
Russell Jurney

Agile Data
Science 2.0
BUILDING FULL-STACK DATA ANALYTICS
APPLICATIONS WITH SPARK

Now with Kafka

 and Spark!

Russell Jurney

Agile Data Science 2.0
Building Full-Stack Data Analytics

Applications with Spark

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96011-0

[LSI]

Agile Data Science 2.0
by Russell Jurney

Copyright © 2017 Data Syndrome LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Shannon Cutt
Production Editor: Shiny Kalapurakkel
Copyeditor: Rachel Head
Proofreader: Kim Cofer

Indexer: Lucie Haskins
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2017: First Edition

Revision History for the First Edition
2017-05-26: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Agile Data Science 2.0, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Preface. ix

Part I. Setup

1. Theory. 3
Introduction 3
Definition 5

Methodology as Tweet 5
Agile Data Science Manifesto 6

The Problem with the Waterfall 10
Research Versus Application Development 11

The Problem with Agile Software 14
Eventual Quality: Financing Technical Debt 14
The Pull of the Waterfall 15

The Data Science Process 16
Setting Expectations 16
Data Science Team Roles 17
Recognizing the Opportunity and the Problem 18
Adapting to Change 20

Notes on Process 22
Code Review and Pair Programming 24
Agile Environments: Engineering Productivity 24
Realizing Ideas with Large-Format Printing 26

2. Agile Tools. 29
Scalability = Simplicity 30
Agile Data Science Data Processing 30

iii

Local Environment Setup 32
System Requirements 33
Setting Up Vagrant 33
Downloading the Data 33

EC2 Environment Setup 33
Downloading the Data 38

Getting and Running the Code 38
Getting the Code 38
Running the Code 38
Jupyter Notebooks 38

Touring the Toolset 39
Agile Stack Requirements 39
Python 3 39
Serializing Events with JSON Lines and Parquet 42
Collecting Data 45
Data Processing with Spark 45
Publishing Data with MongoDB 48
Searching Data with Elasticsearch 50
Distributed Streams with Apache Kafka 54
Processing Streams with PySpark Streaming 57
Machine Learning with scikit-learn and Spark MLlib 58
Scheduling with Apache Airflow (Incubating) 59
Reflecting on Our Workflow 70
Lightweight Web Applications 70
Presenting Our Data 73

Conclusion 75

3. Data. 77
Air Travel Data 77

Flight On-Time Performance Data 78
OpenFlights Database 79

Weather Data 80
Data Processing in Agile Data Science 81

Structured Versus Semistructured Data 81
SQL Versus NoSQL 82

SQL 83
NoSQL and Dataflow Programming 83
Spark: SQL + NoSQL 84
Schemas in NoSQL 84
Data Serialization 85
Extracting and Exposing Features in Evolving Schemas 85

Conclusion 86

iv | Table of Contents

Part II. Climbing the Pyramid

4. Collecting and Displaying Records. 89
Putting It All Together 90
Collecting and Serializing Flight Data 91
Processing and Publishing Flight Records 94

Publishing Flight Records to MongoDB 95
Presenting Flight Records in a Browser 96

Serving Flights with Flask and pymongo 97
Rendering HTML5 with Jinja2 98

Agile Checkpoint 102
Listing Flights 103

Listing Flights with MongoDB 103
Paginating Data 106

Searching for Flights 112
Creating Our Index 112
Publishing Flights to Elasticsearch 113
Searching Flights on the Web 114

Conclusion 117

5. Visualizing Data with Charts and Tables. 119
Chart Quality: Iteration Is Essential 120
Scaling a Database in the Publish/Decorate Model 120

First Order Form 121
Second Order Form 122
Third Order Form 123
Choosing a Form 123

Exploring Seasonality 124
Querying and Presenting Flight Volume 124

Extracting Metal (Airplanes [Entities]) 132
Extracting Tail Numbers 132
Assessing Our Airplanes 139

Data Enrichment 140
Reverse Engineering a Web Form 140
Gathering Tail Numbers 142
Automating Form Submission 143
Extracting Data from HTML 144
Evaluating Enriched Data 147

Conclusion 148

6. Exploring Data with Reports. 149
Extracting Airlines (Entities) 150

Table of Contents | v

Defining Airlines as Groups of Airplanes Using PySpark 150
Querying Airline Data in Mongo 151
Building an Airline Page in Flask 151
Linking Back to Our Airline Page 152
Creating an All Airlines Home Page 153

Curating Ontologies of Semi-structured Data 154
Improving Airlines 155

Adding Names to Carrier Codes 156
Incorporating Wikipedia Content 158
Publishing Enriched Airlines to Mongo 159
Enriched Airlines on the Web 160

Investigating Airplanes (Entities) 162
SQL Subqueries Versus Dataflow Programming 164
Dataflow Programming Without Subqueries 164
Subqueries in Spark SQL 165
Creating an Airplanes Home Page 166
Adding Search to the Airplanes Page 167
Creating a Manufacturers Bar Chart 172
Iterating on the Manufacturers Bar Chart 174
Entity Resolution: Another Chart Iteration 176

Conclusion 183

7. Making Predictions. 185
The Role of Predictions 186
Predict What? 186
Introduction to Predictive Analytics 187

Making Predictions 187
Exploring Flight Delays 189
Extracting Features with PySpark 193
Building a Regression with scikit-learn 198

Loading Our Data 198
Sampling Our Data 199
Vectorizing Our Results 200
Preparing Our Training Data 201
Vectorizing Our Features 201
Sparse Versus Dense Matrices 203
Preparing an Experiment 204
Training Our Model 204
Testing Our Model 205
Conclusion 207

Building a Classifier with Spark MLlib 207
Loading Our Training Data with a Specified Schema 208

vi | Table of Contents

Addressing Nulls 209
Replacing FlightNum with Route 210
Bucketizing a Continuous Variable for Classification 211
Feature Vectorization with pyspark.ml.feature 219
Classification with Spark ML 221

Conclusion 223

8. Deploying Predictive Systems. 225
Deploying a scikit-learn Application as a Web Service 225

Saving and Loading scikit-learn Models 226
Groundwork for Serving Predictions 227
Creating Our Flight Delay Regression API 228
Testing Our API 231
Pulling Our API into Our Product 232

Deploying Spark ML Applications in Batch with Airflow 234
Gathering Training Data in Production 235
Training, Storing, and Loading Spark ML Models 236
Creating Prediction Requests in Mongo 239
Fetching Prediction Requests from MongoDB 244
Making Predictions in a Batch with Spark ML 247
Storing Predictions in MongoDB 252
Displaying Batch Prediction Results in Our Web Application 253
Automating Our Workflow with Apache Airflow (Incubating) 255
Conclusion 264

Deploying Spark ML via Spark Streaming 264
Gathering Training Data in Production 265
Training, Storing, and Loading Spark ML Models 265
Sending Prediction Requests to Kafka 266
Making Predictions in Spark Streaming 277
Testing the Entire System 282

Conclusion 284

9. Improving Predictions. 287
Fixing Our Prediction Problem 287
When to Improve Predictions 288
Improving Prediction Performance 288

Experimental Adhesion Method: See What Sticks 288
Establishing Rigorous Metrics for Experiments 289
Time of Day as a Feature 298

Incorporating Airplane Data 302
Extracting Airplane Features 302
Incorporating Airplane Features into Our Classifier Model 305

Table of Contents | vii

Incorporating Flight Time 310
Conclusion 313

A. Manual Installation. 315

Index. 323

viii | Table of Contents

Preface

I wrote the first edition of this book while disabled from a car accident after which I
developed chronic pain and lost partial use of my hands. Unable to chop vegetables, I
wrote it from bed and the couch on an iPad to get over a failed project that haunted
me called Career Explorer. Having been injured weeks before the ship date, getting
the product over the line, staying up for days and doing whatever it took, became a
traumatic experience. During the project, we made many mistakes I knew not to
make, and I was continuously frustrated. The product bombed. A sense of failure
routinely bugged me while I was stuck, horizontal on my back most of the time with
intractable chronic pain. Also suffering from a heart condition, missing a third of my
heartbeats, I developed dementia. My mind sank to a dark place. I could not easily
find a way out. I had to find a way to fix things, to grapple with failure. Strange to say
that to fix myself, I wrote a book. I needed to write directions I could give to team‐
mates to make my next project a success. I needed to get this story out of me. More
than that, I thought I could bring meaning back to my life, most of which had been
shed by disability, by helping others. By doing something for the greater good. I
wanted to ensure that others did not repeat my mistakes. I thought that was worth
doing. There was a problem this project illustrated that was bigger than me. Most
research sits on a shelf and never gets into the hands of people it can benefit. This
book is a prescription and methodology for doing applied research that makes it into
the world in the form of a product.

This may sound quite dramatic, but I wanted to put the first edition in personal con‐
text before introducing the second. Although it was important to me, of course, the
first edition of this book was only a small contribution to the emerging field of data
science. But I’m proud of it. I found salvation in its pages, it made me feel right again,
and in time I recovered from illness and found a sense of accomplishment that
replaced the sting of failure. So that’s the first edition.

In this second edition, I hope to do more. Put simply, I want to take a budding data
scientist and accelerate her into an analytics application developer. In doing so, I draw
from and reflect upon my experience building analytics applications at three Hadoop

ix

shops and one Spark shop. I hope this new edition will become the go-to guide for
readers to rapidly learn how to build analytics applications on data of any size, using
the lingua franca of data science, Python, and the platform of choice, Spark.

Spark has replaced Hadoop/MapReduce as the default way to process data at scale, so
we adopt Spark for this new edition. In addition, the theory and process of the Agile
Data Science methodology have been updated to reflect an increased understanding
of working in teams. It is hoped that readers of the first edition will become readers of
the second. It is also hoped that this book will serve Spark users better than the origi‐
nal served Hadoop users.

Agile Data Science has two goals: to provide a how-to guide for building analytics
applications with data of any size using Python and Spark, and to help product teams
collaborate on building analytics applications in an agile manner that will ensure suc‐
cess.

Agile Data Science Mailing List
You can learn the latest on Agile Data Science on the mailing list or on the web.

I maintain a web page for this book that contains the latest updates and related mate‐
rial for readers of the book.

Data Syndrome, Product Analytics Consultancy
I have founded a consultancy called Data Syndrome (Figure P-1) to advance the
adoption of the methodology and technology stack outlined in this book. If you need
help implementing Agile Data Science within your company, if you need hands-on
help building data products, or if you need “big data” training, you can contact me at
rjurney@datasyndrome.com or via the website.

Data Syndrome offers a video course, Realtime Predictive Analytics with Kafka,
PySpark, Spark MLlib and Spark Streaming, that builds on the material from Chap‐
ters 7 and 8 to teach students how to build entire realtime predictive systems with
Kafka and Spark Streaming and a web application frontend (see Figure P-2). For
more information, visit http://datasyndrome.com/video or contact rjurney@datasyn‐
drome.com.

x | Preface

mailto:agile-data-science@googlegroups.com
https://groups.google.com/d/forum/agile-data-science
http://datasyndrome.com/book
mailto:rjurney@datasyndrome.com
http://llc.datasyndrome.com
http://datasyndrome.com/video
http://datasyndrome.com/video
http://datasyndrome.com/video
mailto:rjurney@datasyndrome.com
mailto:rjurney@datasyndrome.com

Figure P-1. Data Syndrome

Figure P-2. Realtime Predictive Analytics video course

Live Training
Data Syndrome is developing a complete curriculum for live “big data” training for
data science and data engineering teams. Current course offerings are customizable
for your needs and include:

Agile Data Science
A three-day course covering the construction of full-stack analytics applications.
Similar in content to this book, this course trains data scientists to be full-stack
application developers.

Preface | xi

Realtime Predictive Analytics
A one-day, six-hour course covering the construction of entire realtime predic‐
tive systems using Kafka and Spark Streaming with a web application frontend.

Introduction to PySpark
A one-day, three-hour course introducing students to basic data processing with
Spark through the Python interface, PySpark. Culminates in the construction of a
classifier model to predict flight delays using Spark MLlib.

For more information, visit http://datasyndrome.com/training or contact rjur‐
ney@datasyndrome.com.

Who This Book Is For
Agile Data Science is intended to help beginners and budding data scientists to
become productive members of data science and analytics teams. It aims to help engi‐
neers, analysts, and data scientists work with big data in an agile way using Hadoop. It
introduces an agile methodology well suited for big data.

This book is targeted at programmers with some exposure to developing software
and working with data. Designers and product managers might particularly enjoy
Chapters 1, 2, and 5, which will serve as an introduction to the agile process without
focusing on running code.

Agile Data Science assumes you are working in a *nix environment. Examples for
Windows users aren’t available, but are possible via Cygwin.

How This Book Is Organized
This book is organized into two sections. Part I introduces the dataset and toolset we
will use in the tutorial in Part II. Part I is intentionally brief, taking only enough time
to introduce the tools. We go into their use in more depth in Part II, so don’t worry if
you’re a little overwhelmed in Part I. The chapters that compose Part I are as follows:

Chapter 1, Theory
Introduces the Agile Data Science methodology.

Chapter 2, Agile Tools
Introduces our toolset, and helps you get it up and running on your own
machine.

Chapter 3, Data
Describes the dataset used in this book.

Part II is a tutorial in which we build an analytics application using Agile Data Sci‐
ence. It is a notebook-style guide to building an analytics application. We climb the

xii | Preface

http://datasyndrome.com/training
mailto:rjurney@datasyndrome.com
mailto:rjurney@datasyndrome.com

data-value pyramid one level at a time, applying agile principles as we go. This part of
the book demonstrates a way of building value step by step in small, agile iterations.
Part II comprises the following chapters:

Chapter 4, Collecting and Displaying Records
Helps you download flight data and then connect or “plumb” flight records
through to a web application.

Chapter 5, Visualizing Data with Charts and Tables
Steps you through how to navigate your data by preparing simple charts in a web
application.

Chapter 6, Exploring Data with Reports
Teaches you how to extract entities from your data and parameterize and link
between them to create interactive reports.

Chapter 7, Making Predictions
Takes what you’ve done so far and predicts whether your flight will be on time or
late.

Chapter 8, Deploying Predictive Systems
Shows how to deploy predictions to ensure they impact real people and systems.

Chapter 9, Improving Predictions
Iteratively improves on the performance of our on-time flight prediction.

Appendix A, Manual Installation
Shows how to manually install our tools.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Preface | xiii

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/rjurney/Agile_Data_Code_2.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Agile Data Science 2.0 by Russell
Jurney (O’Reilly). Copyright 2017 Data Syndrome LLC, 978-1-491-96011-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe

xiv | Preface

https://github.com/rjurney/Agile_Data_Code_2
mailto:permissions@oreilly.com
http://oreilly.com/safari

Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

Preface | xv

http://www.oreilly.com/safari
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Setup

Figure I-1. The Hero’s Journey, from Wikipedia

https://en.wikipedia.org/wiki/Hero%27s_journey

CHAPTER 1

Theory

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

—The Agile Manifesto

Introduction
Agile Data Science is an approach to data science centered around web application
development. It asserts that the most effective output of the data science process suit‐
able for effecting change in an organization is the web application. It asserts that
application development is a fundamental skill of a data scientist. Therefore, doing
data science becomes about building applications that describe the applied research
process: rapid prototyping, exploratory data analysis, interactive visualization, and
applied machine learning.

Agile software methods have become the de facto way software is delivered today.
There are a range of fully developed methodologies, such as Scrum, that give a frame‐
work within which good software can be built in small increments. There have been
some attempts to apply agile software methods to data science, but these have had
unsatisfactory results. There is a fundamental difference between delivering production
software and actionable insights as artifacts of an agile process. The need for insights to
be actionable creates an element of uncertainty around the artifacts of data science—

3

http://agilemanifesto.org

they might be “complete” in a software sense, and yet lack any value because they
don’t yield real, actionable insights. As data scientist Daniel Tunkelang says, “The
world of actionable insights is necessarily looser than the world of software engineer‐
ing.” Scrum and other agile software methodologies don’t handle this uncertainty
well. Simply put: agile software doesn’t make Agile Data Science. This created the
motivation for this book: to provide a new methodology suited to the uncertainty of
data science along with a guide on how to apply it that would demonstrate the princi‐
ples in real software.

The Agile Data Science “manifesto” is my attempt to create a rigorous method to
apply agility to the practice of data science. These principles apply beyond data scien‐
tists building data products in production. The web application is the best format to
share actionable insights both within and outside an organization.

Agile Data Science is not just about how to ship working software, but how to better
align data science with the rest of the organization. There is a chronic misalignment
between data science and engineering, where the engineering team often wonder
what the data science team are doing as they perform exploratory data analysis and
applied research. The engineering team are often uncertain what to do in the mean‐
while, creating the “pull of the waterfall,” where supposedly agile projects take on
characteristics of the waterfall. Agile Data Science bridges this gap between the two
teams, creating a more powerful alignment of their efforts.

This book is also about “big data.” Agile Data Science is a development methodology
that copes with the unpredictable realities of creating analytics applications from data
at scale. It is a theoretical and technical guide for operating a Spark data refinery to
harness the power of the “big data” in your organization. Warehouse-scale computing
has given us enormous storage and compute resources to solve new kinds of prob‐
lems involving storing and processing unprecedented amounts of data. There is great
interest in bringing new tools to bear on formerly intractable problems, enabling us
to derive entirely new products from raw data, to refine raw data into profitable
insights, and to productize and productionize insights in new kinds of analytics appli‐
cations. These tools are processor cores and disk spindles, paired with visualization,
statistics, and machine learning. This is data science.

At the same time, during the last 20 years, the World Wide Web has emerged as the
dominant medium for information exchange. During this time, software engineering
has been transformed by the “agile” revolution in how applications are conceived,
built, and maintained. These new processes bring in more projects and products on
time and under budget, and enable small teams or single actors to develop entire
applications spanning broad domains. This is agile software development.

But there’s a problem. Working with real data in the wild, doing data science, and per‐
forming serious research takes time—longer than an agile cycle (on the order of
months). It takes more time than is available in many organizations for a project

4 | Chapter 1: Theory

sprint, meaning today’s applied researcher is more than pressed for time. Data science
is stuck in the old-school software schedule known as the waterfall method.

Our problem and our opportunity come at the intersection of these two trends: how
can we incorporate data science, which is applied research and requires exhaustive
effort on an unpredictable timeline, into the agile application? How can analytics
applications do better than the waterfall method that we’ve long since left behind?
How can we craft applications for unknown, evolving data models? How can we
develop new agile methods to fit the data science process to create great products?

This book attempts to synthesize two fields, agile development and data science on
large datasets; to meld research and engineering into a productive relationship. To
achieve this, it presents a new agile methodology and examples of building products
with a suitable software stack. The methodology is designed to maximize the creation
of software features based on the most penetrating insights. The software stack is a
lightweight toolset that can cope with the uncertain, shifting sea of raw data and
delivers enough productivity to enable the agile process to succeed. The book goes on
to show you how to iteratively build value using this stack, to get back to agility and
mine data to turn it into dollars.

Agile Data Science aims to put you back in the driver’s seat, ensuring that your
applied research produces useful products that meet the needs of real users.

Definition
What is Agile Data Science (ADS)? In this chapter I outline a new methodology for
analytics product development, something I hinted at in the first edition but did not
express in detail. To begin, what is the goal of the ADS process?

Methodology as Tweet
The goal of the Agile Data Science process is to document, facilitate, and guide
exploratory data analysis to discover and follow the critical path to a compelling ana‐
lytics product (Figure 1-1. Agile Data Science “goes meta” and puts the lens on the
exploratory data analysis process, to document insight as it occurs. This becomes the
primary activity of product development. By “going meta,” we make the process focus
on something that is predictable, that can be managed, rather than the product out‐
put itself, which cannot.

Definition | 5

Figure 1-1. Methodology as tweet

A new agile manifesto for data science is needed.

Agile Data Science Manifesto
Agile Data Science is organized around the following principles:

• Iterate, iterate, iterate: tables, charts, reports, predictions.
• Ship intermediate output. Even failed experiments have output.
• Prototype experiments over implementing tasks.
• Integrate the tyrannical opinion of data in product management.
• Climb up and down the data-value pyramid as we work.
• Discover and pursue the critical path to a killer product.
• Get meta. Describe the process, not just the end state.

Let’s explore each principle in detail.

Iterate, iterate, iterate
Insight comes from the twenty-fifth query in a chain of queries, not the first one.
Data tables have to be parsed, formatted, sorted, aggregated, and summarized before
they can be understood. Insightful charts typically come from the third or fourth
attempt, not the first. Building accurate predictive models can take many iterations of
feature engineering and hyperparameter tuning. In data science, iteration is the
essential element to the extraction, visualization, and productization of insight. When
we build, we iterate.

Ship intermediate output
Iteration is the essential act in crafting analytics applications, which means we’re often
left at the end of a sprint with things that aren’t complete. If we didn’t ship incomplete
or intermediate output by the end of a sprint, we would often end up shipping noth‐

6 | Chapter 1: Theory

ing at all. And that isn’t agile; I call it the “death loop,” where endless time can be was‐
ted perfecting things nobody wants.

Good systems are self-documenting, and in Agile Data Science we document and
share the incomplete assets we create as we work. We commit all work to source con‐
trol. We share this work with teammates and, as soon as possible, with end users. This
principle isn’t obvious to everyone. Many data scientists come from academic back‐
grounds, where years of intense research effort went into a single large paper called a
thesis that resulted in an advanced degree.

Prototype experiments over implementing tasks
In software engineering, a product manager assigns a chart to a developer to imple‐
ment during a sprint. The developer translates the assignment into a SQL GROUP BY
and creates a web page for it. Mission accomplished? Wrong. Charts that are specified
this way are unlikely to have value. Data science differs from software engineering in
that it is part science, part engineering.

In any given task, we must iterate to achieve insight, and these iterations can best be
summarized as experiments. Managing a data science team means overseeing multi‐
ple concurrent experiments more than it means handing out tasks. Good assets
(tables, charts, reports, predictions) emerge as artifacts of exploratory data analysis,
so we must think more in terms of experiments than tasks.

Integrate the tyrannical opinion of data
What is possible is as important as what is intended. What is easy and what is hard
are as important things to know as what is desired. In software application develop‐
ment there are three perspectives to consider: those of the customers, the developers,
and the business. In analytics application development there is another perspective:
that of the data. Without understanding what the data “has to say” about any feature,
the product owner can’t do a good job. The data’s opinion must always be included in
product discussions, which means that they must be grounded in visualization
through exploratory data analysis in the internal application that becomes the focus
of our efforts.

Climb up and down the data-value pyramid
The data-value pyramid (Figure 1-2) is a five-level pyramid modeled after Maslow’s
hierarchy of needs. It expresses the increasing amount of value created when refining
raw data into tables and charts, followed by reports, then predictions, all of which is
intended to enable new actions or improve existing ones:

• The first level of the data-value pyramid (records) is about plumbing; making a
dataset flow from where it is gathered to where it appears in an application.

Definition | 7

• The charts and tables layer is the level where refinement and analysis begins.
• The reports layer enables immersive exploration of data, where we can really rea‐

son about it and get to know it.
• The predictions layer is where more value is created, but creating good predic‐

tions means feature engineering, which the lower levels encompass and facilitate.
• The final level, actions, is where the AI (artificial intelligence) craze is taking

place. If your insight doesn’t enable a new action or improve an existing one, it
isn’t very valuable.

Figure 1-2. The data-value pyramid

The data-value pyramid gives structure to our work. The pyramid is something to
keep in mind, not a rule to be followed. Sometimes you skip steps, sometimes you
work backward. If you pull a new dataset directly into a predictive model as a feature,
you incur technical debt if you don’t make this dataset transparent and accessible by
adding it to your application data model in the lower levels. You should keep this in
mind, and pay off the debt as you are able.

Discover and pursue the critical path to a killer product
To maximize our odds of success, we should focus most of our time on that aspect of
our application that is most essential to its success. But which aspect is that? This
must be discovered through experimentation. Analytics product development is the
search for and pursuit of a moving goal.

Once a goal is determined, for instance a prediction to be made, then we must find
the critical path to its implementation and, if it proves valuable, to its improvement.

8 | Chapter 1: Theory

https://en.wikipedia.org/wiki/Critical_path_method

Data is refined step by step as it flows from task to task. Analytics products often
require multiple stages of refinement, the employment of extensive ETL (extract,
transform, load) processes, techniques from statistics, information access, machine
learning, artificial intelligence, and graph analytics.

The interaction of these stages can form complex webs of dependencies. The team
leader holds this web in his head. It is his job to ensure that the team discovers the
critical path and then to organize the team around completing it. A product manager
cannot manage this process from the top down; rather, a product scientist must dis‐
cover it from the bottom up.

Get meta
If we can’t easily ship good product assets on a schedule comparable to developing a
normal application, what will we ship? If we don’t ship, we aren’t agile. To solve this
problem, in Agile Data Science, we “get meta.” The focus is on documenting the ana‐
lytics process as opposed to the end state or product we are seeking. This lets us be
agile and ship intermediate content as we iteratively climb the data-value pyramid to
pursue the critical path to a killer product. So where does the product come from?
From the palette we create by documenting our exploratory data analysis.

Synthesis
These seven principles work together to drive the Agile Data Science methodology.
They serve to structure and document the process of exploratory data analysis and
transform it into analytics applications. So that is the core of the method. But why?
How did we get here? Let’s take a look at a waterfall project to understand the prob‐
lems these types of projects create.

LinkedIn Career Explorer was an analytics application developed at
LinkedIn in 2010 using the waterfall methodology, and its ultimate
failure motivated the creation of this book. I was a newly hired
Senior Data Scientist for Career Explorer. In this second edition, I
use Career Explorer as a case study to briefly explore the problems
discovered with the waterfall method during its eight-month devel‐
opment.

Definition | 9

The Problem with the Waterfall
I should explain and get out of the way the fact that Career Explorer was the first rec‐
ommender system or indeed predictive model that I had ever built. Much of its fail‐
ure was due to my inexperience. My experience was in iterative and agile interactive
visualization, which seemed a good fit for the goals of the project, but actually the
recommendation task was more difficult than had been anticipated in the prototype
—as it turned out, much more work was needed on the entity resolution of job titles
than was foreseen.

At the same time, issues with the methodology employed on the product hid the
actual state of the product from management, who were quite pleased with static
mock-ups only days before launch. Last-minute integration revealed bugs in the
interfaces between components that were exposed to the customer. A hard deadline
created a crisis when the product proved unshippable with only days to go. In the
end, I stayed up for the better part of a week resubmitting Hadoop jobs every five
minutes to debug last-minute fixes and changes, and the product was just barely good
enough to go out. This turned out not to matter much, as users weren’t actually inter‐
ested in the product concept. In the end, a lot of work was thrown away only months
after launch.

The key issues with the project were to do with the waterfall methodology employed:

• The application concept was only tested in user focus groups and managerial
reviews, and it failed to actually engage user interest.

• The prediction presentation was designed up front, with the actual model and its
behavior being an afterthought. Things went something like this:
“We made a great design! Your job is to predict the future for it.”
“What is taking so long to reliably predict the future?”
“The users don’t understand what 86% true means.”
Plane → Mountain.

• Charts were specified by product/design and failed to achieve real insights.
• A hard deadline was specified in a contract with a customer.
• Integration testing occurred at the end of development, which precipitated a

deadline crisis.
• Mock-ups without real data were used throughout the project to present the

application to focus groups and to management.

10 | Chapter 1: Theory

This is all fairly standard for a waterfall project. The result was that management
thought the product was on track with only two weeks to go when integration finally
revealed problems. Note that Scrum was used throughout the project, but the end
product was never able to be tested with end users, thus negating the entire point of
the agile methodology employed. To sum it up, the plane hit the mountain.

By contrast, there was another project at LinkedIn called InMaps that I led develop‐
ment on and product managed. It proceeded much more smoothly because we itera‐
tively published the application using real data, exposing the “broken” state of the
application to internal users and getting feedback across many release cycles. It was
the contrast between these two projects that helped formalize Agile Data Science in
my mind.

But if the methodology employed on Career Explorer was actually Scrum, why was it
a waterfall project? It turns out that analytics products built by data science teams
have a tendency to “pull” toward the waterfall. I would later discover the reason for
this tendency.

Research Versus Application Development
It turns out that there is a basic conflict in shipping analytics products, and that is the
conflict between the research and the application development timeline. This conflict
tends to make every analytics product a waterfall project, even those that set out to
use a software engineering methodology like Scrum.

Research, even applied research, is science. It involves iterative experiments, in which
the learning from one experiment informs the next experiment. Science excels at dis‐
covery, but it differs from engineering in that there is no specified endpoint (see
Figure 1-3).

The Problem with the Waterfall | 11

https://techcrunch.com/2014/09/01/linkedin-is-quietly-retiring-network-visualization-tool-inmaps/

Figure 1-3. The scientific method, from Wikipedia

Engineering employs known science and engineering techniques to build things on a
linear schedule. Engineering looks like the Gantt chart in Figure 1-4. Tasks can be
specified, monitored, and completed.

12 | Chapter 1: Theory

https://en.wikipedia.org/wiki/Scientific_method

Figure 1-4. Gantt chart, from Wikipedia

A better model of an engineering project looks like the PERT chart in Figure 1-5,
which can model complex dependencies with nonlinear relationships. Note that even
in this more advanced model, the points are known. The work is done during the
lines.

Figure 1-5. PERT chart, from Wikipedia

In other words: engineering is precise, and science is uncertain. Even relatively new
fields such as software engineering, where estimates are often off by 100% or more,

The Problem with the Waterfall | 13

https://en.wikipedia.org/wiki/Gantt_chart
https://en.wikipedia.org/wiki/Program_evaluation_and_review_technique

are more certain than the scientific process. This is the impedance mismatch that cre‐
ates the problem.

In data science, the science portion usually takes much longer than the engineering
portion, and to make things worse, the amount of time a given experiment will take is
uncertain. Uncertainty in length of time to make working analytics assets—tables,
charts, and predictions—tends to cause stand-ins to be used in place of the real thing.
This results in feedback on a mock-up driving the development process, which aborts
agility. This is a project killer.

The solution is to get agile... but how? How do agile software methodologies map to
data science, and where do they fall short?

The Problem with Agile Software
Agile Software isn’t Agile Data Science. In this section we’ll look at the problems with
mapping something like Scrum directly into the data science process.

Eventual Quality: Financing Technical Debt
Technical debt is defined by Techopedia as “a concept in programming that reflects
the extra development work that arises when code that is easy to implement in the
short run is used instead of applying the best overall solution.” Understanding techni‐
cal debt is essential when it comes to managing software application development,
because deadline pressure can result in the creation of large amounts of technical
debt. This technical debt can cripple the team’s ability to hit future deadlines.

Technical debt is different in data science than in software engineering. In software
engineering you retain all code, so quality is paramount. In data science you tend to
discard most code, so this is less the case. In data science we must check in everything
to source control but must tolerate a higher degree of ugliness until something has
proved useful enough to retain and reuse. Otherwise, applying software engineering
standards to data science code would reduce productivity a great deal. At the same
time, a great deal of quality can be imparted to code by forcing some software engi‐
neering knowledge and habits onto academics, statisticians, researchers, and data sci‐
entists.

In data science, by contrast to software engineering, code shouldn’t always be good; it
should be eventually good. This means that some technical debt up front is acceptable,
so long as it is not excessive. Code that becomes important should be able to be
cleaned up with minimal effort. It doesn’t have to be good at any moment, but as soon
as it becomes important, it must become good. Technical debt forms part of the web
of dependencies in managing an Agile Data Science project. This is a highly technical
task, necessitating technical skills in the team leader or a process that surfaces techni‐
cal debt from other members of the team.

14 | Chapter 1: Theory

https://www.techopedia.com/definition/27913/technical-debt

Prototypes are financed on technical debt, which is paid off only if a prototype proves
useful. Most prototypes will be discarded or minimally used, so the technical debt is
never repaid. This enables much more experimentation for fewer resources. This also
occurs in the form of Jupyter and Zeppelin notebooks, which place the emphasis on
direct expression rather than code reuse or production deployment.

The Pull of the Waterfall
The stack of a modern “big data” application is much more complex than that of a
normal application. Also, there is a very broad skillset required to build analytics
applications at scale using these systems. This wide pipeline in terms of people and
technology can result in a “pull” toward the waterfall even for teams determined to be
agile.

Figure 1-6 shows that if tasks are completed in sprints, the thickness of the stack and
team the combine to force a return to the waterfall model. In this instance a chart is
desired, so a data scientist uses Spark to calculate the data for one and puts it into the
database. Next, an API developer creates an API for this data, followed by a web
developer creating a web page for the chart. A visualization engineer creates the
actual chart, which a designer visually improves. Finally, the product manager sees
the chart and another iteration is required. It takes an extended period to make one
step forward. Progress is very slow, and the team is not agile.

Figure 1-6. Sprint based cooperation becoming anything but agile

The Problem with Agile Software | 15

This illustrates a few things. The first is the need for generalists who can accomplish
more than one related task. But more importantly, it shows that it is necessary to iter‐
ate within sprints as opposed to iterating in compartments between them. Otherwise,
if you wait an entire sprint for one team member to implement the previous team
member’s work, the process tends to become a sort of stepped pyramid/waterfall.

The Data Science Process
Having introduced the methodology and described why it is needed, now we’re going
to dive into the mechanics of an Agile Data Science team. We begin with setting
expectations, then look at the roles in a data science team, and finally describe how
the process works in practice. While I hope this serves as an introduction for readers
new to data science teams or new to Agile Data Science, this isn’t an exhaustive
description of how agile processes work in general. Readers new to agile and new to
data science are encouraged to consult a book on Scrum before consuming this chap‐
ter.

Now let’s talk about setting expectations of data science teams, and how they interact
with the rest of the organization.

Setting Expectations
Before we look at how to compose data science teams and run them to produce
actionable insights, we first need to discuss how a data science team fits into an orga‐
nization. As the focus of data science shifts in Agile Data Science from a pre-
determined outcome to a description of the applied research process, so must the
expectations for the team change. In addition, the way data science teams relate to
other teams is impacted.

“When will we ship?” is the question management wants to know the answer to in
order to set expectations with the customer and coordinate sales, marketing, recruit‐
ing, and other efforts. With an Agile Data Science team, you don’t get a straight
answer to that question. There is no specific date X when prediction Y will be shippa‐
ble as a web product or API. That metric, the ship date of a predetermined artifact, is
something you sacrifice when you adopt an Agile Data Science process. What you get
in return is true visibility into the work of the team toward your business goals in the
form of working software that describes in detail what the team is actually doing.
With this information in hand, other business processes can be aligned with the
actual reality of data science, as opposed to the fiction of a known shipping date for a
predetermined artifact.

With a variable goal, another question becomes just as important: “What will we
ship?” or, more likely, “What will we ship, when?” To answer these questions, any

16 | Chapter 1: Theory

stakeholder can take a look at the application as it exists today as well as the plans for
the next sprint and get a sense of where things are and where they are moving.

With these two questions addressed, the organization can work with a data science
team as the artifacts of their work evolve into actionable insights. A data science team
should be tasked with discovering value to address a set of business problems. The
form the output of their work takes is discovered through exploratory research. The
date when the “final” artifacts will be ready can be estimated by careful inspection of
the current state of their work. With this information in hand, although it is more
nuanced than a “ship date,” managers positioned around a data science team can sync
their work and schedules with the team.

In other words, we can’t tell you exactly what we will ship, when. But in exchange for
accepting this reality, you get a constant, shippable progress report, so that by partici‐
pating in the reality of doing data science you can use this information to coordinate
other efforts. That is the trade-off of Agile Data Science. Given that schedules with
pre-specified artifacts and ship dates usually include the wrong artifacts and unrealis‐
tic dates, we feel this trade-off is a good one. In fact, it is the only one we can make if
we face the reality of doing data science.

Data Science Team Roles
Products are built by teams of people, and agile methods focus on people over pro‐
cess. Data science is a broad discipline, spanning analysis, design, development, busi‐
ness, and research. The roles of Agile Data Science team members, defined in a
spectrum from customer to operations, look something like Figure 1-7.

Figure 1-7. The roles in an Agile Data Science team

These roles can be defined as follows:

• Customers use your product, click your buttons and links, or ignore you com‐
pletely. Your job is to create value for them repeatedly. Their interest determines
the success of your product.

• Business Development signs early customers, either firsthand or through the cre‐
ation of landing pages and promotion, and delivers traction in the market with
the product.

• Marketers talk to customers to determine which markets to pursue. They deter‐
mine the starting perspective from which an Agile Data Science product begins.

• Product managers take in the perspectives of each role, synthesizing them to build
consensus about the vision and direction of the product.

The Data Science Process | 17

• User experience designers are responsible for fitting the design around the data to
match the perspective of the customer. This role is critical, as the output of statis‐
tical models can be difficult to interpret by “normal” users who have no concept
of the semantics of the model’s output (i.e., how can something be 75% true?).

• Interaction designers design interactions around data models so users find their
value.

• Web developers create the web applications that deliver data to a web browser.
• Engineers build the systems that deliver data to applications.
• Data scientists explore and transform data in novel ways to create and publish

new features and combine data from diverse sources to create new value. They
make visualizations with researchers, engineers, web developers, and designers,
exposing raw, intermediate, and refined data early and often.

• Applied researchers solve the heavy problems that data scientists uncover and that
stand in the way of delivering value. These problems take intense focus and time
and require novel methods from statistics and machine learning.

• Platform or data engineers solve problems in the distributed infrastructure that
enable Agile Data Science at scale to proceed without undue pain. Platform engi‐
neers handle work tickets for immediate blocking bugs and implement long-term
plans and projects to maintain and improve usability for researchers, data scien‐
tists, and engineers.

• Quality assurance engineers automate testing of predictive systems from end to
end to ensure accurate and reliable predictions are made.

• Operations/DevOps engineers ensure smooth setup and operation of production
data infrastructure. They automate deployment and take pages when things go
wrong.

Recognizing the Opportunity and the Problem
The broad skillset needed to build data products presents both an opportunity and a
problem. If these skills can be brought to bear by experts in each role working as a
team on a rich dataset, problems can be decomposed into parts and directly attacked.
Data science is then an efficient assembly line, as illustrated in Figure 1-8.

18 | Chapter 1: Theory

Figure 1-8. Expert contributor workflow

However, as team size increases to satisfy the need for expertise in these diverse areas,
communication overhead quickly dominates. A researcher who is eight persons away
from customers is unlikely to solve relevant problems and more likely to solve arcane
problems. Likewise, team meetings of a dozen individuals are unlikely to be produc‐
tive. We might split this team into multiple departments and establish contracts of
delivery between them, but then we lose both agility and cohesion. Waiting on the
output of research, we invent specifications, and soon we find ourselves back in the
waterfall method.

The Data Science Process | 19

And yet we know that agility and a cohesive vision and consensus about a product are
essential to our success in building products. The worst product-development prob‐
lem is one team working on more than one vision. How are we to reconcile the
increased span of expertise and the disjoint timelines of applied research, data sci‐
ence, software development, and design?

Adapting to Change
To remain agile, we must embrace and adapt to these new conditions. We must adopt
changes in line with lean methodologies to stay productive.

Several changes in particular make a return to agility possible:

• Choosing generalists over specialists
• Preferring small teams over large teams
• Using high-level tools and platforms: cloud computing, distributed systems, and

platforms as a service (PaaS)
• Continuous and iterative sharing of intermediate work, even when that work may

be incomplete

In Agile Data Science, a small team of generalists uses scalable, high-level tools and
platforms to iteratively refine data into increasingly higher states of value. We
embrace a software stack leveraging cloud computing, distributed systems, and plat‐
forms as a service. Then we use this stack to iteratively publish the intermediate
results of even our most in-depth research to snowball value from simple records to
predictions and actions that create value and let us capture some of it to turn data
into dollars.

Let’s examine each item in detail.

Harnessing the power of generalists
In Agile Data Science, we value generalists over specialists, as shown in Figure 1-9.

Figure 1-9. Broad roles in an Agile Data Science team

20 | Chapter 1: Theory

In other words, we measure the breadth of teammates’ skills as much as the depth of
their knowledge and their talent in any one area. Examples of good Agile Data Sci‐
ence team members include:

• Designers who deliver working CSS
• Web developers who build entire applications and understand the user interface

and user experience
• Data scientists capable of both research and building web services and applica‐

tions
• Researchers who check in working source code, explain results, and share inter‐

mediate data
• Product managers able to understand the nuances in all areas

Design in particular is a critical role in the Agile Data Science team. Design does not
end with appearance or experience. Design encompasses all aspects of the product,
from architecture, distribution, and user experience to work environment.

In the documentary The Lost Interview, Steve Jobs said this about
design: “Designing a product is keeping five thousand things in
your brain and fitting them all together in new and different ways
to get what you want. And every day you discover something new
that is a new problem or a new opportunity to fit these things
together a little differently. And it’s that process that is the magic.”

Leveraging agile platforms
In Agile Data Science, we use the easiest-to-use, most approachable distributed sys‐
tems, along with cloud computing and platforms as a service, to minimize infrastruc‐
ture costs and maximize productivity. The simplicity of our stack helps enable a
return to agility. We use this stack to compose scalable systems in as few steps as pos‐
sible. This lets us move fast and consume all the available data without running into
scalability problems that cause us to discard data or remake our application in-flight.
That is to say, we only build it once, and it adapts.

Sharing intermediate results
Finally, to address the very real differences in timelines between researchers and data
scientists and the rest of the team, we adopt a sort of data collage as our mechanism of
melding these disjointed scales. In other words, we piece our app together from the
abundance of views, visualizations, and properties that form the “menu” for the appli‐
cation.

The Data Science Process | 21

Researchers and data scientists, who work on longer timelines than agile sprints typi‐
cally allow, generate data daily—albeit not in a “publishable” state. But in Agile Data
Science, there is no unpublishable state. The rest of the team must see weekly, if not
daily (or more often), updates to the state of the data. This kind of engagement with
researchers is essential to unifying the team and enabling product management.

That means publishing intermediate results—incomplete data, the scraps of analysis.
These “clues” keep the team united, and as these results become interactive, everyone
becomes informed as to the true nature of the data, the progress of the research, and
how to combine the clues into features of value. Development and design must pro‐
ceed from this shared reality. The audience for these continuous releases can start
small and grow as they become more presentable (as shown in Figure 1-10), but cus‐
tomers must be included quickly.

Figure 1-10. Growing audience from conception to launch

Notes on Process
The Agile Data Science process embraces the iterative nature of data science and the
efficiency our tools enable to build and extract increasing levels of structure and value
from our data.

Given the spectrum of skills within a data science team, the possibilities are endless.
With the team spanning so many disciplines, building web products is inherently col‐

22 | Chapter 1: Theory

laborative. To collaborate, teams need direction: every team member passionately and
tenaciously pursuing a common goal. To get that direction, you require consensus.

Building and maintaining consensus while collaborating is the hardest part of build‐
ing software. The principal risk in software product teams is building to different
blueprints. Clashing visions result in incohesive holes that sink products.

Applications are sometimes mocked before they are built: product managers conduct
market research, while designers iterate mocks with feedback from prospective users.
These mocks serve as a common blueprint for the team.

Real-world requirements shift as we learn from our users and conditions change,
even when the data is static. So our blueprints must change with time. Agile methods
were created to facilitate implementation of evolving requirements, and to replace
mock-ups with real working systems as soon as possible.

Typical web products—those driven by forms backed by predictable, constrained
transaction data in relational databases—have fundamentally different properties
than products featuring mined data. In CRUD (create, read, update, delete) applica‐
tions, data is relatively consistent. The models are predictable SQL tables or docu‐
ments, and changing them is a product decision. The data’s “opinion” is irrelevant,
and the product team is free to impose its will on the model to match the business
logic of the application.

In interactive products driven by mined data, none of that holds. Real data is dirty.
Mining always involves dirt. If the data wasn’t dirty, it wouldn’t be data mining. Even
carefully extracted and refined mined information can be fuzzy and unpredictable.
Presenting it on the consumer internet requires long labor and great care.

In data products, the data is ruthlessly opinionated. Whatever we wish the data to say,
it is unconcerned with our own opinions. It says what it says. This means the waterfall
model has no application. It also means that mocks are an insufficient blueprint to
establish consensus in software teams.

Mocks of a data product are a specification of the application without its essential
character, the true value of the information being presented. Mocks as blueprints
make assumptions about complex data models they have no reasonable basis for
making. When specifying lists of recommendations, mocks often mislead. When
mocks specify full-blown interactions, they do more than that: they suppress reality
and promote assumption. And yet we know that good design and user experience are
about minimizing assumption. What are we to do?

The goal of agile product development is to identify the essential character of an
application and to build that up first before adding other features. This imparts agility
to the project, making it more likely to satisfy its real, essential requirements as they
evolve. In data products, that essential character will surprise you. If it doesn’t, either

Notes on Process | 23

you are doing it wrong, or your data isn’t very interesting. Information has context,
and when that context is interactive, insight is not predictable.

Code Review and Pair Programming
To avoid systemic errors, data scientists must share their code with the rest of the
team on a regular basis. This makes formal code review important.

It is easy to detect and fix errors in parsing. Systemic errors in algorithms are much
harder to detect without a second, third, fourth pair of eyes. And they need not all be
data scientists—if a data scientist presents her code with an explanation of what is
happening, any programmer can catch inconsistencies and make helpful suggestions.
What is more, having a formal code review process sets the standard for writing code
that is understandable and can be shared and explained.

Without code review, a data scientist could end up sinking enormous efforts into
improving a predictive model that is doing the wrong thing. Systemic errors are
incredibly difficult to detect in your own code, as when reading your own code, your
mind reads what you intended and not what you actually wrote.

Code review in every sprint is essential to maintaining standards of quality and read‐
ability; it is essential to avoid systemic errors in algorithmic work, and it fosters a
sense of inclusion and sharing on the team. This cultural impact is perhaps the most
important aspect of code review, because it creates cross-training among team mem‐
bers who become proficient at understanding and fixing components of the system
they don’t usually work on or maintain. You’ll be glad you have a code review process
in place when a critical data scientist or data engineer is out sick and you need some‐
one else to find and fix a bug in production.

Agile Environments: Engineering Productivity
Rows of cubicles like cells of a hive. Overbooked conference rooms camped and decamped.
Microsoft Outlook a modern punchcard. Monolithic insanity. A sea of cubes.
Deadlines interrupted by oscillating cacophonies of rumors shouted, spread like waves unin‐
terrupted by naked desks. Headphone budgets. Not working, close together. Decibel induced
telecommuting. The open plan.
Competing monstrosities seeking productivity but not finding it.

—Poem by the author

Generalists require more uninterrupted concentration and quiet than do specialists.
That is because the context of their work is broader, and therefore their immersion is
deeper. Their environment must suit this need.

Invest in two to three times the space of a typical cube farm, or you are wasting your
people. In this setup, some people don’t need desks, which drives costs down.

24 | Chapter 1: Theory

We can do better. We should do better. It costs more, but it is inexpensive.

In Agile Data Science, we recognize team members as creative workers, not office
workers. We therefore structure our environment more like a studio than an office.
At the same time, we recognize that employing advanced mathematics on data to
build products requires quiet contemplation and intense focus. So we incorporate ele‐
ments of the library as well.

Many enterprises limit their productivity enhancement of employees to the acquisition
of skills. However, about 86% of productivity problems reside in the work environment
of organizations. The work environment has effect on the performance of employees.
The type of work environment in which employees operate determines the way in
which such enterprises prosper.

—Akinyele Samuel Taiwo

It is much higher cost to employ people than it is to maintain and operate a building,
hence spending money on improving the work environment is the most cost effective
way of improving productivity because of small percentage increase in productivity of
0.1% to 2% can have dramatic effects on the profitability of the company.

—Derek Clements-Croome and Li Baizhan

Creative workers need three kinds of space to collaborate and build together. From
open to closed, they are: collaboration space, personal space, and private space.

Collaboration space
Collaboration space is where ideas are hatched. Situated along main thoroughfares
and between departments, collaborative spaces are bright, open, comfortable, and
inviting. They have no walls. They are flexible and reconfigurable. They are ever-
changing, always being rearranged, and full of beanbag chairs, pillows, and comforta‐
ble chairs. Collaboration space is where you feel the energy of your company:
laughter, big conversations, excited voices talking over one another. Invest in and
showcase these areas. Real, not plastic, plants keep sound from carrying—and they
make air!

Private space
Private space is where deadlines are met. Enclosed and soundproof, private spaces are
libraries. There is no talking. Private space minimizes distractions: think dim light
and white noise. There are beanbags, couches, and chairs, but ergonomics demand
proper workstations too. These spaces might include separate sit/stand desks with
docking stations behind (bead) curtains with 30-inch customized LCDs.

Personal space
Personal space is where people call home. In between collaboration and private space
in its degree of openness, personal space should be personalized by each individual to

Notes on Process | 25

suit his or her needs (e.g., shared office or open desks, half or whole cube). Personal
space should come with a menu and a budget. Themes and plant life should be
encouraged. This is where some people will spend most of their time. On the other
hand, given adequate collaborative and private space, a notebook, and a mobile
device, some people don’t need personal space at all.

Above all, the goal of the agile environment is to create immersion in data through
the physical environment: printouts, posters, books, whiteboards, and more, as
shown in Figure 1-11.

Figure 1-11. Data immersion through collage

If you offer the team the three types of space, you will have a happy, productive team
that can tackle data science challenges efficiently.

Realizing Ideas with Large-Format Printing
Easy access to large-format printing is a requirement for the agile environment. Visu‐
alization in material form encourages sharing, collage, expressiveness, and creativity.

Several companies make 24-inch-wide large-format printers that cost less than
$1,000. Continuous ink delivery systems are available for less than $100 that bring the
operational cost of large-format printing—for instance, 24×36-inch posters—to less
than $1 per poster.

26 | Chapter 1: Theory

At this price point, there is no excuse not to give a data team easy access to several
large-format printers for both plain-paper proofs and glossy prints. It is very easy to
get people excited about data across departments when they can see concrete proof of
the progress of the data science team.

Notes on Process | 27

CHAPTER 2

Agile Tools

This chapter will briefly introduce our software stack. This stack is optimized for our
process.

By the end of this chapter, you’ll be collecting, storing, processing, publishing, and
decorating data (Figure 2-1). Our stack enables one person to do all of this, to go “full
stack.”

Figure 2-1. The software stack process

Full-stack skills are some of the most in demand for data scientists. We’ll cover a lot
here, and quickly, but don’t worry: I will continue to demonstrate this software stack
in Chapters 5 through 9. You need only understand the basics now; you will get more
comfortable later.

We’ll begin with instructions for running the stack in local mode on your own
machine. In the next chapter, you’ll learn how to scale this same stack in the cloud via
Amazon Web Services. Let’s get started!

Code examples for this chapter are available at Agile_Data_Code_2/ch02. Clone the
repository and follow along!

git clone https://github.com/rjurney/Agile_Data_Code_2.git

29

https://github.com/rjurney/Agile_Data_Code_2/tree/master/ch02

Scalability = Simplicity
As NoSQL tools like Spark, Hadoop, and MongoDB, data science, and big data have
developed, much focus has been placed on the plumbing of analytics applications.
However, this is not a book about infrastructure. This book teaches you to build
applications that use such infrastructure. Once our stack has been introduced, we will
take this plumbing for granted and build applications that depend on it. Thus, this
book devotes only two chapters to infrastructure: one on introducing our develop‐
ment tools, and the other on scaling them up in the cloud to match your data’s scale.

In choosing our tools, we seek linear, horizontal scalability, but above all, we seek
simplicity. While the concurrent systems required to drive a modern analytics appli‐
cation at any kind of scale are complex, we still need to be able to focus on the task at
hand: processing data to create value for the user. When our tools are too complex,
when they require too much configuration and not enough convention, we start to
focus on the tools themselves. We should be focusing on our data, our users, and new
applications to help them. To achieve that, we need a simple stack. Such an effective
stack enables collaboration by teams that include diverse sets of skills such as design
and application development, statistics, and machine learning, but that don’t require
experts in distributed systems.

The stack outlined in this book is not definitive. It has been
selected as an example of the kind of end-to-end setup you should
expect as a developer or should aim for as a platform engineer in
order to rapidly and effectively build analytics applications. The
takeaway should be an example stack you can use to jumpstart your
application, and a standard to which you should hold other stacks.

Agile Data Science Data Processing
The first step in building analytics applications is to plumb (here I use plumb as in a
verb that means to engage in plumbing!) your application from end to end: from col‐
lecting raw data to displaying something on the user’s screen (see Figure 2-2). This is
important because complexity can increase fast, and you need user feedback plugged
into the process from the start, lest you start iterating without feedback (also known
as the death spiral).

Figure 2-2. Flow of data processing in our stack

30 | Chapter 2: Agile Tools

The components of our stack are as follows:

• Events are the things logs represent. An event is an occurrence that happens and
is logged along with its features and timestamps.
Events come in many forms—logs from servers, sensors, financial transactions,
or actions our users take in our own application. To facilitate data exchange
among different tools and languages, events are serialized in a common, agreed-
upon format.
In this book, we use JSON Lines to serialize data, which is a simple format with
one JSON object per line of text, delimited by a carriage return. JSON Lines files
use the .jsonl file ending. We will frequently employ gzip compression, where we
will use the .jsonl.gz format.
When performance calls for it, we use the columnar storage format Apache Par‐
quet. Parquet is a cross-platform format easily accessed by many languages and
tools. Loading a few columns from a Parquet file is much faster than loading
compressed JSON.

• Collectors are event aggregators. They collect events from one or numerous sour‐
ces and log them in aggregate to bulk storage, or queue them for action by real-
time workers. Kafka has emerged as the leading solution for aggregating events
to bulk storage.

• Bulk storage is a filesystem capable of high I/O (think many disks or SSDs) and
parallel access by many concurrent processes. We’ll be using S3 in place of the
Hadoop Distributed File System (HDFS) for this purpose. HDFS set the standard
for bulk storage, and without it, big data would not exist. There would be no
cheap place to store vast amounts of data where it can be accessed with high I/O
throughput for the kind of processing we do in Agile Data Science.

• Distributed document stores are multinode stores using document format. In
Agile Data Science, we use them to publish data for consumption by web applica‐
tions and other services. We’ll be using MongoDB as our distributed document
store. Many people dismiss MongoDB, because people using many of its features
face scalability challenges, just as with any database. However, when used as a
document store (to fetch documents, as opposed to aggregate or other queries),
MongoDB scales as well as anything available. We simply don’t tax it, or any
other database.

• A minimalist web application server enables us to plumb our data as JSON
through to the client for visualization, with minimal overhead. We use Python/
Flask, because it means one less language for readers to know. Also, we can
deploy machine learning services in Python using sklearn or xgboost. Other
examples of simple web frameworks are Ruby/Sinatra or Node.js.

Agile Data Science Data Processing | 31

http://jsonlines.org/
https://parquet.apache.org/
https://parquet.apache.org/

• A modern browser or mobile application enables us to present our data as an
interactive experience for our users, who provide data through interaction and
events describing those actions. In this book, we focus on web applications.

This list may look long and thus daunting, but in practice, these tools are easy to set
up and match the crunch points in data science. Figure 2-3 shows the overall archi‐
tecture. This setup scales easily and is optimized for analytic processing.

Figure 2-3. Overall architecture

Local Environment Setup
There are several ways for you to install the software that makes up the environment
for the book. You can use a virtual machine, you can install the tools on your own
computer, or you can use Amazon Web Services (AWS). The recommended method
to run the examples is to use the EC2 environment.

In this section, we’ll cover how to set up a virtual machine (VM) on your computer to
run the examples. If you want to do a local install, you can use Appendix A and man‐
ually install the tools yourself. I recommend using Vagrant or AWS, as they are simple
and easy, but your author runs all the tools locally on his MacBook Pro.

32 | Chapter 2: Agile Tools

System Requirements
You will need 9 GB of RAM free for the Vagrant/VirtualBox VM to run the most
memory-intensive examples (the model fitting in Chapters 7, 8, and 9). I suggest
shutting down any unneeded programs and then restarting your machine before run‐
ning the Vagrant VM. If your system can’t meet these requirements, I suggest you use
Amazon Web Services, as described in “EC2 Environment Setup” on page 33.

Setting Up Vagrant
Vagrant allows us to create and configure lightweight, reproducible, and portable
development environments. The latest version of Vagrant as of the last update of this
book is version 1.9.3. You’ll find a link to the installation instructions on the down‐
load page.

To use Vagrant you will need VirtualBox. Install directions are available in the Vir‐
tualBox User Manual.

Note that if you already have VirtualBox installed, you may need to update it to the
latest version for the Vagrant environment to work. Please do so now.

The book’s Vagrantfile has setup instructions, which you can employ via:

vagrant up

This will take a few minutes. After this, you can connect to it via:

vagrant ssh

The example code is in the Agile_Data_Code_2 directory. You will need to change
directory (cd) to this directory for the code examples to run. If there aren’t a dozen
directories, including hadoop, spark, kafka, and Agile_Data_Code_2, in the Vagrant
user’s home directory, please wait a few minutes for the bootstrap script to finish pro‐
cessing.

Downloading the Data
You will need to run the script download.sh to download the example dataset for the
book. It will store the data in the Agile_Data_Code_2/data/ subdirectory. If you want
to skip ahead to Chapter 8, you will need to run ch08/download_data.sh.

EC2 Environment Setup
There is a script called ec2.sh that can be used to launch an EC2 instance with the
project environment and code installed. To run this script, you will need the Amazon

EC2 Environment Setup | 33

https://www.vagrantup.com/
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/
https://www.virtualbox.org/manual/ch02.html
https://www.virtualbox.org/manual/ch02.html
https://github.com/rjurney/Agile_Data_Code_2/blob/master/download.sh
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ch08/download_data.sh
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ec2.sh

Web Services Command Line Interface (AWS CLI), which you can install via Python’s
pip command:

pip install awscli

Once you have installed the AWS CLI, check out ec2.sh. It launches an r3.xlarge
instance that uses aws/ec2_bootstrap.sh to install the software requirements and check
out the example code. At the time of writing, this instance costs $0.266/hr, so you
may want to shut it down between practice sessions.

In order to use ec2.sh, you will need the utility jq; this allows you to parse the JSON
responses that the aws command produces. ec2.sh will attempt to install jq via your
platform’s package manager using the script jq_install.sh. If jq fails to install automat‐
ically, the script will point you to the installation page so you can perform the install
yourself. Once you have jq in your PATH, you can rerun the ec2.sh script; once it
detects jq, it will continue to the next step.

ec2.sh creates a keypair called agile_data_science, which is stored in agile_data_sci‐
ence.pem. After that, it creates a security group called agile_data_science, which
allows port 22 SSH access to your external IP address only. This means you won’t be
able to connect to this machine from computers other than your own. The script uses
the keypair and security group it creates when it launches the r3.xlarge instance.

You will find the machine that the script boots in the Amazon EC2 Management
Console (Figure 2-4). Make sure the region in the URL (for instance, us-west-2)
matches the default region you configured via the aws command, or you won’t see
any instances. The machine will be named agile_data_science_ec2. If you aren’t
sure which region you configured the aws command to use, type aws configure and
note the region that it prints.

34 | Chapter 2: Agile Tools

https://aws.amazon.com/cli/
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ec2.sh
https://github.com/rjurney/Agile_Data_Code_2/blob/master/aws/ec2_bootstrap.sh
https://stedolan.github.io/jq/
https://github.com/rjurney/Agile_Data_Code_2/blob/master/jq_install.sh
https://github.com/stedolan/jq/wiki/Installation

Figure 2-4. Launch instance description in the EC2 Console

When it is done, the script will print out SSH instructions in red text and will
instruct you to wait a few minutes before logging in, as the machine must initial‐
ize (Figure 2-5). After a few minutes have passed, run the script ec2_create_tun‐
nel.sh to create an SSH tunnels to forward ports 5000, 8080, and 8888 from the EC2
instance to your local ports 5000, 8080, and 8888 (Figure 2-6). This will allow you to
run web applications on the EC2 instance and view them at http://localhost:5000, as
well as Jupyter Notebooks at http://localhost:8888 and the Apache Airflow interface at
http://localhost:8080.

EC2 Environment Setup | 35

https://github.com/rjurney/Agile_Data_Code_2/blob/master/ec2_create_tunnel.sh
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ec2_create_tunnel.sh

Figure 2-5. ec2.sh execution

Once you are done with the EC2 instance, or if you want your
ports back before then, you can get rid of these SSH tunnels with
the ec2_kill_tunnel.sh script. You can always re-create these port-
forwarding tunnels by running the ec2_create_tunnel.sh script
again.

Figure 2-6. ec2_create_tunnel.sh execution

Once you SSH into the machine, instructions will appear to direct you further
(Figure 2-7). If they do not appear, the machine is not set up yet. Please disconnect

36 | Chapter 2: Agile Tools

https://github.com/rjurney/Agile_Data_Code_2/blob/master/ec2_kill_tunnel.sh
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ec2_create_tunnel.sh

and reconnect in a few minutes so that the boot script can finish; the instructions will
appear then.

Figure 2-7. Instructions on using the agile_data_science_ec2 machine

Once you’ve logged in, begin by listing the contents of the home directory, where you
will see all the software making up our environment, as well as the example code
directory:

$ ls

Agile_Data_Code_2 agile_data_science.message airflow anaconda elasticsearch
 elasticsearch-hadoop hadoop kafka logs
 spark zeppelin

Now change directory into the code examples directory, Agile_Data_Code_2, and list
its contents:

EC2 Environment Setup | 37

$ cd Agile_Data_Code_2
$ ls

aws ch05 ch09 download.sh ec2.sh
jq_install.sh manual_install.sh spark-warehouse
bootstrap.sh ch06 ch10 download_weather.sh elastic_scripts
jupyter_notebook_config.py models Vagrantfile
ch02 ch07 data ec2_create_tunnel.sh images lib
README.md ch04 ch08 Dockerfile ec2_kill_tunnel.sh
intro_download .sh LICENSE requirements.txt

You’re nearly ready to work with the examples. But first, you need to download the
data!

Downloading the Data
Once you connect to the machine via SSH, you will need to run the script down‐
load.sh to download the example dataset for the book. It will store the data in the
Agile_Data_Code_2/data/ subdirectory. If you want to skip ahead to Chapter 8, you
will need to run ch08/download_data.sh.

Getting and Running the Code
The code examples exist for you to actually run and play with, ultimately editing
them to transform them into your own applications using your own datasets.

Getting the Code
In addition to the code on the EC2 or Vagrant images, you will also need a local copy
of the code to read, edit, and play with. You can clone the code from GitHub and
check the results via:

$ git clone https://github.com/rjurney/Agile_Data_Code_2
$ cd Agile_Data_Code_2
$ ls

Running the Code
The code examples are designed to run from the base Agile_Data_Code_2 directory,
and not from inside the individual chapter directories. The exception to this rule is
the web application code, which should be run from within the chapter and web sub‐
directories (for instance, ch08/web).

Jupyter Notebooks
You will need to run Jupyter Notebooks from the root directory of the project,
Agile_Data_Code_2. If you are using the Vagrant or EC2 setup, this has already been

38 | Chapter 2: Agile Tools

https://github.com/rjurney/Agile_Data_Code_2/blob/master/download.sh
https://github.com/rjurney/Agile_Data_Code_2/blob/master/download.sh
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ch08/download_data.sh

done for you in the boot script, and you can connect to Jupyter Notebooks at http://
localhost:8888. We’ll talk more about Jupyter Notebooks shortly.

Touring the Toolset
If you prefer to learn as you go, you can skim the rest of this chapter and move on to
Chapter 3. In this section we’re going to take a look at the tools we’ll be using in the
book, run a “Hello, World!” in each, and then see how they tie together to make a
complete system. If you want more details on the installation of these tools, check out
Appendix A.

Agile Stack Requirements
What is required of a technology stack in order to be agile while doing data science?

One thing we require is that every level of the stack must be horizontally scalable.
Adding another machine to a cluster is greatly preferable to upgrading expensive,
proprietary hardware. If you have to rewrite your predictive model’s implementation
in order to deploy it, you aren’t being very agile. This is why we use Spark MLlib in
preference to tools tailored for single machines.

We also require that transferring between layers of the stack, up and down, must be
done in a single line of code. This is a tall order in today’s configuration-intensive
environment, but it is one we are able to satisfy through the careful selection of tools.
Taken together, these requirements enable us to be productive at scale.

Python 3
In writing this book, I used Python 3, and I strongly recommend you do so as well.
The Vagrant and EC2 images both have Python 3 installed already, so you don’t need
to do anything if you use those.

You could use Python 2.7 by changing the formatting of exceptions to match 2.7 syn‐
tax, whenever the code doesn’t run. That is for the most part the only Python 3–spe‐
cific syntax we use. The other use of Python 3–specific code is the use of bytes instead
of strings in the Kafka API in Chapter 8. Python 2.7 users might find another bug or
two, but it should be easy to resolve them with one-line changes. That being said,
again, I strongly recommend using Python 3.

Note that Spark 2.1.0 doesn’t work with Python 3.6, so we use Python 3.5 in this
book. This will be resolved in Spark 2.1.1+, which will be out soon after the time of
publication.

Touring the Toolset | 39

http://localhost:8888
http://localhost:8888

Anaconda and Miniconda
We use Anaconda Python 3.5 in this book, because Anaconda has emerged as the
leading Python distribution for data science. Anaconda is a Python distribution by
Continuum Analytics that includes over 400 of the most popular data science libra‐
ries. Compiling and installing libraries like numpy and scipy can be tough, so Ana‐
conda gives you a jumpstart.

While I recommend full-blown Anaconda for your own computer, for the Vagrant
and EC2 images I actually had to use Miniconda, Anaconda’s little brother. This is
because Anaconda is large and can take a long time (20 or 30 minutes) to download.
Miniconda, on the other hand, downloads in a few minutes. Miniconda is like Ana‐
conda, but has fewer packages installed. Fortunately, the conda and pip utilities can
install those packages we require in no time, giving us a streamlined Python 3 distri‐
bution suited to our needs.

Jupyter notebooks
In Chapters 7 and 9 we use IPython/Jupyter notebooks to work with Python interac‐
tively to visualize data and train and improve predictive models. Jupyter notebooks
enable us to share our analyses on the web, complete with stored variables, charts,
and data tables.

Why don’t we try out Jupyter notebooks, just to get familiar with them? If you’re
using the Vagrant or EC2 images, a Jupyter notebook is already running in the project
root directory, which you can visit at http://localhost:8888.

This will bring up a window listing files in the example code Agile_Data_Code_2
directory. Select New→Python 3 (Figure 2-8).

40 | Chapter 2: Agile Tools

http://jupyter.org/
http://localhost:8888

Figure 2-8. Jupyter home page

This will open a Jupyter notebook in a new tab of your browser (Figure 2-9). Type
print("Hello, World!") and click the Play button. Python on the web—pretty cool,
right?

Touring the Toolset | 41

Figure 2-9. A Jupyter notebook

We’ll stop here for now. Don’t worry, we’ll return to Jupyter notebooks in later chap‐
ters.

Serializing Events with JSON Lines and Parquet
In our stack, we use a serialization system called JSON Lines (see Figure 2-10). You
may also hear this described as newline-delimited JSON, or NDJSON, but technically
JSON Lines does not support empty lines, whereas NDJSON does. JSON allows us to
access our data in a common format across languages and tools.

Figure 2-10. Serializing events

But JSON Lines isn’t suitable for all use cases—in particular, when performance mat‐
ters and data is tabular. In these instances, we’ll use the Apache Parquet format. Par‐
quet is a cross-platform data format that stores data in such a way that pulling out a
few columns is much more performant than loading entire lines. This will help keep
our analysis realtime.

42 | Chapter 2: Agile Tools

http://jsonlines.org/
http://ndjson.org
https://parquet.apache.org/

Abandoning Avro

The first edition of this book used Avro for serialization, but I have
moved to carriage-return JSON (JSON Lines/NDJSON) for all data
processing because while I have often regretted using Avro when I
ran into a bug in one of the Avro libraries, I have never once, ever,
regretted using JSON. Most programming languages support JSON
natively. It is the best format available for building analytics appli‐
cations.
Technically, there are many types of data that Avro can serialize
more efficiently than doing so in JSON. For instance, it can be
more efficient when encoding images, non-UTF-8 text, or binary
blobs. However, key/value or blob stores are where images and
blobs belong, and referring to them there from JSON is the best
approach. Non-UTF-8 strings should be converted to UTF-8 before
serialization, and Unicode in Avro can be painful. Avro has more
features than JSON, but that is actually the problem I run into with
it—Avro does things that are actually best handled elsewhere. Since
we get to choose our architecture (many people don’t), JSON is a
better choice from the get-go. That doesn’t mean Avro is a bad for‐
mat; it isn’t! Recall that we value simplicity, and JSON is far simpler
than Avro. Sorry, Doug, we still love you though :)

JSON for Python

The json module is part of the Python 2.7 and 3.x standard library. No installation is
required. To read and write JSON Lines, a few lines of code are required. Follow
along at ch02/test_json.py:

#
How to read and write JSON and JSON Lines files using Python
#
import sys, os, re
import json
import codecs

ary_of_objects = [
 {'name': 'Russell Jurney', 'title': 'CEO'},
 {'name': 'Muhammad Imran', 'title': 'VP of Marketing'},
 {'name': 'Fe Mata', 'title': 'Chief Marketing Officer'},
]

path = "/tmp/test.jsonl"

#
Write our objects to jsonl
#
f = codecs.open(path, 'w', 'utf-8')
for row_object in ary_of_objects:

Touring the Toolset | 43

https://issues.apache.org/jira/browse/AVRO-565
http://bit.ly/1upkGOV
http://bit.ly/2oCtUxR

 # ensure_ascii=False is essential or errors/corruption will occur
 json_record = json.dumps(row_object, ensure_ascii=False)
 f.write(json_record + "\n")
f.close()

print("Wrote JSON Lines file /tmp/test.jsonl")

#
Read this jsonl file back into objects
#
ary_of_objects = []
f = codecs.open(path, "r", "utf-8")
for line in f:
 record = json.loads(line.rstrip("\n|\r"))
 ary_of_objects.append(record)
print(ary_of_objects)
print("Read JSON Lines file /tmp/test.jsonl")

I’ve created some helpers that hide the details of these operations:

import codecs, json

def write_json_file(obj, path):
 '''Dump an object and write it out as JSON to a file.'''
 f = codecs.open(path, 'w', 'utf-8')
 f.write(json.dumps(obj, ensure_ascii=False))
 f.close()

def write_json_lines_file(ary_of_objects, path):
 '''Dump a list of objects out as a JSON Lines file.'''
 f = codecs.open(path, 'w', 'utf-8')
 for row_object in ary_of_objects:
 json_record = json.dumps(row_object, ensure_ascii=False)
 f.write(json_record + "\n")
 f.close()

def read_json_file(path):
 '''Turn a normal JSON file (no CRs per record) into an object.'''
 text = codecs.open(path, 'r', 'utf-8').read()
 return json.loads(text)

def read_json_lines_file(path):
 '''Turn a JSON Lines file (CRs per record) into an array of objects.'''
 ary = []
 f = codecs.open(path, "r", "utf-8")
 for line in f:
 record = json.loads(line.rstrip("\n|\r"))
 ary.append(record)
 return ary

44 | Chapter 2: Agile Tools

Verify that the records are present:

$ ls -lah /tmp/test.jsonl

-rw-r--r-- 1 rjurney wheel 154B Mar 17 17:19 /tmp/test.jsonl

And let’s check that the contents of the file we wrote look right:

$ cat /tmp/test.jsonl

{"name": "Russell Jurney", "title": "CEO"}
{"name": "Muhammad Imran", "title": "VP of Marketing"}
{"name": "Fe Mata", "title": "Chief Marketing Officer"}

Everything looks okay! We’ll make use of these helpers in the future, and you can find
these and other utilities we use throughout the book at utils.py. That’s it! Using JSON
Lines in Python is nearly effortless.

Collecting Data
In addition to being used to perform work in real time, Kafka (Figure 2-11) has
emerged as the preferred way to shuffle data wherever it is needed. For Agile Data
Science to do its work, we need access to logs and other data on a distributed filesys‐
tem. For development purposes, however, it is easier to work locally. Accordingly,
we’ll be using our local filesystem for the examples in the book, and our data collec‐
tion will mostly consist of downloading files to process locally. In production, we’d be
more likely to collect events from Kafka or Amazon Kinesis and sync them to S3 for
batch processing.

Figure 2-11. Collecting data with Kafka

Data Processing with Spark
Spark is the leading general-purpose distributed data processing platform. Spark
works by breaking up data processing across networks of commodity PC machines,
each acting on data on its own local disk and RAM. Spark’s job is to coordinate these
machines into a single computing platform. The fact that Spark is a distributed plat‐
form is essential to it scaling to data of any size, and Spark is great at this. It works
well in “local mode” on one machine, and it works well on clusters of thousands of
machines. This meets our requirement that our tools scale to data of any size. Spark is
also excellent glue, with connectors to many different systems including Kafka and
databases like MongoDB.

Touring the Toolset | 45

https://github.com/rjurney/Agile_Data_Code_2/blob/master/lib/util.py

Spark is an iterative improvement on an older system called Hadoop, which we used
in the first edition of this book. Spark has rapidly grown to replace Hadoop’s Map‐
Reduce as the default way jobs are run on Hadoop clusters. Making use of the foun‐
dation created by the Hadoop Distributed File System (HDFS) and Apache Hadoop
Common, Spark speeds things up by moving processing from on disk to in RAM. In
this second edition, Spark replaces Hadoop outright (Figure 2-12). Spark is much
faster, and is a comparative joy to work with!

Figure 2-12. Processing data with Spark

Hadoop required
Spark is built on top of the Hadoop ecosystem, which is why its meteoric rise has
been possible. Spark has now largely displaced Hadoop in the top shops, with the
enterprise lagging somewhat. To use Spark, we need to take a quick detour and install
Hadoop. This has been done for you on the Vagrant and EC2 images, but check
Appendix A if you need to do a manual install.

Processing data with Spark
Figure 2-13 shows the Apache Spark ecosystem. Spark runs on top of HDFS or S3
and includes Spark SQL, Spark MLlib, and Spark Streaming.

Figure 2-13. Apache Spark ecosystem

Spark local mode lets us run Spark on small data locally, for development. We’ll be
using Spark local mode throughout the book. The idea is that you can develop locally
to learn, and then later on use a Spark cluster as your data grows—although we

46 | Chapter 2: Agile Tools

http://bit.ly/2oL7OJQ
http://bit.ly/2oCuFa7
http://bit.ly/2oCuFa7

should note that, with EC2 instances available with 2 TB of RAM, “local mode” in
Spark can still process pretty big datasets! The reason to use a cluster, then, is more
around reliability through redundancy and satisfying the cost/benefit curve, where
multiple cheaper machines are less expensive than one monster.

Once we’ve got Spark and its dependencies installed and our environment set up, we
can get down to some dataflows in Spark. You can run PySpark anywhere via the
pyspark command, but to run the examples in the book, make sure you’re in the
Agile_Data_Code_2 root directory when you do so. If you’re new to Spark, you
should pull up the Spark Programming Guide and follow along.

You should see a prompt like the one in Figure 2-14.

Figure 2-14. iPython PySpark console

Enter the following lines:

csv_lines = sc.textFile("data/example.csv")
data = csv_lines.map(lambda line: line.split(","))
data.collect()

This produces the output shown in Figure 2-15.

Touring the Toolset | 47

http://amzn.to/2oyyI5D
https://spark.apache.org/docs/1.6.1/programming-guide.html

Figure 2-15. Spark “Hello, World!”

As you work with PySpark, you will want to have the API documentation up in sepa‐
rate tabs in your browser for quick reference. There are two APIs to PySpark: RDD
and DataFrame. (You will want to consult the RDD, DataFrame, and MLlib docs in
separate tabs in your browser.) You may also want to consult the Spark ML docs.

So that is “Hello, World!” in Spark! We’ll be using Spark any time we want to process
data. Even if the size of the data doesn’t require Spark right now, we are future-
proofing our application against data growth or application scale by using Spark any‐
way. Our pattern is “aggregate, process, publish,” so we won’t be doing more than
sorting our data in the database from which it is retrieved.

Publishing Data with MongoDB
Spark doesn’t communicate directly with web application servers. To feed our data to
a web application, we need to publish it in some kind of database. While many
choices are appropriate, we’ll use MongoDB for its ease of use, document orientation,
and excellent Spark integration (Figure 2-16). With MongoDB and PySpark, we can
define any arbitrary schema in PySpark, and save it to a corresponding relation with
that schema in MongoDB. There is no overhead in managing schemas as we derive
new relations—we simply manipulate our data into publishable form in PySpark.
That’s agile! This satisfies the requirement that transferring between layers of the
stack should take a single command, or one line of code.

48 | Chapter 2: Agile Tools

http://bit.ly/2p5IM9z
http://bit.ly/2oewrvy
http://bit.ly/2pDBt4X

Figure 2-16. Publishing data to MongoDB

Booting Mongo
To get started with MongoDB, all you have to do is invoke the Mongo client and sup‐
ply it with a database name:

mongo agile_data_science

This will bring up the Mongo console, which uses JavaScript. It gives you the db
object with which to interact with the database. Instead of tables, Mongo has collec‐
tions. You can insert a document in a collection like so:

> db.my_collection.insert({"name": "Russell Jurney"});

And you can retrieve one like so:

> db.my_collection.find({"name": "Russell Jurney"});

{ "_id" : ObjectId("58cb6959271b8bc38063eb01"), "name" : "Russell Jurney" }

That is about all we will demand of our database for now, so that is where we will
leave it. We do our data processing in Spark, and only publish data in Mongo. The
most complex data processing we will perform in Mongo is to list and sort records.

Pushing data to MongoDB from PySpark
Pushing data to MongoDB from PySpark is easy.

Note that we have already configured PySpark to connect to MongoDB via the
mongo-hadoop project, so we can run PySpark as normal. Check out ch02/
pyspark_mongodb.py, where we use the pymongo_spark module to store the docu‐
ments to MongoDB that we loaded earlier. Note that we must both import and acti‐
vate the pymongo_spark package in order for it to add the saveToMongoDB method to
the RDD interface:

import pymongo_spark
Important: activate pymongo_spark
pymongo_spark.activate()

csv_lines = sc.textFile("data/example.csv")
data = csv_lines.map(lambda line: line.split(","))
schema_data = data.map(
 lambda x: {'name': x[0], 'company': x[1], 'title': x[2]}
)
schema_data.saveToMongoDB(

Touring the Toolset | 49

https://github.com/mongodb/mongo-hadoop
http://bit.ly/2oelwSG
http://bit.ly/2oelwSG
http://bit.ly/2oepp9Z

 'mongodb://localhost:27017/agile_data_science.executives'
)

Now we’ll query our data in Mongo:

$ mongo agile_data_science

$ > db.executives.find()

{ "_id" : ObjectId("56f3231cd6ee8112ccbba785"),
 "name" : "Don Brown", "company" : "Rocana",
 "title" : "CIO" }
{ "_id" : ObjectId("56f3231cd6ee8112ccbba783"),
 "name" : "Russell Jurney", "company" : "Relato",
 "title" : "CEO" }
{ "_id" : ObjectId("56f3231cd6ee8112ccbba784"),
 "name" : "Florian Liebert", "company" :
 "Mesosphere", "title" : "CEO" }

Congratulations, you’ve published data from Spark to a NoSQL database! Note how
easy that was: once we had our data prepared, it is a one-liner to publish it with
Mongo. There is no schema overhead, which is what we need for how we work. We
don’t know the schema until we’re ready to store, and when we do, there is little use in
specifying it externally to our PySpark code. This is but one part of the stack, but this
property helps us work rapidly and enables agility.

Searching Data with Elasticsearch
Elasticsearch has become the “Hadoop for search,” in that it provides a robust, easy-
to-use search solution that lowers the barrier of entry to individuals wanting to
search their data, large or small. Elasticsearch has a simple RESTful JSON interface, so
we can use it from the command line or from any language. We’ll be using Elastic‐
search to search our data, to make it easy to find the records we’ll be working so hard
to create.

Elasticsearch should be running in the Vagrant or EC2 image you are running, but if
it is not you can start it with:

elasticsearch -d

Querying Elasticsearch is a simple matter with the curl command, which is prein‐
stalled on the Vagrant and EC2 images, but which you should also install locally on
your machine if it is not already installed.

To create an agile_data_science index on Elasticsearch, you can use curl. Check
out the Elasticsearch docs on index creation, which feature a “copy as curl” button
that gives the curl command for each example operation. Note that our local/cloud
Elasticsearch daemon should be on port 9200.

50 | Chapter 2: Agile Tools

http://www.elasticsearch.org/
https://curl.haxx.se/
http://bit.ly/2oCsFyP

We’ll create an index with one shard and one replica, which is suitable for develop‐
ment. For production you would want to split the index across shards and also repli‐
cate it more than once, for redundancy and performance. You’ll want to run this
command from the Vagrant/EC2 image:

curl -XPUT 'localhost:9200/agile_data_science?pretty' \
 -H 'Content-Type: application/json' -d'
{
 "settings" : {
 "index" : {
 "number_of_shards" : 1,
 "number_of_replicas" : 1
 }
 }
}
'

Which should return a JSON message of success:

{
 "acknowledged" : true,
 "shards_acknowledged" : true
}

Now let’s try inserting a document into the test index and then searching for it. Check
out the docs on index insertion. The insert command uses an HTTP PUT:

curl -XPUT 'localhost:9200/agile_data_science/test/1?pretty' \
 -H 'Content-Type: application/json' -d'
{
 "name" : "Russell Jurney",
 "message" : "trying out Elasticsearch"
}
'

Which returns another message indicating success:

{
 "_index" : "agile_data_science",
 "_type" : "test",
 "_id" : "1",
 "_version" : 1,
 "result" : "created",
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 },
 "created" : true
}

Check out the docs on searching indexes. The search command uses an HTTP GET:

curl -XGET 'localhost:9200/agile_data_science/_search?q=name:Russell&pretty'

Touring the Toolset | 51

http://bit.ly/2nPJY0o
http://bit.ly/2pZp7Y2

We get the record and a description of the query process and the index it was in:

{
 "took" : 3,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 0.25811607,
 "hits" : [
 {
 "_index" : "agile_data_science",
 "_type" : "test",
 "_id" : "1",
 "_score" : 0.25811607,
 "_source" : {
 "name" : "Russell Jurney",
 "message" : "trying out Elasticsearch"
 }
 }
]
 }
}

That’s enough Elasticsearch for now. Now let’s try writing to Elasticsearch from
PySpark!

Elasticsearch and PySpark
To write data from PySpark to Elasticsearch (or read data from Elasticsearch), we’ll
need to use Elasticsearch for Hadoop. On the prepared images, we have already pre‐
configured PySpark to use this project, so you won’t need to do anything special to
load this library. If you’re using a manual install, this should be similarly configured
by the install script (see Appendix A).

Making PySpark data searchable. We save from PySpark to Elasticsearch in ch02/
pyspark_elasticsearch.py:

csv_lines = sc.textFile("data/example.csv")
data = csv_lines.map(lambda line: line.split(","))
schema_data = data.map(
 lambda x: ('ignored_key', {'name': x[0], 'company': x[1], 'title': x[2]})
)
schema_data.saveAsNewAPIHadoopFile(
 path='-',
 outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",
 keyClass="org.apache.hadoop.io.NullWritable",

52 | Chapter 2: Agile Tools

https://www.elastic.co/products/hadoop
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ch02/pyspark_elasticsearch.py
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ch02/pyspark_elasticsearch.py

 valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
 conf={ "es.resource" : "agile_data_science/executives" })

Searching our data. Now, searching our data is easy, using curl:

curl \
 'localhost:9200/agile_data_science/executives/_search?q=name:Russell*&pretty'

Which results in:

{
 "took" : 19,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 },
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "agile_data_science",
 "_type" : "executives",
 "_id" : "AVrfrAbdfdS5Z0IiIt78",
 "_score" : 1.0,
 "_source" : {
 "company" : "Relato",
 "name" : "Russell Jurney",
 "title" : "CEO"
 }
 },
 {
 "_index" : "agile_data_science",
 "_type" : "executives",
 "_id" : "AVrfrAbdfdS5Z0IiIt79",
 "_score" : 1.0,
 "_source" : {
 "company" : "Data Syndrome",
 "name" : "Russell Jurney",
 "title" : "Principal Consultant"
 }
 }
]
 }
}

Elasticsearch has generated an _id for us. This is a good time to point out that Elas‐
ticsearch is a great key/value or document store! It could easily replace MongoDB in
our stack, and doing so could simplify and enhance scalability by reducing compo‐

Touring the Toolset | 53

nents. Remember, simplicity is key to scalability. That being said, Mongo has features
we’ll be thankful for later, so don’t write it off.

Python and Elasticsearch with pyelasticsearch
pyelasticsearch is a good choice for accessing data in Elasticsearch from Python.

Using pyelasticsearch is easy—run ch02/test_elasticsearch.py:

from pyelasticsearch import ElasticSearch
es = ElasticSearch('http://localhost:9200/')
es.search('name:Russell', index='agile_data_science')

Which results in:

{'_shards': {'failed': 0, 'successful': 1, 'total': 1},
 'hits': {'hits': [{'_id': '1',
 '_index': 'agile_data_science',
 '_score': 0.7417181,
 '_source': {'message': 'trying out Elasticsearch',
 'name': 'Russell Jurney'},
 '_type': 'test'},
 {'_id': 'AVrfrAbdfdS5Z0IiIt78',
 '_index': 'agile_data_science',
 '_score': 0.7417181,
 '_source': {'company': 'Relato', 'name': 'Russell Jurney', 'title': 'CEO'},
 '_type': 'executives'},
 {'_id': 'AVrfrAbdfdS5Z0IiIt79',
 '_index': 'agile_data_science',
 '_score': 0.7417181,
 '_source': {'company': 'Data Syndrome',
 'name': 'Russell Jurney',
 'title': 'Principal Consultant'},
 '_type': 'executives'}],
 'max_score': 0.7417181,
 'total': 3},
 'timed_out': False,
 'took': 3}

Searching with pyelasticsearch is as easy as with curl.

Distributed Streams with Apache Kafka
According to its website, “Kafka™ is used for building real-time data pipelines and
streaming apps. It is horizontally scalable, fault-tolerant, wicked fast, and runs in pro‐
duction in thousands of companies.” We’ll be using Kafka streams to make predic‐
tions in “sub real time,” using Spark Streaming. Kafka can also be used to collect data
and aggregate it to bulk storage like HDFS or Amazon S3.

54 | Chapter 2: Agile Tools

http://pyelasticsearch.readthedocs.org/en/latest/
http://bit.ly/2oewEPo
https://kafka.apache.org/

Starting up Kafka
In the prepared images, ZooKeeper and Kafka are already running. If you are not
using these, you will need to start Apache Zookeeper before you can start Kafka. Zoo‐
keeper helps to orchestrate Kafka. Start up a new console for Zookeeper, and run:

kafka/bin/zookeeper-server-start.sh kafka/config/zookeeper.properties

Now, in another new console, run the Kafka server:

kafka/bin/kafka-server-start.sh kafka/config/server.properties

Topics, console producer, and console consumer
Kafka messages are grouped into topics, so we need to create one before we can send
messages through Kafka:

$ kafka/bin/kafka-topics.sh --create --zookeeper localhost:2181 \
 --replication-factor 1 --partitions 1 --topic test

Created topic "test".

We can see the topic we created with the list topics command:

$ kafka/bin/kafka-topics.sh --list --zookeeper localhost:2181

test

Now we can use the “console producer” to type some messages in manually, and send
them to the test topic. Enter this command:

kafka/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

Then type in a simple JSON message and press Return (there will be no output, so hit
Ctrl-C to exit once you’re done):

{"message": "Hello, World!"}

Now we can play back the test topic from the beginning, and see our message. Once
again, hit Ctrl-C to exit:

$ kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
 --topic test --from-beginning

{"message": "Hello, World!"}
^CProcessed a total of 1 messages

Realtime versus batch computing with Spark
Using Kafka is straightforward, but we’ll see later how this simple framework can cre‐
ate complex dataflows in a way that is simple to operate. The global queue abstraction
Kafka provides is extremely powerful. We’ll only be using Kafka to deploy predictions
using Spark Streaming, but it can do much more.

Touring the Toolset | 55

https://zookeeper.apache.org/

Despite Kafka’s power, we’ll spend most of our time in this book doing batch process‐
ing. The rule is, “If you can do it in batch, you should do it in batch.” Operating a
Spark cluster is much simpler than operating a pool of realtime workers using Kafka.
While you can replay Kafka’s history to do the equivalent of batch operations, batch
computing is optimized for the process of applied research that constitutes data sci‐
ence work.

If you do decide to move from batch computing to realtime streams, though, PySpark
has you covered! You can use the same code with PySpark Streaming to process mes‐
sages in Kafka that you used to process them in batch mode using PySpark. It is quite
natural to prototype streaming applications in batch and then convert them to
streams later.

Kafka in Python with kafka-python
kafka-python provides a simple way to interact with Kafka from Python. To try it out,
let’s open the Python console and write a simple program to read from the test
topic we just created. You can follow along at ch02/python_kafka.py, and by reading
the KafkaConsumer documentation. Creating a consumer takes one line of code, but
to seek to the beginning of a topic we need to assign our consumer to partition 0.
Then we can seek_to_beginning and start looping through our consumer to read
individual messages.

Note that our message value is in bytes, so we must bytes.decode it before parsing
the JSON (if you’re using Python 2, this doesn’t apply):—

import sys, os, re
import json

from kafka import KafkaConsumer, TopicPartition
consumer = KafkaConsumer()
consumer.assign([TopicPartition('test', 0)])
consumer.seek_to_beginning()

for message in consumer:
 message_bytes = message.value
 message_string = message_bytes.decode()
 message_object = json.loads(message_string)
 print(message_object)

This prints:

{'message': 'Hello, World!'}

Even after this one message prints, the loop will keep going. This how things would
normally operate, so you’ll need to hit Ctrl-C to exit the loop.

That’s Kafka! We’ll be using kafka-python in Chapter 8 to emit prediction events
from our Flask web application, in order to have them carried out in PySpark Stream‐

56 | Chapter 2: Agile Tools

https://github.com/dpkp/kafka-python
http://bit.ly/2oitHfJ
http://bit.ly/2nPvu0x
http://bit.ly/2oCsuna
https://docs.python.org/3/library/stdtypes.html#bytes.decode

ing. We’ll be using PySpark Streaming to process messages from Kafka streams at
scale.

Go ahead and leave the consoles running Zookeeper and Kafka up for a little while
longer, as we will use them in the next section.

Processing Streams with PySpark Streaming
Starting up PySpark Streaming with Kafka is a little more complex than vanilla Spark.
To begin, start a console producer in another SSH console, and leave it sitting idle for
a moment:

kafka/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

Next, change directory into the Agile_Data_Code_2 directory. To run PySpark
Streaming, you’ll need to add the spark-streaming-kafka Maven package to the
command line:

pyspark --packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.1.0

Now, in iPython, the following code will initialize a PySpark StreamingContext. You
can follow along in ch02/pyspark_streaming.py. Note that the PERIOD defines how
often Spark Streaming will process mini-batches—in this case, every 10 seconds:

import sys, os, re
import json

from pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils, OffsetRange, TopicAndPartition

Process data every 10 seconds
PERIOD=10
BROKERS='localhost:9092'
TOPIC='test'

conf = SparkConf().set("spark.default.parallelism", 1)
sc = SparkContext(
 appName = "Agile Data Science: PySpark Streaming 'Hello, World!'", conf=conf
)
ssc = StreamingContext(sc, PERIOD)

With our StreamingContext ready, we can create a Kafka stream:

stream = KafkaUtils.createDirectStream(
 ssc,
 [TOPIC],
 {
 "metadata.broker.list": BROKERS,
 "group.id": "0",
 }
)

Touring the Toolset | 57

http://bit.ly/2oCSzT1
http://bit.ly/2oitER4
http://bit.ly/2p5RDrx
http://bit.ly/2oCCdK9

And finally, we can read the JSON messages and print them to the console:

object_stream = stream.map(lambda x: json.loads(x[1]))
object_stream.pprint()

To start the StreamingContext and begin processing Kafka messages, simply run:

ssc.start()

Now, in the Kafka console producer you set up a moment ago, type a simple JSON
message and hit Return:

{"message": "Testing PySpark Streaming!"}

Switching back to our iPython console, within 10 seconds we will see something like
this:

Time: 2016-11-19 19:54:50

{'message': 'Testing PySpark Streaming'}

And that is how to process Kafka streams with PySpark Streaming! We’ll return to
Spark Streaming in Chapter 8, to deploy a Spark MLlib classifier in real time. For
now, you can close the consoles for Zookeeper, Kafka, and the console producer.

Machine Learning with scikit-learn and Spark MLlib
We will be building predictive models using scikit-learn (sklearn for short) and
with Spark MLlib. We’ll be creating a regression in sklearn and a classification in
Spark MLlib.

Why scikit-learn as well as Spark MLlib?

While Spark has machine learning capabilities through Spark MLlib, scikit-learn
contains many useful utilities around dataflow and process that MLlib lacks. sklearn
also lets us classify or regress new examples in real time without using Kafka and
Spark Streaming, which is much simpler.

The main reason we’re including scikit-learn in a book that otherwise uses “big
data” tools is that it is still incredibly useful in practice. Spark MLlib is designed to
scale, but big data often reduces into small data when summarized to extract features.
This means sklearn is sometimes a better option than Spark MLlib. If you need a
simple machine learning algorithm in the middle of a dataflow, then by all means
employ MLlib. But if you need to make predictions in real time and your data fits in
RAM, think hard about sklearn. We’ll cover both in Chapter 7, and move on to only
working with Spark MLlib in Chapters 8 and 9.

58 | Chapter 2: Agile Tools

http://spark.apache.org/mllib/

Scheduling with Apache Airflow (Incubating)
Apache Airflow (incubating) is a scheduler for directed acyclic graphs (DAGs), which
are graphs that flow in one direction without loops. DAGs are very handy for describ‐
ing data pipelines like the ones we’ll be creating in PySpark. Airflow lets us break long
data pipelines into multiple scripts that are joined logically. We’ll use Airflow to
deploy the data pipelines (or “dataflows”) that make up the predictive application
we’ll be building in this book. Airflow will enable us to schedule our application to
run periodically: daily, hourly, etc.

Airflow is emerging as the leading open source scheduler for data pipelines because it
is controlled using Python code as opposed to configuration files. This turns out to be
a much “cleaner” way to configure a scheduler.

Airflow is a tool for batch computing. It is worth noting that if you can deploy an
application in batch, you probably should deploy an application in batch. If you can
wrangle your application code to run daily, hourly, or even every 10 minutes, it will
be simpler to deploy, operate, and maintain. The operation of a scheduler that runs a
task periodically is simpler than that of a system that operates continuously in real
time (although as Kafka matures this is less the case).

The code for Airflow is available on GitHub. Airbnb created Airflow, and has an
excellent page on Airflow with screenshots, videos, and other documentation. Note
that we’ll configure Airflow for development. For production use, you will need to
verify that Airflow works against a real Spark cluster.

Touring the Toolset | 59

https://airflow.incubator.apache.org/
https://github.com/apache/incubator-airflow
http://nerds.airbnb.com/airflow/

Use Caution with Oozie

Whether an application is easier to deploy in batch or realtime
mode depends heavily on one’s choice of scheduler. Systems that
employ convention as opposed to ruthlessly specific and volumi‐
nous configuration are easier to operate.
While Apache Oozie is the standard scheduler in the leading
Hadoop distributions, projects with deadlines should regard it
with extreme caution. At a startup I worked at, we planned to allo‐
cate one entire headcount to operate Apache Oozie for a single
application. The reader is cautioned to investigate convention-
based schedulers like Azkaban and Apache Airflow before using
Oozie simply because it is included with the Hadoop or Spark dis‐
tribution you are using.
Oozie can easily require multiple pages of XML code to achieve
simple tasks. Turing-complete XML languages are a nightmare for
the programmer compared to real programming languages. Oozie
is optimized for the most complex applications at the most com‐
plex enterprises. If that doesn’t describe your company and project,
steer clear if you can. You will give thanks for having done so. This
is by no means a personal attack on Oozie’s developers, who built it
to satisfy the most demanding enterprise scheduling requirements
at Yahoo! and large enterprises, at the expense of usability for com‐
mon tasks.
Alternatives to Oozie include Azkaban, Luigi, and Apache Airflow.
Evaluate these before adopting Oozie.

Installing Airflow

Airflow is installed through pip, and is already installed on the prepared
Vagrant/EC2 images. You can follow along using the Airflow installation guide and
Airflow configuration guide. Airflow is just a pip module, so installing it anywhere is
easy. There are many options to install extra Airflow packages; for instance, if you
need MySQL or Postgres support, check out the Extra Packages section of the instal‐
lation guide.

We interact with Airflow using the airflow command, which we’ll use to control the
Airflow scheduler and web application. The default path for the Airflow database,
configuration file, and DAGs is ~/airflow/:

$ ls ~/airflow

dags logs plugins

Now visit the Airflow web interface at http://localhost:8080/admin/. You should see
something like Figure 2-17.

60 | Chapter 2: Agile Tools

https://azkaban.github.io/
https://github.com/spotify/luigi
https://airflow.incubator.apache.org/
http://bit.ly/2nPQ94A
http://bit.ly/2p5PLiA
http://bit.ly/2pDJx63
http://bit.ly/2pDJx63
http://localhost:8080/admin/

Figure 2-17. Airflow web interface

Preparing a script for use with Airflow
Although it is not in the documentation, certain things are required to create a
PySpark script that can run both locally and in production with Airflow and a Spark
cluster. First, we must conditionally set up the PySpark environment. Next, we must
parameterize our script so that it can be called from bash at the command line with
the date and relative path to the data. Together, these things let us use a script in the
PySpark console during development and with Airflow in production.

Conditionally initializing PySpark. There is a simple way to write Spark scripts in such a
way that they can be used interactively in the PySpark console or submitted via
spark-submit with Airflow. We use the Python package findspark to conditionally
create the Spark context and session used in PySpark scripts (including those in this
book), but only if they are not already existent because the PySpark console has cre‐
ated them. In this way, scripts can run both in the PySpark console and via spark-
submit.

Check out the snippet I’ve created at lib/setup_spark.py:

Touring the Toolset | 61

https://github.com/minrk/findspark
http://bit.ly/2oCEODT

APP_NAME = "my_script.py"

If there is no SparkSession, create the environment
try:
 sc and spark
except (NameError, UnboundLocalError) as e:

 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql

 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()

continue...

Parameterizing scripts on the command line. To make a script work with Airflow’s date
functions, you need to write a script that accepts the date/time as a command-line
argument. To write a script so that it works both locally and on a Spark cluster, you
must also pass in the base path to reach the data.

Let’s look at how this works. We need to wrap our script in a main function and call it
with command-line arguments using sys.argv. The first argument is the iso_date,
which directs the script to the data for that day. The second argument is the
base_path, which directs Spark to the data overall:

Pass date and base path to main() from Airflow
def main(iso_date, base_path):
 APP_NAME = "pyspark_task_one.py"

 ...

 # Get today's date
 today_dt = iso8601.parse_date(iso_date)
 rounded_today = today_dt.date()

 # Load today's data
 today_input_path = "{}/ch02/data/example_name_titles_daily.json/{}".format(
 base_path,
 rounded_today.isoformat()
)

...

if __name__ == "__main__":
 main(sys.argv[1], sys.argv[2])

62 | Chapter 2: Agile Tools

The script can then be run from the command line:

python ch02/pyspark_task_one.py 2016-12-01 .

Creating an Airflow DAG in Python
Let’s try running a simple task using Airflow. Remember, do not name a file air‐
flow.py or it will mess up the Airflow Python system imports!

The first thing we need to do is initialize the Airflow database, if it hasn’t already been
initialized:

airflow initdb

Next, we need to link our Airflow DAG setup script, airflow_test.py, into our Airflow
DAGs directory, ~/airflow/dags. It will not work outside of ~/airflow/dags. Check out
ch02/setup_airflow_test.sh:

#!/usr/bin/env bash

ln -s $PROJECT_HOME/ch02/airflow_setup.py ~/airflow/dags/

Our Airflow setup script, airflow_test.py, is fairly simple. First we define a configura‐
tion object, and use it to create a DAG:

import sys, os, re

from airflow import DAG
from airflow.operators.bash_operator import BashOperator

from datetime import datetime, timedelta
import iso8601

project_home = os.environ["PROJECT_HOME"]

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': iso8601.parse_date("2016-12-01"),
 'email': ['russell.jurney@gmail.com'],
 'email_on_failure': True,
 'email_on_retry': True,
 'retries': 3,
 'retry_delay': timedelta(minutes=5),
}

timedelta 1 is 'run daily'
dag = DAG(
 'agile_data_science_airflow_test',
 default_args=default_args,
 schedule_interval=timedelta(1)
)

Touring the Toolset | 63

http://bit.ly/2oCwLHe
http://bit.ly/2oCAnZN
http://bit.ly/2oCwLHe
http://bit.ly/2oCwW5f

Next, we create a BashOperator for each script in our dataflow. We define the com‐
mand that runs our script from bash with variables for its parameters and path, and
use built-in and user-supplied parameters to fill out this command. The ds variable is
a built-in variable that contains the date the Airflow uses to run that command. Then
we feed in the filename of our script along with the base_path:

Run a simple PySpark script
pyspark_local_task_one = BashOperator(
 task_id = "pyspark_local_task_one",
 bash_command = """spark-submit \
 --master {{ params.master }}
 {{ params.base_path }}/{{ params.filename }} {{ ds }} {{ params.base_path }}
 """,
 params = {
 "master": "local[8]",
 "filename": "ch02/pyspark_task_one.py",
 "base_path": "{}/".format(project_home)
 },
 dag=dag
)

Run another simple PySpark script that depends on the previous one
pyspark_local_task_two = BashOperator(
 task_id = "pyspark_local_task_two",
 bash_command = """spark-submit \
 --master {{ params.master }}
 {{ params.base_path }}/{{ params.filename }} {{ ds }} {{ params.base_path }}
 """,
 params = {
 "master": "local[8]",
 "filename": "ch02/pyspark_task_two.py",
 "base_path": "{}/".format(project_home)
 },
 dag=dag
)

Finally, we set a dependency between the first and second scripts:

Add the dependency from the second to the first task
pyspark_local_task_two.set_upstream(pyspark_local_task_one)

Now we just run the script we linked into ~/airflow/dags, and it will be available to
the Airflow system. Note that the script must be linked or copied to ~/airflow/dags, or
running it will not have any effect. Note also that the date and timestamp in the out‐
put here and later in the text have been removed because of page width constraints:

$ python ~/airflow/dags/airflow_test.py

[... 15:04:37,875] {__init__.py:36} INFO - Using executor SequentialExecutor

64 | Chapter 2: Agile Tools

https://airflow.incubator.apache.org/code.html#airflow.operators.BashOperator

That’s it! The script has created a DAG within Airflow that we can run, schedule, and
backfill. Let’s take a look at the complete scripts we’re using in this example as part of
the Airflow DAG we just created.

Complete scripts for Airflow
We have created two scripts to go along with our Airflow DAG, ch02/
pyspark_task_one.py and ch02/pyspark_task_two.py. The two scripts are short and
simple. Combined, they take a list of names and titles and compute a master title for
each name, before storing the result in MongoDB. Along with the Airflow DAG, the
scripts are set up to run daily, operating on one day’s input data and writing out one
day’s output data.

Check out ch02/pyspark_task_one.py, which reads today’s input path, creates a master
title for each name, and stores the result in today’s output path. Note that this script
must have +x permissions to be executable by Airflow:

#!/usr/bin/env python

import sys, os, re
import json
import datetime, iso8601

Pass date and base path to main() from Airflow
def main(iso_date, base_path):
 APP_NAME = "pyspark_task_one.py"

 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql

 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()

 # Get today's date
 today_dt = iso8601.parse_date(iso_date)
 rounded_today = today_dt.date()

 # Load today's data
 today_input_path = "{}/ch02/data/example_name_titles_daily.json/{}".format(
 base_path,
 rounded_today.isoformat()
)

 # Otherwise load the data and proceed...

Touring the Toolset | 65

http://bit.ly/2nPByGm
http://bit.ly/2nPByGm
http://bit.ly/2oii9cI
http://bit.ly/2nPByGm

 people_titles = spark.read.json(today_input_path)
 people_titles.show()

 # Group by as an RDD
 titles_by_name = people_titles.rdd.groupBy(lambda x: x["name"])

 # Accept the group key/grouped data and concatenate the various titles
 # into a master title
 def concatenate_titles(people_titles):
 name = people_titles[0]
 title_records = people_titles[1]
 master_title = ""
 for title_record in sorted(title_records):
 title = title_record["title"]
 master_title += "{}, ".format(title)
 master_title = master_title[:-2]
 record = {"name": name, "master_title": master_title}
 return record

 people_with_contactenated_titles = titles_by_name.map(concatenate_titles)
 people_output_json = people_with_contactenated_titles.map(json.dumps)

 # Get today's output path
 today_output_path = "{}/ch02/data/example_master_titles_daily.json/{}".format(
 base_path,
 rounded_today.isoformat()
)

 # Write/replace today's output path
 os.system("rm -rf {}".format(today_output_path))
 people_output_json.saveAsTextFile(today_output_path)

if __name__ == "__main__":
 main(sys.argv[1], sys.argv[2])

We can test the script at the command line like so:

python ch02/pyspark_task_one.py 2016-12-01 .

Which has the debug output:

+--------------+--------------+
| name| title|
+--------------+--------------+
Russell Jurney	Data Scientist
Russell Jurney	Author
Russell Jurney	Dog Lover
Bob Jones	CEO
Susan Shu	Attorney
+--------------+--------------+

66 | Chapter 2: Agile Tools

The second script, ch02/pyspark_task_two.py, is similar, reading the output from the
first script and storing it to MongoDB (again, this script must have +x permissions to
be executable by Airflow):

#!/usr/bin/env python

import sys, os, re
import json
import datetime, iso8601

Pass date and base path to main() from Airflow
def main(iso_date, base_path):
 APP_NAME = "pyspark_task_two.py"

 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql

 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()

 import pymongo
 import pymongo_spark
 # Important: activate pymongo_spark.
 pymongo_spark.activate()

 # Get today's date
 today_dt = iso8601.parse_date(iso_date)
 rounded_today = today_dt.date()

 # Load today's data
 today_input_path = "{}/ch02/data/example_master_titles_daily.json/{}".format(
 base_path,
 rounded_today.isoformat()
)

 # Otherwise load the data and proceed
 people_master_titles_raw = sc.textFile(today_input_path)
 people_master_titles = people_master_titles_raw.map(json.loads)
 print(people_master_titles.first())

 people_master_titles.saveToMongoDB(
 'mongodb://localhost:27017/agile_data_science.people_master_titles'
)

if __name__ == "__main__":
 main(sys.argv[1], sys.argv[2])

Touring the Toolset | 67

http://bit.ly/2oii9cI

We can test this script at the command line like so:

python ch02/pyspark_task_two.py 2016-12-01 .

Which, along with Spark’s output, will print the debug output:

{'master_title': 'Author, Data Scientist, Dog Lover', 'name': 'Russell Jurney'}

Note that the scripts are logically linked in the DAG, and this will make operating
them much easier than if we’d scheduled them with something like cron.

Testing a task in Airflow
Now that we have an Airflow DAG and its corresponding tasks, we need to test the
tasks though Airflow. Before we get started, let’s inspect Airflow’s list of commands:

$ airflow

[...,293] {__init__.py:36} INFO - Using executor SequentialExecutor
usage: airflow [-h]
 {variables,worker,upgradedb,task_state,trigger_dag,clear,
 scheduler,resetdb,pause,serve_logs,render,backfill,
 flower,webserver,kerberos,version,list_tasks,
 initdb,list_dags,test,run,unpause}
 ...
airflow: error: the following arguments are required: subcommand

Let’s start by listing the available DAGs to see if ours is available:

$ airflow list_dags

agile_data_science_airflow_test
example_bash_operator
example_branch_dop_operator_v3
example_branch_operator
...

Next up, let’s list the available tasks for our DAG:

$ airflow list_tasks agile_data_science_airflow_test

pyspark_local_task_one
pyspark_local_task_two

Now let’s run pyspark_local_task_one:

airflow test agile_data_science_airflow_test pyspark_local_task_one 2016-12-01

We should see the same output as from our command-line test of the
pyspark_task_one.py script, albeit piped through Airflow’s BashOperator:

68 | Chapter 2: Agile Tools

http://bit.ly/2ooqfBZ

[...,508] {bash_operator.py:77} INFO - +--------------+--------------+
[...,508] {bash_operator.py:77} INFO - | name| title|
[...,508] {bash_operator.py:77} INFO - +--------------+--------------+
[...,508] {bash_operator.py:77} INFO - |Russell Jurney|Data Scientist|
[...,508] {bash_operator.py:77} INFO - |Russell Jurney| Author|
[...,508] {bash_operator.py:77} INFO - |Russell Jurney| Dog Lover|
[...,508] {bash_operator.py:77} INFO - | Bob Jones| CEO|
[...,508] {bash_operator.py:77} INFO - | Susan Shu| Attorney|
[...,508] {bash_operator.py:77} INFO - +--------------+--------------+
[...,508] {bash_operator.py:77} INFO -
[...,953] {bash_operator.py:80} INFO - Command exited with return code 0

Now let’s test pyspark_local_task_two:

airflow test agile_data_science_airflow_test pyspark_local_task_two 2016-12-01

Again, we should see the expected debug output, piped through BashOperator:

[...,046] {bash_operator.py:77} INFO - {'name': 'Russell Jurney', 'master_title':
 'Author, Data Scientist, Dog Lover'}
[...,476] {bash_operator.py:80} INFO - Command exited with return code 0

Running a DAG in Airflow
Now that we’ve tested out the tasks individually, we need to run them in such a way
that their execution is logged to the database so this period’s run won’t be repeated.
The run command is just like the test command:

airflow run agile_data_science_airflow_test pyspark_local_task_one 2016-12-01

You can see the logs of this run in ~/airflow/logs:
$ cat ~/airflow/logs/agile_data_science_airflow_test/pyspark_local_task_one \
 /2016-12-01T00\:00\:00

...

[...,723] {sequential_executor.py:26} INFO - Executing command:
airflow run agile_data_science_airflow_test pyspark_local_task_one
...T00:00:00 --local -sd DAGS_FOLDER/airflow_test.py
[... 15:40:13,815] {models.py:154} INFO - Filling up the DagBag
from /Users/rjurney/airflow/dags/airflow_test.py
[... 15:40:14,951] {models.py:154} INFO - Filling up the DagBag
from /Users/rjurney/airflow/dags/airflow_test.py
[... 15:40:14,997] {models.py:1150} INFO - Task <TaskInstance:
agile_data_science_airflow_test.pyspark_local_task_one 2016-12-01
00:00:00 [success]> previously succeeded on 2016-12-04 15:36:47
.869543

To clear the record of this run, use the clear command:

airflow clear -s 2016-12-01 -e 2016-12-01 agile_data_science_airflow_test

Touring the Toolset | 69

Backfilling data in Airflow
It is great to be able to schedule operations, but what about redoing yesterday’s work?
For instance, what if we create a new kind of prediction, and in addition to schedul‐
ing it to run every night from now on, we also need to go back and fill in the data for
the last two weeks? The backfill command handles this type of operation.

It’s a one-liner to backfill just one day of data (the only day we have):

airflow backfill -s 2016-12-01 -e 2016-12-01 agile_data_science_airflow_test

Pretty cool! This is a very powerful feature. For instance, if a server went down, this
command could easily regenerate its content in short order. Airflow saves us from
building our own system to handle this inevitable situation.

The power of Airflow
I hope this section has demonstrated the power of Airflow and shown why we went
to so much trouble wrangling our scripts into command-line form so that they could
work with Airflow date handling and spark-submit relative paths. You’ll follow a
similar path when moving any batch PySpark script to production, so keep this sec‐
tion in mind as you do so. The documentation doesn’t spell out what is required to
make Airflow work with PySpark, so this should be a handy reference.

We’ll talk more about Airflow in Chapter 8, when we deploy PySpark data pipelines
in batch mode using Airflow.

Reflecting on Our Workflow
Compared to querying MySQL or MongoDB directly, this workflow might seem
hard. Notice, however, that our stack has been optimized for time-consuming and
thoughtful data processing, with occasional publishing. Also, this way we won’t hit a
wall when our realtime queries don’t scale anymore as they become increasingly com‐
plex.

Once our application is plumbed efficiently, the team can work together efficiently—
but not before. The stack is the foundation of our agility.

Lightweight Web Applications
The next step is turning our published data into an interactive application. As shown
in Figure 2-18, we’ll use lightweight web frameworks to do that.

70 | Chapter 2: Agile Tools

Figure 2-18. To the web with Python and Flask

We choose lightweight web frameworks because they are simple and fast to work
with. Unlike with CRUD applications, mined data is the star of the show here. We use
read-only databases and simple application frameworks because that fits with the
applications we build and how we offer value.

Given the following examples in Python/Flask, you can easily implement a solution
in Sinatra, Rails, Django, Node.js, or your favorite language and web framework.

Python and Flask
According to the Bottle documentation, “Flask is a fast, simple, and lightweight WSGI
micro web framework for Python.”

Excellent instructions for using Flask are available on the website.

Flask echo microservice. Run our echo Flask app, ch02/web/test_flask.py:

from flask import Flask
app = Flask(__name__)

@app.route("/<input>")
def hello(input):
 return input

if __name__ == "__main__": app.run(debug=True)

And verify it works with curl:

$ curl http://localhost:5000/hello%20world!

hello world!

Python and Mongo with pymongo. pymongo presents a simple interface for MongoDB in
Python. To test it out, run ch02/test_pymongo.py:

from pymongo import MongoClient
client = MongoClient()
db = client.agile_data_science
list(db.executives.find({"name": "Russell Jurney"}))

The output is like so:

Touring the Toolset | 71

http://bottlepy.org/docs/dev/
http://flask.pocoo.org/
http://bit.ly/2nPMZxV
http://bit.ly/2pkiYWL

[{u'_id': ObjectId('56f32e65d6ee81199682dcce'),
 u'company': u'Relato',
 u'name': u'Russell Jurney',
 u'title': u'CEO'}]

Displaying executives in Flask. Now we use pymongo with Flask to display the
sent_counts we stored in Mongo using Pig and MongoStorage. Run ch02/web/
flask_pymongo.py:

from flask import Flask
from pymongo import MongoClient
import bson.json_util

Set up Flask
app = Flask(__name__)

Set up Mongo
client = MongoClient() # defaults to localhost
db = client.agile_data_science

Fetch from/to totals, given a pair of email addresses
@app.route("/executive/<name>")
def executive(name):
 executive = db.executives.find({"name": name})
 return bson.json_util.dumps(list(executive))

if __name__ == "__main__": app.run(debug=True)

Now we can visit the URL in a browser or curl this web service and see our data:

[{"company": "Relato",
 "_id": {"$oid": "56f32e65d6ee81199682dcce"},
 "name": "Russell Jurney", "title": "CEO"
}]

And we’re done! (See Figure 2-19.)

Figure 2-19. Undecorated data on the web

Congratulations! You’ve published data on the web. Now let’s make it presentable.

72 | Chapter 2: Agile Tools

http://bit.ly/2oLplC2
http://bit.ly/2oLplC2

Presenting Our Data
Design and presentation impact the value of your work. In fact, one way to think of
Agile Data Science is as iterative data design. The output of our data models matches
our views, and in that sense design and data processing are not distinct. Instead, they
are part of the same collaborative activity: data design. With that in mind, it is best
that we start out with a solid, clean design for our data and work from there (see
Figure 2-20).

Figure 2-20. Presenting our data with Bootstrap and d3.js

Booting Bootstrap
Let’s try wrapping our previous example in a table, styled with Bootstrap.

In ch02/web/test_flask_bootstrap.py:

from flask import Flask, render_template
from pymongo import MongoClient
import bson.json_util

Set up Flask
app = Flask(__name__)

Set up Mongo
client = MongoClient() # defaults to localhost
db = client.agile_data_science

Fetch from/to totals, given a pair of email addresses
@app.route("/executive/<name>")
def executive(name):
 executives = db.executives.find({"name": name})
 return render_template('table.html', executives=list(executives))

if __name__ == "__main__": app.run(debug=True)

Tables, Oh My!

That’s right: tables for tabular data! Bootstrap lets us use them
without shame. Now we’ll update our controller to stash our data,
and create a simple template to print a table.

And in our template, ch02/web/templates/table.html:

Touring the Toolset | 73

https://github.com/rjurney/Agile_Data_Code_2/blob/master/ch02/web/test_flask_bootstrap.py
https://github.com/rjurney/Agile_Data_Code_2/blob/master/ch02/web/templates/table.html

<div class="container">
 <div class="page-header">
 <h1>Agile Data Science</h1>
 </div>
 <p class="lead">Executives</p>
 <table class="table">
 <thead>
 <th>Name</th>
 <th>Company</th>
 <th>Title</th>
 </thead>
 <tbody>
 {% for executive in executives -%}
 <tr>
 <td>{{executive.name}}</td>
 <td>{{executive.company}}</td>
 <td>{{executive.title}}</td>
 </tr>
 {% endfor -%}
 </tbody>
 </table>
</div>

The result, shown in Figure 2-21, is human-readable data with very little trouble!

Figure 2-21. Simple data in a Bootstrap-styled table

Visualizing data with D3.js
D3.js enables data-driven documents. According to its creator, Mike Bostock:

d3 is not a traditional visualization framework. Rather than provide a monolithic sys‐
tem with all the features anyone may ever need, d3 solves only the crux of the problem:
efficient manipulation of documents based on data. This gives d3 extraordinary flexi‐
bility, exposing the full capabilities of underlying technologies such as CSS3, HTML5,
and SVG.

74 | Chapter 2: Agile Tools

http://d3js.org/

We’ll be using D3.js to create charts in our application. Like Bootstrap, it is already
installed in /static. We’ll be making charts with D3.js later on. For now, take a look at
the examples gallery to see what is possible with D3.js.

Conclusion
We’ve toured our environment and have executed “Hello, World!” in each tool.
Together, these tools form a data pipeline of distributed systems capable of collecting,
processing, publishing, and decorating data of any size. This pipeline is easy to mod‐
ify at every stage with one line of code. This pipeline will scale without our worrying
about optimization at each step—optimization will be one concern, but not our main
concern.

As we’ll see in the next chapter, because we’ve created an arbitrarily scalable pipeline
where every stage is easily modifiable, it is possible to return to agility. We won’t
quickly hit a wall as soon as we need to switch from a relational database to some‐
thing else that “scales better,” and we aren’t subjecting ourselves to the limitations
imposed by tools designed for other tasks, like online transaction processing.

We now have total freedom to use best-of-breed tools within this framework to solve
hard problems and produce value. We can choose any language, any framework, and
any library and glue it together to get things built.

Conclusion | 75

https://github.com/mbostock/d3/wiki/Gallery

CHAPTER 3

Data

This chapter introduces the dataset we will work with in the rest of the book. It will
also cover the kinds of tools we’ll be using, and our reasoning for doing so. Finally, it
will outline multiple perspectives we’ll use in analyzing data for you to think about
moving forward.

Air Travel Data
Air travel is an essential part of modern life. It is a fundamental part of globalized cul‐
ture, linking major cities across the planet into a global urban economy. Thanks to
regulation, there is a lot of aviation data out there that is freely available. In the course
of the book, we’ll use many aviation datasets. The core or atomic logs we’ll be using
are on-time records for each flight. We will supplement this with data on airlines,
weather, routes, and more.

Flight on-time records aren’t quite big data, but they do add up to several gigabytes
per year, uncompressed. We will immediately face a “big” (or actually, a “medium”)
data problem—processing the data on your local machine will be just barely feasible.
Working with data too large to fit in RAM requires that we use scalable tools, which is
helpful as a learning device. Air travel is a familiar experience to all of us, and we’ll
use it to give you a sense for how to analyze and query flight data and to help you see
which techniques are effective. This is cultivating data intuition, a major theme in
Agile Data Science.

In this book, we use the same tools that you would use at petabyte scale, but in local
mode on your own machine. This is more than an efficient way to process data; our
choice of tools ensures that we only have to build it once, and that our application
will scale up. This imparts simplicity in everything that we do, and simplicity is the
heart of agility.

77

Flight On-Time Performance Data
Records of 90–95% of flights that originate in the US are available from the Bureau of
Transportation Statistics. You can download these monthly, but we have already col‐
lected them for the year 2015 for you here in a single large gzipped CSV file.

The fields of this data are many:

"Year","Quarter","Month",
 "DayofMonth","DayOfWeek","FlightDate","UniqueCarrier",
 "AirlineID","Carrier","TailNum","FlightNum",
"OriginAirportID","OriginAirportSeqID","OriginCityMarketID",
"Origin","OriginCityName","OriginState","OriginStateFips",
"OriginStateName","OriginWac","DestAirportID","DestAirportSeqID",
"DestCityMarketID","Dest","DestCityName","DestState",
"DestStateFips","DestStateName","DestWac","CRSDepTime","DepTime",
"DepDelay","DepDelayMinutes","DepDel15","DepartureDelayGroups",
"DepTimeBlk","TaxiOut","WheelsOff","WheelsOn","TaxiIn",
"CRSArrTime","ArrTime","ArrDelay","ArrDelayMinutes",
"ArrDel15","ArrivalDelayGroups","ArrTimeBlk","Cancelled",
"CancellationCode","Diverted","CRSElapsedTime",
"ActualElapsedTime","AirTime","Flights","Distance",
"DistanceGroup","CarrierDelay","WeatherDelay","NASDelay","Security
Delay","LateAircraftDelay","FirstDepTime","TotalAddGTime",
"LongestAddGTime","DivAirportLandings","DivReachedDest",
"DivActualElapsedTime","DivArrDelay","DivDistance","Div1Airport",
"Div1AirportID","Div1AirportSeqID","Div1WheelsOn",
"Div1TotalGTime","Div1LongestGTime","Div1WheelsOff",
"Div1TailNum","Div2Airport","Div2AirportID",
"Div2AirportSeqID","Div2WheelsOn","Div2TotalGTime",
"Div2LongestGTime","Div2WheelsOff","Div2TailNum","Div3Airport",
"Div3AirportID","Div3AirportSeqID","Div3WheelsOn",
"Div3TotalGTime","Div3LongestGTime","Div3WheelsOff","Div3TailNum",
"Div4Airport","Div4AirportID","Div4AirportSeqID",
"Div4WheelsOn","Div4TotalGTime","Div4LongestGTime",
"Div4WheelsOff","Div4TailNum","Div5Airport","Div5AirportID",
"Div5AirportSeqID","Div5WheelsOn","Div5TotalGTime",
"Div5LongestGTime","Div5WheelsOff","Div5TailNum"

And a few truncated rows (formatted to fit the page) look like this:

2015,1,1,1,4,2015-01-01,"AA",19805,"AA","N787AA","1",12478,1247802,...,"JFK", ...
2015,1,1,2,5,2015-01-02,"AA",19805,"AA","N795AA","1",12478,...,31703,"JFK", ...
2015,1,1,3,6,2015-01-03,"AA",19805,"AA","N788AA","1",12478,...,31703,"JFK", ...

A description of the fields is available from the BTS; an excerpt is shown in Figure 3-1
We’ll use to this reference to understand these numerous fields throughout the book.

78 | Chapter 3: Data

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://bit.ly/2nNmsNu
http://bit.ly/2plXWqS

Figure 3-1. Description of fields in the On-Time Performance dataset on the BTS website

This is one fully denormalized table, and while it is inefficient when compared to
normalized data, it is our preferred form of data. This is called semistructured data.

OpenFlights Database
OpenFlights.org publishes a database of information on airports, airlines, and routes.
We’ll be using this database to characterize airports in our analysis. It costs money to
gather this data, but the database is free to download (though a donation is suggested
—please, if you make use of this data in a real application, consider donating to sup‐
port the collection of this invaluable dataset).

Check out download.sh, where we fetch the OpenFlights database:

Air Travel Data | 79

http://openflights.org/data.html
http://bit.ly/2pFwyjX

Get openflights data
wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/airports.dat
mv /tmp/airports.dat data/airports.csv

wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/airlines.dat
mv /tmp/airlines.dat data/airlines.csv

wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/routes.dat
mv /tmp/routes.dat data/routes.csv

wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/countries.dat
mv /tmp/countries.dat data/countries.csv

Weather Data
Fortunately for us, there is an enormous amount of data on the weather available
from the National Centers for Environmental Information (NCEI), formerly the
National Climatic Data Center (NCDC).

Check out download_weather.sh, where we download the WBAN Master List. This
list comes with geographical coordinates, latitudes and longitudes, which we’ll use to
associate stations with airports to enhance the prediction of flight delays. This script
can take a while, so you may want to run it in the background now and come back to
it:

cd data

Get the station master list as pipe-separated values
curl -Lko /tmp/wbanmasterlist.psv.zip \
 http://www.ncdc.noaa.gov/homr/file/wbanmasterlist.psv.zip
unzip -o /tmp/wbanmasterlist.psv.zip

We’ll also download quality-controlled hourly and daily summaries of the weather for
all WBAN stations for the year 2015:

Get monthly files of daily summaries for all stations
curl -Lko /tmp/ \
 http://www.ncdc.noaa.gov/orders/qclcd/ \
 QCLCD201501.zip
for i in $(seq -w 1 12)
do
 curl -Lko /tmp/QCLCD2015${i}.zip http://www.ncdc.noaa.gov/orders/qclcd/ \
 QCLCD2015${i}.zip

80 | Chapter 3: Data

https://www.ncdc.noaa.gov/
http://bit.ly/2nRYGjB

 unzip -o /tmp/QCLCD2015${i}.zip
done

Data Processing in Agile Data Science
Data Processing in Agile Data Science is done using semistructured data, with both
SQL queries and NoSQL dataflow programming. We use evolving schemas that are
defined on the fly, and we serialize data as JSON. Taken together, these methods
enable us to be productive as we refine data into new forms.

Structured Versus Semistructured Data
Wikipedia defines semistructured data as:

A form of structured data that does not conform with the formal structure of data
models associated with relational databases or other forms of data tables, but nonethe‐
less contains tags or other markers to separate semantic elements and enforce hierar‐
chies of records and fields within the data.

This is in contrast to relational, structured data, which means data described by rigor‐
ous external schemas and broken up into multiple tables that refer to one another to
avoid data duplication. This is done before analytics begin for more efficient querying
thereafter. Relational databases handling Online Transaction Processing (OLTP) tasks
use highly normalized schemas to simplify the encoding of business rules about data.

Relational databases were the primary way data was processed and stored from the
1970s through the 2000s. SQL became the primary way people interacted directly
with structured data. Before Hadoop ignited the NoSQL movement, data processing
was so dominated by the relational database that it became oppressive. Data process‐
ing outside academia was locked inside relational systems. The frustration and anger
that resulted is what put the “no” in NoSQL.

While Hadoop was developed to handle volumes of data too large for existent rela‐
tional databases to handle, it brought about a model of data processing that was liber‐
ated from the relational schema. More importantly, Hadoop connected the tools of
statistical inference and learning from academia with business data and processes. In
this way, the big data trend has made new kinds of applications—analytics applica‐
tions—possible.

Concurrently, other NoSQL systems for OLTP processing have replaced the relational
database for many common applications. MongoDB, which we use in the book for
publishing (as opposed to processing) data, has become the go-to option for web
applications.

A structured, relational view of flight data is demonstrated in the flight database of
the book Learning MySQL, by Seyed M.M. Tahaghoghi and Hugh E. Williams:, also
from O’Reilly (see Figure 3-2).

Data Processing in Agile Data Science | 81

http://bit.ly/2p3LbRm
http://bit.ly/2oDfD46
https://github.com/mongodb/mongo
http://oreil.ly/2pq1o0F

Figure 3-2. Fully structured flight database from Learning MySQL

SQL Versus NoSQL
The NoSQL movement freed us from the bonds of SQL. What does this mean? It
means that NoSQL gave us options other than SQL inside relational databases to pro‐
cess our data. The problem with the SQL paradigm wasn’t the SQL language; it was
the lack of options, so that it seemed people were stuck with SQL for all data process‐
ing regardless of whether it fit or not.

In the first edition of this book, like many in the NoSQL community, we avoided SQL
completely except to show that it was unsuited to our domain: building analytics
applications. In this edition, we take a broader view. New tools have emerged, Spark
specifically, that unify SQL and NoSQL. People have come to realize that so long as
there are many options for how to process data, having SQL around is quite useful.
Both SQL and NoSQL have their role in Agile Data Science, as we’ll soon see.

82 | Chapter 3: Data

SQL
What is the role of SQL in building analytics applications? To query a relational,
structured schema, we typically use declarative programming languages like SQL. In
SQL, we specify what we want, rather than what to do. This is different than impera‐
tive programming in languages like Java, Scala, or Python. In SQL, we specify the
desired output rather than a set of operations on our data.

SQL is very efficient at expressing simple ad hoc queries such as this one, which uses
the schema in Figure 3-2 to ask how many flights flew between pairs of cities on Janu‐
ary 1, 2015:

SELECT From, To, COUNT(*)
 FROM Flight
 WHERE DepartureDate == '2015-01-01'
 GROUP BY From, To;

This kind of declarative programming is ideally suited to consuming and querying
structured data in aggregate to produce simple charts and figures. When we know
what we want, we can efficiently tell the SQL engine what that is, and it will compute
the relations for us. We don’t have to worry about the details of the query’s execution.

SQL has two limits. The first is that we have to rely on the database to figure out how
to execute our query, and it may be good or bad at this task depending on the query.
With big data, this can be problematic. If the query planner screws up, we may wait
literally forever for a query to return. That is to say that with large amounts of data,
sometimes you must be involved in specifying the optimal query plan, and can’t rely
on a query planner to do it for you. With PySpark, we get to specify the how of any
operation through dataflow programming—if we want. If not, the SQL abstraction is
there to figure it out for us. We get the best of both worlds.

The other problem is complexity. Once a query becomes too complex, SQL is highly
obscure. Queries become subqueries that in turn have subqueries, and this means
code becomes impenetrable. For complex operations, humans are better at reading
and understanding imperative code than declarative. While it was still possible to
break large queries into stages with relational systems, they were not optimized to do
so.

When SQL was our only option, these limits made many people miserable. In any
case, now that we have other options, SQL is everyone’s friend again. For simple quer‐
ies, it is powerful, concise, and easy to learn.

NoSQL and Dataflow Programming
In contrast to SQL, when building analytics applications we often don’t know the
query we want to run, so we can’t specify it. Much experimentation and iteration is
required to arrive at the solution to any given problem. Data is often unavailable in a

SQL Versus NoSQL | 83

relational format. Data in the wild is not normalized; it is denormalized, fuzzy, and
dirty. Extracting structure is a lengthy process that we perform iteratively as we pro‐
cess data to extract different features. Specifying schemas up front is not possible.

For these reasons, in Agile Data Science we often employ imperative languages
against distributed systems. Imperative languages like Python and PySpark describe
steps to manipulate data in pipelines. Rather than precomputing indexes against
structure we don’t yet have, we use many processing cores in parallel to read individ‐
ual records through brute force. Spark (and Hadoop before it) makes this possible.

In addition to mapping well to technologies like Hadoop and Spark, which enable us
to easily scale our data processing, imperative languages put the focus of our tools
where most of the work in building analytics applications is: in iteratively and incre‐
mentally crafting one or two hard-won, key steps where we do clever things that
deliver much of the value of our application. Discovering these steps is an inherently
imperative process.

Compared to writing SQL queries, arriving at these clever operations is a lengthy and
often exhaustive process, as we employ techniques from statistics, machine learning,
and social science. Imperative programming fits the task.

Spark: SQL + NoSQL
So, SQL is optimized for querying data, whereas dataflow-oriented tools are opti‐
mized for refining it. We need to both query data—to ask questions of it—and pro‐
cess data—to compute new things from one or more sources of data. Fortunately for
us, Spark supports both programming paradigms! This is the most innovative part of
Spark’s interface. This feature enables us to switch back and forth between declarative
SQL and imperative Python, as we see fit. This is a big benefit of Spark, and it is a
great leap forward compared with Hadoop, where Pig (dataflow programming) and
Hive (SQL) were separate tools with, unfortunately, somewhat hostile communities.

Schemas in NoSQL
When schemas are rigorous, and SQL is our lone tool, our perspective comes to be
dominated by tools optimized for consuming, rather than mining, data. Specifying
tables with rigorously defined schemas gets in the way of getting things done. Our
ability to connect intuitively with the data is inhibited. Working with semistructured
data, on the other hand, enables us to focus on the data directly, manipulating it itera‐
tively to extract value and to transform it into a product.

We use dataflow languages to define the form of our data in code, and then query it
with SQL, or we publish it directly to a document store—all without ever formally
specifying a schema! The schema is carried with the data; it is inherent rather than
extrinsic. This is optimized for our process: doing data science, where we’re deriving

84 | Chapter 3: Data

new information from multiple sources of existing data. There is no benefit to exter‐
nally specifying schemas in this context—it is pure overhead. After all, we don’t know
what we’ll wind up with until it’s ready! Data science will always surprise.

Data Serialization
Although we can work with semistructured data as pure text, it is helpful to impose
some kind of structure on the raw records using a format that includes a schema.
Serialization systems give us this functionality. Available serialization systems include
the following:

• Thrift
• Protobuf
• Avro

In the first edition of this book, we chose Avro. Avro allows complex data structures,
it includes a schema with each file, and it has support in many tools and languages.
However, we often came across bugs in the Avro implementations for different lan‐
guages, and this hurt our productivity. Over and over. As a result, in this second edi‐
tion, we are moving from Avro to JSON Lines. JSON Lines, also called newline-
delimited JSON (NDJSON), is simple: one JSON record per line of text.

Extracting and Exposing Features in Evolving Schemas
As Pete Warden notes in his talk “Embracing the Chaos of Data”, most freely available
data is crude and unstructured. It is the availability of huge volumes of such ugly data,
and not carefully cleaned and normalized tables, that makes it “big data.” Therein lies
the opportunity in mining crude data into refined information, and using that infor‐
mation to drive new kinds of actions.

Extracted features from unstructured data get cleaned only in the harsh light of day,
as users consume them and complain; if you can’t ship your features as you extract
them, you’re in a state of free fall. The hardest part of building data products is peg‐
ging entity and feature extraction to products smaller than your ultimate vision. This
is why schemas must start as blobs of unstructured text and evolve into structured
data only as features are extracted.

Features must be exposed in some product form as they are created, or they will never
achieve a product-ready state. Derived data that lives in the basement of your product
is unlikely to shape up. It is better to create entity pages to bring entities up to a
“consumer-grade” form, to incrementally improve these entities, and to progressively
combine them than to try to expose myriad derived data in a grand vision from the
get-go.

SQL Versus NoSQL | 85

http://thrift.apache.org
http://code.google.com/p/protobuf/
http://avro.apache.org
http://jsonlines.org/
http://ndjson.org/
http://ndjson.org/
http://bit.ly/171ulz7

While mining data into well-structured information, using that information to
expose new facts and make predictions that enable actions offers enormous potential
for value creation. Data is brutal and unforgiving, and failing to mind its true nature
will dash the dreams of the most ambitious product manager.

As we’ll see throughout the book, schemas evolve and improve, and so do features
that expose them. When they evolve concurrently, we are truly agile.

Conclusion
That wraps our description of the data we’ll be working with. We’ll introduce each
additional dataset as we employ it. In the next chapter, we’ll start climbing the data-
value pyramid!

86 | Chapter 3: Data

PART II

Climbing the Pyramid

If you can see your path laid out in front of you step by step, you know it’s not your path.
Your own path you make with every step you take. That’s why it’s your path.

—Joseph Campbell

Part II introduces the schema for the rest of the book: the data-value pyramid.
Throughout the rest of our lessons, we will use the data-value pyramid to iteratively
build value from very simple records up to interactive predictions. We begin with
theory, then dive into practice using the framework I previously introduced.

Building Agile Data Science products means staging an environment where reprodu‐
cible insights occur, are reinforced, and are extended up the value stack. It starts sim‐
ply with displaying records. It ends with driving actions that create value and capture
some of it. Along the way is a voyage of discovery.

The structure of this voyage, shown in Figure II-1, is called the data-value pyramid.

The data-value stack mirrors Maslow’s hierarchy of needs in the sense that lower lev‐
els must precede higher levels. The higher levels (like predictions) depend on the
lower levels (like reports), so we can’t skip steps. If we do so, we will lack sufficient
structure and understanding of our data to easily build features and value at the
higher levels.

Figure II-1. The Jurney–Warden data-value pyramid of 2011

The data-value stack begins with the simple display of records, where the focus is on
connecting or “plumbing” our data pipeline all the way through from the raw data to
the user’s screen. We then move on to charts, where we extract enough structure from
our data to display its properties in aggregate and start to familiarize ourselves with
those properties. Next comes identifying relationships and exploring data through
interactive reports. This enables statistical inference to generate predictions. Finally,
we use these predictions to drive user behavior in order to create and capture value.

CHAPTER 4

Collecting and Displaying Records

In this chapter, our first agile sprint, we climb level 1 of the data-value pyramid
(Figure 4-1). We will connect, or plumb, the parts of our data pipeline all the way
through from raw data to a web application on a user’s screen. This will enable a sin‐
gle developer to publish raw data records on the web. In doing so, we will activate our
stack against our real data, thereby connecting our application to the reality of our
data and our users.

Figure 4-1. Level 1: displaying base records

If you already have a popular application, this step may seem confusing in that you
already have the individual (or atomic) records displaying in your application. The
point of this step, then, is to pipe these records through your analytical pipeline to

89

bulk storage and then on to a browser. Bulk storage provides access for further pro‐
cessing via ETL (extract, transform, load) or some other means.

This first stage of the data-value pyramid can proceed relatively quickly, so we can get
on to higher levels of value. Note that we will return to this step frequently as we
enrich our analysis with additional datasets. We’ll make each new dataset explorable
as we go. We’ll be doing this throughout the book as we work through the higher-
level steps. The data-value pyramid is something you step up and down in as you do
your analysis and get feedback from users. This setup and these browsable records set
the stage for further advances up the data-value pyramid as our complexity and value
snowball.

If your atomic records are petabytes, you may not want to publish
them all to a document store. Moreover, security constraints may
make this impossible. In that case, a sample will do. Prepare a sam‐
ple and publish it, and then constrain the rest of your application
as you create it.

Code examples for this chapter are available at Agile_Data_Code_2/ch04. Clone the
repository and follow along!

git clone https://github.com/rjurney/Agile_Data_Code_2.git

Putting It All Together
Setting up our stack was a bit of work. The good news is, with this stack, we don’t
have to repeat this work as soon as we start to see load from users on our system
increase and our stack needs to scale. Instead, we’ll be free to continue to iterate and
improve our product from now on.

Now, let’s work with some atomic records—on-time records for each flight originat‐
ing in the US in 2015—to see how the stack works for us.

An atomic record is a base record, the most granular of the events
you will be analyzing. We might aggregate, count, slice, and dice
atomic records, but they are indivisible. As such, they represent
ground truth to us, and working with atomic records is essential to
plugging into the reality of our data and our application. The point
of big data is to be able to analyze the most granular data using
NoSQL tools to reach a deeper level of understanding than was
previously possible.

90 | Chapter 4: Collecting and Displaying Records

http://bit.ly/2qrIc6w

Collecting and Serializing Flight Data
You can see the process of serializing events in Figure 4-2. In this case, we’re going to
download the core data that we’ll use for the remainder of the book using a script,
download.sh:

Get on-time records for all flights in 2015 - 273MB
wget -P data/ \
 http://s3.amazonaws.com/agile_data_science/ \
 On_Time_On_Time_Performance_2015.csv.bz2

Get openflights data
wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/airports.dat
mv /tmp/airports.dat data/airports.csv

wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/airlines.dat
mv /tmp/airlines.dat data/airlines.csv

wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/routes.dat
mv /tmp/routes.dat data/routes.csv

wget -P /tmp/ \
 https://raw.githubusercontent.com/jpatokal/openflights/ \
 master/data/countries.dat
mv /tmp/countries.dat data/countries.csv

Get FAA data
wget -P data/ http://av-info.faa.gov/data/ACRef/tab/aircraft.txt
wget -P data/ http://av-info.faa.gov/data/ACRef/tab/ata.txt
wget -P data/ http://av-info.faa.gov/data/ACRef/tab/compt.txt
wget -P data/ http://av-info.faa.gov/data/ACRef/tab/engine.txt
wget -P data/ http://av-info.faa.gov/data/ACRef/tab/prop.txt

Figure 4-2. Serializing events

To get started, we’ll trim the unneeded fields from our on-time flight records and
convert them to Parquet format. This will improve performance when loading this
data, something we’ll be doing throughout the book. In practice, you would want to

Collecting and Serializing Flight Data | 91

http://bit.ly/2pFwyjX

retain all the values that might be of interest in the future. Note that there is a bug in
the inferSchema option of spark-csv, so we’ll have to cast the numeric fields man‐
ually before saving our converted data.

If you want to make sense of the following query, take a look at the Bureau of Trans‐
portation Statistics description of the data, On-Time Performance records (this data
was introduced in Chapter 3).

Run the following code to trim the data to just the fields we will need:

Loads CSV with header parsing and type inference, in one line!
on_time_dataframe = spark.read.format('com.databricks.spark.csv')\
 .options(
 header='true',
 treatEmptyValuesAsNulls='true',
)\
 .load('data/On_Time_On_Time_Performance_2015.csv.bz2')
on_time_dataframe.registerTempTable("on_time_performance")

trimmed_cast_performance = spark.sql("""
SELECT
 Year, Quarter, Month, DayofMonth, DayOfWeek, FlightDate,
 Carrier, TailNum, FlightNum,
 Origin, OriginCityName, OriginState,
 Dest, DestCityName, DestState,
 DepTime, cast(DepDelay as float), cast(DepDelayMinutes as int),
 cast(TaxiOut as float), cast(TaxiIn as float),
 WheelsOff, WheelsOn,
 ArrTime, cast(ArrDelay as float), cast(ArrDelayMinutes as float),
 cast(Cancelled as int), cast(Diverted as int),
 cast(ActualElapsedTime as float), cast(AirTime as float),
 cast(Flights as int), cast(Distance as float),
 cast(CarrierDelay as float), cast(WeatherDelay as float),
 cast(NASDelay as float),
 cast(SecurityDelay as float),
 cast(LateAircraftDelay as float),
 CRSDepTime, CRSArrTime
FROM
 on_time_performance
""")

Replace on_time_performance table# with our new, trimmed table and show its contents
trimmed_cast_performance.registerTempTable("on_time_performance")
trimmed_cast_performance.show()

92 | Chapter 4: Collecting and Displaying Records

http://www.transtats.bts.gov/Fields.asp?Table_ID=236

Which shows a much simplified format (here abbreviated):

Year Quarter Month DayofMonth DayOfWeek FlightDate Carrier TailNum FlightNum Origin
2015 1 1 1 4 2015-01-01 AA N001AA 1519 DFW
2015 1 1 1 4 2015-01-01 AA N001AA 1519 MEM
2015 1 1 1 4 2015-01-01 AA N002AA 2349 ORD
2015 1 1 1 4 2015-01-01 AA N003AA 1298 DFW
2015 1 1 1 4 2015-01-01 AA N003AA 1422 DFW

Let’s make sure our numeric fields work as desired:

Verify we can sum numeric columns
spark.sql("""SELECT
 SUM(WeatherDelay), SUM(CarrierDelay), SUM(NASDelay),
 SUM(SecurityDelay), SUM(LateAircraftDelay)
FROM on_time_performance
""").show()

This results in the following output (formatted to fit the page):

sum(WeatherDelay) sum(CarrierDelay) sum(NASDelay) sum(SecurityDelay) sum(LateAircraftDelay)
3100233.0 2.0172956E7 1.4335762E7 80985.0 2.4961931E7

Having trimmed and cast our fields and made sure the numeric columns work, we
can now save our data as JSON Lines and Parquet. Note that we also load the data
back, to verify that it loads correctly. Make sure this code runs without error, as the
entire rest of the book uses these files:

Save records as gzipped JSON Lines
trimmed_cast_performance.toJSON()\
 .saveAsTextFile(
 'data/on_time_performance.jsonl.gz',
 'org.apache.hadoop.io.compress.GzipCodec'
)

View records on filesystem
gunzip -c data/On_Time_On_Time_Performance_2015.jsonl.gz/part-00000.gz | head

Save records using Parquet
trimmed_cast_performance.write.parquet("data/on_time_performance.parquet")

Load JSON records back
on_time_dataframe = spark.read.json('data/on_time_performance.jsonl.gz')
on_time_dataframe.show()

Load the Parquet file back
on_time_dataframe = spark.read.parquet('data/trimmed_cast_performance.parquet')
on_time_dataframe.show()

Collecting and Serializing Flight Data | 93

Note that the Parquet file is only 248 MB, compared with 315 MB for the original
gzip-compressed CSV and 259 MB for the gzip-compressed JSON. In practice the
Parquet will be much more performant, as it will only load the individual columns we
actually use in our PySpark scripts.

We can view the gzipped JSON with gunzip -c and head:

gunzip -c data/On_Time_On_Time_Performance_2015.jsonl.gz/part-00000.gz | head

We can now view the on-time records directly, and understand them more easily than
before:

{
 "Year":2015,
 "Quarter":1,
 "Month":1,
 "DayofMonth":1,
 "DayOfWeek":4,
 "FlightDate":"2015-01-01",
 "UniqueCarrier":"AA",
 "AirlineID":19805,
 "Carrier":"AA",
 "TailNum":"N787AA",
 "FlightNum":1,
 ...
}

Loading the gzipped JSON Lines data in PySpark is easy, using a SparkSession called
spark:

Load JSON records back on_time_dataframe = spark.read.json(
 'data/On_Time_On_Time_Performance_2015.jsonl.gz'
)
on_time_dataframe.show()

Loading the Parquet data is similarly easy:

Load the Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
on_time_dataframe.first()

Processing and Publishing Flight Records
Having collected our flight data, let’s process it (Figure 4-3). In the interest of plumb‐
ing our stack all the way through with real data to give us a base state to build from,
let’s publish the on-time flight records right away to MongoDB and Elasticsearch, so
we can access them from the web with Mongo, Elasticsearch, and Flask.

94 | Chapter 4: Collecting and Displaying Records

http://bit.ly/2nRGlqX

Figure 4-3. Processing and publishing data

Publishing Flight Records to MongoDB
MongoDB’s Spark integration makes this easy. We simply need to import and activate
pymongo_spark, convert our DataFrame to an RDD, and call saveToMongoDB. We do
this in ch04/pyspark_to_mongo.py:

import pymongo
import pymongo_spark
Important: activate pymongo_spark
pymongo_spark.activate()

on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

Note we have to convert the row to a dict
to avoid https://jira.mongodb.org/browse/HADOOP-276
as_dict = on_time_dataframe.rdd.map(lambda row: row.asDict())
as_dict.saveToMongoDB
 ('mongodb://localhost:27017/agile_data_science.on_time_performance')

If something goes wrong, you can always drop the collection and try again:

$ mongo agile_data_science

> db.on_time_performance.drop()

true

The beauty of our infrastructure is that everything is reproducible from the original
data, so there is little worrying to be done about our database becoming corrupted or
crashing (although we do employ a fault-tolerant cluster). In addition, because we’re
using our database as a document store, where we simply fetch documents by some
ID or field, we don’t have to worry much about performance, either.

Processing and Publishing Flight Records | 95

http://bit.ly/2nRIX8d

Finally, let’s verify that our flight records are in MongoDB:

> db.on_time_performance.findOne()

{
 "_id" : ObjectId("56f9ed67b0504718f584d03f"),
 "Origin" : "JFK",
 "Quarter" : 1,
 "FlightNum" : 1,
 "Div4TailNum" : "",
 "Div5TailNum" : "",
 "Div2TailNum" : "",
 "Div3TailNum" : "",
 "ArrDel15" : 0,
 "AirTime" : 378,
 "Div5WheelsOff" : "",
 "DepTimeBlk" : "0900-0959",
 ...
}

Now let’s fetch one flight record, using its minimum unique identifiers—the airline
carrier, the flight date, and the flight number:

> db.on_time_performance.findOne(
 {Carrier: 'DL', FlightDate: '2015-01-01', FlightNum: 478})

You might notice that this query does not return quickly. Mongo lets us query our
data by any combination of its fields, but there is a cost to this feature. We have to
think about and maintain indexes for our queries. In this case, the access pattern is
static, so the index is easy to define:

> db.on_time_performance.ensureIndex({Carrier: 1, FlightDate: 1, FlightNum: 1})

This may take a few moments to run, but our queries will be fast thereafter. This is a
small price to pay for the features Mongo gives us. In general, the more features of a
database we use, the more we have to pay in terms of operational overhead. So, always
try to use database features sparingly, unless you enjoy tuning databases in produc‐
tion.

Presenting Flight Records in a Browser
Now that we’ve published on-time flight records to a document store and queried
them, we’re ready to present our data in a browser via a simple web application
(Figure 4-4).

96 | Chapter 4: Collecting and Displaying Records

Figure 4-4. Displaying a raw flight record

Serving Flights with Flask and pymongo
Flask and pymongo make querying and returning flights easy. ch04/web/
on_time_flask.py returns JSON about a flight on the web. This code might serve as an
API, and we’ll create and use JSON APIs later in the book. Note that we can’t use
json.dumps(), because we are JSON-izing pymongo records, which json doesn’t know
how to serialize. Instead we must use bson.json_util.dumps():

from flask import Flask, render_template, request
from pymongo import MongoClient
from bson import json_util

Set up Flask and Mongo
app = Flask(__name__)
client = MongoClient()

Controller: Fetch a flight and display it
@app.route("/on_time_performance")
def on_time_performance():

 carrier = request.args.get('Carrier')
 flight_date = request.args.get('FlightDate')
 flight_num = request.args.get('FlightNum')

 flight = client.agile_data_science.on_time_performance.find_one({

Presenting Flight Records in a Browser | 97

http://bit.ly/2ojYLvV
http://bit.ly/2ojYLvV

 'Carrier': carrier,
 'FlightDate': flight_date,
 'FlightNum': flight_num
 })

 return json_util.dumps(flight)

if __name__ == "__main__":
 app.run(debug=True)

Rendering HTML5 with Jinja2
As we did in Chapter 3, let’s turn this raw JSON into a web page with a Jinja2 tem‐
plate. Check out ch04/web/on_time_flask_template.py. Jinja2 makes it easy to trans‐
form raw flight records into web pages:

from flask import Flask, render_template, request
from pymongo import MongoClient
from bson import json_util

Set up Flask and Mongo
app = Flask(__name__)
client = MongoClient()

Controller: Fetch a flight and display it
@app.route("/on_time_performance")
def on_time_performance():

 carrier = request.args.get('Carrier')
 flight_date = request.args.get('FlightDate')
 flight_num = request.args.get('FlightNum')

 flight = client.agile_data_science.on_time_performance.find_one({
 'Carrier': carrier,
 'FlightDate': flight_date,
 'FlightNum': int(flight_num)
 })

 return render_template('flight.html', flight=flight)

if __name__ == "__main__":
 app.run(debug=True)

Note that render_template in our example points at the file ch04/web/templates/
flight.html. This is a partial template that fills in the dynamic content area of our lay‐
out page. The layout page that it subclasses, ch04/web/templates/layout.html, imports
Bootstrap and handles the global design for each page, such as the header, overall
styling, and footer. This saves us from repeating ourselves in each page to create a
consistent layout for the application.

98 | Chapter 4: Collecting and Displaying Records

http://bit.ly/2nRRk3E
http://bit.ly/2pmtE7p
http://bit.ly/2pmtE7p
http://bit.ly/2pmnioF

The layout template contains an empty content block, {% block content %}{% end
block %}, into which our partial template containing our application data is ren‐
dered:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Agile Data Science</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description"
 content="Chapter 5 example in Agile Data Science, 2.0">
 <meta name="author" content="Russell Jurney">
 <link href="/static/bootstrap.min.css" rel="stylesheet">
 <link href="/static/bootstrap-theme.min.css" rel="stylesheet">
 </head>

 <body>
 <div id="wrap">

 <!-- Begin page content -->
 <div class="container">
 <div class="page-header">
 <h1>Agile Data Science</h1>
 </div>
 {% block body %}{% endblock %}
 </div>

 <div id="push"></div>
 </div>

 <div id="footer">
 <div class="container">
 <p class="muted credit">
 <a href="http://shop.oreilly.com/product/ \
 0636920025054.do"> \
 Agile Data Science by \
 <a href="http://www.linkedin.com/in/ \
 russelljurney">Russell Jurney, 2016
 </div>
 </div>
 <script src="/static/bootstrap.min.js"></script>
 </body>
</html>

Our flight-specific partial template works by subclassing the layout template. Jinja2
templates perform control flow in {% %} tags to loop through tuples and arrays and
apply conditionals. We display variables by putting bound data or arbitrary Python
code inside the {{ }} tags. For example, our flight template looks like this:

Presenting Flight Records in a Browser | 99

{% extends "layout.html" %}
{% block body %}
 <div>
 <p class="lead">Flight {{flight.FlightNum}}</p>
 <table class="table">
 <thead>
 <th>Airline</th>
 <th>Origin</th>
 <th>Destination</th>
 <th>Tail Number</th>
 <th>Date</th>
 <th>Air Time</th>
 <th>Distance</th>
 </thead>
 <tbody>
 <tr>
 <td>{{flight.Carrier}}</td>
 <td>{{flight.Origin}}</td>
 <td>{{flight.Dest}}</td>
 <td>{{flight.TailNum}}</td>
 <td>{{flight.FlightDate}}</td>
 <td>{{flight.AirTime}}</td>
 <td>{{flight.Distance}}</td>
 </tr>
 </tbody>
 </table>
 </div>
{% endblock %}

Our body content block is what renders the page content for our data. We start with a
raw template, plug in values from our data (via the flight variable we bound to the
template), and get the page displaying a record.

We can see the flight in our web page with a Carrier, FlightDate, and FlightNum. To
test things out, grab a flight record directly from MongoDB:

$ mongo agile_data_science

> db.on_time_performance.findOne()

{
 "_id" : ObjectId("56fd7391b05047327f19241f"),
 "Origin" : "IAH",
 "FlightNum" : 1044,
 "Carrier" : "AA",
 "FlightDate" : "2015-07-03",
 "DivActualElapsedTime" : null,
 "AirTime" : 122,
 "Div5WheelsOff" : "",
 "DestCityMarketID" : 32467,
 "Div3AirportID" : null,
 "Div3TotalGTime" : null,
 "Month" : 7,

100 | Chapter 4: Collecting and Displaying Records

 "CRSElapsedTime" : 151,
 "DestStateName" : "Florida",
 "DestAirportID" : 13303,
 "Distance" : 964,
 ...
}

We can now fetch a single flight via /ch04/web/templates/layout.html, as shown in
Figure 4-5.

Figure 4-5. Presenting a single flight

Our Flask console shows the resources being accessed (dates and timestamps
removed because of page width constraints):

127.0.0.1 - - [...]
 "GET /on_time_performance?Carrier=DL& \
 FlightDate=2015-01-01&FlightNum=478 HTTP/1.1" 200 -
127.0.0.1 - - [...] "GET /static/bootstrap.min.css HTTP/1.1" 200 -
127.0.0.1 - - [...] "GET /static/bootstrap-theme.min.css HTTP/1.1" 200 -
127.0.0.1 - - [...] "GET /static/bootstrap.min.js HTTP/1.1" 200 -
127.0.0.1 - - [...] "GET /favicon.ico HTTP/1.1" 404 -

Great! We made a web page from raw data! But ... so what? What have we achieved?

We’ve completed the base of the pyramid, level 1—displaying atomic records—in our
standard data pipeline. This is a foundation. Whatever advanced analytics we offer, in
the end, the user will often want to see the signal itself—that is, the raw data backing
our inferences. There is no skipping steps here: if we can’t correctly “visualize” a sin‐
gle atomic record, then our platform and strategy have no base. They are weak.

Presenting Flight Records in a Browser | 101

http://bit.ly/2pmnioF

Agile Checkpoint
Since we now have working software, it is time to let users in to start getting their
feedback. “Wait, really? This thing is embarrassing!” Get over yourself!

We all want to be Steve Jobs; we all want to have a devastating product launch, and to
make a huge splash with a top-secret invention. But with analytics applications, when
you hesitate to ship, you let your fragile ego undermine your ability to become Steve
Jobs by worrying about not looking like him in your first draft. If you don’t ship crap
as step 1, you’re unlikely to get to a brilliant step 26. I strongly advise you to learn
customer development and apply it to your projects. If you’re in a startup, the Startup
Owner’s Manual by Steve Blank (K&S Ranch) is a great place to start.

You will notice immediately when you ship this (maybe to close friends or insiders
who clone the source from GitHub at this point) that users can’t find which flights to
retrieve by their Carrier, FlightDate, and FlightNum. To get real utility from this
data, we need list and search capabilities.

You may well have anticipated this. Why ship something obviously broken or incom‐
plete? Because although step 2 is obvious, step 13 is not. We must involve users at this
step because their participation is a fundamental part of completing step 1 of the
data-value pyramid. Users provide validation of our underlying assumptions, which
at this stage might be stated in the form of two questions: “Does anyone care about
flights?” and “What do they want to know about a given flight?” We think we have
answers to these questions: “Yes” and “Airline, origin, destination, tail number, date,
air time, and distance flown.” But without validation, we don’t really know anything
for certain. Without user interaction and learning, we are building in the dark. Suc‐
cess that way is unlikely, just as a pyramid without a strong foundation will soon
crumble.

The other reason to ship something now is that the act of publishing, presenting, and
sharing your work will highlight a number of problems in your platform setup that
would likely otherwise go undiscovered until the moment you launch your product.
In Agile Data Science, you always ship after a sprint. As a team member, you don’t
control whether to ship or not. You control what to ship and how broad an audience
to release it to. This release might be appropriate for five friends and family members,
and you might have to hound them to get it running or to click the link. But in shar‐
ing your budding application, you will optimize your packaging and resolve depen‐
dencies. You’ll have to make it presentable. Without such work, without a clear
deliverable to guide your efforts, technical issues you are blinded to by familiarity will
be transparent to you.

Now, let’s add listing flights and extend that to enable search, so we can start generat‐
ing real clicks from real users.

102 | Chapter 4: Collecting and Displaying Records

http://steveblank.com/category/customer-development/
http://amzn.to/1pOhPmt
http://amzn.to/1pOhPmt

Listing Flights
Flights are usually presented as a price-sorted list, filtered by the origin and destina‐
tion, with the cheapest flight first. We lack price data, so instead we’ll list all flights on
a given day between two destinations, sorted by departure time as a primary key, and
arrival time as a secondary key. A list helps group individual flights with other similar
flights. Lists are the next step in building this layer of the data-value pyramid, after
displaying individual records.

Listing Flights with MongoDB
Before we search our flights, we need the capacity to list them in order to display our
search results. We can use MongoDB’s query capabilities to return a list of flights
between airports on a given day, sorted by departure and arrival time. The following
queries are in ch04/mongo.js:

$ mongo agile_data_science

> db.on_time_performance.find(
 {Origin: 'ATL', Dest: 'SFO', FlightDate: '2015-01-01'}).sort(
 {DepTime: 1, ArrTime: 1}) // Slow or broken

You may see this error:

error: {
 "$err" : "too much data for sort() with no index. add an index or specify a
 smaller limit",
 "code" : 10128
 }

If not, this query may still take a long time to complete, so let’s add another index for
it. In general, we’ll need to add an index for each access pattern in our application, so
always remember to do so up front in order to save yourself trouble with perfor‐
mance in the future:

> db.on_time_performance.ensureIndex({Origin: 1, Dest: 1, FlightDate: 1})

Now that our index on origin, destination, and date is in place, we can get the flights
between ATL and SFO on January 1, 2015:

> db.on_time_performance.find(
 {Origin: 'ATL', Dest: 'SFO',
 FlightDate: '2015-01-01'}).sort(
 {DepTime: 1, ArrTime: 1})
 // Fast

Listing Flights | 103

http://bit.ly/2oNlOTr

1 For more on controllers, see Alex Coleman’s blog post on MVC in Flask.

Our Flask stub works the same as before—except this time it passes an array of flights
instead of one flight. This time, we’re using slugs in the URL for our web controller.1

A slug puts arguments in between forward slashes, instead of as query parameters.
Check out this excerpt from ch04/web/on_time_flask_template.py:

Controller: Fetch all flights between cities on a given day and display them
@app.route("/flights/<origin>/<dest>/<flight_date>")
def list_flights(origin, dest, flight_date):

 flights = client.agile_data_science.on_time_performance.find(
 {
 'Origin': origin,
 'Dest': dest,
 'FlightDate': flight_date
 },
 sort = [
 ('DepTime', 1),
 ('ArrTime', 1),
]
)
 flight_count = flights.count()

 return render_template('flights.html', flights=flights,
 flight_date=flight_date, flight_count=flight_count)

Our templates are pretty simple too, owing to Bootstrap’s snazzy presentation of
tables. Tables are often scoffed at by designers when used for layout, but this is tabu‐
lar data, so their use is appropriate. To be extra snazzy, we’ve included the number of
flights that day, and since the date is constant for all records, it is a field in the title of
the page instead of a column:

104 | Chapter 4: Collecting and Displaying Records

http://bit.ly/2oN5CSe
http://bit.ly/2nRRk3E

{% extends "layout.html" %}
{% block body %}
 <div>
 <p class="lead">{{flight_count}} Flights on {{flight_date}}</p>
 <table class="table table-condensed table-striped">
 <thead>
 <th>Airline</th>
 <th>Flight Number</th>
 <th>Origin</th>
 <th>Destination</th>
 <th>Departure Time</th>
 <th>Tail Number</th>
 <th>Air Time</th>
 <th>Distance</th>
 </thead>
 <tbody>
 {% for flight in flights %}
 <tr>
 <td>{{flight.Carrier}}</td>
 <td>
<a href="/on_time_performance?Carrier=
 {{flight.Carrier}}&FlightDate=
 {{flight.FlightDate}}&FlightNum=
 {{flight.FlightNum}}">{{flight.FlightNum}}</td>
 <td>{{flight.Origin}}</td>
 <td>{{flight.Dest}}</td>
 <td>{{flight.DepTime}}</td>
 <td>{{flight.TailNum}}</td>
 <td>{{flight.AirTime}}</td>
 <td>{{flight.Distance}}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
{% endblock %}

We can bind as many variables to a template as we want. Note that we also link from
the list page (Figure 4-6) to the individual record pages, constructing the links out of
the airline carrier, flight number, and flight date.

Listing Flights | 105

Figure 4-6. Presenting a list of flights

Paginating Data
Now that we can list the flights on a given day between cities, our users say, “What if I
want to see lots of flights and there are so many on one page that it crashes my
browser?” Listing hundreds of records is not a good presentation, and this will hap‐
pen for other types of data. Shouldn’t there be a previous/next button to scroll for‐
ward and back in time? Yes. That is what we’ll add next.

So far we’ve glossed over how we’re creating these templates, subtemplates, and mac‐
ros. Now we’re going to dive in by creating a macro and a subtemplate for pagination.

Reinventing the wheel?
Why are we building our own pagination? Isn’t that a solved problem?

The first answer is that it makes a good example to connect the browser with the data
directly. In Agile Data Science, we try to process the data into the very state it takes
on a user’s screen with minimal manipulation between the backend and an image in a
browser. Why? We do this because it decreases complexity in our systems, because it
unites data scientists and designers around the same vision, and because this philoso‐

106 | Chapter 4: Collecting and Displaying Records

phy embraces the nature of distributed systems in that it doesn’t rely on joins or other
tricks that work best on “big iron,” or legacy systems.

Keeping the model consistent with the view is critical when the model is complex, as in a
predictive system. We can best create value when the interaction design around a fea‐
ture is cognizant of and consistent with the underlying data model. Data scientists
must bring understanding of the data to the rest of the team, or the team can’t build
to a common vision. The principle of building a view to match the model ensures this
from the beginning.

In practice, we cannot predict at which layer a feature will arise. It may first appear as
a burst of creativity from a web developer, designer, data scientist, or platform engi‐
neer. To validate it, we must ship it in an experiment as quickly as possible, and so the
implementation layer of a feature may in fact begin at any level of our stack. When
this happens, we must take note and ticket the feature as containing technical debt.
As the feature stabilizes, if it is to remain in the system, we move it further back in the
stack as time permits.

A full-blown application framework like Rails or Django would likely build in this
functionality. However, when we are building an application around derived data, the
mechanics of interactions often vary in both subtle and dramatic ways. Most web
frameworks are optimized around CRUD operations. In big data exploration and vis‐
ualization, we’re only doing the read part of CRUD, and we’re doing relatively com‐
plex visualization as part of it. Frameworks offer less value in this situation, where
their behavior must likely be customized. Also note that while MongoDB happens to
include the ability to select and return a range of sorted records, the NoSQL store you
use may or may not provide this functionality, or it may not be possible to use this
feature because publishing your data in a timely manner requires a custom service.
You may have to precompute the data periodically and serve the list yourself. NoSQL
gives us options, and web frameworks are optimized for relational databases. We
must often take matters into our own hands.

Serving paginated data
To start, we’ll need to change our controller for flights to use pagination via Mon‐
goDB. There is a little math to do, since MongoDB pagination uses skip and limit
instead of start and end. We need to compute the width of the query by subtracting
the start from the end, then applying this width in a limit call:

Listing Flights | 107

http://bit.ly/1G4WdV1
https://api.mongodb.org/python/current/api/pymongo/cursor.html
https://api.mongodb.org/python/current/api/pymongo/cursor.html

Controller: Fetch all flights between cities on a given day and display them
@app.route("/flights/<origin>/<dest>/<flight_date>")
def list_flights(origin, dest, flight_date):

 start = request.args.get('start') or 0
 start = max(int(start) - 1, 0)
 end = request.args.get('end') or 20
 end = int(end)
 width = end - start

 flights = client.agile_data_science.on_time_performance.find(
 {
 'Origin': origin,
 'Dest': dest,
 'FlightDate': flight_date
 },
 sort = [
 ('DepTime', 1),
 ('ArrTime', 1),
]
).skip(start).limit(width)
 flight_count = flights.count()

 return render_template('flights.html', flights=flights,
 flight_date=flight_date, flight_count=flight_count)

Prototyping back from HTML
In order to implement pagination in our templates, we need to prototype back from
HTML. We’re all familiar with next/previous buttons from browsing flights on airline
websites. We’ll need to set up the same thing for listing flights. We need links at the
bottom of the flight list page (Figure 4-7) that allow you to paginate forward and
back.

108 | Chapter 4: Collecting and Displaying Records

Figure 4-7. Missing next/previous links

More specifically, we need a link to an incremented/decremented offset range for the
path /flights/<origin>/<dest>/<date>?start=N&end=N. Let’s prototype the feature
based on these requirements by appending static forward and back links against our
flight list API (Figure 4-8).

Figure 4-8. Simple next/previous links

Listing Flights | 109

For example, we want to dynamically render this HTML, corresponding to the URL /
flights/JFK/LAX/2015-01-01?start=20&end=40:

/ch04/templates/partials/flights.html
...
 <div style="text-align: center">

 Previous

 Next

 </div>
{% endblock -%}

Pasting and navigating to the links, such as http://localhost:5000/flights/JFK/LAX/
2015-01-01?start=20&end=40, demonstrates that the feature works with our data.

Now let’s generalize it. Macros are convenient, but we don’t want to make our tem‐
plate too complicated, so we compute the increments in a Python helper (we might
consider a model class) and make a macro to render the offsets.

For starters, let’s use this opportunity to set up a simple config file to set variables like
the number of records to display per page (embedding these in code will cause head‐
aches later):

ch04/web/config.py, a configuration file for index.py
RECORDS_PER_PAGE = 20

Let’s also create a simple helper to calculate record offsets. In time this will become a
full-blown class model, but for now, we’ll just create a couple of helper methods in /
ch04/web/on_time_flask_template.py:

Process Elasticsearch hits and return flight records
def process_search(results):
 records = []
 if results['hits'] and results['hits']['hits']:
 total = results['hits']['total']
 hits = results['hits']['hits']
 for hit in hits:
 record = hit['_source']
 records.append(record)
 return records, total

Calculate offsets for fetching lists of flights from MongoDB
def get_navigation_offsets(offset1, offset2, increment):
 offsets = {}
 offsets['Next'] = {'top_offset': offset2 + increment, 'bottom_offset':
 offset1 + increment}
 offsets['Previous'] = {'top_offset': max(offset2 - increment, 0),
 'bottom_offset': max(offset1 - increment, 0)} # Don't go < 0
 return offsets

110 | Chapter 4: Collecting and Displaying Records

http://localhost:5000/flights/JFK/LAX/2015-01-01?start=20&end=40
http://localhost:5000/flights/JFK/LAX/2015-01-01?start=20&end=40
http://bit.ly/2nRRk3E
http://bit.ly/2nRRk3E

Strip the existing start and end parameters from the query string
def strip_place(url):
 try:
 p = re.match('(.+)&start=.+&end=.+', url).group(1)
 except AttributeError, e:
 return url
 return p

The controller now employs the helper to generate and then bind the navigation vari‐
ables to the template, because we are now passing both the list of flights and the cal‐
culated offsets for the navigation links. Check out ch04/web/
on_time_flask_template.py:

Controller: Fetch all flights between cities on a given day and display them
@app.route("/flights/<origin>/<dest>/<flight_date>")
def list_flights(origin, dest, flight_date):

 start = request.args.get('start') or 0
 start = int(start)
 end = request.args.get('end') or 20
 end = int(end)
 width = end - start

 nav_offsets = get_navigation_offsets(start, end, config.RECORDS_PER_PAGE)

 flights = client.agile_data_science.on_time_performance.find(
 {
 'Origin': origin,
 'Dest': dest,
 'FlightDate': flight_date
 },
 sort = [
 ('DepTime', 1),
 ('ArrTime', 1),
]
)
 flight_count = flights.count()
 flights = flights.skip(start).limit(width)

 return render_template(
 'flights.html',
 flights=flights,
 flight_date=flight_date,
 flight_count=flight_count,
 nav_path=request.path,
 nav_offsets=nav_offsets

)

Our flight list template, ch04/web/templates/flights.html, calls a macro to render our
data. Note the use of |safe to ensure our HTML isn’t escaped:

Listing Flights | 111

http://bit.ly/2p44qGT
http://bit.ly/2p44qGT
http://bit.ly/2ocK3KK

 {% import "macros.jnj" as common %}
 {% if nav_offsets and nav_path -%}
 {{ common.display_nav(nav_offsets, nav_path, flight_count, query)|safe }}
 {% endif -%}

We place this in our Jinja2 macros file, further breaking up the task as the drawing of
two links inside a div:

ch04/web/templates/macros.jnj
<!-- Display two navigation links for previous/next page in the flight list -->
{% macro display_nav(offsets, path, count, query) -%}
 <div style="text-align: center;">
 {% for key, values in offsets.items() -%}
 {%- if values['bottom_offset'] >= 0 and values['top_offset'] >
 0 and count > values['bottom_offset'] -%}
 <a style="margin-left: 20px; margin-right: 20px;"
 href="{{ path }}?start={{ values
 ['bottom_offset'] }}&end={{ values['top_offset']
 }}{%- if query -%}?search=
 {{query}}{%- endif -%}">{{ key }}
 {% else -%}
 {{ key }}
 {% endif %}
 {% endfor -%}
 </div>
{% endmacro -%}

And we’re done. We can now paginate through our list of flights as we would in any
other flight website. We’re one step closer to providing the kind of user experience
that will enable real user sessions, and we’ve extended a graph connecting flights over
the top of our individual records. This additional structure will enable even more
structure later on, as we climb the data-value pyramid.

Searching for Flights
Browsing through a list of flights certainly beats manually looking up message_ids,
but it’s hardly as efficient as searching for flights of interest. Let’s use our data plat‐
form to add search.

Creating Our Index
Before we can store our documents in Elasticsearch, we need to create a search index
for them to reside in. Check out elastic_scripts/create.sh. Note that we create only a
single shard with a single replica. In production, you would want to distribute the
workload around a cluster of multiple machines with multiple shards, and to achieve
redundancy and high availability with multiple replicas of each shard. For our pur‐
poses, one of each is fine!

112 | Chapter 4: Collecting and Displaying Records

http://bit.ly/2oBJvMm

#!/usr/bin/env bash

curl -XPUT 'http://localhost:9200/agile_data_science/' -d '{
 "settings" : {
 "index" : {
 "number_of_shards" : 1,
 "number_of_replicas" : 1
 }
 }
}'

Go ahead and run the script, before we move on to publishing our on-time perfor‐
mance records to Elasticsearch:

elastic_scripts/create.sh

Note that if you want to start over, you can blow away the agile_data_science index
with:

elastic_scripts/drop.sh

And just like the create script, it calls curl:

#!/usr/bin/env bash

curl -XDELETE 'http://localhost:9200/agile_data_science/'

Publishing Flights to Elasticsearch
Using the recipe we created in Chapter 2, it is easy to publish our on-time perfor‐
mance flight data to Elasticsearch. Check out ch04/pyspark_to_elasticsearch.py:

Load the Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

Save the DataFrame to Elasticsearch
on_time_dataframe.write.format("org.elasticsearch.spark.sql")\
 .option("es.resource","agile_data_science/on_time_performance")\
 .option("es.batch.size.entries","100")\
 .mode("overwrite")\
 .save()

Note that we need to set es.batch.size.entries to 100, down from the default of
1000. This keeps Elasticsearch from being overwhelmed by Spark. You can find other
settings to adjust in the configuration guide.

Note that this might take some time, as there are several million records to index. You
might want to leave this alone to run for a while. You can interrupt it midway and
move on; so long as some records are indexed you should be okay. Similarly, if there
is an error, you should check the results of the following query; it might be possible to
disregard the error and just move on, if enough records have been indexed for the
rest of the examples.

Searching for Flights | 113

http://bit.ly/2pGuAjy
http://bit.ly/2pGLi25

Querying our data with curl is easy. This time, let’s look for flights originating in
Atlanta (airport code ATL), the world’s busiest airport:

curl \
 'localhost:9200/agile_data_science/on_time_performance/ \
 _search?q=Origin:ATL&pretty'

The output looks like so:

{
 "took": 7,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 379424,
 "max_score": 3.7330098,
 "hits": [
 {
 "_index": "agile_data_science",
 "_type": "on_time_performance",
 "_id": "AVakkdOGX8o-akD569e2",
 "_score": 3.7330098,
 "_source": {
 "Year": 2015,
 "Quarter": 3,
 "Month": 9,
 "DayofMonth": 23,
 "DayOfWeek": 3,
 "FlightDate": "2015-09-23",
 "UniqueCarrier": "DL",
 ...

Note the useful information our query returned along with the records found: how
long the query took (7 ms) and the total number of records that matched our query
(379,424).

Searching Flights on the Web
Next, let’s connect our search engine to the web.

First, configure pyelastic to point at our Elasticsearch server:

ch04/web/config.py
ELASTIC_URL = 'http://localhost:9200/agile_data_science'

Then import, set up, and query Elasticsearch via the /flights/search path in ch04/web/
on_time_flask_template.py:

114 | Chapter 4: Collecting and Displaying Records

http://bit.ly/2nRRk3E
http://bit.ly/2nRRk3E

@app.route("/flights/search")
def search_flights():

 # Search parameters
 carrier = request.args.get('Carrier')
 flight_date = request.args.get('FlightDate')
 origin = request.args.get('Origin')
 dest = request.args.get('Dest')
 tail_number = request.args.get('TailNum')
 flight_number = request.args.get('FlightNum')

 # Pagination parameters
 start = request.args.get('start') or 0
 start = int(start)
 end = request.args.get('end') or config.RECORDS_PER_PAGE
 end = int(end)

 nav_offsets = get_navigation_offsets(start, end, config.RECORDS_PER_PAGE)

 # Build our Elasticsearch query
 query = {
 'query': {
 'bool': {
 'must': []}
 },
 'sort': [
 {'FlightDate': {'order': 'asc', 'ignore_unmapped' : True} },
 {'DepTime': {'order': 'asc', 'ignore_unmapped' : True} },
 {'Carrier': {'order': 'asc', 'ignore_unmapped' : True} },
 {'FlightNum': {'order': 'asc', 'ignore_unmapped' : True} },
 '_score'
],
 'from': start,
 'size': config.RECORDS_PER_PAGE
 }
 if carrier:
 query['query']['bool']['must'].append({'match': {'Carrier': carrier}})
 if flight_date:
 query['query']['bool']['must'].append({'match': {'FlightDate': flight_date}})
 if origin:
 query['query']['bool']['must'].append({'match': {'Origin': origin}})
 if dest:
 query['query']['bool']['must'].append({'match': {'Dest': dest}})
 if tail_number:
 query['query']['bool']['must'].append({'match': {'TailNum': tail_number}})
 if flight_number:
 query['query']['bool']['must'].append(\n||||{...}\n||||) # where |
 # is a space

 results = elastic.search(query)
 flights, flight_count = process_search(results)

Searching for Flights | 115

 # Persist search parameters in the form template
 return render_template(
 'search.html',
 flights=flights,
 flight_date=flight_date,
 flight_count=flight_count,
 nav_path=request.path,
 nav_offsets=nav_offsets,
 carrier=carrier,
 origin=origin,
 dest=dest,
 tail_number=tail_number,
 flight_number=flight_number
)

Generalizing the navigation links, we are able to use a similar template for searching
flights as we did for listing them. We’ll need a form to search for flights against spe‐
cific fields, so we create one at the top of the page. We have parameterized the tem‐
plate with all of our search arguments, to persist them through multiple submissions
of the form. Check out ch04/web/templates/search.html:

<form action="/flights/search" method="get">
 <label for="Carrier">Carrier</label>
 <input name="Carrier" maxlength="3" style="width: 40px; margin-right: 10px;"
 value="{{carrier}}"></input>
 <label for="Origin">Origin</label>
 <input name="Origin" maxlength="3" style="width: 40px; margin-right: 10px;"
 value="{{origin}}"></input>
 <label for="Dest">Dest</label>
 <input name="Dest" maxlength="3" style="width: 40px; margin-right: 10px;"
 value="{{dest}}"></input>
 <label for="FlightDate">FlightDate</label>
 <input name="FlightDate" style="width: 100px; margin-right: 10px;"
 value="{{flight_date}}"></input>
 <label for="TailNum">TailNum</label>
 <input name="TailNum" style="width: 100px; margin-right: 10px;"
 value="{{tail_number}}"></input>
 <label for="FlightNum">FlightNum</label>
 <input name="FlightNum" style="width: 50px; margin-right: 10px;"
 value="{{flight_number}}"></input>
 <button type="submit" class="btn btn-xs btn-default" style="height: 25px">
 Submit
 </button>
</form>

Figure 4-9 shows the result.

116 | Chapter 4: Collecting and Displaying Records

http://bit.ly/2oEbvlD

Figure 4-9. Searching for flights

Conclusion
We have now collected, published, indexed, displayed, listed, and searched flight
records. They are no longer abstract. We can search for flights, click on individual
flights, and explore as we might any other dataset. More importantly, we have piped
our raw data through our platform and transformed it into an interactive application.

This application forms the base of our value stack. We will use it as the way to
develop, present, and iterate on more advanced features throughout the book as we
build value while walking up the data-value pyramid. With the base of the pyramid in
place, we can move on to building charts.

Conclusion | 117

CHAPTER 5

Visualizing Data with Charts and Tables

In the next step, our second agile sprint, we will start building charts from our data
(Figure 5-1).

Figure 5-1. Level 2: visualizing with charts

Charts are our first view into our data in aggregate, mapping the properties of many
records into visual representations that help us understand and navigate them. Our
goals in this step are to publish charts to generate interest in our data and get users
interacting with it, to build reusable tools that will help us explore our data interac‐
tively in reports in the next step, and to begin extracting structure and entities so that
we can create new features and insights with this structure.

119

Code examples for this chapter are available at Agile_Data_Code_2/ch05. Clone the
repository and follow along!

git clone https://github.com/rjurney/Agile_Data_Code_2.git

Chart Quality: Iteration Is Essential
A good chart is one that tells a story, that yields insight, and that users find interesting
enough to share and respond to. In practice, most charts fail to achieve this, and have
little value. Rare is the chart that tells a story. This is because most people make a
chart and move on… when in reality, you have to iteratively create and improve
charts to achieve useful visualizations. Expect to throw many charts away before you
find a few good ones—don’t try to specify them up front or you will be disappointed.
Instead, try to use your intuition and curiosity to add charts organically, as you
engage in ad hoc, interactive exploratory data analysis.

You can create charts in an ad hoc way at first, but as you progress, your workflow
should become increasingly automated and reproducible. In Agile Data Science, we
take a web-first approach to creating visualizations. While it is easier to create charts
as images using matplotlib or R than it is to create web charts, this is changing fast.
With modern JavaScript chart libraries, there isn’t much overhead to creating a web-
based chart, so that is what we do from the beginning.

Well-formed URLs with slugs or query parameters can be made to generalize, so one
chart works for different slices of data according to different parameters and options.
Once we master charts, in the next chapter, we will improve and extend our success‐
ful charts into full-blown interactive reports.

Scaling a Database in the Publish/Decorate Model
A concept related to database normalization that we must understand is how we
compute, publish, and consume data for charts and other services, and where we put
the data processing. The more processing you do in batch and the less processing you
do at the publishing/database layer, the less you have to spend time operating a data‐
base. There are several patterns of data access that come with their own methods of
data processing and database operations. We will briefly discuss them all and illus‐
trate their operation both in batch and in serving published results in real time.

Which form is right for you depends on your application and data access patterns;
your hardware budget; and the volume of your desire to depend on, operate, and tune
a database. The less batch processing we do, the less efficient storage form we use, and
the more features of a database we depend on, the more we have to tune and operate
the database. This could be great, because we like operating databases. Or, from my
perspective most of the time, it could be bad, because I’d rather not spend more than
a few minutes a week operating a database.

120 | Chapter 5: Visualizing Data with Charts and Tables

http://bit.ly/2ok0YYY
http://bit.ly/2ocx9xs
http://bit.ly/2pM1u38

We’re going to discuss how to store a time series chart at decreasing levels of scalabil‐
ity and increasing levels of sophistication of the required database. For instance,
operating a key/value store like Cassandra or Voldemort is extremely easy. There is
no single point of failure, so you have room to sleep and ignore your database. By
contrast, when operating a Bigtable clone where you have a master, there is a single
point of failure, which is more likely to happen. When your master fails, your appli‐
cation will be down at least momentarily. This will require administration tasks to fix.
If you employ an even more featureful database like MongoDB or MySQL, you will
have to administer those features you make use of by, for instance, creating indexes to
enable efficient access.

Note, though, that any database can be used simply as a key/value store, no matter
how many features it offers. MySQL is very featureful, but if you don’t employ its fea‐
tures, it makes a very simple and efficient key/value store. You simply store a JSON
representation of your data and access it via a SELECT on its primary key. This may
make sense for your application if you’re a MySQL expert.

The point I want to make is that the more you compute in batch and the less you use
database features, the simpler your application will be to operate and the more scala‐
ble it will be. Use database features thoughtfully. Prefer batch computing to employ‐
ing database features and you will have an application that operates itself, instead of
one that requires your constant attention.

First Order Form
The most scalable form of data is where you prepare the records for your chart, table,
or prediction in their entirety and store those as a single, nested object within a key/
value or document store (although technically, you can use any database as a key/
value store by encoding the value in JSON and storing the record under its primary
key). For instance, to store a time series chart’s data, we would compute a sorted list
of the values for the chart and encapsulate this list in an object with a primary key,
through which we would access the chart’s data in one query.

Figure 5-2 shows an example of this kind of prepare/publish model. In this form, we
prepare an object containing a table of flights in sorted order inside a field called
Flights. The object also has a primary key field called TailNum, which we use to
access it.

Scaling a Database in the Publish/Decorate Model | 121

Figure 5-2. An object prepared for a document store

This form is the most scalable of all because you need use only a key/value store to
hold the data, and to query this data you use a single, unique key. Serving data from a
key/value store is a much simpler problem than most relational databases, for
instance, solve. This makes them easy to operate in systems without a single point of
failure. This translates into simple operations. Remember: first order form makes
operations easy.

Second Order Form
The next most scalable form takes advantage of key range scans in Google Bigtable
clones like Apache HBase. Data in HBase tables is stored sorted by key, in alphabeti‐
cal order. This is a critical feature because it means you can access a range of values
very efficiently, the records for similar keys being near (next to) one another on disk.

Key design then becomes the mechanism through which you can perform many
operations you might expect from relational databases. Apache Phoenix provides a
SQL abstraction on top of HBase, which means you don’t have to employ tricks in
Java to make HBase go. Phoenix is the go-to way to use HBase for application devel‐
opers (who need to get things done quickly). An excellent “Introduction to HBase
Schema Design” by Amandeep Khurana is available if you’d like to dive deeper.

We don’t employ HBase in the book, but Figure 5-3 shows what our last example
might look like in HBase land. To reproduce the query, we would compose a unique
key for our data so that when stored in sorted order and retrieved by a scan against

122 | Chapter 5: Visualizing Data with Charts and Tables

https://hbase.apache.org/book.html#scan
http://bit.ly/18N6Ctq
http://hbase.apache.org/
http://phoenix.apache.org/
http://bit.ly/2pxRIBo
http://bit.ly/2pxRIBo

the TailNum it would produce a sorted list of flights identical to the one in the previ‐
ous example.

Figure 5-3. Documents stored in HBase with compound key prepared to enable range
scan access pattern

Range scans can be used to handle many types of query through novel key composi‐
tion. They are surprisingly powerful, and yet they scale surprisingly well. HBase
applications handling petabytes of data exist and operate with relative ease. We could
easily have employed HBase and Apache Phoenix to produce many of the examples
in this book. Remember: if first order form won’t work for you, second order form
becomes the go-to form.

Third Order Form
The next most efficient way to store data is to summarize it in terms of time or cate‐
gory and store the result in a database like MySQL or MongoDB that employs B-tree
indexes to enable efficient lookup of portions of rows in a table, or to facilitate joins.
This could replicate a range scan, or it could enable arbitrary, more complex queries
that don’t resemble a range scan on a sorted table at all. These databases often include
the capability to GROUP BY and compute aggregate metrics, similar to what we’ve done
with Spark SQL.

Queries against relational and featureful document stores might compute any given
metric at the time of query, or a hybrid approach might occur in which precomputed
summaries are delivered by selecting a range of records, similar to a key range scan.
We won’t demonstrate third order form in this book, but you’re probably familiar
with it already. It can break the publish/decorate model we’ve used in this book, or it
might simply serve range scans on preaggregated metrics.

Choosing a Form
In general, the lower order form you choose, the easier the system is to scale, and to
scale horizontally. But remember: you can always choose a more featureful database
and not use its features, except in cases of dire need. For instance, you might use
MySQL as a key/value store, or to serve range scans of preaggregated metrics. It will
scale easily when used this way. You would have the option, however, of using a GROUP
BY if you needed to, in order to more rapidly implement a new feature of your appli‐

Scaling a Database in the Publish/Decorate Model | 123

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Database_index

cation. You could always scale the feature by moving the processing “back in the
stack” to the batch layer if it proves popular.

The key lesson here is to use database features thoughtfully, because the more you use
them, the more difficult your application will be to scale. Batch computation is rela‐
tively easy compared to keeping a large and featureful database instance going under
heavy load. You will need to know your database well, and understand the conse‐
quences of each feature on the system overall.

Exploring Seasonality
We have to begin somewhere, so let’s begin with a question: which is the busiest
month for air travel?

This question involves seasonality. Seasonality is present when a measure changes
repeatedly and consistently, depending on the time of year. For instance, Christmas
light sales would display strong seasonality (although I hang them year round), with
sales peaking in December every year.

This is a chance to show how SQL and NoSQL dataflows fit together and complement
one another. Let’s make our first chart, in which we count the total flights by month
for the year 2015. Flights by month is very easily expressible as SQL.

Querying and Presenting Flight Volume
PYSPARK_DRIVER_PYTHON=ipython pyspark

Our PySpark script, ch05/total_flights.py, looks like this:

Load the Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

Use SQL to look at the total flights by month across 2015
on_time_dataframe.registerTempTable("on_time_dataframe")
total_flights_by_month = spark.sql(
 """SELECT Month, Year, COUNT(*) AS total_flights
 FROM on_time_dataframe
 GROUP BY Year, Month
 ORDER BY Year, Month"""
)

This map/asDict trick makes the rows print a little prettier. It is optional.
flights_chart_data = total_flights_by_month.rdd.map(lambda row: row.asDict())
flights_chart_data.collect()

This gets us the raw data for our chart:

[{'Month': 1, 'Year': 2015, 'total_flights': 469968},
 {'Month': 2, 'Year': 2015, 'total_flights': 429191},
 {'Month': 3, 'Year': 2015, 'total_flights': 504312},

124 | Chapter 5: Visualizing Data with Charts and Tables

http://bit.ly/2pe6KPO

 {'Month': 4, 'Year': 2015, 'total_flights': 485151},
 {'Month': 5, 'Year': 2015, 'total_flights': 496993},
 {'Month': 6, 'Year': 2015, 'total_flights': 503897},
 {'Month': 7, 'Year': 2015, 'total_flights': 520718},
 {'Month': 8, 'Year': 2015, 'total_flights': 510536},
 {'Month': 9, 'Year': 2015, 'total_flights': 464946},
 {'Month': 10, 'Year': 2015, 'total_flights': 486165},
 {'Month': 11, 'Year': 2015, 'total_flights': 467972},
 {'Month': 12, 'Year': 2015, 'total_flights': 479230}]

Save it to MongoDB:

Save chart to MongoDB
import pymongo_spark
pymongo_spark.activate()
flights_chart_data.saveToMongoDB('mongodb://localhost:27017/ \
 agile_data_science.flights_by_month')

and verify it’s there:

> db.flights_by_month.find().sort({"Year": 1, "Month": 1})

{ "_id" : ObjectId(
 "56ff1246b050473d23777138"
),
 "total_flights" : 469968,
 "Month" : 1,
 "Year" : 2015
}
{
 "_id" : ObjectId("56ff1246b050473d23777134"),
 "total_flights" : 429191,
 "Month" : 2,
 "Year" : 2015
}
{
 "_id" : ObjectId("56ff1246b050473d23777137"),
 "total_flights" : 504312,
 "Month" : 3,
 "Year" : 2015
}
{
 "_id" : ObjectId("56ff1246b050473d2377713a"),
 "total_flights" : 485151,
 "Month" : 4,
 "Year" : 2015
}
...

Now let’s set up new Flask controllers to serve our chart’s HTML page, and its data as
JSON:

Controller: Fetch a flight chart
@app.route("/total_flights")

Exploring Seasonality | 125

def total_flights():
 total_flights = client.agile_data_science.flights_by_month.find({},
 sort = [
 ('Year', 1),
 ('Month', 1)
])
 return render_template('total_flights.html', total_flights=total_flights)

Serve the chart's data via an asynchronous request (formerly known as 'AJAX')
@app.route("/total_flights.json")
def total_flights_json():
 total_flights = client.agile_data_science.flights_by_month.find({},
 sort = [
 ('Year', 1),
 ('Month', 1)
])
 return json_util.dumps(total_flights, ensure_ascii=False)

Note that before we make a chart, we’re going to create a simple table, as we did in the
last chapter:

{% extends "layout.html" %}
{% block body %}
 <div>
 <p class="lead">Total Flights by Month</p>
 <table class="table table-condensed table-striped" style="width: 200px;">
 <thead>
 <th>Month</th>
 <th>Total Flights</th>
 </thead>
 <tbody>
 {% for month in total_flights %}
 <tr>
 <td>{{month.Month}}</td>
 <td>{{month.total_flights}}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
{% endblock %}

Figure 5-4 shows the result.

126 | Chapter 5: Visualizing Data with Charts and Tables

Figure 5-4. Monthly total flights

As far as presenting data in tables, that is it! This is the place to start, but I can’t look
at that table and notice any trends—can you? Let’s use D3 to make a time series chart.
We’ll start by making a controller in Flask to serve our chart page, and a derivative of
our table controller that serves the JSON data for our chart:

Controller: Fetch a flight chart
@app.route("/total_flights_chart")
def total_flights_chart():
 total_flights = client.agile_data_science.flights_by_month.find({},
 sort = [
 ('Year', 1),
 ('Month', 1)
])
 return render_template('total_flights_chart.html', total_flights=total_flights)

Serve the chart's data via an asynchronous request (formerly known as 'AJAX')
@app.route("/total_flights.json")
def total_flights_json():
 total_flights = client.agile_data_science.flights_by_month.find({},
 sort = [
 ('Year', 1),
 ('Month', 1)
])
 return json_util.dumps(total_flights, ensure_ascii=False)

Exploring Seasonality | 127

The template for our chart is relatively simple: it starts as a paste from an example by
Mike Bostock. In the last edition we started with an example by Mike, and then
showed how you might have built it from the ground up—but we did not build it
from the ground up (we did credit Mike’s example). You never build them from the
ground up, so in this edition I’m going to tell the truth about D3: nearly all D3 charts
begin as examples from Mike Bostock. Taking examples and adapting them to your
needs is a skill fundamental not just to visualization, but to all data science and pro‐
gramming in general. Nobody knows everything, and the job involves a lot of figur‐
ing things out. This edition aims to teach you to do that.

Our template reproduces the CSS style code from the example:

{% extends "layout.html" %}
{% block body %}
<style>

.chart rect {
 fill: steelblue;
}

.chart text {
 fill: white;
 font: 10px sans-serif;
 text-anchor: middle;
}

</style>

 <div>
 <p class="lead">Total Flights by Month</p>
 <div id="chart"><svg class="chart"></svg></div>
 </div>
 <script src="/static/app.js"></script>
 <script>

 </script>
{% endblock %}

It also puts the JavaScript from the same example into ch05/web/static/app.js, with a
few changes. d3.tsv won’t work for us, unless we copy the example’s data over. We
need to edit just a few things to get the example working. Changed lines are highligh‐
ted in bold:

var width = 960,
 height = 350;

var y = d3.scale.linear()
 .range([height, 0]);
 // We define the domain once we get our data in d3.json, below

var chart = d3.select(".chart")

128 | Chapter 5: Visualizing Data with Charts and Tables

https://bost.ocks.org/mike/bar/3/
https://bost.ocks.org/mike/
http://bit.ly/2opErZZ

 .attr("width", width)
 .attr("height", height);

d3.json("/total_flights.json", function(data) {
 y.domain([0, d3.max(data, function(d) { return d.total_flights; })]);

 var barWidth = width / data.length;

 var bar = chart.selectAll("g")
 .data(data)
 .enter()
 .append("g")
 .attr("transform", function(d, i) {
 return "translate(" + i * barWidth + ",0)"; });

 bar.append("rect")
 .attr("y", function(d) { return y(d.total_flights); })
 .attr("height", function(d) { return height - y(d.total_flights); })
 .attr("width", barWidth - 1);

 bar.append("text")
 .attr("x", barWidth / 2)
 .attr("y", function(d) { return y(d.total_flights) + 3; })
 .attr("dy", ".75em")
 .text(function(d) { return d.total_flights; });
});

The first step is pointing the script at our data using the d3.json method, and point‐
ing it at our server at /total_flights.json. After that, we just need to change the value
field from y to total_flights throughout the file, and we’re done! This produces a
chart detailing how flight volume changes per month (Figure 5-5).

Exploring Seasonality | 129

http://bit.ly/2p3T2Ld

Figure 5-5. The resulting chart after adapting an example from Mike Bostock

We’ve created a simple chart in D3. Note that we haven’t gotten fancy, and when you
first create a chart you shouldn’t. Start with something that simply visualizes the data,
and then add bells and whistles once you’ve found a chart that merits it.

Iterating on our first chart
True to our introduction, we’re going to iterate on this chart to help answer our origi‐
nal question, “Which is the busiest month for air travel?” Can you tell by looking at
this chart what the answer to that question is? Looking very carefully, I see it’s July,
but I can’t easily tell at a glance.

What our question is really asking is, for a given year, what month is the mode? Wiki‐
pedia defines mode as “the value that appears most often in a set of data.” We can
improve our chart by highlighting the mode, since it isn’t obvious from the bars
alone. Let’s edit app.js to highlight the mode, so it is apparent at a glance. We need to
create a function called varColor, which will return a different color when the value
is the maximum. We apply this to the chart’s bar/rectangle selection using D3’s style
method:

d3.json("/total_flights.json", function(data) {

 var defaultColor = 'steelblue';
 var modeColor = '#4CA9F5';

 var maxY = d3.max(data, function(d) { return d.total_flights; });
 y.domain([0, maxY]);

130 | Chapter 5: Visualizing Data with Charts and Tables

https://github.com/d3/d3-selection#selection_style

 var varColor = function(d, i) {
 if(d['total_flights'] == maxY) { return modeColor; }
 else { return defaultColor; }
 }
 var barWidth = width / data.length;
 var bar = chart.selectAll("g")
 .data(data)
 .enter()
 .append("g")
 .attr("transform", function(d, i) {
 return "translate(" + i * barWidth + ",0)"; });

 bar.append("rect")
 .attr("y", function(d) { return y(d.total_flights); })
 .attr("height", function(d) { return height - y(d.total_flights); })
 .attr("width", barWidth - 1)
 .style("fill", varColor);

 bar.append("text")
 .attr("x", barWidth / 2)
 .attr("y", function(d) { return y(d.total_flights) + 3; })
 .attr("dy", ".75em")
 .text(function(d) { return d.total_flights; });
});

The result makes the answer to our question readily apparent (see Figure 5-6).

Figure 5-6. The second iteration of our chart

Exploring Seasonality | 131

This completes the titular element of the second level of the data-value pyramid. Now
let’s explore another element: entity extraction.

Extracting Metal (Airplanes [Entities])
There is another element to the charts layer of the data-value pyramid: entity extrac‐
tion. Entity extraction is implicit during chart creation, in the sense that we are
grouping atomic records on properties to produce aggregates. Entities often emerge
as a next step in our analysis. For instance, having listed and searched flights in the
previous chapter and having aggregated flights in this one, it is natural to dig into
some other aspects of the flights themselves: airplanes, airlines, and airports.
Figure 5-7 shows the entities we might want to extract.

Figure 5-7. Entities emerge!

Let’s focus on one entity to start: airplanes. An airplane is referred to as the “metal” of
a flight, and a tail number is a unique identifier for an airplane. We’re going to extract
airplanes by their tail number, in order to demonstrate how to extract entities from
raw data. We will create a new entity for each tail number, and it will list all flights for
that plane.

Extracting Tail Numbers
We start by creating an index of all flights for a given airplane, represented by its
TailNum field. We’ll create a tuple with a tail number as the first field, and every
unique flight that tail number made in 2015 as the second field, sorted by date.

Data processing: batch or realtime?
We are now presented with a choice: where to implement this feature. This decision is
a common one you will experience in the field working on real data applications. The
general rule is to prototype anywhere, at any layer from Spark to HTML mocks, but
to push to batch processing as you are able.

132 | Chapter 5: Visualizing Data with Charts and Tables

The first option in this case is using PySpark to group flights by tail number. This
method puts all of our processing at the far backend in batch, which would be desira‐
ble for very large data. The second method is to use a MongoDB query or Elastic‐
search facets to query our flight record index just as we have before, but with
different handling in our web application.

In this instance, we choose to group flights in PySpark and store them in MongoDB.
We do this because we intend to use this data in other analyses via joins, and while we
can read data from Elasticsearch in PySpark, it is important to have a copy of inter‐
mediate data on reliable bulk storage, where it is truly persistent and easily accessible.
We know we can easily and arbitrarily scale operations in Spark, so doing data pro‐
cessing in this layer is conservative.

Grouping and sorting data in Spark
We’ll need to group by tail number to get a list of flights per airplane, identified by
carrier, date, origin/destination, and flight number. Note that for round-trip flights,
where a plane turns around and goes directly back to where it came from, there are
often two flights per day with the same carrier and flight number; one for coming and
one for going.

Check out ch05/extract_airplanes.py. First we load the data, and then we filter down
to the fields we need. Dropping unneeded, extra fields is always a good idea to keep
things performant:

Load the Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

Filter down to the fields we need to identify and link to a flight
flights = on_time_dataframe.rdd.map(lambda x:
 (x.Carrier, x.FlightDate, x.FlightNum, x.Origin, x.Dest, x.TailNum)
)

Now, we group flights by tail number and then sort these flights by date, flight num‐
ber, then origin/destination airport codes. Note that the first step in achieving this is
to create a tuple where the first field is the tail number, and the second field is a one-
tuple list. What good is a one-tuple list? Lists in Python can be added like so:

a = [0]
b = [1]
c = a + b
print(c)

The result is:

 [0, 1]

Here we will add lists in our reduce step, so we need to initialize them in our map
step:

Extracting Metal (Airplanes [Entities]) | 133

http://bit.ly/2pP9i3i

flights_per_airplane = flights\
 .map(lambda nameTuple: (nameTuple[5], [nameTuple[0:5]]))\

Also note that we drop the last field, TailNum, in the list of tuples. TailNum is the same
for all records in a group and is stored as the key, so it is redundant. This is a style
option; you can leave TailNum in if you like.

Next, we aggregate a list per key by adding them in a reduce step:

 .reduceByKey(lambda a, b: a + b)\

Finally, we produce a dict we can store in Mongo. We also sort the list of flights we
just aggregated by date, flight number, then origin and destination:

 .map(lambda tuple:
 {
 'TailNum': tuple[0],
 'Flights': sorted(tuple[1], key=lambda x: (x[1], x[2], x[3], x[4]))
 }
)

Check out what we’ve created (this may take a few minutes):

 > db.flights_per_airplane.first()

{'Flights': [(u'AA', u'2015-01-01', 262, u'RSW', u'DFW'),
 (u'AA', u'2015-01-01', 2414, u'DFW', u'EWR'),
 (u'AA', u'2015-01-02', 1060, u'LAX', u'TPA'),
 (u'AA', u'2015-01-02', 1161, u'MIA', u'TPA'),
 (u'AA', u'2015-01-02', 1161, u'TPA', u'MIA'),
 (u'AA', u'2015-01-02', 1205, u'EWR', u'MIA'),
 (u'AA', u'2015-01-02', 1370, u'MIA', u'ORD'),
 (u'AA', u'2015-01-02', 2271, u'ORD', u'LAX'),
 (u'AA', u'2015-01-03', 346, u'ORD', u'LGA'),
 (u'AA', u'2015-01-03', 1192, u'LAX', u'ORD'),
 (u'AA', u'2015-01-03', 1209, u'TPA', u'LAX'),
 ...],
 'TailNum': u'N3MDAA'}

Publishing airplanes with Mongo
Finally, we store these records to MongoDB, where we can fetch them by tail number:

import pymongo_spark
pymongo_spark.activate()
flights_per_airplane.saveToMongoDB(
 'mongodb://localhost:27017/agile_data_science.flights_per_airplane'
)

Now we’ll check on our data in MongoDB:

mongo agile_data_science

> db.flights_per_airplane.findOne()

134 | Chapter 5: Visualizing Data with Charts and Tables

{
 "_id" : ObjectId("5700092b8821240a5941fed2"),
 "TailNum" : "N249AU",
 "Flights" : [
 [
 "US",
 "2015-01-03",
 837,
 "STT",
 "PHL"
],
 ...
]
}

Serving airplanes with Flask
We can see how to query airplanes by tail number, which is an important access pat‐
tern given that the tail number is a unique identifier for an airplane. This kind of data
is foundational—it lets us add features to a page by directly rendering precomputed
data. We’ll start by displaying these flights as list via the /airplane/flights controller in
ch05/web/chart_flask.py:

Controller: Fetch a flight and display it
@app.route("/airplane/flights/<tail_number>")
def flights_per_airplane(tail_number):
 flights = client.agile_data_science.flights_per_airplane.find_one(
 {'TailNum': tail_number}
)
 return render_template(
 'flights_per_airplane.html', flights=flights, tail_number=tail_number
)

Our template is simple. It extends our application layout and relies on Bootstrap for
styling the table. Once again, we link to the individual flight record page from the
flight number in our table:

{% extends "layout.html" %}
{% block body %}
 <div>
 <p class="lead">Flights by Tail Number {{tail_number}}</p>
 <table class="table table-condensed table-striped">
 <thead>
 <th>Carrier</th>
 <th>Date</th>
 <th>Flight Number</th>
 <th>Origin</th>
 <th>Destination</th>
 </thead>
 <tbody>
 {% for flight in flights['Flights'] %}
 <tr>

Extracting Metal (Airplanes [Entities]) | 135

http://bit.ly/2pPyOFG

 <td>{{flight[0]}}</td>
 <td>{{flight[1]}}</td>
 <td>{{flight[2]}}</td>
 <td>
 <a href="/on_time_performance?Carrier={{flight[0]}}
&FlightDate={{flight[1]}}
&FlightNum={{flight[2]}}">{{flight[2]}}
 </td>
 <td>{{flight[3]}}</td>
 <td>{{flight[4]}}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
{% endblock %}

The result is a page for an airplane detailing its flights for the year (Figure 5-8).

Figure 5-8. Flights by tail number

Ensuring database performance with indexes
However, there is one problem. Our query is slow! We need to add an index to
Mongo to improve the lookup of the flight records by tail number. Check out ch05/
mongo.js.

136 | Chapter 5: Visualizing Data with Charts and Tables

http://bit.ly/2oJSN9a
http://bit.ly/2oJSN9a

This is a good time to talk about indexes. Indexes in Mongo are similar to indexes in
MySQL or any other relational database. They use B-trees to optimize query lookups.
When queries are slow, indexes come in handy.

First, we use explain to verify that the query is not using an index. The output shows
that 13,533 objects are being scanned to return one record, using a BasicCursor cur‐
sor:

> db.flights_per_airplane.find({"TailNum": "N361VA"}).explain()

{
 "cursor" : "BasicCursor",
 "isMultiKey" : false,
 "n" : 4,
 "nscannedObjects" : 13533,
 "nscanned" : 13533,
 "nscannedObjectsAllPlans" : 13533,
 "nscannedAllPlans" : 13533,
 "scanAndOrder" : false,
 "indexOnly" : false,
 "nYields" : 105,
 "nChunkSkips" : 0,
 "millis" : 28,
 "server" : "Russells-MacBook-Pro-OLD-506.local:27017",
 "filterSet" : false
}

Then we add an index with ensureIndex. Creating indexes is simple—just select the
fields you will query with, and put them as keys in a JSON object with a value of 1:

> db.flights_per_airplane.ensureIndex({"TailNum": 1})

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}

Finally, we explain again to make sure the query is using an index:

> db.flights_per_airplane.find({"TailNum": "N361VA"}).explain()

{
 "cursor" : "BtreeCursor TailNum_1",
 "isMultiKey" : false,
 "n" : 4,
 "nscannedObjects" : 4,
 "nscanned" : 4,
 "nscannedObjectsAllPlans" : 4,
 "nscannedAllPlans" : 4,
 "scanAndOrder" : false,
 "indexOnly" : false,
 "nYields" : 0,

Extracting Metal (Airplanes [Entities]) | 137

http://bit.ly/2pP9PSA
https://docs.mongodb.com/v3.0/core/cursors/
http://bit.ly/2qWvEjN

 "nChunkSkips" : 0,
 "millis" : 3,
 "indexBounds" : {
 "TailNum" : [
 [
 "N361VA",
 "N361VA"
]
]
 },
 "server" : "Russells-MacBook-Pro-OLD-506.local:27017",
 "filterSet" : false
}

Now our query uses the TailNum_1 index, and only scans four objects. Thus, it
returns instantly, and our app will perform well.

You should always add indexes when you create new collections. If you forget, you
may sometimes notice and sometimes not. This is because even if a query has to scan
an entire table to return a result, it will still be fast enough if there are only a few
users. When there are many users, though, these things come to light, so it is best to
create an index when you create the collection.

Linking back in to our new entity
We’ve got one more thing to do: link to a tail number page from a flight’s page. We’ll
need to edit ch05/web/templates/flight.html and ch05/web/templates/search.html:

{% extends "layout.html" %}
{% block body %}
 <div>
 <p class="lead">Flight {{flight.FlightNum}}</p>
 <table class="table">
 <thead>
 <th>Airline</th>
 <th>Origin</th>
 <th>Destination</th>
 <th>Tail Number</th>
 <th>Date</th>
 <th>Air Time</th>
 <th>Distance</th>
 </thead>
 <tbody>
 <tr>
 <td>{{flight.Carrier}}</td>
 <td>{{flight.Origin}}</td>
 <td>{{flight.Dest}}</td>
 <td>{{flight.TailNum}}

 </td>
 <td>{{flight.FlightDate}}</td>

138 | Chapter 5: Visualizing Data with Charts and Tables

http://bit.ly/2oSixlM
http://bit.ly/2pemdzp

 <td>{{flight.AirTime}}</td>
 <td>{{flight.Distance}}</td>
 </tr>
 </tbody>
 </table>
 </div>
{% endblock %}

This produces the result in Figure 5-9.

Figure 5-9. Linking back to airplane pages from the flight page

Information architecture
Now that our airplanes are on the web, we’ve got a place to put any interesting data
tables, charts, and recommendations we create as we climb the data-value pyramid.
We’re creating good information architecture, which Wikipedia defines as “the struc‐
tural design of shared information environments.” As we build up our shared infor‐
mation environment (our web application and, within the team, our deep storage), if
we have a logical structure to the application we make it naturally browsable and
shareable. It will make sense to our users, who will pivot between the entities we’ve
created as they ask questions and find answers.

Assessing Our Airplanes
Now that we’re thinking about airplanes, let’s assess the intermediate dataset we’ve just
created. Just how many airplanes are there? We can get a count by running ch05/
assess_airplanes.py:

Extracting Metal (Airplanes [Entities]) | 139

http://bit.ly/2pyB9p2
http://bit.ly/2oSjYkc
http://bit.ly/2oSjYkc

Load the Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
on_time_dataframe.registerTempTable("on_time_performance")

Dump the unneeded fields
tail_numbers = on_time_dataframe.map(lambda x: x.TailNum)
tail_numbers = tail_numbers.filter(lambda x: x != '')

distinct() gets us unique tail numbers
unique_tail_numbers = tail_numbers.distinct()

Now we need a count() of unique tail numbers
airplane_count = unique_tail_numbers.count()
print("Total airplanes: {}".format(airplane_count))

Which gives us:

Total airplanes: 4897

Wow, that’s a lot of airplanes! Now I’m wondering things like: Which airplanes are
they? Who made them? How much are all those airplanes worth in total? To answer
that first question, we’ll need to enrich our data with another source: the FAA Regis‐
try.

Data Enrichment
Now that we have tail numbers of airplanes, we want more information about the
planes! This information is not contained in the on-time flight performance records,
so we need to enrich our dataset with another. Techopedia defines data enrichment as
a “term that refers to processes used to enhance, refine or otherwise improve raw
data.” When we say enrich, we mean bring in another dataset that enhances what
we’ve already got—in other words, a join and some additional processing called
munging.

Reverse Engineering a Web Form
The data we need is contained in the FAA Registry for airplanes. Check out all the
cool stuff in the registry: manufacturer, model, year manufactured, owner, and even
the engine manufacturer and model! This opens up many possibilities for our analy‐
sis. We need this data.

There’s just one problem: the data is not available for download. This is often the case,
and this is one reason for the saying about 90% of data science being “munging.” To
get this dataset, we’ll need to scrape it, or extract it from the web, one N-Number at a
time. We can easily do this in Python.

140 | Chapter 5: Visualizing Data with Charts and Tables

http://bit.ly/2pwWiTp
http://bit.ly/2oSrDit

We are not including a script for these operations in the code
examples, because we don’t want numerous readers to scrape the
FAA Registry (which might result in a service disruption from
overload). You can copy and paste or type out code from the book
to get started scraping other pages, but please don’t scrape the FAA
Registry.

Before we can start coding, we need to inspect the result of the inquiry form
(Figure 5-10). The URL for our search for N933EV is http://bit.ly/2pPnQQm (see
Figure 5-11). You can see that the N-Number is encoded in the URL query parame‐
ters as NNumbertxt, which means this form uses an HTTP GET request. If somehow
you’re unfamiliar with how the web works, check out the method definitions in sec‐
tion 9 of RFC 2616. Anyone not familiar with web forms should skim sections 3 and
4 of the RFC. The other type of form is a POST form, but we’ll get to those later.
Scraping a GET form is simple.

Figure 5-10. FAA Registry N-Number inquiry

Data Enrichment | 141

http://bit.ly/2pPnQQm
http://bit.ly/2oINiJM

Figure 5-11. FAA Registry results

Gathering Tail Numbers
In order to use what we’ve learned about the inquiry form, we need to create a list of
tail numbers for our scraper to read and use as the NNumbertxt value.

We do this with ch05/save_tail_numbers.py:

Load the Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
on_time_dataframe.registerTempTable("on_time_performance")

Dump the unneeded fields
tail_numbers = on_time_dataframe.map(lambda x: x.TailNum)
tail_numbers = tail_numbers.filter(lambda x: x != '')

distinct() gets us unique tail numbers
unique_tail_numbers = tail_numbers.distinct()

Store as JSON objects via a dataframe. Repartition to 1 to get 1 JSON file.
unique_records = unique_tail_numbers.map(lambda x: {'TailNum': x})
unique_records.toDF().repartition(1).write.json("data/tail_numbers.json")

142 | Chapter 5: Visualizing Data with Charts and Tables

http://bit.ly/2oJTQGn

Now, from bash, run:

$ ls data/tail_numbers.json/part*

data/tail_numbers.json/part-r-00000-1f29285f-55b2-4092-8c40-9d4b4c957f90

Let’s take a look:

$ head -5 data/tail_numbers.json/part*

This results in:

{"TailNum":"N933EV"}
{"TailNum":"N917WN"}
{"TailNum":"N438WN"}
{"TailNum":"N3CHAA"}
{"TailNum":"N875AA"}

Let’s change that filename to something easier to remember:

cp data/tail_numbers.json/part* data/tail_numbers.jsonl

Now we’re ready to start scraping!

Automating Form Submission
The Python requests package is excellent at fetching web pages. (The other way to
scrape in Python is to use Selenium, which automates web browsers; we’ll get to this
later). The Python BeautifulSoup package handily parses HTML for extraction.

Stringing them together to scrape data is simple. Let’s take a look at our scraper script,
step by step.

First we need to load the JSON file we generated in PySpark, using the utilities we saw
in Chapter 3:

import sys, os, re
import time

sys.path.append("lib")
import utils

import requests
from bs4 import BeautifulSoup

tail_number_records = utils.read_json_lines_file('data/tail_numbers.jsonl')

Next we loop through our tail numbers, remembering to sleep before loading a single
page, per the /robots.txt guidelines. If you fail to sleep first, you may end up skipping
your sleep call later inadvertently and bringing down a site by flooding it:

aircraft_records = []
Loop through the tail numbers, fetching
for tail_number_record in tail_number_records:

Data Enrichment | 143

http://docs.python-requests.org/en/master/
http://www.seleniumhq.org/
https://www.crummy.com/software/BeautifulSoup/
http://www.robotstxt.org/guidelines.html

 time.sleep(0.1) # essential to sleep FIRST in loop or you will flood sites
 ...

When developing scripts with loops, don’t write the operations inside the loop.
Instead, pick the first element off the loop in iPython and run each operation on that
element once. For instance:

tail_number_record = tail_number_records[0]

And then %paste the loop’s operations, which will handle the indentation correctly.

Next, we build our URL using the tail number, submit our request, and parse the
resulting HTML:

 # Parameterize the URL with the tail number
 BASE_URL =
 'http://registry.faa.gov/aircraftinquiry/NNum_Results.aspx?NNumbertxt={}'
 tail_number = tail_number_record['TailNum']
 url = BASE_URL.format(tail_number)

 # Fetch the page, parse the HTML
 r = requests.get(url)

Now our form is being submitted automatically!

Extracting Data from HTML
Next up, we need to extract and parse the HTML from our request:

 html = r.text
 soup = BeautifulSoup(html)

Now we have to inspect the web page (Figure 5-12) and find the corresponding struc‐
ture in BeautifulSoup.

144 | Chapter 5: Visualizing Data with Charts and Tables

Figure 5-12. FAA Registry table inspection

It turns out that this page relies heavily on HTML tables, which is excellent. The data
we are interested in is in tables 5, 6, and 7 in the document. Let’s take a look at table 5,
the aircraft description:

 ...
 # The table structure is constant for all pages that contain data
 try:
 aircraft_description = soup.find_all('table')[4]
 craft_tds = aircraft_description.find_all('td')
 serial_number = craft_tds[1].text.strip()
 manufacturer = craft_tds[5].text.strip()
 model = craft_tds[9].text.strip()
 mfr_year = craft_tds[25].text.strip()

Using BeautifulSoup's find_all, we fetch the list of tables on the page, focusing on
table 5 (the 4th index from 0). Next, we fetch the list of td elements in this table into
craft_tds, which we then print to discover the structure of the fields. Note that we
call the text method to get the text within the td element and then we str.strip this
value.

Data Enrichment | 145

http://www.w3schools.com/html/html_tables.asp
http://bit.ly/2oQrWY1

We work similarly with the other two tables:

 ...
 registered_owner = soup.find_all('table')[5]
 reg_tds = registered_owner.find_all('td')
 owner = reg_tds[1].text.strip()
 owner_state = reg_tds[9].text.strip()

 airworthiness = soup.find_all('table')[6]
 worthy_tds = airworthiness.find_all('td')
 engine_manufacturer = worthy_tds[1].text.strip()
 engine_model = worthy_tds[5].text.strip()

Finally, we form a record and add it to our list:

 aircraft_record = {
 'TailNum': tail_number,
 'serial_number': serial_number,
 'manufacturer': manufacturer,
 'model': model,
 'mfr_year': mfr_year,
 'owner': owner,
 'owner_state': owner_state,
 'engine_manufacturer': engine_manufacturer,
 'engine_model': engine_model,
 }
 aircraft_records.append(
 aircraft_record
)
 print(aircraft_record)

The only other thing to handle in this script is when a record isn’t available. After
operating our script for a few iterations, you will see it die from an exception. This
always happens when scraping data—it’s part of the process; you never get 100%.
After inspecting the reason the script died, depending on the problem, you can likely
simply catch it as an exception and print an error, and simply accept some loss in the
join to this operation:

 ...
 except IndexError, e:
 print("Missing {} record: {}".format(tail_number, e))

Note that you can print one record per line as JSON, or write it all at the end as we do
here:

utils.write_json_lines_file(
 aircraft_records, 'data/faa_tail_number_inquiry.jsonl'
)

146 | Chapter 5: Visualizing Data with Charts and Tables

Evaluating Enriched Data
Now that we’ve got our tail number data in data/faa_tail_number_inquiry.jsonl, let’s
take a look. First we want to know how many records did we successfully achieve,
both in raw form and as a percent?

In bash, run:

head -5 data/faa_tail_number_inquiry.jsonl

Which results in:

{
 "engine_model": "CF34 SERIES",
 "engine_manufacturer": "GE",
 "owner_state": "GEORGIA",
 "serial_number": "8022",
 "owner": "DELTA AIR LINES INC",
 "TailNum": "N933EV",
 "model": "CL-600-2B19",
 "mfr_year": "2005",
 "manufacturer": "BOMBARDIER INC"
}
{
 "engine_model": "CFM56-7B24",
 "engine_manufacturer": "CFM INTL",
 "owner_state": "TEXAS",
 "serial_number": "36624",
 "owner": "SOUTHWEST AIRLINES CO",
 "TailNum": "N917WN",
 "model": "737-7H4",
 "mfr_year": "2008",
 "manufacturer": "BOEING"
}
...

We can count the number of records via wc, as in wc -l data/

faa_tail_number_inquiry.jsonl:

 4272 data/faa_tail_number_inquiry.jsonl

Now, back in PySpark, let’s load the data and count it as we would if this dataset were
large:

Load the FAA N-Number Inquiry Records
faa_tail_number_inquiry = spark.read.json('data/faa_tail_number_inquiry.jsonl')
faa_tail_number_inquiry.show()

Count the records
faa_tail_number_inquiry.count()

Which results in: 4272.

Data Enrichment | 147

To see how the two datasets work together, let’s join this data to our unique tail num‐
bers and see how many hits we get:

Load our unique tail numbers
unique_tail_numbers = spark.read.json('data/tail_numbers.jsonl')
unique_tail_numbers.show()

Left outer join tail numbers to our inquries to see how many came through
tail_num_plus_inquiry = unique_tail_numbers.join(
 faa_tail_number_inquiry,
 unique_tail_numbers.TailNum == faa_tail_number_inquiry.TailNum,
 'left_outer'
)
tail_num_plus_inquiry.show()

Now compute the total records and the successfully joined records
total_records = tail_num_plus_inquiry.count()
join_hits = tail_num_plus_inquiry.filter(
 tail_num_plus_inquiry.owner.isNotNull()
).count()

This being Python, we can now compute and print a join percent...
hit_ratio = float(join_hits)/float(total_records)
hit_pct = hit_ratio * 100
print("Successful joins: {:.2f}%".format(hit_pct))

Which results in Successful joins: 83.65%. To continue the example, we might
next inquire into the structure of the records that were missed by the join to see if
they seem random and can be ignored, or if they tend to be one kind of record or
another in terms of the values of their fields, in which case we would need to consider
that the join has bias in our analysis hereafter.

We have now enriched our dataset with some interesting new data, which we will dive
into in the next chapter.

Conclusion
In this chapter, we’ve started to tease structure from our data with tables and charts.
We have also begun to enrich our data with outside datasets to give us new axes
across which to pivot and analyze. In doing so, we have gone further than the preced‐
ing chapter in cataloging our data assets. We’ll take what we’ve learned with us as we
proceed up the data-value pyramid.

Now we move on to the next step of the data-value stack: reports.

148 | Chapter 5: Visualizing Data with Charts and Tables

CHAPTER 6

Exploring Data with Reports

In the next step, our third agile sprint, we’ll extend our chart pages into full-blown
reports. In this step, charts become interactive, static pages become dynamic, and our
data becomes explorable through networks of linked, related entities with tables and
charts. These are the characteristics of the reports stage of the data-value pyramid
(Figure 6-1).

Figure 6-1. Level 3: exploring with reports

Code examples for this chapter are available at Agile_Data_Code_2/tree/master/ch06.
Clone the repository and follow along!

git clone https://github.com/rjurney/Agile_Data_Code_2.git

149

http://bit.ly/2qX1ltm

Extracting Airlines (Entities)
To build a report, we need to compose multiple views of our dataset. Building these
views corresponds with enumerating entities. The entity we created in the previous
chapter, airplanes, will serve as a foundation as we increase the number of entities and
the corresponding links between them to create reports. As with the last chapter,
before we can start creating different views on our data, we need a web page to put
our charts and tables into. So let’s create another entity, airlines, and give each a page
of its own.

We start by gathering all tail numbers for a given airline in a table on its entity page.
Every commercial flight has an airline it operates under, and each airline has a fleet of
beautifully branded airplanes that, along with airport facilities and staff, are the key
assets of its business. We already created a page for each airplane, so we’ll leverage
this data asset to create a list of all tail numbers for each airline.

Defining Airlines as Groups of Airplanes Using PySpark
We begin by preparing the lists of tail numbers for each airline code, in ch06/
extract_airlines.py. These will form the basis for our airline pages:

Load the on-time Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

The first step is easily expressed as SQL: get all unique tail numbers for
each airline
on_time_dataframe.registerTempTable("on_time_performance")
carrier_airplane = spark.sql(
 "SELECT DISTINCT Carrier, TailNum FROM on_time_performance"
)

Now we need to store a sorted list of tail numbers for each carrier, along
with a fleet count
airplanes_per_carrier = carrier_airplane.rdd\
 .map(lambda nameTuple: (nameTuple[0], [nameTuple[1]]))\
 .reduceByKey(lambda a, b: a + b)\
 .map(lambda tuple:
 {
 'Carrier': tuple[0],
 'TailNumbers': sorted(
 filter(
 lambda x: x != '', tuple[1] # empty string tail numbers were
 # getting through
)
),
 'FleetCount': len(tuple[1])
 }
)
airplanes_per_carrier.count() # 14

150 | Chapter 6: Exploring Data with Reports

http://bit.ly/2pyUINP
http://bit.ly/2pyUINP

Save to Mongo in the airplanes_per_carrier relation
import pymongo_spark
pymongo_spark.activate()
airplanes_per_carrier.saveToMongoDB(
 'mongodb://localhost:27017/agile_data_science.airplanes_per_carrier'
)

Querying Airline Data in Mongo
Next we verify that the data is in Mongo with: db.airplanes_per_carrier.find(),
which gets us:

{"_id": ..., "TailNumbers": ["N502NK", ...], "Carrier": "NK", "FleetCount": 79 }
{"_id": ..., "TailNumbers": ["N0EGMQ", ...], "Carrier": "MQ", "FleetCount": 204 }
{"_id": ..., "TailNumbers": ["N281VA", ...], "Carrier": "VX", "FleetCount": 57 }

Building an Airline Page in Flask
Next we’ll create a controller for our airline page. Our Flask controller is simple. It
accepts an airline carrier code and returns a page with a list of airplanes, by tail num‐
ber, from Mongo:

@app.route("/airline/<carrier_code>")
def airline(carrier_code):
 airline_airplanes = client.agile_data_science.airplanes_per_carrier.find_one(
 {'Carrier': carrier_code}
)
 return render_template(
 'airlines.html',
 airline_airplanes=airline_airplanes,
 carrier_code=carrier_code
)

Our template code creates an HTML bullet for each tail number. Check out ch06/web/
templates/airlines.html:

{% extends "layout.html" %}
{% block body %}
 <p class="lead">Airline {{carrier_code}}</p>
 <h4>Fleet: {{airline_airplanes.FleetCount}} Planes</h4>
 <ul class="nav nav-pills">
 {% for tail_number in airline_airplanes.TailNumbers -%}
 <li class="button">
 {{tail_number}}

 {% endfor -%}

{% endblock %}

Extracting Airlines (Entities) | 151

http://bit.ly/2pPkg8I
http://bit.ly/2pPkg8I

The result is the start of an airline page detailing its entire fleet (Figure 6-2). Don’t
worry, we’ll dress this up later. It is absolutely necessary to ship something ugly before
you ship something sharp!

Figure 6-2. Airline page

Linking Back to Our Airline Page
Having created the airline entity page type, we will now link back to it from the air‐
plane page we created, and the search and flight pages in from Chapter 5. We do this
by editing the templates for the airplane, flight, and search pages.

We’ll link back to our airline pages in ch06/web/templates/flights_per_airplane.html:
<tbody>
 {% for flight in flights['Flights'] %}
 <tr>
 <td>{{flight[0]}}</td>
 <td>{{flight[1]}}</td>
 <td><a href="/on_time_performance?Carrier={{flight[0]}}&FlightDate=
 {{flight[1]}}&FlightNum={{flight[2]}}">{{flight[2]}}</td>
 <td>{{flight[3]}}</td>

152 | Chapter 6: Exploring Data with Reports

http://bit.ly/2oKiOoP

 <td>{{flight[4]}}</td>
 </tr>
 {% endfor %}
</tbody>

in ch06/web/templates/flight.html:
<tbody>
 <tr>
 <td>{{flight.Carrier}}</td>
 <td>{{flight.Origin}}</td>
 <td>{{flight.Dest}}</td>
 <td>
 {{flight.TailNum}}</td>
 <td>{{flight.FlightDate}}</td>
 <td>{{flight.AirTime}}</td>
 <td>{{flight.Distance}}</td>
 </tr>
</tbody>

and in ch06/web/templates/search.html:
{% for flight in flights %}
 <tr>
 <td>{{flight.Carrier}}</td>
 <td><a href="/on_time_performance?Carrier={{flight.Carrier}}&FlightDate=
 {{flight.FlightDate}}&FlightNum={{flight.FlightNum}}">{{flight.FlightNum}}
 </td>
 <td>{{flight.Origin}}</td>
 <td>{{flight.Dest}}</td>
 <td>{{flight.FlightDate}}</td>
 <td>{{flight.DepTime}}</td>
 <td>{{flight.TailNum}}</td>
 <td>{{flight.AirTime}}</td>
 <td>{{flight.Distance}}</td>
 </tr>
{% endfor %}

Creating an All Airlines Home Page
But who knows airline carrier codes (okay, other than me)? We need a way to get
users started browsing, so let’s create a home page listing all the airlines operating in
the US.

Our controller is simple, just six lines of code. We’re able to reuse the air
lines_per_carrier MongoDB collection, this time ignoring the tail numbers and
only querying the carrier codes using a find. Let’s also direct users to this page by
default, as our index.html for this application:

Extracting Airlines (Entities) | 153

http://bit.ly/2oq4Erf
http://bit.ly/2oKrJXD

@app.route("/")
@app.route("/airlines")
@app.route("/airlines/")
def airlines():
 airlines = client.agile_data_science.airplanes_per_carrier.find()
 return render_template('all_airlines.html', airlines=airlines)

Our template is similar to the one for an individual airline:

{% extends "layout.html" %}
{% block body %}
 <!-- Navigation guide -->
 / Airlines

 <p class="lead">US Domestic Airlines</p>
 <ul class="nav nav-pills">
 {% for airline in airlines -%}
 <li class="button">
 {{airline.Carrier}}

 {% endfor -%}

{% endblock %}

The result is a simple but effective way to get users browsing the world of aviation
(Figure 6-3).

Figure 6-3. Airlines home page

Curating Ontologies of Semi-structured Data
We can now explore airlines, airplanes, and flights endlessly! Big deal, right? Maybe
not, but it is a good start. Let’s extend this by making airplanes and airlines clickable
in our flight pages.

154 | Chapter 6: Exploring Data with Reports

Now we can look at airplanes and airlines, their properties, and their relationships as
we view flights (Figure 6-4). This kind of pivot offers insight, and is a form of simple
recommendation.

Figure 6-4. Page structure

What we’re doing can be described as creating interactive ontologies of semi-
structured data. Breaking up our process around building this kind of structure does
several things for us. First, it creates small batches of work—one per entity—that
break efficiently into agile sprints. This enables a kind of data agility, and also extends
our application into a more and more browsable state. This in turn enables users to
click around and explore our dataset, which connects the team into the ground truth
or reality of the data—which, as you know by now, is a theme in Agile Data Science.

Improving Airlines
Now that we’ve got airline pages, let’s improve them with some multimedia content:
text and images. To begin, let’s get a list of the carrier codes in our primary dataset:

Load the on-time Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

The first step is easily expressed as SQL: get all unique tail numbers
for each airline
on_time_dataframe.registerTempTable("on_time_performance")
carrier_codes = spark.sql(
 "SELECT DISTINCT Carrier FROM on_time_performance"
)
carrier_codes.collect()

Improving Airlines | 155

Which results in a list of the airline carrier codes that appear in the on-time perfor‐
mance data:

[Row(Carrier=u'AA'),
 Row(Carrier=u'NK'),
 Row(Carrier=u'HA'),
 Row(Carrier=u'AS'),
 Row(Carrier=u'B6'),
 Row(Carrier=u'UA'),
 Row(Carrier=u'US'),
 Row(Carrier=u'OO'),
 Row(Carrier=u'VX'),
 Row(Carrier=u'WN'),
 Row(Carrier=u'DL'),
 Row(Carrier=u'EV'),
 Row(Carrier=u'F9'),
 Row(Carrier=u'MQ')]

Adding Names to Carrier Codes
In order to link more data to our carriers, we need to get the name of each along with
the carrier code. This data is available in the airlines database we downloaded from
OpenFlights in Chapter 5. Let’s inspect airlines.dat, which we’ve renamed airlines.csv:

cat data/airlines.csv | grep '"DL"\|"NW"\|"AA"'

This shows us some of our airlines are listed:

24,"American Airlines",\N,"AA","AAL","AMERICAN","United States","Y"
2009,"Delta Air Lines",\N,"DL","DAL","DELTA","United States","Y"
3731,"Northwest Airlines",\N,"NW","NWA","NORTHWEST","United States","Y"

OpenFlights lists the fieldnames as Airline ID, Name, Alias, 2-Letter IATA Code, 3-
Letter ICAO Code, Callsign, Country, and Active. Let’s open and inspect this data in
PySpark. Check out ch06/add_name_to_airlines.py:

airlines = spark.read.format('com.databricks.spark.csv')\
 .options(header='false', nullValue='\N')\
 .load('data/airlines.csv')
airlines.show()

This results in:

+---+--------------------+----+---+---+---------------+--------------+---+
| C0| C1| C2| C3| C4| C5| C6| C7|
+---+--------------------+----+---+---+---------------+--------------+---+
1	Private flight	null	-	N/A			Y
2	135 Airways	null		GNL	GENERAL	United States	N
3	1Time Airline	null	1T	RNX	NEXTIME	South Africa	Y
4	2 Sqn No 1 Elemen...	null		WYT		United Kingdom	N
...

And this:

156 | Chapter 6: Exploring Data with Reports

http://openflights.org/data.html
http://bit.ly/2okRE75

Is Delta around?
airlines.filter(airlines.C3 == 'DL').show()

produces the following result:

+----+---------------+----+---+---+-----+-------------+---+
| C0| C1| C2| C3| C4| C5| C6| C7|
+----+---------------+----+---+---+-----+-------------+---+
|2009|Delta Air Lines|null| DL|DAL|DELTA|United States| Y|
+----+---------------+----+---+---+-----+-------------+---+

Now let’s filter this data down to just the airline names and two-letter carrier codes,
and join it to the unique carrier codes from the on-time performance dataset:

Drop fields except for C1 as name, C3 as carrier code
airlines.registerTempTable("airlines")
airlines = spark.sql("SELECT C1 AS Name, C3 AS CarrierCode from airlines")

Join our 14 carrier codes to the airlines table to get our set of airlines
our_airlines = carrier_codes.join(
 airlines, carrier_codes.Carrier == airlines.CarrierCode
)
our_airlines = our_airlines.select('Name', 'CarrierCode')
our_airlines.show()

This results in:

+--------------------+-----------+
| Name|CarrierCode|
+--------------------+-----------+
American Airlines	AA
Spirit Airlines	NK
Hawaiian Airlines	HA
Alaska Airlines	AS
JetBlue Airways	B6
United Airlines	UA
US Airways	US
SkyWest	OO
Virgin America	VX
Southwest Airlines	WN
Delta Air Lines	DL
Atlantic Southeas...	EV
Frontier Airlines	F9
American Eagle Ai...	MQ
+--------------------+-----------+

Finally, let’s store this intermediate data as JSON:

our_airlines.repartition(1).write.json("data/our_airlines.json")

and again, copy it into a JSON Lines file:

cp data/our_airlines.json/part* data/our_airlines.jsonl

Then we can take a peek with cat data/our_airlines.jsonl:

Improving Airlines | 157

{"Name":"American Airlines","CarrierCode":"AA"}
{"Name":"Spirit Airlines","CarrierCode":"NK"}
{"Name":"Hawaiian Airlines","CarrierCode":"HA"}
{"Name":"Alaska Airlines","CarrierCode":"AS"}
{"Name":"JetBlue Airways","CarrierCode":"B6"}
{"Name":"United Airlines","CarrierCode":"UA"}
{"Name":"US Airways","CarrierCode":"US"}
{"Name":"SkyWest","CarrierCode":"OO"}
{"Name":"Virgin America","CarrierCode":"VX"}
{"Name":"Southwest Airlines","CarrierCode":"WN"}
{"Name":"Delta Air Lines","CarrierCode":"DL"}
{"Name":"Atlantic Southeast Airlines","CarrierCode":"EV"}
{"Name":"Frontier Airlines","CarrierCode":"F9"}
{"Name":"American Eagle Airlines","CarrierCode":"MQ"}

Incorporating Wikipedia Content
Now that we have airline names, we can use Wikipedia to get various information
about each airline, like a summary, logo, and company website! To do so, we make
use of the wikipedia package for Python, which wraps the MediaWiki API. We’ll be
using BeautifulSoup again to parse the page’s HTML.

Check out ch06/enrich_airlines_wikipedia.py:

import sys, os, re
sys.path.append("lib")
import utils

import wikipedia
from bs4 import BeautifulSoup
import tldextract

Load our airlines...
our_airlines = utils.read_json_lines_file('data/our_airlines.jsonl')

Build a new list that includes Wikipedia data
with_url = []
for airline in our_airlines:
 # Get the Wikipedia page for the airline name
 wikipage = wikipedia.page(airline['Name'])

 # Get the summary
 summary = wikipage.summary
 airline['summary'] = summary

 # Get the HTML of the page
 page = BeautifulSoup(wikipage.html())

 # Task: get the logo from the right 'vcard' column
 # 1) Get the vcard table
 vcard_table = page.find_all('table', class_='vcard')[0]
 # 2) The logo is always the first image inside this table

158 | Chapter 6: Exploring Data with Reports

https://pypi.python.org/pypi/wikipedia/
https://www.mediawiki.org/wiki/API:Main_page
http://bit.ly/2pwZcYs
http://bit.ly/2peAoVh

 first_image = vcard_table.find_all('img')[0]
 # 3) Set the URL to the image
 logo_url = 'http:' + first_image.get('src')
 airline['logo_url'] = logo_url

 # Task: get the company website
 # 1) Find the 'Website' table header
 th = page.find_all('th', text='Website')[0]
 # 2) Find the parent tr element
 tr = th.parent
 # 3) Find the a (link) tag within the tr
 a = tr.find_all('a')[0]
 # 4) Finally, get the href of the a tag
 url = a.get('href')
 airline['url'] = url

 # Get the domain to display with the URL
 url_parts = tldextract.extract(url)
 airline['domain'] = url_parts.domain + '.' + url_parts.suffix

 with_url.append(airline)

utils.write_json_lines_file(with_url, 'data/our_airlines_with_wiki.jsonl')

Publishing Enriched Airlines to Mongo
Note that we skipped Mongo in this section—we went from our original dataset to
two stages of enriched, intermediate datasets without storing to Mongo at all. This is
fine! In Agile Data Science we use databases to publish data, not always to persist it in
its intermediate state.

Now, however, we want to include our enriched airlines in the airline web pages we
created earlier. To get it there, we need to send it through Mongo. Since we already
have a JSON file prepared, we can use the mongoimport command to load it into
Mongo:

mongoimport -d agile_data_science -c airlines \
 --file data/our_airlines_with_wiki.jsonl

Improving Airlines | 159

http://bit.ly/2oKydFW

Verify the data is there:

$ mongo agile_data_science

> db.airlines.findOne();

{
 "_id" : ObjectId("57c0e656818573ed12d584d1"),
 "CarrierCode" : "AA",
 "url" : "http://www.aa.com",
 "logo_url" : "http://upload.wikimedia.org/.../300px-American...
 _2013.svg.png",
 "Name" : "American Airlines",
 "summary" : "American Airlines, Inc. (AA), commonly referred to as
 American..."
}

Enriched Airlines on the Web
Now that our enriched airline records are in Mongo, we can alter our Flask controller
for /airline to include this data. Check out ch06/web/report_flask.py:

Controller: Fetch an airplane entity page
@app.route("/airline/<carrier_code>")
def airline(carrier_code):
 airline_summary = client.agile_data_science.airlines.find_one(
 {'CarrierCode': carrier_code}
)
 airline_airplanes = client.agile_data_science.airplanes_per_carrier.find_one(
 {'Carrier': carrier_code}
)
 return render_template(
 'airlines.html',
 airline_summary=airline_summary,
 airline_airplanes=airline_airplanes,
 carrier_code=carrier_code
)

Next we alter our template, ch06/web/templates/airlines.html, to include the Wikipe‐
dia data:

{% extends "layout.html" %}
{% block body %}
 <!-- Navigation guide -->
 / Airlines
 / {{carrier_code}}

 <!-- Logo -->

 <p class="lead">
 <!-- Airline name and website-->
 {{airline_summary.Name}}

160 | Chapter 6: Exploring Data with Reports

http://bit.ly/2o0z73K
http://bit.ly/2pPkg8I

 / {{airline_summary.domain}}
 </p>

 <!-- Summary -->
 <p style="text-align: justify;">{{airline_summary.summary}}</p>
 <h4>Fleet: {{airline_airplanes.FleetCount}} Planes</h4>
 <ul class="nav nav-pills">
 {% for tail_number in airline_airplanes.TailNumbers -%}
 <li class="button">
 {{tail_number}}

 {% endfor -%}

{% endblock %}

And for our labors, we get a greatly improved airline page (Figure 6-5). The point of
this enrichment? While your data may not be so easily enhanced from a public data‐
set like Wikipedia, this example shows how to combine data from different sources,
some private, some public, to compose better entity pages.

Figure 6-5. Enriched airline home page

Improving Airlines | 161

Investigating Airplanes (Entities)
In Chapter 5, we were just getting into some interesting data that we will now look at
once again. To begin, let’s store our enriched airplanes in their own intermediate
dataset. Check out ch06/prepare_airplanes.py:

Load the FAA N-Number inquiry records
faa_tail_number_inquiry = spark.read.json('data/faa_tail_number_inquiry.jsonl')
faa_tail_number_inquiry.show()

Count the records
faa_tail_number_inquiry.count()

Load our unique tail numbers
unique_tail_numbers = spark.read.json('data/tail_numbers.jsonl')
unique_tail_numbers.show()

Join tail numbers to our inquries
tail_num_plus_inquiry = unique_tail_numbers.join(
 faa_tail_number_inquiry,
 unique_tail_numbers.TailNum == faa_tail_number_inquiry.TailNum,
)
tail_num_plus_inquiry = tail_num_plus_inquiry.drop(unique_tail_numbers.TailNum)
tail_num_plus_inquiry.show()

Dump extra field and store tail_numbers plus inquiry
tail_num_plus_inquiry.registerTempTable("tail_num_plus_inquiry")
airplanes = spark.sql("""SELECT
 TailNum AS TailNum,
 engine_manufacturer AS EngineManufacturer,
 engine_model AS EngineModel,
 manufacturer AS Manufacturer,
 mfr_year AS ManufacturerYear,
 model AS Model,
 owner AS Owner,
 owner_state AS OwnerState,
 serial_number AS SerialNumber
FROM
 tail_num_plus_inquiry""")

airplanes.repartition(1).write.json('data/airplanes.json')

As before, we can copy this directory of data into a single file for convenient access
outside of Spark—note that this is not a good idea for very large files, but in this case
our airplanes data is less than one megabyte:

 $ cat data/airplanes.json/part-* >> data/airplanes.jsonl

$ head -5 data/airplanes.jsonl

{
 "TailNum": "N933EV",
 "EngineManufacturer": "GE",

162 | Chapter 6: Exploring Data with Reports

http://bit.ly/2pxk5T1

 "EngineModel": "CF34 SERIES",
 "Manufacturer": "BOMBARDIER INC",
 "ManufacturerYear": "2005",
 "Model": "CL-600-2B19",
 "Owner": "DELTA AIR LINES INC",
 "OwnerState": "GEORGIA",
 "SerialNumber": "8022"
}

Let’s begin our analysis by asking a question: Boeing versus Airbus—who manufac‐
tures more airplanes in the US commercial fleet? Check out ch06/
analyze_airplanes.py:

airplanes = spark.read.json('data/airplanes.json')

How many airplanes are made by each manufacturer?
airplanes.registerTempTable("airplanes")
manufacturer_counts = spark.sql("""SELECT
 Manufacturer,
 COUNT(*) AS Total
FROM
 airplanes
GROUP BY
 Manufacturer
ORDER BY
 Total DESC, Manufacturer"""
)
manufacturer_counts.show(30) # show top 30

Note that we ORDER BY both the Total and the Manufacturer. Always employ an
additional “tiebreaker” sort key like this, so that your results are repeatable. Without a
second sort key, the order of the results is not specified by the query and is at the
mercy of the SQL interpreter. Here are the results:

+--------------------+-----+
| Manufacturer|Total|
+--------------------+-----+
BOEING	2095
AIRBUS	550
BOMBARDIER INC	460
AIRBUS INDUSTRIE	451
EMBRAER	366
MCDONNELL DOUGLAS	122
MCDONNELL DOUGLAS...	105
EMBRAER S A	47
...

Interesting, Boeing planes outnumber Airbus planes by 4 to 1! I had no idea; I
thought it was much closer than this. However, what I really want to know is who has
what share of the market (without having to compute a ratio in my head). In other
words, I’d like to see this data as a percentage.

Investigating Airplanes (Entities) | 163

http://bit.ly/2oKlliP
http://bit.ly/2oKlliP

SQL Subqueries Versus Dataflow Programming
This is a good way to illustrate the difference between SQL subqueries and dataflow
programming. SQL is declarative, in that you specify what you want without saying
how to get it. Imperative dataflow programming, on the other hand, involves the
step-wise computation of data that you link and compose into dataflows.

First we’ll implement the percentage totals using imperative dataflows, and then we’ll
do so using declarative SQL subqueries. You’ll see that in this case subqueries are
more convenient, but there is a limit to the utility of subqueries—they can get
obscure fast. It is better to create a series of simple SQL or dataflow statements that
compose into the computation you desire rather than to try to specify it all in one
large, deeply nested subquery.

Dataflow Programming Without Subqueries
Subqueries weren’t supported in Spark SQL until 2.0. Instead, given our manufacturer
airplane counts, we would need to calculate the total airplane count, join that to our
existing totals, and then divide the manufacturer subtotals by the overall total. We’ll
reuse the manufacturer_counts relation we computed in the previous program list‐
ing:

How many airplanes total?
total_airplanes = spark.sql(
 """SELECT
 COUNT(*) AS OverallTotal
 FROM airplanes"""
)
print("Total airplanes: {}".format(total_airplanes.collect()[0].OverallTotal))

mfr_with_totals = manufacturer_counts.join(total_airplanes)
mfr_with_totals = mfr_with_totals.rdd.map(
 lambda x: {
 'Manufacturer': x.Manufacturer,
 'Total': x.Total,
 'Percentage': round(
 (
 float(x.Total)/float(x.OverallTotal)
) * 100,
 2
)
 }
)
mfr_with_totals.toDF().show()

164 | Chapter 6: Exploring Data with Reports

Which results in:

+--------------------+----------+-----+
| Manufacturer|Percentage|Total|
+--------------------+----------+-----+
BOEING	49.04	2095
AIRBUS	12.87	550
BOMBARDIER INC	10.77	460
AIRBUS INDUSTRIE	10.56	451
EMBRAER	8.57	366
MCDONNELL DOUGLAS	2.86	122
MCDONNELL DOUGLAS...	2.46	105
EMBRAER S A	1.1	47
...

This is clearly an out-of-the-way method of calculating percentage totals, but it illus‐
trates how dataflow programming works in more complex examples as well.

Subqueries in Spark SQL
Subqueries are handy, and computing the percentage share of the aircraft manufac‐
turers is easy using them:

relative_manufacturer_counts = spark.sql("""SELECT
 Manufacturer,
 COUNT(*) AS Total,
 ROUND(
 100 * (
 COUNT(*)/(SELECT COUNT(*) FROM airplanes)
),
 2
) AS PercentageTotal
FROM
 airplanes
GROUP BY
 Manufacturer
ORDER BY
 Total DESC, Manufacturer"""
)
relative_manufacturer_counts.show(30) # show top 30

Investigating Airplanes (Entities) | 165

The result is identical to the previous section’s result:

+--------------------+-----+---------------+
| Manufacturer|Total|PercentageTotal|
+--------------------+-----+---------------+
BOEING	2095	49.04
AIRBUS	550	12.87
BOMBARDIER INC	460	10.77
AIRBUS INDUSTRIE	451	10.56
EMBRAER	366	8.57
MCDONNELL DOUGLAS	122	2.86
MCDONNELL DOUGLAS...	105	2.46
EMBRAER S A	47	1.1
...

Creating an Airplanes Home Page
Now I want to see this data as a chart on a web page, which means we need some‐
where to put the chart. This is a good time to create an /airplanes home page—a page
that analyzes the fleet as a whole.

Let’s create a Flask controller for /airplanes. Check out ch06/web/report_flask.py,
which simply loads the data from Mongo and passes it to a template, all_air‐
planes.html:

@app.route("/airplanes")
@app.route("/airplanes/")
def airplanes():
 mfr_chart = client.agile_data_science.manufacturer_totals.find_one()
 return render_template('all_airplanes.html',mfr_chart=mfr_chart)

The beginning of all_airplanes.html and the resulting page are also simple:

{% extends "layout.html" %}
{% block body %}
 <!-- Navigation guide -->
 / Airplanes

 <p class="lead">
 <!-- Airline name and website-->
 US Commercial Fleet
 </p>
{% endblock %}

The result is shown in Figure 6-6.

166 | Chapter 6: Exploring Data with Reports

http://bit.ly/2o0z73K
http://bit.ly/2pyFUie
http://bit.ly/2pyFUie

Figure 6-6. Airplanes home page

Adding Search to the Airplanes Page
The /airplanes page is a great place to implement search for the airplane records we’ve
created. To do this, first we’ll need to index our airplane documents in Elasticsearch
via PySpark:

Load our airplanes
airplanes = spark.read.json("data/airplanes.json")
airplanes.show()

airplanes.write.format("org.elasticsearch.spark.sql")\
 .option("es.resource","agile_data_science/airplanes")\
 .mode("overwrite")\
 .save()

We can verify our documents are there with a quick search:

curl -XGET 'localhost:9200/agile_data_science/airplanes/_search?q=*'

which should return 4,272 results:

{
 "took": 3,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 4272,
 "max_score": 1,
 "hits": [
 {

Investigating Airplanes (Entities) | 167

 "_index": "agile_data_science",
 "_type": "airplanes",
 "_id": "AVbYpad6tuTlhookKT6d",
 "_score": 1,
 "_source": {
 "EngineManufacturer": "ROLLS-ROYC",
 "EngineModel": "RB.211 SERIES",
 "Manufacturer": "BOEING",
 "ManufacturerYear": "1999",
 "Model": "757-224",
 "Owner": "UNITED AIRLINES INC",
 "OwnerState": "ILLINOIS",
 "SerialNumber": "29284",
 "TailNum": "N41135"
 }
 },
 ...
]
 }
}

Now we can add search capability to our /airplanes controller. Recall that we we did
this in Chapter 5 for flight search, and that it took several pages of code. This time, we
are going to build a reusable component for searching and displaying records in a
Flask application.

Code versus configuration
There are varying opinions on how much code duplication is acceptable before fac‐
toring it out, and this varies greatly by context and across programming disciplines.
Data science has a higher tolerance for ugly, duplicated code than does general soft‐
ware engineering. This is for the simple reason that most code a data scientist writes
is discarded immediately after it is run. Most data scientists are doing well to commit
all their code to a repository at all (an absolute must!). But when code persists and we
share the result, as in our application, cleanliness starts to matter.

This is the second time we’ve been tasked with implementing search, and when
repeating oneself at length, it is a good time to take pause and see if one can’t reduce
some of the redundant code necessary to reproduce a feature. (Because most code is
throwaway in data science, it is important to wait until you repeat yourself to factor
out duplicate code and generalize capabilities, as we have done here.)

Being tasked with generalizing code, we have to split our code into two elements:
algorithms and configuration. Algorithms define the behavior of what we’re building;
configuration defines what an instance of that algorithm is like.

To take one extreme, it is possible in programming to remove all redundancy in code,
to the point that everything becomes a configuration file or an algorithm implement‐
ing the behavior of a configuration. This extreme, however, is not maintainable and

168 | Chapter 6: Exploring Data with Reports

isn’t compatible with a data scientist’s workload, where we have to remember lots of
things at once and can’t dive deep into each component just to edit or make use of it.
As usual in Agile Data Science, we choose the middle path, where we remove the
worst of the redundancy without reducing everything to its most generalized, reusa‐
ble form.

Configuring a search widget
Our search configuration is simple. It lays out the fields we will search and display,
and an optional label we would like to use in the user interface:

 search_config = [
 {'field': 'TailNum', 'label': 'Tail Number'},
 {'field': 'Owner'},
 {'field': 'OwnerState', 'label': 'Owner State'},
 {'field': 'Manufacturer'},
 {'field': 'Model'},
 {'field': 'ManufacturerYear', 'label': 'MFR Year'},
 {'field': 'SerialNumber', 'label': 'Serial Number'},
 {'field': 'EngineManufacturer', 'label': 'Engine MFR'},
 {'field': 'EngineModel', 'label': 'Engine Model'}
]

Building an Elasticsearch query programmatically
Our pagination works as before, but we’ve got a new configuration item for
AIRPLANE_RECORDS_PER_PAGE:

 # Pagination parameters
 start = request.args.get('start') or 0
 start = int(start)
 end = request.args.get('end') or config.AIRPLANE_RECORDS_PER_PAGE
 end = int(end)

 # Navigation path and offset setup
 nav_path = search_helpers.strip_place(request.url)
 nav_offsets = search_helpers.get_navigation_offsets(
 start, end, config.AIRPLANE_RECORDS_PER_PAGE
)

With our search config in hand, we need only define the base of the Elasticsearch
query and flesh it out based on the search arguments we receive. Our base query
looks like this:

 # Build the base of our Elasticsearch query
 query = {
 'query': {
 'bool': {
 'must': []}
 },
 'sort': [

Investigating Airplanes (Entities) | 169

 {'Owner': {'order': 'asc', 'ignore_unmapped': True}},
 {'Manufacturer': {'order': 'asc', 'ignore_unmapped' : True} },
 {'ManufacturerYear': {'order': 'asc', 'ignore_unmapped' : True} },
 {'SerialNumber': {'order': 'asc', 'ignore_unmapped' : True} },
 '_score'
],
 'from': start,
 'size': config.AIRPLANE_RECORDS_PER_PAGE
 }

And we parameterize it like so:

 arg_dict = {}
 for item in search_config:
 field = item['field']
 value = request.args.get(field)
 arg_dict[field] = value
 if value:
 query['query']['bool']['must'].append({'match': {field: value}})

We submit the query as before:

 # Query Elasticsearch, process to get records and count
 results = elastic.search(query)
 airplanes, airplane_count = search_helpers.process_search(results)

In our call to render our template, we now include the search_config and arg_dict,
which will generate our content in the template:

 # Persist search parameters in the form template
 return render_template(
 'all_airplanes.html',
 search_config=search_config,
 args=arg_dict,
 airplanes=airplanes,
 airplane_count=airplane_count,
 nav_path=nav_path,
 nav_offsets=nav_offsets
)

Our template, all_airplanes.html, is derived from search.html. Using search_config
and the request arguments, we programmatically build all the content we manually
specified before in search.html. We can reuse this code now to re-create any search
controller:

{% extends "layout.html" %}
{% block body %}

 / Airplanes

 <p class="lead">
 <!-- Airline name and website-->
 US Commercial Fleet
 </p>

170 | Chapter 6: Exploring Data with Reports

http://bit.ly/2pyFUie
http://bit.ly/2okK2Br

 <!-- Generate form from search_config and request args -->
 <form action="/airplanes" method="get">
 {% for item in search_config %}
 {% if 'label' in item %}
 <label for="{{item['field']}}">{{item['label']}}</label>
 {% else %}
 <label for="{{item['field']}}">{{item['field']}}</label>
 {% endif %}
 <input name="{{item['field']}}"
 value="{{args[item['field']] if args[item['field']] else ''}}">
 </input>
 {% endfor %}
 <button type="submit" class="btn btn-xs btn-default" style="height: 25px">
 Submit
 </button>
 </form>

 <table class="table table-condensed table-striped">

 <!-- Create table header, based on search_config -->
 <thead>
 {% for item in search_config %}
 {% if 'label' in item %}
 <th>{{item['label']}}</th>
 {% else %}
 <th>{{item['field']}}</th>
 {% endif %}
 {% endfor %}
 </thead>

<!--
 Create table content, based on airplanes for each <tr> and
 search_config for each <td>
 -->
 <tbody>
 {% for airplane in airplanes %}
 <tr>
 {% for item in search_config %}
 <td>{{airplane[item['field']]}}</td>
 {% endfor %}
 </tr>
 {% endfor %}
 </tbody>
 </table>

{% import "macros.jnj" as common %}
{% if nav_offsets and nav_path -%}
 {{ common.display_nav(nav_offsets, nav_path, airplane_count)|safe }}
{% endif -%}
{% endblock %}

Investigating Airplanes (Entities) | 171

Creating a Manufacturers Bar Chart
Now that we’ve got a place to put our chart, let’s get down to creating it!

Continuing with our script, ch06/analyze_airplanes.py, we store the data for the chart
in Mongo:

#
Now get these things on the web
#
relative_manufacturer_counts = relative_manufacturer_counts.rdd.map(
 lambda row: row.asDict()
)
grouped_manufacturer_counts = relative_manufacturer_counts.groupBy(lambda x: 1)

Save to Mongo in the airplanes_per_carrier relation
import pymongo_spark
pymongo_spark.activate()
grouped_manufacturer_counts.saveToMongoDB(
 'mongodb://localhost:27017/agile_data_science.airplane_manufacturer_totals'
)

Next, check that the data is in Mongo:

 > db.manufacturer_totals.find()

{
 "_id":1,
 "maxindex":35,
 "data":[
 {
 "PercentageTotal":49.04,
 "Manufacturer":"BOEING",
 "Total":2095
 },
 {
 "PercentageTotal":12.87,
 "Manufacturer":"AIRBUS",
 "Total":550
 },
 ...
]
 }

The rest is similar to the bar chart from Chapter 5. We add a controller to
report_flask.py where we grab the chart from Mongo, and return it as JSON:

@app.route("/airplanes/chart/manufacturers.json")
@app.route("/airplanes/chart/manufacturers.json")
def airplane_manufacturers_chart():
 mfr_chart = client.agile_data_science.manufacturer_totals.find_one()
 return json.dumps(mfr_chart)

Then we edit the all_airplanes.html template to call airplane.js, which draws the chart.

172 | Chapter 6: Exploring Data with Reports

http://bit.ly/2oKlliP
http://bit.ly/2o0z73K
http://bit.ly/2pyFUie

This time we want x- and y-axes for our bar chart, so we’re going to draw from an
example that includes them. Mike Bostock’s example Bar Chart IIIc is concise and
straightforward. Let’s begin by titling our page and calling our chart script, airplane.js:

 <div>
 <p class="lead">Total Flights by Month</p>
 <div id="chart"><svg class="chart"></svg></div>
 </div>
 <script src="/static/airplane.js"></script>

/static/airplane.js has a few changes to make the example work for our chart’s data,
and they are emboldened in the following code. Aside from plugging in the Total
and Manufacturer field names and passing through the data.data field, we haven’t
changed anything except the dimensions of the chart:

var margin = {top: 20, right: 30, bottom: 30, left: 40},
 width = 900 - margin.left - margin.right,
 height = 300 - margin.top - margin.bottom;

var x = d3.scale.ordinal()
 .rangeRoundBands([0, width], .1);
var y = d3.scale.linear()
 .range([height, 0]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");

var chart = d3.select(".chart")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

console.log("HELLO");
d3.json("/airplanes/chart/manufacturers.json", function(error, data) {
 var data = data.data;

 x.domain(data.map(function(d) { return d.Manufacturer; }));
 y.domain([0, d3.max(data, function(d) { return d.Total; })]);

 chart.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis);

 chart.append("g")
 .attr("class", "y axis")

Investigating Airplanes (Entities) | 173

https://bl.ocks.org/mbostock/7441121
http://bit.ly/2oSI3Yi

 .call(yAxis);

 chart.selectAll(".bar")
 .data(data)
 .enter().append("rect")
 .attr("class", "bar")
 .attr("x", function(d) { return x(d.Manufacturer); })
 .attr("y", function(d) { return y(d.Total); })
 .attr("height", function(d) { return height - y(d.Total); })
 .attr("width", x.rangeBand());
});

And for our trouble, we get a beautiful chart (Figure 6-7).

Figure 6-7. Airlines home page with our new chart

Iterating on the Manufacturers Bar Chart
Wait a minute, something is wrong! Remember when we said iteration is essential?
Let’s debug this chart. We need to infer from the chart what might be going on. Why
are the bars so thin? Why are they shoved to the left?

Recall that we sorted the data by Total in descending order:

relative_manufacturer_counts = spark.sql("""SELECT
 Manufacturer,
 COUNT(*) AS Total,

174 | Chapter 6: Exploring Data with Reports

 ROUND(
 100 * (
 COUNT(*)/(SELECT COUNT(*) FROM airplanes)
),
 2
) AS PercentageTotal
FROM
 airplanes
GROUP BY
 Manufacturer
ORDER BY
 Total DESC, Manufacturer"""
)

This means that the largest values are on the left, and the smallest values are on the
right… so what must be happening is that there are simply too many small values to
make the chart readable! We can improve the chart by removing some of these
smaller values, since they are insignificant. Note that this won’t always be the case, so
think carefully before discarding data!

We can fix up our chart by recomputing the data using a SQL LIMIT command. First,
we need to drop the stale data from Mongo:

mongo agile_data_science

> db.airplane_manufacturer_totals.drop()

Now go back to analyze_airplanes.py and add a LIMIT 10 to get the top 10 manufac‐
turers:

relative_manufacturer_counts = spark.sql("""SELECT
 Manufacturer,
 COUNT(*) AS Total,
 ROUND(
 100 * (
 COUNT(*)/(SELECT COUNT(*) FROM airplanes)
),
 2
) AS PercentageTotal
FROM
 airplanes
GROUP BY
 Manufacturer
ORDER BY
 Total DESC, Manufacturer
LIMIT 10"""
)

Running our new script and pushing our new data to Mongo results in something
that clearly shows the trend of Boeing dominating the market, trailed by several other
manufacturers (Figure 6-8). Note that we also created a function called truncate to

Investigating Airplanes (Entities) | 175

http://bit.ly/2oKlliP

shorten long manufacturer names in the x-axis, so these labels do not overlap. We call
this function from the tickFormat method on our xAxis object:

function truncate(d, l) {
 if(d.length > l)
 return d.substring(0,l)+'...';
 else
 return d;
}

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .tickFormat(function(d) {
 return truncate(d, 14);
 });

Figure 6-8. Airlines home page with improved chart

Entity Resolution: Another Chart Iteration
However, there is another problem with the chart—the column names are duplicated,
which is distorting the values of manufacturers Airbus, McDonnel Douglas, and
Embraer. We need to iterate yet again! This time we’ll be tackling entity resolution.

176 | Chapter 6: Exploring Data with Reports

Entity resolution in 30 seconds
The problem we have encountered is that there are several forms of the manufactur‐
ers’ names used in the registrations of various airplanes. Addressing this problem is
called entity resolution, which is defined in a tutorial by Lise Getoor and Ashwin
Machanavajjhala as “[the] problem of identifying and linking/grouping different
manifestations of the same real world object.” Entity resolution is the process by
which AIRBUS is identified as the same thing as AIRBUS INDUSTRIE.

There are many methods of entity resolution, including complicated means employ‐
ing statistical inference. We will only explore a simple heuristic-based approach,
because it turns out that in this case that is simply good enough. Don’t allow your
curiosity to distract you into employing machine learning and statistical techniques
whenever you can. Get curious about results, instead.

Resolving manufacturers in PySpark

Let’s begin by inspecting the different ways the Manufacturer field appears in the air‐
plane records. We can use SQL to SELECT DISTINCT(Manufacturer) AS

Manufacturer and then see similar records next to one another with ORDER BY Manu
facturer. Then we need only print the data in a left-justified manner, and see what
we’ve got!

airplanes = spark.read.json('data/airplanes.json')

airplanes.registerTempTable("airplanes")
manufacturer_variety = spark.sql(
"""SELECT
 DISTINCT(Manufacturer) AS Manufacturer
FROM
 airplanes
ORDER BY
 Manufacturer"""
)
manufacturer_variety_local = manufacturer_variety.collect()

We need to print these left-justified
for mfr in manufacturer_variety_local:
 print(mfr.Manufacturer)

This results in a list that allows us to easily visualize the variety of values of Manufac
turer:

...
AIRBUS
AIRBUS INDUSTRIE
...
EMBRAER
EMBRAER S A
...

Investigating Airplanes (Entities) | 177

http://bit.ly/2pxK8d1

GULFSTREAM AEROSPACE
GULFSTREAM AEROSPACE CORP
...
MCDONNELL DOUGLAS
MCDONNELL DOUGLAS AIRCRAFT CO
MCDONNELL DOUGLAS CORPORATION
...

It turns out that we don’t have very much variety at all: only 35 distinct values. Recon‐
ciling the Manufacturer field of these records could be done manually, with a simple
table elaborating the matches in two columns. One column would contain the raw
value, and the other would contain the value to map to (the “standard” you have
chosen). Against this table you can then LEFT JOIN and, if there is a match, replace
the value of the field, in order to get a common identifier between records.

If you encounter 35 values for a field in your work, do yourself a favor: make the table
manually as CSV and load it in Spark and do the join. Here we will go further to illus‐
trate how to create such a mapping table in an automated way, and how to JOIN it and
effect the mapping. We do this to give you experience in how to problem solve and
“munge” your way out of these situations when you can without having to turn to
more complex (and thus time-consuming) statistical techniques.

A more sophisticated approach would be to inspect the data and see if we can infer a
rule to use to decide if records are identical. In looking at our duplicates, it seems that
whenever there is a duplicate, there is a lot of overlap at the start of the strings. This is
common among company names in the wild, where trailing symbols like “Incorpora‐
ted” are shortened to “Inc,” “Inc.,” “INC,” “Corp,” etc. We might then formulate a
strategy: if fields between records contain more than N characters in common at the
start of the string, they are identical. We would choose the longest common substring
as the “standard” value among those records, and use this rule to create our mapping
table.

To employ this strategy, we need to compare all unique values of Manufacturer with
one another. This is feasible with 35 unique values, but keep in mind that this may
not always be the case when resolving entities. Sometimes it is impossible to compare
all records with one another, because the square of the number of unique records is
too big, even for Spark! In this case we’re only resolving one field, which keeps the
cardinality low by enabling us to use the unique values of just that one field. When
records have numerous fields that identify them, the number of unique records
explodes. That situation is (thankfully) beyond the scope of this book, but I’ve had
good experiences with the Swoosh algorithms, which are implemented in the SERF
project from Stanford.

Check out ch06/resolve_airplane_manufacturers.py. Here we prepare a mapping table
for similar Manufacturer values, using the assumption that strings whose beginnings
overlap by more than five characters are the same. Note that this assumption is naive

178 | Chapter 6: Exploring Data with Reports

http://infolab.stanford.edu/serf/swoosh_vldbj.pdf
http://infolab.stanford.edu/serf/
http://bit.ly/2oT2sg1

and would not work for most datasets. Nonetheless, it shows how you can munge
your way out of sticky situations by learning your dataset and actually looking at the
data, record by sorted, unique record.

Continuing from the last code example where we computed manufacturer_variety,
check out the inline comments that describe the computation here:

Detect the longest common beginning string in a pair of strings
def longest_common_beginning(s1, s2):
 if s1 == s2:
 return s1
 min_length = min(len(s1), len(s2))
 i = 0
 while i < min_length:
 if s1[i] == s2[i]:
 i += 1
 else:
 break
 return s1[0:i]

Compare two manufacturers, returning a tuple describing the result
def compare_manufacturers(mfrs):
 mfr1 = mfrs[0]
 mfr2 = mfrs[1]
 lcb = longest_common_beginning(mfr1, mfr2)
 len_lcb = len(lcb)
 record = {
 'mfr1': mfr1,
 'mfr2': mfr2,
 'lcb': lcb,
 'len_lcb': len_lcb,
 'eq': mfr1 == mfr2
 }
 return record

Pair every unique instance of Manufacturer field with every
other for comparison
comparison_pairs = manufacturer_variety.join(manufacturer_variety)

Do the comparisons
comparisons = comparison_pairs.rdd.map(compare_manufacturers)

Matches have > 5 starting chars in common
matches = comparisons.filter(lambda f: f['eq'] == False and f['len_lcb'] > 5)

#
Now we create a mapping of duplicate keys from their raw value
to the one we're going to use
#

1) Group the matches by the longest common beginning ('lcb')
common_lcbs = matches.groupBy(lambda x: x['lcb'])

Investigating Airplanes (Entities) | 179

2) Emit the raw value for each side of the match along with the key, our 'lcb'
mfr1_map = common_lcbs.map(
 lambda x: [(y['mfr1'], x[0]) for y in x[1]]).flatMap(lambda x: x)
mfr2_map = common_lcbs.map(
 lambda x: [(y['mfr2'], x[0]) for y in x[1]]).flatMap(lambda x: x)

3) Combine the two sides of the comparison's records
map_with_dupes = mfr1_map.union(mfr2_map)

4) Remove duplicates
mfr_dedupe_mapping = map_with_dupes.distinct()

5) Convert mapping to dataframe to join to airplanes dataframe
mapping_dataframe = mfr_dedupe_mapping.toDF()

6) Give the mapping column names
mapping_dataframe.registerTempTable("mapping_dataframe")
mapping_dataframe = spark.sql(
 "SELECT _1 AS Raw, _2 AS NewManufacturer FROM mapping_dataframe"
)

Now we can employ the mapping table we have created. Note that this table could
have been prepared manually, given the small number of records, and in that case this
is the point at which you would load the mapping table as CSV (and run the next
code block):

JOIN our mapping left outer...
airplanes_w_mapping = airplanes.join(
 mapping_dataframe,
 on=airplanes.Manufacturer == mapping_dataframe.Raw,
 how='left_outer'
)
Now replace Manufacturer with NewManufacturer where needed
airplanes_w_mapping.registerTempTable("airplanes_w_mapping")
resolved_airplanes = spark.sql("""SELECT
 TailNum,
 SerialNumber,
 Owner,
 OwnerState,
 IF(NewManufacturer IS NOT null,NewManufacturer,Manufacturer) AS Manufacturer,
 Model,
 ManufacturerYear,
 EngineManufacturer,
 EngineModel
FROM
 airplanes_w_mapping""")

Store for later use, in place of airplanes.json
resolved_airplanes.repartition(1).write.mode("overwrite") \
 .json("data/resolved_airplanes.json")

180 | Chapter 6: Exploring Data with Reports

Again, for convenience, let’s create a single JSON Lines file:

cat data/resolved_airplanes.json/part* >> data/resolved_airplanes.jsonl

Now we need to update our chart!

Updating our chart
We need to run ch06/analyze_airplanes_again.py, which is just a copy of the original
ch06/analyze_airplanes.py with the new path for our resolved airplanes plugged in.
Once you’ve done that, check out /airplanes to see the updated chart (Figure 6-9).

Figure 6-9. Old chart (top) versus deduplicated chart (bottom)

The chart has changed quite a bit now that we’ve deduplicated manufacturers! Airbus
isn’t so far behind as we had thought. Now I’m wondering precisely how much mar‐
ket share each manufacturer has using the new airplanes dataframe.

Boeing versus Airbus revisited
To find out precisely how much market share Boeing and Airbus have, let’s run the
percentages again. Check out ch06/analyze_airplanes_again.py:

airplanes = spark.read.json('data/resolved_airplanes.json')
airplanes.registerTempTable("airplanes")

Investigating Airplanes (Entities) | 181

http://bit.ly/2oKArFn
http://bit.ly/2oKlliP
http://bit.ly/2oKArFn

relative_manufacturer_counts = spark.sql("""SELECT
 Manufacturer,
 COUNT(*) AS Total,
 ROUND(
 100 * (
 COUNT(*)/(SELECT COUNT(*) FROM airplanes)
),
 2
) AS PercentageTotal
FROM
 airplanes
GROUP BY
 Manufacturer
ORDER BY
 Total DESC, Manufacturer
LIMIT 10"""
)
relative_manufacturer_counts.show(10)

This produces the following result:

+--------------------+-----+---------------+
| Manufacturer|Total|PercentageTotal|
+--------------------+-----+---------------+
BOEING	2095	49.04
AIRBUS	1001	23.43
BOMBARDIER INC	460	10.77
EMBRAER	413	9.67
MCDONNELL DOUGLAS	241	5.64
CANADAIR	11	0.26
CESSNA	8	0.19
PIPER	7	0.16
GULFSTREAM AEROSPACE	6	0.14
BEECH	5	0.12
+--------------------+-----+---------------+

It turns out that Boeing has 49% of the market, versus Airbus with 23.4%. Go Boeing!
(Or, in case you’re in Europe... go Airbus!)

Cleanliness: Benefits of entity resolution
Raw data is always dirty. Once you dive in and start working with data and look at it
in raw form, when you visualize it in web pages in tables and charts and make it
searchable, problems with the data emerge. Resolving these problems as you work
with the data enables you to see trends clearly, without distortion. As your visualiza‐
tions benefit, so will your models. This “cleaning” sets you up for success in building
effective statistical models in the next level of the data-value pyramid: predictions.

182 | Chapter 6: Exploring Data with Reports

Conclusion
Here’s a summary of what we’ve done so far:

1. Create interesting, interconnected records. The bar for “interesting” is initially
low. We will improve it over time based on user feedback, traffic analysis, and
noodling.

2. Store these records as objects in a document store, like so:
key => {property1, property2, links => [key1, key2, key3]}

Split records as properties increase and become complex to avoid deep nesting,
or go at it as a document. Both approaches are valid if they fit your data.

3. Use a lightweight web framework like Flask or Sinatra to emit the key/value data
as JSON, or use a document store that returns JSON in the first place.

In the next chapter, we’ll take what we’ve learned about our data to make a prediction
with lots of practical relevance: will our flight be late? And if so, by how much?

Conclusion | 183

CHAPTER 7

Making Predictions

Now that we have interactive reports exposing different aspects of our data, we’re
ready to make our first prediction. This forms our fourth agile sprint (Figure 7-1).

Figure 7-1. Level 4: making predictions

When making predictions, we take what we know about the past and use it to infer
what will happen in the future. In doing so, we transition from batch processing of
historical data to real-time extrapolation about the future. In real terms, our task in
this chapter is to take historical flight records and use them to predict things about
future flights.

Code examples for this chapter are available at Agile_Data_Code_2/ch07. Clone the
repository and follow along!

185

http://bit.ly/2orM563

git clone https://github.com/rjurney/Agile_Data_Code_2.git

The Role of Predictions
We are all used to predictions in life. Some forecasts are based on statistical inference,
and some are simply the opinions of pundits. Statistical inference is increasingly
involved in predictions of all kinds. From weather forecasts to insurance actuaries
determining rates to the point spread in sports betting or odds in poker, statistical
predictions are a part of modern life. Sometimes forecasts are accurate, and some‐
times they are inaccurate.

For instance, as I was working on this edition of the book, pundits repeatedly dis‐
missed Donald Trump’s presidential candidacy as a joke, even as he gained on, pulled
ahead of, and ultimately defeated all opponents in the primary and edged closer to
Hillary Clinton as the election approached. Pundits are usually wrong, but accurate
predictions in elections have emerged thanks to Nate Silver of FiveThirtyEight. He
uses an advanced statistical model called a 538 regression to predict election results
state-by-state, and combines these predictions into a model that was highly accurate
in 2008 and 2012 (although, as it turns out, Silver—along with every rational member
of the world with faith in the American voter—failed to predict Trump’s election... to
be fair, though, he did predict a 29% chance for Trump, which was about double what
others predicted).

We’ll be making predictions using statistical inference through a technique called
machine learning. According to TechTarget, machine learning (ML for short) is “a
type of artificial intelligence (AI) that provides computers with the ability to learn
without being explicitly programmed.” Another way of explaining it is to say that
machine learning handles tasks that would be impossibly complex for humans to pro‐
gram manually themselves.

Machine learning is an intimidating topic, an advanced field of study. Mastering all
aspects of it can take many years. However, in practice, getting started with machine
learning is easy, thanks to some of the libraries we’ll be using in this chapter. Once we
explain the fundamentals, we’ll get on with some simple code.

Predict What?
In this chapter we will employ machine learning to build a predictive analytics appli‐
cation using the dataset we’ve been visualizing so far. The prediction we’ll be making
is one with great practical importance for anyone who travels by air. We’ll be predict‐
ing flight delays. Specifically, we’ll be predicting the arrival delay, or how late a flight is
when arriving at the gate at its destination airport.

First, let’s cover the fundamentals of predictive analytics.

186 | Chapter 7: Making Predictions

http://53eig.ht/2omLMdA
http://53eig.ht/2oLaffq
http://whatis.techtarget.com/definition/machine-learning

Introduction to Predictive Analytics
According to Wikipedia “Predictive analytics encompasses a variety of statistical
techniques from predictive modeling, machine learning, and data mining that ana‐
lyze current and historical facts to make predictions about future or otherwise
unknown events.”

Predictive analytics requires training data. Training data is composed of examples of
the entity we are trying to predict. Examples are made up of one or more features.
Dependent features are the values we are trying to predict. Independent features are
features describing the things we want to predict that relate to the dependent features.
For instance, our training data for predicting flight delays is our atomic records: our
flight delay records. A flight with its delay is an example of a record with a dependent
variable. Our independent features are other things we can associate with flights—in
other words, all the entities and their properties we’ve been working with in the pre‐
ceding chapters! The independent features are the other properties of flights—things
like the departure delay, the airline, the origin and destination cities, the day of the
week or year, etc.

We’ve been analyzing our data to better understand the features that make up a flight.
We know a lot about flight delays, and about flights themselves and those things that
combine to produce a flight: airplanes, airlines, airports, etc. This will enable us to
effectively engage in feature engineering, which is the critical part of making predic‐
tions. Interactive visualization and exploratory data analysis as a part of feature engi‐
neering is the heart of Agile Data Science. It drives and organizes our efforts.

Now that the groundwork is laid, let’s learn the mechanics of making actual predic‐
tions.

Making Predictions
There are two ways to approach most predictions: regression and classification. A
regression takes examples made up of features as input and produces a numeric out‐
put. Classification takes examples as input and produces a categorical classification.
The example dataset that serves as input to a statistical prediction and that enables
the machine to learn is called the training data.

Whether to build a regression or a classification depends on our business need. The
type of response variable often determines which to build. If we need to predict a
continuous variable, we build a regression. If we need to predict a nominal/categori‐
cal variable, we build a classification.

This decision can be more complex than that, however, taking into account the user
interface where we’ll present our prediction. For instance, if we were creating an API
we were going to sell access to that predicts flight delays, we would probably want to

Introduction to Predictive Analytics | 187

https://en.wikipedia.org/wiki/Predictive_analytics

use a regression to produce a numeric prediction. On the other hand, if we were pre‐
senting flight delays to users in a mobile application, usability considerations apply
that might mean a classification might be better.

In this book, we’ll create both a regression and a classification of flight delays using
decision trees, which can both classify and regress.

Features
A feature is what it sounds like: a feature of an example. In software terminology: if
examples are objects, features are fields or properties of those objects. Two or more
features make up the training data of a statistical prediction—two being the mini‐
mum because one field is required as the one to predict, and at least one additional
feature is required to make an inference about in order to create a prediction.

Sometimes features are already a part of the training data in question, in their own
fields. Sometimes we have to perform feature engineering to derive the training val‐
ues we need from the ones the data includes.

The models we’ll be using employ decision trees. Decision trees are important for a
few reasons. First, they can both classify and regress. It requires literally one line of
code to switch between the two models just described, from a classification to a
regression. Second, they are able to determine and share the feature importance of a
given training set.

Feature importances tell us which features in the training data were most important
in creating an accurate model. This is invaluable, because it gives us insight into what
features we should engineer and the approach we should take to improving perfor‐
mance. It also gives us insight into the underlying data, by telling us which features
have relationships with the predicted feature.

Regression
The simplest kind of regression analysis is a linear regression. Stat Trek defines linear
regression as follows:

In a cause and effect relationship, the independent variable is the cause, and the depen‐
dent variable is the effect. Least squares linear regression is a method for predicting the
value of a dependent variable Y, based on the value of an independent variable X.

A linear regression is a trend line. We’ve all seen them in Excel (if you haven’t, check
out North Carolina State University’s Excel regression tutorial). Given a set of vari‐
ables that characterize a flight, a linear regression might predict how early or late the
flight will be, in minutes.

188 | Chapter 7: Making Predictions

https://en.wikipedia.org/wiki/Decision_tree_learning
http://bit.ly/2omSErf
http://bit.ly/2omYlp8

Classification
The second way to solve the problem is to define a set of categories and to classify a
flight into one of those categories. Flight delays are a continuous distribution, so they
don’t naturally yield to classification. The trick here is to define the categories so they
simplify the continuous distribution of flight delays into two or more categories. For
instance, we might formulate categories similar to the buckets we will use for the
weather delay distribution (0–15, 15–60, and 60+), and then classify into these three
categories.

Exploring Flight Delays
Our topic for this chapter is flight delays. If we want to predict the feature, we must
first understand it. Let’s lay the groundwork by creating a delay entity in our applica‐
tion and fleshing it out.

We’ll begin by exploring the magnitude of the problem. Just how often are flights
late? It feels like “all the time,” but is it? This dataset is exciting in that it can answer
questions like this one! Check out ch07/explore_delays.py:

Load the on-time Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
on_time_dataframe.registerTempTable("on_time_performance")
total_flights = on_time_dataframe.count()

Flights that were late leaving...
late_departures = on_time_dataframe.filter(on_time_dataframe.DepDelayMinutes > 0)
total_late_departures = late_departures.count()

Flights that were late arriving...
late_arrivals = on_time_dataframe.filter(on_time_dataframe.ArrDelayMinutes > 0)
total_late_arrivals = late_arrivals.count()

Flights that left late but made up time to arrive on time...
on_time_heros = on_time_dataframe.filter(
 (on_time_dataframe.DepDelayMinutes > 0)
 &
 (on_time_dataframe.ArrDelayMinutes <= 0)
)
total_on_time_heros = on_time_heros.count()

Get the percentage of flights that are late, rounded to 1 decimal place
pct_late = round((total_late_arrivals / (total_flights * 1.0)) * 100, 1)

print("Total flights: {:,}".format(total_flights))
print("Late departures: {:,}".format(total_late_departures))
print("Late arrivals: {:,}".format(total_late_arrivals))
print("Recoveries: {:,}".format(total_on_time_heros))
print("Percentage Late: {}%".format(pct_late))

Exploring Flight Delays | 189

http://bit.ly/2oV4BaG

Which results in:

Total flights: 5,819,079
Late departures: 2,125,618
Late arrivals: 2,086,896
Recoveries: 606,902
Percentage Late: 35.9%

Wow, flights arrive late 35.9% of the time! The problem is as big as it seems. But how
late is the average flight?

Get the average minutes late departing and arriving
spark.sql("""
SELECT
 ROUND(AVG(DepDelay),1) AS AvgDepDelay,
 ROUND(AVG(ArrDelay),1) AS AvgArrDelay
FROM on_time_performance
"""
).show()

+-----------+-----------+
|AvgDepDelay|AvgArrDelay|
+-----------+-----------+
| 9.4| 4.4|
+-----------+-----------+

Flights are 9.4 minutes late departing and 4.4 minutes late arriving on average. Why
the constant tardiness? Are the airlines incompetent (as we often angrily suspect), or
is the problem weather? Weather is presently out of human control, so that would let
the airlines off the hook. Should we be mad at the airlines or angry with the god(s)?
(Personally, I’m fearful of Zeus!)

Let’s take a look at some delayed flights, and specifically the fields that specify the
kinds of delay. We want to be sure to use a random sample, which we can obtain via
Spark’s DataFrame.sample function. In the first rendition of this chapter, I did not
use a random sample and was deceived by what appeared to be constant weather
delays, when these are actually not very common. Don’t be lazy—it’s very easy to
insert a .sample(False, 0.01) before every one of your .show functions:

late_flights = spark.sql("""
SELECT
 FlightDate,
 ArrDelayMinutes,
 WeatherDelay,
 CarrierDelay,
 NASDelay,
 SecurityDelay,
 LateAircraftDelay
FROM
 on_time_performance
WHERE
 WeatherDelay IS NOT NULL

190 | Chapter 7: Making Predictions

http://bit.ly/2os5rrE

 OR
 CarrierDelay IS NOT NULL
 OR
 NASDelay IS NOT NULL
 OR
 SecurityDelay IS NOT NULL
 OR
 LateAircraftDelay IS NOT NULL
ORDER BY
 FlightDate
""")

late_flights.sample(False, 0.01).show()

This results in:

ArrDelayMinutes WeatherDelay CarrierDelay NASDelay SecurityDelay LateAircraftDelay
21.0 0.0 0.0 21.0 0.0 0.0
17.0 0.0 0.0 17.0 0.0 0.0
27.0 0.0 2.0 25.0 0.0 0.0
19.0 0.0 0.0 19.0 0.0 0.0
157.0 0.0 155.0 2.0 0.0 0.0
19.0 0.0 8.0 11.0 0.0 0.0
24.0 0.0 14.0 0.0 0.0 10.0
105.0 0.0 0.0 0.0 0.0 105.0
46.0 0.0 16.0 15.0 0.0 15.0
22.0 0.0 0.0 20.0 0.0 2.0
35.0 0.0 11.0 24.0 0.0 0.0
67.0 0.0 35.0 32.0 0.0 0.0
39.0 0.0 15.0 5.0 0.0 19.0
21.0 0.0 0.0 21.0 0.0 0.0
204.0 0.0 8.0 0.0 0.0 196.0
31.0 0.0 0.0 0.0 0.0 31.0
16.0 0.0 0.0 16.0 0.0 0.0
50.0 0.0 0.0 0.0 0.0 50.0
23.0 0.0 0.0 23.0 0.0 0.0
36.0 0.0 23.0 13.0 0.0 0.0

An explanation of the different kinds of delay is available on the Federal Aviation
Administration (FAA) website.

What does this small sample tell us? Carrier delays are constant and sometimes
severe. NAS delays—delays under the control of the National Airspace System (NAS)
that can be attributed to conditions such as traffic volume and air traffic control—are
as common as carrier delays. Security delays appear rare, while late aircraft delays

Exploring Flight Delays | 191

http://aspmhelp.faa.gov/index.php/Types_of_Delay
http://aspmhelp.faa.gov/index.php/Types_of_Delay

(which result from the propagation of a previous delay) are frequent and sometimes
severe.

A small sample is a good way to get familiar with the data, but small samples can be
deceptive. We want real answers we can trust, so let’s quantify the sources of delay.
What percentage of total delay does each source contribute? We’ll use arrival delay for
our total—a simplification we’ll have to live with, since some delay may be on depar‐
ture and some in flight:

Calculate the percentage contribution to delay for each source
total_delays = spark.sql("""
SELECT
 ROUND(SUM(WeatherDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_weather_delay,
 ROUND(SUM(CarrierDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_carrier_delay,
 ROUND(SUM(NASDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_nas_delay,
 ROUND(SUM(SecurityDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_security_delay,
 ROUND(SUM(LateAircraftDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
 pct_late_aircraft_delay
FROM on_time_performance
""")
total_delays.show()

Which results in (formatted to fit the page):

pct_weather_delay pct_carrier_delay pct_nas_delay pct_security_delay pct_late_aircraft_delay
4.5 29.2 20.7 0.1 36.1

Our result isn’t perfect—the sources of delay don’t total to 100%. This is a result of
our aforementioned simplification regarding arrival/departing delays. Nevertheless,
we do get a sense of things; our sample is informative. Most delay is from previous
delays with the same airplane, which have a cascading effect on the rest of the sched‐
ule. Of delays originating during a flight’s operations, most are carrier delays. Specifi‐
cally, 29% of delays are carrier delays, versus 21% for air traffic control delays and
only 4.5% for weather delays.

The answer to our earlier question is clear: we should usually be mad at the airline.
However, not all carrier delays are because of mistakes the carrier makes. The FAA
website explains:

Examples of occurrences that may determine carrier delay are: aircraft cleaning, air‐
craft damage, awaiting the arrival of connecting passengers or crew, baggage, bird
strike, cargo loading, catering, computer, outage-carrier equipment, crew legality (pilot
or attendant rest), damage by hazardous goods, engineering inspection, fueling, han‐
dling disabled passengers, late crew, lavatory servicing, maintenance, oversales, potable
water servicing, removal of unruly passenger, slow boarding or seating, stowing carry-
on baggage, weight and balance delays.

In other words, sometimes shit happens and the carrier didn’t do anything wrong. We
don’t have data to determine how often the carrier is really to blame. Importantly for

192 | Chapter 7: Making Predictions

http://aspmhelp.faa.gov/index.php/Types_of_Delay
http://aspmhelp.faa.gov/index.php/Types_of_Delay

our problem in this chapter, predicting flight delays, the best we’ll be able to do is to
characterize the overall carrier delay of each airline. We won’t be modeling bird
strikes or unruly passengers.

Having familiarized ourselves with flight delays, now let’s plug some of the features
we’ve discovered into a simple classification and regression.

Extracting Features with PySpark
To use features, we need to extract them from the broader dataset. Let’s begin by
extracting just a few features from our dataset using PySpark, along with the time
delays themselves. In order to do this, we need to decide which feature we’re going to
predict. There are two delay fields listed in minutes: ArrDelayMinutes and DepDelay
Minutes. Which are we to predict?

In thinking about our use case, it seems that our users want to know both things:
whether and how late a flight will depart, and whether and how late it will arrive. Let’s
include both in our training data. In terms of other features to extract, a little thought
tells me that a few things are certain to matter. For instance, some airports have more
delays than others, so departing and arriving airport is a no brainer. Flights are prob‐
ably more often delayed in the hurricane and snow seasons, so the month of the year
makes sense. Some carriers are more punctual than others. Finally, some routes must
have more delays than others, so the flight number makes sense too.

We’ll also include the last of the unique identifiers for the flight, the flight date. Flights
are uniquely identified by FlightDate, Carrier, FlightNum, and Origin and Dest.
Always include all of the fields that uniquely identify a record, as it makes debugging
easier.

That is all the features we will start with. The more features you use, the more com‐
plex wrangling them can get, so keep it simple and use just a few features at first.
Once you have a pipeline set up with sklearn where you can iterate quickly and
determine what helps and what doesn’t, you can add more.

All these features are simple and tabular, so it is easy to select them and store them as
JSON for our model to read.

Let’s pick out and check our features. Check out ch07/extract_features.py:

import sys, os, re
import iso8601
import datetime

Load the on-time Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
on_time_dataframe.registerTempTable("on_time_performance")

Extracting Features with PySpark | 193

http://bit.ly/2pRS6dt

Select a few features of interest
simple_on_time_features = spark.sql("""
SELECT
 FlightNum,
 FlightDate,
 DayOfWeek,
 DayofMonth AS DayOfMonth,
 CONCAT(Month, '-', DayofMonth) AS DayOfYear,
 Carrier,
 Origin,
 Dest,
 Distance,
 DepDelay,
 ArrDelay,
 CRSDepTime,
 CRSArrTime
FROM on_time_performance
""")
simple_on_time_features.show()

This results in the following (truncated to fit on the page):

FlightNum FlightDate ... Carrier Origin Dest Distance DepDelay ArrDelay CRSDepTime CRSArrTime
1519 ...-01 ... AA DFW MEM 432.0 -3.0 -6.0 1345 1510
1519 ...-01 ... AA MEM DFW 432.0 -4.0 -9.0 1550 1730
2349 ...-01 ... AA ORD DFW 802.0 0.0 26.0 1845 2115
1298 ...-01 ... AA DFW ATL 731.0 100.0 112.0 1820 2120
1422 ...-01 ... AA DFW HDN 769.0 78.0 78.0 0800 0925
1422 ...-01 ... AA HDN DFW 769.0 332.0 336.0 1005 1320
2287 ...-01 ... AA JAC DFW 1047.0 -4.0 21.0 0800 1200
1080 ...-01 ... AA EGE ORD 1007.0 null null 1415 1755
1080 ...-01 ... AA ORD EGE 1007.0 null null 1145 1335
2332 ...-01 ... AA DFW ORD 802.0 null null 0740 0955
194 ...-01 ... AA DFW ATL 731.0 null null 1150 1445
356 ...-01 ... AA ATL DFW 731.0 -5.0 1.0 1640 1805
356 ...-01 ... AA DFW ATL 731.0 -4.0 -11.0 1300 1600
2396 ...-01 ... AA DFW ATL 731.0 76.0 86.0 1955 2250
1513 ...-01 ... AA ATL DFW 731.0 -2.0 -7.0 1045 1215
1513 ...-01 ... AA DFW ATL 731.0 -5.0 -25.0 0700 1005
937 ...-01 ... AA DFW EGE 721.0 35.0 17.0 1600 1720
937 ...-01 ... AA EGE LAX 748.0 10.0 -12.0 1805 1920
1212 ...-01 ... AA DFW SDF 733.0 null null 1145 1440
1212 ...-01 ... AA SDF DFW 733.0 null null 1520 1640

Looks like a few flights don’t have delay information. Let’s filter those, and sort the
data before saving it as a single JSON file:

194 | Chapter 7: Making Predictions

Filter nulls, they can't help us
filled_on_time_features = simple_on_time_features.filter(
 simple_on_time_features.ArrDelay.isNotNull()
 &
 simple_on_time_features.DepDelay.isNotNull()
)

Now we need to convert all our dates and times (datetimes) from a string represen‐
tation to a mathematical one—otherwise, our predictive algorithms can’t understand
them in their proper and most useful contexts. To do so, we need some utility func‐
tions:

We need to turn timestamps into timestamps, and not strings or numbers
def convert_hours(hours_minutes):
 hours = hours_minutes[:-2]
 minutes = hours_minutes[-2:]

 if hours == '24':
 hours = '23'
 minutes = '59'

 time_string = "{}:{}:00Z".format(hours, minutes)
 return time_string

def compose_datetime(iso_date, time_string):
 return "{} {}".format(iso_date, time_string)

def create_iso_string(iso_date, hours_minutes):
 time_string = convert_hours(hours_minutes)
 full_datetime = compose_datetime(iso_date, time_string)
 return full_datetime

def create_datetime(iso_string):
 return iso8601.parse_date(iso_string)

def convert_datetime(iso_date, hours_minutes):
 iso_string = create_iso_string(iso_date, hours_minutes)
 dt = create_datetime(iso_string)
 return dt

def day_of_year(iso_date_string):
 dt = iso8601.parse_date(iso_date_string)
 doy = dt.timetuple().tm_yday
 return doy

def alter_feature_datetimes(row):
 flight_date = iso8601.parse_date(row['FlightDate'])
 scheduled_dep_time = convert_datetime(row['FlightDate'], row['CRSDepTime'])
 scheduled_arr_time = convert_datetime(row['FlightDate'], row['CRSArrTime'])

 # Handle overnight flights
 if scheduled_arr_time < scheduled_dep_time:

Extracting Features with PySpark | 195

https://docs.python.org/3.5/library/datetime.html

 scheduled_arr_time += datetime.timedelta(days=1)

 doy = day_of_year(row['FlightDate'])

 return {
 'FlightNum': row['FlightNum'],
 'FlightDate': flight_date,
 'DayOfWeek': int(row['DayOfWeek']),
 'DayOfMonth': int(row['DayOfMonth']),
 'DayOfYear': doy,
 'Carrier': row['Carrier'],
 'Origin': row['Origin'],
 'Dest': row['Dest'],
 'Distance': row['Distance'],
 'DepDelay': row['DepDelay'],
 'ArrDelay': row['ArrDelay'],
 'CRSDepTime': scheduled_dep_time,
 'CRSArrTime': scheduled_arr_time,
 }

In practice, these functions were worked out iteratively over the course of an hour.
Employing them is then simple:

timestamp_features = filled_on_time_features.rdd.map(alter_feature_datetimes)
timestamp_df = timestamp_features.toDF()

Always explicitly sort your data before vectorizing it. Don’t leave the sort up to the
system. If you do so, a software version change or some other unknown cause might
ultimately change the sort order of your training data as compared with your result
data. This would be catastrophic and confusing and should be avoided at all costs.
Explicitly sorting training data in a way that avoids arbitrary sorting is essential:

Explicitly sort the data and keep it sorted throughout.
Leave nothing to chance.
sorted_features = timestamp_df.sort(
 timestamp_df.DayOfYear,
 timestamp_df.Carrier,
 timestamp_df.Origin,
 timestamp_df.Dest,
 timestamp_df.FlightNum,
 timestamp_df.CRSDepTime,
 timestamp_df.CRSArrTime,
)

Let’s copy the file into a JSON Lines file and check it out:

Store as a single JSON file and bzip2 it
sorted_features.repartition(1).write.mode("overwrite") \
 .json("data/simple_flight_delay_features.json")
os.system("cp data/simple_flight_delay_features.json/part*
 data/simple_flight_delay_features.jsonl")
os.system("bzip2 --best data/simple_flight_delay_features.jsonl")

196 | Chapter 7: Making Predictions

os.system("bzcat data/simple_flight_delay_features.jsonl.bz2 >>
 data/simple_flight_delay_features.jsonl")

Now take a look at the result:

$ bzcat data/simple_flight_delay_features.jsonl.bz2 | head -5

{"FlightNum":"1024",
 ...
 "Carrier":"AA",
 "Origin":"ABQ",
 "Dest":"DFW",
 "DayOfYear":"1-1",
 "Distance":569.0,
 "DepDelay":14.0,
 "ArrDelay":13.0
}
{"FlightNum":"1184",
 ...
 "Carrier":"AA",
 "Origin":"ABQ",
 "Dest":"DFW",
 "DayOfYear":"1-1",
 "Distance":569.0,
 "DepDelay":14.0,
 "ArrDelay":17.0
}
{"FlightNum":"336",
 ...
 "Carrier":"AA",
 "Origin":"ABQ",
 "Dest":"DFW",
 "DayOfYear":"1-1",
 "Distance":569.0,
 "DepDelay":-2.0,
 "ArrDelay":36.0
}
{"FlightNum":"125",
 ...
 "Carrier":"AA",
 "Origin":"ATL",
 "Dest":"DFW",
 "DayOfYear":"1-1",
 "Distance":731.0,
 "DepDelay":-1.0,
 "ArrDelay":-21.0
}
{"FlightNum":"1455",
 ...
 "Carrier":"AA",
 "Origin":"ATL",
 "Dest":"DFW",
 "DayOfYear":"1-1",

Extracting Features with PySpark | 197

 "Distance":731.0,
 "DepDelay":-4.0,
 "ArrDelay":-14.0
}

Looking good! Our features are now prepared for vectorization.

Building a Regression with scikit-learn
As we said in Chapter 3, scikit-learn is the leading machine learning library for
beginners. It also finds widespread use in production applications. As Python has
become the lingua franca of data science, sklearn, along with numpy and scipy, has
become a foundational part of data science. We will attempt to use sklearn to pro‐
duce a “quick and dirty” predictive model for flight delays in this section—however,
we will find its limits. For a Jupyter notebook, 5.4 million flight records is “big data.”
This will illustrate the limitations of scientific computing on one machine, and will
serve as a good introduction to the motivation for using Spark MLlib.

Note that another library is generally recognized as state of the art for classification,
and that is xgboost. It works similarly to sklearn’s GradientBoosted classifier and
regressor, but some differences in the implementation make it work better than any‐
thing else available for the kind of classification task we’ll cover. Note that this library
is by data science luminary Hadley Wickham, and works with Python, R, Java, Scala,
and C++. We’ll begin with a linear regression before moving on to a gradient boosted
regression.

Loading Our Data
We’ll start by loading our data in Python and building our models. Check out ch07/
train_sklearn_model.py, or you can follow along using the Jupyter notebook in ch07/
Predicting flight delays with sklearn.ipynb. Note that in the Jupyter notebook, we have
to sample the data down from 5.4 million to 1 million records. To run the notebook
locally, run jupyter notebook in the project root directory, and then open ch07/
Predicting flight delays with sklearn.

Our features file is 1.6 GB, so it may take a minute to load. If you’re using iPython to
paste the code directly, you will want to run this code in a new iPython window, and
not one you’ve used with PySpark. Otherwise, you may run out of RAM. You may
also want to stop unneeded programs, to give your system enough RAM to run this
example.

If the system doesn’t respond for more than 10 minutes, kill the process with Ctrl-C
and follow the instructions in the next section to handle the problem by reducing the
size of the data being processed. Also note that if you have problems with the Jupyter
notebook, you can try running the code in the normal iPython console and see if that

198 | Chapter 7: Making Predictions

https://github.com/dmlc/xgboost
http://hadley.nz/
http://bit.ly/2pfQ5LU
http://bit.ly/2pfQ5LU
http://bit.ly/2oNRd6c
http://bit.ly/2oNRd6c

works. Part of the point of this section is to explore and discover the limits of Python
on a single machine, but you should be able to get through it with 16 GB of RAM.

Now, let’s load our features!

import sys, os, re
sys.path.append("lib")
import utils

import numpy as np
import sklearn
import iso8601
import datetime
print("Imports loaded...")

Load and check the size of our training data. May take a minute.
training_data = utils.read_json_lines_file('
 data/simple_flight_delay_features.jsonl'
)
print("Training items: {:,}".format(len(training_data))) # 5,714,008
print("Data loaded...")

Note that this is a lot of training data, and it will push the limits of our local machines
(presumably with only 16 GB or so of RAM). We will look at ways to address this
problem, before moving on to using Spark MLlib.

Let’s take a look at a single record as well as the data’s size in bytes:

Inspect a record before we alter them
print("Size of training data: {:,} Bytes".format(sys.getsizeof(training_data)))
print(training_data[0])

This results in:

Size of training data: 50,897,424 Bytes

{'ArrDelay': 13.0, 'DepDelay': 14.0, 'DayOfYear': '1-1', 'FlightNum': '1024',
'FlightDate': '2015-01-01', 'Distance':569.0,
'Carrier': 'AA', 'Origin': 'ABQ', 'Dest': 'DFW'}

Sampling Our Data
Here we reach a fork. If you are using the iPython console to run this code, as we
have done in other chapters, you can process all of the 5.4 million records without a
problem. However, if you’re using a Jupyter notebook, this number of records might
overwhelm your machine. On my late-model MacBook Pro with 16 GB of RAM, I
ran into problems, so I needed to sample the data. In the Jupyter notebook, we run
the following code to sample down from 5.4 to 1 million records:

Building a Regression with scikit-learn | 199

Sample down to 1 million records if not using IPython
training_data = np.random.choice(training_data, 1000000)
print("Sampled items: {:,}".format(training_data))
print("Data sampled...")

Which results in:

Sampled items: 1,000,000
Data sampled...

If you’re using the iPython console, you can skip this code unless you run into prob‐
lems later in this section.

The statistics printed as part of the program output for the rest of the chapter assume
you are running without sampling, on all 5.4 million records, using the iPython con‐
sole. Those for 1 million records would be about 20% of these sizes.

Vectorizing Our Results
Next we need to extract and vectorize the result set (the value we’re trying to predict):
the flight arrival delays themselves. The way we encode features and results varies
between classification and regression, so at this point we have to decide: classification
or regression? To classify flight delays, we’ll need to map the numeric value of the
delay in minutes into categories such as “on time,” “late,” and “very late.” To regress
flight delays, we need only use the delay values directly. Because it is simpler, we will
begin with a regression.

There are two types of delay, but let’s start with arrival delays. We need to extract the
arrival delay field from the training data and convert it from a list to a numpy.array.
In doing so, we are vectorizing them in order to serve as the y variable in training our
regression:

Separate our results from the rest of the data, vectorize and size up
results = [record['ArrDelay'] for record in training_data]
results_vector = np.array(results)
print("Results vectorized size: {:,} Bytes".format(sys.getsizeof(
 results_vector)))
print("Results vectorized...")

This results in:

Results vectorized size: 45,712,160 Bytes
Results vectorized...

numpy.arrays are efficient representations of matrices, which are multidimensional
arrays of numbers. In this case the value of our data is a float, so there is no more
feature extraction necessary. Vectors enable math operations without the inefficiency
of loops. They also make possible efficient math using graphics processing units
(GPUs). Vectorized, our results are only 45 MB.

200 | Chapter 7: Making Predictions

http://bit.ly/2pgM6hY

Preparing Our Training Data
Now we need to encode the features of our training data. We’ll start by removing the
arrival delay field, as it is a result and not training data. However, we do include our
departure delay as training data in our arrival delay prediction. This means that when
we make a prediction, we will include the departure delay as a feature.

We won’t be needing the flight date either, as we’ll be predicting flights in the future,
and these dates do not appear in our historical data. Of course, we can use some fea‐
tures from the date, like day of week, month, and year, and we do so because intui‐
tively we know that flight delays on Christmas day, for example, are worse than on a
typical day:

Remove the two delay fields and the flight date from our training data
for item in training_data:
 item.pop('ArrDelay', None)
 item.pop('FlightDate', None)
print("ArrDelay and FlightDate removed from training data...")

Next, we need to convert our date/time fields to Unix times (Unix time is defined as
the number of seconds since January 1, 1970, in the Greenwich Mean Time zone).
This allows our regression to understand the times as numbers, which is the only way
it will understand anything (even for nominal features like “departure city ATL,”
which we’ll address later):

Must convert datetime strings to Unix times
for item in training_data:
 if isinstance(item['CRSArrTime'], str):
 dt = iso8601.parse_date(item['CRSArrTime'])
 unix_time = int(dt.timestamp())
 item['CRSArrTime'] = unix_time
 if isinstance(item['CRSDepTime'], str):
 dt = iso8601.parse_date(item['CRSDepTime'])
 unix_time = int(dt.timestamp())
 item['CRSDepTime'] = unix_time
print("CRSArr/DepTime converted to unix time...")

Vectorizing Our Features
Now we need to encode and vectorize our features. The numbers, or continuous vari‐
ables, will pass straight through this process as numbers. However, many of our fea‐
tures so far are nominal, which just means categorical as opposed to numerical. That
is, they are names of things (e.g., ATL represents an airport) and not numbers. Statisti‐
cal inference is based on vectorized, numeric data, so we need to convert the cate‐
gories into numbers and build matrices out of the result to feed our regression. If this
confuses you, a good guide on types of data is available from Laerd Statistics.

Fortunately for us, sklearn has our back: its DictVectorizer class uses the hashing
trick to convert Python dicts directly into feature vectors (sparse matrices). (There

Building a Regression with scikit-learn | 201

http://bit.ly/2omEh6d
http://bit.ly/2omLxPB
http://bit.ly/2pTcI4U
http://bit.ly/2pTcI4U

are other, more advanced ways to encode nominal features as well.) This may take a
moment and heat your wrists up, as your computer does some heavy lifting:

Use DictVectorizer to convert feature dicts to vectors
from sklearn.feature_extraction import DictVectorizer

print("Original dimensions: [{:,}]".format(len(training_data)))
vectorizer = DictVectorizer()
training_vectors = vectorizer.fit_transform(training_data)
print("Size of DictVectorized vectors: {:,} Bytes".format(
 training_vectors.data.nbytes))
print("Training data vectorized...")

The result is:

Original dimensions: [5,714,008]
Size of DictVectorized vectors: 500,205,168 Bytes
Training data vectorized...

What does fit_transform do to actually vectorize our data? It is a combination of
the fit and transform methods, which are often used together. First fit creates a list
of indices, mapping from the nominal names to a column index in a matrix. Next,
transform uses these matrix indices to give each feature its own column, while each
instance of a feature, for each example, gets a row. The result is that a dict is con‐
verted into a numpy.array. Our data has been transformed from a category to a
matrix column representing the presence or absence of that category for each item in
the training set (see Figure 7-2).

202 | Chapter 7: Making Predictions

http://bit.ly/2oL8w9y
http://bit.ly/2pB0HES
http://bit.ly/2pRhFvc

Figure 7-2. Vectorizing records using the hashing trick

Sparse Versus Dense Matrices
Our training data is 500 MB in vectorized form, which is 35% of the size of the origi‐
nal 1.6 GB of JSON, but more than 10 times the size of that data when loaded as
Python variables in RAM. When your data has a lot of nominal (categorical) vari‐
ables, it can expand in size when vectorized. Note, however, that DictVectorizer
returns a sparse matrix as opposed to a dense one. The specific matrix employed by
DictVectorizer is a scipy.sparse.csr_matrix, which is a “Compressed Sparse Row
matrix.”

When used to encode nominal data, sparse matrices don’t encode empty elements
with 0s, only full elements with 1s. When data is sparse, as in the case of departures
from ATL, this saves so much space that without the help of sparse matrices, the rest
of this section would be impossible on a MacBook Pro. It is often the case that dense
matrices would make doing math on one machine impossible.

Building a Regression with scikit-learn | 203

http://bit.ly/2pT6C4L
http://bit.ly/2o5lWyG

Preparing an Experiment
Before we can train our model, we need to set up an experiment to gauge its accuracy.
To do so, we will employ a method called cross-validation. Cross-validation means we
split our data into test and training sets, and then train the model on the training set
before testing it on the test set. Cross-validation prevents overfitting, which is when a
model seems quite accurate but fails to actually predict future events well.

If you were to train a model on all your training data without splitting it into training
and test sets, you would likely get a good accuracy score since the model would be
predicting based on the very input you gave it as training data. But that isn’t what
we’re interested in. What we’re interested in is building a statistical model that gener‐
alizes to new and unseen data in order to make real predictions about the future.

There is a helpful module in sklearn that can perform cross-validation called
sklearn.model_selection. We’ll employ the test_train_split method to split our
data into training and test sets. The test set will be made up of 10% of our total data‐
set, the other 90% being used for training data:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
 training_vectors,
 results_vector,
 test_size=0.1,
 random_state=43
)
print(X_train.shape, X_test.shape)
print(y_train.shape, y_test.shape)
print("Test train split performed...")

This results in:

(900000, 7420) (100000, 7420)
(900000,) (100000,)
Test train split performed...

Training Our Model
With that, we are ready to train our model! First we will train on the training data,
and then we will test on the test data to gauge the model’s accuracy. The documenta‐
tion for sklearn.linear_model.LinearRegression is worth a look, as most sklearn
classes have usage examples in their documentation. We chose linear regression as the
first algorithm to try because it is generally better to have a simpler model if possible,
all else being equal (we’ll show how easy it is to swap algorithms later):

Train a regressor
from sklearn.linear_model import LinearRegression

204 | Chapter 7: Making Predictions

http://bit.ly/2hKE0pY
http://bit.ly/2pRuju5
http://bit.ly/2pBIQei
http://bit.ly/2oUPONt

from sklearn.model_selection import train_test_split
print("Regressor library and metrics imported...")

regressor = LinearRegression()
print("Regressor instantiated...")

regressor.fit(X_train, y_train)
print("Regressor fit...")

There are many different models available in sklearn, and they all work this same
way. What power! For instance, we might at this point swap in another algorithm,
gradient boosted trees, by importing sklearn.emsemble.GradientBoostingRegres
sor and inserting it in place of sklearn.linear_model.LinearRegression:

from sklearn.ensemble import GradientBoostingRegressor

regressor = GradientBoostingRegressor
print("Swapped gradient boosting trees for linear regression!")

Let's go back for now...
regressor = LinearRegression()
print("Swapped back to linear regression!")

The fit method takes the training data and results and creates a statistical model
mapping one to the other, by inferring how to predict the result from its features:

regressor.fit(X_train, y_train)
print("Regressor fitted...")

That’s all there is to fitting a model in sklearn. Now that we’ve fitted our model, let’s
check how accurate it is!

Testing Our Model
To start we need to use our model to make predictions based on our test data. To do
so, we use the regressor’s predict method, which can take a single item or a matrix of
items. The predict method takes the same format as the fit method. This means
you will have to transform your features from the textual, object format they probably
arrive in into matrices via vectorization before you can make predictions in real time,
in the real world, using the model you just fit.

To quantify and visualize our results, we’ll need to compare X_test with the model’s
predictions for X_test. So, we feed X_test to the predict method:

predicted = regressor.predict(X_test)
print("Predictions made for X_test...")

Once we’ve got our predictions, we can use some of the many metrics available in
sklearn.metrics. We’ve chosen the median_absolute_error and r2_score meth‐
ods:

Building a Regression with scikit-learn | 205

http://bit.ly/2oL7pa4
http://bit.ly/2oL7pa4
http://bit.ly/2oUPONt
http://bit.ly/1ElkZok

from sklearn.metrics import median_absolute_error, r2_score

medae = median_absolute_error(y_test, predicted)
print("Median absolute error: {:.3g}".format(medae))

r2 = r2_score(y_test, predicted)
print("r2 score: {:.3g}".format(r2))

Median absolute error: 9.93
r2 score: 0.829

The documentation defines median absolute error as the median of all absolute dif‐
ferences between the target and the prediction (less is better, more indicates a high
error between target and prediction). This ranges from 1 to 0, with 1.0 being the best
and 0.0 the worst. R2 score is the coefficient of determination, or a measure of how
well future samples are likely to be predicted. Taken together, the median absolute
error being 9.93 minutes off and the R2 score being 0.829—near to 1—means our
model isn’t half bad!

Recall that the average lateness in departing is 9.4 minutes, and we have a greater
amount of median absolute error. Thats okay, though. Our goal here wasn’t to create a
great model. Our goal was to plumb our features to our statistical model and then
make and test predictions. Remember, we only gave the model a few features off the
top of our head. It didn’t have a lot to go on! We’ll improve our model in Chapter 9.
For now, you should learn how to structure a prediction workflow. In Chapter 9, we’ll
show you how to iteratively improve this model.

Finally, we will plot the values for the arrival lateness in X_test against our predicted
values for arrival lateness for X_test. In other words, we want to visualize how we did
so that the actual value is on the x-axis and the predicted value is on the y-axis. We
can do so using a scatter plot in pyplot, with pyplot.scatter:

Plot outputs
import matplotlib.pyplot as plt

plt.scatter(
 y_test,
 predicted,
 color='blue',
 linewidth=1
)

plt.xticks(())
plt.yticks(())

plt.show()

Figure 7-3 shows the result.

206 | Chapter 7: Making Predictions

http://matplotlib.org/api/pyplot_api.html
http://bit.ly/2pCQWWJ

Figure 7-3. Plotting actual versus predicted values

Wow, some flights are almost 20 hours late! And you can see the area left and down of
the zeros representing early flights, some of which are as early as over an hour! This is
a fascinating chart, and the trend of the plot being up and to the right shows how well
it is working.

Conclusion
Note that we had to sample our dataset to make it work in scikit-learn. We threw
away 80% of our data… but with Spark, we might never have to sample at all! We can
use all of our data to make better predictions using a system that scales horizontally
across many machines.

Now that we’ve created a model in sklearn and quantified and visualized its accuracy,
we’re going to move on to building a classifier in Spark MLlib.

Building a Classifier with Spark MLlib
As we saw in our last example, in order to use sklearn to classify or regress all 5.4
million usable flight on-time performance records for 2015, we had to sample down
to 1 million records. There simply isn’t enough RAM on one typical machine to train
the model on all the training data. This is where Spark MLlib comes in. From the
Machine Learning Library (MLlib) Guide:

Building a Classifier with Spark MLlib | 207

http://bit.ly/2pDU3uN
http://spark.apache.org/docs/latest/ml-guide.html

Its goal is to make practical machine learning scalable and easy. At a high level, it pro‐
vides tools such as:

• ML Algorithms: common learning algorithms such as classification, regression,
clustering, and collaborative filtering

• Featurization: feature extraction, transformation, dimensionality reduction, and
selection

• Pipelines: tools for constructing, evaluating, and tuning ML Pipelines
• Persistence: saving and load algorithms, models, and Pipelines
• Utilities: linear algebra, statistics, data handling, etc.

MLlib uses Spark DataFrames as the foundation for tables and records. Although
some RDD-based methods still remain, they are not under active development.

Note that we are using Spark MLlib because it can work across many machines to
handle large volumes of data. We’re only using one machine in this book’s examples,
but the code and the process are identical regardless of the size of the cluster. By
learning to build a predictive model with Spark MLlib on a single machine, you are
learning to operate a cluster of 1,000 machines. Services like Amazon Elastic Map‐
Reduce make booting a working Spark cluster a matter of point-and-click. We cov‐
ered doing analytics in the cloud in the first edition, but removed that chapter to
make room for other content in this edition.

Now, follow along as we build a classifier using PySpark and Spark MLlib in ch07/
train_spark_mllib_model.py.

Loading Our Training Data with a Specified Schema
First we must load our training data back into Spark. When we first loaded our data,
Spark SQL had trouble detecting our timestamp and date types, so we must specify a
schema for Spark to go on (just like in our sklearn model, it is important for our
training data to be typed correctly for it to be interpreted for statistical inference):

#
{
"ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00",
"CRSDepTime":"2015-12-31T03:05:00.000-08:00",
"Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,
"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN",
"Distance":368.0, "FlightDate":"2015-12-30T16:00:00.000-08:00",
"FlightNum":"6109","Origin":"TUS"
}
#

from pyspark.sql.types import StringType,
IntegerType, FloatType, DateType, TimestampType

208 | Chapter 7: Making Predictions

https://aws.amazon.com/emr/
https://aws.amazon.com/emr/
http://bit.ly/2pCJr1S
http://bit.ly/2pCJr1S

from pyspark.sql.types import StructType, StructField

schema = StructType([
 StructField("ArrDelay", FloatType(), True), # "ArrDelay":5.0
 StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12..."
 StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12..."
 StructField("Carrier", StringType(), True), # "Carrier":"WN"
 StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31
 StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4
 StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365
 StructField("DepDelay", FloatType(), True), # "DepDelay":14.0
 StructField("Dest", StringType(), True), # "Dest":"SAN"
 StructField("Distance", FloatType(), True), # "Distance":368.0
 StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12..."
 StructField("FlightNum", StringType(), True), # "FlightNum":"6109"
 StructField("Origin", StringType(), True), # "Origin":"TUS"
])

features = spark.read.json(
 "data/simple_flight_delay_features.jsonl.bz2",
 schema=schema
)
features.first()

This results in:

Row(
 ArrDelay=13.0,
 CRSArrTime=datetime.datetime(2015, 1, 1, 10, 10),
 CRSDepTime=datetime.datetime(2015, 1, 1, 7, 30),
 Carrier='AA',
 DayOfMonth=1,
 DayOfWeek=4,
 DayOfYear=1,
 DepDelay=14.0,
 Dest='DFW',
 Distance=569.0,
 FlightDate=datetime.date(2014, 12, 31),
 FlightNum='1024',
 Origin='ABQ'
)

With our data loaded, now we need to prepare our data for classification.

Addressing Nulls
Before we can use the tools that PySpark’s MLlib provides us, we must eliminate null
values from fields in rows of our DataFrames. Otherwise our code will crash as we
start to employ tools from pyspark.ml.features.

To detect null values in columns, we need only loop through our columns and inspect
them with pyspark.sql.Column.isNull:

Building a Classifier with Spark MLlib | 209

http://spark.apache.org/docs/latest/ml-features.html
http://bit.ly/2pCZ4Xf

null_counts = [(column, features.where(features[column].isNull()).count()) \
 for column in features.columns]
cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)
print(list(cols_with_nulls))

If null values are found, we need only employ DataFrame.na.fill to fill them. Sup‐
ply fillna with a dict with the column name as the key and the column’s fill value as
the value, and it will fill in the column name with that value:

filled_features = features.na.fill({'column_name': 'missing_replacement_value'})

In our dataset, no nulls are found, but there usually are some, so take note of this step
for the future. It will save you trouble as you start engineering and vectorizing your
features.

Replacing FlightNum with Route
At this point it occurs to us that FlightNums will change, but routes do not… so long
as we define a route as a pair of cities. So, let’s add a column Route, which is defined
as the concatenation of Origin, -, and Dest, such as ATL-SFO. This will very simply
inform our model whether certain routes are frequently delayed, separately from
whether certain airports tend to have delays for inbound or outbound flights.

To add Route, we need to use two utilities from the pyspark.sql.functions package.
The concat function concatenates multiple strings together, and the lit function is
needed to specify a literal string to concatenate:

#
Add a Route variable to replace FlightNum
#
from pyspark.sql.functions import lit, concat
features_with_route = features.withColumn(
 'Route',
 concat(
 features.Origin,
 lit('-'),
 features.Dest
)
)
features_with_route.select("Origin", "Dest", "Route").show(5)

This produces the following result:

+------+----+-------+
|Origin|Dest| Route|
+------+----+-------+
ABQ	DFW	ABQ-DFW
ABQ	DFW	ABQ-DFW
ABQ	DFW	ABQ-DFW
ATL	DFW	ATL-DFW

210 | Chapter 7: Making Predictions

http://bit.ly/2osCqMy
http://bit.ly/2pBrYHj
http://bit.ly/2o35tuF
http://bit.ly/2o37ZkM

| ATL| DFW|ATL-DFW|
+------+----+-------+

Note that if we wanted to, we could convert the record to an RDD, where we could
run something like the following:

def add_route(record):
 record = record.asDict()
 record['Route'] = record['Origin'] + "-" + record['Dest']
 return record

features_with_route_rdd = features.rdd.map(add_route)

The reason to use DataFrames is that they are much, much faster than RDDs, even if
the API is slightly more complex.

Bucketizing a Continuous Variable for Classification
Classification does not work to predict a continuous variable like flight delays (in
minutes); classifications predict two or more categories. Therefore, in order to build a
classifier for flight delays, we have to create categories our of delays in minutes.

Determining arrival delay buckets
In the first run-through writing the book, we used the same buckets as Bay Area
startup FlightCaster (founded in 2009 and acquired in 2011 by Next Jump): on time,
slightly late, and very late. The values corresponding to these bins come from a natu‐
ral split in how people think about time in terms of minutes, hours, and days. One
hour is an intuitive value for the high end of slightly late. Over one hour would then
be very late. “On time” would be within 15 minutes of the scheduled arrival time. If
such natural bins weren’t available, you would want to closely analyze the distribution
of your continuous variable to determine what buckets to use.

As it turned out, this analysis was necessary in our case too. When writing the book,
while debugging an issue with our Spark ML classifier model, we did an analysis
where we found that a different set of categories were needed. Check out the Jupyter
notebook at ch09/Debugging Prediction Problems.ipynb for details. Note that GitHub
supports the display of Jupyter notebooks, which makes them a really powerful way
to share data analyses—just commit and push to a GitHub repository and you’ve got
a shared report. When you are doing iterative visualization, notebooks are very
handy.

Iterative visualization with histograms. To begin, check out the overall distribution of
flight delays, which we compute by converting the features DataFrame to an RDD
and then employing RDD.histogram. RDD.histogram returns two lists: a set of buck‐
ets, and the count for each bucket. We then use matplotlib.pyplot to create a histo‐
gram. Note that because our buckets are already counted, we can’t use pyplot.hist.

Building a Classifier with Spark MLlib | 211

http://bit.ly/2pRnjO1
http://bit.ly/2o3e2Wm
http://bit.ly/2oMmU1i
http://bit.ly/2oWzjQQ

Instead, we employ pyplot.bar to create a histogram from our precomputed buckets
and their corresponding counts.

To gather our data, we select the ArrDelay column, convert the DataFrame to an
RDD, and call RDD.flatMap to convert our records into an RDD containing a single
list of floats:

%matplotlib inline

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

Look at overall histogram
data_tuple = features\
 .select("ArrDelay")\
 .rdd\
 .flatMap(lambda x: x)\
 .histogram([-87.0, -60, -30, -15, 0, 15, 30, 60, 120])

Next, we extract the heights of the bars and the bin definitions from the tuple
returned by histogram:

eights = np.array(data_tuple[1])

The bins are 1 > length than the values
full_bins = data_tuple[0]

Since bars are drawn from the left, we remove the rightmost item in the bins list:

Bars are drawn from the left
mid_point_bins = full_bins[:-1]

Next, we use a list comprehension to determine the range between the values defining
the buckets, which gives us the width of the bars. We’ve decided that the bars should
be as wide as the data they measure:

The width of a bar should be the range it maps in the data
widths = [abs(i - j) for i, j in zip(full_bins[:-1], full_bins[1:])]

Finally, we plot the bar chart, specifying our bar widths (they draw from the left) and
coloring our bars blue:

And now the bars should plot nicely
bar = plt.bar(mid_point_bins, heights, width=widths, color='b')

We can summarize the previous operations in a function called create_hist, which
we will reuse to draw other histograms like this one:

def create_hist(rdd_histogram_data):
 """Given an RDD.histogram, plot a pyplot histogram"""
 heights = np.array(rdd_histogram_data[1])
 full_bins = rdd_histogram_data[0]

212 | Chapter 7: Making Predictions

http://bit.ly/2pSU6ls

 mid_point_bins = full_bins[:-1]
 widths = [abs(i - j) for i, j in zip(full_bins[:-1], full_bins[1:])]
 bar = plt.bar(mid_point_bins, heights, width=widths, color='b')
 return bar

The result is informative, showing that most flights are slightly early (Figure 7-4). The
distribution is fairly normal, with some right skew. Now we must ask ourselves: given
how people think about time, the distribution of the arrival delays, and our need to
define buckets to categorize flight delays, what are the right bucket definitions?

Figure 7-4. Overall distribution of arrival delays

To start, let’s visualize the first set of buckets we considered: –87 to 15, 15 to 60, and
60 to 200. Note that the first item in the bucket definition, –87, comes from the mini‐
mum delay in the dataset. We use 200 to keep from distorting the chart, although the
maximum delay is actually 1,971 minutes:

%matplotlib inline

buckets = [-87.0, 15, 60, 200]
rdd_histogram_data = features\
 .select("ArrDelay")\
 .rdd\
 .flatMap(lambda x: x)\
 .histogram(buckets)

create_hist(rdd_histogram_data)

The result is shown in Figure 7-5.

Building a Classifier with Spark MLlib | 213

Figure 7-5. First bucket scheme arrival delay distribution

Wow. This is a very distorted distribution. We have created an imbalanced class set
from one that should ideally be balanced. This is a problem, because imbalanced
classes can produce classifiers that only predict the most common value, and yet still
seem fairly accurate. At best, this label set would have made things hard for our clas‐
sifier when there is no benefit to doing so. We need to rethink our labels.

214 | Chapter 7: Making Predictions

Let’s try something a little more granular and check the distribution using the set of
buckets: [-87.0, -30, -15, 0, 15, 30, 120]:

%matplotlib inline

buckets = [-87.0, -30, -15, 0, 15, 30, 120]
rdd_histogram_data = features\
 .select("ArrDelay")\
 .rdd\
 .flatMap(lambda x: x)\
 .histogram(buckets)

create_hist(rdd_histogram_data)

This produces the result in Figure 7-6.

Figure 7-6. Second bucket scheme arrival delay distribution

Hmm... this looks better, but the leftmost and rightmost buckets look too small. Let’s
combine the –87 to –30 and –30 to –15 buckets, and try again:

Building a Classifier with Spark MLlib | 215

%matplotlib inline

buckets = [-87.0, -15, 0, 15, 30, 120]
rdd_histogram_data = features\
 .select("ArrDelay")\
 .rdd\
 .flatMap(lambda x: x)\
 .histogram(buckets)

create_hist(rdd_histogram_data)

Figure 7-7 shows the result.

Figure 7-7. Third bucket scheme arrival delay distribution

This looks better! However, the 15–30 bucket seems too small. Let’s merge this bucket
with the 0–15 bucket and try again:

%matplotlib inline

buckets = [-87.0, -15, 0, 30, 120]
rdd_histogram_data = features\
 .select("ArrDelay")\
 .rdd\
 .flatMap(lambda x: x)\
 .histogram(buckets)

create_hist(rdd_histogram_data)

216 | Chapter 7: Making Predictions

The result of this fourth attempt is in Figure 7-8.

Figure 7-8. Fourth bucket scheme arrival delay distribution

Ah-ha! That looks pretty good. The buckets end up being “very early” (> 15 minutes
early), “early” (0–15 minutes early), “late” (0–30 minutes late), and “very late” (30+
minutes late). These aren’t perfect in terms of usability, but I think they can work.
Ideally the distribution in the buckets would be equal, but they are close enough.

Bucket quest conclusion. We have now determined the right bucket scheme for con‐
verting a continuous variable, flight delays, into four categories. Note how we used a
Jupyter notebook along with PySpark and PyPlot to iteratively visualize the flights
that fell into each bucketing scheme. This notebook is now a shareable asset. This
would serve as a great jumping-off point for a discussion involving the data scientist
who created the notebook, the product manager for the product, and the engineers
working on the project.

Now that we’ve got our buckets, let’s apply them and get on with our prediction!

Bucketizing with a DataFrame UDF
We can bucketize our data in one of two ways: using a DataFrame UDF, or with
pyspark.ml.feature.Bucketizer.

Let’s begin by using a UDF to categorize our data in accordance with the scheme in
the preceding section. We’ll create a function, bucketize_arr_delay, to achieve the

Building a Classifier with Spark MLlib | 217

http://bit.ly/2omGIWp
http://bit.ly/2o3hO2h

“bucketizing,” and then wrap it in a UDF along with a StructField of type informa‐
tion—in this case the string DataType StringType. Next, we’ll apply the UDF to cre‐
ate a new column via DataFrame.withColumn. Finally, we’ll select ArrDelay and
ArrDelayBucket and see how they compare:

#
Categorize or 'bucketize' the arrival delay field using a DataFrame UDF
#
def bucketize_arr_delay(arr_delay):
 bucket = None
 if arr_delay <= -15.0:
 bucket = 0.0
 elif arr_delay > -15.0 and arr_delay <= 0.0:
 bucket = 1.0
 elif arr_delay > 0.0 and arr_delay <= 30.0:
 bucket = 2.0
 elif arr_delay > 30.0:
 bucket = 3.0
 return bucket

Wrap the function in pyspark.sql.functions.udf with
pyspark.sql.types.StructField information
dummy_function_udf = udf(bucketize_arr_delay, StringType())

Add a category column via pyspark.sql.DataFrame.withColumn
manual_bucketized_features = features_with_route.withColumn(
 "ArrDelayBucket",
 dummy_function_udf(features['ArrDelay'])
)
manual_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()

This produces the following result:

+--------+--------------+
|ArrDelay|ArrDelayBucket|
+--------+--------------+
13.0	2.0
17.0	2.0
36.0	3.0
-21.0	0.0
-14.0	1.0
16.0	2.0
-7.0	1.0
13.0	2.0
25.0	2.0
+--------+--------------+

You can see that ArrDelay is mapped to ArrDelayBucket as we indicated.

218 | Chapter 7: Making Predictions

http://bit.ly/2omGIWp
http://bit.ly/2pBFZSr
http://bit.ly/2pBeXNW
http://bit.ly/2pg9A6S
http://bit.ly/2pBvv5D

Bucketizing with pyspark.ml.feature.Bucketizer

Creating buckets for classification is simpler using Bucketizer. We simply define our
splits in a list, instantiate our Bucketizer, and then apply a transformation on our
features DataFrame. We’ll do this transformation for the ArrDelay field:

#
Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay
#
from pyspark.ml.feature import Bucketizer

splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]
bucketizer = Bucketizer(
 splits=splits,
 inputCol="ArrDelay",
 outputCol="ArrDelayBucket"
)
ml_bucketized_features = bucketizer.transform(features_with_route)

Check the buckets out
ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()

Which results in:

+--------+--------------+
|ArrDelay|ArrDelayBucket|
+--------+--------------+
13.0	2.0
17.0	2.0
36.0	3.0
-21.0	0.0
-14.0	1.0
16.0	2.0
-7.0	1.0
13.0	2.0
25.0	2.0
+--------+--------------+

You can see the result is the same as with our UDF buckets. Now that we’ve created
the ArrDelayBucket fields, we’re ready to vectorize our features using tools from
pyspark.ml.feature.

Feature Vectorization with pyspark.ml.feature
Spark MLlib has an extremely rich library of functions for various machine learning
tasks, so it is helpful when using MLlib to have the API documentation open in a
browser tab, along with the DataFrame API documentation. While an RDD-based
API does exist, we’ll be using the DataFrame-based MLlib routines.

Building a Classifier with Spark MLlib | 219

http://bit.ly/2o4WvNv
http://bit.ly/2pDsOQK
http://bit.ly/1yCoHox
http://bit.ly/1yCoHox
http://bit.ly/2pDuoVK

Vectorizing categorical columns with Spark ML

To follow along with this section, open the pyspark.ml.feature documentation.
First we need to import our tools from pyspark.ml.feature:

from pyspark.ml.feature import StringIndexer, VectorAssembler

Then we need to index our nominal or categorical string columns into sets of vectors
made up of binary variables for every unique value found in a given column. To ach‐
ieve this, for each categorical column (be it a string or number), we need to:

1. Configure and create a StringIndexer to index the column into one number per
unique value.

2. Execute fit on the StringIndexer to get a StringIndexerModel.
3. Run the training data through StringIndexerModel.transform to index the

strings into a new column.

The code to implement these steps for each categorical variable column looks like
this:

Turn category fields into categoric feature vectors, then drop
intermediate fields
for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",
 "Origin", "Dest", "Route"]:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
)
 ml_bucketized_features = string_indexer.fit(ml_bucketized_features)\
 .transform(ml_bucketized_features)

Check out the indexes
ml_bucketized_features.show(6)

Having indexed our categorical features, now we combine them with our numeric
features into a single feature vector for our classifier.

Vectorizing continuous variables and indexes with Spark ML
As they are already numeric, there isn’t much work required to vectorize our continu‐
ous numeric features. And now that we have indexes, we have a numeric representa‐
tion of each string column. Now we simply employ VectorAssembler to combine the
numeric and index columns into a single feature Vector. Then we drop the index col‐
umns, as they aren’t needed anymore:

220 | Chapter 7: Making Predictions

http://bit.ly/2pE51jZ
http://bit.ly/2pDEHt4
http://bit.ly/2pRkbl8
http://bit.ly/2pg1xHr
http://bit.ly/2pR7Ehm
http://bit.ly/2o3cqfy

Handle continuous numeric fields by combining them into one feature vector
numeric_columns = ["DepDelay", "Distance"]
index_columns = ["Carrier_index", "DayOfMonth_index",
 "DayOfWeek_index", "DayOfYear_index", "Origin_index",
 "Origin_index", "Dest_index", "Route_index"]
vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
)
final_vectorized_features = vector_assembler.transform(ml_bucketized_features)

Drop the index columns
for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)

Check out the features
final_vectorized_features.show()

Now we’re ready to train our classifier!

Classification with Spark ML
Our features are prepared in a single field, Features_vec, and we’re ready to compose
the experiment we’ll run as part of creating our classifier. To drive our experiment, we
require a training dataset and a test dataset. As we discussed earlier, a training dataset
is used to train the model and a test set is used to gauge its accuracy. Cross-validation
ensures that the models we create in the lab perform well in the real world, and not
just on paper.

Test/train split with DataFrames

As before with scikit-learn, we need to cross-validate. This means splitting our
data between a training set and a test set.

The DataFrame API makes this easy with DataFrame.randomSplit. This takes an
array featuring the ratios of the splits, which should add up to 1:

Test/train split
training_data, test_data = final_vectorized_features.randomSplit([0.8, 0.2])

Creating and fitting a model
It takes three lines to import, instantiate, and fit a random forest classifier using our
training dataset. Note that we’re using a random forest classifier because this is the
most accurate decision tree model available in Spark MLlib that can classify into mul‐
tiple categories. These classifiers also offer feature importances, which we will use in
Chapter 9 to improve the model.

Building a Classifier with Spark MLlib | 221

http://bit.ly/2oLdHqe

Also note that we run the model once, and it throws an exception because we have
more than 32 unique values for one feature, the default value for maxBins. We set
maxBins to the value suggested by the exception, 4657, and the model fits successfully.
Note that this can take a while, so grab some coffee:

Instantiate and fit random forest classifier
from pyspark.ml.classification import RandomForestClassifier
rfc = RandomForestClassifier(
featuresCol="Features_vec", labelCol="ArrDelayBucket",
 maxBins=4657
)
model = rfc.fit(training_data)

Next, we need to evaluate the classifier we’ve created.

Evaluating a model

We can evaluate the performance of our classifier using the MulticlassClassifica
tionEvaluator, which simply wraps the predictions we get from running
pyspark.ml.classification.RandomForestClassificationModel.transform on
the test dataset. Several metrics are available, but we’ll start with the raw accuracy:

Evaluate model using test data
predictions = model.transform(test_data)

from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(
 labelCol="ArrDelayBucket", metricName="accuracy"
)
accuracy = evaluator.evaluate(predictions)
print("Accuracy = {}".format(accuracy))

This results in:

Accuracy = 0.5971608857699723

Not great, but good enough for now. Don’t worry, we’ll work on making the model
more accurate in Chapter 9.

Let’s lay eyes on some of the predictions, to see that they’re sane. At one point we had
a bug where all predictions were 0.0. Seeing a sample with different prediction values
takes a bit of cleverness because of the way the transformation sorts the data, so we
order the sample by the reservation system departure time before displaying it:

Sanity-check a sample
predictions.sample(False, 0.001, 18).orderBy("CRSDepTime").show(6)

222 | Chapter 7: Making Predictions

http://bit.ly/2o3nx8e
http://bit.ly/2o3nx8e
http://bit.ly/2oLqg4J

Which results in (table has been truncated to fit on the page):

ArrDelay CRSArrTime CRSDepTime ... DepDelay ... FlightDate FlightNum ...
-10.0 ...09:22:... ...05:59: ... 9.012-31 744 ...
-18.0 ...13:24:... ...10:25: ... -3.012-31 6164 ...
25.0 ...03:45:... ...02:40: ... 15.001-01 4222 ...
-6.0 ...08:45:... ...06:00: ... 2.001-01 4375 ...
0.0 ...11:35:... ...09:35: ... 1.001-01 4123 ...
3.0 ...14:45:... ...13:20: ... 2.001-02 116 ...

Now let’s see the distribution of the Prediction field, to verify we don’t have that
same bug:

predictions.groupBy("Prediction").count().show()

This gives us:

Prediction Count
0.0 3159
1.0 831281
3.0 114768
2.0 191359

This “sanity check” seems okay!

Conclusion
With Spark, we can create, train, and evaluate a classifier or regression in a few lines
of code. Surprisingly, it is even more powerful than scikit-learn. But to be useful,
we’ve got to deploy our prediction. We’ll do that in the next chapter.

Now we have a problem—how do we deploy Spark ML models? Unlike scikit-
learn models, we can’t simply place them inside our web application as an API,
because they require the Spark platform to run. This is something we will address in
the next chapter.

Conclusion
In this chapter we’ve taken what we know about the past to predict the future.

In the next chapter, we’ll drill down into this prediction to drive a new action that can
take advantage of it.

Conclusion | 223

CHAPTER 8

Deploying Predictive Systems

Building models that can make predictions was hard work. We had to extract the fea‐
tures of our training data from our raw data, vectorize those features, combine those
vectors, create an experiment, and then train, test, and evaluate a statistical model.
Fun stuff, but a lot of work!

At this point, it is important to understand that most predictions never make it out of
the lab. This point is as far as they ever get. Nobody ever sees them on a website or
even indirectly feels their output in any way. Most predictions die in the laboratory
where they were created, and a big reason is that the people who build them don’t
know how to deploy them. Deploying predictions is our topic in this chapter, and for
the aforementioned reason it is an essential one for a practicing data scientist to mas‐
ter.

Code examples for this chapter are available at Agile_Data_Code_2/ch08. Clone the
repository and follow along!

git clone https://github.com/rjurney/Agile_Data_Code_2.git

Deploying a scikit-learn Application as a Web Service
Deploying a scikit-learn application as a web service is fairly direct. Having created
the model, we save it to disk. Then we load the model during the startup of a web
application that provides a RESTful API.

Before we do that, we need to define our API and work backward from it to reach the
properties of our model’s input. We must map from our API’s input to our model’s
input, and it is rarely the case that the API will receive all the values the model
requires as arguments. Many of them must be derived from incomplete input.

225

http://bit.ly/2oTwv4W
http://bit.ly/1a1kVX5

We will test our model using curl, and then we’ll embed it within our application via
a web form for entering the values for the regression API. When the form is submit‐
ted, a prediction will be returned. This approximates how a prediction is embedded
in a real product, albeit with less polish and design.

Saving and Loading scikit-learn Models
In order to access our regression for flight delays inside our web application, we must
be able to save it from our script that creates the model and load it in the web applica‐
tion that serves our prediction API. More than just the prediction, we also need to
persist those objects that vectorized the model’s features.

Check out ch07/train_sklearn_model.py, and you can follow along at the sklearn API
docs for model persistence.

Saving and loading objects using pickle

The first way to persist an sklearn model is with pickle. pickle isn’t specific to
sklearn; it is a general Python utility for persisting objects to disk. Using it is simple.

We first save the model to disk using pickle.dumps to get the bytes of the object and
then write them to disk using a file handle in binary mode (there is also the
pickle.dump method to do this directly):

import pickle

project_home = os.environ["PROJECT_HOME"]

Dump the model itself
regressor_path = "{}/data/sklearn_regressor.pkl".format(project_home)

regressor_bytes = pickle.dumps(regressor)
model_f = open(regressor_path, 'wb')
model_f.write(regressor_bytes)

Dump the DictVectorizer that vectorizes the features
vectorizer_path = "{}/data/sklearn_vectorizer.pkl".format(project_home)

vectorizer_bytes = pickle.dumps(vectorizer)
vectorizer_f = open(vectorizer_path, 'wb')
vectorizer_f.write(vectorizer_bytes)

Loading the model is similarly easy with pickle.loads and pickle.load:

Load the model itself
model_f = open(regressor_path, 'rb')
model_bytes = model_f.read()
regressor = pickle.loads(model_bytes)

Load the DictVectorizer

226 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2pfQ5LU
http://bit.ly/2ov0nCR
https://docs.python.org/3/library/pickle.html
http://bit.ly/2pjiOzg
http://bit.ly/2pGqqJn
http://bit.ly/2ouTdi8
http://bit.ly/2oO8Uo6

vectorizer_f = open(vectorizer_path, 'rb')
vectorizer_bytes = vectorizer_f.read()
vectorizer = pickle.loads(vectorizer_bytes)

pickle is a powerful and generic way to store Python objects.

Saving and loading models using sklearn.externals.joblib

Saving a model to disk with sklearn.externals.joblib is a one-liner:

from sklearn.externals import joblib

Dump the model
joblib.dump(regressor, 'data/sklearn_regressor.pkl')
joblib.dump(vectorizer, '../data/sklearn_vectorizer.pkl')

So is loading one:

Load the model and vectorizer
regressor = joblib.load('../data/sklearn_regressor.pkl')
vectorizer = joblib.load('../data/sklearn_vectorizer.pkl')

We’ll use this method later, in this chapter’s web application.

Groundwork for Serving Predictions
In starting this section, it became clear that there are a whole host of things we need
to do beyond building a simple API to actually deploy this prediction to the web. To
see what I mean, let’s look at an example flight training record:

{
 "ArrDelay":5.0,
 "Carrier":"WN",
 "DayOfMonth":31,
 "DayOfWeek":4,
 "DayOfYear":365,
 "DepDelay":14.0,
 "Dest":"SAN",
 "Distance":368.0,
 "FlightNum":"6109",
 "Origin":"TUS"
}

With the exception of ArrDelay, which we are predicting, we need to re-create the
values for all these fields, in vectorized form, for our application to reproduce its
behavior inside our API. Straightforward? Not exactly.

For instance, does it really make sense for a user to calculate and supply the day of the
month, week, and year in order to use our API? Surely not. It makes more sense, and
is much more user-friendly, to accept the date as an API argument and calculate these
other fields as part of the API’s prediction process.

Deploying a scikit-learn Application as a Web Service | 227

And then there are fields we can’t expect a user to know about, such as the distance
between the origin and destination. We’ll need to create a lookup table from our data
and look that value up based on the origin and destination.

This all illustrates an important principle for deploying predictions: if you can’t
acquire the data in real time, you can’t incorporate it in your model and still be able to
deploy it. This greatly limits what we can do to improve our models.

Our API will now look something like this, in which the name of a field maps to the
type of its argument. From these values we can derive the others that make up a flight
training record:

api_field_type_map = \
{
 "DepDelay": float,
 "Carrier": str,
 "Date": str,
 "Dest": str,
 "FlightNum": str,
 "Origin": str
}

Creating Our Flight Delay Regression API
In order to serve our predictions in a web application, we first need to load the model
in our application code at startup. Then, in response to requests, we need to accept as
arguments those values from which we can derive the features of the model and
transform them into the model’s vector space. Finally, we feed the vectorized data into
our model and return a JSON result.

Let’s walk through each part sequentially. Check out ch08/web/predict_flask.py and
ch08/web/predict_utils.py.

First, we load the model using sklearn.externals.joblib.load. Note that we refer‐
ence the environment variable $PROJECT_HOME so that our loading works from
whichever directory in the filesystem we start the Flask app from:

Load our regression model
from sklearn.externals import joblib
project_home = os.environ["PROJECT_HOME"]
vectorizer = joblib.load("{}/data/sklearn_vectorizer.pkl".format(project_home))
regressor = joblib.load("{}/data/sklearn_regressor.pkl".format(project_home))

Next we define our API’s endpoint and make it a POST so that search engines won’t
trigger the relatively expensive operation of making the prediction the controller
serves:

Make our API a post, so a search engine won't hit it
@app.route("/flights/delays/predict/regress", methods=['POST'])
def regress_flight_delays():

228 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2o7DJVR
http://bit.ly/2pG8SNo
http://bit.ly/2oTnDMA

We employ the api_field_type_map we defined earlier to fetch the values HTTP
POSTed from the frontend’s web form for this controller and place them in the record
we will feed our regression:

 api_field_type_map = \
 {
 "DepDelay": float,
 "Carrier": str,
 "Date": str,
 "Dest": str,
 "FlightNum": str,
 "Origin": str
 }
 api_form_values = {}
 for api_field_name, api_field_type in api_field_type_map.items():
 api_form_values[api_field_name] = request.form.get(
 api_field_name, type=api_field_type
)

 # Set the direct values
 prediction_features = {}
 prediction_features['Origin'] = api_form_values['Origin']
 prediction_features['Dest'] = api_form_values['Dest']
 prediction_features['FlightNum'] = api_form_values['FlightNum']

We create a reference to an incomplete API called predict_utils.get_flight_ dis
tance to determine the Distance field, which is the distance between the Origin and
Dest:

 # Set the derived values
 prediction_features['Distance'] = predict_utils.get_flight_distance(
 client, api_form_values['Origin'], api_form_values['Dest']
)

We also create an incomplete API, predict_utils.get_regression_date_args,
which determines the DayOfYear, DayOfMonth, and DayOfWeek fields from the sup‐
plied Date argument:

 # Turn the date into DayOfYear, DayOfMonth, DayOfWeek
 date_features_dict = predict_utils.get_regression_date_args(
 api_form_values['Date']
)
 for api_field_name, api_field_value in date_features_dict.items():
 prediction_features[api_field_name] = api_field_value

Having calculated all the fields of a record in the model’s training data, we vectorize
this record to map the raw values into the regression’s vector space:

 # Vectorize the features
 feature_vectors = vectorizer.transform([prediction_features])

Deploying a scikit-learn Application as a Web Service | 229

Vectorized features in hand, we can now make our prediction:

 # Make the prediction!
 result = regressor.predict(feature_vectors)[0]

And finally, we return a JSON object containing our result:

 # Return a JSON object
 result_obj = {"Delay": result}
 return json.dumps(result_obj)

With that, our regression API controller is complete!

Now, to make it run, we need to fill in the APIs we just defined inline in our control‐
ler code: predict_utils.get_flight_distance and predict_utils.get_regres
sion_date_args.

Filling in the predict_utils API

This means we need a function in predict_utils.py called get_flight_distance(ori
gin, dest) that returns the flight distance for each pair of airports. To implement
this, let’s use PySpark to create a table in MongoDB containing the distance in miles
keyed by the origin and destination airport codes. Check out ch08/origin_dest_distan‐
ces.py. We run a simple GROUP BY/AVG query to compute the distances between air‐
ports:

Load the on-time Parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
on_time_dataframe.registerTempTable("on_time_performance")

origin_dest_distances = spark.sql("""
 SELECT Origin, Dest, AVG(Distance) AS Distance
 FROM on_time_performance
 GROUP BY Origin, Dest
 ORDER BY Distance
 """)
origin_dest_distances.repartition(1).write.mode("overwrite") \
 .json("data/origin_dest_distances.json"
)
os.system(
 "cp data/origin_dest_distances.json/part* data/origin_dest_distances.jsonl"
)

And to load them into MongoDB we run an import of the resulting JSON Lines file.
Check out ch08/import_distances.sh, which also creates an index on the Origin/Dest
key:

Import our enriched airline data as the 'airlines' collection
mongoimport -d agile_data_science -c origin_dest_distances --file \
 data/origin_dest_distances.jsonl
mongo agile_data_science --eval \
 'db.origin_dest_distances.ensureIndex({Origin: 1, Dest: 1})'

230 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2ouGFqM
http://bit.ly/2ouGFqM
http://bit.ly/2o7C6rt

Let’s verify our data is in Mongo:

> db.origin_dest_distances.find({"Origin": "ATL", "Dest": "JFK"})

{
 "_id" : ObjectId("583bc2e6aeb23e2f187ce737"),
 "Origin" : "ATL",
 "Dest" : "JFK",
 "Distance" : 760
}

Finally, in ch08/web/predict_utils.py, we turn this into an API, pre

dict_utils.get_flight_distance, that uses PyMongo:

def get_flight_distance(client, origin, dest):
 """Get the distance between a pair of airport codes"""
 record = client.agile_data_science.origin_dest_distances.find_one({
 "Origin": origin,
 "Dest": dest,
 })
 return record["Distance"]

Similarly, we need to create predict_utils.get_regression_date_args, although
this function is simpler and pure Python thanks to Python’s datetime built-in library.
datetime has methods to get DayOfYear, DayOfYear, and DayOfWeek:

def get_regression_date_args(iso_date):
 """Given an ISO date, return the day of year, day of month,
 and day of week, as the API expects them."""
 dt = iso8601.parse_date(iso_date)
 day_of_year = dt.timetuple().tm_yday
 day_of_month = dt.day
 day_of_week = dt.weekday()
 return {
 "DayOfYear": day_of_year,
 "DayOfMonth": day_of_month,
 "DayOfWeek": day_of_week,
 }

And that’s a wrap! Now we’re ready to test it out.

Testing Our API
As we’ve done before, we can use the handy utility curl to test the flight delay regres‐
sion API. Check out ch08/test_regression_api.sh. curl can HTTP POST via the -
XPOST option and can supply form values with the -F option:

#!/usr/bin/env bash

Fetch the delay prediction for a hypothetical flight
curl -XPOST 'http://localhost:5000/flights/delays/predict/regress' \
 -F 'DepDelay=5.0' \
 -F 'Carrier=AA' \

Deploying a scikit-learn Application as a Web Service | 231

https://docs.python.org/3/library/datetime.html
https://en.wikipedia.org/wiki/CURL
http://bit.ly/2pG9VNn

 -F 'Date=2016-12-23' \
 -F 'Dest=ATL' \
 -F 'FlightNum=1519' \
 -F 'Origin=SFO' \
| json_pp

This results in:

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 672 100 29 100 643 3394 75266 --:--:-- --:--:-- --:--:-- 104k
{
 "Delay" : -36.4042325748015
}

It works! That completes our deployment of an sklearn prediction as a web service.

Pulling Our API into Our Product
The final step for deploying our prediction is to develop a page where our prediction
will be served. Let’s start by creating a controller for the page. We define a variable,
form_config, that we’ll use to generate our form in the Jinja template:

@app.route("/flights/delays/predict")
def flight_delays_page():
"""Serves flight delay predictions"""

 form_config = [
 {'field': 'DepDelay', 'label': 'Departure Delay'},
 {'field': 'Carrier'},
 {'field': 'Date'},
 {'field': 'Origin'},
 {'field': 'Dest', 'label': 'Destination'},
 {'field': 'FlightNum', 'label': 'Flight Number'},
]

 return render_template('flight_delays_predict.html', form_config=form_config)

In the template, we create the form’s fields in a loop on form_config. We create a div
for the results, and then use jQuery to submit the form and parse and display the
results:

{% extends "layout.html" %}
{% block body %}
 / Flight Delay Prediction

 <p class="lead" style="margin: 10px; margin-left: 0px;">

 Predicting Flight Delays
 </p>

 <!-- Generate form from search_config and request args -->
 <form id="flight_delay_regression"

232 | Chapter 8: Deploying Predictive Systems

 action="/flights/delays/predict/regress"
 method="post">
 {% for item in form_config %}
 {% if 'label' in item %}
 <label for="{{item['field']}}">{{item['label']}}</label>
 {% else %}
 <label for="{{item['field']}}">{{item['field']}}</label>
 {% endif %}
 <input name="{{item['field']}}"
 style="width: 36px; margin-right: 10px;"
 value="">
 </input>
 {% endfor %}
 <button type="submit" class="btn btn-xs btn-default" style="height: 25px">
 Submit
 </button>
 </form>

 <div style="margin-top: 10px;">
 <p>Delay: </p>
 </div>

 <script>
 // Attach a submit handler to the form
 $("#flight_delay_regression").submit(function(event) {

 // Stop form from submitting normally
 event.preventDefault();

 // Get some values from elements on the page
 var $form = $(this),
 term = $form.find("input[name='s']").val(),
 url = $form.attr("action");

 // Send the data using post
 var posting = $.post(url, $("#flight_delay_regression").serialize());

 // Put the results in a div
 posting.done(function(data) {
 result = JSON.parse(data);
 $("#result").empty().append(result.Delay);
 });
 });
 </script>
{% endblock %}

The result is simple but suits our purpose for the moment (Figure 8-1). In this case,
the flight leaves and arrives early.

Deploying a scikit-learn Application as a Web Service | 233

Figure 8-1. Flight delay regression page

Deploying Spark ML Applications in Batch with Airflow
Compared to deploying scikit-learn applications, deploying Spark ML applications
is more complex. This is because Spark sits between us and our end application.
There are two ways to deploy Spark ML predictions: periodically in batch, or in “real
time” via Spark Streaming. We will cover both ways, beginning with batch processing.

In order to process data in batch, we need to compose, schedule, and monitor data
pipelines. To do so, we need a batch scheduler such as Azkaban, Apache Oozie, or
Apache Airflow (Incubating). We choose Airflow because it is emerging as the lead‐
ing choice and it enables high productivity along with the rest of our stack.

We introduced Airflow in Chapter 2. In this section, we’ll be using Airflow along with
our web application to deploy a data pipeline that will perform the end-to-end opera‐
tions necessary to make predictions with Spark ML in batch. For simplicity’s sake,
we’ve chosen to make predictions on a daily basis. This might work for batches of
emails sent out daily, or for building the recommender content of an event feed.

Batch processing with Airflow and Spark can handle tasks scheduled down to a gran‐
ularity of approximately every five minutes. Below this period of frequency Spark
Streaming should be employed.

The required operations to perform predictions in batch, in order, are:

1. Extract features from our data to create a training dataset.
2. Train a classifier from this training data and store it for later use.
3. Collect requests for predictions from a web application and store them in Mon‐

goDB.
4. Gather MongoDB requests into files corresponding to daily batches.
5. Load the models and today’s requests, make the actual predictions, and store

them into a daily bucket.

234 | Chapter 8: Deploying Predictive Systems

https://azkaban.github.io/
http://oozie.apache.org/
https://airflow.incubator.apache.org/

6. Load the daily batch of predictions into MongoDB.
7. Display today’s predictions in our web application.

At one end lies our training data, and at the other end our users. Our task is to con‐
nect the two in a production system that is scheduled to operate each and every day.
We will begin by describing and constructing the tasks independently and will follow
this by using Airflow to tie them together. Let’s get started!

Gathering Training Data in Production
We created a script in Chapter 7 to collect training data called ch07/
extract_features.py. The operations in this script can be used unaltered, once the input
and output paths are modified and the script is set up to run from the command line.
Therefore, I’ve copied it to ch08/extract_features.py and edited it from there.

We embed the executable content within a main function so that it can be fed argu‐
ments from the command line for the base path in the filesystem. We then call this
function using the command-line parameters. Making the content executable from
the command line makes it accessible to Airflow. The script startup and PySpark ini‐
tialization code are written such that they can be run from the PySpark intepreter
during development or from the command line in production. We won’t use a date
parameter in this script, but we will in others that use daily or hourly batches of data
as input and output.

To make the script run in development and production environments, we condition‐
ally instantiate the PySpark environment. If the SparkContext and SparkSession
have already been initialized by the PySpark console, no exceptions will be thrown
when we reference the variables sc and spark, which means they won’t be reinitial‐
ized. This is important, because reinitializing the SparkContext will result in an
exception that would kill the process if it were run from the command line or via Air‐
flow. At the same time, failing to initialize these variables will also kill the script. Our
conditional initialization handles both runtime environments:

#!/usr/bin/env python

import sys, os, re
import json
import datetime, iso8601

Pass date and base path to main() from Airflow
def main(base_path):

 APP_NAME = "extract_features.py"

 # If there is no SparkSession, create the environment
 try:
 sc and spark

Deploying Spark ML Applications in Batch with Airflow | 235

http://bit.ly/2pRS6dt
http://bit.ly/2pRS6dt
http://bit.ly/2oTpIIB
http://bit.ly/2pVx79N
http://bit.ly/2nRGlqX

 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql

 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()

 # Load the on-time Parquet file
 input_path = "{}/data/on_time_performance.parquet".format(
 base_path
)
 on_time_dataframe = spark.read.parquet(input_path)
 on_time_dataframe.registerTempTable("on_time_performance")

The work of the script involves converting our ISO date fields to dates, just as we did
in the same script in Chapter 7. The end of the script is similarly edited, inserting a
base path into the output path. We finish the script with a call to main with the
command-line arguments for date and base path:

 # Store as a single JSON file
 output_path = "{}/data/simple_flight_delay_features.json".format(
 base_path
)
 sorted_features.repartition(1).write.mode("overwrite").json(output_path)
 combine_cmd = "cp {}/part* {}/data/simple_flight_delay_features.jsonl".format(
 output_path,
 base_path
)
 os.system(combine_cmd)

if __name__ == "__main__":
 main(sys.argv[1])

We can test our script from the command line—note that the date won’t be used, but
we provide it anyway to keep this script consistent with the others:

python ch08/extract_features.py .

Training, Storing, and Loading Spark ML Models
As with sklearn, before we can make predictions using the models we’ve built in
Spark ML, we must persist them to disk and load them again. This includes the ran‐
dom forest classifier we trained, as well as the various models that transformed the
raw data into vector form. To persist the models, we need to go back to our script
from Chapter 7 that created them and add code to persist each and every model in
the pipeline to disk. This will enable us to load the models in another script, so we
can avoid retraining the model each time we want to apply it. This is important,

236 | Chapter 8: Deploying Predictive Systems

because training the model takes a lot longer than loading it or using it to make pre‐
dictions.

Check out ch08/train_spark_mllib_model.py, which we’ve copied from the last chapter
and altered to store each model as a file in the models/ directory of the project. We
have to store and load each model we use to transform the training data so that it can
transform the prediction requests as they come in. Note that we’ve also edited the
script to make it executable from the command line, but we’ll skip that part this time.

First, let’s save the arrival and departure bucketizers. The code to persist the models is
emboldened:

 # Set up the Bucketizer
 splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]
 arrival_bucketizer = Bucketizer(
 splits=splits,
 inputCol="ArrDelay",
 outputCol="ArrDelayBucket"
)

 # Save the model
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(
 base_path
)
 arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)

 # Apply the model
 ml_bucketized_features = arrival_bucketizer.transform(features_with_route)
 ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()

We need to save the string indexer models we create for each string field. Luckily, a
StringIndexerModel can be saved with one call to StringIndexerModel.save:

 #
 # Feature extraction tools in with pyspark.ml.feature
 #
 from pyspark.ml.feature import StringIndexer, VectorAssembler

 # Turn category fields into indexes
 for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",
 "Origin", "Dest", "Route"]:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
)

 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(
 ml_bucketized_features
)

 # Drop the original column

Deploying Spark ML Applications in Batch with Airflow | 237

http://bit.ly/2pVD1Yu
http://bit.ly/2opQirO
http://bit.ly/2pj3gvD

 ml_bucketized_features = ml_bucketized_features.drop(column)

 # Save the pipeline model
 string_indexer_output_path = "{}/models/string_indexer_model_{}.bin".format(
 base_path,
 column
)
 string_indexer_model.write().overwrite().save(string_indexer_output_path)

We also need to save the VectorAssembler, which transforms our several numeric
columns and index columns into a single feature vector:

 # Handle continuous numeric fields by combining them into one feature vector
 numeric_columns = ["DepDelay", "Distance"]
 index_columns = ["Carrier_index", "DayOfMonth_index",
 "DayOfWeek_index", "DayOfYear_index", "Origin_index",
 "Origin_index", "Dest_index", "Route_index"]
 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
)
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)

 # Save the numeric vector assembler
 vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(
 base_path
)
 vector_assembler.write().overwrite().save(vector_assembler_path)

 # Drop the original columns
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)

 # Inspect the finalized features
 final_vectorized_features.show()

Finally, we train and store the random forest classification model itself. Note that
while during development you create an experiment and split the test and training
datasets, in production it is common to use all the data available to tease out a little
bit of additional accuracy by learning from the test portion as well:

 # Instantiate and fit random forest classifier on all the data
 from pyspark.ml.classification import RandomForestClassifier
 rfc = RandomForestClassifier(
 featuresCol="Features_vec",
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 maxBins=4657,
)
 model = rfc.fit(final_vectorized_features)

 # Save the new model over the old one
 model_output_path = \

238 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2pj7nI0

 "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(
 base_path
)
 model.write().overwrite().save(model_output_path)

if __name__ == "__main__":
 main(sys.argv[1])

Now we can load the models any time we would like, in batch-mode Spark or Spark
Streaming. Let’s try running the script from the command line. Note that this may
take a few minutes:

python ch08/train_spark_mllib_model.py .

Now we’re ready to move on to creating prediction requests in our web application.

Creating Prediction Requests in Mongo
In order to feed the prediction task and associated data to a Spark ML script operated
by a scheduler, we need to generate a table or collection in a database that indicates a
prediction is needed. Our web application can easily do so. In the real world, this
might correspond to the need to create a prediction or recommendation for a user
every day, to place the prediction in the user’s content for that day.

In this case, a web application will save a request for a prediction as a record in a
MongoDB collection. Then, a daily task scheduled in Airflow will fetch today’s pre‐
diction tasks and feed them to PySpark ML, which will create the predictions and
store the results in another MongoDB collection. The prediction page will then dis‐
play the latest predictions.

This workflow is crude, but it is hoped that you can imagine how it might work in a
more refined manner: generating emails with recommendations, generating daily
content, etc. For tasks that don’t fit the batch workflow, we’ll use Spark Streaming.

Feeding Mongo recommendation tasks from a Flask API
In order to store the desired prediction records in Mongo, we can alter the Flask web
application from the previous section to store the request rather than generating a
prediction using scikit-learn. Check out ch08/web/predict_flask.py and ch08/web/
predit_utils.py.

Note that this will be the first time we use pymongo to insert data. Previously all our
web controllers have been read-only. This is important to notice, as operating a read/
write web application is more time-consuming than one that is read-only.

Most of this API is copied from the code for the sklearn regression API we created
in the previous section. In ch08/web/predict_flask.py, we fill out the record submitted
via a POST request using the same utilities as in the previous API. In addition, we

Deploying Spark ML Applications in Batch with Airflow | 239

http://bit.ly/2o7DJVR
http://bit.ly/2pG8SNo
http://bit.ly/2pG8SNo
http://bit.ly/2pVDEBk
http://bit.ly/2o7DJVR

add an ISO-format Timestamp to the record, and insert it into the prediction_tasks
Mongo collection. Finally, we return the record as JSON as verification that the
request was processed correctly:

Make our API a post, so a search engine won't hit it
@app.route("/flights/delays/predict/classify", methods=['POST'])
def classify_flight_delays():
 """POST API for classifying flight delays"""
 api_field_type_map = \
 {
 "DepDelay": int,
 "Carrier": str,
 "FlightDate": str,
 "Dest": str,
 "FlightNum": str,
 "Origin": str
 }

 api_form_values = {}
 for api_field_name, api_field_type in api_field_type_map.items():
 api_form_values[api_field_name] = request.form.get(
 api_field_name, type=api_field_type
)

 # Set the direct values, which excludes Date
 prediction_features = {}
 for key, value in api_form_values.items():
 prediction_features[key] = value

 # Set the derived values
 prediction_features['Distance'] = predict_utils.get_flight_distance(
 client, api_form_values['Origin'],
 api_form_values['Dest']
)

 # Turn the date into DayOfYear, DayOfMonth, DayOfWeek
 date_features_dict = predict_utils.get_regression_date_args(
 api_form_values['FlightDate']
)
 for api_field_name, api_field_value in date_features_dict.items():
 prediction_features[api_field_name] = api_field_value

 # Add a timestamp
 prediction_features['Timestamp'] = predict_utils.get_current_timestamp()

 client.agile_data_science.prediction_tasks.insert_one(
 prediction_features
)
 return json_util.dumps(prediction_features)

We create a utlity to get the current timestamp as a datetime, pre

dict_utils.get_current_timestamp, in ch08/web/predict_utils.py. Both pymongo

240 | Chapter 8: Deploying Predictive Systems

https://en.wikipedia.org/wiki/ISO_8601
http://bit.ly/2pjeksL
http://bit.ly/2pG8SNo
https://api.mongodb.com/python/current/

and bson.json_util will convert the datetime into a BSON representation. We need
bson.json_util.dumps to serialize a datetime; json.dumps will not do it.

However, it turns out that we can’t feed a Date or ISODate object to the
pymongo_spark package to fetch the data, so we ended up using an ISO string repre‐
sentation for the Timestamp field. ISO 8601 strings can function in terms of greater
than/less than in queries, so we don’t lose any functionality in this case:

def get_current_timestamp():
 iso_now = datetime.datetime.now().isoformat()
 return iso_now

We can test the API with curl, as we did in the last section. Check out ch08/test_clas‐
sification_api.sh:

#!/usr/bin/env bash

Fetch the delay prediction for a hypothetical flight
curl -XPOST 'http://localhost:5000/flights/delays/predict/classify' \
 -F 'DepDelay=5.0' \
 -F 'Carrier=AA' \
 -F 'FlightDate=2016-12-23' \
 -F 'Dest=ATL' \
 -F 'FlightNum=1519' \
 -F 'Origin=SFO' \
| json_pp

Which results in:

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 925 100 276 100 649 13229 31107 --:--:-- --:--:-- --:--:-- 36055
{
 "FlightDate" : "2016-12-23",
 "DayOfYear" : 358,
 "DayOfMonth" : 23,
 "Origin" : "SFO",
 "FlightNum" : "1519",
 "DepDelay" : null,
 "Dest" : "ATL",
 "Timestamp" : "2016-12-12T15:30:05.272470",
 "Carrier" : "AA",
 "Distance" : 2139,
 "_id" : {
 "$oid" : "584f32fd3bf9e6056dc167ad"
 },
 "DayOfWeek" : 4
}

Finally, we check to see the record is in MongoDB:

> db.prediction_tasks.find().pretty()

Deploying Spark ML Applications in Batch with Airflow | 241

http://bit.ly/2pGjCLE
http://bsonspec.org/
http://bit.ly/2ouMuVx
http://bit.ly/2oqgzpI
http://bit.ly/2pVEP3A
http://bit.ly/2pVEP3A

{
 "_id" : ObjectId("584f319c3bf9e6056dc167ac"),
 "Timestamp" : "2016-12-12T15:24:12.439716",
 "DepDelay" : -25,
 "FlightDate" : "2016-12-25",
 "FlightNum" : "1519",
 "DayOfYear" : 360,
 "Carrier" : "DL",
 "DayOfWeek" : 6,
 "Dest" : "SEA",
 "Origin" : "SFO",
 "DayOfMonth" : 25,
 "Distance" : 679
}

We can see that our API requests are resulting in prediction requests being stored in
MongoDB. Now let’s create the web page and form that will call this API to queue
predictions for batch and realtime processing with Spark ML.

A frontend for generating prediction requests
Now that we have a POST API for creating prediction requests, we need a web page
and form to feed it. This can be nearly identical to the one we created for the sklearn
regression in the previous section. Check out this excerpt from ch08/web/
predict_flask.py:

@app.route("/flights/delays/predict_batch")
def flight_delays_batch_page():
 """Serves flight delay predictions"""

 form_config = [
 {'field': 'DepDelay', 'label': 'Departure Delay'},
 {'field': 'Carrier'},
 {'field': 'FlightDate', 'label': 'Date'},
 {'field': 'Origin'},
 {'field': 'Dest', 'label': 'Destination'},
 {'field': 'FlightNum', 'label': 'Flight Number'},
]

 return render_template('flight_delays_predict_batch.html',
 form_config=form_config)

The corresponding template is also similar to the original regression template. The
changes we made are shown here in bold:

{% extends "layout.html" %}
{% block body %}

 /
 Flight Delay Prediction via Spark in Batch

242 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2o7DJVR
http://bit.ly/2o7DJVR

 <p class="lead" style="margin: 10px; margin-left: 0px;">
 <!-- Airline name and website-->
 Predicting Flight Delays via Spark in Batch
 </p>

 <!-- Generate form from search_config and request args -->
 <form id="flight_delay_classification"
 action="/flights/delays/predict/classify"
 method="post">
 {% for item in form_config %}
 {% if 'label' in item %}
 <label for="{{item['field']}}">{{item['label']}}</label>
 {% else %}
 <label for="{{item['field']}}">{{item['field']}}</label>
 {% endif %}
 <input name="{{item['field']}}"
 style="width: 36px; margin-right: 10px;"
 value="">
 </input>
 {% endfor %}
 <button type="submit" class="btn btn-xs btn-default" style="height: 25px">
 Submit
 </button>
 </form>

 <div style="margin-top: 10px;">
 <p>
 Prediction Request Successful:

 </p>
 </div>

 <script>
 // Attach a submit handler to the form
 $("#flight_delay_classification").submit(function(event) {

 // Stop form from submitting normally
 event.preventDefault();

 // Get some values from elements on the page
 var $form = $(this),
 term = $form.find("input[name='s']").val(),
 url = $form.attr("action");

 // Send the data using post
 var posting = $.post(
 url, $("#flight_delay_classification").serialize()
);

 // Put the results in a div
 posting.done(function(data) {
 $("#result").empty().append(data);

Deploying Spark ML Applications in Batch with Airflow | 243

 });
 });
 </script>
{% endblock %}

We test this web page by visiting http://localhost:5000/flights/delays/predict_batch,
which should show something like Figure 8-2. Note that we are displaying the raw
JSON for the “fleshed out” prediction request directly on the page. In reality your
application would dictate the correct action to take.

Figure 8-2. Flight delay regression page with prediction

Making a prediction request
Before we move on, we need to create at least one prediction request using the web
form, so be sure and enter some reasonable data and hit Submit. If you can’t think of
any airport codes, simply use those in Figure 8-2.

That completes the plumbing for requests for batch predictions! Requests are being
routed from the web application’s form through its prediction API and into Mon‐
goDB. Now we’ll use Spark once again to wrangle our PySpark ML prediction code
into making predictions based on the contents of the prediction_tasks collection in
Mongo.

Fetching Prediction Requests from MongoDB
Now that we have created requests for predictions in MongoDB, it is time to execute
the actual predictions using PySpark. To do this we need to fetch the prediction
requests from Mongo, load the trained model, and run the predictions on the
requests. As before, in order to bring this system into production and get it to end
users, we need to set up each script so that it can be executed from the command line
by Airflow.

Now that the model is persisted and can be loaded, our next task is to create a script
to query MongoDB for one day’s prediction requests and store them locally on the

244 | Chapter 8: Deploying Predictive Systems

http://localhost:5000/flights/delays/predict_batch

filesystem in a directory for that day’s requests. As we showed in Chapter 2, we’ll need
to write our script in such a way that it can be run from the command line so that
Airflow can control it.

Check out ch08/fetch_prediction_requests.py, in which we load data from Mongo and
write it to the filesystem. This script doesn’t do much; most of its length is housekeep‐
ing for use from the command line, via spark-submit and Airflow. Note that
pymongo-spark lets us specify a query to use to fetch records from Mongo for one day
alone.

Let’s examine the code section by section. As before, the main function accepts the
date and base path. In this case, the date parameter lets the script act on only those
predictions requested today. This could be altered to load prediction requests for this
hour, every 10 minutes, etc. (5 to 10 minutes being the approximate lower limit in
terms of frequency for batch processing):

#!/usr/bin/env python

import sys, os, re
import json
import datetime, iso8601

Save to Mongo
import pymongo_spark
pymongo_spark.activate()

Pass date and base path to main() from Airflow
def main(iso_date, base_path):

 APP_NAME = "fetch_prediction_requests.py"

 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql

 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()

Next up, we use the ISO-formatted date argument to create a Mongo query that
fetches just that day’s data. First we compute today’s and tomorrow’s dates, then we
parameterize a dict defining a Mongo query with these dates. This goes inside a con‐
figuration object, which we use as the config argument of our call to load the data
from Mongo:

Deploying Spark ML Applications in Batch with Airflow | 245

http://bit.ly/2pGe2Jg
http://bit.ly/2oq4P6O

 # Get today and tomorrow's dates as ISO strings to scope query
 today_dt = iso8601.parse_date(iso_date)
 rounded_today = today_dt.date()
 iso_today = rounded_today.isoformat()
 rounded_tomorrow_dt = rounded_today + datetime.timedelta(days=1)
 iso_tomorrow = rounded_tomorrow_dt.isoformat()

 # Create Mongo query string for today's data
 mongo_query_string = """{{
 "Timestamp": {{
 "$gte": "{iso_today}",
 "$lte": "{iso_tomorrow}"
 }}
 }}""".format(
 iso_today=iso_today,
 iso_tomorrow=iso_tomorrow
)
 mongo_query_string = mongo_query_string.replace('\n', '')

 # Create the config object with the query string
 mongo_query_config = dict()
 mongo_query_config["mongo.input.query"] = mongo_query_string

The actual call uses the pymongo-spark method mongoRDD to load the data:

 # Load the day's requests using pymongo_spark
 prediction_requests = sc.mongoRDD(
 'mongodb://localhost:27017/agile_data_science.prediction_tasks',
 config=mongo_query_config
)

As soon as the data is loaded, it is ready to be transformed to JSON and stored. Here
we use the date to parameterize the output path inside the directory data/predic‐
tion_tasks_daily.json/. Each day gets its own directory or folder, which has the effect
of creating a primary index on day. In this way, any filesystem supports single indexes
on data stored within. This is a pattern we’ll see in any script that acts on daily or
hourly data and loads from or stores to disk. It is also a pattern for using scripts with
Airflow.

Note that we are using the RDD API, so we have to manually rm the contents of the
directory with a call to os.system before saving the data. By contrast, with the Data‐
Frame API, we often use overwrite mode. Either way, our scripts should always be
designed to store output in buckets to replace the content of the previous run’s result.
Otherwise, the system won’t be able to run for a given day more than once, which will
prevent the resolution of errors:

Build the day's output path: a date-based primary key directory structure
 today_output_path = "{}/data/prediction_tasks_daily.json/{}".format(
 base_path,
 iso_today
)

246 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2oepp9Z
http://bit.ly/2o7vWrd

 # Generate JSON records
 prediction_requests_json = prediction_requests.map(json_util.dumps)

 # Write/replace today's output path
 os.system("rm -rf {}".format(today_output_path))
 prediction_requests_json.saveAsTextFile(today_output_path)

if __name__ == "__main__":
 main(sys.argv[1], sys.argv[2])

Let’s test our script from the command line (substitute today’s date, whatever that is,
for the one listed here):

python ch08/fetch_prediction_requests.py 2016-12-12 .

and check the output:

$ cat data/prediction_tasks.json/2016-12-12/part-00000 | json_pp

{
 "DayOfYear" : 360,
 "Dest" : "SFO",
 "DepDelay" : -35,
 "Origin" : "ATL",
 "DayOfMonth" : 25,
 "FlightNum" : "1519",
 "FlightDate" : "2016-12-25",
 "DayOfWeek" : 6,
 "Timestamp" : "2016-12-12T16:27:45.463447",
 "Carrier" : "AA",
 "Distance" : 2139,
 "_id" : {
 "$oid" : "584f40813bf9e6080c27d501"
 }
}

Okay! We’re storing the data in a directory corresponding to the date. This directory
structure of dates serves as a primary key for accessing prediction requests. This
allows us to process requests one day at a time. Now we need to feed this day’s data to
Spark ML to make the predictions being requested.

Making Predictions in a Batch with Spark ML
Now that we’ve collected the prediction requests, it is time to make the actual predic‐
tions! Check out ch08/make_predictions.py. To make predictions we’ll need to load
the models we persisted in ch08/train_spark_mllib_model.py and then route the pre‐
diction requests through the same data pipeline that the training data flowed through.

Deploying Spark ML Applications in Batch with Airflow | 247

http://bit.ly/2oq59Cy
http://bit.ly/2pVD1Yu

Loading Spark ML models in PySpark
Given that this script must be executable from the command line, we can copy the
code from the training script and use it to build the paths to load the models. After
accepting the command-line arguments and initializing the Spark environment, we
import each and every model in the training data pipeline:

 #
 # Load each and every model in the pipeline
 #

 # Load the arrival delay bucketizer
 from pyspark.ml.feature import Bucketizer
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(
 base_path
)
 arrival_bucketizer = Bucketizer.load(arrival_bucketizer_path)

 # Load all the string indexers into a dict
 from pyspark.ml.feature import StringIndexerModel

 string_indexer_models = {}
 for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",
 "Origin", "Dest", "Route"]:
 string_indexer_model_path = "{}/models/string_indexer_model_{}.bin".format(
 base_path,
 column
)
 string_indexer_model = StringIndexerModel.load(string_indexer_model_path)
 string_indexer_models[column] = string_indexer_model

 # Load the numeric vector assembler
 from pyspark.ml.feature import VectorAssembler
 vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(
 base_path
)
 vector_assembler = VectorAssembler.load(vector_assembler_path)

 # Load the classifier model
 from pyspark.ml.classification import RandomForestClassifier,
 from pyspark.ml.classification import RandomForestClassificationModel
 random_forest_model_path = \
 "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(
 base_path
)
 rfc = RandomForestClassificationModel.load(
 random_forest_model_path
)

Now we’re ready to load the prediction requests and flow them through the same pre‐
diction data pipeline as the training data.

248 | Chapter 8: Deploying Predictive Systems

Making predictions with Spark ML
Taking the date, we build the input path for the day’s prediction requests and load the
JSON into a DataFrame. To keep the data type consistent with the training data, we
need to use the same schema (minus the ArrDelay column that we are predicting and
the unused columns CRSDepTime and CRSArrTime) to load the data:

 # Get today and tomorrow's dates as ISO strings to scope query
 today_dt = iso8601.parse_date(iso_date)
 rounded_today = today_dt.date()
 iso_today = rounded_today.isoformat()

 # Build the day's input path: a date-based primary key directory structure
 today_input_path = "{}/data/prediction_tasks_daily.json/{}".format(
 base_path,
 iso_today
)

from pyspark.sql.types import StringType, IntegerType, Doubletype
from pyspark.sql.types import DateType, TimestampType
from pyspark.sql.types import StructType, StructField

 schema = StructType([
 StructField("Carrier", StringType(), True),
 StructField("DayOfMonth", IntegerType(), True),
 StructField("DayOfWeek", IntegerType(), True),
 StructField("DayOfYear", IntegerType(), True),
 StructField("DepDelay", DoubleType(), True),
 StructField("Dest", StringType(), True),
 StructField("Distance", DoubleType(), True),
 StructField("FlightDate", DateType(), True),
 StructField("FlightNum", StringType(), True),
 StructField("Origin", StringType(), True),
 StructField("Timestamp", TimestampType(), True),
])

 prediction_requests = spark.read.json(today_input_path, schema=schema)
 prediction_requests.show()

Next, we need to create the Route column:

 #
 # Add a Route variable to replace FlightNum
 #

 from pyspark.sql.functions import lit, concat
 prediction_requests_with_route = prediction_requests.withColumn(
 'Route',
 concat(
 prediction_requests.Origin,
 lit('-'),
 prediction_requests.Dest
)

Deploying Spark ML Applications in Batch with Airflow | 249

http://bit.ly/2pVyTYo

)
 prediction_requests_with_route.show(6)

Now we run the prediction requests through each feature model to vectorize the
requests’ features. This precisely mirrors the path of the data through the model
training script, ch08/train_spark_mllib_model.py, with one exception. We won’t be
dropping the original raw feature columns because we will need them to uniquely
identify the record when we store the prediction output:

 # Index string fields with the corresponding indexer for that column
 for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",
 "Origin", "Dest", "Route"]:
 string_indexer_model = string_indexer_models[column]
 prediction_requests_with_route = string_indexer_model.transform(
 prediction_requests_with_route
)

 # Vectorize numeric columns: DepDelay and Distance
 final_vectorized_features = vector_assembler.transform(
 prediction_requests_with_route
)

 # Drop the indexes for the nominal fields
 index_columns = ["Carrier_index", "DayOfMonth_index","DayOfWeek_index",
 "DayOfYear_index", "Origin_index", "Origin_index",
 "Dest_index", "Route_index"]
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)

 # Inspect the finalized features
 final_vectorized_features.show()

Having prepared the prediction requests, we can make the predictions and store the
output in its daily bucket. We drop the features vector to return the record to its orig‐
inal columns plus the prediction column:

 # Make the prediction
 predictions = rfc.transform(final_vectorized_features)

 # Drop the features vector and prediction metadata to give the original fields
 predictions = predictions.drop("Features_vec")
 final_predictions = predictions.drop("indices").drop("values") \
 .drop("rawPrediction").drop("probability")

 # Inspect the output
 final_predictions.show()

 # Build the day's output path: a date-based primary key directory structure
 today_output_path = "{}/data/prediction_results_daily.json/{}".format(
 base_path,
 iso_today
)

250 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2pVD1Yu

 # Save the output to its daily bucket
 final_predictions.repartition(1).write.mode("overwrite").json(
 today_output_path
)

if __name__ == "__main__":
 main(sys.argv[1], sys.argv[2])

To test our script from bash, run:

python ch08/make_predictions.py 2016-12-12 .

We can see our predictions in the script’s output (this table has been truncated to fit
on the page):

+-------+----------+---------+---------+--------+---------+
|Carrier|...|DepDelay|Dest|Distance|...| Route|Prediction|
+-------+----------+---------+---------+--------+----+----+
| DL|...| 10.0| SFO| 679.0|...|SEA-SFO| 2.0|
+-------+----------+---------+---------+--------+----+----+

Deploying Spark ML Applications in Batch with Airflow | 251

However, let’s check the actual file output of our operation with the following com‐
mand (fill in the current date as you read this):

$ cat data/prediction_results_daily.json/2016-12-11/part-* | json_pp

{
 "DayOfWeek" : 6,
 "Prediction" : 2,
 "Carrier" : "DL",
 "Origin" : "SEA",
 "Distance" : 679,
 "Timestamp" : "2016-12-23T00:06:24.489-08:00",
 "FlightNum" : "",
 "DayOfMonth" : 17,
 "FlightDate" : "2016-01-17",
 "DayOfYear" : 17,
 "Dest" : "SFO",
 "DepDelay" : 10,
 "Route" : "SEA-SFO"
}

Everything looks great! Now that we’ve made our predictions for this day, we need to
send them to MongoDB to give our application access to them.

Storing Predictions in MongoDB
Our next task is simple housekeeping, mirroring the script that fetched prediction
requests from Mongo several steps earlier. Check out ch08/load_prediction_results.py,
and recall that the PySpark mongo-hadoop documentation can be a helpful reference
when connecting with MongoDB from PySpark.

After we initialize the script so that it will work from the command line, we simply
load the day’s data and store it in a Mongo collection:

 # Get today and tomorrow's dates as ISO strings to scope query
 today_dt = iso8601.parse_date(iso_date)
 rounded_today = today_dt.date()
 iso_today = rounded_today.isoformat()

 input_path = "{}/data/prediction_results_daily.json/{}".format(
 base_path,
 iso_today
)

 # Load and JSONize text
 prediction_results_raw = sc.textFile(input_path)
 prediction_results = prediction_results_raw.map(json_util.loads)

 # Store to MongoDB
 prediction_results.saveToMongoDB(
 "mongodb://localhost:27017/agile_data_science.prediction_results"
)

252 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2pVz4D2
http://bit.ly/2oepp9Z

We can inspect our results in the Mongo console:

> db.prediction_results.find().pretty()

{
 "_id" : ObjectId("584f418d2eaf0009154e5211"),
 "FlightNum" : "1519",
 "Origin" : "ATL",
 "DayOfWeek" : 6,
 "Dest" : "SFO",
 "DepDelay" : -35,
 "Prediction" : 0,
 "DayOfMonth" : 25,
 "Timestamp" : "2016-12-12T16:27:45.463-08:00",
 "FlightDate" : "2016-12-25",
 "DayOfYear" : 360,
 "Carrier" : "AA",
 "Distance" : 2139
}

Now our application can access the results of our batch predictions in MongoDB.

Displaying Batch Prediction Results in Our Web Application
Now that our predictions are available to our web application in Mongo, we need to
create a page to display them.

Check out ch08/web/predict_flask.py. Before we begin with our controller, we need to
import the datetime and iso8601 modules at the top of our module:

Date/time stuff
import iso8601
import datetime

Our controller is simple. It accepts an ISO date as a slug argument from a GET
request, uses this date to compute today’s and tomorrow’s ISO dates, and then feeds
them to a Mongo date range query to fetch the prediction results for today’s ISO date.
Finally, it sends the prediction results bound to its template:

@app.route("/flights/delays/predict_batch/results/<iso_date>")
def flight_delays_batch_results_page(iso_date):
 """Serves page for batch prediction results"""

 # Get today and tomorrow's dates as ISO strings to scope query
 today_dt = iso8601.parse_date(iso_date)
 rounded_today = today_dt.date()
 iso_today = rounded_today.isoformat()
 rounded_tomorrow_dt = rounded_today + datetime.timedelta(days=1)
 iso_tomorrow = rounded_tomorrow_dt.isoformat()

 # Fetch today's prediction results from Mongo
 predictions = client.agile_data_science.prediction_results.find(
 {

Deploying Spark ML Applications in Batch with Airflow | 253

http://bit.ly/2o7DJVR

 'Timestamp': {
 "$gte": iso_today,
 "$lte": iso_tomorrow,
 }
 }
)

 return render_template(
 "flight_delays_predict_batch_results.html",
 predictions=predictions,
 iso_date=iso_date,
)

Our template uses the prediction results to generate a table showing the results.
Because our prediction was made against buckets ranging from 0.0–2.0, we need to
decode these buckets back into minutes in our template. Note that we might have
done this earlier in our dataflow logic instead:

{% extends "layout.html" %}
{% block body %}

 /
 Flight Delay Prediction Results via Spark in Batch

 <p class="lead" style="margin: 10px; margin-left: 0px;">

 Presenting Flight Delay Predictions via Spark in Batch
 </p>

 <!-- Generate table from prediction results -->
 <table class="table">
 <thead>
 <tr>
 <td>Request Timestamp</td>
 <td>Carrier</td>
 <td>Flight Date</td>
 <td>Origin</td>
 <td>Destination</td>
 <td>Distance</td>
 <td>Departure Delay</td>
 <td>Predicted Arrival Delay</td>
 </tr>
 </thead>
 <tbody>
 {% for item in predictions %}
 <tr>
 <td>{{ item['Timestamp'] }}</td>
 <td>{{ item['Carrier'] }}</td>
 <td>{{ item['FlightDate'] }}</td>
 <td>{{ item['Origin'] }}</td>
 <td>{{ item['Dest'] }}</td>

254 | Chapter 8: Deploying Predictive Systems

 <td>{{ item['Distance'] }}</td>
 <td>{{ item['DepDelay'] }}</td>
 <td>

 {% if item['Prediction'] == 0.0 %}
 On Time (0-15 Minute Delay)
 {% elif item['Prediction'] == 1.0 %}
 Slightly Late (15-60 Minute Delay)
 {% elif item['Prediction'] == 2.0 %}
 Very Late (60+ Minute Delay)
 {% endif %}

 </td>
 </tr>
 {% endfor %}
 </tbody>
 </table>

{% endblock %}

Now, visit our application at http://localhost:5000/flights/delays/predict_batch/results/
2016-12-12 (swap in the current date as you read this). You should see something like
Figure 8-3.

Figure 8-3. Flight delay classification results page

In practice, this prediction might find its way into your application in many different
ways: via emails you send to users, via a message to the user when he logs in to your
system, as part of an event or content feed, or as part of a particular page’s content for
this day. Perhaps we will employ a designer to help us improve this application for the
next edition of this book, but for now this will have to do. :)

Automating Our Workflow with Apache Airflow (Incubating)
We have now completed the application and data pipeline development portion of
this section on deploying Spark ML predictions in batch. Recall that we’ve come full
circle: from requesting predictions in our application back to displaying the results of

Deploying Spark ML Applications in Batch with Airflow | 255

http://localhost:5000/flights/delays/predict_batch/results/2016-12-12
http://localhost:5000/flights/delays/predict_batch/results/2016-12-12

those requests in another page. All the data processing we’ve done was executable
from the command line, which will enable Airflow to work with each portion of the
overall data pipeline for our batch predictive system.

Now we will employ Airflow to tie our separate scripts into a single executable system
that we can schedule to run each and every day to do its job in production. Note that
Airflow is controlled by using the airflow Python module. To get started, we need to
create yet another Python script that can employ Airflow to combine our scripts into
a single dataflow.

Setting up Airflow
In this section we will set up Airflow. We introduced Airflow in Chapter 2 but haven’t
used it since. If your memory is hazy, you should review the introduction before pro‐
ceeding (see “Scheduling with Apache Airflow (Incubating)” on page 59).

Note that it might feel natural to name your script airflow.py, but this will occlude the
airflow Python module and will cause problems. For this reason, we create an airflow
directory and use the script name setup.py.

Check out ch08/airflow/setup.py. Let’s go through it section by section.

We begin with our imports, and by importing the PROJECT_HOME environment vari‐
able:

import sys, os, re

from airflow import DAG
from airflow.operators.bash_operator import BashOperator

from datetime import datetime, timedelta
import iso8601

PROJECT_HOME = os.environ["PROJECT_HOME"]

Then we establish the default arguments with which we will create our directed acy‐
clic graph (DAG) and individual operators:

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': iso8601.parse_date("2016-12-01"),
 'email': ['russell.jurney@gmail.com'],
 'email_on_failure': True,
 'email_on_retry': True,
 'retries': 3,
 'retry_delay': timedelta(minutes=5),
}

256 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2pj1H0A

Creating a DAG for creating our model
Next, we instantiate an Airflow DAG for our feature extraction and model training:

Timedelta 1 is 'run daily'
training_dag = DAG(
 'agile_data_science_batch_prediction_model_training',
 default_args=default_args
)

Before defining any operators, we first define a bash_command (which is what it
sounds like) that will be shared by all PySpark tasks in this workflow. In this com‐
mand, we employ spark-submit to run a PySpark script. This command will be para‐
meterized by the params supplied to the BashOperator.

We use a mix of user-specified and Airflow system variables to parameterize spark-
submit. We create one command for our scripts that use a date, and one for those that
only need a base path. User-specified variables include the hostname of the Spark
master {{ params.master }}, as well as the full path to the script to execute {{ par
ams.base_path }}/{{ params.filename }} and the script’s base path argument
{{ params.base_path }}. Airflow supplies the {{ ds }} variable, which contains
the date/time given via the airflow command or specified by the Airflow scheduler.
The documentation could make this clearer, but using the ds variable ties our
PySpark scripts into the date capabilities of Airflow such as the scheduler and back
fill commands:

We use the same two commands for all our PySpark tasks
pyspark_bash_command = """
spark-submit --master {{ params.master }} \
 {{ params.base_path }}/{{ params.filename }} \
 {{ params.base_path }}
"""
pyspark_date_bash_command = """
spark-submit --master {{ params.master }} \
 {{ params.base_path }}/{{ params.filename }} \
 {{ ds }} {{ params.base_path }}
"""

Note that during development we specify the Spark master as local but during pro‐
duction we would simply switch this to the hostname of our Spark master.

Next, we create our first BashOperator, which runs the first script in our data pipe‐
line: ch08/extract_features.py. Note that because our scripts are all executable from the
command line, running them with spark-submit via BashOperators is easy. We sup‐
ply the parameters to go along with our PySpark bash command—the Spark master,
filename, and base path—leaving the date/time to Airflow:

Gather the training data for our classifier
extract_features_operator = BashOperator(

Deploying Spark ML Applications in Batch with Airflow | 257

http://bit.ly/2oCwW5f
http://bit.ly/2pj8SWD
http://bit.ly/2pj8SWD
http://bit.ly/2oTpIIB

 task_id = "pyspark_extract_features",
 bash_command = pyspark_bash_command,
 params = {
 "master": "local[8]",
 "filename": "ch08/extract_features.py",
 "base_path": "{}/".format(PROJECT_HOME)
 },
 dag=training_dag
)

Then we create a BashOperator for our model training script, ch08/
train_spark_mllib_model.py, which we assign a task_id of pyspark_train_classi
fier_model:

Train and persist the classifier model
train_classifier_model_operator = BashOperator(
 task_id = "pyspark_train_classifier_model",
 bash_command = pyspark_bash_command,
 params = {
 "master": "local[8]",
 "filename": "ch08/train_spark_mllib_model.py",
 "base_path": "{}/".format(PROJECT_HOME)
 },
 dag=training_dag
)

The first two tasks we’ve created are tied together: the second is dependent on the
first. One line of code creates this relationship so they can operate together:

The model training depends on the feature extraction
train_classifier_model_operator.set_upstream(extract_features_operator)

Creating a DAG for operating our model

Now that we’ve created a training_dag for creating our model, we need another
DAG that will employ the model every day to make predictions. This one will have a
schedule_interval set to a datetime.timedelta of 1, indicating it should execute
daily:

daily_prediction_dag = DAG(
 'agile_data_science_batch_predictions_daily',
 default_args=default_args,
 schedule_interval=timedelta(1)
)

The first script that gets a task in this DAG is ch08/fetch_prediction_requests.py. We
name the task something logical, pyspark_fetch_prediction_requests:

Fetch prediction requests from MongoDB
fetch_prediction_requests_operator = BashOperator(
 task_id = "pyspark_fetch_prediction_requests",
 bash_command = pyspark_date_bash_command,

258 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2pVD1Yu
http://bit.ly/2pVD1Yu
http://bit.ly/2oTzlXT
http://bit.ly/2pGe2Jg

 params = {
 "master": "local[8]",
 "filename": "ch08/fetch_prediction_requests.py",
 "base_path": "{}/".format(PROJECT_HOME)
 },
 dag=daily_prediction_dag
)

The second script in this pipeline is ch08/make_predictions.py, whose operator we
name make_predictions_operator:

Run another simple PySpark script that depends on the previous one
make_predictions_operator = BashOperator(
 task_id = "pyspark_make_predictions",
 bash_command = pyspark_date_bash_command,
 params = {
 "master": "local[8]",
 "filename": "ch08/make_predictions.py",
 "base_path": "{}/".format(PROJECT_HOME)
 },
 dag=daily_prediction_dag
)

Our final script in this DAG is ch08/load_prediction_results.py, whose operator we
name load_prediction_results_operator:

Load today's predictions to Mongo
load_prediction_results_operator = BashOperator(
 task_id = "pyspark_load_prediction_results",
 bash_command = pyspark_date_bash_command,
 params = {
 "master": "local[8]",
 "filename": "ch08/load_prediction_results.py",
 "base_path": "{}/".format(PROJECT_HOME)
 },
 dag=daily_prediction_dag
)

Now that we’ve created the operators for the daily_prediction_dag, we need to tie
them together in formal dependencies. The three scripts get two dependencies, this
time flowing downstream instead of upstream. The end result is the same either way,
approaching it from upstream or downstream:

Set downstream dependencies
fetch_prediction_requests_operator.set_downstream(make_predictions_operator)
make_predictions_operator.set_downstream(load_prediction_results_operator)

That concludes our Airflow setup script. Next we’ll run the script and get to know the
airflow command.

Deploying Spark ML Applications in Batch with Airflow | 259

http://bit.ly/2oq59Cy
http://bit.ly/2pVz4D2

Using Airflow to manage and execute DAGs and tasks
First we need to set up our script with the Airflow system and verify everything has
parsed, before moving on to testing each task and then each DAG in its entirety.

Linking our Airflow script to the Airflow DAGs directory. In order to run our script and add
our DAGs to Airflow, we need to link it to our Airflow dags/ directory, which should
be ~/airflow/dags/:

ln -s $PROJECT_HOME/ch08/airflow/setup.py ~/airflow/dags/setup.py

Verify the link before executing it. Note that the actual path will vary according to the
value of the environment variable $PROJECT_HOME:

$ ls -lah ~/airflow/dags/

total 16
drwxr-xr-x 5 rjurney staff 170B Dec 12 18:07 .
drwxr-xr-x 13 rjurney staff 442B Dec 12 18:07 ..
drwxr-xr-x 4 rjurney staff 136B Dec 12 18:07 __pycache__
lrwxr-xr-x 1 rjurney staff 62B Dec 3 23:02 airflow_test.py -> \
 /Users/rjurney/Software/Agile_Data_Code_2/ch02/airflow_test.py
lrwxr-xr-x 1 rjurney staff 63B Dec 12 18:07 setup.py -> \
 /Users/rjurney/Software/Agile_Data_Code_2/ch08/airflow/setup.py

Executing our Airflow setup script. Now we can execute the script in place in ~/airflow/
dags/ to add it to the Airflow system. Its output is brief and doesn’t tell us much, but
the absence of errors indicates everything is all right:

$ python ~/airflow/dags/setup.py

[2016-12-12 18:10:53,413] {__init__.py:36} INFO - Using executor
 SequentialExecutor

Querying Airflow from the command line. We can use the airflow list_dags command
to see that our DAGs are set up within Airflow. This shows the test DAG we set up in
Chapter 2, as well as the two DAGs we defined in our script:

$ airflow list_dags

agile_data_science_airflow_test
agile_data_science_batch_prediction_model_training
agile_data_science_batch_predictions_daily

Now we can use the list_tasks command on each of these DAGs to see the tasks
they are composed of. First let’s check out agile_data_science_batch_predic
tion_model_training:

$ airflow list_tasks agile_data_science_batch_prediction_model_training

pyspark_extract_features
pyspark_train_classifier_model

260 | Chapter 8: Deploying Predictive Systems

And next let’s list_tasks on agile_data_science_batch_predictions_daily:

$ airflow list_tasks agile_data_science_batch_predictions_daily

pyspark_fetch_prediction_requests
pyspark_load_prediction_results
pyspark_make_predictions

Testing tasks in Airflow. Now we can use the airflow command to test the execution of
each task we’ve just created. Check out ch08/test_airflow.sh. Replace the date with
today’s date as you read this, or export the date via export ISO_DATE=`date "+%Y-
%m-%d"` and plug $ISO_DATE into each command in place of the date, as we do in
ch08/test_airflow.sh:

airflow test agile_data_science_batch_prediction_model_training \
 pyspark_extract_features 2016-12-12

You will see the voluminous output of spark-submit, but before that several elements
are of interest. Airflow will display the task attempt number (1 of 4 in this case) as
well as the actual spark-submit command it is executing. You can use this command
to debug any problems that come up. If successful, the system will indicate that the
command executed with return code 0:

--
Starting attempt 1 of 4
--

[2016-12-12 19:36:13,491] {models.py:1219} INFO - Executing <Task(BashOperator):
 pyspark_extract_features> on 2016-12-12 00:00:00
[2016-12-12 19:36:13,502] {bash_operator.py:55} INFO - tmp dir root location:
/var/folders/0b/74l_65015_5fcbmbdz1w2xl40000gn/T
[2016-12-12 19:36:13,503] {bash_operator.py:64} INFO - Temporary script location:
/var/folders/0b/74l_65015_5fcbmbdz1w2xl40000gn/T/airflowtmpymttr3lj//var/ \
 folders/0b/74l_65015_5fcbmbdz1w2xl40000gn/T/airflowtmpymttr3lj/ \
 pyspark_extract_featurestk4dvpse
[2016-12-12 19:36:13,503] {bash_operator.py:65} INFO - Running command:
spark-submit --master local[8] /Users/rjurney/Software/Agile_Data_Code_2//ch08/
extract_features.py 2016-12-12
/Users/rjurney/Software/Agile_Data_Code_2/

...

[2016-12-12 20:06:22,971] {bash_operator.py:80} INFO - Command exited with return
 code 0

Now try the same thing for the pyspark_train_classifier_model task in the same
agile_data_science_batch_prediction_model_training DAG. Then repeat this
step for each task in the agile_data_science_batch_predictions_daily DAG,
starting with:

Deploying Spark ML Applications in Batch with Airflow | 261

http://bit.ly/2oTiYKT

airflow test agile_data_science_batch_predictions_daily \
 pyspark_fetch_prediction_requests

Run the rest of the test commands in ch08/test_airflow.sh before proceeding. That
verifies that all our tasks work! But will the tasks work together?

Testing DAGs in Airflow. Now that we’ve tested our tasks, we need to test our DAGs in
their entirety. We can do this with the airflow backfill command configured for a
single day. Run airflow backfill alone to see the command’s options. Note that
backfill can also do what its name implies—“backfill” any holes in your data, such
as when creating a new data pipeline that needs to fill in historical data:

[2016-12-12 19:46:22,679] {__init__.py:36} INFO - Using executor
 SequentialExecutor
usage: airflow backfill [-h] [-t TASK_REGEX] [-s START_DATE] [-e END_DATE]
 [-m] [-l] [-x] [-a] [-i] [-I] [-sd SUBDIR]
 [--pool POOL] [-dr]
 dag_id
airflow backfill: error: the following arguments are required: dag_id

The command to test our agile_data_science_batch_prediction_model_training
DAG is as follows. Note that this may take a few minutes:

airflow backfill -s 2016-12-12 -e 2016-12-12
 agile_data_science_batch_prediction_model_training

And the command to test our agile_data_science_batch_predictions_daily
DAG is:

airflow backfill -s 2016-12-12 -e 2016-12-12
 agile_data_science_batch_predictions_daily

backfill has limited debug output, but it does print the path to a logfile for each exe‐
cution. You can cat or tail -f that logfile for more information. Assuming both
tasks run without any problems, we’re ready to check out the Airflow web interface to
see how things are going.

Monitoring tasks in the Airflow web interface. If you haven’t already, run the Airflow
scheduler and Airflow web interface via the following commands:

airflow scheduler -D
airflow webserver -D

Now visit the Airflow interface at http://localhost:8080/admin/#/ (Figure 8-4). If you
see the Zeppelin interface instead, stop the Zeppelin daemon:

zeppelin/bin/zeppelin-daemon.sh stop

If our DAGs are marked inactive, click the refresh button beside them and they
should Refresh as active.

262 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2oTiYKT
http://localhost:8080/admin/#/

Figure 8-4. Airflow admin home page listing DAGs

Clicking the DAG named agile_data_science_batch_predictions_daily will
show you a graph view of this DAG (Figure 8-5). Note how the graph shows the
dependencies we set up in ch08/airflow/setup.py for the DAG agile_data_sci
ence_batch_predictions_daily.

Figure 8-5. Airflow DAG page

Click the Task Duration link, which should display a chart showing the runtime of
our backfill operations (Figure 8-6).

Deploying Spark ML Applications in Batch with Airflow | 263

http://bit.ly/2pj1H0A
http://localhost:8080/admin/airflow/duration?root=&days=30&dag_id=agile_data_science_batch_predictions_daily

Figure 8-6. Task Duration chart

Play around with the Airflow web interface. There is a lot there to discover.

Conclusion
This concludes our deployment of a predictive system in batch using Airflow. It is
hoped that this example will extend to real tasks you need to accomplish.

Deploying Spark ML via Spark Streaming
With the rise of Apache Kafka, Spark Streaming has become an increasingly popular
way of processing data in “near real time.” Our Spark Streaming workflow will reuse
the code we created in the last section for training, storing, and loading the classifier
model. But from there it will diverge, starting with how we create prediction requests.

In this case, our web application will emit a Kafka event when a prediction is needed,
and after streaming through a Kafka cluster, it will arrive at a Spark Streaming pro‐
cess that will vectorize the features and make the prediction using the model it loads

264 | Chapter 8: Deploying Predictive Systems

from disk. It will then write the result to a database, where the original web applica‐
tion will read and deliver the result.

Note that an important limitation to this method of deployment is that you can only
use one model at a time. This can be a bottleneck for some applications, like making
content-based recommendations in a recommender system, where one model is
needed for each user, because you can’t loop through many models in one Spark
Streaming process.

Gathering Training Data in Production
We will reuse the code and Airflow configuration for gathering training data from the
previous section on deploying a predictive system in batch. You can follow along with
ch08/extract_features.py and refer back to “Gathering Training Data in Production”
on page 235. Even in a Spark Streaming deployment, we still gather training data in
production using PySpark in batch and Airflow.

Training, Storing, and Loading Spark ML Models
Again, we will reuse the code and Airflow configuration for training and persisting
our model from the previous section on deploying a predictive system in batch. You
can follow along with ch08/train_spark_mllib_model.py and “Training, Storing, and
Loading Spark ML Models” on page 236. Even in a Spark Streaming deployment, we
still need Airflow to productionize the training and persistence of the model, which
we will then deploy in Spark Streaming. Figure 8-7 illustrates our backend architec‐
ture.

Figure 8-7. Backend architecture

Deploying Spark ML via Spark Streaming | 265

http://bit.ly/2oTpIIB
http://bit.ly/2pVD1Yu

Sending Prediction Requests to Kafka
In order to feed the prediction task and associated data to a Spark ML script deployed
in batch, we need to generate Kafka events that indicate a prediction is needed. Our
web application can easily do so using a form and an associated form controller that
generates a prediction request as a Kafka message.

This is in contrast to the scikit-learn deployment via a web API, where the result
was directly computed inside the web application. In the real world, this might corre‐
spond to a wide variety of circumstances, because any computation that takes longer
than a fraction of a second is best deployed via Kafka. Kafka workers are precisely the
place you want to handle a spike in load that would produce latency—Kafka is
designed to handle such variable loads, and web applications are not.

In this case, a web application will emit a request for a prediction as a message in a
Kafka topic. Then, a Spark Streaming minibatch will fetch today’s prediction requests
and feed them to PySpark ML, which will create the predictions and store the results
in a MongoDB collection. The prediction request page will then display the result of
that prediction request’s prediction.

Setting up Kafka
Before proceeding, we’ll need to set up Kafka as we did in Chapter 2. You may want to
refer to “Distributed Streams with Apache Kafka” on page 54 to refresh yourself on
Kafka, as this section is largely a rehash of that section. If you’ve already completed
some of these steps and haven’t restarted your computer, you may be able to skip
those steps you have already completed.

We’ll need to start up Zookeeper and the Kafka server, and we’ll need to create a
Kafka topic for our prediction requests.

Start Zookeeper. Zookeeper helps to orchestrate Kafka, so we need to start it first. Start
up a new console for Zookeeper, and run:

kafka/bin/zookeeper-server-start.sh kafka/config/zookeeper.properties

Start the Kafka server. Now, in another new console, run the Kafka server:

kafka/bin/kafka-server-start.sh kafka/config/server.properties

Create a topic. Open another new console. We’ll use this one to run different Kafka
commands, and then will leave it open as a console consumer for our prediction
request topic.

Kafka messages are grouped into topics, so we need to create one before we can send
messages through Kafka:

266 | Chapter 8: Deploying Predictive Systems

kafka/bin/kafka-topics.sh \
 --create \
 --zookeeper localhost:2181 \
 --replication-factor 1 \
 --partitions 1 \
 --topic flight_delay_classification_request

We should see the following message:

Created topic "flight_delay_classification_request".

Verify our new prediction request topic. We can see the topic we created with the list top‐
ics command:

$ kafka/bin/kafka-topics.sh --list --zookeeper localhost:2181

flight_delay_classification_request
test

We need to monitor this topic, so let’s run the console consumer on
flight_delay_classification_request:

kafka/bin/kafka-console-consumer.sh \
 --bootstrap-server localhost:9092 \
 --topic flight_delay_classification_request \
 --from-beginning

That’s it. Now Kafka is ready to send and receive prediction requests, and we will see
them as they occur! Now let’s set up our web application to emit requests.

Feeding Kafka recommendation tasks from a Flask API

We will turn to kafka-python to act as Producer and emit Kafka events from our web
application in ch08/web/flask_predict.py.

First we need to import kafka-python and set up our KafkaProducer object, which
will emit our events. We do so up top in our script, in case another controller needs
Kafka. We also import the Python package uuid, which will create a unique ID for
our prediction requests:

Set up Kafka
from kafka import KafkaProducer, TopicPartition
producer = KafkaProducer(bootstrap_servers=['localhost:9092'],api_version=(0,10))
PREDICTION_TOPIC = 'flight_delay_classification_request'

import uuid

Next, we create a new API for prediction requests, based on the one we created for
our batch requests, with a couple of changes. Instead of inserting requests into
Mongo, we will emit JSON requests to our Kafka topic. These requests will each fea‐
ture a Universally Unique Identifier (UUID) to identify them—a UUID is a random
string long enough that it is very unlikely any other such string will overlap this one:

Deploying Spark ML via Spark Streaming | 267

https://github.com/dpkp/kafka-python
http://bit.ly/2o7DJVR
http://bit.ly/2oOorUH
https://docs.python.org/3.1/library/uuid.html
http://bit.ly/2pj7QtS

Make our API a post, so a search engine won't hit it
@app.route("/flights/delays/predict/classify_realtime", methods=['POST'])
def classify_flight_delays_realtime():

 # Define the form fields to process
 """POST API for classifying flight delays"""
 api_field_type_map = \
 {
 "DepDelay": float,
 "Carrier": str,
 "FlightDate": str,
 "Dest": str,
 "FlightNum": str,
 "Origin": str
 }

 # Fetch the values for each field from the form object
 api_form_values = {}
 for api_field_name, api_field_type in api_field_type_map.items():
 api_form_values[api_field_name] = request.form.get(
 api_field_name, type=api_field_type
)

 # Set the direct values, which excludes Date
 prediction_features = {}
 for key, value in api_form_values.items():
 prediction_features[key] = value

 # Set the derived values
 prediction_features['Distance'] = predict_utils.get_flight_distance(
 client, api_form_values['Origin'],
 api_form_values['Dest']
)

 # Turn the date into DayOfYear, DayOfMonth, DayOfWeek
 date_features_dict = predict_utils.get_regression_date_args(
 api_form_values['FlightDate']
)
 for api_field_name, api_field_value in date_features_dict.items():
 prediction_features[api_field_name] = api_field_value

 # Add a timestamp
 prediction_features['Timestamp'] = predict_utils.get_current_timestamp()

 # Create a unique ID for this message
 unique_id = str(uuid.uuid4())
 prediction_features['UUID'] = unique_id

 message_bytes = json.dumps(prediction_features).encode()
 producer.send(PREDICTION_TOPIC, message_bytes)

268 | Chapter 8: Deploying Predictive Systems

 response = {"status": "OK", "id": unique_id}
 return json_util.dumps(response)

We can test this API with curl and then by monitoring the console consumer we set
up in the last section:

curl -XPOST 'http://localhost:5000/flights/delays/predict/classify_realtime' \
 -F 'DepDelay=5.0' \
 -F 'Carrier=AA' \
 -F 'FlightDate=2016-12-23' \
 -F 'Dest=ATL' \
 -F 'FlightNum=1519' \
 -F 'Origin=SFO' | json_pp

The response features a status code and a UUID:

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 711 100 62 100 649 7322 76650 --:--:-- --:--:-- --:--:-- 126k
{
 "status" : "OK",
 "id" : "fbb5b61c-2c7b-4db6-a22f-dae270c59797"
}

The request should show up in the console consumer, now with a UUID:

{
 "Distance": 2139.0,
 "Carrier": "AA",
 "DayOfYear": 358,
 "UUID": "fbb5b61c-2c7b-4db6-a22f-dae270c59797",
 "DayOfMonth": 23,
 "Origin": "SFO",
 "FlightNum": "1519",
 "Dest": "ATL",
 "DepDelay": 5.0,
 "DayOfWeek": 4,
 "FlightDate": "2016-12-23",
 "Timestamp": "2016-12-13T20:21:29.233822"
}

That’s it! We’re producing prediction request events in Kafka.

A frontend for generating prediction requests
Now we need a frontend for creating and displaying prediction requests and respon‐
ses. This will look similar to the one we created for our scikit-learn regression web
service earlier in this chapter, but with a new twist: a polling form.

Polling requests and LinkedIn InMaps. This feature is different from those we’ve created
before that used simple AJAX-style requests to POST a form and then display the
content of the response. This form fits in between the two forms we created earlier in

Deploying Spark ML via Spark Streaming | 269

https://mzl.la/2oYXz57

this chapter (the realtime form we created in “Pulling Our API into Our Product” on
page 232 that queried the scikit-learn model directly in our web application and
immediately displayed its output on the page, and the form we created in “A frontend
for generating prediction requests” on page 242 that submitted a request for a predic‐
tion and didn’t expect an answer, because the output was displayed on another page
after a batch process).

This time our form will expect a response from its submission request, but not an
immediate response. It will first receive a response that indicates the prediction
request has been received. This signals the client to send another request to a differ‐
ent endpoint to receive an answer. If the prediction isn’t ready, a response will indi‐
cate that the client should wait a suitable period before repeating its request. In the
meantime, the client will display a “processing” message on the page. When a
response is finally ready, it will be displayed on the page.

Figure 8-8 illustrates the frontend architecture of our application.

Figure 8-8. Frontend architecture

Many real products use this pattern for data processing and predictions. For instance,
LinkedIn InMaps used this pattern. After user authentication via the LinkedIn API,
the client would submit an asynchronous request for a network visualization for that
user’s network to be produced. This would generate a request for a network image to
be prepared. A “render farm” of servers would perform a force-directed layout for
each network and would render the background image for each user’s map. When the
map was prepared, the render worker created a record in a database. Meanwhile, the
client would repeatedly poll a second endpoint, with a delay between each request,

270 | Chapter 8: Deploying Predictive Systems

http://oreil.ly/2o7Gwyi

awaiting its map. A message on screen indicated the map was being created, until the
map was finally transmitted and displayed (Figure 8-9). A social feature enabled users
to share their maps, creating a viral loop that distributed the product.

Figure 8-9. LinkedIn InMaps prototype

We’ll be using a polling form to display flight delay predictions. This will require two
endpoints and their corresponding controllers, and some simple JavaScript.

A controller for the page. Check out ch08/web/predict_flask.py, where we define a sim‐
ple controller to serve the template for our prediction page:

@app.route("/flights/delays/predict_kafka")
def flight_delays_page_kafka():
 """Serves flight delay prediction page with polling form"""

 form_config = [
 {'field': 'DepDelay', 'label': 'Departure Delay'},
 {'field': 'Carrier'},
 {'field': 'FlightDate', 'label': 'Date'},
 {'field': 'Origin'},
 {'field': 'Dest', 'label': 'Destination'},
]

 return render_template(

Deploying Spark ML via Spark Streaming | 271

http://bit.ly/2o7DJVR

 'flight_delays_predict_kafka.html', form_config=form_config
)

An API controller for serving prediction responses. We also need a simple controller for
serving the predictions when they are ready, signaled by their presence in MongoDB
for any given UUID. This is simple CRUD work, which makes up the bulk of most
consumer web applications:

@app.route("/flights/delays/predict/classify_realtime/response/<unique_id>")
def classify_flight_delays_realtime_response(unique_id):
 """Serves predictions to polling requestors"""

 prediction = \
 client.agile_data_science.flight_delay_classification_response.find_one(
 {
 "id": unique_id
 }
)

 response = {"status": "WAIT", "id": unique_id}
 if prediction:
 response["status"] = "OK"
 response["prediction"] = prediction

 return json_util.dumps(response)

We can verify that it works with curl:

curl \
 'http://localhost:5000/flights/delays/predict/classify_realtime \
 /response/EXAMPLE_UUID_g3t03qtq3t' | json_pp

Which results in:

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 51 100 51 0 0 7834 0 --:--:-- --:--:-- --:--:-- 25500
{
 "id" : "EXAMPLE_UUID_g3t03qtq3t",
 "status" : "WAIT"
}

Now let’s insert a record for this UUID in Mongo:

db.flight_delay_classification_response.insert(
 {
 id: "EXAMPLE_UUID_g3t03qtq3t",
 prediction: {"test": "data"}
 }
)

and try again:

272 | Chapter 8: Deploying Predictive Systems

curl 'http://localhost:5000/flights/delays/predict/classify_realtime/ \
 response/EXAMPLE_UUID_g3t03qtq3t' | json_pp

This simply returns our record as the prediction portion of our response:

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 175 100 175 0 0 31605 0 --:--:-- --:--:-- --:--:-- 87500
{
 "id" : "EXAMPLE_UUID_g3t03qtq3t",
 "status" : "OK",
 "prediction" : {
 "_id" : {
 "$oid" : "5850dc50ebc402b548a0234c"
 },
 "id" : "EXAMPLE_UUID_g3t03qtq3t",
 "prediction" : {
 "test" : "data"
 }
 }
}

Creating a template with a polling form. The template for this controller is ch08/web/
templates/flight_delays_predict_kafka.html, which we copied from ch08/web/
templates/flight_delays_predict.html and then edited in place. Open it up and follow
along:

{% extends "layout.html" %}
{% block body %}
 <!-- Navigation guide -->
 /
 Flight Delay Prediction with Kafka

 <p class="lead" style="margin: 10px; margin-left: 0px;">

 Predicting Flight Delays with Kafka
 </p>

 <!-- Generate form from search_config and request args -->
 <form id="flight_delay_classification"
 action="/flights/delays/predict/classify_realtime"
 method="post">
 {% for item in form_config %}
 {% if 'label' in item %}
 <label for="{{item['field']}}">{{item['label']}}</label>
 {% else %}
 <label for="{{item['field']}}">{{item['field']}}</label>
 {% endif %}
 <input name="{{item['field']}}"
 style="width: 36px; margin-right: 10px;"
 value="">

Deploying Spark ML via Spark Streaming | 273

http://bit.ly/2ouOQU9
http://bit.ly/2ouOQU9
http://bit.ly/2pGtR2z
http://bit.ly/2pGtR2z

 </input>
 {% endfor %}
 <button type="submit" class="btn btn-xs btn-default" style="height: 25px">
 Submit
 </button>
 </form>

 <div style="margin-top: 10px;">
 <p>Delay: </p>
 </div>

 <script src="/static/js/flight_delay_predict_polling.js"></script>
{% endblock %}

The template itself is simple; the real work happens in the JavaScript file, ch08/web/
static/flight_delay_predict_polling.js. Let’s go through it part by part. We’ve broken the
task up into functions to keep things clean and simple.

As we’ve done before, we use jQuery.submit to attach a function to the submission
of our HTML form. Within this function we process the form’s input and post it to
the form’s endpoint at /flights/delays/predict/classify_realtime. Once a response is
received indicating a successful prediction request has been submitted, we begin to
poll a separate endpoint using a unique ID for the prediction request returned in the
response:

// Attach a submit handler to the form
$("#flight_delay_classification").submit(function(event) {

 // Stop form from submitting normally
 event.preventDefault();

 // Get some values from elements on the page
 var $form = $(this),
 term = $form.find("input[name='s']").val(),
 url = $form.attr("action");

 // Send the data using post
 var posting = $.post(
 url,
 $("#flight_delay_classification").serialize()
);

 // Submit the form and parse the response
 posting.done(function(data) {
 response = JSON.parse(data);

 // If the response is OK, print a message to wait and start polling
 if(response.status == "OK") {
 $("#result").empty().append("Processing...");

274 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2oTzTwR
http://bit.ly/2oTzTwR
https://api.jquery.com/submit/

 // Every 1 second, poll the response URL until we get a response
 poll(response.id);
 }
 });
});

This polling is handled by the poll function. poll accepts the ID of the request and
generates a URL for the response endpoint at /flights/delays/predict/classify_realtime/
response/, which takes a slug at the end as a parameter. It submits an initial asynchro‐
nous GET request to this URL, and refers the response to the function conditional
Poll:

// Poll the prediction URL
function poll(id) {
 var responseUrlBase = "/flights/delays/predict/classify_realtime/response/";
 console.log("Polling for request id " + id + "...");

 // Append the UUID to the URL as a slug argument
 var predictionUrl = responseUrlBase + id;

 $.ajax(
 {
 url: predictionUrl,
 type: "GET",
 complete: conditionalPoll
 });
}

conditionalPoll does what it sounds like—it either polls the endpoint again if the
status of the response is WAIT, or it renders the response on the page via the function
renderPage if the status is OK:

// Decide whether to poll based on the response status
function conditionalPoll(data) {
 var response = JSON.parse(data.responseText);

 if(response.status == "OK") {
 renderPage(data);
 }
 else if(response.status == "WAIT") {
 setTimeout(function() {poll(response.id)}, 1000);
 }
}

renderPage is very simple. It draws the prediction response on the page, in the same
place as the realtime, scikit-learn prediction frontend did:

// Render the response on the page for splits:
// [-float("inf"), -15.0, 0, 30.0, float("inf")]
function renderPage(response) {

 var displayMessage;

Deploying Spark ML via Spark Streaming | 275

 if(response.Prediction == 0) {
 displayMessage = "Early (15+ Minutes Early)";
 }
 else if(response.Prediction == 1) {
 displayMessage = "Slightly Early (0-15 Minute Early)";
 }
 else if(response.Prediction == 2) {
 displayMessage = "Slightly Late (0-30 Minute Delay)";
 }
 else if(response.Prediction == 3) {
 displayMessage = "Very Late (30+ Minutes Late)";
 }

 $("#result").empty().append(displayMessage);
}

That wraps up the frontend for our Kafka-based prediction! Now let’s try things out.

Making a prediction request
To test our page, visit http://localhost:5000/flights/delays/predict_kafka and open a
JavaScript console. Now, enter some test data and submit the form. Be sure to fill out
all the fields. You should see a waiting message and a request each second to the pre‐
diction response URL, as in Figure 8-10.

Figure 8-10. Kafka-based flight delay prediction page

Now that our model is prepared, we’re creating Kafka events for each prediction
request, and our frontend is ready to display the results, we’re ready to start making
predictions using Spark Streaming!

276 | Chapter 8: Deploying Predictive Systems

http://localhost:5000/flights/delays/predict_kafka

Making Predictions in Spark Streaming
Now that we’ve created a frontend for making prediction requests via Kafka, as well
as for displaying the result on the web, we need to finish up the middle where
PySpark Streaming processes Kafka events and inserts the result in Mongo for the
frontend to render. Note that you can learn more about deploying PySpark Streaming
in the Spark Streaming Programming Guide.

Check out ch08/make_predictions_streaming.py. We initialize the system in a similar
way as we do in batch, albeit with a StreamingContext as well as a SparkSession. So
long as they both come from the same SparkContext, they will play well together
(although, as we will see, Spark Streaming is primarily RDD-based).

Note that our main function only takes one argument this time, the base_path. The
date isn’t needed, as our script will process any Kafka event that it sees.

In order to run a Spark Streaming script, we have to include the Spark Streaming
package, which currently goes by the name org.apache.spark:spark-streaming-
kafka-0-8_2.11:2.1.0 (the version may have changed by the time you’re reading
this). We can achieve this at the command line during development using the
PySpark console:

PYSPARK_DRIVER_PYTHON=ipython pyspark --packages \
 org.apache.spark:spark-streaming-kafka-0-8_2.11:2.1.0

However, to make our script command-line executable, we must use findspark to do
the import, via findspark.add_packages. We also need to initialize pymongo-spark,
as we’ll be storing results directly in Mongo. In contrast with batch, with Spark
Streaming it is necessary to do both things at once (make the prediction and store the
result in Mongo):

#!/usr/bin/env python

import sys, os, re
import json
import datetime, iso8601

from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession, Row
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils, OffsetRange, TopicAndPartition

Save to Mongo
from bson import json_util
import pymongo_spark
pymongo_spark.activate()

def main(base_path):

Deploying Spark ML via Spark Streaming | 277

http://bit.ly/2ouM818
http://bit.ly/2o7trFf
http://bit.ly/2oOkAqO
http://bit.ly/2nRGlqX
http://bit.ly/2oTAQoV
http://bit.ly/2opWT5y
http://bit.ly/2oepp9Z

 APP_NAME = "make_predictions_streaming.py"

 # Process data every 10 seconds
 PERIOD = 10
 BROKERS = 'localhost:9092'
 PREDICTION_TOPIC = 'flight_delay_classification_request'

 try:
 sc and ssc
 except NameError as e:
 import findspark

 # Add the streaming package and initialize
 findspark.add_packages(
 ["org.apache.spark:spark-streaming-kafka-0-8_2.11:2.1.0"]
)
 findspark.init()

 import pyspark
 import pyspark.sql
 import pyspark.streaming

 conf = SparkConf().set("spark.default.parallelism", 1)
 sc = SparkContext(
 appName="Agile Data Science: PySpark Streaming 'Hello, World!'", conf=conf
)
 ssc = StreamingContext(sc, PERIOD)
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()

The code for loading the models comes directly from ch08/make_predictions.py, and I
will not repeat it here. We load the models in main before doing anything else. The
beauty of Spark Streaming is that you can reuse code from Spark in batch mode, ena‐
bling you to prototype there or create common libraries of code between batch and
realtime systems.

Once we load our models, we need to fetch messages from Kafka using KafkaU
tils.createDirectStream:

#
Process Prediction Requests in Streaming
#

stream = KafkaUtils.createDirectStream(
 ssc,
 [PREDICTION_TOPIC],
 {
 "metadata.broker.list": BROKERS,
 "group.id": "0",
 }
)

278 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2oq59Cy
http://bit.ly/2oTwluh
http://bit.ly/2oTwluh

Since our messages are JSON, we’ll need to parse them. The pprint method lets us
take a peek at our data as it flows through Spark Streaming:

object_stream = stream.map(lambda x: json.loads(x[1]))
object_stream.pprint()

At this point our prediction requests are RDDs of Python dicts. The models we’ve
created work with DataFrames, so we need to convert them. In order to do this, we
first need to create spark.sql.Rows out of the dicts. In doing so, we’ll need to con‐
vert our ISO 8601 date strings to datetime objects using iso8601.parse_date. As
before, we pprint the result:

 row_stream = object_stream.map(
 lambda x: Row(
 FlightDate=iso8601.parse_date(x['FlightDate']),
 Origin=x['Origin'],
 Distance=x['Distance'],
 DayOfMonth=x['DayOfMonth'],
 DayOfYear=x['DayOfYear'],
 UUID=x['UUID'],
 DepDelay=x['DepDelay'],
 DayOfWeek=x['DayOfWeek'],
 FlightNum=x['FlightNum'],
 Dest=x['Dest'],
 Timestamp=iso8601.parse_date(x['Timestamp']),
 Carrier=x['Carrier']
)
)
 row_stream.pprint()

Our next step is not intuitive, because it is a single step where all the work happens.
This doesn’t seem to jive with the dataflow orientation of Spark. However, in Spark
Streaming you often employ DStream.foreachRDD to perform a long series of opera‐
tions on the RDD within the DStream. In this sense, Streaming really sits on top of
other Spark abstractions, enabling you to use normal Spark techniques on streaming
data.

Let’s start with the call itself, a one-liner:

 # Do the classification and store to Mongo
 row_stream.foreachRDD(classify_prediction_requests)

Note that we define this function within our main function, so that it will have access
to the models we’ve loaded there. We might have passed them in as arguments, but
that’s ungainly. The downside of defining the function inside main is that it isn’t
importable from outside by another script.

classify_prediction_requests takes an RDD as its argument, and then employs
SparkSession.createDataFrame to convert the Row we prepared into a full-blown
DataFrame. As with the batch version of this script, we need to set up the schema

Deploying Spark ML via Spark Streaming | 279

http://bit.ly/2pGpwfB
http://bit.ly/2p5IM9z
http://bit.ly/2ouR2ee
https://pypi.python.org/pypi/iso8601
http://bit.ly/2ouIxzW
http://bit.ly/2o7r2KK
http://bit.ly/2pGlt2U

first, this time with a UUID field. Once the DataFrame is created, we can employ Data
Frame.show to see what is going on:

 def classify_prediction_requests(rdd):

 from pyspark.sql.types import StringType, IntegerType, DoubleType, DateType,
 TimestampType
 from pyspark.sql.types import StructType, StructField

 prediction_request_schema = StructType([
 StructField("Carrier", StringType(), True),
 StructField("DayOfMonth", IntegerType(), True),
 StructField("DayOfWeek", IntegerType(), True),
 StructField("DayOfYear", IntegerType(), True),
 StructField("DepDelay", DoubleType(), True),
 StructField("Dest", StringType(), True),
 StructField("Distance", DoubleType(), True),
 StructField("FlightDate", DateType(), True),
 StructField("FlightNum", StringType(), True),
 StructField("Origin", StringType(), True),
 StructField("Timestamp", TimestampType(), True),
 StructField("UUID", StringType(), True),
])

 prediction_requests_df = spark.createDataFrame(
 rdd, schema=prediction_request_schema
)
 prediction_requests_df.show()

As we did in batch, we need to derive the Route field from the Origin and Dest fields:

 #
 # Add a Route variable to replace FlightNum
 #

 from pyspark.sql.functions import lit, concat
 prediction_requests_with_route = prediction_requests_df.withColumn(
 'Route',
 concat(
 prediction_requests_df.Origin,
 lit('-'),
 prediction_requests_df.Dest
)
)
 prediction_requests_with_route.show(6)

Now that we have a DataFrame, we simply repeat the prediction code from ch08/
make_preditions.py, which results in a prediction within a DataFrame. Again we take
a peek at the output with show, just as we would in batch:

 # Vectorize string fields with the corresponding pipeline for that column
 # Turn category fields into categoric feature vectors, then drop
 # intermediate fields

280 | Chapter 8: Deploying Predictive Systems

http://bit.ly/2pjhT20
http://bit.ly/2pjhT20
http://bit.ly/2oq59Cy
http://bit.ly/2oq59Cy

 for column in ["Carrier", "DayOfMonth", "DayOfWeek", "DayOfYear",
 "Origin", "Dest", "Route"]:
 string_indexer_model = string_indexer_models[column]
 prediction_requests_with_route = string_indexer_model.transform(
 prediction_requests_with_route
)

 # Vectorize numeric columns: DepDelay, Distance, and index columns
 final_vectorized_features = vector_assembler.transform(
 prediction_requests_with_route
)

 # Inspect the vectors
 final_vectorized_features.show()

 # Drop the individual index columns
 index_columns = ["Carrier_index", "DayOfMonth_index", "DayOfWeek_index",
 "DayOfYear_index", "Origin_index", "Dest_index",
 "Route_index"]
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)

 # Inspect the finalized features
 final_vectorized_features.show()

 # Make the prediction
 predictions = rfc.transform(final_vectorized_features)

 # Drop the features vector and prediction metadata to give the original
 # fields
 predictions = predictions.drop("Features_vec")
 final_predictions = predictions.drop("indices").drop("values") \
 .drop("rawPrediction").drop("probability")

 # Inspect the output
 final_predictions.show()

Finally, we need to convert the predictions DataFrame into RDDs, because pymongo-
spark doesn’t work with DataFrames, it works with RDDs composed of dicts (and
not even pyspark.sql.Rows). Also, the call to saveToMongoDB will fail if the RDD is
empty, so we need to only saveToMongoDB if there are results:

 # Store to Mongo
 if final_predictions.count() > 0:
 final_predictions.rdd.map(lambda x: x.asDict()).saveToMongoDB(
 "mongodb://localhost:27017/agile_data_science.flight_ \
 delay_classification_response"
)

Whew! That’s it. If everything is working as expected, our predictions will be routed
from Kafka through Spark ML and back into MongoDB.

Deploying Spark ML via Spark Streaming | 281

http://bit.ly/2o7CjKU

Testing the Entire System
Now we’re about to have what I hope is a great deal of fun! We get to test the system
from end to end. But before doing so, I want to take a moment and review what we’ve
done.

Overall system summary
We collected public data from the web describing 5.4 million flights of commercial
airlines. We got to know that data through exploratory data analysis, interactive visu‐
alization, and search. This prepared us for the process by which we turned the flights
into training data for a statistical model to predict flight delays using Spark, a tool
that can process data at any scale. Then we set up a web frontend that generated pre‐
diction requests and sent them to a distributed queue in the form of Kafka, which
again can handle data of any scale. Spark Streaming let us use the models we prepared
in batch to turn Kafka messages into predictions in real time, the results of which we
stored in MongoDB, where our web frontend could access them. Finally, the predic‐
tions were displayed to the user.

Rubber meets road

Okay, let’s go! To try things out, run our script from bash:

python ch08/make_predictions_streaming.py .

The output is voluminous, but the key parts correspond to our pprints and shows. At
this point you should see the empty output that follows (truncated to fit the page):

Time: 2016-12-20 18:06:40

+-------+----------+---------+---------+--------+
|Carrier|...|Timestamp|UUID|
+-------+----------+---------+---------+--------+

+-------+----------+---------+---------+--------+
|Carrier|...|NumericFeatures_vec|Features_vec|
+-------+----------+---------+---------+--------+

+-------+----------+---------+---------+--------+
|Carrier|...|UUID|Features_vec|
+-------+----------+---------+---------+--------+

+-------+----------+---------+---------+--------+
|Carrier|...|UUID|Prediction|
+-------+----------+---------+---------+--------+

Now, visit http://localhost:5000/flights/delays/predict_kafka and, for fun, open the
JavaScript console. Enter a nonzero departure delay, an ISO-formatted date (I used

282 | Chapter 8: Deploying Predictive Systems

http://localhost:5000/flights/delays/predict_kafka

2016-12-25, which was in the future at the time I was writing this), a valid carrier
code (use AA or DL if you don’t know one), an origin and destination (my favorite is
ATL → SFO), and a valid flight number (e.g., 1519), and hit Submit. Watch the debug
output in the JavaScript console as the client polls for data from the response end‐
point at /flights/delays/predict/classify_realtime/response/.

Quickly switch windows to your Spark console. Within 10 seconds, the length we’ve
configured of a minibatch, you should see something like the following:

Time: 2016-12-20 18:06:50

{
 'Dest': 'ORD',
 'DayOfYear': 360,
 'FlightDate': '2016-12-25',
 'Distance': 606.0,
 'DayOfMonth': 25,
 'UUID': 'a01b5ccb-49f1-4c4d-af34-188c6ae0bbf0',
 'FlightNum': '2010',
 'Carrier': 'AA',
 'DepDelay': -100.0,
 'DayOfWeek': 6,
 'Timestamp': '2016-12-20T18:06:45.307114',
 'Origin': 'ATL'
 }

Time: 2016-12-20 18:06:50

Row(Carrier='AA', DayOfMonth=25, DayOfWeek=6, DayOfYear=360, DepDelay=-100.0,
Dest='ORD', Distance=606.0, FlightDate=datetime.datetime(2016,
12, 25, 0, 0, tzinfo=<iso8601.Utc>), FlightNum='2010',
Origin='ATL', Timestamp=datetime.datetime(2016, 12, 20, 18,
6, 45, 307114, tzinfo=<iso8601.Utc>),
UUID='a01b5ccb-49f1-4c4d-af34-188c6ae0bbf0')

+-------+----------+---------+---------+
|Carrier|...| UUID|
+-------+----------+---------+---------+
| AA|...|a01b5ccb-49f1-4c4...|
+-------+----------+---------+---------+

+-------+----------+---------+---------+
|Carrier|...| Features_vec|
+-------+----------+---------+---------+
| AA|...|(8009,[2,38,51,34...|
+-------+----------+---------+---------+

+-------+----------+---------+---------+
|Carrier|...| Features_vec|
+-------+----------+---------+---------+

Deploying Spark ML via Spark Streaming | 283

| AA|...|(8009,[2,38,51,34...|
+-------+----------+---------+---------+

+-------+----------+---------+---------+
|Carrier|...|Prediction|
+-------+----------+---------+---------+
| AA|...| 0.0|
+-------+----------+---------+---------+

Paydirt!
Switching back to your browser, you should see the prediction result proudly dis‐
played, as in Figure 8-11. Pretty amazing to watch, yeah!? As I write this I am submit‐
ting requests over and over, and I am amazed at how it all fits together, and how this
same code might work with a petabyte of data on a large Spark cluster with hundreds
of web servers to match. The point of all the trouble we’ve gone through in this book
is to build applications that will scale all the way up to that level. I hope this applica‐
tion and the book describing it serve as an example you can learn from and extend.

Figure 8-11. Flight delay polling for results as Kafka and Spark Streaming process predic‐
tion request

Conclusion
In this chapter we’ve taken the predictive model we built in the last chapter and inte‐
grated it into a real product facing the web. We did so in three different ways: in real
time using scikit-learn as a web service, in batch using Spark and Airflow, and in
“sub-real time” using Kafka and Spark Streaming. I hope you can use what we’ve cov‐
ered in this chapter to deploy your own models as full-blown predictive systems in
new data products!

284 | Chapter 8: Deploying Predictive Systems

I would very much like to hear how you’ve used Agile Data Science and the example
in this chapter to build your own products, and I’d like to help you do so. Don’t hesi‐
tate to reach out. You can email me personally at russell.jurney@gmail.com, or sign up
for the Agile Data Science email list, agile-data-science@googlegroups.com.

Now we turn to improving the model we’ve created. Once a model meets reality in
the form of a product and catches on, product development often turns into a relent‐
less drive to improve that model in as much as it impacts the bottom line. I hope your
products have this “problem,” and so this is what we focus on next.

Conclusion | 285

mailto:russell.jurney@gmail.com
http://bit.ly/2oVPPyB
mailto:agile-data-science@googlegroups.com

CHAPTER 9

Improving Predictions

Now that we have deployed working models predicting flight delays, it is time to
“make believe” that our prediction has proven useful based on user feedback, and fur‐
ther that the prediction is valuable enough that prediction quality is important. In
this case, it is time to iteratively improve the quality of our prediction. If a prediction
is valuable enough, this becomes a full-time job for one or more people.

In this chapter we will tune our Spark ML classifier and also do additional feature
engineering to improve prediction quality. In doing so, we will show you how to iter‐
atively improve predictions.

Code examples for this chapter are available at Agile_Data_Code_2/ch09. Clone the
repository and follow along!

git clone https://github.com/rjurney/Agile_Data_Code_2.git

Fixing Our Prediction Problem
At this point we realized that our model was always predicting one class, no matter
the input. We began by investigating that in a Jupyter notebook at ch09/Debugging
Prediction Problems.ipynb.

The notebook itself is very long, and we tried many things to fix our model. It turned
out we had made a mistake. We were using OneHotEncoder on top of the output of
StringIndexerModel when we were encoding our nominal/categorical string fea‐
tures. This is how you should encode features for models other than decision trees,
but it turns out that for decision tree models, you are supposed to take the string
indexes from StringIndexerModel and directly compose them with your continu‐
ous/numeric features in a VectorAssembler. Decision trees are able to infer the fact

287

http://bit.ly/2oRjXwB
http://bit.ly/2ocIVXt
http://bit.ly/2pRnjO1
http://bit.ly/2pRnjO1
http://bit.ly/2p2VV28
http://bit.ly/2opQirO
http://bit.ly/2pj7nI0

that indexes represent categories. One benefit of directly adding StringIndexes to
your feature vectors is that you then get easily interpretable feature importances.

When we discovered this, we had to go back and edit the book so that we didn’t teach
something that was wrong, and so this is now what you see. We thought it worthwhile
to link to the notebook, though, to show how this really works in the wild: you build
broken shit and then fix it.

When to Improve Predictions
Not all predictions should be improved. Often something fast and crude will work
well enough as an MVP (minimum viable product). Only predictions that prove use‐
ful should be improved. It is possible to sink large volumes of time into improving the
quality of a prediction, so it is essential that you connect with users before getting
sucked into this task. This is why we’ve included the discussion of improving predic‐
tions in its own chapter.

Improving Prediction Performance
There are a few ways to improve an existing predictive model. The first is by tuning
the parameters of the statistical model making your prediction. The second is feature
engineering.

Tuning model hyperparameters to improve predictive model quality can be done by
intuition, or by brute force through something called a grid or random search. We’re
going to focus on feature engineering, as hyperparameter tuning is covered else‐
where. A good guide to hyperparameter tuning is available in the Spark documenta‐
tion on model selection and tuning.

As we move through this chapter, we’ll be using the work we’ve done so far to per‐
form feature engineering. Feature engineering is the most important part of making
good predictions. It involves using what you’ve discovered about the data through
exploratory data analysis in order to feed your machine learning algorithm better,
more consequential data as input.

Experimental Adhesion Method: See What Sticks
There are several ways to decide which features to use, and Saurav Kaushik has writ‐
ten a post on Analytics Vidhya that introduces them well. The method we employ
primarily, which we jokingly entitle the Experimental Adhesion Method, is to quickly
select all the features that we can simply compute, and try them all using a random
forest or gradient boosted decision tree model (note that even if our application
requires another type of model, we still use decision trees to guide feature selection).
Then we train the model and inspect the model’s feature importances to “see what

288 | Chapter 9: Improving Predictions

https://spark.apache.org/docs/latest/ml-tuning.html
https://spark.apache.org/docs/latest/ml-tuning.html
http://bit.ly/2mqwJyK

sticks.” The most important variables are retained, and this forms the basic model we
begin with.

Feature engineering is an iterative process. Based on the feature importances, we pon‐
der what new things we might try using the data we have available. We start with the
simplest idea, or the one that is easiest to implement. If the feature importances indi‐
cate one type of feature is important, and we can’t easily compute new features similar
to this one, we think about how we might acquire new data to join to our training
data to use as features.

The key is to be logical and systematic in our exploration of the feature space. You
should think about how easy a potential feature is to compute, as well as what it
would teach you if it turned out to be important. Are there other, similar features that
you could try if this candidate worked? Develop hypotheses and test them in the form
of new features. Evaluate each new feature in an experiment and reflect on what
you’ve learned before engineering the next feature.

Establishing Rigorous Metrics for Experiments
In order to improve our classification model, we need to reliably determine its pre‐
diction quality in the first place. To do so, we need to beef up our cross-validation
code, and then establish a baseline of quality for the original model. Check out ch09/
baseline_spark_mllib_model.py, which we copied from ch09/
train_spark_mllib_model.py and altered to improve its cross-validation code.

In order to evaluate the prediction quality of our classifier, we need to use more than
one metric. Spark ML’s MulticlassClassificationEvaluator offers four metrics:
accuracy, weighted precision, weighted recall, and f1.

Defining our classification metrics
The raw accuracy is just what it sounds like: the number of correct predictions divi‐
ded by the number of predictions. This is something to check first, but it isn’t ade‐
quate alone. Precision is a measure of how useful the result is. Recall describes how
complete the results are. The f1 score incorporates both precision and recall to deter‐
mine overall quality. Taken together, the changes to these metrics between consecu‐
tive runs of training our model can give us a clear picture of what is happening with
our model in terms of prediction quality. We will use these metrics along with feature
importance to guide our feature engineering efforts.

Feature importance
Model quality metrics aren’t enough to guide the iterative improvements of our
model. To understand what is going on with each new run, we need to employ a type
of model called a decision tree.

Improving Prediction Performance | 289

http://bit.ly/2pKV8ko
http://bit.ly/2pKV8ko
http://bit.ly/2owYwO6
http://bit.ly/2owYwO6
http://bit.ly/2plCH8Y
https://en.wikipedia.org/wiki/Decision_tree

In Spark ML, the best general-purpose multiclass classification model is an imple‐
mentation of a random forest, the RandomForestClassificationModel, fit by the Ran
domForestClassifier. Random forests can classify or regress, and they have an
important feature that helps us interrogate predictive models through a feature called
feature importance.

The importance of a feature is what it sounds like: a measure of how important that
feature was in contributing to the accuracy of the model. This information is incredi‐
bly useful, as it can serve as a guiding hand to feature engineering. In other words, if
you know how important a feature is, you can use this clue to make changes that
increase the accuracy of the model, such as removing unimportant features and try‐
ing to engineer features similar to those that are most important. Feature engineering
is a major theme of Agile Data Science, and it is a big part of why we’ve been doing
iterative visualization and exploration (the purpose of which is to shed light on and
drive feature engineering).

Note that the state of the art for many classification and regression tasks is a gradient
boosted decision tree, but as of version 2.1.0 Spark ML’s implementation—the
GBTClassificationModel, which is fit by the GBTClassifier—can only do binary
classification.

Implementing a more rigorous experiment
In order to be confident in our experiment for each measure, we need to repeat it at
least twice to see how it varies. This is the degree to which we cross-validate. In addi‐
tion, we need to loop and run the measurement code once for each score. Once we’ve
collected several scores for each metric, we look at both the average and standard
deviation for each score. Taken together, these scores give us a picture of the quality
of our classifier.

To begin, we need to iterate and repeat our experiment N times. For each experiment
we need to compute a test/train split, then we need to train the model on the training
data and apply it to the test data. Then we use MulticlassClassificationEvaluator
to get a score, once for each metric. We gather the scores in a list for each metric,
which we will evaluate at the end of the experiment:

 #
 # Cross-validate, train, and evaluate classifier: loop 5 times for 4 metrics
 #

 from collections import defaultdict
 scores = defaultdict(list)
 metric_names = ["accuracy", "weightedPrecision", "weightedRecall", "f1"]
 split_count = 3

 for i in range(1, split_count + 1):
 print("\nRun {} out of {} of test/train splits in cross validation...". \

290 | Chapter 9: Improving Predictions

http://bit.ly/2hqdHsW
http://bit.ly/2pM3yuC
http://bit.ly/2oReF4o
http://bit.ly/2obFMbA
http://bit.ly/2obFMbA
http://bit.ly/2oYpX57
http://bit.ly/2plCH8Y

 format(
 i,
 split_count,
)
)

 # Test/train split
 training_data, test_data = final_vectorized_features.limit(1000000).\
 randomSplit([0.8, 0.2])

 # Instantiate and fit random forest classifier on all the data
 from pyspark.ml.classification import RandomForestClassifier
 rfc = RandomForestClassifier(
 featuresCol="Features_vec",
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 maxBins=4657,
)
 model = rfc.fit(training_data)

 # Save the new model over the old one
 model_output_path = " \
 {}/models/spark_random_forest_classifier.flight_delays.baseline.\
 bin".format(
 base_path
)
 model.write().overwrite().save(model_output_path)

 # Evaluate model using test data
 predictions = model.transform(test_data)

 # Evaluate this split's results for each metric
 from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 for metric_name in metric_names:
 evaluator = MulticlassClassificationEvaluator(
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 metricName=metric_name
)
 score = evaluator.evaluate(predictions)

 scores[metric_name].append(score)
 print("{} = {}".format(metric_name, score))

This leaves us with a defaultdict of scores, with one list for each metric. Now we
need to compute the average and standard deviation of each list to give us the overall
average and standard deviation of each metric:

 #
 # Evaluate average and STD of each metric and print a table
 #
 import numpy as np

Improving Prediction Performance | 291

 score_averages = defaultdict(float)

 # Compute the table data
 average_stds = [] # ha
 for metric_name in metric_names:
 metric_scores = scores[metric_name]

 average_accuracy = sum(metric_scores) / len(metric_scores)
 score_averages[metric_name] = average_accuracy

 std_accuracy = np.std(metric_scores)

 average_stds.append((metric_name, average_accuracy, std_accuracy))

 # Print the table
 print("\nExperiment Log")
 print("--------------")
 print(tabulate(average_stds, headers=["Metric", "Average", "STD"]))

This results in:

Experiment Log

Metric Average STD
----------------- --------- -----------
accuracy 0.594443 0.000382382
weightedPrecision 0.642419 0.00352101
weightedRecall 0.594443 0.000382382
f1 0.522397 0.000438121

The standard deviations indicate that we might not even need to perform k-fold
cross-validation, but an inspection of the underlying scores says otherwise:

$ scores

defaultdict(list,
 {'accuracy': [
 0.5960317877085193,
 0.5962539640360968,
 0.5962346664334288
],
 'f1': [0.5251883509444727,
 0.5266212073123311,
 0.5258877000496558],
 'weightedPrecision': [0.6495952645815938,
 0.6498757953978488,
 0.6549703272382899],
 'weightedRecall': [0.5960317877085194,
 0.5962539640360968,
 0.5962346664334288]})

There is actually significant variation between runs, and this could obscure a small
improvement (or degradation) in prediction quality.

292 | Chapter 9: Improving Predictions

The iterations take time, and this discourages experimentation. A middle ground
should be found.

Comparing experiments to determine improvements
Now that we have our baseline metrics, we can repeat this code as we improve the
model and see what the effect is in terms of the four metrics available to us. So it
seems we are done, that we can start playing with our model and features. However,
we will quickly run into a problem. We will lose track of the score from the previous
run, printed on the screen above many logs for each run, unless we write it down
each time. And this is tedious. So, we need to automate this process.

What we need to do is load a score log from disk, evaluate the current score in terms
of the previous one, and store a new entry to the log back to disk for the next run to
access. The following code achieves this aim.

First we use pickle to load any existing score log. If this is not present, we initialize a
new log, which is simply an empty Python list. Next we prepare the new log entry—
a simple Python dict containing the average score for each of four metrics. Then we
subtract the previous run’s score to determine the change in this run. This is the
information we use to evaluate whether our change worked or not (along with any
changes in feature importances, which we will address as well). Finally, we append the
new score entry to the log and store it back to disk:

 #
 # Persist the score to a score log that exists between runs
 #
 import pickle

 # Load the score log or initialize an empty one
 try:
 score_log_filename = "{}/models/score_log.pickle".format(base_path)
 score_log = pickle.load(open(score_log_filename, "rb"))
 if not isinstance(score_log, list):
 score_log = []
 except IOError:
 score_log = []

 # Compute the existing score log entry
 score_log_entry = {
 metric_name: score_averages[metric_name] for metric_name in metric_names
 }

 # Compute and display the change in score for each metric
 try:
 last_log = score_log[-1]
 except (IndexError, TypeError, AttributeError):
 last_log = score_log_entry

Improving Prediction Performance | 293

 experiment_report = []
 for metric_name in metric_names:
 run_delta = score_log_entry[metric_name] - last_log[metric_name]
 experiment_report.append((metric_name, run_delta))

 print("\nExperiment Report")
 print("-----------------")
 print(tabulate(experiment_report, headers=["Metric", "Score"]))

 # Append the existing average scores to the log
 score_log.append(score_log_entry)

 # Persist the log for next run
 pickle.dump(score_log, open(score_log_filename, "wb"))

Now when we run our script, we will get a report that shows the change between this
run and the last run. We can use this, along with our feature importances, to direct
our efforts at improving the model. For instance, an example test run shows the
model accuracy increase by .003:

Experiment Report

Metric Score
----------------- -----------
accuracy 0.00300548
weightedPrecision -0.00592227
weightedRecall 0.00300548
f1 -0.0105553

Inspecting changes in feature importance

We can use the list of columns given to our final VectorAssembler along with Random
ForestClassificationModel.featureImportances to derive the importance of each
named feature. This is extremely valuable, because like with our prediction quality
scores, we can look at changes in feature importances for all features between runs. If
a newly introduced feature turns out to be important, it is usually worth adding to the
model, so long as it doesn’t hurt quality.

We begin by altering our experiment loop to record feature importances for each run.
Check out the abbreviated content from ch09/improved_spark_mllib_model.py:

feature_importances = defaultdict(list)

...

for i in range(1, split_count + 1):
print("\nRun {} out of {} of test/train splits in cross validation...".format(
 i,
 split_count,
)
)

294 | Chapter 9: Improving Predictions

http://bit.ly/2pj7nI0
http://bit.ly/2otFXLk
http://bit.ly/2otFXLk
http://bit.ly/2oxdrHZ

...

#
Collect feature importances
#
feature_names = vector_assembler.getInputCols()
feature_importance_list = model.featureImportances
for feature_name, feature_importance in \
 zip(feature_names, feature_importance_list):
 feature_importances[feature_name].append(feature_importance)

Next, we need to compute the average of the importance for each feature. Note that
we use a defaultdict(float) to ensure that accessing empty keys returns zero. This
will be important when comparing entries in the log with different sets of features:

Compute averages for each feature
feature_importance_entry = defaultdict(float)
for feature_name, value_list in feature_importances.items():
 average_importance = sum(value_list) / len(value_list)
 feature_importance_entry[feature_name] = average_importance

In order to print the feature importances, we need to sort them first, by descending
order of importance:

Sort the feature importances in descending order and print
import operator
sorted_feature_importances = sorted(
 feature_importance_entry.items(),
 key=operator.itemgetter(1),
 reverse=True
)

print("\nFeature Importances")
print("-------------------")
print(tabulate(sorted_feature_importances, headers=['Name', 'Importance']))

Next we need to perform the same housekeeping as we did for the model score log:
load the model, create an entry for this experiment, load the last experiment and
compute the change for each feature between that experiment and the current one,
and then print a report on these deltas.

First we load the last feature log. If it isn’t available because it doesn’t exist, we initial‐
ize the last_feature_log with zeros for each feature, so that new features will have a
positive score equal to their amount:

Load the feature importance log or initialize an empty one
try:
 feature_log_filename = "{}/models/feature_log.pickle".format(base_path)
 feature_log = pickle.load(open(feature_log_filename, "rb"))
if not isinstance(feature_log, list):
 feature_log = []

Improving Prediction Performance | 295

except IOError:
 feature_log = []

Compute and display the change in score for each feature
try:
 last_feature_log = feature_log[-1]
except (IndexError, TypeError, AttributeError):
 last_feature_log = defaultdict(float)
 for feature_name, importance in feature_importance_entry.items():
 last_feature_log[feature_name] = importance

Next we compute the change between the last run and the current one:

Compute the deltas
feature_deltas = {}
for feature_name in feature_importances.keys():
 run_delta = \
 feature_importance_entry[feature_name] - last_feature_log[feature_name]
 feature_deltas[feature_name] = run_delta

In order to display them, we need to sort the feature importance changes in descend‐
ing order, to show the biggest change first:

Sort feature deltas, biggest change first
import operator
sorted_feature_deltas = sorted(
 feature_deltas.items(),
 key=operator.itemgetter(1),
 reversed=True
)

Then we display the sorted feature deltas:

Display sorted feature deltas
print("\nFeature Importance Delta Report")
print("-------------------------------")
print(tabulate(sorted_feature_deltas, headers=["Feature", "Delta"]))

Finally, as with the score log, we append our entry to the log and save it for the next
run:

Append the existing average deltas to the log
feature_log.append(feature_importance_entry)

Persist the log for next run
pickle.dump(feature_log, open(feature_log_filename, "wb"))

Testing our model for the first time results in the following output. We’ll use the raw
feature importances as well as the changes in feature importance to guide our cre‐
ation or alteration of features as we improve the model:

Experiment Log

Metric Average STD

296 | Chapter 9: Improving Predictions

----------------- --------- -----------
accuracy 0.594014 0.000270987
weightedPrecision 0.570674 0.0821537
weightedRecall 0.594014 0.000270987
f1 0.521789 3.70999e-05

Experiment Report

Metric Score
----------------- ------------
accuracy -0.000429286
weightedPrecision -0.0717445
weightedRecall -0.000429286
f1 -0.000608931

Feature Importances

Name Importance
--------------- ------------
DepDelay 0.882216
Route_index 0.0571401
Origin_index 0.0142741
Distance 0.0134583
Dest_index 0.00745796
DayOfYear 0.00544761
Carrier_index 0.00454088
DayOfMonth 9.31109e-05
DayOfWeek 5.2597e-05

Feature Importance Delta Report

Feature Delta
--------------- -------
Distance 0
Dest_index 0
DayOfWeek 0
Origin_index 0
DayOfYear 0
Carrier_index 0
Route_index 0
DayOfMonth 0
DepDelay 0

Conclusion
Now that we have the ability to understand the effect of changes between experimen‐
tal runs, we can detect changes that improve our model. We can start adding features
to test their effect on the model’s prediction quality, and pursue related features that
help improve quality! Without this setup, we would be hard put to make positive
changes. With it, we are only bounded by our creativity in our efforts to improve the
model.

Improving Prediction Performance | 297

Time of Day as a Feature
In examining our feature importances, it looks like the date/time fields have some
impact. What if we extracted the hour/minute as an integer from the datetime for
departure/arrival fields? This would inform the model about morning versus after‐
noon versus red-eye flights, which surely affects on-time performance, as there is
more traffic in the morning than overnight.

Check out ch09/explore_delays.py. Let’s start by exploring the premise of this feature,
that lateness varies by the time of day of the flight:

spark.sql("""
 SELECT
 HOUR(CRSDepTime) + 1 AS Hour,
 AVG(ArrDelay),
 STD(ArrDelay)
 FROM features
 GROUP BY HOUR(CRSDepTime)
 ORDER BY HOUR(CRSDepTime)
""").show(24)

Here’s the result:

+----+-------------------+---------------------+
|Hour| avg(ArrDelay)|stddev_samp(ArrDelay)|
+----+-------------------+---------------------+
1	-0.9888343067527446	35.96846550716142
2	0.21487576223466862	35.744333727508334
3	1.5671059921857282	35.00946190001324
4	2.3711289989006086	36.182339627895345
5	3.0942288270090894	37.547244850760876
6	4.239319300385845	38.400571868893834
7	5.234954994309625	39.28255300783613
8	6.453546045667625	39.99971120960918
9	7.186654216429772	41.40488311224806
10	8.365290552625943	42.940647757026625
11	9.268328745619563	43.626137917652855
12	9.841703616195401	43.52976518121594
13	10.066688650580275	41.92576203774942
14	9.283710900023337	40.6576680093127
15	7.423578894503908	37.93024949987321
16	6.026947232249046	36.2827909463706
17	2.878606342393896	34.521580465809635
18	1.202488132263873	35.281643789718856
19	3.921360847741216	51.57255339085103
20	1.416023166023166	35.07002923779163
21	1.01067615658363	33.710428616724336
22	-1.6537734227264913	44.14071722078961
23	-2.4204632317424886	38.33508514261801
24	-2.3249719752460805	35.6965483893959
+----+-------------------+---------------------+

298 | Chapter 9: Improving Predictions

http://bit.ly/2pLSldJ

The scheduled hour of the flight does matter! Flights scheduled to leave at 1 P.M. are
10 minutes late on average, compared with about 2.5 minutes early for flights sched‐
uled for departure at 11 P.M. The standard deviation doesn’t vary a lot, but is highest
around midday as well. This looks like a feature worth adding!

While we’re here, what about scheduled arrival time? Let’s run the same calculation
for CRSArrTime:

spark.sql("""
 SELECT
 HOUR(CRSArrTime) + 1 AS Hour,
 AVG(ArrDelay),
 STD(ArrDelay)
 FROM features
 GROUP BY HOUR(CRSArrTime)
 ORDER BY HOUR(CRSArrTime)
""").show(24)

This results in:

+----+--------------------+---------------------+
|Hour| avg(ArrDelay)|stddev_samp(ArrDelay)|
+----+--------------------+---------------------+
1	-1.7116259174208655	36.33240606655376
2	-1.2394161336909428	34.65716885698246
3	-0.560109126391461	35.93678468759135
4	-0.03119026777898...	34.18894939261768
5	1.0004041388403222	34.89927883531852
6	1.8046307093420586	35.983884598879854
7	2.7098903974183797	36.828717160294616
8	3.2653490352035015	37.94922697845916
9	4.460970473403804	38.75981742307256
10	5.733407037370677	39.332218073928395
11	7.415162373324524	41.6390996526558
12	8.394327378488986	42.304599584222764
13	9.13641026800476	44.15236003931785
14	9.263586544185449	43.95699577126197
15	9.463244251854364	42.694962099183385
16	9.158153249212814	40.631824365179185
17	8.851837125560714	39.32989266521008
18	8.374134395914735	40.76013328408966
19	6.383113511268045	40.175828363537185
20	4.743589743589744	33.043381854132626
21	6.129032258064516	43.144599976836396
22	1.6219806017174276	41.76914003060987
23	0.9266386975097186	41.750524061849795
24	-1.0140736298134196	40.40944633965604
+----+--------------------+---------------------+

This looks similar and just as significant. We’ll add it as well.

Improving Prediction Performance | 299

Let’s start a new file for our new and improved model, based on ch09/
train_spark_mllib_model.py. Check out ch09/improved_spark_mllib_model.py. The
code to add the CRSDepHourOfDay column is simple:

 from pyspark.sql.functions import hour
 features_with_hour = features_with_route.withColumn(
 "CRSDepHourOfDay",
 hour(features.CRSDepTime)
)
 features_with_hour = features_with_hour.withColumn(
 "CRSArrHourOfDay",
 hour(features.CRSArrTime)
)
 features_with_hour.select(
 "CRSDepTime",
 "CRSDepHourOfDay",
 "CRSArrTime",
 "CRSArrHourOfDay").show()

This results in:

+--------------------+---------------+--------------------+---------------+
| CRSDepTime|CRSDepHourOfDay| CRSArrTime|CRSArrHourOfDay|
+--------------------+---------------+--------------------+---------------+
2015-01-01 07:30:...	7	2015-01-01 10:10:...	10
2014-12-31 23:25:...	23	2015-01-01 02:15:...	2
2015-01-01 01:00:...	1	2015-01-01 03:45:...	3
2015-01-01 09:55:...	9	2015-01-01 11:30:...	11
2015-01-01 00:55:...	0	2015-01-01 02:25:...	2
2015-01-01 05:45:...	5	2015-01-01 07:15:...	7
2015-01-01 02:45:...	2	2015-01-01 04:15:...	4
2015-01-01 07:25:...	7	2015-01-01 08:50:...	8
2015-01-01 11:00:...	11	2015-01-01 12:30:...	12
2015-01-01 12:15:...	12	2015-01-01 13:40:...	13
2015-01-01 03:55:...	3	2015-01-01 05:25:...	5
2015-01-01 08:40:...	8	2015-01-01 10:05:...	10
2015-01-01 00:15:...	0	2015-01-01 02:12:...	2
2014-12-31 23:00:...	23	2015-01-01 00:52:...	0
2015-01-01 13:10:...	13	2015-01-01 15:02:...	15
2015-01-01 05:30:...	5	2015-01-01 06:35:...	6
2014-12-31 21:50:...	21	2014-12-31 22:50:...	22
2015-01-01 00:30:...	0	2015-01-01 01:40:...	1
2015-01-01 01:05:...	1	2015-01-01 02:15:...	2
2015-01-01 07:55:...	7	2015-01-01 08:55:...	8
+--------------------+---------------+--------------------+---------------+

This is followed by code that adds the column to be indexed and then the index to be
included in the final Features_vec, which we omit but you can see in ch09/
improved_spark_mllib_model.py. Since we set up our experiment code to test and
compare prediction quality between runs, we can test this script from bash:

python ch09/improved_spark_mllib_model.py .

300 | Chapter 9: Improving Predictions

http://bit.ly/2owYwO6
http://bit.ly/2owYwO6
http://bit.ly/2oxdrHZ
http://bit.ly/2pYQ63a
http://bit.ly/2pYQ63a

This results in the following output:

Experiment Log

Metric Average STD
----------------- --------- -----------
accuracy 0.594656 0.000509343
weightedPrecision 0.641538 0.00372632
weightedRecall 0.594656 0.000509343
f1 0.5233 0.000700844

Experiment Report

Metric Score
----------------- ----------
accuracy 0.00108926
weightedPrecision 0.0154773
weightedRecall 0.00108926
f1 0.00210414

Feature Importances

Name Importance
--------------- ------------
DepDelay 0.886486
Route_index 0.0598883
Distance 0.0129897
Origin_index 0.0120841
CRSArrHourOfDay 0.00982592
Dest_index 0.00877569
Carrier_index 0.00448823
DayOfYear 0.00412094
CRSDepHourOfDay 0.0012717
DayOfWeek 6.92304e-05
DayOfMonth 2.07392e-07

Feature Importance Delta Report

Feature Delta
--------------- ------------
CRSArrHourOfDay 0.00982592
DepDelay 0.00671702
CRSDepHourOfDay 0.0012717
DayOfWeek -2.72792e-05
DayOfMonth -8.81635e-05
Origin_index -0.00152788
Distance -0.00188322
Route_index -0.00214609
Dest_index -0.0032327
DayOfYear -0.00377184
Carrier_index -0.00513747

Improving Prediction Performance | 301

Interpreting the output, it looks like the combined effect of these fields is to impact
feature importance by about 1%, but the effect on accuracy is insignificant. We’ll leave
the fields in, although they don’t help much. Without resorting to advanced time ser‐
ies analysis, it seems we’ve milked all we can from date/time-based features.

Incorporating Airplane Data
Recall from “Investigating Airplanes (Entities)” on page 162 that we incorporated
data on airplane manufacturers into our data model. For instance, we analyzed the
distribution of manufacturers in the American commercial fleet. In this section, we’re
going to join in airline data and see what impact this has on the model’s accuracy.

I wonder whether properties of the aircraft (called the “metal” of the flight) influence
delays? For instance, bigger aircraft fly higher and can go over weather, while smaller
aircraft may be less able to do so. I can’t honestly think of a reason why the engine
manufacturer, airplane manufacturer, or manufacture year would have an impact on
the model, but since we’re importing one field, we may as well try them all! Note that
we can simply drop any features that don’t rank as very significant. The beauty of our
experimental model with decision trees is that it doesn’t cost extra to try extra fields.
Sometimes you can simply let the model decide what matters.

Note that when dealing with team members and with other teams who need an
accounting of your time in order to coordinate with you, a description of the experi‐
ments you are running will help keep the teams in sync. For instance, “We are
attempting to incorporate a new dataset which we scraped from the FAA website into
our flight delay predictive model” would make a good experimental description dur‐
ing an agile sprint.

Extracting Airplane Features
To add airplane features to our model, we need to create a new feature extraction
script, ch09/extract_features_with_airplanes.py. We can do this by copying and alter‐
ing ch09/extract_features.py. We’ll skip the code that’s duplicated from the original file
(first described in Chapter 7), and just show the changes.

First we add TailNum to the fields we select from our training data. Because this col‐
umn also appears in our airplane dataset, we need to name it differently or we won’t
easily be able to access the column after the join. We’ll name it FeatureTailNum:

 # Select a few features of interest
 simple_on_time_features = spark.sql("""
 SELECT
 FlightNum,
 FlightDate,
 DayOfWeek,
 DayofMonth AS DayOfMonth,

302 | Chapter 9: Improving Predictions

http://bit.ly/2otEGUz
http://bit.ly/2plzdmM

 CONCAT(Month, '-', DayofMonth) AS DayOfYear,
 Carrier,
 Origin,
 Dest,
 Distance,
 DepDelay,
 ArrDelay,
 CRSDepTime,
 CRSArrTime,
 CONCAT(Origin, '-', Dest) AS Route,
 TailNum AS FeatureTailNum
 FROM on_time_performance
 """)

 simple_on_time_features.select(
 "FlightNum",
 "FlightDate",
 "FeatureTailNum"
).show(10)

...

 def alter_feature_datetimes(row):

 flight_date = iso8601.parse_date(row['FlightDate'])
 scheduled_dep_time = convert_datetime(row['FlightDate'], row['CRSDepTime'])
 scheduled_arr_time = convert_datetime(row['FlightDate'], row['CRSArrTime'])

 # Handle overnight flights
 if scheduled_arr_time < scheduled_dep_time:
 scheduled_arr_time += datetime.timedelta(days=1)

 doy = day_of_year(row['FlightDate'])

 return {
 'FlightNum': row['FlightNum'],
 'FlightDate': flight_date,
 'DayOfWeek': int(row['DayOfWeek']),
 'DayOfMonth': int(row['DayOfMonth']),
 'DayOfYear': doy,
 'Carrier': row['Carrier'],
 'Origin': row['Origin'],
 'Dest': row['Dest'],
 'Distance': row['Distance'],
 'DepDelay': row['DepDelay'],
 'ArrDelay': row['ArrDelay'],
 'CRSDepTime': scheduled_dep_time,
 'CRSArrTime': scheduled_arr_time,
 'Route': row['Route'],
 'FeatureTailNum': row['FeatureTailNum'],
 }

Incorporating Airplane Data | 303

 timestamp_features = filled_on_time_features.rdd.map(alter_feature_datetimes)
 timestamp_df = timestamp_features.toDF()

Next, we load the airplane data and left join it to our features dataset. Note that null is
a problematic value for our StringIndexer. But we don’t want to discard empty val‐
ues or rows either, because whether a variable is present or not is something our deci‐
sion tree model can use to learn. We use DataFrame.selectExpr to COALESCE our null
values to the string 'Empty'. This will get its own index from StringIndexer and
things will work out well. Also note that we rename FeatureTailNum back to TailNum
for the final output:

 # Load airplanes and left join on tail numbers
 airplanes_path = "{}/data/airplanes.json".format(
 base_path
)
 airplanes = spark.read.json(airplanes_path)

 features_with_airplanes = timestamp_df.join(
 airplanes,
 on=timestamp_df.FeatureTailNum == airplanes.TailNum,
 how="left_outer"
)

 features_with_airplanes = features_with_airplanes.selectExpr(
 "FlightNum",
 "FlightDate",
 "DayOfWeek",
 "DayOfMonth",
 "DayOfYear",
 "Carrier",
 "Origin",
 "Dest",
 "Distance",
 "DepDelay",
 "ArrDelay",
 "CRSDepTime",
 "CRSArrTime",
 "Route",
 "FeatureTailNum AS TailNum",
 "COALESCE(EngineManufacturer, 'Empty') AS EngineManufacturer",
 "COALESCE(EngineModel, 'Empty') AS EngineModel",
 "COALESCE(Manufacturer, 'Empty') AS Manufacturer",
 "COALESCE(ManufacturerYear, 'Empty') AS ManufacturerYear",
 "COALESCE(Model, 'Empty') AS Model",
 "COALESCE(OwnerState, 'Empty') AS OwnerState"
)

Finally, we store the final output to a new path. We’ll have to remember to alter our
model training script to point at this new path:

 # Store as a single JSON file
 output_path = "{}/data/simple_flight_delay_features_airplanes.json".format(

304 | Chapter 9: Improving Predictions

http://bit.ly/2oYBpxy
http://bit.ly/2p30w4B

 base_path
)
 sorted_features.repartition(1).write.mode("overwrite").json(output_path)

 # Copy the partial file to a JSON Lines file
 combine_cmd = \
 "cp {}/part* {}/data/simple_flight_delay_features_airplanes.jsonl".format(
 output_path,
 base_path
)
 os.system(combine_cmd)

Now we’re ready to incorporate the features into our model.

Incorporating Airplane Features into Our Classifier Model
Now we need to create a new script that incorporates our new airplane features into
our classifier model. Check out ch09/spark_model_with_airplanes.py, which we
copied from ch09/improved_spark_mllib_model.py and altered.

First we need to load the training data with the additional fields, including Route
(which is now calculated in ch09/extract_features_with_airplanes.py):

schema = StructType([
 StructField("ArrDelay", DoubleType(), True),
 StructField("CRSArrTime", TimestampType(), True),
 StructField("CRSDepTime", TimestampType(), True),
 StructField("Carrier", StringType(), True),
 StructField("DayOfMonth", IntegerType(), True),
 StructField("DayOfWeek", IntegerType(), True),
 StructField("DayOfYear", IntegerType(), True),
 StructField("DepDelay", DoubleType(), True),
 StructField("Dest", StringType(), True),
 StructField("Distance", DoubleType(), True),
 StructField("FlightDate", DateType(), True),
 StructField("FlightNum", StringType(), True),
 StructField("Origin", StringType(), True),
 StructField("Route", StringType(), True),
 StructField("TailNum", StringType(), True),
 StructField("EngineManufacturer", StringType(), True),
 StructField("EngineModel", StringType(), True),
 StructField("Manufacturer", StringType(), True),
 StructField("ManufacturerYear", StringType(), True),
 StructField("OwnerState", StringType(), True),
])

input_path = "{}/data/simple_flight_delay_features_airplanes.json".format(
 base_path
)
features = spark.read.json(input_path, schema=schema)
features.first()

Incorporating Airplane Data | 305

http://bit.ly/2pYVBie
http://bit.ly/2oxdrHZ
http://bit.ly/2otEGUz

Because we left joined our new features in, we need to know how many of the result‐
ing training records have null values for their fields. Null values will crash the String
Indexer for a field, so we’ve explicitly altered our feature extraction code to remove
them. There should be no nulls, so we’ll print a table with a warning if they are
present:

 #
 # Check for nulls in features before using Spark ML
 #
 null_counts = [(\
 column, features_with_hour.where(
 features_with_hour[column].isNull()).count()) \
 for column in features_with_hour.columns]
 cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)
 print("\nNull Value Report")
 print("-----------------")
 print(tabulate(cols_with_nulls, headers=["Column", "Nulls"]))

Next we add the hour of day fields as normal, and we bucketize the ArrDelay field to
get the ArrDelayBucket. Then we need to index all our string columns, including our
new airplane features:

 #
 # Feature extraction tools in pyspark.ml.feature
 #
 from pyspark.ml.feature import StringIndexer, VectorAssembler

 # Turn category fields into indexes
 string_columns = ["Carrier", "Origin", "Dest", "Route",
 "TailNum", "EngineManufacturer",
 "EngineModel", "Manufacturer",
 "ManufacturerYear", "Owner",
 "OwnerState"]
 for column in string_columns:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
)

 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(
 ml_bucketized_features
)

 # Save the pipeline model
 string_indexer_output_path = \
 "{}/models/string_indexer_model_3.0.{}.bin".format(
 base_path,
 column
)
 string_indexer_model.write().overwrite().save(string_indexer_output_path)

306 | Chapter 9: Improving Predictions

Next, we need to create a new VectorAssembler to combine our features into one fea‐
ture vector, the column Features_vec. As before, an index field name is the field
name with _index appended. This time around, we use a list comprehension to com‐
pute the index columns:

 # Combine continuous numeric fields with indexes of nominal ones
 # into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfMonth", "DayOfWeek",
 "DayOfYear", "CRSDepHourOfDay",
 "CRSArrHourOfDay"]
 index_columns = [column + "_index" for column in string_columns]

 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
)
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)

 # Save the numeric vector assembler
 vector_assembler_path = "{}/models/numeric_vector_assembler_4.0.bin".format(
 base_path
)
 vector_assembler.write().overwrite().save(vector_assembler_path)

The rest of the code is identical to ch09/improved_spark_mllib_model.py. To test our
new features out in a new experiment, we run:

python ch09/spark_model_with_airplanes.py .

Note that on the first go around, our model failed because we needed to increase the
maxBins parameter to 4896 to accommodate our new fields. After that, the script ran
without incident. Let’s check out our results:

Incorporating Airplane Data | 307

http://bit.ly/2oxdrHZ

Experiment Log

Metric Average STD
----------------- --------- -----------
accuracy 0.594262 0.000256266
weightedPrecision 0.513819 9.43221e-05
weightedRecall 0.594262 0.000256266
f1 0.522066 0.000348499

Experiment Report

Metric Score
----------------- ------------
accuracy -0.000394734
weightedPrecision -0.127719
weightedRecall -0.000394734
f1 -0.00123417

Feature Importances

Name Importance
------------------------ ------------
DepDelay 0.859874
Route_index 0.0628756
CRSArrHourOfDay 0.0166273
Distance 0.013517
TailNum_index 0.012384
Origin_index 0.011521
Dest_index 0.00709832
Carrier_index 0.00695651
DayOfYear 0.00416167
CRSDepHourOfDay 0.00218328
OwnerState_index 0.00144406
Manufacturer_index 0.00061876
EngineManufacturer_index 0.000421311
EngineModel_index 0.000311177
ManufacturerYear_index 4.56816e-06
DayOfWeek 1.26539e-06
DayOfMonth 0

Feature Importance Delta Report

Feature Delta
------------------------ ------------
TailNum_index 0.012384
CRSArrHourOfDay 0.00680138
Route_index 0.00298732
Carrier_index 0.00246828
OwnerState_index 0.00144406
CRSDepHourOfDay 0.000911583
Manufacturer_index 0.00061876
Distance 0.000527296

308 | Chapter 9: Improving Predictions

EngineManufacturer_index 0.000421311
EngineModel_index 0.000311177
DayOfYear 4.07316e-05
ManufacturerYear_index 4.56816e-06
DayOfMonth -2.07392e-07
DayOfWeek -6.7965e-05
Origin_index -0.000563111
Dest_index -0.00167737
DepDelay -0.0266118

It looks like our efforts were mostly for naught—they actually hurt the quality of the
model! The single exception is that adding the TailNum helps in terms of feature
importance by 0.012. Apparently some airplanes are more prone to delay than others,
but this isn’t down to the properties of the airplane we tried.

Let’s try pulling all the fields but TailNum and see how that impacts the score. While
we’re at it, let’s pull DayOfMonth and DayOfWeek, since they have nearly no impact at
all. We simply remove these columns from our StringIndexer mappings:

 # Turn category fields into indexes
 string_columns = ["Carrier", "Origin", "Dest", "Route",
 "TailNum"]
 for column in string_columns:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
)

 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(
 ml_bucketized_features)

 # Save the pipeline model
 string_indexer_output_path = \
 "{}/models/string_indexer_model_4.0.{}.bin".format(
 base_path,
 column
)
 string_indexer_model.write().overwrite().save(string_indexer_output_path)

 # Combine continuous numeric fields with indexes of nominal ones
 # into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfYear",
 "CRSDepHourOfDay",
 "CRSArrHourOfDay"]
 index_columns = [column + "_index" for column in string_columns]

 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"

Incorporating Airplane Data | 309

)
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)

 # Save the numeric vector assembler
 vector_assembler_path = \
 "{}/models/numeric_vector_assembler_5.0.bin".format(base_path)
 vector_assembler.write().overwrite().save(vector_assembler_path)

This impacts the score in a positive way, but not in a significant way: an improvement
of 0.00031884 in accuracy. However, at this point all our features are contributing sig‐
nificantly to the model’s prediction quality, which is where we want to be:

Feature Importances

Name Importance
--------------- ------------
DepDelay 0.879979
Route_index 0.0575757
Distance 0.0174215
TailNum_index 0.0120175
CRSArrHourOfDay 0.0117084
Origin_index 0.00789092
Carrier_index 0.00457943
DayOfYear 0.00408886
Dest_index 0.00311852
CRSDepHourOfDay 0.00161978

Remember: when it comes to predictive models, simpler is better. If a feature doesn’t
sizably influence prediction accuracy, remove it. The model’s quality will increase, it
will perform faster in production, and you will have an easier time understanding the
impact of additional features on the model. A simpler model will be less susceptible
to bias.

Incorporating Flight Time
One thing we haven’t considered yet is the flight time. We should be able to subtract
the takeoff time from the landing time and get the duration of the flight. Since dis‐
tance is a top-3 feature, and the hour of day matters, it seems like flight time might
eke out a bit more prediction quality. Let’s try!

In order to compute the difference between arrival and departure, we need to cast
these fields to Unix timestamps, which is defined as the number of seconds since Jan‐
uary 1, 1970. Fortunately, the Spark SQL function unix_timestamp does what we
need.

Check out ch09/extract_features_with_flight_time.py, which we copied from ch09/
extract_features_with_airplanes.py. We only need to change one line, our selectExpr,
to add the date math for our FlightTime field:

310 | Chapter 9: Improving Predictions

http://bit.ly/2oxjZWY
http://bit.ly/2pKQRgY
http://bit.ly/2otEGUz
http://bit.ly/2otEGUz

 features_with_airplanes = features_with_airplanes.selectExpr(
 "FlightNum",
 "FlightDate",
 "DayOfWeek",
 "DayOfMonth",
 "DayOfYear",
 "Carrier",
 "Origin",
 "Dest",
 "Distance",
 "DepDelay",
 "ArrDelay",
 "CRSDepTime",
 "CRSArrTime",
 "Route",
 "FeatureTailNum AS TailNum",
 "COALESCE(EngineManufacturer, 'Empty') AS EngineManufacturer",
 "COALESCE(EngineModel, 'Empty') AS EngineModel",
 "COALESCE(Manufacturer, 'Empty') AS Manufacturer",
 "COALESCE(ManufacturerYear, 'Empty') AS ManufacturerYear",
 "COALESCE(Model, 'Empty') AS Model",
 "COALESCE(OwnerState, 'Empty') AS OwnerState",
 "unix_timestamp(CRSArrTime) - unix_timestamp(CRSDepTime) AS FlightTime",
)

I am constantly thankful for the power of SQL, which is baked into Spark. Combined
with dataflow programming, it is the best programming model available. Let’s incor‐
porate the FlightTime field into our model.

Check out ch09/spark_model_with_flight_time.py, which we copied from ch09/
spark_model_with_airplanes.py and edited. We need to add the field to our Struct
Types and update the input path. Then we need to include the field in our VectorAs
sembler, as it is numeric it can be directly incorporated into the features vector:

 schema = StructType([
 StructField("ArrDelay", DoubleType(), True),
 StructField("CRSArrTime", TimestampType(), True),
 StructField("CRSDepTime", TimestampType(), True),
 StructField("Carrier", StringType(), True),
 StructField("DayOfMonth", IntegerType(), True),
 StructField("DayOfWeek", IntegerType(), True),
 StructField("DayOfYear", IntegerType(), True),
 StructField("DepDelay", DoubleType(), True),
 StructField("Dest", StringType(), True),
 StructField("Distance", DoubleType(), True),
 StructField("FlightDate", DateType(), True),
 StructField("FlightNum", StringType(), True),
 StructField("Origin", StringType(), True),
 StructField("Route", StringType(), True),
 StructField("TailNum", StringType(), True),
 StructField("EngineManufacturer", StringType(), True),
 StructField("EngineModel", StringType(), True),

Incorporating Flight Time | 311

http://bit.ly/2pYQDlx
http://bit.ly/2pYVBie
http://bit.ly/2pYVBie

 StructField("Manufacturer", StringType(), True),
 StructField("ManufacturerYear", StringType(), True),
 StructField("OwnerState", StringType(), True),
 StructField("FlightTime", IntegerType(), True),
])

 input_path = "{}/data/simple_flight_delay_features_flight_times.json".format(
 base_path
)
 features = spark.read.json(input_path, schema=schema)
 features.first()

...

 # Combine continuous numeric fields with indexes of nominal ones
 # into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfYear",
 "CRSDepHourOfDay",
 "CRSArrHourOfDay",
 "FlightTime"]
 index_columns = [column + "_index" for column in string_columns]

 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
)
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)

Now we’re ready to test the new model:

python ch09/spark_model_with_flight_time.py .

This output suggests a significant improvement in performance! weightedPrecision
is up by 0.12, and the FlightTime contributes about half a percent to the feature
importance. Also note that the feature importance of FlightTime comes at the
expense of Distance and DepDelay, which seems expected: Distance is conceptually
similar to FlightTime, and DepDelay is the most important feature. Taken together,
the performance and feature importance metrics indicate that FlightTime is a worth‐
while improvement to our model:

Experiment Report

Metric Score
----------------- ----------
accuracy 0.00124616
weightedPrecision 0.117773
weightedRecall 0.00124616
f1 0.00453277

Feature Importances

312 | Chapter 9: Improving Predictions

Name Importance
--------------- ------------
DepDelay 0.860049
Route_index 0.0742784
CRSArrHourOfDay 0.0135059
Origin_index 0.0123399
TailNum_index 0.0120064
Distance 0.00649571
Carrier_index 0.00563587
DayOfYear 0.00479174
FlightTime 0.00452475
CRSDepHourOfDay 0.00378075
Dest_index 0.00259198

Feature Importance Delta Report

Feature Delta
--------------- ------------
Route_index 0.0167027
FlightTime 0.00452475
Origin_index 0.00444897
CRSDepHourOfDay 0.00216097
CRSArrHourOfDay 0.00179746
Carrier_index 0.00105644
DayOfYear 0.00070288
TailNum_index -1.10573e-05
Dest_index -0.00052654
Distance -0.0109258
DepDelay -0.0199308

At this point, once again it seems that we’ve exhausted the possibilities of the date/
time features (at least, without resorting to more sophisticated time series analysis
techniques than I know).

Conclusion
In this chapter we covered how to improve on our model using the data we’ve already
collected. We can use this approach in combination with our ability to deploy appli‐
cations to continuously improve our predictive systems.

Conclusion | 313

APPENDIX A

Manual Installation

In this appendix, we cover the details of installing the tools for the stack used in this
book.

Installing Hadoop
You can download the latest version of Hadoop from the Apache Hadoop downloads
page. At the time of writing, the latest Hadoop was 2.7.3, but this will probably have
changed by the time you’re reading this.

A recipe for a headless install of Hadoop is available in manual_install.sh. In addition
to downloading and unpackaging Hadoop, we also need to set up our Hadoop envi‐
ronment variables (HADOOP_HOME, HADOOP_CLASSPATH, and HADOOP_CONF_DIR), and we
need to put Hadoop’s executables in our PATH. First, set up a PROJECT_HOME variable to
help find the right paths. You will need to set this yourself by editing your .bash_pro‐
file file:

export PROJECT_HOME=/Users/rjurney/Software/Agile_Data_Code_2

Now we can set up our environment directly. Here is the relevant section of man‐
ual_install.sh:

May need to update this link... see http://hadoop.apache.org/releases.html
curl -Lko /tmp/hadoop-2.7.3.tar.gz \
 http://apache.osuosl.org/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

mkdir hadoop
tar -xvf /tmp/hadoop-2.7.3.tar.gz -C hadoop --strip-components=1
echo '# Hadoop environment setup' >> ~/.bash_profile
export HADOOP_HOME=$PROJECT_HOME/hadoop
echo 'export HADOOP_HOME=$PROJECT_HOME/hadoop' >> ~/.bash_profile
export PATH=$PATH:$HADOOP_HOME/bin
echo 'export PATH=$PATH:$HADOOP_HOME/bin' >> ~/.bash_profile

315

http://hadoop.apache.org/releases.html
http://hadoop.apache.org/releases.html
http://bit.ly/2otYl6R

export HADOOP_CLASSPATH=$(hadoop classpath)
echo 'export HADOOP_CLASSPATH=$(hadoop classpath)' >> ~/.bash_profile
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
echo 'export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop' >> ~/.bash_profile

Installing Spark
At the time of writing, the current version of Spark is 2.1.0. To install Spark on your
local machine, follow the directions in the docs. Or, we perform a headless Spark
install in manual_install.sh:

May need to update this link... see http://spark.apache.org/downloads.html
curl -Lko /tmp/spark-2.1.0-bin-without-hadoop.tgz \
 http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-without-hadoop.tgz

mkdir spark
tar -xvf /tmp/spark-2.1.0-bin-without-hadoop.tgz -C spark --strip-components=1
echo "" >> ~/.bash_profile
echo "# Spark environment setup" >> ~/.bash_profile
export SPARK_HOME=$PROJECT_HOME/spark
echo 'export SPARK_HOME=$PROJECT_HOME/spark' >> ~/.bash_profile
export HADOOP_CONF_DIR=$PROJECT_HOME/hadoop/etc/hadoop/
echo 'export HADOOP_CONF_DIR=$PROJECT_HOME/hadoop/etc/hadoop/' >> ~/.bash_profile
export SPARK_DIST_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
echo 'export SPARK_DIST_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`' >> \
 ~/.bash_profile
export PATH=$PATH:$SPARK_HOME/bin
echo 'export PATH=$PATH:$SPARK_HOME/bin' >> ~/.bash_profile

Have to set spark.io.compression.codec in Spark local mode
cp spark/conf/spark-defaults.conf.template spark/conf/spark-defaults.conf
echo 'spark.io.compression.codec org.apache.spark.io.SnappyCompressionCodec' >>
 spark/conf/spark-defaults.conf

Give Spark 8 GB of RAM
echo "spark.driver.memory 8g" >> $SPARK_HOME/conf/spark-defaults.conf

echo "PYSPARK_PYTHON=python3" >> $SPARK_HOME/conf/spark-env.sh
echo "PYSPARK_DRIVER_PYTHON=python3" >> $SPARK_HOME/conf/spark-env.sh

Set up log4j config to reduce logging output
cp $SPARK_HOME/conf/log4j.properties.template $SPARK_HOME/conf/log4j.properties
sed -i .bak 's/INFO/ERROR/g' $SPARK_HOME/conf/log4j.properties

Note that this download URL may change; you can get the current URL for a console
install from the Spark downloads page.

316 | Appendix A: Manual Installation

http://spark.apache.org/docs/latest/
http://bit.ly/2otYl6R
http://spark.apache.org/downloads.html

Installing MongoDB
Instructions for installing MongoDB are available on the website, as is an excellent
tutorial. I recommend consulting each of these before moving on.

Download the latest version of MongoDB for your operating system from the down‐
load center, then install it using the following commands:

curl -Lko /tmp/$MONGO_FILENAME $MONGO_DOWNLOAD_URL
mkdir mongodb
tar -xvf /tmp/$MONGO_FILENAME -C mongodb --strip-components=1
export PATH=$PATH:$PROJECT_HOME/mongodb/bin
echo 'export PATH=$PATH:$PROJECT_HOME/mongodb/bin' >> ~/.bash_profile
mkdir -p mongodb/data/db

Now start the MongoDB server:

mongodb/bin/mongod --dbpath mongodb/data/db &

You’ll need to rerun this command if you shut down your computer. Now open the
Mongo shell, and get help:

mongob/bin/mongo --eval help

Finally, create a collection by inserting a record, and then retrieve it:

> db.test_collection.insert(
 {'name': 'Russell Jurney', 'email': 'russell.jurney@gmail.com'})

WriteResult({ "nInserted" : 1 })

> db.test_collection.findOne({'name': 'Russell Jurney'})
{
 "_id" : ObjectId("56f20fa811a5b44cf943313c"),
 "name" : "Russell Jurney",
 "email" : "russell.jurney@gmail.com"
}
>

We’re cooking with Mongo!

Installing the MongoDB Java Driver
You’ll also need to install the MongoDB Java Driver. At the time of writing, the 3.4.2
version is the latest stable build. You can install it with curl as follows:

curl -Lko lib/mongo-java-driver-3.4.2.jar \
 http://central.maven.org/maven2/org/mongodb/mongo-java-driver/3.4.0/ \
 mongo-java-driver-3.4.0.jar

Manual Installation | 317

http://bit.ly/2p3Em2a
http://bit.ly/2pLIfqq
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://bit.ly/2ou374t

Installing mongo-hadoop
The mongo-hadoop project connects Hadoop and Spark with MongoDB. You can
download it from the releases page.

Building mongo-hadoop
You will need to build the project, using the included gradlew command, and then
copy the JARs into lib/:

Install the mongo-hadoop project in the mongo-hadoop directory
in the root of our project
curl -Lko /tmp/r1.5.2.tar.gz \
 https://github.com/mongodb/mongo-hadoop/archive/r1.5.2.tar.gz
mkdir mongo-hadoop
tar -xvzf /tmp/r1.5.2.tar.gz -C mongo-hadoop --strip-components=1

Now build the mongo-hadoop-spark jars
cd mongo-hadoop
./gradlew jar
cd ..
cp mongo-hadoop/spark/build/libs/mongo-hadoop-spark-*.jar lib/
cp mongo-hadoop/build/libs/mongo-hadoop-*.jar lib/

Installing pymongo_spark
Next, we need to install the pymongo_spark package, which makes storing to Mongo a
one-liner from PySpark. pymongo_spark is contained within the mongo-hadoop
project:

Now build the pymongo_spark package
cd mongo-hadoop/spark/src/main/python
python setup.py install
cd $PROJECT_HOME
cp mongo-hadoop/spark/src/main/python/pymongo_spark.py lib/
export PYTHONPATH=$PYTHONPATH:$PROJECT_HOME/lib
echo 'export PYTHONPATH=$PYTHONPATH:$PROJECT_HOME/lib' >> ~/.bash_profile

Installing Elasticsearch
Excellent tutorials on Elasticsearch are available on the website. Grab it from the
downloads page, then install it with the following commands:

curl -Lko /tmp/elasticsearch-2.3.5.tar.gz \
 https://download.elastic.co/elasticsearch/release/org/elasticsearch/ \
 distribution/tar/elasticsearch/2.3.5/elasticsearch-2.3.5.tar.gz
mkdir elasticsearch
tar -xvzf /tmp/elasticsearch-2.3.5.tar.gz -C elasticsearch --strip-components=1

Run Elasticsearch via:

318 | Appendix A: Manual Installation

https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop/releases
http://bit.ly/2o2mX9w
http://bit.ly/2pZDrwR
http://www.elastic.co/downloads
http://www.elastic.co/downloads

elasticsearch/bin/elasticsearch 2>1 > /dev/null &

That’s it. Our local search engine is up and running! Note that you’ll need to rerun
this command if you shut down your computer. Inserting a record and querying
Elasticsearch is easy with curl:

curl -XPUT 'localhost:9200/customer/external/1?pretty' -d '
{
 "name": "Russell Jurney"
}'

curl 'localhost:9200/customer/_search?q=*&pretty'

Here’s the output of our search query:

{
 "took" : 81,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "customer",
 "_type" : "external",
 "_id" : "1",
 "_score" : 1.0,
 "_source" : {
 "name" : "Russell Jurney"
 }
 }]
 }
}

Installing Elasticsearch for Hadoop
You can download Elasticsearch for Hadoop from the ES-Hadoop download page
and install it with the following commands:

Install Elasticsearch for Hadoop
curl -Lko /tmp/elasticsearch-hadoop-5.0.0-alpha5.zip \
 http://download.elastic.co/hadoop/elasticsearch-hadoop-5.0.0-alpha5.zip
unzip /tmp/elasticsearch-hadoop-5.0.0-alpha5.zip
mv elasticsearch-hadoop-5.0.0-alpha5 elasticsearch-hadoop
cp elasticsearch-hadoop/dist/elasticsearch-hadoop-5.0.0-alpha5.jar lib/
cp elasticsearch-hadoop/dist/elasticsearch-spark-20_2.10-5.0.0-alpha5.jar lib/
echo "spark.speculation false" >> $PROJECT_HOME/spark/conf/spark-defaults.conf

Manual Installation | 319

https://www.elastic.co/downloads/hadoop

Setting Up Our Spark Environment
Having to set up the Mongo and Elasticsearch JAR each time we call pyspark from
the command line is a drag. Fortunately, we can use Spark’s configuration file, spark/
conf/spark-defaults.conf, to load the JARs automatically. Specifically, the spark.jars
environment variable can handle the loading.

In manual_install.sh, we run:

Set up Mongo and Elasticsearch jars for Spark
echo "spark.jars $PROJECT_HOME/lib/mongo-hadoop-spark-2.0.0-rc0.jar,\
$PROJECT_HOME/lib/mongo-java-driver-3.2.2.jar,\
$PROJECT_HOME/lib/mongo-hadoop-2.0.0-rc0.jar,\
$PROJECT_HOME/lib/elasticsearch-spark-20_2.10-5.0.0-alpha5.jar,\
$PROJECT_HOME/lib/snappy-java-1.1.2.6.jar,\
$PROJECT_HOME/lib/lzo-hadoop-1.0.0.jar" \
>> spark/conf/spark-defaults.conf

Once we have done this, we need only run PYSPARK_DRIVER_PYTHON=ipython
pyspark to run PySpark.

Installing Kafka
At the time of writing, the latest stable version of Kafka is 0.10.2.0. You can get the
current stable version from the downloads page, then install it as follows (replacing
the version number as needed):

Install Apache Kafka
curl -Lko /tmp/kafka_2.11-0.10.2.0.tgz \
 http://www-us.apache.org/dist/kafka/0.10.2.0/kafka_2.11-0.10.2.0.tgz
mkdir kafka
tar -xvzf /tmp/kafka_2.11-0.10.2.0.tgz -C kafka --strip-components=1

That’s it! Kafka is ready to go. Note that this is local mode, and of course, the purpose
of Kafka is that it can operate at nearly any scale in distributed mode. It is very conve‐
nient to develop in local mode, however, and only later deploy in distributed mode.

Installing scikit-learn
Anaconda comes with scikit-learn, so you don’t need to do anything if you
installed Anaconda. If not, you will need to install sklearn.

You can do this with pip:

pip install sklearn

or easy_install:

easy_install sklearn

320 | Appendix A: Manual Installation

http://bit.ly/1yClm8O
http://bit.ly/2otYl6R
https://kafka.apache.org/downloads
https://docs.continuum.io/anaconda/

The sklearn install may require you to first install numpy and scipy, two scientific
computing libraries.

You can get acquainted with sklearn through its excellent tutorial.

Installing Zeppelin
At the time of writing, the latest version of Apache Zeppelin was 0.6.2. You can get
the current release from the downloads page, and update the version numbers in the
following commands as needed. Installing Zeppelin is easy. Again, referring to man‐
ual_install.sh:

Install Apache Zeppelin
curl -Lko /tmp/zeppelin-0.6.2-bin-all.tgz \
 http://www-us.apache.org/dist/zeppelin/zeppelin-0.6.2/ \
 zeppelin-0.6.2-bin-all.tgz
mkdir zeppelin
tar -xvzf /tmp/zeppelin-0.6.2-bin-all.tgz -C zeppelin --strip-components=1

Configure Zeppelin
cp zeppelin/conf/zeppelin-env.sh.template zeppelin/conf/zeppelin-env.sh
echo "export SPARK_HOME=$PROJECT_HOME/spark" >> zeppelin/conf/zeppelin-env.sh
echo "export SPARK_MASTER=local" >> zeppelin/conf/zeppelin-env.sh
echo "export SPARK_CLASSPATH=" >> zeppelin/conf/zeppelin-env.sh

To start Zeppelin, run zeppelin/bin/zeppelin-daemon.sh start and then visit
http://localhost:8080 to check out the user interface. It is a good idea to work through
the Zeppelin tutorial after installation.

Manual Installation | 321

https://www.scipy.org/scipylib/download.html
http://bit.ly/2oZy816
https://zeppelin.apache.org/download.html
http://bit.ly/2otYl6R
http://bit.ly/2otYl6R
http://localhost:8080
http://bit.ly/2pMNoRD

Index

Symbols
538 regression, 186
{% %} tags, 99
{{ }}tags, 99

A
actions, 8
ADS tools

collecting data, 45
data processing flow, 30-32
data processing with Spark, 45-48
distributed streams with Kafka, 54-57
EC2 environment setup, 33-38
getting and running code examples, 38
lightweight web applications, 70-72
local environment setup, 32-33
machine learning with scikit-learn, 58, 198
machine learning with Spark MLlib, 58
presenting data, 73-75
processing streams with PySpark, 57-58
publishing data with MongoDB, 48-50
Python considerations, 39-42
scalability considerations, 30
scheduling with Apache Airflow, 59-70
searching data with Elasticsearch, 50-54
serializing events with JSON Lines, 42-45
software stack process, 29
software stack requirements, 39
workflow considerations, 70

Agile Data Science (ADS)
about, 3-5
critical path in process, 5, 8
goal of ADS process, 5
principles of, 6-9

problem with agile software, 14-16
problem with waterfall method, 10-14
process overview, 21-27
team mechanics, 16-22

agile software development
about, 3-4
engineering productivity and, 24-26
financing technical debt, 14-15
goal of, 23
perspectives to consider, 7
research versus, 11-14

air travel data
aviation datasets used, 77-80
collecting and displaying records, 89-117
deploying predictive systems as, 225-285
downloading, 33
exploring data with reports, 149-183
improving predictions, 287-313
making predictions, 185-223
visualizing data with charts and tables,

119-148
Airbnb website, 59
Airflow (Apache)

about, 59, 234
automating workflows with, 255-264
backfilling data in, 70, 262
creating DAGs in Python, 63-65
deploying Spark MLlib applications,

234-264
executing setup script, 260
installing, 60
linking script to DAGs directory, 260
managing and executing DAGs, 260
monitoring tasks in web interface, 262-264

323

power of, 70
querying from the commend line, 260
running DAGs in, 69
setting up, 256
testing DAGs in, 262
testing tasks in, 68, 261
using scripts with, 61-63, 65-68

airflow command, 60, 68, 257, 261
algorithms (code), 168
Amazon EC2 Management Console, 34
Amazon Elastic MapReduce, 208
Anaconda Python distribution, 40
Apache Airflow (see Airflow (Apache))
Apache Hadoop, 46, 81, 315
Apache HBase, 122
Apache Kafka, 45, 54-57, 266-276, 320
Apache Oozie, 60
Apache Parquet, 31, 42-45
Apache Phoenix, 122
Apache Zeppelin, 262, 321
Apache Zookeeper, 55, 266
application development (see agile software

development)
application servers, 31, 48
applied researchers (team role), 18
atomic records, 90
automating form submission, 143
automating workflows with Airflow, 255-264
Avro serialization system, 43, 85
AWS (Amazon Web Services), 32-34
aws command, 34

B
B-tree indexes, 123, 137
backfill command (Airflow), 70, 262
bar charts

creating, 172-174
iterating on, 174-182
updating, 181

batch processing
deploying Spark MLlib applications,

234-264
making predictions in, 247-252
prototyping and, 56, 132, 278
publishing/database layer, 120
real-time versus, 55, 132

big data, 4
Blank, Steve, 102
Bootstrap, booting, 73

Bostock, Mike, 74, 128, 173
browsers

about, 32
paginating flight data, 106
presenting flight records in, 96-101

BTS website, 78
Bucketizer class, 219
bucketizing continuous variables for classifica‐

tion, 211-219
bulk storage, 31
Bureau of Transportation Statistics, 78, 92
business development (team role), 17, 20

C
Career Explorer project (LinkedIn), 9
categorical variables

classification and, 187
vectorizing, 201, 203, 220

cd command, 33
charts

about, 8-8
creating bar chart, 172-182
database normalization, 121
entity extraction, 132-140
quality considerations, 120
time series, 121
visualizing data with, 119-148

classification
about, 187, 189
addressing nulls, 209
bucketizing continuous variables for,

211-219
building a classifier with Spark MLlib,

207-223
defining metrics, 289
incorporating airplane features, 305-310
loading training data with specified schema,

208
replacing data, 210

clear command (Airflow), 69
Clements-Croome, Derek, 25
code review, 24
Coleman, Alex, 104
collaboration space, 25
collecting data

flight data, 91-94
training data, 235-236, 265
with Kafka, 45

collectors (events), 31

324 | Index

command line, querying Airflow from, 260
concat function (PySpark), 210
configuration (code), 168
content in web pages, improving, 155-161
continuous variables

bucketizing for classification, 211-219
regression analysis and, 187, 201
vectorizing, 220

critical path in ADS process, 5, 8
cross-validation method, 204, 221
CRUD operations, 23, 107
curl command, 50, 71
customers (team role), 17, 20

D
D3.js library, 74, 127
DAGs (directed acrylic graphs)

creating in Python, 63-65
creating models, 257
linking Airflow script to directory, 260
managing and executing, 260
operating models, 258
running in Airflow, 69
testing in Airflow, 262

data engineers (team role), 18
data enrichment

about, 140, 142
automating form submission, 143
evaluating, 147-148
extracting data from HTML, 144-146
publishing records to MongoDB, 159
reverse engineering web forms, 140

data intuition, 77
data processing (see processing data)
data science

about, 3-4
adapting to change, 20-22
iterative nature of, 22
recognizing opportunity and problem,

18-20
setting team expectations, 16-17
team roles in, 17-20
waterfall method and, 11

data scientists (team role), 18, 20
data serialization, 85
data-value pyramid

about, 7-8
collecting and displaying records, 89-117
deploying predictive systems, 225-285

exploring data with reports, 149-183
improving predictions, 287-313
making predictions, 185-223
visualizing data with charts and tables,

119-148
database normalization

about, 120
choosing forms, 123
first order form, 121
second order form, 122
third order form, 123

dataflow programming
NoSQL and, 83
subqueries versus, 164
without subqueries, 164

DataFrame API, 48, 208, 217, 221
date/time formats, 195, 201, 240, 298-302
death loop, 7
death spiral, 30
decision trees, 188, 290
declarative programming languages, 83
dense matrices, 203
dependent features, 187
deploying scikit-learn application as web ser‐

vice
about, 225
creating flight delay regression API, 228-231
groundwork for serving predictions, 227
pulling API into product, 232-234
saving and loading models, 226
testing API, 231

deploying Spark MLlib applications
about, 234
automating workflows with Airflow,

255-264
creating prediction requests in MongoDB,

239-244
displaying batch prediction results, 253-255
fetching prediction requests from Mon‐

goDB, 244-247
gathering training data in production,

235-236
loading models, 236-239
making predictions in batch, 247-252
storing models, 236-239
storing predictions in MongoDB, 252
training models, 236-239

deploying Spark MLlib via Spark Streaming
about, 264

Index | 325

gathering training data in production, 265
loading models, 265
making predictions in Spark Streaming,

277-281
sending prediction requests to Kafka,

266-276
storing models, 265
testing entire system, 282-284
training models, 265

DevOps engineers (team role), 18, 20
DictVectorizer class, 201, 203
directed acrylic graphs (DAGs)

creating in Python, 63-65
creating models, 257
linking Airflow script to directory, 260
managing and executing, 260
operating models, 258
running in Airflow, 69
testing in Airflow, 262

distributed document stores, 31
documenting exploratory data analysis, 9

E
EC2 environment

Elasticsearch and, 50
Jupyter Notebooks and, 40
Python 3 and, 39
setting up, 33-38

Elasticsearch for Hadoop, installing, 319
Elasticsearch search engine

about, 50-52
building queries programmatically, 169-172
extracting flight data, 133
indexing airplane documents, 167
installing, 318
publishing flights to, 113
pyelasticsearch API, 54
PySpark and, 52-54
searching flights on Web, 114-117

engineers (team role), 18, 20
entities

extracting, 132-140, 150-154
investigating, 162-182
resolving, 176-182

ETL (extract, transform, load) process, 9, 90
evaluating classifier performance, 222
evaluating enriched data, 147-148
events

about, 31

collecting, 31
serializing with JSON Lines, 42-45

experience designers (team role), 18, 20
experimental adhesion method, 288
experiments

establishing rigorous metrics for experi‐
ments, 289-297

preparing, 204
exploratory data analysis, 120
extracting data

flight records, 132-140
from HTML, 144-146

extracting features
airplane features, 302-305
with PySpark, 193-198

F
FAA (Federal Aviation Administration)

on flight delays, 191-193
registry for airplanes, 140

feature engineering
about, 187
establishing rigorous metrics for experi‐

ments, 289-297
experimental adhesion method, 288
improving prediction performance, 288
time of day, 298-302

feature hashing (hashing trick), 201
feature importances, 188, 289, 294-297
features

about, 188
dependent, 187
extracting airplane features, 302-305
extracting with PySpark, 193-198
independent, 187
loading, 199
vectorizing, 201-203, 219-221

findspark package, 61, 277
first order form (normalization), 121
538 regression, 186
Flask framework

building airline page in, 151
building web pages in, 135
feeding Kafka recommendation tasks from,

267
feeding Mongo recommendation tasks

from, 239-242
lightweight web applications, 71

326 | Index

publishing enriched data on web pages,
160-161

pymongo API and, 72
serving flights with, 97, 135

flight data
about, 78
assessing airplanes, 139
building a classifier with Spark MLlib,

207-223
building a regression with scikit-learn,

198-207
building web pages for, 151-155
collecting and serializing, 91-94
data enrichment, 140-148
database normalization, 121-123
deploying scikit-learn applications as web

services, 225-233
deploying Spark MLlib applications,

234-264
deploying Spark MLlib via Spark Streaming,

264-284
extracting, 132-140, 144-146, 150-154
extracting features with PySpark, 193-198
fixing prediction problems, 287
improving prediction performance, 288-302
improving web page content, 155-161
incorporating airplane data, 302-310
incorporating flight time, 310-313
indexing, 112, 167
investigating airplanes, 162-182
listing, 103-112
paginating, 106-112
predicting flight delays, 186, 189-193
presenting flight volume, 124-132
presenting records in browser, 96-101
processing and publishing, 94-96
querying volume, 124-132
searching, 112-117, 167-172
when to improve predictions, 288

G
Gantt chart, 12
GBTClassificationModel class, 290
GBTClassifier class, 290
generalists

harnessing power of, 20
specialists versus, 24

GET method (HTTP), 51
Getoor, Lise, 177

GitHub, 38
gradient boosted decision trees, 290
gradlew command, 318
GROUP BY statement (SQL), 7, 123
grouping data

in PySpark, 150
in Spark, 133

gunzip command, 94

H
Hadoop (Apache), 46, 81, 315
hashing trick (feature hashing), 201
HBase (Apache), 122
HDFS (Hadoop Distributed File System), 31, 46
head command, 94
hierarchy of needs (Maslow), 7
histograms, iterative visualization with, 211-217
home page, creating, 153, 166
HTML

extracting data from, 144-146
prototyping back from, 108-112
rendering with Jinja2, 98-101

HTTP methods, 51

I
IETF RFC-2616, 141
imperative programming languages, 83
improving predictions, 287-313
independent features, 187
indexes

B-tree, 123, 137
creating, 112, 167
ensuring database performance with,

136-138
information architecture, 139
InMaps project (LinkedIn), 11, 269-271
interaction designers (team role), 18, 20
investigating entities, 162-182
ISO 8601 format, 241

J
Jinja2 templates, 98-101
joblib library, 227
Jobs, Steve, 21, 102
JOIN statement (SQL), 178
jq utility, 34
JSON Lines serialization system

about, 31, 42-45

Index | 327

flight data, 157
NDJSON and, 85

json module (Python), 43-45
Jupyter Notebooks

about, 38, 40-42
running locally, 198

K
Kafka (Apache), 45, 54-57, 266-276, 320
kafka-python package, 56
Kaushik, Saurav, 288
Khurana, Amandeep, 122

L
Laerd Statistics, 201
large-format printing, 26
Learning MySQL (Tahaghoghi and Williams),

81
LEFT JOIN statement (SQL), 178
Li Baizhan, 25
lightweight web applications, 70-72
LIMIT statement (SQL), 175
linear regression, 188
LinkedIn

Career Explorer project, 9
InMaps project, 11, 269-271

linking Airflow script to DAGs directory, 260
linking back to web pages, 138, 152
list comprehension, 212, 307
listing flights, 103-112
list_dags command (Airflow), 68
list_tasks command (Airflow), 68
lit function (PySpark), 210
local environment setup

about, 32
downloading example dataset, 33
setting up Vagrant, 33
system requirements, 33

The Lost Interview (film), 21

M
Machanavajjhala, Ashwin, 177
machine learning (ML)

about, 186
Python and, 31
scikit-learn and, 58, 198
Spark MLlib and, 58

marketers (team role), 17, 20

Maslow's hierarchy of needs, 7
matrices, sparse versus dense, 203
MediaWiki API (Python), 158
metrics for experiments

comparing experiments to determine
improvements, 293

defining classification metrics, 289
establishing, 289
feature importance, 289
implementing more rigorous experiments,

290-293
inspecting changes in feature importance,

294-297
Miniconda distribution, 40
mock-ups, 10, 23
model persistence, 226
model_selection module (scikit-learn), 204
mongo-hadoop connector, 49, 252, 318
MongoDB

about, 31
booting, 49
creating prediction requests in, 239-244
extracting flight data, 133
feeding recommendation tasks from Flask

API, 239-242
fetching prediction requests from, 244-247
installing, 317
installing Java Driver, 317
listing flights with, 103-106
publishing data with, 48-50
publishing flight records with, 95-96, 134,

159
pushing data from PySpark, 49
pymongo API and, 71
querying data in, 151
storing bar chart data in, 172
storing predictions in, 252

mongoimport command, 159
MongoStorage class, 72
MulticlassClassificationEvaluator class, 290
multimedia content in web pages, 155-161
munging, 140

N
NAS (National Airspace System), 191
NCDC (National Climatic Data Center), 80
NCEI (National Centers for Environmental

Information), 80
NDJSON (newline-delimited JSON), 42, 85

328 | Index

nominal variables
classification and, 187
vectorizing, 201, 203, 220

normalization (database)
about, 120
choosing forms, 123
first order form, 121
second order form, 122
third order form, 123

NoSQL
dataflow programming and, 83
OLTP and, 81
schemas and, 84
Spark and, 84
SQL versus, 82-83
tools supported, 30

nulls, addressing for classification, 209

O
OLTP (Online Transaction Processing), 81
Oozie (Apache), 60
OpenFlights database, 79, 156
operations engineers (team role), 18
ORDER BY statement (SQL), 177
overfitting, 204

P
paginating flight data, 106-112
pair programming, 24
Parquet (Apache), 31, 42-45
performance improvement (predictions),

288-302
personal space, 25
PERT chart, 13-14
Phoenix (Apache), 122
pickle utility (Python), 226
Pig technology, 72
pip command (Python), 34
platform engineers (team role), 18, 20
polling forms, 269-276
predictions

about, 8-8
building a classifier with Spark MLlib,

207-223
building a regression with scikit-learn,

198-207
classification in, 189
database normalization, 121
deploying predictive systems, 225-285

exploring flight delays, 189-193
extracting features with PySpark, 193-198
improving, 287-313
making, 187-189
making in Spark Streaming, 277-281
making with Spark MLlib, 247-252
regression in, 188
role of, 186

predictive analytics
fundamentals of, 186-187
mechanics of, 187-189

predictive systems deployment
about, 225
scikit-learn applications as web services,

225-233
Spark MLlib applications, 234-264
Spark MLlib via Spark Streaming, 264-284

presenting data
about, 73-75
flight records in browser, 96-101
flight volume, 124-132

principles (ADS), 6-9
printing, large-format, 26
private space, 25
processing data

flight records, 94-96
flow in software stack, 30-32
real-time versus batch, 55, 132
structured versus semi-structured data, 81
with Spark, 45-48

product managers (team role), 17, 20
programming languages, declarative versus

imperative, 83
Protobuf serialization system, 85
prototyping

ADS principle for, 7
back from HTML, 108-112
batch processing and, 56, 132, 278
financing on technical debt, 15

publishing data
flight records, 94-96, 134, 159
publish/decorate model, 120-124
publishing flights to Elasticsearch, 113
sharing intermediate results, 21-22
with MongoDB, 48-50, 134, 159

PUT method (HTTP), 51
pyelasticsearch API (Python), 54
pymongo API (Python), 71, 97, 239
pymongo_spark package, 49, 95, 245, 318

Index | 329

PySpark
about, 47
bucketizing data with, 219
building a classifier, 208-221
Elasticsearch and, 52-54
entity resolution in, 177-181
extracting features with, 193-198
extracting flight data, 133
feature vectorization and, 219-221
grouping data in, 150
indexing airplane documents, 167
processing streams, 57-58
pushing data to MongoDB, 49

pyspark command, 47
Python

creating Airflow DAGs in, 63-65
Flask framework, 71
json module, 43-45
machine learning capabilities, 31, 58
MediaWiki API, 158
pickle utility, 226
pip command, 34
pyelasticsearch API, 54
pymongo API, 71, 239
usage considerations, 39-42

Q
quality assurance engineers (team role), 18
quality of charts, 120
querying data

building queries programmatically, 169-172
flight volume, 124-132
from command line, 260
in MongoDB, 151
indexes and, 136
subqueries versus dataflow programming,

164

R
r3.xlarge instance type, 34
random forests, 290
RandomForestClassificationModel class, 294
RDD API, 48, 211
real-time versus batch processing, 55, 132
records

about, 7-8
atomic, 90
collecting and displaying, 89-117
database normalization, 121

regression analysis
about, 187
building with scikit-learn, 198-207
linear regression, 188
loading data, 198
preparing experiments, 204
preparing training data, 201
sampling data, 199
testing the model, 205-207
training the model, 204
vectorizing features, 201-203
vectorizing results, 200

reports
about, 8-8
exploring data with, 149-183

research versus application development, 11-14
researchers (team role), 18, 20
reverse engineering web forms, 140
run command (Airflow), 69

S
scalability

agile platforms and, 21
publish/decorate model, 120-124
simplicity and, 30

scheduling with Apache Airflow, 59-70
schemas

extracting and exposing features in, 85
loading training data with, 208
NoSQL and, 84

scientific method, 11
scikit-learn library

about, 198
building regressions with, 198-207
deploying applications as web services,

225-233
installing, 320
machine learning and, 198
machine learning with, 58

scripts
executing for Airflow setup, 260
linking to DAGs directory, 260
spark-submit, 61
using with Airflow, 61-63, 65-68

Scrum methodology, 3
search engines, connecting to Web, 114-117
searching data

code versus configuration considerations,
168

330 | Index

configuring search widgets, 169
for flights, 112-117, 167-172
searching flights on the Web, 114-117
with Elasticsearch, 50-54

seasonality of air travel, 124-132
second order form (normalization), 122
SELECT statement (SQL), 121, 177
semi-structured data

data serialization and, 85
in web pages, 154
structured versus, 81

serializing data
flight data, 91-94
structured data, 85

serializing events with JSON Lines, 42-45
Silver, Nate, 186
sklearn library (see scikit-learn library)
slugs (URLs), 104, 253, 275
software development (see agile software devel‐

opment)
software stack

components of, 31
data processing flow, 30-32
local environment setup, 32-33
process overview, 29
requirements for, 39
serializing events, 42-45
workflow considerations, 70

sorting data in Spark, 133
space considerations in agile environments,

24-26
Spark, 47

(see also PySpark)
data processing with, 45-48
grouping and sorting data, 133
installing, 316
machine learning capabilities, 58
NoSQL and, 84
Python 3 and, 39
real-time versus batch processing, 55
setting up environment, 320
SQL and, 84
subqueries in Spark SQL, 165

Spark MLlib
building a classifier with, 207-223
deploying applications in batch with Air‐

flow, 234-264
deploying via Spark Streaming, 264-284
machine learning and, 58

stack requirements and, 39
Spark Streaming, deploying Spark MLlib via,

264-284
spark-csv package, 92
spark-streaming-kafka package, 57
spark-submit script, 61, 245
SparkContext class, 235
SparkSession class, 94, 235
sparse matrices, 203
specialists versus generalists, 24
SQL

NoSQL versus, 82-83
role of, 83
Spark and, 84
subqueries in Spark SQL, 165
subqueries versus dataflow programming,

164
Startup Owner's Manual (Blank), 102
streaming applications

with Kafka, 54-57
with PySpark, 57-58

StreamingContext class, 57
StringIndexer class, 220, 304
StringIndexerModel class, 220, 237, 287
structured data, 81, 85
submission, automating for web forms, 143
subqueries (SQL)

dataflow programming versus, 164
dataflow programming without, 164
in Spark SQL, 165

Swoosh algorithms, 178

T
tables

about, 8-8
Bootstrap and, 73
database normalization, 121
HTML, 145
visualizing data with, 119-148

Tahaghoghi, Seyed M.M., 81
Taiwo, Akinyele Samuel, 25
teams

adapting to change, 20-22
recognizing opportunity and problem,

18-20
roles within, 17-20
setting expectations, 16-17

technical debt, 14-15
templates, Jinja2, 98-101

Index | 331

test command (Airflow), 68
testing

DAGs in Airflow, 262
entire predictive systems, 282-284
flight delay regression API, 231
regression model, 205-207
tasks in Airflow, 68, 261

third order form (normalization), 123
Thrift serialization system, 85
time of day of flights, 298-302
time series charts, 121
timestamps, 195-196, 240-241
training data

collecting, 235-236, 265
features and, 188
loading with specified schema, 208
predictive analytics and, 187
preparing, 201

training the regression model, 204
Tunkelang, Daniel, 4

U
UDFs (user-defined functions), 217
Unicode standard, 43
user experience designers (team role), 18, 20
UTF-8 character encoding, 43
UUID (Univesally Unique Identifer), 267

V
Vagrant

Elasticsearch and, 50
Jupyter Notebooks and, 40
Python 3 and, 39
setting up, 33
system requirements, 33

variables
categorical, 187, 201, 203, 220
continuous, 187, 201, 211-219, 220
nominal, 187, 201, 203, 220

VectorAssembler class, 220, 238, 287
vectorizing

features, 201-203, 219-221
regression results, 200

VirtualBox
installing, 33
system requirements, 33

visualizing data
histograms and, 211

with charts and tables, 119-148
with D3.js, 74

VM (virtual machine)
setting up Vagrant, 33
system requirements, 33

W
Warden, Pete, 85
waterfall method

about, 5
problems with, 10-11
pull of the, 4, 15
research versus application development,

11-14
WBAN Master List, 80
weather data, 80, 185-223
web applications, lightweight, 70-72
web developers (team role), 18, 20
web forms

automating submission, 143
reverse engineering, 140

web pages
building in Flask, 135, 151
creating home page, 153, 166
improving with multimedia content,

155-161
linking back to, 138, 152
publishing enriched data to, 159-161
semi-structured data in, 154

web services, deploying scikit-learn applica‐
tions as, 225-233

Wickham, Hadley, 198
Wikipedia content, incorporating into flight

data, 158
wikipedia package, 158
Williams, Hugh E., 81
workflows

automating with Airflow, 255-264
lightweight web applications, 70
software stack, 70

X
xgboost library, 198

Z
Zeppelin (Apache), 262, 321
Zookeeper (Apache), 55, 266

332 | Index

About the Author
Russell Jurney cut his data teeth in casino gaming, building web apps to analyze the
performance of slot machines in the US and Mexico. After dabbling in entrepreneur‐
ship, interactive media, and journalism, he moved to Silicon Valley to build analytics
applications at scale at Ning and LinkedIn. Russell is now principal consultant at Data
Syndrome, where he helps companies apply the principles and methods in this book
to build analytics products.

Colophon
The animal on the cover of Agile Data Science is a silvery marmoset (Mico argenta‐
tus). These small New World monkeys live in the eastern parts of the Amazon rain‐
forest and Brazil. Despite their name, silvery marmosets can range in color from
near-white to dark brown. Brown marmosets have hairless ears and faces and are
sometimes referred to as bare-ear marmosets. Reaching an average size of 22 cm,
marmosets are about the size of squirrels, which makes their travel through tree can‐
opies and dense vegetation very easy. Silvery marmosets live in extended families of
around 12, where all the members help care for the young. Marmoset fathers carry
their infants around during the day and return them to the mother every two to three
hours to be fed. Babies wean from their mother’s milk at around six months and full
maturity is reached at one to two years old. The marmoset’s diet consists mainly of
sap and tree gum. They use their sharp teeth to gouge holes in trees to reach the sap,
and will occasionally eat fruit, leaves, and insects as well. As the deforestation of the
rainforest continues, however, marmosets have begun to eat food crops grown by
people; as a result, many farmers view them as pests. Large-scale extermination pro‐
grams are underway in agricultural areas, and it is still unclear what impact this will
have on the overall silvery marmoset population. Because of their small size and mild
disposition, marmosets are regularly used as subjects of medical research. Studies on
the fertilization, placental development, and embryonic stem cells of marmosets may
reveal the causes of developmental problems and genetic disorders in humans. Out‐
side of the lab, marmosets are popular at zoos because they are diurnal (active during
daytime) and full of energy; their long claws mean they can quickly move around in
trees, and both males and females communicate with loud vocalizations.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Agile Data Science Mailing List
	Data Syndrome, Product Analytics Consultancy
	Live Training

	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us

	Part I. Setup
	Chapter 1. Theory
	Introduction
	Definition
	Methodology as Tweet
	Agile Data Science Manifesto

	The Problem with the Waterfall
	Research Versus Application Development

	The Problem with Agile Software
	Eventual Quality: Financing Technical Debt
	The Pull of the Waterfall

	The Data Science Process
	Setting Expectations
	Data Science Team Roles
	Recognizing the Opportunity and the Problem
	Adapting to Change

	Notes on Process
	Code Review and Pair Programming
	Agile Environments: Engineering Productivity
	Realizing Ideas with Large-Format Printing

	Chapter 2. Agile Tools
	Scalability = Simplicity
	Agile Data Science Data Processing
	Local Environment Setup
	System Requirements
	Setting Up Vagrant
	Downloading the Data

	EC2 Environment Setup
	Downloading the Data

	Getting and Running the Code
	Getting the Code
	Running the Code
	Jupyter Notebooks

	Touring the Toolset
	Agile Stack Requirements
	Python 3
	Serializing Events with JSON Lines and Parquet
	Collecting Data
	Data Processing with Spark
	Publishing Data with MongoDB
	Searching Data with Elasticsearch
	Distributed Streams with Apache Kafka
	Processing Streams with PySpark Streaming
	Machine Learning with scikit-learn and Spark MLlib
	Scheduling with Apache Airflow (Incubating)
	Reflecting on Our Workflow
	Lightweight Web Applications
	Presenting Our Data

	Conclusion

	Chapter 3. Data
	Air Travel Data
	Flight On-Time Performance Data
	OpenFlights Database

	Weather Data
	Data Processing in Agile Data Science
	Structured Versus Semistructured Data

	SQL Versus NoSQL
	SQL
	NoSQL and Dataflow Programming
	Spark: SQL + NoSQL
	Schemas in NoSQL
	Data Serialization
	Extracting and Exposing Features in Evolving Schemas

	Conclusion

	Part II. Climbing the Pyramid
	Chapter 4. Collecting and Displaying Records
	Putting It All Together
	Collecting and Serializing Flight Data
	Processing and Publishing Flight Records
	Publishing Flight Records to MongoDB

	Presenting Flight Records in a Browser
	Serving Flights with Flask and pymongo
	Rendering HTML5 with Jinja2

	Agile Checkpoint
	Listing Flights
	Listing Flights with MongoDB
	Paginating Data

	Searching for Flights
	Creating Our Index
	Publishing Flights to Elasticsearch
	Searching Flights on the Web

	Conclusion

	Chapter 5. Visualizing Data with Charts and Tables
	Chart Quality: Iteration Is Essential
	Scaling a Database in the Publish/Decorate Model
	First Order Form
	Second Order Form
	Third Order Form
	Choosing a Form

	Exploring Seasonality
	Querying and Presenting Flight Volume

	Extracting Metal (Airplanes [Entities])
	Extracting Tail Numbers
	Assessing Our Airplanes

	Data Enrichment
	Reverse Engineering a Web Form
	Gathering Tail Numbers
	Automating Form Submission
	Extracting Data from HTML
	Evaluating Enriched Data

	Conclusion

	Chapter 6. Exploring Data with Reports
	Extracting Airlines (Entities)
	Defining Airlines as Groups of Airplanes Using PySpark
	Querying Airline Data in Mongo
	Building an Airline Page in Flask
	Linking Back to Our Airline Page
	Creating an All Airlines Home Page

	Curating Ontologies of Semi-structured Data
	Improving Airlines
	Adding Names to Carrier Codes
	Incorporating Wikipedia Content
	Publishing Enriched Airlines to Mongo
	Enriched Airlines on the Web

	Investigating Airplanes (Entities)
	SQL Subqueries Versus Dataflow Programming
	Dataflow Programming Without Subqueries
	Subqueries in Spark SQL
	Creating an Airplanes Home Page
	Adding Search to the Airplanes Page
	Creating a Manufacturers Bar Chart
	Iterating on the Manufacturers Bar Chart
	Entity Resolution: Another Chart Iteration

	Conclusion

	Chapter 7. Making Predictions
	The Role of Predictions
	Predict What?
	Introduction to Predictive Analytics
	Making Predictions

	Exploring Flight Delays
	Extracting Features with PySpark
	Building a Regression with scikit-learn
	Loading Our Data
	Sampling Our Data
	Vectorizing Our Results
	Preparing Our Training Data
	Vectorizing Our Features
	Sparse Versus Dense Matrices
	Preparing an Experiment
	Training Our Model
	Testing Our Model
	Conclusion

	Building a Classifier with Spark MLlib
	Loading Our Training Data with a Specified Schema
	Addressing Nulls
	Replacing FlightNum with Route
	Bucketizing a Continuous Variable for Classification
	Feature Vectorization with pyspark.ml.feature
	Classification with Spark ML

	Conclusion

	Chapter 8. Deploying Predictive Systems
	Deploying a scikit-learn Application as a Web Service
	Saving and Loading scikit-learn Models
	Groundwork for Serving Predictions
	Creating Our Flight Delay Regression API
	Testing Our API
	Pulling Our API into Our Product

	Deploying Spark ML Applications in Batch with Airflow
	Gathering Training Data in Production
	Training, Storing, and Loading Spark ML Models
	Creating Prediction Requests in Mongo
	Fetching Prediction Requests from MongoDB
	Making Predictions in a Batch with Spark ML
	Storing Predictions in MongoDB
	Displaying Batch Prediction Results in Our Web
 Application
	Automating Our Workflow with Apache Airflow (Incubating)
	Conclusion

	Deploying Spark ML via Spark Streaming
	Gathering Training Data in Production
	Training, Storing, and Loading Spark ML Models
	Sending Prediction Requests to Kafka
	Making Predictions in Spark Streaming
	Testing the Entire System

	Conclusion

	Chapter 9. Improving Predictions
	Fixing Our Prediction Problem
	When to Improve Predictions
	Improving Prediction Performance
	Experimental Adhesion Method: See What Sticks
	Establishing Rigorous Metrics for Experiments
	Time of Day as a Feature

	Incorporating Airplane Data
	Extracting Airplane Features
	Incorporating Airplane Features into Our Classifier Model

	Incorporating Flight Time
	Conclusion

	Appendix A. Manual Installation
	Installing Hadoop
	Installing Spark
	Installing MongoDB
	Installing the MongoDB Java Driver
	Installing mongo-hadoop
	Building mongo-hadoop
	Installing pymongo_spark

	Installing Elasticsearch
	Installing Elasticsearch for Hadoop
	Setting Up Our Spark Environment
	Installing Kafka
	Installing scikit-learn
	Installing Zeppelin

	Index
	About the Author
	Colophon

