

"3"

?b

4

?a
.predicate(new TryParseInteger(), "?a")
.out("?c")

Figure 7.13 The TryParseInteger function filters rows where ?a can’t be converted to an integer 
value.

For simplicity, splits into words
using a single whitespace

Emits each
word as a

separate tuple
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Figure 7.14 shows the result of applying this function to a set of sentences. You can see
that each input sentence gets duplicated for each word it contains. 

AGGREGATORS 

The last class of customizable predicate operations is aggregators. As we mentioned
earlier, there are three types of aggregators, each with different properties regarding
composition and performance. 

 Perhaps rather obviously, the first type of aggregator is literally called an aggregator.
An aggregator looks at one tuple at a time for each tuple in a group, adjusting some
internal state for each observed tuple. The following is an implementation of sum as
an aggregator: 

public static class SumAggregator extends CascalogAggregator {
public void start(FlowProcess process, AggregatorCall call) {

call.setContext(0);
}

public void aggregate(FlowProcess process, AggregatorCall call) {
int total = (Integer) call.getContext();
call.setContext(total + call.getArguments().getInteger(0));

}

public void complete(FlowProcess process, AggregatorCall call) {
int total = (Integer) call.getContext();
call.getOutputCollector().add(new Tuple(total));

}
}

The next type of aggregator is called a buffer. A buffer receives an iterator to the entire
set of tuples for a group. Here’s an implementation of sum as a buffer: 

public static class SumBuffer extends CascalogBuffer {
public void operate(FlowProcess process, BufferCall call) {
Iterator<TupleEntry> it = call.getArgumentsIterator();
int total = 0;
while(it.hasNext()) {

TupleEntry t = it.next();
total+=t.getInteger(0);

}

"data"
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"the big dog"

"data""data"

"dog""the big dog"

?w

"the"

"big""the big dog"

?s

"the big dog"

.predicate(new Split(), "?s").out("?w")

Figure 7.14 The Split function can emit multiple tuples from a single input tuple.
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call.getOutputCollector().add(new Tuple(total));
}

}

Buffers are easier to write than aggregators because you only need to implement one
method rather than three. But unlike buffers, aggregators can be chained in a query.
Chaining means you can compute multiple aggregations at the same time for the same
group. Buffers can’t be used along with any other aggregator type, but aggregators
can be used with other aggregators. 

 In the context of the MapReduce framework, both buffers and aggregators rely on
reducers to perform the actual computation for these operators. This is illustrated in
figure 7.15. 

 JCascalog packs together as many operations as possible into map and reduce
tasks, but these aggregator operators are solely performed by reducers. This necessi-
tates a network-intensive approach because all data for the computation must flow
from the mappers to the reducers. Furthermore, if there were only a single group
(such as if you were counting the number of tuples in a dataset), all the tuples would
have to be sent to a single reducer for aggregation, defeating the purpose of using a
parallel computation system. 

 Fortunately, the last type of aggregator operation can do aggregations more scal-
ably and efficiently. These aggregators are analogous to combiner aggregators from
pipe diagrams, though in JCascalog they’re called parallel aggregators. A parallel aggre-
gator performs an aggregation incrementally by doing partial aggregations in the
map tasks. 

 Figure 7.16 shows the division of labor for sum when implemented as a parallel
aggregator. Not every aggregator can be implemented as a parallel aggregator, but
when it’s possible, you can achieve huge performance gains by avoiding all that net-
work I/O. 
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Figure 7.15 Execution of sum aggregator and sum buffer at the MapReduce level
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To write your own parallel aggregator, you must implement two functions: 

■ The init function maps the arguments from a single tuple to a partial aggrega-
tion for that tuple.

■ The combine function specifies how to combine two partial aggregations into a
single aggregation value. 

The following code implements sum as a parallel aggregator:

public static class SumParallel implements ParallelAgg {
public void prepare(FlowProcess process, OperationCall call) {}

public List<Object> init(List<Object> input) {
return input;

}

public List<Object> combine(List<Object> input1,
List<Object> input2) {
int val1 = (Integer) input1.get(0);
int val2 = (Integer) input2.get(0);
return Arrays.asList((Object) (val1 + val2));

}
}

Parallel aggregators can be chained with other parallel aggregators or regular aggre-
gators. But when chained with regular aggregators, parallel aggregators are unable to
do partial aggregations in the map tasks and will act like regular aggregators. 

 You’ve now seen all the abstractions that comprise JCascalog subqueries: predi-
cates, functions, filters, and aggregators. The power of these abstractions lies in how
they promote reuse and composability. Let’s now take a look at the various composi-
tion techniques possible with JCascalog. 
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Figure 7.16 Execution of a sum parallel aggregator at the MapReduce level
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7.4 Composition
During our discussion on minimizing accidental complexity in your data-processing
code, we emphasized that abstractions should be composable to create new and
greater functionalities. This philosophy is pervasive throughout JCascalog. 

 In this section we’ll cover composing abstractions via combining subqueries, pred-
icate macros, and functions to dynamically create both subqueries and macros. These
techniques take advantage of the fact that there’s no barrier between the query tool and
the general-purpose programming language, allowing you to manipulate your queries
in a very fine-grained way. They also take advantage of JCascalog’s incredibly uniform
structure—of everything being predicates that are specified the exact same way. This
property enables powerful compositional techniques that are unique to JCascalog. 

7.4.1 Combining subqueries 

Subqueries are the basic unit of abstraction in JCascalog, for they represent an arbi-
trary view on any number of data sources. One of the most powerful features of sub-
queries is that they can be addressed as data sources for other subqueries. Just as you
break down a large program into many functions, this allows you to similarly decon-
struct large queries. 

 Let’s look at an example to find all the records from the FOLLOWS dataset where
each person in the record follows more than two people: 

Subquery manyFollows = new Subquery("?person")
.predicate(FOLLOWS, "?person", "_")
.predicate(new Count(), "?count")
.predicate(new GT(), "?count", 2);

Api.execute(new StdoutTap(),
new Subquery("?person1", "?person2")

.predicate(manyFollows, "?person1")

.predicate(manyFollows, "?person2")

.predicate(FOLLOWS, "?person1", "?person2"));

Subqueries are lazy—nothing is computed until Api.execute is called. In the previous
example, even though the manyFollows subquery is defined first, no MapReduce jobs
are launched until the Api.execute call is made. 

 Here’s another example of a query that requires multiple subqueries. This query
extends word count by finding the number of words that exist for each computed
word count: 
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Subquery wordCount = new Subquery("?word", "?count")
.predicate(SENTENCE, "?sentence")
.predicate(new Split(), "?sentence").out("?word")
.predicate(new Count(), "?count");

Api.execute(new StdoutTap(),
new Subquery("?count", "?num-words")

.predicate(wordCount, "_", "?count")

.predicate(new Count(), "?num-words"));

Combining subqueries is a powerful paradigm for expressing complex operations
using simple components. This power is made more accessible because functions can
generate subqueries directly, as we’ll discuss next. 

7.4.2 Dynamically created subqueries

One of the most common techniques when using JCascalog is to write functions that
create subqueries dynamically. That is, you write regular Java code that constructs a
subquery according to some parameters. You’ve previously witnessed the advantages
of using subqueries as data sources for other subqueries, and generating subqueries
dynamically makes it easier to access these benefits. 

 For example, suppose you have text files on HDFS representing transaction data:
an ID for the buyer, an ID for the seller, a timestamp, and a dollar amount. The data is
JSON-encoded and looks like this: 

{"buyer": 123, "seller": 456, "amt": 50, "timestamp": 1322401523}
{"buyer": 1009, "seller": 12, "amt": 987, "timestamp": 1341401523}
{"buyer": 2, "seller": 98, "amt": 12, "timestamp": 1343401523}

You may have a variety of computations you want to run on this data, but each of your
queries shares a common need to parse the data from the text files. A useful utility
function would take an HDFS path and return a subquery that parses the data at that
location: 

public static class ParseTransactionRecord extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
String line = call.getArguments().getString(0);
Map parsed = (Map) JSONValue.parse(line);
call.getOutputCollector().add(new Tuple(parsed.get("buyer"),

parsed.get("seller"),
parsed.get("amt"),
parsed.get("timestamp")));

}
}
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public static Subquery parseTransactionData(String path) {
return new Subquery("?buyer", "?seller", "?amt", "?timestamp")
.predicate(Api.hfsTextline(path), "?line")
.predicate(new ParseTransactionRecord(), "?line")
.out("?buyer", "?seller", "?amt", "?timestamp");

}

Once it’s defined, you can use this abstraction for any query over the dataset. For
example, here’s a query that computes the number of transactions for each buyer: 

public static Subquery buyerNumTransactions(String path) {
return new Subquery("?buyer", "?count")
.predicate(parseTransactionData(path), "?buyer", "_", "_", "_")
.predicate(new Count(), "?count");

}

This is a very simple example of creating subqueries dynamically, but it illustrates how
subqueries can be composed together in order to abstract away pieces of a more com-
plicated computation. Let’s look at another example in which the number of predi-
cates in a subquery is dynamic based on the arguments.

 Suppose you have a set of retweet data with each record denoting a retweet of some
other tweet, and you want to find all chains of retweets of a certain length. That is, for
a chain of length 4, you want to know all retweets of retweets of retweets of tweets. 

 The original dataset consists of pairs of tweet identifiers. Notice that you can trans-
form these pairs into chains of length 3 by joining the dataset with itself. Similarly, you
can then find chains of length 4 by joining the length 3 chains with the original pairs.
To illustrate, here’s a query that returns chains of length 3, given an input generator
of pairs: 

public static Subquery chainsLength3(Object pairs) {
return new Subquery("?a", "?b", "?c")
.predicate(pairs, "?a", "?b")
.predicate(pairs, "?b", "?c");

}

An additional join finds all chains of length 4: 

public static Subquery chainsLength4(Object pairs) {
return new Subquery("?a", "?b", "?c", "?d")
.predicate(pairs, "?a", "?b")
.predicate(pairs, "?b", "?c")
.predicate(pairs, "?c", "?d");

}

To generalize this process to find chains of any length, you need a function that gener-
ates a subquery with the correct number of predicates and variables. This can be
accomplished by writing some fairly simple Java code: 
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public static Subquery chainsLengthN(Object pairs, int n) {
List<String> genVars = new ArrayList<String>();
for(int i=0; i<n; i++) {
genVars.add(Api.genNullableVar());

}

Subquery ret = new Subquery(genVars);
for(int i=0; i<n-1; i++) {
ret = ret.predicate(pairs, genVars.get(i), genVars.get(i+1));

}
return ret;

}

An interesting note about this function is that it’s not specific to retweet data: it can
take any subquery or source of data containing pairs and return a subquery that com-
putes chains. 

 Let’s look at one more example of a dynamically created subquery. Suppose you
want to draw a random sample of N elements from a dataset of unknown size. The
simplest strategy to accomplish this in a distributed and scalable way is with the follow-
ing algorithm: 

1 Generate a random number for every element.
2 Find the N elements with the smallest random numbers.

JCascalog has a built-in aggregator named Limit for performing the second step.
Limit uses a strategy similar to parallel aggregators where it finds the smallest N ele-
ments on each map task, and then combines the results from all the map tasks to find
the N smallest elements overall. The following code implements this strategy to draw a
random sample: 

public static Subquery fixedRandomSample(Object data, int n) {
List<String> inputVars = new ArrayList<String>();
List<String> outputVars = new ArrayList<String>();
for(int i=0; i < Api.numOutFields(data); i++) {

inputVars.add(Api.genNullableVar());
outputVars.add(Api.genNullableVar());

}

String randVar = Api.genNullableVar();
return new Subquery(outputVars)

.predicate(data, inputVars)

.predicate(new RandLong(), randVar)

.predicate(Option.SORT, randVar)

.predicate(new Limit(n), inputVars).out(outputVars);
}
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This algorithm is very scalable: it parallelizes the computation of the fixed sample
without ever needing to centralize all the records in one place. 

 When writing JCascalog queries, you’ll notice that certain combinations of predi-
cates are frequently used together. In these situations it’s simpler and more efficient
to express the collective functionality with a single operation. We’ll next delve into
how JCascalog supports this ability by the use of predicate macros. 

7.4.3 Predicate macros

A predicate macro is an operation that JCascalog expands to another set of predicates.
Because JCascalog represents all operations as predicates, predicate macros can create
powerful abstractions by composing predicates together, whether they’re aggregators,
filters, or functions. 

 You’ve already seen one example of a predicate macro with the definition of Aver-
age at the beginning of this chapter. Let’s look at that definition once more: 

PredicateMacroTemplate Average =
PredicateMacroTemplate.build("?val")
.out("?avg")
.predicate(new Count(), "?count")
.predicate(new Sum(), "?val").out("?sum")
.predicate(new Div(), "?sum", "?count").out("?avg");

Average consists of three predicates composed together: a count aggregation, a sum
aggregation, and a division function. Figure 7.17 demonstrates how Average is called
and its resulting expansion.

 The definition of Average uses a JCascalog template to specify the predicates this par-
ticular predicate macro should be expanded to. But not everything can be specified with

Uses a template to
define a predicate macro

with one input variableThe predicate
macro

returns a
single output.

Average expands to 
three predicates: 
count, sum, and div.

Temp variables
store the results of

the aggregation. Divides aggregate results
to compute final output

new Subquery("?result")
.predicate(INTEGER, "?n")
.predicate(Average, "?n).out("?result");

new Subquery("?result")
.predicate(INTEGER, "?n")
.predicate(new Count(), "?count_gen1")
.predicate(new Sum(), "?n).out("?sum_gen2")
.predicate(new Div(), "?sum_gen2", "?count_gen1")
.out("?result");

Example source code using
the Average predicate macro.

Behind the scenes, JCascalog
expands the macro into its
constituent predicates using
unique field names so as not
to conflict with the surrounding
subquery.

Figure 7.17 Predicate macros provide powerful abstractions for writing simple queries that JCascalog 
automatically expands into the constituent predicates.
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a template. For example, suppose you wanted to create a predicate macro that computes
the number of distinct values for a given set of variables, like so: 

new Subquery("?distinct-followers-count")
.predicate(FOLLOWS, "?person", "_")
.predicate(new DistinctCount(), "?person")
.out("?distinct-followers-count");

This subquery determines the number of distinct users that follow at least one other
person. Unlike calculating the average of a single variable, you could potentially calcu-
late distinct counts for variable sets of any size. You can’t use templates because they
only support fixed sets of input and output variables. Let’s look at another way to
define predicate macros to achieve this functionality. 

 First, you need to define an aggregator that performs the actual computation. This
aggregator must work even if the number of tuples for a group is so large that it could
not be contained in memory. To solve this problem, you can make use of a feature
called secondary sorting that sorts the group of tuples before being processed by the
aggregator. Once sorted, the aggregator only increments the distinct count if the cur-
rent tuple is different from its predecessor. 

 The code to perform the aggregation follows: 

public static class DistinctCountAgg extends CascalogAggregator {
static class State {

int count = 0;
Tuple last = null;

}

public void start(FlowProcess process, AggregatorCall call) {
call.setContext(new State());

}

public void aggregate(FlowProcess process, AggregatorCall call) {
State s = (State) call.getContext();
Tuple t = call.getArguments().getTupleCopy();
if(s.last==null || !s.last.equals(t)) {
s.count++;

}
s.last = t;

}

public void complete(FlowProcess process, AggregatorCall call) {
State s = (State) call.getContext();
call.getOutputCollector().add(new Tuple(s.count));

}
}

DistinctCountAgg contains the logic to compute the unique count given a sorted
input; unsurprisingly, JCascalog has an Option.SORT predicate to specify how to sort
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the tuples for each group. The following code demonstrates how you define the sort
and compute the distinct count by hand: 

public static Subquery distinctCountManual() {
return new Subquery("?distinct-followers-count")
.predicate(FOLLOWS, "?person", "_")
.predicate(Option.SORT, "?person")
.predicate(new DistinctCountAgg(), "?person")
.out("?distinct-followers-count");

Of course, you would much prefer a predicate macro here so that you don’t have to
specify the sort and aggregator each time you want to do a distinct count. The most
general form of a predicate macro is a function that takes a list of input fields and a
list of output fields and then returns a set of predicates. The following is the definition
of DistinctCount as a regular PredicateMacro: 

public static class DistinctCount implements PredicateMacro {
public List<Predicate> getPredicates(Fields inFields,

Fields outFields) {
List<Predicate> ret = new ArrayList<Predicate>();
ret.add(new Predicate(Option.SORT, inFields));
ret.add(new Predicate(new DistinctCountAgg(),

inFields,
outFields));

return ret;
}

}

7.4.4 Dynamically created predicate macros

You previously saw how regular Java functions can dynamically create subqueries, so it’s
no great surprise that you can do the same with predicate macros. This is an extremely
powerful technique that showcases the advantages of having your data-processing tool
be a library for your general-purpose programming language. 

 Consider the following query: 

new Subquery("?x", "?y", "?z")
.predicate(TRIPLETS, "?a", "?b", "?c")
.predicate(new IncrementFunction(), "?a").out("?x")
.predicate(new IncrementFunction(), "?b").out("?y")
.predicate(new IncrementFunction(), "?c").out("?z");

Although it’s a simple query, there’s considerable repetition because it must explicitly
apply IncrementFunction to each field from the input data. It would be nice to be
able to eliminate this repetition, like so: 

Sorts the tuple 
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new Subquery("?x", "?y", "?z")
.predicate(TRIPLETS, "?a", "?b", "?c")
.predicate(new Each(new IncrementFunction()), "?a", "?b", "?c")
.out("?x", "?y", "?z");

Rather than repeatedly using IncrementFunction, the Each predicate macro applies
the function to the specified input fields and generates the desired output. The
expansion of the predicate macro matches the three separate predicates in the origi-
nal query. Here’s the Each predicate macro:

public static class Each implements PredicateMacro {
Object _op;

public Each(Object op) {
_op = op;

}

public List<Predicate> getPredicates(Fields inFields,
Fields outFields) {

List<Predicate> ret = new ArrayList<Predicate>();
for(int i=0; i<inFields.size(); i++) {

Object in = inFields.get(i);
Object out = outFields.get(i);
ret.add(new Predicate(_op,

Arrays.asList(in),
Arrays.asList(out)));

}
return ret;

}
}

Let’s look at another example of a dynamic predicate macro. We earlier defined
IncrementFunction as its own function that increments its argument, but in reality it’s
simply the Plus function with one argument set to 1. It would be useful to have a pred-
icate macro that abstracts away the partial application of a predicate operation. You
could then define the Increment operation like this: 

Object Increment = new Partial(new Plus(), 1);

As you can see, Partial is a predicate macro that fills in some of the input fields. It
allows you to rewrite the query that increments the triplets like so: 

new Subquery("?x", "?y", "?z")
.predicate(TRIPLETS, "?a", "?b", "?c")
.predicate(new Each(new Partial(new Plus(), 1)), "?a", "?b", "?c")
.out("?x", "?y", "?z");

After expanding all the predicate macros, this query translates to the following: 

new Subquery("?x", "?y", "?z")
.predicate(TRIPLETS, "?a", "?b", "?c")
.predicate(new Plus(), 1, "?a").out("?x")
.predicate(new Plus(), 1, "?b").out("?y")
.predicate(new Plus(), 1, "?c").out("?z");

Each is parameterized 
with the predicate 
operation to use.

The predicate macro 
creates a predicate 
for each given input/
output field pair.
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The definition of Partial is straightforward: 

public static class Partial implements PredicateMacro {
Object _op;
List<Object> _args;

public Partial(Object op, Object... args) {
_op = op;
_args = Arrays.asList(args);

}

public List<Predicate> getPredicates(Fields inFields,
Fields outFields) {

List<Predicate> ret = new ArrayList<Predicate>();
List<Object> input = new ArrayList<Object>();
input.addAll(_args);
input.addAll(inFields);
ret.add(new Predicate(_op, input, outFields));
return ret;

}
}

The predicate macro simply prepends any provided input fields to the input fields
specified when the subquery is created. As you can see, dynamic predicate macros give
you great power to manipulate the construction of your subqueries. 

7.5 Summary 
The way you express your computations is crucially important if you want to avoid com-
plexity, prevent bugs, and increase productivity. The main techniques for fighting com-
plexity are abstraction and composition, and it’s important that your data-processing
tool encourage these techniques rather than make them difficult. 

 In the next two chapters, we’ll reinforce the concepts of the batch layer by building
out the batch layer for SuperWebAnalytics.com. SuperWebAnalytics.com is a more
sophisticated and realistic example that’s intended to really demonstrate the intricacies
of batch computation in terms of architecture, algorithms, and implementation. 
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An example batch layer:
Architecture and algorithms

You’ve now learned all the pieces of the batch layer: formulating a schema for your
data, storing a master dataset, and running computations at scale with a minimum
of complexity. In this chapter you’ll tie these pieces together into a coherent batch
layer. No new theory is introduced in this chapter—our goal is to reinforce the
concepts of the previous chapters by going through a batch layer design from start
to finish. There is great value in understanding how the theory maps to a non-
trivial example. 

 Specifically, you’ll learn how to create the batch layer for our running example
of SuperWebAnalytics.com. SuperWebAnalytics.com is complex enough to require
a fairly sophisticated batch layer, but not so complex as to lose you in the details.

This chapter covers
■ Building a batch layer from end to end 
■ Practical examples of precomputation 
■ Iterative graph algorithms 
■ HyperLogLog for efficient set-cardinality 

operations
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You’ll see that the various batch layer abstractions fit together nicely and that the
resulting batch layer for SuperWebAnalytics.com is quite elegant. 

 After reviewing the product requirements for SuperWebAnalytics.com, we’ll give a
broad overview of what the batch layer must accomplish and what should be precom-
puted for each batch view. In this chapter you’ll see the architecture and algorithms
for the batch layer (using pipe diagrams), and in the next chapter you’ll see them
implemented in code using specific tools. Throughout the chapter, keep in mind the
flexibility of the batch layer. We’ll cover the processing workflow for three example
batch views, but it’s very easy to extend the batch layer to compute new views. This
means the batch layer is inherently prepared to adapt to changing customer and
application requirements. 

8.1 Design of the SuperWebAnalytics.com batch layer
You’ll build the batch layer for SuperWebAnalytics.com to support the computation of
three types of queries. Recall that the goal of the batch layer is to precompute views so
that the specified queries can be satisfied with low latency. After introducing the que-
ries that SuperWebAnalytics.com will support, we’ll discuss the batch views needed to
answer them. 

8.1.1 Supported queries

SuperWebAnalytics.com will support three distinct types of queries: 

■ Pageview counts by URL sliced by time—“What were the pageviews for each day over
the past year?” and “How many pageviews have there been in the past 12
hours?” 

■ Unique visitors by URL sliced by time—“How many unique users frequented this
domain in 2010?” and “How many unique people visited this domain each hour
for the past three days?” 

■ Bounce-rate analysis—“What percentage of people visit the page without visiting
any other pages on this website?” 

The way people are modeled makes the second query type more challenging. Recall
that the SuperWebAnalytics.com schema represents a person as either the user ID of a
logged-in user or via a cookie identifier from the browser. A single person could there-
fore visit the same site under different identifiers—their cookie may change if they
clear the cookie, or the user could register with multiple user IDs. 

 The schema handles this multiplicity by defining equiv edges that indicate when
two different user representations are actually the same person. The equiv graph for a
person can be arbitrarily complex, as shown in figure 8.1. Accurately computing this
second query type requires that you must analyze the data to determine which
pageviews belong to one person using different identifiers. 
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8.1.2 Batch views

Next we’ll review the batch views needed to satisfy each query. The key to each batch
view is striking a balance between the size of the precomputed views and the amount
of on-the-fly computation required at query time. 

PAGEVIEWS OVER TIME

You want to be able to retrieve the number of pageviews for a URL for any time range
down to the granularity of an hour. As mentioned in chapter 4, precomputing the
pageview counts for every possible time range is infeasible, as that would require an
unmanageable 380 million precomputed values for every URL for each year covered
by the dataset. Instead, you can precompute a smaller number and require more com-
putation to be done at query time. 

 The simplest approach is to precompute the number of pageviews for each URL
for every hour bucket. This would result in a batch view that looks like figure 8.2. To
resolve a query, you retrieve the value for every hour bucket in the time range, and
sum the values together. 

PageviewPageview Pageview Pageview Pageview

EquivEquiv

Equiv

Person (Cookie):
KLMNO

Person (Cookie):
ABCDE

Person (Cookie):
FGHIJ

Person (UserID):
123

Person (UserID):
200

Person (UserID):
87

Page:
http://foo.com/about

Page:
http://foo.com/blog

A person may acess the
same URL using multiple
user identifiers.

Users with only one
identifier will not have any
equiv edges.

c

b

Figure 8.1 Examples of different pageviews for the same person being captured using different identifiers

URL

foo.com/blog

foo.com/blog

foo.com/blog

foo.com/blog

foo.com/blog

foo.com/blog

foo.com/blog

2012/12/08 15:00

2012/12/08 16:00

2012/12/08 17:00

2012/12/08 18:00

2012/12/08 19:00

2012/12/08 20:00

2012/12/08 21:00

876

987

762

413

1098

657

101

Hour # Pageviews

Function:
sum

Results:
2930

Figure 8.2 Precomputing pageviews with an hourly granularity
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But there’s a problem with this approach—the query becomes slower as you increase
the size of the time range. Finding the number of pageviews for a one-year time
period requires approximately 8,760 values to be retrieved from the batch view and
added together. Since many of those values are going to be served from disk, this can
cause the latency of queries with large ranges to be substantially higher than queries
with small ranges. 

 Fortunately, the solution is simple. Instead of precomputing values only using an
hourly granularity, you can also precompute at coarser granularities such as 1-day, 7-
day (1-week), and 28-day (1-month) intervals. An example best demonstrates how this
improves latency. 

 Suppose you want to compute the number of pageviews from March 3 at 3 a.m.
through September 17 at 8 a.m. If you only used hourly values, this query would
require retrieving and summing the values for 4,805 hour buckets. Alternatively, using
coarser granularities can substantially reduce the number of retrieved values. The
idea is to retrieve values for each month between March 3 and September 17, and
then add or subtract values for more refined intervals to get the desired range. This
idea is illustrated in figure 8.3.

For this query, only 26 values need to be retrieved—almost a 200x improvement! You
may wonder how expensive it is to precompute values for the 1-day, 7-day, and 28-day
intervals in addition to the hourly buckets. Astonishingly, there is hardly any addi-
tional cost. Figure 8.4 shows how many time buckets are needed for each granularity
for a one-year period. 

Month

Week

Day

Query range

Bucketing values at different
granularities reduces the
number of retrievals for
queries involving large
time ranges.

The strategy is to retrieve
the values for the large
buckets; then add (horizontal
cross-hatching) or subtract
(diagonal cross-hatching)
values for smaller buckets to
cover the desired query range.

Figure 8.3 Optimizing pageviews over large query ranges using coarser granularities

Granularity

hourly

daily

weekly

monthly

8760

~ 365

~ 52

~ 13

Number of buckets in 1 year

Figure 8.4 Number of buckets in a 
one-year period for each granularity
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Adding up the numbers, the 1-day, 7-day, and 28-day buckets require an additional 430
values to be precomputed for every URL for a one-year period. That’s only a 5% increase
in precomputation for a 200x reduction in the query-time work for large ranges—a
more than acceptable trade-off. 

UNIQUE VISITORS OVER TIME

The next query type determines the number of unique visitors for a specified time
interval. This seems like it should be similar to pageviews over time, but there is one
key difference: unique counts are not additive. Whereas you can get the total number
of pageviews for a two-hour period by adding the values for the individual hours
together, you can’t do the same for this query type. This is because a unique count
represents the size of a set of elements, and there may be overlap between the sets for
each hour. If you simply added the counts for the two hours together, you’d double-
count the people who visited the URL in both time intervals. 

 The only way to compute the number of uniques with perfect accuracy over any
time range is to compute the unique count on the fly. This requires random access to
the set of visitors for each URL for each hour time bucket. This is doable but expen-
sive, as essentially your entire master dataset must be indexed. Alternatively, you can
use an approximation algorithm that sacrifices some accuracy to vastly decrease the
amount of data to be indexed in the batch view. An example of an approximation
algorithm for distinct counting is the HyperLogLog algorithm. For every URL and
hour bucket, HyperLogLog only requires information on the order of 1 KB to esti-
mate set cardinalities of up to one billion with a maximum 2% error rate.1

 Although it’s an intriguing algorithm, we want to avoid becoming sidetracked with
the details of HyperLogLog. Instead, let’s treat it as a black box and focus on its
interface: 

interface HyperLogLog {
long size();
void add(Object o);
HyperLogLog merge(HyperLogLog... otherSets);

}

Each HyperLogLog object represents a set of elements and supports adding new ele-
ments to the set, merging with other HyperLogLog sets, and retrieving the size of the
set. Using HyperLogLog makes the uniques-over-time query very similar to the
pageviews-over-time query. The key differences are that a relatively larger value is com-
puted for each URL and time bucket, and the HyperLogLog merge function is used to
combine time buckets instead of summing counts together. As with pageviews over
time, HyperLogLog sets for 1-day, 7-day, and 28-day granularities are created to
reduce the amount of work to be done at query time. 

1 The HyperLogLog algorithm is described in a research paper titled “HyperLogLog: the analysis of a near-
optimal cardinality estimation algorithm” by Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric
Meunier, available at http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf.
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BOUNCE-RATE ANALYSIS

The final query type is to determine the bounce rate for every domain. The batch view
for this query is simple: a map from each domain to the number of bounced visits and
the total number of visits. The bounce rate is simply the ratio of these two values. 

 The key to precomputing these values is defining what exactly constitutes a visit.
We’ll define two pageviews as being part of the same visit if they are from the same
user to the same domain and are separated by less than half an hour. A visit is consid-
ered a bounce if it only contains one pageview. 

8.2 Workflow overview
Now that the specific requirements for the batch views are understood, we can define
the batch layer workflow at a high level. The basis of the workflow is illustrated in fig-
ure 8.5.

 At the start of the batch layer workflow is a single folder on the distributed filesys-
tem that contains the master dataset. The first step is simply to take any new data that
has accumulated since the last time the batch layer ran and append it to the master
dataset.

 The next two steps normalize the data in preparation for computing the batch
views. The first normalization step accounts for the fact that different URLs can refer

Append new data

URL normalization

User ID normalization

Remove duplicate
pageview events

Pageviews-over-time
batch view

Unique-visitors-over-
time batch view Bounce-rate batch view

Incorporate newly arrived
data into the master dataset.

Different URLs may refer to
the same web resource.

A single user may have
multiple identifiers.

Batch views depend on
processing distinct events.

After data is prepared, batch views
can be computed in parallel.

Collect new data:
011011011...

b

c

d

e

f

Figure 8.5 Batch workflow for SuperWebAnalytics.com
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to the same resource. For example, the distinct URLs www.mysite.com/blog/1?utm=1
and http://mysite.com/blog/1 refer to the same location. This first normalization
step transforms all URLs to a standard format so that future computations can cor-
rectly aggregate the data. 

 The second normalization step is needed because data for the same person may
exist under different user identifiers. In order to support queries about visits and visi-
tors, you must select a single identifier for each person. This latter normalization step
processes the equiv graph to accomplish this task. Since the batch views only make use
of the pageviews data, only the pageview edges will be converted to use these selected
user IDs. 

 The next step deduplicates the pageview events. Recall from chapter 2 the advan-
tages of having your data units contain enough information to make them uniquely
identifiable. In problematic scenarios (such as network partitioning), it’s common to
register the same pageview multiple times to ensure that the event is recorded. De-
duplicating the pageviews is necessary to compute the batch views, as they depend on
the distinct events in the dataset. 

 The final step is to use the normalized data to compute the batch views described
in the previous section. Note that this workflow is a pure recomputation workflow—
every time new data is added, the batch views are recomputed from scratch. In a later
chapter, you’ll learn that in many cases you can incrementalize the batch layer such
that recomputing using the entire master dataset is not always required. But it’s abso-
lutely essential to have the pure recomputation workflow defined, because you need
to recompute from scratch in case the views become corrupted. 

 Let’s now look at the design for each step in more detail. We’ll focus on architec-
ture and algorithms, showing pipe diagrams for every data-transformation step, and
we’ll leave the nitty-gritty code details for next chapter. 

8.3 Ingesting new data
One approach you might take to add data to the master dataset is to insert new files into
the master dataset folder as the new data comes in. But there’s a problem with this
approach. Suppose your batch workflow needs to run multiple computations over the
master dataset, such as to compute multiple views. The computations may start at differ-
ent times, which means every view will be representative of the master dataset at different
times. While this is not necessarily a deal-breaker, we think it’s much simpler to reason
about your views when you know they’re all based on the exact same master dataset.

 One simple way to deal with this problem is to have new data written into a new-
data/ folder. Then the first step of the batch workflow is to move whatever data was in
new-data/ into the master dataset folder (potentially vertically partitioning it in the
process). Once the data has been moved, the corresponding files in new-data/ are
deleted. The result is that the batch workflow has full control over when data is added
to the master dataset and can ensure that every batch view is based on the exact same
master dataset. 
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8.4 URL normalization
The next step of the workflow is to normalize all of
the URLs in the master dataset. The query to accom-
plish this task requires a custom function that
implements the normalization logic. Normalization
can involve stripping URL parameters, adding
http:// to the beginning, removing trailing slashes,
and so on. Most importantly, all the normalization
logic is self-contained in a single function and can
operate on every URL independently. 

 The pipe diagram for this computation is
extremely simple and is shown in figure 8.6. As you
can see, all it has to do is run a function on each
data unit.

8.5 User-identifier normalization
The next step is to select a single user identifier for each person. This is the most
sophisticated portion of the workflow, as it involves a fully distributed iterative graph
algorithm. Despite its complexity, it only requires a few small pipe diagrams to solve it.
With the appropriate tooling, you can implement it in only about 100 lines of code (as
will be demonstrated in the next chapter). 

 User IDs are marked as belonging to the same person via equiv edges. If you were
to visualize these edges from a dataset, you’d see numerous independent subgraphs,
as shown in figure 8.7. 

Extracting fields from objects in pipe diagrams
Generally your data is packaged into objects containing the fields you care about. For
example, a Pageview object contains the fields url, timestamp, and userid. When
using a real-world implementation of pipe diagrams, your computation starts with a
single field containing your object, and you run a function on that object to extract the
fields you want to manipulate (to join on, group on, use as arguments to functions,
and so on). For conciseness, in this chapter we’ll typically skip the extraction step
and start the pipe diagram with the input being the constituent fields of the object
being manipulated. 

Each independent subgraph
corresponds to a unique user..1 3

4
5

11

2

7

6

9
Figure 8.7 Example equiv graph

Input:
[url, userid, timestamp]

Function:
NormalizeURL

(url) -> (normed-url)

Output:
[normed-url, userid, timestamp]

Figure 8.6 URL-normalization pipe 
diagram
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Each subgraph represents a unique user. For each person, you need to select a single iden-
tifier and create a mapping from the other IDs to this identifier, as shown in figure 8.8. 

 You’ll accomplish this by transforming the original equiv graph to the form depicted
in figure 8.8. For this example, the transformation is shown in figure 8.9, where every
user ID associated with a person maps to a single ID uniquely chosen for that person. 

This idea must be translated into a concrete algorithm that runs scalably using batch
computation. All of our previous examples of batch computation involved executing a
single pipe diagram a single time to generate the desired output. For this algorithm,
however, it’s impossible to get the desired results in a single step. Instead, you must
take an iterative approach where each step modifies the graph to a state closer to the
desired structure shown in figure 8.9. Once you’ve defined the iterative step, you exe-
cute it repeatedly until no further progress is made. This is known as reaching a fixed
point where the resulting output is the same as the input. When this point is reached,
the graph has attained the desired state. 

 At each iteration, the algorithm will examine the neighbors for each node in the
graph. It will determine the smallest ID among the connected nodes, and then ensure
that each edge points to the node with this minimum value. This process is illustrated
for a single node in figure 8.10.

User ID Mapped
user ID

2

3

4

5

11

7

9

1

1

1

1

1

6

6

If a user has multiple IDs,
map the extraneous IDs to the
minimum value for the user.        

Only need to store remapped
IDs, so selected IDs (1, 6)
are omitted.

b

c
Figure 8.8 Mapping from user IDs 
to a single identifier for each set

1 3

4
5

11

2

7

6

9
Figure 8.9 Original equiv graph 
transformed so that all nodes in 
a set point to a single node

4
5

11

2

4
11

5

2

As the algorithm analyzes
the neighbors of node 5,
the edges are modified

to point to node 2.
Figure 8.10 Example 
of modifying the edges 
around a single node in 
a single iteration
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You can see how this algorithm works on the equiv graph from figure 8.7. Figure 8.11
shows the transformations of the graph until it reaches the fixed point. 

 Let’s formulate a pipe diagram that implements the iterative algorithm you just
saw. The input to the algorithm is a set of 2-tuples of person IDs representing equiv
edges. 

 The first requirement of the iterative algorithm is to determine the immediate
neighbors for each node. You could try grouping the tuples by their first element, but
this would exclude edges where the given node is stored in the last element. So the
first step is to emit every edge in both directions using a function we’ll call Bidirec-
tionalEdges. That way, when grouping by the first element, you get every edge that
node exists in. BidirectionalEdges is illustrated in figure 8.12. 

1 3

4
5

11

2

1 3

4
5

11

2

1 3

4
5

11

2

1 3

4
5

11

2

Initial graph Iteration 1

Iteration 2 Iteration 3/Fixed point

Notice that when an
edge is modified, it
is not necessarily
removed.

In Iteration 1, when
the algorithm processes
the neighbors for node 4,
it changes the [3,4] edge
to [3,1]. However, when
the algorithm processes
the neighbors for node 3,
its only (current) neighbor
is node 4, so the edge is
preserved.

This logic is also
observed in the last
iteration. No new edges
are introduced, but many
edges are removed.

Figure 8.11 Iterating the algorithm until a fixed point is reached

id1 id2

bob bobby

bobby bob

alex alexis

alexis alex

bobby robert

robert bobby

id1 id2

bob bobby

alex alexis

bobby robert

Function:
BidirectionalEdges

Figure 8.12 Function to emit every edge in both directions. When you’re grouping 
by id1 or id2, all neighbors to a node will be in its group.
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This dual representation ensures that when the grouping occurs, all edges containing
the node are collected, regardless of whether the node is located in the first or last
position.

 Now, for every group of edges, a new set of edges should be emitted with each
node in that group pointing to the smallest node in the group. This can be done with
a simple aggregator, as represented in the following pseudo-code: 

function userid-step-aggregator(grouped-node, edges) {
nodes = new SortedSet()
for(e in edges) {

nodes.add(e.first)
nodes.add(e.second)

}

target = nodes.smallest()
isNewEdges = grouped != target && nodes.size() > 2
for(n in nodes) {

if(n != target) {
emit(n, target, isNewEdges)

}
}

}

When the grouped node is the small-
est among its neighbors, then the
emitted edges are unchanged. Other-
wise, if the node has more than one
neighbor, then some edges will be
modified to point to the smallest iden-
tifier. With the BidirectionalEdges
function and the aggregator complete,
the pipe diagram for the iterative step
is simple, as shown in figure 8.13. 

 The iterative step needs to be run
repeatedly until no edges have
changed. One output of the iterative
step is the new set of edges, and the
other output is the set of edges that
didn’t exist in the input of the step.
The idea is that once no new edges
have been emitted, the algorithm has
reached a fixed point, and every node
in a connected set of nodes points to
the smallest node in that set. 

All nodes in
all edges are
collected in

a set.

The smallest
node is
chosen.

If this condition is met, at least
one new edge is being emitted.

This information will be used
later to determine when to

stop running the iterative step.

For every node except the 
chosen node, a new edge is 
emitted to the chosen node.

Input:
[id1, id2]

Function:
BidirectionalEdges

(id1, id2) -> (new-id1, new-id2)

Output:
[output-id1, output-id2]

GroupBy:
[new-id1]

Aggregator:
UserIDStep

(new-id2) -> (output-id1, output-id2, isNew)

Filter:
IsTrue
(isNew)

Output:
[output-id1, output-id2]

Figure 8.13 Iterative step of user-identifier normal-
ization
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 To complete this algorithm, the iterative step must be wrapped in a loop until it
reaches a fixed point, as illustrated by the following pseudo-code: 

function userid-normalization(startingEdges) {
isNewEdges = true
while(isNewEdges) {
[nextEdges, newEdges] = runNormalizationStep(startingEdges)
isNewEdges = !newEdges.isEmpty()

}
}

In practice, code like this would run on a single machine, whereas runNormalization-
Step would invoke a job to execute in parallel on your distributed computation cluster.
When using a distributed filesystem to store inputs and outputs, a little more code is
necessary to coordinate the file paths, as is shown in the next chapter. This code cap-
tures the gist of the algorithm, though. 

 The last requirement to complete this workflow step is to change the person IDs in
the pageview data to use the selected user identifiers. This transformation can be
achieved by performing a join of the pageview data with the final iteration of the
equiv graph. This is illustrated by the pipe diagram in figure 8.14. 

 Note that it’s perfectly valid for a person ID to exist in the pageview data but not in
any equiv edges. This situation occurs when only one identifier was ever recorded for
the user. In these cases, the outer join ensures these person IDs aren’t filtered from
the results and will join those pageviews to a null value. The chosen person ID is the
joined ID if it exists—otherwise it’s the original person ID. 

startingEdges represents a set of edges that is stored
on your computation cluster. It’s not explicitly

represented within this controller program.
Runs until

no new
edges are

emitted

runNormalizationStep wraps
the previous pipe diagram and

returns the new set of edges
and the brand new edges.

Input:
[userid, url, timestamp]

Input:
[userid, normalized-id]

Join

OuterInner

Function:
ChooseUserID

(userid, normalized-id) -> (output-id)

Output:
[output-id, url, timestamp] Figure 8.14 Final step of user-identifier normalization
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And that’s all there is to user-identifier normalization.
Although it’s a more difficult computation problem,
only a few pipe diagrams and some pseudo-code were
needed to express the algorithm. 

8.6 Deduplicate pageviews
The final preparation step prior to computing the batch
views is deduplicating the pageview events. The pipe dia-
gram for this is trivial and is shown in figure 8.15. 

8.7 Computing batch views
The data is now ready to compute the batch views, as
designed in the beginning of the chapter. This computa-
tion step will generate unindexed records; in a later
chapter, you’ll learn how to index the batch views so they
can be queried in a random-access manner. 

8.7.1 Pageviews over time

As outlined earlier, the pageviews-over-time batch
view should aggregate the pageviews for each URL
at hourly, daily, 7-day, and 28-day granularities.
The approach you’ll take is to first aggregate the
pageviews at an hourly granularity. This will
reduce the size of the data by many orders of mag-
nitude. Afterward, you’ll roll up the hourly values
to obtain the counts for the larger buckets. The
latter operations will be much faster due to the
smaller size of the input. 

 Let’s start with the pipe diagram to compute
the number of pageviews at the hourly granularity.
First, the timestamp in each pageview must be
converted to an hour bucket, and then the
pageviews can be counted for every URL and
bucket group. This pipe diagram is shown in fig-
ure 8.16. 

 Next, let’s take a look at the pipe diagram to gen-
erate pageview counts at all granularities based on
the hourly granularities. The core of this pipe dia-
gram is a function to emit the bucket for each gran-
ularity for each hourly pageview count, like so: 

 
 

Input:
[pageview]

GroupBy:
[pageview]

Aggregator:
First

() -> ()

Output:
[pageview]

Figure 8.15 Deduplication 
pipe diagram

Input:
[userid, url, timestamp]

Function:
ToHourBucket

(timestamp) -> (bucket)

GroupBy:
[url, bucket]

Aggregator:
Count

() -> (num-pageviews)

Output:
[url, bucket, num-pageviews]

Figure 8.16 Computing hourly granu-
larities for pageviews over time
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function emitGranularities(hourBucket) {
dayBucket = hourBucket / 24;
weekBucket = dayBucket / 7;
monthBucket = dayBucket / 28;

emit("h", hourBucket)
emit("d", dayBucket)
emit("w", weekBucket)
emit("m", monthBucket)

}
}

Then the pipe diagram simply has to sum the pageview counts for each URL/granu-
larity/bucket, as shown in figure 8.17. 

8.7.2 Unique visitors over time

The batch view for unique visitors over time contains a HyperLogLog set for every
time granularity tracked for every URL. It’s essentially the same computation that was
done to compute pageviews over time, except instead of aggregating counts, you
aggregate HyperLogLog sets. 

 The combined pipe diagram for computing both the hourly HyperLogLog sets as
well as the HyperLogLog sets for the higher granularities is shown in figure 8.18. 

 As you can see, it only requires ConstructHyperLogLog and MergeHyperLogLog
aggregators, both of which are easy to write. 

8.7.3 Bounce-rate analysis

The final batch view computes the bounce rate for each URL. As outlined in the
beginning of the chapter, you’ll compute two values for each domain: the total num-
ber of visits and the number of bounced visits. 

The function emits four 
2-tuples for each input.

The first element is either h, d, w, or m to 
indicate the hour, day, week, or month 
granularity; the second element is the 
numerical value of the time bucket.

Input:
[url, hour-bucket, hour-pageviews]

Function:
EmitGranularities

(hour-bucket) -> (granularity, bucket)

GroupBy:
[url, granularity, bucket]

Aggregator:
Sum

(hour-pageviews) -> (bucket-pageviews)

Output:
[url, granularity, bucket, bucket-pageviews]

Figure 8.17 Pageviews over 
time for all granularities
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The key part of this query is tracing each visit a person made as they browsed the inter-
net. An easy way to accomplish this is to examine all the pageviews a person made for
a particular domain, sorted by chronological order. You can then use the time differ-
ence between successive pageviews to determine whether they belong to the same
visit. If a visit contains only one pageview, it counts as a bounced visit. 

 Let’s call an aggregator that does this AnalyzeVisits. After looking at all of a
user’s pageviews on a domain, AnalyzeVisits emits two fields: the total number of vis-
its made by that user on that domain, and the number of those visits that were
bounces. 

 The pipe diagram for bounce-rate analysis is shown in figure 8.19. As you can see,
this is a more sophisticated computation because it requires multiple aggregations—
but it’s still easily represented via a pipe diagram. 

 And that’s it! That completes the workflow and algorithms for the batch layer of
SuperWebAnalytics.com. 

Input:
[url, timestamp, userid]

Function:
ToHourBucket

(timestamp) -> (hour-bucket)

GroupBy:
[url, bucket]

Aggregator:
ConstructHyperLogLog

(userid) -> (hll)

Function:
EmitGranularities

(hour-bucket) -> (granularity, bucket)

GroupBy:
[url, granularity, bucket]

Aggregator:
MergeHyperLogLog
(hll) -> (bucket-hll)

Output:
[url, granularity, bucket, bucket-hll] Figure 8.18 Uniques-over-time pipe diagram
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8.8 Summary
The batch layer for SuperWebAnalytics.com contains sophisticated logic, yet it’s very
straightforward to implement. This is entirely due to the batch layer’s nature of com-
puting functions on all your data. When you can look at all your data at once—and
you aren’t constrained by the limitations of incremental algorithms—building systems
is both simple and easy. Batch computation also gives you great flexibility. It’s really
easy to extend the batch layer to compute new views: each stage of the workflow is free
to run an arbitrary function on all the data. 

 As we’ve indicated a few times, what you developed in this chapter is a recomputa-
tion-based workflow where the batch views are always recomputed from scratch. There
is a large class of problems for which you can incrementalize the batch layer and make
it much more resource-efficient without adding too much complexity. You’ll see how
to do this in chapter 18.

Input:
[url, timestamp, userid]

Function:
ExtractDomain

(url) -> (domain)

GroupBy:
[domain, userid]

Aggregator:
AnalyzeVisits

(timestamp) -> (num-visits, num-bounces)

GroupBy:
[domain]

Aggregator:
Sum

(num-visits) -> (total-visits)

Aggregator:
Sum

(num-bounces) -> (total-bounces)

Output:
[domain, total-visits, total-bounces] Figure 8.19 Bounce-rate-analysis pipe diagram
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155Summary

 We wish to emphasize that none of the techniques used in this chapter are specific
to any toolset, so regardless of what batch computation and batch storage systems
you’re using, the workflow and algorithms presented will not change. And in practice,
the mapping from the workflow and algorithms to real code is straightforward as well.
You’ll see this in the next chapter where you’ll produce a complete working imple-
mentation of the SuperWebAnalytics.com batch layer. 
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An example batch layer:
Implementation

In the last chapter you saw the architecture and algorithms for the batch layer for
SuperWebAnalytics.com. Let’s now translate that to a complete working implemen-
tation using the tools you’ve learned about like Thrift, Pail, and JCascalog. In the pro-
cess, you’ll see that the code matches the pipe diagrams and workflows developed in
the previous chapter very closely. This is a sign that the abstractions used are sound,
because you can write code similar to how you think about the problems. 

 As always happens with real-world tools, you’ll encounter friction from artificial
complexities of the tooling. In this case, you’ll see certain complexities arise from
Hadoop’s limitations regarding small files, and those complexities will have to be
worked around. There’s great value in understanding not just the ideal workflow
and algorithms, but the nuts and bolts of implementing them in practice. 

This chapter covers
■ Ingesting new data into the master dataset 
■ Managing the details of a batch workflow 
■ Integrating Thrift-based graph schemas, Pail, 

and JCascalog
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The workflow developed in the previous chapter is repeated in figure 9.1. You’re
encouraged to look back at the previous chapter to refresh your memory on what
each step of the workflow does. 

9.1 Starting point
Before implementing the workflow, let’s quickly review what has been developed up to
this point for SuperWebAnalytics.com. So far you’ve implemented the very core of the
batch layer: a strong schema representing the data model and the ability to store that
data in a distributed filesystem. You used Thrift to create a graph schema—people and
pages are represented as nodes, pageviews are edges between people and pages, and
other information is stored as properties of the nodes. 

 You used the Pail library to interface with HDFS—Pail provides you an easy inter-
face for vertically partitioning the data, selecting the file format, and managing basic
operations like appends between datasets. A PailStructure was created to allow
SuperWebAnalytics.com Data objects to be stored inside pails, optionally partitioned
by edge or property type. 

Append new data

URL normalization

User ID normalization

Remove duplicate
pageview events

Pageviews-over-time
batch view

Unique-visitors-over-
time batch view Bounce-rate batch view

Incorporate newly arrived
data into the master dataset.

Different URLs may refer to
the same web resource.

A single user may have
multiple identifiers.

Batch views depend on
processing distinct events.

After data is prepared, batch views
can be computed in parallel.

Collect new data:
011011011...

b

c

d

e

f

Figure 9.1 Batch workflow for SuperWebAnalytics.com
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9.2 Preparing the workflow
A quick preparation step is required before you begin implementing the workflow
itself. Many parts of the workflow manipulate objects defined in the Thrift schema,
such as the Data, PageViewEdge, PageID, and PersonID objects. Hadoop needs to
know how to serialize and deserialize these objects so they can be transferred between
machines during MapReduce jobs. 

 To accomplish this, you must register a serializer for your objects—the cascading-
thrift project (https://github.com/cascading/cascading-thrift) provides an imple-
mentation suitable for this purpose. The following code snippet demonstrates how to
register it for the batch workflow:

public static void setApplicationConf() {
Map conf = new HashMap();
String sers = "backtype.hadoop.ThriftSerialization," +

"org.apache.hadoop.io.serializer.WritableSerialization";
conf.put("io.serializations", sers);
Api.setApplicationConf(conf);

}

This code instructs Hadoop to use both the Thrift serializer as well as the default
Hadoop serializer. When registering multiple serializers, Hadoop will automatically
determine the appropriate serializer when it needs to serialize an object. This code
sets the configuration globally and will be used by every job in the batch workflow. 

 With that out of the way, let’s begin implementing the workflow, starting with
ingesting new data. 

9.3 Ingesting new data
You saw how, in the design of the workflow, it was important to separate the master
dataset from new data coming in. This prevents new data from being inserted into the
master dataset while the batch workflow is running, avoiding the possibility of sepa-
rate views being representative of slightly different master datasets. 

 So the first step of the workflow is to take the data in new-data/, add it to the mas-
ter dataset pail, and remove that data from new-data/. Although this is straightfor-
ward in concept, there may be synchronization issues. Omitting the details of the
actual append for a moment, suppose you tried the following: 

// do not use!
public static void badNewDataAppend(Pail masterPail, Pail newDataPail)

throws IOException {
appendNewDataToMasterDataPail(masterPail, newDataPail);
newDataPail.clear();

}

This seems simple enough, but there’s a hidden race condition in this code. While the
append is running, more data may be written into the new-data pail. If you clear the
new-data pail after the append finishes, you’ll also delete any new data that was written
while the append job was running. 

The Thrift serializer for 
SuperWebAnalytics.com 
objects

The default serializer for
Hadoop Writable objects
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 Fortunately there’s an easy solution. Pail provides snapshot and deleteSnapshot
methods to solve this problem. The snapshot method stores a snapshot of the pail in
a new location, whereas deleteSnapshot removes from the original pail only the data
that exists in the snapshot. With these methods, the following code ensures that the
only data removed is data that was successfully appended to the master dataset pail: 

public static void ingest(Pail masterPail, Pail newDataPail)
throws IOException {

FileSystem fs = FileSystem.get(new Configuration());
fs.delete(new Path("/tmp/swa"), true);
fs.mkdirs(new Path("/tmp/swa"));

Pail snapshotPail = newDataPail.snapshot("/tmp/swa/newDataSnapshot");
appendNewDataToMasterDataPail(masterPail, snapshotPail);
newDataPail.deleteSnapshot(snapshotPail);

}

Note that this code also creates a temporary working space at /tmp/swa. Many stages
of the workflow will require a space for intermediate data, and it’s opportune to ini-
tialize this staging area before the first step executes. 

 We’re not yet done, as we must look at the details of implementing the appendNew-
DataToMasterDataPail function. One difference between the new-data/ pail and the
master dataset pail is that the master dataset is vertically partitioned by property or
edge type. The new-data/ pail is just a dumping ground for new data, so each file
within it may contain data units of all property types and edges. Before this data can
be appended to the master dataset, it must first be reorganized to be consistent with
the structure used for the master dataset pail. This process of reorganizing a pail to
have a new structure is called shredding. 

 To shred a pail, you must be able to write to and read from pails via JCascalog que-
ries. Before we implement shredding, let’s see how you can integrate JCascalog and
pails. Recall that in JCascalog, the abstraction for reading and writing data is called a
tap. The dfs-datastores project (https://github.com/nathanmarz/dfs-datastores) pro-
vides a PailTap implementation so that pails can be used as input and output for JCas-
calog queries. When used as a source, a PailTap inspects the pail and automatically
deserializes the records it contains. 

 The following code creates a tap to read all the data from a pail as a source for a
query: 

public static void pailTapUsage() {
Tap source = new PailTap("/tmp/swa/snapshot");
new Subquery("?data").predicate(source, "_", "?data");

}

/tmp/swa is
used as a

temporary
workspace

throughout
the batch
workflow.

Takes a
snapshot of the

new-data pail

Appends data from the 
snapshot to the master dataset

After the append, deletes 
only the data that exists 
in the snapshot

The snapshot is a SuperWebAnalytics.com
pail, so the tap will emit Thrift Data objects. The tap emits the file 

containing the record 
and the record itself; 
the filename isn’t 
needed in the workflow, 
and so can be ignored.
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A PailTap also supports reading a subset of the data within the pail. For pails using
the SplitDataPailStructure from chapter 3, you can construct a PailTap that reads
only the equiv edges contained in the pail:

PailTapOptions opts = new PailTapOptions();
opts.attrs = new List[] {
new ArrayList<String>() {{

add("" + DataUnit._Fields.EQUIV.getThriftFieldId());
}}

};
Tap equivs = new PailTap("/tmp/swa/snapshot", opts);

This functionality is needed quite often, so it should be wrapped into a function for
future use: 

public static PailTap attributeTap(String path,
final DataUnit._Fields... fields) {

PailTapOptions opts = new PailTapOptions();
opts.attrs = new List[] {
new ArrayList<String>() {{

for(DataUnit._Fields field: fields) {
add("" + field.getThriftFieldId());

}
}}

};
return new PailTap(path, opts);

}

When sinking data from queries into brand-new pails, you must declare the type of
records you’ll be writing to the PailTap. You do this by setting the spec option to con-
tain the appropriate PailStructure. To create a pail that shreds the data units by
attribute, you can use SplitDataPailStructure from chapter 5:

public static PailTap splitDataTap(String path) {
PailTapOptions opts = new PailTapOptions();
opts.spec =
new PailSpec((PailStructure) new SplitDataPailStructure());

return new PailTap(path, opts);
}

Now you can use PailTap and JCascalog to implement the shredding part of the work-
flow. Your first attempt to shred might look something like this: 

// do not use!
public static void badShred() {

PailTap source = new PailTap("/tmp/swa/snapshot");
PailTap sink = splitDataTap("/tmp/swa/shredded");

Api.execute(sink,
new Subquery("?data").predicate(source, "_", "?data"));

}

Relays custom 
configurations 
to the PailTap

The attributes are an array of lists; each list contains 
the directory path of a subfolder to be used as input.

Creates a list
containing the

relative path of
the equiv edges

Creates the 
tap with the 
specified 
options

Multiple subfolders 
can be specified as 
input to the tap.
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Logically this query is correct. But when you attempt to run this query on a massive
input dataset on HDFS, you’ll encounter strange issues like namenode errors and file
handle limits. These are limitations within Hadoop itself. The problem with the query
is that it creates countless small files, and as discussed in chapter 7, Hadoop doesn’t
play well with an enormous number of small files. 

 To understand why this happens, you have to understand how the query executes.
This query doesn’t involve aggregations or joins, so it executes as a map-only job that
skips the reduce stage. Normally this is highly desirable, as the reduce step is the far
more expensive step. But suppose your schema has 100 different edge and property
types. A single map task could therefore create 100 separate output files—one for
each record type. If processing your input data requires 10,000 mappers (roughly 1.5
TB of data stored in 128-MB blocks), then the output will consist of approximately one
million files, which is too many for Hadoop to handle. 

 You can solve this problem by artificially introducing a reduce step into the compu-
tation. Unlike mappers, you can explicitly control the number of reducers via the job
configuration. If you ran this hypothetical job on 1.5 TB of data with 100 reducers,
you’d generate a much more manageable 10,000 files. The following code includes an
“identity aggregator” to force the query to perform a reduce step:

public static Pail shred() throws IOException {
PailTap source = new PailTap("/tmp/swa/snapshot");
PailTap sink = splitDataTap("/tmp/swa/shredded");

Subquery reduced = new Subquery("?rand", "?data")
.predicate(source, "_", "?data-in")
.predicate(new RandLong())

.out("?rand")
.predicate(new IdentityBuffer(), "?data-in")

.out("?data");

Api.execute(sink,
new Subquery("?data").predicate(reduced, "_","?data"));

Pail shreddedPail = new Pail("/tmp/swa/shredded");
shreddedPail.consolidate();
return shreddedPail;

}

Now that the data is shredded and the number of files has been minimized, you can
finally append it to the master dataset pail: 

public static void appendNewData(Pail masterPail,
Pail snapshotPail) throws IOException {

Pail shreddedPail = shred();
masterPail.absorb(shreddedPail);

}

Once the new data is ingested into the master dataset, you can begin normalizing the
data. 

Assigns a
random

number to
each record

Uses an identity 
aggregator to get 
each data record 
to the reducer

After the
reduce stage,
projects out
the random

number

Consolidates the shredded 
pail to further reduce the 
number of files
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9.4 URL normalization
The next step is to normalize all URLs in the master dataset to their canonical form.
Although normalization can involve many things, including stripping URL parame-
ters, adding http:// to the beginning, and removing trailing slashes, we’ll provide only
a rudimentary implementation here for demonstration purposes: 

public static class NormalizeURL extends CascalogFunction {

public void operate(FlowProcess process, FunctionCall call) {
Data data = ((Data) call.getArguments().getObject(0)).deepCopy();
DataUnit du = data.get_dataunit();

if(du.getSetField() == DataUnit._Fields.PAGE_VIEW) {
normalize(du.get_page_view().get_page());

}
call.getOutputCollector().add(new Tuple(data));

}

private void normalize(PageID page) {
if(page.getSetField() == PageID._Fields.URL) {

String urlStr = page.get_url();
try {

URL url = new URL(urlStr);
page.set_url(url.getProtocol() + "://" + url.getHost()

+ url.getPath());
} catch(MalformedURLException e) {}

}
}

}

You can use this function to create a normalized version of the master dataset. Recall
the pipe diagram for URL normalization, as shown in figure 9.2. 

The function takes a Data object
and emits a normalized Data object.The input

object is
cloned so
it can be

safely
modified.

For the supported 
batch views, only 
pageview edges 
need to be 
normalized.

Pageviews are normalized 
by extracting standard 
components from the URL.

Figure 9.2 URL-normalization pipe diagram

Input:
[url, userid, timestamp]

Function:
NormalizeURL

(url) -> (normed-url)

Output:
[normed-url, userid, timestamp]
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Translating this pipe diagram to JCascalog is done with the following code:

public static void normalizeURLs() {
Tap masterDataset = new PailTap("/data/master");
Tap outTap = splitDataTap("/tmp/swa/normalized_urls");
Api.execute(outTap,

new Subquery("?normalized")
.predicate(masterDataset, "_", "?raw")
.predicate(new NormalizeURL(), "?raw")

.out("?normalized"));
}

9.5 User-identifier normalization 
Let’s now implement the most involved part of the workflow: user-identifier normaliza-
tion. Recall that this is an iterative graph algorithm that operates as shown in figure 9.3. 

Ordering Thrift data types
You may recall that instead of integers, PersonIDs are actually modeled as Thrift
unions:

union PersonID {
1: string cookie;
2: i64 user_id;

}

Fortunately, Thrift provides a natural ordering for all Thrift structures, which can be
used to determine the “minimum” identifier. The user-identifier normalization algo-
rithm in this section takes advantage of this feature of Thrift. 

1 3

4
5
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4
5
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4
5
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2

Initial graph Iteration 1

Iteration 2 Iteration 3/Fixed point

Notice that when an
edge is modified, it
is not necessarily
removed.

In Iteration 1, when
the algorithm processes
the neighbors for node 4,
it changes the [3,4] edge
to [3,1]. However, when
the algorithm processes
the neighbors for node 3,
its only (current) neighbor
is node 4, so the edge is
preserved.

This logic is also
observed in the last
iteration. No new edges
are introduced, but many
edges are removed.

Figure 9.3 Iterating the algorithm until a fixed point is reached
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You can now begin implementing the iterative algorithm. The output of each iteration
will be stored in a new folder on the distributed filesystem, using the template
/tmp/swa/equivs{iteration number} for the path. These outputs will consist of 2-tuples
of PersonIDs. 

 The following code creates the initial dataset by transforming the equiv edge
objects stored in the master dataset: 

public static class EdgifyEquiv extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
Data data = (Data) call.getArguments().getObject(0);
EquivEdge equiv = data.get_dataunit().get_equiv();
call.getOutputCollector()

.add(new Tuple(equiv.get_id1(), equiv.get_id2()));
}

}

public static void initializeUserIdNormalization() throws IOException {
Tap equivs = attributeTap("/tmp/swa/normalized_urls",

DataUnit._Fields.EQUIV);
Api.execute(Api.hfsSeqfile("/tmp/swa/equivs0"),

new Subquery("?node1", "?node2")
.predicate(equivs, "_", "?data")
.predicate(new EdgifyEquiv(), "?node1", "?node2"));

}

The pipe diagram for the iterative step is repeated in figure 9.4. 

A custom 
function to 
extract the 
identifiers from 
the equiv edges

The initialized 
data is stored 
as iteration 0.

Input:
[id1, id2]

Function:
BidirectionalEdges

(id1, id2) -> (new-id1, new-id2)

Output:
[output-id1, output-id2]

GroupBy:
[new-id1]

Aggregator:
UserIDStep

(new-id2) -> (output-id1, output-id2, isNew)

Filter:
IsTrue
(isNew)

Output:
[output-id1, output-id2] Figure 9.4 Iterative step of user-iden-

tifier normalization
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Recall that edges must be emitted in both directions so that all neighbors of a node can
be grouped together. The following custom function emits edges in both orientations:

public static class BidirectionalEdge extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {

Object node1 = call.getArguments().getObject(0);
Object node2 = call.getArguments().getObject(1);
if(!node1.equals(node2)) {
call.getOutputCollector().add(new Tuple(node1, node2));
call.getOutputCollector().add(new Tuple(node2, node1));

}
}

}

Once they’re grouped, you need a custom aggregator to implement the algorithm
logic and denote which edges are new: 

public static class IterateEdges extends CascalogBuffer {
public void operate(FlowProcess process, BufferCall call) {
PersonID grouped = (PersonID) call.getGroup().getObject(0);
TreeSet<PersonID> allIds = new TreeSet<PersonID>();
allIds.add(grouped);

Iterator<TupleEntry> it = call.getArgumentsIterator();
while(it.hasNext()) {

allIds.add((PersonID) it.next().getObject(0));
}

Iterator<PersonID> allIdsIt = allIds.iterator();
PersonID smallest = allIdsIt.next();
boolean progress =

allIds.size() > 2 && !grouped.equals(smallest);

while(allIdsIt.hasNext()) {
PersonID id = allIdsIt.next();
call.getOutputCollector().add(new Tuple(smallest, id, progress));

}
}

}

Finally, here’s the code implementing the first part of the pipe diagram: 

public static Subquery iterationQuery(Tap source) {
Subquery iterate = new Subquery("?b1", "?node1", "?node2", "?is-new")

.predicate(source, "?n1", "?n2")

.predicate(new BidirectionalEdge(), "?n1", "?n2")
.out("?b1", "?b2")

.predicate(new IterateEdges(), "?b2")
.out("?node1", "?node2", "?is-new");

iterate = Api.selectFields(iterate,
new Fields("?node1", "?node2", "?is-new");

return (Subquery) iterate;
}

Filters any
edges that
connect a

node to itself

Emits edges using both [a, b]
and [b, a] orderings

Gets the 
node used for 
grouping tuples

The TreeSet contains 
the node and all of 
its neighbors.

A TreeSet is sorted, so the 
first element is the smallest.

If the grouped node is not 
the smallest and is 
connected to at least two 
other nodes, then a new 
edge will be created.

Emits the edges generated
during this iteration

The source
tap emits

the tuples of
PersonIDs

from the
previous

iteration.

From the declared 
output of the query, 
JCascalog groups 
tuples using ?b1.

Removes the grouping identifier
because it’s no longer needed

Licensed to Mark Watson <nordickan@gmail.com>



166 CHAPTER 9 An example batch layer: Implementation

This subquery addresses the logic of the algorithm; completing the iterative step
requires adding the appropriate source and sink taps and executing the query: 

public static Tap userIdNormalizationIteration(int i) {
Tap source = (Tap) Api.hfsSeqfile("/tmp/swa/equivs" + (i - 1));
Tap sink = (Tap) Api.hfsSeqfile("/tmp/swa/equivs" + i);
Tap progressSink = (Tap) Api.hfsSeqfile("/tmp/swa/equivs" + "-new");

Subquery iteration = iterationQuery(source);
Subquery newEdgeSet = new Subquery("?node1", "?node2")

.predicate(iteration, "?node1", "?node2", "_")

.predicate(Option.DISTINCT, true);
Subquery progressEdges = new Subquery(?node1", "?node2")

.predicate(iteration, "?node1", "?node2", true);

Api.execute(Arrays.asList(sink, progressSink),
Arrays.asList(newEdgeSet, progressEdges));

return progressEdgesSink;
}

In addition to storing all the edges as input for the next iteration, the iterative step
also stores the new edges in a separate folder. This provides an easy way to determine
if the current iteration generated any new edges; if not, the fixed point has been
reached. The following code implements the iterative loop and this termination logic. 

public static int userIdNormalizationiterationLoop() {
int iter = 1;
while(true) {
Tap progressEdgesSink = userIdNormalizationIteration(iter);
FlowProcess flowProcess = new HadoopFlowProcess(new JobConf());
if(!flowProcess.openTapForRead(progressEdgesSink).hasNext()) {

return iter;
}
iter++;

}
}

The next step is to update the PersonIDs in the pageview data with the new normal-
ized PersonIDs. The pipe diagram to accomplish this is repeated in figure 9.5 and
involves a join. 

 
 
 

All edges are emitted to the 
output of the iterative step.

New edges are
additionally
stored in a

separate path.

Avoids
writing

duplicate
edges to
the sink

Only the new 
edges in this 
iteration are 
written to the 
progress sink.

Executes both
newEdgeSet and

progressEdges
queries in

parallel

Tracks the
current

iteration

Terminates if no
new edges were

generated during
this iteration

The last iteration
determines the

path of the final
output.

If new edges were 
generated, increases 
the counter and loop
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A couple of custom functions are needed before you can execute this join. First, you
must unravel the Thrift pageview objects to extract the necessary fields: 

public static class ExtractPageViewFields extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {

Data data = (Data) call.getArguments().getObject(0);
PageViewEdge pageview = data.get_dataunit().get_page_view();
if(pageview.get_page().getSetField() == PageID._Fields.URL) {
call.getOutputCollector().add(

new Tuple(pageview.get_page().get_url(),
pageview.get_person(),
data.get_pedigree().get_true_as_of_secs()));

}
}

}

The second required function takes a pageview Data object and the new PersonID,
and it returns a new pageview Data object with an updated PersonID:

public static class MakeNormalizedPageview extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
PersonID newId = (PersonID) call.getArguments().getObject(0);
Data data = ((Data) call.getArguments().getObject(1)).deepCopy();
if(newId != null) {

data.get_dataunit().get_page_view().set_person(newId);
}
call.getOutputCollector().add(new Tuple(data));

}
}

Input:
[userid, url, timestamp]

Input:
[userid, normalized-id]

Join

OuterInner

Function:
ChooseUserID

(userid, normalized-id) -> (output-id)

Output:
[output-id, url, timestamp] Figure 9.5 Final step of 

user-identifier normalization

Extracts the
relevant

parameters from
PageViewEdge

objects

Emits the URL,
PersonID, and
timestamp of
the pageview

Although the timestamp is not
immediately required, this function will

be reused in other parts of the workflow.

newId may be null if the PersonID in the
pageview is not part of the equiv graph.Clones the

Data
object so
it can be
modified

safely

Emits the potentially 
modified pageview 
Data object
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With these two functions, you can now perform the join to modify the pageviews to
use the normalized PersonIDs. Recall that an outer join is required for the pageviews
with PersonIDs that are not contained in the equiv graph:

public static void modifyPageViews(int iter) throws IOException {
Tap pageviews = attributeTap("/tmp/swa/normalized_urls",

DataUnit._Fields.PAGE_VIEW);
Tap newIds = (Tap) Api.hfsSeqfile("/tmp/swa/equivs" + iter);
Tap result = splitDataTap("/tmp/swa/normalized_pageview_users");

Api.execute(result,
new Subquery("?normalized-pageview")

.predicate(newIds, "!!newId", "?person")

.predicate(pageviews, "_", "?data")

.predicate(new ExtractPageViewFields("?data")
.out("_", "?person", "_")

.predicate(new MakeNormalizedPageview(), "!!newId", "?data")
.out("?normalized-pageview"));

}

The last task is to define a wrapper function to execute the distinct phases of this
workflow step: 

public static void normalizeUserIds() throws IOException {
initializeUserIdNormalization();
int numIterations = userIdNormalizationiterationLoop();
modifyPageViews(numIterations);

}

That concludes the user-identifier normalization portion of the workflow. This is a
great example of the benefit of specifying the MapReduce computations using a
library of your general-purpose programming language. A significant part of the logic,
such as the iteration and fixed-point checking, was written as normal Java code. You
should also note how closely the code followed the pipe diagrams and pseudo-code
laid out in the previous chapter. This is a great sign that you’re working at the right
level of abstraction. 

9.6 Deduplicate pageviews
The next step is to deduplicate pageviews in preparation for computing batch views.
This code is so trivial that we’ll skip the pipe diagram and go straight to the code: 

public static void deduplicatePageviews() {
Tap source = attributeTap("/tmp/swa/normalized_pageview_users",

DataUnit._Fields.PAGE_VIEW);
Tap outTap = splitDataTap("/tmp/swa/unique_pageviews");

Api.execute(outTap,
new Subquery("?data")

.predicate(source, "?data")

.predicate(Option.DISTINCT, true));
}

Uses the final
output from
the iterative

loop

Performs a join on 
?person; the prefix of 
!!newId indicates this 
is an outer join

Joins on the
user

identifier in
the pageview

Creates and emits new 
normalized pageview

Restricts source
tap to only read
pageviews from

the pail
The distinct 
predicate removes 
all duplicate 
pageview objects.
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JCascalog’s Option.DISTINCT predicate is a conve-
nience that inserts the grouping and aggregation
necessary to distinguish the tuples. 

9.7 Computing batch views
With the pageviews now normalized and dedupli-
cated, let’s now go through the code to compute
the batch views. 

9.7.1 Pageviews over time 

The computation for pageviews over time is split
into two pieces: first the pageviews are counted at
the hourly granularity, and then the hourly counts
are rolled up into all the desired granularities. 

 The pipe diagram for the first part is repeated
in figure 9.6. 

 First, let’s write the function that determines
the hour bucket for a timestamp: 

public static class ToHourBucket extends CascalogFunction {
private static final int HOUR_IN_SECS = 60 * 60;

public void operate(FlowProcess process, FunctionCall call) {
int timestamp = call.getArguments().getInteger(0);
int hourBucket = timestamp / HOUR_IN_SECS;
call.getOutputCollector().add(new Tuple(hourBucket));

}
}

With this function, it’s a very standard JCascalog query to determine the hourly
counts: 

public static Subquery hourlyRollup() {
Tap source = new PailTap("/tmp/swa/unique_pageviews");
return new Subquery("?url", "?hour-bucket", "?count")

.predicate(source, "?pageview")

.predicate(new ExtractPageViewFields(), "?pageview")
.out("?url", "_", "?timestamp")

.predicate(new ToHourBucket(), "?timestamp")
.out("?hour-bucket")

.predicate(new Count(), "?count");
}

As usual, the mapping between pipe diagram and JCascalog code is very direct. 
 The pipe diagram for the second part of the computation is shown in figure 9.7. 

Reuses the pageview
extraction code

from earlier

Groups by ?url
and ?hour-bucket

Input:
[userid, url, timestamp]

Function:
ToHourBucket

(timestamp) -> (bucket)

GroupBy:
[url, bucket]

Aggregator:
Count

() -> (num-pageviews)

Output:
[url, bucket, num-pageviews]

Figure 9.6 Computing hourly granu-
larities for pageviews over time
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Let’s start with the function to emit all the granularities for a given hour bucket: 

public static class EmitGranularities extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
int hourBucket = call.getArguments().getInteger(0);
int dayBucket = hourBucket / 24;
int weekBucket = dayBucket / 7;
int monthBucket = dayBucket / 28;

call.getOutputCollector().add(new Tuple("h", hourBucket));
call.getOutputCollector().add(new Tuple("d", dayBucket));
call.getOutputCollector().add(new Tuple("w", weekBucket));
call.getOutputCollector().add(new Tuple("m", monthBucket));

}
}

With this function, computing the rollups for all the granularities is easy: 

public static Subquery pageviewBatchView() {
Subquery pageviews =
new Subquery("?url", "?granularity", "?bucket", "?total-pageviews")

.predicate(hourlyRollup(), "?url", "?hour-bucket", "?count")

.predicate(new EmitGranularities(), "?hour-bucket")
.out("?granularity", "?bucket")

.predicate(new Sum(), "?count").out("?total-pageviews");
return pageviews;

}

Input:
[url, hour-bucket, hour-pageviews]

Function:
EmitGranularities

(hour-bucket) -> (granularity, bucket)

GroupBy:
[url, granularity, bucket]

Aggregator:
Sum

(hour-pageviews) -> (bucket-pageviews)

Output:
[url, granularity, bucket, bucket-pageviews]

Figure 9.7 Pageviews over 
time for all granularities

The function
emits four

2-tuples for
each input.

The first element is either h, d, w, or m to
indicate the hour, day, week, or month
granularity; the second element is the

numerical value of the time bucket.

Executes the hourly
counts subquery

Emits the
buckets for all

granularities

Sums the pageview counts by
url, granularity, and bucket
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9.7.2 Uniques over time

Uniques over time is similar to pageviews over time, except instead of counting, you
need to create HyperLogLog sets. You’ll need two new custom operations to compute
this batch view. 

 The first is an aggregator that constructs a HyperLogLog set from a sequence of
user identifiers: 

public static class ConstructHyperLogLog extends CascalogBuffer {
public void operate(FlowProcess process, BufferCall call) {
HyperLogLog hll = new HyperLogLog(8192);
Iterator<TupleEntry> it = call.getArgumentsIterator();
while(it.hasNext()) {

TupleEntry tuple = it.next();
hll.offer(tuple.getObject(0));

}
try {

call.getOutputCollector().add(new Tuple(hll.getBytes()));
} catch (IOException e) {

throw new RuntimeException(e);
}

}
}

The next function is another custom aggregator that combines the HyperLogLog sets
for hourly granularities into HyperLogLog sets for coarser intervals: 

public static class MergeHyperLogLog extends CascalogBuffer {
public void operate(FlowProcess process, BufferCall call) {
Iterator<TupleEntry> it = call.getArgumentsIterator();
HyperLogLog merged = null;
try {

while(it.hasNext()) {
TupleEntry tuple = it.next();
byte[] serialized = (byte[]) tuple.getObject(0);
HyperLogLog hll = HyperLogLog.Builder.build(serialized);
if(merged == null)

merged = hll; {
} else {

merged = (HyperLogLog) merged.merge(hll); {
}

}
call.getOutputCollector().add(new Tuple(merged.getBytes()));

} catch (Exception e) {
throw new RuntimeException(e);

}
}

}

The following listing uses these operations to compute the batch view. Note the simi-
larity to the pageviews-over-time query:

The function generates a
HyperLogLog set for a

set of visitors.

Constructs a 
HyperLogLog set 
using 1 KB of storage

Adds all objects 
to the set

Emits the storage bytes of the
HyperLogLog object

Creates a new HyperLogLog set 
to contain the merged results

Reconstructs a 
HyperLogLog 
set from 
storage bytes

Merges the current 
set into the results

Emits the storage
bytes for merged set
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public static void uniquesView() {
Tap source = new PailTap("/tmp/swa/unique_pageviews");

Subquery hourlyUniques =
new Subquery("?url", "?hour-bucket", "?hyper-log-log")

.predicate(source, "?pageview")

.predicate(new ExtractPageViewFields(), "?pageview")
.out("?url", "?user", "?timestamp")

.predicate(new ToHourBucket(), "?timestamp")
.out("?hour-bucket")

.predicate(new ConstructHyperLogLog(), "?user")
.out("?hyper-log-log");

Subquery uniques =
new Subquery("?url", "?granularity", "?bucket", "?aggregate-hll")

.predicate(hourlyUniques,"?url", "?hour-bucket", "?hourly-hll")

.predicate(new EmitGranularities(), "?hour-bucket")
.out("?granularity", "?bucket")

.predicate(new MergeHyperLogLog(), "?hourly-hll")
.out("?aggregate-hll");

return uniques;
}

It’s also possible to create a function that abstracts away the parts common to the
pageviews query and the unique-visitors query. We’ll leave that as an exercise for the
reader. 

9.7.3 Bounce-rate analysis

The last batch view computes the bounce rate for each URL. Let’s take a look at the
pipe diagram again in figure 9.8. 

 The key to this batch view is the AnalyzeVisits aggregator, which looks at all the
pageviews a user has made on a domain and computes the number of visits and the
number of those visits that were bounces. The easiest way to compute this is to look at
the pageviews in sorted order. When more than 30 minutes have elapsed between

The first subquery
determines hourly
HyperLogLog sets

for each URL.

The second subquery 
determines the HyperLogLog 
sets for all granularities.

Further optimizing the HyperLogLog batch view
The implementation we’ve shown uses the same size for every HyperLogLog set: 1 KB.
The HyperLogLog set needs to be that large in order to get a reasonably accurate answer
for URLs that may receive millions or hundreds of millions of visits. But most websites
using SuperWebAnalytics.com won’t get nearly that many pageviews, so it’s wasteful
to use such a large HyperLogLog set size for them. 

For further optimization, you could look at the total pageview count for URLs on that
domain and tune the size of the HyperLogLog set accordingly. Using this approach
can vastly decrease the space needed for the batch view, at the cost of adding some
complexity to the view-generation code. 
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pageviews, a new visit has started. If a visit only contains a single pageview, then it
counts as a bounce. 

 The following aggregator implements this logic. The surrounding query will
ensure the input to this aggregator is provided in sorted order:

public static class AnalyzeVisits extends CascalogBuffer {
private static final int VISIT_LENGTH_SECS = 60 * 30;

public void operate(FlowProcess process, BufferCall call) {
Iterator<TupleEntry> it = call.getArgumentsIterator();
int bounces = 0;
int visits = 0;
Integer lastTime = null;
int numInCurrVisit = 0;

Input:
[url, timestamp, userid]

Function:
ExtractDomain

(url) -> (domain)

GroupBy:
[domain, userid]

Aggregator:
AnalyzeVisits

(timestamp) -> (num-visits, num-bounces)

GroupBy:
[domain]

Aggregator:
Sum

(num-visits) -> (total-visits)

Aggregator:
Sum

(num-bounces) -> (total-bounces)

Output:
[domain, total-visits, total-bounces]

Figure 9.8 Bounce-rate-analysis pipe diagram

Two successive pageviews belong to the same visit
if they are separated by less than 30 minutes.

Assumes that 
the pageviews 
are sorted 
chronologically

Tracks the time 
of the previous 
pageview
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while(it.hasNext()) {
TupleEntry tuple = it.next();
int timeSecs = tuple.getInteger(0);
if(lastTime == null || (timeSecs-lastTime) > VISIT_LENGTH_SECS) {

visits++;
if(numInCurrVisit == 1) {

bounces++;
}
numInCurrVisit = 0;

}
numInCurrVisit++;

}
if(numInCurrVisit==1) {

bounces++;
}
call.getOutputCollector().add(new Tuple(visits, bounces));

}
}

Before implementing the subquery, let’s implement the next custom function needed
for it. This function extracts a domain from a URL: 

public static class ExtractDomain extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
String urlStr = call.getArguments().getString(0);
try {

URL url = new URL(urlStr);
call.getOutputCollector().add(new Tuple(url.getAuthority()));

} catch(MalformedURLException e) {}
}

}

Let’s put everything together to produce the computation for bounce-rate analysis: 

public static Subquery bouncesView() {
Tap source = new PailTap("/tmp/swa/unique_pageviews");

Subquery userVisits =
new Subquery("?domain", "?user", "?num-user-visits",

"?num-user-bounces")
.predicate(source, "?pageview")
.predicate(new ExtractPageViewFields(), "?pageview")

.out("?url", "?user", "?timestamp")
.predicate(new ExtractDomain(), "?url")

.out("?domain")
.predicate(Option.SORT, "?timestamp")
.predicate(new AnalyzeVisits(), "?timestamp")

.out("?num-user-visits", "?num-user-bounces");

Subquery bounces =
new Subquery("?domain", "?num-visits", "?num-bounces")

.predicate(userVisits, "?domain", "_",
"?num-user-visits", "?num-user-bounces")

.predicate(new Sum(), "?num-user-visits")
.out("?num-visits")

Registers the
beginning of

a new visit
Determines if previous 
visit was a bounce

Determines whether last 
pageview was a bounce

Emits visit 
and bounce 
counts

Uses Java
native libraries

to extract the
domain

Sorts pageviews 
chronologically to 
analyze visits—the 
Option.SORT predicate 
allows you to control 
how each group is 
sorted before being 
fed to the aggregator 
operations

Bounces and visits 
are determined 
per user.
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.predicate(new Sum(), "?num-user-bounces")
.out("?num-bounces");

return bounces;
}

Relax. Take a deep breath. After much time and effort, you’ve successfully completed
the recomputation-based layer for SuperWebAnalytics.com!

9.8 Summary
The batch layer for SuperWebAnalytics.com is just a few hundred lines of code, yet the
business logic involved is quite sophisticated. The various abstractions fit together
well—there was a fairly direct mapping between what we wanted to accomplish at each
step and how we accomplished it. Here and there, hairy details arose due to the
nature of the toolset—notably Hadoop’s small-files issue—but these were not difficult
to overcome. 

 Although we’ve gone quite deep into the details of specific tooling in this chapter,
it’s important to step back and remember the overarching reasons for the batch layer.
The immutability and recomputation aspects provide you with human-fault tolerance,
a non-negotiable property of any data system. You saw how simple it is to write the
code to produce the batch views—the hairy stuff like fault tolerance and concurrency
is handled for you by the computation framework. The batch layer greatly simplifies
the problem of producing realtime views because the realtime views only need to
account for a very small portion of the full dataset. Later on, when you learn about the
inherent complexities in realtime computation, you’ll come to appreciate how the
loose latency requirements in the batch layer allow the pieces of the batch layer to be
much simpler to operate as well. 

 We’ll next proceed to the serving layer so that the batch views can be quickly read
in a random-access manner. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sum bounces and visits 
for all users to calculate 
the batch view
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Part 2

Serving layer

Part 2 focuses on the serving layer of the Lambda Architecture. The serving
layer consists of databases that index and serve the results of the batch layer.
Part 2 is short because databases that don’t require random writes are extraordi-
narily simple. Chapter 10 discusses the high-level concepts of the serving layer,
while chapter 11 shows an example serving layer database called ElephantDB.
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Serving layer

At this point you’ve learned how to precompute arbitrary views of any dataset by
making use of batch computation. For the views to be useful, you must be able to
access their contents with low latency, and as shown in figure 10.1, this is the role of
the serving layer. The serving layer indexes the views and provides interfaces so that
the precomputed data can be quickly queried. 

 The serving layer is the last component of the batch section of the Lambda Archi-
tecture. It’s tightly tied to the batch layer because the batch layer is responsible for
continually updating the serving layer views. These views will always be out of date due
to the high-latency nature of batch computation. But this is not a concern, because
the speed layer will be responsible for any data not yet available in the serving layer. 

This chapter covers
■ Tailoring batch views to the queries they serve 
■ A new answer to the data-normalization versus 

denormalization debate 
■ Advantages of batch-writable, random-read, and 

no random-write databases 
■ Contrasting a Lambda Architecture solution 

with a fully incremental solution
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Unfortunately, the serving layer is an area where the tooling lags behind the theory. It
wouldn’t be hard to build a general-purpose serving layer implementation—in fact, it
would be significantly easier than building any of the currently existing NoSQL data-
bases. We’ll present the full theory behind creating a simple, scalable, fault-tolerant,
and general-purpose serving layer, and then we’ll use the best tooling available to
demonstrate the underlying concepts. 

 While investigating the serving layer, you’ll learn the following:

■ Indexing strategies to minimize latency, resource usage, and variance 
■ The requirements for the serving layer in the Lambda Architecture 
■ How the serving layer solves the long-debated normalization versus denormal-

ization problem

We’ll begin by examining the key issues you’ll face when structuring a serving layer
view. 

Batch layer

Serving layer

Speed layer

Realtime
view

Batch
view

Master dataset

New data:
011010010...

Query:
“How many...?”

The time required to process the
master dataset causes the batch
views to always be out of date.

The serving layer serves
the precomputed results
in real time.

The speed layer serves
recent data not included
in the batch views.

c

b

d

Realtime
view

Realtime
view Batch

view
Batch
view

Figure 10.1 In the Lambda Architecture, the serving layer provides low-latency access to 
the results of calculations performed on the master dataset. The serving layer views are 
slightly out of date due to the time required for batch computation.
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10.1 Performance metrics for the serving layer
As with the batch layer, the serving layer is distributed among many machines for scal-
ability. The indexes of the serving layer are created, loaded, and served in a fully dis-
tributed manner. 

 When designing these indexes, you must consider two main performance metrics:
throughput and latency. In this context, latency is the time required to answer a single
query, whereas throughput is the number of queries that can be served within a given
period of time. The relationship between the structure of the serving layer indexes
and these metrics is best explained via an example. 

 We’ll briefly return to our long-running SuperWebAnalytics.com example—specif-
ically, the pageviews-over-time query. The objective is to serve the number of
pageviews for each hour given a specific URL and a particular range of hours. To fur-
ther simplify the discussion, suppose the pageview counts are only produced using an
hourly granularity. The resulting view would look similar to figure 10.2. 

 A straightforward way to index this view would be to use a key/value strategy with
[URL, hour] pairs as keys and pageviews as values. The index would be partitioned
using the key, so pageview counts for the same URL would reside on different partitions.
Different partitions would exist on separate servers, so retrieving a range of hours for
a single URL would involve fetching values from multiple servers in your serving layer. 

 Although this design works in principle, it faces serious issues with both latency
and throughput. To start, the latency would be consistently high. Because the values
for a particular URL are spread throughout your cluster, you’ll need to query numer-
ous servers to get the pageview counts for a large range of hours. The key observation
is that the response times of servers vary. For instance, one server may be slightly more
loaded than the others; another may be performing garbage collection at the time.
Even if you parallelize the fetch requests, the overall query response time is limited by
the speed of the slowest server. 

 To illustrate this point, suppose a query requires fetching data from three servers.
A representative sample of the distribution of response times is shown in figure 10.3. 

PageviewsBucketURL
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bar.com/post/a

568

foo.com/blog/1

7

0

0

foo.com/blog/1

29

2

2

bar.com/post/a

91

foo.com/blog/1

21

4

bar.com/post/a

foo.com/blog/1

38

1

1

foo.com/blog/1

Figure 10.2 The pageviews-
over-time batch view with hour-
ly granularity
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For comparison, suppose the query hits 20 servers. A typical distribution of latencies
would look like figure 10.4. 

 In general, the more servers a query touches, the higher the overall latency of the
query. This is due to the simple fact that involving more servers increases the likeli-
hood that at least one will respond slowly. Consequently, the variance of server
response times turns the worst-case performance of one server into the common-case
performance of queries. This is a serious problem for achieving good latency for the
pageviews-over-time query. 

 Another problem with this key/value strategy is poor throughput, particularly if
your servers use disks and not solid-state drives. Retrieving a value for a single key
requires a disk seek, and a single query may fetch values for dozens or more keys. Disk
seeks are expensive operations for traditional hard drives. Because there’s a finite
number of disks in your cluster, there’s a hard limit to the number of disk seeks that
can be achieved per second. Suppose that on average a query fetches 20 keys per
query, the cluster has 100 disks, and each disk can perform 500 seeks per second. In
this case, your cluster can only serve 2,500 queries per second—a surprisingly small
amount given the number of disks. 

 But all is not lost—a different indexing strategy has much better latency and
throughput characteristics. The idea is to collocate the pageview information for a sin-
gle URL on the same partition and store it sequentially. Fetching the pageviews will
then only require a single seek and scan rather than numerous seeks. Scans are
extremely cheap relative to seeks, so this is far more resource-efficient. Additionally,
only a single server needs to be contacted per query, so you’re no longer subject to the
variance issues of the previous strategy. The layout of the index for this strategy is
shown in figure 10.5. 

Overall query
response time

Individual server
response times

Latency

Figure 10.3 When distributing a task over multiple servers, the overall latency is 
determined by the slowest server response time.

Latency

Overall query
response time

Individual server
response times

Figure 10.4 If you increase the number of servers involved in a distributed task, 
you also increase the likelihood that at least one will respond slowly.
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These two examples demonstrate that the way you structure your serving layer indexes
has dramatic effects on the performance of your queries. A vital advantage of the
Lambda Architecture is that it allows you to tailor the serving layer for the queries it
serves, to optimize efficiency.

10.2 The serving layer solution to the normalization/
denormalization problem
The serving layer solves one of the long-standing problems in the relational database
world: the normalization versus denormalization dilemma. To grasp the solution and
its implications, you first need to understand the underlying issues. 

 The normalization versus denormalization decision is ultimately a choice between
unacceptable trade-offs. In the relational world, you want to store your data fully nor-
malized; this involves defining relationships between independent datasets to mini-
mize redundancy. Unfortunately, querying normalized data can be slow, so you may
need to store some information redundantly to improve response times. This denor-
malization process increases performance, but it comes with the huge complexity of
keeping the redundant data consistent. 

 To illustrate this tension, suppose you’re storing user location information in rela-
tional tables, as shown in figure 10.6. Each location has an identifier, and each person
uses one of those identifiers to indicate their location. A query to retrieve the location
for a specific individual requires a join between the two tables. This is an example of a
fully normalized schema, as no information is stored redundantly. 

 Now suppose you observe that retrieving the city and state for a user is an
extremely common operation in your application. Joins are expensive, and you decide

foo.com/blog/1

bar.com/post/abc

baz.net/page/a

0 123

Hour Pageviews

1 101

2 278

3 176

4 133

0 123

1 101

2 278

0 176

1 133

2 97

The pageview counts
for each URL are stored
together and sorted in
chronological order.

Figure 10.5 A sorted index promotes scans and limits disk seeks to improve both latency and 
throughput.
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that you need better performance from this operation. The only means to avoid the
join would be to redundantly store the city and state information in the user table. 

 This technique of redundantly storing information to avoid joins is called denormal-
ization, and the resulting schema in this case would resemble figure 10.7. 

 Denormalization is not an ideal solution—as the application developer, it’s your
responsibility to ensure all redundant data is consistent. This raises uncomfortable
questions, such as “What happens if the different copies of a field become inconsis-
tent? What are the semantics of the data in this case?” Remember that mistakes are
inevitable in long-lived systems, so given enough time, inconsistencies will occur. 

 Fortunately, the split between the master dataset and the serving layer in the
Lambda Architecture solves the normalization versus denormalization problem.
Within the batch layer you can normalize your master dataset to your heart’s content.
The computation on the batch layer reads the master dataset in bulk, so there’s no
need to design the schema to optimize for random-access reads. Complementarily,
the serving layer is completely tailored to the queries it serves, so you can optimize as
needed to attain maximal performance. These optimizations in the serving layer can
go far beyond denormalization. In addition to prejoining data, you can perform addi-
tional aggregation and transformation to further improve efficiency. 

 As to the question of consistency in the Lambda Architecture, it’s absolutely true
that information will be redundantly stored between the batch and serving layers. The
key distinction is that the serving layer is defined to be a function of the master data-
set. If an error introduces inconsistencies, you can easily correct them by recomputing
the serving layer from scratch. 
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Figure 10.6 A normalized schema uses multiple independent datasets with little or no redundant data.
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Figure 10.7 Denormalized ta-
bles store data redundantly to 
improve query performance.
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10.3 Requirements for a serving layer database
The Lambda Architecture places a certain set of requirements on a serving layer data-
base. But what is not required of a serving layer database is far more interesting than
what is required. First, these are the requirements: 

■ Batch writable—The batch views for a serving layer are produced from scratch.
When a new version of a view becomes available, it must be possible to com-
pletely swap out the older version with the updated view. 

■ Scalable—A serving layer database must be capable of handling views of arbi-
trary size. As with the distributed filesystems and batch computation framework
previously discussed, this requires it to be distributed across multiple machines. 

■ Random reads—A serving layer database must support random reads, with
indexes providing direct access to small portions of the view. This requirement
is necessary to have low latency on queries. 

■ Fault-tolerant—Because a serving layer database is distributed, it must be toler-
ant of machine failures. 

Hopefully, nothing on this list is a surprise. But a customary requirement that’s miss-
ing from this list—one that’s standard on all familiar databases—is random writes. Such
functionality is completely irrelevant to the serving layer because the views are only
produced in bulk. To be clear, random writes do exist in the Lambda Architecture,
but they’re isolated within the speed layer to achieve low-latency updates. Updates to
the serving layer generate new views in their entirety, so a serving layer database does
not need the ability to modify small portions of the current view. 

 This is an amazing result, because random writes are responsible for the majority
of the complexity in databases—and even more complexity in distributed databases.
Consider, for example, one of the nasty details discussed in chapter 1 of how random-
write databases work: the need for compaction to reclaim unused space. An intensive
operation, compaction occasionally sucks away many of the machine’s resources. If it’s
not managed correctly, machines will become overloaded, and a cascading failure
becomes likely as load gets shifted onto other machines. 

 Because the serving layer doesn’t require random writes, it doesn’t require online
compaction, so this complexity, along with its associated operational burden, completely
vanishes in the serving layer. The importance of this is magnified when you consider the
relative sizes of your serving layer and speed layer clusters. The serving layer represents
the views for the vast majority of your master dataset, likely well over 99%, so it requires
the majority of the database resources. This means the vast majority of your database
servers don’t suffer from the operational burden of managing online compaction.

 Online compaction is just one of the many complexities taken on by a database
when it must support random writes. Another complexity is the need to synchronize
reads and writes so that half-written values are never read. When a database doesn’t
have random writes, it can optimize the read path and get better performance than a
random read/write database. 
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 A rough but good indicator of the complexity can be seen in the size of the code-
base. ElephantDB, a database built specifically as a serving layer database, is only a few
thousand lines of code. HBase and Cassandra, two popular distributed read/write
databases, are hundreds of thousands of lines long. The number of lines of code isn’t
normally a good complexity metric, but in this case the staggering difference should
be telling. 

 A simpler database is more predictable because it does fewer things. It accordingly
is less likely to have bugs and—as you saw with compaction—will be substantially eas-
ier to operate. Because the serving layer views contain the overwhelming majority of
your queryable data, the serving layer’s fundamental simplicity is a huge boon to the
robustness of your overall architecture.

10.4 Designing a serving layer for SuperWebAnalytics.com
Let’s now return to the SuperWebAnalytics.com example and design the ideal serving
layer for it. When we last left off, we’d built a batch workflow for SuperWebAnalyt-
ics.com, producing batch views for three queries: pageviews over time, unique visitors
over time, and bounce-rate analysis. The output of the batch layer is unindexed—it’s
the job of the serving layer to index those views and serve them with low latency. 

 It’s our intention to focus on a serving layer design that would be ideal for Super-
WebAnalytics.com. It’s in the serving layer, more than anywhere else in the Lambda
Architecture, that real-world tools lag behind the ideal tools. There is irony here, as
serving layer databases are among the simplest and easiest to build of the tools
required by a Lambda Architecture. We believe this is due to historical momentum—
the majority of people build applications to be served by a single monolithic database
cluster that is updated using realtime, incremental updates. But it’s important to see
what is ideally possible in order to provide a roadmap for future tooling. In practice,
you may find yourself repurposing traditional databases for the serving layer. 

 Let’s now see the ideal index types for each view for SuperWebAnalytics.com. 

10.4.1 Pageviews over time

The pageviews-over-time query retrieves the pageview counts for a URL for a range of
hours and sums them together. As already discussed, an ideal index for this query is
key to a sorted map, as illustrated earlier in figure 10.5. 

 Recall that the batch view for pageviews over time computes the bucketed counts
for not just the hourly granularity, but daily, weekly, monthly, and yearly granularities
as well. This was done to minimize the total number of values that had to be retrieved
to resolve a query—a one-year range would require retrieving thousands of hourly
buckets, but only a handful of buckets when using the larger granularities. But if you
use a key-to-sorted-map index type, it turns out that these higher granularities aren’t
needed. This is because when all the values for a range are stored sequentially, it’s
extremely cheap to read them all at once. 
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 For example, let’s suppose that every entry in the sorted map, a map from bucket
to pageview counts, requires 12 bytes (4 bytes for the bucket number and 8 bytes for
the value). Retrieving the bucket counts for a two-year period requires approxi-
mately 17,500 values. When you add everything up, this amounts to 205 KB that must
be retrieved. This is a small amount, and it’s better to optimize things so that only a
single seek is needed even if more information overall needs to be read. 

 Of course, this analysis is specific to the characteristics of hard disks today. With
SSDs or other tooling, your analysis may come to a different conclusion: that an index
including granularities would be superior. 

10.4.2 Uniques over time

Let’s now discuss the ideal index for uniques over time (see figure 10.8). The uniques-
over-time query is very similar to pageviews over time, retrieving a single combined
value based on a range of values. One big difference, though, is that the HyperLogLog
sets used for uniques over time are significantly larger than the values stored for buckets
in pageviews over time. So if you made a sorted index containing only hourly granular-
ities, and your HyperLogLog set size was 1024 bytes, then you’d have to retrieve about
17 MB of HyperLogLog information for a two-year query. If your hard disk can support
a read throughput of 300 MB/s, just reading the information would take 60 ms (and this
assumes totally ideal circumstances). In addition to that, merging HyperLogLog sets is
more expensive than simply summing numbers, potentially adding even more latency
to queries. Because uniques over time is inherently more expensive than pageviews over
time, it seems that making use of the higher granularities would be better. 

[foo.com/blog/1, "h"]

[foo.com/blog/1, "d"]

[baz.net/page/a, "h"]

0

Bucket HyperLogLog set

1

2

3

4

0

1

2

0

1

2

Figure 10.8 Index design for uniques over time. Although the index keys are a compound 
of URL and granularity, indexes are partitioned between servers solely by the URL.
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In this case, an index like that represented in figure 10.8 seems optimal. It’s the same
key-to-sorted-map index as was used for pageviews over time, but with two differences: 

■ The key is a compound key of URL and granularity. 
■ The indexes are partitioned solely by the URL, not by both the URL and granu-

larity. To retrieve a range of values for a URL and granularity, you’d use the URL
to find the server containing the information you need, and then use both the
URL and granularity to look up the values you’re interested in. Partitioning by
just the URL ensures that all buckets for a URL are collocated on the same
server and avoids any variance issues from having to interact with many servers
for a single query. 

10.4.3 Bounce-rate analysis

The bounce-rate analysis view is a mapping from a domain to the number of visits and
the number of bounces for that domain. This is the easiest view to support, since it
only requires a key/value index, as shown in figure 10.9. 

10.5 Contrasting with a fully incremental solution
In the past few chapters, you’ve seen how to build the batch and serving layers for Super-
WebAnalytics.com. Everything has been fairly straightforward using this model of com-
puting views as a function of all data. To gain a better appreciation for the excellent
properties such a system exhibits, it’s worth contrasting it against a traditional architec-
ture built using fully incremental computation. A traditional architecture uses a large
read/write database for state and maintains that state as new data comes in. 

 When the Lambda Architecture was introduced in chapter 1, we contrasted a tradi-
tional solution with a Lambda Architecture solution to the uniques-over-time prob-
lem. Now we’ve covered the concepts needed to look at that contrast in detail. Here
we’ll present the best-known, fully incremental solution to the uniques-over-time
problem, and you’ll see that the resulting solution is more complex to implement, is
significantly less accurate, has worse latency and throughput characteristics, and
requires special hardware to even be feasible. 

10.5.1 Fully incremental solution to uniques over time

We’ll build up to the best possible fully incremental solution step by step. To start this
process, let’s make the problem significantly easier by completely ignoring equivs in

foo.com

bar.com

baz.com

[5067, 3212]

[# Visitors, # Bounces]

[100, 11]

[7283736, 3849930]

[8812, 6123]
cha.com

Figure 10.9 Implementing a bounce-rates view using a key/value index
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the initial solution. This will provide valuable insights into the much more difficult
problem of uniques with equivs. 

 Note that in solving this problem we won’t limit ourselves to the tooling available
in the current landscape. Any reasonable variations of existing tooling are allowed.
What we’re interested in is what’s fundamentally possible—how good or bad is the
best possible fully incremental solution with the best possible tooling? 

 Because it’s a fully incremental solution, the key aspect to solving the problem is
determining what kind of database to use and how to maintain state in that database.
For the first attempt, let’s try using a key-to-set database. That is, the database imple-
ments an interface like the following: 

interface KeyToSetDatabase {
Set getSet(Object key);
void addToSet(Object key, Object val);

}

Such a database can easily exist and be made distributed and fault tolerant. The rea-
son for using this over something like a key/value database is to make the addToSet
operation efficient. With a key/value database, you’d have to fetch the entire set, add
the element, and then write the entire set back. By having the database inherently
aware of the data structure it’s storing, such an operation can be made much more
efficient by only having to send over the element to be added to the set. 

 There are two pieces to any fully incremental approach: determining what hap-
pens when a new pageview is received (the write side), and determining what compu-
tation to do to resolve a query (the read side). For the write side, the key in the
database will be set to the pair of [URL, hour bucket], and the value will be the set of
all UserIDs to visit that URL in that hour bucket. Whenever a new pageview is received,
that UserID is added to the appropriate bucket in the database. For the read side, que-
ries are resolved by fetching all buckets in the range of the query, merging the sets
together, and then computing the unique count of that set. 

 Although it’s straightforward, there are a lot of problems with this approach: 

■ The database is very large space-wise, because effectively every pageview needs
to be stored in the database. 

■ For a query over a large range, you have to do a very large number of database
lookups. For example, a one-year period contains about 8,760 buckets. Having
to fetch 8,760 buckets is not conducive to fast queries. 

■ For popular websites, even individual buckets could have tens of millions of ele-
ments in them (or more). Again, this is not conducive to very fast queries. 

Let’s take a different approach to greatly reduce the amount of work that needs to be
done during queries. For the second approach to uniques over time, let’s take advan-
tage of HyperLogLog to approximate the set count and vastly decrease the amount of
storage needed. In this attempt, a key-to-HyperLogLog database will be used. Again,
there’s no reason such a database couldn’t exist in a distributed and fault-tolerant
form—it would in fact be a minor variation on a database like Apache Cassandra. 
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 As before, the key would be a pair of [URL, hour bucket] and the value would be
a HyperLogLog set representing all UserIDs that visit that URL in that hour. The write
side simply adds the UserID to the appropriate bucket’s HyperLogLog set, and the
read side fetches all HyperLogLog sets in that range, merges them together, and gets
the count. 

 Because of the enormous space savings of HyperLogLog, everything about this
approach is more efficient. Individual buckets are now guaranteed to be small, and
the database as a whole is significantly more space-efficient. This is all achieved by
making a very mild trade-off in accuracy on queries. 

 But this approach still has the problem of queries over large ranges requiring an
unreasonable number of database lookups. You want queries over large ranges to be
just as fast as queries over short ranges. 

 Fortunately, fixing this is fairly easy. For the last approach, let’s again use a key-to-
HyperLogLog database, but now change the key to be a triplet of [URL, hour bucket,
granularity]. The idea is that rather than computing HyperLogLog sets just on an
hour granularity, computing them on more coarse granularities like day, week,
month, and year. 

 On the write side, whenever a new pageview comes in, that UserID is added to the
HyperLogLog set for the appropriate hour, day, week, month, and year buckets. On
the read side, the minimum number of buckets are read to compute the result. For
example, for a query from December 1, 2013, to February 4, 2015, only the following
buckets are needed: 

■ The month of December 2013 
■ The year of 2014 
■ The month of January 2015 
■ The days of February 1–3, 2014 

This is a huge improvement over the thousands of buckets that needed to be read for
large ranges in the previous attempt. This strategy is almost identical to the
approaches taken in the batch layer for the SuperWebAnalytics.com views. As you’ve
already seen, the storage costs for the extra granularities is minimal, so this mild
increase in storage is well worth it to make all the queries run fast. 

 Overall, this is a very satisfactory approach to the problem: it’s fast for all queries,
space-efficient, easy to understand, and straightforward to implement. Let’s now re-
introduce equivs into the problem and see how everything gets turned on its head.
Solving this problem in a fully incremental architecture is significantly more difficult,
and you’ll see that the resulting solution is not satisfactory. 

 As mentioned, what makes dealing with equivs tricky is that a new equiv can change
the result for any possible query. For example, suppose you go back to the first attempt,
where a set of UserIDs is stored for every [URL, hour bucket] pair. Suppose you intend
to only ever store one UserID per person in the entire database, so whenever a new equiv
comes in you have to make sure only one of that person’s UserIDs exists in the entire

Licensed to Mark Watson <nordickan@gmail.com>



191Contrasting with a fully incremental solution

database. Figure 10.10 shows an example
of what the database might look like. Sup-
pose a new equiv comes in between User-
IDs A and C. In this example, that requires
modifications to 75% of the buckets shown
in the database! You don’t know which
buckets could be affected, so the only way
to handle equivs in this approach is to iter-
ate over the entire database for every equiv.
This is obviously not reasonable. 

 One way you might try to optimize this
approach is to maintain a second index
from a UserID to the set of all buckets the
UserID exists in. If a user only ever visited
two buckets, then when an equiv comes in,
you’d only have to fix the UserIDs in those
two buckets rather than iterate over the entire database. 

 Unfortunately, this approach is plagued with problems. What if there’s a search
engine bot that visits every URL every hour? That UserID’s bucket list will contain
every bucket in your database, which is highly impractical. There are many reasonable
datasets for which performance will be erratic due to either individual UserIDs having
enormous bucket lists or occasionally needing to iterate over large swaths of the data-
base. In addition to the performance problems, there are complexity problems. The
information about what UserID belongs to what bucket is stored in multiple places,
which opens the door for the database to become inconsistent. 

 It should also be apparent that there’s no way to use HyperLogLog when dealing
with equivs. A HyperLogLog set doesn’t know what elements are within it, which
makes it impossible to apply equivs to remove redundant UserIDs. This is a terrible
result, because HyperLogLog was such a massive optimization. 

 So far we’ve glossed over the problem of analyzing equivs to select a single UserID
to represent each person. This is a fairly tricky problem on its own and rather com-
plex to implement incrementally. But because this algorithm isn’t required to under-
stand the complexities of fully incremental architectures, we’ll just assume that this
problem is completely solved. The result of this solution is an index from userid to
personid, where personid is the identifier selected to represent all the userids
belonging to the same person. 

 What has made this problem difficult so far has been trying to handle equivs on
the write side by “fixing” the database to ensure that two UserIDs connected by equivs
don’t simultaneously exist in the database. So let’s take a different approach by mov-
ing the work of handling equivs to the read side of the query. 

 

Key
(URL, Hour bucket)

“foo.com/page1”, 0

“foo.com/page1”, 1

“foo.com/page1”, 2

“foo.com/page1”, 102

A, B, C

A, D

A, C, F

A, B, C, G

Set of UserIDs

Figure 10.10 Equivs could affect any bucket in 
the database.
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In the first read-side attempt, illustrated in figure 10.11, the database will be a key-to-
set database from [URL, hour bucket] to the set of all UserIDs to visit that URL in that
hour. This time, multiple UserIDs for the same person are allowed to exist in the data-
base, as handling that will be taken care of during reads. Reads work like this: 

1 First, retrieve every UserID set for every hour in the range, and merge them. 
2 Convert the set of UserIDs to a set of PersonIDs by using the UserID-to-PersonID

index.
3 Return the count of the PersonID set. 

Unfortunately, this approach isn’t quite viable because it’s far too expensive. Imagine a
query that has 100 million uniques. That means you’d have to first fetch many gigabytes
of information to get the UserID set, and then do 100 million lookups into the UserID-
to-PersonID index. There’s no way that work will ever complete in just a few milliseconds. 

 The prior approach can be modified slightly to become viable by using an approx-
imation to drastically reduce storage and computation costs. The main idea is that
rather than store the entire set of UserIDs for every bucket, you instead store a sample
of the UserIDs for every bucket. If you only store 5% of the UserIDs, that’s 95% less
work to fetch the UserID sets and up to 95% less work to convert the UserIDs to Per-
sonIDs. By dividing the count of the sampled PersonID set by the sample rate, you get
an estimate for the count of the non-sampled set. 

Pageview
events Add UserID to

bucket

Fetch sets for
buckets in

range Count

Convert to
PersonID

set

UserID
->

PersonID

Database

Read sideWrite side

Result

Query

[URL, hour bucket]
->

Set of UserIDs

Database

Figure 10.11 Handling equivs on the read-side workflow
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 The workflows for the write side and read side of the sampling approach are shown
in figure 10.12. Your first attempt to do the sampling might be to generate a random
number between 0 and 1 and only add the UserID to the bucket if the number is less
than your sample rate. Unfortunately, this doesn’t work, as can be seen via a simple
example. Suppose you have 100 pageviews each from users A, B, C, and D, and a
desired sample rate of 50%. Because there are 100 of each user, you’ll almost certainly
sample all four users. This is wrong because a proper sampling technique should only
sample two users on average. 

 A different technique called hash sampling does sampling properly. Instead of pick-
ing a random number to determine whether to add a UserID to a bucket, you hash the
UserID using a hash function like SHA-256. Hash functions have the property of evenly
distributing the inputs over the range of output numbers. Additionally, they are deter-
ministic, so the same input always hashes to the same output. With these two proper-
ties, if you only want to sample 25% of the UserIDs, you simply keep all UserIDs whose
hash is less than 25% of the maximum output value of the hash function. Because of
the determinism of hash functions, if a UserID is sampled once it will always be sam-
pled, and if a UserID is not sampled it will never be sampled. So a sample rate of 50%
means you’ll keep half the values of the set, regardless of how many times each UserID
appears. You can use hash sampling to vastly decrease the sizes of the sets stored for

Pageview
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Add UserID to
bucket

Fetch sets for
buckets in

range Count

Convert to
PersonID

set

UserID
->

PersonID

Database

Read sideWrite side

Result

Query

[URL, hour bucket]
->

Set of UserIDs

Database

Choose
whether to

sample
pageview

If sampled

Figure 10.12 Adding sampling to the read-side workflow
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each bucket, and the higher the sample rate you choose, the more accurate the results
of queries will be. 

 The good news is that we finally have a viable approach to implementing this query
that can be made performant. The bad news is that this comes with some caveats.
First, the level of accuracy of the hash sampling approach is not nearly the same as
HyperLogLog. For the same space usage as HyperLogLog, your average error will be
at least 3x to 5x worse, depending on how large your UserIDs are. 

 Second, achieving good throughput with this approach requires special hardware
for the UserID-to-PersonID index. To achieve reasonable error rates, your UserID sets
will still need at least 100 elements in them. That means you need to do at least 100
lookups into your UserID-to-PersonID index during queries. Although it’s a huge
improvement over the potentially millions of lookups required in the non-sampled
approach, this is still nothing to scoff at. If you’re using hard disks to store your
UserID-to-PersonID index, each lookup into the index requires at least one seek on
your disks. You’ve seen how expensive disk seeks are, and having to do so many disk
seeks for each query will vastly decrease query throughput. 

 There are two ways to get rid of this bottleneck. The first is to ensure that the
UserID-to-PersonID index is kept completely in memory, avoiding the need to go to
disk at all. Depending on the size of the index, this may or may not be feasible. Other-
wise, you’d want to use solid-state drives in order to avoid seeks and increase through-
put. The need for special hardware to achieve reasonable throughput is a major
caveat of this approach. 

10.5.2 Comparing to the Lambda Architecture solution

The fully incremental solution to uniques over time with equivs is worse in every
respect than the Lambda Architecture solution. It must use an approximation tech-
nique with significantly higher error rates, it has worse latency, and it requires special
hardware to achieve reasonable throughput. It’s worth asking why the Lambda Archi-
tecture solution is able to be so much more efficient and straightforward. 

 What makes all the difference is the ability for the batch layer to look at all the data
at once. A fully incremental solution has to handle equivs as they come in, and that’s
what prevented the use of HyperLogLog. In the batch layer, on the other hand, the
equivs are handled first—by normalizing UserIDs to PersonIDs—and then the views
for uniques over time are created with that out of the way. By taking care of the equivs
up front, you gain the ability to use a far more efficient strategy for the uniques-over-
time view. Later on, equivs will have to be handled in the speed layer, but you’ll see
that the existence of the batch layer makes that a far easier problem. 
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10.6 Summary
You saw in this chapter the fundamental concepts of the serving layer in the Lambda
Architecture: 

■ The ability to tailor views to optimize latency and throughput
■ The simplicity from not supporting random writes 
■ The capacity to store normalized data in the batch layer and denormalized data

in the serving layer 
■ The inherent error-tolerance and correction of the serving layer, because it can

be recomputed from the master dataset

The flexibility to completely tailor the serving layer views to the queries they serve is a
great example of simplicity at work. In traditional data architectures, a single database
is used as the master dataset, the historical store, and the realtime store. Having to han-
dle all these roles at once forces you as the application developer to make unacceptable
trade-offs, like how much you normalize or denormalize your schemas, and to take on
major operational burdens, like dealing with compaction. In the Lambda Architecture,
however, these roles are handled by separate components. Therefore, each role can be
optimized much further and the system as a whole is much more robust.

 In the next chapter you’ll see an example of a practical serving layer database.
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Serving layer: Illustration

Having covered the requirements of the serving layer, we can now consider an
example of a database built specifically for use as a serving layer database. As with
all the illustration chapters, no new theory is introduced in this chapter; it instead
serves to map the concepts you’ve learned to the nuts and bolts of real tooling. 

 We’ve mentioned that the available tooling for the serving layer lags behind the
ideal possibilities, and that fact will be evident as you build the serving layer for
SuperWebAnalytics.com. You’ll learn to use ElephantDB, a key/value serving layer
database. Because it doesn’t support index types beyond key/value, you’ll have to
diverge from the ideal index types described in the previous chapter. 

 We’ll examine the basic architecture of ElephantDB to understand how it meets
the requirements of the serving layer, and then we’ll review its API to retrieve the
contents of a batch view. Finally, you’ll see how you can use ElephantDB to index
and serve the batch views for SuperWebAnalytics.com. 

This chapter covers
■ ElephantDB as an example of a serving layer 

database 
■ Architecture of ElephantDB 
■ Drawbacks of ElephantDB 
■ Using ElephantDB for SuperWebAnalytics.com
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11.1 Basics of ElephantDB
ElephantDB is a key/value database where both keys and values are stored as byte
arrays. ElephantDB partitions the batch views over a fixed number of shards, and each
ElephantDB server is responsible for some subset of those shards. 

 The function that assigns keys to shards is pluggable and is called a sharding scheme.
One common scheme determines the target shard by taking the remainder of divid-
ing the hash of a key by the total number of shards (the modulo operation). Infor-
mally we’ll call this technique hash modding. It distributes the keys evenly among the
shards and provides an easy means to determine which shard holds a given key. This is
often the best choice, but you will see cases where you want to customize the sharding
scheme. Once assigned to a shard, the key/value is stored in a local indexing engine.
By default, this is BerkeleyDB, but the engine is configurable and could be any key/
value indexing engine that runs on a single machine. 

 There are two aspects to ElephantDB: view creation and view serving. View creation
occurs in a MapReduce job at the end of the batch layer workflow where the gener-
ated partitions are stored in the distributed filesystem. Views are then served by a ded-
icated ElephantDB cluster that loads the shards from the distributed filesystem and
interacts with clients that support random read requests. We’ll briefly discuss these
two roles before finally diving into using ElephantDB. 

11.1.1 View creation in ElephantDB

The ElephantDB shards are created by a MapReduce job whose input is a set of key/
value pairs. The number of reducers is configured to be the number of ElephantDB
shards, and the keys are partitioned to the reducers using the specified sharding
scheme. Consequently, each reducer is responsible for producing exactly one shard of
an ElephantDB view. Each shard is then indexed (such as into a BerkeleyDB index)
and uploaded to the distributed filesystem. 

 Note that the view creation process doesn’t directly send the shards to the
ElephantDB servers. Such a design would be poor because the client-facing machines
wouldn’t control their own load and query performance could suffer. Instead, the
ElephantDB servers pull the shards from the filesystem at a throttled rate that allows
them to maintain their performance guarantees to clients. 

11.1.2 View serving in ElephantDB

An ElephantDB cluster is composed of a number of machines that divide the work of
serving the shards. To fairly share the load, the shards are evenly distributed among
the servers. 

 ElephantDB also supports replication, where each shard is redundantly hosted across
a predetermined number of servers. For example, with 40 shards, 8 servers, and a rep-
lication factor of 3, each server would host 15 shards, and each shard would exist on 3
different servers. This makes the cluster tolerant to machine failures, allowing full access
to the entire view even when machines are lost. Of course, only so many machines can

Licensed to Mark Watson <nordickan@gmail.com>



198 CHAPTER 11 Serving layer: Illustration

be lost before portions of the view
become unavailable, but replication
makes this possibility far less likely.
Replication is illustrated in figure 11.1. 

 ElephantDB servers are responsible
for retrieving their assigned shards
from the distributed filesystem. When
a server detects that a new version of a
shard is available, it does a throttled
download of the new partition. The
download is controlled so as to not sat-
urate the I/O of the machine and
affect live reads. Upon completing the
download, it switches to the new parti-
tion and deletes the old one. 

 After an ElephantDB server has
downloaded its shards, the contents
of the batch views are accessible via a basic API. We earlier mentioned that there’s no
general-purpose serving layer database—this is where the limitations of ElephantDB
become apparent. Because ElephantDB uses a key/indexing model, the API only
allows for the retrieval of values for specified keys. A general serving layer database
would provide a richer API, such as the ability to scan over key ranges. 

11.1.3 Using ElephantDB

The simplicity of ElephantDB makes it straightforward to use. There are three sepa-
rate aspects to using ElephantDB: creating shards, setting up a cluster to serve
requests, and using the client API to query the batch views. We’ll step through each of
these components. 

CREATING ELEPHANTDB SHARDS

The tap abstraction makes it simple to create a set of ElephantDB shards using JCasca-
log. ElephantDB provides a tap to automate the shard-creation process. If you have a
subquery that generates key/value pairs, creating the ElephantDB view is as simple as
executing that subquery into the tap: 

public static elephantDbTapExample (Subquery subquery) {
DomainSpec spec = new DomainSpec(new JavaBerkDB(),

new HashModScheme());
Object tap = EDB.makeKeyValTap("/output/path/on/dfs", spec, 32);
Api.execute(tap, subquery);

}

Uses BerkeleyDB 
as the local 
storage engine

Applies hash
mod partitioning

as the sharding
scheme

Creates 32 shards at the given
distributed filesystem path

Directs the
output of the

subquery to the
constructed tap

Shard 0

Shard 1

Shard 2

Shard 3

Server 0

Server 1

Server 2

Server 3

With replication, each shard exists on multiple servers.

Figure 11.1 Replication stores shards in multiple lo-
cations to increase tolerance to individual machine fail-
ures.
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Under the hood, the configured tap automatically configures the MapReduce job to
correctly partition the keys, creates each index, and uploads each index to the distrib-
uted filesystem. 

SETTING UP AN ELEPHANTDB CLUSTER

There are two required configurations for establishing an ElephantDB cluster: a local
configuration and a global configuration. The local configuration contains server-
specific properties as well as the addresses where the global configuration and the
actual shards reside. A basic local configuration resides on each individual server and
resembles the following: 

{:local-root "/data/elephantdb"
:hdfs-conf {"fs.default.name" "hdfs://namenode.domain.com:8020"}
:blob-conf {"fs.default.name" "hdfs://namenode.domain.com:8020"}}

The global configuration contains information needed by every server in the cluster.
This includes the replication factor, the TCP port that servers should use to accept
requests, and the views served by this cluster. A single cluster can serve multiple domains,
so the configuration contains a map from the domain names to their HDFS locations. 

 A basic global configuration would look like the following code: 

{:replication 1
:hosts ["edb1.domain.com" "edb2.domain.com" "edb3.domain.com"]
:port 3578
:domains {"tweet-counts" "/data/output/tweet-counts-edb"

"influenced-by" "/data/output/influenced-by-edb"
"influencer-of" "/data/output/influencer-of-edb"}}

These configurations are so simple they almost appear incomplete. For example,
there’s no explicit assignment from the servers to the specific shards they’ll host. In
this particular case, the servers use their position in the hosts list as input to a deter-
ministic function to calculate the shards they should download. The simplicity of the
configurations reflects the ease of using ElephantDB. 

The local directory to
store downloaded shards

The address of the
distributed filesystem
that stores the shards

The address of the distributed filesystem
hosting the global configuration

The replication factor of
all views for all servers Host names of all

servers in the cluster

The TCP port
the server will
use to accept

requests

Identifiers of all views and their
locations on the distributed filesystem

How do you actually start an ElephantDB server?
The process of launching an ElephantDB server follows standard Java practices, such
as building a project uberjar and passing the configuration locations via a command-
line statement. Rather than provide details that could quickly get out of date, we’ll refer
you to the project website (http://github.com/nathanmarz/elephantdb) for specifics. 
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QUERYING AN ELEPHANTDB CLUSTER 

ElephantDB exposes a simple Thrift API for issuing queries. After connecting to any
ElephantDB server, you can issue queries like so: 

public static void clientQuery(ElephantDB.Client client,
String domain,
byte[] key) {

client.get(domain, key);
}

If the connected server doesn’t store the requested key locally, it will communicate
with the other servers in the cluster to retrieve the desired values. 

11.2 Building the serving layer for SuperWebAnalytics.com
Having covered the basics, you can now create the optimized ElephantDB views for
each query in SuperWebAnalytics.com. First up is the pageviews-over-time view. 

11.2.1 Pageviews over time

Recall that the ideal view for pageviews over time is an index from key to sorted map,
illustrated again in figure 11.2. You saw how granularities beyond hours aren’t needed
due to each entry only requiring a few bytes of storage, so scanning over a multi-year
range is fairly cheap. 

 Unfortunately, ElephantDB only supports key/value indexing, so this view is not pos-
sible with ElephantDB. Because each key needs to be retrieved separately, it’s imperative
to minimize the number of keys retrieved for each query. This implies that all the gran-
ularities should be indexed into the view. Let’s see how you can use ElephantDB to imple-
ment this strategy. 

 At the end of chapter 8 you’d produced a view like that in figure 11.3. Recall that
both the keys and values in ElephantDB are stored as byte arrays. For the pageviews-
over-time view, you need to encode the URL, granularity, and time bucket into the key.

foo.com/blog/1

bar.com/post/abc

baz.net/page/a

0 123

Hour Pageviews

1 101

2 278

3 176

4 133

0 123

1 101

2 278

0 176

1 133

972

Figure 11.2 Ideal index-
ing strategy for pageviews 
over time
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The following JCascalog functions implement the required serializations for compos-
ite keys and the pageview values: 

public static class ToUrlBucketedKey extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
String url = call.getArguments().getString(0);
String gran = call.getArguments().getString(1);
Integer bucket = call.getArguments().getInteger(2);

String keyStr = url + "/" + gran + "-" + bucket;
try {

call.getOutputCollector()
.add(new Tuple(keyStr.getBytes("UTF-8")));

} catch(UnsupportedEncodingException e) {
throw new RuntimeException(e);

}
}

}

public static class ToSerializedLong extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
long val = call.getArguments().getLong(0);
ByteBuffer buffer = ByteBuffer.allocate(8);
buffer.putLong(val);
call.getOutputCollector().add(new Tuple(buffer.array()));

}
}

The next step is to create the ElephantDB tap. To avoid the variance problem discussed
at the beginning of the chapter, you can create a custom ShardingScheme to ensure that
all key/value pairs for a single URL exist on the same shard. The following snippet
accomplishes this by hash modding only the URL portion of the composite key: 

Concatenates the 
key components

Converts to bytes 
using UTF-8 encoding

Configures 
ByteBuffer to 
hold a single 
long value

Extracts the 
byte array from 
the buffer

URL Granularity Bucket Pageviews

foo.com/blog/1 h 0 10

foo.com/blog/1 h 1 21

foo.com/blog/1 h 2 7

foo.com/blog/1 w 0 38

foo.com/blog/1 m 0 38

bar.com/post/a h 0 213

bar.com/post/a h 1 178

bar.com/post/a h 2 568

Figure 11.3 Pageviews-over-time batch view
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private static String getUrlFromSerializedKey(byte[] ser) {
try {
String key = new String(ser, "UTF-8");
return key.substring(0, key.lastIndexOf("/"));

} catch(UnsupportedEncodingException e) {
throw new RuntimeException(e);

}
}

public static class UrlOnlyScheme implements ShardingScheme {
public int shardIndex(byte[] shardKey, int shardCount) {
String url = getUrlFromSerializedKey(shardKey);
return url.hashCode() % shardCount;

}
}

The following JCascalog subquery puts the pieces together to transform the batch
layer view into key/value pairs appropriate for ElephantDB: 

public static void pageviewElephantDB(Subquery batchView) {
Subquery toEdb =
new Subquery("?key", "?value")

.predicate(batchView, "?url", "?gran", "?bucket", "?total-views")

.predicate(new ToUrlBucketedKey(), "?url", "?gran", "?bucket")
.out("?key")

.predicate(new ToSerializedLong(), "?total-views")
.out("?value");

DomainSpec spec = new DomainSpec(new JavaBerkDB(),
new UrlOnlyScheme(),
32);

Tap tap = EDB.makeKeyValTap("/outputs/edb/pageviews", spec);
Api.execute(tap, toEdb);

}

Again, the pageviews-over-time view would benefit from a more-general serving layer
database that could store the time buckets for each URL sequentially and in chronological
order. This database would utilize disk scans and minimize expensive disk seeks.

 Such a serving layer database doesn’t exist at the time of this writing, though creat-
ing one would be much simpler than most currently available NoSQL databases. The
approach shown here isn’t much worse than the ideal serving layer database, though,
as it’s still able to ensure that all index retrievals for a single query only touch one
node, and it only has to fetch a handful of values for any given query. 

11.2.2 Uniques over time

The next query is the unique-pageviews-over-time query. Like pageviews over time, the
lack of a key-to-sorted-map serving layer database prevents you from implementing
the ideal index described in the previous chapter. But you can use a strategy similar to
the one used by pageviews over time to produce a workable solution. 

Extracts the URL from 
the composite key

Returns the hash 
mod of the URL

The subquery
must return

only two fields
corresponding

to keys and
values.

Defines the
local storage

engine,
sharding

scheme, and
total number

of shards

Specifies the
HDFS location
of the shards

Executes the 
transformation
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 The only difference between the two queries is that uniques over time stores
HyperLogLog sets. Like pageviews over time, the uniques over time can make use of
the same sharding scheme in order to avoid the variance problem. Here is the code to
produce the uniques-over-time view: 

public static void uniquesElephantDB(Subquery uniquesView) {
Subquery toEdb =
new Subquery("?key", "?value")

.predicate(uniquesView,"?url", "?gran", "?bucket", "?value")

.predicate(new ToUrlBucketedKey(),"?url", "?gran", "?bucket")
.out("?key");

DomainSpec spec = new DomainSpec(new JavaBerkDB(),
new UrlOnlyScheme(),
32);

Tap tap = EDB.makeKeyValTap("/outputs/edb/uniques", spec);
Api.execute(tap, toEdb);

}

An ideal serving layer database would know how to handle HyperLogLog sets natively
and complete queries on the server. Instead of queries to the database returning
HyperLogLog sets, the server would merge the sets and return only the cardinality of
the HyperLogLog structure. This would maximize efficiency by avoiding the network
transfer of any HyperLogLog sets during queries. 

11.2.3 Bounce-rate analysis

The ideal bounce-rate-analysis view is a key/value index, so an ideal view can be pro-
duced with ElephantDB. The bounce-rate-analysis view is a map from each domain to
the number of visits and the number of bounces. 

 You can reuse the framework from the previous queries, but you still need custom
serialization code for the string keys and compound value: 

public static class ToSerializedString extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
String str = call.getArguments().getString(0);

try {
call.getOutputCollector().add(new Tuple(str.getBytes("UTF-8")));

} catch(UnsupportedEncodingException e) {
throw new RuntimeException(e);

}
}

}

public static class ToSerializedLongPair extends CascalogFunction {
public void operate(FlowProcess process, FunctionCall call) {
long l1 = call.getArguments().getLong(0);
long l2 = call.getArguments().getLong(1);
ByteBuffer buffer = ByteBuffer.allocate(16);
buffer.putLong(l1);

Only the composite key
needs to be serialized

because the HyperLogLog
sets are already serialized.

Changes the output directory for
the unique pageviews shards

This serialization function is
essentially identical to the

one for the composite keys.

Allocates space for 
two long values
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buffer.putLong(l2);
call.getOutputCollector().add(new Tuple(buffer.array()));

}
}

Queries against this view will fetch only one domain at a time, so there are no con-
cerns about variance in server response times. Normal hash mod sharding is therefore
suitable for this case:

public static void bounceRateElephantDB(Subquery bounceView) {
Subquery toEdb =
new Subquery("?key", "?value")

.predicate(bounceView, "?domain", "?bounces", "?total")

.predicate(new ToSerializedString(), "?domain")
.out("?key")

.predicate(new ToSerializedLongPair(),"?bounces", "?total")
.out("?value");

DomainSpec spec = new DomainSpec(new JavaBerkDB(),
new HashModScheme(),
32);

Tap tap = EDB.makeKeyValTap("/outputs/edb/bounces", spec);
Api.execute(tap, toEdb);

}

As you can see, integrating the batch views into the serving layer is almost no work at all.

11.3 Summary 
ElephantDB is a database that can be used in the serving layer. You’ve seen how simple
ElephantDB is to use and operate. We hope to see other serving layer databases cre-
ated with different or more general indexing models, because the fundamental sim-
plicity of the serving layer makes these databases easy to build. 

 Now that you understand the batch and serving layers, next up is learning the final
piece of the Lambda Architecture: the speed layer. The speed layer will compensate for
the high-latency updates of the serving layer and allow queries to access up-to-date data. 

Uses hash mod 
sharding scheme 
provided by 
ElephantDB
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Part 3

Speed layer

Part 3 focuses on the speed layer of the Lambda Architecture. The speed layer
compensates for the high latency of the batch layer to enable up-to-date results
for queries.

 Chapter 12 discusses realtime views versus batch views. The primary differ-
ence is a realtime view database must support random writes, which greatly
increases the complexity of the database. You’ll see that the existence of the
batch layer eases the complexity of managing such a database. You’ll also see
that a speed layer can be implemented either synchronously or asynchronously.
Chapter 13 illustrates realtime views using Apache Cassandra.

 Synchronous architectures don’t require any additional explanation, so chap-
ter 14 begins the discussion of asynchronous architectures for the speed layer. It
discusses the use of incremental computation using queues and stream process-
ing. There are two main paradigms of stream processing, each with their own
trade-offs: one-at-a-time and micro-batched. Chapter 14 explores the concept of
one-at-a-time stream processing, and chapter 15 illustrates that model using
Apache Kafka and Apache Storm.

 Chapter 16 delves into the other paradigm: micro-batched stream process-
ing. You’ll see that by sacrificing some latency, you gain powerful new capabili-
ties. Chapter 17 illustrates micro-batched stream processing using Trident.
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Realtime views

Up to this point, our discussion of the Lambda Architecture has revolved around
the batch and serving layers—components that involve computing functions over
every piece of data you have. These layers satisfy all the desirable properties of a
data system save one: low-latency updates. The sole job of the speed layer is to sat-
isfy this final requirement. 

 Running functions over the entire master dataset—potentially petabytes of
data—is a resource-intensive operation. To lower the latency of updates as much as
possible, the speed layer must take a fundamentally different approach than the
batch and serving layers. As such, the speed layer is based on incremental computation
instead of batch computation. 

This chapter covers
■ The theoretical model of the speed layer 
■ How the batch layer eases the responsibilities of 

the speed layer 
■ Using random-write databases for realtime views 
■ The CAP theorem and its implications 
■ The challenges of incremental computation 
■ Expiring data from the speed layer
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Incremental computation introduces many new challenges and is significantly more
complex than batch computation. Fortunately, the narrow requirements of the speed
layer provide two advantages. First, the speed layer is only responsible for data yet to be
included in the serving layer views. This data is at most a few hours old and is vastly
smaller than the master dataset. Processing data on a smaller scale allows for greater
design flexibility. Second, the speed layer views are transient. Once the data is absorbed
into the serving layer views, it can be discarded from the speed layer. Even though the
speed layer is more complex and thus more prone to error, any errors are short-lived
and will be automatically corrected through the simpler batch and serving layers. 

 As we’ve repeatedly stated, the power of the Lambda Architecture lies in the sepa-
ration of roles in the different layers (as shown in figure 12.1). In traditional data archi-
tectures such as those based on relational databases, all that exists is a speed layer. These
systems have limited options for battling the complexities of incremental computation. 

 There are two major facets of the speed layer: storing the realtime views and pro-
cessing the incoming data stream so as to update those views. This chapter focuses
on the structure and storage of realtime views. We’ll begin with an overview of the

Batch layer

Serving layer

Speed layer

Realtime
view

Batch
view

Master dataset

New data:
011010010...

Query:
“How many...?”

The speed layer
provides low-
latency updates
to incorporate
recent data into
realtime views.

The batch layer can correct any
errors or approximations in the
speed layer because all data is
eventually integrated into the
batch views.

b

c

Realtime
view

Realtime
view

Batch
view

Batch
view

Figure 12.1 The speed layer allows the Lambda Architecture to serve low-latency queries over up-to-
date data.
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theoretical foundation of the speed layer, and then continue on to the various chal-
lenges you’ll encounter with incremental computation. Then we’ll demonstrate how
to expire data from the speed layer. 

12.1 Computing realtime views
The basic objective of the speed layer is the same as for the batch and serving layers: to
produce views that can be efficiently queried. The key differences are that the views
only represent recent data and that they must be updated very shortly after new data
arrives. What “very shortly” means varies per application, but it typically ranges from a
few milliseconds to a few seconds. This requirement has far-reaching consequences
on the computational approach to generating the speed layer views. 

 To understand the implications, consider one simple approach to the speed layer.
Similar to the batch and serving layers producing views by computing a function on
the entire master dataset, the speed layer could produce its views by running a func-
tion over all of the recent data (that is, data yet to be absorbed into the serving layer).
This is attractive for both its simplicity and the consistency with how the batch layer
works, as shown in figure 12.2. 

 Unfortunately, this scheme proves impractical for many applications once you
consider its latency and resource-usage characteristics. Suppose your data system
receives 32 GB of new data per day, and that new data gets into the serving layer
within 6 hours of being received. The speed layer would be responsible for at most 6
hours of data—about 8 GB. While that’s not a huge amount, 8 GB is substantial when
attempting to achieve sub-second latencies. Additionally, running a function on 8 GB
of data each time you receive a new piece of data will be extremely resource-
intensive. If the average size of a data unit is 100 bytes, the 8 GB of recent data
equates to approximately 86 million data units. Keeping the realtime views up to date
would thus require an unreasonable amount of 86,000,000 ✕ 8 GB worth of
processing every 6 hours. You could reduce the resource usage by batching the
updates, but this would greatly increase the update latency. 

 If your application can accept latency on the order of a few minutes, this simple
strategy is a fine approach. But in general you’ll need to produce realtime views in a
resource-efficient manner with millisecond-level latencies. For the remainder of this
chapter, we’ll confine our discussion to this scenario. 

All data Recent data

Function

Realtime views

Function

Batch views

A simple strategy mirrors
the batch/serving layer and
computes the realtime views
using all recent data as input.

Figure 12.2 Strategy: realtime view = function(recent data)
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In general, any workable solution relies on using incremental algorithms, as depicted
in figure 12.3. The idea is to update the realtime views as data comes in, thereby reus-
ing the work that previously went into producing the views. This requires the use of
random-read/random-write databases so that updates can be performed on existing
views. In the next section we’ll discuss these databases further, while delving into the
details of storing the speed layer views. 

12.2 Storing realtime views 
The obligations of the speed layer views are quite demanding—the Lambda Architec-
ture requires low-latency random reads, and using incremental algorithms necessi-
tates low-latency random updates. The underlying storage layer must therefore meet
the following requirements: 

■ Random reads—A realtime view should support fast random reads to answer
queries quickly. This means the data it contains must be indexed. 

■ Random writes—To support incremental algorithms, it must also be possible to
modify a realtime view with low latency. 

■ Scalability—As with the serving layer views, the realtime views should scale with
the amount of data they store and the read/write rates required by the applica-
tion. Typically this implies that realtime views can be distributed across many
machines.

■ Fault tolerance—If a disk or a machine crashes, a realtime view should continue
to function normally. Fault tolerance is accomplished by replicating data across
machines so there are backups should a single machine fail. 

All data Recent data

Function

Batch views

Recent data is either
integrated into realtime
views or newly arrived data.

Previous
realtime views

New data

Updated
realtime views

Function

An incremental algorithm
uses the new data and the
previous views to update
the realtime views.

b

c

Figure 12.3 Incremental strategy: realtime view = function(new data, previous realtime view)
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These properties are common to a class of databases that have been dubbed NoSQL
databases. NoSQL databases support diverse data models and index types, so you can
select one or more realtime view databases to meet your indexing requirements. For
example, you may choose Cassandra to store indexes with a key/value format, and
then use ElasticSearch for indexes that support search queries. You ultimately have
great power and flexibility in choosing a combination of databases to fit your exact
speed layer needs. 

12.2.1 Eventual accuracy

Your selection of databases determines how the realtime views are stored, but you
have great flexibility in what you store to answer queries. In many cases, the con-
tents of your realtime views will exactly mirror the contents of your batch views. For
example, a query that returns pageviews will store exact counts in both the batch
layer and the speed layer. However, this need not be the case, because frequently it’s
difficult to incrementally compute functions that can be easily computed in batch.
You’ve encountered this scenario before when determining unique counts. In batch
this is easy to compute because you process the entire dataset at one time, but it’s
much harder in realtime because you need to store the entire set to correctly update
the counts. 

 In these cases you can take a different approach in the speed layer and approximate
the correct answer. Because all data is eventually represented in the batch and serving
layer views, any approximations you make in the speed layer are continually corrected.
This means any approximations are only temporary, and your queries exhibit eventual
accuracy. This is a really powerful technique that gives you the best of all worlds: per-
formance, accuracy, and timeliness. Eventually accurate approaches are common with
sophisticated queries such as those that require realtime machine learning. Such views
tend to correlate many kinds of data together and can’t incrementally produce an exact
answer in any reasonable way. You’ll see examples that take advantage of eventual accu-
racy when we flesh out the speed layer for SuperWebAnalytics.com. 

 Again, we must emphasize that eventual accuracy is an optional technique that can
be used to dramatically lower resource usage in the speed layer. It’s an option avail-
able to you solely because the Lambda Architecture has two layers with distinct meth-
ods of computation. In a traditional architecture based on fully incremental
computation, such a technique is not an option. 

12.2.2 Amount of state stored in the speed layer

Speed layers store relatively small amounts of state because they only represent views
on recent data. This is a benefit because realtime views are much more complex than
serving layer views. 
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 Let’s briefly revisit the complexities of realtime views that are bypassed by the serv-
ing layer: 

■ Online compaction—As a read/write database receives updates, parts of the disk index
become unused, wasted space. Periodically the database must perform compaction
to reclaim space. Compaction is a resource-intensive process and could potentially
starve the machine of resources needed to rapidly serve queries. Improper manage-
ment of compaction can cause a cascading failure of the entire cluster.

■ Concurrency—A read/write database can potentially receive many reads or
writes for the same value at the same time. It therefore needs to coordinate
these reads and writes to prevent returning stale or inconsistent values. Sharing
mutable state across threads is a notoriously complex problem, and control
strategies such as locking are notoriously bug-prone. 

It’s important to note that the speed layer is under less pressure because it stores con-
siderably less data than the serving layer. The separation of roles and responsibilities
within the Lambda Architecture limits complexity in the speed layer. Because the
speed layer typically accounts for only a few hours of data, your random-read/
random-write database cluster can be 100x smaller than it would be if you had a fully
incremental architecture. Smaller clusters are a lot easier to manage. 

 Now that you understand the basics of the speed layer, let’s look at the challenges
you’ll face when doing incremental computation as opposed to batch computation. 

12.3 Challenges of incremental computation
In chapter 6 we discussed the differences between recomputation and incremental
algorithms. To summarize, incremental algorithms are less general and less human-
fault tolerant than recomputation algorithms, but they provide much higher perfor-
mance. It’s this higher performance that we’re leveraging in the speed layer. But an
additional challenge arises when using incremental algorithms in a realtime context:
the interaction between incremental algorithms and something called the CAP theorem.
This challenge can be particularly hairy and is important to understand. 

 The CAP theorem is about fundamental trade-offs between consistency, where reads
are guaranteed to incorporate all previous writes, and availability, where every query
returns an answer instead of erroring. Unfortunately, the theorem is often explained
in a very misleading and inaccurate way. We’d normally avoid presenting an inaccu-
rate explanation of anything, but this interpretation is so widespread it’s necessary to
discuss it to clarify the misconceptions. 

 CAP is typically stated as “you can have at most two of consistency, availability, and
partition-tolerance.” The problem with this explanation is that the CAP theorem is
entirely about what happens to data systems when not all machines can communicate
with each other. Saying a data system is consistent and available but not partition-tolerant
makes no sense, because the theorem is entirely about what happens under partitions. 

 The proper way to present the CAP theorem is that “when a distributed data sys-
tem is partitioned, it can be consistent or available but not both.” Should you choose
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consistency, sometimes a query will receive an error instead of an answer. When you
choose availability, reads may return stale results during network partitions. The best
consistency property you can have in a highly available system is eventual consistency,
where the system returns to consistency once the network partition ends. 

12.3.1 Validity of the CAP theorem

It’s fairly easy to understand why the CAP theorem is true. Say you have a simple dis-
tributed key/value database where every node in your cluster is responsible for a sepa-
rate set of keys, meaning there is no replication. When you want to read or write data
for a particular key, there is a single machine responsible for handling the request. 

 Now suppose you suddenly can’t communicate with some of the machines in the
distributed system. Obviously you can’t read or write data to nodes that are inaccessi-
ble to you. 

 You can increase the fault tolerance of a distributed data system by replicating data
across multiple servers. With a replication factor of three, every key would be repli-
cated to three nodes. Now if you become partitioned from one replica, you can still
retrieve the value from another location. But it’s still possible to be partitioned from
all replicas, though much less likely. 

 The real question is how to handle writes under partitions. There are a few
options—for example, you could refuse to perform an update unless all replicas can
be updated at once. With this policy, every read request is guaranteed to return the
latest value. This is a consistent strategy, because clients partitioned from each other
will always receive the same value (or get an error) when doing reads. 

 Alternatively, you can choose to update whatever replicas are available and syn-
chronize with other replicas when the partition is resolved. This gets tricky when a sce-
nario like that shown in figure 12.4 occurs. In this situation, clients are partitioned
differently and communicate with different subgroups of machines. The replicas will
diverge if you are willing to update a subset of the replicas, and merging is more com-
plicated than simply picking the latest update. 

“sally” “New York”→

“sally” “New York”→

“sally” “New York”→

“sally” “Tokyo”→Sally (client)

Dan (client)

Replica 1

Replica 2
Network partition

Sally’s location is New York
at the time the data system
partitions.

b

While partitioned, Sally updates
her location to Tokyo.

c

If Dan connects to a partitioned replica, he cannot
see Sally’s change until the partition is resolved.

d

Figure 12.4 Replicas can diverge if updates are allowed under partitions.
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With a partial update strategy, your data system is available but not consistent. In fig-
ure 12.4, Sally may update her location to Tokyo, but Dan’s replica can’t be updated,
so he’ll read an out-of-date value. This example demonstrates that it’s impossible to
have both availability and consistency during a partition, because there’s no means to
communicate with the replica that has the most recent information. 

The batch and serving layers are distributed systems and are subject to the CAP
theorem like any other system. The only writes in the batch layer are new pieces of
immutable data. These writes don’t require coordination between machines because
every piece of data is independent. If data can’t be written to the incoming data
store in the batch layer, it can be buffered locally and retried later. As for the serving
layer, reads are always stale due to the high latency of the batch layer. Not only is
the serving layer not consistent, it’s not even eventually consistent because it’s always
out of date. Accordingly, both the batch and serving layers choose availability
over consistency. 

 Note that nothing complex was needed to determine these properties—the logic
in the batch and serving layers is simple and easy to understand. Unfortunately this is
not the case when striving for eventual consistency using incremental algorithms in a
realtime context. 

12.3.2 The complex interaction between the CAP theorem and 
incremental algorithms

As we just discussed, if you choose high availability for a distributed system, a partition
will create multiple replicas of the same value that are updated independently of one
another. When the partition resolves, the values must be merged together so that the
new value incorporates every update during the partition—no more and no less. The
problem is that there’s no simple way to accomplish this for every use case, so it falls
on you as the developer to identify a working strategy. As an example, consider how
you’d implement eventually consistent counting. 

 In this scenario we’ll assume you’re only storing the count as the value. Suppose the
network is partitioned, the replicas evolve independently, and then the partition is cor-
rected. When it comes time to merge the replica values, you find that one replica has
a count of 110 and another has a count of 105. What should the new value be? The

Extreme availability—sloppy quorums
Some distributed databases have an option called sloppy quorums, which provides
availability in the extreme—writes are accepted even if replicas for that data aren’t
available. Instead, a temporary replica will be created and then merged into the official
replicas once they become available. With sloppy quorums, the potential number of
replicas for a piece of data is equal to the number of nodes in the cluster if every node
is partitioned from every other node. While this can be useful, keep in mind that such
an approach increases the incidental complexity of your system.
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cause of the confusion is that you’re unsure at what point they began to diverge. If they
diverged at the value 105, the updated count should be 110. If they diverged at 0, the
right answer would be 215. All you know for certain is that the right answer is some-
where between these two bounds. 

 To implement eventually consistent counting correctly, you need to make use of
structures called conflict-free replicated data types (commonly referred to as CRDTs). There
are a number of CRDTs for a variety of values and operations: sets that support only addi-
tion, sets that support addition and removal, numbers that support increments, num-
bers that support increments and decrements, and so forth. The G-Counter is a CRDT
that supports only incrementing, which is exactly what you need to solve the current
counter issue. An example G-Counter is shown in figure 12.5. 

A G-Counter stores a different value per replica rather than a single value. The actual
count is then the sum of the replica counts. 

 If a conflict between replicas is detected, the new G-Counter takes the max value
for each replica. Because counts only increase, and only one server in the system will
be updating the count for a given replica, the maximum value is guaranteed to be the
correct one. This is illustrated in figure 12.6. 

 As you can see, implementing counting is far more complex in a realtime eventu-
ally consistent context. It’s not sufficient to keep a simple count—you also need a
strategy to repair values that diverge in a partition. The algorithms can also introduce

replica 1: 10
replica 2: 7
replica 3: 18

replica 1: 11
replica 2: 7
replica 3: 18

replica 1: 11
replica 2: 7
replica 3: 19Replica 1

increments
the counter.

Replica 3
increments
the counter.

Figure 12.5 A G-Counter is a grow-only counter where a replica only increments its as-
signed counter. The overall value of the counter is the sum of the replica counts.

replica 1: 10
replica 2: 7
replica 3: 18

replica 1: 10
replica 2: 7
replica 3: 18

replica 1: 11
replica 2: 7
replica 3: 21

Replica 2

Replicas 1 and 3

replica 1: 10
replica 2: 7
replica 3: 18

replica 1: 10
replica 2: 13
replica 3: 18

replica 1: 11
replica 2: 13
replica 3: 21

Network partition

Merge

Merg
e

The G-counter takes
the max value for each
replica at merge.

Figure 12.6 Merging G-Counters
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further complexity. If you allow for decrements as well as increments, the data struc-
ture and merge algorithm become even more complicated. These merge algo-
rithms—commonly called read repair algorithms—are huge sources of human error.
This is not surprising given the complexity. 

 Unfortunately there’s no escape from this complexity if you want eventual consis-
tency in the speed layer. But you do have one thing going for you: the Lambda Archi-
tecture gives you inherent protection against making mistakes. If the realtime view
becomes corrupted because you forgot an edge case or messed up the merge algo-
rithm, the batch and serving layers will later automatically correct the mistake in the
serving layer views. The worst possible outcome of a mistake is temporary corruption.
Architectures without a batch layer backing up the realtime, incremental portions
would have permanent corruption. 

12.4 Asynchronous versus synchronous updates
The architecture for the speed layer differs depending on whether the realtime views
are updated synchronously or asynchronously. 

 A synchronous update is something you’ve likely done a million times: the applica-
tion issues a request directly to the database and blocks until the update is processed.
For example, if a user registers an email address, you may choose to issue a synchro-
nous update to the database to record the new information. Synchronous updates are
fast because they communicate directly with the database, and they facilitate coordi-
nating the update with other aspects of the application (such as displaying a spinning
cursor while waiting for the update to complete). 

 The speed layer architecture for synchronous updates is illustrated in figure 12.7.
Not surprisingly, the application simply issues updates directly to the database. 

 In contrast, asynchronous update requests are placed in a queue with the updates
occurring at a later time. In the speed layer, this delay could range from a few millisec-
onds to a few seconds, but it could take even longer if there’s an excess of requests. Asyn-
chronous updates are slower than synchronous updates because they require additional
steps before the database is modified,
and it’s impossible to coordinate them
with other actions because you can’t
control when they’re executed. But
asynchronous updates provide many
advantages. First, you can read multiple
messages from the queue and perform
batch updates to the database, greatly
increasing throughput. They also read-
ily handle a varying load: if the number
of update requests spikes, the queue
buffers the additional requests until all
updates are executed. Conversely, a

Database

Client

Client

Client

With synchronous updates, clients communicate directly
with the database and block until the update is completed.

Figure 12.7 A simple speed layer architecture using 
synchronous updates
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traffic spike with synchronous updates could overload the database, leading to dropped
requests, timeouts, and other errors that disrupt your application. 

 The speed layer architecture for asynchronous updates is illustrated in figure 12.8.
In the next chapter you’ll learn about queues and stream processing in much more
detail. 

 There are uses for both synchronous and asynchronous updates. Synchronous
updates are typical among transactional systems that interact with users and require
coordination with the user interface. Asynchronous updates are common for analyt-
ics-oriented workloads or workloads not requiring coordination. The architectural
advantages of asynchronous updates—better throughput and better management of
load spikes—suggest implementing asynchronous updates unless you have a good rea-
son not to do so. 

12.5 Expiring realtime views
Incremental algorithms and random-write databases make the speed layer far more
complex than the batch and serving layers, but one of the key benefits of the Lambda
Architecture is the transient nature of the speed layer. Because the simpler batch and
serving layers continuously override the speed layer, the speed layer views only need to
represent data yet to be processed by the batch computation workflow. Once a batch
computation run finishes, you can then discard a portion of the speed layer views—
the parts now absorbed into the serving layer—but obviously you must keep every-
thing else. 

 Ideally a speed layer database would provide support to directly expire entries, but
this is typically not an option with current databases. Tools like Memcached provide a
similar behavior to set time-delayed expirations on key/value pairs, but they’re not
well suited for this problem. For example, you could set the expiration of an entry to
be the expected time before it’s integrated into the serving layer views (with perhaps
extra time to serve as a buffer). But if for unexpected reasons the batch layer process-
ing requires additional time, those speed layer entries would prematurely expire. 

 Instead, we’ll present a generic approach for expiring speed layer views that works
regardless of the speed layer databases being used. To understand this approach, you

Update
queue

Client

Client

Client At a later time, the stream processor
reads a batch of messages from the
queue and applies the updates in bulk.

Stream
processor Database

With asynchronous updates, clients submit updates
to a queue and immediately proceed to other tasks.

b

c

Figure 12.8 Asynchronous updates provide higher throughput and readily handle variable loads.
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first must understand exactly what needs to be
expired each time the serving layer is updated.
Suppose you have a complete Lambda Archi-
tecture implementation and you turn on your
application for the first time. The system
doesn’t yet have any data, so initially both
the speed layer views and serving layer views
are empty. 

 When the batch layer first runs, it will oper-
ate on no data. Say the batch layer computa-
tion takes 10 minutes due to the overhead of
running jobs, creating empty indexes, and so forth. At the end of those 10 minutes,
the serving layer views remain empty but the speed layer views now represent 10 min-
utes of data. This situation is illustrated in figure 12.9. 

 The second run of the batch layer immediately commences to process the 10 minutes
of data that accumulated during the
first run. For illustrative purposes, say
the second run takes 15 minutes.
When it finishes, the serving layer
views will represent the first 10 minutes
of data, whereas the speed layer views
will represent all 25 minutes of data.
The first 10 minutes can now be
expired from the speed layer views, as
shown in figure 12.10. 

 Finally, suppose the third run of the batch layer takes 18 minutes. Consider the
instant before the third run completes, as depicted in figure 12.11. 

 At this point, the serving layer still only represents 10 minutes of data, leaving the
speed layer to handle the remaining 33 minutes of data. This figure demonstrates that
the speed layer views compensate for between one and two runs of the batch layer,
depending on how far the batch layer has progressed through its workflow. When a
batch layer run finishes, data from three runs ago can safely be discarded from the
speed layer. 

10 minutes

Serving layer

Speed layer

System
running time

Just prior to the completion of the batch layer computation,
the speed layer is responsible for data that accumulated

during the prior two runs.

15 minutes 18 minutes

Figure 12.11 The serving and speed layer views immediately before the completion 
of the third batch computation run

10 minutes

Serving
layer

Speed layer

System
running time

After the first batch computation run,
the serving layer remains empty but the
speed layer has processed recent data.

Figure 12.9 The state of the serving and 
speed layer views at the end of the first 
batch computation run

10 minutes

Serving layer

Speed layer

System
running time

When the second batch computation run finishes, the first
segment of data has been absorbed into the serving layer

and can be expired from the speed layer views.

15 minutes

Expired

Figure 12.10 A portion of the realtime views can be ex-
pired after the second run completes.
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The simplest way to accomplish this task is to maintain two sets of realtime views and
alternate clearing them after each batch layer run, as shown in figure 12.12. One of
those sets of realtime views will exactly represent the data necessary to compensate
for the serving layer views. After each batch layer run, the application should switch
to reading from the realtime view with more data (and away from the one that was
just cleared). 

 At a first glance, it may appear expensive to maintain two realtime views, since it
essentially doubles the storage cost of the speed layer. The key is that the speed layer
views only represent a miniscule portion of your data—at most a few hours’ worth. Com-
pared to potentially years of data represented by your serving layer, this can be less
than 0.1% of all the data in your system. This scheme does introduce redundancy, but
it’s an acceptable price for a general solution to expire realtime views. 

12.6 Summary
The speed layer is very different from the batch layer. Rather than compute functions
on your entire dataset, you instead compute using more complex incremental algo-
rithms on more complex forms of storage. But the Lambda Architecture allows you to
keep the speed layer small and therefore more manageable. 

 You’ve learned the basic concepts of the speed layer and the details around manag-
ing realtime views. You saw two ways of updating realtime views, synchronously and
asynchronously. There isn’t much more to cover with synchronous speed layers,
because you simply connect to the database and issue an update, but there’s a lot
more involved with asynchronous speed layers. Before getting to that, we’ll first look
at Cassandra, an example database that can be used for a speed layer view.

Batch run 1 Batch run 2 Batch run 3 Batch run 4 Batch run 5

Realtime views 1

Realtime views 2

Figure 12.12 Alternating clearing between two different sets of realtime views guarantees one 
set always contains the appropriate data for the speed layer.
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Realtime views: Illustration

Now that you’ve learned the basics of the speed layer and realtime views, let’s take a
look at Cassandra, a database that can be used as a realtime view. Cassandra is not a
general-purpose realtime view by any means—many systems require multiple data-
bases to satisfy all of their indexing, consistency, and performance requirements.
For our purposes, however, Cassandra serves to illustrate the concepts of realtime
views, and it’s the database that we’ll use for the speed layer of SuperWebAnalyt-
ics.com later in the book. There are many publicly available resources to help you
understand the inner workings of the database, so we’ll focus on the properties of
Cassandra from a user perspective. 

13.1 Cassandra’s data model 
While many tout Cassandra as a column-oriented database, we find that terminol-
ogy to be somewhat confusing. Instead, it’s easier to consider the data model as a
map with sorted maps as values (or optionally, a sorted map with sorted maps as val-

This chapter covers
■ Cassandra’s data model 
■ Using Cassandra as a realtime view
■ Controlling partitioning and ordering to support 

a wide range of view types
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ues). Cassandra allows standard operations on the nested maps, such as adding key/
value pairs, looking up by key, and getting ranges of keys. 

 To introduce the terminology, figure 13.1 illustrates the different aspects of the
Cassandra data model. To expand upon the terms: 

■ Column families—Column families are analogous to tables in relational databases,
and each column family stores a completely independent set of information. 

■ Keys—If you consider a column family as a giant map, keys are the top-level
entries in that map. Cassandra uses the keys to partition a column family across
a cluster. 

■ Columns—Each key points to another map of name/value pairs called columns.
All columns for a key are physically stored together, making it inexpensive to
access ranges of columns. Different keys can have different sets of columns, and
it’s possible to have thousands—or even millions—of columns for a given key. 

To understand this model fully, let’s return to the SuperWebAnalytics.com example.
Specifically, let’s see how you could model the pageviews-over-time view using Cassan-
dra. For pageviews over time, you want to retrieve the pageviews for a particular URL and
a particular granularity (hour, day, week, or four weeks) over a specific range of time
buckets. To store this information in Cassandra, the key will be a [URL, granularity]

Alice

Bob

Charlie

age → 25

Keys Columns

Column family: users

gender → female

location → CA

gender → male

posts → 25

birthday → 06/12/86

nickname → chuck

A column family stores an
independent set of information,
similar to tables in relational databases.

1

Column families contain key/value
pairs where the values themselves
are maps.

Each key has numerous name/value
pairs known as columns. The columns
are stored together, and they can differ
from key to key.

b

c

d

Figure 13.1 The Cassandra data model consists of column families, keys, and columns.
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pair, and the columns will be the name/value pairs of time buckets and pageviews. Fig-
ure 13.2 demonstrates some sample data for this view. 

 This is an efficient way to store pageviews because columns are sorted—in this case
by the time bucket—and stored physically together. 

 Contrast this with an alternative scheme where the Cassandra key is a triplet of
URL, granularity, and time bucket, and there’s a single pageviews column. Querying a
range of pageviews in this scheme would require lookups for multiple Cassandra keys.
Because each key could potentially reside on a different server, these queries would
have high latency due to variance in server response times, as discussed in chapter 7. 

13.2 Using Cassandra
Now that you understand the Cassandra data model, you’re ready to implement the
pageviews-over-time scheme with keys as a [URL, granularity] pair and a column-
per-time bucket. This implementation will be demonstrated using the Hector Java cli-
ent for Cassandra. 

 First you need a client that can issue operations to a particular column family.
Because schemas only have to be created once per column family, we’ve omitted
schema definition code to avoid cluttering the code. See the Hector or Cassandra doc-
umentation if you need further details. 

Cluster cluster = HFactory.getOrCreateCluster("mycluster","127.0.0.1");
Keyspace keyspace =

HFactory.createKeyspace("superwebanalytics", cluster);

[foo.com/blog, d]

[bar.com/page, d]

0 → 132

Column family: pageviews

2 → 265

5 → 201

4 → 112

3 → 178

0 → 91

2 → 102

4 → 96

3 → 171

Figure 13.2 Pageviews over 
time represented in Cassandra

Creates a cluster object to connect
to a distributed Cassandra clusterA keyspace is a

container for
all the column
families of an

application.
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ColumnFamilyTemplate<String, Long> template =
new ThriftColumnFamilyTemplate<String, Long> (keyspace,

"pageviews",
StringSerializer.get(),
LongSerializer.get());

Once you have a client to communicate with the cluster, you can retrieve the pageviews
for a given URL and a given range of time buckets. The following code calculates total
pageviews for foo.com/blog at a daily granularity for time buckets 20 to 55: 

SliceQuery<String, Long, Long> slice =
HFactory.createSliceQuery(keyspace,

StringSerializer.get(),
LongSerializer.get(),
LongSerializer.get());

slice.setColumnFamily("pageviews");
slice.setKey("foo.com/blog-d");

ColumnSliceIterator<String, Long, Long> it =
new ColumnSliceIterator<String, Long, Long>(slice,
20L, 55L, false);

long total = 0;
while(it.hasNext()) {

total += it.next().getValue();
}

The ColumnSliceIterator traverses all columns in the given range. If the range is
enormous (such as containing tens of thousands of columns), it will automatically buf-
fer and batch those columns from the server so as not to run out of memory. Remem-
ber, because the columns are ordered and stored together, slice operations over a
range of columns are very efficient. 

 Updates are equally easy. The following code adds 25 to the pageviews of foo.com/
blog for time bucket 7 at daily granularity:

long currVal;
HColumn<Long, Long> col =

template.querySingleColumn("foo.com/blog-d",
7L,
LongSerializer.get());

if (col==null)
currVal = 0;

else
currVal = col.getValue();

ColumnFamilyUpdater<String, Long> updater =
template.createUpdater("foo.com/blog-d");

updater.setLong(7L, currVal + 25L);
template.update(updater);

A ColumnFamilyTemplate is used 
to issue operations to that 
column family for that keyspace.

Creates a range 
template for a 
Cassandra query

The serializers are 
for the keys (url/
granularity), names 
(buckets), and 
values (pageviews), 
respectively.

Assigns the
column family

and key for
the query

Obtains a
column

iterator for
the given

range

Traverses the iterator 
and sum the pageviews 
to obtain the total

Retrieves the current value for 
the specified URL, granularity, 
and time bucket

Serializer for 
pageview value

If no value
is recorded,
there have

been no
pageviews.

Creates an update 
template for the 
given key

Increments
the pageviews
and performs

the update
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For an analytics use case like pageviews over time, you’d normally batch updates for
multiple time buckets to increase efficiency. We’ll discuss this further when we cover
stream processing in chapter 15. 

13.2.1 Advanced Cassandra 

It’s worth mentioning a few advanced features of Cassandra that make it suitable for a
broader range of realtime view types. 

 The first addresses how Cassandra partitions keys among nodes in the cluster. You
can choose between two partitioner types: the RandomPartitioner and the Order-
PreservingPartitioner. 

 The RandomPartitioner makes Cassandra act like a hashmap and assigns keys to
partitions using the hash of the key. This results in the keys being uniformly distrib-
uted across the nodes in the cluster. In contrast, the OrderPreservingPartitioner
stores the keys in order, causing Cassandra to behave like a sorted map. Keeping the
keys sorted enables you to do efficient queries on ranges of keys. 

 Though there are advantages to keeping the keys sorted, there’s a cost to using the
OrderPreservingPartitioner. When preserving the order of the keys, Cassandra
attempts to split the keys so that each partition contains approximately the same num-
ber of keys. Unfortunately, there’s no good algorithm to determine balanced key
ranges on the fly. In an incremental setting, clusters can become unbalanced with
some servers being overloaded while others have virtually no data. This is another
example of the complexity you face with realtime, incremental computation that you
avoid with batch computation. In a batch context, you know all the keys beforehand,
so you can evenly split keys among partitions as part of the computation. 

 Cassandra has another feature called composite columns that extends the sorted map
idea even further. Composite columns let you nest the maps arbitrarily deep—for
example, you could model your index as a map of sorted maps of sorted maps of
sorted maps. This gives you great flexibility in the indexing model you choose. 

13.3 Summary
We’ve shown the basics of using Cassandra. There are other features—like support for
eventual consistency—that we haven’t covered because they aren’t needed for the
SuperWebAnalytics.com example. There are plenty of other resources you can search
to learn more about that. 

 As a random-read/random-write database, Cassandra is significantly harder to oper-
ate than a serving layer database. Online compaction and the need to rebalance key
ranges (if using OrderPreservingPartitioner) can cause significant pain. Fortunately,
the transience of the speed layer in the Lambda Architecture protects you to a great
extent—if anything goes seriously wrong, you can discard the speed layer and rebuild it. 

 The next step is connecting the stream of data being generated with the realtime
views. In the next chapter you’ll see how to combine a database like Cassandra with a
stream-processing engine to accomplish this feat. 
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Queuing and
 stream processing

You’ve learned of two types of architectures for the speed layer: synchronous and
asynchronous. With synchronous architectures, applications send update requests
directly to the database and block until receiving a response. Such applications
require the coordination of different tasks, but there’s not much to add to the dis-
cussion from an architectural standpoint. Conversely, asynchronous architectures
update the speed layer databases independently from the application that created
the data. How you decide to persist and process the update requests directly affects
the scalability and fault tolerance of your entire system. 

 This chapter covers the basics of queuing and stream processing, the two foun-
dations of asynchronous architectures. You earlier saw that the key to batch process-
ing is the ability to withstand failures and retry computations when necessary. The
same tenets carry over to the speed layer, as fault tolerance and retries are of the

This chapter covers
■ Single-consumer versus multi-consumer queues
■ One-at-a-time stream processing 
■ Limitations of queues-and-workers approaches 

to stream processing
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utmost importance in stream-processing systems. As usual, the incremental nature of
the speed layer makes the story more complex, and there are many more trade-offs to
keep in mind as you design applications. 

 After a discussion of the need for persistent queuing, we’ll launch into an overview
of the simplest kind of stream processing—one-at-a-time processing. You’ll see how
the fault-tolerance and retry story plays out for that kind of processing. 

14.1 Queuing
To understand the need for persistent queuing in asynchronous systems, first consider
an architecture without it. In such a system, events would simply be handed directly to
workers that would process each event independently. This approach is illustrated in
figure 14.1. 

 This fire-and-forget scheme can’t guarantee that all the data is successfully pro-
cessed. For example, if a worker dies before completing its assigned task, there’s no
mechanism to detect or correct the error. The architecture is also susceptible to bursts
in traffic that exceed the resources of the processing cluster. In such a scenario, the
cluster would be overwhelmed and messages could be lost. 

 Writing events to a persistent queue addresses both of these issues. Queues allow
the system to retry events whenever a worker fails, and they provide a place for events
to buffer when downstream workers hit their processing limits. 

 While it’s now clear that an asynchronous architecture needs a queue to persist an
event stream, the semantics of a good queue design require further discussion. A
good place to begin are the queue interfaces you’re already familiar with, such as the
native Queue interface in Java. The methods from the interface that are relevant to
this discussion are listed here: 

interface Queue {
void add(Object item);
Object poll();
Object peek();

}

14.1.1 Single-consumer queue servers 

The Java Queue interface is a natural starting point when designing a persistent queue
for the speed layer. In fact, queue implementations such as Kestrel and RabbitMQ use
a similar interface. They share the same single-consumer structure, as shown here: 

Worker

Worker

Worker
Hand off and

continue

Client

Figure 14.1 To implement asyn-
chronous processing without 
queues, a client submits an event 
without monitoring whether its 
processing is successful.

Adds new item 
to the queue

Removes the
item from

the head of
the queue

Inspects the item at the head of 
the queue without removing it 
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struct Item {
long id;
byte[] item;

}

interface Queue {
Item get();
void ack(long id);
void fail(long id);

}

The single-consumer queue design is based on the idea that when you read an event
from the queue, the event is not immediately removed. Instead, the item returned by
the get function contains an identifier that you later use to acknowledge success
(ack) or report failure (fail) for the processing of the event. Only when an event is
acked will it be removed from the queue. If the event processing fails or a timeout
occurs, the queue server will allow another client to retrieve the same event via a sepa-
rate get call. An event may therefore be processed multiple times with this approach
(for example, when a client processes an event but dies before acknowledging it), but
each event is guaranteed to be processed at least once. 

 This all seems well and good, but there is actually a deep flaw in this queue design:
what if multiple applications want to consume the same stream? This is quite com-
mon. For example, given a stream of pageviews, one application could build a view of
pageviews over time while another could build a view of unique visitors over time. 

 One possible solution would be to wrap all the applications within the same con-
sumer, as shown in figure 14.2. 

 When done this way, all the applications reside in the same codebase and run in
the same workers. But this is a bad design as it eliminates any isolation among inde-
pendent applications. Without isolation, if one application has a bug, it could poten-
tially affect all the other applications running within the same consumer. This
problem is exacerbated in larger organizations where multiple teams need to share

A generic Item consists 
of an identifier and a 
binary payload.

Retrieves
an Item for
processing

Acknowledges successful 
processing of an ItemReports a failure

when processing
an Item

Queue Queue
consumer

Application 1

Application 2

Application 3

Application 4

Figure 14.2 Multiple applications sharing a single queue consumer
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the same stream. Without question, it’s much better—and much saner—to isolate
independent applications so that a broken application has no impact on others. 

 With the single-consumer queue design, the only way to achieve independence
between applications is to maintain a separate queue for each consumer application.
That is, if you have three applications, you must maintain three separate copies of the
queue on the queue server. The obvious drawback is that this greatly increases the load
on the queue server. Specifically, the load is now proportional to the number of appli-
cations multiplied by the number of incoming events, rather than just to the number
of incoming events. It’s entirely possible you’ll want to build dozens of views using the
same stream, and the queue server could potentially crash under the massive load. 

 Discussing the limitations of a single-consumer queue helps identify the desired
properties for a queuing system. What you really want is a single queue that can be
used by many consumers, where adding a consumer is simple and introduces a mini-
mal increase in load. When you think about this further, the fundamental issue with a
single-consumer queue is that the queue is responsible for keeping track of what’s
consumed. Because of the restrictive condition that an item is either “consumed” or
“not consumed,” the queue is unable to gracefully handle multiple clients wanting to
consume the same item. 

14.1.2 Multi-consumer queues 

Thankfully there’s an alternative queue design that doesn’t suffer the problems associ-
ated with single-consumer queues. The idea is to shift the responsibility of tracking
the consumed/unconsumed status of events from the queue to the applications them-
selves. If an application keeps track of the consumed events, it can then request the
event stream to be replayed from any point in the stream history. This design is illus-
trated in figure 14.3.

 Because the queue server doesn’t know when all the consumers have processed
any given item, it provides a service-level agreement (SLA) on the available events.
That is, it will guarantee that a certain amount of the stream is available, such as all
events from the past 12 hours or the last 50 GB of events. Apache Kafka is a good
example of a queue implementation that implements multi-consumer queuing, and it
exposes an interface similar to what has been described. 

Multi-consumer queue

0 1 2 3 4 5 6 7

“Send 3 items
starting from
position 4.” Client

“Send 10 items
starting from
position 6.”

Client

...

Figure 14.3 With a multi-consumer queue, applications request specific items from 
the queue and are responsible for tracking the successful processing of each event.
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There’s another notable difference between single-consumer and multi-consumer
queues. With a single-consumer queue, a message is deleted once it has been acked
and can no longer be replayed. As a result, a failed event can cause the event stream to
be processed out of order. To understand this behavior, if the stream is consumed in
parallel and an event fails, other events subsequent to the failed event may be pro-
cessed successfully before a reattempt is made. In contrast, a multi-consumer queue
allows you to rewind the stream and replay everything from the point of failure, ensur-
ing that you process events in the order in which they originated. The ability to replay
the event stream is a great benefit of multi-consumer queues, and these queues don’t
have any drawbacks when compared to single-consumer queues. Accordingly, we
highly recommend using multi-consumer queues such as Apache Kafka. 

14.2 Stream processing
Once you have your incoming events feeding your multi-consumer queues, the next
step is to process those events and update your realtime views. This practice is called
stream processing, illustrated in figure 14.4. 

Two models of stream processing have emerged in recent years: one-at-a-time and micro-
batched. There are trade-offs to consider, since each has its strengths and weaknesses.
They are very much complementary—some applications are better suited for one-at-a-
time stream processing, and micro-batch stream processing is a better choice for oth-
ers. Figure 14.5 summarizes the benefits of the two models. We’ll focus on one-at-a-
time stream processing in this chapter, and we’ll cover micro-batch stream processing
in the next. 

 A big advantage of one-at-a-time stream processing is that it can process streams
with lower latency than micro-batched processing. Example applications that greatly
benefit from this attribute include alerting and financial trading. 

Queue Stream
processor Realtime views

Figure 14.4 Stream processing

One-at-a-time Micro-batched

In some cases

Lower latency

Higher throughput

At-least-once semantics

Exactly-once semantics

Simpler programming model

Figure 14.5 Comparison 
of stream-processing para-
digms
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We’ll start building a general model of one-at-a-time stream processing by first observ-
ing an antiquated approach: the queues-and-workers model. The problems plaguing this
approach will motivate a more general way to accomplish this task. 

14.2.1 Queues and workers 

The queues-and-workers paradigm is a common means of achieving one-at-a-time
stream processing. The basic idea is to divide your processing pipeline into worker
processes, and place queues between them. With this structure, if a worker fails or the
worker process restarts, it can simply continue where it left off by reading from its
queue, as illustrated in figure 14.6. 

For example, say you’re implementing the pageviews-over-time view using the queues-
and-workers approach, as illustrated in figure 14.7. The first set of workers reads
pageview events from a set of queues, validates each pageview to filter out invalid
URLs, and then passes the events to a second set of workers. The second set of workers
then updates the pageview counts of the valid URLs. 

Queue

Worker

Worker

Worker

Queue

Queue

Worker

Worker

Worker Queue

Worker

Worker

Figure 14.6 A representative system using a queues-and-workers architecture. The queues in the 
diagram could potentially be distributed queues as well.

Pageviews
queues

Filter and
validate
workers

Valid
pageviews

queues
Cassandra

workers

Cassandra

Figure 14.7 Computing pageviews over time with a queues-and-workers architecture
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14.2.2 Queues-and-workers pitfalls

The queues-and-workers paradigm is straightforward but not necessarily simple. 
 One subtlety in this scheme is the need to ensure that multiple workers don’t

attempt to update the pageview count of the same URL at the same time. Otherwise,
there would be potential race conditions where writes would be trampled in the data-
base. To meet this guarantee, the first set of workers partitions its outgoing stream by
the URL. With this partitioning, the entire set of URLs will still be spread among the
queues, but pageview events for any given URL will always go to the same queue. A sim-
ple way to implement this is to choose the target queue by hashing the URL and mod-
ding the hash by the number of target queues. Unfortunately, a consequence of
partitioning over queues is poor fault tolerance. If a worker that updates the pageview
counts in the database goes down, no other workers will update the database for that
portion of the stream. You’ll have to manually start the failed worker somewhere else,
or build a custom system to automatically do so. 

 Another problem is that having queues between every set of workers adds to the
operational burden on your system. If you need to change the topology of your pro-
cessing, you’ll need to coordinate your actions so that the intermediate queues are
cleared before you redeploy. 

 Queues also add latency and decrease the throughput of your system because each
event passed from worker to worker is forced to go through a third party, where it
must be persisted to disk. 

 On top of everything else, each intermediate queue needs to be managed and
monitored and adds yet another layer that needs to be scaled. 

 Perhaps the biggest problem with the queues-and-workers approach is how tedious
it is to build. Much of your code becomes dedicated to serialization and deserialization
to pass objects through queues, routing logic to connect the worker pools, and instruc-
tions for deploying the workers over a cluster of servers. When all is said and done, your
actual business logic ends up being a very small percentage of your codebase. 

 The fact that the workers work in tandem toward some higher goal while requiring
highly detailed coordination is a strong indicator of the need for a higher-level
abstraction. 

14.3 Higher-level, one-at-a-time stream processing 
The higher-level, one-at-a-time, stream-processing approach you’ll learn is a general-
ization of the queues-and-workers model but without any of its complexities. Like
queues and workers, the scheme processes tuples one tuple at a time, but the code
runs in parallel across the cluster so that the system is scalable with high throughput.
Remember, the goal of the speed layer is to process a stream and update the realtime
views—that’s all. Your goal is to accomplish that with a minimum of hassle and have
strong guarantees regarding the processing of data. 

 Earlier in the book you learned about MapReduce as a model for scalable batch
computation, with Hadoop being a specific implementation. Analogously, a model
exists for one-at-a-time stream processing, but there isn’t a short, catchy name. For our
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discussion we’ll refer to it as the Storm model after the project that originated these
techniques. Let’s now go over this model and see how it alleviates the complexities of
queues and workers. 

14.3.1 Storm model 

The Storm model represents the entire stream-processing pipeline as a graph of com-
putation called a topology. Rather than write separate programs for each node of the
topology and connect them manually, as required in the queues-and-workers schemes,
the Storm model involves a single program that’s deployed across a cluster. This flexi-
ble approach allows a single executable to filter data in one node, compute aggregates
with a second node, and update realtime view databases with a third. Serialization,
message passing, task discovery, and fault tolerance can be handled for you by the
abstractions, and this can all be done while achieving very low latency (10 ms or less).
Whereas previously you had to explicitly design and program for each of these fea-
tures, you can now focus on your business logic. 

 Let’s build the Storm model from the ground up. At the core of the Storm model
are streams. A stream, illustrated in figure 14.8, is an infinite sequence of tuples, where
a tuple is simply a named list of values. In essence, the Storm model is about trans-
forming streams into new streams, potentially updating databases along the way. 

The next abstraction in the Storm model is the spout. A spout is a source of streams in
a topology (see figure 14.9). For example, a spout could read from a Kestrel or Kafka
queue and turn the data into a tuple stream, or a timer spout could emit a tuple into
its output stream every 10 seconds. 

Tuple Tuple Tuple Tuple Tuple Tuple Tuple

Stream

Figure 14.8 A stream is an infinite sequence of tuples.

Tuple Tuple Tuple Tuple Tuple Tuple

Tuple

Tuple Tuple Tuple Tuple Tuple Tuple

Tuple

Stream

Stream

Figure 14.9 A spout is a source of streams in a topology.
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While spouts are sources of streams, the bolt abstrac-
tion performs actions on streams. A bolt takes any
number of streams as input and produces any num-
ber of streams as output (see figure 14.10). Bolts
implement most of the logic in a topology—they run
functions, filter data, compute aggregations, do
streaming joins, update databases, and so forth. 

 Having defined these abstractions, a topology is
therefore a network of spouts and bolts with each
edge representing a bolt that processes the output
stream of another spout or bolt (see figure 14.11). 

 Each instance of a spout or bolt is called a task.
The key to the Storm model is that tasks are inher-
ently parallel—exactly like how map and reduce tasks are inherently parallel in
MapReduce. Figure 14.12 demonstrates the parallelism of tuples flowing through
a topology. 

Tuple Tuple Tuple

Tuple Tuple Tuple

Stream

Stream

Tuple Tuple Tuple

Stream

Figure 14.10 Bolts 
process the input 
from one or many in-
put streams and pro-
duce any number of 
output streams.

Spouts and bolts consist of
multiple tasks that are

executed in parallel. A bolt
task receives tuples from all
tasks that generate the bolt’s

input stream.

Figure 14.12 In a topology, the spouts and bolts have multiple instances running in parallel.

Figure 14.11 A topology connects 
spouts and bolts and defines how tu-
ples flow through a Storm applica-
tion.
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Of course, all the tasks for a given spout or bolt will not necessarily run on the same
machine. Instead they’re spread among the different workers of the cluster. In contrast to
the previous illustration, figure 14.13 depicts a topology grouped by physical machines.

 The fact that spouts and bolts run in parallel brings up a key question: when a task
emits a tuple, which of the consuming tasks should receive it? The Storm model
requires stream groupings to specify how tuples should be partitioned among consum-
ing tasks. The simplest kind of stream grouping is a shuffle grouping that distributes
tuples using a random round-robin algorithm. This grouping evenly splits the process-
ing load by distributing the tuples randomly but equally to all consumers. Another
common grouping is the fields grouping that distributes tuples by hashing a subset of
the tuple fields and modding the result by the number of consuming tasks. For exam-
ple, if you used a fields grouping on the word field, all tuples with the same word
would be delivered to the same task. 

 We can now complete the topology diagram by annotating every subscription edge
with its stream grouping, as shown in figure 14.14. 

 Let’s solidify this example by delving further into a basic example of a topology.
Just as word count is the de facto introductory MapReduce example, let’s see what the
streaming version of word count looks like in the Storm model. 

 The word-count topology is illustrated in figure 14.15. The splitter bolt transforms
a stream of sentences into a stream of words, and the word-count bolt consumes the
words to compute the word counts. The key here is the fields grouping between the

Worker node

Worker Worker

Worker Worker Worker

Worker node Worker node

B1

B1

B1 B1

B2

B2

B2

B3
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S

S

Figure 14.13 A physical view of 
how topology tasks could be dis-
tributed over three servers
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splitter bolt and the word-count bolt. That ensures that each word-count task sees
every instance of every word they receive, making it possible for them to compute the
correct count. 

 Now let’s take a look at pseudo-code for the bolt implementations. First, the split-
ter bolt: 

class SplitterBolt {
function execute(sentence) {

for(word in sentence.split(" ")) {
emit(word)

}
}

}

Shuffle

All

Fields on “word”

Fields on “w”

Shuffle

Global

Figure 14.14 A topology with stream groupings

Sentences
spout

Word-splitter
bolt

Word-count
boltShuffle Partition by “word”

Figure 14.15 Word-count topology

Bolts are
defined as

objects because
they can keep
internal state.

Bolts receive tuples. In this 
case, this bolt receives a 
tuple with one field.

Emits a word to the output 
stream. Any subscribers to 
this bolt will receive the word.
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Next, the word-count bolt: 

class WordCountBolt {
counts = Map(default=0)

function execute(word) {
counts[word]++
emit(word, counts[word])

}
}

As you can see, the Storm model requires no logic around where to send tuples or
how to serialize tuples. That can all be handled underneath the abstractions. 

14.3.2 Guaranteeing message processing 

When we introduced the queues-and-workers model, we discussed at length the issues
of keeping intermediate queues between every stage of processing. One of the beauties
of the Storm model is that it can be implemented without any intermediate queues. 

 With intermediate queuing, message processing is guaranteed because messages
aren’t taken off the queue until they’ve been successfully processed by a worker. If the
worker dies or has another sort of failure, it will retry the message. So intermediate
queuing gives an at-least-once processing guarantee. 

 It turns out you can maintain that at-least-once guarantee without intermediate
queues. Of course, it has to work differently—instead of retries happening wherever
the failure occurred, retries happen from the root of the topology. To understand
this, let’s take a look at what the processing of a tuple looks like in the word-count
topology. This is illustrated in figure 14.16. 

 When a sentence tuple is generated by the spout, it’s sent to whatever bolts sub-
scribe to that spout. In this case, the word-splitter bolt creates six new tuples based
on that spout tuple. Those word tuples go on to the word-count bolt, which creates a
single tuple for every one of those word tuples. You can visualize all the tuples cre-
ated during the processing of a single spout tuple as a directed acyclic graph (DAG).
Let’s call this the tuple DAG. You could imagine much larger tuple DAGs for more-
involved topologies. 

Word counts are 
kept in memory.

Spout tuples

Splitter tuples

Counter tuples

[“the cow jumped over
the moon”]

[“the”] [“cow”]

[“the”,1] [“cow”,1]

[“jumped”]

[“jumped”,1]

[“over”]

[“over”,1]

[“the”]

[“the”,2]

[“moon”]

[“moon”,1]

Figure 14.16 The tuple DAG for a single tuple emitted from the spout. The DAG size rapidly grows as 
the amount of processing increases.
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It turns out there’s an efficient and scalable algorithm for tracking tuple DAGs and
retrying tuples from the spout if there’s a failure anywhere downstream. Retrying
tuples from the spout will cause the entire tuple DAG to be regenerated. 

 Retrying from the spout may seem a step backward—intermediate stages that had
completed successfully will be tried again. But upon further inspection, this is actu-
ally no different than before. With queues and workers, a stage could succeed in
processing, fail right before acknowledging the message and letting it be removed
from the queue, and then be tried again. In both scenarios, the processing guaran-
tee is still an at-least-once processing guarantee. Furthermore, as you’ll see when you
learn about micro-batch stream processing, exactly-once semantics can be achieved
by building on top of this at-least-once guarantee, and at no point are intermediate
queues needed. 

Let’s see how you can use the Storm model to implement part of the SuperWebAnalyt-
ics.com speed layer. 

Tracking tuple DAGs scalably and efficiently
You may be wondering how tuple DAGs can be tracked scalably and efficiently. A tuple
DAG could contain millions of tuples, or more, and intuitively you might think that it
would require an excessive amount of memory to track the status of each spout
tuple. As it turns out, it’s possible to track a tuple DAG without explicitly keeping track
of the DAG—all you need is 20 bytes of space per spout tuple. This is true regardless
of the size of the DAG—it could have trillions of tuples, and 20 bytes of space would
still be sufficient. We won’t get into the algorithm here (it’s documented extensively
in Apache Storm’s online documentation). The important takeaway is that the algo-
rithm is very efficient, and that efficiency makes it practical to track failures and ini-
tiate retries during stream processing.

Working with an at-least-once processing guarantee
In many cases, reprocessing tuples will have little or no effect. If the operations in a
topology are idempotent—that is, if repeatedly applying the operation doesn’t change
the result—then the topology will have exactly-once semantics. An example of an
idempotent operation is adding an element to a set. No matter how many times you
perform the operation, you’ll still get the same result. 

Another point to keep in mind is that you might just not care about a little inaccuracy
when you have non-idempotent operations. Failures are relatively rare, so any inaccu-
racy should be small. The serving layer replaces the speed layer anyway, so any inac-
curacy will eventually be automatically corrected. Again, it’s possible to achieve
exactly-once semantics by sacrificing some latency, but if low latency is more impor-
tant than temporary inaccuracy, then using non-idempotent operations with the Storm
model is a fine trade-off. 
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14.4 SuperWebAnalytics.com speed layer 
Recall that there are three separate queries you’re implementing for SuperWebAna-
lytics.com: 

■ Number of pageviews over a range of hours 
■ Unique number of visitors over a range of hours 
■ Bounce rate for a domain 

We’ll implement the unique-visitors query in this section and the remaining two in
chapter 16. 

 The goal of this query is to be able to get the number of unique visitors for a
URL over a range of hours. Recall that when implementing this query for the batch
and serving layers, the HyperLogLog algorithm was used for efficiency: Hyper-
LogLog produces a compact set representation that can be merged with other sets,
making it possible to compute the uniques over a range of hours without having to
store the set of visitors for every hour. The trade-off is that HyperLogLog is an
approximate algorithm, so the counts will be off by a small percentage. The space
savings are so enormous that it was an easy trade-off to make, because perfect accu-
racy is not needed for SuperWebAnalytics.com. The same trade-offs exist in the
speed layer, so you can make use of HyperLogLog for the speed layer version of
uniques over time. 

 Also recall that SuperWebAnalytics.com can track visitors using both IP addresses
and account login information. If a user is logged in and uses both a phone and a
computer to visit the same web page at approximately the same time, the user’s
actions should be recorded as a single visit. In the batch layer, this was accounted for
by using the equiv edge relationships to keep track of which identifiers represented
the same person, and then normalizing all identifiers for one person into a single
identifier. Specifically, we could perform a complete equiv edge analysis before start-
ing the uniques-over-time computation. 

 Handling the multiple identifier problem in the speed layer is much more com-
plex. The difficulty arises because the multiple identifier relationship might be deter-
mined after the speed layer views are updated. For example, consider the following
sequence of events: 

1 IP address 11.11.11.111 visits foo.com/about at 1:30 pm.
2 User sally visits foo.com/about at 1:40 pm.
3 An equiv edge between 11.11.11.111 and sally is discovered at 2:00 pm.

Before the application learns of the equivalence relationship, the visits would be
attributed to two distinct individuals. To have the most accurate stats possible, the
speed layer must therefore reduce the [URL, hour] uniques count by one. 

 Let’s consider what it would take to do this in real time. First, you’d need to track
the equiv graph in real time, meaning the entire graph analysis from chapter 8 must
be done incrementally. Second, you must be able to determine if the same visitor has
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been counted multiple times. This requires that you store the entire set of visitors for
every hour. HyperLogLog is a compact representation and is unable to help with this,
so handling the equiv problem precludes taking advantage of HyperLogLog in the
first place. On top of everything else, the incremental algorithm to do the equiv graph
analysis and adjust previously computed unique counts is rather complex. 

 Rather than striving to compute uniques over time perfectly, you can potentially
trade off some accuracy. Remember, one of the benefits of the Lambda Architecture is
that trading off accuracy in the speed layer is not trading off accuracy permanently—
because the serving layer continuously overrides the speed layer, any inaccuracies are
corrected and the system exhibits eventual accuracy. You can therefore consider alter-
native approaches and weigh the inaccuracies they introduce against their computa-
tional and complexity benefits. 

 The first alternative approach is to not perform the equiv analysis in real time.
Instead, the results of the batch equiv analysis can be made available to the speed layer
through a key/value serving layer database. In the speed layer, PersonIDs are first nor-
malized through that database before the uniques-over-time computation is done.
The benefit of this approach is that you can take advantage of HyperLogLog because
you don’t have to deal with realtime equivs. It’s also significantly simpler to imple-
ment, and it’s much less resource-intensive. 

 Now let’s consider where this approach will be inaccurate. Because the precom-
puted equiv analysis is out of date by a few hours, any newly discovered equiv rela-
tionships aren’t utilized. Thus, this strategy is inaccurate for cases where a user
navigates to a page, registers for a UserID (upon which an equiv edge is captured),
and then returns to the same page within the same hour but from a different IP
address. Note that the inaccuracy only happens with brand new users—after the user
registration has been processed by the batch equiv analysis, any subsequent visit by
the user will be properly recorded. Overall this is a slight amount of inaccuracy to
trade off for big savings. 

 You can potentially trade off additional accuracy. A second alternative is to ignore
equivs completely and calculate realtime uniques solely based on whatever PersonID
was in the pageview. In this case, even if an equiv was recorded between a UserID and
an IP address many months ago, if that person were to visit a page, log in, and then
revisit the same page, that would be recorded multiple times in the unique count for
that hour. 

 The right thing to do is to run batch analyses to quantify the inaccuracy generated
by each approach so you can make an informed decision on which strategy to take. Intu-
itively, it seems that ignoring equivs completely in the speed layer wouldn’t introduce
too much inaccuracy, so in the interest of keeping examples simple, that’s the approach
we’ll demonstrate. Before moving on, we again emphasize that any inaccuracy in the
speed layer is temporary—the entire system as a whole is eventually accurate. 

Licensed to Mark Watson <nordickan@gmail.com>



240 CHAPTER 14 Queuing and stream processing

14.4.1 Topology structure 

Let’s now design the uniques-over-time speed layer by ignoring equivs. This involves
three steps: 

1 Consume a stream of pageview events that contains a user identifier, a URL, and
a timestamp.

2 Normalize URLs.
3 Update a database containing a nested map from URL to hour to a HyperLogLog

set.

Figure 14.17 illustrates a topology structure to implement this approach. 
 Let’s look at each piece in more detail: 

■ Pageviews spout—This spout reads from a queue and emits pageview events as
they arrive.

■ Normalize URLs bolt—This bolt normalizes URLs to their canonical form. You
want this normalization algorithm to be the same as the one used in the batch
layer, so it makes sense for this algorithm to be a shared library between the two
layers. Additionally, this bolt could filter out any invalid URLs. 

■ Update database bolt—This bolt consumes the previous bolt’s stream using a
fields grouping on URL to ensure there are no race conditions updating the
state for any URL. This bolt maintains HyperLogLog sets in a database that
implements a key-to-sorted-map data structure. The key is the URL, the nested
key is the hour bucket, and the nested value is the HyperLogLog set. Ideally the
database would support HyperLogLog sets natively, so as to avoid having to
retrieve the HyperLogLog sets from the database and then write them back. 

That’s all there is to it. By making an approximation in the speed layer by ignoring
equivs, the logic of the speed layer is dramatically simplified. 

 It’s important to emphasize that such an aggressive approximation can be made in
the speed layer only because of the existence of a robust batch layer supporting it. In
chapter 10 you saw a fully incremental solution to the uniques-over-time problem, and
you saw how adding equivs to the mix made everything very difficult. A fully incre-
mental solution just doesn’t have the option of ignoring equivs because that would
mean ignoring equivs for the entire view. As you’ve just seen, a Lambda Architecture
has a lot more flexibility. 

Pageviews
spout

Normalize
URLs bolt

Update
database boltShuffle Partition by “url”

Figure 14.17 Uniques-over-time topology
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14.5 Summary 
You’ve seen how incremental processing with very tight latency constraints is inher-
ently much more complex than batch processing. This is due to the inability to look at
all your data at once and the inherent complexities of random-write databases (such
as compaction). Most traditional architectures, however, use a single database to rep-
resent the master dataset, the historical indexes, and the realtime indexes. This is the
very definition of complexity, as all these things should preferably be optimized differ-
ently, but intertwining them into a single system doesn’t let you do so. 

 The SuperWebAnalytics.com uniques-over-time query perfectly illustrates this tri-
chotomy. The master dataset is pageviews and equivs, so you store them in bulk in a dis-
tributed filesystem choosing a file format to get the right blend of space cost and read
cost. The distributed filesystem doesn’t burden you with unnecessary features like ran-
dom writes, indexing, or compaction, giving you a simpler and more robust solution. 

 The historical views are computed using a batch-processing system that can com-
pute functions of all data. It’s able to analyze the equiv graph and fully correlate which
pageviews belong to the same people even if the pageviews have different PersonIDs.
The view is put into a database that doesn’t support random writes, again avoiding any
unnecessary complexity from features you don’t need. Because the database isn’t writ-
ten to while it’s being read, you don’t have to worry about the operational burden
from processes like online compaction. 

 Finally, the key properties desired in the realtime views are efficiency and low
update latency. The speed layer achieves this by computing the realtime views incre-
mentally, making an approximation by ignoring equivs to make things fast and simple
to implement. Random-write databases are used to achieve the low latency required
for the speed layer, but their complexity burden is greatly offset by the fact that real-
time views are inherently small—most data is represented by the batch views. 

 In the next chapter you’ll see how to implement the concepts of queuing and
stream processing using real-world tools. 
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Queuing and stream
 processing: Illustration

In the last chapter you learned about multi-consumer queues and the Storm model
as a general approach to one-at-a-time stream processing. Let’s now look at how
you can apply these ideas in practice using the real-world tools Apache Storm and
Apache Kafka. We’ll conclude the chapter by implementing the speed layer for
unique pageviews for SuperWebAnalytics.com. 

15.1 Defining topologies with Apache Storm
Apache Storm is an open source project that implements (and originates) the Storm
model. You’ve seen that the core concepts in the Storm model are tuples, streams,

This chapter covers
■ Using Apache Storm 
■ Guaranteeing message processing 
■ Integrating Apache Kafka, Apache Storm, and 

Apache Cassandra 
■ Implementing the SuperWebAnalytics.com 

uniques-over-time speed layer
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spouts, bolts, and topologies. Let’s now implement streaming word count using the
Apache Storm API. For reference, the word-count topology is repeated in figure 15.1. 

 To begin, you first instantiate a TopologyBuilder object to define the application
topology. The TopologyBuilder object exposes the API for specifying Storm topologies: 

TopologyBuilder builder = new TopologyBuilder();

Next, you add a spout that emits a stream of sentences. This spout is named sentence-
spout and is given a parallelism of 8, meaning 8 threads will be spawned across the clus-
ter to execute the spout:

builder.setSpout("sentence-spout", new RandomSentenceSpout(), 8);

Now that you have a stream of sentences, you need a bolt that consumes the stream and
transforms it into a stream of words. This bolt is called splitter and is given a paral-
lelism of 12. Because there are no requirements on how the sentences are consumed,
you use a shuffle grouping to evenly distribute the processing load across all 12 tasks:

builder.setBolt("splitter", new SplitSentence(), 12)
.shuffleGrouping("sentence-spout");

The last bolt consumes the word stream and produces the desired stream of word
counts. It’s aptly called counter and also has a parallelism of 12. Note the use of fields
grouping to ensure only one task is responsible for determining the total count of any
particular word:

builder.setBolt("count", new WordCount(), 12)
.fieldsGrouping("splitter", new Fields("word"));

With the topology defined, you can continue to the actual implementation of the
spout and bolts. The implementation of the splitter bolt is extremely simple. It grabs
the sentence from the first field of the incoming tuple and emits a new tuple for every
word in the sentence:

public static class SplitSentence extends BaseBasicBolt {
public void execute(Tuple tuple, BasicOutputCollector collector) {

String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {
collector.emit(new Values(word));

}
}

Sentences
spout

Word-splitter
bolt

Word-count
boltShuffle Partition by “word”

Figure 15.1 Word-count topology

An incoming tuple contains 
a single sentence.

Splits the sentence
and emits each

word to the output
tuple stream
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public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

}
}

The logic for the counter bolt is also straightforward. This particular implementation
keeps the word counts in an in-memory hashmap, but you could easily have this com-
municate with a database instead. 

public static class WordCount extends BaseBasicBolt {
Map<String, Integer> counts =
new HashMap<String, Integer>();

public void execute(Tuple tuple, BasicOutputCollector collector) {
String word = tuple.getString(0);
Integer count = counts.get(word);
if(count==null) count = 0;
count++;
counts.put(word, count);
collector.emit(new Values(word, count));

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));

}
}

All that remains is the spout implementation. Storm provides a number of prebuilt
spouts like Kafka or Kestrel to read data from external queues, but the following code
demonstrates how to build a custom spout. This spout randomly emits one of its sen-
tences every 100 ms, creating an infinite stream of sentences:

public static class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector _collector;
Random _rand;

public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {

_collector = collector;
_rand = new Random();

}

public void nextTuple() {
Utils.sleep(100);
String[] sentences = new String[] {

"the cow jumped over the moon",
"an apple a day keeps the doctor away",
"four score and seven years ago",
"snow white and the seven dwarfs",

Declares that outgoing 
tuples consist of a single 
value labeled “word”

An in-memory map 
stores the counts 
for all words 
received by the bolt.Extracts the

word from
the incoming

tuple

Retrieves the count 
for the current wordInitializes count

if the word has
not been

previously
observed

Stores the updated count

Emits the updated count 
for the given word

Declares outgoing 
tuples to consist 
of the word and 
its current count

Storm
calls the

nextTuple
method in

a loop.
Sleeps the current 
thread for 100 
milliseconds

An array of
sentences to

be emitted
by the spout
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"i am at two with nature"};
String sentence = sentences[_rand.nextInt(sentences.length)];
_collector.emit(new Values(sentence));

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sentence"));

}
}

And that’s it. Let’s now see how Storm clusters work and how you can deploy to them. 

15.2 Apache Storm clusters and deployment
The architecture of a Storm cluster is outlined in figure 15.2. Storm has a master node
called Nimbus that manages running topologies. Nimbus accepts your requests to

Randomly
emits one of

the given
sentences

Declares that outgoing 
tuples contain a single 
sentence

Nimbus

ZooKeeper ZooKeeper ZooKeeper

Worker node

Supervisor

Worker

Worker

Worker

Worker node

Supervisor

Worker

Worker node

Supervisor

Worker

Worker

Storm cluster

ZooKeeper cluster

Nimbus is the master node for
Storm. It assigns and monitors
workers to ensure the topology
is correctly executed.

Apache ZooKeeper provides
highly reliable distributed
coordination. Storm uses
ZooKeeper to track
configuration information
about the topology.

Each worker in the Storm
cluster has a Supervisor
daemon that executes tasks
as directed by Nimbus. The
workers query ZooKeeper to
determine the location of other
worker tasks.

b

c

d

Figure 15.2 Apache Storm architecture
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deploy a topology on Storm, and it assigns workers around the cluster to execute that
topology. Nimbus is also responsible for detecting when workers die and reassigning
them to other machines when necessary. 

 In the center of the architecture diagram is Zookeeper. Zookeeper is another Apache
project that excels at keeping small amounts of state and has semantics perfect for
cluster coordination. In a Storm architecture, Zookeeper tracks where workers are
assigned and other topology configuration information. A typical Zookeeper cluster
for Storm is three or five nodes. 

 The last group of nodes in a Storm cluster comprises your worker nodes. Each
worker node runs a daemon called the Supervisor that communicates with Nimbus
through Zookeeper to determine what should be running on the machine. The
Supervisor then starts or stops the worker processes as necessary, as directed by Nim-
bus. Once running, worker processes discover the location of other workers through
Zookeeper and pass messages to each other directly. 

 Let’s now look at how to deploy the word-count topology constructed in sec-
tion 15.1: 

public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("sentence-spout", new RandomSentenceSpout(), 8);

builder.setBolt("splitter", new SplitSentence(), 12)
.shuffleGrouping("sentence-spout");

builder.setBolt("count", new WordCount(), 12)
.fieldsGrouping("splitter", new Fields("word"));

Config conf = new Config();
conf.setNumWorkers(4);
StormSubmitter.submitTopology(

"word-count-topology",
conf,
builder.createTopology());

conf.setMaxSpoutPending(1000);
}

The topology configuration contains parameters that apply to the topology as a whole.
In this code sample, the configuration instructs Storm to spawn 4 workers around the
cluster to execute the topology. Recall that when the topology was defined, you speci-
fied the parallelism for each spout and bolt: the sentence spout had a parallelism of 8,
and both the splitter bolt and counter bolt had a parallelism of 12. These parallelism
values indicate the number of threads that should be spawned for that spout or bolt.
Thus, the topology will entail 4 Java processes executing 32 total threads. By default,
Storm uniformly distributes workers across the cluster and uniformly distributes tasks
across the workers, but you can change the allocation policy by plugging a custom
scheduler into Nimbus. 

Spawns four worker 
nodes among the 
Storm servers

Provides a
name when
submitting

the topology

Caps the number of unacked 
tuples a spout can emit
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 The code sample also has a second topology-wide configuration setting for han-
dling spikes in incoming data. If there is a burst of incoming events, it’s important that
your stream processor not become overwhelmed and fail due to the increased load
(such as by running out of memory). Storm has a simple mechanism for managing
flow control based on its guaranteed message-processing features. The topology max
spout pending setting controls the maximum number of tuples that can be emitted
from a spout that are not yet fully processed by the topology. Once this limit is
reached, spout tasks will stop emitting tuples until tuples either are acked, fail, or time
out. In the preceding example, the code tells Storm that the largest number of pend-
ing tuples for any one spout task is 1,000. Because the sentence spout has a parallelism
of 8, the number of pending tuples in the entire topology is at most 8,000. 

15.3 Guaranteeing message processing
In the last chapter you saw that it’s possible to guarantee message processing with the
Storm model without intermediate message queues. When a failure is detected down-
stream from the spout in the tuple DAG, tuples can be retried from the spout. Let’s
now go into the specifics of how that works with Apache Storm. 

 Storm considers a spout tuple successfully processed only when an entire tuple
DAG has been exhausted and every node in it has been marked as completed. In addi-
tion, that entire process needs to happen within a specified timeout (30 seconds by
default). The timeout ensures that failures will be detected no matter what happens
downstream—whether a worker process hangs or a machine suddenly dies. 

 As a user, you have two responsibilities in order to take advantage of this message-
processing guarantee. You must inform Storm whenever you create a dependency
edge in the tuple DAG, and you must notify Storm when the processing of a tuple is
finished. These two tasks are called anchoring and acking, respectively. Let’s look again
at the sentence-splitter code from the streaming word count with the tuple DAG logic
in place: 

public static class SplitExplicit extends BaseRichBolt {
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context,
OutputCollector collector) {

_collector = collector;
}

public void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {

_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);

}

BaseRichBolt subclasses 
require you to explicitly 
handle anchoring and 
acking of tuples.

Anchors the outgoing 
word tuple to the 
incoming sentence tuple

Acknowledges that the sentence 
tuple was successfully processed
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public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

}
}

The semantics of this bolt are actually identical to the original implementation in the
previous section. When a new word tuple is emitted, the sentence tuple is included as
the first argument. This process anchors the word tuple to the sentence tuple. After
the new tuples are emitted, the sentence tuple is then acked, because it’s not needed
for further processing. It’s a very common pattern for bolts to anchor all outgoing
tuples to the input tuple, and then ack the tuple at the end, as done in this bolt. To
automate this behavior, Storm provides a BaseBasicBolt class that takes care of this
style of anchoring/acking for you. The first implementation of the splitter bolt made
use of BaseBasicBolt. 

 But the BaseBasicBolt pattern doesn’t hold for all operations, particularly if
you’re aggregating or joining streams. For example, suppose you want to process 100
tuples at a time. In that case, you could store all incoming tuples in a buffer, anchor
the output tuple to all 100 tuples, and then ack all the tuples in the buffer. The follow-
ing code demonstrates this strategy by emitting the sum of every 100 tuples:

public static class MultiAnchorer extends BaseRichBolt {
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context,
OutputCollector collector) {

_collector = collector;
}

List<Tuple> _buffer = new ArrayList<Tuple>();
int _sum = 0;

public void execute(Tuple tuple) {
_sum += tuple.getInteger(0);
if(_buffer.size() < 100) {

_buffer.add(tuple);
} else {

_collector.emit(_buffer, new Values(_sum));
for(Tuple _tuple : _buffer) {

_collector.ack(_tuple);
}
_buffer.clear();
_sum = 0;

}
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sum"));

}
}

The MultiAnchorer bolt adds the values for
100 incoming tuples and emits the sum.

Keeps a
running

sum of the
incoming

values Adds to the buffer 
until the capacity 
is reached

When the buffer is full, 
emits a tuple with the 
sum that is anchored 
to all tuples in the 
buffer

Acks all the
tuples in

the buffer

Clears the 
bufferResets the

running sum
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In this case, you can’t use BaseBasicBolt because tuples aren’t acked immediately
after being processed by the execute function—they’re buffered and acked at a later
time. 

 Internally, Storm tracks tuple DAGs using a highly efficient algorithm that only
requires about 20 bytes of space per spout tuple. This is true regardless of the size of
the DAG—it could have trillions of tuples, and 20 bytes of space would still be
sufficient. We won’t get into the algorithm here, but it’s documented extensively
on Storm’s website. The important takeaway is that the algorithm is very efficient,
and that efficiency makes it practical to track failures and initiate retries during
stream processing. 

15.4 Implementing the SuperWebAnalytics.com uniques-over-time 
speed layer
In the last chapter you saw the design for the SuperWebAnalytics.com uniques-over-
time speed layer. The main idea was to make an approximation by ignoring equivs, so
as to greatly simplify the implementation. For reference, figure 15.3 shows the topol-
ogy design for this speed layer. We’ll now implement this topology using Apache
Storm, Apache Kafka, and Apache Cassandra. 

To implement the topology, let’s begin with the spout. The following code initializes a
Kafka spout to read the pageviews from a cluster of Kafka servers. The pageviews are
assumed to be stored on Kafka as the Thrift Data objects we defined in chapter 3. 

TopologyBuilder builder = new TopologyBuilder();
SpoutConfig spoutConfig = new SpoutConfig(

new KafkaConfig.ZkHosts("zkserver:1234", "/kafka"),
"pageviews",
"/kafkastorm",
"uniquesSpeedLayer");

spoutConfig.scheme = new PageviewScheme();
builder.setSpout("pageviews",

new KafkaSpout(spoutConfig), 16);

Pageviews
spout

Normalize
URLs bolt

Update
database boltShuffle Partition by “url”

Figure 15.3 Uniques-over-time topology
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Most of this code is configuration: the details of the Kafka cluster and topic to use,
and where in Zookeeper the spout should record what it has consumed so far. 

 The next step is to normalize the URLs in the pageview events: 

public static class NormalizeURLBolt extends BaseBasicBolt {
public void execute(Tuple tuple, BasicOutputCollector collector) {
PersonID user = (PersonID) tuple.getValue(0);
String url = tuple.getString(1);
int timestamp = tuple.getInteger(2);

try {
collector.emit(new Values(user,

normalizeURL(url),
timestamp ,
user));

}
catch(MalformedURLException e) {}

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("user", "url", "timestamp"));

}
}

Finally, the last step is to update the HyperLogLog sets stored in Cassandra. Let’s start
with a simple version. This code retrieves the HyperLogLog set corresponding to that
pageview, updates the set, and then writes the set back to Cassandra:

public static class UpdateCassandraBolt extends BaseBasicBolt {
public static final int HOURS_SECS = 60 * 60;

ColumnFamilyTemplate<String, Integer> _template;

public void prepare(Map conf, TopologyContext context) {
Cluster cluster =

HFactory.getOrCreateCluster("mycluster", "127.0.0.1");

Keyspace keyspace =
HFactory.createKeyspace("superwebanalytics", cluster);

_template =
new ThriftColumnFamilyTemplate<String, Integer> (keyspace,

"uniques", StringSerializer.get(), IntegerSerializer.get());
}

public void execute(Tuple tuple, BasicOutputCollector collector) {
PersonID user = (PersonID) tuple.getValue(0);
String url = tuple.getString(1);
int bucket = tuple.getInteger(2) / HOURS_SECS;

HColumn<Integer, byte[]> hcol =
_template.querySingleColumn(url, bucket,

BytesArraySerializer.get());

Attempts to normalize the URL 
using a function that should be 
shared with the batch layer

If there’s a failure normalizing 
the URL, filters the tuple by 
not emitting anything

Initializes the classes 
to retrieve and stores 
values from Cassandra

Extracts the user, URL, 
and hour bucket from 
the incoming tuple
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HyperLogLog hll;
try {

if (hcol==null) hll = new HyperLogLog(800);
else hll = HyperLogLog.Builder.build(hcol.getValue());

hll.offer(user);
ColumnFamilyUpdater<String, Integer> updater =

_template.createUpdater(url);
updater.setByteArray(bucket, hll.getBytes());
_template.update(updater);

} catch(IOException e) { throw new RuntimeException(e); }
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
// empty since the bolt does not emit an output stream

}
}

For completeness, here’s the code to wire the topology together: 

public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
SpoutConfig spoutConfig = new SpoutConfig(
new KafkaConfig.ZkHosts("zkserver:1234", "/kafka"),
"pageviews",
"/kafkastorm",
"uniquesSpeedLayer");

spoutConfig.scheme = new PageviewScheme();
builder.setSpout("pageviews",

new KafkaSpout(spoutConfig), 16);

builder.setBolt("extract-filter", new NormalizeURLBolt(), 32)
.shuffleGrouping("pageviews");

builder.setBolt("cassandra", new UpdateCassandraBolt(), 16)
.fieldsGrouping("extract-filter", new Fields("url"));

}

Note that the topology is completely fault tolerant. Because a spout tuple is only con-
sidered acked after the database has been updated, any failure will cause that spout
tuple to be replayed. Failures and retries don’t affect the accuracy of the system
because adding to a HyperLogLog set is an idempotent operation. 

 The problem with the Cassandra code shown is that it requires a lot of overhead to
retrieve sets from Cassandra and write them back. Ideally your database would sup-
port HyperLogLog natively, so you wouldn’t have this overhead, but you don’t have
this feature with Cassandra. 

 You can still make things much more efficient by batching updates together, espe-
cially if the same set can be updated multiple times at once. The following code shows
a template for this batching approach, writing to Cassandra every hundred tuples or
once per second, whichever comes first: 

Retrieves the 
HyperLogLog set 
from Cassandra, 
or initializes a new 
set if not found

Adds the user to 
the HyperLogLog 
set and updates 
Cassandra
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public static class UpdateCassandraBoltBatched extends BaseRichBolt {
public static final int HOURS_SECS = 60 * 60;

List<Tuple> _buffer = new ArrayList();
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context,
OutputCollector collector) {

_collector = collector;
// set up Cassandra client here

}

public Map getComponentConfiguration() {
Config conf = new Config();
conf.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, 1);
return conf;

}

public void execute(Tuple tuple) {
boolean flush = false;
if(tuple.getSourceStreamId()

.equals(Constants.SYSTEM_TICK_STREAM_ID)) {
flush = true;

} else {
_buffer.add(tuple);
if(_buffer.size() >= 100) flush = true;

}

if (flush) {
// batch udpates to Cassandra here
for(Tuple t: _buffer) {

_collector.ack(t);
}
_buffer.clear();

}
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
// empty since the bolt does not emit an output stream

}
}

A key aspect of this code is that tuples are buffered and not acked until after the corre-
sponding updates have been batched into Cassandra. This ensures that replays will
happen if there are any failures. To ensure that updates occur at least once per sec-
ond, a Storm feature called a tick tuple is used. A tick tuple is configured to the bolt
once per second. When one of those tuples comes in, whatever is currently buffered is
written to the database. We’ve left out the Cassandra portions of the code because it’s
somewhat hairy and distracts from the stream-processing aspects of the code. 

 There’s a lot more that could be done to make this code even more efficient. Con-
sider the following list of possible optimizations: 

Emits a tick tuple every 
second to ensure at least 
once-per-second updates

Flushes if the 
current tuple 
is a tick tuple

If a regular tuple, adds to 
the buffer and flushes 
when the buffer is full

Acks all tuples and 
then clears the buffer
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■ A batch computation could potentially estimate the required size of the Hyper-
LogLog sets of different domains (domains with more uniques need larger
HyperLogLog sets). Most domains need very small HyperLogLog sets, and
knowing this in advance could lead to considerable savings. 

■ You could implement a custom scheduler for your Storm cluster so that the Cas-
sandra bolt tasks are collocated with the Cassandra partitions they update. This
would eliminate network transfer between the updater tasks and Cassandra. 

■ As mentioned, if Cassandra could implement HyperLogLog natively, then the
HyperLogLog sets wouldn’t have to be transferred back and forth. 

Implementing all these optimizations is beyond the scope of this book—these are just
suggestions on techniques that could be used to improve this particular speed layer. 

15.5 Summary 
You should now have a good understanding of all the pieces of the speed layer—
queues, stream processors, and realtime views. The speed layer is by far the most com-
plex part of any architecture due to its incremental nature, and comparing the incre-
mental code in this chapter with the batch code in previous chapters demonstrates this. 

 What’s left in learning the speed layer is to learn about micro-batched stream pro-
cessing, the other paradigm of stream processing. Micro-batched stream processing
makes different trade-offs than one-at-a-time processing, such as sacrificing latency,
but it enables some powerful things, such as exactly-once processing semantics for a
more general set of operations. 
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Micro-batch
 stream processing

You’ve learned the main concepts of the speed layer in the last four chapters: realtime
views, incremental algorithms, stream processing, and how all those fit together.
There are no more fundamental concepts to learn about the speed layer—instead,
in this chapter we’ll focus on a different method of stream processing that makes cer-
tain trade-offs to get benefits like improved accuracy and higher throughput. 

 The one-at-a-time stream processing you’ve learned is very low latency and simple
to understand. But it can only provide an at-least-once processing guarantee during
failures. Although this doesn’t affect accuracy for certain operations, like adding ele-
ments to a set, it does affect accuracy for other operations such as counting. In many
cases, this inaccuracy is unimportant because the batch layer overrides the speed
layer, making that inaccuracy temporary. But there are other cases where you want
full accuracy all of the time, and temporary inaccuracy is unacceptable. In those

This chapter covers
■ Exactly-once processing semantics 
■ Micro-batch processing and its trade-offs 
■ Extending pipe diagrams for micro-batch stream 

processing
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cases, micro-batch stream processing can give you the fault-tolerant accuracy you need,
at the cost of higher latency on the order of hundreds of milliseconds to seconds. 

 After diving into the ideas underlying micro-batch stream processing, you’ll see
how the pipe diagrams used for batch processing can be extended to be used for
micro-batch stream processing. Then those extended pipe diagrams will be used to
finish the design of the SuperWebAnalytics.com speed layer. 

16.1 Achieving exactly-once semantics
With one-at-a-time stream processing, tuples are processed independently of each
other. Failures are tracked at an individual tuple level, and replays also happen at an
individual tuple level. 

 The world of micro-batch processing is different. Small batches of tuples are pro-
cessed at one time, and if anything in a batch fails, the entire batch is replayed. In addi-
tion, the batches are processed in a strict order. This approach allows you to make use
of new techniques in order to achieve exactly-once semantics in your processing, rather
than relying on inherently idempotent functions as one-at-a-time processing does. 

 Let’s see how this works. 

16.1.1 Strongly ordered processing 

Suppose you just want to compute a count of all tuples in real time, and you want that
count to be completely accurate regardless of how many failures you sustain during
processing. To figure out how to do this, let’s start with the one-at-a-time processing
approach and see what it takes to give it exactly-once processing semantics. 

 The pseudo-code for one-at-a-time processing looks something like this: 

process(tuple) {
counter.increment()

}

As is, this code doesn’t have exactly-once semantics. Think about what happens dur-
ing failures. Tuples will be replayed, and when it comes time to increment the count,
you have no idea if that tuple was processed already or not. It’s possible you incre-
mented the count but then crashed immediately before acking the tuple. The only
way to know is if you were to store the ID of every tuple you’ve processed—but you’d
be storing a huge amount of state instead of just a single number. So that’s not a very
viable solution. 

 The key to achieving exactly-once semantics is to enforce a strong ordering on the
processing of the input stream. Let’s see what happens when you only process one
tuple at a time from the input stream, and you don’t move on to the next tuple until
the current one is successfully processed. Of course, this isn’t a scalable solution, but it
illustrates the core idea behind micro-batch processing. In addition, let’s assume that
every tuple has a unique ID associated with it that’s always the same no matter how
many times it’s replayed. 
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 The key idea is rather than just store a count, you store the count along with the ID
of the latest tuple processed. Now, when you’re updating the count, there are two cases: 

■ The stored ID is the same as the current tuple ID. In this case, you know that the
count already reflects the current tuple, so you do nothing. 

■ The stored ID is different from the current tuple ID. In this case, you know that
the count doesn’t reflect the current tuple. So you increment the counter and
update the stored ID. This works because tuples are processed in order, and the
count and ID are updated atomically. 

This update strategy is resilient to all failure scenarios. If the processing fails after
updating the count, then the tuple will be replayed and the update will be skipped the
second time around. If the processing fails before updating the count, then the
update will occur the second time around. 

16.1.2 Micro-batch stream processing

As mentioned, though, processing one tuple at a time is highly inefficient. A better
approach is to process the tuples as discrete batches, as illustrated in figure 16.1. This
is known as micro-batch stream processing. 

The batches are processed in order, and each batch has a unique ID that’s always the
same on every replay. Because many tuples are processed per iteration rather than just
one, the processing can be made scalable by parallelizing it. Batches must be pro-
cessed to completion before moving on to the next batch. 

 Let’s see how the global counting example works with
micro-batch processing. Again, rather than just storing the
count, you store the count along with the latest batch ID
involved in updating that count. For example, suppose the
current value of the stored state is as shown in figure 16.2. 

 Now suppose batch 4 comes in with 10 tuples. The state
will be updated to look like figure 16.3. 

 Now let’s say after the state in the database is updated,
something fails in the stream processor and the message
that the batch was finished is never received. The stream
processor will timeout the batch and retry batch 4. When it
comes time to update the state in the database, it sees that

Incoming stream of tuples

Batch 1Batch 2Batch 3Batch 4Batch 5
Figure 16.1 Tuple stream di-
vided into batches

Count 112

Batch ID 3

Count 122

Batch ID 4

Figure 16.2 Count state 
including batch ID

Figure 16.3 Result of 
updating count state
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the state has already been updated by batch 4. So rather than increment the count
again, it does nothing and moves on to the next batch. 

 Now let’s look at a more complicated example than global counting to further
drive home how micro-batch stream processing works. 

16.1.3 Micro-batch processing topologies

Suppose you want to build a streaming application that consumes a massive stream of
words and computes the top-three most frequently occurring words. Micro-batch process-
ing can accomplish this task while being fully parallelized, fault tolerant, and accurate.

 There are two tasks to accomplish for each batch of words. First, you have to keep
state on the frequency of each word. This can be done using a key/value database.
Second, if any of the words you just processed has a higher frequency than one of the
current top-three most frequent words, the top-three list must be updated. 

 Let’s start with updating the word frequencies. Just like how MapReduce and one-
at-a-time stream processing partition data and process each partition in parallel, the
same is done with micro-batched processing. Processing a batch of words looks like
figure 16.4. As you can see, a single batch includes tuples from all partitions in the
incoming stream. 

Partition 2

Partition 1

Batch 1Batch 2Batch 3

Batch 1Batch 2Batch 3

Process

Partition 3

Batch 1Batch 2Batch 3

Figure 16.4 Each batch includes tuples 
from all partitions of the incoming stream.
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To update the word frequencies, the words must be repartitioned so that the same
word is always processed by the same task. This ensures that when the database
updates, only one thread will be updating the values for that word, and there will be
no race conditions. This is illustrated in figure 16.5. 

 Now you need to figure out what to store as the state for each word. In the same
way that storing just a count wasn’t enough for global counting, it’s also not enough to
store just a count for each word. If a
batch is retried, you won’t know if the
current count reflects the current batch
or not. So just as the solution for global
counting was to store the batch ID with
the count, the solution for the word
counts is to store the batch ID with the
count for each word, as illustrated in
figure 16.6. 

 Now let’s consider a failure scenario.
Suppose a machine dies in the cluster
while a batch is being processed, and
only some partitions succeeded in
updating the database. Some words will
have counts reflecting the current
batch, and others won’t be updated yet. When the batch is replayed, the words that
have state including the current batch ID won’t be updated (because they have the
same batch ID as the current batch), whereas the words that haven’t been updated yet
will be updated like normal. Just like global counting, the processing is completely
accurate and fault tolerant. 

 Let’s now move on to the second part of the computation: computing the top-
three most frequent words. One solution would be to send the new counts for every
word to a single task, and have that task merge those word counts into its top-three
list. The problem with this approach is that it’s not scalable. The number of tuples
sent to that single top-three task could be nearly the same size as the entire input
stream of words. 

 Fortunately there’s a better solution that doesn’t have this bottleneck. Instead of
sending every updated word count to the top-three task, each word-counting task can
compute the top-three words in the current batch, and then send its top-three list to
the task responsible for the global top-three. The global top-three task can then
merge all those lists into its own list. Now the amount of data transferred to that global
top-three task in each batch is proportional to the parallelism of the word-count tasks,
not the entire input stream. 

Word
spout

Repartition
by “word”

Update
word counts

Figure 16.5 Word-
count topology

Database

Count 15
Batch ID 3

Apple

Count 15
Batch ID 18

Count 15
Batch ID 3

Pear

Banana

Figure 16.6 Storing word counts with batch IDs
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 Now let’s consider how failures might affect the top-three portion of the computa-
tion. Suppose there’s a failure that results in one of the top-three lists not being sent
to the global top-three task. In that case, the global top-three list will not be updated,
and when the batch is replayed it will be updated normally. 

 Suppose there’s a failure after the top-three list is updated (the message indicating
the batch completed never gets through). In this case the batch will be replayed, and
the same top-three lists will be received by the global top-three task. This time, the
global top-three list already incorporates the current batch. But because merging
those lists is an idempotent operation, remerging them into an already updated list
won’t change the results. So the trick used before of including the batch ID with the
state isn’t needed in this case to achieve fully accurate processing. 

16.2 Core concepts of micro-batch stream processing
From the examples shown in the previous section, some core concepts should be
emerging. There are two main aspects to micro-batch stream processing: 

■ Batch-local computation—There’s computation that occurs solely within the
batch, not dependent on any state being kept. This includes things like reparti-
tioning the word stream by the word field and computing the count of all the
tuples in a batch. 

■ Stateful computation—Then there’s computation that keeps state across all
batches, such as updating a global count, updating word counts, or storing a
top-three list of most frequently used words. This is where you have to be really
careful about how you do state updates so that processing is idempotent under
failures and retries. The trick of storing the batch ID with the state is particu-
larly useful here to add idempotence to non-idempotent operations. 

Finally, micro-batch stream processing relies on a stream source that can replay a batch
exactly as it was played before. It turns out that queues like Kafka, covered in the last
chapter, have the perfect semantics for this. Because Kafka exposes an API very similar
to files, when a batch is emitted the consumer can remember which offsets from which
partitions were read for a particular batch. If a batch has to be replayed, the exact same
batch can be emitted. These kinds of stream sources are called transactional spouts.     

Beyond transactional spouts
There are also ways to achieve exactly-once processing semantics without transac-
tional spouts. In a transactional spout, the exact same batch must be emitted on
every replay. The problem with transactional spouts is that if a batch fails and a par-
tition of the batch becomes unavailable, processing will be unable to continue
because the batch can’t be exactly replayed. 

A less restrictive kind of spout, called an opaque spout, must simply ensure that each
tuple is successfully processed in only one batch. It allows for the following sequence
of events: 
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The latency and throughput characteristics are different for micro-batch processing as
compared to one-at-a-time processing. For any individual tuple, the latency from when
it’s added to the source queue to when it’s fully processed is much higher in micro-
batch processing. There’s a small but significant amount of overhead to coordinating
batches that increases latency, and instead of waiting for just one tuple to complete,
processing needs to be done on many more tuples. In practice, this turns out to be
latency on the order of hundreds of milliseconds to seconds. 

 But micro-batch processing can have higher throughput than one-at-a-time pro-
cessing. Whereas one-at-a-time processing must do tracking on an individual tuple
level, micro-batch processing only has to track at a batch level. This means fewer
resources are needed on average per tuple, allowing micro-batch processing to have
higher throughput than one-at-a-time processing. 

16.3 Extending pipe diagrams for micro-batch processing
You’ve seen how pipe diagrams provide a very nice way to express batch-processing
computations in a concise way without giving up any generality. It turns out that with a
few extensions, you can use pipe diagrams to represent micro-batch stream processing
computations as well. 

 The pipe diagrams you’ve seen so far are used to process a single batch one time.
An easy way to interpret pipe diagrams in a micro-batch context is executing the pipe
diagram on each batch independently. So things like aggregation and joining only
happen within a batch—there’s no computation that crosses batches. 

 Of course, processing each batch completely independently of each other isn’t
that useful. That handles batch-local computation, but you also need to be able to
keep state between batches. Extensions to pipe diagrams are needed for this, and it’s
in these extensions that the batch ID logic for enabling exactly-once semantics exists. 

(continued)

1 Batch A is emitted with tuples from partitions 1, 2, and 3. 
2 Batch A fails to process. 
3 Partition 3 becomes unavailable. 
4 Batch A is replayed only with tuples from partitions 1 and 2. 
5 Sometime later on, partition 3 becomes available. 
6 Those tuples that were in a failed batch before succeed in a later batch.

In order to achieve exactly-once semantics with opaque spouts, more-complicated
logic is needed when doing state updates. It’s no longer sufficient to only store the
batch ID with whatever state is being updated. A small amount of additional informa-
tion must be tracked. You can find more information about opaque topologies in the
documentation of Apache Storm. 
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 These extensions will be intro-
duced through an example. Let’s
take a look at implementing the
streaming word count example
again, except this time with micro-
batch stream processing.

 Figure 16.7 shows a pipe diagram
that does this. You should interpret
this pipe diagram just as you would
those for regular batch processing. It
processes to completion a batch of
tuples containing a single field called
sentence. Once the batch is com-
plete, it moves on to the next batch
of tuples.

 As you can see, this is almost the
same as the pipe diagram for the
batch word count, except that instead of an Aggregator there’s a StateUpdater that’s
connected to a MapState. The MapState represents a key/value datastore that could
be either an external key/value database (like Cassandra) or state kept in memory on
the processing tasks. StateUpdater functions are responsible for updating the state in
a way that’s idempotent under replays. In this case, the StateUpdater function applies
the Count aggregator to update the count for each word in the MapState. 

 The beauty of this is that all the nitty-gritty details of storing and checking batch
IDs to force idempotence can be automated for you underneath the abstractions. That
means you don’t have to think about this at all when making these pipe diagrams. You
can pretend every tuple is processed exactly one time. Underneath the hood, the pipe
diagrams get executed in a way that’s fault tolerant and idempotent under replays. 

 You can store any kind of state in a pipe diagram—not just MapStates. The state
represents whatever indexed data model you need to satisfy your realtime indexing
requirements. For example, you might have a KeyToSortedMapState backed by a data-
base that supports that data model, such as Apache Cassandra. 

 You saw how, in the batch-processing context, pipe diagrams were a complete
replacement for MapReduce. The pipe diagrams could do everything MapReduce
could do, with the same performance, but expressed much more elegantly. In the
stream-processing context though, pipe diagrams are only a way to represent micro-
batched computations and are not a replacement for one-at-a-time stream processing.
Because micro-batched and one-at-a-time stream processing make different trade-offs
between latency, throughput, and guaranteed message processing semantics, one is
not best for all situations. 

Input:
[sentence]

Function:
split

(sentence) -> (word)

Group by:
[word]

StateUpdater:
count

() -> (count)
MapState

Figure 16.7 Micro-batch word-count pipe diagram
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16.4 Finishing the speed layer for SuperWebAnalytics.com
Let’s now finish the design for the speed layer of SuperWebAnalytics.com by making use
of micro-batch stream processing. Let’s start with the pageviews-over-time speed layer. 

16.4.1 Pageviews over time

Remember that the goal of the pageviews-over-time query is to get the total number of
pageviews for a URL over any range of hours. To make this query in the serving layer,
we computed hourly, daily, weekly, and monthly rollups of pageviews so that large
ranges could be computed efficiently. This optimization is not needed in the speed
layer because the speed layer only deals with recent data—the time since the last serv-
ing layer update should only be a few hours, so keeping other rollups would be point-
less. If the batch cycle is long, such as more than a day, then having a daily rollup
might be useful. But for simplicity’s sake, let’s implement the pageviews-over-time
speed layer with just hourly rollups. 

 Like the uniques-over-time speed layer from the previous two chapters, a realtime
view implementing a key-to-sorted-map interface would work perfectly. And just like
uniques over time, the key is a URL, the sorted map key is an hour bucket, and the
sorted map value is the number of pageviews for that URL and hour bucket. Figure 16.8
shows a pipe diagram implementing the appropriate logic. 

 This pipe diagram uses a key-to-sorted-map state and updates it as pageviews come
in. The UpdateInnerMap state updater is parameterized with the Count aggregator, so
it knows how to apply updates to the state’s inner maps that represent hour buckets to
pageview counts. 

StateUpdater:
UpdateInnerMap[Count]

(bucket) -> (count)

Key to
SortedMap

state

Input:
[url, user, timestamp]

Function:
NormalizeUrl

(url) -> (norm-url)

Group by:
[url]

Function:
ToHourBucket

(timestamp) -> (bucket)

Figure 16.8 Micro-batched pa-
geviews-over-time pipe diagram
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16.4.2 Bounce-rate analysis

Let’s now move on to the speed layer for computing bounce rates. Remember that a
visit was defined as a bounce if the user visited a page and didn’t visit another page on
that domain within 30 minutes of the first visit. So a bounce occurring is based on an
event not happening. 

 Like uniques over time, you have to take equivs into account to compute bounces
completely accurately. If a user browses your website on their computer and then ten
minutes later browses from their phone, that should be considered a single non-
bouncing visit. If you didn’t know those two user identifiers were the same person,
then it should count as two bounced visits. 

 Like uniques over time, taking equivs into account massively complicates the com-
putation. To see why, just consider what you need to do when you receive a new equiv.
Here’s an illustrative series of events: 

1 Pageview received at minute 0 from alice-computer.
2 Pageview received at minute 10 from alice-phone.
3 Equiv received at minute 140 between alice-computer and alice-phone. 

Before event 3, those two pageviews would have counted as two visits and two bounces.
You didn’t know they were equivalent, so there’s nothing else you could possibly com-
pute in real time. But event 3 changes everything. Now you have to go back and fix the
bounce rates computed over two hours earlier. 

 The only way to do this is to retrieve all visits in the past for alice-computer and
alice-phone and recompute the appropriate bounces. After comparing this with
what was computed the first time around, the appropriate increments and decre-
ments can be made to the database that stores bounce counts and visit counts. In addi-
tion to all this, the equiv graph analysis needs to be done in real time. 

 Besides being rather complicated to accomplish, taking equivs into account also
massively increases storage costs for the speed layer. Rather than just storing bounce
and visit counts per domain, you also need to be able to retrieve all the pageviews for
a user since the last serving layer update. Because an equiv could come in at any time
for any user, this means all speed layer pageviews need to be indexed. This is not infea-
sible, but it certainly is a lot more expensive. 

 Just like uniques over time, there’s an easy way to simplify all this: just ignore equivs
in the speed layer. It doesn’t seem like this should create too much inaccuracy, and
due to the fact that the batch and serving layers will automatically correct any speed
layer inaccuracies, this seems like a great trade-off. So that’s the approach we’ll use. Of
course, as always, you should verify the inaccuracy created by any approach by measur-
ing it via offline analytics jobs. 

 There are three steps to doing the bounce-rate analysis in real time: 

1 Consume a stream of pageview events that contains a user identifier, a URL, and
a timestamp. 
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2 Identify bounces by detecting when a user has visited a single page on a domain
and no other pages within 30 minutes. 

3 Update a database containing a map from domain to bounce rate. The bounce
rate will be stored as a pair of numbers [number of bounces, number of visits]. 

Like pageviews over time, bounce-rate analysis starts by consuming a stream of
pageviews. Identifying bounces is more interesting, though, because it’s a time-based
event and not just a simple aggregation. At any given moment, a bounce could occur,
and that would be based on pageviews from 30 minutes prior. Because in stream pro-
cessing you only have access to events that have just occurred, to identify bounces you
need to keep state about what has happened in the past 30 minutes. 

 The main idea is to track each visit (a [domain, user] pair) until that visit is com-
plete. We’ve defined a visit to be complete when 30 minutes have elapsed with no fur-
ther pageviews by that user on that domain. Once that visit is complete, the bounce-
rate information for that domain can be updated. Each completed visit increments
the number of visits by one, and the number of bounces is incremented if there was
only one pageview in that visit. At the pipe diagram level, in order to track these visits
we’ll maintain a map from [domain, user] to the first time and the last time a
pageview occurred in that visit. Once a minute, we’ll iterate through the entire map to
determine which visits have completed. Visits that have completed will be removed
from the map and then be used to update the bounce-rate information for their cor-
responding domains. 

 This strategy requires tracking all visits in the last 30 minutes. If you’re at large scale,
this could be on the order of hundreds of millions or even billions of visits at once. If
you figure tracking a visit requires about 100 bytes, what with the domain, user ID, time-
stamps, and memory usage by the map, the memory required will be on the order of a
terabyte. This is doable, but expensive. After finishing the memory-based design, you’ll
see how this memory requirement can be reduced and even eliminated. 

Windowed stream processing?
You may have heard the term windowed stream processing before, which refers to
breaking an incoming stream into windows of time, such as 30 seconds, 1 minute,
5 minutes, or 30 minutes. Sometimes the window is “rolling” and always refers to
the last X seconds of time. Other times the windows are fixed and occur right after
one another. 

At first glance, the bounce-rate analysis may seem like a good fit for windowed
stream processing due to its time-oriented nature. But on a closer look, it doesn’t fit
windowed stream processing at all. Any particular visit could span an indefinite period
of time. For example, if someone visits a page on a domain every 10 minutes for 16
hours, that visit must remain in the map for all 16 of those hours (until 30 minutes
with no activity has elapsed). Windowed stream processing doesn’t handle computa-
tions like this—it’s meant to answer questions like “How many pageviews have I
received in the last 15 minutes?” 

Licensed to Mark Watson <nordickan@gmail.com>



265Finishing the speed layer for SuperWebAnalytics.com

The pipe diagram for bounce-rate analysis is shown in figure 16.9. The key to this pipe
diagram is the AnalyzeVisits state updater, which determines when visits are
complete and whether or not they were bounces. It keeps state on visits in an in-
memory MapState. 

 Here is some pseudo-code for this state updater: 

function AnalyzeVisits(mapstate, domain, user, timestamp) {
THIRTY-MINUTES-SECS = 60 * 30

update(mapstate,
[domain, user],
function(visit-info) {

if(visit-info == null) [timestamp, timestamp]
else [visit-info[0], timestamp]

})
last-sweep-time = get(state, "last-sweep", 0)

Input:
[url, user, timestamp]

Function:
NormalizeUrl

(url) -> (norm-url)

Group by:
[domain, user]

StateUpdater: MapState
(in memory)

Function:
ExtractDomain

(norm-url) -> (domain)

AnalyzeVisits
(domain, user, timestamp) ->

(domain, isBounce)

Function:
BooleanToInt

(isBounce) -> (num)

Group by:
[domain]

StateUpdater:
CountAndSum

(num) -> (num-visits, num-bounces)

MapState

Figure 16.9 Micro-batched 
bounce-rate-analysis pipe dia-
gram

Stores a pair of
timestamps

[start-visit-time,
last-visit-time]

for each visit. The
visit information

is stored in a
map with a key of
a [domain, user]

pair.

Gets the last time the visits were checked
to see if any of them have completed (30

minutes since last visit). The visits will be
swept over once a minute.
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if(timestamp > last-sweep-time + 60) {
for(entry in mapstate) {

domain = entry.key[0]
visit-info = entry.value
if(timestamp > visit-info[1] + THIRTY-MINUTES-SECS) {

emit(domain, visit-info[0] == visit-info[1])
remove(mapstate, entry.key)

}
}
put(mapstate, "last-sweep", timestamp)

}
}

AnalyzeVisits emits a stream of visit information: a 2-tuple containing the domain and
a Boolean signifying whether that visit was a bounce. The next part of the pipe diagram
computes the total number of visits and the total number of bounces, storing them in
a MapState. First it converts the Boolean to either a 0 or 1, depending on whether it was
false or true, respectively. It counts the tuples to determine the total number of visits and
sums the 0’s and 1’s to determine the total number of bounces. These two numbers are
stored together as the value of the MapState, with the key being the domain.   

Sweeps over the visits when more than one minute has
gone by since last checking. Note that this code depends

on a steady stream of pageviews coming in, as it only
sweeps after checking the timestamp of a new pageview.When a visit

is complete,
emit the fact

and stop
tracking the

visit in the
map.

A visit is a bounce if the
first and last visit times

are identical.

Time and out-of-order messages
One of the assumptions made in the bounce-rate-analysis pipe diagram is that the
timestamps in tuples are always increasing. But what if tuples come in out of order? 

This is not just a hypothetical question—tuples are being generated all over the clus-
ter and then placed together on your queue servers. It’s very likely tuples won’t be in
perfect order. Beyond that, if you have network partitions or errors and tasks get de-
layed writing their tuples to your queues, tuples could be out of order by much longer,
even on the order of minutes. 

For many computations, such as pageviews over time, this doesn’t matter. But for
the bounce-rate analysis, which uses time to trigger checking for completed visits,
this does matter. For example, a pageview for a visit could come in after you’ve
checked for completed visits, and that pageview could turn a completed visit into a
still active visit. 

The way to deal with out-of-order tuples is to introduce latency into your computa-
tions. With the bounce-rate-analysis code, you could change the definition of a com-
pleted visit to “more than 45 minutes has passed since the last visit, and there are
no additional pageviews in the 30 minutes after the last pageview.” This strategy will
handle out-of-order tuples that come up to 15 minutes late.
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There’s a weakness to this design, though—all the state is kept in memory in the tasks
executing the pipe diagram. Earlier we computed that memory on the order of a tera-
byte is required for very large scales. Although it’s certainly possible to have a cluster
with this much memory, it turns out there’s another approach that doesn’t require
any memory at all. 

16.5 Another look at the bounce-rate-analysis example
Let’s see how you can completely eliminate the memory requirement for bounce-rate
analysis. The trick is taking a step back and looking at the problem again. Visits are
not complete until 30 minutes have passed without activity on that visit. That you have
to wait 30 minutes to determine the status of a visit means that bounce-rate analysis is
fundamentally not a realtime problem. Latency is not that much of a constraint, so
you’re not forced to use a memory-focused stream-processing system at all. 

 For this problem, using a batch-processing system for the speed layer is absolutely
viable. The logic of the workflow doesn’t change—you still maintain a map from visits to
information about the visits, mark visits as bounces or not bounces after 30 minutes of
inactivity have passed, and then aggregate the bounce and visit information into a key/
value database. The difference is that the underlying technologies change: for the com-
putation system, you might use Hadoop. And for storing the speed layer view, you could
use a serving layer database like ElephantDB. Finally, for the intermediate key/value
state, you could also use something like ElephantDB. This is illustrated in figure 16.10. 

Of course, there’s no perfect way to deal with out-of-order tuples. You could theoret-
ically receive a tuple that was generated two days ago, but it’s not reasonable for
your bounce-rate-analysis code to wait indefinitely to see if there are any out-of-order
tuples. Otherwise your code wouldn’t be able to make any progress. You have to
place a limit on how long you’re willing to wait. As usual, it’s prudent to do measure-
ments to determine the distribution and rate of out-of-order tuples. 

Like many things in the speed layer, this is another example of something that’s fun-
damentally difficult to deal with in real time, but not a problem in batch. Because the
Lambda Architecture has a batch layer that overrides the speed layer, any inaccuracy
introduced by out-of-order tuples is weeded out over time. 

Pageviews
(fies on HDFS)

Map of visit info
(ElephantDB)

Detect
completed visits
(MapReduce)

Bounce-rate-
analysis view
(ElephantDB)

Aggregate
bounce-rate

statistics
(MapReduce)

Figure 16.10 Bounce-rate 
analysis using incremental 
batch processing
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So far we’ve only discussed using batch computation to do full recomputations, where
you consume all the data at once to produce a view from scratch. Incremental batch
processing works differently, where you consume new data and produce new views
based on the last version of your views. This is different than stream processing, which
mutates your views in place. The views produced by incremental batch-processing
workflows are brand new and never modified after creation. We’ll talk more about
incremental batch processing in the final chapter. 

16.6 Summary
You’ve seen how by sacrificing some latency, you can go beyond the at-least-once
semantics of one-at-a-time stream processing and achieve exactly-once processing
semantics. Whereas one-at-a-time stream processing has exactly-once semantics only
with inherently idempotent operations, micro-batch processing can achieve it for
nearly any computation. 

 It should also be apparent that the speed layer doesn’t necessarily mean real time,
nor does it necessarily entail stream processing. The speed layer is about accounting
for recent data—you saw in the bounce-rate-analysis example that the definition of
the problem is inherently not realtime. Accounting for recent data allows for other
approaches, like incremental batch processing.

 Now that you have an understanding of the concepts of micro-batch processing,
you’re ready to see how to apply the technique in practice. 
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Micro-batch stream
 processing: Illustration

In the last chapter you learned the core concepts of micro-batch processing. By
processing tuples in a series of small batches, you can achieve exactly-once process-
ing semantics. By maintaining a strong ordering on the processing of batches and
storing the batch ID information with your state, you can know whether or not the
batch has been processed before. This allows you to avoid ever applying updates
multiple times, thereby achieving exactly-once semantics. 

 You saw how with some minor extensions pipe diagrams could be used to repre-
sent micro-batch streaming computations. These pipe diagrams let you think about
your computations as if every tuple is processed exactly once, while they compile to
code that automatically handles the nitty-gritty details of failures, retries, and all the
batch ID logic. 

This chapter covers
■ Trident, Apache Storm’s micro-batch-processing 

API
■ Integrating Kafka, Trident, and Cassandra
■ Fault-tolerant task local state
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 Now you’ll learn about Trident, Apache Storm’s micro-batching API, which pro-
vides an implementation of these extended pipe diagrams. You’ll see how similar it is
to normal batch processing. You’ll see how to integrate it with stream sources like
Kafka and state providers like Cassandra. 

17.1 Using Trident
Trident is a Java API that translates micro-
batch processing topologies into the
spouts and bolts of Storm. Trident looks
very similar to the batch processing idi-
oms you’re already familiar with—it has
joins, aggregations, grouping, functions,
and filters. In addition to that, it adds
abstractions for doing stateful processing
across batches using any database or per-
sistence store. 

 Recall the pipe diagram for streaming
word count, which looks like figure 17.1.
Let’s look at how you can implement this
with Trident. 

 For the purposes of illustration, this
example will read an infinite stream of
sentences from the following source: 

FixedBatchSpout spout = new FixedBatchSpout(
new Fields("sentence"),
3, // number of tuples in each batch
new Values("the cow jumped over the moon"),
new Values("the man went to the store"),
new Values("four score and seven years ago"),
new Values("how many apples can you eat"),
new Values("to be or not to be the person"));

spout.setCycle(true); // repeats these tuples forever

This spout emits three sentences every batch and cycles through the sentences ad
infinitum.

 Here’s the definition of a Trident topology that implements word count: 

TridentTopology topology = new TridentTopology();
topology.newStream("spout1", spout)

.each(new Fields("sentence"),
new Split(),
new Fields("word"))

.groupBy(new Fields("word"))

.persistentAggregate(
new MemoryMapState.Factory(),
new Count(),
new Fields("count"));

Input:
[sentence]

Function:
split

(sentence) -> (word)

Group by:
[word]

StateUpdater:
count

() -> (count)
MapState

Figure 17.1 Micro-batched word-count pipe di-
agram
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Let’s go through the code line by line. First, a TridentTopology object is created.
TridentTopology exposes the interface for constructing Trident computations.
TridentTopology has a method called newStream that connects the topology to an
input source. In this case, the input source is just the FixedBatchSpout defined
before. If you wanted to read from Kafka, you’d instead use a Trident Kafka spout. Tri-
dent keeps track of a small amount of state for each input source (metadata about
what it has consumed) in Zookeeper, and the spout1 string here specifies the node in
Zookeeper where Trident should keep that metadata. This metadata contains the
information about what was in each batch, so that if a batch has to be replayed, the
exact same batch will be emitted the next time. 

 The spout emits a stream containing one field called sentence. The next line of
the topology definition applies the Split function to each tuple in the stream, taking
the sentence field and splitting it into words. Each sentence tuple creates potentially
many word tuples—for instance, the sentence “the cow jumped over the moon” cre-
ates six word tuples. Here’s the definition of Split:

public static class Split extends BaseFunction {
public void execute(TridentTuple tuple,

TridentCollector collector) {
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {

collector.emit(new Values(word));
}

}
}

Unlike Storm bolts, which take in entire tuples as input and produce entire tuples as
output, Trident operations take in partial tuples as input and have their output values
appended to the input tuple—which is exactly how pipe diagram operations are sup-
posed to work. Behind the scenes, Trident compiles as many operations as possible
together into single bolts. 

 You saw how pipe diagrams were extended with a StateUpdater operation that
communicates with a State object to keep persistent state between batches. Trident
has a StateUpdater interface that looks like this: 

public interface StateUpdater<S extends State>
extends Operation {
void updateState(

S state,
List<TridentTuple> tuples,
TridentCollector collector);

}

It takes in a batch of tuples and is expected to perform the appropriate logic to
update that state. 

 Trident provides two methods for inserting a StateUpdater into your topology. The
first is partitionPersist, which takes in an implementation of this StateUpdater
interface. The second is persistentAggregate, which takes in an Aggregator.
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Aggregators have no concept of state in them, so persistentAggregate will convert
the Aggregator into a StateUpdater for you. For example, the Count aggregator will be
converted to add the count of the current batch into the count stored in the state. This
is often very convenient. 

 To complete the word-count example, the rest of the topology computes word
count and keeps the results persistently stored. First, the stream is grouped by the
word field. Then, each group is persistently aggregated using the Count aggregator
and persistentAggregate. In this example, the word counts are kept in memory, but
swapping this to use Memcached, Cassandra, or any other persistent store is trivial. 

 Let’s see how you could get this code to store the word counts in Cassandra
instead. Here’s the code to do so: 

CassandraState.Options opts =
new CassandraState.Options();

opts.globalCol = "COUNT";
opts.keySerializer = StringSerializer.get();
opts.colSerializer = StringSerializer.get();

stream.groupBy(new Fields("word"))
.persistentAggregate(

CassandraState.transactional(
"127.0.0.1",
"mykeyspace",
"mycolumnfamily"),

new Count(),
new Fields("count"));

This CassandraState implementation allows grouped aggregation to be done with
either 1-tuple groups or 2-tuple groups. The 1-tuple case treats Cassandra as a key/
value database, whereas the 2-tuple case treats Cassandra as a key-to-map database. In
the 1-tuple case, as shown in the preceding example, the value in that tuple corre-
sponds to the Cassandra key, and the column used will be the globalCol specified in
the options. With 2-tuple groups, the first element of the grouping tuple is the Cassan-
dra key and the second is the Cassandra column. 

Here is the definition of the Count aggregator: 

public static class Count
implements CombinerAggregator<Long> {

More information on CassandraState
The accompanying source code for this book provides a simple implementation of
CassandraState. It’s not ideal, however, as it does database operations one at a
time instead of batching them, so the potential throughput of this CassandraState
is much lower than it could be. The code is much easier to follow this way, though,
so we hope it can serve as a reference implementation for making states that interact
with whatever database you choose to use.
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public Long init(TridentTuple tuple) {
return 1L;

}

public Long combine(Long val1, Long val2) {
return val1 + val2;

}

public Long zero() {
return 0L;

}
}

As you can see, it’s a straightforward implementation of Count, similar to how parallel
aggregators are defined in JCascalog. Notice in particular that nowhere in all this code
is the tricky batch ID logic to achieve exactly-once semantics. Trident takes care of that
behind the scenes automatically. In this case, it automatically stores the batch ID with
the count, and if it detects that the stored batch ID is the same as the current batch ID,
it won’t do any updates to the persistent store. 

 Portions of Trident that haven’t been covered yet will be explained as we go along.
To provide deeper information on the Trident API, we refer you to the Storm documen-
tation available online. Our goal here is to show how micro-batch processing can be
applied to practical problems, not to get lost in every last detail of how these APIs work. 

17.2 Finishing the SuperWebAnalytics.com speed layer
Let’s now translate the pipe diagrams from the previous chapter into working code
using Trident. The two queries left to
finish are pageviews over time and
bounce-rate analysis.

17.2.1 Pageviews over time 

The pipe diagram for pageviews over
time is repeated in figure 17.2. To
implement this, you must decide
what specific technologies to use for
the source stream and for the state. 

 The source stream is well handled
by Apache Kafka. Remember that
one of the keys to achieving exactly-
once semantics during failures is to
always replay a batch exactly as it was
played before. Storm refers to this
property of a source queue as transac-
tional semantics. Kafka has this ability,
making it a good choice for micro-
batched processing. 

StateUpdater:
UpdateInnerMap[Count]

(bucket) -> (count)

Key to
SortedMap

state

Input:
[url, user, timestamp]

Function:
NormalizeUrl

(url) -> (norm-url)

Group by:
[url]

Function:
ToHourBucket

(timestamp) -> (bucket)

Figure 17.2 Micro-batched pageviews-over-time pipe 
diagram
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 As for the state, it requires a key-to-sorted-map index type. This is exactly the index
type that Apache Cassandra provides, making it a good choice for this application. 

 To implement the topology, the first step is to define a spout to read the pageviews
from Apache Kafka. The following code accomplishes this: 

TridentTopology topology = new TridentTopology();
TridentKafkaConfig kafkaConfig =

new TridentKafkaConfig(
new KafkaConfig.ZkHosts(

"zkstr", "/kafka"),
"pageviews"
);

kafkaConfig.scheme = new PageviewScheme();

Configuring a Trident Kafka spout is similar to configuring a regular Storm Kafka
spout, as shown in the last chapter. Note the setting of a scheme that will deserialize
pageviews into three fields: url, user, and timestamp. 

 Here’s the first part of the topology that normalizes URLs and converts timestamps
into the appropriate hour bucket: 

Stream stream =
topology.newStream(

"pageviewsOverTime",
new TransactionalTridentKafkaSpout(

kafkaConfig))
.each(new Fields("url"),

new NormalizeURL(),
new Fields("normurl"))

.each(new Fields("timestamp"),
new ToHourBucket(),
new Fields("bucket"))

As you can see, it’s just a function for each task. Here’s the implementation of those
functions: 

public static class NormalizeURL extends BaseFunction {
public void execute(TridentTuple tuple,

TridentCollector collector) {
try {

String urlStr = tuple.getString(0);
URL url = new URL(urlStr);
collector.emit(new Values(

url.getProtocol() +
"://" +
url.getHost() +
url.getPath()));

} catch(MalformedURLException e) {
}

}
}

public static class ToHourBucket extends BaseFunction {
private static final int HOUR_SECS = 60 * 60;
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public void execute(TridentTuple tuple,
TridentCollector collector) {

int secs = tuple.getInteger(0);
int hourBucket = secs / HOUR_SECS;
collector.emit(new Values(hourBucket));

}
}

The logic is no different than what was used in the batch layer, and it would be superior
to just share code between the layers (it’s duplicated here only so it’s easier to follow). 

 Finally, all that’s left is rolling up the pageview counts into Cassandra and ensuring
this is done in an idempotent manner. First, let’s configure the CassandraState: 

CassandraState.Options opts =
new CassandraState.Options();

opts.keySerializer = StringSerializer.get();
opts.colSerializer = IntegerSerializer.get();

StateFactory state =
CassandraState.transactional(

"127.0.0.1",
"superwebanalytics",
"pageviewsOverTime",
opts);

The appropriate serializers are set for the keys (URLs) and columns (time buckets). Then
the state is configured to point at the appropriate cluster, keyspace, and column family. 

 Here’s the definition of the remainder of the topology: 

stream.groupBy(new Fields("normurl", "bucket"))
.persistentAggregate(

state,
new Count(),
new Fields("count"));

In the pipe diagram, the UpdateInnerMap state updater was used with the Count aggre-
gator to express the desired state transformation. In this code, though, there is no ref-
erence to UpdateInnerMap. This is entirely due to how CassandraState works. When a
grouping is done with two keys, the second key is interpreted by CassandraState as the
inner map key, which means UpdaterInnerMap is implicit in this topology definition. 

 In this case, the grouping key contains two fields, the url and the bucket. The
persistentAggregate method is used to apply the built-in Count aggregator to roll up
the counts. Trident automatically stores the batch ID with each count so that any fail-
ures and retries can be done in an idempotent manner. 

 That completes the implementation for the pageviews-over-time speed layer. As
you can see, it’s very concise and straightforward. 

17.2.2 Bounce-rate analysis

Let’s now see how you can implement bounce-rate analysis using Trident. For refer-
ence, the pipe diagram is repeated in figure 17.3. 
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This is a more involved topology, so let’s go through it piece by piece. The topology
mirrors the pipe diagram almost exactly. 

 The beginning of the topology looks like this: 

topology.newStream(
"bounceRate",
new TransactionalTridentKafkaSpout(kafkaConfig))
.each(new Fields("url"),

new NormalizeURL(),
new Fields("normurl"))

.each(new Fields("normurl"),
new ExtractDomain(),
new Fields("domain"))

There’s nothing new here. It consumes the stream of pageviews from Kafka and runs a
couple of functions to extract the domain from the URL. 

 Here’s the next part of the topology, which analyzes visits and determines when
bounces occur: 

Input:
[url, user, timestamp]

Function:
NormalizeUrl

(url) -> (norm-url)

Group by:
[domain, user]

StateUpdater: MapState
(in memory)

Function:
ExtractDomain

(norm-url) -> (domain)

AnalyzeVisits
(domain, user, timestamp) ->

(domain, isBounce)

Function:
BooleanToInt

(isBounce) -> (num)

Group by:
[domain]

StateUpdater:
CountAndSum

(num) -> (num-visits, num-bounces)

MapState

Figure 17.3 Micro-batched 
bounce-rate-analysis pipe dia-
gram
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.partitionBy(new Fields("domain", "user"))

.partitionPersist(
new MemoryMapState.Factory(),
new Fields("domain", "user", "timestamp"),
new AnalyzeVisits(),
new Fields("domain", "isBounce"))

.newValuesStream()

You should notice in this code a new operation: partitionBy. To understand why this
is needed, let’s recap how AnalyzeVisits works. AnalyzeVisits looks at a single
pageview event at a time and updates state as to how long that user has been visiting
that domain. AnalyzeVisits also sweeps through all visits once a minute—using the
timestamp in the pageview event to determine when a minute has passed—to deter-
mine if any visits have been completed (more than 30 minutes passing without a
pageview by that user). So although AnalyzeVisits updates state based on one partic-
ular domain and one particular user, it potentially looks at all domain/user pairs in its
state when processing a single tuple. 

 Now let’s get back to partitionBy. Trident provides two ways of dividing up tuples:
partitionBy and groupBy. groupBy lets you group together tuples with a common key
and run aggregations on those groups independent of all other groups. partitionBy,
on the other hand, simply lets you specify how tuples should be divided up by the pro-
cessing tasks. Tuples with the same partitioning keys will go to the same task. The rea-
son partitionBy is used here is because AnalyzeVisits doesn’t process domain/user
pairs independently. Once a minute it looks at all domain/user pairs it’s currently
storing in memory. 

 This topology would also be correct if only partitioned by the domain field. But that
might lead to skew if you have just a few domains dominating the visits in your dataset.
If you partition by user and domain, the distribution will almost certainly be even because
it’s extremely unlikely a single person is dominating the pageviews in your dataset.

 Now let’s take a look at the implementation of AnalyzeVisits. It keeps all of its
state in an in-memory map via the MemoryMapState class. MemoryMapState is provided
by Trident and it implements all of the batch ID logic to be idempotent under retries.
So if there’s a failure and a batch is reprocessed, the MemoryMapState implementation
ensures that updates aren’t applied more than once. The AnalyzeVisits code
doesn’t have to worry about any of that. 

 A few helper classes are needed before getting to the meat of AnalyzeVisits.
These represent the keys and values kept in the state used by AnalyzeVisits to keep
track of user visits: 

static class Visit extends ArrayList {
public Visit(String domain, PersonID user) {

super();
add(domain);
add(user);

}
}
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static class VisitInfo {
public int startTimestamp;
public Integer lastVisitTimestamp;

public VisitInfo(int startTimestamp) {
this.startTimestamp = startTimestamp;
this.lastVisitTimestamp = startTimestamp;

}

public VisitInfo clone() {
VisitInfo ret = new VisitInfo(this.startTimestamp);
ret.lastVisitTimestamp = this.lastVisitTimestamp;
return ret;

}
}

And here is the implementation of AnalyzeVisits: 

public static class AnalyzeVisits
extends BaseStateUpdater<MemoryMapState> {

static final String LAST_SWEEP_TIMESTAMP = "lastSweepTs";
static final int THIRTY_MINUTES_SECS = 30 * 60;

public void updateState(
MemoryMapState state,
List<TridentTuple> tuples,
TridentCollector collector) {

for(TridentTuple t: tuples) {
final String domain = t.getString(0);
final PersonID user = (PersonID) t.get(1);
final int timestampSecs = t.getInteger(2);
Visit v = new Visit(domain, user);
update(state, v, new ValueUpdater<VisitInfo>() {

public VisitInfo update(VisitInfo v) {
if(v==null) {

return new VisitInfo(timestampSecs);
} else {

VisitInfo ret = new VisitInfo(
v.startTimestamp);

ret.lastVisitTimestamp = timestampSecs;
return ret;

}
}

});

Integer lastSweep =
(Integer) get(state, LAST_SWEEP_TIMESTAMP);

if(lastSweep==null) lastSweep = 0;

List<Visit> expired = new ArrayList();
if(timestampSecs > lastSweep + 60) {

Iterator<List<Object>> it = state.getTuples();
while(it.hasNext()) {

List<Object> tuple = it.next();
Visit visit = (Visit) tuple.get(0);
VisitInfo info = (VisitInfo) tuple.get(1);
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if(info.lastVisitTimestamp >
timestampSecs + THIRTY_MINUTES_SECS) {

expired.add(visit);
if(info.startTimestamp ==

info.lastVisitTimestamp) {
collector.emit(new Values(domain, true));

} else {
collector.emit(new Values(domain, false));

}
}

}
put(state, LAST_SWEEP_TIMESTAMP, timestampSecs);

}

for(Visit visit: expired) {
remove(state, visit);

}
}

}
}

The logic in this implementation is identical to the pseudo-code from the last chapter.
The only difference is the Java syntax required to express it. This code uses a few
helper functions for interacting with MemoryMapState, so for completeness these help-
ers are shown here: 

private static Object update(MapState s,
Object key,
ValueUpdater updater) {

List keys = new ArrayList();
List updaters = new ArrayList();
keys.add(new Values(key));
updaters.add(updater);
return s.multiUpdate(keys, updaters).get(0);

}

private static Object get(MapState s, Object key) {
List keys = new ArrayList();
keys.add(new Values(key));
return s.multiGet(keys).get(0);

}

private static void put(MapState s, Object key, Object val) {
List keys = new ArrayList();
keys.add(new Values(key));
List vals = new ArrayList();
vals.add(val);
s.multiPut(keys, vals);

}

private static void remove(MemoryMapState s, Object key) {
List keys = new ArrayList();
keys.add(new Values(key));
s.multiRemove(keys);

}
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With that complete, here’s the rest of the topology definition: 

.each(new Fields("isBounce"),
new BooleanToInt(),

new Fields("bint"))
.groupBy(new Fields("domain"))
.persistentAggregate(

CassandraState.transactional(
"127.0.0.1",
"superwebanalytics",
"bounceRate",
opts),

new Fields("bint"),
new CombinedCombinerAggregator(

new Count(),
new Sum()),

new Fields("count-sum"));

This part of the topology simply consumes the stream of ["domain", "isBounce"]
and aggregates it into Cassandra to determine for each domain the number of visits
and the number of bounces. First, isBounce is converted to a 0 if it’s false and a 1 if it’s
true using the BooleanToInt function. Then, a standard persistentAggregate is
done to update Cassandra. 

 You actually need to do two aggregations: a count to determine the number of visits,
and a sum of the isBounce integers to determine the number of bounces. So the Count
and Sum aggregators are combined into one using the CombinedCombinerAggregator
utility. This utility is defined as follows: 

public static class CombinedCombinerAggregator
implements CombinerAggregator {

CombinerAggregator[] _aggs;

public CombinedCombinerAggregator(
CombinerAggregator... aggs) {

_aggs = aggs;
}

public Object init(TridentTuple tuple) {
List<Object> ret = new ArrayList();
for(CombinerAggregator agg: _aggs) {

ret.add(agg.init(tuple));
}
return ret;

}

public Object combine(Object o1, Object o2) {
List l1 = (List) o1;
List l2 = (List) o2;
List<Object> ret = new ArrayList();
for(int i=0; i<_aggs.length; i++) {

ret.add(
_aggs[i].combine(
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l1.get(i),
l2.get(i)));

}
return ret;

}

public Object zero() {
List<Object> ret = new ArrayList();
for(CombinerAggregator agg: _aggs) {

ret.add(agg.zero());
}
return ret;

}
}

And that completes the implementation of the speed layer for bounce-rate analysis. 
 There’s a problem with this implementation though. Although Trident and

MemoryMapState ensure that updates aren’t applied more than once, the state isn’t
persisted or replicated anywhere. So if a task carrying state dies, that state is lost. 

 One way to deal with this weakness is to just ignore it, accept the small amount of
inaccuracy it introduces, and rely on the batch layer to correct that inaccuracy when it
happens. Alternatively, it’s possible to do stream processing with in-memory state
that’s tolerant to failures. Let’s explore that now. 

17.3 Fully fault-tolerant, in-memory, micro-batch processing
There are two ways to achieve local, in-memory state that can be recovered when
workers die. 

 The first is to make use of the
standard database technique of keep-
ing a commit log in a replicated
store. Good technologies for this are
HDFS file appends or Kafka. When-
ever you make an update to your
state, you write what that update was
to your log. Figure 17.4 illustrates
what a commit log might look like. 

 When a task starts up, it replays the
commit log to rebuild the internal
state. Of course, the commit log grows
indefinitely, so rebuilding state based
on the log will get more and more
expensive. You can fix this problem by
periodically compacting the log.
Compaction is the process of persist-
ing the entire state itself, and then
deleting all commit log elements

Batch ID: 1
Operation: put

Args: “somekey”, “someval”

Batch ID: 1
Operation: put

Args: “somekey2”, “someval2”

Batch ID: 2
Operation: remove
Args: “somekey2”

Batch ID: 2
Operation: put

Args: “somekey3”, 24

Batch ID: 2
Operation: put

Args: “somekey4”, “someval4”

Batch ID: 3
Operation: remove
Args: “somekey4”

Figure 17.4 Commit log
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involved in the construction of that state. A great technology for storing the state in its
entirety is a distributed filesystem. Your strategy around compaction could be as simple
as doing it once a minute, or after the commit log grows to a certain size. 

 There’s another technique for accomplishing persistent, in-memory state that
doesn’t involve a commit log at all. Recall that the way Trident works is it processes
batches in a strong order, and by keeping the batch ID stored with the state it can
detect if a batch has been processed before and achieve exactly-once semantics. But
what if your computation system could retry batches beyond just the last one—say,
batches a few minutes in the past? This lets you do some cool new things. 

 The idea is to periodically checkpoint any state kept in memory by writing it out
somewhere (like a distributed filesystem). You might checkpoint once a minute. The
checkpoint also stores up to what point in the source stream that checkpoint represents. 

 Now let’s say you have a failure 45 seconds later, and one of the tasks holding a par-
tition of your state dies. At this point, the task that failed only has state current up to
the batch from 45 seconds ago (when the last checkpoint was). All the other tasks are
completely current because they haven’t failed. 

 You can recover by rewinding the source stream to 45 seconds ago and replaying it.
Although this would normally be very expensive, it can be made highly efficient
because only one partition needs to be recovered. So during the recomputation, you
can skip partitions for which you already have up-to-date state. 

 Like the commit log approach, this strategy requires the state to be periodically
written out in full. However, it requires no commit log to be written out, making it a
strictly better approach. 

 This strategy requires extensions to the micro-batch stream-processing model that
Storm and Trident don’t currently implement. Another system, however, called Spark
Streaming, does implement this approach. More information about Spark Streaming
can be found in the sidebar. 

Spark and Spark Streaming
Spark was mentioned when talking about batch processing as an alternative to
MapReduce that makes smart use of memory. Spark has another mode of operation
called Spark Streaming, which implements the micro-batch stream-processing
approach with periodic checkpointing of internal state. Whereas Trident is focused on
integrating with external databases, Spark Streaming is focused on computing state
to be kept in memory. 

A good way to categorize computation systems is by the computation styles they
support. The three main computation styles are batch processing, low latency one-at-
a-time processing, and micro-batch processing. Hadoop does only batch processing,
Storm does one-at-a-time and micro-batch processing, and Spark does batch and
micro-batch processing. 
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17.4 Summary 
You saw how to practically implement micro-batch stream processing using Storm’s
Trident API. There was a fairly direct mapping between the conceptual way of think-
ing about the data flow—the pipe diagrams—and the code to implement it. Although
Trident has excellent support for storing state in external databases with exactly-once
semantics, its support for local in-memory state isn’t fully fault tolerant. 

 You’ve now explored every piece of the basic Lambda Architecture: a recomputation-
based batch layer, a serving layer, and a speed layer. You’ve seen the intricacies of all
these layers and a full-fledged example of implementing all these layers via SuperWeb-
Analytics.com. With these basics down, let’s now see how to go beyond the basic Lambda
Architecture. There are many important variations that enable you to get better effi-
ciency out of your data systems. 
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Lambda
 Architecture in depth

In chapter 1 you were introduced to the Lambda Architecture and its general-
purpose approach for implementing any data system. Every chapter since then has
dived into the details of the various components of the Lambda Architecture. As
you’ve seen, there’s a lot involved in building Big Data systems that not only scale,
but are robust and easy to understand as well. 

 Now that you’ve had a chance to dive into all the different layers of the Lambda
Architecture, let’s use that newfound knowledge to review the Lambda Architec-
ture once more and achieve a better understanding of it. We’ll fill in any remaining
gaps and explore variations on the methodologies that have been discussed so far. 

This chapter covers
■ Revisiting the Lambda Architecture 
■ Incremental batch processing 
■ Efficiently managing resources in batch 

workflows 
■ Merging logic between batch and realtime 

views
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18.1 Defining data systems
We started with a simple question: “What does a data system do?” The answer was also
simple: a data system answers questions based on data you’ve seen in the past. Or put
more formally, a data system computes queries that are functions of all the data you’ve
ever seen. This is an intuitive definition that clearly encapsulates any data system
you’d ever want to build: 

There are a number of properties you’re concerned about with your queries: 

■ Latency—The time it takes to run a query. In many cases, your latency require-
ments will be very low—on the order of milliseconds. Other times it’s okay for a
query to take a few seconds. When doing ad hoc analysis, your latency require-
ments are often very lax, even on the order of hours. 

■ Timeliness—How up-to-date the query results are. A completely timely query
takes into account all data ever seen in the past, whereas a less timely query may
not include results from the recent minutes or hours. 

■ Accuracy—In many cases, in order to make queries performant or scalable, you
must make approximations in your query implementations. 

A huge part of building data systems is making them fault tolerant. You have to plan for
how your system will behave when you encounter machine failures. Oftentimes this
means making trade-offs with the preceding properties. For example, there’s a funda-
mental tension between latency and timeliness. The CAP theorem shows that under par-
titions, a system can either be consistent (queries take into account all previous written
data) or available (queries are answered at the moment). Consistency is just a form of
timeliness, and availability just means the latency of the query is bounded. An eventu-
ally consistent system chooses latency over timeliness (queries are always answered, but
may not take into account all prior data during failure scenarios). 

 Because data systems are dynamic, changing systems built by humans and with new
features and analyses deployed all the time, humans are an integral part of any data
system. And like machines, humans can and will fail. Humans will deploy bugs to pro-
duction and make all manner of mistakes. So it’s critical for data systems to be human-
fault tolerant as well. 

 You saw how mutability—and associated concepts like CRUD—are fundamentally
not human-fault tolerant. If a human can mutate data, then a mistake can mutate data.
So allowing updates and deletes on your core data will inevitably lead to corruption. 

 The only solution is to make your core data immutable, with the only write opera-
tion allowed being appending new data to your ever-growing set of data. You can do
things like set permissions on your core data to disallow deletes and updates—this
redundancy ensures that mistakes can’t corrupt existing data, so your system is far
more robust. 

query function(all data)=
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 This leads us to the basic model of data systems: 

■ A master dataset consisting of an ever-growing set of data
■ Queries as functions that take in the entire master dataset as input

Anything you’d ever want to do with data can clearly be done this way, and such a sys-
tem has at its core that crucial property of human-fault tolerance. If it were possible to
implement, this would be the ideal data system. The Lambda Architecture emerges
from making the fewest sacrifices possible to achieve this ideal of queries as functions
of an ever-growing immutable dataset. 

18.2 Batch and serving layers
Computing queries as functions of all data is not practical because it’s not reasonable
to expect queries on a multi-terabyte dataset, much less a multi-petabyte dataset, to
return in a few milliseconds. And even if that were possible, queries would be unrea-
sonably resource-intensive. The simplest modification you can make to such an archi-
tecture is to query precomputed views rather than the master dataset directly. These
precomputed views can be tailored for the queries so that the queries are as fast as
possible, whereas the views themselves are functions of the master dataset. 

 In chapters 2 through 9, you saw the details of implementing such a system. At the
core is a batch-processing system that can compute those functions of all data in a scal-
able and fault-tolerant way—hence, this part of the Lambda Architecture is called the
batch layer.

 The goal of the batch layer is to produce views that are indexed so that queries on
those views can be resolved with low latency. The indexing and serving of those views
is done in the serving layer, which is tightly connected to the batch layer. In designing
your batch and serving layers, you must strike a balance between the amount of pre-
computation done in the batch layer with the size of the views and the amount of com-
putation needed at query time (discussed extensively in chapter 6). 

 Let’s now go beyond this basic model of the batch and serving layers of the
Lambda Architecture to explore more options you have available to you in designing
them. A key performance metric of these layers is how long it takes to update the
views. As the speed layer must compensate for all data not represented in the serving
layer, the longer it takes the batch layer to run, the larger your speed layer views must
be. Needing larger clusters of significantly more complex databases greatly increases
your operational complexity. In addition, the longer it takes the batch layer to run,
the longer it takes to recover from bugs that are accidentally deployed to production.
One way to lower the latency of the batch layer is to incrementalize it. 

18.2.1 Incremental batch processing

In chapter 6 we discussed the trade-offs between incremental algorithms and recom-
putation algorithms. You saw how one of the primary benefits of the batch layer is its
ability to take advantage of recomputation algorithms, so you may be surprised at the
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suggestion to incrementalize the batch layer. Like all design issues, you must consider
all the trade-offs in order to come to the best design. 

 Let’s consider an extreme case, where the only view you’re producing is a global
count of all records in the master dataset. In this case, incrementalizing the batch
layer is a clear win, as the incremental view is no bigger than a recomputation-based
view (just a single number in both cases), and it’s not complex to incrementalize the
code. You save a huge amount of resources by not repeatedly recomputing over the
entire master dataset. For instance, if your master dataset contains 100 terabytes of
data, and each new batch of data contains 100 gigabytes, your batch layer will be
orders of magnitude more efficient. Each iteration only has to deal with 100 gigabytes
of data rather than 100 terabytes. 

 Now let’s consider another example where the choice between incremental and
recomputation algorithms is more difficult: the “birthday inference” problem. Imag-
ine you’re writing a web crawler that collects people’s ages from their public profiles.
The profile doesn’t contain a birthday, but only what that person’s age is at the
moment you crawled that web page. Given this raw data of [age, timestamp] pairs,
your goal is to deduce the birthday of each person. 

 The idea of the birthday-inference algorithm is illustrated in figure 18.1. Imagine you
crawl the profile of Tom on January 4, 2012, and see his age is 23. Then you crawl his
profile again on January 11, 2012, and see his age is 24. You can deduce that his birthday
happened sometime between those two dates. Likewise, if you crawl the profile of Jill on
October 20, 2013, and see she is 43, and then crawl it again on November 4, 2013, and
see she is still 43, you know her birthday is not between those dates. The more age sam-
ples you have, the better you can infer that someone’s birthday is within a small range
of dates.

28 years old on
2/21/2012

2/22/1983 2/21/1984

29 years old on
3/4/2013

3/5/1983 3/4/1984

30 years old on
6/2/2013

6/3/1982 6/2/1983

Inferred birthday
range 3/5/1983 6/2/1983

Figure 18.1 Basic birthday-inference algorithm
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In the real world, of course, the data can get messy. Someone may have incorrectly
entered their birthday and then changed it at a later date. This may cause your age
inference algorithm to fail to produce a birthday because every day of the year has
been eliminated as a possible birthday. You might modify your birthday inference
algorithm to search for the smallest number of age samples it can ignore to produce
the smallest range of possible birthdays. The algorithm might prefer to use recent age
samples over older age samples. 

 If you implement a birthday-inference batch layer using recomputation, it’s easy.
Your algorithm can look at all age samples for a person at once and do everything nec-
essary to deal with messy data and emit a single range of dates as output. But incre-
mentalizing the birthday-inference batch layer is much trickier. It’s hard to see how
you can deal with the messy data problem without having access to the full range of
age samples. Incrementalizing this algorithm fully would be considerably harder and
may require a much larger and more involved view. 

 There’s an alternative that blurs the line between incrementalization and recompu-
tation and gets you the best of both worlds. This technique is called partial recomputation. 

PARTIAL RECOMPUTATION

Recomputing every person’s birthday from the age samples every single time the
batch layer runs is wasteful. In particular, if a person has no new age samples since the
last time the batch layer ran, then the inferred birthday for that person will not
change at all. The idea behind a birthday inference batch layer based on partial
recomputation is to do the following: 

1 For the new batch of data, find all people who have a new age sample. 
2 Retrieve all age samples from the master dataset for all people in step 1. 
3 Recompute the birthdays for all people in step 1 using the age samples from

step 2 and the age samples in the new batch.
4 Merge the newly computed birthdays into the existing serving layer views.

This is not fully incremental because it still makes use of the master dataset. But it
avoids most of the cost of a full recomputation by ignoring anyone who hasn’t
changed in the latest set of data. 

 You can easily see how partial recomputes as applied to the birthday-inference
problem could apply to many problems. The key idea is to retrieve all the relevant
data for the entities that changed, run a normal recompute algorithm on the
retrieved data plus the new data, and then merge those results into the existing views.
The nice thing about partial recomputes is that they can be implemented very effi-
ciently. The most expensive step—looking over the entire master dataset to find rele-
vant data—can be done relatively cheaply. 

 The key to making it efficient is to avoid having to repartition the entire master
dataset, as this is the most expensive part of batch algorithms. For example, reparti-
tioning happens whenever you do a group-by operation or a join. Partitioning
involves serialization/deserialization, network transfer, and possibly buffering on
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disk. In contrast, operations that don’t require partitioning can quickly scan through
the data and operate on each piece of data as it’s seen. Retrieving relevant data for a
partial recompute can be done using the latter method. 

 The first step to retrieving relevant data is to construct a set of all the entities for
which you need relevant data. You then scan over the master dataset and only emit
data for those entities that exist in the set (each task would have a copy of that set). In
a batch-processing system like Hadoop, this would correspond to a map-only job. 

 You’re limited by memory, so your set can only be so big. But a data structure called
a Bloom filter can make this work for much larger sets of entities. A Bloom filter is a com-
pact data structure that represents a set of elements and allows you to ask if it contains
an element. A Bloom filter is much more compact than a set, but as a trade-off, query
operations on it are probabilistic. A Bloom filter will sometimes incorrectly tell you that
an element exists in the set, but it will never tell you an element that was added to the
set is not in the set. So a Bloom filter has false positives but no false negatives. 

 Using a Bloom filter to optimize retrieving relevant data is illustrated in figure 18.2.
If you use a Bloom filter to retrieve relevant data from the master dataset, you’ll filter
out the vast majority of the master dataset. Due to the false positives, though, some data
will be emitted that you didn’t want to retrieve. You can then do a join between the
retrieved data and the list of desired entities to filter out the false positives. A join
requires a partitioning, but because the vast majority of the master dataset was already
filtered out, getting rid of the false positives is not an expensive operation. 

 Let’s now make some estimates as to how much of a latency improvement an
incremental batch layer based on partial recomputes offers compared to a fully
recomputation-based batch layer. Let’s say computing birthday inference requires
one full MapReduce job with partitioning, and that the following facts exist about
your cluster and your data: 

■ Your master dataset contains 100 terabytes of data. 
■ A partial recompute-based approach will have 50 gigabytes of new data each batch.
■ A MapReduce job with partitioning takes 8 hours on the full master dataset. 
■ A map-only job (without any partitioning) takes 2 hours on the full master data-

set (the 4x speed difference is typical in MapReduce clusters). 
■ Creating brand-new, serving layer views takes 2 hours in the full recompute. 
■ Updating the serving layer views takes 1 hour in the partial recompute. 

With these numbers, recomputing all the birthday-inference views from scratch would
take 8 hours for the computation plus 2 hours to build the serving layer views. That’s 10
hours total. For a partial recompute, here are the figures: 

■ It takes 2 hours to get the relevant data from the master dataset. 
■ It takes a few minutes to compute the new birthdays for the entities in the cur-

rent batch.
■ It takes 1 hour to update the existing serving layer views with the newly com-

puted birthdays.
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So the partial-recompute-based approach would only take about 3 hours, which is 70%
faster than the full-recompute-based approach. These numbers are estimates, but it
should give you a good idea of the kinds of performance improvements you could
expect from a partial-recompute-based batch layer. For more-complex batch computa-
tions that require more than one partitioning step, the savings would be much greater.
For instance, if the recomputation algorithm required four partitioning steps, the full
recompute job would require 34 hours, while the partial recompute job would still only
require about 3 hours. 

 Another benefit of partial recomputes is that they give you a certain amount of
power to correct for human mistakes. If bad data is written that corrupts certain

New
data

Master dataset

Retrieve entity set

Construct Bloom
filter

Extract relevant
data with map-only

job

Bloom
filter

Relevant data
(with false
positives)

Entity
set

Join to remove
false positives

Relevant data

Figure 18.2 Bloom join
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entities, you could fix your serving layers by doing a partial recompute of just the
affected entities. This lets you get your application fixed in far less time than doing a
complete, full recompute. But partial recomputes only help fix mistakes as long as
you can identify all affected entities. For this reason, partial recomputes are much
more effective at fixing mistakes related to writing bad data than mistakes related to
deploying buggy code that corrupts your views. The human-fault tolerance of partial
recomputes is in between full recomputes and full incrementalization. 

 Partial recomputes, when appropriate, enable you to have a batch layer with far
less latency without sacrificing the benefits of recomputation-based algorithms.
They’re generally not appropriate for realtime algorithms because that would require
indexing your entire master dataset, which would be extremely expensive. And, obvi-
ously, scanning over the entire master dataset in real time is impossible. But for the
batch layer, partial recomputes are a great tool to have in your toolkit. 

IMPLEMENTING AN INCREMENTAL BATCH LAYER

Whether you’re doing fully incremental algorithms or partial recompute algorithms
in your incremental batch layer, the main difference between an incremental batch
layer and a recomputation-based batch layer is the need to update your serving layer
views rather than create them from scratch. 

 It’s absolutely viable to build the incremental batch layer similar to a speed layer,
with the views being read/write databases that you modify in place. But this would
negate the many advantages of serving layer databases (discussed in chapter 10) that
result from not supporting random writes: 

■ Robustness—Not having random writes means the codebase is simpler and less
likely to have bugs. 

■ Easier to operate —Fewer moving parts means there’s less for you to worry about
as an operator of these databases—less configuration and less that can go
wrong.

■ More predictable performance—By not having random writes that happen concur-
rently with reads, there’s no need to worry about any sort of locking inside the
database. Likewise, whereas a read/write database occasionally needs to per-
form compaction to reclaim unused parts of the index, which can significantly
degrade performance, a database without random writes never needs to do this. 

So let’s focus on how to make serving layer databases that preserve these properties as
much as possible. You saw one design for a serving layer database called ElephantDB
in chapter 11. 

 The crux of how ElephantDB works is that the batch layer view is indexed and par-
titioned in a MapReduce job, and those indexes are stored on the distributed filesys-
tem. An ElephantDB cluster periodically checks for new versions of the view and will
hot-swap the new version once it’s available. The key point here is that the creation
and serving of views are completely independent and coordinated through a distrib-
uted filesystem. 
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 The way to extend this design to enable incremental batch processing is to include
the last version of the batch layer view as input to the job that creates the new version
of the batch layer view. Then updates are applied to the old version, and the new version
is written out to the distributed filesystem (ElephantDB implements this). For example,
if you’re using BerkeleyDB as your indexing system and storing word counts inside it,
the job to create the new version of the view would work as follows. The task for a given
partition of the view would download the appropriate partition from the distributed
filesystem, open it locally, increment word counts for its batch of data, and then copy
the updated view into the distributed filesystem under the folder for the new version.
In a strategy like this, all the incrementalization happens on the view-creation side.
Serving new versions of the view is no different than before. 

 A strategy like this saves you from redoing all the work that went into creating the
prior version of the view. You can also take advantage of the higher latency of the batch
layer to compact the indexes before writing them out to the distributed filesystem. 

 This strategy works better with moderate-to-smaller-sized views. If the views them-
selves are huge, the cost of the jobs may be dominated by reading and writing the
entire view to and from the distributed filesystem. In these cases, incrementalization
may not help very much. An alternative is to use a serving layer database design that
ships “deltas” to the serving databases, and the serving databases merge them in on
the fly. Of course, in that case you’d also have to do compaction while serving, so the
serving layer would look more and more like a read/write database and have many of
the associated complexities. 

 Fortunately, there’s a way to minimize the size of your incremental batch layer
views so that you’re not forced to use the deltas strategy or a read/write database for
your serving layer. Instead, you can keep the benefits of a serving layer where the cre-
ation and serving of views are completely independent. The idea is to have multiple
batch layers. 

MULTIPLE BATCH LAYERS

Instead of just having one batch layer and one speed layer that compensates for the
latency of the batch layer, you can have multiple batch layers. For example, you could
have one batch layer based on full recomputes that finishes once a month. Then you
could have an incremental batch layer that only operates on data not represented in the
full-recompute batch layer. That might run once every six hours. Then you would have
a speed layer that compensates for all data not represented in the two batch layers. 

 In the basic Lambda Architecture, the batch layer loosens the performance
requirements of the speed layer; similarly, with multiple batch layers, each layer loos-
ens the requirements for the layer above it. In the example mentioned, the incremen-
tal batch layer only has to deal with two months of data. That means its views can be
kept much smaller than if the views had to represent all data for all time. So techniques
like making brand-new serving layer views based on the old serving layer views are fea-
sible because the cost of copying the views won’t dominate. 
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 The other benefit to having multiple batch layers is that it helps you get the best of
both worlds of incrementalization and recomputation. Incremental workflows can be
much more performant but lack the ability to recover from mistakes that recomputa-
tion workflows give you. If recomputation is a constantly running part of your system,
you know you can recover from any mistake. 

 The latency of each layer of your system directly affects the performance require-
ments of the layer above it. So it’s incredibly important to have a good understanding
of how the latency of each layer is affected by the efficiency of your code and the
amount of resources you allocate to them. Let’s see how that plays out. 

18.2.2 Measuring and optimizing batch layer resource usage

There turns out to be a lot of counterintuitive dynamics at work in the performance of
batch workflows. Consider these examples, which are based on real-world cases: 

■ After doubling the cluster size, the latency of a batch layer went down from 30
hours to 6 hours, an 80% improvement. 

■ An improper reconfiguration caused a Hadoop cluster to have 10% more task
failure rates than before. This caused a batch workflow’s runtime to go from 8
hours to 72 hours, a 9x degradation in performance. 

It’s hard at first to wrap your head around how this is possible, but the basic dynamic
can be easily illustrated. Suppose you have a batch workflow that takes 12 hours to
run, so it processes 12 hours of data each iteration. Now let’s say you enhance the
workflow to do some additional analysis, and you estimate the analysis will add two
hours to the processing time of your current workflow. You’ve now increased the run-
time of a workflow that operated on 12 hours of data to 14 hours. That means the next
time the workflow runs, there will be 14 hours of data to process. Because the next
iteration has more data, it will take longer to run, which means the next iteration will
have even more data, and so on. 

 If and when the runtime stabilizes can be determined with some very simple math.
First, let’s write out the equation for the runtime of a single iteration of a batch work-
flow. The equation will make use of the following variables: 

■ T—The runtime of the workflow in hours. 
■ O—The overhead of the workflow in hours. This is the amount of time spent in

the workflow that’s independent of the data being processed. This can include
things like setting up processes, copying code around the cluster, and so on. 

■ H—The number of hours of data being processed in the iteration. “Hours” are
used here to measure the amount of data because it makes the resulting equa-
tions very simple. As part of this, it’s assumed that the rate of incoming data is
fairly constant. But the conclusions we’ll make are not dependent on this. 

■ P—The dynamic processing time. This is the number of hours each hour of
data adds to the processing time of the workflow. If each hour of data adds half
an hour to the runtime, then P is 0.5. 
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Based on these definitions, the following equation is a natural expression of the run-
time of a single iteration of a workflow: 

Of course, H will vary with every iteration of the workflow, because if the workflow takes
shorter or longer to run than the last iteration, the next iteration will have less or more
data to process, respectively. To determine the stable runtime of the workflow, you need
to determine the point at which the runtime of the workflow is equal to the number of
hours of data it processes. To do this, you simply plug in T = H and solve for T:  

As you can see, the stable runtime of a workflow is linearly proportional to the amount
of overhead in the workflow. So if you’re able to decrease overhead by 25%, your
workflow runtime will also decrease by 25%. However, the stable runtime of a work-
flow is non-linearly proportional with the dynamic processing time, P. One implica-
tion of this is that there are diminishing returns on performance gains with each
machine added to the cluster. 

Using this equation, the counterintuitive cases described earlier make a lot more
sense. Let’s start with what happens to your stable runtime when you double the size
of your cluster. When that happens, your dynamic processing time, P, gets cut approx-
imately in half, as you can now parallelize the processing twice as much (technically,
your overhead to coordinate all those machines also increases slightly, but let’s ignore
that). If T1 is the stable runtime before doubling the cluster size, and T2 is the stable
runtime afterward, you get these two equations:  

Solving for the ratio T2/T1 nets you this equation:  

T O P H+=

T O P T+=

T O
1 P– 

-----------------=

What happens if P is greater than or equal to 1?
You may be wondering what would happen if your dynamic processing time, P, is
greater than or equal to 1. In this case, each iteration of the workflow will have more
data than the iteration prior, so the batch layer will fall further and further behind,
forever. It’s incredibly important to keep P below 1. 

T1 O
1 P– 

-----------------=

T2 O
1 P 2– 

------------------------=

T2
T1
------- 1 P–

2 P– 
-----------------=
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Plotting this, you get the graph in figure 18.3. 
 This graph says it all. If your P was really low, like 6 minutes of processing time per

hour of data, then doubling the cluster size will barely affect the runtime. This makes
sense because the runtime is dominated by overhead, which is unaffected by doubling
the cluster size. 

 However, if your P was really high, say 54 minutes of dynamic time spent per hour
of data, then doubling the cluster size will cause the new runtime to be 18% of the
original runtime, a speedup of 82%! What happens in this case is the next iteration
finishes much faster, causing the next iteration to have less data, upon which it will fin-
ish even faster. This positive loop eventually stabilizes at an 82% speedup. 

 Now let’s consider the effect an increase in failure rates would have on your stable
runtime. A 10% task failure rate means you’ll need to execute about 11% more tasks
to get your data processed. (If you had 100 tasks and 10 of them failed, you’d retry
those 10 tasks. However, on average 1 of those will also fail, so you’ll need to retry that
one too.) Because tasks are dependent on the amount of data you have, this means
your time to process one hour of data (P) will increase by 11%. 

 As in the last analysis, let’s call T1 the runtime before the failures start happening
and T2 the runtime afterward:   

The ratio T2/T1 is now given by the following equation:  

Figure 18.3 Performance effect of doubling cluster size

T1 O
1 P– 

-----------------=

T2 O
1 1.11 P– 

----------------------------------=

T2
T1
------- 1 P– 

1 1.11 P– 
----------------------------------=
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Plotting this, you get the graph in figure 18.4. 
 As you can see, the closer your P gets to 1, the more dramatic an increase in failure

rates has on your stable runtime. This is how a 10% increase in failure rates can cause
a 9x degradation in performance. It’s important to keep your P away from 1 so that
your runtime is stable in the face of the natural variations your cluster will experience.
According to this graph, a P below 0.7 seems pretty safe. 

 By optimizing your code, you can control the values for O and P. In addition, you
can control the value for P with the amount of resources (such as machines) you ded-
icate to your batch workflow. The magic number for P is 0.5. When P is above 0.5, add-
ing 1% more machines will decrease latency by more than 1%, making it a cost-
effective decision. When P is below 0.5, adding 1% more machines will decrease
latency by less than 1%, making the cost-effectiveness more questionable. 

 To measure the values of O and P for your workflow, you may be tempted to run your
workflow on zero data. This would give you the equation T = O + P ✕ 0, allowing you to
easily solve for O. You could then use that value to solve for P in the equation T = O /
(1 –P). But this approach tends to be inaccurate. For example, on Hadoop, a job typi-
cally has many more tasks than there are task slots on the cluster. It can take a few min-
utes for a job to get going and achieve full velocity by utilizing all the available task slots
on the cluster. The time it takes to get going is normally a constant amount of time and
so is captured by the O variable. When you run a job with a tiny amount of data, the job
will finish before utilizing the whole cluster, skewing your measurement of O. 

 A better way to measure O and P is to artificially introduce overhead into your
workflow, such as by adding a sleep(1 hour) call in your code. Once the runtime of
the workflow stabilizes, you’ll now have two measurements, T1 and T2, for before and
after you added the overhead. You end up with the following equations to give you
your O and P values:  

Figure 18.4 Performance effect of 10% increase in error rates
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Of course, don’t forget to remove the artificial overhead once you’ve completed your
measurements! 

 When building and operating a Lambda Architecture, you can use these equations
to determine how many resources to give to each batch layer of your architecture. You
want to keep P well below 1 so that your stable runtime is resilient to an increase in
failure rates or an increase in the rate of data received. If your P is below 0.5, then
you’re not getting very cost-effective use of those machines, so you should consider
allocating them where they’d be better used. If O seems abnormally high, then you
may have identified an inadvertent bottleneck in your workflow. 

 You should now have a good understanding of building and operating batch lay-
ers in a Lambda Architecture. The design of a batch layer can be as simple as a
recomputation-based batch layer, or you may find you can benefit from making an
incremental batch layer that’s possibly combined with a recomputation-based batch
layer. Let’s now move on to the speed layer of the Lambda Architecture.

18.3 Speed layer
Because the serving layer updates with high latency, it’s always out of date by some
number of hours. But the views in the serving layer represent the vast majority of the
data you have—the only data not represented is the data that has arrived since the
serving layer last updated. All that’s left to make your queries realtime is to compen-
sate for those last few hours of data. This is the purpose of the speed layer. 

 The speed layer is where you tend toward the side of performance in the trade-offs
you make—incremental algorithms instead of recomputation algorithms and mutable
read/write databases instead of the kinds of databases preferred in the serving layer.
You need to do this because you need the low latency, and the lack of human-fault tol-
erance in these approaches doesn’t ultimately matter. Because the serving layer con-
stantly overrides the speed layer, mistakes in the speed layer are easily corrected. 

 Traditional architectures typically only have one layer, which is roughly compara-
ble to the speed layer. But because there’s no batch layer underpinning it, it’s very vul-
nerable to mistakes that will cause data corruption. Additionally, the operational
challenges of operating petabyte-scale read/write databases are enormous. The speed
layer in the Lambda Architecture is largely free of these challenges, because the batch
and serving layers loosen its requirements to an enormous extent. Because the speed
layer only has to represent the most recent data, its views can be kept very small, avoid-
ing the aforementioned operational challenges. 

 In chapters 12 through 17 you saw the intricacies and variations on building a speed
layer, involving queuing, synchronous versus asynchronous speed layers, and one-at-a-
time versus micro-batch stream processing. You saw how for difficult problems you can

O T1
T2 T1– 

-------------------------=

P 1 1– 
T2 T1– 

-------------------------=
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make approximations in the speed layer to reduce complexity, increase performance,
or both.

18.4 Query layer
The last layer of the Lambda Architecture is the query layer, which is responsible for
making use of your batch and realtime views to answer queries. It has to determine
what to use from each view and how to merge them together to achieve the proper
result. Each query is formulated as some function of batch views and realtime views. 

 The merge logic you use in your queries will vary from query to query. The differ-
ent techniques you might use are best illustrated by a few examples. 

 Queries that are time-oriented have straightforward merging strategies, such as the
pageviews-over-time query from SuperWebAnalytics.com. To execute the pageviews-
over-time query, you get the sum of the pageviews up to the hour for which the batch
layer has complete data. Then you retrieve the pageview counts from the speed views
for all remaining hours in the query and sum them with the batch view counts. Any
query that’s naturally split on time like this will have a similar merge strategy. 

 You’d take a different approach for the birthday-inference problem introduced
earlier in this chapter. One way to do it is as follows: 

■ The batch layer runs an algorithm that will appropriately deal with messy data
and choose a single range of dates as output. Along with the range, it also emits
the number of age samples that went into computing that range. 

■ The speed layer incrementally computes a range by narrowing the range with
each age sample. If an age sample would eliminate all possible days as birth-
days, it’s ignored. This incremental strategy is fast and simple but doesn’t deal
with messy data well. That’s fine, though, because that’s handled by the batch
layer. The speed layer also stores the number of samples that went into com-
puting its range. 

■ To answer queries, the batch and speed ranges are retrieved with their associ-
ated sample counts. If the two ranges merge together without eliminating all
possible days, then they’re merged to the smallest possible range. Otherwise,
the range with the higher sample count is used as the result. 

This strategy for birthday inference keeps the views simple and handles all the appro-
priate cases. People that are new to the system will be appropriately served by the
incremental algorithm used in the speed layer. It doesn’t handle messy data as well as
the batch layer, but it’s good enough until the batch layer can do more involved analy-
sis later. This strategy also handles bursts of new data well. If you suddenly add a
bunch of age samples to the system, the speed layer result will be used over the batch
layer result because it’s based on more data. And of course, the batch layer is always
recomputing birthday ranges, so the results get more accurate over time. There are
variations on this implementation you might choose to use for birthday inference, but
you should get the idea. 
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 Something that should be apparent from these examples is that your views must be
structured to be mergeable. This is natural for time-oriented queries like pageviews
over time, but the birthday inference example specifically added sample counts into
the views to help with merging. How you structure your views to make them mergeable
is one of the design choices you must make in implementing a Lambda Architecture. 

18.5 Summary 
The Lambda Architecture is the result of starting from first principles—the general
formulation of data problems as functions of all data you’ve ever seen—and making
mandatory requirements like human-fault tolerance, horizontal scalability, low-latency
reads, and low-latency updates. As we’ve explored the Lambda Architecture, we made
use of many tools to provide practical examples of the core principles, such as
Hadoop, JCascalog, Kafka, Cassandra, and Storm. We hope it’s been clear that none of
these tools is an essential part of the Lambda Architecture. We fully expect the tools to
change and evolve over time, but the principles of the Lambda Architecture will
always hold. 

 In many ways, the Lambda Architecture goes beyond the currently available tool-
ing. Although implementing a Lambda Architecture is very doable today—something
we tried to demonstrate by going deep into the details of implementing the various
layers throughout this book—it certainly could be made even easier. There are only a
few databases specifically designed to be used for the serving layer, and it would be
great to have speed layer databases that can more easily handle the expiration of parts
of the view that are no longer needed. Fortunately, building these tools is much easier
than the wide variety of traditional read/write databases being built, so we expect
these gaps will be filled as more people adopt the Lambda Architecture. In the mean-
time, you may find yourself repurposing traditional databases for these various roles
in the Lambda Architecture, and doing some engineering yourself to make things fit. 

 When first encountering Big Data problems and the Big Data ecosystem of tools,
it’s easy to be confused and overwhelmed. It’s understandable to yearn for the familiar
world of relational databases that we as an industry have become so accustomed to
over the past few decades. We hope that by learning the Lambda Architecture, you’ve
learned that building Big Data systems can be far simpler than building systems based
on traditional architectures. The Lambda Architecture completely solves the normal-
ization versus denormalization problem, something that plagues traditional architec-
tures, and it also has human-fault tolerance built in, something we consider to be non-
negotiable. Additionally, it avoids the plethora of complexities brought on by architec-
tures based on monolithic read/write databases. Because it’s based on functions of all
data, the Lambda Architecture is by nature general-purpose, giving you the confi-
dence to attack any data problem.
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