
Synthesis Lectures on Computer Science

Razvan Alexandru Mezei

Introduction
to the Development
of Web Applications
Using ASP .Net
(Core) MVC

Synthesis Lectures on Computer Science

The series publishes short books on general computer science topics that will appeal to
advanced students, researchers, and practitioners in a variety of areas within computer
science.

Razvan Alexandru Mezei

Introduction
to the Development
of Web Applications Using
ASP .Net (Core) MVC

Razvan Alexandru Mezei
Department of Computer Science
Hal and Inge Marcus School of Engineering
Saint Martin’s University
Lacey, WA, USA

ISSN 1932-1228 ISSN 1932-1686 (electronic)
Synthesis Lectures on Computer Science
ISBN 978-3-031-30625-9 ISBN 978-3-031-30626-6 (eBook)
https://doi.org/10.1007/978-3-031-30626-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-30626-6

I would like to dedicate this work to my fiancée
Adriana Cheteles for her great support and
encouragement and to my Ph.D. advisor,
Prof. George Anastassiou, whose mentorship
and guidance opened my professional path.

Razvan Alexandru Mezei

Preface

This work is intended to be used as a (quick) one-semester introduction to Web Appli-
cations development using ASP .Net Core MVC. In particular, it briefly introduces some
client-side languages and frameworks (HTML, CSS, JavaScript, and Bootstrap), then
it focuses primarily on the server-side portion (C#, Entity Framework Core) using the
Model-View-Controller (MVC) pattern. Along the way, you will be introduced to many
concepts such as routing, services and dependency injection, object relational mapper,
model validation, and authentication. By the end of this book, you will create a web
application that stores its data in a database and includes some basic account management
functions (register user accounts, login, and logout).

Lacey, WA, USA Razvan Alexandru Mezei

vii

Contents

1 Introduction . 1

2 Prepare the Development Environment . 5
2.1 Choose a Web Browser . 5
2.2 Install Visual Studio Code . 6
2.3 Install Visual Studio . 6
2.4 Install DB Browser for SQLite . 7
2.5 Miscellaneous/Optional . 8

2.5.1 Show File Name Extensions . 8
2.6 Microsoft SQL Server . 8

2.6.1 Sample Data Generators . 8

3 Brief Introduction to Html . 9
3.1 Let’s Create Our First HTML Page . 9
3.2 Add Titles, Paragraphs and Headings . 11
3.3 Add a Second Webpage . 13
3.4 Add Links and White Spaces to Our Pages . 13
3.5 Add Images and White Spaces to Our Pages . 15
3.6 Tables and Buttons . 17
3.7 A Few Other HTML Elements We’ll Use Later . 19

3.7.1 Label and Select Elements . 19
3.7.2 Input Elements . 20

3.8 Form and More on Input Elements and Attributes 21
3.9 GET Versus POST Request, the Action and the Method Attributes . . . 25

4 Brief Introduction to CSS, Javascript, and Bootstrap 29
4.1 Motivation for Using CSS and JavaScript . 29
4.2 Our First CSS Example . 30
4.3 Introduction to CSS Syntax . 31
4.4 CSS Selectors . 33
4.5 Conflicting CSS Specifications . 37

ix

x Contents

4.6 Other CSS Selectors . 38
4.7 A Few More Examples of Property-Value Pairs for CSS 38

4.7.1 Text Color in CSS . 39
4.7.2 Text Alignment in CSS . 39
4.7.3 Fonts in CSS . 40

4.8 The Box Model and the Developer Tools . 43
4.9 The DIV Element . 45
4.10 Ways to Add CSS . 45

4.10.1 Internal . 45
4.10.2 In-line . 45
4.10.3 External . 47

4.11 First Encounter with Bootstrap . 48
4.11.1 Add Bootstrap 5 .css to Our Webpages . 48
4.11.2 Bootstrap 5 Tables . 49
4.11.3 Bootstrap 5 Buttons and Links . 50
4.11.4 Bootstrap 5 Container, Padding . 51
4.11.5 Bootstrap 5 Source Code . 51
4.11.6 Center Contents with < DIV> and CSS 52

4.12 Introduction to JavaScript . 54
4.13 JavaScript Statements . 56
4.14 JavaScript Functions . 56
4.15 Add JavaScript to Our Webpages . 57
4.16 Introduction to the Document Object Model (DOM) 58
4.17 Add Event Handlers . 60
4.18 An Example: Toggle Between Dark/Light Mode 61
4.19 The Back Button . 62
4.20 External JavaScript . 63
4.21 More Introduction to Bootstrap . 64
4.22 Ways to Include Bootstrap in Our Projects . 64
4.23 Some CDNs for Bootstrap 5 . 64
4.24 View Bootstrap 5 Source Files . 65
4.25 Bootstrap 5 navbar . 65

5 Some C# Fundamentals . 69
5.1 Hello World in C# (Console Application) . 69
5.2 Top-Level Statements . 70
5.3 Namespaces, Using Directive, and Global Using Directive 71

5.3.1 Namespaces . 71
5.3.2 Using Directives . 71
5.3.3 Implicit Using Directives . 73
5.3.4 Global Using Directives . 73

5.4 Comments . 74

Contents xi

5.5 Existing Data Types . 74
5.6 String Interpolation . 76
5.7 Enumerations . 77
5.8 Classes . 78
5.9 References and Objects . 79
5.10 Instance Variables/Non-static Fields . 80
5.11 Dot Notation . 81
5.12 Methods . 82
5.13 The this Keyword . 84
5.14 Access Modifiers . 84
5.15 Properties . 85
5.16 Constructors . 87
5.17 Method Overloading . 88
5.18 Conditionals, Loops, and Lists . 88
5.19 Collections and Generic Collections . 90
5.20 Inheritance . 90
5.21 The base Keyword and the Constructors . 92
5.22 Interfaces . 95

5.22.1 Some Motivation . 96
5.22.2 How to Define an Interface . 96
5.22.3 How to Implement an Interface . 96

5.23 How to Use an Interface . 97
5.24 Lambda Expressions . 98
5.25 LINQ . 100
5.26 Working with null Values . 102
5.27 Solution Files .sln . 102
5.28 Other Resources for Learning C# . 103

6 Middleware, Services, Intro to Dependency Injection 105
6.1 What Are ASP .Net (Core) MVC Web Applications? 105
6.2 An Introduction to the MVC Pattern . 107
6.3 A Quick Dive into an MVC Example (Optional) 108
6.4 Let’s Start Our ASP .Net Core Application Project in Here 113

6.4.1 The Empty Web Application Starting Point 113
6.4.2 The MVC Web Application Starting Point 114

6.5 Entry Point to Our Web Application: Program.cs 114
6.6 The Middleware Pipeline . 115

6.6.1 The Current Code in Our Project . 115
6.6.2 Run, Use, and Map . 117
6.6.3 First Example . 117
6.6.4 Second Example . 119
6.6.5 Third Example . 119

xii Contents

6.6.6 Other Middleware Components . 121
6.7 Static Files Middleware . 122

6.7.1 What Are Static Files? . 122
6.7.2 Where Do We Store Static Files? . 122
6.7.3 How Do We Allow Access to Static Files? 122
6.7.4 How Can We Access Static Files? . 123
6.7.5 Default (Static) Page . 124

6.8 Introduction to Services (Optional) . 128
6.8.1 Example—Step 1: Define a Class and An Interface 128
6.8.2 Example—Step 2: Register a Service . 129
6.8.3 Example—Step 3: Use a Service . 129

7 Routing, Models, and Controllers . 131
7.1 A Little Cleanup Before We Continue . 131
7.2 Some Essential MVC Concepts and the HTTP Request Lifecycle 132
7.3 Introduction to Routing . 134

7.3.1 Adding MVC to Our ASP .Net Core Application 135
7.3.2 Default Routing, the Home Controller, and Actions 135

7.4 Add a Model, a Controller, and Views . 139
7.4.1 Add a Model Class . 139
7.4.2 Add a (Second) Controller Class . 140
7.4.3 Add a First View . 141
7.4.4 Test Our Code so Far . 142

7.5 Various Action Result Types . 143
7.6 Conventional Versus Attribute Routing . 145

7.6.1 Conventional Routing . 146
7.6.2 Attribute Routing . 148
7.6.3 Mixing Routings . 150

8 More on Controllers and Views, Introduction to Razor Syntax 153
8.1 A Little Cleanup Before We Continue . 153
8.2 Some Essential MVC Concepts and the HTTP Request Lifecycle

(Revisited) . 154
8.3 Another Example of Model, Controller, and Views 156

8.3.1 The Instructor Model . 156
8.3.2 The InstructorController Class 157

8.4 The Index Action and View . 161
8.4.1 Add a View for Our Index Action . 161
8.4.2 Strongly Typed and Weakly Typed Views 163
8.4.3 Introduction to Razor Engine and Razor Syntax 164
8.4.4 Action Using a View with a Different Name 167

8.5 The ShowDetails Action and View . 169
8.5.1 The ShowDetails Action . 169

Contents xiii

8.5.2 The ShowDetails View . 170
8.6 A First Look at Tag Helpers and HTML Helpers 173

8.6.1 A First Example of an HTML Helper . 173
8.6.2 A First Example of a Tag Helper . 174
8.6.3 Add Links to the Index View Using Tag Helpers

and HTML Helpers . 175
8.6.4 Add Bootstrap to the Index View . 175
8.6.5 Add Links to the ShowDetails View . 177

9 More on Views, Data Annotations . 179
9.1 Introduction to Data Annotations . 179

9.1.1 Update the ShowDetails View . 179
9.1.2 Update the Index View (Optional) . 184

9.2 The Add Action and View . 186
9.2.1 The Add Action—GET . 186
9.2.2 The Add View . 187
9.2.3 The Add Action—POST . 192
9.2.4 A Few More Details About the Model Binding 195
9.2.5 A Few More Details About the GET Versus POST 196

9.3 The Edit Action and View . 198
9.3.1 The Edit Action—GET . 198
9.3.2 Add Edit Links in the Index View . 198
9.3.3 The Edit View . 199
9.3.4 The Edit Action—POST . 201
9.3.5 An Example of a Service . 203

9.4 The Delete Action and View . 207
9.4.1 The Delete Action—GET . 207
9.4.2 Add Delete Links in the Index View . 208
9.4.3 The Delete View . 208
9.4.4 The DeleteConfirmed Action—POST . 209

10 Model Validation . 213
10.1 Step 1: Add (Built-in or Custom) Validation Attributes 216
10.2 Step 2: Enforce Validation by Making Use of the ModelState 217
10.3 Step 3: Display Error Messages via Validation Tag Helpers 218

10.3.1 To Display a Summary of All Error Messages 219
10.3.2 To Display In-line Error Messages . 219

10.4 Let’s Test Our Model Validation . 221
10.5 Custom Validation Attributes (Optional) . 222

10.5.1 Create a Custom Validation Attribute . 223
10.5.2 Use a Custom Validation Attribute . 226
10.5.3 Let’s Test the Newly Added Custom Validation 226

xiv Contents

10.6 Validation Text Styling . 227

11 Persistent Data: Entity Framework Core . 231
11.1 Introduction . 231
11.2 Classes Involved: Providers, DbContext, and DbSet 232
11.3 Add Entity Framework Core to Our Web Application 232

11.3.1 Step 1: Create/Choose Your Entity Classes 233
11.3.2 Step 2: Install NuGet Packages . 233
11.3.3 Step 3: Create a Class Derived from DbContext 234
11.3.4 Step 4: Data Seeding . 235
11.3.5 Step 5: Register Our DbContext as a Service, and Use

a Connection String . 236
11.3.6 Test Our Database . 239

11.4 Use Entity Framework Core in Our Web Application, Dependency
Injection Revisited . 240
11.4.1 Inject Entity Framework Core in InstructorController 240
11.4.2 Update the Actions to Use Entity Framework Core 240
11.4.3 Important: Automated Id Generation . 242
11.4.4 Let’s Test That We Have Persistent Data 243
11.4.5 EnsureDeleted . 244

11.5 Practice: Update the StudentController Class . 245
11.5.1 Inject Entity Framework in StudentController 245
11.5.2 Use Entity Framework Core in StudentController Actions . . . 245

11.6 How to Use Microsoft SQL Server Instead of SQLite (Optional) 247
11.6.1 Install SQL Server Express LocalDB Database on Your

Machines . 247
11.6.2 Make Changes so Entity Framework Core Now Works

with a Microsoft SQL Server Database . 248

12 Consistent Look: Layouts, Friendly Error Pages, and Environments 251
12.1 Filter Results . 251

12.1.1 Update the Index View . 251
12.1.2 Update the Index Action . 253
12.1.3 Implement the Clear the Filter Button . 254

12.2 Filter Results Using a Dropdown List (Optional) 255
12.2.1 Create the Dropdown List Items in the Index Action 256
12.2.2 Display the Dropdown List Items in the Index View 256
12.2.3 Use of the Dropdown List to Filter Our Results 256
12.2.4 The Code . 258

12.3 Consistent Webpages—Using Razor Layouts . 258
12.3.1 Create a Layout . 259
12.3.2 Use the Layout in Our Views . 259

Contents xv

12.3.3 Add a Bootstrap 5 Navbar to Our Layout 265
12.3.4 Add Navigation Links to Various Actions and Controllers . . . 265

12.4 Layout Sections (Optional) . 267
12.4.1 Define a Section . 267
12.4.2 Make Use of a Section . 269

12.5 Make Use of Bootstrap 5 Buttons . 270
12.5.1 The Index View . 270
12.5.2 The ShowDetails View . 273
12.5.3 Use Bootstrap for Styling Validation Errors 273

12.6 Configure a Friendly Error Page . 277
12.6.1 Introduction . 277
12.6.2 Work with Multiple Environments . 278
12.6.3 The Developer Exception Page . 279
12.6.4 The Friendly Error Page . 280

13 Work with Images (Optional) . 285
13.1 Add a New Property for the Image to the Model/Entity Class 285
13.2 Modify the Add View, so It Allows a User to Upload an Image 286
13.3 Modify the Add Action so the File Uploaded Gets Saved

into the Database . 287
13.4 Modify the ShowDetails Action to Transform the Byte Array

Back into an Image . 289
13.5 Modify the ShowDetails View so It Displays the Profile Image 289
13.6 Bootstrap Card Deck for the Index Action and View (Optional) 291

14 Introduction to Authentication. User Login, Logout, and Registration 293
14.1 Introduction to Some Security Concepts . 293
14.2 Introduction to ASP .Net (Core) Identity . 294

14.2.1 Step 1: Install NuGet Packages . 295
14.2.2 Step 2: Define Our User Class (Derived

from IdentityUser) . 295
14.2.3 Step 3: Update Our DbContext Derived Class to Use

Identity . 296
14.2.4 Step 4: Register the Identity Services . 296
14.2.5 Step 5: Add Authentification and Authorization

Middleware Components . 297
14.2.6 Test Your Work . 298
14.2.7 Step 6: Register, Login, and Logout . 298
14.2.8 Step 7: Add Simple Authorization to Our Web

Application (Optional) . 306

References . 311

1Introduction

This work is intended to be used as an introduction to Web applications development
using ASP.Net (Core) MVC, primarily for undergraduate students. It assumes that our
readers already have some experience with one programming language (ideally C#, but
other similar languages, such as Java or C++, may suffice too). Readers will be introduced
to various client-side languages and frameworks (such as HTML, CSS, JavaScript, and
Bootstrap), learn about some server-side ones (C#, ASP.Net Core), and make use of an
object relational mapper (the Entity Framework Core). The focus of this book is on the
server-side development, in particular the MVC pattern.

There are several reasons why we believe students can greatly benefit from this con-
tent. First, it allows them to develop potentially medium to large-sized projects (web
applications) that use multiple programming languages (both client and server side)
all in one project, which can be particularly useful before working on a capstone
project. It also provides a great playing ground for applying many of the object-oriented
programming concepts (including classes, inheritance, interfaces, dynamic and static poly-
morphism, and many others), and also exposes students to important concepts (such
as responsive design, authentication, object relational mapper, cookies, routing, ses-
sion information, HTTP requests, CRUD operations, asynchronous programming, and
cross-platform development) which should students gain confidence when preparing for
software development-related job interviews.

This book starts (in Chap. 2) with preparing the development environment and it goes
over the installation of the applications needed for the remaining chapters in this book.
Then, in the following two chapters (Chaps. 3 and 4), we provide an introduction to client-
side development and briefly go over HTML5, CSS, JavaScript, and Bootstrap 5. In the
following chapter (Chap. 5), we attempt to provide a brief introduction to various C# lan-
guage components. Then, we use the remaining chapters (Chaps. 6–14) to cover several

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_1

2 1 Introduction

Fig. 1.1 A screenshot of how the final application will look like in a browser

topics related to web applications development using ASP.Net Core MVC such as rout-
ing, middleware pipeline, services and dependency injection, models, views, view models,
controllers and actions, Razor syntax, model binding, HTML and tag helpers, model val-
idation, layouts, entity framework core, connection strings, identity, authentication, and
simple authorization.

In Chap. 6, we build a web application and add to it new functionality for the remaining
chapters of the book. By the end of the book, our web application will store its data in a
database, will allow us to create user accounts, and include login and logout functionality.
We’ll mostly use an SQLite database but will also demonstrate how to use a Microsoft
SQL Server database.

Figure 1.1 shows how the final application will look like.
The two main sources used for most topics covered in this book and extensively used

during class presentations are as follows:

. W3Schools Online Web Tutorials ([1])—a great resource for learning about client-
side development (and much more!), in particular, used introducing HTML, CSS,
JavaScript, and Bootstrap 5.

. Get started with ASP.NET Core MVC ([2])—a great resource for learning about ASP.Net
Core MVC.

In our course, as part of the course assignments, we asked our students to create their own
personal projects. Each week, as we covered new concepts and demonstrated in class how
they can be applied to our class project, students were asked to apply the same concepts
to their own personal project. It has been documented that individualized assignments
can help keep students motivated and engaged throughout the course, give students a

1 Introduction 3

chance to express their own interests, as well as “deter cheating or blindly copying from
other students” ([3]). Overall, we were quite impressed with the range of ideas for web
applications that our students came up with when they created their own projects. Based
on the course evaluations, most students not only enjoyed the class materials, but they also
felt more confident and more prepared to apply for software development positions. Some
also felt they gained a better understanding of coding and debugging skills in general.

We conclude this chapter with the following statement. This work is not meant to
be a complete/comprehensive resource on C# nor ASP.Net (for that please see the list
of references), but a one-semester simplified introduction to web development using the
ASP.Net (Core) framework and the MVC architectural pattern. There are many great
topics and features that we could not include in a one-semester course, so a comprehensive
approach is beyond the scope of this book.

2Prepare the Development Environment

Before we start developing our web applications, we first need to set up our development
environment. Here is a list of tools we’ll be using throughout this book:

. A(ny) web browser.

. Visual Studio and Visual Studio Code (with related packages).

. DB Browser for SQLite (alternatively, one can use Microsoft SQL Server Management
Studio for Microsoft SQL Server).

Let’s go over each one of these tools and provide some guidance on how to install them
on your computers, and what packages to add.

2.1 Choose a Web Browser

One important reason why web applications are so popular is the fact that most desktop
computers, laptop computers, tables, and mobile phones that are connected to the Internet
will also have a browser installed on them. If you already have a web browser (you
probably do!) then use that one. Otherwise, you can install one from the Internet.

In this book, we will use the Google Chrome browser for no particular reasons other
than the fact that is it a very popular one, and already have this web browser installed. To
download Google Chrome, one can use the following source https://www.google.com/chr
ome/. Other popular browsers are Mozilla Firefox, Microsoft Edge, and Opera. Choose
your favorite one.

The languages “spoken” by virtually all modern web browsers are HTML, CSS, and
JavaScript. For this reason, web applications make use of these “client-side” languages.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_2&domain=pdf
https://www.google.com/chrome/
https://www.google.com/chrome/
https://doi.org/10.1007/978-3-031-30626-6_2

6 2 Prepare the Development Environment

If your clients already have a modern web browser installed, they don’t need to install
anything else in order to run JavaScript, CSS, and HTML.

Why do we care? While we can have control over our servers and what applications
they have installed on them, making assumptions about the clients’ systems is not an easy
task. Any wrong assumption and we can severely limit our clients’ pool. But if our client
side of the application uses HTML, CSS, and/or JavaScript, the chances that our code can
run on our clients’ machines are very high (all they need is a modern web browser). This
is not the case if we want our application to use, say Java, or C#. What would our clients
need in order to be able to run Java applications? What about C# applications?

2.2 Install Visual Studio Code

To write JavaScript, HTML, and CSS code, we can use any text editor program. One can
use any popular text editor such as Vim, Notepad, Notepad++, and Atom. In this book,
we will use Visual Studio Code (VS Code). VS Code is a very popular editor that works
on Windows, Mac OS, and Linux machines. To download it and then install it, one can
go to the following page on the Microsoft’s webpage https://visualstudio.microsoft.com/.

Once downloaded, run the installation file (you will need to agree with the license
agreement terms) and feel free to use the default settings (press the Next> button twice
then press the Install button).

We will only use Visual Studio Code for the next two chapters. Then, we will use
Visual Studio for the remaining of this book. Depending on the operating system on your
machine you may use it for the entire book (see below for more details).

2.3 Install Visual Studio

Once we start programming in C# (see Chap. 5) and for the remaining part of the book
we will be using Visual Studio. To download it and then install it, one can go to the
following page on the Microsoft’s webpage https://visualstudio.microsoft.com/.

In here you will find that there are two versions of Visual Studio, one that works on
Windows machines, and one that works on Mac OS systems.

Important note: Unfortunately, at the time of writing this book, Visual Studio is not
available for Linux machines. If you’re using a Linux distribution, you should use Visual
Studio Code instead. Note that the Visual Studio Code does not come to include the C#
compiler nor the .Net SDK, so you’ll need to install them separately. We recommend our
readers to check [1] or [2] for guidance on how to use Visual Studio Code for developing
ASP.Net Core MVC applications.

Install the version that corresponds to your machine’s operating system (note: if you
already have Visual Studio 2022 or above installed on your machine, then you can skip

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

2.4 Install DB Browser for SQLite 7

this step and move to the next one). For the slides shown in this book, I will use the one
for Windows. The Community edition is free and we will use this version (Visual Studio
Community 2022) in our book.

Important note: In order to use .Net 6 (or above), you must get Visual Studio 2022 (or
above). For example, if you already have Visual Studio 2019 installed on your machine,
you won’t be able to use that for .Net 6.0: you’ll need to install Visual Studio 2022. You
can have multiple versions of Visual Studio installed on your machine—if you already
have Visual Studio 2019, you do not have to uninstall it, you can keep it and install Visual
Studio 2022 along with Visual Studio 2019.

Once you run the installation application, the Visual Studio Installer will open up
(note: if you already have Visual Studio installed on your machine, then open Visual
Studio Installer and continue with this step). Make sure to select the ASP.NET and web
development workload.

On the Individual components tab, make sure the .Net 6.0 Runtime is selected (also
select LINQ to SQL tools which are down the page, under Code Tools).

Then click on the Install button. When the installation finishes, open the Visual Studio
application and click on the Create a new project button. Then, in the search box type
MVC and make sure to have the option of creating an ASP.NET Core Web App (Model-
View-Controller).

If you do, then you’re all set. Otherwise, make sure to follow the Visual Studio Installer
step described above. If you want, we recommend you to continue and follow the steps
shown on the webpage: https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-
app/start-mvc to create your first ASP.Net Core MVC application and make sure it runs
on your machine.

2.4 Install DB Browser for SQLite

One last installation (we’ll only use this starting with Chap. 11) is a free open-source
application that allows us to interact with SQLite database files. We will use it to check
our database values. To download this application, go to https://sqlitebrowser.org/dl/ and
download the version that corresponds to your system. For my system, that is DB Browser
for SQLite—Standard installer for 64-bit Windows. Once downloaded, run the installation
file (you will need to agree with the license agreement terms) and feel free to use the
default settings (press the Next button twice then press the Install button).

Once the installation finishes, open the application to make sure you can run it on your
machine.

https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc
https://sqlitebrowser.org/dl/

8 2 Prepare the Development Environment

2.5 Miscellaneous/Optional

2.5.1 Show File Name Extensions

We recommend that you set your operating system to show file extensions. On my Win-
dows 11 machine, I would open any folder and go to Views > Show > File name
extensions (make sure it’s checked).

2.6 Microsoft SQL Server

In this book, we will include an optional section that shows you how to use Microsoft SQL
Server instead of SQLite. If you want to install the Microsoft SQL Server Management
Studio. Here is a link for it: https://aka.ms/ssmsfullsetup.

In Chap. 11, we’ll go over details on how to install the SQL Server Express 2019
LocalDB database, using Visual Studio Installer.

2.6.1 Sample Data Generators

We will occasionally need to create some names as sample data. In class, we typically
like to ask our students to give us some ideas. In this book, we used a name generator
instead, namely we used https://commentpicker.com/fake-name-generator.php to help us
create some random names.

https://aka.ms/ssmsfullsetup
https://commentpicker.com/fake-name-generator.php

3Brief Introduction to Html

The purpose of this chapter is to introduce some fundamental HTML concepts. We’ll use
this knowledge quite a bit in subsequent chapters, especially when we create Razor views
and layouts. One great resource that we often used in the class as a source of information
as well as for quick demonstrations is the following: [1].

HTML stands for Hyper Text Markup Language and it is used to describe the structure
of a Webpage. Using various HTML elements, we can tell a web browser how to display
different parts of a given content. HTML files typically have the extension .html or .htm.

The way the author likes to think of the HTML is as follows: we have content that
we would like to display in a browser. Using HTML (tags), we can let a browser know
how to display various pieces of this content. Some parts will show up as a paragraph,
others as tables, others as headings, and so on. So, in general, we use HTML to describe
the structure of the page. Note that for styling (that describes whether the contents should
show up left aligned or centered, bold or italic, red or green, etc.) we will use CSS (which
is the subject of the next chapter).

3.1 Let’s Create Our First HTML Page

Open the Visual Studio Code application. First, go to File > Open Folder and create a new
folder for our HTML files.

We named our folder HTML FILES. Then, inside that folder, let’s create our first
HTML file. We named our file firstwebpage.html.

In this file, let’s add the following contents (do not include the line numbers on the
left side, we included them for easier reference):

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_3

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_3

10 3 Brief Introduction to Html

Fig. 3.1 A screenshot of how the H1 and P elements will show in a browser

30>#FQEV[RG jvon@
40>JVON@
50" >JGCF@
60" >VKVNG@Vkvng<"qwt"hktuv"ygdrcig>1VKVNG@
70" >1JGCF@
80" >DQF[@
90" >J3@Fkurnc{"vjku"cu"c"jgcfkpi>1J3@
:0" >R@Fkurnc{"vjku"cu"c"rctcitcrj0>1R@
;0" >R@Fkurnc{"vjku"cu"cpqvjgt"rctcitcrj0>1R@
320" >1DQF[@
330>1JVON@

Save the changes and open the firstwebpage.html file in a browser. Here (Fig. 3.1) is
what we got in our browser:

Now let’s go over each line of the HTML code above.
The first line <!DOCTYPE html> is a declaration that specifies that the file is an

HTML5 document (HTML5 is the latest version of HTML). We’ll use this in all our
HTML files.

In line 2, <HTML> represents a tag (in this case, the HTML tag). This tag has a
corresponding end tag in line 11 </HTML>. The tags and all content between them
together represent an element. In this case, lines 2–11 represent the root element of the
page. This element typically contains two nested elements: the HEAD element and the
BODY element.

The <HEAD> element (represented by the start tag: <HEAD> from line 3, the end tag:
</HEAD> from line 5, and the contents between these two tags) typically contains meta
information about a page (we’ll see more about this soon). One such meta information is
represented by the <TITLE> element, which can be seen displayed in a browser, in the
page’s tab (top part of the page).

The <BODY> element (represented by the start tag: <BODY> from line 6, the end tag:
</BODY> from line 10, and the contents between these two tags) defines the body of
the page, which contains all the visible parts of the page, such as headings, paragraphs,

3.2 Add Titles, Paragraphs and Headings 11

images, tables, and links. An example of such content is represented by the <P> element,
which defines a paragraph.

We close this section with a few remarks:

. HTML is NOT case sensitive. That means that we could have used either of the fol-
lowing to represent the HTML tag: <HTML>, <html>, or even <HtMl>. This applies
to all tags.

. HTML elements can be nested (they often are). As seen above, we have the <P>
element nested inside (it is a part of) the <BODY> element.

. There are HTML elements (for example,
) that have no content. Such elements
are called empty elements and they have no end tag.

. If no title is provided for a webpage, a browser will typically use the filename as
its title. This is not always very elegant. So please make sure to always provide a
<TITLE> element for your webpages. Also, the contents of the title are used by
search engines [2], so it is important to provide a meaningful title.

. “HTML largely ignores whitespace” (see more details in [3]).

3.2 Add Titles, Paragraphs and Headings

First, let’s change the title of the webpage so it displays: Info for <Put Your
Name>.

Then, remove the contents of the <BODY> element and replace them with the
following:

. Add an <H1> element with the content: Student Information.

. Add an <H2> element with the content: <Put Your Name>.

. Add at least three <P> elements containing any text. Feel free to use https://loremi
psum.io/ to generate some random text (or use the Visual Studio Code’s lorem or
lorem100 snippet).

Before we show you the solution, here is what your page should look like (see Fig. 3.2):
After you make the changes to your HTML file inside Visual Studio Code, make sure

to refresh your web browser, so you see the changes. Try to generate the same webpage,
then look at the solution below:

https://loremipsum.io/
https://loremipsum.io/

12 3 Brief Introduction to Html

Fig. 3.2 Shows how the page should be displayed in a browser

>#FQEV[RG jvon@
>jvon@

>jgcf@
>vkvng@Kphq"hqt"Tc|xcp"Og|gk>1vkvng@

>1jgcf@
>dqf{@

>j3@Uvwfgpv"Kphqtocvkqp>1j3@
>j4@Tc|xcp"Og|gk>1j4@
>r@Nqtgo"kruwo"fqnqt"ukv"cogv"eqpugevgvwt."cfkrkukekpi"gnkv0"Fgngpkvk"

xqnwrvcvwo"gzegrvwtk"vgorqtc"gkwu"korgfkv"ewo"pgoq"pguekwpv"vgorqtg"oczkog"eqtrqtku"
gttqt"pqp"rgturkekcvku"pgeguukvcvkdwu"gv."gctwo"ncdqtg"pkjkn"xgnA"Swkdwufco0">1r@

>r@Nqtgo"kruwo"fqnqt"ukv"cogv"eqpugevgvwt"cfkrkukekpi"gnkv0"Hceknku."swkuswco"
pwoswco#"Ncdqtwo"okpkoc"swk"tgrgnncv"tgrwfkcpfcg"fgngpkvk"cv"fqnqtwo"ukpv"kpxgpvqtg."
tgtwo"swkfgo"pcoA"Ocipk"swku"oqnnkvkc"ceewucpvkwo"pqp"xgtq0>1r@

>r@Nqtgo"kruwo"fqnqt"ukv"cogv"eqpugevgvwt"cfkrkukekpi"gnkv0"Pgeguukvcvkdwu."
kf"swkuswco"xgnkv"ceewucowu"qopku"fqnqtgu"oqfk."kwuvq"kpekfwpv"vgorqtg"ocipco"cnkswkf"
pgswg"fwekowu"gwo"eqpugevgvwt."uwpv"hcegtg"rgthgtgpfku"ctejkvgevq"xgtkvcvku0>1r@

>1dqf{@
>1jvon@

Note: Our page may not look very pretty just yet. For that, we’ll add styling (CSS)
during our next chapter. So please have patience. Again, the purpose of HTML is to
describe the structure of a Webpage.

Above, we used H1 and H2 elements. These are used to define HTML headings,
with H1 being the most important, H2 less important, and so on. You should not skip
levels: this means, your page should not contain a H2 element, if the H1 is not included
anywhere on the page.

3.4 Add Links and White Spaces to Our Pages 13

Fig. 3.3 Shows how the page should be displayed in a browser. Currently, it only contains one H1
element

3.3 Add a Second Webpage

Let’s add a second webpage. On the left side of Visual Studio Code (see the screen-
shot below) click on the + New File... icon and add a new file with the name
secondwebpage.html.

To this file, add the following lines:

30>#FQEV[RG jvon@
40>JVON@
50" >JGCF@
60" >VKVNG@Vkvng<"qwt"ugeqpf"ygdrcig>1VKVNG@
70" >1JGCF@
80" >DQF[@
90" >J3@Fkurnc{"vjku"cu"cpqvjgt"jgcfkpi>1J3@
:0" >1DQF[@
;0>1JVON@

Open this file in a browser and check that it looks like the screenshot below (Fig. 3.3).

3.4 Add Links and White Spaces to Our Pages

To this second page, let’s add three links: one that links to www.w3schools.com, one that
links to www.stmartin.edu, and one that links to our first webpage created above.

After line 7 (shown above), after the <H1> element, add the following five lines (notice
there are two empty lines between the second and third <A> elements):

>C jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$@Iq"vq"Y5Uejqqnu>1C@
>C jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Iq"vq"Uv0"Octvkp"Wpkxgtukv{>1C@

>C jtgh?$hktuvygdrcig0jvon$@Iq"vq"vjg"hktuv"rcig>1C@

http://www.w3schools.com
http://www.stmartin.edu

14 3 Brief Introduction to Html

Fig. 3.4 Shows the page displayed in a browser. It contains an H1 element and three A elements

Then go to your browser, refresh your page, and check how the second page looks like
(see Fig. 3.4).

Is this what you expected? Let’s talk about these results.
In general, we use the <A> elements to add links (anchors) in our HTML pages.

The content of these elements (the text between the <A> and tags) is the text that
shows up in as the link. These elements made use of attributes to specify where the links
should point to. In particular, we used href="https://www.w3schools.com/" to point to
the w3schools’ website.

Attributes, in general, are used to provide additional information
needed for HTML elements. They usually come in pairs that look like
attributename="attributevalue" (above we used: href="https://www.
w3schools.com/") and are specified in the start tag of an element. As we will see below,
one can use multiple attributes in one element.

The whitespaces (space, tabs, newline, and empty lines) are mostly ignored by the
browser. If you want your links to

. show on different lines, use the tag:
 BR stands for break);

. show just spaces away from each other, use the following:

Let’s replace the lines above with the following, then refresh your page in the browser
and check the results:

>C jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$@Iq"vq"Y5Uejqqnu>1C@ (pdur= (pdur= (pdur=
>C jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Iq"vq"Uv0"Octvkp"Wpkxgtukv{>1C@
>DT@
>DT@
>C jtgh?$hktuvygdrcig0jvon$@Iq"vq"vjg"hktuv"rcig>1C@

Check the results in your browsers.

https://www.w3schools.com/
https://www.w3schools.com/
https://www.w3schools.com/

3.5 Add Images and White Spaces to Our Pages 15

Fig. 3.5 Shows how the page should show up in a browser

As an exercise, please add the same three links to the first webpage. Have them dis-
played on the same line, with five spaces between each other, and modify the third link
to point to your secondwebpage.html.

Here is what you should get (see Fig. 3.5).

3.5 Add Images and White Spaces to Our Pages

To the first page, let’s add an image, right after the first paragraph. For this, we will make
use of the element (note: it only has a start tag, there is no end tag for it) and
use multiple attributes.

We’ll use the SRC attribute to specify which image to load into the browser. This can
use a relative path (for images on local machine for example) or an absolute path (typically
used to link to images stored somewhere online, but you can also use it for images found
on your local machines). Add the following line after the first <P> element:

>KOI UTE ?$kocig230lri$@

Now reload your HTML file in the browser to see the changes. The image may be
displayed too large. Therefore, let’s add another attribute to specify a desired height and/or
width. We’ll add the HEIGHT="300" attribute.

>KOI UTE ?$kocig230lri$ JGKIJV?522@

16 3 Brief Introduction to Html

Lastly, let’s add one more attribute, the TITLE="This is me, resting"
attribute, which will provide a tooltip for our image:

>KOI UTE ?$kocig230lri$ JGKIJV?522 VKVNG?$Vjku"ku"og."tguvkpi$@

We obtained the following (Fig. 3.6):

Fig. 3.6 Shows how the page should show up in a browser after we embedded an image. Note the
tooltip text shown as the mouse hovers over the image (this was set by the TITLE attribute of the
IMG element)

3.6 Tables and Buttons 17

Fig. 3.7 This is the same as the above figure, but the underlying image was removed. Note that the
text “This is me, resting” is still included/displayed in the page

We should also add the alt attribute in case the clients seeing our page are using
a screen reader, have a poor Internet connection, or the image has not been found (this
attribute is also helping make the page more accessible):

>KOI UTE ?$kocig230lri$ JGKIJV?522 VKVNG?$Vjku"ku"og."tguvkpi$ CNV?$Rtqhkng"rjqvq"
hqt"Tc|xcp"Og|gk$@

Here (see Fig. 3.7) is how this will look if we remove our image (so that it is not found
by the browser).

3.6 Tables and Buttons

Next, let’s add a table and a few buttons to a webpage. For this, let’s make changes to
our webpage: secondwebpage.html. In here, let’s change the TITLE and the H1 elements
so they both say Current enrollment for Razvan Mezei.

Before we create our own table, we encourage you to visit the following page to see an
example of table https://www.w3schools.com/tags/tryit.asp?filename=tryhtml_tbody_css.
That example also contains CSS, which you can ignore for now. You should note the
following:

https://www.w3schools.com/tags/tryit.asp?filename=tryhtml_tbody_css

18 3 Brief Introduction to Html

. To create a table, we can make use of the <TABLE> element.

. Inside the <TABLE> elements, two nested elements are used: the <THEAD> element
is used to create the table headers, and the <TBODY> element is used to contain the
table rows.

. The <TR> element defines a table row. In a row, typically multiple <TH> (for table
header) or <TD> (for table cell) elements are being used.

Please get comfortable with this code. We’ll use this again when we learn about ASP .Net
Core MVC—Views.

After the <H1> element, let’s add our own <TABLE> element. We’ll create
a table that contains the courses our person is enrolled in. For example, let’s
assume Razvan Mezei is enrolled in the following courses (CSC200: Object
Oriented Programming, CSC495: ST ASP .Net Core MVC, and CSC340:
Data Structures and Algorithms). Let’s also provide some imaginary links for
them (for now they should just point to https://www.stmartin.edu/).

Here is how the output should look like. What HTML code can be added to accomplish
this (Fig. 3.8)?

Here is a possible solution (note that we also added two
 elements at the end of
the table):

>VCDNG@
>VJGCF@

>VT@
>VJ@Eqwtug"KF>1VJ@
>VJ@Eqwtug"pcog>1VJ@
>VJ@Eqwtug"nkpm>1VJ@

>1VT@
>1VJGCF@
>VDQF[@

>VT@
>VF@EUE422>1VF@
>VF@Qdlgev"Qtkgpvgf"Rtqitcookpi>1VF@
>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Eqwtug"nkpm>1c@>1VF@

>1VT@
>VT@

>VF@EUE562>1VF@
>VF@Fcvc"Uvtwevwtgu"cpf"Cniqtkvjou>1VF@
>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Eqwtug"nkpm>1c@>1VF@

>1VT@
>VT@

>VF@EUE6;7>1VF@
>VF@UV"CUR"0Pgv"Eqtg"OXE>1VF@
>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Eqwtug"nkpm>1c@>1VF@

>1VT@
>1VDQF[@

>1VCDNG@
>DT@
>DT@

https://www.stmartin.edu/

3.7 A Few Other HTML Elements We’ll Use Later 19

Fig. 3.8 Shows how an HTML table will look like in a browser

The table isn’t the prettiest it could be. We’ll make it look better once we see what
CSS is. Please have patience.

3.7 A Few Other HTML Elements We’ll Use Later

3.7.1 Label and Select Elements

The following HTML elements will show up later in the course, so we thought it would
be useful to briefly introduce them in here.

Below our table let’s add a <LABEL> element, which can be used to display a text.
Labels can provide very useful information to screen readers (see [4]) which will read out
loud the label when a user clicks on an associated element.

>NCDGN@ Ejqqug"c"oclqt">1NCDGN@

Let us associate this with a <SELECT> element (see [5]), which can be used to provide
the user with a dropdown list of options to choose from.

>UGNGEV kf?$oclqtu$@
>QRVKQP xcnwg?Ctv@Ctv>1QRVKQP@
>QRVKQP xcnwg?$Ocvj$@Ocvjgocvkeu>1QRVKQP@
>QRVKQP xcnwg?EU@Eqorwvgt"Uekgpeg>1QRVKQP@
>QRVKQP xcnwg?$Wpfgekfgf$@Wpfgekfgf>1QRVKQP@

>1UGNGEV@

20 3 Brief Introduction to Html

Fig. 3.9 Shows the same table as seen in Fig. 3.8, but with a newly added dropdown list

To associate a <LABEL> element with a <SELECT> you need to set a unique identifier
in the <SELECT> element (we chose id=“majors”), then in the <LABEL> tag add the
attribute for=“majors”.

Here is the outcome (Fig. 3.9).

3.7.2 Input Elements

Labels also work (can be associated via the for attribute) with <INPUT> elements. There
are many types of <INPUT> elements: color, password, date, number, text, and submit,
to name a few (see more in here [4]). Let’s briefly see them by example. Below the
<SELECT> element of the secondwebpage.html file, add the following lines::

>NCDGN hqt?$rcuuy$@Rcuuyqtf<">1NCDGN@ >KPRWV v{rg?$rcuuyqtf$ kf?$rcuuy$@ >DT@
>NCDGN hqt?$wugt$@Wugtpcog<">1NCDGN@ >KPRWV v{rg?$vgzv$ kf?$wugt$@ >DT@
>NCDGN hqt?$eqnqt$@Hcxqtkvg"eqnqt<">1NCDGN@ >KPRWV v{rg?$eqnqt$ kf?$eqnqt$@ >DT@
>NCDGN hqt?ex@Wrnqcf"{qwt"EX<">1NCDGN@ >KPRWV v{rg?$hkng$ kf?ex@ >DT@
>NCDGN hqt?if@Gzrgevgf"itcfwcvkqp"fcvg<">1NCDGN@ >KPRWV v{rg?$fcvg$ kf?if@ >DT@

Reload the webpage in the browser to see the changes. Then, try to interact with
these<INPUT> elements. They should look similar to (Fig. 3.10).

We encourage you to interact with each of these <INPUT> elements.

3.8 Form and More on Input Elements and Attributes 21

Fig. 3.10 Shows several labels and input elements of various types (including password, text, color,
and file)

3.8 Form and More on Input Elements and Attributes

For this part, let’s create a third webpage, call it register.html, and add the following
HTML code in it as a starting point:

>#FQEV[RG jvon@
>JVON@

>JGCF@
>VKVNG@Tgikuvgt"c"pgy"ceeqwpv>1VKVNG@

>1JGCF@
>DQF[@

>J3@Tgikuvgt"c"pgy"ceeqwpv>1J3@

>1DQF[@
>1JVON@

There will be times when we want to allow the user to submit multiple values at once.
For example, when a user logs in, we want to collect the user’s username and password
and submit them together. Similarly, when we want to allow a user to register a new
account, we typically want to collect multiple information, such as username, password,
email address, and maybe a phone number.

A <FORM> element can be used to collect user information (typically from multiple
<INPUT> elements). See more in [6]. Below the <H1> element from register.html, add
a <FORM> element. If you refresh your browser, you will see that the <FORM> element
by itself is not visible; it’s a container for other elements that we’ll add below.

Let’s add a few <INPUT> elements to collect the user’s information (also add
<LABEL> elements, so the user knows what’s expected in the form). Here is how
our register.html file looks like after adding four <INPUT> elements nested inside the
<FORM> element:

22 3 Brief Introduction to Html

>JVON@

>JGCF@

>VKVNG@Tgikuvgt"c"pgy"ceeqwpv>1VKVNG@

>1JGCF@

>DQF[@

>J3@Tgikuvgt"c"pgy"ceeqwpv>1J3@

>HQTO@

>NCDGN hqt?$rcuuy$@Rcuuyqtf<">1NCDGN@ >KPRWV v{rg?$rcuuyqtf$ kf?$rcuuy$@ >DT@

>NCDGN hqt?$wugt$@Wugtpcog<">1NCDGN@ >KPRWV v{rg?$vgzv$ kf?$wugt$@ >DT@

>NCDGN hqt?$gockn$@Gockn"cfftguu<">1NCDGN@ >KPRWV v{rg?$gockn$ kf?$gockn$@">DT@

>NCDGN hqt?$rjqpg$@Rjqpg"pwodgt<">1NCDGN@ >KPRWV v{rg?vgn kf?$rjqpg$@ >DT@

>1HQTO@

>1DQF[@

>1JVON@

>#FQEV[RG jvon@

Refresh the browser to see the results. It should look similar to (Fig. 3.11).
Note: If you click on any <LABEL> element, the associated <INPUT> element gets

focus. Try it!
To be able to send all information entered by the user in these fields inside one

<FORM> element, we can add the following:

. An <INPUT> element with the attribute: type=“submit”. This will show up as a button!

. Each <INPUT> element whose value you want to be sent to the server must use a
name attribute.

Let’s modify our <FORM> to satisfy the two requirements above.

Fig. 3.11 Shows a H1 element and a form containing four labels and input elements

3.8 Form and More on Input Elements and Attributes 23

>HQTO@

>NCDGN hqt?$rcuuy$@Rcuuyqtf<">1NCDGN@ >KPRWV v{rg?$rcuuyqtf$ kf?$rcuuy$ pcog?$rcuuyqtf$@ >DT@

>NCDGN hqt?$wugt$@Wugtpcog<">1NCDGN@ >KPRWV v{rg?$vgzv$ kf?$wugt$ pcog?$wugtpcog$@ >DT@

>NCDGN hqt?$gockn$@Gockn"cfftguu<">1NCDGN@ >KPRWV v{rg?$gockn$ kf?$gockn$ pcog?$gockn$@ >DT@

>NCDGN hqt?$rjqpg$@Rjqpg"pwodgt<">1NCDGN@ >KPRWV v{rg?vgn kf?$rjqpg$ pcog?$rjqpg$@ >DT@

>DT@

>KPRWV v{rg?$uwdokv$ xcnwg?$TGIKUVGT"PGY"WUGT$@

>1HQTO@

Note: The <INPUT type="submit" value="REGISTER NEW USER">provided us with a button,
ready to submit all named values (see Fig. 3.12).

Important note: The name attribute used in each of our <INPUT> elements can be
used by the server (when processing the request, we’re sending to the server). If you
omitted this for an <INPUT> element, the value of that <INPUT> element will not be
sent at all to the server.

Note: We already mentioned this (using different words) but would like to emphasize
the for attribute of a <LABEL> element must be equal to the id attribute of the associated
<INPUT> element in order to bind them together.

Next, before the submit button, let’s add a checkbox (and an associated label):

>NCDGN hqt?$xgvgtcp$@Ctg"{qw"c"xgvgtcpA">1NCDGN@
>KPRWV v{rg?$ejgemdqz$ kf?$xgvgtcp$ pcog?$kuXgvgtcp$@ >DT@

This added a checkbox to our form (see Fig. 3.13).
We finish this subsection with a quick introduction to various important attributes used

for <INPUT> elements:

Fig. 3.12 Shows the same elements as seen in Fig. 3.11, but with a newly added input element
(displayed as a button)

24 3 Brief Introduction to Html

Fig. 3.13 To Fig. 3.12 we now added a label and an input element of type checkbox

. Use the value attribute to specify a default value for an <INPUT> element.

. Use the placeholder attribute to specify a hint for an <INPUT> element. When the
user clicks on the element, the placeholder text/hint disappears.

. Use the required attribute to specify that an <INPUT> element must contain a value
before the <FORM> is submitted (and the values sent to the server).

. There are many more attributes that can be used with <INPUT> elements. Here is one
source to check: [7].

Let’s see some examples. Change the <INPUT> elements above to match the code below:

>HQTO@
>NCDGN hqt?$rcuuy$@Rcuuyqtf<">1NCDGN@
>KPRWV v{rg?$rcuuyqtf$ kf?$rcuuy$ pcog?$rcuuyqtf$ tgswktgf@
>DT@
>NCDGN hqt?$wugt$@Wugtpcog<">1NCDGN@
>KPRWV v{rg?$vgzv$ kf?$wugt$ pcog?$wugtpcog$ rncegjqnfgt?$ejqqug"c"wugtpcog$@
>DT@
>NCDGN hqt?$gockn$@Gockn"cfftguu<">1NCDGN@
>KPRWV v{rg?$gockn$ kf?$gockn$ pcog?$gockn$@
>DT@
>NCDGN hqt?$rjqpg$@Rjqpg"pwodgt<">1NCDGN@
>KPRWV v{rg?vgn kf?$rjqpg$ pcog?$rjqpg$ xcnwg?$222/222/2222$@
>DT@
>NCDGN hqt?$xgvgtcp$@Ctg"{qw"c"xgvgtcpA">1NCDGN@
>KPRWV v{rg?$ejgemdqz$ kf?$xgvgtcp$ pcog?$kuXgvgtcp$@
>DT@
>DT@
>KPRWV v{rg?$uwdokv$ xcnwg?$TGIKUVGT"PGY"WUGT$@

>1HQTO@

3.9 GET Versus POST Request, the Action and the Method Attributes 25

Fig. 3.14 If the user attempt to submit a form without a text in the password field (which was set
as required), then an error (“Please fill out this field”) will be displayed

Refresh the webpage in the browser, and check the results.
Then, if you click on submit, without entering anything in the Password field (which

was set as required!), you should get an error message (see Fig. 3.14).

3.9 GET Versus POST Request, the Action and the Method
Attributes

There are just a few more things to know about the <FORM> elements (we’ll make use
of these in future chapters!). We’ll talk next about the action attribute and the method
attribute for <FORM> elements.

We use the action attribute of the <FORM> element to specify where to send your
request. Who/which code on the server side should process your request? Here is an
example of how to use this attribute. Change the <FORM> tag so it matches the code
below:

>HQTO cevkqp?$1tgikuvgt0rjr$@

In the browser, if you fill out the form, and click on the SUBMIT button, you will
probably get an error message (we did not set up the server side yet—please have
patience).

26 3 Brief Introduction to Html

The next attribute we want to discuss about is the method. We review it in more details
in a future chapter and make extensive use of it, but we would like to briefly introduce it
in here.

GET and POST are two (there are several others, and you can also create your own)
HTTP verbs. We can use either of them when we send requests to servers. But the
difference between them is very important.

. Use the GET method to inform the browser to send the request data as part of the
URL.

o This is very useful if we want to allow users to bookmark searches so that it contains
field values.

o An example: https://www.amazon.com/s?k=lenovo+laptops.
o The data is appended to the URL request, after the ? (the portion of the URL that

comes after the ? is called a query string).
o There are limitations on how much data can be sent using GET requests, in particular

one can only send text data.

. Use the POST method to inform the browser to send the request data as part of the
request body, not part of the URL.

o This is useful if you are sending sensitive information that should not be book-
marked.

o An example: when you login, you probably don’t want your password to show up
in the browser’s history.

o Imagine seeing this in a browser: https://www.amazon.com/s?username=alex&pas
sword=Password123.

o Another example: you can’t send a file in the URL portion of the request. So, if you
want to upload files to a server, you will want to use the POST method.

o There are fewer limitations on what data you can send via this method. You are not
limited to text data, you can also send binary (for example, images, pdfs, etc.).

. See more on this here: [8].

Let’s see this in practice. For this part, please set the action attribute to “#” (this will send
the request back to the current page):

>HQTO cevkqp?$%$@

https://www.amazon.com/s?k=lenovo+laptops
https://www.amazon.com/s?username=alex&password=Password123
https://www.amazon.com/s?username=alex&password=Password123

3.9 GET Versus POST Request, the Action and the Method Attributes 27

Example 1: add the attribute method=“get” to your form.

>HQTO cevkqp?$%$ ogvjqf?igv@

Then fill in some values in the form, click on the submit button, and observe the URL.
Notice that the URL contains the following query string (the part of the URL that

comes after the question mark):
?password=secretpassword&username=admin&email=admin%40admin.com&phone=

000-000-0000&isVeteran=on#
The query string contains name=value pairs, where name is the attribute we used for

our <INPUT> elements, and value is the actual value entered in the <INPUT> element.
Now change the attribute to method=“post” and submit the same data as before (make

sure to first remove the query string from the URL). You will see that there is no query
string being sent this time:

If you want, check out the following two examples from W3Schools:

. For the GET method: https://www.w3schools.com/html/tryit.asp?filename=tryhtml_f
orm_get.

. For the POST method: https://www.w3schools.com/html/tryit.asp?filename=tryhtml_f
orm_post.

We’ll see more about GET versus POST in future chapters, but we wanted to quickly
introduce them in here.

There are many more HTML elements (and topics in general) to cover, but for the
purposes of this book, and what we’ll need when we cover the ASP.Net (Core) MVC,
we believe we covered sufficient material. We’ll learn more HTML elements as we need
them. In the meantime, feel free to explore the following great resource [1].

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_get
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_get
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_post
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_post

4Brief Introduction to CSS, Javascript,
and Bootstrap

4.1 Motivation for Using CSS and JavaScript

In the previous chapter, we’ve seen how one can use HTML (Hypertext Markup Lan-
guage) to define the structure of a webpage. When we have information to display in a
browser, we make use of various HTML tags/elements to tell the browser that certain
parts of this information represent various headings, while others represent paragraphs,
tables, hyperlinks, images, and so on.

In this chapter, we will make use of CSS (Cascading Style Sheets) which can help us
specify styling for our webpages. For example, we can specify if we want our headings to
be colored in blue, display our paragraphs as centered/left/right aligned, and many other
styling options.

Lastly, we will also make use of JavaScript to make our webpages more interactive.
We can program responses to various events. For example, when a user clicks on a button,
what should the webpage do?

Using CSS and JavaScript (or better yet, a library such as Bootstrap) we’ll be able
to make the basic HTML table (and other elements) from our secondwebpage.html look
much better. Right now, the table with no style looks like (Fig. 4.1).

By the end of this chapter, the very same table (seen in Fig. 4.1), but with styling
added, will look like (Fig. 4.2).

We hope this sparked your interest. Before we dive in, we would like to mention that
this chapter is only meant to be an introduction to CSS and JavaScript. Enough for what
we’ll need for the other chapters in this book, those that focus on the ASP .Net Core
MVC. But there is much more out there to learn, and we encourage you to explore it.
Some useful resources (and sources of inspiration for this book) are as follows:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_4

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_4

30 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.1 Shows a table with no styling

Fig. 4.2 Shows the same table as shown in Fig. 4.1, but with styling (in particular, Bootstrap) added

. CSS Tutorial: https://www.w3schools.com/css/default.asp.

. JavaScript Tutorial: https://www.w3schools.com/js/default.asp.

. Bootstrap 5 Tutorial: https://www.w3schools.com/bootstrap5/index.php.

Important note: Just like HTML, CSS is NOT case sensitive. But JavaScript IS case
sensitive. So be very careful with this.

4.2 Our First CSS Example

Let’s start with an example. Let’s say that we would like our firstwebpage.html to have:

. a light blue background for the entire webpage,

. a green and centered h1 element, and

. a light gray background color for each paragraph.

For this, we’ll make use of CSS. One way to add CSS to a webpage is to add a <STYLE>
element nested inside the <HEAD> element of the page. Add the following CSS code to
your firstwebpage.html source file:

https://www.w3schools.com/css/default.asp
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/bootstrap5/index.php

4.3 Introduction to CSS Syntax 31

<STYLE>

BODY{background-color:lightblue;}

H1{color:green; text-align: center;}

P{background-color: lightgray;}

</STYLE>

Let’s see how the CSS code above styled our page. You are given below a screenshot
without (Fig. 4.3) and one with (Fig. 4.4) the above given CSS code (which we’ll explain
below).

4.3 Introduction to CSS Syntax

Now let’s talk about the CSS syntax. To add CSS, we can use the <STYLE> element
(we’ll see other ways below). The CSS syntax typically follows the following format:

selector {property1:value1; property2:value2; …}

The selector determines where to apply the styling specifications between the curly
braces ({…}). Inside these curly braces, we can include one or more property-value
pairs, separated by semicolons (;). Inside each property-value pair, we use the colon (:).
Spacing is largely ignored by CSS, so we make use of it to make our code easier to read.

For example,

P{background-color: lightgray;}

In here we used:

. the (element) selector P (meaning the styling specifications inside the curly braces
{…} will be applied to all paragraph <P> elements of the page), and

. the property-value pair: background-color:lightgray (meaning we want
these paragraphs to have a gray background color).

Here is another example:

J3}eqnqt<itggp="vgzv/cnkip<"egpvgt=Ä

32 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.3 (Left) Shows the firstwebpage.html file displayed in a browser, before adding CSS styling

In here we used.

. another element selector: H1 (meaning this is applied to all heading H1 elements from
the page), and

. multiple property-value pairs:

o color:green (meaning we want the H1 elements to have a green text color) and
o text-align:center (meaning we want the H1 elements to have a centered text

alignment).

4.4 CSS Selectors 33

Fig. 4.4 (Right) Shows the firstwebpage.html file displayed in a browser, after adding CSS styling

4.4 CSS Selectors

There are many types of CSS selectors, but in this book, we’ll only focus on a few of
them, namely the element selectors, the id selectors, and the class selectors.

In the example given above, we used the following element selectors: BODY, H1,
and P. They are called element selectors because they specify to which HTML ele-
ments should the styling specifications apply. The example P{background-color:
lightgray;} applies the given styling to all paragraph elements.

34 4 Brief Introduction to CSS, Javascript, and Bootstrap

What if we only want to apply certain styling to only one of the paragraphs? To
apply CSS styling to only one element (paragraph, table, heading1, etc.), we can use id
selectors. For this, we can follow the two steps shown as follows:

. We define/add an id attribute (with a unique identifier of our choice) to our selected
element.

o For example, let’s change our first <P> tag into
<P ID="thisisspecial">

. Then use an id selector in our CSS specifications (make sure to use #).

o For example, we can add the following CSS specification inside the <STYLE>
element:

#thisisspecial{background-color: rgb(222,157,210);}

The result is that we uniquely identified an element (one paragraph in our example)
and applied certain CSS styling to it. In our example, the paragraph will have a pink
background (see Fig. 4.5).

Id selectors should only be applied to one/unique element in a webpage. If we want to
apply certain styling to multiple elements, we can make use of the class selectors. Class
selectors can be applied to multiple elements of the same type (say multiple paragraphs)
or of different types (say a table and a paragraph). To use class selectors, we again use
two steps:

. We add a class attribute (choose a unique identifier) to our selected elements.

o For example, let’s change our first <P> tag into
<P ID="thisisspecial" CLASS="myclass">

o Also add CLASS="myclass" inside the <H2> tag.

. Then use a class selector in our CSS specifications (make sure to use a.).

o For example, we can add the following CSS specification inside the <STYLE>
element:

.myclass{color:blue; text-align: center;}

4.4 CSS Selectors 35

Fig. 4.5 Shows the result of applying specific CSS styling to an element (first paragraph) selected
using an ID selector

Looking at the outcome below (Fig. 4.6), can you guess which elements were applied the
class selector defined above?

We give below the entire code for firstwebpage.html:

36 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.6 This is similar to Fig. 4.5, but certain elements were applied styling via class selectors. Can
you figure out which elements?

4.5 Conflicting CSS Specifications 37

>#FQEV[RG jvon@

>JVON@

>JGCF@

>VKVNG@Kphq"hqt"Tc|xcp"Og|gk>1VKVNG@

>UV[NG@

DQF[}dcemitqwpf/eqnqt<nkijvdnwg=Ä

J3}eqnqt<itggp="vgzv/cnkip<"egpvgt=Ä

R}dcemitqwpf/eqnqt<"nkijvitc{=Ä

%vjkukuurgekcn}dcemitqwpf/eqnqt<"tid*444.379.432+=Ä

0o{encuu}eqnqt<dnwg="vgzv/cnkip<"egpvgt=Ä

>1UV[NG@

>1JGCF@

>DQF[@

>J3 @Uvwfgpv"Kphqtocvkqp>1J3@

>J4 ENCUU?$o{encuu$@Tc|xcp"Og|gk>1J4@

>R KF?$vjkukuurgekcn$ ENCUU?$o{encuu$@ Nqtgo"kruwo"fqnqt"ukv"cogv"eqpugevgvwt."cfkrkukekpi"

gnkv0"Fgngpkvk"xqnwrvcvwo"gzegrvwtk"vgorqtc"gkwu"korgfkv"ewo"pgoq"pguekwpv"vgorqtg"oczkog"eqtrqtku"

gttqt"pqp"rgturkekcvku"pgeguukvcvkdwu"gv."gctwo"ncdqtg"pkjkn"xgnA"Swkdwufco0">1R@

>KOI UTE ?$kocig230lri$ JGKIJV?522 VKVNG?$Vjku"ku"og."tguvkpi$ CNV?$Rtqhkng"rjqvq"hqt"

Tc|xcp"Og|gk$@

>R@Nqtgo"kruwo"fqnqt"ukv"cogv"eqpugevgvwt"cfkrkukekpi"gnkv0"Hceknku."swkuswco"pwoswco#"

Ncdqtwo"okpkoc"swk"tgrgnncv"tgrwfkcpfcg"fgngpkvk"cv"fqnqtwo"ukpv"kpxgpvqtg."tgtwo"swkfgo"pcoA"Ocipk"

swku"oqnnkvkc"ceewucpvkwo"pqp"xgtq0>1R@

>R@Nqtgo"kruwo"fqnqt"ukv"cogv"eqpugevgvwt"cfkrkukekpi"gnkv0"Pgeguukvcvkdwu."kf"swkuswco"

xgnkv"ceewucowu"qopku"fqnqtgu"oqfk."kwuvq"kpekfwpv"vgorqtg"ocipco"cnkswkf"pgswg"fwekowu"gwo"

eqpugevgvwt."uwpv"hcegtg"rgthgtgpfku"ctejkvgevq"xgtkvcvku0>1R@

>C jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$@Iq"vq"Y5Uejqqnu>1C@ (pdur= (pdur= (pdur= (pdur=

(pdur=

>C jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Iq"vq"Uv0"Octvkp"Wpkxgtukv{>1C@ (pdur= (pdur= (pdur=

(pdur= (pdur=

>C jtgh?$ugeqpfygdrcig0jvon$@Iq"vq"vjg"ugeqpf"rcig>1C@

>1DQF[@

>1JVON@

Important observation: From the example above, you should note that we can apply
multiple class and/or id selectors to the same element.

4.5 Conflicting CSS Specifications

A related and important question may be what happens if two selectors have conflicting
specifications? For example, one chooses a color of red, while the other chooses blue.
Which one wins?

The answer is more complex (see the links below for a more in-depth explanation),
but here is a simplification that is sufficient for this book:

38 4 Brief Introduction to CSS, Javascript, and Bootstrap

. The most specific wins, regardless of the order in which they are specified.
In particular, id selector > class selector > element selector.

. For the same specificity, the last one wins.

We direct the reader to check out the following two resources that will go into more
depth:

. CSS Specificity: https://www.w3schools.com/css/css_specificity.asp.

. Cascade, specificity, and inheritance:
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Cas

cade_and_inheritance.

4.6 Other CSS Selectors

There are other types of selectors, for example, universal selectors, grouping selectors,
child selectors, descendant selectors, attribute selectors, pseudo-selectors, and so on. We
won’t go over them in this book, but we do want to encourage you to research about them
as you need them.

To provoke your interest, add the following line to your CSS specifications (add it
right before the </STYLE> tag):

R<<hktuv/ngvvgt}eqnqt<tgf="hqpv/ygkijv<"dqnf=Ä

What did this CSS line do?

4.7 A Few More Examples of Property-Value Pairs for CSS

Earlier, we’ve seen the CSS syntax:

ugngevqt"}rtqrgtv{3<xcnwg3="rtqrgtv{4<xcnwg4="”Ä

and covered some of the most important CSS selectors and included some important
property-value pairs to use in our CSS code. We focused primarily on understanding the
CSS syntax. Below we will introduce a few more property-value pairs we can make use
of in later chapters. Since we skipped many useful CSS properties (that we may not use in
this course), we refer the readers to check out [1], a resource we often use in our in-class
demonstrations.

https://www.w3schools.com/css/css_specificity.asp
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Cascade_and_inheritance
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Cascade_and_inheritance

4.7 A Few More Examples of Property-Value Pairs for CSS 39

Fig. 4.7 This screenshot shows how the H1 element will be displayed after adding the text color
styling described above

4.7.1 Text Color in CSS

As seen above, to set the color of a given text, one can use the color property. Similarly,
to set the background color for a given text, one can use the background-color
property.

For example, let’s add CSS specifications for H1 elements so the H1 selector looks as
shown below:

J3}eqnqt<itggp="dcemitqwpf/eqnqt<"cnkegdnwg="vgzv/cnkip<"egpvgt=Ä

The H1 element from our firstwebpage.html now looks as follows (see Fig. 4.7).
Besides specifying colors by name (for example, background-color:

aliceblue;) one can also use

. hexadecimal values, representing Red, Green, Blue
(the equivalent example: background-color: #f0f8ff) or

. the three whole numbers between 0 and 255 sent to the rgb function
(the equivalent example: background-color: rgb(240, 248, 255)).

Use the following tool to help you pick a great color for your design: https://www.w3s
chools.com/colors/colors_picker.asp.

4.7.2 Text Alignment in CSS

To specify the horizontal text alignment, one can use the text-alignment property
and make use of the following values: center, left, right.

https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp

40 4 Brief Introduction to CSS, Javascript, and Bootstrap

Earlier we have already seen:

J3}eqnqt<itggp="vgzv/cnkip<"egpvgt=Ä

On your own, modify the value of text-align property to make use of other values.

4.7.3 Fonts in CSS

To choose a font for our text, we can make use of the font-family property. As you
start typing.

BODY{background-color: ligthblue; font-family: }

IntelliSense from Visual Studio Code has some suggestions ready to use, for example,

‘Courier New’, Courier, monospace

‘Franklin Gothic Medium’, ‘Arial Narrow’, Arial,…

In our example (firstwebpage.html), we added the following to our BODY selector:

hqpv/hcokn{<)Htcpmnkp"Iqvjke"Ogfkwo).")Ctkcn"Pcttqy)."Ctkcn."ucpu/ugtkh

and obtained (Fig. 4.8).
Notes: We specified four values, ’Franklin Gothic Medium’, ’Arial

Narrow’, Arial, and sans-serif:

. If a font name includes spaces, then you need to make use of quotes around that name.

. The order is important: the browser will use the first available font from the list (or
use a default font if none from the given list are available). So, start with the one you
prefer, but provide “fallback” options afterward.

o We encourage you to read more about this (including the “fallback” system) at [2].

You may want to try the following font-family: Papyrus, Helvetica, sans-serif; see if you like
this better (Fig. 4.9).

To use italic text, we can specify the font-style property. For bold, use the
font-weight property.

4.7 A Few More Examples of Property-Value Pairs for CSS 41

Fig. 4.8 A font styling has been added to the BODY element (via the BODY element selector)

To specify text size, one can use the font-size property. There are multiple ways
to specify a value for the font-size property, including the following:

. Use viewport width to get text whose size will depend on the browser window.

42 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.9 This is similar to Fig. 4.8, but a different font-family is being used

4.8 The Box Model and the Developer Tools 43

o Note: 1 vw = 1% of the viewport width.
Example: font-size: 10vw;

. Use px to specify a text size dependent on the number of pixels.
Example: font-size: 40px;

Add the following to your CSS code and see what happens if you resize the width of the
webpage:

J4}hqpv/uk|g<32xy=Ä

Challenge:

. Add the following to your CSS code and try to find out what it does (hint: select some
text inside the browser):

<<ugngevkqp }"dcemitqwpf/eqnqt<"nkijvitggp="Ä

4.8 The Box Model and the Developer Tools

Each HTML element is considered a box. That means that each element has the following:

. Content—this is where text/images appear.

. Padding—a transparent area around the content.

. Border—an area that goes around the padding.

. Margin—a transparent area outside the border.

One can view this in a browser, by pressing the F12 key, which will open the Developer
Tools. There are lots of great things to say about the Dev. Tools, but we will probably not
make much use of it in this book, due to time constraints. We strongly encourage you to
find out more (on your own) about the Developer Tools.

Using the Developer Tools, one can select an HTML element (under the Elements tab)
and inspect or temporarily modify various values of your webpage (do not worry, your
changes will not affect/change the underlying webpage!).

Under Styles tab (see the bottom left side of the Dev tools page), one can find the box
model of the selected element. Currently, this is similar to the following (see Fig. 4.10).

44 4 Brief Introduction to CSS, Javascript, and Bootstrap

Let’s change various values of the padding, border, and margin. Double click on the
“-” to give them some values. For example (see Fig. 4.11),

will change the appearance of the corresponding HTML element (a paragraph, <P>
element, for us) into (Fig. 4.12).

Note: Changes made inside the Dev tools are not permanent. Let’s make such changes
inside our CSS code defined inside the firstwebpage.html file.

Fig. 4.10 Shows the box model. Notice how the content is in the middle. Then, comes the padding.
Then the border, and finally the margin

Fig. 4.11 Shows the box model seen in Fig. 4.10, but some of the values (for margin and padding)
have been changed

4.10 Ways to Add CSS 45

Fig. 4.12 Shows how the P element will look once we change some of the box-model values (for
margin and padding)

r }
dcemitqwpf/eqnqt<"nkijv{gnnqy=
ykfvj<"92'=
dqtfgt<"37rz uqnkf itggp=
rcffkpi<"72rz=
octikp<"42rz=

Ä

Your page will now look as follows (see Fig. 4.13).

4.9 The DIV Element

<DIV> elements can be used to define a division, or better named a section, in an HTML
document. We will use it as a container of elements (nest various elements inside a <DIV>
element and style it using CSS).

4.10 Ways to Add CSS

4.10.1 Internal

There are multiple ways of applying CSS to our webpages. What we have seen so far
is what’s called internal CSS. For internal CSS, one adds a <STYLE> element in the
<HEAD> element of a webpage and adds the desired CSS code in there.

4.10.2 In-line

Another way to add CSS is called in-line CSS. For in-line CSS, one would add a style
attribute directly inside the desired HTML element. For example,

Go to the second page

46 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.13 This is how the firstwebpage.html file will look after applying all the styling described
above

4.10 Ways to Add CSS 47

4.10.3 External

Probably the best way to apply CSS to your webpages is by using external .css files. This
way, one could reuse the same one (or more) file across multiple webpages. If changes
need to be made, you only need to modify one file (and affect all webpages that use that
.css file). To move our CSS code to external CSS files, we’ll need to:

. create a file, with extension .css. In this file, we put the code that is inside the
<STYLE> element (not including the <STYLE> tags);

. to apply the CSS code from the file created above, we then need to link it inside the
webpage (see below).

Let’s modify our webpage, so it uses an external CSS file. Then, let’s link this file to all
three webpages we created so far.

Step 1: Move all the CSS code between (not including) the <STYLE> tags into a
newly created file, let’s name it personal.css, and (for simplicity) put it inside the same
directory as your webpages. Here are the contents we added to this file:

DQF[}dcemitqwpf/eqnqt<nkijvdnwg="hqpv/hcokn{<)Htcpmnkp"Iqvjke"Ogfkwo).")Ctkcn"Pcttqy)."Ctkcn."ucpu/
ugtkhÄ

J3}"eqnqt<itggp="

dcemitqwpf/eqnqt<"cnkegdnwg="

vgzv/cnkip<"egpvgt="Ä

1,"R}dcemitqwpf/eqnqt<"nkijvitc{=Ä",1

%vjkukuurgekcn}dcemitqwpf/eqnqt<"tid*444.379.432+=Ä

0o{encuu}eqnqt<dnwg="vgzv/cnkip<"egpvgt=Ä

R<<hktuv/ngvvgt}eqnqt<tgf="hqpv/ygkijv<"dqnf=Ä

J4}hqpv/uk|g<32xy=Ä

<<ugngevkqp"}"dcemitqwpf/eqnqt<"nkijvitggp="Ä

r"}

dcemitqwpf/eqnqt<"nkijv{gnnqy=

ykfvj<"92'=

dqtfgt<"37rz"uqnkf"itggp=

rcffkpi<"72rz=

octikp<"42rz=

Ä

Note: Refresh your webpage in the browser, and check that your styling is now gone.
Step 2: Link this external file into the firstwebpage.html (add the line below in place

of the <STYLE> element).

48 4 Brief Introduction to CSS, Javascript, and Bootstrap

<LINK rel="stylesheet" href="personal.css">

Copy the link above to all other webpages and see how the CSS file we just created
above affects them.

Note: In any given webpage, one can make use of any or all three ways to add CSS
seen above.

4.11 First Encounter with Bootstrap

We hope that we have convinced you that styling is a great way to improve the look and
feel of a webpage. But there is more to it. We’ve seen above how you can link a .css file
and use it to multiple webpages. In particular, one can use the same .css file for an entire
website, helping create a consistent look and feel. More importantly, you can use .css files
created by others. There are free and open-source .css files that you can just learn how to
use them and utilize in your web application.

One such file can be found at https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/boo
tstrap.min.css. This is part of the Bootstrap 5 framework, “which is the most popular
HTML, CSS, and JavaScript framework for creating responsive, mobile-first websites”
([3]). Bootstrap 5 is free and open source.

To link this .css file to our webpages, we just need to add.

>NKPM jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$
tgn?$uv{ngujggv$@

4.11.1 Add Bootstrap 5 .css to Our Webpages

Add the following two <LINK> elements to all three webpages we created so far, and
add them right after the <TITLE> element:

>NKPM jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$
tgn?$uv{ngujggv$@
>NKPM tgn?$uv{ngujggv$ jtgh?$rgtuqpcn0euu$@

As of right now, after we linked these .css files into the secondwebpage.html file, our
table looks like this (see Fig. 4.14).

Next, let’s make use of the CSS classes defined in Bootstrap 5. For more details, please
refer to [3].

4.11 First Encounter with Bootstrap 49

Fig. 4.14 Shows the table from the secondwebpage.html file, after the external CSS styling was
applied to this file

4.11.2 Bootstrap 5 Tables

Tables are something we see quite often on webpages. So, it should not come as a surprise
to find that there are CSS libraries that can help us make our tables look more professional.
Bootstrap 5 contains CSS class definitions that are very useful for tables. One such class
is the .table class. Let’s use it with our table. To the <TABLE> element, add the .table
class (replace <TABLE> with <TABLE class="table">). Our table will now look a
little better (Fig. 4.15).

There are more classes defined in Bootstrap 5. In particular, we’ll use the fol-
lowing (please add this to the <TABLE> element): class="table table-dark
table-hover". Here is the outcome (Fig. 4.16).

Fig. 4.15 Shows the same table as the one from Fig. 4.14, after we added the .table class selector
(defined by Bootstrap 5)

Fig. 4.16 Shows the same table as the one from Fig. 4.14, after we added the CSS selector
class="table table-dark table-hover" (defined in Bootstrap 5)

50 4 Brief Introduction to CSS, Javascript, and Bootstrap

4.11.3 Bootstrap 5 Buttons and Links

Using Bootstrap 5 we can also make our <A> elements/links look much better. In partic-
ular, we can make the links shown above to look like buttons. Also, there are different
colors we can use for our buttons, for example,

. btn-primary gives us a blue button;

. btn-success gives us a green button;

. btn-warning gives us a yellow button;

. btn-danger gives us a red button.

These classes must be used in conjunction with the .btn class. Read more about this in
[4]. In there, you’ll find other classes that can be used, for example, ones that allow you
to change the size, the outline, and so on.

In our secondwebpage.html, we added the classes mentioned above to make our page
look better. For example, we replaced:

>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Eqwtug"nkpm>1c@>1VF@

>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$ encuu?$dvp"dvp/uweeguu$ @Eqwtug"nkpm>1c@>1VF@

Here is the outcome (Fig. 4.17).
As an exercise, make the necessary changes to your secondwebpage.html so it now

looks as follows (Fig. 4.18).
On your own, also improve the other webpages.

Fig. 4.17 Shows the same table as the one from Fig. 4.16, after we added CSS selectors such as
class="btn btn-success" and class="btn btn-warning" (defined in Bootstrap 5) to
the A elements in the table

4.11 First Encounter with Bootstrap 51

Fig. 4.18 This image is left as an exercise for the readers to figure out what styling to add, in order
to get their pages to look like this one

4.11.4 Bootstrap 5 Container, Padding

One last improvement we’ll add to our webpages. For each webpage, add all its contents
inside a <DIV> element with the CSS class of class="container-fluid p-5".
This will provide some padding around our webpages. Here is how our webpage looks
right now (see Fig. 4.19).

4.11.5 Bootstrap 5 Source Code

There is much more about Bootstrap, but we won’t use more details right now (except
for the following). Besides the sources we recommended above that should be great for
learning Bootstrap 5 in more details, we want to encourage you to directly open the link
used above in a web browser. You should see the actual CSS code we made use of above:

jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu

52 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.19 This figure is similar to Fig. 4.18, but it has more padding added because of the styling
described above

If you remove the.min from the link (min stands for minified), you can see a more
reader friendly version of the same source code, but this version now contains comments
and more spacing, making it easier for a developer to read it:

jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0euu

4.11.6 Center Contents with <DIV> and CSS

We want to finish this part of the chapter that focuses on CSS with the following example.
We would like the three buttons at the bottom of the webpage to be nicely centered. For
this, we can put them inside a <DIV> element and apply CSS to this element.

4.11 First Encounter with Bootstrap 53

In our example, we will create a class selector, named CenterThoseLinks, and
then apply styling to it.

The <DIV> element now looks like.

>FKX encuu?$EgpvgtVjqugNkpmu$@

>C jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$ encuu?$dvp"dvp/rtkoct{$@Iq"vq"Y5Uejqqnu>1C@

>C jtgh?$jvvru<11yyy0uvoctvkp0gfw1$ encuu?$dvp"dvp/rtkoct{$@Iq"vq"Uv0"Octvkp"Wpkxgtukv{>1C@

>C jtgh?$hktuvygdrcig0jvon$ encuu?$dvp"dvp/rtkoct{$@Iq"vq"vjg"hktuv"rcig>1C@

>1FKX@

And, inside the personal.css file we included:

0EgpvgtVjqugNkpmu}

vgzv/cnkip<"egpvgt=

Ä

Now the page has nicely aligned buttons at the bottom of the page (Fig. 4.20).
For completeness, and for you to be able to verify your work, we provide here the

entire source code for secondwebpage.html:

>#FQEV[RG jvon@

>JVON@

>JGCF@

>VKVNG@Ewttgpv"gptqnnogpv"hqt"Tc|xcp"Og|gk>1VKVNG@

>NKPM jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$ tgn?$uv{ngujggv$@

>NKPM tgn?$uv{ngujggv$ jtgh?$rgtuqpcn0euu$@

>1JGCF@

>DQF[@

>FKX encuu?$eqpvckpgt/hnwkf"r/7$@

>J3@Ewttgpv"gptqnnogpv"hqt"Tc|xcp"Og|gk>1J3@

>VCDNG encuu?$vcdng"vcdng/fctm"vcdng/jqxgt$@

>VJGCF@

>VT@

>VJ@Eqwtug"KF>1VJ@

>VJ@Eqwtug"pcog>1VJ@

>VJ@Eqwtug"nkpm>1VJ@

>1VT@

>1VJGCF@

>VDQF[@

>VT@

>VF@EUE422>1VF@

>VF@Qdlgev"Qtkgpvgf"Rtqitcookpi>1VF@

>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$ encuu?$dvp"dvp/uweeguu$ @Eqwtug"nkpm>1c@>1VF@

>1VT@

>VT@

>VF@EUE562>1VF@

>VF@Fcvc"Uvtwevwtgu"cpf"Cniqtkvjou>1VF@

>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$ encuu?$dvp"dvp/yctpkpi$@Eqwtug"nkpm>1c@>1VF@

>1VT@

54 4 Brief Introduction to CSS, Javascript, and Bootstrap

>VT@

>VF@EUE6;7>1VF@

>VF@UV"CUR"0Pgv"Eqtg"OXE>1VF@

>VF@>c jtgh?$jvvru<11yyy0uvoctvkp0gfw1$ encuu?$dvp"dvp/fcpigt$@Eqwtug"nkpm>1c@>1VF@

>1VT@

>1VDQF[@

>1VCDNG@

>DT@

>DT@

>NCDGN@ Ejqqug"c"oclqt">1NCDGN@

>UGNGEV kf?$oclqtu$@

>QRVKQP xcnwg?Ctv@Ctv>1QRVKQP@

>QRVKQP xcnwg?$Ocvj$@Ocvjgocvkeu>1QRVKQP@

>QRVKQP xcnwg?EU@Eqorwvgt"Uekgpeg>1QRVKQP@

>QRVKQP xcnwg?$Wpfgekfgf$@Wpfgekfgf>1QRVKQP@

>1UGNGEV@

>DT@

>DT@

>NCDGN hqt?$rcuuy$@Rcuuyqtf<">1NCDGN@ >KPRWV v{rg?$rcuuyqtf$ kf?$rcuuy$@ >DT@

>NCDGN hqt?$wugt$@Wugtpcog<">1NCDGN@ >KPRWV v{rg?$vgzv$ kf?$wugt$@ >DT@

>NCDGN hqt?$eqnqt$@Hcxqtkvg"eqnqt<">1NCDGN@ >KPRWV v{rg?$eqnqt$ kf?$eqnqt$@ >DT@

>NCDGN hqt?ex@Wrnqcf"{qwt"EX<">1NCDGN@ >KPRWV v{rg?$hkng$ kf?ex@ >DT@

>NCDGN hqt?if@Gzrgevgf"itcfwcvkqp"fcvg<">1NCDGN@ >KPRWV v{rg?$fcvg$ kf?if@ >DT@

>DT@

>DT@

>FKX encuu?$EgpvgtVjqugNkpmu$@

>C jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$ encuu?$dvp"dvp/rtkoct{$@Iq"vq"Y5Uejqqnu>1C@

>C jtgh?$jvvru<11yyy0uvoctvkp0gfw1$ encuu?$dvp"dvp/rtkoct{$@Iq"vq"Uv0"Octvkp"Wpkxgtukv{>1C@

>C jtgh?$hktuvygdrcig0jvon$ encuu?$dvp"dvp/rtkoct{$@Iq"vq"vjg"hktuv"rcig>1C@

>1FKX@

>1FKX@

>1DQF[@

>1JVON@

4.12 Introduction to JavaScript

To program the behavior of our webpages, and make them more dynamic and more
interactive, we can use JavaScript. Although we won’t directly write a lot of JavaScript
code in our book, we can use it to perform computations, create conditional and repetitive
actions, change contents in pages and elements, apply CSS styling dynamically, validate
forms, alert users, and (most importantly for this book) respond to various events (such
as mouse move events, mouse click events, and so on).

NOTE: There are a lot of great details to learn about JavaScript, but we’ll only focus
on the parts that will be useful for our upcoming chapters. We only include this very brief
introduction to JavaScript in order to have a more complete discussion about client-side
technologies. To learn more about JavaScript, we invite the reader to look into [5].

VERY IMPORTANT: JavaScript IS case sensitive. So please be very careful.

4.12 Introduction to JavaScript 55

Fig. 4.20 This figure is similar to Fig. 4.19, but the buttons at the bottom of the page are now
centered

This leads to an interesting situation: we can combine HTML, CSS, and JavaScript
into our webpages, but some languages (HTML, CSS) are not case sensitive, while others
(JavaScript) are. So please be extra careful. We’ll see (below) examples on how to use all
three languages together.

To add JavaScript to a webpage, we can use external .js files, or we can embed
JavaScript directly inside our webpages, using the <SCRIPT> element. For simplicity,
we’ll first embed them inside our webpages, then we’ll see how to link external .js files
into a webpage.

One can embed the <SCRIPT> element inside the <HEAD> element. For better per-
formance reasons, many sources recommend adding the <SCRIPT> element right before
the end tag of the <BODY> element.

56 4 Brief Introduction to CSS, Javascript, and Bootstrap

4.13 JavaScript Statements

Just like in other languages (such as C# and Java), a JavaScript consists of a list of
instructions called statements. These statements are run by the browser and optionally
end with a semicolon.

To define blocks of code (statements that are meant to be run together), we make use
of curly braces.

For example,

>UETKRV@
xct eqwpv ?"2=
eqwpv ?"eqwpv -"3=

>1UETKRV@

JavaScript has keywords, which are reserved words that cannot be used as identifiers
(for example, they cannot be used as variable names).

To declare variables, one can use the var keyword or the let keyword. There are
very important differences between the two, but we’ll skip them because we won’t make
much use of them in this book.

Lastly, to use comments, one can use any of the following (just like in C# or Java):

. Single-line comments, for example.

. Multi-line comments, for example.

For example,

>UETKRV@
xct eqwpv ?"2=" 11vjku"ku"c"ukping"nkpg"eqoogpv
eqwpv ?"eqwpv -"3="1,vjku"ku"c"ownvk/nkpg"eqoogpv,1

>1UETKRV@

4.14 JavaScript Functions

We’ll make some use of JavaScript function, so please look into them more carefully. A
function is essentially a named and reusable block of code, designed to do a given task.

Here is an example of function definition:

4.15 Add JavaScript to Our Webpages 57

hwpevkqp Ocz*pwo3."pwo4+
}

ngv cpuygt ?"pwo3=
kh*pwo4@pwo3+
}

cpuygt ?"pwo4=
Ä
tgvwtp cpuygt=

Ä

To use this function, we call it by name as follows:

fqewogpv0vkvng ?"Ocz*6."4244+=

In the example above, please note the keyword function being used when defining a
function. Most of this code should be very familiar to you (if you’ve taken an introductory
course in C# or Java). Can you answer the following questions?

. What is the name of the function declared above?

. What are the parameters of the function above?

. Where do we call/invoke that function?

. What arguments did we pass to this function?

. What is the name of the local variable used in the code above?

. What does it mean for a function to return a value?

We’ll learn more about fqewogpv0vkvng below (see the Document Object Model -
DOM).

4.15 Add JavaScript to Our Webpages

In the register.html let’s add the following HTML and JavaScript code, right after the
</FORM> tag:

>DT@
>DT@
>DWVVQP qpenkem?$VqItggpDcemitqwpf*+$@Itggp"dcemitqwpf>1DWVVQP@
>DWVVQP qpenkem?$VqTgfDcemitqwpf*+$@Tgf"dcemitqwpf>1DWVVQP@

>UETKRV@
hwpevkqp VqItggpDcemitqwpf*+}

fqewogpv0dqf{0uv{ng0dcemitqwpfEqnqt?$ITGGP$=
Ä
hwpevkqp VqTgfDcemitqwpf*+}

fqewogpv0dqf{0uv{ng0dcemitqwpfEqnqt?TGF=
Ä

>1UETKRV@

58 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.21 The webpage has a blue background

Inside the <SCRIPT> element we defined two functions. One that would change the
background color of the page’s BODY into GREEN, and the other that would change it to
RED.

Just defining two JavaScript methods won’t do much, we also need to call these
methods in order to carry on the task they were programmed to do. For this, we added
two buttons and programmed them so that when you click on a button, one of the
functions will be called.

When you refresh your webpage inside a browser, it should look like (Fig. 4.21).
Next, if you click on the Green background button, you should get (Fig. 4.22).
Lastly, by clicking on the Red background button, you should obtain (Fig. 4.23).

4.16 Introduction to the Document Object Model (DOM)

When a webpage is loaded into a browser, the browser creates an object, called the Doc-
ument Object Model, for the webpage ([6]). Using this object (which has a logical tree
structure), one can manipulate the webpage, for example,

. add/modify/remove HTML elements in a page;

. add/ modify/remove HTML attributes in a page;

. add/modify/remove CSS styles in a page;

. call JavaScript functions to react to various events in a page.

Above we’ve seen the following examples:

fqewogpv0dqf{0uv{ng0dcemitqwpfEqnqt?TGF=

4.16 Introduction to the Document Object Model (DOM) 59

Fig. 4.22 The webpage has a green background after the user clicks on the “Green background”
button

Fig. 4.23 The webpage has a red background after the user clicks on the “Red background” button

This code would change the background color (which is styling/CSS) of the <BODY>
element to RED.

Similarly, the example below would change the TITLE element to have the value 2022
(which is the value returned by Max(4, 2022)):

fqewogpv0vkvng ?"Ocz*6."4244+=

60 4 Brief Introduction to CSS, Javascript, and Bootstrap

We can use the DOM object, document, to search for elements that have various char-
acteristics. For example (there are many more than the ones shown below, see more in [7]),

. document .body will return the <BODY> element;

. document .cookie will return the webpage’s cookie;

. document .forms will return a collection with all <FORM> elements;

. document .head will return the <HEAD> element;

. document .images will return a collection of all elements;

. document .links will return a collection of all <A> elements that have an HREF
attribute;

. document .getElementById(id) will find and return an element, using a
given CSS id selector;

. document .getElementsByClassName(name) will find and return a collec-
tion of elements, using a CSS class name.

We can then use these in combination with the following:

. The innerHTML property, in order to modify the content of an HTML element.

o Example:
document.getElementById("myCSSid").innerHTML = "Paragraph contents changed!";

. The.attribute syntax, in order to modify the value of an attribute for an HTML
element.

o Example:
document.getElementById("myCSSid").src = "OlympiaLogo.jpg";

. The .style.property syntax, in order to modify the style of an HTML element.

o Example:
document.getElementById("myCSSid").style.color = 'red';

4.17 Add Event Handlers

There are various events that JavaScript can capture and therefore we can program a
response (called event handler) when they occur. Some examples of events:

4.18 An Example: Toggle Between Dark/Light Mode 61

. the user clicks on a button,

. the user enters some text in a text field,

. the user chooses some value from a dropdown list or menu,

. a webpage has finished loading its contents,

. … and many others.

The typical way to associate JavaScript response (event handler) with a specific event is
as follows:

<element eventName=”JavaScript code or function call”>

There are several ways to associate events and handler; see [5] for more examples.
Below, let’s see an example that demonstrates some of these concepts. We’ll see more as
we go through this book.

4.18 An Example: Toggle Between Dark/Light Mode

In the register.html replace all the code between the </FORM> tag and </BODY> tag
with the following code:

>DT@
>DT@
>DWVVQP qpenkem?$ VqiingNkijvCpfFctm*+@Vqiing"nkijv1fctm"oqfg>1DWVVQP@

>UETKRV@
hwpevkqp VqiingNkijvCpfFctm*+}

fqewogpv0dqf{0encuuNkuv0vqiing*$o{/fctm/oqfg$+=
Ä

>1UETKRV@

Also, add the following CSS code inside the <HEAD> element:

>UV[NG@
0o{/fctm/oqfg}

dcemitqwpf/eqnqt<"dncem=
eqnqt<yjkvg=

Ä
>1UV[NG@

In the JavaScript code above, we have a <BUTTON> element, which displays as a
button (not surprisingly).

62 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.24 (Left) The webpage has a default blue background

To this element, we added onclick=" ToggleLightAndDark()". The effect
of it is that now, each time you click on the button (the click event), the
ToggleLightAndDark function (which we defined) will be called.

The function ToggleLightAndDark is defined to toggle between the current style
of the <BODY> element and a CSS class selector which we defined as my-dark-mode.
Lastly, the class selector my-dark-mode was defined to change the background color
of the element (<BODY> in our example) to black, and text color to white.

Here is how it behaves (see Figs. 4.24 and 4.25).
We challenge you to improve this example and also make use of Bootstrap 5. Read

more about this in [8].

4.19 The Back Button

Here is how one can add a button that will take you back to the previously visited
webpage, using the browser’s history:

>kprwv v{rg?$dwvvqp$ xcnwg?$IQ"DCEM$ qpenkem?$jkuvqt{0dcem*+$1@

We’ll make use of it when we start developing our ASP .Net Core MVC application.
What you should note in here is the following (see more [9]):

4.20 External JavaScript 63

Fig. 4.25 (Right) The webpage has a black background after the user clicks on the “Toggle
light/dark mode” button

. The value attribute is used to display the text on the button.

. The onclick attribute is used to specify what method to be called when the user
clicks on the button. In particular, it has the same effect as calling history.go(-1)
and it will move the browser to the previous page. If there is no previous page, then
calling this method will do nothing.

If you prefer the <BUTTON> element, you can use the following instead:

>DWVVQP qpenkem?$jkuvqt{0dcem*+$@ IQ"DCEM" >1DWVVQP@

4.20 External JavaScript

Lastly, let’s move our JavaScript code into an external file and link that file to our web-
page. For this, create a file with the extension .js (we used myScript.js) and move all
contents of the <SCRIPT> element (not including the <SCRIPT> tags!) into this file.
Then, replace the <SCRIPT> tags with the following:

>UETKRV ute?$o{Uetkrv0lu$@>1UETKRV@

That’s it. Now, you can reuse this script in other/multiple webpages if you so desire.

64 4 Brief Introduction to CSS, Javascript, and Bootstrap

4.21 More Introduction to Bootstrap

To learn Bootstrap in more depth, we recommend the following two sources: [10] and
[11]. In here we would like to add a little more introduction to Bootstrap 5. First, you
should note that Bootstrap 5 contains not only CSS but also JavaScript code (see below
for more details).

Bootstrap 5 “is the most popular HTML, CSS, and JavaScript framework for creating
responsive, mobile-first websites. […] is completely free to download and use!” ([10]).
In particular, it allows us to quickly create responsive webpages without “reinventing the
wheel”. By responsive we mean the layout automatically adapts/responds to the device’s
layout. As an example, as we’ll see below, if the browser’s window is too narrow, the
navbar collapses the menu options (to create a more user-friendly environment). We get
this by making use of pre-built (i.e., developed into Bootstrap) CSS styles and JavaScript
functionality for buttons, tables, navbars, and so on.

4.22 Ways to Include Bootstrap in Our Projects

There are multiple ways to include Bootstrap in our projects. One can:

. use various package managers (such as npm, yarn, NuGet, and so on),

. download and use it as your own .css and .js files, or

. (the way we’ll use it in this book) using a Content Delivery Network (CDN).

4.23 Some CDNs for Bootstrap 5

Content Delivery Networks (CDNs) are a set of servers located around the World that
can hold copies of some content and deliver this content to users much faster (since these
globally distributed servers may be closer to your customers than your web application’s
host server). There are multiple CDNs that host the Bootstrap 5 files, and you can use
either one of them. We’ll give below a couple of options.

Note: We include a <LINK> element for the .css file and a <SCRIPT> element for
the .js file!

JSDELIVR.NET.

. >NKPM jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$

tgn?$uv{ngujggv$@

. >UETKRV

ute?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0okp0lu$@>1UETKRV@

4.25 Bootstrap 5 navbar 65

Cloudflare

.
>NKPM tgn?$uv{ngujggv$ jtgh?$jvvru<11efplu0enqwfhnctg0eqo1clcz1nkdu1vykvvgt/
dqqvuvtcr1704051euu1dqqvuvtcr/itkf0okp0euu$ kpvgitkv{?$ujc734/
LSmuM58YfTgmXtxfzP{X5D2S3jwsdVmKSPd|3fneHXiP{pGOTn2H:QUsQIfXrrNWFKxuQgljt1Y7N5I1d5L
-:y??$ etquuqtkikp?$cpqp{oqwu$ tghgttgtrqnke{?$pq/tghgttgt$ 1@

.
>UETKRV ute?$jvvru<11efplu0enqwfhnctg0eqo1clcz1nkdu1vykvvgt/
dqqvuvtcr1704051lu1dqqvuvtcr0okp0lu$ kpvgitkv{?$ujc734/
31Tx\VeEFGWl[1E{rkO|-kssvcqShCKVoPUL[39O{r6Ou7ofzRU7WX9kQhf\qzeIj|HdQo8upvVMLrrlxwj
i6i??$ etquuqtkikp?$cpqp{oqwu$ tghgttgtrqnke{?$pq/tghgttgt$@>1UETKRV@

4.24 View Bootstrap 5 Source Files

We’ve seen already above that you can actually look into and read the CSS source files
for Bootstrap 5 files. Similarly, you can read the JavaScript source files. In a browser,
open the minified version (which you should link in your webpages):

jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0okp0lu

Then, go to the non-minified (developer-friendly) version which you can use for
debugging purposes or for studying it. For this remove the .min from the URL:

jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0lu

4.25 Bootstrap 5 navbar

The last example we’ll see in here (we’ll see other examples in the upcoming chapters)
is the navbar (navigation bar). A great resource for this is the following: [12]. In that
resource, you’ll find many more options.

Here is what we would like to get: menu options (links) to show up at the top of the
page (Fig. 4.26).

Fig. 4.26 The webpage displays a navigation menu at the top

66 4 Brief Introduction to CSS, Javascript, and Bootstrap

As an added bonus, we will automatically get a responsive navbar. Namely, if the
window is too narrow to display all menu options, these menu options will be stacked on
top of each other, rather than horizontally aligned (Fig. 4.27).

Briefly: To create a NAVBAR, we use the <NAV> element. In it, we have an
element, which will be the list of menu options. Each menu option is represented by
a list item element whose content is an<A> element. To make use of Bootstrap 5,
we also need to add various CSS classes (as seen below).

Let’s create our NAVBAR; add the code below, right after the <BODY> tag (the
beginning of the <BODY> content).

>PCX encuu?$pcxdct"pcxdct/gzrcpf/uo"di/fctm pcxdct/fctm$@

>FKX encuu?$eqpvckpgt $@

>WN encuu?$pcxdct/pcx$@

>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$hktuvygdrcig0jvon$@Hktuv"rcig>1C@

>1NK@

>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$ugeqpfygdrcig0jvon$@Ugeqpf"rcig>1C@

>1NK@

>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$tgikuvgt0jvon$@Tgikuvgt>1C@

>1NK@

>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Uckpv"Octvkp)u"Wpkxgtukv{>1C@

>1NK@

>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$@Y5Uejqqnu>1C@

>1NK@

>1WN@

>1FKX@

>1PCX@

In here, we should see that we have a <NAV> element, which contains all other ele-
ments. This is our navbar. To get a responsive collapsible menu, we use the following
CSS class: navbar-expand-sm. To choose a color for our navbar, we used the classes:
bg-dark navbar-dark.

Fig. 4.27 The webpage
displays the same navigation
menu as seen in Fig. 4.26, but
the menu options are now
stacked vertically

4.25 Bootstrap 5 navbar 67

Then, directly inside the <NAV>, we used a <DIV> element as a container for all
other elements. In particular, we can choose between a CSS class of container (which
provides a responsive fixed width container) and a CSS class of container-fluid
(which provides a full width container, which spans the entire width of the viewport).

Then, each of the links (each an <A> element using the css class nav-link) are essen-
tially list items (see the element) using the css class nav-item, in an unordered list
(see the element) which is nested inside the <DIV> element mentioned above. For
the element, we used the css class navbar-nav.

Note: Replacing the line

>FKX encuu?$eqpvckpgt$@

with

>DWVVQP encuu?$pcxdct/vqiingt$ v{rg?$dwvvqp$ fcvc/du/vqiing?$eqnncrug$ fcvc/du/
vctigv?$%eqnncrukdngPcxdct$@

>URCP encuu?$pcxdct/vqiingt/keqp$@>1URCP@
>1DWVVQP@
>FKX encuu?$eqnncrug"pcxdct/eqnncrug$ kf?$eqnncrukdngPcxdct$@

you can get a collapsible menu (see Fig. 4.28) that looks like this (when the window
width is narrow enough):

Then, clicking on the upper left button (with three horizontal lines on it), a menu opens
(Fig. 4.29).

There is much more to say about responsive design, and about Bootstrap, but because
of the focus of this book, we won’t go into more detail.

To help you get a sense of what you can accomplish with Bootstrap, and give you
some design ideas, we recommend you check out the following link for a set of themes
build using this framework: [13].

Fig. 4.28 Shows the same menu as seen in Fig. 4.27, but the menu is not collapsed (see the icon
with three horizontal lines)

68 4 Brief Introduction to CSS, Javascript, and Bootstrap

Fig. 4.29 Shows the same collapsed menu shown in Fig. 4.28, but it is now opened

5Some C# Fundamentals

In this book, we will assume that you have some fundamental knowledge of an object-
oriented programming language such as C#, Java, or C++ . Below we’ll introduce some
concepts that we’ll need throughout this book. We’ll introduce other concepts later in the
book, but this chapter should provide us with some C# knowledge baseline. Feel free to
skip this chapter (or only read selected sections) if you are already proficient in C#.

5.1 Hello World in C# (Console Application)

Let’s create the “Hello, World!” application using a console application in C#. This is the
only console application we’ll create in the entire book. Also, from here on we’ll stop
using Visual Studio Code and we’ll exclusively use Visual Studio.

If you cannot install Visual Studio on your machine (for example, you are using a
Linux distribution), then you should continue to use Visual Studio Code (but this edition
of the book only focuses on Visual Studio).

For this, open the Visual Studio application. There, click on Create a new project
button, then click on the Console App button. Then, in the next window, in the Configure
your new project window, enter a project a name, and select a location, then click on the
Next button.

At the next step, in the Additional Information window, make sure to choose .Net 6.0.
For this demo, make sure to also check the Do not use top-level statements. We’ll explain
this later in this chapter, but for now make sure it is checked and then click Next.

You should get the following code in the Program.cs file (we’ll explain the code
below):

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_5

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_5

70 5 Some C# Fundamentals

pcogurceg JgnnqYqtnf
}

kpvgtpcn encuu Rtqitco
}

uvcvke xqkf Ockp*uvtkpi]_"ctiu+
}

Eqpuqng0YtkvgNkpg*$Jgnnq."Yqtnf#$+=
Ä

Ä
Ä

To compile and run this code, you have two options:

. Run without debugging (press Ctrl + F5—or click on the dark green “play” button).

o Faster, but breakpoints will be omitted (we’ll explain breakpoints later in this
chapter).

. Run with debugging (press F5—or click on the light green “play” button)

o May be a little slower, this option is better for debugging (breakpoints will not be
omitted).

Let’s run this application without debugging. It should display “Hello, World!”.

Hello, World!

5.2 Top-Level Statements

If you create another project and follow the same steps as in the previous section, except
that this time, in the Additional Information window, you leave Do not use top-level
statements unchecked, you will get the following code in Program.cs:

11"Ugg"jvvru<11cmc0ou1pgy/eqpuqng/vgorncvg"hqt"oqtg"kphqtocvkqp
Eqpuqng0YtkvgNkpg*$Jgnnq."Yqtnf#$+=

If you run the application, you should get the same result as in the previous section:

Hello, World!

5.3 Namespaces, Using Directive, and Global Using Directive 71

What is happening is as follows. If any one source file (in our case the file named
Program.cs) contains statements outside of a namespace declaration, the compiler will
wrap them inside a Main method, inside a class, and inside a namespace. See more
about this in [1]. Our ASP .Net Core MVC applications that we’ll create in the following
chapters will make use of this.

“Starting in C# 9, you don’t have to explicitly include a Main method in a console
application project. Instead, you can use the top-level statements feature to minimize the
code you have to write. In this case, the compiler generates a class and Main method
entry point for the application” ([2]).

Important note: C# is case sensitive. That is if , IF , and iF are all considered
different. So please be careful.

5.3 Namespaces, Using Directive, and Global Using Directive

5.3.1 Namespaces

The first building blocks for C# applications are namespaces. When we write code, we
organize it into namespaces. Namespaces are containers of code. In them one can cre-
ate other namespaces, classes, enumerations, and so on. To create a namespace, we use
the namespace keyword, we give it a name, and then, within curly braces, we add its
corresponding contents.

For example, to define our first namespace, named FirstNamespace we write.

pcogurceg JgnnqYqtnf
}

000"cff"eqfg"kp"jgtg"000
Ä

Starting with C# version 10, the above code can also be written as follows:

pcogurceg JgnnqYqtnf=

000"cff"eqfg"kp"jgtg"000

To learn more about this, check out [3].

5.3.2 Using Directives

Namespaces can be used as a great way to separate/isolate pieces of code, especially as
a project becomes larger. In the example below, we created two namespaces. The class

72 5 Some C# Fundamentals

created in the second namespace is unknown to the code in the first namespace (you will
get a compiler error if you try to run this code):

pcogurceg JgnnqYqtnf
}

kpvgtpcn encuu Rtqitco
}

uvcvke xqkf Ockp*uvtkpi]_"ctiu+
}

O{Encuu"qdl"?"pgy O{Encuu*+=
Eqpuqng0YtkvgNkpg*$Jgnnq."Yqtnf#$+=

Ä
Ä

Ä

pcogurceg O{UgeqpfPcogurceg
}

encuu O{Encuu
}

Ä
Ä

When you want to use code from different namespaces, you will have two options.
Either use the full class name (that is <namespace name> . <class name>) as below:

pcogurceg JgnnqYqtnf
}

kpvgtpcn encuu Rtqitco
}

uvcvke xqkf Ockp*uvtkpi]_"ctiu+
}

O{UgeqpfPcogurceg0O{Encuu"qdl"?"pgy O{UgeqpfPcogurceg0O{Encuu*+=
Eqpuqng0YtkvgNkpg*$Jgnnq."Yqtnf#$+=

Ä
Ä

Ä

pcogurceg O{UgeqpfPcogurceg
}

encuu O{Encuu
}

Ä
Ä

or use a using directive as shown below:

wukpi O{UgeqpfPcogurceg=
pcogurceg JgnnqYqtnf
}

kpvgtpcn encuu Rtqitco
}

uvcvke xqkf Ockp*uvtkpi]_"ctiu+
}

O{Encuu"qdl"?"pgy O{Encuu*+=
Eqpuqng0YtkvgNkpg*$Jgnnq."Yqtnf#$+=

Ä
Ä

Ä
pcogurceg O{UgeqpfPcogurceg
}

encuu O{Encuu
}

Ä
Ä

5.3 Namespaces, Using Directive, and Global Using Directive 73

There is more to say about namespaces (for example, what happens if you have two
classes with the same name declared in two namespaces and want to use both of them in
a source file?) but since we won’t use them in this book, we skipped them.

5.3.3 Implicit Using Directives

The Console class was created in a namespace called System, which is different than the
current namespace. Yet, for the Console class, we did not need to use (but could have
used) a directive such as

wukpi U{uvgo=

The reason for this is implicit using directives. Based on the type of project you’re
creating, a set of using directives is automatically added to your code by the C# compiler.
In particular, for a Console Application, the compiler already added the following using
directives:

wukpi U{uvgo=
wukpi U{uvgo0KQ=
wukpi U{uvgo0Eqnngevkqpu0Igpgtke=
wukpi U{uvgo0Nkps=
wukpi U{uvgo0Pgv0Jvvr=
wukpi U{uvgo0Vjtgcfkpi=
wukpi U{uvgo0Vjtgcfkpi0Vcumu=

Therefore, we did not need to add them. See more in [4].

5.3.4 Global Using Directives

The using directives only have effect in the file they are declared. If you want a using
directive to import a namespace for your entire application, not only the file in which it
was declared, use a global using directive instead. It is the same as before, but it uses
the keyword global:

inqdcn wukpi O{UgeqpfPcogurceg=

Now, you won’t have to add a using MySecondNamespace; anywhere else in your
project. See more in [4].

74 5 Some C# Fundamentals

5.4 Comments

Comments are pieces of text embedded in our source code that will get ignored by the
compiler. Similarly, to JavaScript, we can have single-line and multi-line comments.

. Single-line comments start with // and continue until the end of that line. Anything
that we include in that line, following //, will be ignored by the compiler.

. Multi-line comments start with /* and continue, possibly on multiple lines, until the
first */. Anything that we include in between /* and */ will be ignored by the compiler.

Example:

You should always document your code by writing meaningful comments.
On your own, you may want to also check out documentation comments in here [5].

5.5 Existing Data Types

For the remainder of this chapter, let’s focus on the example that uses top-level statements,
and build code in it. Here is the starting point (in the Program.cs file):

11"Ugg"jvvru<11cmc0ou1pgy/eqpuqng/vgorncvg"hqt"oqtg"kphqtocvkqp
Eqpuqng0YtkvgNkpg*$Jgnnq."Yqtnf#$+=

In C# all variables must have a declared type. C# is a strongly typed language, so the
compiler will make sure (will enforce that) you only use variables in the context in which
it makes sense for their declared type.

Some C# data types (see more in [6]) we’ll make use of later in this book:

. int—used for whole numbers in the range −2,147,483,648 to 2,147,483,647;

. double—used for fractional numbers;

. bool—used to store Boolean (true/false) values;

. string—used to store strings (sequence of characters);

. DateTime—used to store dates and times.

For example, we let’s create the following variables and assign them some initial values
(delete all other codes from Program.cs and add the following):

5.5 Existing Data Types 75

kpv [gctuQhGzrgtkgpeg"?"34=
fqwdng Ucnct{"?"322222="1,qpg"ecp"cnuq"wug"vjg"Fgekocn"v{rg"jgtg",1
dqqn KuXgvgtcp"?"hcnug=
uvtkpi HwnnPcog"?"$Tc|xcp"C0"Og|gk$=
FcvgVkog"JktkpiFcvg"?"FcvgVkog0Rctug*$2:1371423:":<22<22"CO$+=
FcvgVkog"EwttgpvFcvgVkog"?"FcvgVkog0Pqy= 11fkurnc{u"vjg"ewttgpv"fcvg"cpf"vkog

Then, to display to the console the values of each variable, use the following
Console.WriteLine statements:

Eqpuqng0YtkvgNkpg*[gctuQhGzrgtkgpeg+=
Eqpuqng0YtkvgNkpg*Ucnct{+=
Eqpuqng0YtkvgNkpg*KuXgvgtcp+=
Eqpuqng0YtkvgNkpg*HwnnPcog+=
Eqpuqng0YtkvgNkpg*JktkpiFcvg+=
Eqpuqng0YtkvgNkpg*EwttgpvFcvgVkog+=

If you run the code, you should get something similar to

12

1000000

False

Razvan A. Mezei

8/15/2018 8:00:00 AM

12/10/2022 7:37:30 PM

Because C# is a strongly typed language, once you declare a variable, you can only
assign it values of compatible types. For example, the following results in a compilation
error because string is not a compatible type to be used for integers:

[gctuQhGzrgtkgpeg"?"$vygnxg$=

A related topic here is to use the keyword var when you declare and initialize a
variable, and let the compiler figure out what type to use for the declaration of that
variable. This is called type inference or implicit typing. For example, one can replace.

kpv [gctuQhGzrgtkgpeg"?"34=

with

76 5 Some C# Fundamentals

Since the variable YearsOfExperience is initialized to an integer, the compiler can
deduce that the type of it is an integer, so we can use var instead. This is probably not a
huge win for this example, but as we deal with longer variable names or more complex
types, the var keyword will quickly become convenient.

Important note: The following line of code will result in an error:

xct [gctuQhGzrgtkgpeg=

even if you later add the (separate!) statement.

[gctuQhGzrgtkgpeg"?"34=

This is because in the line var YearsOfExperience; the compiler does not have a value
to use in order to decide what time should be assigned for this variable.

5.6 String Interpolation

We’ll make use of the following several times throughout our book. To build a string that
combines text and variable values, one can use string interpolation. For this, you need
to add the $ right before the string, then inside the string use {} to embed expressions
(for example, variables). Here is an example:

Eqpuqng0YtkvgNkpg*&${gctu"qh"gzrgtkgpeg<"}[gctuQhGzrgtkgpegÄ$+=
Eqpuqng0YtkvgNkpg*&$hwnn"pcog<"}HwnnPcogÄ."ewttgpv"ucnct{<"}Ucnct{Ä$+=
Eqpuqng0YtkvgNkpg*&$jktkpi"fcvg<"}JktkpiFcvgÄ."ewttgpv"fcvg<"}EwttgpvFcvgVkogÄ$+=

This gave us the following:

years of experience: 12

full name: Razvan A. Mezei, current salary: 100000

hiring date: 8/15/208 8:00:00 AM, current date: 12/10/2022 7:43:15 PM

Inside {} one can also use format specifiers. For example, add :c to display the salary
as currency, or :dd/MM/yyyy to specify a date format for the output:

Eqpuqng0YtkvgNkpg*&${gctu"qh"gzrgtkgpeg<"}[gctuQhGzrgtkgpegÄ$+=
Eqpuqng0YtkvgNkpg*&$hwnn"pcog<"}HwnnPcogÄ."ewttgpv"ucnct{<"}Ucnct{<eÄ$+=
Eqpuqng0YtkvgNkpg*&$jktkpi"fcvg<"}JktkpiFcvgÄ."ewttgpv"fcvg<"}EwttgpvFcvgVkog<ff1OO1{{{{Ä$+=

5.7 Enumerations 77

We obtained:

years of experience: 12

full name: Razvan A. Mezei, current salary: $100,000.00

hiring date: 8/15/208 8:00:00 AM, current date: 12/10/2022 7:43:15 PM

5.7 Enumerations

Above we’ve seen some existing data types from C#. But we can also create custom
types. Two ways to create custom types are enumerations and classes. In here we’ll see
enumerations.

To create an enumerated type (enumeration) we use the keyword enum, then use a
name of our choice, and then in {} add the desired values. For example,

gpwo Hcewnv{Ngxgn }KPUVTWEVQT."CUUKUVCPV."CUUQEKCVG."HWNNRTQHGUUQTÄ=

Let’s move this into its own source file. One way to do this is to select this code,
right-click on it, and select the context menu option: Quick Actions and Refactorings ….
Then click on Move type to FacultyLevel.cs and press the enter key:

In the Solution Explorer window, you should see a new file added to your project. If
you double click on that new file (FacultyLevel.cs), you will see that your code has been
moved in there.

Then, we can create variables of this newly created type/enumeration:

Hcewnv{Ngxgn"EwttgpvNgxgn"?"Hcewnv{Ngxgn0CUUKUVCPV=

and use it, just like we used the other variables. For example,

Eqpuqng0YtkvgNkpg*&$Hcewnv{"ngxgn<"}EwttgpvNgxgnÄ$+=

78 5 Some C# Fundamentals

5.8 Classes

Another way to build custom types is by defining/creating classes. This is a very important
topic, and we’ll use it extensively in this book.

Let’s consider the following “type” which currently does not exist in C#. We would
like to work with a type named Instructor. Each instructor should have a name, a hiring
date, and so on (we’ll worry about this in the next section).

If you add the following line of code to your program: Instructor myself; you’ll get a
compilation error, similar to the one below:

CS0246: The type or namespace name ‘Instructor’ could not be found (are you
missing a using directive or an assembly reference?)

One way to create new types was by defining new enumerations (seen in the previous
section). Another way is by defining new classes. To create a new class, we use the class
keyword, followed by a chosen name, and then by {}.

If we add the following code, the above-mentioned error goes away (because now we
have a type named Instructor):

encuu Kpuvtwevqt
}

Ä

We can add this code inside Program.cs, but let’s be a little organized. Let’s create a
new file for it, in the same project. In the Solution Explorer window (if it is not already
opened in Visual Studio, then go to View > Solution Explorer to open it), right-click on
the project name and choose Add > Class… Then enter a name for the new class, (please
enter Instructor.cs) and click on the Add button. You should see the newly created file in
the Solution Explorer. It should contain the following lines of code:

namespace HelloWorld2

{

internal class Instructor

{

}

}

Before we continue, make sure to delete the Instructor class definition from Pro-
gram.cs. We do not need to have it defined in two files. Notice that now, the Instructor
type is unknown in our Program.cs file. At the beginning of the Program.cs we need to

5.9 References and Objects 79

add the import directive for the namespace that contains the Instructor class definition.
For the example in the screenshot above, that is,

wukpi JgnnqYqtnf4=

we’ll see more about classes in the next few sections below and use them extensively in
this book.

5.9 References and Objects

Now that we defined a class called Instructor, we can create variables of that type. For
example,

Kpuvtwevqt"o{ugnh=

In this example, the variable myself is what we call a reference (more on it below).
To create a new instance of a class (also called object), we use the new keyword. For

example,

pgy Kpuvtwevqt*+=

The line shown above will create a new instance of type Instructor. In order to be able
to access it, we need some type of handle, a reference, which allows us to access it. In
the example below:

Kpuvtwevqt"o{ugnh"?"pgy Kpuvtwevqt*+=

myself is a reference that points to a newly created object.
Note: Above, we could have used the var keyword as follows:

xct o{ugnh"?"pgy Kpuvtwevqt*+=

Note: Version 10 of C# (and beyond) also allows the code above to be written as.

Kpuvtwevqt"o{ugnh"?"pgy*+=

80 5 Some C# Fundamentals

Fig. 5.1 Shows two
references, myself and
myself2, pointing to the same
one object, created by new
Instructor()

References are a little special. In the sense that they themselves do not hold the object,
they just hold a reference to the object. In particular, in the code below:

Kpuvtwevqt"o{ugnh"?"pgy Kpuvtwevqt*+=
Kpuvtwevqt"o{ugnh4"?"o{ugnh=

only one object is constructed, and we have two references (myself and myself2), both
pointing/referring to the same object (see Fig. 5.1).

Important to remember:

. We use classes to define new types and new blueprints for objects.

. Objects are particular instances of classes.

For example, we can create a new class Car. Then, from it, we can build multiple
instances (also called objects), for example,

Ect"o{Ect"?"pgy Ect*+=
Ect"{qwtEct"?"pgy Ect*+=

Above we created two instances of the Car class (so we have two objects) and we
also have two references (myCar and yourCar) that we can use to reference/access those
objects.

5.10 Instance Variables/Non-static Fields

So far, we created some new classes, but they don’t do much. Let’s add more to them. In
here we’ll add fields. We make use of fields to add characteristics to our classes. Fields
(non-static fields) are also called instance variables.

5.11 Dot Notation 81

Let’s see some examples.
When you think of Instructors, what characteristics do they all have? For example,

each instructor has a name, has a hiring date, and has a level, and some are tenured
while others are not. When we define our Instructor class, we can declare these instance
variables/fields in there. For example,

encuu Kpuvtwevqt
}

11hkgnfu
rwdnke uvtkpi Pcog=
rwdnke FcvgVkog"JktkpiFcvg=
rwdnke Hcewnv{Ngxgn"Hcewnv{Ngxgn= 11eqphwukpiA"ngv)u"fkuewuu vjku
rwdnke dqqn KuVgpwtgf=

Ä

Now that we declared these instance variables in the Instructor class, all instances of
the Instructor class will have a HiringDate, a FacultyLevel, and whether or not they are
tenured (IsTenured).

Note: In the line public FacultyLevel FacultyLevel; the second word is the type of the
instance variable, while the third is the name of the instance variable. The compiler is
able to know which one is which from the context it is used. We’ll talk about the public
access modifier below.

Let’s see one more example. When you think of products that you buy online, what
characteristics do they all have? For example, each product has a name, has a description,
has a price, maybe a manufacturing date, a weight (needed for its shipping), and so on.
Let’s create a new class. This time, let’s use the name Product (yes, the .cs part is optional,
Visual Studio will automatically add this to the newly created file). Here is an example::

encuu Rtqfwev
}

rwdnke uvtkpi RtqfwevPcog=
rwdnke uvtkpi Fguetkrvkqp=
rwdnke fqwdng Rtkeg=
rwdnke FcvgVkog"OcpwhcevwtkpiFcvg=
rwdnke fqwdng Ygkijv=

Ä

Now we can use these classes to build more meaningful objects.

5.11 Dot Notation

To access the various characteristics of an object (to access its fields) we use the so-called
dot notation. Namely, we use a dot after the reference name followed by the name of the
instance variable we would like to access.

82 5 Some C# Fundamentals

Note: We can use the dot notation with other members of a class, not just with fields
(as seen below).

For example,

Kpuvtwevqt"kpuvtwevqt3"?"pgy Kpuvtwevqt*+=11c"pgy"kpuvcpeg"ku"etgcvgf
kpuvtwevqt30Pcog"?"$Tc|xcp"C0"Og|gk$="11tgcf"kv"cu"vjg"Pcog"qh"kpuvtwevqt3"ku"000
kpuvtwevqt30JktkpiFcvg"?"FcvgVkog0Rctug*$2:1371423:":<22<22"CO$+=
kpuvtwevqt30KuVgpwtgf"?"hcnug=
kpuvtwevqt30Hcewnv{Ngxgn"?"Hcewnv{Ngxgn0CUUKUVCPV=

It is important to understand that each instance has its own copy of instance variables.
If we create a second instance, then the Name fields of instance1 and instance2 are not
shared. This is why they are called instance variables.

Kpuvtwevqt"kpuvtwevqt4"?"pgy Kpuvtwevqt*+=11c"pgy"kpuvcpeg"ku"etgcvgf
kpuvtwevqt40Pcog"?"$Uw|cppg"Dctvqp$="11tgcf"kv"cu"vjg"Pcog"qh"kpuvtwevqt4"ku"000
kpuvtwevqt40Hcewnv{Ngxgn"?"Hcewnv{Ngxgn0CUUQEKCVG=

Let’s make use of these instances:

Eqpuqng0YtkvgNkpg*&$Kpuvtwevqt"}kpuvtwevqt30PcogÄ ku"c*p+"}kpuvtwevqt30Hcewnv{NgxgnÄ Rtqhguuqt$+=
Eqpuqng0YtkvgNkpg*&$Kpuvtwevqt"}kpuvtwevqt40PcogÄ ku"c*p+"}kpuvtwevqt40Hcewnv{NgxgnÄ Rtqhguuqt$+=

We obtained (note how each instance (each Instructor in here) has their own instance
fields (their own Name,…)):

Instructor Razvan A. Mezei is a(n) ASSISTANT Professor

Instructor Suzanne Barton is a(n) ASSOCIATE Professor

On your own, create one more object, this time an instance of the Product class created
above. As soon as you type in the. after the instance name, a tool in Visual Studio, called
IntelliSense, will help us choose one of the available fields (and several other options that
will be explained later; hint: inheritance).

5.12 Methods

Above, we’ve seen how we can use non-static fields to store characteristics (or instance
variables). To program behavior and actions that each instance can perform, we can make
use of methods. Think of methods as a named set of statements that we can call when
needed (in particular, we can easily reuse this set of statements).

5.12 Methods 83

Let’s define a couple of methods in our Instructor class. We would like to be able to
change the name of an instructor. To define such a method, we can use code similar to
the one below (we give the entire class, to help you make sure your code is complete):

kpvgtpcn encuu Kpuvtwevqt 11{qw"ecp"tgoqxg"$kpvgtpcn$"kh"{qw"ycpv
}

11hkgnfu
rwdnke uvtkpi Pcog=
rwdnke FcvgVkog"JktkpiFcvg=
rwdnke Hcewnv{Ngxgn"Hcewnv{Ngxgn="11eqphwukpiA"ngv)u"fkuewuu"vjku
rwdnke dqqn KuVgpwtgf=

11ogvjqfu
rwdnke xqkf EjcpigPcog*uvtkpi pgyPcog+
}

Pcog"?"pgyPcog=
Ä

rwdnke kpv [gctuUkpegJktgf*+
}

tgvwtp *kpv+*FcvgVkog0Pqy0Uwdvtcev*JktkpiFcvg+0Fc{u"1"587047+=
Ä

Ä

Above, we defined two (instance) methods. One named ChangeName, and another
named YearsSinceHired. You should note that these methods have access to the instance
variables of the class, so these do not need to be passed as arguments/parameters for the
method.

To make use of these methods, we can again use the dot notation. Since these are meth-
ods, we will not only use their names when we call them, but also must use parentheses,
and if they have required parameters, we need to pass arguments for these parameters.
Let’s add this line in Program.cs.

kpuvtwevqt30EjcpigPcog*$Cngz Og|gk$+=
Eqpuqng0YtkvgNkpg*&$Kpuvtwevqt"}kpuvtwevqt30PcogÄ yqtmgf"jgtg"hqt"
}kpuvtwevqt30[gctuUkpegJktgf*+Ä {gctu$+=

Then compile and run the application. You should get an output similar to

Instructor Razvan A. Mezei is a(n) ASSISTANT Professor

Instructor Suzanne Barton is a(n) ASSOCIATE Professor

Instructor Alex Mezei worked here for 4 years

84 5 Some C# Fundamentals

5.13 The this Keyword

The this keyword inside a class represents the current instance. In particular, the
ChangeName method above could be rewritten as.

rwdnke xqkf EjcpigPcog*uvtkpi pgyPcog+
}

vjku0Pcog"?"pgyPcog=
Ä

In the code shown above, the keyword this is not necessary because from the given
context (a method inside a class) it was clear that Name represents an instance variable
(or a field/property).

The code shown below, however, contains a logical error. Can you spot it?

rwdnke xqkf EjcpigPcog*uvtkpi Pcog+
}

Pcog"?"Pcog=
Ä

Probably the intent is to use the value of the parameter Name (right side of =) to set
the value of the instance variable Name (left side of =). But that’s not what’s happening.
Inside the ChangeName method, the method’s parameter Name will hide the instance field
Name and hence the assignment just sets a value to itself without affecting the instance
variable name. In order to disambiguate which one is which, you can use the this keyword
to specify that the Name from the left side of the assignment operator (=) refers to the
instance variable Name, not the parameter Name:

rwdnke xqkf EjcpigPcog*uvtkpi Pcog+
}

vjku0Pcog"?"Pcog=
Ä

5.14 Access Modifiers

Access modifiers allow us to control what parts of the application have access to our code.
We can apply access modifiers to namespaces, classes, fields, methods, properties, and
others. There are six access modifiers but the most used ones in our book are the following:

. public: the member that has this access modifier can be accessed by any other code.

. private: the member that has this access modifier can only be accessed by code in the
same class (or struct).

5.15 Properties 85

To learn more about them (protected and internal in particular), we recommend the
following [7, 8].

5.15 Properties

Properties are kind of a mix between fields and methods. They are very important,
especially for upcoming chapters.

Let’s first see the need for properties. Let’s look at the following example:

encuu Rtqfwev
}

rwdnke fqwdng Rtkeg=
Ä

What parts of our code have access to the Price field? Since this field is public, any
part of your program (inside or outside of the Product class) has access to it. Any part of
your program can read it, or even modify it.

Challenge: What if you want to allow code outside the Product class to only read the
Price field, but not change it? How can you create such a restriction? How can we provide
such controlled access to our fields?

If you change the access modifier of the Price field to private, then your field is
only accessible inside the Product class, and nowhere else. This only partially solves
the challenge, but not completely.

One solution: One way to solve the above challenge (if you’ve used Java, you’ve
probably seen this) is as follows:

. Make the field private:

rtkxcvg fqwdng Rtkeg=

. Then create public methods that allow us to read the field from the outside of the
Product class (such a method is called a getter or an accessor) and do not create any
public method that allows us to change it:

rwdnke fqwdng igvRtkeg*+
}

tgvwtp Rtkeg=
Ä

86 5 Some C# Fundamentals

This solves our challenge proposed above. Here is how the code put together looks like:

encuu Rtqfwev
}

rtkxcvg fqwdng Rtkeg=

rwdnke fqwdng igvRtkeg*+
}

tgvwtp Rtkeg=
Ä

Ä

From outside on the Product class, we cannot change the price, but we can read it via
the getPrice method (which is publicly accessible). Inside the Main method, code to read
the price of a product would look something like.

Rtqfwev"ncrvqr"?"pgy Rtqfwev*+=
11Eqpuqng0YtkvgNkpg*ncrvqr0Rtkeg+=11GTTQT<"Rtkeg"ku"rtkxcvg
Eqpuqng0YtkvgNkpg*ncrvqr0igvRtkeg*++=""11wug"vjg"igvRtkeg"ogvjqf"kpuvgcf

A similar discussion can be applied to the case where you want to allow users to
modify a field, without being able to read the existing value. We could create a public
method that allows us to change the field (such a method would be called a setter or
mutator). It would look something like.

rwdnke xqkf ugvRtkeg*fqwdng pgyRtkeg+
}

Rtkeg"?"pgyRtkeg=
Ä

Another/A better solution: C# has a more elegant way to solve this challenge (and
many related ones), by making use of Properties. Here, we’ll only give a simplified
description of properties since we won’t use their full potential, but we do encourage
you to read more information on properties here [9]. We will replace the Price field
declaration and the definition of the accessor with the following one line (that completely
solves the above given challenge):

rwdnke fqwdng Rtkeg"}"igv="rtkxcvg ugv="Ä

Let’s test our code in Main. Notice how we use the dot notation on the property:

Rtqfwev"ncrvqr"?"pgy Rtqfwev*+=
11ncrvqr0Rtkeg"?"32;;0;;="=11GTTQT<"Rtkeg"ugvvgt"ku"rtkxcvg
Eqpuqng0YtkvgNkpg*ncrvqr0Rtkeg+=""11dwv"vjg"igvvgt"ku"rwdnke

5.16 Constructors 87

From the code given above, we can see that we are able to read the value of Price, but
not change it in Main.

If you want to allow Main to only change the value of Price but not read it, you will
use the following property declaration instead:

rwdnke fqwdng Rtkeg"}"rtkxcvg igv="ugv="Ä

Read the source mentioned above ([9]) to also learn about computed properties, vali-
dation, and many other capabilities that properties have. We will make extensive use of
properties, but we will probably just use them in the following form:

rwdnke fqwdng Rtkeg"}"igv="ugv="Ä

5.16 Constructors

Constructors are special methods that are used when creating new objects/instances.
They look like regular methods but their name must match the name of the class in which
they are defined, and they do not have a return type. If (and only if!) you define a class
and do not include a constructor definition, one will automatically be created and added
for you by the compiler. We typically use constructors to set the initial state/values for
an object.

Constructors that have no parameters are called default constructors. In the line below,
when we create a new object of type Product, we are calling the default constructor
defined in the Product class:

Rtqfwev"ncrvqr"?"pgy Rtqfwev*+=

Since we did not define an explicit default constructor, one was added for us
automatically. Check out the output of

Eqpuqng0YtkvgNkpg*ncrvqr0Rtkeg+="11kv"fkurnc{u"2"*fghcwnv"xcnwg"hqt"fqwdng+

Now, let’s explicitly define a default constructor in the Product class:

rwdnke Rtqfwev*+
}

Rtkeg"?"320;;=
OcpwhcevwtkpiFcvg"?"FcvgVkog0Pqy=

Ä

88 5 Some C# Fundamentals

Run again your code and see how the output changes, because we start with a different
initial value for Price:

Eqpuqng0YtkvgNkpg*ncrvqr0Rtkeg+="11kv"pqy"fkurnc{u"320;;"*fghcwnv"eqpuvtwevqt"ugv"vjku"xcnwg+

5.17 Method Overloading

We can have multiple methods with the same name (as long as their parameters have
different types or a different number of parameters)—this is called method overloading.
Similarly, we can have multiple constructors. Constructors that have parameters are called
non-default constructors.

Let’s see an example—add a second constructor to the Product class.

rwdnke Rtqfwev*fqwdng kpkvkcnRtkeg+
}

Rtkeg"?"kpkvkcnRtkeg=
Ä

Now, in Main, let’s test these constructors:

Rtqfwev"fgumvqr"?"pgy Rtqfwev*:;;089+=11kv"ecnnu"vjg"pqp/fghcwnv"eqpuvtwevqt"
Eqpuqng0YtkvgNkpg*fgumvqr0Rtkeg+="11kv"fkurnc{u":;;089

Rtqfwev"ncrvqr"?"pgy Rtqfwev*+=11kv"ecnnu"vjg"fghcwnv"eqpuvtwevqt"
Eqpuqng0YtkvgNkpg*ncrvqr0Rtkeg+="11kv"fkurnc{u"320;;

5.18 Conditionals, Loops, and Lists

We will assume that you understand and can work with if statements and various forms
of loops (for, while, foreach). Below we will give a few brief examples but if you need
more resources, we recommend the following [10, 11].

Let’s write an example where we create a list of Instructors. Then, we check if the list
is empty. If it is empty, we display “There are no instructors in the list!”. Otherwise, we
display the name of each instructor.

At the end of the Program.cs file add the following code:

5.18 Conditionals, Loops, and Lists 89

11ngv)u"etgcvg"c"nkuv"qh"kpuvtwevqtu
Nkuv>Kpuvtwevqt@"EUFgrctvogpv?"pgy Nkuv>Kpuvtwevqt@*+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Fcokcp"Tqnhuqp$."Hcewnv{Ngxgn"?"
Hcewnv{Ngxgn0CUUKUVCPV."KuVgpwtgf"?"hcnug Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Guvgnn"Iqvvnkgd$."Hcewnv{Ngxgn"?"
Hcewnv{Ngxgn0CUUQEKCVG."KuVgpwtgf"?"vtwg Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Nkppgc"Mqgnrkp$."Hcewnv{Ngxgn"?
Hcewnv{Ngxgn0HWNNRTQHGUUQT."KuVgpwtgf"?"vtwg Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Pcppkg"Nkvvng$."Hcewnv{Ngxgn"?"
Hcewnv{Ngxgn0HWNNRTQHGUUQT."KuVgpwtgf"?"hcnug Ä+=
kh*EUFgrctvogpv0Eqwpv"??"2+"11ejgem"kh"vjg"nkuv"ku"gorv{
}"""11hqt"cp"gorv{"nkuv fkurnc{"c"oguucigu

Eqpuqng0YtkvgNkpg*$Vjgtg"ctg"pq"kpuvtwevqtu"kp"vjg"nkuv#$+=
Ä
gnug
}"""11hqt"c"pqp/gorv{"nkuv fkurnc{"vjg"pcog"qh"gcej"kpuvtwevqt

hqt*kpv k?2="k>"EUFgrctvogpv0Eqwpv="k--+
}

Eqpuqng0YtkvgNkpg*EUFgrctvogpv]k_0Pcog+=
Ä

Ä

Note: In class we typically ask students to help us provide some sample data. This is
more fun this way and it provides another opportunity for students’ engagement.

Running this code, we get the following displayed:

Damian Rolfson

Estell Gottlieb

Linnea Koelpin

Nannie Little

Let’s now rewrite the above code so we make use of the var keyword and use foreach
instead of the for loop. We’ll get the same output.

11ngv)u"etgcvg"c"nkuv"qh"kpuvtwevqtu
xct EUFgrctvogpv?"pgy Nkuv>Kpuvtwevqt@*+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Fcokcp"Tqnhuqp$."Hcewnv{Ngxgn"?"
Hcewnv{Ngxgn0CUUKUVCPV."KuVgpwtgf"?"hcnug Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Guvgnn"Iqvvnkgd$."Hcewnv{Ngxgn"?"
Hcewnv{Ngxgn0CUUQEKCVG."KuVgpwtgf"?"vtwg Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Nkppgc"Mqgnrkp$."Hcewnv{Ngxgn"?"
Hcewnv{Ngxgn0HWNNRTQHGUUQT."KuVgpwtgf"?"vtwg Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Pcppkg"Nkvvng$."Hcewnv{Ngxgn"?"
Hcewnv{Ngxgn0HWNNRTQHGUUQT."KuVgpwtgf"?"hcnug Ä+=

kh*EUFgrctvogpv0Eqwpv"??"2+"11ejgem"kh"vjg"nkuv"ku"gorv{
}"""11hqt"cp"gorv{"nkuv fkurnc{"c"oguucig

Eqpuqng0YtkvgNkpg*$Vjgtg"ctg"pq"kpuvtwevqtu"kp"vjg"nkuv#$+=
Ä
gnug
}"""11hqt"c"pqp/gorv{"nkuv fkurnc{"vjg"pcog"qh"gcej"kpuvtwevqt

hqtgcej*xct"kpuvtwevqt"kp EUFgrctvogpv+
}

Eqpuqng0YtkvgNkpg*kpuvtwevqt0Pcog+=
Ä

Ä

90 5 Some C# Fundamentals

5.19 Collections and Generic Collections

This section is not meant to teach you generic programming. Instead, we want to make
you aware of it. Generic programming, in particular generic collections, are used quite a
bit in .Net applications. We will also make use of them in our book.

Collections are classes that allow you to group and manage multiple related objects.
Some examples of collections are array lists, linked lists, stacks, queues, and so on.

There are collection classes developed in the System.Collections namespace that store
everything as instances of class Object. Example of classes defined in here: ArrayList,
(there are no linked lists!), Stack, Queue, and others (see more in [12]). You should not use
them in new development, and consider them obsolete. Better choices are the following.

There are collection classes developed in the System.Collections.Generic namespace—
these are generic classes, and users of these classes get to specify what types of objects
they want to store in these collections. Examples of classes defined in here: List<T>,
LinkedList<T>, Stack<T>, Queue<T>, and others (see more in [13]).

In the previous section, we made use of such generic class List.

11ngv)u"etgcvg"c"nkuv"qh"kpuvtwevqtu
Nkuv>Kpuvtwevqt@"EUFgrctvogpv?"pgy Nkuv>Kpuvtwevqt@*+=

The class name is List, and in < > we specify the type of elements we want to store
in our collection/list. In the example above, we used Instructor.

Let’s see another example. If we want to create a generic array list of whole numbers,
we can use code similar to the following:

Nkuv>kpv@"itcfgu"?"pgy Nkuv>kpv@*+="11etgcvg"c"nkuv"qh"kpvgigtu

To add elements to this list, we can use the Add method:

itcfgu0Cff*322+=
itcfgu0Cff*;2+=
itcfgu0Cff*;:+=
itcfgu0Cff*87+=

5.20 Inheritance

Inheritance is a very important topic; we’ll make use of it throughout this book. We’ll
only cover here what we need to know for this book, but please consider learning more
about it on your own. Here is a resource we recommend [14]:

5.20 Inheritance 91

Inheritance is the process of creating new classes by extending existing ones. The
new class is called a child class or derived class and the existing/original class is called
the parent class or base class. Below we give a quick example. For simplicity (and
demonstration purposes), we’ll overuse the public access modifier, but in a real context,
you should question if that is the right access modifier to use.

For our example, let’s create a very simple class called User. For it, let’s create a new
file, called User.cs and put the code in this file. What characteristics does each User have?
What can each User do? The User class will be our base class.

A simple implementation for this class would be the following:

Supposes now that your application needs to create more specialized Users. For
example, assume that we need

. Professors (these are Users, in the sense they need to be able to login/logout, but also
have characteristics such as whether or not they are tenured, maybe a hiring date) and

. Students (these are also Users, they too need to be able to login/logout, but also have
characteristics such as major and admission date).

How do we create these Professor and Student classes?
Let’s create a new file and in it a class named Professor. Since a Professor is a User, we

will make use of inheritance. Note the use of : to specify inheritance. Here is a simplified
example::

92 5 Some C# Fundamentals

Note: All fields, properties, and methods from the base class will be inherited in the
derived class. Whether or not the derived class has access to all of them depends on the
access modifiers being used. In particular, a Professor has a UserName, a Password, and
can Login and Logout:

Rtqhguuqt"rtqh"?"pgy Rtqhguuqt*+=
rtqh0WugtPcog"?"$tog|gk$=
rtqh0Rcuuyqtf"?"$Rcuuyqtf345#$=
rtqh0Nqikp*+=
rtqh0Nqiqwv*+=
rtqh0KuVgpwtgf?"vtwg=

As you type prof. see what options IntelliSense shows you.
Note: In the screenshot above, you may notice some methods that we did not include

in our code above. In particular, note the methods GetHashCode, GetType, and ToString.
They are the result of inheritance too. When you create a new class, if you do not specify
any base class for it, the C# compiler will automatically make your new class a derived
class of the Object class. Because of it, methods defined in the Object class will get
inherited by your new class. In the example above, the methods GetHashCode, GetType,
and ToString are inherited by the User class. Since Professor inherits from User class,
Professor will inherit all properties, fields, and methods from User, including the methods
GetHashCode, GetType, and ToString.

Next, we can once again use inheritance to create a Student class that has a UserName,
a Password and can Login:

encuu Uvwfgpv <"Wugt
}

rwdnke uvtkpi Oclqt"}"igv="ugv="Ä
rwdnke FcvgVkog"CffokuukqpFcvg"}"igv="ugv="Ä

Ä

Then, in the Program.cs file we could use code such as the one below:

Uvwfgpv"uv"?"pgy Uvwfgpv*+=""""""11etgcvgu"c"pgy"kpuvcpeg"qh"Uvwfgpv
uv0WugtPcog"?"$tc|xcp0og|gk$=""""11rtqrgtv{"kpjgtkvgf"htqo"Wugt
uv0Rcuuyqtf?"$Rcuuyqtf346#$="""""11rtqrgtv{"kpjgtkvgf"htqo"Wugt
uv0CffokuukqpFcvg"?"FcvgVkog0Pqy=11rtqrgtv{"fghkpgf"kp"vjg"Uvwfgpv"encuu
uv0Nqikp*+=
uv0Nqiqwv*+=

5.21 The base Keyword and the Constructors

Something important happens with the constructors. To see this, let’s add default
constructors in both the User class and in the Professor class:

5.21 The base Keyword and the Constructors 93

rwdnke Rtqhguuqt*+11fghcwnv"eqpuvtwevqt
}

Eqpuqng0YtkvgNkpg*$Jgnnq"htqo"vjg"Rtqhguuqt"fghcwnv"eqpuvtwevqt$+=
Ä

And

rwdnke Wugt*+11fghcwnv"eqpuvtwevqt
}

Eqpuqng0YtkvgNkpg*$Jgnnq"htqo"vjg"Wugt"fghcwnv"eqpuvtwevqt$+=
Ä

To double-check your code, your Professor class should now look similar to (Fig. 5.2).
Then, in Program.cs, remove all codes (except for the using directive) and add the

following:

Rtqhguuqt"rtqh"?"pgy Rtqhguuqt*+=

Then, run your program. The output should be similar to

Hello from the User default constructor

Hello from the Professor default constructor

What you should see is that the constructor for our Professor class, automatically
called the constructor for the User class (which is the base class for our Professor).

Fig. 5.2 Shows the Professor class that extends the User class. It contains two properties, IsTenured
and HiringDate, and a default constructor

94 5 Some C# Fundamentals

IMPORTANT: In general, when we create instances of derived classes, the constructors
for our derived class will always call the default constructor for the base class before it
runs the code in the constructor (of our derived class).

Now, let’s add non-default constructors to each class and see what happens in this case.
Add the following non-default constructors into their respective classes:

rwdnke Wugt*kpv pwo+"11pqp/fghcwnv"eqpuvtwevqt
}

Eqpuqng0YtkvgNkpg*$Jgnnq"htqo"vjg"Wugt"pqp/fghcwnv"eqpuvtwevqt$+=
Ä

and

rwdnke Rtqhguuqt*kpv pwo+"11pqp/fghcwnv"eqpuvtwevqt
}

Eqpuqng0YtkvgNkpg*$Jgnnq"htqo"vjg"Rtqhguuqt"pqp/fghcwnv"eqpuvtwevqt$+=
Ä

Now, change the line in Program.cs so it looks similar to the line below (essentially
calling the non-default constructor from the Professor class):

Rtqhguuqt"rtqh"?"pgy Rtqhguuqt*4245+=

Run the code and check out the results. You should obtain the following:

Hello from the User default constructor

Hello from the Professor non-default constructor

You should notice that the non-default constructor from the Professor class was called.
This should not be a surprise since we passed a value to the constructor when we cre-
ated the new instance of Professor class. But the important part to observe is that this
constructor in turn called the default constructor from the base class (User class in here).

That means, all constructors, by default, will call the base constructor from the base
class. We can change that behavior by explicitly calling the base constructor of our choice
(default or non-default). This is where we’ll make use of the base keyword.

Currently our non-default Professor constructor looks like

rwdnke Rtqhguuqt*kpv pwo+"11pqp/fghcwnv"eqpuvtwevqt
}

Eqpuqng0YtkvgNkpg*$Jgnnq"htqo"vjg"Rtqhguuqt"pqp/fghcwnv"eqpuvtwevqt$+=
Ä

5.22 Interfaces 95

This is equivalent to

rwdnke Rtqhguuqt*kpv pwo+ <"dcug*+ 11pqp/fghcwnv"eqpuvtwevqt
}

Eqpuqng0YtkvgNkpg*$Jgnnq"htqo"vjg"Rtqhguuqt"pqp/fghcwnv"eqpuvtwevqt$+=
Ä

which is why the constructor calls the default constructor from the base class.
If we want to call the non-default constructor from the base class, we can pass

parameters to the base() call, as follows:

rwdnke Rtqhguuqt*kpv pwo+ <"dcug*pwo,pwo+ 11pqp/fghcwnv"eqpuvtwevqt
}

Eqpuqng0YtkvgNkpg*$Jgnnq"htqo"vjg"Rtqhguuqt"pqp/fghcwnv"eqpuvtwevqt$+=
Ä

Now, if we run again the program, we’ll see that our non-default constructor from
Professor class called the non-default constructor from its base class (the User class).

Hello from the User non-default constructor

Hello from the Professor non-default constructor

To recap, all constructors (default or non-default) from a class, by default, call the
base class’s default constructor. If we want a constructor to call a non-default constructor
from the base class, we add the call to base() and pass parameters needed for that base
non-default class constructor.

Methods do not have the same cascading effect as constructors, but we can build one
using the base keyword again. We’ll skip this part since we won’t use it in our book.

5.22 Interfaces

Although we’ll make extensive use of interfaces, in this book we will only define very
few interfaces. As such we’ll only briefly introduce them in here.

IMPORTANT: As a convention, interface names always start with a capital I (see
examples below).

96 5 Some C# Fundamentals

5.22.1 Some Motivation

Let’s start with an example of interface that is included in the System library, namely
IComparable.

If we want to sort integers, we can do so as long as we know how to compare each
pair of numbers. Similarly, if we want to compare instances of let’s say Professor class,
again we can do so, as long as we have a way to compare every two professors. The
essence of what we are trying to suggest here is that sometimes we want to expect similar
functionalities from unrelated classes. If they are not related, inheritance is probably not
the way to go (you should not use inheritance for unrelated classes). In this case, the
interfaces will be the appropriate choice.

In particular, the generic class List, which can store elements of any given type, can
also sort them, as long as the type used in the List implements the IComparable interface.

5.22.2 How to Define an Interface

To define an interface, we use the keyword interface, we choose a name (which by
convention should start with I), and then, inside a block (use {}), we include zero or
more declarations for methods, properties, (and starting with C# 8.0) fields, and other
members.

Here is an example. In the Solution Explorer window, right-click on the project’s name,
select Add > New Item …, then click on the option Interface and enter a name, say
IPrintable, then click on the Add button.

We can now define our interface. We’ll define a simple one that contains only one
method declaration:

kpvgthceg KRtkpvcdng
}

xqkf RtkpvVqEqpuqng*+=
Ä

Important to notice: We did not include an access modifier (this is explained below).

5.22.3 How to Implement an Interface

Next, let us implement this interface. For a class to implement an interface, we need to.

. declare this by using the : (just like inheritance, which is why it’s important to use the
I in the interface name!);

. implement each member from the interface in our class.

5.23 How to Use an Interface 97

Let’s see this by example. Let’s modify the Professor class so it now implements the
IPrintable interface.

Since we already have an inheritance declaration (: is already in there) we only need
to add a comma after User and add the name of the interface we intend to implement:

encuu Rtqhguuqt <"Wugt."KRtkpvcdng
}

11000
Ä

Then, to implement the specified interface(s), we need to define all members from the
interface declaration. In particular, we’ll need to define a void PrintToConsole(); method.

Important to note: All members from the interface must be added as public members
in the class (regardless of whether or not the interface uses the public access modifier
when it declares those members). So, we’ll need to define a public void PrintToConsole();
method.

What you put in this method it’s up to you, the interface just cares that you have a
definition for each member of the interface. Let’s add the following method definition in
the Professor class:

rwdnke xqkf RtkpvVqEqpuqng*+
}

Eqpuqng0YtkvgNkpg*&$Wugt<"}WugtPcogÄ."Jktkpi"fcvg<"}JktkpiFcvgÄ$+=
Ä

Note: One class can only inherit from one base class, but it can implement multiple
interfaces.

Important note: One can have multiple completely unrelated classes, all implementing
the same interface. How can this be useful? That’s what we’ll see below.

5.23 How to Use an Interface

Let’s start with the following example. If we define the method below:

xqkf Jcrr{Ogvjqf*Wugt"wut+
}

11vq"fq000
Ä

what can type of parameters can you pass to this method? The answer is you can pass in
any instance of the User class, or any class derived from User (in particular, you can pass
in an instance of a Professor).

98 5 Some C# Fundamentals

Can you pass in an integer? Can you run HappyMethod(2024)? The answer is no,
because 2024 is not an instance of User (or any derived class from User).

Interfaces provide us with more flexibility. Let’s create a method, which uses an inter-
face as a parameter type. For example, add the following to the end of the Program.cs
file:

xqkf Jcrr{Ogvjqf*KRtkpvcdng"qdl+
}

qdl0RtkpvVqEqpuqng*+=
Ä

What can you pass to such a method? The answer is an instance of any class (or derived
class) that implements the IPrintable interface. In particular, if you have two unrelated
classes, say Professor and Classroom, both implementing the IPrintable interface, then
you could pass an instance of either one to the HappyMethod. That’s quite some flexibility.

See more about interfaces in here [15].

5.24 Lambda Expressions

This is a very brief introduction to lambda expressions. They are very convenient when
we want to pass certain information to methods. See more in [16].

Lambda expressions are nice short ways to create so-called anonymous functions.
Lambda expressions make use of the lambda operator=>(read it as: “goes to” or
“becomes”) and have two forms:

. expression lambda: (list of params) => expression

o example: (a, b) => a + b;

. statement lambda: (list of params) => { list of statements}

o example: (a, b) => {int c = a + b; return c;};
o example: (a, b) => {return a+b;};

If we have exactly one parameter, then the parentheses around it are not required. The
following examples are equivalent:

. example: (a) => a * a ;

. example: a => a * a ;

5.24 Lambda Expressions 99

Let’s see some practical examples. Earlier, we created the following list:

xct EUFgrctvogpv"?"pgy Nkuv>Kpuvtwevqt@*+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Fcokcp"Tqnhuqp$."Hcewnv{Ngxgn"?"Hcewnv{Ngxgn0CUUKUVCPV."KuVgpwtgf"?"hcnug Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Guvgnn"Iqvvnkgd$."Hcewnv{Ngxgn"?"Hcewnv{Ngxgn0CUUQEKCVG."KuVgpwtgf"?"vtwg Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Nkppgc"Mqgnrkp$."Hcewnv{Ngxgn"?"Hcewnv{Ngxgn0HWNNRTQHGUUQT."KuVgpwtgf"?"vtwg Ä+=
EUFgrctvogpv0Cff*pgy Kpuvtwevqt"}"Pcog"?"$Pcppkg"Nkvvng$."Hcewnv{Ngxgn"?"Hcewnv{Ngxgn0HWNNRTQHGUUQT."KuVgpwtgf"?"hcnug Ä+=

To display this list, we can use the following code:

hqtgcej*xct"kpuvt"kp EUFgrctvogpv+
}

Eqpuqng0YtkvgNkpg*&$Pcog<"}kpuvt0PcogÄ."Ngxgn<"}kpuvt0Hcewnv{NgxgnÄ."Vgpwtgf<"}kpuvt0KuVgpwtgfÄ $+=
Ä

And obtain

Name: Damian Rolfson, Level: ASSISTANT, Tenured: False

Name: Estell Gottlieb, Level: ASSOCIATE, Tenured: True

Name: Linnea Koelpin, Level: FULLPROFESSOR, Tenured: True

Name: Nannie Little, Level: FULLPROFESSOR, Tenured: False

which is the order in which we added each instructor into our list.
What if we would like to sort this list? Before the foreach statement add the following

statement:

EUFgrctvogpv0Uqtv*+=

Run again your code. Did it work? The output should contain a rather error message,
including.

Unhandled exception. System.InvalidOperationException: Failed to compare two
elements in the array.

What this means is that the Sort method did not know how to compare two instances
of Instructor.

We now have some solutions. One is to implement the IComparable interface inside
the Instructor class.

Another, which we’ll see below, is to provide a lambda expression to the Sort method,
an expression that is essentially a comparison method that can be used by Sort when
sorting our list.

100 5 Some C# Fundamentals

Let’s sort by name. Replace the CSDepartment.Sort(); with.

EUFgrctvogpv0Uqtv**kpuvt3."kpuvt4+"?@"Uvtkpi0Eqorctg*kpuvt30Pcog."kpuvt40Pcog+"+=

Above note that we provided the Sort method a lambda expression, an anonymous
method that can be used to compare every two instructors. Running the code above, you
should now get the list sorted by Name:

Name: Damian Rolfson, Level: ASSISTANT, Tenured: False

Name: Estell Gottlieb, Level: ASSOCIATE, Tenured: True

Name: Linnea Koelpin, Level: FULLPROFESSOR, Tenured: True

Name: Nannie Little, Level: FULLPROFESSOR, Tenured: False

Similarly, we can sort by Tenure. In this example, we will use the CompareTo method
that is included for Boolean values. Replace the statement above with.

EUFgrctvogpv0Uqtv**kpuvt3."kpuvt4+"?@"kpuvt30KuVgpwtgf0EqorctgVq*kpuvt40KuVgpwtgf+"+=

Running the code again, we now get.

Name: Damian Rolfson, Level: ASSISTANT, Tenured: False

Name: Nannie Little, Level: FULLPROFESSOR, Tenured: False

Name: Estell Gottlieb, Level: ASSOCIATE, Tenured: True

Name: Linnea Koelpin, Level: FULLPROFESSOR, Tenured: True

See how flexible the Sort method was? Allowing us to use lambda expressions, we
were able to quickly specify how to sort our list. Above we’ve seen how to sort the list
by name, or by tenure.

5.25 LINQ

This is another very brief introduction. To read more about LINQ, we recommend the
following [17].

5.25 LINQ 101

LINQ stands for Language-Integrated Query and it provides “integration of query
capabilities directly into the C# language”. LINQ works very nicely with lambda
expressions.

Here is one example. On a List instance, we can use Where for filtering. Replace the
foreach statement above with:

hqtgcej*xct"kpuvt"kp EUFgrctvogpv0Yjgtg*kpuv"?@"kpuv0Pcog0Eqpvckpu*pp+++
}

Eqpuqng0YtkvgNkpg*&$Pcog<"}kpuvt0PcogÄ."Ngxgn<"}kpuvt0Hcewnv{NgxgnÄ."Vgpwtgf<"}kpuvt0KuVgpwtgfÄ $+=
Ä

We were able to narrow down the list to only elements that match a specific condition
(given as a lambda expression):

Name: Nannie Little, Level: FULLPROFESSOR, Tenured: False

Name: Linnea Koelpin, Level: FULLPROFESSOR, Tenured: True

We can then use another operation on the results of Where. One could, for example,
use another Where.

And obtain:

Name: Nannie Little, Level: FULLPROFESSOR, Tenured: False

One last example:

will yield:

Name: Linnea Koelpin, Level: FULLPROFESSOR, Tenured: True

Name: Nannie Little, Level: FULLPROFESSOR, Tenured: False

102 5 Some C# Fundamentals

5.26 Working with null Values

We mentioned earlier that C# is a strongly typed language. That means that if a variable
is, let’s say, declared as an int, then you can only assign compatible values to it.

In particular, if you declare number as an int, then you cannot assign a string value or
even a null value. You would get a compiling error:

kpv pwodgt=
pwodgt"?"32="11QM
pwodgt"?"vyq="11gttqt"/ ytqpi"v{rg
pwodgt"?"pwnn="11gttqt"/ ytqpi"v{rg

When dealing with web applications, it is possible the user may fill out all form fields.
How would you treat that?

One is to use nullable types. “A nullable value type T? represents all values of its
underlying value type T and an additional null value” (see more in [18]).

If you put a ? next to the int type, you obtain int? which is a nullable type, namely it
represents all integers and the null value. In the previous example, we now get

kpvA"pwodgt=
pwodgt"?"32="11QM
pwodgt"?"vyq="11gttqt"/ uvknn"ytqpi"v{rg
pwodgt"?"pwnn="11QM"pqy

Another example: bool represents the values true and false. Therefore, bool? represents
the values: true, false, null.

Important: When you work with nullable types you should check for null values.
There is a lot more to learn about this topic, but we’ll skip the rest. We recommend

you to also check out the following [19]. Also, we won’t use the following but we want
to challenge you to find out what is the difference between each of the following:

kpv]_"xcnwgu=

kpvA]_"xcnwgu=

kpv]_A xcnwgu=

kpvA]_A xcnwgu=

5.27 Solution Files .sln

To reopen a Visual Studio project (in particular an ASP .Net Core MVC project), you
should locate and double click on the .sln file. This is typically in the same directory as
the project, or one level up.

5.28 Other Resources for Learning C# 103

We have seen (many times) learners trying to open a project by opening the .cs (the
C#) file, which may (typically) also open in Visual Studio. But once the file opens, there
is no compile button. Instead you should open the .sln file (a text-based file). See more
about this file here [20].

5.28 Other Resources for Learning C#

This chapter is not meant to provide a comprehensive C# tutorial. For that, we recommend
the following:

. W3School’s C# tutorial: see [10].

. The Microsoft’s C# documentation: see [11] (our main C# source).

6Middleware, Services, Intro to Dependency
Injection

We are finally ready to start working on ASP .Net web applications.
Important notes:

. This chapter applies to ASP .Net Core web applications, regardless of whether or not
they use the MVC pattern.

. We’ll start our project in this chapter. Then, until the end of the book, we’ll add to it
a little more in every chapter.

6.1 What Are ASP .Net (Core) MVC Web Applications?

First, let’s cover some background knowledge. In the previous chapter, we saw Console
Applications, where we interacted with our application using a console window:

Hello, World!

In here (and in all subsequent chapters) we’ll see Web Applications—instead of a
console window, we’ll use a web browser to interact with our application (see Fig. 6.1).

When the user clicks on a button or link in a browser, a request is typically being sent
to a server. That request follows a specific format/protocol (which we won’t cover in this
book) and it is called an HTTP Request. HTTP stands for Hypertext Transfer Protocol.

ASP .Net is a web framework created by Microsoft that we can use to create web
applications and services. ASP stands for Active Server Pages.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_6

106 6 Middleware, Services, Intro to Dependency Injection

Fig. 6.1 Shows the welcome page of our web application in a web browser

There was a time when we had to choose between

. using ASP .Net/ASP .Net Framework (focused on Windows platforms) and

. using ASP .Net Core (intended to be cross-platform, but initially it wasn’t as
comprehensive as the other option).

The current version of .Net 6 is a unified development platform and now (for this version)
.Net and .Net Core can be used interchangeably. With .Net 6.0 (and beyond) you may
sometimes see the word Core included (for example, ASP .Net Core) to emphasize this
framework is cross-platform, but there is no need for it anymore (so for .Net 6.0 and
beyond, ASP .Net and ASP .Net Core are equivalent names). You may want to read more
about this in [46].

Now you know what ASP .Net (Core) means. What about the MVC? Model-View-
Controller (MVC) is an architectural pattern, one that we’ll introduce below and use for
all subsequent chapters of this book.

In this book, we’ll cover the ASP .Net (Core) MVC, but there are other frameworks
that also use this pattern, for example, Spring MVC (which is a Java framework for
building web applications).

6.2 An Introduction to the MVC Pattern 107

6.2 An Introduction to the MVC Pattern

In here, we’ll introduce the Model-View-Controller (MVC) as an architectural pattern.
We hope that it makes some sense, but we’ll see each one of the (Models, Views, and
Controllers) in more depth in the upcoming chapters. So please make some sense of these,
but do not panic if you do not have a complete grasp of everything just yet. For more
information, check out [47].

One of the greatest values we get from using the MVC pattern is separation of con-
cerns. The MVC pattern separates a web application into three components: the models,
the views, and the controllers (see Fig. 6.2).

The models are the classes that represent the various types of objects managed by the
web application. These objects represent the state of the application.

. For example (think about a web application such as Amazon, Canvas, Moodle,
…), we could have the following model classes: Course, User, Student, Instructor,
Administrator, Product, Seller, Buyer, and so on.

Fig. 6.2 Shows the main components of an MVC web application. In particular, the client side uses
a browser (HTML, CSS, and JavaScript), then on the server side we have the middleware pipeline,
controllers, models, and views, and lastly, the data may be stored in a database

108 6 Middleware, Services, Intro to Dependency Injection

. These are the typical C# classes we’ve seen in the previous chapter (plus other things
we’ll see later—these files will have extension .cs).

The views will make up the user interface. We’ll present content to users via views (more
accurately, we’ll use views to build webpages that ultimately will get displayed in a user’s
browser). We’ll see more about this later.

. For example (think about a web application such as Amazon, Canvas, Moodle, …), we
can have a view that will be used to display a list of all courses taken by a student, or a
list of all laptops available to purchase. We could use another view to build a page that
allows our users to change their password, and yet another view to add a new laptop
to sell it online.

. These are files that will combine HTML and CSS with C# (these files will have
extension .cshtml).

The controllers will handle the user interaction. We’ll give some examples below, but
they will be better understood once we start using them in our project.

. For example (think about a web application such as Amazon, Canvas, Moodle, …).
What happens when you click on a button? Or click on a link? Or load the first
welcome page? In each of these, your requests will (eventually) be sent to a Controller
(more specifically to an Action from that Controller). In many cases, the Controller
will create an instance of a Model, then pass it to a View to build a page that will
eventually show up in the user’s browser.

. These are C# classes derived from the Microsoft.AspNetCore.Mvc.Controller class
(these files will have extension .cs).

Confused? Do not worry! We’ll cover these concepts in more depth in the next few
chapters. This section is only meant to provide a quick introduction to what MVC pattern
entails.

6.3 A Quick Dive into an MVC Example (Optional)

If you don’t have time to review this section, you can skip it. In here we want to clarify a
little more the concepts included above, and also give you a very quick tour into a simple
MVC example.

Let’s create an ASP .Net Core MVC web application. Open Visual Studio, then click
on the Create a new project button.

Then, in the Create a new project window, enter the word MVC in the search bar, then
select ASP .NET Core Web App (Model-View-Controller), and click the Next button.

6.3 A Quick Dive into an MVC Example (Optional) 109

Very important:

. Make sure to choose the option that uses C#, not some other programming language!
If you look carefully, there are other languages available too (for example, F#).

. A common mistake we’ve seen in class is that students would choose ASP .NET Core
Web App. If you look carefully at its description, you’ll note that it uses Razor Pages
instead. Please do NOT use that option for this book.

Next, choose a name and location for your project. We called ours DiveIntoMVC, then
click on the Next button.

In the last step, in the Additional information window, you can choose a .Net framework
to work with. In this book, we’ll always go with .Net 6.0 (Long Term Support). Also,
uncheck the Configure for HTTPS. We won’t use it in this example. Then click on the
Create button.

Once the new project is ready to run, either press Ctrl + F5, or go to Debug > Start
Without Debugging, or click on the light green play button located around the center of
the top menu options.

This will start, in a browser, your newly created ASP .Net Core MVC web application
(note the URL: localhost:5096).

You should note that the opened webpage has a navbar at the top of the page. As
you click on those menu options or on any of the links from this webpage (Fig. 6.3), the
(local) server responds (see Fig. 6.4) with another webpage (with URL: localhost:5096/
Home/Privacy).

Fig. 6.3 This is the same as Fig. 6.1 described above

110 6 Middleware, Services, Intro to Dependency Injection

Fig. 6.4 Shows the Privacy page displayed in a browser

To know what goes into this project, check out the Solution Explorer window. There are
several files and folders showing up in there. In particular, you should note the following:

. We have separate folders for Models, Views, and Controllers.

. There is a (special) folder, called wwwroot, and it seems to contain JavaScript, CSS,
and other files.

. There is a Program.cs file, just like the one we’ve seen when we created Console
applications.

Let’s dive in a little deeper.
When you run the application, it opened in a browser window. In our example, it

opened up with the URL: (localhost:5096).
If you have multiple browsers installed on your machine, you can open the same URL

from multiple browsers. If you open the launchSettings.json file, you will see that the
value (port number) 5097 was set in that file. You can change that value to another
number, let’s say 5096. If you rerun your application, the new value will be used for your
web application. Be careful, some port numbers are already used (by other applications)
for other purposes.

6.3 A Quick Dive into an MVC Example (Optional) 111

"profiles": {

"ASPBookProject": {

"commandName": "Project",

"dotnetRunMessages": true,

"launchBrowser": true,

"applicationUrl": "http://localhost:5096",

"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

}

},

If you open the site.css file found under wwwroot > css: you should find very familiar
code (CSS styling).

html {

 font-size: 14px;

}

@media (min-width: 768px) {

 html {

 font-size: 16px;

 }

}

html {

 position: relative;

 min-height: 100%;

}

body {

 margin-bottom: 60px;

}

112 6 Middleware, Services, Intro to Dependency Injection

Fig. 6.5 Shows the Welcome page in a browser, after adding the CSS code, shown above, to the
site.css file

After line 2, add the following line:

background-color:lightblue;

Then, either rerun the application. Did you see any changes?
Very important: Often, when you make changes to your CSS files, you may not see

them show up in the browser. The reason is as follows: the browsers may cache the CSS
file and if you reload the page, it will reuse an already downloaded CSS file. The solution/
workaround: press Ctrl + F5 in your browser to tell your browser to reload everything,
including the CSS file. The outcome is shown in Fig. 6.5 (at the URL: localhost:5096).

The next stop is the Layout.cshtml. In here you should note two things as follows:

. It defines the navbar we see on our pages (similar to the one we’ve seen in Chap. 4).

. It links to the site.css file we’ve seen above.

There are many things to show, but we’ll learn about them in more details in the upcoming
chapter. If you have time and a keen interest, look around on your own. In particular,
please explore the Models, Views, and Controllers folders.

If you are using Visual Studio Mar, or Visual Studio Code, check out the links below
to help you create your first MVC application:

. https://github.com/dotnet/AspNetCore.Docs/blob/main/aspnetcore/tutorials/first-mvc-
app/start-mvc.md

. https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc?view=
aspnetcore-6.0&tabs=visual-studio.

https://github.com/dotnet/AspNetCore.Docs/blob/main/aspnetcore/tutorials/first-mvc-app/start-mvc.md
https://github.com/dotnet/AspNetCore.Docs/blob/main/aspnetcore/tutorials/first-mvc-app/start-mvc.md
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc?view=aspnetcore-6.0&tabs=visual-studio

6.4 Let’s Start Our ASP .Net Core Application Project in Here 113

6.4 Let’s Start Our ASP .Net Core Application Project in Here

Open Visual Studio and Create a new project. Make sure to choose the ASP .NET Core
Empty template!

Then, choose a name for your project. We called ours ASPBookProject. Then click on
the Next button.

We’ll then choose .Net 6.0(Long Term Support) for the framework, and
make sure to uncheck the Configure for HTTPS. Then click the Create button.

Now run your application and make sure it opens in a browser (for us, the URL will
use another random port: localhost:5125)—it should look similar to Fig. 6.6.

Before we move on to the next section, let us compare what we got here (where we
created an Empty web application) against what we got in the previous section (where we
created an MVC application). In this book, we will continue with our empty application
and will build our way up to an MVC application.

6.4.1 The Empty Web Application Starting Point

The files in the project (seen from the Solution Explorer window) are far fewer than before
(check it out!).

Also, the Program.cs file contains the following starting point/initial code:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

Fig. 6.6 Shows the “Hello World!” in a browser

114 6 Middleware, Services, Intro to Dependency Injection

6.4.2 The MVC Web Application Starting Point

The MVC web application has many more initial files (check out the Solution Explorer
window!). In particular, you should note the wwwroot folder (containing other subfolders
and CSS and JS files), the Models folder, the Controllers folders, the View folder, and
many others. Also, note that the Program.cs file contains the following code:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllersWithViews();

var app = builder.Build();

// Configure the HTTP request pipeline.
if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Home/Error");
}
app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapControllerRoute(
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");

app.Run();

6.5 Entry Point to Our Web Application: Program.cs

Just like we’ve seen in the previous chapter when we covered Console Applications, the
entry point to a C# application is the Main method. Since we made use of top-level
statements in our project, (in particular in the Program.cs file), the Main method is
automatically created by the compiler for us in any one (and only one) file where we use
top-level statements. For us, this is the Program.cs file.

As a consequence, we can look at Program.cs as the entry point to our web applica-
tion (but really, Main is the real entry point, Program.cs can be renamed (for example,
EntryPoint.cs) and our web application would still work).

In the Program.cs file we’ll configure services and create the middleware pipeline
for our web application. These two topics are introduced below, but they will make much
more sense as we dive deeper into this book. Services in particular will make much more
sense later when we get to see the need they solve and see how services work with the
other parts of the application.

6.6 The Middleware Pipeline 115

6.6 The Middleware Pipeline

Think of the middleware pipeline as the entry point into your web application. All HTTP
requests pass through this point. In here, you can decide how to respond to your requests.
In the middleware pipeline, one can add various middleware components that (see more
details in [48])

. route certain requests to the appropriate controllers (we’ll cover this in the next
chapter);

. add authentication and authorization support;

. log all HTTP requests and responses;

. provide support for static files;

. provide support for caching responses;

. provide support for managing user sessions;

. and many others.

As we’ll see below, each middleware component is responsible for invoking the next
component in the pipeline, or not (in which case we say that the component is short-
circuiting the pipeline, making this component a terminal middleware).

Before we see some examples, we should note the following. For every HTTP request
received by our web application, the ASP .Net Core platform will create a Request object
(that contains information regarding the request received from the client) and a Response
object (that contains information about the response being sent back to the client)—see
Fig. 6.7. Each middleware component can inspect the Request object and modify the
Response as needed. We get access to these objects (and others) via a variable of type
HttpContext (see the example below).

6.6.1 The Current Code in Our Project

Let’s first go over the existing code in the Program.cs file, in our ASP .Net Core
application example:

//set up the basic features of the ASP.NET Core platform
var builder = WebApplication.CreateBuilder(args);

//set up middleware components.
var app = builder.Build();

//set up one middleware component
app.MapGet("/", () => "Hello World!");

app.Run();

116 6 Middleware, Services, Intro to Dependency Injection

Fig. 6.7 Is similar to Fig. 6.2, it shows how HTTP requests and responses are being used for the
interaction between a client and a server

If you run this application, you’ll get the following response in a browser (URL:
localhost:5125): Hello World!

The port number shown in your URL is probably different. If it is different, you should
change it, so we all use the same port number. First, double click on the launchSet-
tings.json file (inside Solution Explorer window look inside the Properties folder) to
open it. Then, make sure to change the port number to match ours (5125):

"profiles": {

"DiveIntoMVC": {

"commandName": "Project",

"dotnetRunMessages": true,

"launchBrowser": true,

"applicationUrl": "http://localhost:5125",

"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

}

},

6.6 The Middleware Pipeline 117

Alternatively, you can leave the default value generated for your port number as is, but
please make sure to use that number (instead of the one we use in this book: 5125) in all
examples shown below.

6.6.2 Run, Use, and Map

Next, we’ll introduce some simple middleware components, but please keep in mind that
we’ll see more of them (and more useful ones for this book) in future sections and
chapters.

One way to build the middleware pipeline is by making use of request delegates.
These can be configured using the Run, Use, and Map methods. Let’s quickly introduce
them, then see some examples. Note: we won’t make much use of the Use, Run, and Map
middleware after this chapter—we just use them to introduce other concepts.

The Use middleware allows a parameter, next, which is a reference to the next middle-
ware in the pipeline. One can chain multiple request delegates using next.Invoke()
(to proceed to the next middleware in the pipeline). If a Use middleware does not call
next.Invoke() then it is said that this component is short-circuiting the pipeline.

The Run middleware is similar to the Use middleware but it does not have the next
parameter, hence it cannot call a next middleware component. Because of this, Run is a
terminal middleware and should be placed at the very bottom of the middleware pipeline.

The Map middleware branches the request pipeline based on matches of the given
request path. We’ll skip this in our book.

Important note: As we will see below,

. the order in which we declare our middleware components is important;

. the order in which we declare our services is not important.

6.6.3 First Example

Let’s create an example of middleware pipeline based on the Use and Run defined above.
First, replace the line containing app.MapGet with the following:

crr0Twp*cu{pe"eqpvgzv"?@"}"cyckv"eqpvgzv0Tgurqpug0YtkvgCu{pe*$Jgnnq"htqo"Twp"okffngyctg$+="Ä+="

Your Program.cs file should look like this:

118 6 Middleware, Services, Intro to Dependency Injection

//set up the basic features of the ASP.NET Core platform
var builder = WebApplication.CreateBuilder(args);

//set up middleware components.
var app = builder.Build();

//set up one middleware component
app.MapGet("/", () => "Hello World!");

app.Run();

We used a simple middleware component. Whatever the HTTP request is, our web
application responds with Hello from Run middleware.

Try each of the following requests:
http://localhost:5125/
http://localhost:5125/Ada
http://localhost:5125/Turing/Alan
You should get the same response in each case: Hello from Run middleware.
Let’s change this a little bit, so we make use of the Request object. Replace the line.

crr0Twp*cu{pe"eqpvgzv"?@"}"cyckv"eqpvgzv0Tgurqpug0YtkvgCu{pe*$Jgnnq"htqo"Twp"okffngyctg$+="Ä+=

that was added earlier with the following and recompile your project (or use the Hot
reload button and refresh your browser):

crr0Twp*cu{pe"eqpvgzv"?@"}""
""""cyckv"eqpvgzv0Tgurqpug0YtkvgCu{pe*&$[qw"jcxg"tgswguvgf"}eqpvgzv0Tgswguv0RcvjÄ$+=""
Ä+="

Now, if you use the links above, you should get different responses depending on the
HTTP request used.

For example,
http://localhost:5125/ will give you the following response: You have

requested/.
Similarly, http://localhost:5125/Turing/Alan will return: You have requested /

Turing/Alan.
Using Microsoft IntelliSense, you should be able to play with the line of code we just

added in Visual Studio and find more details about the context, Request, Response,
etc.

If you hover your mouse over the text context, you’ll find out it represents
(references) an object of type: HttpContext.

If you put a dot right after context, you’ll quickly find out what methods and
properties it has. In particular, you should note the following properties: Connection,
Request, Response, Session, and others.

Similarly, if you put a dot right after Request, you’ll find out that you can get access
to a lot of information regarding the HTTP request. In particular, you can find information

http://www.localhost:5125/
http://www.localhost:5125/Ada
http://www.localhost:5125/Turing/Alan
http://www.localhost:5125/
http://www.localhost:5125/Turing/Alan

6.6 The Middleware Pipeline 119

regarding the Body of the request the Path (see the example above), the Method (get
vs. post), the QueryString, and so on.

You should note that in the example above, we are returning back to the user what we
build inside the context.Response object.

6.6.4 Second Example

Now let’s add a second middleware component. Add the following code, right before the
very last line (before app.Run();)

app.Run(async context => {
 await context.Response.WriteAsync($"The second Run");
});

Rebuild your project and open the following in your browser (this will send an HTTP
request to your web application):

http://localhost:5125/Turing/Alan
Here is the output: You have requested /Turing/Alan.
Why didn’t our newly added code run? The answer is Run is a terminal middleware,

so it won’t invoke the next middleware component. To chain multiple middleware com-
ponents, we’ll make use of Use. Remember to always put this request delegate (Run)
last in your middleware pipeline.

Note: Look at the last line in Program.cs. What is its role? Again, make use of Intel-
liSense, good documentation is very helpful in this case. Hover your mouse over the two
app.Run calls shown below. What do you notice?

You should note that Run is an overloaded method. We can use it with a request
delegate argument (the first of the two screenshots), but you can also use it with no
arguments.

The first call is used to add a middleware delegate to the request pipeline. We use
the second call, so the application doesn’t shut down too early (since we’re dealing with
asynchronous calls). Make sure to not delete this last line by mistake.

6.6.5 Third Example

To chain multiple request delegates, we can utilize Use. Modify your Program.cs file so
it looks like the code below:

http://www.localhost:5125/Turing/Alan

120 6 Middleware, Services, Intro to Dependency Injection

Fig. 6.8 Shows the output (in a browser) from the middleware components described above

//sets up the basic features of the ASP.NET Core platform
var builder = WebApplication.CreateBuilder(args);

//set up middleware components.
var app = builder.Build();

app.Use(async (context, next) =>
{
 await context.Response.WriteAsync("Hello from Use start\n");
 await next.Invoke();
 await context.Response.WriteAsync("Hello from Use end\n");
});

app.Run(async (context) =>
{
 await context.Response.WriteAsync("Hello from Run\n");
});

app.Run();

What is the output? More importantly, in which order? Let’s use the following: http://
localhost:5125/Turing/Alan.

We obtained (see Fig. 6.8).

In particular, we should note that next.Invoke(); was used to call the second
component.

Very important: The order in which middleware components are declared is very
important. In particular, what would happen if we switched the order of Run and Use, as
shown below? Why?

app.Run(async (context) =>
{
 await context.Response.WriteAsync("Hello from Run\n");
});

app.Use(async (context, next) =>
{
 await context.Response.WriteAsync("Hello from Use start\n");
 await next.Invoke();
 await context.Response.WriteAsync("Hello from Use end\n");
});

If time, check out the following. What does it do? What URLs would unlock the
secret?

http://www.localhost:5125/Turing/Alan
http://www.localhost:5125/Turing/Alan

6.6 The Middleware Pipeline 121

app.Use(async (context, next) =>
{

await context.Response.WriteAsync("Hello from Use start\n");

if(context.Request.Path.ToString().Contains("SECRET"))
await next.Invoke();

 await context.Response.WriteAsync("Hello from Use end\n");
});

app.Run(async (context) =>
{
 await context.Response.WriteAsync("SECRET UNLOCKED\n");
});

We won’t be using the Use and Run in the upcoming chapters of this book. We
only use them in here to give you some sense of what the middleware pipeline is and
understand a little bit about what an HTTP Request is. In the next section, we’ll introduce
another middleware component, this one is very important, and we’ll use this middleware
component until the end of the book. Please make sure to understand it.

6.6.6 Other Middleware Components

ASP .NET Core comes with many middleware components ready for use. We will see
some of them in this chapter, and others later in this book. To learn more about them,
check out the table shown in [48]. Here is a list of some middleware components we’ll
see in this book:

. UseAuthentication—provides support for authentication.

. UseAuthorization—provides support for authorization.

. UseDeveloperExceptionPage—generates a detailed error page with informa-
tion intended for use only in the Development environment.

. UseExceptionHandler—helps return a friendly error page that we’ll want to use
for the Production environment.

. UseRouting—helps process requests with MVC.

. UseStaticFiles—provides support for serving static files (seen next).

122 6 Middleware, Services, Intro to Dependency Injection

6.7 Static Files Middleware

6.7.1 What Are Static Files?

Files that do not change at runtime are called static files. These files are not dynamically
generated or modified when the user interacts with our web application, so we call them
static. The following are some examples of static files: CSS files, (some) HTML files,
JavaScript files, and some images and videos (company logo, company intro). For now,
focus on their functionality; we’ll see them more in depth as we go through the next
chapters. To learn more, check out [49].

6.7.2 Where Do We Store Static Files?

We typically store static files in the project’s web root directory (this is just a folder
named wwwroot created directly in the root of the project). We can store them elsewhere,
but we won’t do that in this book.

To create a web root directory, in the Solution Explorer window, right-click on the
project’s name (ASPBookProject) and select Add > New Folder. There, type in the name
wwwroot. Once you press the enter key, you should notice that Visual Studio is using a
special icon for this folder, which should suggest this is an important folder.

In this folder/directory, one can add files and subdirectories. Let’s add a few images
in there. First, in the Solution Explorer window, right-click on the wwwroot folder, and
select Add > New Folder. Choose a name for this new folder (we chose images). Then,
inside images, add a few images (one can use drag and drop to copy images in this
subdirectory).

6.7.3 How Do We Allow Access to Static Files?

By default, files from wwwroot are NOT accessible from the client side. To give your
clients access to these files, you can use the UseStaticFiles middleware component, as
seen in the example below.

Let’s change the Program.cs to match the following contents:

6.7 Static Files Middleware 123

11ugvu"wr"vjg"dcuke"hgcvwtgu"qh"vjg"CUR0PGV"Eqtg"rncvhqto"
xct"dwknfgt"?"YgdCrrnkecvkqp0EtgcvgDwknfgt*ctiu+="
"
11ugv"wr"okffngyctg"eqorqpgpvu0"
xct"crr"?"dwknfgt0Dwknf*+="
"
crr0WugUvcvkeHkngu*+="11pggfgf"vq"ikxg"ceeguu"vq"hkngu"kp"yyytqqv"
"
crr0Twp*cu{pe"*eqpvgzv+"?@"
}"
""""cyckv"eqpvgzv0Tgurqpug0YtkvgCu{pe*$Ygneqog"vq"qwt"ygd"crrnkecvkqp$+="
Ä+="
"
"
crr0Twp*+="

6.7.4 How Can We Access Static Files?

To access static files, you need to use paths relative to the web root. For example, if we
wish to access the file: wwwroot/images/image01.JPG, we will use http://localh
ost:5125/images/image01.JPG (see Fig. 6.9).

You should note the following:

. The order of the middleware components is very important. Since we used the
UseStaticFiles middleware component before the Run, we were able to obtain
the static file (in our case image01.JPG).

. The UseStaticFiles is a terminal middleware, so the Run component was not
run.

Fig. 6.9 Shows a static file (in here an image), displayed in a browser. Note the URL to this image
contains the relative path of this image inside the web root

http://www.localhost:5125
http://www.localhost:5125
http://www.images/image01.JPG

124 6 Middleware, Services, Intro to Dependency Injection

. But UseStaticFiles middleware will only run if the requested path matches a
file inside the wwwroot (with the same path!). Otherwise, the next middleware will be
called, in our case the Run
– If you use the URL: localhost:/5125/images/image011.JPG, you should get

the following text displayed inside the browser: Welcome to our web
application.

Very important: We can (and later will) call UseStaticFiles before calling
UseAuthentication. This allows access to static files even to users who are not
yet logged in. Therefore, all files under wwwroot are publicly accessible, so be careful
not to store any sensitive files in there.

If you have time and interest, check out and learn about the Directory browsing section
in [49] which we skipped.

6.7.5 Default (Static) Page

To serve a default webpage from wwwroot without the need to provide the filename in
the request URL, we can

. call the UseDefaultFiles middleware before (and in addition to) the
UseStaticFiles middleware, and

. put the webpage directly inside the wwwroot, with either of the names: default.htm,
default.html, index.htm, index.html.

We won’t spend too much time on this default webpage because we’ll use another default
page when we work with the MVC pattern. So please don’t spend too much time on this
webpage.

As an example, we’ll copy the firstwebpage.html into the wwwroot folder for our ASP
.Net Core project. Once in there, rename it as index.html. Double-checked that you copied
the file inside wwwroot, not inside the images folder!

Then, add the following line right before app.UseStaticFiles();

app.UseDefaultFiles(); //needed for the default page

That’s it. Rebuild your web application and run it again (see Fig. 6.10). Here is what
we got (URL: localhost:5125).

Let’s now also copy the CSS file we created earlier. Let’s put it inside the css subfolder
(create it!) inside wwwroot. Then open the index.html page and update the link path from

<LINK rel="stylesheet" href="personal.css">

into

6.7 Static Files Middleware 125

Fig. 6.10 Shows the default page (index.html) being set for our application. Note how some ele-
ments are not properly displayed (in particular the CSS and the embedded image need to be updated)

<link href="css/personal.css" rel="stylesheet" />

Note: You can drag and drop the .css file from the Solution Explorer into your
index.html file: Visual Studio will automatically paste the corresponding link element.

Let’s also update the image. Inside the index.html, we also need to update the
path to the image used in it (currently, this is: <IMG SRC ="image01.JPG" …).
One easy way to do this is as follows. Delete the text from the quotes shown
in the image, then press Ctrl + Space to get IntelliSense support. We used:
<IMG SRC ="/images/image01.JPG".

With these changes, we are now able to make our web application display a default
page that makes use of the following static resources: a CSS file and an image file (see
Fig. 6.11).

Please comment out (or delete) the following CSS code from the www > css >
personal.css file:

126 6 Middleware, Services, Intro to Dependency Injection

Fig. 6.11 This is the same as Fig. 6.10, but with the image and CSS contents properly set

6.7 Static Files Middleware 127

p {
 background-color: lightyellow;
 width: 70%;
 border: 15px solid green;
 padding: 50px;
 margin: 20px;
}

With this change, the page (see Fig. 6.12) now looks a little better:

Fig. 6.12 This is the same as Fig. 6.11, after changing the personal.css file as discussed above

128 6 Middleware, Services, Intro to Dependency Injection

6.8 Introduction to Services (Optional)

Services are very important, and they will make more sense later when we get to solve
real problems with them. In here we want to give a brief introduction to services since
they are also using the Program.cs file. Feel free to skip this section if you wish and be
sure to revisit this section again when you encounter services.

Services are essentially classes that can be reused easily in multiple locations without
having to worry about instantiating them and their various dependencies.

One example of a service that we’ll see later will be the class that will be responsible
for connecting to a database. We won’t use multiple instances of such an object (we only
need one object connecting to the database), but we may need access to (we’ll essentially
reuse the same one instance of) this class from various parts of the web application. We’ll
get access services (to these instances) using a process called dependency injection.

This is facilitated via a technique known as Dependency Injection. The Dependency
Injection is (a factory) responsible for creating instances of the dependencies when they
are needed and disposing of them when they are no longer needed. To register a service
with the Dependency Injection, we’ll make use of the builder.Services (we’ll see
an example below). Read more about Dependency Injection in here [50].

Let’s see an example (inspired by the example in [51]). We’ll see more useful services
in the upcoming chapters, this is just to demonstrate the steps involved in creating and
using a service.

6.8.1 Example—Step 1: Define a Class and An Interface

Any class that implements any interface can act as a service. Let’s create a sample
interface and a class that implements it (you can place them anywhere in your project,
we created a Services folder and put them in there):

rwdnke"kpvgthceg"KO{HktuvUgtxkeg"
}"
""""uvtkpi"O{Ogvjqf*+="
Ä"
"
"
rwdnke"encuu"O{HktuvUgtxkeg"<"KO{HktuvUgtxkeg"
}"
""""rwdnke"uvtkpi"O{Ogvjqf*+"
""""}"
""""""""tgvwtp"&$jcuj"qh"ewttgpv"kpuvceg"qh"o{"ugtxkeg<"}vjku0IgvJcujEqfg*+Ä$="
""""Ä"
Ä"

6.8 Introduction to Services (Optional) 129

6.8.2 Example—Step 2: Register a Service

The class above is not yet a service. To make it a service, you’ll need to register it as
a service (in Program.cs). One way to register it as a service is as follows (more details
below):

builder.Services.AddSingleton<IMyFirstService,MyFirstService>();

Make sure to add this line before the Build method is called, namely before the line:

var app = builder.Build();

Now we have a service. This code above will add the service to the dependency injec-
tion container. We won’t have to worry about creating an instance of the MyFirstService.
The dependency injection will manage its instance.

6.8.3 Example—Step 3: Use a Service

To use this newly created service, we need one last step. We’ll need to inject the service
where we want to use/access it. For completeness of this example, below we’ll see how
we can inject a service in a middleware component. But in later chapters, we’ll see how
easily (easier than this example) they can be injected into controllers and views.

Change the middleware component.

crr0Twp*cu{pe"*eqpvgzv+"?@"
}"
""""cyckv"eqpvgzv0Tgurqpug0YtkvgCu{pe*$Ygneqog"vq"qwt"ygd"crrnkecvkqp$+="
Ä+=""

crr0Twp*cu{pe"*eqpvgzv+"?@"
}"
""""xct"o{Ugtxkeg"?"crr0Ugtxkegu0IgvTgswktgfUgtxkeg>KO{HktuvUgtxkeg@*+="
""""cyckv"eqpvgzv0Tgurqpug0YtkvgCu{pe*o{Ugtxkeg0O{Ogvjqf*++="
Ä+="

Then, open the following link in a browser: http://localhost:5125/anything.
While the application is still running, open the same link in another browser, or use

an incognito session. We obtained the following results (one for each browser window
opened):

hash of current instance of my service: 17556181

hash of current instance of my service: 17556181

hash of current instance of my service: 17556181

http://www.localhost:5125/anything

130 6 Middleware, Services, Intro to Dependency Injection

You should note that all display the same hash value, an indication that there is
(probably) only one object used for both requests.

AddSingleton is used when you want to create one instance of the service for
the web application’s lifetime. So as long as you don’t restart your web application, all
requests will make use of the same one instance of the service.

An alternative to AddSingleton is AddTransient. Use AddTransient if you
want the dependency injection to create a new instance of the service every single time
the service is injected (in particular, every time you click on a link, a button, or refresh
a page). To test this, replace AddSingleton with AddTransient in your code and
run again your web application as seen above. Here is what we obtained:

hash of current instance of my service: 11429296

hash of current instance of my service: 42194754

7Routing, Models, and Controllers

Our journey into the ASP .Net Core MVC development starts here. In this chapter, we’ll
focus on routing, but we’ll also see a first example of controllers and other related topics.
In particular, we’ll see two types of routing, conventional routing and attribute rout-
ing. Routing gives us the developers complete control over the URLs used in our web
application. In particular, this could be helpful for search engine optimization (SEO).

Important note: As we noted at the beginning of the book, the MVC design pattern
emphasizes separation of concerns, by considering three major components: models,
views, and controllers. We’ll get a good understanding of these components as we go
through this book, but please have patience until we finish this and the next two chapters.
Some concepts (such as routing and models) should make complete sense in this chapter,
while others (such as actions, controllers, and views) are only introduced in here, but
will make more sense as we go through this and the next two chapters. We’ll see several
examples, and by the end of Chap. 9, you should have a good grasp of the MVC design
pattern.

Because we’re introducing several new concepts, some in more details in the following
chapters, this chapter may be a little confusing at first. It will get better once we cover
more details in the subsequent chapters.

7.1 A Little Cleanup Before We Continue

Before we proceed, let’s clean up our project a little bit. In Program.cs delete all lines of
code except for the following:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_7

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_7

132 7 Routing, Models, and Controllers

xct dwknfgt"?"YgdCrrnkecvkqp0EtgcvgDwknfgt*ctiu+=

11ugv"wr"okffngyctg"eqorqpgpvu0
xct crr"?"dwknfgt0Dwknf*+=

crr0WugUvcvkeHkngu*+="11pggfgf"vq"ikxg"ceeguu"vq"hkngu"kp"yyytqqv

crr0Twp*+=

Optionally, you can also remove the following file and folder which we won’t use
anymore in this book:

. The file: wwwroot > index.html.

. The folder: Services (if you created it above) and its contents.

If you recompile and run your code, you should get the HTTP ERROR 404. This should
be expected, we do not have anything in the middleware pipeline to answer the HTTP
requests from clients.

7.2 Some Essential MVC Concepts and the HTTP Request
Lifecycle

Let’s have a very brief review of some essential MVC concepts. We’ll go into more details
in this and the next two chapters.

The models are the classes that represent the various types of objects managed by the
web application. These objects represent the state of the application.

. For example (think about a web application such as Amazon, Canvas, Moodle,
…), we could have the following model classes: Course, User, Student, Instructor,
Administrator, Product, Seller, Buyer, and so on.

The views will make up the user interface. We’ll present content to users via views (more
accurately, we’ll use views to build webpages that ultimately will get displayed in a user’s
browser). We’ll see more about this later.

. For example (think about a web application such as Amazon, Canvas, Moodle, …),
we can have a view that will be used to display a list of all courses taken by a student,
or a list of all laptops available to buy. We could use another view to build a page that
allows our users to change their passwords.

7.2 Some Essential MVC Concepts and the HTTP Request Lifecycle 133

The controllers will handle the user interaction. We’ll see them below.

. For example (think about a web application such as Amazon, Canvas, Moodle, …).
What happens when you click on a button? Or click on a link? Or load the first
welcome page? In each of these, your requests will (eventually) be sent to a Controller
(more specifically to an Action from that Controller). In many cases, the Controller
will create an instance of a Model, then pass it to a View to build a page that will
eventually show up in the user’s browser.

Now, let’s see the request lifecycle (see Fig. 7.1). This is just an introduction, so you get
some sense of what we’re dealing with. We’ll get into more details below. What happens
when a user requests a page (either types in a URL, or clicks on a link or button):

Step 1: The user sends an HTTP request.

. For example, the user enters the following URL: http://www.mysite.com/instructor/
show/1.

. For our book, we will run the server from a local host. So instead of http://www.mys
ite.com we’ll use http://localhost:5125.

Fig. 7.1 Shows the main components of an MVC web application. In particular, the client side uses
a browser (HTML, CSS, and JavaScript), then on the server side we have the middleware pipeline,
controllers, models, and views, and lastly, the data may be stored in a database

http://www.mysite.com/instructor/show/1
http://www.mysite.com/instructor/show/1
http://www.mysite.com
http://www.mysite.com
http://www.localhost:5125

134 7 Routing, Models, and Controllers

Step 2: A controller object is instantiated to respond to this request.

. The URL routing determines which controller & action will handle the HTTP
request.

. If we assume the default routing, presented below, the InstructorController will be
instantiated.

Step 3: An action method is then called by the controller.

. If we assume the default routing, a Show action will be called by the controller.

. A model binder helps us determine the values passed to the action as parameters (e.g.,
1).

. If needed, the action may create a new instance of a model class. In our example an
Instructor object.

. Typically, the action will pass the model object to a view to display the requested
results.

Step 4:

. We’ll make use of views to produce the output that is sent back to the client’s browser.

By the end of this and the next two chapters, you should completely understand the steps
described above. For now, they are just meant to provide a map of what we’re dealing
with.

7.3 Introduction to Routing

As we will see below, routing is one middleware component that will send requests (route
them) to actions in controllers. Since we didn’t yet see what actions and controllers are,
think of routing as the middleware component that will send incoming HTTP requests
(only those that follow a specific format) to the MVC part of our web application.

Routing gives us, the developers, full control over the format of the URLs in our web
application. It lets us describe what URL paths will be matched to what actions. As we
will see later (when we cover tag helpers and HTML helpers), routing is also used when
generating URLs for various links and buttons—if we change the routing, the (tag and
html) helpers will generate different links that conform to our prescribed routing.

7.3 Introduction to Routing 135

7.3.1 Adding MVC to Our ASP .Net Core Application

To add the MVC framework to our ASP .Net Core web application, we’ll need the
following two lines of code:

dwknfgt0Ugtxkegu0CffEqpvtqnngtuYkvjXkgyu*+="11cffu"ugtxkegu"pggfgf"hqt"eqpvtqnngtu"

crr0WugTqwvkpi*+=""11cffu"tqwvg"ocvejkpi"vq"vjg"okffngyctg"rkrgnkpg

Add these lines so Program.cs looks as follows:

xct dwknfgt"?"YgdCrrnkecvkqp0EtgcvgDwknfgt*ctiu+=
dwknfgt0Ugtxkegu0CffEqpvtqnngtuYkvjXkgyu*+=11cffu"ugtxkegu"pggfgf"hqt"eqpvtqnngtu

xct crr"?"dwknfgt0Dwknf*+=11ugv"wr"okffngycvg"eqorqpgpvu
crr0WugUvcvkeHkngu*+="11pggfgf"vq"ikxg"ceeguu"vq"hkngu"kp"yyytqqv
crr0WugTqwvkpi*+="11cffu"tqwvg"ocvejkpi"vq"vjg"okffngyctg"rkrgnkpg
crr0Twp*+=

7.3.2 Default Routing, the Home Controller, and Actions

7.3.2.1 Default Routing
To understand what routing is, let’s first start with the default routing. After
app.UseRouting(); add the following:

app.MapDefaultControllerRoute(); //adds default routing

Or, equivalently, one can add:

app.MapControllerRoute(//adds default routing
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");

Let’s make sense of this default routing. In here, we have the following:

. A name that must be present (and distinct from other route names), but it is not used
in the routing itself.

. A pattern that describes what requests it needs to match.
– We can have multiple routes. Above is just one, we’ll see more below.
– HTTP requests that do not match this pattern will be ignored by this route.
– In our program so far, if a request does not match the route, we’ll get the HTTP

404 error.

The pattern above has three segments (each segment is described in a pair of {})
separated by /.

. The first segment {controller=Home}
– It specifies that the first value will represent a controller. If we don’t provide one,

the HomeController will be used.

136 7 Routing, Models, and Controllers

. The second segment {action=Index}
– It specifies that the second value will represent an action. If we don’t provide one,

the Index action will be used.
. The third segment {id?}

– It specifies that the third value will represent a value for a variable called id (we’ll
use it for action parameters with the name id). The ? means that a value for id
is optional (so the URL may not include a value for this third segment).

This will make more sense once we add a controller and see it in action. Please be patient.
It will make complete sense soon.

With the default routing described above:

. The link: http://localhost:5125/ will send our HTTP request to the controller Home-
Controller, action Index, and there is no specified Id.

. The link: http://localhost:5125/Home will send our HTTP request to the controller
HomeController, action Index, and there is no specified Id.

. The link: http://localhost:5125/Instructor will send our HTTP request to the controller
InstructorController, action Index, and there is no specified Id.

. The link: http://localhost:5125/Home/SecondAction will send our HTTP request to the
controller HomeController, action SecondAction, and there is no specified Id.

. The link: http://localhost:5125/Instructor/ListAll will send our HTTP request to the
controller InstructorController, action ListAll, and there is no specified Id.

. The link: http://localhost:5125/Instructor/Display/10 will send our HTTP request to the
controller InstructorController, action Display, and the Id = 10 (we should use an
Id parameter for the Display action).

. The link: http://localhost:5125/Instructor/Display/10/20 does not match the route
above. The default routing uses up to three segments, but we sent four.

7.3.2.2 Add Our First Controller (The HomeController)
IMPORTANT: Before we create our first controller, we want to caution you to be very
careful: for some parts (for controllers in particular), the naming is very important. In
particular, we say that MVC relies on convention over configuration which means that
if you use the appropriate name patterns (if you follow the convention), little to no setup
is needed. If, however, you choose not to follow the naming convention, you may need
to do extra work (either pass extra parameters, or do some setup, and so on).

Let’s create our first controller. To be nicely organized, we’ll create a folder, called
Controllers directly in the root of the project (make sure to double-check the spelling and
location of this folder!). So, in the Solution Explorer window, right-click on the project,
then select Add > New Folder.

http://www.localhost:5125/
http://www.localhost:5125/Home
http://www.localhost:5125/Instructor
http://www.localhost:5125/Home/SecondAction
http://www.localhost:5125/Instructor/ListAll
http://www.localhost:5125/Instructor/Display/10
http://www.localhost:5125/Instructor/Display/10/20

7.3 Introduction to Routing 137

For the name, type Controllers. To create a new controller, right-click on the
Controllers folder then select Add > Controller …

In the Add New Scaffolded Item window that opens, select MVC Controller—Empty
(we’ll talk about the other options later) then click on the Add button. In the new window
that opens, for the name field, enter HomeController.cs (make sure to have the correct
spelling!).

Congratulations. You just created your first controller!
To test this code, change the Index method (it’s called an action) to match the

following:

public IActionResult Index()
{

return Content("Hello World from Index action, HomeController!");
}

Now we can finally run our web application again. Run your application. You should
get (URL: localhost:5125).

Hello World from Index action, HomeController!

How does this relate to the default routing we set up above?

7.3.2.3 Introduction to Actions
A controller (see more in [54]) is a class derived from the
Microsoft.AspNetCore.Mvc.Controller class and is used to define a set
of related methods called actions. An action is any public method defined inside a
controller class (as long as it does not have the [NoAction] attribute).

To get some ideas of what actions do, just look at the table below (we’ll see them in
more depth later in this book). Notice how the related actions are included in a controller
class.

Model class Controller Actions

Instructor InstructorController Add

Delete

Edit

ShowDetails

Index or ListAll

User AccountController Register

Login

Logout

Student StudentController Add

Delete

Edit

138 7 Routing, Models, and Controllers

Model class Controller Actions

ShowDetails

Index or ListAll

For example, when working with Instructor data (model), what can we do? We
can add a new instructor, delete an existing instructor, edit an existing instructor, show
details/display an instructor, and maybe list all instructors. These are (related) actions that
we can put together in one controller class, in here called InstructorController.

Similarly, for User data (model), we have an AccountController that allows us
(by means of actions) to register a new user account, login a user, or logout a user.

IMPORTANT: All controller classes must reside in the project’s root-level Controllers
folder.

We’ll see much more on actions soon; this chapter merely introduces actions and
controllers.

Inside the HomeController class, let’s add a second action. This time we’ll add a
very simple public method:

Using the default routing discussed above, how can you call this action?
The following URLs:
http://localhost:5125/
http://localhost:5125/Home/
http://localhost:5125/Home/Index
They all call the Index action from the HomeController.
To call our SecondAction method, we need to use.
http://localhost:5125/Home/SecondAction
We obtained the following in the browsing window: (0)^2 = 0.
Or better yet we can also pass a value for the id:
http://localhost:5125/Home/SecondAction/4
We obtained the following in the browsing window: (4)^2 = 16.
Note: If you don’t pass an Id, and one is needed by the action, the model binder will

use the default value (for integers that is 0).
Another note: One can also use query strings to pass values. The model binder is clever

enough to use them (we’ll see model binder later):
http://localhost:5125/Home/SecondAction?id=10.
We obtained the following in the browsing window: (10)^2 = 100.

http://www.localhost:5125/
http://www.localhost:5125/Home/
http://www.localhost:5125/Home/Index
http://www.localhost:5125/Home/SecondAction
http://www.localhost:5125/Home/SecondAction/4
http://www.localhost:5125/Home/SecondAction?id=10

7.4 Add a Model, a Controller, and Views 139

What happens when you use any of the following URLs? Why?
http://localhost:5125/Home/SecondAction/4/5
http://localhost:5125/SecondAction/
http://localhost:5125/Home/SecondAction?number=10.

7.4 Add a Model, a Controller, and Views

7.4.1 Add a Model Class

In here we’ll add a more meaningful example of controller and actions. We’ll also add a
model as well as some views.

Let’s start with creating a model class, let’s say a Student class.
First, create a new folder named Models in the root of the project (use the Solution

Explorer window). Then, inside this folder, add a new one called Student.
When you think of a student, what characteristics would each student have? Below is

just a set of characteristics we’ll use for this demonstration, but feel free to add more. We
will add the following (properties) in our model class:

public enum Major { CS, IT, MATH, OTHER }

public class Student
{
 public int StudentId { get; set; }
 public string? FirstName { get; set; }
 public string? LastName { get; set; }
 public bool IsVeteran { get; set; }
 public DateTime AdmissionDate { get; set; }
 public double GPA { get; set; }
 public Major Major { get; set; }
}

Above, we tried to include multiple types for our properties, such as integers, strings,
Booleans, and an enumeration.

That’s pretty much it for a model. Easy, right? We’ll add more to this soon, but for
now, you should feel quite comfortable defining model classes. They are just POCO
(plain old CLR object) classes that you have seen also in Chap. 5, where we reviewed
some fundamental concepts in C#.

http://www.localhost:5125/Home/SecondAction/4/5
http://www.localhost:5125/SecondAction/
http://www.localhost:5125/Home/SecondAction?number=10

140 7 Routing, Models, and Controllers

7.4.2 Add a (Second) Controller Class

We’ve seen above how we can add a controller class. Let’s add a more meaningful one
in here. This one will work (in conjunction) with the model class created above.

Let’s first decide what actions we would like to be able to perform on this model. Let’s
say we would like to.

. get a list of Students: the Index action;

. get more details for any one particular Student: the ShowDetails action;

. later, we’ll also want to be able to add a new Student: the Add action;

. later, we’ll also want to be able to edit the values for any one particular Student: the
Edit action;

. later, we’ll also want to be able to delete an existing Student: the Delete action.

We put all these actions into one class, a controller class, and we’ll name it
StudentController. It is typical for controller classes that work with a model, say
called XYZ, to be named XYZController. To create our controller, right-click on the
Controllers folder (inside the Solution Explorer window) and select Add > Controller ….

And just like we’ve seen of the first controller, select MVC Controller - Empty, then
name it StudentController.cs. Please double-check your spelling for the name of this class.

In this class, delete the default Index action, and add the following rather simple
actions:

public IActionResult Index()
{

return Content("Student Controller\nTO DO: display a list of student in here");
}

public IActionResult ShowDetails(int id)
{

//create an instance of the Student model
// ... this data would normally come from a database ...
Student st = new Student();
if (id == 10) //creating one sample student
{

st.FirstName = " Aylin";
st.LastName = "Hopper";
st.Major = Major.CS;
st.IsVeteran = true;
st.GPA = 4.0;
st.AdmissionDate = DateTime.Parse("2022-08-15");

}
else //creating another sample student
{

st.FirstName = "Rahsaan";
st.LastName = "Lubowitz";
st.Major = Major.IT;
st.IsVeteran = false;
st.GPA = 3.95;
st.AdmissionDate = DateTime.Parse("2021-01-07");

}
ViewBag.student = st; //pass the student to the view
return View();
}

7.4 Add a Model, a Controller, and Views 141

Above, make sure to add the appropriate using directive for the Student class.

using ASPBookProject.Models;

One way to pass data from an action to a view is by making use of the dynamic object
ViewBag. ViewBag is a dynamic wrapper of the ViewData dictionary, so we could
use either one, but in this book, we’ll only use the ViewBag.

One way to add data to the ViewBag is to use the dot notation. Since it is a dynamic
object, you’ll get no IntelliSense support so just be careful on the names you’re using. In
the example above, we used ViewBag.student. Instead of student, you could use
any identifier of your choice.

Later we’ll see better alternatives to ViewBag, (we’ll use strongly typed views) but
this is simpler to use for now.

7.4.3 Add a First View

The simplest way to add a view for an action is to right-click anywhere inside the action
(for us, this is inside the ShowDetails method) and select Add View …:

Make sure to add a view for the ShowDetails action, not the Index action. Then,
in the Add New Scaffolded Item window that opens, select Razor View (not Razor View—
Empty!), and click on the Add button.

Then, just confirm that the view’s name matches the action name, ShowDetails,
and uncheck all the options (we’ll learn about them later). Then click on the Add button.

You should note that Visual Studio created a new folder, called Views. Inside it, it
created a subfolder named Student (from the name StudentController), and inside
it, you have a new file, for the newly created view (check this out using the Solution
Explorer window).

Once the view file is created, you should see the following starting code in it:

@{
Layout = null;

}

<!DOCTYPE html>

<html>
<head>

<meta name="viewport" content="width=device-width" />
<title>ShowDetails</title>

</head>
<body>
</body>
</html>

142 7 Routing, Models, and Controllers

Does this look familiar? Except for the first three lines (which you can ignore for now),
what you have there is pretty much the basic HTML template we used in the first few
chapters of this book. You should feel in a familiar territory.

Let’s add some code to this view, so it displays the student that was passed via
the ViewBag object. Change the contents of the ShowDetails.cshtml file to match the
following (we’ll see views in more depth in the next chapter!):

@{
Layout = null;

}

<!DOCTYPE html>

<html>
<head>

<meta name="viewport" content="width=device-width" />
<title>Showing Details of a Students</title>

</head>
<body>

<h1>Showing details of student: @ViewBag.student.LastName, @ViewBag.student.FirstName</h1>
<p>Major: @ViewBag.student.Major</p>
<p>Is veteran: @ViewBag.student.IsVeteran</p>
<p>GPA: @ViewBag.student.GPA </p>
<p>Admission date: @ViewBag.student.AdmissionDate</p>

</body>
</html>

7.4.4 Test Our Code so Far

Compile and run the project. The landing page (based on the default constructor) should
be the Index action of the HomeController. The browsing window should display:

Hello World from Index action, HomeController!

Either of the following links should give you the same result as above:
http://localhost:5125
http://localhost:5125/Home
http://localhost:5125/Home/Index
Then, use the following URL: http://localhost:5125/Student
Note: The Student in the URL refers to the StudentController, not the

Student model.
Now let’s call the Index action of the StudentController class. What URL

would you use?
Any of the following should work (with the default routing we have set up so far):
http://localhost:5125/Student
http://localhost:5125/Student/Index
We obtained:

http://www.localhost:5125
http://www.localhost:5125/Home
http://www.localhost:5125/Home/Index
http://www.localhost:5125/Student
http://www.localhost:5125/Student
http://www.localhost:5125/Student/Index

7.5 Various Action Result Types 143

Fig. 7.2 Shows the result of calling the ShowDetails action (we see the view displayed in a browser)
when id is set to 20, or no value is provided in the URL request

Fig. 7.3 Shows the page ShowDetails page when id is set to 10

Student Controller

TO DO: display a list of students in here

Now let’s call the ShowDetails action. Run both of the following URLs. Can you
explain the results in each case (see Fig. 7.2)?

http://localhost:5125/Student/ShowDetails
http://localhost:5125/Student/ShowDetails/20
And for http://localhost:5125/Student/ShowDetails/10 (see Fig. 7.3).
Our web application is very simple, but this example helped us get a quick view of

models, views, and controllers. We’ll see them in more depth in the upcoming chapters.
And starting with Chap. 11, we’ll grab/load our data from a database.

7.5 Various Action Result Types

In StudentController we currently have two actions, one that returns
Content(…), and one that returns View(). Also, if you look at these two actions,

http://www.localhost:5125/Student/ShowDetails
http://www.localhost:5125/Student/ShowDetails/20
http://www.localhost:5125/Student/ShowDetails/10

144 7 Routing, Models, and Controllers

their return type, in both cases, was declared as IActionResult. Let’s explain this in
more depth.

Our actions can have various return types. Here is a list of common ones (although we
will mostly focus on ViewResult for the remainder of this book).

. ContentResult: Use this to send responses containing plain text or XML.
– Note: We used return Content(…) and this has the return type

ContentResult.
. ViewResult: Use this to render a View as a response (we’ll build entire HTML

pages).
– Note: We used return View(…) and this has the return type ViewResult.

. RedirectResult: Use this to redirect a request to a different URL.
– Note: We used return Redirect(…) and this has the return type

RedirectResult.
. On your own, you may want to check out the following:

– JsonResult: used to send a JSON object as a result.
– RedirectToActionResult: used when we want to redirect to another action

(from the same or another Controller).
– StatusCodeResult: used when we want to send an HTTP status code as a

result.

All these types enumerated here are implementing the IActionResult interface. If you
hold the Ctrl key and while doing so, also click on IActionResult, Visual Studio will
open the IActionResult.cs that contains the following definition of this interface:

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc
{

/// <summary>
/// Defines a contract that represents the result of an action method.
/// </summary>
public interface IActionResult
{

/// <summary>
/// Executes the result operation of the action method asynchronously. This method is

called by MVC to process
/// the result of an action method.
/// </summary>
/// <param name="context">The context in which the result is executed. The context

information includes
/// information about the action that was executed and request information.</param>
/// <returns>A task that represents the asynchronous execute operation.</returns>
Task ExecuteResultAsync(ActionContext context);

}
}

In our project, all actions are declaring this return type instead of the class type they
are returning. That is, we use.

7.6 Conventional Versus Attribute Routing 145

public IActionResult Index()

{
 return Content("Student Controller\nTO DO: display a list of student in here");
}

public IActionResult ShowDetails(int id)
{
 //...
 return View();
}

public IActionResult GoToGoole()
{
 return Redirect("https://www.google.com/");
}

which is simpler than using different return types for each action:

public ContentResult Index()
{
 return Content("Student Controller\nTO DO: display a list of student in here");
}

public ViewResult ShowDetails(int id)
{
 //...
 return View();
}

public RedirectResult GoToGoole()
{
 return Redirect("https://www.google.com/");
}

On your own, you may want to add the following actions to the StudentController
class and test them:

public IActionResult GoToGoole()
{
 return Redirect("https://www.google.com/");
}

public IActionResult AnotherIndex()
{
 return RedirectToAction("Index");
}

To learn more about these Action Results, we recommend [53].

7.6 Conventional Versus Attribute Routing

For the remaining chapters of this book, we will mostly use the default routing; for this
reason, we’ll keep this section short. But we thought it would be good for you to know a
little more about routing, to better understand it. In here we’ll compare the conventional
routing against the attribute routing. Check out the main source for this chapter [54].

146 7 Routing, Models, and Controllers

7.6.1 Conventional Routing

As we’ve seen above, the default routing is equivalent to.

app.UseRouting(); //adds route matching to the middleware pipeline

app.MapControllerRoute(//adds default routing
name: "default",

pattern: "{controller=Home}/{action=Index}/{id?}");

In this code, we used the MapControllerRoute to add one single route. One can
add more than one route (see the example below). Defining routes this way, in one central
location, the Program.cs file is called conventional routing.

We already explained the route given above, but now that we have seen a few exam-
ples, this should make more sense. Let’s review it once more. The route uses three path
segments, separated by /, and described in the pattern parameter. It has the following:

. {controller=Home} specifies that the first value will represent a controller.
– A default value of HomeController is given.

. {action=Index} specifies that the second value will represent an action.
– A default value of Index is given.

. {id?} specifies that the third value will represent a value for a variable called id.
– We used id for actions that have a parameter with the name id.
– The ? means that a value for id is optional.

When can add more than one route. In this case, each route has a higher priority for
matching than the subsequent ones. Therefore, the order in which routes are declared is
very important. If we have URLs that match multiple routes, the first route matching our
URL will be used.

Note: There are many ways to declare routes, we’ll just give here one more route.
Immediately after the line UseRouting already in the Program.cs (so right before

the default route) let’s add the following:

app.MapControllerRoute(//adds a second route
name: "secondroute",
pattern: "Display/{id?}",
defaults: new { controller = "Student", action= "ShowDetails" });

The name parameter is required that must be distinct from the names of the other
routes, but it has no impact on URL matching. It is only used internally when URLs are
generated.

Next, let’s explain the pattern parameter given above, then test it. This pattern
has two parts:

7.6 Conventional Versus Attribute Routing 147

Fig. 7.4 Shows the result of the HTTP request for the ShowDetails action using “secondroute” route

. Display—since this is not inside {}, URLs must contain the exact word (case
insensitive) to match the route.

. {id?}—since this contains {}, the value will represent an id. This segment is
optional because we have ?.

To match this route, your HTTP requests must look like this /Display or
/Display/somevalue. For example,

http://localhost:5125/Display
http://localhost:5125/Display/10
http://localhost:5125/Display/20
Which code (controller and action) will handle these requests? The defaults

parameter sets the request to be handled by the ShowDetails action from
StudentController.

In particular, note that the following HTTP request, which is handled by different
routes, will yield the same results (see Figs. 7.4 and 7.5):

http://localhost:5125/Display/10
http://localhost:5125/Student/ShowDetails/10.
One can use a “catch-all” route, but we will later use a friendly error page instead.

Therefore, for the purposes of this book, you may not want to add it to your routes. We
put it here just for completeness (it should be added last in the list of routes):

app.MapControllerRoute(//adds a catch-all route
name: "catch-all",
pattern: "{*anything}",
defaults: new { controller = "Home", action = "Index" });

Test it with http://localhost:5125/Test/Anything/you/wish.

http://www.localhost:5125/Display
http://www.localhost:5125/Display/10
http://www.localhost:5125/Display/20
http://www.localhost:5125/Display/10
http://www.localhost:5125/Student/ShowDetails/10
http://www.localhost:5125/Test/Anything/you/wish

148 7 Routing, Models, and Controllers

Fig. 7.5 Shows the same result as Fig. 7.4, but using a different (the default) route

7.6.2 Attribute Routing

After this chapter, we will not be using attribute routing. We only include them here for
completeness, and because we found them very easy to use, you may use them if you
go beyond the concepts covered in this book and learn about Web API. The reason why
we don’t recommend them for large MVC applications is that such routes are distributed
across multiple (controller) files, and hence they can quickly get out of control—especially
if you have multiple teams doing development of various controller classes.

Here is a good comparison between conventional routing and attribute routing: “The
conventional default route handles routes more succinctly. However, attribute routing
allows and requires precise control of which route templates apply to each action” [54].

Let’s see some examples (see more in [54]). We’ll add attribute routes to the
StudentController class.

If we run our web application, right now the HomeController, Index action is the
default page (see Fig. 7.6):

Let’s add the following attribute to our Index action: [Route("")]. Our action now
looks as follows:

[Route("")]
public IActionResult Index()
{
 return Content("Student Controller\nTO DO: display a list of student in here");
}

Fig. 7.6 Shows the default page for our application is currently coming from the Index action in
HomeController

7.6 Conventional Versus Attribute Routing 149

Fig. 7.7 Shows the default page for our application is now coming from the Index action in Stu-
dentController

Rebuild and run your web application. This made the Index action of the
StudentController the default page look similar to Fig. 7.7.

Let’s add a second and a third route to the same action. These are essentially alternative
routes (one can use either route to call our action):

[Route("")]
[Route("second")]
[Route("third/fourth")]
public IActionResult Index()
{
 return Content("Student Controller\nTO DO: display a list of student in here");
}

Now, we can access this page using any of the following URLs:
http://localhost:5125/
http://localhost:5125/second
http://localhost:5125/third/fourth.
IMPORTANT: Following HTTP requests will not get routed to our action from

Student controller by the default routing:
http://localhost:5125/third/
http://localhost:5125/Student/Index (we’ll explain this one in the next subsection).
One can use token replacement for action and controller names. For example, we can

add the following attribute routes to our actions inside StudentController:

public class StudentController : Controller
{

[Route("TestMe/[controller]/[action]")]
public IActionResult Index()
{

return Content("Student Controller\nTO DO: display a list of student in here");
}

[Route("TestMe/[controller]/[action]/{id?}")]
public IActionResult ShowDetails(int id)
{

// ...

In these attribute routes we added above, the class name will be used for
[controller], and the action name for [action]. In particular, to access these
actions, we’ll need to use URLs as the ones below (see Figs. 7.8 and 7.9):

http://localhost:5125/TestMe/Student/Index
http://localhost:5125/TestMe/Student/ShowDetails/10.

http://www.localhost:5125/
http://www.localhost:5125/second
http://www.localhost:5125/third/fourth
http://www.localhost:5125/third/
http://www.localhost:5125/Student/Index
http://www.localhost:5125/TestMe/Student/Index
http://www.localhost:5125/TestMe/Student/ShowDetails/10

150 7 Routing, Models, and Controllers

Fig. 7.8 Shows how the attribute routing can be used to call on the Index action from StudentCon-
troller

Fig. 7.9 Shows how the attribute routing can be used to call on the ShowDetails action from Stu-
dentController

Note that the routes have a lot of repeated code. We can improve our code by applying
the repetitive part of the route at the class level, so we don’t have to copy and paste it
for each action. Here is how that code would look like (the links above would work the
same):

[Route("TestMe/[controller]/[action]")]
public class StudentController : Controller
{
 [Route("")]
 public IActionResult Index()
 {
 return Content("Student Controller\nTO DO: display a list of student in here");
 }

 [Route("{id?}")]
 public IActionResult ShowDetails(int id)
 {
 // ...

There is much more to say about attribute routing, but we won’t be using it in our
book, so we’ll skip the other details. Check out [54] for more examples.

7.6.3 Mixing Routings

We’ve seen above that we can use both conventional and attribute routing in the same
project.

7.6 Conventional Versus Attribute Routing 151

Fig. 7.10 Shows you that requesting the Index action from StudentController will not give you
the expected results. This is because, in this example, we mixed attribute routing with conventional
routing for the same Controller class

When should we use either one? “It’s typical to use conventional routes for controllers
serving HTML pages for browsers, and attribute routing for controllers serving REST
APIs” [54].

IMPORTANT: In the same web application one can use both attribute and conventional
routing. But they should not both apply to the same controller class. “Actions that define
attribute routes cannot be reached through the conventional routes” [54].

In particular (see Fig. 7.10), http://localhost:5125/Student/Index will not give you the
Index action from the StudentController.

For the remaining part of this book, we’ll only use conventional routing.

http://www.localhost:5125/Student/Index

8More on Controllers and Views, Introduction
to Razor Syntax

In this chapter, we’ll create a new model, and a new controller, and learn more about
views. In particular, we’ll introduce in here the Razor syntax and some tag helpers. By
the end of this chapter, you should have a good understanding of controllers and be fairly
comfortable with views. We’ll see views in more depth in the next chapter.

8.1 A Little Cleanup Before We Continue

Before we continue with this chapter, let’s simplify our code. Let’s remove all attribute
routes from our StudentController class. If you wish, you may also remove all
conventional routes except for the default route.

We make these changes so it becomes easier to debug our project in case we get any
errors along the way. You may choose to disregard this, which is fine. Here is how our
Program.cs file looks like after these changes:

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddControllersWithViews(); //adds services needed for controllers

var app = builder.Build();//set up middleware components.
app.UseStaticFiles(); //needed to give access to files in wwwroot
app.UseRouting(); //adds route matching to the middleware pipeline
app.MapDefaultControllerRoute(); //adds default routing

app.Run();

Next, let’s quickly review the main MVC concepts (you should become more familiar
with these as we go through this and the next chapter).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_8

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_8

154 8 More on Controllers and Views, Introduction to Razor Syntax

8.2 Some Essential MVC Concepts and the HTTP Request
Lifecycle (Revisited)

The models are the classes that represent the various types of objects managed by the
web application.

. These objects represent the state of the application.

. For example (think about a web application such as Amazon, Canvas, Moodle,
…), we could have the following model classes: Course, User, Student, Instructor,
Administrator, Product, Seller, Buyer, and so on.

. Often, model object will use data retrieved from a database (we’ll add this capability
in Chap. 11).

The views will make up the user interface.

. We’ll use views to build webpages that ultimately will get displayed in a user’s browser.

. Typically, views will display our model data.

. For example (think about a web application such as Amazon, Canvas, Moodle, …),
we can have a view that will be used to display a list of all courses taken by a student,
or a list of all laptops available to buy. We could use another view to build a page that
allows our users to change their passwords.

The controllers will handle the user interaction.

. For example (think about a web application such as Amazon, Canvas, Moodle, …).
What happens when you click on a button? Or click on a link? Or load the first
welcome page? In each of these, your requests will (eventually) be sent to a Controller
(more specifically to an Action from that Controller).

. In many cases, the Controller will create an instance of a Model, then pass it to a View
to build a page that will eventually show up in the user’s browser.

Now let’s see again the HTTP request lifecycle (see Fig. 8.1). You should have a much
better grasp of it since we covered routing in the last chapter. What happens when a user
requests a page (either types in a URL, or clicks on a link or button)? Below, let’s assume
the default routing has been set up.

8.2 Some Essential MVC Concepts and the HTTP Request Lifecycle (Revisited) 155

Fig. 8.1 Shows various components of an MVC web application. In particular, note the middleware
pipeline, routing, static files, controllers, models, and views

Step 1: The user sends an HTTP request.

. For example, the user enters the following URL: http://www.mysite.com/student/
show/1.

. For our book, we will run the server from a local host. So instead of http://www.mys
ite.com we’ll use http://localhost:5125.

Step 2: A controller object is instantiated to respond to this request.

. The URL routing determines which controller & action will handle the HTTP
request.

. In our case, the StudentController will be instantiated.

Step 3: An action method is then called by the controller.

. A Show action will be called by the controller.

. A model binder helps us determine the values passed to the action as parameters (e.g.,
1).

. If needed, the action may create a new instance of a model class. In our example a
Student object.

. Typically, the action will pass the model object to a view to display the requested
results.

http://www.mysite.com/student/show/1
http://www.mysite.com/student/show/1
http://www.mysite.com
http://www.mysite.com
http://www.localhost:5125

156 8 More on Controllers and Views, Introduction to Razor Syntax

Step 4:

. We’ll make use of views to produce the output that is sent back to the client’s browser.

Notes:

. Typically, we have one controller class for each model class.
– For example, for the Student model, we have StudentController that will

allow us to add/edit/delete/display student data.
– Another example: for the User model, we will have AccountController that

will allow us to register/login/logout users.
– Yet, for the HomeController we will have no model class.

. Each controller can have multiple views
– We will see this below, but typically, we’ll create one view for each action.
– And as seen above, a controller may have multiple actions.

8.3 Another Example of Model, Controller, and Views

In here we’ll add another model, controller, and corresponding views. But this time we’ll
go in more depth with the MVC. In particular, we’ll focus more on views, and we’ll
introduce the Razor syntax (which essentially allows us to embed C# code inside views).

8.3.1 The Instructor Model

Let’s start by adding a new model. For this example, we’ll create a new class called
Instructor. Make sure to add this new class inside the Models folder (in the Solution
Explorer window, right-click on the Models folder then select Add > Class…).

Next, we need to choose what characteristics to add to this class. In our example below,
we added the following:

. InstructorId: An integer that uniquely identifies an instructor (a primary key, if
you think from a database perspective).

. FirstName: A string that will store an instructor’s first name.

. LastName: A string that will store an instructor’s last name.

. IsTenured: A Boolean value that will be set to true if an instructor is tenured.

. Rank: A value of enumerated type that will store an instructor’s rank.

. HiringDate: A DateTime value that will store an instructor’s hiring date.

8.3 Another Example of Model, Controller, and Views 157

Feel free to add other properties too. The ones we added above should be sufficient to
demonstrate the topics we want to cover in this book.

Here is the code we added to Instructor.cs:

public enum Ranks { Adjunct, Instructor, AssistantProfessor, AssociateProfessor,
FullProfessor };

public class Instructor
{
 public int InstructorId { get; set; }
 public string? FirstName { get; set; }
 public string? LastName { get; set; }
 public bool IsTenured { get; set; }
 public Ranks Rank { get; set; }
 public DateTime HiringDate { get; set; }
}

We hope that by now you feel very comfortable with creating model classes. We’ll see
more exciting things about them later, but what we have so far should be sufficient for
now.

8.3.2 The InstructorController Class

8.3.2.1 Adding a New Controller
Let’s add a controller for the Instructor model seen above. As seen earlier in this
book, to create a controller one can right-click on Controllers folder (in the Solution
Explorer window), then select Add > Controller…. Make sure to choose the MVC Con-
troller—Empty option (the other options that show up are MVC Controller with read/write
actions and MVC Controller with views, using Entity Framework).

Then click on the Add button and choose a name of InstructorController. Make sure
to double-check your spelling for this class name!

Your newly created file should contain the following contents:

using Microsoft.AspNetCore.Mvc;

namespace ASPBookProject.Controllers
{

public class InstructorController : Controller
{

public IActionResult Index()
{

return View();
}

}
}

8.3.2.2 Adding Some Sample Data to Our Controller
Let’s add some sample data for our controller, and some hard-coded values. A later
chapter will use data from a database instead of these values, but we’ll do one step at
a time.

158 8 More on Controllers and Views, Introduction to Razor Syntax

Inside the InstructorController class (we’ll add this right before the action
method), let’s create a List of Instructors with some hard-coded data. Make sure to add
the necessary using statement. Here is an example of what we added (feel free to add
more data):

List<Instructor> InstructorsList = new List<Instructor>()
{

new Instructor() {InstructorId = 100,
FirstName = "Maegan", LastName = "Borer",
IsTenured=false, HiringDate=DateTime.Parse("2018-08-15"),
Rank = Ranks.AssistantProfessor},

new Instructor() {InstructorId = 200,
FirstName = "Antonietta ", LastName = "Emmerich",
IsTenured=true, HiringDate=DateTime.Parse("2022-08-15"),
Rank = Ranks.AssociateProfessor},

new Instructor() {InstructorId = 300,
FirstName = "Antonietta", LastName = "Lesch",
IsTenured=false, HiringDate=DateTime.Parse("2015-01-09"),
Rank = Ranks.FullProfessor},

new Instructor() {InstructorId = 400,
FirstName = "Anjali", LastName = "Jakubowski",
IsTenured=true, HiringDate=DateTime.Parse("2016-01-10"),
Rank = Ranks.Adjunct}

};

Note: In class we typically ask students to help us provide some sample data. This is
more fun this way and it provides another opportunity for students’ engagement. Here we
used an online sample name generator (see, for example [55]).

8.3.2.3 Adding Actions to Our Controller
When you think of Instructor data, what operations/actions would you like to be
able to do?

Here are the actions we’ll add to our controller class:

. Index: Used to display a list of instructors.
– ShowAll: Same as the one above, we’ll use this to demonstrate redirect to action
– DisplayAll: Same as above, we’ll use this to demonstrate a view with a name

. Show(int id): Used to display all details for one instructor.

. Add: Used to create/add a new instructor. As we will see, this is a two-step process
(so we’ll have two actions).

. Edit(int id): Used to edit an existing instructor. This is also a two-step process
(so we’ll have two actions).

. Delete (int id): Used to delete an existing instructor. Optionally, this could also
be a two-step process.

8.3 Another Example of Model, Controller, and Views 159

Let’s add the following actions to our InstructorController (we’ll implement
each of them below).

public IActionResult Index()
{

return View();
}

public IActionResult ShowAll()
{

return View();
}

public IActionResult DisplayAll()
{

return View();
}

public IActionResult ShowDetails(int id)
{

return View();
}

public IActionResult Add()
{

return View();
}

public IActionResult Edit(int id)
{

return View();
}

public IActionResult Delete(int id)
{

return View();
}

IMPORTANT: Above that several actions have the same return View(); state-
ment. As we will see below, they will actually return different views/results. In here we
make use of the convention over configuration. In particular,

. the return View(); statement from Edit action will return the Edit view;

. the return View(); statement from Add action will return the Add view.

The view files used are Razor view files (also called Razor-based view templates). These
files have extension .cshtml and will contain both C# and HTML code. The Razor engine
will use the C# and HTML code from a view to render the corresponding HTML content
(HTML response) that will be sent back to the client who made the request (and will
ultimately be displayed in a browser). To read more about views, see also [56].

On a side note, the above actions should remind you of the CRUD operations, often
seen in a Database course. CRUD stands for the following (see more here: [57]):

160 8 More on Controllers and Views, Introduction to Razor Syntax

. Create operations: Used to create/add new data.

. Read operations: Used to retrieve/search/view existing data.

. Update operations: Used to update/edit existing data.

. Delete operations: Used to delete existing data.

A controller often implements the CRUD operations.
If you add a new controller, let’s call it TestController and select MVC Controller

with read/write access.
You get the following actions as part of the template (we’ll see many of these lines

throughout this book, as we add more to our controller classes):

public class TestController : Controller
{

// GET: TestController
public ActionResult Index()
{

return View();
}

// GET: TestController/Details/5
public ActionResult Details(int id)
{

return View();
}

// GET: TestController/Create
public ActionResult Create()
{

return View();
}

// POST: TestController/Create
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Create(IFormCollection collection)
{

try
{

return RedirectToAction(nameof(Index));
}
catch
{

return View();
}

}

// GET: TestController/Edit/5
public ActionResult Edit(int id)
{

return View();

8.4 The Index Action and View 161

}

// POST: TestController/Edit/5
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Edit(int id, IFormCollection collection)
{

try
{

return RedirectToAction(nameof(Index));
}
catch
{

return View();
}

}

// GET: TestController/Delete/5
public ActionResult Delete(int id)
{

return View();
}

// POST: TestController/Delete/5
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Delete(int id, IFormCollection collection)
{

try
{

return RedirectToAction(nameof(Index));
}
catch
{

return View();
}

}
}

8.4 The Index Action and View

This section will introduce many new and important concepts. We’ll revisit them, in
subsequent sections and chapters.

8.4.1 Add a View for Our Index Action

We would like to define this action to be used for requests that will ultimately display (in
the view) a list of instructors. For teaching/demonstration purposes, we’ll actually use a
table instead of a list.

162 8 More on Controllers and Views, Introduction to Razor Syntax

The Index action so far looks as follows:

public IActionResult Index()
{
 return View();
}

As seen in the previous chapter, the easiest way to add a corresponding view is to
right-click anywhere in the action and select Add View …. Then select the Razor View
option (for this example do not select Razor View—Empty option):

Make sure the name matches the action name (Index for us) and make sure all
Options are unchecked. Then click on the Add button.

IMPORTANT: You should note where this newly created view was added—it was
added inside the Instructor folder, which is inside the Views folder (see the Solution
Explorer windows).

All views are under the Views folder, inside a subfolder that matches the controller’s
name.

. All views for the InstructorController will be created under the Views folder,
Instructor subfolder.

. All views for the StudentController will be created under the Views folder,
Student subfolder.

Here are the contents of the Index view that were added automatically by the View
template:

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
</body>
</html>

Inside the <body> element, add the following code:

<h1>TO DO: add a list/table of instructors</h1>

To see this view, run the application and use the following URL in a browser (see
Fig. 8.2):

http://localhost:5125/Instructor/Index

http://www.localhost:5125/Instructor/Index

8.4 The Index Action and View 163

Fig. 8.2 Shows the Index view from InstructorController displayed in a browser

When you use the URL above and press enter to send an HTTP request to the server,
based on the default routing (which we set up in our project), your request will be sent
to the InstructorController, Index action. Based on the code above, the action
returns the Index view, which contains <h1> TO DO: add a list/table of
instructors </h1>.

Before we add more code to this view, let’s introduce two important topics.

8.4.2 Strongly Typed and Weakly Typed Views

In the previous chapter, we saw how to use the dynamic object ViewBag to pass infor-
mation from an action to its view. In here we’ll see a better (when appropriate) approach,
namely strongly typed views.

A view can be

. strongly typed—if it has a @model declaration at the top of the view page.
– The @model will declare the type of object this view works with.
– A view can work with one instance of a model: @model

ASPBookProject.Models.Instructor
– A view can work with a collection of instances of a model: @model

IEnumerable <ASPBookProject.Models.Instructor>
In this case, we’ll use @foreach to iterate through the collection

– Important: You cannot have more than one @model directive in a view!
. dynamically typed—if it does not have a @model declaration at the top of the view’s

page.
– We use this type if the view does not work with any model or
– We use this type if the view needs to work with more than one model.
– Important: Before using the model inside the view, you’ll need to check it is not

null!

Going back to our example, we would like to pass the InstructorsList to the view
to display it. For this, we do the following:

. Inside the Index action, make sure to pass this as a parameter to the View method.
– Replace return View(); with return View(InstructorsList);

164 8 More on Controllers and Views, Introduction to Razor Syntax

. Inside the Index view, at the top of the page, we need to add the @model directive
(this makes the view strongly typed):
– @model IEnumerable <ASPBookProject.Models.Instructor>

Here is how the Index action (from InstructorController) looks after the
change:

public IActionResult Index()
{

return View(InstructorsList);
}

In the Index view, you can delete (if you wish—it will make no difference, we’ll
explain this later).

@{
Layout = null;

}

Here is how our Index view looks after the change specified above:
@model IEnumerable<ASPBookProject.Models.Instructor>

<!DOCTYPE html>

<html>
<head>

 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <h1>TO DO: add a list/table of instructors</h1>
</body>
</html>

8.4.3 Introduction to Razor Engine and Razor Syntax

Before we continue, let’s have the Index action of InstructorController be the
default action called when we first run the application (essentially the default page). To
accomplish this, go to the Program.cs and replace the line:

app.MapDefaultControllerRoute(); //adds default routing

app.MapControllerRoute(//modified default routing
 name: "default",
 pattern: "{controller=Instructor}/{action=Index}/{id?}");

8.4 The Index Action and View 165

Now we would like to add code to our Index view, so it displays information about
all our instructors. As a starting point, let’s add the following table inside the body of the
Index view, right after the <H1> element:

<TABLE>
<THEAD>

<TR>
<TH>Course ID</TH>
<TH>Course name</TH>
<TH>Course link</TH>

</TR>
</THEAD>
<TBODY>

<TR>
<TD>CSC200</TD>
<TD>Object Oriented Programming</TD>
<TD>Course link</TD>

</TR>
<TR>

<TD>CSC340</TD>
<TD>Data Structures and Algorithms</TD>
<TD>Course link</TD>

</TR>
<TR>

<TD>CSC495</TD>
<TD>ST ASP .Net Core MVC</TD>
<TD>Course link</TD>

</TR>
</TBODY>

</TABLE>

Then rebuild your web application and run it. It should display the following default
page, similar to Fig. 8.3 (URL: localhost:5125/Instructor/Index):

Next, let’s modify this table to use the following table headers: First name, Last name,
and Rank. For this, replace the lines:

Fig. 8.3 Shows the Index view from InstructorController displayed in a browser, now containing a
table

166 8 More on Controllers and Views, Introduction to Razor Syntax

<TH>Course ID</TH>
<TH>Course name</TH>
<TH>Course link</TH>

with

<TH>First name</TH>
<TH>Last name</TH>
<TH>Rank</TH>

To display all values from the list of instructors, we’ll need to use C#. This is where
Razor comes in handy.

“Razor is a markup syntax for embedding .NET based code into webpages” (see more
in [58]). Therefore, using Razor syntax, we can embed C# code in our (Razor) views.
Then, a mechanism called Razor Engine will go through the view and run the C# and
HTML code, giving us only HTML content which is what we send as a response to the
client’s request.

Razor uses the @ symbol to transition from HTML to C#. For the transition from C#
back to HTML there is no symbol, Razor will (typically correctly) infer where this needs
to be done. These are called implicit Razor expressions and an example of it is the
following:

@DateTime.Now

When the implicit expressions aren’t correctly interpreting a Razor expression, we can
use explicit Razor expressions by making use of parentheses @(), for example,

@(DateTime.Now - TimeSpan.FromDays(7)).
For Razor code block we use curly braces, @{}. We’ll see examples below. Just like

C#, Razor supports.

. Conditionals: @if, else if, else, and @switch. For example (can you guess
what it does?),

@if (User.Identity.IsAuthenticated) //if the user is logged in
{

<li class="nav-item">
Logout

}

else
{

<li class="nav-item">
Login

}. Looping: @for, @foreach, @while, and @do while. We’ll see an example of this

below.
. Comments: @* … *@.
. C# comments (// and /*…*/) are also supported.

8.4 The Index Action and View 167

We’ll see more examples as we go through this book. Now let’s use this information to
build our table of instructors for the Index view. Go to the Index.cshtml file. Inside the
<TBODY> element we have three <TR> elements (one for each row). We would like to
replace those three rows with code that generates one row for each instructor from the
InstructorsList.

Some general notes:

. The Index view is strongly typed: it has the following @model directive:

. @model IEnumerable<ASPBookProject.Models.Instructor>.

. The InstructorsList was passed from the action to this view, and inside the
view, we refer to this list as Model.

. IMPORTANT: We use uppercase M in our view, except for the @model directive
where we use lowercase m.

. The Model represents the list, and we can use the dot notation to access its values.

Now, replace the <TBODY> element (and all its contents) with the following.

<TBODY>
@foreach (var instructor in Model)
{

<TR>
<TD>@instructor.FirstName </TD>
<TD>@instructor.LastName</TD>
<TD>@instructor.Rank</TD>

</TR>
}

</TBODY>

Also replace the <H1> element with:

<h1>All instructors</h1>

Then rebuild your application and run it, check out the results (URL: localhost:5125)—
they should look similar to Fig. 8.4.

We’ll see several more examples (involving the Razor syntax) below, so please be
patient.

8.4.4 Action Using a View with a Different Name

We would like to conclude this part with the following two brief examples.
If you want an action to use/return a view with the same name (for Index action,

to use the Index view), we just used return View(); and later we used return
View(InstructorsList);

168 8 More on Controllers and Views, Introduction to Razor Syntax

Fig. 8.4 Shows the updated
Index view from
InstructorController displayed
in a browser

In both cases, we did not have to specify to use the “Index” view, the compiler just
knew to use that view. This is an example of convention over configuration.

If instead we want an action (say DisplayAll) to use a view with a different name
(say Index), then we must pass the name as the first argument to the View() method
call. Here is an example (see both actions side by side):

public IActionResult Index()
{
 return View(InstructorsList); //will use the Index.cshtml view
}

public IActionResult DisplayAll()
{
 return View("Index", InstructorsList);//will use the Index.cshtml view
}

To test this, run http://localhost:5125/Instructor/DisplayAll and this should show a page
(Fig. 8.5) similar to what we’ve seen in Fig. 8.4.

Fig. 8.5 Same as the image in Fig. 8.4, but we now used a different action to request it (a different
URL)—the view is the same. The URL after the request stayed the same as the URL used in the
request

http://www.localhost:5125/Instructor/DisplayAll

8.5 The ShowDetails Action and View 169

Fig. 8.6 Same as the image in Fig. 8.4, but we now used a different action to request it (a different
URL)—the view is the same. The URL after the request has changed (was redirected) to a URL
different from the URL used in the request

IMPORTANT: Please note the URL, it shows the action being called is DisplayAll,
although the view used is Index.

The second example is the following. Modify the ShowAll action so its body is as
shown below:

public IActionResult ShowAll()
{
 return RedirectToAction("Index", InstructorsList);
}

To test this, run http://localhost:5125/Instructor/ShowAll
You will get the same result as above (see Fig. 8.6), but now the request was redirected

to the Index action (note the URL: localhost:5125/?Capacity=4&Count=4):

8.5 The ShowDetails Action and View

Below we’ll get to revisit some of the concepts we covered above (namely the
Razor syntax and strongly typed views), then we’ll introduce a few new ones. For the
ShowDetails action, we would like to create a view that nicely displays information
related to one instance of our model (one instance of Instructor).

8.5.1 The ShowDetails Action

What should we expect from this action? What should this action do? It should allow us
to provide an instructor id, search (normally in a database) for the instructor that matches
this id, and as a response, display the instructor.

http://www.localhost:5125/Instructor/ShowAll

170 8 More on Controllers and Views, Introduction to Razor Syntax

The ShowDetails action needs a parameter that uniquely identifies one
Instructor. Inside the Instructor class, that would be the InstructorId prop-
erty. However, since the default routing uses id as one of its segments, it is important that
we use id instead of InstructorId as a parameter for the ShowDetails action.
The reason for this has to do with model binding which we’ll cover a little later in this
book.

Alternatively, one can also add another route, one that uses a segment containing
InstructorId (or whatever name you would like to use for the parameter of the
ShowDetails action).

When the ShowDetails action is being called, a value for id is/should be
provided (this is the parameter of the action). Then, the action will search for an
instance of Instructor from our InstructorsList that has the value of prop-
erty InstructorId equal to the given Id. For this, we could use the code below
(explained next):

rwdnke KCevkqpTguwnv"UjqyFgvcknu*kpv kf+
}

11ugctej"hqt"vjg"kpuvtwevqt"yjqug"KpuvtwevqtKf"ocvejgu"vjg"ikxgp"kf
11""jgtg"yg"ctg"wukpi"KpuvtwevqtuNkuv."ncvgt"yg)nn"wug"c"fcvcdcug#
KpuvtwevqtA"kpuvt"?"KpuvtwevqtuNkuv0HktuvQtFghcwnv*kpu"?@"kpu0KpuvtwevqtKf"??"kf+=

kh *kpuvt"#?"pwnn+"11ycu"cp"kpuvtwevqt"hqwpfA
tgvwtp Xkgy*kpuvt+=

11kh"pq"kpuvtwevqt"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

Above, we first used the FirstOrDefault method to search for an instructor whose
InstructorId equals id. Note the lambda expression we used to essentially tell the
FirstOrDefault method how to search for our instructor. It’s a short and elegant
statement, but as we’ll see later, we’ll pretty much use the same code to search in a
database (via the Entity Framework Core) instead of a List, so please spend some extra
time if needed to understand this statement. The returned value will either be a reference
to an instance of Instructor (if one was found for the provided id) or the null
reference (if none was found).

If we found an/the Instructor, we’ll pass that to a view to prepare the client-side
code to be displayed in a browser. Otherwise, we’ll return the NotFound view that is
part of the ASP .Net (we did not implement this ourselves). We’ll see it below when we
test our ShowDetails view.

Next, we’ll implement the ShowDetails view for the ShowDetails action.

8.5.2 The ShowDetails View

We need to create a view for the ShowDetails action. Right-click anywhere in this
action as select Add View …, then follow the same steps as seen above to create a view.

8.5 The ShowDetails Action and View 171

Since the action is passing an instance of Instructor to this view, we should make
our view a strongly typed view by using the model directive:

@model ASPBookProject.Models.Instructor

Note: When using the @model directive, we needed to use the full class name that
has the form: namespace.classname.

8.5.2.1 The @using Directive
Instead of the one line @model directive:

Boqfgn"CURDqqmRtqlgev0Oqfgnu0Kpuvtwevqt

we could use the following two directives:

@using ASPBookProject.Models
@model Instructor

Similarly, in the Index view, we can replace.

@model IEnumerable<ASPBookProject.Models.Instructor>

with

@using ASPBookProject.Models
@model IEnumerable<Instructor>

which is easier to read.

8.5.2.2 The ViewImports File
Instead of using the @using ASPBookProject.Models directive in every view
in our project, we have a more elegant solution. We can create a file named

ViewImports.cshtml (directly under Views folder!) and copy this directive in there. Then,
we won’t need to add that directive to any of our views anymore (and we can remove
them from our views).

Let’s add the ViewImports file. For this, in the Solution Explorer window, right-click
on the Views folder, then select Add > New Item ….

Then, select Razor View Imports and click on the Add button. Make sure the name field
contains ViewImports.cshtml.

In this file (ViewImports.cshtml), add the line:

@using ASPBookProject.Models

Then, you can remove this directive from the Index and ShowDetails view files. You
won’t need to add this directive to any views you create from now on in this project.

172 8 More on Controllers and Views, Introduction to Razor Syntax

More specifically, the Index view should have no @using directive, only the following
directive:

@model IEnumerable<Instructor>

and similarly, for the ShowDetails view, it should only have the directive:

@model Instructor

If you wonder why we have an underscore (_) in the ViewImports.cshtml filename,
here is an explanation: “Files in the Views folder whose names begin with an underscore
(the _ character) are not returned to the user” (see [5]).

8.5.2.3 Let’s Finish the Implementation for the ShowDetails View
In strongly typed views, we can use @Model (and the dot notation) to access the fields of
our model. Here is how one could write a very simple implementation of our ShowDetails
view (we’ll improve it later):

@model Instructor

<!DOCTYPE html>

<html>
<head>

<meta name="viewport" content="width=device-width" />
<title>Instructor @Model.LastName Details</title>

</head>
<body>

<h1>Instructor @Model.LastName details</h1>
<p>First name: @Model.FirstName</p>
<p>Last name: @Model.LastName</p>
<p>Is tenured: @Model.IsTenured</p>
<p>Academic rank: @Model.Rank</p>
<p>Hiring date: @Model.HiringDate</p>

</body>
</html>

Note the use of Razor syntax (we used @) to embed our C# code inside HTML. To
test it (see Fig. 8.7), use the following two URLs:

http://localhost:5125/Instructor/ShowDetails/200
http://localhost:5125/Instructor/ShowDetails/20
You should get the HTTP ERROR 404—This localhost page can’t be found.
Note: We could have checked for a null reference inside the view (instead of checking

for it in the action) and provided a more friendly output via the ShowDetails view, but
we won’t need this. Later we’ll provide links for existing instructors and a friendly error
page for HTTP error codes.

http://www.localhost:5125/Instructor/ShowDetails/200
http://www.localhost:5125/Instructor/ShowDetails/20

8.6 A First Look at Tag Helpers and HTML Helpers 173

Fig. 8.7 Same as the ShowDetails, for InstructorController, displayed in a browser

8.6 A First Look at Tag Helpers and HTML Helpers

In this section, we would like to add links to our views, so we provide an easier navigation
for our users. One way to do this is by making use of HTML helpers and/or tag helpers.
They both use the project’s routing to generate links; on your own, we challenge you
to test this by modifying the routes and see how the links created by these helpers are
changed accordingly!

8.6.1 A First Example of an HTML Helper

HTML helpers are essentially C# functions that return (or build) HTML code. Here is
an example:

@Html.ActionLink("click for details", "ShowDetails", new{id=100})

Above, the Html.ActionLink function provided three arguments:

. one value for the hyperlink text (“click for details”);

. one value for the name of the action to call (“ShowDetails”);

. and one (optional) parameter—id—is provided a value (id = 100).

The result of the HTML helper above: it will show up in a browser as click for details.
The HTML code generated by the above HTML helper, using default routing, is:

click for details

174 8 More on Controllers and Views, Introduction to Razor Syntax

8.6.2 A First Example of a Tag Helper

Instead of HTML helpers one can use tag helpers. Tag helpers “enable server-side code
to participate in creating and rendering HTML elements in Razor files” [59]. Tag helpers
look very similar to HTML code, and in the author’s opinion, they are easier to read as
developers. In this book, we will mostly focus on tag helpers, but we will occasionally
also make use of HTML helpers.

We give below the tag helper equivalent to the HTML helper given above:

<a asp-action="ShowDetails" asp-route-id="100">click for details

The output and HTML code generated is identical to what the HTML helper gave us.
Note how natural this tag helper is. Since we need to create a link, we used the <A>
element (just like we did in Chap. 3, when we covered HTML). The content of this
element (“click for details”) is the text that appears as a link (pretty much what
we’ve seen in Chap. 3). But, thanks to tag helpers, the <A> element has two “attributes”
(which are not HTML, these are part of the tag helpers) we used:

. asp-action="ShowDetails"—to denote the action name (ShowDetails) we
want to use.

. asp-route-id="100"—to specify that the id part of the route should use the
value 100.
– IMPORTANT: If your route uses a different name instead of id, say

instructorId, then you should use asp-route-instructorId="100"

Very important: To use tag helpers, you will need to add the following directive:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

either

. in every view that uses tag helpers, or

. only in one file, namely in ViewImports.cshtml (we used this for our book).

Before you proceed, please add this directive into your ViewImports.cshtml. Here are its
contents now:

@using ASPBookProject.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

We will see a lot more about tag helpers in the next sections and chapters. But if you’re
eager to learn more now, we recommend the following Ref. [59].

8.6 A First Look at Tag Helpers and HTML Helpers 175

8.6.3 Add Links to the Index View Using Tag Helpers and HTML
Helpers

Let’s make use of the helpers introduced above to add links to the table displayed by
Index view of Student controller. To the table defined in Index.cshtml, add two more
<TH> elements:

<TH>Details (HTML helper)</TH>
<TH>Details (tag helper)</TH>

and two more <TD> elements inside the <TR> element:

<TD>@Html.ActionLink("details", "ShowDetails", new{id=@instructor.InstructorId})</TD>
<TD><a asp-action="ShowDetails" asp-route-id="@instructor.InstructorId">click for details </TD>

Here is how the <TABLE> element looks like with the changes above:

<TABLE>
<THEAD>

<TR>
<TH>First name</TH>
<TH>Last name</TH>
<TH>Rank</TH>
<TH>Details (HTML helper)</TH>
<TH>Details (tag helper)</TH>

</TR>
</THEAD>
<TBODY>

@foreach (var instructor in Model)
{

<TR>
<TD>@instructor.FirstName </TD>
<TD>@instructor.LastName</TD>
<TD>@instructor.Rank</TD>
<TD>@Html.ActionLink("details", "ShowDetails", new{id=@instructor.InstructorId})</TD>
<TD><a asp-action="ShowDetails" asp-route-id="@instructor.InstructorId"> details </TD>

</TR>
}

</TBODY>
</TABLE>

Above we used the helpers as seen in the previous subsection, but instead of hardcoding
the value 100, we used (via the dot notation) the InstructorId property for each
instructor included in the table. If you rebuild and run your project, you should get a
table (URL: localhost:5125), similar to the one in Fig. 8.8:

If you click on any of those links, you will get to the ShowDetails
page (see Fig. 8.9) of the corresponding instructor. For example (URL: local-
host:5125/Instructor/ShowDetails/200),

8.6.4 Add Bootstrap to the Index View

We will make our web application prettier in a future chapter. For now, focus on the
functional part of the application.

176 8 More on Controllers and Views, Introduction to Razor Syntax

Fig. 8.8 Shows the Index view for InstructorController displays a table of instructors. Each row
in this table contains links to the ShowDetails actions. Note how each link contains the ID of the
highlighted Instructor (in our example: 200)

Fig. 8.9 Shows the ShowDetails view, displayed in a browser, that we obtained by clicking on a link
from the Index page

To keep you motivated, we will do one small detour and make our table prettier using
Bootstrap 5 tables. If you review the section where we covered Bootstrap 5 tables, then
the following should be very familiar to you.

To use Bootstrap5 in our Index.cshtml view, we add the following links inside the
<HEAD> element, let’s say before the <TITLE> element:

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/bootstrap.min.css" rel="stylesheet">
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/bootstrap.bundle.min.js"></script>

8.6 A First Look at Tag Helpers and HTML Helpers 177

Fig. 8.10 This is the same page (Index) as the one shown in Fig. 8.9, but after adding the Bootstrap
library and corresponding classes (as described above)

Then, add the following CSS classes to the <TABLE> element: class="table
table-dark table-hover". It should look like

<TABLE class="table table-dark table-hover">

Now, run again your web application. The table should look like the one in Fig. 8.10:
For now, please have patience, we’ll make our web application look prettier when we

get to introduce layouts (in Chap. 12). This way we’ll be more efficient because we will
minimize redundant work (otherwise we would duplicate code in multiple places).

8.6.5 Add Links to the ShowDetails View

We finish this section with one more example of a tag helper and an html helper used to
generate links. Add the following lines right before the end tag of the <BODY> element
inside the ShowDetails view:

<a asp-action="Index">go to Index
@Html.ActionLink("go to Index", "Index")

Now, running your web application and clicking on a link to show the details of any
instructor, you should see two identical links, one created using a tag helper and one using
an HTML helper. Clicking on any of them will take you to Index.

For example, for the link with URL: localhost:5125/Instructor/ShowDetails/200 we
obtained Fig. 8.11:

In the next chapter, we’ll develop the actions and views for the following operations:
Add, Edit, and Delete.

178 8 More on Controllers and Views, Introduction to Razor Syntax

Fig. 8.11 Shows the ShowDetails view, as seen in Fig. 8.9, but with two hyperlinks added (as
described above)

9More on Views, Data Annotations

In this chapter, we’ll develop the actions and views for the following operations: Add,
Edit, and Delete. Along the way, we’ll also introduce Data Annotations, the Model
Binder, Model Validation, and some HTTP Verb Attributes.

IMPORTANT: Before we proceed, make sure your model classes use properties, not
fields! Otherwise, you may get unexpected errors or behaviors.

9.1 Introduction to Data Annotations

We’ll start with some simple examples of data annotations that probably won’t seem to
be very useful, but as we introduce more data annotations, you’ll find them very useful
and very powerful. They are well worth your time and we’ll make extensive use of them,
so please invest your time in understanding them.

Data annotations “are used to define metadata for ASP.NET MVC and ASP.NET data
controls” (see [60]). In particular, HTML helpers and tag helpers work very nicely with
Data Annotations (as we will see below).

9.1.1 Update the ShowDetails View

First, let’s modify the ShowDetails view. In the <BODY> element, replace the following
lines:

>r@Hktuv"pcog<"BOqfgn0HktuvPcog>1r@
>r@Ncuv"pcog<"BOqfgn0NcuvPcog>1r@
>r@Ku"vgpwtgf<"BOqfgn0KuVgpwtgf>1r@
>r@Cecfgoke"tcpm<"BOqfgn0Tcpm>1r@
>r@Jktkpi"fcvg<"BOqfgn0JktkpiFcvg>1r@

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_9

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_9

180 9 More on Views, Data Annotations

with

>r@>ncdgn cur/hqt?$BOqfgn0HktuvPcog$@>1ncdgn@<"BOqfgn0HktuvPcog>1r@
>r@>ncdgn cur/hqt?$BOqfgn0NcuvPcog$@>1ncdgn@<"BOqfgn0NcuvPcog>1r@
>r@>ncdgn cur/hqt?$BOqfgn0KuVgpwtgf$@>1ncdgn@<"BOqfgn0KuVgpwtgf>1r@
>r@>ncdgn cur/hqt?$BOqfgn0Tcpm$@>1ncdgn@<"BOqfgn0Tcpm>1r@
>r@>ncdgn cur/hqt?$BOqfgn0JktkpiFcvg$@>1ncdgn@<"BOqfgn0JktkpiFcvg>1r@

If we rebuild and run our project, and go to the ShowDetails page for any of our
instructors, we’ll see something similar to Fig. 9.1 (URL: localhost:5125/Instructor/
ShowDetails/200).

This doesn’t look like an improvement (yet!), especially since the labels displayed
do not contain spaces between words. For example, it now shows “FirstName” instead
of “First Name”. How can we fix this? We cannot have spaces in variable names, for
example, the following property name is not valid (see Fig. 9.2).

To fix the spacing in the displayed property name, we will use data annotations. They
are very powerful, and we’ll soon see why. But for now, let’s use an easy data annotation,
namely the display data annotation. If you go to the Instructor class definition, we

Fig. 9.1 This looks similar to Fig. 8.11, for now. To build it, we now used tag helpers

Fig. 9.2 Shows how creating a property with name containing spaces (“First Name”) will lead to
compilation errors

9.1 Introduction to Data Annotations 181

can add display data annotations to each of our properties, so instead of the property
names, we can display any text we want. For this, change the code in Instructor.cs from.

to

To use data annotations, we also need to include the following using directive:

Notes:

. One can add multiple data annotations for the same property, and

. some properties may have no data annotations.

A data annotation applies to the very next property that follows the data annotation.
With these changes, now the ShowDetails looks a little better (see Fig. 9.3).
What did we get out of this section? The most important part for now is that we

briefly introduced some display data annotations. Also, we have seen how we can use tag
helpers to display the name of the properties in our views, and how using display data
annotations, we can instead display any text we wish in place of property names. This
is very powerful in case we later want to change how a property is being displayed—we
only need to change the value in the display data annotation, without having to change the
name of the property, which means the code will still compile and work, but the displayed
value will be different. Just imagine changing a property from a class that is being used
in many files—you would need to change all those files; using data annotations, we did
not change any property name, we just changed how they can be displayed.

182 9 More on Views, Data Annotations

Fig. 9.3 Shows the same view as in Fig. 9.1, and it also uses tag helpers. Using data annotations,
however, we were able to override what is being displayed for each property (for example, we
displayed “Academic Rank” for the property named Rank)

In the above example, you may notice that the enum value of “AssociateProfessor”
isn’t very nice looking. We can use similar display data annotations for our enumerated
type too. In Instuctor.cs replace.

rwdnke gpwo Tcpmu }"Cflwpev."Kpuvtwevqt."CuukuvcpvRtqhguuqt."CuuqekcvgRtqhguuqt."HwnnRtqhguuqt"
Ä=

with

rwdnke gpwo Tcpmu }"Cflwpev."
Kpuvtwevqt."
]Fkurnc{*Pcog"?"$Cuukuvcpv"Rtqhguuqt$+_"CuukuvcpvRtqhguuqt."
]Fkurnc{*Pcog"?"$Cuuqekcvg"Rtqhguuqt$+_"CuuqekcvgRtqhguuqt."
]Fkurnc{*Pcog"?"$Hwnn"Rtqhguuqt$+_"HwnnRtqhguuqt"

Ä=

IMPORTANT: To see annotations being displayed we cannot just use the property
name (as in @Model.FirstName), we need to use tag helpers/html helpers to make
use of these display data annotations. Above we used a tag helper with the <label>
element to display property names. Below we’ll make changes (we can add HTML helpers
or tag helpers) to display property values too.

For our example, please replace the lines in ShowDetails.cshtml:

>r@>ncdgn cur/hqt?$BOqfgn0HktuvPcog$@>1ncdgn@<"BOqfgn0HktuvPcog>1r@
>r@>ncdgn cur/hqt?$BOqfgn0NcuvPcog$@>1ncdgn@<"BOqfgn0NcuvPcog>1r@
>r@>ncdgn cur/hqt?$BOqfgn0KuVgpwtgf$@>1ncdgn@<"BOqfgn0KuVgpwtgf>1r@
>r@>ncdgn cur/hqt?$BOqfgn0Tcpm$@>1ncdgn@<"BOqfgn0Tcpm>1r@
>r@>ncdgn cur/hqt?$BOqfgn0JktkpiFcvg$@>1ncdgn@<"BOqfgn0JktkpiFcvg>1r@

9.1 Introduction to Data Annotations 183

with

>r@>ncdgn cur/hqt?$BOqfgn0HktuvPcog$@>1ncdgn@<""BJvon0Fkurnc{Hqt*o"?@"o0HktuvPcog+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0NcuvPcog$@>1ncdgn@<""BJvon0Fkurnc{Hqt*o"?@"o0NcuvPcog+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0KuVgpwtgf$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"o0KuVgpwtgf+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0Tcpm$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"o0Tcpm+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0JktkpiFcvg$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"o0JktkpiFcvg+>1r@

Using these helpers, we ensured that the values displayed will make use of the Data
Annotations in our code. Above we used the DisplayFor Html helper. In order to use
this HTML helper, we provided it with a lambda expression specifying which property we
wanted to display. Rebuild and rerun your application, and see that the displayed enum
value has been fixed (see Fig. 9.4).

You should also note that the html helper (and similarly for tag helpers) made use of
the fact that IsTenured was declared as a Boolean property. Because of it, it displayed
its value as a checkbox (checked for true, unchecked for false). We’ll see more of
this in the next sections.

One last fix to do in here. In terms of hiring date, no one really records the time, just
the date. So we should only display the date portion and omit the time portion of our
DateTime property: HiringDate. To accomplish this, go to the Instructor.cs file, and
add the following data annotation right before the HiringDate property:

]FcvcV{rg*FcvcV{rg0Fcvg+_

So, this property now looks like

Fig. 9.4 Shows the same view as in Fig. 9.3 but now it is making use of the HTML helper Display-
For. In particular, note how a Boolean property such as IsTenured was displayed as a checkbox

184 9 More on Views, Data Annotations

Fig. 9.5 Shows the same view as in Fig. 9.4 but now the DateTime properly, named HiringDate,
only shows a Date (no Time)

]Fkurnc{*Pcog"?"$Jktkpi"fcvg$+_
]FcvcV{rg*FcvcV{rg0Fcvg+_
rwdnke FcvgVkog"JktkpiFcvg"}"igv="ugv="Ä

Rebuild and run your application. Here (see Fig. 9.5) is what we obtained now (much
better!).

9.1.2 Update the Index View (Optional)

Let’s update the Index view so that it uses tag helpers and the display data annotations
as seen above. Also, we should use an if statement to check if the list is empty (this is
different than null!). When the list is empty, we should display some specific text, such
as “No instructors found!”. To do this, add the following code to Index.cshtml and move
the <TABLE> element inside the if block (Note: to use C#, we used Razor syntax):

Bkh*Oqfgn0Eqwpv*+@2+
}

11rwv"vjg"vcdng"gngogpv"kp"jgtg
Ä
gnug
}

>j4@Pq"kpuvtwevqtu"hqwpf# >1j4@
Ä

Next, we would like to use tag helpers similar to what we have seen in the previous
subsection, to use the data annotations for the names of the table’s columns.

9.1 Introduction to Data Annotations 185

Challenge: Now the model reference is not pointing to one instance of Instructor,
but a list of Instructors, so our syntax will be a little different. We give below the entire
Index.cshtml file so you can also check your work:

Boqfgn"KGpwogtcdng>Kpuvtwevqt@
B}

Nc{qwv"?"pwnn=
Ä

>#FQEV[RG jvon@

>jvon@
>jgcf@

>ogvc pcog?$xkgyrqtv$ eqpvgpv?$ykfvj?fgxkeg/ykfvj$ 1@
>nkpm jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$ tgn?$uv{ngujggv$@
>uetkrv ute?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0okp0lu$@>1uetkrv@
>vkvng@Kpfgz>1vkvng@

>1jgcf@
>dqf{@

>j3@Cnn"kpuvtwevqtu>1j3@

Bkh*Oqfgn0Eqwpv*+@2+
}

>VCDNG encuu?$vcdng"vcdng/fctm"vcdng/jqxgt$@
>VJGCF@

>VT@
>VJ@>ncdgn cur/hqt?$Hktuv*+0HktuvPcog$@>1ncdgn@>1VJ@
>VJ@>ncdgn cur/hqt?$Hktuv*+0NcuvPcog$@>1ncdgn@>1VJ@
>VJ@>ncdgn cur/hqt?$Hktuv*+0Tcpm$@>1ncdgn@>1VJ@
>VJ@Fgvcknu"*JVON"jgnrgt+>1VJ@
>VJ@Fgvcknu"*vci"jgnrgt+>1VJ@

>1VT@
>1VJGCF@
>VDQF[@

Bhqtgcej *xct kpuvtwevqt"kp Oqfgn+
}

>VT@
>VF@Bkpuvtwevqt0HktuvPcog">1VF@
>VF@Bkpuvtwevqt0NcuvPcog>1VF@
>VF@Bkpuvtwevqt0Tcpm>1VF@
>VF@BJvon0CevkqpNkpm*$fgvcknu$."$UjqyFgvcknu$."pgy}kf?Bkpuvtwevqt0KpuvtwevqtKfÄ+>1VF@
>VF@>c cur/cevkqp?$UjqyFgvcknu$ cur/tqwvg/kf?$Bkpuvtwevqt0KpuvtwevqtKf$@fgvcknu>1c@>1VF@

>1VT@
Ä

>1VDQF[@
>1VCDNG@

Ä
gnug
}

>j4@Pq"kpuvtwevqtu"hqwpf#>1j4@
Ä

>1dqf{@
>1jvon@

As an exercise, we want to let you figure out how to use the HTML helpers seen in
the previous subsection (namely DisplayFor) so the Academic rank will make use of the
data annotations set in Instructor.cs. Your table should look similar to Fig. 9.6.

Here is one solution:

Fig. 9.6 Shows the same view as in Fig. 8.6 but it should now be using HTLM helpers

186 9 More on Views, Data Annotations

>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0HktuvPcog+">1VF@
>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0NcuvPcog+>1VF@
>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0Tcpm+>1VF@

9.2 The Add Action and View

This section is very important as it introduces several new important concepts, and it may
look a little more challenging than it actually is. Most concepts will be reviewed again
in the next section and you will probably have a much better understanding then. Please
have patience.

As we will see below, the Add operation is actually a two-step process and we’ll need
to create two Add actions:

. one for the GET operation that will be used to send a request for a form to fill out,
and

. one for the POST operation that we will use to send all data from the form to the
server.

9.2.1 The Add Action—GET

Let’s start easy. First, in the InstructorController, let’s add an Add action (if you
already have this, do not add it again!), as shown below.

rwdnke KCevkqpTguwnv"Cff*+
}

tgvwtp Xkgy*+=
Ä

Note: To access this action easily, we next add a link to this action in the Index view
(this is what we first see when we run our application). In the Index.cshtml, right before
the </BODY> tag, add the following link to our Add action (it’s a tag helper!):

>c cur/cevkqp?Cff@Cff"c"pgy"kpuvtwevqt >1c@

Now, let’s run the application. You should get a new link at the end of the Index page
(see Fig. 9.7).

If you click on that link, you will get an error message (“InvalidOperationException:
The view ‘Add’ was not found”.), which should make sense, since we did not yet create
a view for the Add action (try it!).

Now let’s add a view. Then ask yourself, what do you expect to get when you click on
that link? That’s what we’ll put in the Add view. Just like we’ve seen earlier, make sure
the view name matched the action name, and no options are selected.

9.2 The Add Action and View 187

Fig. 9.7 Shows the same view as in Fig. 9.6 but it should include a new link, Add a new instructor,
that would point to the Add action of InstructorController

Now, if we try again to click on the “Add a new instructor” link, we should get this
newly added view, which is empty.

Let’s add contents to this view.

9.2.2 The Add View

9.2.2.1 Add a Form Inside the View
Inside the Add.cshtml file, we should create a form that allows the user to enter the data
needed to create a new instance of Instructor. We’ve seen how to create forms at
the beginning of this book (in Chap. 3), and now we’ll make use of that knowledge and
make use of tag helpers.

Inside the Add view, inside the <BODY> element add the following code (on your own
also change the <TITLE> element):

>j3@Etgcvg"c"pgy"Kpuvtwevqt>1j3@
>hqto cur/cevkqp?Cff cur/eqpvtqnngt?$Kpuvtwevqt$ ogvjqf?$rquv$@

B, cff"hqto"eqpvgpvu"kp"jgtg"000"",B
>kprwv v{rg?$uwdokv$ xcnwg?$Etgcvg"Kpuvtwevqt$1@

>1hqto@

You should note that in the above we made use of the tag helpers to spec-
ify where should the data/request be sent to (namely the Add action from
InstructorController) when the user clicks on the submit button (the button will
display the text: Create Instructor). Here, in Fig. 9.8 is what we get so far if you
click on the “Add a new instructor” link (URL: localhost:5125/Instructor/Add).

We’ll explain the reason why we set the method=“post” below.

188 9 More on Views, Data Annotations

Fig. 9.8 Shows the Add view. It contains an H1 element and a form that only contains the submit
button

Before we continue, we need to make our view strongly typed. This is because the
form will work with an instance of Instructor, and also to get Model Binder support (see
below). Make sure to add the following at the beginning of the Add.cshtml file:

Boqfgn"Kpuvtwevqt

9.2.2.2 Populate the Form with Input Elements
Now let’s add input elements so the user can enter data needed for our new Instructor
instance. Replace the code @* add form contents in here... *@ with the
following lines (this should look similar to what we’ve seen in the previous sections):

>ncdgn cur/hqt?$KpuvtwevqtKf$@>1ncdgn@ >kprwv cur/hqt?$KpuvtwevqtKf$ 1@ >dt@
>ncdgn cur/hqt?$HktuvPcog$@>1ncdgn@ >kprwv cur/hqt?$HktuvPcog$ 1@ >dt@
>ncdgn cur/hqt?$NcuvPcog$@>1ncdgn@ >kprwv cur/hqt?$NcuvPcog$ 1@ >dt@
>ncdgn cur/hqt?$KuVgpwtgf$@>1ncdgn@ >kprwv cur/hqt?$KuVgpwtgf$ 1@ >dt@
>ncdgn cur/hqt?$JktkpiFcvg$@>1ncdgn@ >kprwv cur/hqt?$JktkpiFcvg$ 1@ >dt@
>ncdgn cur/hqt?$Tcpm$@>1ncdgn@ >kprwv cur/hqt?$Tcpm$ 1@ >dt@
>dt 1@

In particular, you should note that we used tag helpers for both:

. To display the names of the properties (via data annotations), we used the following
tag helper of the form:
– >ncdgn cur/hqt?$Rtqrgtv{Pcog$@>1ncdgn@

. To create an input field for the properties (again via data annotations), we used
– >kprwv cur/hqt?$Rtqrgtv{Pcog$ 1@

Running your application again, the form now (see Fig. 9.9) looks much better (do not
bother fixing InstructorId, we’ll remove it in Chap. 11).

Because we used tag helpers, Razor engine was able to figure out that.

. IsTenured is a Boolean value, hence the corresponding “input” element can be
displayed as a checkbox.
– <input asp-for = "IsTenured" />

9.2 The Add Action and View 189

Fig. 9.9 This is the same as Fig. 9.8, but the form now includes several labels and input elements
(as described above)

. HiringDate is DateTime (and the display data annotation declared this as a
Date), hence the “input” element can be displayed as date selector.
– <input asp-for = "HiringDate" />

Can you see how powerful tag helpers and data annotations are?

9.2.2.3 Create a Dropdown List for Properties of an Enum Type
IMPORTANT: The Academic rank (Rank property) wasn’t properly displayed. We would
like to get a dropdown list instead of input box (which is currently being displayed). To
accomplish this, replace.

>kprwv cur/hqt?$Tcpm$ 1@

with

<select asp-for="Rank" asp-items="@Html.GetEnumSelectList(typeof(Ranks))"></select>

Run again your application and check that you obtained a result similar to Fig. 9.10.
For completeness, we provide you below all the contents of the Add view:

190 9 More on Views, Data Annotations

Fig. 9.10 Is similar to Fig. 9.9, but now a dropdown menu was added for the Academic rank option.
Note that the first option is automatically selected

@model Instructor

<!DOCTYPE html>

<html>
<head>

<meta name="viewport" content="width=device-width" />
<title>Create a new Instructor</title>

</head>
<body>

<h1>Create a new Instructor</h1>
<form asp-action="Add" asp-controller="Instructor" method="post">

<label asp-for="InstructorId"></label>
<input asp-for="InstructorId" />

<label asp-for="FirstName"></label>
<input asp-for="FirstName" />

<label asp-for="LastName"></label>
<input asp-for="LastName" />

<label asp-for="IsTenured"></label>
<input asp-for="IsTenured" />

<label asp-for="HiringDate"></label>
<input asp-for="HiringDate" />

<label asp-for="Rank"></label>
<select asp-for="Rank" asp-items="@Html.GetEnumSelectList(typeof(Ranks))"></select>

<input type="submit" value="Create Instructor" />

</form>

</body>
</html>

9.2 The Add Action and View 191

One more fix for our dropdown list: We would like to not have Adjunct selected by
default. To fix this, we’ll add the following content for the <SELECT> element above:
<option value="">Select</option>

That is, if you replace:

<select asp-for="Rank" asp-items="@Html.GetEnumSelectList(typeof(Ranks))"> </select>

with:

<select asp-for="Rank" asp-items="@Html.GetEnumSelectList(typeof(Ranks))">
<option value="">Select</option>

</select>

then your Rank selector will not have a default value selected (see Fig. 9.11).
Rebuild and run again the application and fill in data into the form included in the

Add view. What happens when you click on the Create Instructor (the submit) button?
Per our code above, the submit button will send your data, as a POST request, to the
Add action (as of right now that is the same action as we created above). We would like
it to go to another action. For reason we’ll see later (when we do validation) we would
like our second action to also be called Add. Let’s create a second action, this one with
a parameter of type Instructor (our model class).

Fig. 9.11 Is similar to Fig. 9.10, but note that a default value is not preselected for the Academic
rank

192 9 More on Views, Data Annotations

9.2.3 The Add Action—POST

9.2.3.1 The Need for HttpGet and HttpPost Attributes
Add the following new action in the InstructorController.cs file (we added it right after
the previously added Add action):

public IActionResult Add(Instructor newInstructor)
{

return View();
}

This code compiles, because method overloading is allowed, but it will introduce a
challenge for the routing. Run your application again and click on the “Add a new instruc-
tor …” link. You will get the following error: AmbiguousMatchException: The
request matched multiple endpoints.

To fix this, we can add the following HTTP VERB Attributes:
[HttpGet]—for the first Add action and
[HttpPost]—for the second Add action.
You should now have

[HttpGet]
public IActionResult Add()
{

return View();
}

[HttpPost]
public IActionResult Add(Instructor newInstructor)
{

return View();
}

These attributes essentially restrict what type of requests their respective actions will
respond to.

Using [HttpPost] for an action, we are restricting that action to only respond to POST
requests.

. Typically, when you click on a link or type in a URL in the browser, you will make a
GET request.

. Typically, when you click on submit button for a form, or upload a file to send to the
server, you will make a POST request.

Using these attributes will take care of the ambiguity that the routing complained about.
The code should not compile without any errors.

9.2.3.2 Add Action (POST) Implementation, Introduction to Model
Binding

Let’s finish implementing the second Add action. We’ll explain why it works the way it
works below. Modify this action so it contains the code shown below:

9.2 The Add Action and View 193

[HttpPost]
public IActionResult Add(Instructor newInstructor)
{

InstructorsList.Add(newInstructor); //add the new instructor to our list
return View("Index", InstructorsList); //temporary fix - do not refresh the page!!!

}

Very important: The Add method above has one parameter of type Instructor.
We can choose any parameter type we need for an action, but in this case, we chose
Instructor because we have a very helpful mechanism, called the model binding,
which is helping us behind the scenes. Namely, when this second Add action is called,
the model binding will.

. look to find the information needed for our action—in our case, we need an instance
of Instructor;

. look at the information sent to the server—in our case, it will look into the data sent
by the form (and other sources too); and finally

. with the values entered in the form create an instance of the Instructor and pass
it along to our Add action.

We’ll see Model Binding again below, and it will make more sense in there. This is merely
an introduction.

Let’s test our code and see the steps involved to add a new instructor. Let’s explain
this step by step:

. First, we click on the Add a new instructor link from the Index page.

. This will send an HTTP GET request to the first Add action which in turn returns a
view that contains a form for the user to interact with (see Fig. 9.12).

. The user can fill in the form as desired (see Fig. 9.13).

And when they click on the submit button (Create Instructor), a second HTTP
request (a POST request because the form included the following in the <FROM> tag:
method="post") is being sent, and this one will go to the second Add action (because
the second one is the one that responds to POST request).

That second action will add the new Instructor object created by the model binding
and send this action to the InstructorsList and then returns the Index view, which
displays (see Fig. 9.14) the instructors (note the URL: localhost:5125/Instructor/Add).

We used return View instead of return RedirectToAction because this
did not involve a new request being sent to the server. The bad part is that the URL (look
in the screenshot above) will be localhost:5125/Instructor/Add. We did this “temporary
fix” because our data is not persistent. As soon as you go to localhost:5125 (or navigate
via any links on the page), you will lose this newly added instructor (see Fig. 9.15).

We’ll deal with data persistency later.

194 9 More on Views, Data Annotations

Fig. 9.12 The Add view for adding a new Instructor. It contains an H1 element, a form with multiple
labels, input elements, and a submit button

Fig. 9.13 This is the same view as the one seen in Fig. 9.13, but it contains some user entered values

9.2 The Add Action and View 195

Fig. 9.14 Shows the Index view for the InstructorController. It displays a table containing a list of
instructors’ details

Fig. 9.15 Shows the same information as shown in Fig. 9.14, but the newly added row is not there
anymore (it wasn’t saved)

9.2.4 A Few More Details About the Model Binding

In the example seen in the previous section, the model binding system was able to collect
various data from our form and turn them into an instance of the Instructor needed
for the Add action.

In general, the model binding system can retrieve data from various sources, in this
order:

. Form fields.

. Route data.

. Query string parameters.

. Uploaded files.

The model binding system can provide this data to controllers and even convert the
various string data to.Net types.

To learn more about model binding in ASP .Net Core, check out the following source
[61].

196 9 More on Views, Data Annotations

We finish this subsection with one more example. Suppose you have an action that
looks like.

public IActionResult SomeAction(int id, bool isPriority)

If your client is making an HTTP request that has the form:
http://mysite.com/Home/SomeAction/70?ISPRIORITY=true

Then model binding system will do the following for us:

. Convert the string 70 which is given as part of the HTTP request into the integer 70
needed for the action.

. Convert the string true which is given as part of the HTTP request into the Boolean
true needed for the action.

. It will even match the ISPRIORITY given in the HTTP request to isPriority needed
for the action.

9.2.5 A Few More Details About the GET Versus POST

We’ve briefly seen GET and POST (called HTTP verbs) earlier. They are both used to
send client information to a web server and are the most common. But there are some
important differences between them.

In class, we like to demonstrate the examples shown in:

. https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_get

. https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_post

GET requests

. can be cached;

. can be seen in the browser history;

. can be bookmarked;

. should not be used when dealing with sensitive data (such as username and password);

. have length restrictions;

. data is visible in the URL!;

. only ASCII characters are allowed for the data;
– we typically use them to send request for forms;
– when clicking on web links, we send GET requests.

http://mysite.com/Home/SomeAction/70?ISPRIORITY=true
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_get
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_post

9.2 The Add Action and View 197

POST requests

. do not remain in the browser history;

. cannot be bookmarked;

. have no restrictions on data length;

. data is not visible in the URL!;
– we typically use them to send data from forms (but we can sometimes also use GET

requests);
– we must use POST requests to send files to a server.

There are other HTTP verbs, such as PUT, HEAD, DELETE, and PATH, and you can
even define your own. But we won’t make use of them in this book. To read more about
them, check out the following resource [13].

Above, we’ve seen that Add was a two-step process. We had the following:

. Step 1: Add—the GET request: This was used to send a request to the server and in
return get a view that contains a form so the user can type in their data.
– This is when the user clicks a link (and later a button).

. Step 2: Add—the POST request: This was used to send the data entered into the form
to the server.
– This is when the user clicks on the submit button.

Let’s briefly discuss other examples.
The login process (we’ll implement this in a later chapter).

. Step 1: Login—the GET request: This sends a request to the server to get a form so
the user can type in their username and password.

. Step 2: Login—the POST request: When the user clicks on the submit button, the data
is sent to the server for processing (verify the correct login credentials and send back
some authentication cookies).

The Edit action (we’ll implement this below).

. Step 1: Edit—the GET request: This sends a request to the server to get a form loaded
with existing data.

. Step 2: Edit—the POST request: When the user clicks on the submit button, the data
is sent to the server for processing (save changes to the server).

198 9 More on Views, Data Annotations

9.3 The Edit Action and View

In this section, we’ll implement the Edit action. As discussed above, we’ll have two
Edit actions:

. One for the GET request that will return a form loaded with existing data, and

. one for the POST request that will allow the user to save changes to the database.

For simplicity, we’ll assume that only some fields are editable. In particular, we’ll assume
the InstructorId is not editable.

9.3.1 The Edit Action—GET

We start with the following. We need an action that allows us to specify an Id. With this
Id in hand, we’ll search in the InstructorsList (later we’ll search in a database)
to find an instance of Instructor whose InstructorId matches the given Id.

If such an Instructor was found, send it to the view to prepopulate a form (to
allow the user to change its values).

If such an Instructor was not found, use the NotFound method.
Since we will have two actions with the same name, we will again use the [HttpGet]

attribute which will limit this action to only respond to GET requests. Replace the
following in InstructorController.cs file:

public IActionResult Edit(int id)
{

return View();
}

with

[HttpGet]
public IActionResult Edit(int id)
{

//we should look for the instance that has the given Id
// ... later we'll search in the database
Instructor? instr = InstructorsList.FirstOrDefault(inst => inst.InstructorId == id);

if (instr != null) //if found, send it to the view
return View(instr);

//if no matching instructor was found ...
return NotFound();

}

9.3.2 Add Edit Links in the Index View

To make it easier for us to test the Edit functionality, let’s add an Edit link to each entry
in our table from the Index view.

9.3 The Edit Action and View 199

Fig. 9.16 Is similar to Fig. 9.15, but a new column (the Edit) is being added. This column contains
links that can be used to call the Edit action for each row/Instructor. In particular, note that these
links contain the corresponding ID for each instructor (in our example, we can see the ID 300 being
used)

Add a new <TH> entry:

<TH>Edit </TH>

And a new <TD> entry:

<TD><a asp-action="Edit" asp-route-id="@instructor.InstructorId">edit this </TD>

When you run your application, you should now have new links, edit links, one for
each row in the table from the Index view (see Fig. 9.16).

IMPORTANT: As you hover your mouse over an “edit this” link, make sure the link
shown in the lower left part of the webpage has a link that includes the InstructorId.
In our example, we see that 300 is included in localhost:5125/Instructor/Edit/300 .

To pass this Id to our edit this link, we include the following in the tag helper
used above (where id is the third segment used in our modified default routing set in
Program.cs):

asp-route-id="@instructor.InstructorId"

If you click on any of the edit links above, you will see an error. This is because we
did not yet implement the Edit view for the Edit action. Let’s implement it next.

9.3.3 The Edit View

Anywhere in the Edit (the GET) action, right-click and select Add View …. Follow the
steps similar as above to create a view with the name Edit. Since this view will work
with an instance of the Instructor class, we’ll make this view strongly typed by
adding the following at the very beginning of the Edit.cshtml file:

200 9 More on Views, Data Annotations

@model Instructor

Next, inside the <BODY> element we’ll add an <H1> element and a <FORM> element
containing just some select fields from Instructor class. Namely, we omitted the
FirstName field, assuming we don’t want to allow this to be editable:

<h1>Edit an instructor profile</h1>
<form asp-action="Edit" method="post">

<input asp-for="@Model.InstructorId" type="hidden" />
@*needed so the InstructorId is sent to the Edit(POST)*@

<label asp-for="LastName"></label>
<input asp-for="LastName" />

<label asp-for="IsTenured"></label>
<input asp-for="IsTenured" />

<label asp-for="HiringDate"></label>
<input asp-for="HiringDate" />

<label asp-for="Rank"></label>
<select asp-for="Rank" asp-items="@Html.GetEnumSelectList(typeof(Ranks))"></select>

<input type="submit" value="Save changes" />
<input type="button" onclick="history.back()" value="Cancel">

</form>

Above, we included a “go back” button that will act as a Cancel button:

<input type="button" onclick="history.back()" value="Cancel">

IMPORTANT: Above, we had to include a field containing the InstructorId. This
value is needed by the Edit action (the POST) to decide which instructor to update. The
model binding will find it if we include it in the request sent to the server when the user
clicks on the submit button (Save changes button). Since the user does not need to see it,
we’ll have it hidden from the user’s view.

Let’s run the web application to see what we got so far (see Fig. 9.17). When you click
on the edit this link, you send a request to the server. Namely, you will send a GET
request to the server (to the Edit action—the GET) along with the Id of the instructor
you want to modify.

Fig. 9.17 Is similar to Fig. 9.18

9.3 The Edit Action and View 201

Fig. 9.18 Displays the Edit view for InstructorController. It contains an H1 element and a form that
is prepopulated with the current Instructor data

The way we wrote our code, the Edit action will search for the Instructor from
the InstructorsList that has InstructorId equal to the provided Id. Once
found, it will pass that to the Edit view to display it in a form. And this form (loaded
with the values of the Instructor found above) is what we’re getting next, in Fig. 9.18
(note the URL: localhost:5125/Instructor/Edit/200).

The Cancel will take you back to the previous page.
The Save changes button will send a POST request to the Edit action (which we’ll

implement next).

9.3.4 The Edit Action—POST

Next, we will implement the Edit action that will respond to POST requests from the
form above. For this we will create a method/action in InstructorController.cs that looks
like:

[HttpPost]
public IActionResult Edit(Instructor instructorChanges)
{

//to do ...
}

You should note that we again will make use of the model binding system, by using a
parameter of type Instructor. The model binding system will search for values needed
to create an instance on Instructor, in particular it will collect the values from the
form (seen in the Edit view) and create an instance of Instructor and pass it to the
instructorChanges parameter.

202 9 More on Views, Data Annotations

The effect is that the instructorChanges parameter contains the values in the
form at the time the user clicks on the submit button.

Next, we need to use these values to change the Instructor in the
InstructorsList to match these new values. For this, use the code below to replace
the //to do … comment inside the Edit (the POST!) action:

//find the instructor from InstructorList
// who has the same InstructorId as the changes.InstructorId
Instructor? instr = InstructorsList.FirstOrDefault(instr => instr.InstructorId ==
instructorChanges.InstructorId);

if (instr != null) //if found, change the values in InstructorsList to match the changes
{

instr.LastName = instructorChanges.LastName;
instr.IsTenured = instructorChanges.IsTenured;
instr.HiringDate = instructorChanges.HiringDate;
instr.Rank = instructorChanges.Rank;

}
return View("Index", InstructorsList); //temporary fix - do not refresh the page!!!

If we change some or all values from the form (for example, to look like the ones
below in Fig. 9.19).

And click on the Save changes (the form’s submit button), this will send a POST
request to the Edit action to save these changes. In our example, we got the following
(Fig. 9.20).

It looks like we successfully changed the values from the InstructorsList.
The actions are working as expected, but there is a problem. Every time you click on a

link (or a button), you are sending a new HTTP request to the server. This in turn means
that we are creating a new instance of the controller, so all our changes (add or edit, for
example) are lost. Our data is not persistent! Test it, click on http://localhost:5125/—all
changes are lost!

Fig. 9.19 Is similar to Fig. 9.18, but it has some values changed

http://www.localhost:5125/

9.3 The Edit Action and View 203

Fig. 9.20 Shows the Index view that contains a table with Instructors information. In particular, it
appears that the Edit operation was successful

One fix for this is to use a database, which will see in a future chapter. Until then,
a “temporary fix” would be to use a service. This “temporary fix” is not very useful in
practice, but we want to use it as a reason for us to show you how to create a service—for
teaching purposes, we think this “temporary fix” is very useful even if it may not make
complete sense.

9.3.5 An Example of a Service

As mentioned above, this “temporary fix” isn’t very useful in practice, but it will give us
a chance to talk about services and dependency injection. We’ll see these topics again in
future chapters, so we wanted to use this section as an introduction to what services are
and how to use dependency injection.

As of right now, our hard-coded data for instructors is essentially put in the con-
structor of the controller. That’s a problem because each time a new HTTP request is
received, a new instance of the controller is created, meaning that all changes done to the
InstructorsList are lost. One “temporary fix” is to create a service and make that
service only be created once for the lifetime of the web application. That will ensure that
our data in InstructorsList will “survive” multiple HTTP requests. As long as we
do not restart the web application, the data in InstructorsList will appear to be
persistent. In Chap. 11, we’ll create real persistency by making use of a database.

There are three steps involved when creating new services.

9.3.5.1 Create a Class and an Interface
The first step is to create an interface (in here you should include the methods and
properties that you want others to access), and a class that implements that interface.

To be organized, we’ll create a folder called Services (if you already have this folder,
then just use it). We’ll include our class and interface source files inside this folder. If
you right-click on this folder, you can choose to Add > New Item ….

204 9 More on Views, Data Annotations

There you have many options, including a class and an interface (choose both,
one by one). We’ll call our interface IMyFakeDataService, and our class
MyFakeDataService.

For the interface, for this example, we only need one property, let’s call it
InstructorsList. Here is a sample code:

using ASPBookProject.Models;

namespace ASPBookProject.Services
{

public interface IMyFakeDataService
{

List<Instructor> InstructorsList { get; }
}

}

For the class, we will make it implement the interface defined above, and in the con-
structor for this class we’ll add our hard-coded data for instructors (copy and paste code
from the InstructorController class):

using ASPBookProject.Models;

namespace ASPBookProject.Services
{

public class MyFakeDataService : IMyFakeDataService
{

public List<Instructor> InstructorsList { get; }

public MyFakeDataService()//constructor
{

InstructorsList = new List<Instructor>()
{

new Instructor() {InstructorId = 100,
FirstName = "Maegan", LastName = "Borer",
IsTenured=false, HiringDate=DateTime.Parse("2018-08-15"),
Rank = Ranks.AssistantProfessor},

new Instructor() {InstructorId = 200,
FirstName = "Antonietta ", LastName = "Emmerich",
IsTenured=true, HiringDate=DateTime.Parse("2022-08-15"),
Rank = Ranks.AssociateProfessor},

new Instructor() {InstructorId = 300,
FirstName = "Antonietta", LastName = "Lesch",
IsTenured=false, HiringDate=DateTime.Parse("2015-01-09"),
Rank = Ranks.FullProfessor},

new Instructor() {InstructorId = 400,
FirstName = "Anjali", LastName = "Jakubowski",
IsTenured=true, HiringDate=DateTime.Parse("2016-01-10"),
Rank = Ranks.Adjunct}

};
}

}
}

9.3.5.2 Register Your Service
The code above is just defining an interface, and a class that implements that interface.
Nothing special. To make the code above a service, one needs to register it as a service.
To do this, in Program.cs we add the following line:

builder.Services.AddSingleton<IMyFakeDataService,
MyFakeDataService>();

9.3 The Edit Action and View 205

We must add this line before we call the builder.Build(); method (so the first
part of the Program.cs file will look similar to):

using ASPBookProject.Services;

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton<IMyFakeDataService, MyFakeDataService>(); //our data service
builder.Services.AddControllersWithViews(); //adds services needed for controllers

var app = builder.Build();//set up middleware components.
app.UseStaticFiles(); //needed to give access to files in wwwroot

That’s it. Now we have a service. The dependency injection will take care of creating a
new instance of this class when needed. And since we used the AddSingleton method,
only one instance will be created as long as the web application is not restarted.

9.3.5.3 Inject Your Service and Make Use of It
Now, finally, the using part. To use the service in various parts of our web application,
we’ll make use of a mechanism called service injection. Please get familiar with this
because we’ll use this again in future chapters.

In particular, we would like to use this service (it’s data actually) inside a controller
(InstructorController.cs for our example).

Let’s first do some cleanup. Inside InstructorController.cs, delete the following code:

List<Instructor> InstructorsList = new List<Instructor>()
{

new Instructor() {InstructorId = 100,
FirstName = "Maegan", LastName = "Borer",
IsTenured=false, HiringDate=DateTime.Parse("2018-08-15"),
Rank = Ranks.AssistantProfessor},

new Instructor() {InstructorId = 200,
FirstName = "Antonietta ", LastName = "Emmerich",
IsTenured=true, HiringDate=DateTime.Parse("2022-08-15"),
Rank = Ranks.AssociateProfessor},

new Instructor() {InstructorId = 300,
FirstName = "Antonietta", LastName = "Lesch",
IsTenured=false, HiringDate=DateTime.Parse("2015-01-09"),
Rank = Ranks.FullProfessor},

new Instructor() {InstructorId = 400,
FirstName = "Anjali", LastName = "Jakubowski",
IsTenured=true, HiringDate=DateTime.Parse("2016-01-10"),
Rank = Ranks.Adjunct}

};

How to Inject a Service?
Now, let’s inject the service into our controller. To do this, we need to.

Part 1: Define a (private) field of type IMyFakeDataService. We’ll access our
fake data through this field:

private readonly IMyFakeDataService _fakeData;

Part 2: Add a parameter to the constructor that will be used to set the field defined
above. The “magic” of dependency injection is that the Dependency Injection will
automatically set the value for your parameter when the constructor is being called:

206 9 More on Views, Data Annotations

public InstructorController(IMyFakeDataService fakeData)
{

_fakeData = fakeData;
}

How to Use the Service?
Using the service is easy, we’ll just make use of the private field defined in step 1.

In all the actions defined in InstructorController.cs, replace all occurrences of
InstructorsList with _fakeData.InstructorsList.

For your reference, here is how the first part of the InstructorController class
looks after making the changes mentioned above:

using ASPBookProject.Models;
using ASPBookProject.Services;
using Microsoft.AspNetCore.Mvc;

namespace ASPBookProject.Controllers
{

public class InstructorController : Controller
{

private readonly IMyFakeDataService _fakeData;

public InstructorController(IMyFakeDataService fakeData)
{

_fakeData = fakeData;
}

public IActionResult Index()
{

return View(_fakeData.InstructorsList); //will use the Index.cshtml view
}

public IActionResult DisplayAll()
{

return View("Index", _fakeData.InstructorsList);//will use the Index.cshtml view
}

public IActionResult ShowAll()
{

return RedirectToAction("Index", _fakeData.InstructorsList);
}

public IActionResult ShowDetails(int id)
{

//search for the instructor whose InstructorId matches the given id
// here we are using InstructorsList, later we'll use a database!
Instructor? instr = _fakeData.InstructorsList.FirstOrDefault(ins => ins.InstructorId == id);

if (instr != null) //was an instructor found?
return View(instr);

//if no instructor was found ...
return NotFound();

}

[HttpGet]
public IActionResult Add()

...

Some “Cosmetics”
Now that we have some “temporary fix” for our persistency problem, replace the
two lines that have the code (from the Add and Edit—POST actions defined in
InstructorController.cs):

return View("Index", _fakeData.InstructorsList); //temporary fix - do not refresh the page!!!

9.4 The Delete Action and View 207

With

return RedirectToAction("Index");

This will make the URL look nicer after we finish adding/editing an instructor. The
URL will be the one for the Index action. Also, the two actions have a little cleaner
code.

Test your code. Now you should be able to add multiple new instructors, perform
multiple changes, and see them all in the Index view. As long as you don’t restart the
application, these changes seem to be persistent.

9.4 The Delete Action and View

Finally, we got to the last CRUD operation, the delete. This operation can be done in one
step or two. Below we’ll follow the previously mentioned two-step process.

9.4.1 The Delete Action—GET

We need an action that allows us to specify an Id. With this Id in hand, we’ll search
in our InstructorsList (later we’ll search in our database) to find an instance of
Instructor whose InstructorId matches the given Id.

. If such an Instructor was found, send it to the view to prepare the information to
be displayed in a browser.

. If such an Instructor was not found, use the NotFound method.

We will again use the [HttpGet] attribute which will limit this action to only respond
to GET requests. Make sure your InstructorController.cs file contains the following action:

[HttpGet]

public IActionResult Delete(int id)
{

//we should look for the instance that has the given Id
// ... later we'll search in the database
Instructor? instr = _fakeData.InstructorsList.FirstOrDefault(inst => inst.InstructorId == id);

if (instr != null) //if found, send it to the view
return View(instr);

//if no instructor was found ...
return NotFound();

}

208 9 More on Views, Data Annotations

9.4.2 Add Delete Links in the Index View

To make it easier for us to test the Delete functionality, let’s add a Delete link to each
entry in our table from the Index view.

Add a new <TH> entry:

<TH>Delete </TH>

And a new <TD> entry:

<TD><a asp-action="Delete" asp-route-id="@instructor.InstructorId">delete this </TD>

9.4.3 The Delete View

Let’s add a view for our Delete (the GET) action. We’ll make this view strongly typed
by adding the following at the very beginning of the Delete.cshtml file:

@model Instructor

The view should ask for a confirmation (“Are you sure …?”) and contain two buttons,
one for yes, delete, and one for no, cancel. In order to send a POST request from the
button, we’ll put it inside a form. As above, we must include a hidden field containing
the ID so this value can be sent to the server. Here is a possible <BODY> element for our
view.

Next, inside the <BODY> element we’ll add an <H1> element and a <FORM> element
containing just some select fields from Instructor class. Namely, we omitted the
FirstName field, assuming we don’t want to allow this to be editable:

<body>
<h1>Are you sure you want to delete this instructor?</h1>
<form asp-action="DeleteConfirmed" method="post">

<input asp-for="InstructorId" type="hidden" />
<p><label asp-for="@Model.FirstName"></label>: @Html.DisplayFor(m => m.FirstName)</p>
<p><label asp-for="@Model.LastName"></label>: @Html.DisplayFor(m => m.LastName)</p>
<p><label asp-for="@Model.Rank"></label>: @Html.DisplayFor(m => m.Rank)</p>

<input type="submit" value="YES, delete" />
<input type="button" onclick="history.back()" value="NO, cancel">

</form>
</body>

Notice again how we included the hidden field containing the InstructorId. This
is needed for the DeleteConfirmed action (the POST). The model binding will find it and
use it if the called action (DeleteConfirmed) needs it.

9.4 The Delete Action and View 209

9.4.4 The DeleteConfirmed Action—POST

Next, we will implement the DeleteConfirmed action that will respond to POST
requests from the form above.

First, let us explain the name. The second Delete action does not need an entire
Instructor parameter, and it only needs an int parameter (the Id). The problem is
that in C# we cannot have two Delete methods both having one int parameter. It
doesn’t matter we have one marked as HttpGet and the other HttpPost.

There are two solutions:

. either use a different parameter type (for example, we could use Instructor type—just
like we did for Edit and Add)

. or use different action names (we chose in here to do this—named our second action
DeleteConfirmed).

For this example, we will create a method that looks like

[HttpPost]
public IActionResult DeleteConfirmed(int instructorId)
{

//we should look for the instance that has the given Id
// ... later we'll search in the database
Instructor? instr = _fakeData.InstructorsList.FirstOrDefault(inst => inst.InstructorId ==

instructorId);

if (instr != null) //if found, delete it from list
{

_fakeData.InstructorsList.Remove(instr);
return RedirectToAction("Index");

}
//if no instructor was found ...
return NotFound();

}

Let’s test this. When you run the web application, you should get the following table
(see Fig. 9.21).

Fig. 9.21 Is similar to the table shown in Fig. 9.20, but a new column (the Delete column) was
added. This column contains links that can be used to send Delete requests for each of the Instructors
in the list. Note that each link contains the ID of the currently selected instructor (in the screenshot
above, the ID = 300 is being shown)

210 9 More on Views, Data Annotations

If you click on any delete this link, you will send a GET request to the Delete
action. This action returns a view (see Fig. 9.22) that displays the following (URL:
localhost:5125/Instructor/Delete/300).

If you click on the NO, cancel button, you’ll be taken back to the previous page.
If you click on the YES, delete button, you’ll send a POST request to the

DeleteConfirmed action, because this is what we used in the tag helper above:
<form asp-action="DeleteConfirmed" method="post">

Fig. 9.22 Shows the Delete view displayed in a browser. In particular, this displays information
about the current instructor to be deleted, and it includes two buttons

Fig. 9.23 Shows the Index view, displayed in a browser, with one entry/row removed from the table

Fig. 9.24 Shows the Index view, displayed in a browser, when all rows are deleted from the table. In
particular, note that the table is not displayed (since it’s empty). Instead, the “No instructors found!”
is being displayed.

9.4 The Delete Action and View 211

This action will delete the selected Instructor. Now the table looks like (see Fig. 9.23).
On your own, go ahead and delete all instructors. You should get the following

(Fig. 9.24).
Which part of the code is responsible for creating this outcome?

10Model Validation

Before we continue, let’s add a few more properties to the Instructor class. This will
allow us to better demonstrate some concepts. Let’s add the following properties and data
annotations to Instructor.cs file:

[Display(Name = "Office phone number")]
public String? PhoneNumber{ get; set; }

[Display(Name = "Email address")]
public String? EmailAddress { get; set; }

[Display(Name = "Personal webpage")]
public String? PersonalURL { get; set; }

[Display(Name = "Password (we won't use this!)")]
[DataType(DataType.Password)]
public string? UnusedPassword { get; set; }

Then, add the corresponding code to the Add view (inside Add.cshtml file, right before
the “submit” button):

<label asp-for="PhoneNumber"></label>
<input asp-for="PhoneNumber" />

<label asp-for="EmailAddress"></label>
<input asp-for="EmailAddress" />

<label asp-for="PersonalURL"></label>
<input asp-for="PersonalURL" />

<label asp-for="UnusedPassword"></label>
<input asp-for="UnusedPassword" />

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_10

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_10

214 10 Model Validation

Fig. 10.1 Shows the Add view for InstructorController. It contains a form, and several input fields
have values in it

If you run your application and go to add a new Instructor, you should note the
following (see Fig. 10.1):

. The password is nicely hidden from plain view;

. If you press the Create Instructor button, it will take/save your answers, even
though they are not valid.
– The value entered for “my email” is not a valid email address
– The value “two three five” is not a valid phone number format.

You can even submit an empty form (multiple times too!), as shown in Fig. 10.2.
Here is the result (see Fig. 10.3).
We should not accept any random data; we should at least enforce some validation.

This is what we’ll see next. On the server side, we will add some model validation. The

10 Model Validation 215

Fig. 10.2 Is the same as Fig. 10.1, but no data has been entered in the form

Fig. 10.3 Shows the Index view, for InstructorController. In it, note that the last two rows are the
result of submitting empty forms to the server:

216 10 Model Validation

main reference for this page is [62] and we encourage you to look over it. There are three
main steps to follow:

. Make use of built-in validation attributes (we’ll also see how to build our own
custom validation attributes).

. Enforce validation by making use of the ModelState.

. Add validation helpers to display error messages.

10.1 Step 1: Add (Built-in or Custom) Validation Attributes

There are several built-in validation attributes that we can use. Here is a short list (see
more in [62]).

. [EmailAddress] checks that the property has a valid email format.

. [Phone] checks that the property has a valid telephone number format.

. [Range] checks that the property value is within a given range.

. [RegularExpression] checks that the property value matches a given regular
expression.

. [Required] checks that the field is not null.

. [StringLength] checks that the field does not exceed a given max length. It also
accepts a MinimumLength value.

. [Url] checks that the property has a proper URL format.

Let’s use some of these in our web application.

. We will add [Required] to fields that must be given a value by the user. We will
occasionally make use of the ErrorMessage property to specify a custom error
message (otherwise a default error message will be used).

. We will also make use of the [Url] and [EmailAddress] attributes to check for
us that the values entered have a valid format. Note: since the properties using these
attributes are not [Required], empty values will pass the validation check.

. For the phone number, we could use [Phone], but we opted to use the
[RegularExpression] instead just for practice purposes.

Here is how the Instructor class looks like once we added the built-in validation
attributes:

10.2 Step 2: Enforce Validation by Making Use of the ModelState 217

public class Instructor
{

[Required]
public int InstructorId { get; set; }

[Display(Name = "First name")]
public string? FirstName { get; set; }

[Required(ErrorMessage = "last name is required")]
[Display(Name = "Last name")]
public string? LastName { get; set; }

[Display(Name = "Is tenured")]
public bool IsTenured { get; set; }

[Required]
[Display(Name = "Academic rank")]
public Ranks Rank { get; set; }

[Display(Name = "Hiring date")]
[DataType(DataType.Date)]
public DateTime HiringDate { get; set; }

[RegularExpression("[0-9]{3}-[0-9]{3}-[0-9]{4}",
ErrorMessage = "you must follow the format 000-000-0000!")]

[Display(Name = "Office phone number")]
public String? PhoneNumber { get; set; }

[EmailAddress]
[Display(Name = "Email address")]
public String? EmailAddress { get; set; }

[Url]
[Display(Name = "Personal webpage")]
public String? PersonalURL { get; set; }

[Required]
[StringLength(10, MinimumLength = 5)]
[Display(Name = "Password (we won't use this!)")]
[DataType(DataType.Password)]
public string? UnusedPassword { get; set; }

}

10.2 Step 2: Enforce Validation by Making Use of the ModelState

We’ll show you next how to use ModelState to enforce the validation
attributes we added above. “For web apps, it’s the app’s responsibility to inspect
ModelState.IsValid and react appropriately” [62].

Where do we want to validate user data? We want to do this when we add or edit an
instructor. Therefore, we’ll make changes in the Add action and Edit action (POST).

Change Add action (inside InstructorController.cs):

[HttpPost]
public IActionResult Add(Instructor newInstructor)
{

_fakeData.InstructorsList.Add(newInstructor); //add the new instructor to our list
return RedirectToAction("Index");

}

into

218 10 Model Validation

[HttpPost]
public IActionResult Add(Instructor newInstructor)
{

if (!ModelState.IsValid) //if the data is invalid
return View(); //go back to the view

_fakeData.InstructorsList.Add(newInstructor); //add the new instructor to our list
return RedirectToAction("Index");

}

Some explanation. Before we add any new data into our InstructorsList, we
want to make sure it is valid. So, what we did above is as follows: if the data is not valid
(we check the status of the data by checking the value of the ModelState.IsValid)
then return View. What view will it be?

Remember “convention over configuration”: in the line above, View() means the
view with the same name as the action, so in this case it will be the Add.cshtml. This
is where it was useful to use the same name for both the POST and the GET Add actions:
they both have the same name, so the View in both cases will be the same one containing
the Add form.

Similarly, change the Edit action to include the same check as above. After change,
your Edit (POST) should look as follows:

public IActionResult Edit(Instructor instructorChanges)
{

if (!ModelState.IsValid) //if the data is invalid
return View(); //go back to the view

//find the instructor from InstructorList
// who has the same InstructorId as the changes.InstructorId
Instructor? instr = _fakeData.InstructorsList.FirstOrDefault(instr => instr.InstructorId

== instructorChanges.InstructorId);

if (instr != null) //if found, change the values in InstructorsList to match the changes
{

instr.LastName = instructorChanges.LastName;
instr.IsTenured = instructorChanges.IsTenured;
instr.HiringDate = instructorChanges.HiringDate;
instr.Rank = instructorChanges.Rank;

}
return RedirectToAction("Index");

}

10.3 Step 3: Display Error Messages via Validation Tag Helpers

There are two types of error messages we can display. We can display

. in-line error messages—display an error message right next to the input element where
the error occurs;

. summary of all error messages—display all error messages combined in one place.

10.3 Step 3: Display Error Messages via Validation Tag Helpers 219

10.3.1 To Display a Summary of All Error Messages

Use the following tag helper to display all error messages in one place. You can add this
wherever you want, for example, at the beginning of the page (or alternatively at the end
of the page):

<div asp-validation-summary="All"></div>

We will add this in both the Add.cshtml and in the Edit.cshtml. We’ll add this line right
before the <FORM> element.

10.3.2 To Display In-line Error Messages

One can also add display validation error messages for each property individually. For
this, we will add tag helpers that will look like

Add this for all fields (and change InstructorId with the property name in each
case).

Here is how the Edit.cshtml looks like after the above-mentioned changes:

@model Instructor

<!DOCTYPE html>

<html>
<head>

<meta name="viewport" content="width=device-width" />
<title>Edit</title>

</head>
<body>

<h1>Edit an instructor profile</h1>
<div asp-validation-summary="All"></div>
<form asp-action="Edit" method="post">

<input asp-for="@Model.InstructorId" type="hidden" /> @*needed so the InstructorId is
sent to the Edit(POST)*@

<label asp-for="LastName"></label>
<input asp-for="LastName" />

<label asp-for="IsTenured"></label>
<input asp-for="IsTenured" />

<label asp-for="HiringDate"></label>
<input asp-for="HiringDate" />

<label asp-for="Rank"></label>
<select asp-for="Rank" asp-items="@Html.GetEnumSelectList(typeof(Ranks))"></select>

<input type="submit" value="Save changes" />
<input type="button" onclick="history.back()" value="Cancel">

</form>
</body>
</html>

220 10 Model Validation

Similarly, the Add.cshtml should be as follows:
@model Instructor

<!DOCTYPE html>

<html>
<head>

<meta name="viewport" content="width=device-width" />
<title>Create a new Instructor</title>

</head>
<body>

<h1>Create a new Instructor</h1>
<div asp-validation-summary="All"></div>

<form asp-action="Add" asp-controller="Instructor" method="post">
<label asp-for="InstructorId"></label>
<input asp-for="InstructorId" />

<label asp-for="FirstName"></label>
<input asp-for="FirstName" />

<label asp-for="LastName"></label>
<input asp-for="LastName" />

<label asp-for="IsTenured"></label>
<input asp-for="IsTenured" />

<label asp-for="HiringDate"></label>
<input asp-for="HiringDate" />

<label asp-for="Rank"></label>
<select asp-for="Rank" asp-items="@Html.GetEnumSelectList(typeof(Ranks))">

<option value="">Select</option>
</select>

<label asp-for="PhoneNumber"></label>
<input asp-for="PhoneNumber" />

<label asp-for="EmailAddress"></label>
<input asp-for="EmailAddress" />

<label asp-for="PersonalURL"></label>
<input asp-for="PersonalURL" />

<label asp-for="UnusedPassword"></label>
<input asp-for="UnusedPassword" />

<input type="submit" value="Create Instructor" />

</form>
</body>
</html>

10.4 Let’s Test Our Model Validation 221

10.4 Let’s Test Our Model Validation

Go to Add a new instructor and attempt to submit an empty form (see Fig. 10.4).
You should see the summary validation errors on top. Then, in-line, you should see

one by one each of those errors.
Here is another example (see Fig. 10.5).
Once you fix the email address error, then the next error shows up (see Fig. 10.6).
This is because some of these errors are checked in the client’s browser and hence no

HTTP request has been sent to the server yet. For this reason, the Summary list of errors
did not show up. Once you fix these errors checked on the client side (but not all errors)
you will then be able to see the Summary list of errors (for the errors caught on the server
side), as seen in Fig. 10.7.

Fixing the errors (by entering valid values), we get one last to fix (see Fig. 10.8). Can
you figure out what we missed here?

Go back to the Instructor.cs and

. either make HiringDate required or

. make HiringDate to use a nullable type (change DateTime into DateTime?):

Fig. 10.4 If a user tries to submit an empty form, note that some validation messages (such as “last
name is required”) are being displayed in the browser:

222 10 Model Validation

Fig. 10.5 Is the same as Fig. 10.4, but some values are entered in the form so it passes some of the
input validation. Note that the Email address still does not pass the input validation:

[Display(Name = "Hiring date")]
[DataType(DataType.Date)]
public DateTime? HiringDate { get; set; }

Now rebuild and run your application again and try entering the same values again. It
should work now.

On your own, make sure that the validation also works for the Edit operation. Also,
you may want to remove the [Required] validation attribute used for Password field (in
Instructor.cs) since we did not include it in Edit and we won’t really make use of it in
this book.

10.5 Custom Validation Attributes (Optional)

Let’s introduce the custom validation attributes next. We’ll start with an example. Suppose
we would like to only allow the IsTenured checkbox to be checked (i.e., set to true)
if the HiringDate contains a date that is, let’s say either on or after August 15th, 2007.
In this particular example, we have two properties that need to be used for validation. How
would you enforce this?

10.5 Custom Validation Attributes (Optional) 223

Fig. 10.6 Is similar to Fig. 10.5. In here, a valid email address was entered. Now the Personal
webpage field produces an input validation error:

You should quickly realize that the built-in validation attributes are great for many
common validation scenarios, but they are not sufficient for all cases. Luckily, it’s quite
easy (see below) to create our own custom validation attributes.

10.5.1 Create a Custom Validation Attribute

For this part, let’s create a new folder, let’s call it CustomValidations (feel free to choose
a better name). In the Solution Explorer window, right-click on the project name, then
select Add > New Folder.

In this new folder create a new class, make sure it is derived from the
ValidationAttribute class, and the newly added class’s name ends
with ValidationAttribute. We will call it: TenuredOnlyAfter2007
ValidationAttribute.

224 10 Model Validation

Fig. 10.7 Is another validation error, namely an invalid office phone number

In this class, we need to overload the IsValid which is used to check if the property
value is valid. There are two overloaded IsValid methods (make use of IntelliSense to
find out more about these methods):

IsValid(object? value)

IsValid(object? value, ValidationContext validationContext)

The first one is great if you only need a custom validation attribute that only needs to
look at one (the current) property.

Since in our example we need to access two properties (the IsTenured and the
HiringDate), we’ll need to override the second method, which gives us access to
the entire model object. Here is the code we’ll use to implement our custom validation
attribute:

10.5 Custom Validation Attributes (Optional) 225

Fig. 10.8 Shows the same form as seen in Fig. 10.7, but now the validation error isn’t very clear. It
only specifies “The value ‘is invalid’”

using ASPBookProject.Models;
using System.ComponentModel.DataAnnotations;

namespace ASPBookProject.CustomValidations
{

public class TenuredOnlyAfter2007ValidationAttribute : ValidationAttribute
{

protected override ValidationResult? IsValid(object? value, ValidationContext
validationContext)

{
Instructor currentInstructor = (Instructor)validationContext.ObjectInstance;

//only allow the IsTenured checkbox to be checked (set to true)
// if the HiringDate contains a date, let’s say on or after August 15th, 2007.
if (currentInstructor.IsTenured == true

&& currentInstructor.HiringDate < DateTime.Parse("2007-08-15"))
return new ValidationResult(ErrorMessage);//not valid!!!

return ValidationResult.Success; // all other cases are valid
}

}
}

226 10 Model Validation

In this method, we make use of the validationContext.ObjectInstance
which represents the instance of the model where the attribute is being applied. Then, we
use typical C# code to make sure the values of the two properties (the IsTenured and
the HiringDate) are valid. If they are not valid, we return ValidationResult
and display the value for ErrorMessage (we could alternatively choose our own
ErrorMessage right in here and use our own string instead).

10.5.2 Use a Custom Validation Attribute

Using the custom validation attribute created above is very easy. It’s just like using the
built-in ones. We could use the entire class name used above, or omit the “Attribute” part:

[TenuredOnlyAfter2007Validation]
[Display(Name = "Is tenured")]
public bool IsTenured { get; set; }

To make our code friendlier, we can add an ErrorMessage:

[TenuredOnlyAfter2007Validation(ErrorMessage ="Tenured only offered after Aug. 15, 2007")]
[Display(Name = "Is tenured")]
public bool IsTenured { get; set; }

Make sure your Instructor.cs file contains the proper using directives. In our case,
we have.

using ASPBookProject.CustomValidations;
using System.ComponentModel.DataAnnotations;

10.5.3 Let’s Test the Newly Added Custom Validation

Let’s test our newly added custom validation attribute. Add a hiring date before Aug.
15th, 2007, and make sure the Is tenured checkbox is checked. This should result in a
model validation error as shown in Fig. 10.9.

Leave Is tenured checked and choose a hiring date after Aug. 15th, 2007 (see
Fig. 10.10). If you attempt to submit this data, the error message from our custom val-
idation attribute should go away, meaning the model validation error for this part was
resolved.

10.6 Validation Text Styling 227

Fig. 10.9 displays the same view as seen in Fig. 10.8, but now a custom validation error is been
displayed for the Is tenured field. The error message displayed is “Tenured only offered after Aug.
15, 2007”

10.6 Validation Text Styling

For this part, we would like to add some styling for the validation errors displayed by

<div asp-validation-summary="All"></div>

Inside this element, we can add in-line CSS to specify the colors to be used for the
error messages displayed. In particular, you can replace the line above with

<div asp-validation-summary="All" style="color:red"></div>

228 10 Model Validation

Fig. 10.10 Is similar to Fig. 10.9. In here, the custom validation error message is not displayed since
the Hiring Date is set to 08/16/2007, which now passes the custom validation logic we defined above

Do this for both Add and Edit views.
Now, if you are trying to submit an empty form, you would get all errors in the

summary part displayed in red (see Fig. 10.11).
Also, we would like to use a better error message for academic rank. Users need to

know they need to actually select an academic rank, not that ‘’ is invalid. Let’s
fix that. Go to Instructor.cs and add an error message to the validation attribute used for
the Rank property. Namely, change

[Required]
[Display(Name = "Academic rank")]
public Ranks Rank { get; set; }

10.6 Validation Text Styling 229

Fig. 10.11 Note how the validation summary is displayed with red text (because of the CSS styling
we added above)

into

[Required(ErrorMessage = "You must choose an academic rank!")]
[Display(Name = "Academic rank")]
public Ranks? Rank { get; set; }

Note: You must also make the type for Rank a nullable type, otherwise a default value
will be sent to Validation Attribute.

Now, trying to submit an empty form will display a friendlier error message when the
user does not select an academic rank (see Fig. 10.12).

230 10 Model Validation

Fig. 10.12 Shows an error message (of “You must choose an academic rank!”) when the user omits
selecting an Academic rank

11Persistent Data: Entity Framework Core

11.1 Introduction

In this chapter, we’ll learn how to use the Entity Framework Core to work with data from a
database. In particular, we’ll see how to work with an SQLite Database and, alternatively,
with a Microsoft SQL Server database. For more information, you may want to check out
the following sources [63–65].

An object relational mapper is a mechanism that maps objects (whose classes are
called entities) to tables. This allows you to work with data from databases using an
object-oriented approach. Some examples of object relational mappers: Entity Framework
Core, Django, and Hibernate.

Entity Framework Core is an object relational mapping (ORM) framework. It allows
a .Net application (web application, console application, …) to work with the data stored
inside a database. Entity Framework Core provides a level of abstraction between an
application and a database and, as you will see below, it simplifies your data access (the
CRUD operations) from the database.

You won’t even need to know any SQL syntax in order to work with SQL databases
(via Entity Framework Core), although it certainly helps having some foundational knowl-
edge of databases (for example, understanding what primary keys and foreign keys
are).

In this chapter, we’ll mostly use an SQLite database. Then, we’ll show you how easy it
is to switch to a Microsoft SQL Server with very little change to your existing code (which
is one of the benefits of using a layer of abstraction between your (web) application and
your database).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_11

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_11

232 11 Persistent Data: Entity Framework Core

11.2 Classes Involved: Providers, DbContext, and DbSet

Here is a quick introduction to what classes are involved when using Entity Framework
Core. We’ll see them again in the next section, where we’ll go over the steps needed to
set up the Entity Framework Core to work with our application.

To work with various types of databases, the Entity Framework uses different types of
so-called provider classes:

. Microsoft SQL Provider—used to connect to SQL Databases (SQL Server, or Azure
SQL Database).

. SQLite Provider—used to connect to an SQLite database.

. Memory Provider—used to mimic a database in memory, great for testing.

. Other providers—provided by other vendors.

There are two main classes we’ll make of when working with Entity Framework Core:

. DbContext class has many important responsibilities, including
– database connections (open, close, and manage connections to a database);
– data operations (adding data, modifying data, deleting data, and data querying);
– change tracking (it keeps track of changes in your application—so you can save

them to the database);
– data mapping (it maps properties from entities to columns in tables);
– transaction management (when SaveChanges is called, a transaction is created

for all pending changes. If an error/exception occurs when the changes are applied
to the database, they are all rolled back).

. DbSet <TEntity> class
– DbSet<TEntity> classes are added as properties to our class derived from

DbContext;
– each DbSet property represents the data (as a collection) from one table in the

database;
– we’ll use this to perform database operations for one table;
– by default, entity/model properties are mapped to database columns with the same

name.

We call entity classes the (model) classes that we map to tables in the database.

11.3 Add Entity Framework Core to Our Web Application

Next, we’ll go over the steps needed to add Entity Framework Core to our web appli-
cation. These steps may look challenging the first time you see them, but you will only
need to go over them once. Once you set up Entity Framework Core in your application,

11.3 Add Entity Framework Core to Our Web Application 233

you’ll see how great the benefits are: it will be quite easy to perform operations on data
stored in databases.

11.3.1 Step 1: Create/Choose Your Entity Classes

We call entity classes the (model) classes that we want to map to tables in the database. In
our example, we will choose the Student and the Instructor classes as our entities.

Make sure each entity class contains one property that

. has the name Id, or

. has the name [classname]Id, or

. has the [Key] attribute.

Such a property will be mapped as the primary key of the corresponding table, to uniquely
identify each row in the table.

11.3.2 Step 2: Install NuGet Packages

Very important! Before you proceed with this step, make sure your current code has no
compilation errors. Otherwise, you may not be able to install NuGet packages!

Next, we need to get access to Entity Framework Core classes. For this, we will install
the following package:

. For SQLite: Microsoft.EntityFrameworkCore.Sqlite

. Later, for MS SQL Server databases, we’ll use Microsoft.EntityFramework
Core. SqlServer.

We will also install the following NuGet package that provides support for Migrations:

. Microsoft.EntityFrameworkCore.Design.

To install NuGet packages, inside Visual Studio, go to Tools > Manage NuGet Packages for
Solution … (note: one can also use the Package Manager Console). Then, in the window
that opens up, make sure to select the Browse tab!

In there, type in the name of the package you want to install, choose the project
where to install it, and the version of the package you want to get installed. For this book,
we searched for Microsoft.EntityFrameworkCore.Sqlite and we selected the
version 6.0.12. Then, on the right side of this window, make sure to click on the checkbox
next to your project name (ASPBookProject for us), then click on the Install button.

234 11 Persistent Data: Entity Framework Core

A Preview Changes window will appear that will indicate what changes Visual Studio
will make to your project. Click OK.

Then the License Acceptance window. We clicked on I Accept button. Wait for a few
seconds so the installation finishes, then confirm that you got no errors (check out the
Error List window in Visual Studio).

Now repeat the same steps for the other package: Microsoft.Entity
FrameworkCore.Design.

11.3.3 Step 3: Create a Class Derived from DbContext

In this step, we’ll create a class derived from the class DbContext. As mentioned
above, this class will be responsible for connecting to the database and performing various
operations, among other things.

First, let’s create a new folder in our project and give it a name. We chose Data, but
feel free to give it a better name if you prefer.

In this newly added folder, Data, create a new class (we called it OurDbContext)
derived from DbContext. In it, make sure to add the using directive:

wukpi Oketquqhv0Gpvkv{HtcogyqtmEqtg=

Here is what we have so far in OurDbContext.cs file:
wukpi Oketquqhv0Gpvkv{HtcogyqtmEqtg=

pcogurceg CURDqqmRtqlgev0Fcvc
}

rwdnke encuu QwtFdEqpvgzv<"FdEqpvgzv
}
Ä

Ä

In this class, we will need to create a DbSet property for each table in the database.
The name that we choose for each DbSet property will be used when creating/using
the table in the database (of course we can use attributes to override this if needed). The
DbSet is a generic class, and it needs to know what entity class to work with—essentially
each row in the table will be mapped to an object/instance of class: the entity class.

In our book project, we will initially work with two entities, Student and
Instructor. Let’s choose a name for these tables. Let’s say Roster (the table of
students) and Instructors (the table of instructors). For this, we will need to define
the two DbSet properties shown below:

wukpi CURDqqmRtqlgev0Oqfgnu=
wukpi Oketquqhv0Gpvkv{HtcogyqtmEqtg=

pcogurceg CURDqqmRtqlgev0Fcvc
}

rwdnke encuu QwtFdEqpvgzv <"FdEqpvgzv
}

rwdnke FdUgv>Uvwfgpv@"Tquvgt"}"igv="ugv="Ä
rwdnke FdUgv>Kpuvtwevqt@"Kpuvtwevqtu"}"igv="ugv="Ä

Ä
Ä

11.3 Add Entity Framework Core to Our Web Application 235

11.3.4 Step 4: Data Seeding

Next, would like to put some sample data in our database when we create the tables
specified above. To do this, we can override the OnModelCreating method (see more
in [66]) inside OurDbContext class, as shown below. For completion, we included the
entire contents of OurDbContext.cs:

wukpi CURDqqmRtqlgev0Oqfgnu=
wukpi Oketquqhv0Gpvkv{HtcogyqtmEqtg=
wukpi Oketquqhv0Gzvgpukqpu0Jquvkpi=

pcogurceg CURDqqmRtqlgev0Fcvc
}

rwdnke encuu QwtFdEqpvgzv <"FdEqpvgzv
}

rwdnke FdUgv>Uvwfgpv@"Tquvgt"}"igv="ugv="Ä
rwdnke FdUgv>Kpuvtwevqt@"Kpuvtwevqtu"}"igv="ugv="Ä

rtqvgevgf qxgttkfg xqkf QpOqfgnEtgcvkpi*OqfgnDwknfgt"oqfgnDwknfgt+
}

dcug0QpOqfgnEtgcvkpi*oqfgnDwknfgt+="11fq"pqv"tgoqxg"vjku#

oqfgnDwknfgt0Gpvkv{>Kpuvtwevqt@*+0JcuFcvc*"11rqrwncvg"vjg"vcdng"eqpvckpkpi"Kpuvtwevqtu
pgy Kpuvtwevqt*+
}

KpuvtwevqtKf"?"322.
HktuvPcog"?"$Ocgicp$.
NcuvPcog"?"$Dqtgt$.
KuVgpwtgf"?"hcnug.
JktkpiFcvg"?"FcvgVkog0Rctug*$423:/2:/37$+.
Tcpm"?"Tcpmu0CuukuvcpvRtqhguuqt

Ä.

pgy Kpuvtwevqt*+
}

KpuvtwevqtKf"?"422.
HktuvPcog"?"$Cpvqpkgvvc"$.
NcuvPcog"?"$Googtkej$.
KuVgpwtgf"?"vtwg.
JktkpiFcvg"?"FcvgVkog0Rctug*$4244/2:/37$+.
Tcpm"?"Tcpmu0CuuqekcvgRtqhguuqt

Ä.

pgy Kpuvtwevqt*+
}

KpuvtwevqtKf"?"522.
HktuvPcog"?"$Cpvqpkgvvc$.
NcuvPcog"?"$Nguej$.
KuVgpwtgf"?"hcnug.
JktkpiFcvg"?"FcvgVkog0Rctug*$4237/23/2;$+.
Tcpm"?"Tcpmu0HwnnRtqhguuqt

Ä.

pgy Kpuvtwevqt*+
}

KpuvtwevqtKf"?"622.
HktuvPcog"?"$Cplcnk$.
NcuvPcog"?"$Lcmwdqyumk$.
KuVgpwtgf"?"vtwg.
JktkpiFcvg"?"FcvgVkog0Rctug*$4238/23/32$+.
Tcpm"?"Tcpmu0Cflwpev

Ä
+=

oqfgnDwknfgt0Gpvkv{>Uvwfgpv@*+0JcuFcvc*"11rqrwncvg"vjg"vcdng"eqpvckpkpi"Uvwfgpvu
pgy Uvwfgpv*+
}

UvwfgpvKf"?"32.
HktuvPcog"?"$Gnkuc$.

236 11 Persistent Data: Entity Framework Core

NcuvPcog"?"$Yk|c$.
Oclqt"?"Oclqt0EU.
KuXgvgtcp"?"vtwg.
IRC"?"602.
CfokuukqpFcvg"?"FcvgVkog0Rctug*$4244/2:/37$+

Ä.

pgy Uvwfgpv*+
}

UvwfgpvKf"?"42.
HktuvPcog"?"$Ukogqp$.
NcuvPcog"?"$Ugpigt$.
Oclqt"?"Oclqt0KV.
KuXgvgtcp"?"vtwg.
IRC"?"5097.
CfokuukqpFcvg"?"FcvgVkog0Pqy

Ä.

pgy Uvwfgpv*+
}

UvwfgpvKf"?"52.
HktuvPcog"?"$Dnckug$.
NcuvPcog"?"$Pkejqncu$.
Oclqt"?"Oclqt0OCVJ.
KuXgvgtcp"?"vtwg.
IRC"?"50;:.
CfokuukqpFcvg"?"FcvgVkog0Rctug*$4242/2:/37$+

Ä
+=

Ä
Ä

Ä

11.3.5 Step 5: Register Our DbContext as a Service, and Use
a Connection String

In order for us to be able to pass parameters to the constructor of OurDbContext class,
we need to define a non-default constructor in this class.

The parameters we’ll pass to this constructor will actually need to be passed along to
the constructor of the base class (DbContext); hence, we need to make sure that the non-
default constructor of OurDbContext calls the non-default constructor of DbContext
and passes these parameters along.

Here is how we accomplish this. Add the following constructor to the
OurDbContext class.

rwdnke QwtFdEqpvgzv*FdEqpvgzvQrvkqpu>QwtFdEqpvgzv@"qrvkqpu+"<"dcug*qrvkqpu+
}
Ä

Note: The type of the parameter used for options is a generic class,
DbContextOptions, for which we used our own OutDbContext class as a type,
hence the use of DbContextOptions<OurDbContext>.

Here is how the OurDbContext class looks like once we added the above code and
added a few comments:

11.3 Add Entity Framework Core to Our Web Application 237

pcogurceg CURDqqmRtqlgev0Fcvc
}

rwdnke encuu QwtFdEqpvgzv <"FdEqpvgzv
}

11wugf"vq"ocr"vq"vcdngu
rwdnke FdUgv>Uvwfgpv@"Tquvgt"}"igv="ugv="Ä
rwdnke FdUgv>Kpuvtwevqt@"Kpuvtwevqtu"}"igv="ugv="Ä

11eqpuvtwevqt
rwdnke QwtFdEqpvgzv*FdEqpvgzvQrvkqpu>QwtFdEqpvgzv@"qrvkqpu+"<"dcug*qrvkqpu+
}
Ä

11wugf"vq"uggf"vjg"fcvcdcugu"ykvj"uqog"fcvc
rtqvgevgf qxgttkfg xqkf QpOqfgnEtgcvkpi*OqfgnDwknfgt"oqfgnDwknfgt+
}

11"000 umkrrgf"”

Ä
Ä

Ä

Here is the reason for the paragraphs given above. We’ll need to make use of this
non-default constructor in the code below, to register OurDbContext class as a service.
We will use the code as shown here (do not add this code yet!):

dwknfgt0Ugtxkegu0CffFdEqpvgzv>QwtFdEqpvgzv@*
qrvkqpu"?@"qrvkqpu0WugUsnkvg*$eqppgevkqp"uvtkpi"vq"{qwt"fcvcdcug$+
+=

In the code shown above, the string "connection string to your
database" can be replaced by any valid connection string. The connection string is
essentially a string (text) containing information on where and how to connect to our
database (see more in [67]). Here are some examples of connections strings:

For an SQLite database (for a database file located in c:\myowndb.db, or for a database
located in memory only):

.

.

For a Microsoft SQL Server database (on a local server, or a remote one):

.

.

So, for our application, we could use the following (don’t add this code yet!):

But instead of the code above, we’ll go one step further and make use of the appset-
tings.json file which is a file where we can put various application configuration settings.
We’ll see this file again later in this book.

238 11 Persistent Data: Entity Framework Core

Open the appsettings.json file (you should be able to see it in Solution Explorer
window). In it, add the following entry to set a connection string:

Our appsettings.json file now looks as follows:

$Nqiikpi$<"}
$NqiNgxgn$<"}

$Fghcwnv$<"$Kphqtocvkqp$.
$Oketquqhv0CurPgvEqtg$<"$Yctpkpi$

Ä
Ä.
$CnnqygfJquvu$<"$,$.
$EqppgevkqpUvtkpiu$<"}

$DqqmEqppgevkqpUvtkpi$<"$Fcvc"uqwteg?curdqqm0fd$
Ä

Ä

}

Instead of the key BookConnectionString, feel free to choose a better, more
meaningful, name.

Then, back into the Program.cs file, we will use code that will read the connection
string defined above (now copy this!):

dwknfgt0Ugtxkegu0CffFdEqpvgzv>QwtFdEqpvgzv@*
qrvkqpu"?@"qrvkqpu0WugUsnkvg*dwknfgt0Eqphkiwtcvkqp0IgvEqppgevkqpUvtkpi*$DqqmEqppgevkqpUvtkpi$++
+=

This will register Entity Framework Core (OurDbContext) as a service. We are now
able to use it throughout our application (via dependency injection).

Our Program.cs file looks as follows:

wukpi CURDqqmRtqlgev0Fcvc=
wukpi CURDqqmRtqlgev0Ugtxkegu=
wukpi Oketquqhv0Gpvkv{HtcogyqtmEqtg=

xct dwknfgt"?"YgdCrrnkecvkqp0EtgcvgDwknfgt*ctiu+=
dwknfgt0Ugtxkegu0CffUkpingvqp>KO{HcmgFcvcUgtxkeg."O{HcmgFcvcUgtxkeg@*+="11qwt"fcvc"ugtxkeg
dwknfgt0Ugtxkegu0CffEqpvtqnngtuYkvjXkgyu*+="11cffu"ugtxkegu"pggfgf"hqt"eqpvtqnngtu"
dwknfgt0Ugtxkegu0CffFdEqpvgzv>QwtFdEqpvgzv@*

qrvkqpu"?@"
qrvkqpu0WugUsnkvg*dwknfgt0Eqphkiwtcvkqp0IgvEqppgevkqpUvtkpi*$DqqmEqppgevkqpUvtkpi$++

+=

xct crr"?"dwknfgt0Dwknf*+=11ugv"wr"okffngyctg"eqorqpgpvu0
crr0WugUvcvkeHkngu*+="11pggfgf"vq"ikxg"ceeguu"vq"hkngu"kp"yyytqqv
crr0WugTqwvkpi*+=""11cffu"tqwvg"ocvejkpi"vq"vjg"okffngyctg"rkrgnkpg
crr0OcrEqpvtqnngtTqwvg*"11oqfkhkgf"fghcwnv"tqwvkpi

pcog<"$fghcwnv$.
rcvvgtp<"$}eqpvtqnngt?KpuvtwevqtÄ1}cevkqp?KpfgzÄ1}kfAÄ$+=

crr0Twp*+=

One last step and we are done with this a little long configuration process. But as
you’ll see below, it is so worth it!

The last step we want to do is the following. Once all services are set up we would like
to call the method called EnsureCreated that will make sure our database is created:

. If the database exists, nothing will be done, but

. if the database doesn’t exist, the EnsureCreated method will make sure to create
it (based on the specifications of the OurDbContext class).

11.3 Add Entity Framework Core to Our Web Application 239

In Program.cs, right before app.UseStaticFiles(), add the following code:

xct eqpvgzv"?"crr0Ugtxkegu0EtgcvgUeqrg*+0UgtxkegRtqxkfgt0IgvTgswktgfUgtxkeg>QwtFdEqpvgzv@*+=
eqpvgzv0Fcvcdcug0GpuwtgEtgcvgf*+="11kh"qwt"fcvcdcug"fqgu"pqv"gzkuv."vjgp"etgcvg"kv#

11.3.6 Test Our Database

We are finally finished with setting up Entity Framework Core for our application. If you
rebuild your application, you should see that an SQLite database file (names aspbook.db)
was created. See it in the Solution Explorer window (above the Program.cs file).

Inside Visual Studio (Solution Explorer window), if you right-click on the aspbook.db
file, you’ll see the option of opening it with a program (Open With …). Click on this
option.

Then click on the Add… button and select the DbBrowser application we installed at
the beginning of the book. On my computer, that location is C:\Program Files\DB Browser
for SQLite\DB Browser for SQLite.exe. Click the OK button. Then another OK button.

Once the database file opens in DbBrowser, you should be able to see the tables in
our database (make sure you are in the Database Structure tab). For us, we see that our
database currently has three tables:

. Instructors.

. Roster.

. sqlite_sequence.

You should note that for the tables named Instructors, and Roster, these are the names
we gave to our two DbSet properties of OurDbContext class.

Now click on the Browse Data tab and you’ll see the data in our tables. By default,
the Instructors table opens up.

You can choose to see the data from Roster table (see the dropdown menu at the top
of the table, on the very left side).

Very important: Make sure to click the Close Database button before you run your
web application, otherwise you may get read access errors. This button is on the top right
of the DbBrowser window.

From now on, if you ever wish to reopen a database, the easiest way to do so is as
follows: run DbBrowser, then under the File menu, at the bottom of the menu window
that opens, click on the database name shown in that list.

240 11 Persistent Data: Entity Framework Core

11.4 Use Entity Framework Core in Our Web Application,
Dependency Injection Revisited

Now let’s make use of our database via Entity Framework core. We have everything set
up, so using the database will be quite easy.

To use Entity Framework Core in our Controller classes, we will need to “inject” it in
there and then make use of it. This is similar to injecting services seen in the previous
chapter:

. Create a private field and use the constructor to populate it.

. Let’s update all InstructorController actions so it makes use of the database.

11.4.1 Inject Entity Framework Core in InstructorController

Let’s inject the entity framework core in InstructorController. Since we won’t
need the MyFakeService anymore, we’ll replace that with OurDbContext class.
Inside InstructorController.cs file, replace the code:

11kplgevkpi"vjg"KO{HcmgFcvcUgtxkeg
rtkxcvg tgcfqpn{ KO{HcmgFcvcUgtxkeg"ahcmgFcvc=
rwdnke KpuvtwevqtEqpvtqnngt*KO{HcmgFcvcUgtxkeg"hcmgFcvc+
}

ahcmgFcvc"?"hcmgFcvc=
Ä

with
11kplgevkpi"vjg"Gpvkv{Htcoygyqtm"Eqtg"/ QwtFdEqpvgzv
rtkxcvg tgcfqpn{ QwtFdEqpvgzv"afdEqpvgzv=
rwdnke KpuvtwevqtEqpvtqnngt*QwtFdEqpvgzv"fdEqpvgzv+
}

afdEqpvgzv"?"fdEqpvgzv=
Ä

Optionally (only if you wish to clean up the code), you can delete all code related to
MyFakeService, since we won’t use this anymore.

11.4.2 Update the Actions to Use Entity Framework Core

Next, we will update each action, to make use of the Entity Framework Core. All we need
is to replace _fakeData.InstructorsList with _dbContext.Instructors.

. _dbContext represents the instance of OurDbContext managed by the depen-
dency injection service.

. Instructors is the DbSet <Instructor> property we defined in
OurDbContext class.

11.4 Use Entity Framework Core in Our Web Application, Dependency … 241

IMPORTANT: Until you call the SaveChanges method, all changes to
_dbContext.Instructors will not be saved into the database, and they are
only changed in the web application’s memory! Therefore, please make sure to call
_dbContext.SaveChanges(); after every Add/Edit/Delete.

That’s it! We give below our complete code for InstructorController.cs so you can
check your work.

wukpi CURDqqmRtqlgev0Fcvc=
wukpi CURDqqmRtqlgev0Oqfgnu=
wukpi CURDqqmRtqlgev0Ugtxkegu=
wukpi Oketquqhv0CurPgvEqtg0Oxe=

pcogurceg CURDqqmRtqlgev0Eqpvtqnngtu
}

rwdnke encuu KpuvtwevqtEqpvtqnngt <"Eqpvtqnngt
}

11kplgevkpi"vjg"Gpvkv{Htcoygyqtm"Eqtg"/ QwtFdEqpvgzv
rtkxcvg tgcfqpn{ QwtFdEqpvgzv"afdEqpvgzv=
rwdnke KpuvtwevqtEqpvtqnngt*QwtFdEqpvgzv"fdEqpvgzv+
}

afdEqpvgzv"?"fdEqpvgzv=
Ä

rwdnke KCevkqpTguwnv"Kpfgz*+""
}

tgvwtp Xkgy*afdEqpvgzv0Kpuvtwevqtu+="11yknn"wug"vjg"Kpfgz0eujvon"xkgy
Ä

rwdnke KCevkqpTguwnv"Fkurnc{Cnn*+
}

tgvwtp Xkgy*$Kpfgz$."afdEqpvgzv0Kpuvtwevqtu+=11yknn"wug"vjg"Kpfgz0eujvon"xkgy
Ä

rwdnke KCevkqpTguwnv"UjqyCnn*+
}

tgvwtp TgfktgevVqCevkqp*$Kpfgz$."afdEqpvgzv0Kpuvtwevqtu+=
Ä

rwdnke KCevkqpTguwnv"UjqyFgvcknu*kpv kf+
}

11ugctej"hqt"vjg"kpuvtwevqt"yjqug"KpuvtwevqtKf"ocvejgu"vjg"ikxgp"kf
11""jgtg"yg"ctg"wukpi"KpuvtwevqtuNkuv."ncvgt"yg)nn"wug"c"fcvcdcug#
KpuvtwevqtA"kpuvt"?"afdEqpvgzv0Kpuvtwevqtu0HktuvQtFghcwnv*kpu"?@"kpu0KpuvtwevqtKf"??"kf+=

kh *kpuvt"#?"pwnn+"11ycu"cp"kpuvtwevqt"hqwpfA
tgvwtp Xkgy*kpuvt+=

11kh"pq"kpuvtwevqt"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

]JvvrIgv_
rwdnke KCevkqpTguwnv"Cff*+
}

tgvwtp Xkgy*+=
Ä

]JvvrRquv_
rwdnke KCevkqpTguwnv"Cff*Kpuvtwevqt"pgyKpuvtwevqt+
}

kh *#OqfgnUvcvg0KuXcnkf+"11kh"vjg"fcvc"ku"kpxcnkf
tgvwtp Xkgy*+="11iq"dcem"vq"vjg"xkgy

afdEqpvgzv0Kpuvtwevqtu0Cff*pgyKpuvtwevqt+="11cff"vjg"pgy"kpuvtwevqt"vq"qwt"nkuv
afdEqpvgzv0UcxgEjcpigu*+=
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=

Ä

242 11 Persistent Data: Entity Framework Core

]JvvrIgv_
rwdnke KCevkqpTguwnv"Gfkv*kpv kf+
}

11yg"ujqwnf"nqqm"hqt"vjg"kpuvcpeg"vjcv"jcu"vjg"ikxgp"Kf
11"""000"ncvgt"yg)nn"ugctej"kp"vjg"fcvcdcug
KpuvtwevqtA"kpuvt"?"afdEqpvgzv0Kpuvtwevqtu0HktuvQtFghcwnv*kpuv"?@"kpuv0KpuvtwevqtKf"??"kf+=

kh *kpuvt"#?"pwnn+"11kh"hqwpf."ugpf"kv"vq"vjg"xkgy
tgvwtp Xkgy*kpuvt+=

11kh"pq"ocvejkpi"kpuvtwevqt"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

]JvvrRquv_
rwdnke KCevkqpTguwnv"Gfkv*Kpuvtwevqt"kpuvtwevqtEjcpigu+
}

kh *#OqfgnUvcvg0KuXcnkf+"11kh"vjg"fcvc"ku"kpxcnkf
tgvwtp Xkgy*+="11iq"dcem"vq"vjg"xkgy

11hkpf"vjg"kpuvtwevqt"htqo"KpuvtwevqtNkuv
11"""yjq"jcu"vjg"ucog"KpuvtwevqtKf"cu"vjg"ejcpigu0KpuvtwevqtKf
KpuvtwevqtA"kpuvt"?"afdEqpvgzv0Kpuvtwevqtu0HktuvQtFghcwnv*kpuvt"?@"kpuvt0KpuvtwevqtKf"??"

kpuvtwevqtEjcpigu0KpuvtwevqtKf+=

kh *kpuvt"#?"pwnn+"11kh"hqwpf."ejcpig"vjg"xcnwgu"kp"KpuvtwevqtuNkuv"vq"ocvej"vjg"ejcpigu
}

kpuvt0NcuvPcog"?"kpuvtwevqtEjcpigu0NcuvPcog=
kpuvt0KuVgpwtgf"?"kpuvtwevqtEjcpigu0KuVgpwtgf=
kpuvt0JktkpiFcvg"?"kpuvtwevqtEjcpigu0JktkpiFcvg=
kpuvt0Tcpm"?"kpuvtwevqtEjcpigu0Tcpm=
afdEqpvgzv0UcxgEjcpigu*+=

Ä
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=

Ä

]JvvrIgv_
rwdnke KCevkqpTguwnv"Fgngvg*kpv kf+
}

11yg"ujqwnf"nqqm"hqt"vjg"kpuvcpeg"vjcv"jcu"vjg"ikxgp"Kf
11"""000"ncvgt"yg)nn"ugctej"kp"vjg"fcvcdcug
KpuvtwevqtA"kpuvt"?"afdEqpvgzv0Kpuvtwevqtu0HktuvQtFghcwnv*kpuv"?@"kpuv0KpuvtwevqtKf"??"kf+=

kh *kpuvt"#?"pwnn+"11kh"hqwpf."ugpf"kv"vq"vjg"xkgy
tgvwtp Xkgy*kpuvt+=

11kh"pq"kpuvtwevqt"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

]JvvrRquv_
rwdnke KCevkqpTguwnv"FgngvgEqphktogf*kpv kpuvtwevqtKf+
}

11yg"ujqwnf"nqqm"hqt"vjg"kpuvcpeg"vjcv"jcu"vjg"ikxgp"Kf
11"""000"ncvgt"yg)nn"ugctej"kp"vjg"fcvcdcug
KpuvtwevqtA"kpuvt"?"afdEqpvgzv0Kpuvtwevqtu0HktuvQtFghcwnv*kpuv"?@"kpuv0KpuvtwevqtKf"??"

kpuvtwevqtKf+=

kh *kpuvt"#?"pwnn+"11kh"hqwpf."fgngvg"kv"htqo"nkuv
}

afdEqpvgzv0Kpuvtwevqtu0Tgoqxg*kpuvt+=
afdEqpvgzv0UcxgEjcpigu*+=
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=

Ä
11kh"pq"kpuvtwevqt"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä
Ä

Ä

11.4.3 Important: Automated Id Generation

Currently, if we go to Add a new instructor (see Fig. 11.1), we are asked to provide an
InstructorId.

This is.

. Inconvenient—why should the users come up with an ID?

. Problematic—if you enter an Id that is already in use, you’ll get an error (a
SqliteException error).

11.4 Use Entity Framework Core in Our Web Application, Dependency … 243

Fig. 11.1 Shows the Add
view displayed in a browser. In
particular, note that we have an
input field used for the
InstructorId

The good news is that we can get the Id automatically generated. Go to the Add view
and remove the field that asks the user to enter an id. Remove the following lines from
Add.cshtml:

>ncdgn cur/hqt?$KpuvtwevqtKf$@>1ncdgn@
>kprwv cur/hqt?$KpuvtwevqtKf$ 1@
>urcp cur/xcnkfcvkqp/hqt?$KpuvtwevqtKf$@>1urcp@
>dt@

That’s it. Now, a unique InstructorId will automatically be generated for us by
the database.

11.4.4 Let’s Test That We Have Persistent Data

Go to add a new Instructor (see Fig. 11.2).
A new row should be seen in the table. Try adding the same information again. You’ll

see a new instructor (with a different InstructorId) will be created (see Fig. 11.3).
If you are curious to see what InstructorId values were created, you can open the

database file in DbBrowser and check out the contents of the Instructors table. Also, if
you want to know how our database keeps track of what Id to use, check out the contents
of the sqlite sequence table (you’ll find in there a column names seq, and an entry for
each of our two tables: Instructors, Roster).

Before you continue, make sure to close the database in Db Browser! Click on the
Close Database icon.

244 11 Persistent Data: Entity Framework Core

Fig. 11.2 Is similar to the one seen in Fig. 11.1, but it no longer contains any input field used for
InstructorId

Fig. 11.3 Shows the Index view displayed in a browser. It contains a table with multiple rows, one
for each Instructor

Now, on your own, please modify some of the existing instructors, and delete one.
Then, rebuild your application and check that the changes are persistent. Those changes
are saved in a database, so changes should survive web application restarts.

11.4.5 EnsureDeleted

As we make modifications to our tables, you may want to add the following line right
before EnsureCreated method calls (inside Program.cs):

eqpvgzv0Fcvcdcug0GpuwtgFgngvgf*+="11kh"qwt"fcvcdcug"gzkuvu."vjgp"gtcug"kv#

11.5 Practice: Update the StudentController Class 245

This way our database will be recreated each time we rebuild our application. Com-
ment this line out and only use it when you need to recreate the database (for example,
when we are modifying a property type, or other scenarios that will lead to compilation
errors related to entity framework).

11.5 Practice: Update the StudentController Class

To have some more functionality to work with later, let’s update the
StudentController class.

11.5.1 Inject Entity Framework in StudentController

To inject entity framework (and similarly to any other service), we need the following:

. A private field: OurDbContext _ourDbContext

. A constructor that will initialize the field declared above with the instance managed
by the Dependency Injection.

Here is the code we added to StudentController.cs class:
rtkxcvg tgcfqpn{ QwtFdEqpvgzv"afdEqpvgzv=
rwdnke UvwfgpvEqpvtqnngt*QwtFdEqpvgzv"qwtFdEqpvgzv+
}

afdEqpvgzv"?"qwtFdEqpvgzv=
Ä

Now we have access to our database via Entity Framework Core. Next, let’s
create/update actions and make use of our database.

11.5.2 Use Entity Framework Core in StudentController Actions

We give below a possible solution to StudentController.cs. On your own, create/update
the necessary views for each action.

246 11 Persistent Data: Entity Framework Core

wukpi CURDqqmRtqlgev0Fcvc=
wukpi CURDqqmRtqlgev0Oqfgnu=
wukpi Oketquqhv0CurPgvEqtg0Oxe=
wukpi Oketquqhv0Gpvkv{HtcogyqtmEqtg=

pcogurceg CURDqqmRtqlgev0Eqpvtqnngtu
}

rwdnke encuu UvwfgpvEqpvtqnngt <"Eqpvtqnngt
}

rtkxcvg tgcfqpn{ QwtFdEqpvgzv"afdEqpvgzv="11kplgev"QwtFdEqpvgzv"kp"vjku"encuu
rwdnke UvwfgpvEqpvtqnngt*QwtFdEqpvgzv"qwtFdEqpvgzv+
}

afdEqpvgzv ?"qwtFdEqpvgzv=
Ä

rwdnke KCevkqpTguwnv"Kpfgz*+
}

tgvwtp Xkgy*afdEqpvgzv0Tquvgt+=
Ä

rwdnke KCevkqpTguwnv"UjqyFgvcknu*kpv kf+
}

11ugctej"hqt"vjg"uvwfgpv"yjqug"UvwfgpvKf"ocvejgu"vjg"ikxgp"kf
UvwfgpvA"uv"?"afdEqpvgzv0Tquvgt0HktuvQtFghcwnv*uvwfgpv"?@"uvwfgpv0UvwfgpvKf"??"kf+=

kh *uv"#?"pwnn+"11ycu"c"uvwfgpv"hqwpfA
tgvwtp Xkgy*uv+=

11kh"pq"uvwfgpv"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

]JvvrIgv_
rwdnke KCevkqpTguwnv"Cff*+
}

tgvwtp Xkgy*+=
Ä

]JvvrRquv_
rwdnke KCevkqpTguwnv"Cff*Uvwfgpv"pgyUvwfgpv+
}

kh *#OqfgnUvcvg0KuXcnkf+"11kh"vjg"fcvc"ku"kpxcnkf
tgvwtp Xkgy*+="11iq"dcem"vq"vjg"xkgy

afdEqpvgzv0Tquvgt0Cff*pgyUvwfgpv+="11cff"vjg"pgy"uvwfgpv"vq"qwt"nkuv
afdEqpvgzv0UcxgEjcpigu*+=
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=

Ä

]JvvrIgv_
rwdnke KCevkqpTguwnv"Gfkv*kpv kf+
}

11yg"ujqwnf"nqqm"hqt"vjg"kpuvcpeg"vjcv"jcu"vjg"ikxgp"Kf
UvwfgpvA"uv"?"afdEqpvgzv0Tquvgt0HktuvQtFghcwnv*uv"?@"uv0UvwfgpvKf"??"kf+=

kh *uv"#?"pwnn+"11kh"hqwpf."ugpf"kv"vq"vjg"xkgy
tgvwtp Xkgy*uv+=

11kh"pq"uvwfgpv"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

]JvvrRquv_
rwdnke KCevkqpTguwnv"Gfkv*Uvwfgpv"uvwfgpvEjcpigu+
}

kh *#OqfgnUvcvg0KuXcnkf+"11kh"vjg"fcvc"ku"kpxcnkf
tgvwtp Xkgy*+="11iq"dcem"vq"vjg"xkgy

11hkpf"vjg"uvwfgpv"yjq"jcu"vjg"ucog"UvwfgpvKf"cu"vjg"uvwfgpvEjcpigu0UvwfgpvKf
UvwfgpvA"uv"?"afdEqpvgzv0Tquvgt0HktuvQtFghcwnv*uvwfgpv"?@"uvwfgpv0UvwfgpvKf"??"

uvwfgpvEjcpigu0UvwfgpvKf+=

kh *uv"#?"pwnn+"11kh"hqwpf."ejcpig"vjg"xcnwgu"kp"vjg"fcvcdcug"vq"ocvej"qwt"ejcpigu
}

uv0NcuvPcog"?"uvwfgpvEjcpigu0NcuvPcog=
11"cff"qvjgt"rtqrgtvkgu."cu"pggfgf
afdEqpvgzv0UcxgEjcpigu*+=

Ä
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=

Ä

11.6 How to Use Microsoft SQL Server Instead of SQLite (Optional) 247

]JvvrIgv_
rwdnke KCevkqpTguwnv"Fgngvg*kpv kf+
}

11yg"ujqwnf"nqqm"hqt"vjg"kpuvcpeg"vjcv"jcu"vjg"ikxgp"Kf
UvwfgpvA"uv"?"afdEqpvgzv0Tquvgt0HktuvQtFghcwnv*uvwfgpv"?@"uvwfgpv0UvwfgpvKf"??"kf+=

kh *uv"#?"pwnn+"11kh"hqwpf."ugpf"kv"vq"vjg"xkgy
tgvwtp Xkgy*uv+=

11kh"pq"uvwfgpv"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

]JvvrRquv_
rwdnke KCevkqpTguwnv"FgngvgEqphktogf*kpv uvwfgpvKf+
}

11yg"ujqwnf"nqqm"hqt"vjg"kpuvcpeg"vjcv"jcu"vjg"ikxgp"Kf
UvwfgpvA"uv"?"afdEqpvgzv0Tquvgt0HktuvQtFghcwnv*uvwfgpv"?@"uvwfgpv0UvwfgpvKf"??"uvwfgpvKf+=

kh *uv"#?"pwnn+"11kh"hqwpf."fgngvg"kv"htqo"nkuv
}

afdEqpvgzv0Tquvgt0Tgoqxg*uv+=
afdEqpvgzv0UcxgEjcpigu*+=
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=

Ä
11kh"pq"uvwfgpv"ycu"hqwpf"000
tgvwtp PqvHqwpf*+=

Ä

rwdnke KCevkqpTguwnv"IqVqIqqng*+
}

tgvwtp Tgfktgev*$jvvru<11yyy0iqqing0eqo1$+=
Ä

rwdnke KCevkqpTguwnv"CpqvjgtKpfgz*+
}

tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=
Ä

Ä
Ä

11.6 How to Use Microsoft SQL Server Instead of SQLite
(Optional)

In this section, we would like to show you how easy it is to switch your web application
such that instead of using a SQLite database it uses an Microsoft SQL Server database.

IMPORTANT: Before you continue, you may want to make a copy of your project.
The remaining chapters of this book will continue with SQLite.

11.6.1 Install SQL Server Express LocalDB Database on Your Machines

For this exercise, you will need to have LocalDB installed on your machine unless you
choose to use another existing installation of Microsoft SQL server.

One way to install the SQL Server Express 2019 LocalDB database is by opening Visual
Studio Installer. Then click on the Modify button. Then, go to Individual Components
tab, and make sure the option SQL Server Express 2019 LocalDB is checked.

248 11 Persistent Data: Entity Framework Core

11.6.2 Make Changes so Entity Framework Core Now Works
with a Microsoft SQL Server Database

We will need to install the following NuGet package: Microsoft.Entity
FrameworkCore.SqlServer (follow the steps seen earlier to install this package).

Feel free to remove the NuGet package: Microsoft.EntityFrameworkCore.
SqlServer. For this, go to the Installed tab, select the packaged, then on the right side
click on the Uninstall button.

We are almost done. We next need to use an SQL Server provider instead of the SQLite
provider (in Program.cs):

11dwknfgt0Ugtxkegu0CffFdEqpvgzv>QwtFdEqpvgzv@*
11""""qrvkqpu"?@"qrvkqpu0WugUsnkvg*dwknfgt0Eqphkiwtcvkqp0IgvEqppgevkqpUvtkpi*$DqqmEqppgevkqpUvtkpi$++
11""""+=
dwknfgt0Ugtxkegu0CffFdEqpvgzv>QwtFdEqpvgzv@*

qrvkqpu"?@"qrvkqpu0WugUsnUgtxgt*dwknfgt0Eqphkiwtcvkqp0IgvEqppgevkqpUvtkpi*$DqqmEqppgevkqpUvtkpi$++
+=

And the last step, update the connection string set in appsettings.json so it points to
our SQL Server database instead:

$DqqmEqppgevkqpUvtkpi$<"$Fcvc"Uqwteg?*nqecnfd+^^OUUSNNqecnFD=Kpkvkcn"Ecvcnqi?ocuvgt=Kpvgitcvgf"
Ugewtkv{?Vtwg=Eqppgev"
Vkogqwv?52=Gpet{rv?Hcnug=CrrnkecvkqpKpvgpv?TgcfYtkvg=OwnvkUwdpgvHcknqxgt?Hcnug=$

The appsettings.json file should now contain the following:
}

$Nqiikpi$<"}
$NqiNgxgn$<"}

$Fghcwnv$<"$Kphqtocvkqp$.
$Oketquqhv0CurPgvEqtg$<"$Yctpkpi$

Ä
Ä.
$CnnqygfJquvu$<"$,$.
$EqppgevkqpUvtkpiu$<"}

11$DqqmEqppgevkqpUvtkpi$<"$Fcvc"uqwteg?curdqqm0fd$
$DqqmEqppgevkqpUvtkpi$<"$Fcvc"Uqwteg?*nqecnfd+^^OUUSNNqecnFD=Kpkvkcn"Ecvcnqi?ocuvgt=Kpvgitcvgf"

Ugewtkv{?Vtwg=Eqppgev"Vkogqwv?52=Gpet{rv?Hcnug=CrrnkecvkqpKpvgpv?TgcfYtkvg=OwnvkUwdpgvHcknqxgt?Hcnug=$
Ä

Ä

That’s it. Your controllers should work the same with this new database. Do you see the
advantage of using Entity Framework and how it provides a layer of abstraction between
our code and the database?

Run your application. You should see how the database was recreated with our seed
data (see Fig. 11.4).

Fig. 11.4 Shows the Index view that displays information from our seed data

11.6 How to Use Microsoft SQL Server Instead of SQLite (Optional) 249

Fig. 11.5 Shows the Add
view containing information
entered by a user

To check the data that exists in our database, from inside Visual Studio, go to View
> SQL Server Object Explorer. From the SQL Server Object Explorer window, check out
the tables created in the master database (under SQL Server > (localdb)\MSSQLLocalDB
… > Databases > System Databases > master > Tables, you should see dbo.Instructors
and dbo.Roster).

Right-click on any of the two tables and select View Data. This should allow you to
see the data that is currently stored in that table.

Create a new instructor, for example (Fig. 11.5).
Then check the database again. You should see that a new row is added into the

Instructors table (if needed, make sure to press the refresh button). You should also note
that the password was saved as plain text. We’ll address this issue in Chap. 14.

12Consistent Look: Layouts, Friendly Error
Pages, and Environments

Before we continue, make sure to return back to the version of the project that uses the
SQLite database (feel free to continue with the Microsoft SQL Server database if you
prefer, in our book we will use our SQLite database).

This chapter contains several smaller concepts put together in one chapter. In this
chapter, among other things, we’ll make our web application look pretty. We’ll add a
filter button, we’ll create a consistent look and feel for our application, and we’ll create
friendly error pages.

12.1 Filter Results

In this section, we will add a filter functionality that would allow a user to narrow down
the results shown in the Instructors table displayed in Index. In our example, we
will allow users to filter results based on the LastName field. For more information on
this, read the following source [68].

The first step is adding an input field (search field) and a button to narrow the results
based on the input field’s value. Where would you add these fields? In which file?

12.1.1 Update the Index View

We can start by adding an input field and two buttons (one for filter, one for reset filter/
cancel) in the Index.cshtml, right after the <H1> element:

>kprwv v{rg?$vgzv$ rncegjqnfgt?$ ncuv"pcog"kpenwfgu"000$ 1@
>dwvvqp@Hknvgt"tguwnvu>1dwvvqp@
>dwvvqp@Engct"vjg"hknvgt>1dwvvqp@

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_12

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_12

252 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.1 Shows a part of the Index view in a browser. It contains an input box and two buttons

The result is shown below (see Fig. 12.1).
Next, we would like to add functionality to these buttons. To group those elements

together and easily program them, we’ll put them inside a <FORM> element.

>hqto@
>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$ 1@
>dwvvqp@Hknvgt"tguwnvu>1dwvvqp@
>dwvvqp@Engct"vjg"hknvgt>1dwvvqp@

>1hqto@

The output looks the same as above, but now we can easily add functionality to those
buttons.

The first button can be turned into a submit button. Also, when we click on that
submit button, we want the request to be sent to the Index action. Let’s make the requests
a GET requests, so we can see the searched values in the URL. Lastly, the input text
value will not be sent to the server unless we give it a name, so let’s give it a name, say
“SearchByLastName”:

>hqto cur/cevkqp?$Kpfgz$ ogvjqf?igv@
>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$ pcog?$UgctejD{NcuvPcog$ 1@
>dwvvqp v{rg?$uwdokv$@Hknvgt"tguwnvu>1dwvvqp@
>dwvvqp@Engct"vjg"hknvgt>1dwvvqp@

>1hqto@

Let’s test what we have got so far. Type in some text in the textbox (see Fig. 12.2),
then click on the submit button.

Fig. 12.2 Is similar to Fig. 12.1, but now the input element contains some text (“Claude”)

12.1 Filter Results 253

You should see that the text we enter in the input box above will appear in the URL
(once we click on the Filter Results button), along with the name we defined above:
SearchByLastName:

nqecnjquv<73471AUgctejD{NcuvPcog?Encwfg

As of right now, the Index action sends all instructors, the entire list, to the view to
be displayed. It does not yet use our value from the textbox (represented by the variable
SearchByLastName). We’ll fix this next.

12.1.2 Update the Index Action

Let’s add code to make use of this value. Change the Index action (from
InstructorController) to match the code below.

Namely, we will add one parameter, which matches the name of the text field variable:
SearchByLastName, and then will make use of it. How is the model binding helping
us in here? The model binding grabs the value of SearchByLastName from the HTTP
request (the URL in this case) and passed it to the Index action. Then we narrow down
the results based on the parameter: SearchByLastName. And lastly, we pass the results
to the View.

rwdnke KCevkqpTguwnv"Kpfgz*uvtkpi UgctejD{NcuvPcog+
}

11xct"kpuvtwevqtu"?"htqo"kpuvt"kp"afdEqpvgzv0Kpuvtwevqtu
11"""""""""""""""""ugngev"kpuvt="11yg"uvctv"ykvj"cnn"kpuvtwevqtu"/ NKPS"u{pvcz

xct kpuvtwevqtu"?"afdEqpvgzv0Kpuvtwevqtu0CuGpwogtcdng*+="11cp"cnvgtpcvkxg

kh *UgctejD{NcuvPcog"#?"pwnn+"11pcttqy"fqyp"qwt"tguwnvu
}

kpuvtwevqtu"?"kpuvtwevqtu0Yjgtg*kpuvt"?@"kpuvt0NcuvPcog0Eqpvckpu*UgctejD{NcuvPcog++=
Ä""""
tgvwtp Xkgy*kpuvtwevqtu+=

Ä""""

This should narrow down the results. Try, for example, the following (see Fig. 12.3).
Then click on the Filter results button (you’ll be taken to a page with the URL:

localhost:5125/?SearchByLastName=er), as seen in Fig. 12.4.

Fig. 12.3 Is similar to Fig. 12.1, but now the input element contains some text (“er”)

254 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.4 Shows the result of narrowing the table listed in Index view. In this example, only rows
containing “er” in the Last name column are displayed

You should get the correct results. Also, if you look at the URL, it contains the filtering
value (because we chose to use the GET method!).

There is only one problem though. We would like to have the filtering value (chosen
by the user) stay in the textbox. That would be more user-friendly. One solution is to
make use of the ViewBag object (set a value in the Index action) and pass this value
to the Index view, then use this value in the view as the default value for the textbox.

In the Index action, before the return statement, add the following line:

XkgyDci0UgctejD{NcuvPcog"?"UgctejD{NcuvPcog="11rcuu"vjku"xcnwg"vq"vjg"xkgy

Then, in the Index view, change the line:

>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$1@

into

>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$ pcog?$UgctejD{NcuvPcog$
xcnwg?$BXkgyDci0UgctejD{NcuvPcog$ 1@

That’s it. If you test your work, the web application should now keep the value entered
in the text field (see Fig. 12.5).

12.1.3 Implement the Clear the Filter Button

In here, we would like to be able to click on the Clear the filter button to clear the textbox
and display the entire list. One way to do this is to give our text field an id (we chose:
LastNameFilter), so we can easily refer to it by id, using JavaScript. Below we added
id="LastNameFilter":

>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$ kf?$NcuvPcogHknvgt$
pcog?$UgctejD{NcuvPcog$ xcnwg?$BXkgyDci0UgctejD{NcuvPcog$ 1@

12.2 Filter Results Using a Dropdown List (Optional) 255

Fig. 12.5 After the user clicks on the Filter results button, the contents of the filtering input box
(“er” in this example) are preserved

Fig. 12.6 Shows the mouse hovering above the Clear the filter button

Then, for the clear button, we add the JavaScript code that set the text field above to
null. In particular, we add the JavaScript code to respond to the click event (when the
user clicks on this button). Change the Clear the filter <BUTTON> element to match the
code below:

>dwvvqp qpenkem?$fqewogpv0igvGngogpvD{Kf*)NcuvPcogHknvgt)+0xcnwg"?"pwnn$@Engct"vjg"
hknvgt>1dwvvqp@

In here (see Fig. 12.6).
If you click on the Clear the filter button, you should get back the entire list/table, and

the text field should be cleared.

12.2 Filter Results Using a Dropdown List (Optional)

In this part, we would like to add a dropdown list so the user can select to only view
specific ranks (for example, Assistant Professors). To make it a little more complex, we
would like to only allow in the dropdown list options that are available. For example, if
there are no Adjunct instructors in our table, this option should not be available in the
dropdown list.

256 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.7 Shows a figure similar to the one in Fig. 12.5. But the input field was changed to a
dropdown list selector

12.2.1 Create the Dropdown List Items in the Index Action

In the Index action (of InstructorController class), we first need to create the
list of available ranks and send it to the view (via the dynamic object ViewBag). Add
this code right before the return View statement.

xct CxckncdngTcpmu"?"htqo kpuvt"kp kpuvtwevqtu"11igv"c"nkuv"qh"cxckncdng"tcpmu
qtfgtd{ kpuvt0Tcpm

ugngev kpuvt0Tcpm=
11rcuu"vjg"cxckncdng"tcpmu"vq"vjg"xkgy"/ fkuvkpev"qpn{#

XkgyDci0CxckncdngTcpmu"?"CxckncdngTcpmu0Fkuvkpev*+="

12.2.2 Display the Dropdown List Items in the Index View

Add the following line to the form in the Index view, right before the text field used for
filtering:

>ugngev cur/kvgou?$B*pgy UgngevNkuv*XkgyDci0CxckncdngTcpmu."Cnn++$@
>qrvkqp xcnwg?$$@Cnn tcpmu>1qrvkqp@

>1ugngev@

You should obtain the following dropdown list (Fig. 12.7).

12.2.3 Use of the Dropdown List to Filter Our Results

In order to be able to filter our results based on the dropdown list, we will need to pass
the dropdown selected value from the Index view back to the Index action and narrow

12.2 Filter Results Using a Dropdown List (Optional) 257

down the results based on that value. For this, add a variable name to the <SELECT>
element (the dropdown list) we used name="SelectedRank":

>ugngev cur/kvgou?$B*pgy UgngevNkuv*XkgyDci0CxckncdngTcpmu."Cnn++$ pcog?$UgngevgfTcpm$@
>qrvkqp xcnwg?$$@Cnn"tcpmu>1qrvkqp@

>1ugngev@

Then add a parameter to the Index action (make sure it matches the name above so
the model binding system will help passing it to the action), and make use of it to filter
down the results:

11pcttqy"fqyp"kpuvtwevqtu"dcugf"qp"UgngevgfTcpm<
kh*#uvtkpi0KuPwnnQtGorv{*UgngevgfTcpm+"+
}

kpuvtwevqtu"?"kpuvtwevqtu0Yjgtg*kpuvt"?@"kpuvt0Tcpm??Gpwo0Rctug>Tcpmu@*UgngevgfTcpm++=
Ä

You should now be able to filter by LastName (see Fig. 12.8).
And also, by Rank (make sure to click on Filter result in order to do the filtering)—see

Fig. 12.9.
Check out the URL obtained for the example above. What is the query string of that

URL?

Fig. 12.8 Is similar to Fig. 12.6, but the dropdown list now only contains rank values that are
contained in at least one row from the table

Fig. 12.9 Shows the result of narrowing the table by rank (using the dropdown list) and last name
(using the input field)

258 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

12.2.4 The Code

Here is the entire code for the Index action and the newly added <FORM> in the Index
view so you can check your work:

rwdnke KCevkqpTguwnv"Kpfgz*uvtkpi UgctejD{NcuvPcog."uvtkpi UgngevgfTcpm+
}

11xct"kpuvtwevqtu"?"htqo"kpuvt"kp"afdEqpvgzv0Kpuvtwevqtu
11"""""""""""""""""ugngev"kpuvt="11yg"uvctv"ykvj"cnn"kpuvtwevqtu"/ NKPS"u{pvcz

xct kpuvtwevqtu"?"afdEqpvgzv0Kpuvtwevqtu0CuGpwogtcdng*+="11cp"cnvgtpcvkxg

kh *UgctejD{NcuvPcog"#?"pwnn+"11pcttqy"fqyp"qwt"tguwnvu
}

kpuvtwevqtu"?"kpuvtwevqtu0Yjgtg*kpuvt"?@"kpuvt0NcuvPcog0Eqpvckpu*UgctejD{NcuvPcog++=
Ä

11pcttqy"fqyp"kpuvtwevqtu"dcugf"qp"UgngevgfTcpm<

kh *#uvtkpi0KuPwnnQtGorv{*UgngevgfTcpm++
}

kpuvtwevqtu"?"kpuvtwevqtu0Yjgtg*kpuvt"?@"kpuvt0Tcpm"??"Gpwo0Rctug>Tcpmu@*UgngevgfTcpm++=
Ä

XkgyDci0UgctejD{NcuvPcog"?"UgctejD{NcuvPcog="11rcuu"vjku"xcnwg"vq"vjg"xkgy

xct CxckncdngTcpmu"?"htqo kpuvt"kp kpuvtwevqtu"11igv"c"nkuv"qh"cxckncdng"tcpmu
qtfgtd{ kpuvt0Tcpm
ugngev kpuvt0Tcpm=

11rcuu"vjg"cxckncdng"tcpmu"vq"vjg"xkgy"/ fkuvkpev"qpn{#
XkgyDci0CxckncdngTcpmu"?"CxckncdngTcpmu0Fkuvkpev*+=

tgvwtp Xkgy*kpuvtwevqtu+=
Ä
>hqto cur/cevkqp?$Kpfgz$ ogvjqf?igv@

>ugngev cur/kvgou?$B*pgy UgngevNkuv*XkgyDci0CxckncdngTcpmu."Cnn++$ pcog?$UgngevgfTcpm$@
>qrvkqp xcnwg?$$@Cnn"tcpmu>1qrvkqp@

>1ugngev@
>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$ kf?$NcuvPcogHknvgt$

pcog?$UgctejD{NcuvPcog$ xcnwg?$BXkgyDci0UgctejD{NcuvPcog$ 1@
>dwvvqp v{rg?$uwdokv$@Hknvgt"tguwnvu>1dwvvqp@
>dwvvqp qpenkem?$fqewogpv0igvGngogpvD{Kf*)NcuvPcogHknvgt)+0xcnwg"?"pwnn$@Engct"vjg"hknvgt>1dwvvqp@

>1hqto@

12.3 Consistent Webpages—Using Razor Layouts

A professional web application should be easy to navigate, intuitive, and with a consistent
look and feel from one page to the next one. Our web application is (as of right now) far
from providing a consistent user experience. In this section, we’ll introduce layouts and
see how they can be used to help us create a nice consistent style for all our webpages.

Take a look, for example, at any of the following websites:

. https://www.amazon.com/

. https://www.microsoft.com/

. https://moodle.stmartin.edu/.

As you click on various links on those sites, you should notice that all pages belonging
to one website have the same look and feel. How can we achieve this?

One (bad!) option is to copy and paste the same template into every view. That should
do the job, but what happens if you want to add a new link or remove an obsolete one?
You would have to make those changes in every view page.

https://www.amazon.com/
https://www.microsoft.com/
https://www.moodle.stmartin.edu/

12.3 Consistent Webpages—Using Razor Layouts 259

A better solution is to use Layout pages (see below). Let’s see the steps involved in
using a layout. To learn more about them, we recommend you the following source [69].

12.3.1 Create a Layout

To create layouts, first you need to know the location. We put them inside the folder:
Views > Shared. Let’s create the Shared folder. In the Solution Explorer window, right-
click on Views folder, then select Add > New Folder.

Then, right-click on the Shared folder and select Add > New Item then select Razor
Layout. We will use the default name (Layout.cshtml), but feel free to choose another
name if you prefer. Let’s see what code was included in the template:

>jvon@
>jgcf@

>ogvc pcog?$xkgyrqtv$ eqpvgpv?$ykfvj?fgxkeg/ykfvj$ 1@
>vkvng@BXkgyDci0Vkvng>1vkvng@

>1jgcf@
>dqf{@

>fkx@
BTgpfgtDqf{*+

>1fkx@
>1dqf{@
>1jvon@

>#FQEV[RG jvon@

You should note that a layout looks pretty much like any other HTML page (and like
the views we’ve seen so far, but we’ll soon simplify our views). Two important things to
note in this code:

. The title comes from ViewBag.Title.
– Later, we’ll set the title in the views, and the layout will use it.

. Notice the method call: RenderBody().
– This is where the contents of our views will be displayed.
– If we put any links above this line, those links will be displayed on all views that

make use of this layout.

That’s pretty much for now. We’ll come back to this once we change our views to make
use of this layout.

12.3.2 Use the Layout in Our Views

12.3.2.1 The Layout Directive
To use a layout, we simply need to use the following directive in every view that uses the
layout file (Layout.cshtml):

B}
Nc{qwv"?"$aNc{qwv$=

Ä

260 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

This will make the contents of the views to be included inside the layout, at the point
where the RenderBody function is being called. You will need to copy this directive in
every view that makes use of our layout.

Side note: In this book, we only use one layout, but it is possible to define more than
one layout files (one at a time)!

12.3.2.2 The Razor View Start File
Instead of copying the code above in every view, we can add that code in the
ViewStart.cshtml file. This file needs to be directly inside Views folder. In the Solution

Explorer window, right-click on Views folder and select Add > New Item ….
Then select the Razor View Start file (double-check that the name of this new file is

ViewStart.cshtml) and click the Add button. In this newly added file, make sure to have
the following layout directive:

B}
Nc{qwv"?"$aNc{qwv$=

Ä

If you chose a different name for your layout, make sure to use that name inside the
string above.

12.3.2.3 Modify View Files to Use Our Layout
Next, we’ll modify all our views to make use of the layout created above. The strategy is
as follows:

. Keep only the HTML code that is inside the <BODY> element (not including the
<BODY> tags).
– Also, keep the @model directive—if any.

. For each view, set a title (using the ViewBag.Title).

. If there are any CSS or JavaScript links, we can move them into the Layout file (they
will now be available to all the views that make use of our layout).

The Layout File
From the Index.cshtml view, we move the following links into the Layout.cshtml file:

>nkpm jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$ tgn?$uv{ngujggv$@
>uetkrv ute?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0okp0lu$@>1uetkrv@

Here is how the layout file looks now:
>#FQEV[RG jvon@

>jvon@
>jgcf@

>ogvc pcog?$xkgyrqtv$ eqpvgpv?$ykfvj?fgxkeg/ykfvj$ 1@
>nkpm jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$ tgn?$uv{ngujggv$@
>uetkrv ute?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0okp0lu$@>1uetkrv@
>vkvng@BXkgyDci0Vkvng>1vkvng@

>1jgcf@
>dqf{@

>fkx@
BTgpfgtDqf{*+

>1fkx@
>1dqf{@
>1jvon@

12.3 Consistent Webpages—Using Razor Layouts 261

The Index View
After following the steps mentioned above, the Index view will look as follows:

Boqfgn"KGpwogtcdng>Kpuvtwevqt@
B}

XkgyDci0Vkvng"?"$Kpfgz$=
Ä

>j3@Cnn"kpuvtwevqtu>1j3@
>hqto cur/cevkqp?$Kpfgz$ ogvjqf?igv@

>ugngev cur/kvgou?$B*pgy UgngevNkuv*XkgyDci0CxckncdngTcpmu."Cnn++$ pcog?$UgngevgfTcpm$@
>qrvkqp xcnwg?$$@Cnn"tcpmu>1qrvkqp@

>1ugngev@
>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$

kf?$NcuvPcogHknvgt$ pcog?$UgctejD{NcuvPcog$ xcnwg?$BXkgyDci0UgctejD{NcuvPcog$ 1@
>dwvvqp v{rg?$uwdokv$@Hknvgt"tguwnvu>1dwvvqp@
>dwvvqp qpenkem?$fqewogpv0igvGngogpvD{Kf*)NcuvPcogHknvgt)+0xcnwg"?"pwnn$@Engct"vjg"hknvgt>1dwvvqp@

>1hqto@

}
>VT@

>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0HktuvPcog+">1VF@
>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0NcuvPcog+>1VF@
>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0Tcpm+>1VF@
>VF@BJvon0CevkqpNkpm*$fgvcknu$."$UjqyFgvcknu$. pgy}kf?Bkpuvtwevqt0KpuvtwevqtKfÄ+>1VF@
>VF@>c cur/cevkqp?$UjqyFgvcknu$ cur/tqwvg/kf?$Bkpuvtwevqt0KpuvtwevqtKf$@fgvcknu>1c@ >1VF@
>VF@>c cur/cevkqp?$Gfkv$ cur/tqwvg/kf?$Bkpuvtwevqt0KpuvtwevqtKf$@gfkv"vjku>1c@ >1VF@
>VF@>c cur/cevkqp?$Fgngvg$ cur/tqwvg/kf?$Bkpuvtwevqt0KpuvtwevqtKf$@fgngvg"vjku>1c@ >1VF@

>1VT@
Ä

>1VDQF[@

>1VCDNG@
Ä
gnug
}

>j4@Pq"kpuvtwevqtu"hqwpf#">1j4@
Ä
>c cur/cevkqp?Cff@Cff"c"pgy"kpuvtwevqt">1c@

Bkh *Oqfgn0Eqwpv*+"@"2+
}

>VCDNG encuu?$vcdng"vcdng/fctm"vcdng/jqxgt$@
>VJGCF@

>VT@
>VJ@>ncdgn cur/hqt?$Hktuv*+0HktuvPcog$@>1ncdgn@>1VJ@
>VJ@>ncdgn cur/hqt?$Hktuv*+0NcuvPcog$@>1ncdgn@>1VJ@
>VJ@>ncdgn cur/hqt?$Hktuv*+0Tcpm$@>1ncdgn@>1VJ@
>VJ@Fgvcknu"*JVON"jgnrgt+>1VJ@
>VJ@Fgvcknu"*vci"jgnrgt+>1VJ@
>VJ@Gfkv">1VJ@
>VJ@Fgngvg">1VJ@

>1VT@
>1VJGCF@
>VDQF[@

Bhqtgcej *xct kpuvtwevqt"kp Oqfgn+

The ShowDetails View
After following the steps mentioned above, the ShowDetails view will look as follows
(isn’t this much easier to read?):

Boqfgn"Kpuvtwevqt
B}

XkgyDci0Vkvng"?"$Kpuvtwevqt"Fgvcknu$=
Ä

>j3@Kpuvtwevqt"BOqfgn0NcuvPcog"fgvcknu>1j3@
>r@>ncdgn cur/hqt?$BOqfgn0HktuvPcog$@>1ncdgn@<""BJvon0Fkurnc{Hqt*o"?@"o0HktuvPcog+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0NcuvPcog$@>1ncdgn@<""BJvon0Fkurnc{Hqt*o"?@"o0NcuvPcog+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0KuVgpwtgf$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"o0KuVgpwtgf+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0Tcpm$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"o0Tcpm+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0JktkpiFcvg$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"o0JktkpiFcvg+>1r@

>c cur/cevkqp?$Kpfgz$@iq"vq"Kpfgz>1c@
BJvon0CevkqpNkpm*$iq"vq"Kpfgz$."$Kpfgz$+

In each view, you only need to include the data specific to that view. What needs to
be repeated for all views should be put inside the layout file.

262 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

The Add View
After following the steps mentioned above, the Add view will look as follows:

Boqfgn"Kpuvtwevqt
B}

XkgyDci0Vkvng"?"$Cff"c"pgy"kpuvtwevqt$=
Ä

>j3@Etgcvg"c"pgy"Kpuvtwevqt>1j3@
>fkx cur/xcnkfcvkqp/uwooct{?Cnn uv{ng?$eqnqt<tgf$@>1fkx@

>hqto cur/cevkqp?Cff cur/eqpvtqnngt?$Kpuvtwevqt$ ogvjqf?$rquv$@
>ncdgn cur/hqt?$HktuvPcog$@>1ncdgn@
>kprwv cur/hqt?$HktuvPcog$ 1@
>urcp cur/xcnkfcvkqp/hqt?$HktuvPcog$@>1urcp@
>dt@
>ncdgn cur/hqt?$NcuvPcog$@>1ncdgn@
>kprwv cur/hqt?$NcuvPcog$ 1@
>urcp cur/xcnkfcvkqp/hqt?$NcuvPcog$@>1urcp@
>dt@
>ncdgn cur/hqt?$KuVgpwtgf$@>1ncdgn@
>kprwv cur/hqt?$KuVgpwtgf$ 1@
>urcp cur/xcnkfcvkqp/hqt?$KuVgpwtgf$@>1urcp@
>dt@
>ncdgn cur/hqt?$JktkpiFcvg$@>1ncdgn@
>kprwv cur/hqt?$JktkpiFcvg$ 1@
>urcp cur/xcnkfcvkqp/hqt?$JktkpiFcvg$@>1urcp@
>dt@
>ncdgn cur/hqt?$Tcpm$@>1ncdgn@
>ugngev cur/hqt?$Tcpm$ cur/kvgou?$BJvon0IgvGpwoUgngevNkuv*v{rgqh*Tcpmu++$@

>qrvkqp xcnwg?$$@Ugngev>1qrvkqp@
>1ugngev@
>urcp cur/xcnkfcvkqp/hqt?$Tcpm$@>1urcp@
>dt@
>dt 1@
>ncdgn cur/hqt?$RjqpgPwodgt$@>1ncdgn@
>kprwv cur/hqt?$RjqpgPwodgt$ 1@
>urcp cur/xcnkfcvkqp/hqt?$RjqpgPwodgt$@>1urcp@
>dt@
>ncdgn cur/hqt?$GocknCfftguu$@>1ncdgn@
>kprwv cur/hqt?$GocknCfftguu$ 1@
>urcp cur/xcnkfcvkqp/hqt?$GocknCfftguu$@>1urcp@
>dt@
>ncdgn cur/hqt?$RgtuqpcnWTN$@>1ncdgn@
>kprwv cur/hqt?$RgtuqpcnWTN$ 1@
>urcp cur/xcnkfcvkqp/hqt?$RgtuqpcnWTN$@>1urcp@
>dt@
>ncdgn cur/hqt?$WpwugfRcuuyqtf$@>1ncdgn@
>kprwv cur/hqt?$WpwugfRcuuyqtf$ 1@
>urcp cur/xcnkfcvkqp/hqt?$WpwugfRcuuyqtf$@>1urcp@
>dt@
>dt@
>dt@
>kprwv v{rg?$uwdokv$ xcnwg?$Etgcvg"Kpuvtwevqt$ 1@

>1hqto@

The Edit View
After following the steps mentioned above, the Edit view will look as follows:

12.3 Consistent Webpages—Using Razor Layouts 263

Boqfgn"Kpuvtwevqt
B}

XkgyDci0Vkvng"?"$Gfkv"cp"kpuvtwevqt$=
Ä

>j3@Gfkv"cp"kpuvtwevqt"rtqhkng>1j3@
>fkx cur/xcnkfcvkqp/uwooct{?Cnn@>1fkx@

>hqto cur/cevkqp?$Gfkv$ ogvjqf?$rquv$@
>kprwv cur/hqt?$BOqfgn0KpuvtwevqtKf$ v{rg?$jkffgp$ 1@
B,pggfgf"uq"vjg"KpuvtwevqtKf"ku"ugpv"vq"vjg"Gfkv*RQUV+,B

>ncdgn cur/hqt?$NcuvPcog$@>1ncdgn@
>kprwv cur/hqt?$NcuvPcog$ 1@
>urcp cur/xcnkfcvkqp/hqt?$NcuvPcog$@>1urcp@
>dt@
>ncdgn cur/hqt?$KuVgpwtgf$@>1ncdgn@
>kprwv cur/hqt?$KuVgpwtgf$ 1@
>urcp cur/xcnkfcvkqp/hqt?$KuVgpwtgf$@>1urcp@
>dt@
>ncdgn cur/hqt?$JktkpiFcvg$@>1ncdgn@
>kprwv cur/hqt?$JktkpiFcvg$ 1@
>urcp cur/xcnkfcvkqp/hqt?$JktkpiFcvg$@>1urcp@
>dt@
>ncdgn cur/hqt?$Tcpm$@>1ncdgn@
>ugngev cur/hqt?$Tcpm$ cur/kvgou?$BJvon0IgvGpwoUgngevNkuv*v{rgqh*Tcpmu++$@>1ugngev@
>dt@
>dt@
>kprwv v{rg?$uwdokv$ xcnwg?$Ucxg"ejcpigu$ 1@
>kprwv v{rg?$dwvvqp$ qpenkem?$jkuvqt{0dcem*+$ xcnwg?$Ecpegn$@

>1hqto@

The Delete View
After following the steps mentioned above, the Delete view will look as follows:

Boqfgn"Kpuvtwevqt
B}

XkgyDci0Vkvng"?"$Fgngvg"cp"kpuvtwevqt$=
Ä

>j3@Ctg"{qw"uwtg"{qw"ycpv"vq"fgngvg"vjku"kpuvtwevqtA>1j3@
>hqto cur/cevkqp?$FgngvgEqphktogf$ ogvjqf?$rquv$@

>kprwv cur/hqt?$KpuvtwevqtKf$ v{rg?$jkffgp$ 1@
>r@>ncdgn cur/hqt?$BOqfgn0HktuvPcog$@>1ncdgn@<""BJvon0Fkurnc{Hqt*o"?@"o0HktuvPcog+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0NcuvPcog$@>1ncdgn@<""BJvon0Fkurnc{Hqt*o"?@"o0NcuvPcog+>1r@
>r@>ncdgn cur/hqt?$BOqfgn0Tcpm$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"o0Tcpm+>1r@
>dt 1@
>kprwv v{rg?$uwdokv$ xcnwg?$[GU."fgngvg$ 1@
>kprwv v{rg?$dwvvqp$ qpenkem?$jkuvqt{0dcem*+$ xcnwg?$PQ."ecpegn$@

>1hqto@

Test Your Work—Then Link Our .css File into the Layout File
Let’s test our work so far. Run your application. It should run as before. Some pages may
look slightly different because now we included the links to Bootstrap 5 in our layout,
hence for all our views (that use our layout).

Inside the Layout.cshtml, right after the <SCRIPT> element, let’s add the following
link to our own CSS file (you can also drag and drop the CSS file into the layout file,
Visual Studio will “drop” the link below for you):

>nkpm jtgh?$Å1euu1rgtuqpcn0euu$ tgn?$uv{ngujggv$ 1@

Now, when you run your application, you should see all files using the same lightblue
background color (and other elements included in the .css file):

The Index view (see Fig. 12.10).
The Add view (see Fig. 12.11).

264 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.10 Shows the result of adding styling to the Index view

Fig. 12.11 Shows the result of adding styling to the Add view

And so on. On your own, you should play with the personal.css file and modify it so
your web application looks better.

IMPORTANT: If you make modifications to the CSS file, and they are not reflected in
your webpages, make sure to press Ctrl + F5 inside your browser, to make your browser
download the latest version of the .css files. Otherwise, your browser may try to use a
cached version of the .css files (the ones before you made modifications).

12.3 Consistent Webpages—Using Razor Layouts 265

12.3.3 Add a Bootstrap 5 Navbar to Our Layout

Next, to see how great layout files are, we’ll add a navigation bar to our layout file. This
will in turn be used on all views that make use of our layout file.

Note: Instead of having to add a layout in every view individually, we only need to do
it once, in the layout. Isn’t this great?

Let’s start by adding the navbar we saw in Chap. 4 into our layout (to learn more about
navbars, use [25]). Copy and paste that navbar into the Layout.cshtml file. The layout
file should now look as follows:

>#FQEV[RG jvon@

>jvon@
>jgcf@

>ogvc pcog?$xkgyrqtv$ eqpvgpv?$ykfvj?fgxkeg/ykfvj$ 1@
>nkpm jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$ tgn?$uv{ngujggv$@
>uetkrv ute?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0okp0lu$@>1uetkrv@
>nkpm jtgh?$Å1euu1rgtuqpcn0euu$ tgn?$uv{ngujggv$ 1@
>vkvng@BXkgyDci0Vkvng>1vkvng@

>1jgcf@
>dqf{@

>PCX encuu?$pcxdct"pcxdct/gzrcpf/uo"di/fctm"pcxdct/fctm$@
>FKX encuu?$eqpvckpgt/hnwkf$@

>WN encuu?$pcxdct/pcx$@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$hktuvygdrcig0jvon$@Hktuv"rcig>1C@
>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$ugeqpfygdrcig0jvon$@Ugeqpf"rcig>1C@
>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$tgikuvgt0jvon$@Tgikuvgt>1C@
>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Uckpv"Octvkp)u"Wpkxgtukv{>1C@
>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$@Y5Uejqqnu>1C@
>1NK@

>1WN@
>1FKX@

>1PCX@

>fkx@
BTgpfgtDqf{*+

>1fkx@
>1dqf{@
>1jvon@

Run your application. Your navbar should be on every page that uses the layout. Your
pages have a more consistent look and feel (Fig. 12.12).

12.3.4 Add Navigation Links to Various Actions and Controllers

Next, we’ll fix the links in our navbar. For this, we will make use of tag helpers.
IMPORTANT: The tag helpers used in the navbar should include the name of the

controller for each action; otherwise, going from one controller’s action to another
controller’s action won’t work (as you would expect).

Here is how our navbar looks after adding links to various actions:

266 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.12 Shows the effects of adding a navbar to the layout. In here we see again the Index view

>PCX encuu?$pcxdct"pcxdct/gzrcpf/uo"di/fctm"pcxdct/fctm$@
>FKX encuu?$eqpvckpgt/hnwkf$@

>WN encuu?$pcxdct/pcx$@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Uckpv"Octvkp)u"
Wpkxgtukv{>1C@

>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$@Y5Uejqqnu>1C@
>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11ngctp0oketquqhv0eqo1gp/
wu1curpgv1eqtg1oxe1qxgtxkgyAxkgy?curpgveqtg/802$@Ngctp"CUR0PGV"Eqtg"OXE>1C@

>1NK@
>NK encuu?$pcx/kvgo"ftqrfqyp$@

>c encuu?$pcx/nkpm"ftqrfqyp/vqiing$ tqng?$dwvvqp$ fcvc/du/
vqiing?$ftqrfqyp$@Kpuvtwevqtu>1c@

>WN encuu?$ftqrfqyp/ogpw$@
>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Kpuvtwevqt$ cur/

cevkqp?$Kpfgz$@Nkuv"cnn"kpuvtwevqtu>1c@>1NK@
>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Kpuvtwevqt$ cur/

cevkqp?Cff@Cff"c"pgy"kpuvtwevqt>1c@>1NK@
>1WN@

>1NK@
>NK encuu?$pcx/kvgo"ftqrfqyp$@

>c encuu?$pcx/nkpm"ftqrfqyp/vqiing$ tqng?$dwvvqp$ fcvc/du/
vqiing?$ftqrfqyp$@Uvwfgpvu>1c@

>WN encuu?$ftqrfqyp/ogpw$@
>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Uvwfgpv$ cur/

cevkqp?$Kpfgz$@Nkuv"cnn"uvwfgpvu>1c@>1NK@
>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Uvwfgpv$ cur/cevkqp?Cff@Cff"

c"pgy"uvwfgpv>1c@>1NK@
>1WN@

>1NK@
>1WN@

>1FKX@
>1PCX@

Now you should have a functional navigation bar that can be used for all views that
use our layout file (see Fig. 12.13).

You should also note that one of the reasons why you should use the Bootstrap frame-
work is that it includes responsive design. To see this, narrow down the webpage above.
See what happens to the navbar if it does not have sufficient width to display all options
side by side (Fig. 12.14).

12.4 Layout Sections (Optional) 267

Fig. 12.13 Shows the same view as seen in Fig. 12.12, but the navbar contains two more dropdown
menu options (Instructors and Students)

12.4 Layout Sections (Optional)

Next, we would like to introduce layout sections. Think of sections as pieces of code that
can be defined by each view individually, but it’s up to the layout to decide where (and
how) to display these sections.

We’ll demonstrate sections by solving the following: we want to let each view define
certain links that will appear at the bottom of the page (later we could move them if
needed) and we will place them centered.

12.4.1 Define a Section

To define a section, a view will use the format: @section SectionName{contents
…}.

Note: It does not matter where inside the section is defined inside a view. It’s up to
the layout where it gets displayed.

12.4.1.1 The Index View (For the InstructorController Class)
Will not define such a section. One may be added later.

268 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.14 Shows the same Index view as seen in Fig. 12.13, but the nav bar is responsive to the
actual width of the window. If you narrow the window width sufficiently, the menu options will show
up stacked (in the upper left corner)

12.4.1.2 The Add View (For the InstructorController Class)
Let’s add the following (just for practice)—you may remove unnecessary links if you
want:

Bugevkqp"QwtHqqvgtNkpmu}
>kprwv v{rg?$dwvvqp$ xcnwg?$IQ"DCEM$ qpenkem?$jkuvqt{0dcem*+$ 1@

Ä

12.4 Layout Sections (Optional) 269

12.4.1.3 The ShowDetails View (For the InstructorController Class)
Let’s add the following (just for practice)—you may remove unnecessary links if you
want:

Bugevkqp"QwtHqqvgtNkpmu}
>kprwv v{rg?$dwvvqp$ xcnwg?$IQ"DCEM$ qpenkem?$jkuvqt{0dcem*+$ 1@
>c cur/cevkqp?$Gfkv$ cur/eqpvtqnngt?$Kpuvtwevqt$ cur/tqwvg/kf?$BOqfgn0KpuvtwevqtKf$@GFKV>1c@
>c cur/cevkqp?$Fgngvg$ cur/eqpvtqnngt?$Kpuvtwevqt$ cur/tqwvg/kf?$BOqfgn0KpuvtwevqtKf$@FGNGVG>1c@

Ä

12.4.1.4 The Edit, Delete Views (For the InstructorController Class)
Let’s add the following (just for practice):

Bugevkqp"QwtHqqvgtNkpmu}
>kprwv v{rg?$dwvvqp$ xcnwg?$IQ"DCEM$ qpenkem?$jkuvqt{0dcem*+$ 1@
>c cur/cevkqp?$UjqyFgvcknu$ cur/eqpvtqnngt?$Kpuvtwevqt$ cur/tqwvg/kf?$BOqfgn0KpuvtwevqtKf$@UGG"FGVCKNU>1c@

Ä

12.4.2 Make Use of a Section

To display section in the layout, use @RenderSection in the layout (at the location
where you want it displayed—we’ll put them at the end of the _Layout.cshtml, right
before the </BODY> end tag).

BTgpfgtUgevkqp*$QwtHqqvgtNkpmu$."hcnug+

The second parameter is needed, it tells the compiler that not all views have a section
named “OurFooterLinks” defined. Setting that value to true would force your appli-
cation to define that section in every view that uses our layout, or get a compiling
error.

Lastly, we would like the buttons defined in the OurFooterLinks section to be
centered and displayed one line below their current position. One way to do this is as
follows. Add a <DIV> element, and nest the RenderSection directive inside a <DIV>
element, then apply the class selector (which we already defined in our personal.css file):

>DT@
>FKX kf?$EgpvgtHqqvgtNkpmu$@

BTgpfgtUgevkqp*$QwtHqqvgtNkpmu$."hcnug+
>1FKX@

To remind you, our personal.css file already contains

Now run your application and check the changes. Make sure to press Ctrl + F5 if the
latest version of the personal.css is not yet loaded in the browser.

270 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

12.5 Make Use of Bootstrap 5 Buttons

We have already seen in Chap. 4 how to make use of Bootstrap 5 buttons, and how we
can also use Bootstrap to make links look like buttons. Let’s make use of these to improve
the look of our web application.

12.5.1 The Index View

In particular (see Fig. 12.15), we would like to change the appearance of this view (we’ll
provide the solution at the end of this section):

Add the following to all our <a> elements: defined inside
Index.cshtml. Now the page looks a little better (see Fig. 12.16).

Let’s remove the Details (HTML helper) column. Remove the following lines:

>VJ@Fgvcknu"*JVON"jgnrgt+>1VJ@

>VF@BJvon0CevkqpNkpm*$fgvcknu$."$UjqyFgvcknu$."pgy}kf?Bkpuvtwevqt0KpuvtwevqtKfÄ+>1VF@

And rename the columns Details (tag helper) to Details. See the result in Fig. 12.17.
Lastly, let’s use the various colors available to Bootstrap 5 buttons.

. For the details button, add the class: dvp/uweeguu

. For the edit button, add the class: dvp/yctpkpi

. For the delete button, add the class: dvp/fcpigt

Here is how the view looks now (see Fig. 12.18).
Here is the entire code for this view:

Fig. 12.15 Shows the current state of the Index view

12.5 Make Use of Bootstrap 5 Buttons 271

Fig. 12.16 The Index view looks similar to the one in Fig. 12.15, but some of the links look like
buttons

Fig. 12.17 Shows the result of removing the Details (HTML helper) column

272 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.18 Shows the same contents as seen in Fig. 12.17, to which we added various Bootstrap
5 colors (we used green for the details buttons, yellow for the edit buttons, and red for the delete
buttons)

Boqfgn"KGpwogtcdng>Kpuvtwevqt@
B}

XkgyDci0Vkvng"?"$Kpfgz$=
Ä

>j3@Cnn"kpuvtwevqtu>1j3@
>hqto cur/cevkqp?$Kpfgz$ ogvjqf?igv@

>ugngev cur/kvgou?$B*pgy UgngevNkuv*XkgyDci0CxckncdngTcpmu."Cnn++$ pcog?$UgngevgfTcpm$@
>qrvkqp xcnwg?$$@Cnn"tcpmu>1qrvkqp@

>1ugngev@
>kprwv v{rg?$vgzv$ rncegjqnfgt?$ncuv"pcog"kpenwfgu"000$ kf?$NcuvPcogHknvgt$ pcog?$UgctejD{NcuvPcog$

xcnwg?$BXkgyDci0UgctejD{NcuvPcog$ 1@
>dwvvqp v{rg?$uwdokv$@Hknvgt"tguwnvu>1dwvvqp@
>dwvvqp qpenkem?$fqewogpv0igvGngogpvD{Kf*)NcuvPcogHknvgt)+0xcnwg"?"pwnn$@Engct"vjg"hknvgt>1dwvvqp@

>1hqto@
Bkh *Oqfgn0Eqwpv*+"@"2+
}

>VCDNG encuu?$vcdng"vcdng/fctm"vcdng/jqxgt$@
>VJGCF@

>VT@
>VJ@>ncdgn cur/hqt?$Hktuv*+0HktuvPcog$@>1ncdgn@>1VJ@
>VJ@>ncdgn cur/hqt?$Hktuv*+0NcuvPcog$@>1ncdgn@>1VJ@
>VJ@>ncdgn cur/hqt?$Hktuv*+0Tcpm$@>1ncdgn@>1VJ@
>VJ@Fgvcknu>1VJ@
>VJ@Gfkv">1VJ@
>VJ@Fgngvg">1VJ@

>1VT@
>1VJGCF@
>VDQF[@

Bhqtgcej *xct kpuvtwevqt"kp Oqfgn+
} >VT@

>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0HktuvPcog+">1VF@
>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0NcuvPcog+>1VF@
>VF@BJvon0Fkurnc{Hqt*o"?@"kpuvtwevqt0Tcpm+>1VF@
>VF@>c cur/cevkqp?$UjqyFgvcknu$ cur/tqwvg/kf?$Bkpuvtwevqt0KpuvtwevqtKf$ encuu?$dvp"dvp/uweeguu$@fgvcknu>1c@

>1VF@
>VF@>c cur/cevkqp?$Gfkv$ cur/tqwvg/kf?$Bkpuvtwevqt0KpuvtwevqtKf$ encuu?$dvp"dvp/yctpkpi$@gfkv"vjku>1c@ >1VF@
>VF@>c cur/cevkqp?$Fgngvg$ cur/tqwvg/kf?$Bkpuvtwevqt0KpuvtwevqtKf$ encuu?$dvp"dvp/fcpigt$@fgngvg"vjku>1c@

>1VF@
>1VT@

Ä
>1VDQF[@

>1VCDNG@
Ä
gnug
}

>j4@Pq"kpuvtwevqtu"hqwpf#">1j4@
Ä
>c cur/cevkqp?Cff encuu?$dvp"dvp/rtkoct{$@Cff"c"pgy"kpuvtwevqt">1c@

12.5 Make Use of Bootstrap 5 Buttons 273

12.5.2 The ShowDetails View

Here is the current state of this view (see Fig. 12.19).
Let’s remove the go to index links (we already have links in the navbar for the Index

action). Add CSS classes to the GO BACK, EDIT, and DELETE (as seen in the previous
section).

Here is the solution so far:

>#FQEV[RG jvon@

>jvon@
>jgcf@

>ogvc pcog?$xkgyrqtv$ eqpvgpv?$ykfvj?fgxkeg/ykfvj$ 1@
>nkpm jtgh?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1euu1dqqvuvtcr0okp0euu$ tgn?$uv{ngujggv$@
>uetkrv ute?$jvvru<11efp0lufgnkxt0pgv1pro1dqqvuvtcrB704051fkuv1lu1dqqvuvtcr0dwpfng0okp0lu$@>1uetkrv@
>nkpm jtgh?$Å1euu1rgtuqpcn0euu$ tgn?$uv{ngujggv$ 1@
>vkvng@BXkgyDci0Vkvng>1vkvng@

>1jgcf@
>dqf{@

>PCX encuu?$pcxdct"pcxdct/gzrcpf/uo"di/fctm"pcxdct/fctm$@
>FKX encuu?$eqpvckpgt/hnwkf$@

>WN encuu?$pcxdct/pcx$@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0uvoctvkp0gfw1$@Uckpv"Octvkp)u"Wpkxgtukv{>1C@
>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11yyy0y5uejqqnu0eqo1$@Y5Uejqqnu>1C@
>1NK@
>NK encuu?$pcx/kvgo$@

>C encuu?$pcx/nkpm$ jtgh?$jvvru<11ngctp0oketquqhv0eqo1gp/wu1curpgv1eqtg1oxe1qxgtxkgyAxkgy?curpgveqtg/
802$@Ngctp"CUR0PGV"Eqtg"OXE>1C@

>1NK@
>NK encuu?$pcx/kvgo"ftqrfqyp$@

>c encuu?$pcx/nkpm"ftqrfqyp/vqiing$ tqng?$dwvvqp$ fcvc/du/vqiing?$ftqrfqyp$@Kpuvtwevqtu>1c@
>WN encuu?$ftqrfqyp/ogpw$@

>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Kpuvtwevqt$ cur/cevkqp?$Kpfgz$@Nkuv"cnn"
kpuvtwevqtu>1c@>1NK@

>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Kpuvtwevqt$ cur/cevkqp?Cff@Cff"c"pgy"kpuvtwevqt>1c@>1NK@
>1WN@

>1NK@

>NK encuu?$pcx/kvgo"ftqrfqyp$@
>c encuu?$pcx/nkpm"ftqrfqyp/vqiing$ tqng?$dwvvqp$ fcvc/du/vqiing?$ftqrfqyp$@Uvwfgpvu>1c@
>WN encuu?$ftqrfqyp/ogpw$@

>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Uvwfgpv$ cur/cevkqp?$Kpfgz$@Nkuv"cnn"uvwfgpvu>1c@>1NK@
>NK@>c encuu?$ftqrfqyp/kvgo$ cur/eqpvtqnngt?$Uvwfgpv$ cur/cevkqp?Cff@Cff"c"pgy"uvwfgpv>1c@>1NK@

>1WN@
>1NK@

>1WN@
>1FKX@

>1PCX@

>fkx@
BTgpfgtDqf{*+

>1fkx@

>DT@
>FKX encuu?$EgpvgtHqqvgtNkpmu$@

BTgpfgtUgevkqp*$QwtHqqvgtNkpmu$."hcnug+
>1FKX@

>1dqf{@
>1jvon@

Challenge: how would you center these contents? Here is the end result (Fig. 12.20).
We’ll let you change the other views on your own, but here are some suggested

outcomes.
For the Add view (see Fig. 12.21).
For the Edit view (see Fig. 12.22).
And the Delete view (see Fig. 12.23).

12.5.3 Use Bootstrap for Styling Validation Errors

Lastly, in this part, we would like to make all our Validation errors show in red (see
Fig. 12.24).

274 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.19 Shows the current state of the ShowDetails view for InstructorController

Fig. 12.20 Shows how we would like to make the ShowDetails view look after adding (Bootstrap
5) styling

Using the developer tool (press F12 then go to the Elements tab), you will find that
the errors are displayed in elements having the following CSS classes:

. For the summary: validation-summary-errors

. For the individual fields: field-validation-error

12.5 Make Use of Bootstrap 5 Buttons 275

Fig. 12.21 Shows how we would like to make the Add view to look after adding (Bootstrap 5)
styling

Fig. 12.22 Shows how we would like to make the Edit view to look after adding (Bootstrap 5)
styling

Therefore, we just need to add the following to our personal.css file:

0hkgnf/xcnkfcvkqp/gttqt ."0xcnkfcvkqp/uwooct{/gttqtu }
eqnqt<"tgf=

Ä

And now the errors show up with red text (see Fig. 12.25).

276 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Fig. 12.23 Shows how we would like to make the Delete view to look after adding (Bootstrap 5)
styling

Fig. 12.24 Shows how we would like to make the Add view to look after adding (Bootstrap 5)
styling

12.6 Configure a Friendly Error Page 277

Fig. 12.25 Shows the same image as in Fig. 12.24, but now that we added the styling shown above,
the errors show up using a red text

12.6 Configure a Friendly Error Page

12.6.1 Introduction

What happens if you send an unexpected HTTP request to a website such as Amazon.com,
Microsoft.com, or stmartin.edu? On your own, try out the following:

. https://www.amazon.com/MEZEI

. https://www.microsoft.com/MEZEI

. http://www.stmartin.edu/MEZEI

In each of these cases, you should note that a nice error page is created, most importantly
one that has a similar layout as the other pages on the same website. Some websites even
include random images displayed in their error page.

https://www.amazon.com/MEZEI
https://www.microsoft.com/MEZEI
http://www.stmartin.edu/MEZEI

278 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

What happens if our application encounters an error? Or receives an unexpected HTTP
request? Try, for example,

. http://localhost:5125/MEZEI

We got the HTTP ERROR 404 page.
This isn’t as nice as the friendly error page seen above. Next, we will create a friendly

error page that uses our layout file, but first, let’s talk about using multiple environments
in an ASP.Net Core application.

12.6.2 Work with Multiple Environments

“ASP.NET Core configures app behavior based on the runtime environment using an
environment variable” (read more in [70, 71]). In particular, we can use the environment
variable ASPNETCORE_ENVIRONMENT to specify if our application is in production,
in development, or in some (any) other stage. Then, we can use code to check which
environment we are in and act appropriately.

There are multiple ways to set the value of the ASPNETCORE_ENVIRONMENT envi-
ronmental variable. We will change it as follows: from Solution Explorer window open the
file Properties > launchSettings.json. In there, one can set the value of the ASPNETCORE_
ENVIRONMENT environmental variable to the desired stage. Right now, it is set to
“Development”. We will later switch it to “Production”, but please note that you
can use any other values too, for example, “Staging”, etc.

$rtqhkngu$<"}
$CURDqqmRtqlgev$<"}

$eqoocpfPcog$<"$Rtqlgev$.
$fqvpgvTwpOguucigu$<"vtwg.
$ncwpejDtqyugt$<"vtwg.
$crrnkecvkqpWtn$<"$jvvr<11nqecnjquv<7347$.
$gpxktqpogpvXctkcdngu$<"}

$CURPGVEQTGaGPXKTQPOGPV$<"$Fgxgnqrogpv$
Ä

Ä.

We will make use of this environment variable, so our application behaves differently
in various environments:

. During development, if an error occurs, we would like to get as many details as
possible about the error.

. During production, we want to hide all details about the error and instead use a nice
friendly error page (see Fig. 12.26).

Here is how we’ll use the ASPNETCORE_ENVIRONMENT environmental variable, in the
middleware pipeline. In Program.cs, right after

http://www.localhost:5125/MEZEI

12.6 Configure a Friendly Error Page 279

Fig. 12.26 Shows a simple error page that only contains some generic text, without including all
details of the error

xct crr"?"dwknfgt0Dwknf*+=11ugv"wr"okffngyctg"eqorqpgpvu0

add the following code (explained in the next two subsections).

kh*crr0Gpxktqpogpv0KuFgxgnqrogpv*++
}

crr0WugFgxgnqrgtGzegrvkqpRcig*+=""""""""""""""""11ujqy"cnn"fgvcknu"hqt"gttqtu
Ä
gnug
}

crr0WugGzegrvkqpJcpfngt*$1Gttqt1Kpfgz$+=""11ujqy"c htkgpfn{"rcig."jkfg"cnn"fgvcknu
crr0WugUvcvwuEqfgRciguYkvjTgfktgevu*$1Gttqt1Kpfgz$+= 11kpenwfg"JVVR"Gttqt"eqfgu vqq

Ä

Note: The app.Environment can be used to check against for environment, not
just the Development. After app.Environment type a dot, and IntelliSense (from
Visual Studio) will show you several options including IsDevelopment, IsEnvironment,
IsProduction, and IsStaging.

To check if the current environment is “TEST”, you could use code similar to:

kh*crr0Gpxktqpogpv0KuGpxktqpogpv*›VGUVfi++

12.6.3 The Developer Exception Page

During the development stage, we would like to get as many details as pos-
sible about errors. For this, we will use the following middleware component:
app.UseDeveloperExceptionPage();

You should only be using this for the Development environment (or related stages, such
as Testing, Code Review, …) because (as you will see below) the text generated by this
middleware pipeline can include portions of your source code, which is something you
do not want to disclose to your clients, especially to potential attackers.

For example, we could use the following in Program.cs:

xct crr"?"dwknfgt0Dwknf*+=11ugv"wr"okffngyctg"eqorqpgpvu0
kh *crr0Gpxktqpogpv0KuFgxgnqrogpv*++
}

crr0WugFgxgnqrgtGzegrvkqpRcig*+=""""""""""""""""11ujqy"cnn"fgvcknu"hqt"gttqtu
Ä
gnug
}

000

280 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

To test this, make sure to set the environment variable: "ASPNETCORE_
ENVIRONMENT": "Development". Then, go to the Index action of the
InstructorController class, and add the following line of code (to generate an
error) as the very first statement of this method:

vjtqy pgy Gzegrvkqp*$vguvkpi"vjg"gttqt"rcig$+=

Run your application. You should get a response page containing many details about
the error page. In particular, you can get the Stack information, the Query information,
Cookies, Headers, and Routing information. You can even get the line number responsible
for the Exception that was created.

Before you continue, please remove the line we just added (throw new
Exception("testing the...");).

Another way to test this is by renaming, let’s say the Index.cshtml file to Index2.cshtml.
You should get a similar error page full of details (as seen above).

Rename back the Index view before you continue!
You should note that some errors (such as HTTP 404—not found) do not have such

detailed HTTP responses. For example, if you use the following HTTP request: http://loc
alhost:5125/MEZEI you will get the HTTP ERROR 404 page.

12.6.4 The Friendly Error Page

Next, we’ll configure the friendly error page, so that when an error occurs, the user gets
a nice friendly response. Then, we’ll go over the same errors as seen above and check the
outcome.

During the production stage, we would like to get no details displayed to the user, just
that an error occurred, and use our layout file, so the user still has access to the other links
for an easier navigation. For this, we will use the following middleware components:

crr0WugGzegrvkqpJcpfngt*$1Gttqt1Kpfgz$+=""11ujqy"c"htkgpfn{"rcig."jkfg"cnn"fgvcknu
crr0WugUvcvwuEqfgRciguYkvjTgfktgevu*$1Gttqt1Kpfgz$+="11hqt"tgurqpugu uwej"cu"626"Pqv"hqwpf

If you hover your mouse over UseExceptionHandler method (in Program.cs),
you will find that this method is a middleware component that will catch exceptions and
reset the request path. You can do the same for the other method.

Make sure in the Program.cs you are using an if statement to check which
environment is being used.

kh *crr0Gpxktqpogpv0KuFgxgnqrogpv*++
}

crr0WugFgxgnqrgtGzegrvkqpRcig*+=""""""""""""""""11ujqy"cnn"fgvcknu"hqt"gttqtu
Ä
gnug
}

crr0WugGzegrvkqpJcpfngt*$1Gttqt1Kpfgz$+=""11ujqy"c"htkgpfn{"rcig."jkfg"cnn"fgvcknu
crr0WugUvcvwuEqfgRciguYkvjTgfktgevu*$1Gttqt1Kpfgz$+="11hqt"tgurqpugu"uwej"cu"626"Pqv"hqwpf

Ä

http://www.localhost:5125/MEZEI
http://www.localhost:5125/MEZEI

12.6 Configure a Friendly Error Page 281

Now, let’s explain the string "/Error/Index". One way to prepare a friendly error
page is to create an ErrorController class, with an action (we used Index above)
and a corresponding view. Then, use the path "/Error/Index" to access it. Note:
for default routing, we don’t need to specify the /Index portion. We could just use
/Error.

To our project, let’s add a new controller class, called ErrorController. Here are
the contents of ErrorController.cs:

wukpi Oketquqhv0CurPgvEqtg0Oxe=

pcogurceg CURDqqmRtqlgev0Eqpvtqnngtu
}

rwdnke encuu GttqtEqpvtqnngt <"Eqpvtqnngt
}

rwdnke KCevkqpTguwnv"Kpfgz*+
}

tgvwtp Xkgy*+=
Ä

Ä
Ä

Next, add a view for the Index action. This time, we can select Razor View—Empty
(you can also select the other option, but it will generate more code than we need, so
rather than delete extra code, we chose the Empty option this time).

In the Add New Item window that opens, make sure to use the name that matches the
action’s name, and click on the Add button.

Since we are using a layout and we included the following in ViewStart.cshtml:

our view will make use of the layout. So, in our view, we will only include the following
line:

>j3@Yg"eqwnf"pqv"hkpf"vjg"rcig"{qw"tgswguvgf0"Yg"ctg"uqtt{#>1j3@

Feel free to also add some friendly images if you wish.
To test this, make sure to set the environment variable: "ASPNETCORE_

ENVIRONMENT": "Production". Then, go to the Index action of the
InstructorController class, and add the following line of code (to generate an
error):

vjtqy pgy Gzegrvkqp*$vguvkpi"vjg"gttqt"rcig$+=

Run your application. You should get a response similar to Fig. 12.26.
Isn’t this better? Before you continue, please remove the line we just added (throw

new Exception("testing the...");).
Another way to test this is by renaming, let’s say the Index.cshtml file to Index2.cshtml.

You should get the same friendly page as above. Please rename back the Index view before
you continue!

282 12 Consistent Look: Layouts, Friendly Error Pages, and Environments

Now let’s try the following HTTP request: http://localhost:5125/MEZEI you will again
get something similar to Fig. 12.26.

If you wish, you can also display a random image in the error page generated above.
One solution is to use the images we already have in our wwwroot > images (in
our example, we have the following files: image01.JPG, image02.JPG, image03.JPG,
image04.JPG, image05.JPG, image06.JPG, image07.JPG).

Each time a View is generated, we should randomly generate a value between 1 and 7
(since we have 7 images) and display one of them.

>j3@Yg"eqwnf"pqv"hkpf"vjg"rcig"{qw"tgswguvgf0"Yg"ctg"uqtt{#>1j3@

>fkx uv{ng?$vgzv/cnkip<egpvgt$@
B}

Tcpfqo tcpfIgpgtcvqt"?"pgy Tcpfqo*+=
kpv z"?"tcpfIgpgtcvqt0Pgzv*3.":+=
uvtkpi kocigRcvj"?"&$1kocigu1kocig2}zÄ0LRI$=

Ä
>dt 1@

>koi ute?$BkocigRcvj$ ykfvj?$72'$ cnv?$gttqt"kocig$ encuu?$koi/vjwodpckn$ 1@

>1fkx@

Now, each time you get the friendly error page displayed, a randomly chosen image
will show up (see Figs. 12.27 and 12.28). Note the URL: localhost:5125/Error/Index.

That’s it for us. ASP .Net Core has many more related topics that we did not cover,
please read more in [70, 71].

Fig. 12.27 Shows the error page seen similar to Fig. 12.26, but it now includes a randomly selected
image from web root

http://www.localhost:5125/MEZEI

12.6 Configure a Friendly Error Page 283

Fig. 12.28 Is similar to Fig. 12.27, but it now includes another randomly selected image

Before we continue, please make sure to set your environment back to Development.
Otherwise, it will be more challenging to debug potential errors.

13Work with Images (Optional)

In here, we would like to improve our web application so we can optionally store (in our
database) a profile photo for every instructor and also display it. We recommend reading
the following source for this chapter [72].

Important note: This is a very simplistic example, meant to show the steps involved in
saving images into a database and retrieving them. We did not include any security con-
siderations in this code. You are strongly encouraged to consider the security implications
and make use of mitigating techniques. Here is one resource which we did not use but
you could use as a starting point [73].

13.1 Add a New Property for the Image to the Model/Entity Class

We’ll start by adding one new property in the Instructor class that will be used to
store the image. We’ll store the image as an array of bytes since SQLite does not have a
type that can be mapped to images.

The long story short (see below for more details) is that we will store images as an
array of bytes, then we will convert them back to images when we want to display them.

Go to the Instructor.cs class and add the following property:

]Fkurnc{*Pcog"?$Rtqhkng"rjqvq$+_
rwdnke d{vg]_A"KpuvtwevqtRtqhkngRjqvq"}"igv="ugv="Ä

Important: Since we are adding a new field to an existing table, we will
make sure to enable the EnsureDeleted method in Program.cs, so our database
is recreated (we added the following lines right before: the line containing
app.UseStaticFiles();).

xct eqpvgzv"?"crr0Ugtxkegu0EtgcvgUeqrg*+0UgtxkegRtqxkfgt0IgvTgswktgfUgtxkeg>QwtFdEqpvgzv@*+=
eqpvgzv0Fcvcdcug0GpuwtgFgngvgf*+="11kh"qwt"fcvcdcug"gzkuvu."vjgp"gtcug"kv#
eqpvgzv0Fcvcdcug0GpuwtgEtgcvgf*+="11kh"qwt"fcvcdcug"fqgu"pqv"gzkuv."vjgp"etgcvg"kv#

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_13

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_13

286 13 Work with Images (Optional)

Run again the application. A new column will be created in the Instructors table
(use DbBrowser to see the columns from Instructors table): the new column name is
InstructorProfilePhoto.

You can now comment out the line containing EnsureDeleted, so data modifi-
cations remain saved (so the database tables don’t get recreated each time we run the
application).

For the remaining part of this chapter, we’ll follow each step of an HTTP request and
modify the code so it allows the user to upload an image, transform it into a byte array,
and then save it into the database. Then, we’ll follow the request from getting the byte
array from the database, change it back into an image, and display it in a browser.

13.2 Modify the Add View, so It Allows a User to Upload an Image

In here, we’ll add the code needed so we allow the user to upload an image (any file
actually, not just images).

To allow a form to upload files to the server, you need to add the following inside the
<FORM> tag:

gpev{rg?$ownvkrctv1hqto/fcvc$

After adding the code above, the <FORM> tag, inside the Add.cshtml file, looks as
follows:

>hqto cur/cevkqp?Cff cur/eqpvtqnngt?$Kpuvtwevqt$ ogvjqf?$rquv$ gpev{rg?$ownvkrctv1hqto/fcvc$@

Then, we need to add input field that allows the user to select an image from their
computer and upload it with the form. Before the submit button, add the following:

>kprwv v{rg?$hkng$ pcog?$KpuvtwevqtKocigHkng$ 1@
>dt@
>dt@

Remember, in order for data from input fields to be sent to the server, we need to use
a name attribute.

To test what we accomplished so far, go to the Add action: http://localhost:5125/Instru
ctor/Add. You should see a Choose File button that allows the user to select a file from
their own computer (see Fig. 13.1).

If you click on this button, a new window opens that allows you to select a file. Once
selected, you’ll see its name next to the button (see Fig. 13.2):

Fig. 13.1 Shows how the
Choose File button should
show up in your browser

http://www.localhost:5125/Instructor/Add
http://www.localhost:5125/Instructor/Add

13.3 Modify the Add Action so the File Uploaded Gets Saved into the Database 287

Fig. 13.2 Shows similarly to
Fig. 13.1, but now a file has
been selected

Side note: in _Layout.cshtml, we enclosed the following lines:

>FKX@
BTgpfgtDqf{*+

>1FKX@

>DT@
>FKX kf?$EgpvgtHqqvgtNkpmu$@

BTgpfgtUgevkqp*$QwtHqqvgtNkpmu$."hcnug+
>1FKX@

Inside (we just added these lines):

>FKX encuu?$eqpvckpgt/hnwkf"r/7"$@

”

>1FKX@

This way we added some padding around our view contents. See more in here [16].

13.3 Modify the Add Action so the File Uploaded Gets Saved
into the Database

In the Add action (the POST) is where we receive user data and save it into the database.
We now need to grab the file sent by the user, convert it into a byte array, and save it into
the database, along with other data.

Add the following code after validating the user data:

11kh"c"hkng1kocig"ycu"wrnqcfgf."eqpxgtv"kv"vq"d{vg]_"cpf"ucxg"kv
kh*Tgswguv0Hqto0Hkngu0Eqwpv"@2+"11fkf"vjg"wugt"wrnqcf"c"hkngA
}

xct hkng"?"Tgswguv0Hqto0Hkngu]2_=11qwt"xkgy"qpn{"cnnqyu"qpg"hkng

Ogoqt{Uvtgco"ou"?"pgy Ogoqt{Uvtgco*+=
hkng0Eqr{Vq*ou+="11eqr{"vjg"hkng"kpvq"c"ogoqt{"uvtgco"qdlgev
pgyKpuvtwevqt0KpuvtwevqtRtqhkngRjqvq"?"ou0VqCttc{*+=11ucxg"vjg"d{vgu"kpvq"pgyKpuvtwevqt

ou0Enqug*+=
ou0Fkurqug*+=

Ä

In this code, we first check if the user uploaded a file. Since we only allow one file
to be uploaded at a time, we read the file at index 0 (otherwise we could use a for each
to read each file). Then, using a MemoryStream object we convert the file into a byte
array and save it into the InstructorProfilePhoto property. This will then be
saved into the database, along with other values.

The Add action should now look as follows:

288 13 Work with Images (Optional)

]JvvrRquv_
rwdnke KCevkqpTguwnv"Cff*Kpuvtwevqt"pgyKpuvtwevqt+
}

kh *#OqfgnUvcvg0KuXcnkf+"11kh"vjg"fcvc"ku"kpxcnkf
tgvwtp Xkgy*+="11iq"dcem"vq"vjg"xkgy

11kh"c"hkng1kocig"ycu"wrnqcfgf."eqpxgtv"kv"vq"d{vg]_"cpf"ucxg"kv
kh*Tgswguv0Hqto0Hkngu0Eqwpv"@2+"11fkf"vjg"wugt"wrnqcf"c*p{+ hkngA
}

xct hkng"?"Tgswguv0Hqto0Hkngu]2_=11qwt"xkgy"qpn{"cnnqyu"qpg"hkng

Ogoqt{Uvtgco"ou"?"pgy Ogoqt{Uvtgco*+=
hkng0Eqr{Vq*ou+="11eqr{"vjg"hkng"kpvq"c"ogoqt{"uvtgco"qdlgev
pgyKpuvtwevqt0KpuvtwevqtRtqhkngRjqvq"?"ou0VqCttc{*+=11ucxg"vjg"d{vgu"kpvq"pgyKpuvtwevqt

ou0Enqug*+=
ou0Fkurqug*+=

Ä

afdEqpvgzv0Kpuvtwevqtu0Cff*pgyKpuvtwevqt+="11cff"vjg"pgy"kpuvtwevqt"vq"qwt"nkuv
afdEqpvgzv0UcxgEjcpigu*+=
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+="

Ä

To test this work, go ahead and add/create a new Instructor. Make sure to select an
image and enter some data (see Fig. 13.3).

After you click on the Create Instructor button, go ahead and check that it was saved
into the database. In particular, using DbBrowser, open your database and check that the
InstructorProfilePhoto column shows BLOB for the newly added instructor (the
last row).

With the code we have so far, we are now able to save data into the database. Next,
we’ll retrieve this data and display it in a view.

Fig. 13.3 Shows the Add view, where a user can enter information for a new instructor, and also
select an image/file to be uploaded to the server

13.5 Modify the ShowDetails View so It Displays the Profile Image 289

13.4 Modify the ShowDetails Action to Transform the Byte Array
Back into an Image

Inside the ShowDetails action, change the following two lines:

kh*kpuvt#?pwnn+"11ycu"cp"kpuvtwevqt"hqwpfA
tgvwtp Xkgy*kpuvt+=

into

kh*kpuvt#?pwnn+"11ycu"cp"kpuvtwevqt"hqwpfA
}

kh*kpuvt0KpuvtwevqtRtqhkngRjqvq#?"pwnn+"11ku"vjgtg"cp"kocig"qp"hkngA
}

uvtkpi kocigDcug86Fcvc"?"Eqpxgtv0VqDcug86Uvtkpi*kpuvt0KpuvtwevqtRtqhkngRjqvq+="
uvtkpi kocigFcvcWTN"?"uvtkpi0Hqtocv*$fcvc<kocig1lri=dcug86.}2Ä$."kocigDcug86Fcvc+=
XkgyDci0KpuvtwevqtRtqhkngRjqvq"?"kocigFcvcWTN=

Ä
tgvwtp Xkgy*kpuvt+=

Ä

More specifically, in here we first check if we have an image (a byte array really) in
the InstructorProfilePhoto property. If we do, we convert the byte array into
an image and we provide the location of this new image to the view via the ViewBag
object.

13.5 Modify the ShowDetails View so It Displays the Profile Image

In the view, we first check if we have an image URL saved in ViewBag. If we do, we
display it. Add the following to the ShowDetails view (wherever you would like to
display the image):

Bkh *XkgyDci0KpuvtwevqtRtqhkngRjqvq"#?"pwnn+
}
>koi ute?$BXkgyDci0KpuvtwevqtRtqhkngRjqvq$ ykfvj?$42'$

cnv?$rtqhkng"rkevwtg"hqt BOqfgn0NcuvPcog$
encuu?$koi/vjwodpckn$ 1@

Ä

Optionally, we can display a default photo for Instructors who do not have an image
saved. For this, add

gnug
}
>koi ute?$Å1kocigu1pqrtqhkngrjqvq0rpi$ ykfvj?$42'$

cnv?$igpgtke"rtqhkng"rjqvq$
encuu?$koi/vjwodpckn$ 1@

Ä

where noProfilePhoto.png is an image that we created and added inside wwwroot>images
folder.

That’s it! Let’s test our work. If we go to ShowDetails for an Instructor for which
we did not provide a profile image, here (see Fig. 13.4) is what we see (note: we “cleaned”
our personal.css file for a better appearance):

Now, let’s check our instructor for which we did provide a profile image (see Fig. 13.5):

290 13 Work with Images (Optional)

Fig. 13.4 Shows how the ShowDetails view shows up in a browser. In particular, this Instructor did
not contain a profile picture, so we displayed a generic image

Fig. 13.5 Shows how the ShowDetails view shows up in a browser. In particular, this Instructor did
contain a profile picture, so we displayed that picture

13.6 Bootstrap Card Deck for the Index Action and View (Optional) 291

Using a combination of the sections presented in this chapter, you should be able to
allow the user to edit an existing Instructor and change/keep any existing profile picture.

13.6 Bootstrap Card Deck for the Index Action and View
(Optional)

This section is just meant to stimulate your interest in researching more on your own—
Bootstrap is really awesome, you just need to look it up. In particular, you may want to
consider displaying a card deck instead of a table, or in addition to a table. For this,
check out the following resource [74].

In our Index action, let’s add the following code that will create a dictionary of
images and send them to the Index view. Add the code below right before the return
statement of Index action (from the InstructorController class).

Fkevkqpct{>kpv."uvtkpi@"cnnRjqvqu"?"pgy*+=
hqtgcej *xct"kpu"kp kpuvtwevqtu+
}

kh *kpu"#?"pwnn (("kpu0KpuvtwevqtRtqhkngRjqvq"#?"pwnn+
}

uvtkpi kocigDcug86Fcvc"?"Eqpxgtv0VqDcug86Uvtkpi*kpu0KpuvtwevqtRtqhkngRjqvq+=
uvtkpi kocigFcvcWTN"?"uvtkpi0Hqtocv*&$fcvc<kocig1lri=dcug86.}kocigDcug86FcvcÄ$+=
cnnRjqvqu0Cff*kpu0KpuvtwevqtKf."kocigFcvcWTN+=

Ä
Ä
XkgyDci0CnnKocigu"?"cnnRjqvqu=

Then, inside the view, we used that dictionary object inside a card deck and displayed
them (you can add this right below the <TABLE> element):

B,ectf"fgem",B
>fkx encuu?$eqpvckpgt$@

>fkx encuu?tqy@
Bhqtgcej *xct kpu"kp Oqfgn+
}

>fkx encuu?eqn uv{ng?$vgzv/cnkip<egpvgt$@
>fkx encuu?$ectf$ uv{ng?$ykfvj<522rz$@

B}
uvtkpiA"uvt"?"pwnn=
dqqn tguwnv"?"BXkgyDci0CnnKocigu0Vt{IgvXcnwg*kpu0KpuvtwevqtKf."qwv uvt+=

Ä

Bkh *Buvt"#?"pwnn+""B,kh"yg"jcxg"cp"kocig"qp"hkng,B
}

>koi encuu?$ectf/koi/vqr$ ute?$Buvt$ cnv?$Ectf"kocig$ uv{ng?$ykfvj<322'$@
Ä
gnug
}"""""""""""""""""""B,kh"pq"kocig"kp"vjg"fcvcdcug."fkurnc{"uqog"fghcwnv"kocig,B

>koi encuu?$ectf/koi/vqr$ ute?$Å1kocigu1pqRtqhkngRjqvq0rpi$ cnv?$Ectf"kocig$ uv{ng?$ykfvj<322'$@
Ä
>fkx encuu?$ectf/dqf{$@

>j6 encuu?$ectf/vkvng$@Bkpu0HktuvPcog"Bkpu0NcuvPcog>1j6@
>dt encuu?$ectf/vgzv$@
>ncdgn cur/hqt?$BOqfgn0Hktuv*+0JktkpiFcvg$@>1ncdgn@<""BJvon0Fkurnc{Hqt*o"?@"kpu0Tcpm+>dt@
>ncdgn cur/hqt?$BOqfgn0Hktuv*+0KuVgpwtgf$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"kpu0KuVgpwtgf+>dt@
>ncdgn cur/hqt?$BOqfgn0Hktuv*+0Tcpm$@>1ncdgn@<"BJvon0Fkurnc{Hqt*o"?@"kpu0Tcpm+>dt@

>c cur/cevkqp?$Gfkv$ cur/tqwvg/kf?$Bkpu0KpuvtwevqtKf$ encuu?$dvp"dvp/yctpkpi$@Gfkv"Rtqhkng>1c@
>c cur/cevkqp?$Fgngvg$ cur/tqwvg/kf?$Bkpu0KpuvtwevqtKf$ encuu?$dvp"dvp/fcpigt$@Fgngvg"rtqhkng>1c@

>1fkx@
>1fkx@

>1fkx@
Ä

>1fkx@
>1fkx@

We obtained (see Fig. 13.6).
You should consider making the button at the bottom of the page be centered.

292 13 Work with Images (Optional)

Fig. 13.6 Shows how the Index view shows up in a browser. In particular, below the table of instruc-
tors, we also included a card deck, one card for each instructor from the table. Some of those cards
contained the instructor’s profile pictures (if one was saved into an instructor’s profile) while other
cards contain the generic profile picture (if we did not have a picture saved for an instructor’s profile)

14Introduction to Authentication. User Login,
Logout, and Registration

We finally got to our final chapter. In here we will only introduce authentication and
simple authorization. In particular, we’ll implement functionality such as user account
registration, login, and logout. To learn more about ASP .Net Core security-related topics,
we recommend [75]. In a future edition of this book, we plan to also include topics such
as Roles, Policies, and how to allow users to login using credentials from other web
applications, such as Facebook and LinkedIn.

14.1 Introduction to Some Security Concepts

Of the following four terms Identification, Authentication, Authorization, and Account-
ability (IAAA), we will only deal with the first three in here:

• Identification: Who are you? How do you identify yourself?
– One can use usernames, ID numbers, email addresses, employee numbers, social

security numbers, etc.
In this chapter, we’ll use usernames.

• Authentication: How do you prove you are who you say you are?
There are multiple types of authentication techniques. In this chapter, we’ll use
passwords.

– Type 1 authentication: Something you know (e.g., password, passphrase, pin
number).

– Type 2 authentication: Something you have (e.g., passport, badge, smart card,
cookie on a system).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6_14

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30626-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-30626-6_14

294 14 Introduction to Authentication. User Login, Logout, and Registration

– Type 3 authentication: Something you are (biometrics) (e.g., fingerprint, facial
recognition).

– Type 4 authentication: Somewhere you are (e.g., IP address).
– Type 5 authentication: Something you do (e.g., signature, pattern unlock).

• Authorization: once you’re authenticated, what can you do? What are you allowed to
access?

In this chapter, we’ll only see simple authorization.

• Accountability (or Auditing)
– This allows us to trace an action to a user’s identity.

Read more on the IAAA concepts in [76]. In this chapter, we will only make use of the
first three.

14.2 Introduction to ASP .Net (Core) Identity

In this chapter, we will make use of the ASP.NET Core Identity to handle login function-
ality. In particular, we’ll use Identity to provide functionality such as register new user
accounts, login, and logout. Let’s go over the steps needed to configure and use Identity,
namely the following:

• Install the NuGet Package(s) needed for Identity.
• Update the DbContext class so it works with Identity.
• Register the Identity service.
• Configure the Authentification and Authorization middleware.
• Implement actions for the following:

– Register new users
– Login
– Logout.

• Then, we’ll see how we can require authentication for certain actions.

Before we continue, you should uncomment the following line from Program.cs, since
our changes will modify our database (new tables will be created):

context.Database.EnsureDeleted();

14.2 Introduction to ASP .Net (Core) Identity 295

At the end of the chapter, please make sure to comment out this line so changes remain
in our database even after we restart our web application. For more information on how
to implement Identity on existing ASP .Net (Core) applications, check out [77].

14.2.1 Step 1: Install NuGet Packages

For this part, we will install the following two NuGet packages:

• Microsoft.AspNetCore.Identity.EntityFrameworkCore
• Microsoft.AspNetCore.Identity.UI.

14.2.2 Step 2: Define Our User Class (Derived from IdentityUser)

For this step, we need a class that can be used to manage the users of our application. For
this, ASP .Net Core has a class called IdentityUser. If its properties (which include
an Id, UserName, Email, and PasswordHash) are sufficient for your application’s
needs, then you are all set and can skip this step. Here are some of its properties (as seen
from Visual Studio):

• public virtual TKey Id { get; set;}
• public virtual string UserName { get; set;}
• public virtual string NormalizedUserName { get; set;}
• public virtual string Email { get; set;}
• public virtual string NormalizedEmail { get; set;}
• public virtual bool EmailConfirmed { get; set;}
• public virtual string PasswordHash { get; set;}
• public virtual string SecurityStamp { get; set;}
• public virtual string ConcurrencyStamp { get; set;} = Guid.NewGuid().ToString();
• public virtual string PhoneNumber { get; set;}
• public virtual bool PhoneNumberConfirmed { get; set;}
• public virtual bool TwoFactorEnabled { get; set;}
• public virtual DateTimeOffset? LockoutEnd { get; set;}
• public virtual bool LockoutEnabled { get; set;}
• public virtual int AccessFailedCount { get; set;}

296 14 Introduction to Authentication. User Login, Logout, and Registration

If you need to add more properties, you can create your own class derived from
IdentityUser. For us, let’s say we do need to also store a FirstName and a
LastName (you can easily add more). Here is what we’ll use in our project. First, inside
the Data folder, let’s create a new class, derived from IdentityUser, and give it a
name (we called ours User).

Your code should look like

rwdnke uvtkpiA"HktuvPcog"}"igv="ugv="Ä
rwdnke uvtkpiA"NcuvPcog"}"igv="ugv="Ä

Ä
Ä

wukpi Oketquqhv0CurPgvEqtg0Kfgpvkv{=

pcogurceg CURDqqmRtqlgev0Fcvc
}

rwdnke encuu Wugt <"Kfgpvkv{Wugt
}

11vjg"dcug"encuu"cntgcf{"eqpvckpu"
11"kf."wugtpcog."gockn0"

You should note that in our database we do not store plaintext passwords (we did
not include any Password property). We instead store hash values of the passwords (in
PasswordHash property). Why is that?

14.2.3 Step 3: Update Our DbContext Derived Class to Use Identity

We need to change our DbContext derived class to inherit from
IdentityDbContext. This last class has built-in logic to manage users. Notice
that IdentityDbContext is a generic class, and it needs to know the type of users it
will work with. You could use IdentityUser if you skipped Step 2 or use the class
you defined in Step 2 (above).

For us, we will replace

rwdnke encuu QwtFdEqpvgzv <"FdEqpvgzv

with

rwdnke encuu QwtFdEqpvgzv <"Kfgpvkv{FdEqpvgzv>Wugt@

IMPORTANT: Notice that we did not need a DbSet property for our
User/IdentityUser class. That’s because the IdentityDbContext class will
manage user tables for us.

14.2.4 Step 4: Register the Identity Services

In Program.cs after the code:

14.2 Introduction to ASP .Net (Core) Identity 297

dwknfgt0Ugtxkegu0CffFdEqpvgzv>QwtFdEqpvgzv@*
qrvkqpu"?@"qrvkqpu0WugUsnkvg*dwknfgt0Eqphkiwtcvkqp0IgvEqppgevkqpUvtkpi*$DqqmEqppgevkqpUvtkpi$++
+=

dwknfgt0Ugtxkegu0CffFghcwnvKfgpvkv{>Wugt@*11wugt"{qwt"Kfgpvkv{Wugt"encuu"kp">@
qrvkqpu"?@
}

qrvkqpu0UkipKp0TgswktgEqphktogfCeeqwpv"?"hcnug=

qrvkqpu0Rcuuyqtf0TgswktgFkikv"?"vtwg=
qrvkqpu0Rcuuyqtf0TgswktgPqpCnrjcpwogtke"?"vtwg=
qrvkqpu0Rcuuyqtf0TgswktgWrrgtecug"?"vtwg=
qrvkqpu0Rcuuyqtf0TgswktgNqygtecug"?"vtwg=
qrvkqpu0Rcuuyqtf0TgswktgfNgpivj"?":=

qrvkqpu0Wugt0TgswktgWpkswgGockn"?"vtwg=
Ä
+0CffGpvkv{HtcogyqtmUvqtgu>QwtFdEqpvgzv@*+="11wug"{qwt"FdEqpvgzvEncuu

Above, note that we were able to set various options, so that passwords must include
digits, lowercase, and uppercase letters, and also ensure that user emails are district
(unique). Check out the following source to learn about other options (including lockout
options and options related to characters allowed for usernames) available: [78].

14.2.5 Step 5: Add Authentification and Authorization Middleware
Components

In Program.cs, right after app.UseStaticFiles(), add

crr0WugCwvjgpvkecvkqp*+=

We add this after the UseStaticFiles middleware so that we continue to allow
public access to wwwroot folder even to users who are not logged in.

Then optionally (this is only needed for Step 7: authorization!), after
app.UseRouting() and after app.UseAuthentication(), also add

crr0WugCwvjgpvkecvkqp*+=

Here is how we put them inside the Program.cs:

xct eqpvgzv"?"crr0Ugtxkegu0EtgcvgUeqrg*+0UgtxkegRtqxkfgt0IgvTgswktgfUgtxkeg>QwtFdEqpvgzv@*+=
eqpvgzv0Fcvcdcug0GpuwtgFgngvgf*+="11kh"qwt"fcvcdcug"gzkuvu."vjgp"gtcug"kv#
eqpvgzv0Fcvcdcug0GpuwtgEtgcvgf*+="11kh"qwt"fcvcdcug"fqgu"pqv"gzkuv."vjgp"etgcvg"kv#

crr0WugUvcvkeHkngu*+="11pggfgf"vq"ikxg"ceeguu"vq"hkngu"kp"yyytqqv
crr0WugCwvjgpvkecvkqp*+=
crr0WugTqwvkpi*+=""11cffu"tqwvg"ocvejkpi"vq"vjg"okffngyctg"rkrgnkpg
crr0WugCwvjqtk|cvkqp*+=
crr0OcrEqpvtqnngtTqwvg*"11oqfkhkgf"fghcwnv"tqwvkpi

pcog<"$fghcwnv$.
rcvvgtp<"$}eqpvtqnngt?KpuvtwevqtÄ1}cevkqp?KpfgzÄ1}kfAÄ$+=

Later in this chapter, we’ll enforce access to certain actions (such as edit and delete)
only to users who are logged in.

298 14 Introduction to Authentication. User Login, Logout, and Registration

14.2.6 Test Your Work

Let’s rebuild our application to see what we have accomplished so far. If you reopen your
database file in DB Browser, you should note new tables being added to it by the ASP
.Net Core Identity. In particular, note the AspNetUsers table.

In the AspNetUsers table, you should observe the various columns (they include
columns for the properties of the User class). This table is now empty, but we’ll fix that
in the next section where we’ll add functionality to register new users, login, and logout.

14.2.7 Step 6: Register, Login, and Logout

In this subsection, we’ll create a new controller, the AccountController class, and
see how to use instances of the UserManager class to register new users, and the
SignInManager class to login/logout an existing user. We will also introduce View
Models.

14.2.7.1 Add the AccountController Class
Before we continue, let’s add a new controller to our project, named
AccountController. When creating it, choose the MVC Controller—Empty option.
Below we’ll add actions to this class. We’ll add the Register (GET and POST),
Login, and Logout actions.

14.2.7.2 Add the Login and Logout Actions
In here we would like to add the login and logout functionality for existing users of our
web application.

Inject the SignInManager Instance
Let’s start by injecting an instance of the SignInManager class into our controller and
adding a new action, Login. Our AccountController.cs file contains the following:

wukpi CURDqqmRtqlgev0Fcvc=
wukpi Oketquqhv0CurPgvEqtg0Kfgpvkv{=
wukpi Oketquqhv0CurPgvEqtg0Oxe=

pcogurceg CURDqqmRtqlgev0Eqpvtqnngtu
}

rwdnke encuu CeeqwpvEqpvtqnngt <"Eqpvtqnngt
}

rtkxcvg tgcfqpn{ UkipKpOcpcigt>Wugt@"aukipKpOcpcigt="11pggfgf"vq"nqikp1nqiqwv"ceeqwpvu
rwdnke CeeqwpvEqpvtqnngt*UkipKpOcpcigt>Wugt@"ukipKpOcpcigt+
}

aukipKpOcpcigt"?"ukipKpOcpcigt=
Ä

rwdnke KCevkqpTguwnv"Nqikp*+
}

tgvwtp Xkgy*+="11rtgugpvu"vjg"Nqikp"hqto"vq"vjg"wugt
Ä

Ä
Ä

14.2 Introduction to ASP .Net (Core) Identity 299

Note: The SignInManager is a generic class, and you need to pass to it your User
class (derived from IdentityUser), or the IdentityUser (if you did not use a
derived class). We’ll use this to login/logout our users.

Create the Login View Model
Next, we will need a form to collect information from our clients, information that will
only be used for login purposes. In particular, we will need to ask for a username, a
password, and optionally, if they want to make use of the remember me functionality (a
cookie will be stored in their browser, so they won’t need to login again if they reopen
the page in a certain period of time).

Since the login information is only used for user authentication during login, essentially
only used with the login view (we will not store passwords into our database, we will
hash them and store their hash into the database), a model/entity isn’t quite appropriate in
here. This is where we’ll use a view model instead. Think of a view model as a model,
but we only use it with views, and we won’t save its data (not directly) into our database.

In the root of our project, let’s create a folder, called ViewModels.
Then, inside the ViewModels folder, let’s create a class called LoginViewModel.

In this class, we need three properties (we’ll ask the user for three pieces of informa-
tion): a username, a password, and if they want to be remembered. We’ll also add Data
Annotations since we need to make usernames and passwords required information:

wukpi U{uvgo0EqorqpgpvOqfgn0FcvcCppqvcvkqpu=

pcogurceg CURDqqmRtqlgev0XkgyOqfgnu
}

rwdnke encuu NqikpXkgyOqfgn
}

]Fkurnc{*Pcog"?"$Wugt"Pcog$+_
]Tgswktgf*GttqtOguucig"?"$c"wugtpcog"ku"tgswktgf$+_
rwdnke uvtkpiA"WugtPcog"}"igv="ugv="Ä
]FcvcV{rg*FcvcV{rg0Rcuuyqtf+_
]Tgswktgf*GttqtOguucig"?"$c"rcuuyqtf"ku"tgswktgf$+_
rwdnke uvtkpiA"Rcuuyqtf"}"igv="ugv="Ä

]Fkurnc{*Pcog"?"$Tgogodgt"ogA$+_
rwdnke dqqn TgogodgtOg}"igv="ugv="Ä

Ä
Ä

Make sure to add the following using directive in the ViewImports.cshtml file so we
can use our View Model classes in views without having to specify their class names with
the namespace prepended:

Bwukpi CURDqqmRtqlgev0XkgyOqfgnu

Create the Login View/Form
Now we are ready to create the form for user login. First, add a view (use Razor View -
Empty) to the Login action. Then, add a form to this Login.cshtml view. We’ll make the
view strongly typed.

300 14 Introduction to Authentication. User Login, Logout, and Registration

Boqfgn"NqikpXkgyOqfgn

B}
XkgyDci0Vkvng"?"$Nqikp$=

Ä

>j3@Rngcug"nqikp>1j3@
>hqto cur/cevkqp?$Nqikp$ cur/eqpvtqnngt?$Ceeqwpv$@

>fkx cur/xcnkfcvkqp/uwooct{?Cnn@>1fkx@
>ncdgn cur/hqt?$WugtPcog$@>1ncdgn@ >kprwv cur/hqt?$WugtPcog$1@
>dt@
>ncdgn cur/hqt?$Rcuuyqtf$@>1ncdgn@ >kprwv cur/hqt?$Rcuuyqtf$ 1@
>dt@
>ncdgn cur/hqt?$TgogodgtOg$@>1ncdgn@ >kprwv cur/hqt?$TgogodgtOg$ 1@
>dt@
>dt@
>kprwv v{rg?$uwdokv$ xcnwg?$NQIKP$1@

>1hqto@

This form will allow users to enter their credentials. When they click on the LOGIN
button, a POST request will be sent to the Login action. Let’s create that action.

Create the Login (POST) Action
In this action, we’ll get the information provided by the user and attempt to log them
in (using the SignInManager instance). If we succeed, we’ll redirect the user to the
Index action of the Instructor controller. Otherwise, we will stay in the Login
view and display error information. Add the following action to the AccountController.cs:

]JvvrRquv_
rwdnke cu{pe Vcum>KCevkqpTguwnv@"Nqikp*NqikpXkgyOqfgn"nqikpKphq+
}

kh *OqfgnUvcvg0KuXcnkf+
}

11vt{"vq"nqi"kp"vjg"wugt
xct tguwnv"?"cyckv aukipKpOcpcigt0RcuuyqtfUkipKpCu{pe*nqikpKphq0WugtPcog.

nqikpKphq0Rcuuyqtf."nqikpKphq0TgogodgtOg."hcnug+=

kh *tguwnv0Uweeggfgf+
}

tgvwtp TgfktgevVqCevkqp*$Kpfgz$."$Kpuvtwevqt$+=
Ä
gnug

}
OqfgnUvcvg0CffOqfgnGttqt*$$."$Hckngf"vq"nqikp$+=

Ä
Ä
tgvwtp Xkgy*nqikpKphq+=11iq"dcem"vq"nqikp"hqto"000

Ä

Note: Since the PasswordSignInAsync is an asynchronous method, we had to
make the entire action asynchronous.

To find more information about the parameters used in PasswordSignInAsync
method, inside Visual Studio, hover your mouse over the method and you’ll find more
information provided by Microsoft IntelliSense.

Create the Logout Action
This is a rather short action. We once again make use of the reference to
SignInManager. To perform a logout, we call the SignOutAsync method, then
redirect the user back to the Index action of Instructor controller.

14.2 Introduction to ASP .Net (Core) Identity 301

rwdnke cu{pe Vcum>KCevkqpTguwnv@"Nqiqwv*+
}

cyckv aukipKpOcpcigt0UkipQwvCu{pe*+=
tgvwtp TgfktgevVqCevkqp*$Kpfgz$."$Kpuvtwevqt$+=

Ä

Add Login/Logout Links to the Navbar in the Layout File
In the navbar from our Layout.cshtml file we would like to add a Login menu option
if the user is not logged in, and a Logout menu option if the user is logged in. To
accomplish this, add the following code, right before the following lines:

>1WN@
>1FKX@

>1PCX@

Add

Bkh*Wugt0Kfgpvkv{0KuCwvjgpvkecvgf+"11kh"vjg"wugt"ku"nqiigf"kp
}

>NK encuu?$pcx/kvgo$@
>c encuu?$pcx/nkpm$ cur/cevkqp?$Nqiqwv$ cur/eqpvtqnngt?$Ceeqwpv$@Nqiqwv>1c@

>1NK@
Ä
gnug 11kh"vjg"wugt"ku"pqv"nqiigf"kp
}

>NK encuu?$pcx/kvgo$@
>c encuu?$pcx/nkpm$ cur/cevkqp?$Nqikp$ cur/eqpvtqnngt?$Ceeqwpv$@Nqikp>1c@

>1NK@
Ä

We’ll test this later, but for now make sure your code compiles without any errors.

14.2.7.3 Add the Register Action
Next, we would like to add functionality for registering new users for our web application.

Inject the UserManager Instance
Let’s start by injecting an instance of the UserManager class into our controller
and adding a new action, Register. Our AccountController.cs file now includes the
following code:

rwdnke encuu CeeqwpvEqpvtqnngt <"Eqpvtqnngt
}

rtkxcvg tgcfqpn{ UkipKpOcpcigt>Wugt@"aukipKpOcpcigt="11pggfgf"vq"nqikp1nqiqwv"ceeqwpvu
rtkxcvg tgcfqpn{ WugtOcpcigt>Wugt@"awugtOcpcigt="11pggfgf"vq"etgcvg"pgy"wugt"ceeqwpvu
rwdnke CeeqwpvEqpvtqnngt*UkipKpOcpcigt>Wugt@"ukipKpOcpcigt."WugtOcpcigt>Wugt@"wugtOcpcigt+
}

awugtOcpcigt"?"wugtOcpcigt=
aukipKpOcpcigt"?"ukipKpOcpcigt=

Ä

rwdnke KCevkqpTguwnv"Tgikuvgt*+
}

tgvwtp Xkgy*+="11rtgugpvu"vjg"Tgikuvgt"hqto"vq"vjg"wugt
Ä

11000

Note: The UserManager is a generic class, and you need to pass to it your User
class (derived from IdentityUser), or the IdentityUser (if you did not use a
derived class).

302 14 Introduction to Authentication. User Login, Logout, and Registration

Note: Above we have two services injected. Their order is not important. They can be
injected in any order.

Create the Register View Model
Next, we will need a form to collect information from our clients, information that will be
used to create new users. In particular, we will need to ask for a username, email address,
a password, and so on. Since we will not store passwords into our database (we will hash
them and store their hash into the database), we will once again use a view model. Inside
the ViewModels folder, create a new class, let’s call it RegisterViewModel.

In this class include properties for all data you want to ask from your users in order
to create a new account. In particular, we need them to provide a first name, last name,
email address, a username, a password, a phone number, and for validation purposes, let’s
ask them to provide the password twice, to make sure they know what they entered.

Here is an example of this class:

]Fkurnc{*Pcog"?"$Hktuv"pcog$+_
rwdnke uvtkpiA"HktuvPcog"}"igv="ugv="Ä

]Fkurnc{*Pcog"?"$Ncuv"pcog$+_
rwdnke uvtkpiA"NcuvPcog"}"igv="ugv="Ä

]Fkurnc{*Pcog"?"$Gockn"cfftguu$+_
]FcvcV{rg*FcvcV{rg0GocknCfftguu+_
]Tgswktgf*GttqtOguucig"?"$gockn"cfftguu"tgswktgf#$+_
rwdnke uvtkpiA"Gockn"}"igv="ugv="Ä

]TgiwnctGzrtguukqp*$]2/;_}5Ä/]2/;_}5Ä/]2/;_}6Ä$."GttqtOguucig"?"${qw"owuv"hqnnqy"vjg"
hqtocv"222/222/2222#$+_

]Fkurnc{*Pcog"?"$Rjqpg"pwodgt$+_
rwdnke uvtkpiA"Rjqpg"}"igv="ugv="Ä

Ä
Ä

wukpi U{uvgo0EqorqpgpvOqfgn0FcvcCppqvcvkqpu=

pcogurceg CURDqqmRtqlgev0XkgyOqfgnu
}

rwdnke encuu TgikuvgtXkgyOqfgn
}

]Fkurnc{*Pcog"?"$Wugt"Pcog$+_
]Tgswktgf*GttqtOguucig"?"$c"wugtpcog"ku"tgswktgf$+_
rwdnke uvtkpiA"WugtPcog"}"igv="ugv="Ä

]Tgswktgf*GttqtOguucig"?"$c"rcuuyqtf"ku"tgswktgf$+_
]FcvcV{rg*FcvcV{rg0Rcuuyqtf+_
rwdnke uvtkpiA"Rcuuyqtf"}"igv="ugv="Ä

]Fkurnc{*Pcog"?"$Eqphkto"Rcuuyqtf$+_
]Tgswktgf*GttqtOguucig"?"${qw owuv"eqphkto"{qwt"rcuuyqtf$+_
]FcvcV{rg*FcvcV{rg0Rcuuyqtf+_
rwdnke uvtkpiA"EqphktoRcuuyqtf"}"igv="ugv="Ä

Create the Register View
Now we are ready to create the form for Register view. First, add a view (use Razor
View - Empty) to the Register action. Then, add a form to this Register.cshtml view.
We’ll make the view strongly typed.

14.2 Introduction to ASP .Net (Core) Identity 303

Boqfgn"TgikuvgtXkgyOqfgn

B}
XkgyDci0Vkvng"?"$Tgikuvgt"c"pgy"ceeqwpv$=

Ä

>j3@Tgikuvgt"c"pgy"ceeqwpv>1j3@
>hqto cur/cevkqp?$Tgikuvgt$@

>fkx cur/xcnkfcvkqp/uwooct{?Cnn@>1fkx@
>ncdgn cur/hqt?$WugtPcog$@>1ncdgn@<">kprwv cur/hqt?$WugtPcog$ 1@>dt 1@
>ncdgn cur/hqt?$Rcuuyqtf$@>1ncdgn@<">kprwv cur/hqt?$Rcuuyqtf$ 1@>dt 1@
>ncdgn cur/hqt?$EqphktoRcuuyqtf$@>1ncdgn@<">kprwv cur/hqt?$EqphktoRcuuyqtf$ 1@>dt 1@
>ncdgn cur/hqt ?$HktuvPcog$@>1ncdgn@<">kprwv cur/hqt?$HktuvPcog$ 1@>dt 1@
>ncdgn cur/hqt?$NcuvPcog$@>1ncdgn@<">kprwv cur/hqt?$NcuvPcog$ 1@>dt 1@
>ncdgn cur/hqt?$Gockn$@>1ncdgn@<">kprwv cur/hqt?$Gockn$ 1@>dt 1@
>ncdgn cur/hqt?$Rjqpg$@>1ncdgn@<">kprwv cur/hqt?$Rjqpg$ 1@>dt 1@

>kprwv v{rg?$uwdokv$ xcnwg?$TGIKUVGT"CEEQWPV$1@
>1hqto@

This form will allow users to enter the data needed to create/register a new account.
When they click on the REGISTER ACCOUNT button, a POST request will be sent to
the Register action. Let’s create that action.

Create the Register (POST) Action
In this action, we’ll get the information provided by the user and attempt to register a new
account (using the UserManager instance). If we succeed, we’ll redirect the user to the
Index action of the Instructor controller. Otherwise, we will stay in the Register
view and display error information.

In particular, note that we are creating an instance of our IdentityUser derived
class, the User class, and pass that instance to the CreateAsync method. As a separate
argument, we’re passing the password (which will be hashed before it makes its way to
the database).

Add the following action to the AccountController.cs:

}
kh *OqfgnUvcvg0KuXcnkf+
}

11yg"fq"pqv"rcuu"vjg"rcuuyqtf"qt"vjg"rcuuyqtfeqphktogf#
Wugt"pgyWugt"?"pgy Wugt*+=
pgyWugt0WugtPcog"?"wugtGpvgtgfFcvc0WugtPcog=
pgyWugt0HktuvPcog"?"wugtGpvgtgfFcvc0HktuvPcog=
pgyWugt0NcuvPcog"?"wugtGpvgtgfFcvc0NcuvPcog=
pgyWugt0Gockn"?"wugtGpvgtgfFcvc0Gockn=
pgyWugt0RjqpgPwodgt"?"wugtGpvgtgfFcvc0Rjqpg=

11cvvgorv"vq"tgikuvgt"vjg"pgy"ceeqwpv
xct tguwnv"?"cyckv awugtOcpcigt0EtgcvgCu{pe*pgyWugt."wugtGpvgtgfFcvc0Rcuuyqtf+=

kh *tguwnv0Uweeggfgf+
tgvwtp TgfktgevVqCevkqp*$Kpfgz$."$Kpuvtwevqt$+=

gnug
}

hqtgcej *xct"gttqt"kp tguwnv0Gttqtu+
OqfgnUvcvg0CffOqfgnGttqt*$$."gttqt0Fguetkrvkqp+=

Ä

Ä
11iq"dcem"vq"vjg"xkgy
tgvwtp Xkgy*wugtGpvgtgfFcvc+=

Ä

]JvvrRquv_
rwdnke cu{pe Vcum>KCevkqpTguwnv@"Tgikuvgt*TgikuvgtXkgyOqfgn"wugtGpvgtgfFcvc+

304 14 Introduction to Authentication. User Login, Logout, and Registration

Note: Since the CreateAsync is an asynchronous method, we had to make the entire
action asynchronous.

To find more information about the parameters used in CreateAsync method, in
Visual Studio, hover your mouse over this method and you’ll find more information
provided by IntelliSense.

Add Register Link to the Navbar in the Layout File
In the navbar from our Layout.cshtml file we would like to add a Login menu option
if the user is not logged in, and a Logout menu option if the user is logged in. To
accomplish this, add the following code, right before the last tag:

>NK encuu?$pcx/kvgo$@
>c encuu?$pcx/nkpm$ cur/cevkqp?$Tgikuvgt$ cur/eqpvtqnngt?$Ceeqwpv$@Tgikuvgt"pgy"ceeqwpv>1c@

>1NK@

Add Custom Validation to Check the Confirm Password (Optional)
Let’s add a custom validation attribute to make sure the two passwords are iden-
tical. For this, add a new class to the CustomValidations folder, let’s name it
ConfirmPasswordValidationAttribute. In this file, include the code below
(feel free to improve this code!) that will check if the properties Password and
ConfirmPassword from RegisterViewModel have the same values:

kh *kpuvcpegTgikuvgtXkgyOqfgn0Rcuuyqtf"#?"kpuvcpegTgikuvgtXkgyOqfgn0EqphktoRcuuyqtf+
tgvwtp pgy XcnkfcvkqpTguwnv*$Rcuuyqtf"cpf"Eqphkto"Rcuuyqtf"hkgnfu"owuv"ocvej#$+=

tgvwtp XcnkfcvkqpTguwnv0Uweeguu="11"cnn"qvjgt"ecugu"ctg"xcnkf
Ä

Ä
Ä

wukpi CURDqqmRtqlgev0XkgyOqfgnu=
wukpi U{uvgo0EqorqpgpvOqfgn0FcvcCppqvcvkqpu=

pcogurceg CURDqqmRtqlgev0EwuvqoXcnkfcvkqpu
}

rwdnke encuu EqphktoRcuuyqtfXcnkfcvkqpCvvtkdwvg <"XcnkfcvkqpCvvtkdwvg
}

rtqvgevgf qxgttkfg XcnkfcvkqpTguwnvA"KuXcnkf*qdlgevA"xcnwg."XcnkfcvkqpEqpvgzv"xcnkfcvkqpEqpvgzv+
}

TgikuvgtXkgyOqfgn"kpuvcpegTgikuvgtXkgyOqfgn"?"*TgikuvgtXkgyOqfgn+xcnkfcvkqpEqpvgzv0QdlgevKpuvcpeg=

Now, let’s apply this to the ConfirmPassword property in RegisterViewModel.cs:

]EqphktoRcuuyqtfXcnkfcvkqp_
]Fkurnc{*Pcog"?"$Eqphkto"Rcuuyqtf$+_
]Tgswktgf*GttqtOguucig"?"${qw"owuv"eqphkto"{qwt"rcuuyqtf$+_
]FcvcV{rg*FcvcV{rg0Rcuuyqtf+_
rwdnke uvtkpiA"EqphktoRcuuyqtf"}"igv="ugv="Ä

14.2.7.4 Test Our Work
You can now comment out the line (in Program.cs) so data changes remain saved even
after the web application restarts:

eqpvgzv0Fcvcdcug0GpuwtgFgngvgf*+="11kh"qwt"fcvcdcug"gzkuvu."vjgp"gtcug"kv#

Let’s test our work. When we run our application, we see the newly added Login and
Register new account menu options (Fig. 14.1):

14.2 Introduction to ASP .Net (Core) Identity 305

Fig. 14.1 Shows the Index view. Note that the navbar displayed at the top of the page contains the
newly added menu options Login and Register new account

Fig. 14.2 Shows the Register view. Note that the page displays validation errors for the email
address missing (this is a required field) and for non-matching passwords

Click on the Register new account:
Try to create an account but put two different passwords in the Password and Confirm

Password fields. You should see the errors displayed at the top of the form (see Fig. 14.2):
Change your input so there are no errors and create an account. Here is what we

entered (see Fig. 14.3):
Then, using DbBrower, reopen your database and check that this data has been added

to the database—see table AspNetUsers.
Now, try to create another user but use the same email address as the one used above.

You should get an error (see Fig. 14.4):
Now try entering a password of “123”, you should get the following errors (see

Fig. 14.5):
Do you remember where we set these constraints? Hint: Check out the Program.cs

file.
Lastly, let’s try to login. First, enter a wrong password (see Fig. 14.6):
Try again, this time enter the correct password. After you successfully login, you

should see (Fig. 14.7) the Logout menu option instead of the Login:

306 14 Introduction to Authentication. User Login, Logout, and Registration

Fig. 14.3 Shows the Register
view with data entered in the
fields so that no validation
errors are produced

Fig. 14.4 Shows the
validation error displayed in
the Register view when the
user enters an email address
that already exists in the
database

14.2.8 Step 7: Add Simple Authorization to Our Web Application
(Optional)

We got to the last section of this book. In here we’ll make some changes to our code so
only users who are logged in can access certain actions (add, edit, and delete). All users
should still be able to view all data.

For this step, make sure both of the following middleware components were added to
Program.cs:

crr0WugCwvjgpvkecvkqp*+=

11”

crr0WugCwvjqtk|cvkqp*+=

14.2 Introduction to ASP .Net (Core) Identity 307

Fig. 14.5 Shows the validation error displayed in the Register view when the user enters a pass-
word that does not follow the server side specifications (for example, it does not include at least 8
characters, or it does not have at least one lowercase and at least one upper case letter)

Fig. 14.6 Shows the validation error displayed in the Login view when the user has invalid creden-
tials

Fig. 14.7 Shows the Index view displayed after the user logs into their account. In particular, note
the Logout menu option in the top navbar (which indicates that the user has been successfully
authenticated)

308 14 Introduction to Authentication. User Login, Logout, and Registration

Then, in Program.cs, change the line:

dwknfgt0Ugtxkegu0CffFghcwnvKfgpvkv{>Wugt@*11wugt"{qwt"Kfgpvkv{Wugt"encuu"kp">@

with

dwknfgt0Ugtxkegu0CffKfgpvkv{>Wugt."Kfgpvkv{Tqng@*11wugt"{qwt"Kfgpvkv{Wugt"encuu"kp">@

(You’ll also need the following using directive: wukpi Oketquqhv0CurPgvEqtg0Kfgpvkv{=

Then, make use of the following attributes:

• [Authorize]—can be applied to actions or controller classes; it prevents unautho-
rized users from accessing this resource while not logged in.

• [AllowAnonymous]—makes the resource publicly available.

In the InstructorController class, add the [Authorize] attribute right before
the Add, Edit, and Delete actions. For example,

]Cwvjqtk|g_
]JvvrRquv_
rwdnke KCevkqpTguwnv"Cff*Kpuvtwevqt"pgyKpuvtwevqt+
}

kh *#OqfgnUvcvg0KuXcnkf+"11kh"vjg"fcvc"ku"kpxcnkf
tgvwtp Xkgy*+="11iq"dcem"vq"vjg"xkgy

11kh"c"hkng1kocig"ycu"wrnqcfgf."eqpxgtv"kv"vq"d{vg]_"cpf"ucxg"kv
kh *Tgswguv0Hqto0Hkngu0Eqwpv"@"2+"11fkf"vjg"wugt"wrnqcf"c"hkngA
}

xct hkng"?"Tgswguv0Hqto0Hkngu]2_=11qwt"xkgy"qpn{"cnnqyu"qpg"hkng

Ogoqt{Uvtgco"ou"?"pgy Ogoqt{Uvtgco*+=
hkng0Eqr{Vq*ou+="11eqr{"vjg"hkng"kpvq"c"ogoqt{"uvtgco"qdlgev
pgyKpuvtwevqt0KpuvtwevqtRtqhkngRjqvq"?"ou0VqCttc{*+=11ucxg"vjg"d{vgu"kpvq"pgyKpuvtwevqt

ou0Enqug*+=
ou0Fkurqug*+=

Ä

afdEqpvgzv0Kpuvtwevqtu0Cff*pgyKpuvtwevqt+="11cff"vjg"pgy"kpuvtwevqt"vq"qwt"nkuv
afdEqpvgzv0UcxgEjcpigu*+=
tgvwtp TgfktgevVqCevkqp*$Kpfgz$+=

Ä

Now rebuild your application, and if a user is already logged in, please logout. You
should be able to see the Index action of InstructorController, even if you are
not logged in.

Now click on Add a new instructor button. You should be prompted to login (see
Fig. 14.8). Before you log in, please note the URL.

Login, then try again to add a new instructor. While logged in, you should now be able
to do it.

In the URL above you should note the encoded query string:
ReturnUrl=/Instructor/Add. To make use of it, we can modify our Login (the
GET) action to capture that value:

rwdnke KCevkqpTguwnv"Nqikp*uvtkpiA"tgvwtpWtn+
}

VgorFcvc]$EcrvwtgfTgvwtpWtn$_"?"tgvwtpWtn=
tgvwtp Xkgy*+="11rtgugpvu"vjg"Nqikp"hqto"vq"vjg"wugt

Ä

14.2 Introduction to ASP .Net (Core) Identity 309

Fig. 14.8 Shows the view that prompts the user to log into their account

Then, in the Login (POST) action, we can make use of it:

]JvvrRquv_
rwdnke cu{pe Vcum>KCevkqpTguwnv@"Nqikp*NqikpXkgyOqfgn"nqikpKphq+
}

kh *OqfgnUvcvg0KuXcnkf+
}

11vt{"vq"nqi"kp"vjg"wugt
xct tguwnv"?"cyckv aukipKpOcpcigt0RcuuyqtfUkipKpCu{pe*nqikpKphq0WugtPcog.

nqikpKphq0Rcuuyqtf."nqikpKphq0TgogodgtOg."hcnug+=

kh *tguwnv0Uweeggfgf+
}

kh *#uvtkpi0KuPwnnQtGorv{*VgorFcvc]$EcrvwtgfTgvwtpWtn$_"cu uvtkpi++
tgvwtp Tgfktgev*VgorFcvc]$EcrvwtgfTgvwtpWtn$_"cu uvtkpi+=

gnug
tgvwtp TgfktgevVqCevkqp*$Kpfgz$."$Kpuvtwevqt$+=

Ä
gnug
}

OqfgnUvcvg0CffOqfgnGttqt*$$."$Hckngf"vq"nqikp$+=
Ä

Ä
tgvwtp Xkgy*nqikpKphq+=11iq"dcem"vq"nqikp"hqto"000

Ä

Now, after you are prompted to login, you will be redirected to the page that sent you
to login (that needed authorization). See this for more details [79].

Note: Above we made use of temp data, which allows a controller to preserve data
between requests. This is particularly useful when performing requests. Temp data marks
values for deletion once they are read and then removed when the request has been
processed. See more in [5].

Important note: This chapter is an overly simplistic section meant to stimulate your
interest in learning more. In particular, we did not go over roles, policies, and how to allow
users to log into our web application using their credentials from other web applications,
such as Facebook and LinkedIn. Please look into the mentioned references to learn more
about these.

References

1. W3Schools, “W3Schools Online Web Tutorials,” [Online]. Available: https://www.w3schools.
com/. [Accessed 4th December 2022].

2. Microsoft, “Get started with ASP.NET Core MVC,” [Online]. Available: https://learn.microsoft.
com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc. [Accessed 4th December 2022].

3. M. M. Girgis and L. Petry, “An Effective Quiz Strategy for Enhancing Student Engagement
while Discouraging Academic Dishonesty. Girgis,” [Online]. Available: http://people.se.cmich.
edu/yelam1k/asee/proceedings/2018/1/52.pdf. [Accessed 4th December 2022].

4. Microsoft, “Get started with ASP.NET Core MVC [Visual Studio Code],” [Online]. Avail-
able: https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc?view=asp
netcore-6.0&tabs=visual-studio-code. [Accessed 4th December 2022].

5. A. Freeman, “Pro ASP.NET Core 6: Develop Cloud-Ready Web Applications Using MVC,
Blazor, and Razor Pages, 9th ed. Edition,” Apress.

6. W3Schools, “HTML Tutorial,” [Online]. Available: https://www.w3schools.com/html/.
[Accessed 4th December 2022].

7. W3Schools, “HTML <title> Tag,” [Online]. Available: https://www.w3schools.com/tags/tag_tit
le.asp. [Accessed 4th December 2022].

8. Mozilla, “How whitespace is handled by HTML, CSS, and in the DOM,” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace.
[Accessed 4th December 2022].

9. W3Schools, “HTML <label> Label,” [Online]. Available: https://www.w3schools.com/tags/
tag_label.asp. [Accessed 4 December 2022].

10. W3Schools, “HTML <select> Tag,” 4th December 2022. [Online]. Available: https://www.w3s
chools.com/tags/tag_select.asp.

11. W3Schools, “HTML Forms,” [Online]. Available: https://www.w3schools.com/html/html_form
s.asp. [Accessed 4 December 2022].

12. W3Schools, “HTML Input Types,” [Online]. Available: https://www.w3schools.com/html/
html_form_input_types.asp. [Accessed 4 December 2022].

13. W3Schools, “HTTP Request Methods,” [Online]. Available: https://www.w3schools.com/tags/
ref_httpmethods.asp. [Accessed 4 December 2022].

14. W3Schools, “CSS Tutorial,” [Online]. Available: https://www.w3schools.com/css/default.asp.
[Accessed 4th December 2022].

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
R. A. Mezei, Introduction to the Development of Web Applications Using
ASP .Net (Core) MVC, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-30626-6

311

https://www.w3schools.com/
https://www.w3schools.com/
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc
http://people.se.cmich.edu/yelam1k/asee/proceedings/2018/1/52.pdf
http://people.se.cmich.edu/yelam1k/asee/proceedings/2018/1/52.pdf
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc?view=aspnetcore-6.0&tabs=visual-studio-code
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-mvc?view=aspnetcore-6.0&tabs=visual-studio-code
https://www.w3schools.com/html/
https://www.w3schools.com/tags/tag_title.asp
https://www.w3schools.com/tags/tag_title.asp
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace
https://www.w3schools.com/tags/tag_label.asp
https://www.w3schools.com/tags/tag_label.asp
https://www.w3schools.com/tags/tag_select.asp
https://www.w3schools.com/tags/tag_select.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_form_input_types.asp
https://www.w3schools.com/html/html_form_input_types.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/css/default.asp
https://doi.org/10.1007/978-3-031-30626-6

312 References

15. W3Schools, “CSS Fonts,” [Online]. Available: https://www.w3schools.com/css/css_font.asp.
[Accessed 4th December 2022].

16. W3Schools, “Bootstrap 5 Tutorial,” [Online]. Available: https://www.w3schools.com/bootst
rap5/. [Accessed 4 December 2022].

17. W3Schools, “Bootstrap 5 Buttons,” [Online]. Available: https://www.w3schools.com/bootst
rap5/bootstrap_buttons.php. [Accessed 4 December 2022].

18. W3Schools, “JavaScript Tutorial,” [Online]. Available: https://www.w3schools.com/js/defaul
t.asp. [Accessed 4th December 2022].

19. W3Schools, “JavaScript HTML DOM,” [Online]. Available: https://www.w3schools.com/js/js_
htmldom.asp. [Accessed 4th December 2022].

20. W3Schools, “JavaScript HTML DOM Elements,” [Online]. Available: https://www.w3schools.
com/js/js_htmldom_elements.asp. [Accessed 4th December 2022].

21. W3Schools, “How TO - Toggle Dark Mode,” [Online]. Available: https://www.w3schools.com/
howto/howto_js_toggle_dark_mode.asp. [Accessed 24 December 2022].

22. Mozilla, “History.back(),” [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
API/History/back. [Accessed 4 December 2022].

23. W3Schools, “Bootstrap 5 Tutorial,” [Online]. Available: https://www.w3schools.com/bootst
rap5/. [Accessed 4 December 2022].

24. Bootstrap, “Introduction - Bootstrap v5.0,” [Online]. Available: https://getbootstrap.com/docs/
5.0/getting-started/introduction/. [Accessed 4 December 2022].

25. W3Schools, “Bootstrap 5 Navbars,” [Online]. Available: https://www.w3schools.com/bootst
rap5/bootstrap_navbar.php. [Accessed 4 December 2022].

26. Start Bootstrap, “Bootstrap Templates & Themes,” [Online]. Available: https://startbootstrap.
com/themes?showVue=false&showAngular=false&showPro=false. [Accessed 24 December
2022].

27. Microsoft, “Top-level statements - programs without Main methods,” [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/program-structure/top-level-sta
tements. [Accessed 4 December 2022].

28. Microsoft, “Declare namespaces to organize types,” [Online]. Available: https://learn.microsoft.
com/en-us/dotnet/csharp/fundamentals/types/namespaces. [Accessed 4 December 2022].

29. Microsoft, “C# console app template generates top-level statements,” [Online]. Avail-
able: https://learn.microsoft.com/en-us/dotnet/core/tutorials/top-level-templates. [Accessed
4 December 2022].

30. Microsoft, “Recommended XML tags for C# documentation comments,” [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-
tags. [Accessed 4 December 2022].

31. W3Schools, “C# Data Types,” [Online]. Available: https://www.w3schools.com/cs/cs_data_t
ypes.php. [Accessed 4 December 2022].

32. Microsoft, “Access Modifiers (C# Programming Guide),” [Online]. Available: https://learn.
microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers.
[Accessed 4 December 2022].

33. W3Schools, “C# Access Modifiers,” [Online]. Available: https://www.w3schools.com/cs/cs_
access_modifiers.php. [Accessed 4 December 2022].

34. Microsoft, “Properties,” [Online]. Available: https://learn.microsoft.com/en-us/dotnet/csharp/
properties. [Accessed 4 December 2022].

35. W3Schools, “C# Tutorial,” [Online]. Available: https://www.w3schools.com/cs/index.php.
[Accessed 4 December 2022].

36. Microsoft, “C# documentation,” [Online]. Available: https://learn.microsoft.com/en-us/dotnet/
csharp/. [Accessed 4 December 2022].

https://www.w3schools.com/css/css_font.asp
https://www.w3schools.com/bootstrap5/
https://www.w3schools.com/bootstrap5/
https://www.w3schools.com/bootstrap5/bootstrap_buttons.php
https://www.w3schools.com/bootstrap5/bootstrap_buttons.php
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom_elements.asp
https://www.w3schools.com/js/js_htmldom_elements.asp
https://www.w3schools.com/howto/howto_js_toggle_dark_mode.asp
https://www.w3schools.com/howto/howto_js_toggle_dark_mode.asp
https://developer.mozilla.org/en-US/docs/Web/API/History/back
https://developer.mozilla.org/en-US/docs/Web/API/History/back
https://www.w3schools.com/bootstrap5/
https://www.w3schools.com/bootstrap5/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://www.w3schools.com/bootstrap5/bootstrap_navbar.php
https://www.w3schools.com/bootstrap5/bootstrap_navbar.php
https://startbootstrap.com/themes?showVue=false&showAngular=false&showPro=false
https://startbootstrap.com/themes?showVue=false&showAngular=false&showPro=false
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/program-structure/top-level-statements
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/program-structure/top-level-statements
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/types/namespaces
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/types/namespaces
https://learn.microsoft.com/en-us/dotnet/core/tutorials/top-level-templates
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://www.w3schools.com/cs/cs_data_types.php
https://www.w3schools.com/cs/cs_data_types.php
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://www.w3schools.com/cs/cs_access_modifiers.php
https://www.w3schools.com/cs/cs_access_modifiers.php
https://learn.microsoft.com/en-us/dotnet/csharp/properties
https://learn.microsoft.com/en-us/dotnet/csharp/properties
https://www.w3schools.com/cs/index.php
https://learn.microsoft.com/en-us/dotnet/csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/

References 313

37. Microsoft, “System.Collections Namespace,” [Online]. Available: https://learn.microsoft.com/
en-us/dotnet/api/system.collections?view=net-6.0. [Accessed 4 December 2022].

38. Microsoft, “System.Collections.Generic Namespace,” [Online]. Available: https://learn.mic
rosoft.com/en-us/dotnet/api/system.collections.generic?view=net-6.0. [Accessed 4 December
2022].

39. Microsoft, “Inheritance in C# and .NET,” [Online]. Available: https://learn.microsoft.com/en-
us/dotnet/csharp/fundamentals/tutorials/inheritance. [Accessed 4 December 2022].

40. Microsoft, “Interfaces - define behavior for multiple types,” [Online]. Available: https://
docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/interfaces. [Accessed 4 December
2022].

41. Microsoft, “Lambda expressions and anonymous functions,” [Online]. Available: https://
learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions.
[Accessed 24 December 2022].

42. S. Giesel, “LINQ Explained with sketches,” [Online]. Available: https://linkdotnetblogstor
age.azureedge.net/blog/20220811_LinqWithSketchesEBook/LINQ.pdf. [Accessed 24 Decem-
ber 2022].

43. Microsoft, “Nullable value types (C# reference),” [Online]. Available: https://learn.microsoft.
com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-value-types. [Accessed 4
December 2022].

44. Microsoft, “?? and ??= operators - the null-coalescing operators,” [Online]. Available: https:/
/learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-ope
rator. [Accessed 24 December 2022].

45. Microsoft, “Solution (.sln) file,” [Online]. Available: https://learn.microsoft.com/en-us/visualstu
dio/extensibility/internals/solution-dot-sln-file?view=vs-2022. [Accessed 24 December 2022].

46. A. Chiarelli, “.NET 6 Highlights,” [Online]. Available: https://auth0.com/blog/dotnet6-whats-
new/. [Accessed 4 December 2022].

47. Microsoft, “Overview of ASP.NET Core MVC,” [Online]. Available: https://learn.microsoft.
com/en-us/aspnet/core/mvc/overview?view=aspnetcore-6.0. [Accessed 4 December 2022].

48. Microsoft, “ASP.NET Core Middleware,” [Online]. Available: https://learn.microsoft.com/en-
us/aspnet/core/fundamentals/middleware/?view=aspnetcore-6.0. [Accessed 4 December 2022].

49. Microsoft, “Static files in ASP.NET Core,” [Online]. Available: https://learn.microsoft.com/en-
us/aspnet/core/fundamentals/static-files?view=aspnetcore-6.0. [Accessed 4 December 2022].

50. Microsoft, “Dependency injection in ASP.NET Core,” [Online]. Available: https://learn.
microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-6.0.
[Accessed 4 December 2022].

51. Microsoft, “Dependency injection in .NET,” [Online]. Available: https://learn.microsoft.com/
en-us/dotnet/core/extensions/dependency-injection. [Accessed 4 December 2022].

52. Microsoft, “Handle requests with controllers in ASP.NET Core MVC,” [Online]. Available:
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-6.0.
[Accessed 4 December 2022].

53. S. Bageri, “Action Results In ASP.NET MVC Core,” Tutexchange, 31 December 2019.
[Online]. Available: https://tutexchange.com/action-results-in-asp-net-mvc-core/.

54. Microsoft, “Routing to controller actions in ASP.NET Core,” [Online]. Available: https://learn.
microsoft.com/en-us/aspnet/core/mvc/controllers/routing?view=aspnetcore-6.0. [Accessed 4
December 2022].

55. Comment Picker, “Fake Name Generator,” [Online]. Available: https://commentpicker.com/
fake-name-generator.php. [Accessed 24 December 2022].

56. Microsoft, “Views in ASP.NET Core MVC,” [Online]. Available: https://learn.microsoft.com/
en-us/aspnet/core/mvc/views/overview?view=aspnetcore-6.0. [Accessed 4 December 2022].

https://learn.microsoft.com/en-us/dotnet/api/system.collections?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/inheritance
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/interfaces
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://linkdotnetblogstorage.azureedge.net/blog/20220811_LinqWithSketchesEBook/LINQ.pdf
https://linkdotnetblogstorage.azureedge.net/blog/20220811_LinqWithSketchesEBook/LINQ.pdf
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-value-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-value-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file?view=vs-2022
https://auth0.com/blog/dotnet6-whats-new/
https://auth0.com/blog/dotnet6-whats-new/
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/static-files?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/static-files?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-6.0
https://tutexchange.com/action-results-in-asp-net-mvc-core/
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/routing?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/routing?view=aspnetcore-6.0
https://commentpicker.com/fake-name-generator.php
https://commentpicker.com/fake-name-generator.php
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-6.0

314 References

57. java T point, “CRUD Operations in SQL,” [Online]. Available: https://www.javatpoint.com/
crud-operations-in-sql. [Accessed 4 December 2022].

58. Microsoft, “Razor syntax reference for ASP.NET Core,” [Online]. Available: https://learn.
microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-6.0. [Accessed 4 Decem-
ber 2022].

59. Microsoft, “Tag Helpers in ASP.NET Core,” [Online]. Available: https://learn.microsoft.
com/en-us/aspnet/core/mvc/views/tag-helpers/intro?view=aspnetcore-6.0. [Accessed 4 Decem-
ber 2022].

60. Microsoft, “System.ComponentModel.DataAnnotations.Schema Namespace,” [Online]. Avail-
able: https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.
schema?view=net-6.0. [Accessed 24 December 2022].

61. Microsoft, “Model Binding in ASP.NET Core,” [Online]. Available: https://learn.microsoft.
com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-6.0. [Accessed 4 Decem-
ber 2022].

62. Microsoft, “Model validation in ASP.NET Core MVC and Razor Pages,” [Online]. Available:
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/validation?view=aspnetcore-6.0.
[Accessed 4 December 2022].

63. Microsoft, “Part 4, add a model to an ASP.NET Core MVC app,” [Online]. Available: https:/
/learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/adding-model?view=aspnetcor
e-6.0. [Accessed 4 December 2022].

64. Microsoft, “Part 5, work with a database in an ASP.NET Core MVC app,” [Online].
Available: https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/working-with-
sql?view=aspnetcore-6.0. [Accessed 4 December 2022].

65. "Learn Entity Framework Core,” [Online]. Available: https://www.learnentityframeworkcore.
com/. [Accessed 4 December 2022].

66. Microsoft, “Data Seeding,” [Online]. Available: https://learn.microsoft.com/en-us/ef/core/mod
eling/data-seeding. [Accessed 4 December 2022].

67. "The Connection Strings Reference,” [Online]. Available: https://www.connectionstrings.com/.
[Accessed 4 December 2022].

68. Microsoft, “Part 7, add search to an ASP.NET Core MVC app,” [Online]. Available: https:/
/learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/search?view=aspnetcore-6.0.
[Accessed 4 December 2022].

69. Microsoft, “Layout in ASP.NET Core,” [Online]. Available: https://learn.microsoft.com/en-us/
aspnet/core/mvc/views/layout?view=aspnetcore-6.0. [Accessed 4 December 2022].

70. Microsoft, “Use multiple environments in ASP.NET Core,” [Online]. Available: https://learn.
microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-6.0. [Accessed
4 December 2022].

71. Microsoft, “Handle errors in ASP.NET Core,” [Online]. Available: https://learn.microsoft.com/
en-us/aspnet/core/fundamentals/error-handling?view=aspnetcore-6.0. [Accessed 4 December
2022].

72. binaryintellect.net, “Store Images In SQL Server Using EF Core And ASP.NET Core,”
09 December 2019. [Online]. Available: http://www.binaryintellect.net/articles/2f55345c-1fcb-
4262-89f4-c4319f95c5bd.aspx.

73. Microsoft, “Upload files in ASP.NET Core,” [Online]. Available: https://learn.microsoft.
com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0. [Accessed 4 December
2022].

74. W3Schools, “Bootstrap 5 Cards,” [Online]. Available: https://www.w3schools.com/bootstrap5/
bootstrap_cards.php. [Accessed 4 December 2022].

https://www.javatpoint.com/crud-operations-in-sql
https://www.javatpoint.com/crud-operations-in-sql
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.schema?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.schema?view=net-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/validation?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/adding-model?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/adding-model?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/working-with-sql?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/working-with-sql?view=aspnetcore-6.0
https://www.learnentityframeworkcore.com/
https://www.learnentityframeworkcore.com/
https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding
https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding
https://www.connectionstrings.com/
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/search?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/layout?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/layout?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/error-handling?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/error-handling?view=aspnetcore-6.0
http://www.binaryintellect.net/articles/2f55345c-1fcb-4262-89f4-c4319f95c5bd.aspx
http://www.binaryintellect.net/articles/2f55345c-1fcb-4262-89f4-c4319f95c5bd.aspx
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0
https://www.w3schools.com/bootstrap5/bootstrap_cards.php
https://www.w3schools.com/bootstrap5/bootstrap_cards.php

References 315

75. Microsoft, “ASP.NET Core security topics,” [Online]. Available: https://learn.microsoft.com/
en-us/aspnet/core/security/?view=aspnetcore-6.0. [Accessed 4 December 2022].

76. T. Pedersen, “CISSP – IAAA (Identification and Authentication, Authorization and Account-
ability),” 17 August 2017. [Online]. Available: https://thorteaches.com/cissp-iaaa/.

77. Programming in CSharp, “Implement Identity On Existing ASP.NET Project,” 25 January
2022. [Online]. Available: https://programmingcsharp.com/implement-identity-on-existing-
asp-project.

78. Microsoft, “Introduction to Identity on ASP.NET Core,” [Online]. Available: https://learn.mic
rosoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=vis
ual-studio. [Accessed 4 December 2022].

79. Stack overflow, “ReturnUrl is null in ASP.NET Core login,” [Online]. Available: https://stacko
verflow.com/questions/44478657/returnurl-is-null-in-asp-net-core-login. [Accessed 4 Decem-
ber 2022].

80. "What is .NET?,” Microsoft, [Online]. Available: https://dotnet.microsoft.com/en-us/learn/dot
net/what-is-dotnet. [Accessed 4th December 2022].

81. "careers.wa.gov - Find a job working for Washington state,” [Online]. Available: https://www.
careers.wa.gov/. [Accessed 4th December 2022].

82. Microsoft, “What is ASP.NET?,” [Online]. Available: https://dotnet.microsoft.com/en-us/learn/
aspnet/what-is-aspnet. [Accessed 4th December 2022].

83. Microsoft, “What’s new in .NET 5,” [Online]. Available: https://learn.microsoft.com/en-us/dot
net/core/whats-new/dotnet-5. [Accessed 4 December 2022].

84. N. Barbettini, “The Little ASP.NET Core Book,” 2018. [Online]. Available: https://s3.amazon
aws.com/recaffeinate-files/LittleAspNetCoreBook.pdf.

https://learn.microsoft.com/en-us/aspnet/core/security/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/security/?view=aspnetcore-6.0
https://thorteaches.com/cissp-iaaa/
https://programmingcsharp.com/implement-identity-on-existing-asp-project
https://programmingcsharp.com/implement-identity-on-existing-asp-project
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://stackoverflow.com/questions/44478657/returnurl-is-null-in-asp-net-core-login
https://stackoverflow.com/questions/44478657/returnurl-is-null-in-asp-net-core-login
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://www.careers.wa.gov/
https://www.careers.wa.gov/
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-5
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-5
https://s3.amazonaws.com/recaffeinate-files/LittleAspNetCoreBook.pdf
https://s3.amazonaws.com/recaffeinate-files/LittleAspNetCoreBook.pdf

	Preface
	Contents
	1 Introduction
	2 Prepare the Development Environment
	2.1 Choose a Web Browser
	2.2 Install Visual Studio Code
	2.3 Install Visual Studio
	2.4 Install DB Browser for SQLite
	2.5 Miscellaneous/Optional
	2.5.1 Show File Name Extensions

	2.6 Microsoft SQL Server
	2.6.1 Sample Data Generators

	3 Brief Introduction to Html
	3.1 Let’s Create Our First HTML Page
	3.2 Add Titles, Paragraphs and Headings
	3.3 Add a Second Webpage
	3.4 Add Links and White Spaces to Our Pages
	3.5 Add Images and White Spaces to Our Pages
	3.6 Tables and Buttons
	3.7 A Few Other HTML Elements We’ll Use Later
	3.7.1 Label and Select Elements
	3.7.2 Input Elements

	3.8 Form and More on Input Elements and Attributes
	3.9 GET Versus POST Request, the Action and the Method Attributes

	4 Brief Introduction to CSS, Javascript, and Bootstrap
	4.1 Motivation for Using CSS and JavaScript
	4.2 Our First CSS Example
	4.3 Introduction to CSS Syntax
	4.4 CSS Selectors
	4.5 Conflicting CSS Specifications
	4.6 Other CSS Selectors
	4.7 A Few More Examples of Property-Value Pairs for CSS
	4.7.1 Text Color in CSS
	4.7.2 Text Alignment in CSS
	4.7.3 Fonts in CSS

	4.8 The Box Model and the Developer Tools
	4.9 The DIV Element
	4.10 Ways to Add CSS
	4.10.1 Internal
	4.10.2 In-line
	4.10.3 External

	4.11 First Encounter with Bootstrap
	4.11.1 Add Bootstrap 5 .css to Our Webpages
	4.11.2 Bootstrap 5 Tables
	4.11.3 Bootstrap 5 Buttons and Links
	4.11.4 Bootstrap 5 Container, Padding
	4.11.5 Bootstrap 5 Source Code
	4.11.6 Center Contents with <DIV> and CSS

	4.12 Introduction to JavaScript
	4.13 JavaScript Statements
	4.14 JavaScript Functions
	4.15 Add JavaScript to Our Webpages
	4.16 Introduction to the Document Object Model (DOM)
	4.17 Add Event Handlers
	4.18 An Example: Toggle Between Dark/Light Mode
	4.19 The Back Button
	4.20 External JavaScript
	4.21 More Introduction to Bootstrap
	4.22 Ways to Include Bootstrap in Our Projects
	4.23 Some CDNs for Bootstrap 5
	4.24 View Bootstrap 5 Source Files
	4.25 Bootstrap 5 navbar

	5 Some C# Fundamentals
	5.1 Hello World in C# (Console Application)
	5.2 Top-Level Statements
	5.3 Namespaces, Using Directive, and Global Using Directive
	5.3.1 Namespaces
	5.3.2 Using Directives
	5.3.3 Implicit Using Directives
	5.3.4 Global Using Directives

	5.4 Comments
	5.5 Existing Data Types
	5.6 String Interpolation
	5.7 Enumerations
	5.8 Classes
	5.9 References and Objects
	5.10 Instance Variables/Non-static Fields
	5.11 Dot Notation
	5.12 Methods
	5.13 The this Keyword
	5.14 Access Modifiers
	5.15 Properties
	5.16 Constructors
	5.17 Method Overloading
	5.18 Conditionals, Loops, and Lists
	5.19 Collections and Generic Collections
	5.20 Inheritance
	5.21 The base Keyword and the Constructors
	5.22 Interfaces
	5.22.1 Some Motivation
	5.22.2 How to Define an Interface
	5.22.3 How to Implement an Interface

	5.23 How to Use an Interface
	5.24 Lambda Expressions
	5.25 LINQ
	5.26 Working with null Values
	5.27 Solution Files .sln
	5.28 Other Resources for Learning C#

	6 Middleware, Services, Intro to Dependency Injection
	6.1 What Are ASP .Net (Core) MVC Web Applications?
	6.2 An Introduction to the MVC Pattern
	6.3 A Quick Dive into an MVC Example (Optional)
	6.4 Let’s Start Our ASP .Net Core Application Project in Here
	6.4.1 The Empty Web Application Starting Point
	6.4.2 The MVC Web Application Starting Point

	6.5 Entry Point to Our Web Application: Program.cs
	6.6 The Middleware Pipeline
	6.6.1 The Current Code in Our Project
	6.6.2 Run, Use, and Map
	6.6.3 First Example
	6.6.4 Second Example
	6.6.5 Third Example
	6.6.6 Other Middleware Components

	6.7 Static Files Middleware
	6.7.1 What Are Static Files?
	6.7.2 Where Do We Store Static Files?
	6.7.3 How Do We Allow Access to Static Files?
	6.7.4 How Can We Access Static Files?
	6.7.5 Default (Static) Page

	6.8 Introduction to Services (Optional)
	6.8.1 Example—Step 1: Define a Class and An Interface
	6.8.2 Example—Step 2: Register a Service
	6.8.3 Example—Step 3: Use a Service

	7 Routing, Models, and Controllers
	7.1 A Little Cleanup Before We Continue
	7.2 Some Essential MVC Concepts and the HTTP Request Lifecycle
	7.3 Introduction to Routing
	7.3.1 Adding MVC to Our ASP .Net Core Application
	7.3.2 Default Routing, the Home Controller, and Actions

	7.4 Add a Model, a Controller, and Views
	7.4.1 Add a Model Class
	7.4.2 Add a (Second) Controller Class
	7.4.3 Add a First View
	7.4.4 Test Our Code so Far

	7.5 Various Action Result Types
	7.6 Conventional Versus Attribute Routing
	7.6.1 Conventional Routing
	7.6.2 Attribute Routing
	7.6.3 Mixing Routings

	8 More on Controllers and Views, Introduction to Razor Syntax
	8.1 A Little Cleanup Before We Continue
	8.2 Some Essential MVC Concepts and the HTTP Request Lifecycle (Revisited)
	8.3 Another Example of Model, Controller, and Views
	8.3.1 The Instructor Model
	8.3.2 The InstructorController Class

	8.4 The Index Action and View
	8.4.1 Add a View for Our Index Action
	8.4.2 Strongly Typed and Weakly Typed Views
	8.4.3 Introduction to Razor Engine and Razor Syntax
	8.4.4 Action Using a View with a Different Name

	8.5 The ShowDetails Action and View
	8.5.1 The ShowDetails Action
	8.5.2 The ShowDetails View

	8.6 A First Look at Tag Helpers and HTML Helpers
	8.6.1 A First Example of an HTML Helper
	8.6.2 A First Example of a Tag Helper
	8.6.3 Add Links to the Index View Using Tag Helpers and HTML Helpers
	8.6.4 Add Bootstrap to the Index View
	8.6.5 Add Links to the ShowDetails View

	9 More on Views, Data Annotations
	9.1 Introduction to Data Annotations
	9.1.1 Update the ShowDetails View
	9.1.2 Update the Index View (Optional)

	9.2 The Add Action and View
	9.2.1 The Add Action—GET
	9.2.2 The Add View
	9.2.3 The Add Action—POST
	9.2.4 A Few More Details About the Model Binding
	9.2.5 A Few More Details About the GET Versus POST

	9.3 The Edit Action and View
	9.3.1 The Edit Action—GET
	9.3.2 Add Edit Links in the Index View
	9.3.3 The Edit View
	9.3.4 The Edit Action—POST
	9.3.5 An Example of a Service

	9.4 The Delete Action and View
	9.4.1 The Delete Action—GET
	9.4.2 Add Delete Links in the Index View
	9.4.3 The Delete View
	9.4.4 The DeleteConfirmed Action—POST

	10 Model Validation
	10.1 Step 1: Add (Built-in or Custom) Validation Attributes
	10.2 Step 2: Enforce Validation by Making Use of the ModelState
	10.3 Step 3: Display Error Messages via Validation Tag Helpers
	10.3.1 To Display a Summary of All Error Messages
	10.3.2 To Display In-line Error Messages

	10.4 Let’s Test Our Model Validation
	10.5 Custom Validation Attributes (Optional)
	10.5.1 Create a Custom Validation Attribute
	10.5.2 Use a Custom Validation Attribute
	10.5.3 Let’s Test the Newly Added Custom Validation

	10.6 Validation Text Styling

	11 Persistent Data: Entity Framework Core
	11.1 Introduction
	11.2 Classes Involved: Providers, DbContext, and DbSet
	11.3 Add Entity Framework Core to Our Web Application
	11.3.1 Step 1: Create/Choose Your Entity Classes
	11.3.2 Step 2: Install NuGet Packages
	11.3.3 Step 3: Create a Class Derived from DbContext
	11.3.4 Step 4: Data Seeding
	11.3.5 Step 5: Register Our DbContext as a Service, and Use a Connection String
	11.3.6 Test Our Database

	11.4 Use Entity Framework Core in Our Web Application, Dependency Injection Revisited
	11.4.1 Inject Entity Framework Core in InstructorController
	11.4.2 Update the Actions to Use Entity Framework Core
	11.4.3 Important: Automated Id Generation
	11.4.4 Let’s Test That We Have Persistent Data
	11.4.5 EnsureDeleted

	11.5 Practice: Update the StudentController Class
	11.5.1 Inject Entity Framework in StudentController
	11.5.2 Use Entity Framework Core in StudentController Actions

	11.6 How to Use Microsoft SQL Server Instead of SQLite (Optional)
	11.6.1 Install SQL Server Express LocalDB Database on Your Machines
	11.6.2 Make Changes so Entity Framework Core Now Works with a Microsoft SQL Server Database

	12 Consistent Look: Layouts, Friendly Error Pages, and Environments
	12.1 Filter Results
	12.1.1 Update the Index View
	12.1.2 Update the Index Action
	12.1.3 Implement the Clear the Filter Button

	12.2 Filter Results Using a Dropdown List (Optional)
	12.2.1 Create the Dropdown List Items in the Index Action
	12.2.2 Display the Dropdown List Items in the Index View
	12.2.3 Use of the Dropdown List to Filter Our Results
	12.2.4 The Code

	12.3 Consistent Webpages—Using Razor Layouts
	12.3.1 Create a Layout
	12.3.2 Use the Layout in Our Views
	12.3.3 Add a Bootstrap 5 Navbar to Our Layout
	12.3.4 Add Navigation Links to Various Actions and Controllers

	12.4 Layout Sections (Optional)
	12.4.1 Define a Section
	12.4.2 Make Use of a Section

	12.5 Make Use of Bootstrap 5 Buttons
	12.5.1 The Index View
	12.5.2 The ShowDetails View
	12.5.3 Use Bootstrap for Styling Validation Errors

	12.6 Configure a Friendly Error Page
	12.6.1 Introduction
	12.6.2 Work with Multiple Environments
	12.6.3 The Developer Exception Page
	12.6.4 The Friendly Error Page

	13 Work with Images (Optional)
	13.1 Add a New Property for the Image to the Model/Entity Class
	13.2 Modify the Add View, so It Allows a User to Upload an Image
	13.3 Modify the Add Action so the File Uploaded Gets Saved into the Database
	13.4 Modify the ShowDetails Action to Transform the Byte Array Back into an Image
	13.5 Modify the ShowDetails View so It Displays the Profile Image
	13.6 Bootstrap Card Deck for the Index Action and View (Optional)

	14 Introduction to Authentication. User Login, Logout, and Registration
	14.1 Introduction to Some Security Concepts
	14.2 Introduction to ASP .Net (Core) Identity
	14.2.1 Step 1: Install NuGet Packages
	14.2.2 Step 2: Define Our User Class (Derived from IdentityUser)
	14.2.3 Step 3: Update Our DbContext Derived Class to Use Identity
	14.2.4 Step 4: Register the Identity Services
	14.2.5 Step 5: Add Authentification and Authorization Middleware Components
	14.2.6 Test Your Work
	14.2.7 Step 6: Register, Login, and Logout
	14.2.8 Step 7: Add Simple Authorization to Our Web Application (Optional)

	References

