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Preface

Data science has been recognized as a science since 2001, roughly. Its origin
lies in technological advances that are generating nearly inconceivable vol-
umes of data. The rate at which new data are being produced is not likely
to slow for some time. As a society, we have realized that these data provide
opportunities to learn about the systems and processes generating the data.
But data in its original form is of relatively little value. Paradoxically, the
more of it that there is, the less the value. It has to be reduced to extract
value from it. Extracting information from data is the subject of data science.

Becoming a successful practitioner of data science is a real challenge. The
knowledge base incorporates demanding topics from statistics, computer sci-
ence, and mathematics. On top of that, domain-specific knowledge, if not
critical, is very helpful. Preparing students in these three or four areas is
necessary. But at some point, the subject areas need to be brought together
as a coherent package in what we consider to be a course in data science.
A student that lacks a course that actually teaches data science is not well
prepared to practice data science. This book serves as a backbone for a course
that brings together the main subject areas.

We’ve paid attention to the needs of employers with respect to entry-
level data scientists—and what they say is lacking from the skills of these
new data scientists. What is most lacking are programming abilities. From
the educators’ point of view, we want to teach principles and theory—the
stuff that’s needed by students to learn on their own. We’re not going to
be able to teach them everything they need in their careers, or even in the
short term. But teaching principles and foundations is the best preparation
for independent learning. Fortuitously, there is a subject that encompasses
both principles and programming—algorithms. Therefore, this book has been
written about the algorithms of data science.

v



vi Preface

Algorithms for Data Science focuses on the principles of data reduction
and core algorithms for analyzing the data of data science. Understanding
the fundamentals is crucial to be able to adapt existing algorithms and cre-
ate new algorithms. The text provides many opportunities for the reader to
develop and improve their programming skills. Every algorithm discussed at
length is accompanied by a tutorial that guides the reader through implemen-
tation of the algorithm in either Python or R. The algorithm is then applied
to a real-world data set. Using real data allows us to talk about domain-
specific problems. Regrettably, our self-imposed coding edict eliminates some
important predictive analytic algorithms because of their complexity.

We have two audiences in mind. One audience is practitioners of data
science and the allied areas of statistics, mathematics, and computer science.
This audience would read the book if they have an interest in improving their
analytical skills, perhaps with the objective of working as a data scientist.
The second audience are upper-division undergraduate and graduate students
in data science, business analytics, mathematics, statistics, and computer
science. This audience would be engaged in a course on data analytics or
self-study.

Depending on the sophistication of the audience, the book may be used
for a one- or two-semester course on data analytics. If used for a one-semester
course, the instructor has several options regarding the course content. All
options begin with Chaps. 1 and 2 so that the concepts of data reduction and
data dictionaries are firmly established.

1. If the instructional emphasis is on computation, then Chaps. 3 and 4 on
methods for massively large data and distributed computing would be
covered. Chapter 12 works with streaming data, and so this chapter is
a nice choice to close the course. Chapter 7 on healthcare analytics is
optional and might be covered as time allows. The tutorials of Chap. 7
involve relatively large and challenging data sets. These data sets pro-
vide the student and instructor with many opportunities for interesting
projects.

2. A course oriented toward general analytical methods might pass over
Chaps. 3 and 4 in favor of data visualization (Chap. 5) and linear regres-
sion (Chap. 6). The course could close with Chap. 9 on k-nearest neighbor
prediction functions and Chap. 11 on forecasting.

3. A course oriented toward predictive analytics would focus on Chaps. 9
and 10 on k-nearest neighbor and naïve Bayes prediction functions. The
course would close with Chaps. 11 and 12 on forecasting and streaming
data.
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Chapter 1
Introduction

Abstract The beginning of the twenty-first century will be remembered for
dramatic and rapid technological advances in automation, instrumentation,
and the internet. One consequence of these technological developments is
the appearance of massively large data sets and data streams. The potential
exists for extracting new information and insights from these data. But new
ideas and methods are needed to meet the substantial challenges posed by
the data. In response, data science has formed from statistics and computer
science. Algorithms play a vastly important and uniting role in data analytics
and in the narrative of this book. In this chapter, we expand on these topics
and provide examples from healthcare, history, and business analytics. We
conclude with a short discussion of algorithms, remarks on programming
languages, and a brief review of matrix algebra.

1.1 What Is Data Science?

Data science is a new field of study, just sufficiently coalesced to be called
a science. But the field is real and data science is truly a hybrid discipline,
sitting at the intersection of statistics and computer science. Often, a third
field, a domain in the language of data science, is intimately connected.

What then is data science? Data science is an amalgam of analytic methods
aimed at extracting information from data. This description also fits statistics
and data mining, but data science is neither. To better understand what data
science is, we start with the genesis. Technological advances are driving the
formation of massively large data sets and streaming data. Two broad tech-
nologies are most responsible—the internet and automated data collection
devices. Devices that collect data have become nearly ubiquitous and often
surreptitious in the human environment. For example, smart phones, internet
websites, and automatic license plate readers are collecting data nearly all
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of the time, and often for obscure reasons. The smart phone in your pocket
is measuring the ambient temperature and your latitude and longitude. The
phone’s gravitometer is measuring the local gravitational field. Observations
on these three variables are collected at the approximate rate of 100 times per
second. Not all of these data collection processes are surreptitious in nature
though. State, local, and national governments are releasing volumes of data
to the public in the interest of openness and improving the well-being of the
citizenry. Non-profit organizations such as DataKind (http://datakind.org)
and Data4America (https://data4america.org/) are, theoretically, working
towards the betterment of society through the analyses of these data.

In the past century, data collection often was carried out by statistical
sampling since data was manually collected and therefore expensive. The
prudent researcher would design the process to maximize the information
that could be extracted from the data. In this century, data are arriving by
firehose and without design. The data exist for tangential reasons relative
to the analyst’s objectives. Because the data are generated without benefit
of design, the information content of each datum is often extremely small
with respect to answering a sensible question. Sometimes it’s difficult to even
ask a sensible question (what would you do with trillion observations on
gravity?) The challenges posed by what is often called big data stem from
the prevailing diluteness of information content, volume, and the dearth of
design and control. Statistical science is unsuited for the challenges posed by
these data. Data science has developed in response to the opportunity and
need for creating value from these data.

A science is an organized body of knowledge united by a common sub-
ject. Organization within the science arises from foundations and principles.
Organization reveals linkages and similarities and turns a miscellany of facts
into understanding. And so here is the challenge: if there are foundations and
principles of data science, what are they? It’s not entirely obvious. But, there
is a preponderant theme, a raison d’être for data science from which the foun-
dations are forming. The theme is the extraction of information from data.

Statistical science overlaps with data science with respect to the objective
of extracting information from data but data science spans situations that
are beyond the scope of statistics. In these situations, the statistical aspects
of the problem pale in comparison with the importance of algorithmic and
computational considerations. Since statistical science revolves around the
analysis of relatively small and information-rich data, statistical philosophy
and principles are at times marginally relevant to the task at hand. Fur-
thermore, the validity of many statistical methods is nullified if the data are
not collected by a probabilistic sampling design such as random sampling.
Hypothesis testing is nearly irrelevant in data science because opportunisti-
cally collected data lack the necessary design. When the data are appropriate
and hypotheses exist, massively large data sets tend to yield highly significant
results (p-values) no matter how small the practical differences are. If hypoth-
esis tests produce the same outcome with near certainty, there’s no point in

http://datakind.org
https://data4america.org/
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carrying out the tests. One of the skills of an accomplished data scientist
is the ability to judge what statistical techniques are useful and figure out
how apply them at large scale. Both programming techniques and statistical
methods are necessary and ubiquitous in data science. Data science is not
statistics and this is not a book about statistics.

The data of data science may be loosely described as being of three vari-
eties: massive in volume but static, arriving in a stream and needing immedi-
ate analysis, and high dimensional. The problem of high dimensionality differs
in several respects from the first two varieties. Most importantly, data reduc-
tion techniques require complex mathematical and computational methods
that are incompatible with the do-it-yourself philosophy of this book. The
philosophy will be discussed in some detail soon, but for now, the philos-
ophy dictates that every algorithm and method is to be programmed by
the reader. That dictum excludes many dimension reduction techniques, for
example, principal components analysis and its parent, the singular value
decomposition, and the lasso method of variable selection in regression. We
focus instead on massively large static data and streaming data. Let’s look
at a few examples.

1.2 Diabetes in America

The U.S. Centers for Disease Control and Prevention (CDC) is dedicated
to learning about and understanding the factors that affect the health and
well-being of the U.S. population. To this end, the CDC has been conducting
the largest annual sample survey in the world. The Behavioral Risk Factor
Surveillance System (BRFSS) survey [10] asks the participants a number of
questions regarding health and health-related behaviors. Of the many ques-
tions asked of the participants, one asks whether the respondent has diabetes,
a chronic, incurable, and often preventable disease. Diabetes is an enormous
public health problem as it probably affects more than 9% of U.S. adults.
The cost of treating diabetes over a lifetime is estimated to be as much as
$130,800 per patient [71] and the consequences of not treating the disease are
dire. Physicians, the Centers for Medicare & Medicaid Services, and private
insurers would like to know who is most likely to develop the disease so that
those at risk may be encouraged to participate in prevention programs. But
who is most at risk? More to the point, is it possible to build an algorithm
that estimates risk based on a few simple variables?

To investigate the question, we used n = 5,195,986 responses from the
BRFSS surveys and reduced these individual records according to the res-
pondents’ age, level of education, annual household income, and body mass
index. Mathematically, we mapped each individual to one of 14,270 profiles,
each of which is a specific combination of the four variables. In plain language,
we dumped individuals into bins and computed sample proportions. There’s a
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little more to it than just dumping observations into bins, but that’s the
essence of the algorithm. The tutorials of Chap. 7 guide the reader through
the complete process.

Table 1.1 shows the profiles with the largest estimated diabetes preva-
lence.1 All of the estimates exceed .625. The profiles shown in Table 1.1 are
easy to describe. The individuals are old, very poor, and with body weights
much exceeding ideal weight. The individuals tend to be poorly educated
though there is more variation in this variable than the others. An individual
with a profile listed in Table 1.1 and not yet having the disease is a prime
candidate for a prevention program.

Table 1.1 A few profiles and estimated diabetes prevalence. Data from the Centers
for Disease Control and Prevention, Behavioral Risk Factor Surveillance System surveys
years 2001 through 2014, inclusive

Category Number of Estimated
Incomea Educationb Agec Body mass indexd respondents prevalence

1 3 8 50 110 .627
1 2 8 50 202 .629
2 2 12 50 116 .629
2 6 10 46 159 .635
1 4 10 52 129 .636
3 2 10 44 177 .638
2 3 11 50 123 .642

aIncome category 1 corresponds to an annual household income of less than $10,000,
category 2 is $10,000–15,000, and category 3 is $15,000–20,000
bThere are six education categories, labeled 1 through 6 and ordered from no education
(1) to 4 years or more of college (6)
cAge category 8 corresponds to 55–59 years, 9 corresponds to 60–64 years, and so on.
Category 12 is 75–79 years
dA body mass index of 30 kg/m2 or more corresponds to clinically obese and a body
mass index of 40 roughly equates to a weight approximately 100 pounds greater than
ideal weight

Conceptually, the analysis was a simple exercise in data reduction. Without
the massive data sets, this approach would not have worked. The sample
sizes for individual profiles would be small and the estimates of prevalence
too imprecise. The prudent analyst would have undertaken an effort to find
a statistical model from which to compute prevalence estimates. But, with
the CDC data, the average number of observations per profile is 382.8, a
large average by most standards. We don’t need a model. The argument
will be made in Chap. 7 that the profile solution is better than a modeling
solution. It’s not necessarily easier though. The gain in statistical simplicity
and accuracy requires a considerable amount of data processing, a process
sometime referred to as data munging.

1 Diabetes prevalence is the rate of diabetes.
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1.3 Authors of the Federalist Papers

The Federalist Papers are a collection of 85 essays written by James Madison,
Alexander Hamilton, and John Jay arguing for the ratification of the United
States Constitution. The Federalist Papers have been an irreplaceable asset
for historians and the judiciary as they expose the intent of the Constitution
and its authors. At the time of publication (1787 and 1788), all were signed
with a pseudonym. The authors of most of the papers were revealed in the
writings of Hamilton after his death at the hand of Aaron Burr. The author-
ship of 12 papers claimed by Hamilton were disputed for almost 200 years.
Some 50 years ago, analyses by historians and statisticians [1, 41] attributed
authorship of all 12 to James Madison.

Mosteller and Wallace [41] conducted an assortment of statistical analyses.
In particular, they contrasted the relative frequency of occurrence of certain
words among the authors’ papers. The number of words that they used was
small and they omitted the great majority of words used by all three authors.
They argued that for many words, differences in frequency of use would be
attributable to differences in subject matter. In Chap. 10, we attempt to
attribute authorship to the disputed papers. The idea motivating our analysis
is that the similarity of a disputed paper to the papers of Hamilton, Madison,
and Jay may be determined by comparing the word use distributions, paper
to author. Pervasively occurring prepositions and conjunctions such as the
and in have been excluded from the analysis, but any other word used by
all three is included. We use a much larger set of words than Mosteller and
Wallace, 1102 in number. Figure 1.1 shows the relative frequency of use for
the twenty most commonly used words of Hamilton. A few words are used
almost exclusively by one author, for instance, upon. A few words—national,
for example—are used at nearly the same rate by the three authors.

The prediction function predicts the author of a disputed paper to be the
author with the word distribution most similar to the paper. Mathematically,
we built a function f(·|D) from D = {P1, . . . , Pn}, the set of undisputed,
sole-author papers. The function is perhaps best described as an algorithm
as it consists a composition of functions. When passed the digital text of
a disputed paper, the paper is transformed to a vector of word counts x0.
A second function compares x0 to each authors’ word use distribution. The
comparison produces an estimate of the relative likelihood that Hamilton
wrote the paper, and similarly for Madison and Jay. Lastly, the largest relative
likelihood determines the predicted author. For example, our prediction of the
disputed Paper 53 is f(P53|D) = Hamilton.

The accuracy of the prediction function is good. All of the undisputed pa-
pers are correctly assigned to their author. Of the disputed authors, we find
6 assigned to Madison and 6 to Hamilton. Adair, a historian, and Mosteller
and Wallace assigned all 12 to Madison. It should be noted that the effort
put into research and analysis by Adair and Mosteller and Wallace was re-
markably thorough even by the standards of the day. We’ve done little more
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than reduce the textual data to word use distributions and implement a fairly
simple multinomial naïve Bayes prediction function in Python.

1.4 Forecasting NASDAQ Stock Prices

The two examples discussed so far involve large data sets of two varieties:
quantitative and ordinal measurements from the BRFSS database and textual
data from the Federalist Papers. Another variety of data are streaming data.
A data stream may be created by sending requests to the Yahoo Financial
Application Programming Interface (API) for the asking price of one or more
stocks listed on the NASDAQ stock exchange. Prices posted to the Yahoo API
are delayed by some 15 min, so we can’t carry out forecasting in real-time,
but it’s pretty close. We send requests once a second and receive perhaps
five updates on the asking price per minute depending on the stock’s trading
activity. The objective is to forecast the price of a stock τ > 0 time steps in
the future. A time step is the interval between updates.

The NASDAQ self-generated stream serves as a model for higher-velocity
streams. For instance, a commercial website’s internet traffic needs to be de-
fended against malicious activity. Packet analysis is one defense. Packets are
the transmission units of the internet. A packet is structured like a letter—
there are origin and destination addresses in the header and a payload (the
data) contained within. The content is small in volume, typically less than
1000 bytes, and so vast numbers of packets are transferred in normal inter-
net activity. One defense against malicious activity inspects the headers for
anomalies in origin, packet size, and so on. Real-time analysis of packets ne-
cessitates an inspect-and-dismiss strategy as it is impossible and pointless to
store the data for later analysis. Whatever is to be done must be done in
real-time.
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Returning to the stock price forecasting problem, there are practical con-
straints on a real-time forecasting algorithm. Upon the arrival of a datum,
the algorithm should update the forecasting function to incorporate the in-
formation contained within the datum. The updating formula must execute
rapidly and so must be simple. The amount of past data that is stored must
be small in volume. Above all, the forecast should be accurate.

To illustrate, consider a linear regression forecasting function that uses
time step as the predictor variable. Suppose that the current time step is n
and τ is a positive integer. The target value to be forecasted is yn+τ and the
forecast is

ŷn+τ = ̂βn,0 + (n + τ)̂βn,1

where ̂βn,0 is the intercept and the estimated price level at the start (n = 0).
The coefficient ̂βn,1 is the slope at time n and the estimated change in fu-
ture price from one time step to the next. Unlike the usual linear regression
situation, the coefficients are not unknown constants. They’re unknown, but
they vary in time to reflect changes in the price stream.

Whenever yn arrives, the coefficient vector ̂βn = [̂βn,0 ̂βn,1]T is computed.
Then, a forecast ŷn+τ is computed. The mathematical details are delayed
until Chap. 11, but in brief, a solution to the real-time forecasting problem
exploits the fact that ̂βn can be computed according to ̂βn = A−1

n zn where
An is a matrix and zn is a vector. The terms An and zn encapsulate all
of the past information. Upon the arrival of yn+1, An and zn are updated
by incorporating yn+1. Updating ̂βn and computing the forecast ŷn+τ are
carried out extremely rapidly.

Fig. 1.2 Observed
prices (points) and
time-varying linear
regression fore-
casts of Apple, Inc.
(line) for τ = 20
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Figure 1.2 shows a short portion of the data stream and the forecasts for
τ = 20 time steps ahead. Two features are most notable. First, the function
captures the trend. Secondly, the forecasts ŷn+τ reflect what has happened at
time steps n, n−1, n−2, . . .. To compare actual and forecasted values, choose
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a time step and compare the actual and forecasted value at that time step.
The forecasts reflect the recent past. Forecasting functions are not crystal-
balls—the data cannot predict a change of direction in stock prices before
it happens. They only perform well if the data that is used to build them
resembles the future. The best we can do is give greater weight to the most
recent observations at the expense of older observations.

1.5 Remarks

The three examples are very different with respect to the origins and form of
the data and objectives of the analyses. However, the data analytics applied
to the data are alike in purpose: the reduction of data to information rele-
vant to the objectives. The profile analysis example reduced approximately
5.2 million observations to about 14,000 profiles. Each profile describes the
demographic characteristics of a cohort of the U.S. adult population in terms
of age, education, income, body mass index, and diabetes risk. The Federalist
papers example reduced the undisputed papers to three word use distribu-
tions, one for each author. The thoughts and ideas expressed in each paper are
lost. Our aim was not to encapsulate that information but rather to develop a
function for predicting the authorship of a disputed paper. For this purpose,
the distributions are very well-suited. The NASDAQ example illustrates the
reduction of a data stream to a matrix An and a vector zn. Regardless of
how many time steps have passed, the information relevant for forecasting is
encapsulated in the two statistics.

1.6 The Book

This textbook is about practical data analytics written with the objective
of uniting the principles, algorithms, and data of data science. Algorithms
are the machinery behind the analytics and the focal point of the book. To
be good at data analytics, one must be proficient at programming. This is
new. Thirty years ago it was possible to be a practicing, applied statistician
without the ability to write code. (And, in fact, we’ve bemusedly listened
to colleagues brag about not writing code as recently as 2001.) To be good,
one also must have some experience with the data and the algorithms of
data science. To be expert at data analytics requires an understanding of
the foundations and principles behind the algorithms. Why? Applying the
algorithms to real problems often requires adapting existing algorithms and
creating new ones. Almost nothing works as expected.

To get really good results, you’ll have to tinker with the algorithms, try
different things—in other words, innovate. But without an understanding of
the foundations, there will be lots of frustration, dead-ends, and wasted time
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and precious little success. To get the reader to the point where innovation is
not intimidating but instead an opportunity for creativity, the text presents
a set of prototypical algorithms that are representative of data analytics. For
most of us, reading about the algorithms is not enough. To learn how to
innovate in a relatively short time, the reader must be actively engaged in
turning the algorithms into code and using them with real data. By doing so,
misconceptions and misunderstandings are confronted and remedied. Every
one of these prototypical algorithms is the subject of a tutorial, usually in
Python, but sometimes R in which the reader renders the algorithm as code
and applies it to data.

There’s a debate among the data science cognoscenti about the importance
of domain expertise. Domain expertise is knowledge of the field in which
the analytics are being applied. Examples of these fields are marketing, real
estate, financial trading, credit-risk analysis, healthcare analytics, and social
networks. Some argue that domain expertise is most important among the
three areas of statistics, computer science, and domain expertise. This is
probably an unproductive argument. The key point is that data scientists
must collaborate with partners who collect the data and those who care
about the answer to their questions. Regardless, our opinion is that domain
expertise can be learned on the job or, for small projects, in conversations with
experts. On the other hand, foundations cannot be learned in ad hoc fashion
and learning algorithms on the job is slow and arduous. To expose the reader
to domain-specific applications, Chap. 7 looks into healthcare analytics. Our
tutorials work with real data and provide background information but do not
go far into domain-specific details.

The book is intended for two audiences. One audience is practitioners of
data science and the allied areas of statistics, mathematics, and computer sci-
ence. This audience would read the book if they have an interest in improving
their analytical skills, perhaps with the objective of transitioning from their
narrower domain to data science. The second audience are upper-division un-
dergraduate and graduate students in data science, business analytics, math-
ematics, statistics, and computer science. This audience would be engaged
in a course on data analytics or self-study. There are aspects of this book
that will be a technical challenge for this audience. We urge patience on the
part of this audience—all skills are learned on a continuum and the ability to
derive certain results from first principles is not a requirement that applies
to these algorithms.

The prerequisites necessary to work comfortably with the book are kept
low because of the widely differing backgrounds of the audience. The reader
with one or two courses in probability or statistics, an exposure to vectors
and matrices, and a programming course should succeed at mastering most of
the content. The core material of every chapter is accessible to all with these
prerequisites. The chapters sometimes expand at the close with innovations
of interest to practitioners of data science.
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The orientation of this book is what might be called close to the metal in
the sense that there is very little reliance on existing data analytic algorithms.
This approach is adopted for two reasons: to immerse the student in Python
so that she may become a proficient programmer, and to develop a deep
understanding of the fundamental, work-horse algorithms and methods of
data science. The trade-off is that some of the more sophisticated algorithms
in predictive analytics (e.g., neural nets and support vector machines) are
beyond the scope of the course. There’s lots about predictive analytics, data
mining, programming, and statistics that are not touched on in this book.
We offer no apology.

The book is divided into three parts:

I. Data Reduction: Herein, the dual foundations of data reduction and
scalability are developed. Chapter 2 focuses on data reduction via data
maps and the use of data dictionaries. The data for the tutorials come
from the Federal Election Commission’s compilation of monetary con-
tributions to candidates and political action committees. Chapter 3 in-
troduces associative statistics, the mathematical foundation of scalable
algorithms and distributed computing. Another open government data
source is used for the tutorials of Chap. 3, the Centers for Disease and
Control’s Behavioral Risk Surveillance System surveys. Practical as-
pects of distributed computing are the subject of Chap. 4 on Hadoop
and MapReduce.

II. Extracting Information from Data: The focus shifts now to meth-
ods and the algorithms that support the methods. The topics are lin-
ear regression, data visualization, and cluster analysis. The chapters
on linear regression and data visualization focus on methodological as-
pects of the analyses, and so depart from the algorithmic theme of the
book. However, these methods are used routinely in practical data an-
alytics, and a practicing data scientist must have a solid knowledge of
the capabilities and constraints associated with linear regression and a
working knowledge of data visualization. Chapter 7 dives into a growing
domain—Healthcare Analytics—for an extended example of developing
algorithms for data analysis.

III. Predictive Analytics: Part III introduces the reader to predictive
analytics by developing two foundational and widely used prediction
functions, k-nearest neighbors and naïve Bayes. Chapter 10, on the
multinomial naïve Bayes prediction function, provides the reader with
the opportunity to work with textual data. Forecasting is the subject
of Chap. 11. Streaming data and real-time analytics are presented in
Chap. 12. The tutorials use publicly accessible data streams originating
from the Twitter API and the NASDAQ stock market.

This book does not cover data science methods exhaustively. An algo-
rithmic treatment of methods is too much for a single text. Data science is
too broad an area. For the reader who wants a deeper understanding in the
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methods of data science, we suggest further study in several areas: predictive
analytics (or statistical learning), data mining, and traditional statistics. On
the subjects of data mining and predictive analytics we recommend the texts
by James et al., An Introduction to Statistical Learning [29], Aggarwal’s Data
Mining [2] and Witten et al.’s Data Mining: Practical Machine Learning Tools
and Techniques [70]. Harrell’s Regression Modeling Strategies [25] and Ram-
sey and Schafer’s The Statistical Sleuth [48] are excellent statistics books.
One should consider Wickham’s [65] treatment of data visualization and the
R package ggplot2. Provost and Fawcett’s Data Science for Business [45] and
Grus’s Data Science from Scratch [23] provide complementary overviews of
data science without the burden of algorithmic details. Janssens’s Data Sci-
ence at the Command Line [30] pursues a unique treatment of data science
that will appeal to computer scientists.

1.7 Algorithms

An algorithm is a function. More to the point, an algorithm is a series of
functions that progressively transform an input before yielding the output.
Our focus is on algorithms that process data for the purpose of extracting
information from data. We said earlier that algorithms are the connective
tissue of data science, a metaphorical statement that deserves explanation.
What is meant by that statement is that the principles are applied to the
data through the algorithms.

The most important attributes of algorithms in general are correctness, ef-
ficiency, and simplicity [56]. When the algorithm’s purpose is data reduction,
then another criterion supersedes the second and third attributes—minimal
information loss. Information loss is an anathema since the overriding objec-
tive is to extract information from data. As a result, the concepts of asso-
ciative statistics and scalable algorithms are invaluable when working with
massively large data sets. Building data structures that organize and preserve
information also are very important, and we promote the use of dictionaries,
or hash tables for data reduction. These topics are developed in detail in
Chaps. 2 and 3.

The process of data reduction often involves aggregating observations ac-
cording to one or more attributes with organizational meaning. In the Fed-
eralist Paper example, the organizational unit was the author, and so we
ended up with three word distributions (one each for Hamilton, Madison,
and Jay). In the diabetes example, there were 14,270 profiles, each consisting
of a unique combination of age, education, income and body mass index. In
the NASDAQ example, the data were aggregated in the form of a matrix An

and a vector zn.
Though the diabetes and Federalist papers examples are very different, the

data structure for collating and storing the reduced data is the same: a dictio-
nary. A dictionary consists of a set of items. Each item has two components.
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The key is the unit of organization. In a conventional dictionary, the keys
are words. In the Federalist papers example, the keys are authors, and in
the diabetes example, profiles are the keys. The second component is the
value. In a conventional dictionary, the value is the definition of the word. In
the Federalist papers example, the word distribution is the value and in the
diabetes example, the estimated risk of diabetes is the value. Dictionaries
are invaluable for working with data because of the ease with which data
may be organized, stored, and retrieved. What of the algorithm? The algo-
rithm builds the dictionary and so the design of the algorithm is dictated by
the dictionary. The dictionary structure is dictated by the principles of data
reduction and the objectives of the analysis.

The NASDAQ data stream is an example without a dictionary. The
algorithm again is designed around the desired result: a price forecast that
is updated upon the arrival of a new datum. The forecasted price is to be
the output of a function driven by recently observed data. The influence
of early observations diminishes as time advances. We use a simple variant
on the usual sample mean to accomplish this objective—the exponentially
weighted average. Since there’s no need to store the data, there’s no need for
a dictionary.

1.8 Python

Python is the language of data science. While many languages are used in
data science, for instance, C++, Java, Julia, R, and MATLAB, Python is domi-
nant. It’s easy-to-use, powerful, and fast. Python is open-source and free. The
official Python home https://www.python.org/ has instructions for installa-
tion and a very nice beginners guide. It’s best for most people to use Python
in a development environment. We use jupyter (http://jupyter.org/) and
Sypder3 (https://pythonhosted.org/spyder/). The shockingly comprehensive
Anaconda distribution (https://www.continuum.io/why-anaconda) contains
both. This book assumes that the reader is using version 3.3 of Python.
We caution the reader that some 3.3 instructions used in the tutorials will
not work with Python 2.7. It’s rarely difficult to find a solution to version
problems by searching the web.

A virtue of Python is that there is a large community of experienced
programmers that have posted solutions on the internet to common Python
coding problems. If you don’t know how to code an operation (e.g., reading a
file), then a internet search usually will produce useful instructions and code.
Answers posted to http://stackoverflow.com/ are most likely to be helpful.

If you are not already familiar with a computer language, you should
immerse yourself in a self-study Python program for a week or two. If you
have not used Python before, then you will also benefit from some time spent
in self-study. Three free online courses are

https://www.python.org/
http://jupyter.org/
https://pythonhosted.org/spyder/
https://www.continuum.io/why-anaconda
http://stackoverflow.com/
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1. CodeAcademy (https://www.codecademy.com/learn/python) offers an
interactive tutorial for beginners.

2. LearnPython (http://www.learnpython.org/) allows the student to work
with Python code directly from a web browser. This is a good way to
start learning immediately since installing Python is not necessary.

3. Google offers a course (https://developers.google.com/edu/python/) that
assumes some familiarity with computer programming.

Once you have completed such a course, though, we recommend you dive in.
Most of the data scientists we know learned at least one of their primary pro-
gramming languages by working through real-world problems (often, sadly,
with real-world deadlines!) There’s a large number of relatively inexpensive
books written on Python for those that have more time and an interest in
becoming skilled rather than just competent. Our favorite book is Ramalho’s
Fluent Python [47]. Slatkin’s Effective Python [57] is very helpful for devel-
oping good programming style and habits.

1.9 R

Data scientists often find themselves carrying out analyses that are statis-
tical in nature. The ability to conduct statistical analyses and function in
the statistical world is tremendously valuable for the practicing data sci-
entist. The statistical package R [46] is the environment of choice among
data scientist and for good reason. R is an object-oriented programming lan-
guage with a huge number of excellent statistically-oriented functions and
third-party packages. It’s also free. You can work directly in the R environ-
ment but there are several front-ends that improve the experience. We use
RStudio (https://www.rstudio.com/). Using R is not the only way forward
though. There are Python packages, namely, Numpy, pandas, statsModels,
and matplotlib that can do some of the same things as R. The Python pack-
ages, however, are not as mature and seamless as R. At the present time,
knowing how to use R for modeling and statistics, and being able to build
graphics with the R graphics package ggplot2 [65] offer a clear advantage to
the data scientist.

As with Python, there’s an large collection of books written about R and
doing statistics with R. Maindonald and Braun’s Data Analysis and Graphics
Using R [38] and Albert and Rizzo’s R by Example [3] are excellent choices.

A few online tutorials for learning R are

1. O’Reilly’s interactive tutorial at http://tryr.codeschool.com/ is appropri-
ate if you have never used R.

https://www.codecademy.com/learn/python
http://www.learnpython.org/
https://developers.google.com/edu/python/
https://www.rstudio.com/
http://tryr.codeschool.com/
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2. The Institute for Digital Research and Education offers a self-directed
tutorial: http://www.ats.ucla.edu/stat/r/. This tutorial is appropriate if
you have had a little exposure to R or are proficient with a scripting
language.

3. The site https://cran.r-project.org/doc/manuals/r-release/R-intro.html
has an ancient manual for those that like do things the hard way.

1.10 Terminology and Notation

Data consists of measurements on observational units. An observational unit
renders an observation consisting measurements one or more different at-
tributes or variables.2 An observational unit in the diabetes example is a
U.S. adult resident that responded to the survey, and the attributes that
we extracted from the data set are age, education, income, body mass index,
and diabetes. We use the traditional statistical term variable interchangeably
with attribute. In the Federalist papers example, an observational unit is one
of the 85 papers. There are 1103 attributes associated with each observation,
and the observation rendered from a particular paper consists of the number
of uses of each word. We usually use n to denote the number of observations
in a data set and p to denote the number of attributes used in the analysis.

1.10.1 Matrices and Vectors

A vector consisting of p elements is denoted as

y
p×1

=

⎡

⎢

⎢

⎢

⎣

y1
y2
...

yp

⎤

⎥

⎥

⎥

⎦

.

A vector may be thought of as a p × 1 matrix. The transpose of y is a row-
vector or, equivalently, 1 × p matrix, and so y = [y1 y2 · · · yp]T . A matrix
is two-dimensional array of real numbers. For example,

Y
n×p

=

⎡

⎢

⎢

⎢

⎣

y1,1 y1,2 · · · y1,p

y2,1 y2,2 · · · y2,p

...
...

. . .
...

yn,1 yn,2 · · · yn,p

⎤

⎥

⎥

⎥

⎦

. (1.1)

2 Multiple observations may originate from a single unit. For example, studies on growth
often involve remeasuring individuals at different points in time.

http://www.ats.ucla.edu/stat/r/
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
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The subscripting system uses the left subscript to identify the row position
and the right subscript to identify the column position of the scalar yi,j .
Thus, yi,j occupies row i and column j. If the matrix is neither a column nor
a row vector, then the symbol representing the matrix is written in upper
case and in bold.

We often stack a set of row vectors to form a matrix. For example, Y
(formula (1.1)) may be expressed as

Y
n×p

=

⎡

⎢

⎢

⎢

⎣

yT
1

yT
2
...
yT

n

⎤

⎥

⎥

⎥

⎦

,

where yT
i is the ith row of Y.

The product of a scalar a ∈ R and a matrix B is computed by multiplying
every element in the matrix B by a. For example, abT

1×q
= [ab1 ab2 · · · abq].

Two products involving vectors are used frequently in this book, the inner
product and the outer product. The inner product of x and y is

xT

1×p
y

p×1
=

p
∑

i=1
xiyi = yTx.

The inner product is defined only if the lengths of the two vectors are the
same, in which case, the vectors are said to be conformable.

The product of two conformable matrices A and B is

A
p×n

B
n×q

=

⎡

⎢

⎢

⎢

⎣

aT
1 b1 · · · aT

1 bq

aT
2 b1 · · · aT

2 bq

...
. . .

...
aT

p b1 · · · aT
p bq

⎤

⎥

⎥

⎥

⎦

p×q

, (1.2)

where aT
i is the ith row of A and bj is the jth column of B.

The outer product of a vector x with another vector w is a matrix given by

x
p×1

w
1×q

T =

⎡

⎢

⎢

⎢

⎣

x1w1 · · · x1wq

x2w1 · · · x2wq

...
. . .

...
xpw1 · · · xpwq

⎤

⎥

⎥

⎥

⎦

. (1.3)

Generally, xwT �= wxT .
If a matrix A is square and full rank, meaning that the columns of A are

linearly independent, then there exists an inverse A−1 of A. The product of
A and its inverse is the identity matrix
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I
n×n

=

⎡

⎢

⎢

⎢

⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤

⎥

⎥

⎥

⎦

. (1.4)

Hence, I = AA−1 = A−1A since the inverse of A−1 is A. If a solution x is
needed to solve the equation

A
p×p

x
p×1

= y
p×1

, (1.5)

and A is invertible (that is, A has an inverse), then the solution of the
equation is x = A−1y.

1.11 Book Website

The website for the book is http://www.springer.com/us/book/
9783319457956.

http://www.springer.com/us/book/9783319457956
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Chapter 2
Data Mapping and Data Dictionaries

Abstract This chapter delves into the key mathematical and computational
components of data analytic algorithms. The purpose of these algorithms is to
reduce massively large data sets to much smaller data sets with a minimal loss
of relevant information. From the mathematical perspective, a data reduction
algorithm is a sequence of data mappings, that is, functions that consume data
in the form of sets and output data in a reduced form. The mathematical
perspective is important because it imposes certain desirable attributes on
the mappings. However, most of our attention is paid to the practical aspects
of turning the mappings into code. The mathematical and computational
aspects of data mappings are applied through the use of data dictionaries.
The tutorials of this chapter help the reader develop familiarity with data
mappings and Python dictionaries.

2.1 Data Reduction

One of principal reasons that data science has risen in prominence is the ac-
celerating growth of massively large data sets in government and commerce.
The potential exists for getting new information and knowledge from the
data. Extracting the information is not easy though. The problem is due
to the origins of the data. Most of the time, the data are not collected ac-
cording to a design with the questions of interest in mind. Instead, the data
are collected without planning and for purposes tangential to those of the
analyst. For example, the variables recorded in retail transaction logs are
collected for logistical and accounting purposes. There’s information in the
data about consumer habits and behaviors, but understanding consumer be-
havior is not the purpose for collecting the data. The information content
is meager with respect to the objective. The analyst will have to work hard

© Springer International Publishing Switzerland 2016
B. Steele et al., Algorithms for Data Science,
DOI 10.1007/978-3-319-45797-0_2
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to get the information and the strategy must be developed intelligently and
executed carefully. Tackling the problem through the use of data mappings
will help develop the strategy.

The second major hurdle in extracting information from massively large
data sets materializes after the data analyst has developed a strategy. Trans-
lating the strategy to action will likely require a substantial programming
effort. To limit the effort, we need a language with objects and functions
compatible with data mapping. Python is the right language, and the Python
dictionary is the right structure for building data reduction algorithms.

The next section discusses a fairly typical data source and database to
provide some context for the discussion of data reduction and data mappings.

2.2 Political Contributions

In April of 2014, the Supreme Court struck down a 40 year-old limit on cam-
paign contributions made by individuals within a single 2-year election cycle.1
Many people believe that the ruling allows the very wealthy to have undue
influence on election outcomes. Anyone that attempts to analyze the rela-
tionship between contributions and candidates must recognize that popular
candidates attract contributions. A simple analysis of total contributions and
election winners cannot produce evidence of causation. However, there is a
rich, publicly available data source maintained by the Federal Election Com-
mission that may be mined to learn about the contributors and recipients of
money spent in the electoral process.

Let’s suppose that you are running an electoral campaign and you have
a limited budget with which to raise more money. The money should be
spent when potential contributors are most likely to contribute to your cam-
paign. But when? The Federal Election Commission data sets can be used
to determine when people contribute. That’s not exactly the answer to the
question, but it is close. To answer that question, we computed the dollar
value of contributions reported to the Federal Election Commission for each
day of a 2-year period roughly corresponding to the 2012–2014 election cycle.
Figure 2.1 shows that daily total contributions were fairly static for most of
the cycle except for temporary increases soon before the end of the year.
Closer inspection revealed that contributions increase briefly before Decem-
ber 31, March 31, June 30, and September 30, dates that mark the end of
the fiscal quarters. A much greater and lasting increase began in September
of 2014, often recognized as the beginning of the political campaign season.
There are also substantial differences between weekday and weekend contri-
butions perhaps because individuals and not corporations make donations on
weekends.

1 Election cycles correspond to the 2-year terms of the Representatives to the U.S.
Congress.
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The Federal Election Campaign Act requires candidate committees and
political action committees (PACs) to report contributions in excess of $200
that have been received from individuals and committees. Millions of large
individual contributions (that is, larger than $200) are reported in a 2-
year election cycle. The 2014–2016 data set contained more than 12 mil-
lion records as of July 1, 2016. Data from 2003 to the most recent election
cycle are publicly available from the Federal Election Commission webpage
http://www.fec.gov/disclosure.shtml. Three data file types of particular in-
terest are: (a) contributions by individuals; (b) committee master files con-
taining information about Political Action Committees, campaign commit-
tees, and other committees raising money to be spent on elections; and (c)
candidate master files containing information about the candidates. The con-
tributions by individuals files contain records of large contributions from in-
dividuals. The files list the contributor’s name and residence, occupation,
and employer. They also list the transaction amount and a code identifying
the recipient committee. Some data entries are missing or non-informative.
A contribution record looks like this:

C00110478|N|M3||15|IND|HARRIS, ZACHARY|BUTTE|MT|59701|PEABODY COAL|225
We see that Zachary Harris, an employee of Peabody Coal, made a contribu-
tion of $225 to the committee identified by C00110478.

Another application of the FEC data is motivated by the widely-held belief
that big contributions buy political influence [21]. If this is true, then we ought
to find out who contributed the largest sums of money. The principal effort
in identifying the biggest contributors is the reduction of two million or more
contribution records to a short list of contributors and sums. In what follows,
reduction is accomplished by creating a Python dictionary containing the
names and contribution sums of everyone that appears in the contributions
by individuals data file.

http://www.fec.gov/disclosure.shtml
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2.3 Dictionaries

A Python dictionary is much like a conventional dictionary. A conventional
dictionary is set of pairs. Each pair consists of a word (the Python analog is a
key) and a definition (the Python analog is a value). Both types of dictionaries
are organized around the key in the sense that the key is used to find the
value. Keys are unique. That is, a key will only appear once in the dictionary.
An example of three key-value pairs from a dictionary of contributors and
contributions sums from the 2012–2014 election cycle is

’CHARLES G. KOCH 1997 TRUST’ : 5000000,
’STEYER, THOMAS’ : 5057267,

’ADELSON, SHELDON’ : 5141782.

The keys are contributor names and the values are the totals made by the
contributor during the election cycle. If there was more than one contribution
made with the same name, then we store the sum of the contributions with
the name. Python places some constraints on the types of objects to be used
as keys but the values are nearly unconstrained; for example, values may be
integers as above, strings, sets, or even dictionaries. In the example above,
the number of entries in the contributor dictionary will not be dramatically
less than the number of records in the data file. However, if the objective were
to identify geographic entities from which the most money originated, then
United States zip codes could be used as keys and the number of dictionary
entries would be about 43,000.

2.4 Tutorial: Big Contributors

The objective of this tutorial is to construct a Python dictionary in which
individual contributors are the keys and the values are the sum of all con-
tributions made by the contributor in an election cycle. Some care must be
taken in how the dictionary is constructed because big contributors make
multiple contributions within an election cycle. Therefore, the value that is
stored with the key must be a total, and we have to increment the total
whenever second and subsequent records from a particular contributor are
encountered in the data file.

After constructing the dictionary, the entries are to be sorted by the con-
tribution totals (the dictionary values). The result will be a list of the names
and contribution totals ordered from largest to smallest total contribution.

Proceed as follows:

1. Navigate to http://www.fec.gov/finance/disclosure/ftpdet.shtml, the Fed-
eral Election Commission website. Select an election cycle by clicking on
one of the election cycle links. The individual contributions file appear as

http://www.fec.gov/finance/disclosure/ftpdet.shtml
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indivxx.zip where xx is the last two digits of the last year of the election
cycle, e.g., indiv14.zip contains data from the 2012–2014 election cycle.
Download a file by clicking on the name of the zip file.

2. Before leaving the website, examine the file structure described under
Format Description. In particular, note the column positions of the
name of the contributor (8 in the 2012–2014 file) and the transaction
amount (15 in the 2012–2014 file).

Beware: the FEC labels the first column in their data sets as one, but
the first element in a list in Python is indexed by zero. When the Python
script is written, you will have to subtract one from the column position
of a variable to obtain the Python list position of the variable.

3. Unzip the file and look at the contents. The file name will be itcont.txt.
Opening large files in an editor may take a long time, and so it’s useful
to have a way to quickly look at the first records of the file. You may do
the following:

a. If your operating system is Linux, then open a terminal, navigate to
the folder containing file and write the first few records of the file to
the terminal using the instruction

cat itcont.txt | more

Pressing the enter key will print the next row. Pressing the Ctrl+C key
combination will terminate the cat (concatenate) command. You’ll
see that attributes are separated by the pipe character: |.

b. If your operating system is Windows 7, then open a command
prompt, navigate to the folder containing the file, and write first
20 records of the file to the window using the instruction

head 20 itcont.txt

c. If your operating system is Windows 10, then open a PowerShell,
navigate to the folder containing the file, and write first 20 records
of the file to the window using the instruction

gc itcont.txt | select -first 20

4. Create a Python script—a text file with the py extension. Instruct the
Python interpreter to import the sys and operator modules by entering
the following instructions at the top of the file. A module is a collection
of functions that extend the core of the Python language. The Python
language has a relatively small number of commands—this is a virtue
since it makes it relatively easy to master a substantial portion of the
language.
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import sys
import operator

5. Import a function for creating defaultdict dictionaries from the module
collections and initialize a dictionary to store the individual contribu-
tor totals:

from collections import defaultdict
indivDict = defaultdict(int)

The int argument passed to the defaultdict function specifies that the
dictionary values in indivDict will be integers. Specifically, the values
will be contribution totals.

6. Specify the path to the data file. For example,

path = ’home/Data/itcont.txt’

If you need to know the full path name of a directory, submit the Linux
command pwd in a terminal. In Windows, right-click on the file name in
Windows Explorer and select the Properties option.

7. Create a file object using the open function so that the data file may be
processed. Process the file one record at a time by reading each record as
a single string of characters named string. Then, split each string into
substrings wherever the pipe symbol appears in the string. The code for
opening and processing the file is

with open(path) as f: # The file object is named f.
for string in f: # Process each record in the file.

data = string.split("|") # Split the character string
# and save as a list named data.

print(data)
sys.exit()

The statement data = string.split("|") splits the character string
at the pipe symbol. The result is a 21-element list named data. The
instruction print(len(data)) will print the length of the list named
data. You can run the print statement from the console or put it in the
program.

The sys.exit() instruction will terminate the program. The data file
will close when the program execution completes or when execution is
terminated. Execute the script and examine the output for errors. You
should see a list of 21 elements.
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The Python language uses indentation for program flow control. For exam-
ple, the for string in f: instruction is nested below the with open(path)
as f: statement. Therefore, the with open(path) as f: statement exe-
cutes as long as the file object f is open. Likewise, every statement that
is indented below the for string in f: statement will execute before the
flow control returns to the for statement. Consequently, for string in f
reads strings until there are no more strings in f to be read. The object f
will close automatically when the end of the file is reached. At that point,
the program flow breaks out of the with open(path) as f loop.

The convention in this book is to show indentation in a single code seg-
ment, but not carry the indentation down to the following code segments.
Therefore, it is up to the reader to understand the program flow and prop-
erly indent the code.

Let’s return to the script.

8. Remove the termination instruction (sys.exit()) and the print instruc-
tion. Initialize a record counter using the instruction n = 0. Below the
import and path declaration instructions, the program should appear
as so:

n = 0
with open(path) as f: # The file object is named f.

for string in f: # Process each record in the file.
data = string.split("|")

9. In the Python lexicon, an item is a key-value pair. Each item in the
dictionary indivDict consists of the name of a contributor (the key)
and the total amount that the contributor has contributed to all election
committees (the value).

Items will be added to the dictionary by first testing whether the
contributor name is a dictionary key. If the contributor’s name is not a
key, then the name and contribution amount are added as a key-value pair
to the dictionary. On the other hand, if the candidate’s name is already
a key, then the contribution amount is added to the existing total. These
operations are carried out using a factory function, a function contained
in the module collections. This operation is done automatically—we
only need one line of code:

indivDict[data[7]] += int(data[14])

Add this instruction so that it operates on every list. Therefore, the inden-
tation must be the same as for the instruction data = string.split("|").
Set it up like this:
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with open(path) as f:
for string in f:

data = string.split("|")
indivDict[data[7]] += int(data[14])

10. To trace the execution of the script, add the instructions

n += 1
if n % 5000 == 0:

print(n)

within the for loop. The instruction n % 5000 computes the modulus,
or integer remainder, of 5000/n. If n is printed more often than every
5000 lines, then the execution of the program will noticeably slow.

11. After processing the data set, determine the number of contributors by
adding the line

print(len(indivDict))

This instruction should not be indented.
12. Place the instruction import operator at the top of the script. Import-

ing the module allows us to use the functions contained in the module.
13. Sort the dictionary using the instruction

sortedSums = sorted(indivDict.items(), key=operator.itemgetter(1))

The statement indivDict.items() creates a list (not a dictionary) con-
sisting of the key-value pairs composing indivDict. The key argument
of the function sorted() points to the position within the pairs that are
to be used for sorting. Setting key = operator.itemgetter(1) spec-
ifies that the elements in position 1 of the tuples are to be used for
determining the ordering. Since zero-indexing is used, itemgetter(1)
instructs the interpreter to use the values for sorting. Setting key =
operator.itemgetter(0) will instruct the interpreter to use the keys
for sorting.

14. Print the names of the contributors that contributed at least $25, 000:

for item in sortedSums :
if item[1] >= 25000 : print(item[1], item[0])
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15. The list of largest contributors likely will show some individuals.

Transforming the individual contributors data set to the dictionary of con-
tributors did not dramatically reduce the data volume. If we are to draw
inferences about groups and behaviors, more reduction is needed. Before pro-
ceeding with further analysis, we will develop the principles of data reduction
and data mapping in detail.

2.5 Data Reduction

Data reduction algorithms reduce data through a sequence of mappings.
Thinking about a data reduction algorithm as a mapping or sequence of map-
pings is a key step towards insuring that the final algorithm is transparent
and computationally efficient. Looking ahead to the next tutorial, consider
an algorithm that is to consume an individual contribution data set A. The
objective is to produce a set of pairs E in which each pair identifies a major
employer, say Microsoft, and the amounts contributed by company employees
to Republican, Democratic, and other party candidates. The output of the
algorithm is a list of pairs with the same general form as r:

r =
(

Microsoft :
[

(D, 20030), (R, 4150), (other, 0)
])

. (2.1)

We say that the algorithm maps A to E. It may not be immediately obvi-
ous how to carry out the mapping, but if we break down the mapping as a
sequence of simple mappings, then the algorithm will become apparent. One
sequence (of several possible sequences) begins by mapping individual contri-
bution records to a dictionary in which each key is an employer and the value
is a list of pairs. The pairs consist of the recipient committee code and the
amount of the contribution. For instance, a dictionary entry may appear so:

(

Microsoft :
[

(C20102, 200), (C84088, 1000), . . .
])

,

where C20102 and C84088 are recipient committee identifiers. Be aware that
the lengths of the lists associated with different employers will vary widely
and the lists associated with some of the larger employers may number in the
hundreds. Building the dictionary using Python is straightforward despite
the complexity of the dictionary values.

We’re not done of course. We need the political parties instead of the re-
cipient committee identifiers. The second mapping consumes the just-built
dictionary and replaces the recipient committee code with a political party
affiliation if an affiliation can be identified. Otherwise, the pair is deleted. The
final mapping maps each of the long lists to a shorter list. The shorter list
consists of three pairs. The three-pair list is a little complicated: the first ele-
ment of a pair identifies the political party (e.g., Republican) and the second
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element is the sum of all employee contributions received by committees with
the corresponding party affiliation. Line 2.1 shows a hypothetical entry in the
final reduced data dictionary.

It may be argued that using three maps to accomplish data reduction is
computationally expensive, and that computational efficiency would be im-
proved by using fewer maps. The argument is often misguided since the effort
needed to program and test an algorithm consisting of fewer but more sophis-
ticated and complicated mappings shifts the workload from the computer to
the programmer.

2.5.1 Notation and Terminology

A data mapping is a function f : A �→ B where A and B are data sets. The
set B is called the image of A under f and A is the called preimage of B.
Suppose that y is a vector of length p (Chap. 1, Sect. 1.10.1 provides a review
of matrices and vectors). For instance, y may be constructed from a record
or row in a data file. To show the mapping of an element y ∈ A to an element
z ∈ B by f , we write

f : y �→ z or f(y) = z.

We also write B = f(A) to indicate that B is the image of A. The statement
B = f(A) implies that for every b ∈ B there exists a ∈ A such that a �→ b.

For the example above, it’s possible to construct a single map f from A
to E though it’s less complicated to define two mappings that when applied
in sequence, map A to E. If the first mapping is g and the second is h, then
data reduction is carried out according to g : A �→ B and then h : B �→ E, or
more simply by realizing that f is the composite of g and h, i.e., f = h ◦ g.

As a point of clarification, a list of length p in the Python lexicon is
equivalent to a tuple of length p in mathematics. The elements of a list may
be changed by replacement or a mathematical operation. If we may change
the values of an object, then the object is said to be mutable. For instance,
a Python list is mutable. The term tuple in the Python lexicon refers to an
immutable list. The elements of a tuple cannot be changed. You may think
of a tuple as a universal constant while the program executes.

The order or position of elements within a tuple is important when working
with tuples and Python lists; hence, x �= y if x = (1, 2) and y = (2, 1). In
contrast, the elements of sets may be rearranged without altering the set, as
illustrated by {1, 2} = {2, 1}. The Python notation for a list uses brackets, so
that mathematical tuples are expressed as Python lists by writing x = [1,2]
and y = [2,1]. The beginning and end of a Python tuple (an immutable list)
is marked by parentheses. For example, z = (1,2) is a Python two-tuple.
You may verify that x �= z (submit [1,2]==(1,2) in a Python console).
You can create a tuple named a from a list using the tuple function; e.g.,
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a = tuple([1,2]); likewise, a list may be formed from a tuple using the
statement a = list[(1,2)]. However, if you submit [(1,2)], the result is
not a list consisting of the elements 1 and 2. Instead the result is a list
containing the tuple (1, 2).

2.5.2 The Political Contributions Example

To make these ideas concrete we’ll continue with the political contributions
example and define three data mappings that reduce an input data file on
the order of a million records to an output file with about 1000 records. The
first mapping g : A �→ B is defined to take a contribution record y ∈ A and
map it to a three-tuple b = (b1, b2, b3) ∈ B where b1 is the employer of the
contributor, b2 is the political party of the recipient of the contribution, and
b3 is the contribution amount.

The set B will be only slightly smaller than A since the mapping does
little more than discard entries in A with missing values for the attributes of
interest. The second mapping h takes the set B as an input and computes the
total contribution for each employer by political party. Supposing that the
political parties are identified as Republican, Democratic, and Other, then
the image of B under h : B �→ C may appear as C = {c1, c2, . . . , cn} where,
for example,

c1 = (Microsoft, Republican, 1000)
c2 = (Microsoft, Democratic, 70000)
c3 = (Microsoft, Other, 350)

...
cn = (Google, Other, 5010).

The data set C is convenient for producing summary tables or figures.
However, C may be further reduced by a third mapping k that combines the
records for a particular employer as a single pair with a somewhat elaborate
structure. For example, the key-value pair d1 ∈ D = k(C), may appear as

d1 = (d11,d12) =
(

Microsoft,
(

(D, 20030), (R, 4150), (other, 0)
)

)

(2.2)

where d11 =Microsoft. The second element of the pair d1 is a three-tuple
d12 = (d121,d122,d123) where the elements of the three-tuple are pairs.
Hence, the first element of the three-tuple, d121 = (D, 20030), is a pair in
which the first element identifies the Democratic party and the second el-
ement is the total contribution made by employees to candidates affiliated
with the Democratic party.

The distribution of contributions to Democratic and Republican candi-
dates made by employees of 20 companies are shown in Fig. 2.2 as an illus-
tration of the results of the data reduction process described above. There is
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a substantial degree of variation between companies with respect to the dis-
tribution; for instance, the split between Democratic and Republican parties
is nearly equal for Morgan Stanley, but very lopsided for Google (which ap-
pears twice) and Harvard. Those companies that reveal the least amount
of diversity in party contributions contribute predominantly to Democratic
party candidates.

0 5 10 15
Dollars − 100,000’s

NEA
PFIZER INC

LINKEDIN
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MCDONALDS
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MICROSOFT

GOLDMAN SACHS

Fig. 2.2 Contributions to committees by individual contributors aggregated by em-
ployer. Length of the red lines represents the total amount to Republican party candi-
dates and the length of the blue lines represents total contributions to Democratic party
candidates

2.5.3 Mappings

Let us take a mathematical view of data mappings to help identify some
properties, that if lacking, imply that an algorithm is at risk of not achieving
its intended purpose.

The first of these mathematical properties is that a mapping must be well-
defined. A mapping f : D → E is well-defined if, for every x ∈ D there is one
and only one output y = f(x).

If an algorithm is treated as a well-defined mapping, then there can only be
one and only one output of the algorithm for every possible input. A second
essential property of a data mapping is that every output y must belong
to the image set E. This implies that all possible outputs of the function
must be anticipated and that the algorithm does not produce an unexpected
or unusable output, say, an empty set instead of the expected four-element
tuple. This condition avoids the possibility of an subsequent error later in
the program. Computer programs that are intended for general use typically
contain a significant amount of code dedicated to checking and eliminating
unexpected algorithm output.
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We define a dictionary mapping to be a mapping that produces a key-
value pair. The key is a label or index that identifies the key-value pair.
The key serves as a focal point about which the mapping and algorithm is
constructed. In the example above, a natural choice for keys are the employer
names because the objective is to summarize contributions to Democratic and
Republican political parties by employers. A collection of key-value pairs will
be called a dictionary in accordance with Python terminology.2 A dictionary
item is a key-value pair, say ei = (keyi, valuei), and if the mapping is f : D �→
E, then we will refer to f(D) = {e1, . . . , en} as the dictionary produced by
the application of f to the data set D. Keep in mind that a Python dictionary
is not a set. It has it’s own type–dict. However, since the items in a dictionary
are unique, we tend to think of dictionaries as sets. You may determine the
type of an object u with the instruction type(u).

2.6 Tutorial: Election Cycle Contributions

The aim of this tutorial is translate the logical and mathematical descriptions
of the data reduction mappings above into Python code for the problem of
summarizing the political orientation of company employees. It has been
conjectured that the existence a corporate culture within a company fosters
insularity, uniformity of thought, and suppression of originality, all of which
are presumed to have negative effects on creativity and innovation. But, it’s
difficult to uncover objective evidence that supports this conjecture. We may,
however, investigate the political complexion of a corporation, more specif-
ically, the political preferences of the employees of a company by studying
the recipients of their contributions. If the results of the investigation reveal
that one political party is the dominant recipient of contributions, then we
have some evidence of a tendency for employees to align politically.

The first task of this investigation is to build a dictionary that identifies a
political party associated with an individual’s contribution. The keys, how-
ever, are not individuals but instead are the employers of the individuals. To
accomplish the task, a Federal Elections Commission Individual Contribu-
tions data file will be mapped to a dictionary in which a key is an employer
and the associated value is a list of n pairs, where each pair consists of
a recipient political party and contribution amount. The second task is to
build another dictionary to store contribution totals by employer and polit-
ical party. This task is accomplished by a mapping the n pairs associated
with an employer to three pairs (corresponding to Republican, Democratic,
and other parties)

As with Tutorial 2.4, you’ll process an Individual Contributions data
file for some election cycle. From each record, extract the employer, the

2 Python dictionaries are equivalent to Java hashmaps.
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contribution amount and the recipient code. If there is an employer listed,
then determine whether there is a political party associated with the recipient
code.

We’ll need another dictionary that links political party to recipient. If
there is a political party associated with the recipient, it will be recorded
in one of two FEC files since there are two types of recipients: candidate
committees and other committees. If the recipient is a candidate committee,
then the committee information is in the Candidate Master file and there’s
a good chance that a political party will be identified in the file. The other
recipients, or other committees, encompass political action committees, party
committees, campaign committees, or other organizations spending money
related to an election. Information on other committees is contained in the
Committee Master file and a political party sometimes is identified with the
committee in this file. Therefore, once the recipient code is extracted from
the Individual Contributions data file, you’ll have to check for the recipient
code in the Candidate Master file; if it’s not there, then check the Committee
Master file.

The program is somewhat complicated because two dictionaries must be
searched to determine the party affiliation of a receiving candidate. We wind
up processing three files and building three dictionaries. Table 2.1 is shown
for reference.

Table 2.1 Files and dictionaries used in Tutorial 2.6. The file cn.txt is a Candidate
Master file and cm.txt is a Committee Master file. The file itcont.txt is a Contributions
by Individual file. Field positions are identified using zero-indexing

Attributes and field positions
File Dictionary Key Column Value Column

cn.txt canDict Committee code 9 Political partya 2
cm.txt comDict Committee code 0 Political party 10

itcont.txt employerDict Employer 11 Amount 14

aThe recipient’s political party is determined by searching the canDict and comDict
dictionaries for the committee code associated with the individual’s contribution

1. Decide on an election cycle and, for that cycle, download and unzip the
(a) Candidate Master File; (b) Committee Master File; and (c) Con-
tributions by Individuals Files from the Federal Elections Commission
webpage http://www.fec.gov/finance/disclosure/ftpdet.shtml.

2. Build a candidate committee dictionary from the Candidate Master file
using the principal campaign committee codes in field position 9 (the
zero-indexed column) as keys and party affiliation in position 2 as values.
We will refer to this dictionary by the name canDict.

http://www.fec.gov/finance/disclosure/ftpdet.shtml
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canDict = {}
path = ’../cn.txt’
with open(path) as f:

for line in f:
data = line.split("|")
canDict[data[9]] = data[2]

Candidate identifiers appear only once in the Candidate Master file so it’s
not necessary to test whether data[9] is a dictionary key before creating
the key-value pair.

3. Build an other committees dictionary from the Committee Master file.
We’ll use the Python indexing convention of indexing the first element
of a list with 0. The keys are to be the committee identification codes
located in field position 0 of Committee Master file and the values are
the committee parties located in field position 10. We will refer to this
dictionary by the name otherDict.

otherDict = {}
path = ’../cm.txt’
with open(path) as f:

for line in f:
data = line.split("|")
otherDict[data[0]] = data[10]

4. Build the dictionary employerDict. Keys will be employers and values
will be a list of pairs. Each pair in a list will be a political party and a
contribution amount. To build the dictionary, process the Contributions
by Individuals (itcont.txt) data file one record at a time.3

The first task to perform with each record is to determine what, if any
political party affiliation is associated with the recipient of the contribu-
tion. The search begins with the Filer Identification number—data[0].
The filer is the recipient committee and the entity that filed the report
to the Federal Elections Commission (the individual does not file the
report). Determine if there is a party listed for the recipient commit-
tee. First, check the candidate committee dictionary in case the recipient
committee is a candidate committee. Look for a party name entry in the
dictionary named canDict. If the filer identification number is not a key
in this dictionary, then look for an entry in the other committee dictio-
nary named otherDict. Then create a two-tuple, x, with the party and
the amount. Use the int function to convert the contribution amount
(stored as a string) to an integer. The code follows:

3 You may be able to reuse your code from the tutorial of Sect. 2.4.
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path = ’../itcont14.txt’
n = 0
employerDict = {}
with open(path) as f:

for line in f:
data = line.split("|")
party = canDict.get(data[0])
if data[0] is None:

party = otherDict[data[0]]
x = (party, int(data[14]))

5. The next step is to save x in the dictionary named employerDict. Each
key is to be the employer of a contributor and the value will be a
list of contribution pairs (the x’s) built in step 4. If there is an entry
in data for employer, it will be in position 11. So, extract data[11]
and if it is not empty string, then assign the string to employer. If
employer is an empty string, then ignore the record and process the
next record. Assuming that there is an entry for employer, test whether
it is a dictionary key. If employer is not a dictionary key, then create
the dictionary entry by assigning a list containing x using the instruc-
tion employerDict[employer] = [x]. On the other hand, if employer
is a key, then append x to the dictionary value associated with employer
using the instruction employerDict[employer].append(x):

employer = data[11]
if employer != ’’:

value = employerDict.get(employer)
if value is None:

employerDict[employer] = [x]
else:

employerDict[employer].append(x)

Don’t forget to indent the code segment. It must be aligned with the
x = (party, int(data[14])) statement because it is to execute every
time that a new record is processed. The pair x is appended in the last
statement of the code segment.

By construction, the value associated with the key will be a list. For
instance, a value may appear as so:

value = [(’DEM’, 1000), (”, 500),(’REP’, 500)]. (2.3)

Note that one of the entries in value is an empty string which implies
that the contribution was received by a committee without a political
party listed in either the Candidate Master or Committee Master file.
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6. It’s helpful to trace the progress as the script executes. Count the number
of records as the file is processed and print the count at regular intervals.
Process the entire file.

7. The last substantive set of code will reduce employerDict to the dictio-
nary illustrated by Eq. (2.2). Having become familiar with dictionaries,
we may describe the reduced dictionary, reducedDict, as a dictionary of
dictionaries. The keys of reducedDict are to be employers and the values
are to be dictionaries. The keys of these internal or sub-dictionaries are
the party labels ’Other’, ’DEM’, and ’REP’ and the values are the total
of contributions to each party made by employees of a company. Suppose
that GMC is a key of reducedDict. Then, the value associated with GMC
may appear as so:

reducedDict[’GMC’]={’Other’ : 63000, ’DEM’ : 73040, ’REP’: 103750}.

The reduced dictionary will be formed by building a dictionary named
totals for each employer. The dictionary totals will then be stored as
the value associated with the employer key in reducedDict. Begin by
initializing the reduced dictionary and iterating over each key-value pair
in employerDict:

reducedDict = {}
for key in employerDict: # Iterate over employerDict.

totals = {’REP’:0,’DEM’:0,’Other’:0} # Initialize the dictionary.
for value in employerDict[key]:

try :
totals[value[0]] += value[1]

except KeyError:
totals[’Other’] += value[1]

reducedDict[key] = totals

The value associated with employerDict[key] is a list of pairs (polit-
ical party and contribution amount). The for loop that iterates over
employerDict[key] extracts each pair as value. The first element
value[0] is a party and the second element value[1] is a dollar amount.
The first two lines of this code segment are not indented. The code

try :
totals[value[0]] += value[1]

attempts to add the contribution amount stored in value[1] with the
party name stored in value[0]. If the party name is not ’REP’, ’DEM’
or ’Other’, then the Python interpreter will produce a KeyError ex-
ception (an error) and program flow will be directed to the instruc-
tion totals[’Other’] += value[1]. The result is that the contribution
amount is added to the other party total. The try and except construct
is called an exception handler.



36 2 Data Mapping and Data Dictionaries

8. We will want to sort the entries in the employer dictionary according
to the total of all contributions made by employees of an employer. Im-
mediately after the statement reducedDict = {}, initialize a dictionary
named sumDict to contain the total of all contributions made by employ-
ees of each employer. Add an instruction that computes the sum of the
three dictionary values and stores it with the employer key. The instruc-
tion is

sumDict[key] = totals[’REP’] + totals[’DEM’] + totals[’Other’]

The instruction executes immediately after the assignment instruction
reducedDict[key] = totals from step 7 and it should be aligned with
it.

9. Add an instruction so that the execution of the script may be monitored,
say,

if sumDict[key] > 10000 : print(key, totals)

Indent this instruction so that it executes on every iteration of the for
loop. This print statement is the last instruction in the for loop.

10. Now that sumDict has been built, we will create a list from the dictionary
in which the largest contribution sums are the first elements. Specifically,
sorting sumDict with respect to the sums will create the sorted list. The
resulting list consists of key-value pairs in the form [(k1, v1), . . . , (kn, vn)]
where ki is the ith key and vi is the ith value. Because the list has been
sorted, v1 ≥ v2 ≥ · · · ≥ vn. Since sortedList is a list, we can print the
employers with the 100 largest sums using the code

sortedList = sorted(sumDict.items(), key=operator.itemgetter(1))
n = len(sortedList)
print(sortedList[n-100:])

If a is a list, then the expression a[:10] extracts the first ten elements and
a[len(a)-10:] extracts the last 10. These operations are called slicing.

11. Write a short list of the largest 200 employers to a text file. We’ll use R
to construct a plot similar to Fig. 2.2. The code follows.
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path = ’../employerMoney.txt’
with open(path,’w’) as f:

for i in range(n-200, n):
employerName = sortedList[i][0].replace("’", "")
totals = reducedDict[employerName]
outputRecord = [employerName] + [str(x) for x in totals.

values()] + [str(sortedSums[i][1])]
string = ’;’.join(outputRecord) +’\n’
f.write(string)

The ’w’ argument must be passed in the call to open to be able to
write to the file. Some employer names contain apostrophes and will
create errors when R reads the file so we must remove the apostrophes
from the employer name before the data is written to the output file.
Applying the replace operator to the string sortedList[i][0] removes
the apostrophes wherever they are found in the string.

The list outputRecord is created by concatenating three lists (each
is enclosed by brackets) using the + operator. The middle list is created
by list comprehension. List comprehension is discussed in detail in the
Sect. 2.7.1. For now, it’s a method of creating a list using a for loop.

In the instruction

string = ’;’.join(outputRecord)+’\n’

outputRecord is converted to a string using the .join operator. A semi-
colon joins each list element in the creation of the string. The semicolon
serves as a delimiter so that the output file is easy to process in R. A
delimiter is a symbol that is used to separate variables. For example,
commas are used to separate variables in a comma-delimited file (often
known as a csv file.) Lastly, the end-of-line marker \n is concatenated to
the list.

12. Use the following R code to generate a figure showing the largest contri-
bution totals to Republican and Democratic parties from company em-
ployees. The instruction s = 160:190 effectively ignores the largest ten
employers (you can see that most of the largest 10 are not true employers
but instead identify contributors that are self-employed, retired, and so
on). The instruction order(v) returns a vector of indices that orders the
vector v from smallest to largest.
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Data = read.table(’../Data/employerMoney.txt’ ,sep=’;’, as.is = TRUE)
colnames(Data) = c(’Company’, ’Rep’, ’Dem’, ’Other’, ’Total’)
head(Data)
print(Data[,1])
s = 160:190 # Select specific rows to plot.
D = Data[s,] # Take the subset.
D = D[order(D$Rep+D$Dem),] # Re-order the data according to the total.
rep = D$Rep/10^5 # Scale the values.
dem = D$Dem/10^5
mx = max(rep+dem)
names = D[,1]
n = length(rep)
# Fix the plot window for long names.

plot(x = c(0,mx),y=c(1,n),yaxt = ’n’,xlab
= "Dollars - 100,000’s",cex.axis = .65,typ = ’n’,ylab=’’,cex.lab=.8)

axis(side = 2, at = seq(1,n),labels = names, las = 2, cex.axis = .65)
for (i in 1:n) {

lines(y=c(i,i),x=c(0,rep[i]),col=’red’,lwd=3)
lines(y=c(i,i),x=c(rep[i],rep[i]+dem[i]),col=’blue’,lwd=3)

}
par(oma=c(0,0,0,0)) # Reset the plotting window to default values.

2.7 Similarity Measures

Similarity measurements are routinely used to compare individuals and ob-
jects. They’re used extensively by recommendation engines—algorithms that
recommend products and services to potential customers. The underlying
premise is that if viewer A is similar to viewer B with respect to the movies
that they have watched, then movies watched by A and not by B may be
recommended to B. In the case of political fund-raising, knowing that con-
tributors to candidate A are likely to contribute to candidate B allows a
campaign committee to more effectively direct their fund raising efforts.

Similarity measurements may also provide insight to a new or little-
understood entity, say, a campaign committee that is secretive about its
objectives. Suppose that a campaign committee A has received contribu-
tions from committees collected in the set A = {a1, . . . , an}. An analyst can
gain an understanding of a secretive committee by determining its similar-
ity to known committees. To proceed, a function is needed that will measure
similarity between entities A and B based on sets A and B. More specifically,
we need at least one similarity measure. We will examine two measures of
similarity: Jaccard similarity and conditional probabilities.

Let |A| denote the cardinality of the set A. If S is finite, then |S| is the
number of elements in S. The Jaccard similarity between sets A and B is the
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number of elements in both A and B relative to the number of elements in
either A or B. Mathematically, the Jaccard similarity is

J(A, B) = |A ∩ B|
|A ∪ B| . (2.4)

Jaccard similarity possesses several desirable attributes:

1. If the sets are the same then the Jaccard similarity is 1. Mathematically,
if A = B, then A ∩ B = A ∪ B and J(A, B) = 1.

2. If the sets have no elements in common, then A∩B = ∅ and J(A, B) = 0.
3. J(A, B) is bounded by 0 and 1 because 0 ≤ |A ∩ B| ≤ |A ∪ B|.

Jaccard similarity is particularly useful if all possible elements of A ∪ B are
difficult or expensive to determine. For example, suppose that individuals
are to be grouped according to the similarity of their gut microbiota.4 The
possible number of resident species of microorganisms may number in the
hundreds of thousands but the number that is expected be found in a stool
sample will tend to be many times less. In this case, similarity should be
measured on the basis of the species that are present and not on the basis
of species that are absent since the vast majority of possible resident species
will not be present. Jaccard similarity depends only on the distribution of
species in A ∪ B and those species absent from the union have no bearing on
the value of J(A, B).

Jaccard similarity is an imperfect similarity measure since if the numbers
of elements |A| and |B| are much different, say |A| << |B|,5 then

|A ∩ B| ≤ |A| << |B| ≤ |A ∪ B|. (2.5)

Inequality (2.5) implies that the denominator of the Jaccard similarity (for-
mula (2.4)) will be much larger than the numerator and hence, J(A, B) ≈ 0.
This situation will occur if a new customer, A, is very much like B in pur-
chasing habits and has made only a few purchases (recorded in A). Suppose
that all of these purchases have been made by B and so whatever B has
purchased ought to be recommended to A. We recognize that A is similar
B, given the information contained in A. But, J(A, B) is necessarily small
because the combined set of purchases A ∪ B will be much larger in num-
ber than the set of common purchases A ∩ B. There’s no way to distinguish
this situation between that of two individuals with dissimilar buying habits.
Thus, it’s beneficial to have an alternative similarity measure that will reveal
the relationship.

An alternate measure of similarity that will meaningfully reflect substan-
tial differences in the cardinalities of the sets A and B is the conditional

4 The gut microbiota consists of the microorganism species populating the digestive
tract of an organism.
5 This notation conveys that |A| is much smaller than |B|.
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probability of an event. The conditional probability of the event A given B is
the probability that A will occur given that B has occurred. This conditional
probability is denoted as Pr(A|B) and it defined by

Pr(A|B) = Pr(A ∩ B)
Pr(B) , (2.6)

provided that Pr(B) �= 0. If Pr(B) = 0, then the conditional probability is
undefined and without interest since the event B will not occur. If there are
substantive differences between the unconditional probability of A, (Pr(A))
and the conditional probability of A given B, then B is informative with
respect to the occurrence of A. On the other hand, if Pr(A|B) ≈ Pr(A), then
B provides little information about the occurrence of A. Furthermore, A and
B are said to be independent events whenever Pr(A|B) = Pr(A). Lastly,
events A and B are independent if and only if Pr(A ∩ B) = Pr(A) Pr(B),
a statement that may be deduced from formula (2.6) and the definition of
independence.

To utilize conditional probabilities in the analysis of political committees,
consider a hypothetical experiment in which a committee is randomly drawn
from among a list of all committees that have contributed in a particular elec-
tion cycle. The event A is that of drawing a committee that has contributed
to committee A. Since committees are randomly selected, Pr(A) is the pro-
portion of committees that have identified A as a recipient of one or more
of their contributions. Let |A| denote the number of committees contributing
to A and n denote the total number of committees. Then,

Pr(A) = |A|
n

.

The event B is defined in the same manner as A and so Pr(B) is the pro-
portion of committees contributing to B. The probability that a randomly
selected committee has contributed to both A and B during a particular
election cycle is Pr(A ∩ B) = |A ∩ B|/n. The conditional probability of A
given B is defined by Eq. (2.6) but can be rewritten in terms of the numbers
of contributors:

Pr(A|B) = |A ∩ B|/n

|B|/n

= |A ∩ B|
|B| .

(2.7)

Conditional probabilities may be used to address the deficiencies of the
Jaccard similarity measure. Recall that when there are large differences in
the frequencies of the events A and B, say |A| << |B|, then J(A, B) must be
small even if every contributor to A also contributed to B so that A ⊂ B. It’s
desirable to have a measure that conveys similarity of B to A. The conditional
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probability Pr(B|A) does so. To see why, suppose that 0 < |A| << |B|
and that nearly every contributor to A also contributed to B and, hence,
A ∩ B ≈ A. Then,

Pr(A|B) = |A ∩ B|
|B| ≈ |A|

|B| ≈ 0

and Pr(B|A) = |A ∩ B|
|A| ≈ 1.

(2.8)

Since Pr(B|A) is nearly 1, it’s very likely that any committee that con-
tributes to A will also contribute to B. In summary, an analysis of the com-
mittee similarity will be improved by utilizing conditional probabilities in
addition to Jaccard similarities.

It’s appropriate to think of the set of Federal Elections Commission records
for a particular election cycle as a population and compute the exact proba-
bilities of the events of interest given the experiment of randomly sampling
from the list of all committees. Viewing the data set as a population usually
is not justified. Instead, the usual situation is that the data are a sample
from a larger population or process. For instance, if the data consist of all
point-of-sale records collected by a business during a sample window, say, a
single day or week, then the data should viewed as a sample from a larger
population of records spanning a time span of interest, say, a fiscal quarter or
a year. In this sample context, the proportions used above must be viewed as
probability estimates, and usually we would define |A| as the number times
that the event A occurred during the sample window and n as the number of
outcomes (sales) observed during the sample window. The hat notation, e.g.,
̂Pr(A) = |A|/n is used to emphasize the uncertainty and error associated with
using the estimator ̂Pr(A) in place of the true, unknown probability Pr(A).
Finally, when probability estimates are computed as relative frequencies, as
in this example, the term empirical probabilities is often used.

2.7.1 Computation

We now to turn the matter of computing the Jaccard similarity and the
conditional probabilities for a large set of committee pairs. An algorithm
for forming pairs is needed since the set of committees {A,B,C, . . .} for a
particular election cycle is too large to form the set manually. Once the set
of pairs has been constructed, then an algorithm will process the pairs and
compute the numbers of committees that have contributed to a particular
committee, the number of contributors to both committees, and the number
of contributors to at least one of the two committees. From these counts,
the three similarity measures are computed. The last operation is to sort the
pairs with respect to Jaccard similarity, from least to largest and print the
committee names, Jaccard similarity, and conditional probabilities.
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The Python method of list comprehension is a concise and computation-
ally efficient method for building the set of pairs {(A,B), (A,C), (B,C), . . .}.
List comprehension is an analogue of the mathematical syntax for set defi-
nition in which the elements of a population or sample space are identified
as members of the set by whether or not they satisfy a specified condition.
For example, the even integers are W = {x|x mod 2 = 0}.The mathemati-
cal definition of W is translated as the set of values x such that x modulo
2 is 0. The advantage of list comprehension is that the code is compact yet
readily understood and computationally faster than other methods of build-
ing a list. A list comprehension expression is contained by a pair of brackets
since brackets define lists in Python. The brackets contain an expression to
be computed followed by one or more for or if clauses. For example, a list
of squares can be constructed using the list comprehension s = [i**2 for
i in range(5)]. The expression is i**2 and there is a single for clause. An
alternative to using list comprehension initializes s and then fills it:

s = [0]*5 # Create a 5-element list filled with zeros.
for i in range(5):

s[i] = i**2

Another example builds the set of all pairs (i, j) with i < j formed from
the set {0, 1, . . . , n}. Without list comprehension, a pair of nested for clauses
are used in which the outer for clause iterates over 0, 1, . . . , n − 1 and the
inner for clause iterates over i + 1, . . . , n. Running the inner iteration from
i + 1 to n insures that i will always be less than j and that all pairs will be
formed. Code for forming the set without list comprehension follows:

pairs = set({}) # Create the empty set.
for i in range(n):

for j in range(i+1, n+1, 1):
pairs = pairs.union({(i,j)})

Note that a singleton set {(i,j)} is created containing the pair (i, j)
before putting the pair into the set pairs using the union operator. The
union operator requires that the two objects to be combined as one set are
both sets.

Set comprehension is the analogue of list comprehension for building sets
instead of lists. For building a set of pairs using set comprehension, two nested
for clauses are required:

pairs = {(i,j) for i in range(n) for j in range(i+1, n+1, 1)}
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Since the number of pairs is n(n−1)/2, where n is the number of elements
from which to form the sets, the number of possible pairs is of the order n2.
When n is much larger than 100, the computational demands of building and
processing the set of pairs may be excessive.

Returning to the problem of identifying pairs of similar committees among
a large collection of committees, it will be necessary to determine the num-
ber of committee pairs that must be examined before computing similarities.
Furthermore, it will be necessary to reduce the number of contributing com-
mittees in the contributor dictionary by removing some of the committees.
For example, if the analysis is limited to political action committees that
have made contributions to many recipients, then the population of interest
is effectively limited to committees with expansive agendas such as protect-
ing Second Amendment rights. Alternatively, the analysis may be limited to
narrow-focus committees by selecting those committees that contributed to
fewer than 50 recipients.

The next tutorial provides practice in working with dictionaries and pro-
gramming the similarity measures discussed above.

2.8 Tutorial: Computing Similarity

The objective of this tutorial is to identify political campaign committees
that are alike with respect to their contributors. For each political campaign
committee, you are to construct a set of other committees from which the
committee in question has received contributions. Let A and B denote two
sets of contributing committees. Then, the similarity between the two com-
mittees, say, A and B, will be determined based on the numbers of common
contributor committees, and three measures of similarity will be computed:
J(A, B), Pr(A|B) and Pr(B|A). The final step is to sort the committee pairs
with respect to similarity and produce a short list of the most similar pairs
of committees.

1. Decide upon an election cycle and retrieve the following files from the
FEC website:

a. The Committee Master file linking the committee identification code
(field position 0) with the committee name (field position 1). The
compressed Committee Master files are named cm.zip.

b. The between-committee transaction file6 linking the recipient com-
mittee (field position 0) with the contributing committee (field po-
sition 7). Between-committee transaction files are named oth.zip.
The decompressed file has the name itoth.txt.

6 Named Any Transaction from One Committee to Another by the FEC.
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2. Process the Committee Master file and build a dictionary linking commit-
tee identification codes with committee names by setting the dictionary
keys to be committee identification codes (located in field position 0 of
the data file) and the dictionary values to be the committee names (field
position 1 of the data file).

path = ’../cm.txt’
nameDict = {}
with open(path) as f:

for line in f:
data = line.split("|")
if data[1] != ’’:

nameDict[data[0]] = data[1]

3. Create a set named committees containing the committee identification
numbers:

print(’Number of committees = ’,len(nameDict))
committees = set(nameDict.keys())

The .keys() operator extracts the keys from a dictionary.
4. Construct another dictionary, call it contributorDict, in which the dic-

tionary keys are the committee identification codes and the values are
sets containing the names of the committees that have contributed to
the committee identified by identification code. The value for a new
key is created using braces to contain the contributing committee name.
Additional committees are combined with the set using the instruction
A.union({a}), where A is a set and a is an element. For example, {a} is
the singleton set containing a.

path = ’../itoth.txt’
contributorDict = {}
with open(path) as f:

for line in f:
data = line.split("|")
contributor = data[0]
if contributorDict.get(contributor) is None:

contributorDict[contributor] = {data[7]}
else:

contributorDict[contributor]
= contributorDict[contributor].union({data[7]})
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5. Determine the number of contributors by finding the number of keys in
contributorDict. Compute the number of pairs.

n = len(contributorDict)
print(’N pairs = ’,n*(n-1)/2)

If the number of pairs is large, say greater than 105, then its best to
reduce the number of committees by selecting a subset. For example,
you may limit the set of committees to only those that made at least m
contributions in an election cycle. In the following code, key-value pairs
are removed using the pop() function when the number of committees
to which contributions were made is less than or equal to 500. We iterate
over a list of dictionary keys because items cannot be deleted from a
dictionary while iterating over the dictionary. Check that the number of
remaining committees is sufficiently small, say less than 300.

for key in list(contributorDict.keys()):
if len(contributorDict[key]) <= 500:

contributorDict.pop(key, None)
n = len(contributorDict)
print(’N pairs = ’,n*(n-1)/2)

What’s left in contributorDict are committees that are dispersing a lot
of money to many political committees, and hence might be viewed as
influential.

6. Iterate over contributorDict and print the lengths of each value to
check the last block of code.

for key in contributorDict:
print(nameDict[key], len(contributorDict[key]))

The length of a contributor value is the number of committees that the
committee has contributed to in the election cycle.

7. Extract the keys and save as a list:

contributors = list(contributorDict.keys())

8. Use list comprehension to build a list containing the n(n − 1)/2 pairs:

pairs = [(contributors[i], contributors[j]) for i in range(n-1)
for j in range(i+1, n, 1)]
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9. Compute the similarity between pairs of committees by iterating over
pairs. For each pair in the list pairs, extract the sets of contributors
and the compute Jaccard similarity, Pr(A|B), and Pr(B|A). Then store
the three similarity measures in a dictionary named simDict.

simDict = {}
for commA, commB in pairs:

A = contributorDict[commA] # Set of contributors to commA.
nameA = nameDict[commA]
B = contributorDict[commB]
nameB = nameDict[commB]

nIntersection = len(A.intersection(B))
jAB = nIntersection/len(A.union(B))
pAGivenB = nIntersection/len(B)
pBGivenA = nIntersection/len(A)

simDict[(nameA, nameB)] = (jAB, pAGivenB, pBGivenA)

The keys for the similarity dictionary are the pairs (nameA, nameB) con-
sisting of the names of the committees rather than the committee iden-
tification codes.

Pairs may be used as dictionary keys because tuples are immutable.
The statement nIntersection/len(A.union(B)) will perform integer
division if the Python version is less than 3.0; if your Python version
is less than 3.0, then the denominator must be cast as a floating point
number before division takes place, say:

jAB = nIntersection/float(len(A.union(B)))

10. Sort the similarity dictionary using the instruction

sortedList = sorted(simDict.items(), key=operator.itemgetter(1),
reverse=True)

The function sorted produces a list containing the key-value pairs of
simDict sorted according to the magnitude of the Jaccard similarity
since the itemgetter() argument is 1. We’ve used the optional argu-
ment reverse = True so that the sorted list goes from largest to smallest
Jaccard similarity.

11. Since sortedList is a list, we can iterate over the pairs in the list in the
following code segment. We refer to the keys of simDict as committees
and the value as simMeasures in the for statement. Python allows the
programmer to extract and name the elements of a list or tuple using an
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assignment statement such as nameA, nameB = committees. Print the
committee names, Jaccard similarity, and conditional probabilities from
smallest Jaccard similarity to largest:

for committees, simMeasures in sortedList:
nameA, nameB = committees
jAB, pAB, pBA = simMeasures
if jAB > .5:

print(round(jAB, 3), round(pAB, 3),
round(pBA, 3), nameA + ’ | ’ + nameB)

We could use indices to extract values from the similarity dictionary.
The ith Jaccard similarity value is sortedList[i][1][0], for example.
The triple indexing of sortedList can be understood by noting that
sortedList is a list in which the ith element is a pair, sortedList[i]
is a key-value pair, sortedList[i][0] is the pair of committee names,
and sortedList[i][0][1] is the second committee name.

The results of our analysis of the major contributors of 2012 election cycle
data are summarized in Table 2.2. The analysis was limited to those com-
mittees that made at least 200 contributions during the 2012 election cycle.
Because of this prerequisite, Table 2.2 consists almost entirely committees
affiliated with large groups of individuals, more specifically, corporations,
unions, and associations. The Comcast Corp & NBCUniversal PAC and the
Verizon PAC both appeared twice in Table 2.2 showing that these political
action committees were very active and also much alike with respect to the
recipients of their contributions. The last line of the table shows the entry
Pr(B|A) = .794, from which it may be concluded that if the Johnson & John-
son PAC (committee A) contributed to a particular entity, then the proba-
bility that Pfizer PAC (committee B) also contributed to the same entity is
.794. On the other hand, given that the Pfizer PAC has contributed to a par-
ticular entity, the probability that Johnson & Johnson PAC contributed as
well to the committee is much less, .415. Both companies are global pharma-
ceutical companies. The similarity between the beer wholesalers and realtors
is puzzling.

2.9 Concluding Remarks About Dictionaries

A irrevocable property of dictionary keys is that they are immutable. An
immutable object resides in a fixed memory location. Immutability is key
for optimizing dictionary operations. If we attempted to use a list consisting
of two committee identification codes, for instance, [commA, commB], then
the Python interpreter will produce a TypeError because lists are mutable
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Table 2.2 The five major committee pairs from the 2012 election cycle with the largest
Jaccard similarity. Also shown are the conditional probabilities Pr(A|B) and Pr(B|A)

Committee A Committee B J(A, B) Pr(B|A) Pr(A|B)
Comcast Corp &

Verizon PAC NBCUniversal PAC .596 .693 .809
Comcast Corp &

General Electric PAC NBCUniversal PAC .582 .713 .76
NEA Fund for Children Letter Carriers
and Public Education Political Action Fund .571 .82 .653
National Beer Wholesalers National Association
Association PAC of Realtors PAC .57 .651 .821
Verizon PAC AT&T Federal PAC .588 .656 .788

...
...

...
...

...
Johnson & Johnson PAC Pfizer PAC .375 .415 .794

and cannot be used as dictionary keys. Dictionary keys are stored in semi-
permanent memory locations—the location does not change as long as the
key-value pair is in the dictionary. If the key were to change, then the amount
of memory needed to contain the key might change, and a different location
would be needed. Semi-permanent memory locations allows the dictionary to
be optimized and hence, operations on dictionaries are fast. Fast operations
are important when working with large dictionaries and why dictionaries are
used at every opportunity in this text.

2.10 Exercises

2.10.1 Conceptual

2.1. Show that the number of pairs satisfying i < j that may be formed from
i, j ∈ {1, 2, . . . , n} is n(n−1

2 by rearranging the expression

n
∑

i=1

n
∑

j=1
1 =

n−1
∑

i=1

n
∑

j=i+1
1 +

n−1
∑

j=1

n
∑

i=j+1
1 +

n
∑

i=j=1
1.

Then solve for
∑n−1

i=1
∑n

j=i+1 1.

2.2. a. Give a formula for Cn,3, the number of sets or combinations that
can be formed by choosing three items from n without replication. Recall
that the standard convention in mathematics is to disallow an item to
appear in a set more than once. For example, {a, b, b} is not used since
{a, b, b} = {a, b}. Furthermore, the order of arranging the elements of a set
does not change the set since {a, b, c} = {c, a, b}. Therefore, there’s only
one set that consists of the items a, b, c. Compute C5,3 and C100,3.
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b. Using list comprehension, generate all three-tuples (i, j, k) such that 0 ≤
i < j < k < 5.

c. Using set comprehension, generate all sets of three elements from the set
{0, 1, 2, 3, 4}.

2.3. Consider the list constructed using the list comprehension

lst1 = [{(i, j),(j,i)} for i in range(4) for j in range(i, 4, 1)]

a. Describe the structure and contents of lst1.
b. Explain why the set contains a single pair when i = j.
c. Consider the list created from the instruction

lst2 = [{(i, j),(j,i)} for i in range(4)
for j in range(i, 4, 1) if i !=j]

Explain why lst1 �= lst2.

2.4. Initialize a Python list to be L = [(1,2,3),(4,1,5),(0,0,6)]. Give
the Python instructions for sorting L according to the first coordinate (or
position) of the three-tuples. Give the Python instructions for sorting L ac-
cording to the third coordinate of the three-tuples. Give the instruction for
sorting in descending order (largest to smallest) using the second coordinate
of the three-tuples.

2.10.2 Computational

2.5. This exercise is aimed at determining where political action committee
(PAC) money goes. Usually, a PAC collects donations from individual con-
tributors by mail or online solicitation and then donates money to candidates
of their choice or to other PACs. Sometimes, the intentions of a PAC may not
be transparent, and their donations to other PACs or candidates might not
be in accord with the intention of the contributors. For this reason, there is
interest in tracking the donations of PACs. Table 2.3 is an example showing
a few of the PACs that received donations from the Bachmann for Congress
PAC during the 2012 election cycle.

Choose an election cycle, identify a PAC of interest, and create a recipient
dictionary listing all of the contributions that were received from the PAC. A
convenient format for the recipient dictionary uses the recipient committee
code as a key. The value should be a two-element list containing the total
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Table 2.3 The top eight recipients of contributions from the Bachmann for Congress
PAC during the 2010–2012 election cycle

Recipient Amount ($)
National Republican Congressional Committee 115,000

Republican Party Of Minnesota 41,500
Susan B Anthony List Inc. Candidate Fund 12,166

Freedom Club Federal Pac 10,000
Citizens United Political Victory Fund 10,000

Republican National Coalition For Life Political Action Committee 10,000
Koch Industries Inc Political Action Committee (Kochpac) 10,000

American Crystal Sugar Company Political Action Committee 10,000

amount received by the recipient PAC and the name of the recipient PAC.
PACs also contribute to individual candidates, so if you wanted, you could
also track money that was received by individual candidates from the PAC
of interest.

A couple of reminders may help:

1. Contributions made by PACs are listed in the FEC data files named Any
Transaction from One Committee to Another and contained in zip files
with the name oth.zip.

2. To convert a dictionary C into a sorted list named sC, largest to smallest,
by sorting on the values, use

sC = sorted(C.iteritems(), key=operator.itemgetter(1),
reverse = True)

This will work if the value is a list and the first element of the lists are
numeric.

2.6. Use the timeit module and function to compare execution times for
two algorithms used for constructing sets of pairs {(i, j}|0 ≤ i < j ≤
n, for integers i and j}. The first algorithm should use list comprehension
and the second should join each pair to the set of pairs using the union op-
erator. Set n ∈ {100, 200, 300}. Report on the computational time for both
algorithms and choice of n. Comment on the differences.

2.7. The Consumer Financial Protection Bureau is a federal agency tasked
with enforcing federal consumer financial laws and protecting consumers of
financial services and products from malfeasance on the part of the providers
of these services and products. The Consumer Financial Protection Bu-
reau maintains a database documenting consumer complaints. Download the
database from
http://www.consumerfinance.gov/complaintdatabase/#download-the-data.
Determine which ten companies were most often named in the product
category Mortgage and the issue category of Loan modification,collection,
foreclosure. The first record of the data file is a list of attributes.

http://www.consumerfinance.gov/complaintdatabase/#download-the-data


Chapter 3
Scalable Algorithms and Associative
Statistics

Abstract It’s not uncommon that a single computer is inadequate to han-
dle a massively large data set. The common problems are that it takes too
long to process the data and the data volume exceeds the storage capacity of
the host. Cleverly designed algorithms sometimes can reduce the processing
time to an acceptable point, but the single host solution will eventually fail if
data volume is sufficiently great. A far-reaching solution to the data volume
problem replaces the single host with a network of computers across which
the data are distributed and processed. However, the hardware solution is in-
complete until the data processing algorithms are adapted to the distributed
computing environment. A complete solution requires algorithms that are
scalable. Scalability depends on the statistics that are being computed by the
algorithm, and the statistics that allow for scalability are associative statis-
tics. Scalability and associative statistics are the subject of this chapter.

3.1 Introduction

Suppose that the data set of concern is so massively large in volume that it
must be divided and processed as subsets by separate host computers. In this
situation, the host computers are connected by a network. A host computer is
often called a node in recognition of its role as member of the network. Since
the computational workload has been distributed across the network, the
scheme is referred to as a distributed computing environment. Our interest
lies in the algorithmic component of the distributed computing solution, and
specifically the situation in which each node executes the same algorithm but
on a subset of the data. When all nodes have completed their computations,
the results from each node are combined. This is a good strategy if it works:
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only one algorithm is needed and everything can be automated. If the nodes
are garden-variety computing units, there’s no obvious limit to the amount
of data that can be handled.

The final result should not depend on how the data is divided into subsets.
To be more precise, recall that a partition of a set A is a collection of disjoint
subsets A1, . . . , An such that A = ∪iAi. Now, consider divisions of the data
that are partitions (hence no observation or record is included in more than
one data set). An algorithm is scalable if the results are identical for all
possible partitions of the data. If the scalability condition is met, then only
the number of subsets and nodes need be increased if the data volume should
increase. The only limitation is hardware and financial cost. On the other
hand, if the algorithm yields different results depending on the partition,
then we should determine the partition that yields the best solution. The
question of what is the best solution is ambiguous without criteria to judge
what’s best. Intuition argues that the best solution is that obtained from a
single execution of the algorithm using all the data. Under that premise, we
turn to scalable algorithms.

The term scalable is used because the scale, or volume, of the data does not
limit the functionality of the algorithm. Scalable data reduction algorithms
have been encountered earlier in the form of data mappings. The uses of data
mappings were limited to elementary operations such as computing totals and
building lists. To progress to more sophisticated analyses, we need to be able
to compute a variety of statistics using scalable algorithms, for example, the
least squares estimator of a parameter vector β or a correlation matrix.

Not all statistics can be computed using a scalable algorithm. Statistics
that can be computed using scalable algorithms are referred to as associative.
The defining characteristic of an associative statistic is that when a data set
is partitioned into a collection of disjoint subsets and the associative statistic
is computed from each subset, the statistics can be combined or aggregated
to yield the same value as would be obtained from the complete data set. If
the function of the algorithm is to compute an associative statistic, then the
algorithm is scalable.

To make these ideas more concrete, the next section discusses an exam-
ple involving the Centers for Disease Control and Prevention’s BRFSS data
sets. Then, we discuss scalable algorithms for descriptive analytics. A tuto-
rial guides the reader through the mechanics of summarizing the distribution
of a quantitative variable via a scalable algorithm. Scalable algorithms for
computing correlation matrices and the least squares estimator of the lin-
ear regression parameter vector β are the subject of two additional tutorials.
This first look at predictive analytics demonstrates the importance of scalable
algorithms and associative statistics in data science.
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3.2 Example: Obesity in the United States

Mokdad et al. [40] describe an apparent rapid increase in the number of
obese adults in the United States between 1990 and 1999. Similar trends have
been observed by other researchers. The phenomenon has been labeled with
the sobriquet the obesity epidemic in light of the apparent rapid increase in
obesity rate and also because of negative effects of obesity. Most prominently,
obesity is associated with type 2 diabetes, a chronic disease responsible for a
number of conditions that negatively impact quality of life.

Mokdad et al. conducted their analysis using data collected by the U.S.
Centers for Disease Control and Prevention.1 The CDC’s Behavioral Risk
Factor Surveillance System (BRFSS) survey is now the largest periodic sam-
ple survey in the world. The CDC asks a sample of U.S. adult residents a
large number of questions regarding health and health-related behaviors. In
recent years, responses from more than 400,000 adults have been collected per
annum. In the following tutorial, the reader will investigate whether the in-
creasing trend in obesity observed in the last decade of the twentieth century
has continued into the first decade of the twenty-first century.

It’s common that the initial steps of data analysis involve computing mea-
sures of the center and spread of a distribution of a quantitative variable.
If a variable of interest is categorical, then a numerical summarization of
the data involves computing the proportions of observational units that pos-
sess a particular attribute or fall into a particular category. For instance,
body mass index (kg/m2) is a widely-used quantitative measure of body fat
from which a categorical measure of obesity (obese or not) can be computed.
A first analysis of the BRFSS data might then compare the estimated mean
of body mass index and the proportions of obese residents for the year 2000
to the same statistics for the year 2010 to search for evidence supporting or
refuting a continuation of the purported obesity epidemic. From a statistical
perspective, we aim to estimate the body mass index mean μ of the popula-
tion of U.S. adult residents at two points in time. More information can be
gleaned about body mass index by computing and constructing a histogram
showing the estimated proportion of the population with values falling in a
set of intervals.

The first algorithmic task is to develop a scalable algorithm for comput-
ing estimates of μ and σ2 using massively large data. Then, we’ll develop a
scalable algorithm for computing histograms and apply it to the BRFSS data
sets and the body mass index variable.

1 We discussed the BRFSS data briefly in Chap. 1, Sect. 1.2.
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3.3 Associative Statistics

We begin with notation and terminology. Let D = {x1,x2, . . . ,xn} denote
a set of n observations. The ith observation xi = [xi,1 xi,2 · · · xi,p]T is a
vector consisting of p real numbers. A partition of D is a collection of disjoint
subsets D1, D2, . . . , Dr such that D = D1 ∪ D2 · · · ∪ Dr. Let

s(D)
d×1

= [s1(D) s2(D) · · · sd(D)]T

denote an associative statistic, a vector, of dimension d ≥ 1. We say that
a statistic is associative if it possesses an associativity property and is low-
dimensional. We use the term low-dimensional informally to describe a statis-
tic that may be stored without taxing computational resources. In a practical
sense, associativity implies that the data set can be partitioned as r subsets
and the statistic can be computed on each subset. At the completion of all
r computations, the r associative statistics can be aggregated to obtain the
value of the statistic computed on the complete data set. Consequently, there
is no information loss or indeterminacy resulting from distributed processing
of the data, and algorithms that compute associative statistics are scalable.

Concisely, a statistic s is associative if, given a partition {D1, D2, . . . , Dr}
of D, the statistics s(D1), s(D2), . . ., s(Dr) can be combined to produce the
value s(D). An example of an associative statistic computed from a set of n
real numbers, say D = {x1, x2, . . . , xn}, is the two-element vector

s(D)
2×1

=
[∑n

i=1 xi

n

]

.

The elements of s(D) are s1(D) =
∑n

i=1 xi, and s2(D) = n. Associativity
holds because s(D1 ∪ D2) = s(D1) + s(D2). For example, suppose that D is
partitioned as D1 = {x1, . . . , xm} and D2 = {xm+1, . . . , xn}. Then,

s(D1) + s(D2) =
[∑m

i=1 xi

m

]

+
[∑n

i=m+1 xi

n − m

]

=
[∑m

i=1 xi +
∑n

i=m+1 xi

m + n − m

]

=
[∑n

i=1 xi

n

]

= s(D).

From s(D), we can estimate the population mean using the sample mean
μ̂ = s1/s2. The median is an example of a statistic that is not associative.
For example, if D = {1, 2, 3, 4, 100}, D1 = {1, 2, 3, 4}, and D2 = {100}, then
median(D1) = 2.5, and there is no method of combining median(D1) and
median(D2) = 100 to arrive at median(D) = 3 that succeeds in the general
case.
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3.4 Univariate Observations

Usually, a preliminary objective of data analysis is to describe the center
and spread of the distribution of a variable. This may be accomplished by
estimating the population mean μ and variance σ2 from a sample of univariate
data D = {x1, x2, . . . , xn}. An estimator of the variance σ2 is needed in
addition to the estimator of the mean μ̂ =

∑

xi/n, say, the average squared
difference between the observations and the sample mean:

σ̂2 = n−1
∑

(xi − μ̂)2

= n−1∑x2
i −
(

n−1∑xi

)2
.

(3.1)

From Eq. (3.1), we may deduce that the associative statistic

s(D)
3×1

=

⎡

⎢

⎣

∑n
i=1 xi

∑n
i=1 x2

i

n

⎤

⎥

⎦ (3.2)

may be used to estimate the mean and variance. Let s(D) = [s1 s2 s3]T .
Then, the estimators are

μ̂ = s1
s3

,

σ̂2 = s2
s3

−
(

s1
s3

)2

.
(3.3)

The statistic s(D) shown in Eq. (3.2) is associative because addition is asso-
ciative; for example,

∑n
i=1 xi =

∑m
i=1 xi +

∑n
i=m+1 xi for integers 1 ≤ m < n.

Thus, a scalable algorithm for computing estimators of the mean and variance
computes the associative statistic s(D) and then the estimates according to
Eq. (3.3). If the volume of D is too large for a single host, then D can be parti-
tioned as D1, . . . , Dr and the subsets distributed to r network nodes. At node
j, s(Dj) is computed. When all nodes have completed their respective tasks
and returned their statistic to a single host, we compute s(D) =

∑r
j s(Dj)

followed by μ̂ and σ̂2 using formula (3.3).
Let’s consider a common situation. The data set D is too large to be stored

in memory but it’s not so large that it cannot be stored on a single computer.
These data may be a complete set or one subset of a larger partitioned set. In
any case, the data at hand D is still too large to be read at once into mem-
ory. The memory problem may be solved using two algorithmic approaches
sufficiently general to be applied to a wide range of problems. For simplicity
and concreteness, we describe the algorithms for computing the associative
statistic given in Eq. (3.2).
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A block is a subset of D consisting of contiguous lines or records that is
sufficiently small to reside in memory. Suppose the blocks are D1, D2, . . . , Dr

and Dj contains nj observations. Then, we may write

D = {x1, . . . , xn1
︸ ︷︷ ︸

D1

, xn1+1, . . . , xn1+n2
︸ ︷︷ ︸

D2

, . . . , xn1+···+nr−1+1, . . . , xn1+···+nr
︸ ︷︷ ︸

Dr

}.

(3.4)

The blocks form a partition of D because every observation belongs to exactly
one subset. The algorithms are:

1. Process D one block at a time. Compute s(Dj), j = 1, 2, . . . , r. At the
completion of processing Dj , store s(Dj) in a dictionary using j as the
key and s(Dj) as the value. Alternatively, store s(Dj) as row j of a r × 3
matrix. At completion, compute s(D1) + s(D2) + · · · + s(Dr) = s(D).

2. A slightly simpler algorithm builds s(D) as each line is read by up-
dating s. Before processing the data, initialize the associative statistic
s = [s1 s2 s3]T as a vector of zeros. The initialization step is written in
short as [0 0 0]T → s where a → b means assign a to b. Upon reading
the jth observation xj ∈ D, update s by computing

s1 + xj → s1

s2 + x2
j → s2

s3 + 1 → s3.

(3.5)

This one-line-at-a-time algorithm is a scalable algorithm. We can see this
by partitioning D as n singleton sets or blocks Dj = {xj}, j = 1, 2, . . . , n.
The statistic s applied to a datum xj is s({xj}) = [xj x2

j 1]T . Therefore,
the process of updating s({x1, x2, . . . , xj−1}) computes

s({x1, x2, . . . , xj−1}) + s({xj}) = s
(

∪j−1
i=1Di

)

+ s(Dj)

= s
(

∪j
i=1Di

)

.

The sets Dj are not created in practical applications, we just update
the associative statistic as shown in formula (3.5). If the algorithm is to
be used repeatedly, be aware that reading a data set one line at-a-time
may be slower than reading the data file in blocks. In our experience, one
line at-a-time reading is not noticeably slower using Python.

The next section provides an example of a statistic commonly used in
exploratory data analysis: the histogram. It’s often not realized as such, but
a histogram is a statistic that is rendered and interpreted visually. Moreover,
the histogram can be cast as an associative statistic and so it is useful in the
analysis of massively large data sets.
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3.4.1 Histograms

A thorough analysis of a variable often involves a visual display of its empir-
ical, or sample, distribution. The term empirical is used to distinguish a dis-
tribution constructed from a sample versus the true distribution that would
be obtained if all values across a population were observed. Histograms and
the related boxplots are commonly used for this purpose. When data volume
is large, then the histogram becomes the visual of choice because the distri-
bution may be shown in fine detail. The level of detail is usually under the
control of the analyst. Visually, a histogram shows the empirical distribution
as a set of contiguous rectangles plotted across the range of the variable. The
height of a rectangle is proportional to the frequency (and relative frequency)
of values falling within the interval defined by the rectangle base.

Figure 3.1 shows a pair of overlain histograms built from sample distri-
butions of body mass index (kg/m2) of U.S. residents. Body mass index is
body weight scaled by the individual’s height. Scaling accounts for height
differences between individuals and allows for comparisons of weight regard-
less of height. The histograms were constructed using data collected in the
course of the U.S. Centers for Disease Control and Prevention’s Behavioral
Risk Factor Surveillance System survey (see Sect. 1.2 for more details). The
red histogram was constructed from 1,020,126 observations collected in the
years 2000, 2001, 2002, and 2003 and the blue histogram was collected from
2,848,199 observations collected in the years 2011, 2012, 2013, and 2014. The
histograms may be used to examine the assertion that the U.S. has suffered an
epidemic of obesity [26]. Since an individual is considered to be obese if their
body mass index is at least 30 kg/m2, Fig. 3.1 provides visual confirmation
that the percent of obese adults has increased. The percent of obese individ-
uals in the year 2000 data set was 19.84% whereas 28.74% of the respondents
in the 2014 data set had a body mass index exceeding the threshold. The
increase in the percent obese was 44.8% = 100(28.74 − 19.84)/19.84.

The histograms provide more information, though. There’s been a shift
toward larger values of body mass index from the first to the second time
period. Otherwise, the distributions are similar in shape. Both histograms are
slightly skewed to the right having longer right tails than left tails. Skewness
to the right implies that there are relatively more individuals with very large
values of body mass index than individuals with very small body mass index.2

2 Right-skewness is common when a variable is bounded below as is the case with body
mass index since no one may have a body mass index less than or equal to zero.
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Fig. 3.1 Histograms of body
mass index constructed from
two samples of U.S. residents.
The first sample was collected
in the years 2000 through 2003
and the second sample was
collected in the years 2011
through 2014. All data were
collected by the U.S. Centers
for Disease Control and Pre-
vention, Behavioral Risk Fac-
tor Surveillance System
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3.4.2 Histogram Construction

A histogram is a set of pairs. Each pair corresponds to one of the rectangles
that form the visual histogram. One element of the pair is the interval that
defines the base of the rectangle and the second element specifies the height.
The height is either the number of observations that fall in the interval or
the relative frequency of observations falling into the interval. The union of
the intervals span the observed range of a variable of interest. Accordingly,
we define a histogram (mathematically) as the set of pairs

H = {(b1, p1), . . . , (bh, ph)}. (3.6)

The number of intervals is h. The first interval is b1 = [l1, u1] and for i > 1,
the ith interval is bi = (li, ui]. The second element of the pair, pi, is the
relative frequency of observations belonging to the interval. The term pi is
often used as an estimator of the proportion of the population belonging to
bi. The interval bi+1 takes its lower bound from the previous upper bound,
i.e., li+1 = ui. We show the intervals as open on the left and closed on the
right but there’s no reason not to define the intervals to be closed on the
left and open on the right instead. In any case, equal-length intervals are
formed by dividing the range into h segments. Usually, every observation in
the data set belongs to the base of the histogram, [l1, uh]. Admittedly, the
stipulation that all observations are included in the histogram sometimes is
a disadvantage as it may make it difficult to see some of the finer details.

Suppose that the data set D is massively large and cannot reside in mem-
ory. A scalable algorithm is needed to construct the histogram H, and formu-
lating the algorithm requires a precise description of the process of building
H. In brief, H is computed by counting the numbers of observations falling in
each interval. The intervals must be constructed before counting, and hence,
the data set must be processed twice, both times using a scalable algorithm.
The first pass determines the number and width of the intervals. The second
pass computes the numbers of observations each interval.
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An algorithm for constructing a histogram begins with determining the
smallest and largest observations in D. Let x[1] = min(D) denote the smallest
observation and x[n] = max(D) denote the largest. Every observation in the
data set must be examined to determine x[1] and x[n], and so the first pass
through the data does nothing more than compute x[1] and x[n]. Then, the
range is computed as x[n] − x[1]. The interval width is w = (x[n] − x[1])/h,
where h is a choice for the number of intervals. The intervals are

b1 =
[

x[1], x[1] + w
]

...
bi =

(

x[1] + (i − 1)w, x[1] + iw
]

...
bh =

(

x[1] + (h − 1)w, x[n]
]

.

In essence, the algorithm maps the data set D to a set of intervals, or bins,
B = {b1, . . . , bh} and we may write D �→ B.

The second algorithm maps D and B to a dictionary C in which the keys
are the intervals and the values are the counts of observations falling into a
particular interval, and we may write (D, B) �→ C.

Computationally, the second algorithm fills the dictionary C by counting
the number of observations belonging to each interval. Determining which
interval an observation belongs to amounts to testing whether the observa-
tion value belongs to bi, for i = 1, . . . , h.3 When the interval is found that
contains the observation, the count of observations belonging to the interval
is incremented by one, and the next observation is processed. After all ob-
servations are processed, the relative frequency of observations belonging to
each interval is computed by dividing the interval count by n. The dictionary
may then be rendered as a visual.

If the algorithm is to be scalable, then the statistics from which H is built
must be associative. The key to associativity and scalability is that a single
set of intervals is used to form the histogram base.

As described above, the first pass through D computes the two-element
vector s(D) = [min(D) max(D)]T . We’ll argue that s(D) is associative by
supposing that D1, D2, . . . , Dr are a partition of D. Let

s(Dj) =
[

min(Dj)
max(Dj)

]

, j = 1, . . . , r. (3.7)

Let s1(D) = min(D) and s2(D) = max(D) so that s(D) = [s1(D) s2(D)]T .
Then,

3 Of course, once it’s been determined that the observation belongs to an interval, there’s
no need to test any other intervals.
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s1(D) = min(D)
= min(D1 ∪ · · · ∪ Dr)
= min{min(D1), . . . , min(Dr)}
= min{s1(D1), . . . , s1(Dr)}.

(3.8)

Similarly, max(D) = max{max(D1), . . . , max(Dr)}. Changing the notation,
we see that s2(D) = max{s2(D1),. . . , s2(Dr)}. Since s(D) can be computed
from s(D1), . . ., s(Dr), the statistic s is associative.

The range and intervals of the histogram depend entirely on the associative
statistic s and the choice of h. Given h, the same set of intervals is created
no matter how D is partitioned. Thus, a scalable algorithm that computes B
is feasible.

The second algorithm fills the dictionary C = {(b1, c1), . . . , (bh, ch)} by
determining cj , the count of observations in the data set D that belong to
bj , for j = 1, . . . , h. If D has been partitioned as r subsets, then B and
a partition Dj are used to construct the jth set of counts. Mathematically,
(Dj , B) �→ Cj . Then, the sets C1, . . . , Cr are aggregated by adding the counts
across sets for each interval.

3.5 Functions

The next tutorial instructs the reader to create a user-defined function. Rea-
sons for using functions are to make a program easier to understand and to
avoid repeatedly programming the same operation. A function consists of a
code segment that is executed by a one line instruction such as y = f(x). The
code segment should have a clearly defined purpose and generally, the code
will be used more than once, say, in more than one location in a program, or
in multiple programs, or in a for loop.

The function definition is located not within the main program but at
the top of the program or in a separate file. However, it’s useful to write
the code that belongs in a function in the main program. Writing the code
in the location where the function will be called allows the programmer to
access the values of the variables within the function code for debugging.
Once the code segment is included in a function, the variables become local
and are undefined outside the function and cannot be inspected. When the
code segment executes correctly, then move the code out of the main program
and into a function.

The function is initialized by the keyword def and is ended (usually) by the
return statement. For example, the function product computes the product
of the two arguments x and y passed to the function:

def product(x,y):
xy = x*y
return xy
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The function is called using the statement z = product(a,b). The vari-
able xy is local to the function and referencing it outside the program will
raise a NameError. A return statement is not necessary; for example, another
version of the function product prints the product of x and y:

def product(x,y):
print(x*y)

Note that xy will be undefined outside of the function because it’s not re-
turned.

The function must be compiled by the Python interpreter before the func-
tion is called. Therefore, it should be positioned at the top of the file; alter-
natively, put it in a file with a py extension, say functions.py, that contains
a collection of functions. The function product is imported in the main pro-
gram using the instruction

from functions import product

3.6 Tutorial: Histogram Construction

The objective of this tutorial ostensibly is to construct Fig. 3.1. In the pro-
cess of building the histograms, the reader will estimate the distribution of
body mass index of adult U.S. residents for two periods separated by approx-
imately 10 years. The tutorial also expands on the use of dictionaries for data
reduction and exposes the reader to weighted means. The data sets used in
the tutorial originate from the Centers for Disease Control and Prevention
(CDC) and are remarkable for the amount of largely untapped information
contained within.

The data were collected in the course of the Behavioral Risk Factor Surveil-
lance System’s (BRFSS) annual survey of U.S. adults. Telephone interviews
of a sample of adults were conducted in which a wide range of questions
on health and health-related behavior were asked of the respondents. The
respondents were selected by sampling land-line and cell phone numbers,
calling the numbers, and asking for interviews. Land-line and cell phone
numbers were sampled using different protocols and so the sampled indi-
viduals did not have the same probability of being sampled. Consequently,
certain sub-populations, say young land-line owners may be over- or under-
represented in the sample. Disregarding the sampling design may lead to
biased estimates of population parameters. To adjust for unequal sampling
probabilities, the CDC has attached a sampling weight to each observation.
The sampling weights may be incorporated into an estimator to correct for
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unequal sampling probabilities, a subject which we expand on in Chap. 7. A
brief discussion is in order though.

First, consider estimation of a population mean μ. An estimator of μ can
be expressed as

μ̂ =
∑n

j=1 wjxj , (3.9)

where wj is a weight reflecting the contribution of xj towards the estimator.
The traditional sample mean is a weighted mean—we see this if wj is defined
to be wj = 1/n for each j = 1, . . . , n. Of course, every observation has the
same weight and contribution towards the estimate. Any set of weights may
be used provided that all weights are non-negative and sum to one. Often,
weights are used to reduce the bias of an estimator.

The sample proportion is also a sample mean provided that the variable be-
ing averaged is an indicator variable. The indicator variable identifies whether
or not the jth sampling unit possesses a particular attribute. For instance,
we may define I≥30(xj) as an indicator variable identifying obese individuals.
Obesity is defined by a body mass index of 30 kg/m2 or more. Thus, the
indicator variable is

I≥30(x) =
{

1, if x ≥ 30,

0, if x < 30,
(3.10)

where x is the body mass index of the individual. We say that I is an indicator
variable for the event {x ≥ 30}. The sample mean of I≥30(x1), . . . , I≥30(xn)
is the proportion of individuals in the sample that are obese.

In the context of histograms, the property of interest is whether or not a
body mass index value xj is contained in interval bi. The proportion of the
population with membership in bi is estimated by the sample mean of the
indicator variables, say

pi = n−1
n
∑

j=1
Ii(xj), (3.11)

where Ii(x) is an indicator variable of the event {x ∈ bi}. Since we want to
use sampling weights with the BRFSS data, we define the estimator of the
proportion of the population with membership in bi as pi =

∑n
j=1 wjIi(xj)

assuming that the weights are non-negative and sum to one. If the weights
are non-negative but do not sum to one, then we may scale the weights by
computing

pi =
∑

j wjIi(xj)
∑

j wj
, (3.12)

which amounts to using a set of weights v1 = w1/
∑

wj , . . . , vn = wn/
∑

wj

that sum to one.
Since our aim is to compare adult distributions of body mass index from

two decades, we use 4 years of data from each decade and thus eight data
files in the analysis.
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1. Create a directory for storing the data files. We recommend that you keep
the files related to this book in a single directory with sub-directories for
each chapter. Some data files and some functions will be used in more
than one chapter so it’s convenient to build a sub-directory to save these
data files and a sub-directory to contain the functions.4 The following
directory structure is suggested:

Algorithms
DataMaps

PythonScripts
RScripts
Data

ScalableAlgorithms
PythonScripts
RScripts
Data

Data
LLCP2014.ASC
LLCP2013.ASC

ModuleDir
functions.py

The directory ModuleDir is to contain user-written modules. A module
is a collection of functions that may be loaded and used by any Python
script. Using functions and modules promotes organized code and reduces
the likelihood that you’ll write code to perform the same operations more
than once.

2. Navigate to the Behavioral Risk Factor Surveillance System data portal
http://www.cdc.gov/brfss/annual_data/annual_data.htm. Retrieve
the files listed in Table 3.1 and place them in the data directory created
in instruction 1. Extract or decompress each file and delete the zip files.

Table 3.1 BRFSS data file names and sub-string positions of body mass index, sam-
pling weight, and gender. Positions are one-indexed

Body mass index Sampling weight Gender
Year File Start End Start End field
2000 cdbrfs00asc.ZIP 862 864 832 841 174
2001 cdbrfs01asc.ZIP 725 730 686 695 139
2002 cdbrfs02asc.ZIP 933 936 822 831 149
2003 CDBRFS03.ZIP 854 857 745 754 161
2011 LLCP2011.ZIP 1533 1536 1475 1484 151
2012 LLCP2012.ZIP 1644 1647 1449 1458 141
2013 LLCP2013.ZIP 2192 2195 1953 1962 178
2014 LLCP2014.ZIP 2247 2250 2007 2016 178

4 Chapter 7 uses these BRFSS data files in all of the tutorials.

http://www.cdc.gov/brfss/annual_data/annual_data.htm
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3. If you want to look at the contents of one of the data files, open a Linux
terminal and submit a command of the form:

cat LLCP2011.ASC | more

Each record in a BRFSS data file is a character string and without de-
limiters to identify specific variables. The file format is fixed-width, im-
plying that variables are located according to an established and un-
changing position in the string (recall that the record is a character
string). Consequently, variables are extracted as substrings from each
record. Regrettably, string or field position depends on year and the
field positions must be determined anew each time a different year is
processed. Table 3.1 contains the field positions for several variables.
The field positions are exactly as presented in the BRFSS codebooks.
The codebooks describe the variables and field positions. For example,
https://www.cdc.gov/brfss/annual_data/2014/pdf/codebook14_llcp.pdf
is the year 2014 codebook.

Table 3.1 field positions are one-indexed. When one-indexing is used,
the first character in the string s is s[1]. Python uses zero-indexing to
reference characters in a string5 so we will have to adjust the values in
Table 3.1 accordingly.

4. Create a Python script. The first code segment creates a dictionary that
contains the field positions of body mass index and sampling weight.
We’ll create a dictionary of dictionaries. The outer dictionary name is
fieldDict and the keys of this dictionary are years, though we use only
the last two digits of the year rather than all four. The first instruction
in the following code segment initializes fieldDict. The keys are defined
when the dictionary is initialized.

The values of fieldDict are dictionaries in which the keys are the
variable names and the values of these inner dictionaries are pairs iden-
tifying the first and last field positions of the variable. The dictionaries
for year 2000 (field[0]) and 2001 (field[1]) are shown in the two lines
following the initialization of fieldDict:

fieldDict = dict.fromkeys([0, 1, 2, 3, 11, 12, 13, 14])
fieldDict[0] = {’bmi’:(862, 864), ’weight’:(832, 841)}
fieldDict[1] = {’bmi’:(725, 730), ’weight’:(686, 695)}

5. Using the information in Table 3.1, add the remaining inner dictionaries
entries to fieldDict, that is, for the years 2002, 2003, 2011, 2012, 2013,

5 The first character in the string in Python is s[0].

https://www.cdc.gov/brfss/annual_data/2014/pdf/codebook14_llcp.pdf
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and 2014. Check your code by printing the contents of fieldDict and
comparing to Table 3.1. Iterate over year and print:

for year in fieldDict:
print(year, fieldDict[year])

6. We’ll use fieldDict in the several other tutorials and add additional
variables and years. To keep our scripts short and easy to read, move the
code segment that builds fieldDict to a function. For the moment, put
the function definition at the top of your Python script.

def fieldDictBuild():
fieldDict[0] = {’bmi’:(862,864),’weight’:(832,841)}
...
fieldDict[14] = {’bmi’:(2247,2250),’weight’:(2007,2016)}
return fieldDict

7. Call the function with the instruction fieldDict = fieldDictBuild().
Print fieldDict and check that it is agrees with the entries in Table 3.1.

8. The next two instructions direct the reader on building a module to con-
tain fieldDictBuild. Begin by creating a directory named ModuleDir
and a Python script named functions.py. Instruction 1 provides a sug-
gestion on the structure and names of the directories. Remove fieldDict
from its position at the top of the script and put it in functions.py. Now
functions.py is a module—a collection of definitions and functions that
may be called from other programs. The function fieldDictBuild cre-
ates fieldDict by executing the instruction

fieldDict = functions.fieldDictBuild()

However, before this function call will execute successfully, the functions
module must be imported using the instruction

from ModuleDir import functions

ModuleDir is the directory containing the file functions.py. The direc-
tory may contain other modules that are unrelated to the purposes of
functions.

9. Lastly, if the directory containing functions.py is not the same as the
location of the script being executed, then the interpreter must be in-
structed on where to search for functions.py. If this is the case, then
direct the compiler where to search for the module. Assuming that the full
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path to functions.py is /home/Algorithms/ModuleDir/functions.py,
put the following instruction at the top of the script:

import os,sys

parentDir = r’/home/Algorithms/’
if parentDir not in set(sys.path):

sys.path.append(parentDir)
print(sys.path)

from ModuleDir import functions
dir(functions)

Your path, (parentDir), may be different.6 Notice that the path to the
directory omits the name of the directory containing the function. Adding
r in front of the path instructs Python to read backslashes literally. You’ll
probably need this if you’re working in a Windows environment.

When you modify functions.py, it will have to be reloaded by the
interpreter for the changes to take effect. You have to instruct the inter-
preter to reload it or else you have to restart the interpreter.7 You can
reload a module using a function from a library. If you’re using Python
3.4 or later, then import the library importlib using the instruction
import importlib. The instructions are

import importlib
reload(functions) # Python 3.4 or above

to reload functions. If reload does not update a change to
functions.py, then restart the console. Restarting a Python console will
also (re)load all of the modules. If your version of Python is 3.3 or less,
then import the library imp and reload functions with the instructions:

import imp
imp.reload(functions) # Python 2 and 3.2-3.3

6 It will not begin with /home/... if your operating system is Windows.
7 In Spyder, close the console, thereby killing the kernel, and start a new console to
restart the interpreter.
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After reloading, check the contents of the module functions with the in-
struction dir(functions). The dir(functions) will list all of the func-
tions that are available including a number of built-in functions.8

10. The function fieldDictBuild will build fieldDict when called so:

fieldDict = functions.fieldDictBuild()

Add the instruction to the script after the reload(functions) instruc-
tion.

11. Build a for loop that will process all of the files located in the data
directory. First, create a list containing the names of the files in the
directory. Then iterate over the list and as the iteration progresses, test
whether the current file name is one of the BRFSS data files listed in
Table 3.1. This is accomplished by extracting the two character substring
occupying positions 6 and 7 from the file name. If the two-character
string cannot be converted to an integer, then the file name is not one of
the BRFSS data files and a ValueError will be thrown by the Python
interpreter. Execute the conversion of string to integer with an exception
handler so that any file that is in the directory and is not BRFSS data
file will be passed over without causing the program to terminate.

path = r’../Data/’ # Set the path to match your data directory.
fileList = os.listdir(path) # Creates a list of files in path
for filename in fileList:

try:
shortYear = int(filename[6:8])
year = 2000 + shortYear

fields = functions.fieldDict[shortYear]
sWt, eWt = fields[’weight’]
sBMI, eBMI = fields[’bmi’]

file = path+filename
print(file,sWt, eWt,sBMI, eBMI)

except(ValueError, KeyError):
pass

The field positions of the sampling weight and body mass index are ex-
tracted in the middle block of three instructions. The first instruction
extracts the fields dictionary from fieldDict using the two-digit year
as the key. Then, the starting and ending positions of the variables are
extracted. The starting and ending positions are the field positions trans-
lated from the BRFSS codebook. The BRFSS codebook for a specific year

8 Execute functions.py if your function in functions.py is not compiling despite calling
the reload function.
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can be found on the same webpage as the data file.9 The codebook lists
the field positions using one-indexing. One-indexing identifies the first
field in the string as column 1. However, Python uses zero-indexing for
strings and so we will have to adjust when extracting the values.

12. The following code segment processes each data file as the program iter-
ates over the list of files. The code must be nested within the try branch
of the exception handler (instruction 11). Insert the code segment after
the print statement above.

with open(file, ’r’, encoding=’latin-1’) as f:
for record in f:

print(len(record))

In Python 3, the instruction with open forces the file to close when the
for loop is interrupted or when the end of the file is reached. We do not
need the instruction f.close(). Hence, all instructions that are to be
carried out while the file is being read must be nested below the with
open instruction.

13. In the for loop of instruction 12, extract body mass index and sampling
weight from each record by slicing. If a string named record is sliced using
the instruction record[a:b], then the result is a substring consisting of
the items in fields a, a + 1, . . . , b − 1. Note that the character in field b is
not included in the slice. Convert the sampling weight string to a float
using the one-index field positions sWt and eWt. Also extract the string
containing the body mass index value using sBMI and eBMI extracted in
instruction 11.

weight = float(record[sWt-1:eWt])
bmiString = record[sBMI-1:eBMI]

The next code segment converts bmiString to a float.
14. The BRFSS format and missing value code for body mass index depends

on year so there will be year-specific instructions for translating strings
to floats. Further, the decimal point has been left out of the string and
has to be inserted. The following code translates bmiString to a float
value if the missing value code is not encountered. If a missing value code
is encountered, then body mass index will be assigned the value 0. Since
none of the histogram intervals contain 0, a record with a missing value
code will be effectively omitted from the construction of the histograms.

9 The codebook contains a wealth of information about the data and data file structure.
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bmi = 0
if shortYear == 0 and bmiString != ’999’:

bmi = .1*float(bmiString)
if shortYear == 1 and bmiString != ’999999’:

bmi = .0001*float(bmiString)
if 2 <= shortYear <= 10 and bmiString != ’9999’:

bmi = .01*float(bmiString)
if shortYear > 10 and bmiString != ’ ’:

bmi = .01*float(bmiString)
print(bmiString, bmi)

The length of the blank string must be the same as the length of
bmiString.

15. When the conversion of the string containing body mass index to the
decimal expression works correctly, then turn it into a function by placing
the declaration

def convertBMI(bmiString, shortYear):

before the code segment. Indent the code segment and add the instruction
return bmi at the end of the code segment.

16. Add the instruction to call the function:

bmi = convertBMI(bmiString, shortYear)

after the function. Run the program. If it is successful, then move the defi-
nition of convertBMI to functions.py. The function will not be available
until the functions is recompiled, so execute the script functions.py.
Call the function using the instruction

bmi = functions.convertBMI(bmiString, shortYear)

17. Go back to the beginning of the program and set up a dictionary to con-
tain the histograms. One histogram will be created for each year, and
each histogram will be represented by a dictionary that uses intervals as
keys and sums of sampling weights as values. (Ordinarily, the value would
be a count of observations that fell between the lower and upper bounds
of the interval). Each histogram interval is a tuple in which the tuple ele-
ments are the lower and upper bounds of the interval. The value is a float
since it is a sum of sampling weights. The set of intervals corresponding
to a histogram are created once as a list using list comprehension:
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intervals = [(10+i, 10+(i+1)) for i in range(65)]

Place this instruction before the for loop that iterates over fileList.
The first and last keys are (10,11) and (74,75). It will become appar-
ent momentarily that the histogram spans the half-open interval (10, 75]
because of the way we test whether an observation falls in an interval. A
few individuals have a body mass index outside this range. We will ignore
these individuals since there are too few of them to affect the histogram
shape and including them interferes with readability.

18. Build a dictionary of histograms in which the keys are years and the
values are dictionaries.

years = [2000, 2001, 2002, 2003, 2011, 2012, 2013, 2014]
histDict = {}
for year in years:

histDict[year] = dict.fromkeys(intervals,0)

The value associated with the key year is a dictionary. The keys of these
inner dictionaries are the histogram intervals for the year. The values of
the inner dictionary are initialized as 0.

19. Return to the for loop that processes fileList. We’ll fill the histogram
corresponding to the data file or equivalently, the year, as the file is pro-
cessed. The first step is to identify the histogram to be filled by adding the
instruction histogram = histDict[year] immediately after extracting
the field positions for weight and body mass index (instruction 11).

20. We will assume that a ValueError has not be thrown and thus body
mass index and sampling weight have been extracted successfully from
the record. Increment the sum of the weights for the histogram interval
that contains the value of body mass index. The for loop below iter-
ates over each interval in histogram. The lower bound of the interval is
interval[0] and the upper bound is interval[1].

for interval in histogram:
if interval[0] < bmi <= interval[1]:

histogram[interval] += weight
break

The break instruction terminates the for loop when the correct interval
has been found.

This code segment must be located inside the for loop initiated by
for record in f so that it executes every time bmiString is converted
to the float bmi. Indentation should be the same as the statement if
shortYear > 10 and bmiString != ‘ ’:.



3.6 Tutorial: Histogram Construction 71

When the end of the file has been reached, histogram will con-
tain the sum of the weights shown in the numerator of Eq. (3.12).
The dictionary histDict[year] will also have been filled since we
set histogram = histDict[year] and the result of this instruction
is that histDict[year] and histogram reference the same location
in memory. You can test this by executing print(id(histogram),
id(histDict[year])). The function id reveals the unique identifier of
the object.10

21. It may be of interest to count the number of body mass index values
that are outside the interval (10, 75]. Initialize two variables before the
files are processed by setting them equal to zero. Give them the names
outCounter and n. Add the following instructions and indent them so
that they execute immediately after the code segment shown in instruc-
tion 20.

n += 1
outCounter += int(bmi < 10 or bmi > 75)
if n % 10000 == 0:

print(year,n,outCounter)

Thus far, the program functions as a mapper algorithm by mapping
records to annual histograms. The next code segment functions as a re-
ducer algorithm by mapping annual histograms to decadal histograms.
The code segment executes after all the data files have been processed.

22. Initialize a two-element list decadeWts to contain the sampling weight
totals for each decade. Create a dictionary named decadeDict with the
same structure as histDict except that the keys are decades instead of
years. The value associated with a decade key is a histogram dictionary.
The keys of the histogram dictionaries are the intervals and the values
are sampling weight totals. The code follows:

decadeWts = [0]*2
decades = [0, 1]
decadeDict = {}
for decade in decades:

decadeDict[decade] = dict.fromkeys(intervals, 0)

The list intervals was created earlier (instruction 17).
23. Construct a for loop that iterates over the list years and maps the

annual histograms to the appropriate decadal histograms:

10 It’s informative to submit the instruction a = b = 1 at the console. Then, submit a
= 2 and print the value of b. The moral of this lesson is be careful when you set two
variables equal.
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for year in years:
decade = int(year/2005)
histogram = histDict[year]

The instruction decade = int(year/2005) produces the largest inte-
ger less than or equal to 2005/year, thereby determining the decade as
0 or 1.

24. As the for loop of instruction 23 iterates over year, compute the sum
of the sampling weights for the year. Specifically, extract the sampling
weight sum associated with each interval and increment the sampling
weight sum in the decade dictionary:

for interval in histogram:
weightSum = histogram[interval]
decadeDict[decade][interval] += weightSum
decadeWts[decade] += weightSum

Since the for loop is to execute for each year, it must be aligned with
the instruction histogram = histDict[year].

25. We may now scale the decade histograms to contain the estimated pro-
portions of the population with body mass index falling in a particular
interval.

for decade in decadeDict:
histogram = decadeDict[decade]
for interval in histogram:

histogram[interval] = histogram[interval]/decadeWts[decade]

Again, we’ve used the fact that assigning one variable equal to another
variable only generates two names for the same variable (or memory
location).

26. We will use the Python module matplotlib to graph the histograms for
the two decades. In preparation for plotting, import the plotting function
pyplot from matplotlib and create a list x containing the midpoints of
the histogram intervals. Also create a list y containing the estimated pro-
portions associated with each interval. Exclude from x and y the intervals
beyond 50 since relatively few individuals have a body mass index greater
than 50.
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import matplotlib.pyplot as plt

x = [np.mean(pair) for pair in intervals if pair[0] < 50]
y = [decadeDict[0][pair] for pair in intervals if pair[0] < 50]
plt.plot(x, y)
y = [decadeDict[1][pair] for pair in intervals if pair[0] < 50]
plt.plot(x, y)
plt.legend([str(label) for label in range(2)], loc=’upper right’)

Two histograms are plotted on the same plot.
The histograms do not have the traditional rectangular or step form. If

you include the argument drawstyle=’steps’ in the call plt.plot(x,
y), then the histogram will appear as a series of steps. (We find that it
is not as easy to discriminate between the two histograms if they appear
as a series of steps). If the histograms are to appear on separate figures,
then set the figure number before the histogram is plotted.

x = [np.mean(pair) for pair in intervals if pair[0] < 50]
y = [decadeDict[0][pair] for pair in intervals if pair[0] < 50]
plt.figure(1)
plt.plot(x, y, drawstyle=’steps’)
y = [decadeDict[1][pair] for pair in intervals if pair[0] < 50]
plt.figure(2)
plt.plot(x, y, drawstyle=’steps’)

27. There is visual evidence of a difference between decades with respect
to the distributions of body mass index but it does not seem to us to
be very convincing evidence supporting the assertion that the U.S. is
suffering an obesity epidemic. Compute an estimate of the proportion of
the populations that are classified as obese, or equivalently, that have a
body mass index greater than or equal to 30 kg/m2 for the two decades.
The computation for the first decade is

print(sum([decadeDict[0][(a,b)] for a, b in decadeDict[0] if a >= 30]))

28. Compute the percent change relative to the earlier decade, say 100(π̂2010−
π̂2000)/π̂2000%. Does this statistic support the assertion that an epidemic
is occurring?11

11 We think so.
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3.6.1 Synopsis

We have reduced millions of observations on body mass index to a very
compact summary—two histograms consisting of the estimated proportion
of adult U.S. residents falling into 65 one-unit body mass index intervals.
From the two histograms, we have clear, empirical evidence of a shift in body
mass index over roughly a 10 year time span.

Often, boxplots are better than histograms when the objective is primar-
ily a visual contrast of two or more distributions. Boxplots are preferable to
histograms when the number of observations is small and it’s desirable to
visually identify outliers. The boxplot statistics are the 25th, 50th and 75th
percentiles, collectively referred to as the quartiles. Finding the quartiles re-
quires the data to be ordered, and if the data are partitioned as subsets
D1, D2, . . . , Dr, and separately processed to compute r sets of quartiles, then
there is no method that will aggregate the quartiles from each subset and ob-
tain the exact quartiles of D. Quartiles, and hence, boxplot statistics are not
associative. This raises the problem of determining an algorithm for comput-
ing the boxplot statistics from a massively large data set—there’s no obvious
path forward and the problem becomes mired in compromises and approxi-
mations. In contrast, the path for building histograms from massively large
data sets is straightforward and unambiguous.

3.7 Multivariate Data

In this section the reader is introduced to basic algorithms for multivariate
data processing. We continue to develop the theme of scalability and asso-
ciative statistics. It should be kept in mind that multivariate analysis is a
broad area, drawing on a wide variety of methods from statistics and numer-
ical linear algebra. Most the methods are sophisticated both mathematically
and computationally and thus beyond the scope of this text. In fact, one
cannot really get very far into the subject without some knowledge of matrix
algebra. Therefore, we proceed under the assumption that the reader has a
familiarity with matrix notation and arithmetic operations involving vectors
and matrices. Chapter 1, Sect. 1.10.1 provides a short review.

The data are presumed to be a set of multivariate observations collected
by sampling a population or observing a process. An example of a process is
the stream of price quotations generated by trading activity on the NASDAQ
stock exchange.12 In any minute of trading, a quotation may be produced on
any of the 3100 or so stocks, and if the quotations are aggregated by the
minute, then we may think of trading as a process generating a stream of

12 NASDAQ is the abbreviation for the National Association of Securities Dealers Au-
tomated Quotations system.
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observations on a 3100-element vector. The elements of each vector are the
most recent asking price of the stocks. The analysis of this stream in real-
time has become both highly profitable and in some quarters, objectionable.
We’ll work with a univariate form of the NASDAQ stream and forecasting
in Chap. 11. The Behavioral Risk Factor Surveillance System discussed in
Sect. 3.6 exemplifies population sampling. From each respondent, the answers
to a number of questions are obtained, and so each question is in essence one
of many variables. The reader will use these data and the algorithms of this
section to investigate relationships between obesity, income, and education
in U.S. adults.

More generally, the objectives of multivariate data analysis routinely in-
clude estimating the mean level and variance of the variables, computing the
sample correlation between variables, and estimating the coefficients of a lin-
ear model that predicts one of the variables from one or more of the other
variables. Before developing scalable algorithms for accomplishing these ob-
jectives, some notation and terminology needs to be established.

3.7.1 Notation and Terminology

Suppose that the data consists of observations on n units and on each,
the values of p variables are observed. The data set is denoted as D =
{x1,x2, . . . ,xn} and the ith observation in D is a vector

xi
p×1

= [xi,1 xi,2 · · · xi,p]T (3.13)

in which the jth element, xi,j , is an observation on the jth variable.
From a statistical perspective, the data often are treated as n realizations

of a multivariate random vector X = [X1 X2 · · · Xp]T with expectation
E(X) = μ and variance matrix var(X) = Σ where

μ
p×1

= [E(X1) E(X2) · · · E(Xp)]T ,

= [μ1 μ2 · · · μp]T .
(3.14)

We set μi = E(Xi). The variance matrix is

Σ
p×p

=

⎡

⎢

⎢

⎢

⎣

σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

...
. . .

...
σp1 σp2 · · · σ2

p

⎤

⎥

⎥

⎥

⎦

.

The diagonal elements σ2
1 , . . . , σ2

p are the variances of each univariate variable.
The standard deviation σj = E[(Xj − μj)2]1/2 may be interpreted as the
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average (absolute) difference between the mean μj and the realized values of
the variable. The off-diagonal elements of Σ are referred to as the covariances.
The principal use of the covariances is to describe the strength and direction
of association between two variables. Specifically, the population correlation
coefficient

ρjk = σjk

σjσk
= ρkj (3.15)

quantifies the strength and direction of linear association between the jth
and kth random variables. The correlation coefficient is bounded by −1 and
1, and values of ρjk near 1 or −1 indicate that the two variables are nearly
linear functions of each other. Problem 3.6 asks the reader to verify this
statement. When ρjk is positive, the variables are positively associated and
as the values of one variable increase, the second also tends to increase. If
ρjk < 0, the variables are negatively associated and as the values of one
variable increase, the second tends to decrease. Values of ρjk near 0 indicate
that the relationship, if any, is not linear.

The correlation matrix is

ρ
p×p

=

⎡

⎢

⎢

⎢

⎣

1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p

...
. . .

...
ρp1 ρp2 · · · 1

⎤

⎥

⎥

⎥

⎦

.

Together, μ, Σ, and ρ provide a substantial amount of information about
a population or process. However, these quantities rarely can be determined
precisely and must be estimated from the data. Multivariate data analysis
usually begins with estimation of these parameters.

3.7.2 Estimators

The mean vector μ is estimated by the sample mean vector

x
p×1

= n−1

⎡

⎢

⎢

⎢

⎣

∑n
i xi,1

∑n
i xi,2
...

∑n
i xi,p

⎤

⎥

⎥

⎥

⎦

.

A scalable algorithm for computing x is straightforward since x is a func-
tion of a vector of sums, and the sum is an associative statistic. A scalable
algorithm for computing the sample mean vector reads the data in blocks or
line-by-line to compute the sums

∑n
i xi,j , j = 1, . . . , p. It’s not so obvious but

an estimator of σ2
j may also be computed from an associative statistic using

a scalable algorithm.
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We will not use the traditional moment estimator of σ2
i but instead use

an estimator that is nearly equivalent and not as messy for developing the
estimator as a function of an associative statistic. Specifically, we use n as
the denominator instead of the traditional n − 1. The choice of n simplifies
computations but introduces a downward bias in the estimators. When n is
not small, but instead is at least 100, the bias is negligible. In any case, the
variance estimator is

σ̂2
j =

∑

i(xi,j − xj)2

n

= n−1 (∑
i x2

i,j − nx2
j

)

= n−1∑
i x2

i,j − x2
j .

(3.16)

The estimator of the covariance between variables j and k is

σ̂jk =
∑

i(xi,j − xj)(xi,k − xk)
n

= n−1 (
∑

i xi,jxi,k − nxjxk)
= n−1∑

i xi,jxi,k − xjxk.

(3.17)

Our estimator σ̂jk also differs from the traditional moment estimator of σjk

by using n as the denominator in place of n − 1 for the previous reason—
there’s no practical difference and the mathematics are simpler.

The variance matrix Σ is estimated by

̂Σ =

⎡

⎢

⎣

σ̂2
1 · · · σ̂1p

...
. . .

...
σ̂p1 · · · σ̂2

p

⎤

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

n−1
∑

i

x2
i,1 − x2

1 · · · n−1
∑

i

xi,1xi,p − x1xp

...
. . .

...
n−1

∑

i

xi,pxi,1 − xpx1 · · · n−1
∑

i

x2
i,p − x2

p

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(3.18)

The outer product13 of x with itself is a p × p matrix given by

x
p×1

x
1×p

T =

⎡

⎢

⎣

x2
1 · · · x1xp

...
. . .

...
xpx1 · · · x2

p

⎤

⎥

⎦ .

13 The inner product of a vector w with itself is the scalar wTw (Chap. 1, Sect. 1.10.1).
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The outer product leads to a simpler alternative formula to Eq. (3.18):

̂Σ = n−1M − xxT , (3.19)

where

M
p×p

=

⎡

⎢

⎢

⎢

⎣

∑

x2
i,1

∑

xi,1xi,2 · · ·
∑

xi,1xi,p
∑

xi,2xi,1
∑

x2
i,2 · · ·

∑

xi,2xi,p

...
...

. . .
...

∑

xi,pxi,1
∑

xi,pxi,2 · · ·
∑

x2
i,p

⎤

⎥

⎥

⎥

⎦

is the raw or uncentered moment matrix. The statistic M is composed of
sums and is associative. Thus, M and ̂Σ can be computed using a scalable
algorithm. An algorithm for simultaneously computing M and x will be de-
scribed momentarily.

The estimator of ρ is the correlation matrix

R =

⎡

⎢

⎢

⎢

⎣

1 r12 · · · r1p

r21 1 · · · r2p

...
...

. . .
...

rp1 rp2 · · · 1

⎤

⎥

⎥

⎥

⎦

,

where
rjk =

∑

(xi,j − xj)(xi,k − xk)
σ̂j σ̂k

. (3.20)

The matrix R is symmetric because rjk = rkj for each 1 ≤ j, k ≤ p. Further-
more, R is a product of two matrices D and ̂Σ given by

R = D ̂ΣD, (3.21)

where D is the diagonal matrix

D =

⎡

⎢

⎢

⎢

⎣

σ̂−1
1 0 · · · 0
0 σ̂−1

2 · · · 0
...

...
. . .

...
0 0 · · · σ̂−1

p

⎤

⎥

⎥

⎥

⎦

.

Computing R is easy using formula (3.21); of course, this depends on the
programming language having implemented a matrix product operator.

The computation of x, ̂Σ and R is expedited if the data vectors are aug-
mented by concatenating 1 to each vector. The moment matrix obtained from
the augmented data vectors is the topic of the next section.
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3.7.3 The Augmented Moment Matrix

Each data vector is augmented by concatenating a 1 before the data values.
The ith the augmented vector is then

wi
(p+1)×1

=
[

1
xi

p×1

]

=

⎡

⎢

⎢

⎢

⎣

1
xi,1

...
xi,p

⎤

⎥

⎥

⎥

⎦

.

The outer product of wi with itself is a (p + 1) × (p + 1) matrix

wiwT
i =

⎡

⎢

⎢

⎢

⎣

1
xi,1

...
xi,p

⎤

⎥

⎥

⎥

⎦

[

1 xi,1 · · · xi,p

]

=

⎡

⎢

⎢

⎢

⎣

1 xi,1 · · · xi,p

xi,1 x2
i,1 · · · xi,1xi,p

...
...

. . .
...

xi,p xi,pxi,1 · · · x2
i,p

⎤

⎥

⎥

⎥

⎦

.

The sum of n outer products forms the augmented matrix A:

A
(p+1)×(p+1)

=
∑

i wiwT
i

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

n
∑

xi,1
∑

xi,2 · · ·
∑

xi,p
∑

xi,1
∑

x2
i,1

∑

xi,1xi,2 · · ·
∑

xi,1xi,p
∑

xi,2
∑

xi,2xi,1
∑

x2
i,2 · · ·

∑

xi,2xi,p

...
...

...
. . .

...
∑

xi,p

∑

xi,pxi,1
∑

xi,pxi,2 · · ·
∑

x2
i,p

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
(3.22)

The augmented moment matrix differs from the moment matrix M by
having an additional row along the top and left side that contains n and the
sums of each variable. Hence, the augmented matrix may be expressed as

A =

⎡

⎣

n
1×1

nxT

1×p

nx
p×1

M
p×p

⎤

⎦ . (3.23)

The augmented moment matrix is an associative statistic, and from A, the
statistics M and nx are readily extracted. With M and nx, the variance
matrix ̂Σ can be computed using formula (3.19). Likewise, D, and R are
easily computed. A computationally efficient algorithm will compute A by
iterating over x1, . . . ,xn. The estimates x, ̂Σ, and R are computed from A
using matrix operations.

In a distributed environment, the data set D is partitioned as subsets
D1, D2, . . . , Dr and each subset is processed separately. Subset Dj yields an
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augmented matrix Aj , and A1, . . . ,Ar are joined at completion of the r
processes as

A =
r
∑

j=1
Aj .

Then, M and x are extracted from A and ̂Σ, D, and R are computed.

3.7.4 Synopsis

The sequence of computations used to compute the sample mean vector,
sample variance, and sample correlation matrix are

1. Partition the data set D as r subsets (if necessary) and distribute the sub-
sets on separate nodes. Carry out steps 2 and 3 on nodes j = 1, 2, . . . , r.

2. At node j, initialize Aj as a (p + 1) × (p + 1) matrix of zeros.
3. At node j, read Dj sequentially, one record at a time or in blocks. With

the ith record:

a. Extract xi,1, . . . , xi,p.
b. Form the augmented observation vector wi from xi,1, . . . , xi,p.
c. Update Aj by computing Aj + wiwT

i → Aj .

4. Transfer A1, . . . ,Ar to a single node and compute A =
∑r

j=1 Aj .
5. Extract the first row of A and compute the sample mean vector x.
6. Extract M from A.
7. Compute ̂Σ from n, x and M.
8. Construct D.
9. Compute R = D ̂ΣD.

3.8 Tutorial: Computing the Correlation Matrix

Obesity is sometimes said to be a disease of the poor [35]. From a clinical
perspective, obesity is an indicator of excessive body fat, a condition that has
been observed to be associated with a number of chronic diseases. For the
sake of argument, we point out that claiming obesity to be a disease of the
poor is contradicted by national-level obesity rates. Specifically, a comparison
across countries reveals that obesity rates tend to be greater in high-income
countries compared to middle- and low-income countries [43]. An opportunity
to ascertain whether there is indeed a correlation between income and obesity
among adult residents of the United States presents itself in the databases of
Behavioral Risk Factor Surveillance System. If we entertain the hypothesis
that obesity is related to diet, and diet is related knowledge of nutrition,
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then educational level also may be associated with obesity. We may as well
include education in our investigation. The BRFSS asks survey respondents
to report household income, or more precisely to identify an income bracket
containing their income. Respondents also report their highest attained level
of education, body weight, and height. The CDC computes body mass index
from the reported weight and height of the respondents.

The clinical definition of obesity is a body mass index greater than or
equal to 30 kg/m2. From the data analytic standpoint, obesity is a binary
variable and not suited for computing correlation coefficients.14 Furthermore
it’s derived from a quantitative variable, body mass index. Body mass index
generally is a better variable from an analytical standpoint than obesity. One
need only realize that a person is obese if their body mass index is 30 or 60
kg/m2. The consequences of excessive body fat differ substantially between
the two levels of body mass index yet the binary indicator of obesity does
not reflect the differences. Our investigation will use body mass index and
examine associations by computing the (pair-wise) correlation coefficients
between body mass index, income level, and education level of respondents
using BRFSS data.

Income level is recorded in the BRFSS databases as an ordinal variable. An
ordinal variable has properties of both quantitative and categorical variables.
The values x and y of an ordinal variable are unambiguously ordered so
that there’s no debate of whether x < y or vice versa. On the other hand, the
practical importance of numerical difference x−y may depend on x and y. For
example, there are eight values of income: 1, 2, . . . , 8, each of which identifies
a range of annual household incomes. A value of 1 identifies incomes less than
$10,000, a value of two identifies incomes between $10,000 and $15,000, and
so on. It’s unclear whether a one-level difference has the same meaning at the
upper and lower range of the income variable. Education is also an ordinal
variable ranging from 1 to 6, with 1 identifying the respondent as never
having attended school and 6 representing 4 or more years of college. Values
of income and education outside these ranges denote a refusal to answer the
question or inability to answer the question. We will ignore such records.

Rather than computing each correlation coefficient associated with the
three pairs of variables one at a time, a single correlation matrix containing
all of the coefficients will be computed. The BRFSS data files for the years
2011, 2012, 2013, and 2014 will suffice for the investigation. We build on the
tutorial of Sect. 3.6. The tutorials of Sect. 3.10 and of Chaps. 7 and 8 build
on this tutorial, so as a practical matter, you should plan on re-using your
code.

1. Create a Python script and import the necessary Python modules:

14 Pearson’s correlation coefficient is a measure of linear association. Linear association
is meaningful when the variables are quantitative or ordinal.
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import sys
import os
import importlib

parentDir = ’/home/Algorithms/’
if parentDir not in set(sys.path):

sys.path.append(parentDir)
print(sys.path)

from ModuleDir import functions
reload(functions)
dir(functions)

The full path to functions.py is assumed to be
/home/Algorithms/ModuleDir/functions.py.

2. Table 3.2 provides the field locations for the income and education vari-
ables for the years of interest. Add the field locations of the income and ed-
ucation entries to the dictionary fieldDict from the tutorial of Sect. 3.6.
If you worked through the tutorial of Sect. 3.6, then the field dictionary
definitions reside in the file functions.py. Add dictionary entries for in-
come and education for the years 2011 through 2014. For example, the
new specification for year 2014 should look like

fieldDict[14] = {’bmi’:(2247, 2250),’weight’:(2007, 2016),
’income’:(152, 153),’education’:150}

Table 3.2 BRFSS data file names and field locations of the income, education, and age
variables

Income Education Age
Year File Start End field Start End
2011 LLCP2011.ZIP 124 125 122 1518 1519
2012 LLCP2012.ZIP 116 117 114 1629 1630
2013 LLCP2013.ZIP 152 153 150 2177 2178
2014 LLCP2014.ZIP 152 153 150 2232 2233

3. Create the field dictionary using the function fieldDictBuild that was
built in the tutorial of Sect. 3.6.

fieldDict = functions.fieldDictBuild()

4. Read all the files in the directory containing the data files. You may be
able to use your code from the Tutorial of Sect. 3.6 for this purpose. Ignore
any files from a year before 2011 and any other files not listed in Table 3.2
by intentionally creating an exception of the type ZeroDivisionError.
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An exception is an error that is detected during execution. It’s not nec-
essarily fatal if trapped with an exception handler.

path = r’../Data/’
fileList = os.listdir(path)
for filename in fileList:

try:
shortYear = int(filename[6:8])
if shortYear < 11:

1/0
year = 2000 + shortYear
file = path + filename
fields = functions.fieldDict[shortYear]

except(ValueError, ZeroDivisionError):
pass

If shortYear is less than 11, then a ZeroDivisionError exception is
created by the instruction 1/0. The exception directs program flow to
the except branch and none of the remaining instructions in the try
branch are executed. The pass statement directs program flow back to
the top of the for loop and the next file name in fileList is processed.
A ValueError exception will be generated if the string filename[6:8]
does not consist of digits and again program flow returns to the next file
name in fileList.

5. Extract the field positions for income, body mass index, and education
from the dictionary fields:

sInc, eInc = fields[’income’]
sBMI, eBMI = fields[’bmi’]
fEduc = fields[’education’]

This code segment is to execute immediately after extracting fields
from fieldDict.

6. Now that the necessary information regarding data file field positions
have been determined, read the file by iterating over the file object (f)
and, as a test that the program is reading the data, print the first 10
characters in each record.

with open(file, encoding = "latin-1") as f:
for record in f:

print(record[:10])

This code segment executes immediately after extracting the field posi-
tions of the three variables.
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7. Extract the income variable from record and test whether the income
string is missing. Income is missing if the field consists of two blanks, i.e.,
’ ’. If this is the case, then assign the integer 9 to income. We’ll use the
value 9 as a flag indicating that the record should be ignored.

incomeString = record[sInc-1:eInc]
if incomeString != ’ ’:

income = int(incomeString)
else:

income = 9

8. The next tutorial also uses income, and so to reduce effort, copy the
code segment and create a function for processing the income string. The
function and its call can be set up as

def getIncome(incomeString):
if incomeString != ’ ’:

income = int(incomeString)
else:

income = 9
return income

income = functions.getIncome(record[sInc-1:eInc])

Notice that the argument passed to getIncome is the string containing
the response to the income question. Compute and print income using the
old code and by calling the function. When the function works correctly,
move the function definition to the module functions.py and keep the
function call in place. Remove the code segment that translates the string
to integer from the main program.

9. Read the education character and test for blanks. The education field is a
single character in width and so record[fEduc-1] extracts the variable
from the string. Missing data is identified by testing for one blank rather
than the two-character blank used for income.

10. Move the code segment for processing education to a function named
getEducation and put the function in the module functions.py. Test
the function as you did with income. Insert a call to the function after
the call to getIncome.

11. Read the body mass index string and convert it to a float. The previous
tutorial created a function named convertBMI to perform the task of
converting the string to floating point type (see item 14 of Sect. 3.6).

12. Check that the code is functioning correctly by printing the values of
income, body mass index, and education as they are processed. Remove
the print statement when the code is functioning as expected.
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13. If the three variables, income, body mass index, and education, have
been successful converted to integers or floats, then create a vector w
containing values of the variables.

if education < 9 and income < 9 and 0 < bmi < 99:
w = np.matrix([1,income,bmi,education]).T

The Numpy function np.matrix creates a two-dimensional matrix. Passing
a list to Numpy produces a 1 × p matrix (mathematically, a row vector).
Assigning the .T attribute to np.matrix([1,income,bmi,education])
sets w to be the transpose of the row vector—therefore, a column vector
of length four. The vector w is created as a Numpy matrix rather than a
Numpy array so that we may easily compute matrix products using w.

14. Initialize the augmented matrix A before the for loop iterates over
fileList. The dimension of A is q × q where q = p + 1 = 4 is the
length of wi.

q = 4
A = np.zeros(shape=(q, q))

15. After computing w, add the outer product of w with itself to the aug-
mented matrix A:

A += w*w.T

The program flow should look like this:

for filename in os.listdir(path):
try:

...
with open(file, encoding = ’latin-1’) as f:

for record in f:
...
if education < 9 and income < 9 and 0 < bmi < 99:

w = np.matrix([1,income,bmi,education]).T
A += w*w.T
n = A[0,0] # Number of valid observations

16. Instead of waiting until all of the data has been processed to compute
the correlation matrix, we’ll compute it whenever the number of valid
observations is a multiple of 10,000 since it takes some time to process
all of the data. The following code segment computes the mean vector x
and extracts the moment matrix M from A:
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if n % 10000 == 0:
M = A[1:,1:]
mean = np.matrix(A[1:,0]/n).T

The mean vector x is extracted from the first row of A as a 1 × q matrix.
The syntax A[1:,0] extracts a sub-vector from the first column of A
beginning with the second row and ending with the last row. Once again,
the .T operator is used to form mean as a column vector.

17. Compute the variance matrix estimate ̂Σ = n−1M − xxT using the
instruction

SigmaHat = M/n - mean*mean.T

18. Construct the diagonal matrix D with diagonal elements σ̂−1
1 , . . . , σ̂−1

p :

s = np.sqrt(np.diag(SigmaHat)) # Extract the diagonal from S and
# compute the square roots.

D = np.diag(1/s) # Create a diagonal matrix.

Note that the Numpy function diag has been used in two different ways.
In the first application, np.diag(SigmaHat) extracted the diagonal el-
ements as a vector s because diag was passed a matrix. In the second
application, diag was passed a vector containing the reciprocals of the
standard deviation estimates σ̂−1

i , i = 1, . . . , p, and the function inserted
the vector as the diagonal of a p × p matrix of zeros.

19. The product of two conformable Numpy matrices A and B is computed by
the instruction A*B. Compute the correlation matrix R = D ̂ΣD.

20. Verify that your code works correctly by computing R after the 10,000 ob-
servations have been processed. You may use the instruction sys.exit()
to stop execution immediately after computing R. The diagonal elements
of R must be equal to 1. and the off-diagonal elements must be between
−1 and 1; if not, then there is an error in the code.

If your correlation matrix does not conform to these constraints,
then it may be helpful to check the calculations of ̂Σ and D using R.
First, initialize a matrix to contain the data using the instruction X =
np.zeros(shape = (10000,3)). Store the data as it is processed. Be-
cause X is zero-indexed, subtract one from n:

if n <= 10000:
X[n-1,:] = [x for x in w[1:]]
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21. Write the data to a file using the following instruction when n has reached
10,000:

np.savetxt(’../X.txt’,X,fmt=’%5.2f’)

The file will be space delimited. The field width is at least 5 and there
are two places to the right of the decimal point for each number. Using
R, read the data into a data frame using the instruction

X = read.table(’../X.txt’)

The R instructions var(X) and cor(X) will compute n
n−1

̂Σ and R. The
R function diag is equivalent to the Numpy function of the same name.

22. Process the entire file and write the correlation matrix to an output file
using the Numpy function savetxt. The correlation matrix is shown in
Table 3.3.

Table 3.3 The sample correlation matrix between income, body mass index, and
education computed from BRFSS data files from years 2011, 2012, 2013, and 2014,
n = 1,587,668

Income Body mass index Education
Income 1 −.086 .457

Body mass index −.086 1 −.097
Education .457 −.097 1

There’s a very weak association between body mass index and income
since the correlation coefficient between the variables is −.086.

3.8.1 Conclusion

A correlation coefficient rij between −.3 and .3 indicates weak or little linear
association between variables i and j. Moderate levels of association are in-
dicated by .3 ≤ |rij | ≤ .7, and strong linear association is indicated by values
greater than .7 in magnitude. Based on Table 3.3, it is concluded that there
is little association between body mass index and income and between body
mass index and education. The negative association indicates that there is a
tendency for higher levels of income and education to be associated with lower
levels of body mass index. Considering the complex relationship between diet,
behavior, genetics, and body mass, the results are not unexpected. The data
do not directly measure these variables, but we might expect that income and
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education would reflect these variables. In hindsight, these variables are in-
adequate proxies for diet quality and nutritional knowledge. We’re not ready
to give up on these data though. Let us investigate a related question with
the data: to what extent do income, education, and body mass index jointly
explain variation in a person’s perception of their health? The next section
introduces a method of investigating the question.

3.9 Introduction to Linear Regression

Linear regression is a key methodology of data science. It’s extremely use-
ful for investigating the relationships between variables and for prediction,
among other purposes. Methodological aspects of linear regression are dis-
cussed in Chap. 6. In this section, we solve the computational hurdle of how
to compute linear regression estimates from a massively large data set. The
principal algorithm is a straightforward extension of the previous algorithm
for computing correlation matrices. Though the emphasis of this section is
computing, a brief outline of the salient aspects of linear regression helps set
the stage.

In the linear regression setting, one of the variables is to be modeled or pre-
dicted as a function of p predictor variables. Specifically, a model is adopted
of the expected value of the target random variable Y given a concomitant
predictor vector x. For example, we may ask the question to what extent may
a person’s health be explained by demographic attributes? To investigate the
question, a measure of health is identified and used as the target variable and
measures of income, education, and body mass index are used as predictor
variables.

A linear regression model will provide a simple approximation of what
undoubtedly is a complex relationship. The extent to which the model ade-
quately explains the target variable takes on special importance in the context
of the question of interest. Our algorithm will compute a measure of adequacy
or model fit known as the adjusted coefficient of determination.

Before proceeding, let’s consider whether correlation—the correlation ma-
trix specifically—suffices for addressing the question posed above. The cor-
relation matrix measures the degree of linear association between pairs of
variables drawn from a set of variables. The notion of one variable being
jointly related to more than one other variable cannot be explored satisfacto-
rily through correlation. But linear regression revolves around the notion of
a target variable responding to, or being explained by a set of predictor vari-
ables. Thus, linear regression analysis is the path forward and almost always
yields more insight than an examination of the correlation matrix. Compu-
tationally, this additional insight comes cheaply since remarkably little has
to be done to the correlation matrix algorithm of Sect. 3.8 to compute linear
regression estimates and the coefficient of determination.
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3.9.1 The Linear Regression Model

Our interest lies in the relationship between a target variable and a set of
predictor variables. The target has a preeminent role in the analysis whereas
the predictor variables are in a sense, subordinate to the target. The linear
regression model describes the target value as two terms: one describing the
expected value of the target as a function of the predictors and second being
a random term that cannot be explained by the predictors. In statistical
terms, the target variable is a random variable Y and the predictor vector
x is considered to be a vector of known values. The model is Y = f(x) + ε.
The term f(x) is unknown and needs to be estimated, and the term ε is
a random variable, commonly assumed to be normal in distribution, and
basically, a nuisance. A recurrent theme of regression analysis is minimizing
the importance of ε by finding a good form for the model f(x). We need not
be concerned with the distribution of ε at this point.

For example, Y may represent an individual’s health measured as a score
between 1 and 6, and x may represent concomitant measurements on variables
thought to be predictive of overall health. To investigate the relationship or
to predict an unobserved target value using observed predictor variables, a
linear model is adopted of the expected value of Y . We may think of observing
many individuals, all with the same set of predictor variable values. Their
health scores will vary about some mean value, and the linear regression
model describes that mean as a linear function of the predictor variables. It
is hoped that the magnitudes of the random terms are small so that Y ≈ f(x).
If this is the case, then the target can be predicted from the linear model with
some degree of accuracy.

The linear regression model specifies that E(Y |x), the expected value, or
mean of Y , is

E(Y |x) = β0 + β1x1 + · · · + βpxp.

The predictor vector consists of the constant 1 and the predictor vari-
able values, hence, x = [1 x1 · · · xp]T . The parameter vector is β =
[β0 β1 · · · βp]T . The coefficients β0, . . . , βp are unknown and must be es-
timated. The linear regression model may be expressed more compactly in
matrix form as

E(Y |x) = xT β. (3.24)

The inner product of x and β is said to be a linear combination of the p
variables comprising x. The model of Y can be written as Y = xT β + ε.

We turn now to the problem of estimating β using a set of data. The data
consist of pairs of observations on the target variable Y and the associated
predictor vector x. So, let D = {(y1,x1), . . . , (yn,xn)} denote the data set.
The ith predictor vector is xi = [1 xi,1 · · · xi,p]T . If we are to choose be-
tween two estimators of β, say ̂β and β̃, we prefer the estimator that produces
predictions that are, on average, closer to the actual values.
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With this in mind, the estimator of β is the parameter vector ̂β that
minimizes the sum of the squared differences between the target values yi and
the predictions xT

i
̂β, i = 1, . . . , n. The term residual is applied to describe

what has not been accounted for by the model and the parameter estimate
̂β; thus, the ith residual is yi − xT

i
̂β.

3.9.2 The Estimator of β

The least squares estimator of β is determined by finding the vector that
minimizes the sum of the squared residuals

S(β) =
∑n

i=1
(

yi − xT
i β
)2

. (3.25)

Minimizing S(β) with respect to β is the least squares criterion. The objec-
tive function S(·) can be expressed in matrix form by stacking the predictor
vectors as rows of the matrix

X
n×q

=

⎡

⎢

⎢

⎢

⎣

xT
1

1×q

...
xT

n
1×q

⎤

⎥

⎥

⎥

⎦

.

The matrix X is referred to as the design or model matrix. We also set up
the n-vector y = [y1 y2 · · · yn]T to contain the target observations. Then,

E(Y|X) = X
n×q

β
q×1

(3.26)

is the n-vector of expected values. Furthermore, we may write the objective
function as an inner product of differences between the vector of observed
values and the vector of expectations:

S(β) = (y − Xβ)T (y − Xβ). (3.27)

Of course, β is unknown, and the task at hand is to determine the best
possible estimator. The best estimator is the vector ̂β that minimizes S(β)
given that we judge estimators by the least squares criterion. The form of
the estimator can be determined by differentiating S(β) with respect to β,
setting the vector of partial derivatives equal to the zero vector, and solving
the resulting system of equations for β. The system, often referred to as the
normal equations, is

XTX
q×q

β
q×1

= XT

q×n
y

n×1
. (3.28)
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Exercise 3.3 guides the reader through the derivation. The solution to the
normal equations, and therefore the least squares estimator of β, is

̂β = (XTX)−1XTy. (3.29)

The solution shown in Eq. (3.29) requires that XTX be invertible; if XTX
is singular, then the computation of an estimator of β is more difficult. The
immediate problem is that the solution for ̂β expressed in formula (3.29) may
not be computationally tractable as it requires X, a matrix of n rows, and n
may be so large that X cannot easily be stored. A computational algorithm
for computing ̂β that avoids constructing X is not difficult to develop since
we can use the same methods as were used for computing the correlation
matrix.

The algorithm for computing the correlation matrix solves the problem of
an intractably large design matrix because XTX = A (formula (3.22)) and
the dimension of A is q × q. The matrix A is the augmented matrix and an
associative statistic. The vector z = XTy is also associative, and so the two
terms in the solution shown in Eq. (3.29) can be computed without much
difficulty. Changing notation to write the solution involving the associative
statistics sets the solution to be

̂β = A−1
q×q

z
q×1 (3.30)

Not only are the matrices A and z small, but they can be computed without
holding all of the data in memory. To understand why A = XTX (for-
mula (3.22)), let xk denote the n × 1 column vector of observations on the
kth predictor variable, k = 1, 2, . . . , p, and 1 denote a n × 1 vector of ones.
Then, XTX can be expressed as a matrix consisting of the q2 inner products
since

XTX
q×q

=

⎡

⎢

⎢

⎢

⎣

1T

xT
1
...
xT

p

⎤

⎥

⎥

⎥

⎦

q×n

[

1 x1 · · · xp
n×q

]

=

⎡

⎢

⎢

⎢

⎣

1T1 1Tx1 · · · 1Txp

xT
1 1 xT

1 x1 · · · xT
1 xp

...
...

. . .
...

xT
p 1 xT

p x1 · · · xT
p xp

⎤

⎥

⎥

⎥

⎦

q×q

=

⎡

⎢

⎢

⎢

⎣

n
∑

i xi,1 · · ·
∑

i xi,p
∑

i xi,1
∑

i x2
i,1 · · ·

∑

i xi,1xi,p

...
...

. . .
...

∑

i xi,p

∑

i xi,pxi,1 · · ·
∑

i x2
i,p

⎤

⎥

⎥

⎥

⎦

=
n
∑

i=1
xixT

i .

(3.31)
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Hence, A = XTX, since A is the sum of the outer products. Formula (3.31)
shows that A is associative. Similarly, the second term z = XTy in Eq. (3.29)
also is an associative statistic since

z
q×1

= XT

q×n
y

n×1

=

⎡

⎢

⎢

⎢

⎣

1Ty
xT
1 y
...

xT
p y

⎤

⎥

⎥

⎥

⎦

q×1

=

⎡

⎢

⎢

⎢

⎣

∑

yi
∑

xi,1yi

...
∑

xi,pyi

⎤

⎥

⎥

⎥

⎦

=
∑

xi
q×1

yi
1×1

.
(3.32)

The vector xT
i is the ith row vector. (We’re using the index i for row vec-

tors and k column vectors.) Both A and z can be computed by iterating
over observation pairs (x1, y1), . . ., (xn, yn). It’s useful to have one further
expression for ̂β that explicitly shows the predictor vectors:

̂β = (
∑n

i=1 xixT
i )−1∑ xi

q×1
yi
1×1

. (3.33)

Let t(D) = (A, z) denote the pair of statistics. It’s also associative since
A and z are both associative. A scalable algorithm for computing t(D) is
obtained by a minor modification of the algorithm for computing the corre-
lation matrix. As before, the algorithm iterates over the observations in the
data set D = {(y1,x1), . . . , (yn,xn)}. The preliminary steps are:

1. Initialize A as a q × q matrix of zeros.
2. Initialize z as a q-vector of zeros.

Process D sequentially and carry out the following steps:

1. From the ith pair of D, extract yi, xi,1, . . . , xi,p and construct xi according
to

{xi,1 · · · xi,p} → [1 xi,1 · · · xi,p]T = xi
q×1

.

It’s assumed that the intercept β0 is to be included in the model. If not,
then xi is not augmented with 1.

2. Update A and z according to

A + xixT
i → A.

and
z + yixi → z.

3. If the data has been partitioned as sets D1, . . . , Dr, then compute
A1, . . . ,Ar and z1, . . . , zr as described above. Upon completion, com-
pute
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A =
∑r

j=1 Aj

z =
∑r

j=1 zj .
(3.34)

4. Compute ̂β = A−1z.

3.9.3 Accuracy Assessment

In general, assessing the accuracy of a predictive function (not necessarily
a linear regression prediction function) is best accomplished using cross-
validation or bootstrapping. We’ll discuss cross-validation in Chap. 9. Fortu-
itously, elementary and informative accuracy estimates for regression-based
prediction functions can be computed essentially at the same time that the
parameter estimates are computed. We’ll develop one such measure of accu-
racy that provides a measure of the value of the predictor variables towards
explaining variation in the target variable. It will be used to determine the
value of income, education, and body mass index toward explaining variation
in health score.

Recall that standard deviation estimator σ̂ =
[

n−1∑(yi − μ̂)2
]1/2 mea-

sures the average absolute error resulting from using μ̂ as an estimator of the
expected value of Y . Without information about Yi in the form of a predictor
vector xi, μ is traditionally estimated by the sample mean y. A similar esti-
mator of the error is computed when regression is used to estimate the ith
expected value of the response variable. The regression mean squared error
σ2
reg is the expected squared error associated with using xT

i
̂β as an estimator

of the expected value of Yi, and σ̂reg is the estimated error incurred by using
xT

i
̂β as an estimator of the expected value of Yi. An informative regression

model ought to yield a substantially smaller error than the sample mean y.
The next step is to develop a measure of model accuracy that is based on the
reduction in error provided by the regression model compared to the sample
mean.

Estimators of σ2 and σ2
reg are

σ̂2 =
∑n

i=1(yi − y)2

n

and σ̂2
reg =

∑n
i=1(yi − ŷi)2

n − q
,

(3.35)

where ŷi = xT
i
̂β is the ith fitted value. Except in special circumstances, it’s

difficult to interpret σ̂2
reg without reference to σ̂2. This difficulty motivates a

relative measure of model fit, the adjusted coefficient of determination

R2
adjusted =

σ̂2 − σ̂2
reg

σ̂2 . (3.36)
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The adjusted coefficient of determination measures the relative reduction in
mean square error when comparing the fitted regression model to simplest of
data-based prediction functions, namely, y. The range of R2

adjusted is 0–1, and
values of R2

adjusted greater than .8 usually indicate that the fitted regression
model is useful for prediction. Furthermore, R2

adjusted may be interpreted as
the proportion of the variation in Y that is explained by the fitted regression
model.

3.9.4 Computing R2
adjusted

Turning now to the matter of computing R2
adjusted, formula (3.36) is a simple

function of the terms σ̂2 and σ̂2
reg. Equation (3.35) suggests that the data

must be processed twice to compute the terms: the first time to compute y
and ̂β, and the second time to compute the sum of the squared deviations.
However, we saw earlier (formula (3.16)) that σ̂2 may be computed using a
single pass through the data since σ̂2 = n−1∑ y2

i − y2. The regression mean
square error also can be computed without a second pass through the data
since

σ̂2
reg =

∑

i y2
i − zT

̂β

n − q
, (3.37)

where

z
q×1

=
n
∑

i=1
xi

q×1
yi
1×1

.

Exercise 3.8 guides the reader in a verification of formula (3.37).
As the algorithm iterates over observation pairs (y1,x1), . . . , (yn,xn) in

the calculation of ̂β, we accumulate the sum of squares
∑

i y2
i . The term z

is necessarily accumulated for the computation of ̂β and so is available to
compute σ̂reg when the algorithm completes.

If n is much larger than q so that n − q ≈ n, then computing R2
adjusted is

even simpler. Instead of using the correct denominator n − q in computing
σ̂2
reg, we’ll use n. Then,

R2
adjusted =

σ̂2 − σ̂2
reg

σ̂2

≈
n−1∑

i y2 − y2 − n−1
(

∑

i y2 − zT
̂β
)

σ̂2

= n−1zT
̂β − y2

σ̂2 .

(3.38)
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The alternative to computing σ̂2
reg as described above utilizes a second

pass through the data file. The sole purpose is to compute the sum of the
squared prediction errors

n
∑

i=1
(yi − xT

i
̂β)2 = (n − q)σ̂2

reg. (3.39)

3.10 Tutorial: Computing ̂β

For a long time it has been argued that income is related to health [16,
17]. The evidence supporting this contention is clouded by the difficulty of
quantifying a condition as complex as health. The problem is also confounded
with confidentiality issues that arise with potentially sensitive data on the
health of individuals. In this tutorial, we investigate the question by exploring
data from the Behavioral Risk Factor Surveillance System Survey (BRFSS).
Specifically, we build a regression model of a very simple measure of health,
the answer to the question would you say that in general your health is: The
question is multiple choice and the possible answers are shown in Table 3.4.

Table 3.4 Possible answers and codes to the question would you say that in general
your health is:

Code Descriptor
1 Excellent
2 Very good
3 Good
4 Fair
6 Poor
7 Don’t know or not sure
9 Refused

Blank Not asked or missing

After discarding records containing the codes 7, or 9, or an empty string,
the recorded variable is ordinal and suitable for regression analysis.

There is an abundance of demographic variables recorded in the BRFSS
data files but we limit the predictor variables to a few demographic descriptors
including of course, annual household income. Our objectives are limited to
assessing the relative importance of the variables income, body mass index,
and education toward predicting health. We also would like to judge whether
income is more important than the other variables. The objectives are pursued
by fitting a linear regression model of the health measure and examining the
estimated effect of a 1 unit change of each on health.

The BRFSS data files for the years 2011, 2012, 2013, and 2014 will
once again be used. In addition to income, body mass index, and education
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extracted in the previous tutorial, we will need to extract responses to the
health question. Table 3.5 shows the field positions the variable. Valid re-
sponses are integers between 1 and 6 inclusive. Records with general health
responses that are entered in the data files as 7, 9, or blank will be ignored.

Table 3.5 BRFSS data file names and field positions of the general health variable.
The general health variable contains a respondent’s assessment of their health. Table 3.4
describes the general health codes and meaning of each

Year File Position
2011 LLCP2011.ZIP 73
2012 LLCP2012.ZIP 73
2013 LLCP2013.ZIP 80
2014 LLCP2014.ZIP 80

This tutorial builds on the correlation tutorial of Sect. 3.8. The instructions
that follow assume that the reader has written a script that computes a
correlation matrix for some of the BRFSS variables. If you do not have a
script, then you should go through the tutorial and create it.

1. Load modules and functions that were used in the previous tutorial:

import sys
import os
import importlib

parentDir = ’/home/Algorithms/’
if parentDir not in set(sys.path):

sys.path.append(parentDir)
print(sys.path)

from ModuleDir import functions
reload(functions)
dir(functions)

Execute the script and correct any errors.
2. Edit the module functions.py and add the field position entries for the

general health variable to fieldDict. The field positions are listed in
Table 3.5. The dictionary entry for the year 2011 may appear as

fieldDict[11] = {’genhlth’:73, ’bmi’:(1533, 1536), ’income’:124, 125),
’education’:122}

3. Create the field dictionary using the function fieldDictBuild.

fieldDict = functions.fieldDictBuild()
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4. Create a list of files in your data directory and iterate through the list.
Process the files from the years 2011, 2012, 2013, and 2014.

path = r’.../Data/’
fileList = os.listdir(path)
print(fileList)
n = 0
for filename in fileList:

try:
shortYear = int(filename[6:8])
if shortYear < 11:

1/0
year = 2000 + shortYear

file = path+filename
print(filename)
fields = fieldDict[shortYear]

except(ValueError, ZeroDivisionError):
pass

Since there is an exception handler in the code to skip files that are
not data files, we also use the exception handler to skip data from years
preceding 2011. The last statement in the code segment retrieves the field
positions for the current year.

5. Extract the field positions for education, income, and body mass index
using the functions that you created in the previous tutorial. Get the field
position fGH for general health.

fEduc = fields[’education’]
sInc, eInc = fields[’income’]
sBMI, eBMI = fields[’bmi’]
fGH = fields[’genhlth’]

6. Process the data file by iterating over records. Extract the predictor vari-
able values:

file = path + filename
with open(file, encoding = "latin-1") as f:

for record in f:
education = functions.getEducation(record[fEduc-1])
income = functions.getIncome(record[sInc-1:eInc])
bmi = functions.convertBMI(record[sBMI-1:eBMI],shortYear)

This code segment executes within the for loop that iterates over
fileList. Therefore, the for record in f statement must have the
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same indentation as the code segment of instruction 5. The next code
segment handles invalid values of general health.

7. Map the string genHlthString to the integer genHlth as follows. First
test whether the string is a blank. If it is, then assign −1 to genHlth.
If the string is not blank, translate the string to an integer. Then test
whether the integer is 7 or 9 (or simply greater than 6), and if so, assign
−1 to genHlth. No other transformation is necessary.

Print the values of genHlthString and genHlth as the program iter-
ates over records to check your code. No other values of genHlth besides
those in {−1, 1, 2, 3, 4, 5, 6} should be produced.

8. Encapsulate the code segment from instruction 7 as a function. The def-
inition and return statements are:

def getHlth(HlthString):
...
return genHlth

9. Call the function so:

y = functions.getHlth(record[fGH-1])

Check that the function getHlth works correctly by printing the return
value y. When the function works correctly, move it to the functions
module. Delete the code segment from the main program. Call getHlth
after computing bmi.

10. If the extracted values are all valid, then form the predictor vector x from
education, income, and body mass index. The vector x is created as a
4×1 Numpy matrix so that we may easily compute the outer product xxT .
If one or more extracted values are not valid, then a ZeroDivisionError
exception is created and program flow is directed to the next record.

try:
if education < 9 and income < 9 and 0 < bmi < 99 and y != -1:

x = np.matrix([1, income, education, bmi]).T
n += 1

else:
1/0

except(ZeroDivisionError):
pass

11. The next set of operations build the matrices A and z from x and y.
But before computing the matrices A and z, it is necessary to initialize
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them as matrices containing zeros because they will be computed by
successively adding additional terms to the matrices. Initializations must
take place before any of the data files are processed. The initialization
code segment is

q = 4
A = np.zeros(shape = (q, q))
z = np.matrix(np.zeros(shape = (q, 1)))
sumSqrs = 0
n = 0

The variable sumSqrs will contain
∑

i y2
i (needed to compute σ̂2).

12. Returning to the inner for loop, as each record is processed, update
A and z. This code follows the test for valid values of the target and
predictor variables.

A += x*x.T
z += x*y
sumSqrs += y**2
n += 1

These instructions are executed only if the test for valid values is True
(instruction 10). Thus, the code segment follows immediately after up-
dating A.

13. After processing a large number of observations, compute

̂β = A−1z. (3.40)

You can compute A−1 using the Numpy function linalg.inv(), say,
invA = np.linalg.inv(A), and then compute betaHat = invA*z. How-
ever, from a numerical standpoint it’s preferable not to compute A−1 but
instead solve the linear system of equations Aβ = z for β using a LU-
factorization optimized for symmetric matrices.15 The solution to the
system will be ̂β. Compute ̂β after processing successive sets of 10,000
observations:

if n % 10000 == 0 and n != 0:
b = np.linalg.solve(A,z)
print(’\t’.join([str(float(bi)) for bi in b]))

15 The LU-factorization method is faster and more accurate than computing the inverse
and then multiplying.
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The calculation of ̂β shown here is carried out by means of an LU-
factorization. The join operator creates a string from the elements of
̂β and inserts a tab character in between each element.

14. The next task is to compute

R2
adjusted =

σ̂2 − σ̂2
reg

σ̂2 (3.41)

using the variance estimates

σ̂2 = n−1∑
i y2

i − y2

and σ̂2
reg = n−1

(

∑

y2
i − zT

̂β
)

.
(3.42)

All terms necessary to compute R2
adjusted have been computed except for

y = n−1∑
i yi. The sum

∑

i yi is stored in row zero of z. Hence, σ̂2 is
computed using the instruction

ybar = z[0]/n
varEst = sumSqrs/n - ybar**2

15. Compute the adjusted coefficient of determination. We use the approxi-
mation formula for R2

adjusted from Eq. (3.38).

rAdj = (z.T.dot(b)/n - ybar**2)/varEst

The .dot operator is used to compute the inner product of Numpy ar-
rays z and b. Since the Numpy function linalg.solve does not return
a matrix (it returns an array), the matrix multiplication operator * will
not multiply z and b correctly. You can determine the type of an object
using the function type().

16. Print the value of R2
adjusted and ̂β whenever n mod 10,000 = 0 and n > 0

by putting the following code within the if branch of the conditional
statement of instruction 13.

bList = [str(round(float(bi),3)) for bi in b]
print(n,’\t’.join(bList),str(round(float(rAdj),3)))

The print statements and all of the intermediate calculations needed to
compute R2

adjusted should execute whenever ̂β is computed. In the first
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line of the code segment, b is converted from a Numpy matrix to list of
strings.16

17. The ith parameter estimate ̂βi can be interpreted as the estimated change
in E(Y |x) if ith predictor variable increases by one unit and all other
variables are held fixed.17 For example, the parameter estimate ̂β1 =
−.145 associated with income implies that a one unit change in the income
variable is associated with an average improvement in general health score
of −.145. We call this change an improvement because a general health
score 1 identifies excellent health and six identifies poor health. Recall
that the income variable is ordinal, and that a 1 unit change in the
income variable corresponds to roughly $5000 more in income per year.
A one unit increase in body mass index is associated with an increase of
̂β3 = .037 in the health score. Body mass index is computed as weight
in kilograms divided by height2 and so, if an individual gains 10 kg (or
22 lbs), then we estimate the general health score to increase by .37. It’s
very difficult to say which variable is more important because the units
(dollars and kilograms are not comparable).

18. Remove education from the model and compute Radjusted. The difference
between Radjusted with all three values in the model and only income
and body mass index provides a measure of the importance of education.
As the difference is .016, we interpret education as accounting for 19.9 −
18.3 = 1.6% of the variation in general health score, not a very impressive
amount.

3.10.1 Conclusion

The tutorial found an adjusted coefficient of determination of .199, indicating
that the variables explained 19.9% of the variation in the general health
score. The model’s failure to explain much of the variation in general health
score is understandable because income and education do not directly affect
health. Despite there being a great deal of variation in general health score
that is not explained by this model, we see that differences in body mass
index and income are associated with differences in the perceived health of
respondents as measured by the health score.

If we remove income from the model, the coefficient of determination is
less—.134 and if we remove body mass index instead, Radjusted = .158. From
this comparison, we infer that income is a relatively more important determi-
nant of general health score than education or body mass index. This result
supports the notion that income and health are connected.

16 Numpy matrices and arrays cannot be rounded even if they are of length 1 or 1 × 1 in
dimension.
17 Interpretation of regression coefficients is discussed at length in Chap. 6.
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3.11 Exercises

3.11.1 Conceptual

3.1. Suppose that s is a statistic and that for any two sets D1 and D2 that
form a partition of the set D, s(D1 ∪ D2) = s(D1) + s(D2). Suppose that
r > 2 and D1, D2, . . . , Dr is also a partition of D. Argue that s(D) = s(D1)+
s(D2) + · · · + s(Dr).
3.2. Show that the statistic t(D) = (A, z) (Eqs. (3.22) and (3.32)) is an
associative statistic. Recall that pairs are added component-wise; hence,
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).
3.3. (Requires multivariable calculus.) Show that the least squares estimator
is the solution to the normal equations (3.28). Specifically, minimize the ob-
jective function S(β) (Eq. (3.25)) with respect to β. Differentiate S(β) with
respect to β. Set the vector of partial derivatives equal to 0

q×1
and solve for

β. The solution is the least squares estimator.
3.4. Recall that σ̂2 can be written as

σ̂2 =
∑

(xi − μ̂)2

n
,

and consider the variance estimator presented in Eq. (3.16).
(a) Verify that Eq. (3.3) are correct; that is, verify that μ̂ and σ̂2 can be

computed from s1, s2, and s3 according to the formulae.
(b) Conventional statistical texts advocate using the sample variance

s2 =
∑

(xi − μ̂)2

n − 1 .

to estimate σ2 because it is unbiased. In fact, σ̂2 is a biased estimator of
σ2. Show that the difference between σ̂2 and s2 tends to 0 as n → ∞.
Consequently, when n is large, the bias of σ̂2 is negligible.

3.5. Let

j
n×1

=

⎡

⎢

⎣

1
...
1

⎤

⎥

⎦

denote the summation vector of length n.
(a) Show that for any n-vector x, n−1jTx = x.
(b) Suppose that the p-vector of sample means x is to be computed from the

data matrix X
n×p

. Show that

xT = (jT j)−1 jT
1×n

X
n×p

. (3.43)
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(c) Assuming that j and X have been constructed as Numpy matrices, give a
one-line Python instruction that will compute xT .

(d) Note the similarity between Eq. (3.43) and the least squares estimator of
β. What can you deduce about the sample mean as an estimator?

3.6. Suppose that X2 = aX1 + b, where X1 is a random variable with fi-
nite mean and variance and a �= 0 and b are real numbers. Show that the
population correlation coefficient ρ12 = 1.

3.7. Show that
R = D ̂ΣD

by writing out some of the elements of ̂ΣD and then the elements of the
product D( ̂ΣD).

3.8. Prove formula (3.37) by expanding
∑

(yi − ŷi)2 as

∑

(yi − ŷi)2 = yTy − 2yTX̂β + ̂β
T
XTX̂β. (3.44)

Then, prove that ̂β
T
XTX̂β = zT

̂β.

3.11.2 Computational

3.9. The standard deviation of the ith parameter estimator ̂βi is estimated
by the square root of the ith diagonal element of the matrix

v̂ar(̂β) = σ̂2
reg(XTX)−1. (3.45)

An approximate large-sample 95% confidence interval for βi is
[

̂βi − 2
√

v̂ar(̂βi), ̂βi + 2
√

v̂ar(̂βi)
]

. (3.46)

Compute confidence intervals for the parameters β1, β2, and β3 estimated in
Sect. 3.10.

3.10. Mokdat et al. [40] estimate the percent of obese U.S. adult residents to
be 19.8% and 21.5% in years 2000 and 2001 from an analysis of BRFSS data.
Determine whether their calculations are correct by modifying the tutorial
of Sect. 3.6 to compute the proportion of obese respondents for each of the 8
years listed in Table 3.1.

3.11. Use one of the BRFSS data sets to estimate the proportion of females in
the U.S. adult population. Compute an estimate as the sample proportion of
females among all observations. The gender variable field positions are listed
in the BRFSS codebooks. The year 2014 codebook can be viewed at the CDC
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website https://www.cdc.gov/brfss/annual_data/2014/pdf/codebook14_llcp.pdf.
Males are identified in the BRFSS data files by the value 1 and females are
identified by 2. Let xj denote the gender of the jth respondent.

Compute two estimates: the conventional sample proportion, and a weighted
proportion using the BRFSS sampling weights. The two estimators are

p1 = n−1∑n
j=1 IF (xj)

and p2 =
∑n

j=1 wjIF (xj)
∑n

j=1 wj
, (3.47)

where IF (xj) takes on the value 1 if the jth sampled individual is female and 0
otherwise, wj is the BRFSS sampling weight assigned to the jth observation,
and n is the number of observations. Compare to published estimates of the
proportion of females in the adult U.S. population. The U.S. Census Bureau
reports that in 2010, 50.8% of the population were female.

3.12. The University of California Irvine Machine Learning Repository [5]
maintains a data set related to household electric power consumption. Data
loggers were connected to three sub-meters that measured consumption on
three separate circuits. Data were collected by minute for approximately 47
months from December 2006 and November 2010. More information on the
study can be obtained at the University of California, Irvine Machine Learn-
ing Repository. Active power is the response variable. Reactive power largely
reflects energy loss due to resistance and is ignored in this exercise.

(a) Map the data from consumption per minute (of active power) to con-
sumption per hour (active power) by building a dictionary, hourlyDict
of key-value pairs where the keys are day and hour pairs, for instance,
(02/11/2007, 13) and values are lists containing the consumption for the
three sub-meters during the hour, e.g., [3, 16, 410].

(b) Compute the correlation matrix for the three circuits using the hourly
consumption data contained in hourlyDict.

(c) Map the hourly data contained in hourlyDict to hour. Do this by creating
an hour-of-the-day dictionary hourDict where the keys are 0, 1, . . . , 23
and the values are the means of all measurements obtained for a particular
hour of the day. On a single plot, graph mean consumption against hour
for each of the three sub-meters and describe the pattern of use by hour.

https://www.cdc.gov/brfss/annual_data/2014/pdf/codebook14_llcp.pdf


Chapter 4
Hadoop and MapReduce

Abstract In this chapter we consider situations in which a single host com-
puter is inadequate because the data volume or processing demand exceeds
the capacity of the host. A popular solution distributes the data and com-
putations across a network of computers or a short-lived network created
for the task (a cluster). In this scenario, each cluster node (a computing
unit) stores and processes a subset of the data. The results are merged as
one when all nodes have been completed their tasks. For this solution to
succeed, the computational algorithm must conform to a certain structure
and the cluster execution must be managed. The Hadoop environment and
the MapReduce programming design provide the management and algorith-
mic structure. Hadoop is a collection of software and services that builds
the cluster, distributes the data across the cluster, and controls the data
processing algorithms and the transmission of results. The MapReduce pro-
gramming design insures scalability, and scalability insures that the results
are independent of the cluster configuration. The reader is guided through
an introductory application of Hadoop and MapReduce after a discussion of
the essential components.

4.1 Introduction

Google, Inc. developed the MapReduce programming design [14, 15]. The
motivation for MapReduce was the need for building and regularly updating
an index of all internet web pages. As the number of web pages increased,
the computational effort necessitated a method of distributing the computa-
tional load to multiple processing units. Upon completion, the results from
individual processors were to be combined with no information loss. This
criterion implies that algorithm results should be independent of the number
of processing units and the way in which the data are distributed to units.
The algorithm output should be the same for any hardware configuration in
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other words. We’re familiar with this property—it was named scalable in
Chap. 3. The Google Inc. solution has become known as MapReduce.

To use a MapReduce algorithm in a distributed computing environment,
more is needed though. A system is needed to partition the data set into
subsets, distribute the subsets to processing units (sometimes referred to as
DataNodes) and to control the processes, and finally transfer the results back
from the data nodes to a single master computer (the NameNode). These
tasks are accomplished by a collection of software programs known as the
Hadoop ecosystem.

4.2 The Hadoop Ecosystem

The Apache Software Foundation is an organization that maintains and
imposes organization on the development of open-source Hadoop-related
projects. The Hadoop architecture accommodates a variety of methods for
distributed computing [37]. It can be said then, that Hadoop is a collection of
open-source Apache projects managed and controlled by the Apache Software
Foundation with the understanding that individuals outside of Apache are
important contributors to Hadoop. It should not be assumed that Hadoop
developers are necessarily attached to the Apache Software Foundation. Com-
mercial enterprises have also developed implementations of Hadoop aimed at
enhancing and streamlining its use.1

A cluster is a set of two or more computers connected by a high-speed
network. The constituent computers are usually referred to as nodes or
hosts, and in the Hadoop ecosystem, the nodes can be classified as either
master or worker nodes. The NameNode is the master, and it controls the
Hadoop ecosystem through two subsystems, the Hadoop File Distributed Sys-
tem (HDFS) and the resource allocation and management system known as
YARN, short for Yet Another Resource Negotiator. Under YARN, the master
node assigns computational processes to the worker nodes with the objective
of optimally utilizing the cluster resources. Processes being carried out on a
DataNode are managed by a secondary manager called a node manager.

4.2.1 The Hadoop Distributed File System

The purpose of the Hadoop Distributed File System is to partition and dis-
tribute the data across a cluster as a collection of blocks (i.e., subsets). The
client, or user, communicates with HDFS through the application program
interface (API). The distribution of data blocks to DataNodes and the moni-

1 Notable commercial vendors are Cloudera, Hortonworks, and MapR.
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toring of DataNodes takes place on a master computer named the NameNode.
HDFS maintains a directory on the NameNode of all files and locations where
data is stored. No data is stored on the NameNode, but instead data blocks
are located on the DataNodes. The probability of a fatal error occurring on at
least one DataNode is intolerably large when the number of nodes is large.2
Exercise 4.1 shows that the failure of at least one node is more likely than not
for large clusters even when the likelihood of failure of any one node is small.
Therefore, redundancies are built into the cluster by distributing each data
block to several DataNodes. When a node fails, other nodes take over the
data processing tasks assigned to the failed node. The primary NameNode
is backed up by a secondary NameNode in case the NameNode should fail.
Figure 4.1 is a simplified diagram of a Hadoop ecosystem.

The NameNode initiates the transfer of data blocks from the client to the
DataNodes after having established that all DataNodes are ready to receive
data. For example, Amazon Web Service Elastic MapReduce sets the default
block size at 128 MB and usually creates three replicates of each block. For
instance, data block 1 may be copied to DataNode A, and copied from A to
B, and lastly from B to C. Data block 2 may be copied to B, then B to C,
and C to D. Algorithm output is retrieved in a similar fashion.

Fig. 4.1 Flow chart show-
ing the transfer of data
from the NameNode to the
DataNodes in the Hadoop
ecosystem

Block 2

Secondary
Node

Block 1 Client

Name
NodeData

Node D
Data
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Data

Node B
Data
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We’ll use Amazon’s ElasticMapReduce (EMR) for distributed computing.
Under this system, the cluster has a short lifespan because it’s created specif-
ically for the task submitted by the user. EMR identifies a set of available
computers within a very large network of computers and assigns the com-
puters to the cluster. The NameNode takes control of cluster and through
Hadoop, orchestrates the execution of the task. When the task has completed,
the computers are released back to the network.

2 A cluster created and controlled by HDFS may consist of thousands of nodes.
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4.2.2 MapReduce

Data processing in the Hadoop ecosystem must conform to a particular struc-
ture known as MapReduce. MapReduce consists of three sequential stages. In
the first, the mapper maps the data to a set of key-value pairs. Next, the
shuffle stage arranges the key-value pairs so that all instances of a particular
key are located on a single DataNode. The third stage is the reducer, wherein
the data are reduced to a set of statistics, or lists, tables, or some other form
of summarization conceived of by the analyst. The data analyst creates the
mapper and reducer for example, as Python scripts. The shuffle is executed
by Hadoop.

When Hadoop starts, the data are partitioned as g blocks and distributed
to DataNodes N1, N2, . . . , Ng. The next stage is the beginning of data reduc-
tion via MapReduce. In the following sections, we take a closer look at the
components of MapReduce.

4.2.3 Mapping

Mapping is the first step of a MapReduce algorithm. The purpose of the
mapper is to organize the data for reduction. The organizational structure
is closely related to the dictionary structure discussed in Chap. 2. On each
DataNode, the data records are mapped to key-value pairs. The keys allow
scalability to be built into the MapReduce algorithm, and hence are essential
for optimal processing of massively large data sets. The choice of keys are
responsibility of the analyst and so must also be consistent with the objectives
of data analysis. Looking ahead for a moment, all records associated with
a particular key will be reduced together, and no values associated with
different keys will be reduced together. So, if the objective is to estimate
diabetes prevalence by age class, then age class is an appropriate choice for
the keys. If prevalence is also to be estimated by gender, then using age class
as a key will lead to significant difficulties. Observations on males will end
up on different DataNodes, and computing the prevalence rate for males will
require, at best, an inordinate amount of bookkeeping. If the keys are age
and gender pairs, then the MapReduce solution to estimating gender-specific
rates is relatively simple.

The importance of the keys is manifested in the next stage of MapReduce,
the shuffle. The shuffle step moves the key-value pairs around the cluster
so that all pairs with a particular key are located on a single DataNode.
For example, suppose that ki is the ith key, for i = 1, . . . , g, and that there
are ni observations associated with ki. Every one of these ni records will be
written to a particular DataNode. The reducer will reduce all ni observations
associated ki according to the instructions coded by the analyst in the reducer
algorithm. As long the data analyst intended to generate key-specific output,
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say, a sample mean and standard deviation for group i, for i = 1, . . . , g,
there will be no information loss associated with the distributed computing
solution. If some other value associated with a different key is needed for the
group i computation, then the algorithm is likely to fail.

For example, the tutorial of Sect. 7.3 guides the reader through estimation
of diabetes incidence for each U.S. state.3 Incidence is the annual rate of
change in diabetes prevalence among adults. Estimation is accomplished by
setting the keys to be the states. There are several choices for the values.
For example, the values may be a pair consisting of the binary indicator of
diabetes for a particular respondent and the observation year. Alternatively,
the mapper may produce keys that identify the state and county. The first
example generates 52 unique keys (one for each of the 50 states, Puerto Rico,
and the District of Columbia). The second example generates about 3100
unique keys, one per county. The number of records generated by the mappers
across all data blocks is the same as the total number of records (assuming
that the mapper did not eliminate any records because of invalid data values).
Using county as part of the key forces the analyst to generate county-specific
estimates. The reducer will not be able to compute a single estimate for
each state since observations from the same state, but different counties may
end up on different DataNodes after the shuffle. However, county-specific
estimates can be aggregated to compute state estimates at the later time
provided that the analyst plans for this aggregation.

The mapper may also reduce the data if the reduction generates an as-
sociative statistic. For example, if the keys are states, then the values may
be a list of three integers: the year, the number of sampled individuals, and
the number of sampled diabetics. An example of a key-value pair generated
on a particular DataNode is (k1, v1) = (AK, [2000, 1002, 77]). We deduce that
the data block residing on the DataNode contained observations on 1002
Alaskan individuals in year 2000 and 77 of these were diabetics. If there was
one other key-value pair generated from Alaska on a different DataNode, say
(k2, v2) = (AK, [2000, 1310, 62]), then the reducer would compute the preva-
lence estimate for Alaska in year 2000 to be (77 + 62)/(1002 + 1310) = .060.

The actual output of the mapper program would be formatted differently
since the shuffle algorithm expects that the delimiter between the key and
value to be the tab character. For instance, an output record of the mapper
algorithm would be AK \t 2000,1002,77 (\t is the tab character).

The reducer algorithm would compute the least squares estimates given
the model

πi,j = β0,i + β1,iyearj , (4.1)

where πi,j is the true prevalence of diabetes in state i and year j, and β0,i

and β1,i are the intercept and the rate of change (or incidence) for state i.
This analysis is discussed in detail in Sect. 7.2.2.

3 Specifically, the 50 U.S. states, District of Columbia, and Puerto Rico.
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The mapper often performs other operations besides building the key-value
pairs. For example, the mapper may discard incomplete records and ignore
variables that are not used by the reducer algorithm.

4.2.4 Reduction

The role of the reducer algorithm is to reduce the data to a useful form for
interpretation. Commonly, the reducer output is a set of summary statistics
for each key. The diabetes incidence example of Sect. 4.2.3 illustrates. In that
situation, the reducer will compute the least squares estimate of incidence
̂βi,1 for each state (Eq. (4.1)).

An example of how the MapReduce algorithm may be used when there
are no natural divisions by which to form keys supposes that a single least
squares model of diabetes incidence is to be fit using all of the observations.
The MapReduce algorithm is to compute the least squares estimator of the
parameter vector β using the associative statistics A and z according to
̂β = A−1z (formula (3.30)). Suppose that that A and z must be computed in
a distributed environment. Now, the state origin of an observation is irrelevant
for the intended use of the data. But keys are needed for the shuffle, so as
the mapper reads the data file, we maintain a record counter n and set the
key for the nth record to be kn = n mod 10. Thus, the keys will be values in
the set K = {0, 1, . . . , 9} and the keys partition the data set into ten subsets
roughly equal with respect to numbers of records. The shuffle will direct all
observations with key kn to a single DataNode, say Nj . The reducer algorithm
operating on node Nj will compute the associative statistic t(Dj) = (Aj , zj)
where

Aj =
∑

(yi,xi)∈Dj

xixT
i and zj =

∑

(yi,xi)∈Dj

yixi, (4.2)

for j = 1, . . . , r, where r is the number of DataNodes. (See Eqs. (3.22)
and (3.32)). We cannot predict that the number of DataNodes will be K
since some keys may be shuffled to the same DataNode. We can say that
r ≤ 10, however. The last phase of the analysis occurs after the MapRe-
duce algorithm has completed. The reducer output t(D1), . . . , t(Dr) is used
to compute the least squares estimate

̂β =
(

∑r
j=1 Aj

)−1
∑r

j=1 zj = A−1z. (4.3)

The incidence estimate computed using all states is ̂β1. As a final remark,
any labeling with sufficiently many unique labels could be used as keys. It’s
critical, though, that the statistic being computed by the reducer is associa-
tive when there are no natural divisions of the data. Otherwise, there is no
assurance that the reducer output can be aggregated in a well-determined,
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optimal fashion. If this is the case, then the algorithm is not scalable even
though Hadoop and MapReduce are used. It follows that a MapReduce al-
gorithm is not necessarily a scalable algorithm.

4.3 Developing a Hadoop Application

We take a two stage approach to using Hadoop for distributed computing.
The first stage produces the MapReduce code in the guise of mapper and re-
ducer Python programs. Programming the mapper and reducer is done in a
single local-host environment. A standalone computer constitutes a local-host
environment. The programs may be coded in an integrated development en-
vironment (IDE) such as Spyder, though toward the end of the development
cycle, the programs must be modified to operate through a command-line in-
terface. The command-line interface is not particularly difficult to use, but it
is different from the familiar graphic user interfaces that most of us are used
to. The tutorial of Sect. 4.6 helps the reader with gaining some familiarity
with the command line.

The second stage of using Hadoop sets up and runs the mapper and reducer
programs in a Hadoop distributed computing environment. We’ll use Amazon
Web Services because of its wide availability and stable user interface. Details
are deferred until the tutorial of Sect. 4.7. We digress in the next section to
describe a publicly available data source of some importance in the healthcare
domain.

4.4 Medicare Payments

Medicare is the federal health insurance program administered by the Cen-
ters for Medicare and Medicaid Services (CMS) for individuals that are 65
years or older. Younger individuals with certain disabilities or diseases are
also enrolled. Medicaid is a similar health insurance program for individuals
with limited income and resources, and so Medicaid participants are gen-
erally younger than Medicare participants. In 2010, 48 million people were
enrolled in Medicare. Of these, 40 million were 65 years or older in age and
the remainder were younger than 65.

Medicare and Medicaid expenditures are enormous. CMS reported expen-
ditures of $618.7 billion in 2014, amounting to approximately 20% of the es-
timated total national health expenditures.4 For comparison, private health
insurance expenditures were estimated to be $991.0 billion—an estimate that
is less than the combined Medicare and Medicaid estimated expenditure [12].

4 Medicaid expenditures were $495.8 billion.
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To their credit, the Centers for Medicare and Medicaid Services is actively
engaged in providing data to the public on expenditures. We’ll investigate
geographic variability in Medicare payments by analyzing one such public
data set, the Physician and Other Supplier Public Use File. These data con-
tain information on provider charges and CMS reimbursements to healthcare
professionals for medical services and procedures provided to Medicare benefi-
ciaries. Attributes of particular interest besides the payments and charges are
the provider name and zip code, the Healthcare Common Procedure Codes
(HCPC), and the narrative descriptions of the procedure codes. Data files
are available for years 2012, 2013, and 2014.5
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Figure 4.2 shows the distribution of Medicare payments made to physicians
and other providers for the years 2012 and 2013 in several areas. We see
that the median (i.e., the 50th percentile) of payments made in the Miami
and New York City areas were approximately $60, approximately $40 in
Montana, Baton Rouge, and south-central West Virginia. Regional variation
in payments is not unexpected as some of the factors that influence medical
costs vary regionally, for instance, rent. Others have observed greater degrees
of variation in Medicare payments [59]. Since the U.S. Centers for Medicare
and Medicaid Services are responsible for equitably reimbursing providers
for the costs of services provided to their clients, the reader will attempt
to corroborate the existence of differences in Medicare payments made to
providers by examining the distribution of payments in several areas besides
those shown in Fig. 4.2.

5 There are minor formatting differences between year 2014 data file and the data files
for the years 2012 and 2013.
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4.5 The Command Line Environment

An additional challenge of negotiating a new and sometimes enigmatic envi-
ronment presents itself in the next tutorial. This environment is often called
the command line. It has an enthusiastic if small following among data sci-
entists. We work in the command line environment because it is through the
command line that mapper and reducer algorithms interface with Hadoop.
By running the mapper and reducer programs from the command line, we
can identify and correct errors that are expensive and more time-consuming
to correct in a distributed computing environment. The Python scripts of the
tutorial differ from all other Python programs encountered thus far in this
book in two respects. First, the scripts are launched from the command line,
and second, data files are handled differently.

Up to this point in the text, we’ve assumed that the reader has been writing
Python scripts in an integrated development environment such as Sypder.
These environments automate the process of submitting a script for execution
by transparently passing instructions to the operating system. Writing and
debugging scripts tends to be easier and faster than the alternative: editing
the script using a text editor and executing the script from the command
line. Now, we will execute scripts from the command line. The user may use
an IDE for editing the script. There’s an advantage to using an IDE with
an editor that checks for syntax errors and other helpful features such as
automatic indentation control.

At the command line, the user and Linux operating system interact
through a shell program. The default Linux shell is the Bourne Again Shell,
known as bash. Windows too has a shell, imaginatively called the Windows
shell. We use the shell by opening a Linux terminal window or a Windows
Command Prompt window as the case may be, and typing and submitting
commands from the command line. We discuss the command line instructions
necessary to carry out the tutorial but little more. The reader interested in
learning more about the command line environment is directed to Data Sci-
ence at the Command Line [30].

4.6 Tutorial: Programming a MapReduce Algorithm

The objective of this tutorial is to build a MapReduce algorithm that
will summarize the distribution of Medicare payments for one or more
three-digit zip code regions. A thorough analysis itself is quite involved
as there are approximately 900 three-digit zipcode regions. Since the main
focus is the algorithm itself, we will use the MapReduce algorithm only
to compare a handful of subjectively selected zip codes as a preliminary,
first-look at regional variation. The reader is to extract six zip code ar-
eas that vary substantially with respect to annual income of residents,
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population density, and demographic characteristics of their residents. The
areas, named after the United States Postal Service facility that serves each
area are shown in Table 4.1. The reader may of course add their own
zipcode region or any other regions to the list. The Wikipedia webpage
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes describes the three-
digit zipcode regions of the United States.

Table 4.1 Some well-known three-digit zip code prefixes and the name of the USPS
Sectional Center Facility that serves the zip code area [68]

Location Three-digit zip code
Boulder, CO 803
Detroit, MI 482

Stamford, CT 069
Santa Monica, CA 904

Stockton, CA 952
Wolf Point, MT 592

To review, writing the MapReduce algorithm is stage one of a two stage
process of data reduction via distributed computing and Hadoop. In practice,
it’s efficient and often necessary to develop the MapReduce algorithm using
a subset of the full data set since stage one of our protocol is carried out in a
local-host environment with relatively limited computational resources. The
second stage, which is tackled in the following tutorial, moves the MapReduce
algorithm in a Hadoop environment unconstrained by resource limitations.

1. Gain access to the shell by opening a terminal.

a. In Linux, you may open a terminal window from the Application
Launcher by typing terminal in the Search box. The terminal will
open at the root directory. Type pwd (followed by the Enter key) to
show the current directory. We will work in the home directory, so
change the current directory by typing cd /home followed by Enter.

b. In Windows, you can click on the start button or press the Windows
key on the keyboard. Type command prompt in the search box and
press the Enter key.

2. Examine the home directory.

a. In Linux, type ls -l (list files and directories), and compare to the
list shown by the file manager.

b. In Windows, type dir at the command line and press the enter key.
Compare to the list displayed by Windows Explorer.

3. Create a top-level directory and two sub-directories named Data and
PythonScripts. Issue the instruction mkdir MapReduce to create the
top-level directory. Then, move to the directory with cd MapReduce and
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create the sub-directories named Data and PythonScripts. The instruc-
tion rmdir Data will remove the directory Data. These commands also
work in the Windows shell.

4. Navigate to the Centers for Medicare & Medicaid Services webpage

https://www.cms.gov/Research-Statistics-Data-and-Systems/
Statistics-Trends-and-Reports/
Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html

Follow the link Medicare Physician and Other Supplier Data CY 2013 to the
2013 data file. Under the heading Detailed Data - Tab Delimited Format:,
click on the link titled Medicare Physician and Other Supplier PUF, CY2013,
Tab Delimited format, agree to the terms of the license, and download
the primary data file Medicare_Provider_Util_Payment_PUF_a_CY2013.zip to
your data directory.

5. Unzip the file in your Data directory. From the Linux command line,
navigate to the data directory using the change directory instruction cd
Data. Then, submit the instruction

unzip Medicare_Provider_Util_Payment_PUF_CY2013.zip

The change directory instruction will fail if you are not in the MapReduce
directory. You may give the full path, say, cd /home/.../MapReduce/
Data, if you’re not in the MapReduce directory to move to the Data direc-
tory. The instruction pwd will show the full path at your current location.

6. Examine the structure of the data file by writing the first 20 records to
the Linux terminal window:

cat Medicare_Provider_Util_Payment_PUF_CY2013.txt | more

The function name cat is an abbreviation of concatenate. The pipe sym-
bol (|) separates the optional argument more from the function name.
Without more, the entire file will be written to the console. Pressing
Enter writes the next line to the terminal. The Ctrl-c keystroke combi-
nation will terminate cat and return control of the command line to the
user. The analogous Windows instruction is

type Medicare_Provider_Util_Payment_PUF_CY2013.txt | more

7. Return to the CMS data repository (instruction 4) and download the
year 2012 data file.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html


116 4 Hadoop and MapReduce

4.6.1 The Mapper

The mapper is programmed as Python script.
8. Open an editor (preferably, a Python IDE) and create an empty script. If

your operating system is Linux, then the first line of the script must be

#!/usr/bin/env python

This line is sometimes called the shebang. The character pair #! instructs
the Linux interpreter to turn over the execution of the script to the
interpreter that follows, specifically, the Python interpreter. The location
of the Python interpreter is specified as /usr/bin/env. The first character
of the shebang is the Python comment symbol and it’s purpose is to
prevent the Python interpreter from attempting to execute the directive
that follows the comment. (The directive is intended for the shell and it
does not respect the Python comment symbol.)

The shebang is not necessary if the operating system is Windows.
9. Add instructions to the script to import the sys module. Save the file

with the name mapper.py.
10. The standard input, named sys.stdin, is a default file object. Previously,

data files were processed by explicitly creating a file object using the open
function. One of the arguments was the data file name. Then, the data
was read line-by-line by iterating over the file object. The code looked
something like this:

with open(fileName, ’r’) as f:
for record in f:

But now, the standard input (sys.stdin) is being used without the cre-
ation step. Add the following code segment to your script:

for record in sys.stdin:
variables = record.split(’\t’)
print(variables)
sys.exit(’Terminated’)

The data file is tab-delimited and the record.split instruction splits
the string record on the tab character. The result is a list of sub-strings
named variables, each of which corresponds to a variable in the data set.

Add the code segment to your script. If you attempt to run the program
from an IDE, the program will start and wait for input from sys.stdin
which will not be forthcoming. You may have to terminate and restart
the IDE.
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The program will be run from the command line instead of within an
integrated development environment. But before mapper.py may be run
at the command line, permission has to be given.

11. Permit mapper.py to execute from the command line (this is necessary
under Linux, but not under Windows). Navigate to the directory contain-
ing mapper.py. It will be ../MapReduce/PythonScripts if you followed
the instructions above. Since you need to be a superuser to change permis-
sions in Linux, the first step is to gain superuser level rights. Superuser
refers to a user who has all rights and permissions to modify files and
directories and execute programs. A superuser has more privileges and
control over the operating system than an ordinary user. A superuser
has greater potential for damaging the system. Most users should not
take superuser rights until necessary and relinquish them when no longer
necessary.

Type su for superuser at the command line. You’ll be asked for the
superuser or root password. As a superuser, you may give permission
to mapper.py to execute by issuing the following instruction from the
command line

chmod +x mapper.py

If you’re in the data directory, then the command chmod +x ../
mapper.py will find mapper.py and change its permissions.

12. The mapper program will consume a data file that is piped to the stan-
dard input using a command line instruction of the form

cat datafile | ./mapper.py

The instruction cat directs bash to begin streaming (or writing) the data
file. The pipe symbol directs the data stream to the device following the
pipe; in this instance, the device is mapper.py. The symbol pair ./ in-
structs the Linux interpreter to process the code contained in mapper.py.
The shebang in mapper.py instructs the bash interpreter to allow the
Python interpreter to take over the process.

From the PythonScripts directory (containing mapper.py), execute
mapper.py using the instruction

cat ../Data/Medicare_Provider_Util_Payment_PUF_CY2013.txt
| ./mapper.py

The script will consume the first record in the data file, print the variables,
and terminate when the instruction sys.exit() is processed.
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If you’re using Windows, you’ll have to locate the python.exe inter-
preter (sometimes a nontrivial task). It might be best to find the location
using the Windows Explorer. Search for python.exe. When the inter-
preter has been located, copy the path, let’s call it pathToPython, from
the path bar at the top of the window. The command line instruction to
execute mapper from the data directory is almost the same:

type Medicare_Provider_Util_Payment_PUF_CY2013.txt
| pathToPython\python mapper.py

13. Process all of the data records. First, introduce a variable to mapper.py
that counts the number of records, then insert an instruction in the for
loop that will print the counter every 10,000 records.

Move the sys.exit() statement to the end of the script and outside
of the for loop.

Execute mapper.py using the instruction

cat ../Data/Medicare_Provider_Util_Payment_PUF_CY2013.txt | ./mapper.py

The keystroke Ctrl-c issued at the command line will terminate the
program.

14. There’s two items of information that are necessary for our objectives: the
leading three digits of the zip code and the Medicare payment. However,
let’s also reconstruct the names of the providers. The provider name has
to be built as a single string from the first and last name and the middle
initial, if there is a middle initial.

try:
lastName = variables[1]
firstName = variables[2]
middleInitial = variables[3]
provider = lastName + ’_’ + firstName + ’_’ + middleInitial
zipcode = variables[10][:3]
payment = round(float(variables[26]), 2)

except(ValueError):
pass

The underscore character is used to separate the first and last name and
the middle initial.

15. A valid record should be written as an output string according to

print(zipcode + ’\t’ + provider + ’|’ + str(payment))
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The print instruction belongs within the try branch of the exception
handler after extracting the payment variable.

The tab delimiter between zip code and provider is critical since it
separates the Hadoop key from the value (zip code is the key and the
value consists of the provider and payment pair). If you’re writing code
for Hadoop, the tab character should not be used except to delimit keys
and values.

The print statement will direct the string constructed from the zip
code, provider, and payment to the standard output. Instruction 12 did
not specify an output file for the output stream created by the print state-
ment. Consequently, the output was directed to the terminal window. If
we had extended the instruction by adding > output.txt to the com-
mand, then the output would have been directed to the file output.txt
and overwritten its contents.

When no further data is received from the standard input, iteration
ends and the program terminates.

16. Run the program from the command line using the appropriate instruc-
tion shown in item 12. If the output is correct, then execute the program
again and this time, pipe the output to a file:

cat ../Data/Medicare_Provider_Util_Payment_PUF_CY2013.txt
| ./mapper.py > ../Data/mapperOut.txt

One should be careful with the > character since the target (in this case
mapperOut.txt) will be overwritten.

17. If both the year 2012 and 2013 data files were to be processed by the
mapper, then the Linux instruction would be of the form
cat datafile1 datafile2 | ./mapper.py. The Windows instruction
would be of the form type datafile1 datafile2 | pathToPython
\python mapper.py.

18. Examine the output file:

cat ../Data/mapperOut.txt | more

When the mapper and reducer programs are used with Hadoop in a dis-
tributed environment, the shuffle step takes place after the mapper executes
and before the reducer commences execution. The shuffle will direct all out-
put records with key ki to one DataNode. It should be assumed that records
with key kj are completely inaccessible to the reducer that is processing the
records with key ki, assuming that i �= j.
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4.6.2 The Reducer

The next stage of developing the MapReduce algorithm is to program the data
reduction map, otherwise known as the reducer. The output of the reducer
is a list of percentiles for any set of user-selected three-digit zip codes.6 To
compute a percentile for zip code z, we need a list containing all of the
payments that were made to a provider with an address in the zip code. A
dictionary is convenient for building lists of payments from each selected zip
code. The dictionary keys will be three-digit zip codes and the values will be
payment lists.

We can use a container type from the Python module collections to
simplify the code and thereby reduce the likelihood of a programming er-
ror. Specifically, we use the dictionary type defaultdict and use the at-
tribute setdefault when appending a payment to a payment list. Using
defaultdict avoids a test of whether the zip code has already been entered
as a key in the dictionary before appending the payment to the zip code
payment list.

19. Begin by creating a script named reducer.py. The program will read the
output of the mapper from the standard input. Enter the shebang on the
first line if your operating system is Linux.

20. Add the instruction to import sys. Import the function defaultdict
from the module collections. Import numpy as np. Lastly, import the
pyplot functions from mathplotlib as plt:

import matplotlib.pyplot as plt

21. Initialize the dictionary using the instruction

zipcodeDict = defaultdict(list)

The values in zipcodeDict are to be lists. If instead we had specified
defaultdict(set), then the values would be sets.

22. Add the statement sys.exit(’Complete’) to the end of the script.
23. If necessary, instruct the shell to allow reducer.py to execute as was

done for the mapper in instruction 11. Execute the program using the
shell instruction

./reducer.py

6 Recall that p% of a distribution is smaller in value than the pth percentile and (100 −
p)% of the distribution is larger. Thus, the median is the 50th percentile.
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If you’re not in the same directory as the reducer program, then the path
to the file will have to be added to the file name.

24. Add the following code segment to read the output file created by
mapper.py from the standard input. As records are read, split the records
on the tab character, thereby creating two variables: the key and a list
containing the provider name and the payment. Then, split the list into
the provider name and the payment amount:

for record in sys.stdin:
zipcode, data = record.replace(’\n’, ’’).split(’\t’)
provider, paymentString = data.split(’|’)

25. Test the code by adding a statement to print the name of the provider.
Execute the code from the command line:

cat ../Data/mapperOut.txt | ./reducer.py

If the script prints the provider names correctly, then comment out or
remove the print statement.

26. Convert paymentString to a floating point variable named payment. Add
a statement to print payment and test the script by running it.

27. Store the payment in zipcodeDict according to the three-digit zip code
using the setdefault function. The instruction is

zipcodeDict.setdefault(zipcode,[]).append(payment)

The argument pair (zipcode,[]) passed to setdefault instructs the
Python interpreter to initialize the value associated with the key zipcode
to be an empty list if there is no entry in the dictionary for zipcode. The
float payment is appended to the list after testing for the key and perhaps
adding the key and an empty list value to zipcodeDict.

28. Add a variable n to count the number of records read from the standard
input.

29. Add the instructions to print the length of zipcodeDict whenever
n mod 10,000 is equal to zero. Test the code by executing the script.
The length of zipcodeDict should be approximately 900.

30. At this point in the program execution, all of the data has been read
from the standard input. The next stage is to reduce the data contained
in zipcodeDict.

First, create a set, call it shortSet containing the three-digit zip codes
in Table 4.1 and any others that you are curious about.
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31. Create a list of values corresponding to the percentile values of interest
and a list containing colors, one for each of the selected three-digit zip
codes:

p = [5, 10, 25, 50, 70, 75, 85, 90, 95]
colorList = [’black’, ’red’, ’blue’, ’yellow’, ’green’, ’purple’]

Put this code segment near the beginning of the script (and definitely
not in a for loop).

32. We’ll iterate over the zip codes in shortSet and extract the list of pay-
ments for each of the three-digit zip codes. The list is passed to the Numpy
function that extracts percentiles.7

for i, zipC in enumerate(shortSet):
payment = zipcodeDict[zipC]
print(i, zipC, len(payment))
percentiles = np.percentile(payment, p)

The enumerate function generates an index i as the for loop iterates.
When the first item in zipc is extracted, i = 0, when the second item
in zipc is extracted, i = 1, and so on. This code segment executes after
creating colorList (instruction 31). The returned array percentiles
contains the percentiles x5, . . . , x95.

33. Print the percentiles and construct a plot that resembles Fig. 4.2. There-
fore, plot xp against p for each of the three-digit zip code areas on a single
figure by inserting the function call

plt.plot(percentiles, p, color = colorList[i])

in the for loop shown in instruction 32. This instruction executes imme-
diately after the percentiles are computed.

34. Create a file containing the plot using the instruction

plt.savefig(’percentiles.pdf’)

This instruction executes once after all the zip codes in shortSet have
been processed, in other words after the for loop as completed.

35. The mapper and reducer programs will be moved to a Hadoop envi-
ronment in the next tutorial. In that environment, the plot cannot be

7 The percentile function will compute percentiles from any object that can be con-
verted to an array by Numpy.
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created and instead we write the array of percentiles to a file that has
been assigned to the standard output. These data would then be read
into Python or some other program or language that can be used to cre-
ate the plot. Add the instructions to write the percentiles to the standard
output:

pList = [str(pc) for pc in percentiles]
print(zipC + ’,’ + ’,’.join(pList))

36. Check that the only print statement remaining in the reducer program is
writing the percentiles to the standard output. Remove any other remain-
ing print statements. Remove or comment out the two plotting function
calls.

37. The output from the mapper can be streamed directly into the reducer
program thereby eliminating the need for creating the intermediate out-
put file. The instruction, assuming that Medicare provider data from
years 2012 and 2013 are to be analyzed, is

cat ../Data/Medicare_Provider_Util_Payment_PUF_CY2013.txt
../Data/Medicare_Provider_Util_Payment_PUF_CY2012.txt
| ./mapper.py | ./reducer.py > output.txt

Test the mapper and reducer combination by submitting this instruc-
tion from the command line. Check that the output file contains the
percentiles.

4.6.3 Synopsis

We’ve used a local host environment for the purpose of creating the MapRe-
duce algorithm. The mapper and reducer are written in Python. Both the
environment and the language were chosen for convenience. Other scripting
languages, for instance, Java and Ruby, may be used to write the mapper and
reducer programs. The Hadoop utility Streaming will accommodate almost
all scripting languages that have the facility of using the standard input and
output for reading and writing.

Execution time and computational resources might be strained by the
Medicare data sets depending on the configuration of the local host. The com-
putational load can be reduced by processing only a fraction of the 18,441,152
records with complete data.8 Instead of simply programming the mapper to

8 A conditional statement such as if m % 3 ==0 may be used to select every third record
for processing.
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produce key-value pairs and the reducer to aggregate according to key, an-
other approach is to run the mapper and reducer programs under a local host
installation of Hadoop. A local host installation of Hadoop resides on a single
computer. Since the data and computational load are not distributed across
a network, there’s no computational benefit to the local host Hadoop envi-
ronment. The reason for using the local host Hadoop is that the environment
is very similar to the distributed network environment, thereby achieving a
greater level of realism in the first stage of development. We do not take this
approach because the process of installing Hadoop differs among operating
systems and is technically challenging.

The next tutorial provides the reader with the opportunity to use Hadoop
in a distributed computing environment hosted by Amazon Web Services.

4.7 Tutorial: Using Amazon Web Services

Amazon Web Services is a relatively painless way to carry out distributed
computing. In this tutorial, we’ll use two services available from Amazon Web
Services to gain access to distributed computing and the Hadoop ecosystem.
These are S3 (Simple Storage Service), a cloud-based data storage system,
and Elastic MapReduce which in essence provides a front-end to Hadoop.
S3 stores the input data, log files, programs, and the output files. The Elas-
tic MapReduce service provides the Hadoop ecosystem and true distributed
computing. Furthermore, the graphical user interface of Elastic MapReduce
streamlines the process of setting up a Hadoop cluster. In this context, a
cluster is a network of computers connected for the purpose of executing a
MapReduce algorithm. Through the Elastic MapReduce interface, the user
will issue instructions to create a cluster and perhaps select options related to
the cluster. Elastic MapReduce sets up the NameNode and DataNodes that
form the Hadoop cluster. The NameNode and DataNodes are not physical
computers, though we’ve referred to them as such, but instead are virtual
machines, or instances. A virtual machine is a computer within a computer.
It has its own operating system, dedicated memory, and processing units.
Virtual machines can be quickly created and terminated. Once the instances
are available, the two programs that constitute the core of Hadoop, HDFS
and YARN (discussed in Sects. 4.2 and 4.2.1) distribute of data blocks and
mapper and reducer programs across the instances, start, and control the ex-
ecution of the mappers and reducers. Amazon Web Services provides several
webpages that track the progress of the Hadoop cluster and allows the user
to determine when the cluster has completed and whether the cluster has
completed without errors. Non-fatal errors within the mapper and reducer
are of course undetectable by Hadoop.
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Amazon does not provide the service for free and you should expect to
compensate Amazon for the use of their services.9 You will need an account
with Amazon.com; if you have ever purchased something from Amazon, you
probably have an account. It’s strongly recommended that the mapper and
reducer programs are developed to the greatest possible extent in a local host
environment to save time and money.

The first steps are to upload programs and data to S3. Begin by creating
buckets (directories) to store the input data, log files, and mapper and reducer
programs.

1. Navigate to https://aws.amazon.com/console/ and sign in to the
Amazon Web Services console or create an account.

2. Find the heading Storage & Content Delivery and click on the S3 icon.
Click on Create Bucket, enter a name, and select a region. Remember
the region name since it ought to be used when launching the Hadoop
cluster. Click on Create. Navigate to the newly-created bucket and create
three directories in the bucket.

a. Log files generated by EMR are to be stored in a directory called
logfiles.

b. Create a directory named Data. Move into the directory. Using the
Actions drop-down menu, upload the two data files

Medicare_Provider_Util_Payment_PUF_CY2012.txt
Medicare_Provider_Util_Payment_PUF_CY2013.txt

into the directory. Choose Upload, select a file, and click on Upload
now.

c. Create a directory named programs and upload your mapper and
reducer Python programs into the directory.

Do not create an output directory for the output of the cluster.
3. Set up the cluster by returning to the Services page and selecting

Analytics and then EMR. Then select Create Cluster.
4. Under the top section named General Configuration, specify a cluster

name or accept the default.
5. In the Software configuration panel, select Amazon as the vendor

and the current release of Elastic MapReduce (emr-4.6.0 at the time of
this writing). Select Core Hadoop as the application. Accept the default
version of Hadoop.10 Accept the default hardware configuration and the
default security and access options.

6. At the top of the page is a link to more options titled go to advanced
options. Several options must be set to form the cluster, so follow the
link.

9 It’s possible that the reader may be able to obtain an academic discount or free trial.
10 The default version was 2.7.2 at the time of this writing.
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In the Software Configuration field, turn off all of the software op-
tions except for Hadoop.11 Don’t edit the software setting.

7. In the Add Steps panel, select the step type to be Streaming program.
This selection allows the mapper and reducer programming language to
be Python.

8. Go to the Add Steps webpage by clicking on Configure. In the
Configure panel, specify where the program and data files are located.
Also specify the name of a non-existent output directory. EMR will cre-
ate the output directory with the name and path that you specify. The
output of the reducer programs will appear in this directory. If it already
exists, the cluster will terminate with errors.

9. Identify the mapper and reducer programs and their location as follows.
To select the mapper program, click on the folder icon and navigate to
the directory containing the file and select the file. Repeat to select the
reducer program. Do the same with the data file except that the selection
should be the name of the directory and not the data file name(s). HDFS
will process each file in the data directory.

10. Identify the output directory as follows. Select the top-level directory.
Supposing that you have named the S3 bucket containing the pro-
grams and data as Medicare, then the top-level directory ought to be
s3://Medicare/. Next, append a name for the output directory to the
name of the top-level directory. For example, we set the output directory
to be s3://Medicare/output/. Note: if the output directory already ex-
ists, then the cluster will terminate with errors. Therefore, if you execute
the MapReduce configuration more than once, you must delete the out-
put directory after each execution or specify a new name for the output
directory. This new directory must not exist in the s3://Medicare di-
rectory.

11. The last setting to modify on the Add Steps page is the Action on
failure setting. Select Terminate cluster. If the cluster is not termi-
nated, then the resources allocated to the cluster are not released and
you will have to pay for the resources even if they are not in use. As
the charge depends on how long the resources are held, it’s important to
terminate the cluster as soon as possible.

12. Review the Add steps arguments. Make sure that the Auto-terminate
cluster after the last step is completed option has been selected.

If the selections appear to be correct, then you may step through the
remaining advanced options without modifying the default settings until
you reach the last page. On the last page there is a Create cluster but-
ton that will create the cluster. Alternatively, you can skip the remaining
advanced options pages by clicking on the button titled Go to quick
options which leads to the Create Cluster-Quick Options page. At

11 At the time of this writing, Hue, Pig and Hive are included in the default configuration.
These programs are not necessary.
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the bottom of this page, there is a Create cluster button that will
create the cluster.

13. Create the cluster. Depending on the time of day (and hence, the activity
load from other users), the execution time will be between 5 and 30 min.
If you pass the 1 h mark, terminate the cluster. Look for errors.

14. To diagnose a termination error, locate the Cluster Details page and
expand the Steps item. Two steps are shown: Streaming program and
Setup hadoop debugging. Expanding the Streaming program step re-
veals the arguments sent to HDFS. In particular, the names of programs
and the data and output directories are identified. The specific names of
mapper and reducer programs are listed. The format is

Main class:None
hadoop-streaming -files (path to mapper), (path to reducer),

-mapper (name of mapper)
-reducer (name of reducer)
-input (path to data directory)
-output

Arguments (output path)

The paths and names in parentheses above will depend on your cluster.
Check that the names and paths match the structure in S3. Whatever
you entered when setting up the cluster will appear where indicated by
the parentheses. The output path listed after the Arguments keyword will
match what was specified for the output directory in item 10.

Information about the execution of the cluster is shown under the
heading Log files. The syslog provides information about failures and
has been most useful to us.

15. If the cluster has completed successfully, then return to S3 and examine
the contents of the output directory. The output of the reducer is con-
tained in files named part-0000x where x∈ {0, 1, . . . , 6}. (Your output
may differ). Several of the files may be empty but several will contain
records listing the percentiles from one or a few zip codes. For example,
our cluster generated the following content for file part00001:

708,2.68,6.44,16.17,40.6,68.78,76.76,94.43,114.86,143.77,212.23,348.7
127,2.67,6.7,14.52,34.13,64.35,75.42,83.99,104.8,130.41,171.29,245.23

The shuffle directed all records with the keys 708 and 127 to the same
DataNode. The reducer program processed these records and computed
the percentiles for each. The 5th percentile of Medicare payments made
to providers in the 708 zip code region is $2.68 and the 95th percentile
is $348.70. The percentiles have been computed using all of the records
that originated from these zip codes since no other DataNode received
records originating from these zip codes.
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4.7.1 Closing Remarks

Hadoop rarely is an efficient solution when the data may reside on a single
computer without consuming nearly all of the available storage capacity and
execution time is not prohibitively long. When the data are not too massive,
the standalone computer is preferred to the cluster because of the expense
of distributing data blocks across the cluster and building in redundancies.
For many infrequent Hadoop users, working in the Hadoop ecosystem requires
more of the user’s time than the more familiar standalone environment. Most
of the time, the first stage of building and testing the mapper and reducer is
roughly equivalent to the standalone solution with respect to time expendi-
ture. Therefore, Hadoop is a resource to be utilized when data sets are too
massive or computational tasks too time-consuming for a single computer
to manage. From a mechanical standpoint, it’s not practical to provide the
reader with a problem that truly needs a Hadoop environment for analysis.
To gain a brief exposure to true distributed computing, this last tutorial has
guided the reader through a commercial Hadoop environment, Amazon Elas-
tic MapReduce. But even in this instance, the analysis can be carried out
locally and with substantially less human and computational effort.

4.8 Exercises

4.8.1 Conceptual

4.1. Suppose that n is the number of DataNodes of a cluster and each DataN-
ode will fail with probability p = .001. Also, assume that failures occur in-
dependently. Show that fault tolerance is essential because the likelihood of
one or more DataNode failures increases exponentially with the number of
DataNodes. Specifically, compute the probability of the event that one or
more DataNodes fails if the cluster consists of 1000 DataNodes.

4.8.2 Computational

4.2. In Sect. 4.6.2, we use a defaultdict dictionary to build the dictionary
of payments. Replace the defaultdict dictionary with a conventional dic-
tionary. You’ll have to test whether zipcode is a key in the dictionary before
appending the payment and creating a key-value pair from the zip code and
the payment.

4.3. This problem investigates variation in Medicare payments by provider
types.
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a. For a selection of zip codes, identify the top five provider types with respect
to the average paid charge (column 26).

b. For a selection of zip codes, identify the top five provider types with respect
to the total paid charge. To compute the total paid charge, compute the
weighted sum

∑

i

nixi, (4.4)

where ni is the number of distinct Medicare beneficiaries receiving the
service (column 20) from the healthcare provider in the ith zip code, and
xi is the estimated average Medicare payment rendered to the provider
by CMS (column 26). For a selection of zip codes, identify the top five
provider types with respect to the total paid charge.

4.4. Write a MapReduce algorithm for computing the correlation matrix us-
ing the variables payment (column 26), amount submitted (column 24), and
allowed (column 22). In the mapper, use n to count the number of records
processed and define the key to be n mod 100. The value is to be the three
values of payment, submitted, and allowed. The reducer is to compute the
augmented moment matrix (Eq. (3.23)). Download the reducer output, say,
A1, . . . ,Ar, and aggregate as A. Then compute the correlation matrix from
A. Section 3.7.4 provides an outline of how to proceed.



Part II
Extracting Information from Data



Chapter 5
Data Visualization

The drawing shows me at one glance what might be spread over ten pages in
a book. — Ivan Turgenev, Fathers and Sons

Abstract A visual is successful when the information encoded in the data
is efficiently transmitted to an audience. Data visualization is the discipline
dedicated to the principles and methods of translating data to visual form. In
this chapter we discuss the principles that produce successful visualizations.
The second section illustrates the principles through examples of best and
worst practices. In the final section, we navigate through the construction of
our best-example graphics.

5.1 Introduction

Humans are visual animals. We absorb sensory information most efficiently
through vision. It’s no surprise that data visualization is very effective for ex-
tracting information from data. As we see throughout this volume, gathering
large amounts of data has never been easier. Even 40 years ago, display-
ing that information was difficult to do well, requiring specialized tools or a
steady hand. The democratization of creating figures from data allows us to
create more visualizations than ever before. And with this profusion comes
the ability to develop best practices. Figures encode information from a data
set, displaying those data as ink on a page or, more commonly, as pixels on
a screen. This encoding makes use of a vernacular that has developed over
the last several centuries. The typical audience will understand the Cartesian
plane and its axes. We understand how to determine values of points in a
scatterplot and easily manage the color-coding of groups.
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A visualization is effective when it can be quickly and accurately decoded
by the audience—the salient points should be almost immediately apparent.
Edward Tufte, a vocal evangelist for better graphics, calls this the “Inte-
rocular Trauma Test”: does the visualization hit one immediately between
the eyes? A common expression about scripting languages, like Python and
Perl, is that they should make easy things easy and difficult things possible.
The same can be said of good visualizations: the key features of the narra-
tive should emerge immediately and the more subtle relationships should be
visible whenever possible.

Data visualization combines several different threads and we will cover
each in a section. The first is an understanding of the guiding principles of
graphics. In this section we lean heavily on the pioneering work of William
Cleveland, the researcher who truly brought graphics into the modern era.
Most of the excellent graphics one sees in data science journalism1 are built
using the ideas he introduced. The second is a basic understanding of the
paradigms of graphics that are often employed for data of different types.
Knowing these will allow us to create an abstract version of the graphic. This
ability, to sketch a version of the graphic you wish to create, is critical. It is
impossible to follow a map if you don’t know where you’re going. Finally, we
must be able to tell a software package how to render the image that is in
our minds. The best tool for creating data visualizations in the context of an
analysis2 is Hadley Wickham’s ggplot2 available in R [65, 66]. The “gg” in
the package name stands for “The Grammar of Graphics”. You can think of
this grammar as being a semi-secret language that, for better or worse, you
must be fluent in to realize the potential of graphics from data. Recognizing
this reality, we will introduce the grammar and illustrate its implementation
in R syntax.

The data used in this chapter and Chap. 10 originates from the largest
cooperative (co-op) grocery store in the United States. We received approx-
imately 20 gigabytes of transaction-level data covering 6 years of store ac-
tivity. The data are essentially cash register or point-of-sales receipts. As is
common with automatically recorded point-of-sales information, a consider-
able amount of associated meta-data is attached to the receipt. We work a
great deal with two variables: the department classification of the item (e.g.,
produce) and whether the shopper is a member of the co-op. The co-op is
member-owned and approximately three-quarters of the transaction records

1 Three great examples:

• The Upshot from the New York Times: http://www.nytimes.com/section/upshot.
• Five Thirty Eight, Nate Silver’s organization that has largely invented the field of

data science journalism. http://fivethirtyeight.com.
• Flowing Data, a site created by Nathan Yau dedicated to creating beautiful and

informative data visualizations. http://flowingdata.com.

2 If you are building interactive graphics or large-scale graphics via the web, there are
better tools. Check out bootstrap, D3, and crossfilter.

http://www.nytimes.com/section/upshot
http://fivethirtyeight.com
http://flowingdata.com
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originated from members. The remainder originated from non-members. If
the shopper is a member, then a unique, anonymous identifier is attached to
receipt that allows us to analyze data at the shopper level.

We use the co-op data in this chapter to illustrate a variety of data
visualizations. In Chap. 10, we develop a prediction function that classifies
non-member shoppers to customer segment with the ultimate goal of better
understanding the non-member shoppers.

5.2 Principles of Data Visualization

When describing what makes good data visualization, there are two paths to
follow: that of simplicity and that of exhaustiveness. There are entire books
of the latter variety and thus we opt for a treatment that will give the reader
minimal guidelines and that points them in the direction of the more thorough
treatments. Our goal, after all, is to be able to make good visualizations and
improve on those found in the wild.

A data visualization is effective when the information that the analyst is
trying to convey to the audience is transmitted. Complicated information
sometimes requires complicated visualizations, but often we can organize our
thoughts in terms of principles.

Let the Data Speak. If there is one overarching goal, then this is it: the
data should be allowed to speak for itself. As Strunk and White say, “vigor-
ous writing is concise.” Similarly, good data visualization allows the data to
tell its story. Tufte coined a term for elements of a visualization that do not
add to understanding: chartjunk. A good, revised definition of chartjunk
from Robert Kosara at Tableau is this: any element of a chart that does
not contribute to clarifying the intended message. Historically, the most
egregious violations of this principle came from Excel. The default settings
in Excel now avoid the worst examples of chartjunk, but options to add
them abound, particularly with the addition of mysterious third dimen-
sions to one- or two-dimensional data sets, color coding for no reason, and
patterns that impede understanding. For each element of a figure, we must
ask if that element is serving our principal goal of letting the data speak.

Let the Data Speak Clearly. A subtle addition to our previous point is
to let the data tell their story clearly and quickly. As we shall see, the
relationship between two variables, often plotted against one another in
a scatterplot, can be illuminated by the addition of a smoothed or fitted
line. At the other end of the spectrum, Fig. 5.1 illustrates how certain
visualizations, in this case the much- and rightly-maligned pie chart can
obfuscate the story. In the pie chart version, it’s extremely difficult to
identify the predominant pattern—the presence of two sets of observations
with different means. The lower panel in Fig. 5.1 shows a dotchart which
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lets the data speak for itself and uses a sensible ordering of observations.
This visualization conveys much more information and allows for it to be
immediately decoded.

Fig. 5.1 A pie
chart makes
patterns in the
data difficult
to decode; the
dotchart is an
improvement
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We introduce the dotchart in Sect. 5.3 and it is an excellent choice for
displaying univariate data. There are other types of graphs besides the
pie chart that inhibit understanding, notably stacked bar charts and area
charts. The stacked bar chart makes it difficult to understand the behavior
of the individual elements, as we see in Fig. 5.2. This figure has two views of
average sales data by month for a grocery store for four large departments.
In the upper panel, we can see that May is the month of maximum overall
sales (by looking at the heights of bars and ignoring the colors). We can see
that packaged grocery appears to have lower sales around July and that
meat and bulk appear to be smaller departments, although it is difficult to
gauge the magnitude of the difference. In the lower panel we have replaced
the stacked bars with points connected by lines. The points allow precise
estimation of individual observations and the lines (and the color) help us
group the departments together across time. Now we see that packaged
grocery and produce are larger than the other two departments, by a factor
of just more than two. Note that the lower panel figure is less than perfect
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because the vertical axis does not extend to 0. We also see that produce
has an annual cycle out of phase with the other departments, peaking in
the North American summer months. Area charts such as the pie chart
typically arise when circles are scaled based on some variable that would
not otherwise be plotted. There are cases where this is useful, for instance,
adding sample size to a chart via area scaling. Research indicates that
people are able to decode area to perceive order but magnitude is difficult
accurately translate from area.

Fig. 5.2 Two
views of
monthly
sales for
four depart-
ments. The
stacked bar
chart obfus-
cates much
information
that the
line chart
makes clear
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Choose Graphical Elements Judiciously. As one builds graphics,
there are many choices: colors, shading, line types, line widths, plotting
characters, axes, tick marks, legends, etc. Make these choices thoughtfully.
Color is often used well when colors indicate membership according to
a categorical variable. Color is often used poorly when practitioners get
bored and add color haphazardly. Axes can be used intelligently to high-
light certain observations or the range of the data. Smoothing lines can
illustrate trends in bivariate data or mistakenly cover up observations.
With a good graphics package, like the R package ggplot2 which we in-
troduce in Sect. 5.4, every element of a figure can be manipulated. Take
advantage of the opportunities.
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Help Your Audience. Wherever possible, make adjustments to your
figure that helps your audience better understand the data. A choice had
to be made in the lower panel of Fig. 5.1. The default behavior sorts the
observations by name. This would be the desired order if our goal was to
allow the reader to quickly find a given observation in the list and look
up the value.3 But if this is the goal, a table might be a better choice.
By sorting the observations by value we can instantly see the minimum
and maximum and the observations that define the break between the two
groups. By manipulating the data using the R function reorder, we help
the audience in several ways. Another example of this principle would be
to highlight important observations by labeling them.

Limit Your Scope. Most interesting projects generate a profusion of data
and, as our tools to visualize that data grow, so does the temptation to
try to tell the entirety of a story with a single graphic. A well-written
paragraph has a topic sentence and a unifying idea. Applying this concept
to your graphics requires discipline and attention to detail. There will be
times when you are tempted to add additional elements to a chart that
already tells the story. Take care that the new elements do not detract
from the central message. The classic example of overreaching is a line
chart with two different axes for the lines. If you find yourself building
such a chart, you are unlikely to be telling the story with clarity and
power.

Armed with these general principles, we are now well positioned in the
next section to delve into the types of data that are likely to be encountered.
We’ll describe the elements that make useful visualizations for univariate,
bivariate, and multivariate data. In the subsequent section we learn how to
produce these graphics in R.

5.3 Making Good Choices

Many of our visualization tasks will be defined by the number and type of
variables that we will be plotting. The first and most important distinction
is between quantitative and qualitative data. A qualitative, or categorical,
variable is coded as a factor in R. In terms of the number of variables to
plot, there are relatively clear approaches when we have one or two variables.
Once we move beyond that, there are some general principles in effect but
creativity plays a larger and larger role. One must be mindful of the edict to
not try to do too much with one chart.

3 When ordering is a problem, it is often referred to as the “Alabama First!” problem,
given how often Alabama ends up at the top of lists that are thoughtlessly put, or left,
in alphabetical order. Arrange your lists, like your factors, in an order that makes sense.
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5.3.1 Univariate Data

Our goals with univariate quantitative data typically are to understand the
distribution of the data. We typically begin describing the center and spread
of the distribution and identifying unusual observations, often called outliers.
More in-depth analyses describe the shape of the distribution, a task that
provides more information and requires more effort. The classical starting
point for investigating shape is either the histogram (described at length in
Chap. 3, Sect. 3.4.2), the empirical density function, or one of several varia-
tions on the boxplot. In this first section we work with a grocery-store data
set, specifically, sales and items by month and department for 6 years. We
begin by looking at the distribution of sales, in units of thousands of dollars.

Fig. 5.3 Three
different ways
of looking at
monthly sales
by department
in the grocery
store data:
a histogram,
several empir-
ical densities
illustrating
the variations
possible from
the bandwidth
parameter,
and a density
superimposed
on a histogram
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The top panel of Fig. 5.3 shows a histogram depicting the numbers of
observations falling in each interval, or bin, by the height of a vertical bars.
We see sales by month by grocery department with bar height representing
the count of observations that fall into that “bin”, as the intervals on the
x-axis are referred to.
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The second panel illustrates a more powerful and complex way to visual-
ize the distribution of a quantitative variable—empirical density functions.
An empirical density function is a data-driven estimate of the probability
distribution from which the data originated. More simply, they are smooth
histograms. The formula that generates the empirical density function

̂fb(x) = 1
n · b

n
∑

i=1
K

(

x − xi

b

)

, (5.1)

where n is the number of observations, b is the bandwidth, and K is the ker-
nel.4 The bandwidth is usually used to control the smoothness of the function
by determining the influence of individual differences x − xi on the function.
Setting the bandwidth to a small value, say 1, results in a very bumpy dis-
tribution. Setting it to a large value arguably makes the distribution overly
smooth and removes the some of the secondary modes visible with b = 1.
Much like the bin width choice for histograms, some trial and error may be
necessary to capture the interesting features of the distribution. The default
bandwidth in R which chosen by bw.nrd0 and remains the default for histor-
ical reasons. The most recommended choice is bw.SJ, based on the method
of Sheather and Jones [54]. We show how to set the bandwidth in Sect. 5.4.2.

The middle panel of Fig. 5.3 shows three different bandwidths. The bottom
panel shows the histogram and density on the same plot, which necessitated
changing the units on the histogram to relative frequency. Note that all dep-
ictions show some department-months with low sales, a larger group from
$20K to $55K, and a group at $100K.

Another useful way to display distributions uses boxplots or violin plots.
These plots, illustrated in Fig. 5.4, are more compact displays of the distribu-
tion of monthly sales. Boxplots, first developed by John Tukey in the 1970s,
summarize the distribution using five numbers. The box is defined by the first
and third quartiles, Q1 and Q3, and is split by the median. The interquartile
range is IQR = Q3 − Q1. The IQR is a useful nonparametric measure of
spread. The whiskers, the length of which can be customized in R, are by
default set to Q1 −1.5× IQR and Q3 +1.5× IQR. Points beyond the whiskers
are plotted individually and identified as outliers.

The definition of an outlier may seem arbitrary, but it captures data fea-
tures in a predictable way if the data are normally distributed. Given a normal
distribution, the 25th percentile of the data is x25 = μ − .67 × σ and the IQR

4 Kernels are an interesting side area of statistics and we will encounter them later in the
chapter when we discuss loess smoothers. In order for a function to be a kernel, it must
integrate to 1 and be symmetric about 0. The kernel is used to average the points in a
neighborhood of a given value x. A simple average corresponds to a uniform kernel (all
points get the same weight). Most high-performing kernels uses weights that diminish
to 0 as you move further from a given x. The Epanechnikov kernel, which drops off with
the square of distance and goes to zero outside a neighborhood, can be shown to be
optimal with respect to mean square error. Most practitioners use Gaussian kernels, the
default in R.



5.3 Making Good Choices 141

Fig. 5.4 Two
different ways
of visualizing
the distri-
bution of
monthly sales
numbers, the
boxplot and
the violin plot
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has length 1.34×σ. Thus, 1.5× IQR ≈ 2σ. The edge of the whiskers is placed
at ±2.67σ units from the mean so we would expect less than .8% of the data
to fall outside the whiskers. Note that in our example, many points are plot-
ted individually, indicating that the normal distribution is not an appropriate
approximation of the monthly sales distribution.

The violin plot, by contrast, makes use of many more features of the data
and can be seen as a boxplot replacement. The plot shows a smooth repre-
sentation of the distribution turned on its side and gives us a more detailed
visualization of the distribution. The width of the figure reflects the den-
sity of observations. With the addition of the horizontal lines at the first,
second, and third quartiles, there is no loss of information compared to the
boxplot. Moreover, the most interesting feature of this distribution, the lack
of department-months with sales between $60K and $80K, is obscured by the
boxplot but easy to see with the violin plot.

When we have univariate data that is labeled, we have already seen one
of the best visualizations: dotcharts. These charts allow us to clearly depict
single values and convey the uncertainty around those estimates (where ap-
propriate). In Fig. 5.1 we saw how a dotchart was superior to a pie chart.
In Fig. 5.5 we see another example of a dotchart, this time displaying sum-
mary statistics. This figure shows monthly spend by department with bars
representing the range of values. Note that we have avoided the “Alabama
First!” problem by sorting the departments from highest spend to lowest. In
this depiction we can clearly see the two largest departments (produce and
packaged grocery), the range of mid-sized departments (refrigerated grocery
down to cheese), and the smaller departments. We have translated the x-axis
variable to the log10 scale. This choice gives us a better view of the monthly
sales for the small departments, but can make interpretation a bit trickier for
the gray bars, which represent the range. At a first glance, it appears that
bakehouse and flowers have by far the widest range in monthly sales. This is
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true as a percentage; bakehouse ranges over almost an order of magnitude,
from a minimum of $1000 to almost $10,000. By contrast, produce has a
range of approximately $40,000 and a sample mean of nearly $100,000. An
important note: the x-axis displays the values of monthly sales after trans-
forming the values to the log10 scale. The labels, however, show the original,
untransformed monthly sales in thousands of dollars. By retaining the la-
bels in dollars, the reader is better able to interpret the variable. The best
practice recommended by Cleveland is to place this axis at the bottom of
the graphic and the corresponding log-based scale at the top. Unfortunately,
ggplot2 makes this difficult to do, so our labels show five values on the scale
of thousands of dollars.

Fig. 5.5 A
dotchart of
spend by
month by
department,
with bars
indicating the
range of the
data. Monthly
sales have
been trans-
formed to the
log10 scale
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The final type of data we might wish to visualize is univariate categorical
data. If the number of categories is small, then a simple bar chart is an
excellent choice to compare the proportions in each category. If the number
of categories is very large, then summarizing with a dotchart as in Fig. 5.5 is
often the best practice.

5.3.2 Bivariate and Multivariate Data

Bivariate data is usually straightforward to visualize. There are really three
main possibilities: two categorical variables, a quantitative and categorical
variable, and two quantitative variables.

Data consisting of all categorical variables typically are summarized by
contingency tables and there is no reason to deviate from this practice. A con-
tingency table is a cross-tabulation of observations according to the values of
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the categorical variables. For instance, if there are a levels of variable A and
b levels of variable B, then the table contains a × b cells and the content of
a cell is the number of observations with a particular combination of levels.
Table 5.1 is a contingency table cross-classifying receipts according to cus-
tomer segment and department. We can see general trends by examining the
table but specific and fine differences are not immediately discernible.

Table 5.1 Number of receipts cross-classified by department and the three largest cus-
tomer segments, light, secondary, and primary

Customer segment
Department Light Secondary Primary

Supplements 439 55,657 90,017
Cheese 859 96,987 147,679
Frozen 647 97,808 152,940

Meat 653 107,350 149,251
Deli 5830 138,722 155,086

Bulk 2713 144,862 178,520
Refrigerated grocery 3491 194,758 197,463

Produce 3971 211,226 199,978
Packaged grocery 6980 223,815 200,737

There exists, however, a useful visualization that rapidly conveys the re-
lationships between categorical variables, the mosaic plot. Figure 5.6 shows
a mosaic plot in which the area of the tiles represents the relative number of
observations that fall into each cell of the contingency table. We can see, for
instance, that there are many more primary shoppers than light shoppers.
Packaged grocery is over-represented among light shoppers, whereas primary
shoppers make up larger portions of the less popular departments.

This figure allows us to quickly absorb some of the features of the contin-
gency table:
• Primary and secondary shoppers make up the majority of the observations.
• The four largest departments—produce, packaged grocery, refrigerated

grocery, and bulk—represent about half the activity of the primary shop-
pers. Secondary shoppers used those departments to greater extent than
primary shoppers and light shoppers used those departments to an even
greater extent.

• Supplements represents a small fraction of the purchases of all segments.
• Primary shoppers tend to shop more of the store’s departments, generally.
A virtue of the mosaic plot is that it allows estimation of the strength of the
relationship between the categorical variables. A downside is that statistical
features, such as confidence intervals for the difference in sizes, cannot be
displayed. Moreover, the display becomes unwieldy beyond two dimensions.
Figure 5.7 shows a mosaic plot built from data generated from two indepen-
dent random variables with discrete uniform distributions. The plot shows no
evidence of association. Conditioning on one variable shows approximately
equal-sized rectangles as you travel across a row or down a column.
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Fig. 5.6 A
mosaic plot
showing the
relationship
between
customer seg-
ments and
departments
shopped
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Fig. 5.7 A
mosaic plot
showing no
relationship
between two
categorical
variables. Ref-
erence plots
like this are
good to keep
in mind when
looking at
mosaic plots

Most data that we need to visualize is not categorical, however. In the case
of a quantitative variable and a categorical variable, we have already seen
several good methods of showcasing relationships. Figure 5.5 shows several
numeric results (the minimum, mean, and maximum spend by month) split
by a categorical variable (the grocery store department). In Fig. 5.8 we see a
great deal more information in a similar format. The previous chart showed
spend at the department level. This chart shows spend at the individual
shopper level for a sample of 10,000 shopper-months.
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Fig. 5.8 A
second ex-
ample of
a dotchart
showing
spending by
department at
the individual
shopper level
for 10,000
shoppers
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Figure 5.8 displays spend on the log10 scale by individuals in a month
across nine departments in the grocery store. The departments are ordered
by the median monthly spend, shown as a vertical red line. The horizontal
axis corresponds to a log scale to allow additional detail to be seen at the
lower end of the scale. It also appears that the log10 scale reveals a much
more symmetrical distribution—it is not uncommon for retail data to be
approximately log-normal in distribution.

Several techniques we have not yet seen are illustrated in Fig. 5.8. The
y-axis shows the levels of department. The values plotted at each level have
been jittered so that more of them can be seen. Jittering adds a small random
value, say between −ε and ε, to the vertical coordinate of each plotted pair.
Without the jittering all points would collapse onto their nearest horizontal
grid line. We have also used transparency, set at the ggplot2 value α = .1.
The interpretation of this value is that no fewer than 1/α points plotted
in the same location will appear completely opaque. Supplements are evi-
dently shopped much less than, say, bulk, but the median spend is higher,
presumably because each item is more expensive in this department.

With bivariate numerical data, the natural plotting technique is the
scatterplot. Figure 5.9 illustrates this technique.
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Fig. 5.9 A basic
scatterplot, show-
ing monthly
sales for our two
largest depart-
ments across 6
years. A linear
regression line and
loess smoother
have been added
to the plot to aid
in interpretation of
the relationship
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Scatterplots are straightforward and adhering to the basic tenets laid out in
Sect. 5.2 will keep a practitioner on the right track. The data speak for them-
selves, in this case illustrating the variability between produce and packaged
grocery spend when viewed by month. Overall, the department sales move
together, with a considerable amount of variation in the relationship.

When illustrating a relationship, one should strongly consider adding a
fitted line to the graph to aid the viewer in decoding the relationship. In
Fig. 5.9 we add two: a line built by linear regression and a curve created by
locally weighted regression. The former needs little elaboration here, as lin-
ear regression is covered in Chap. 6. Locally-weighted regression, a technique
introduced by Cleveland in 1979 and refined in 1988 [13], is a powerful tech-
nique for uncovering the relationship between two numerical variables. There
are two competing terms, lowess and loess, and it seems the latter has become
preeminent. They are closely related, both setting up a weighted neighbor-
hood around an x value and fitting a regression line primarily influenced by
points in vicinity of x. Much like our kernel smoothers discussed above, a
bandwidth parameter, α, is specified. In each neighborhood a polynomial of
degree d will be fit,5 and we require a choice of α ∈ [ d+1

n , 1]. The default
settings in R are α = .75 and d = 2. For each subset of size nα, a polynomial
is fit. This fit is based on weighting the points and the typical weight func-
tion is the tricube weight. Let us assume that we have an observation xi, a
neighborhood around xi denoted by N(xi), the width of which is ri. Then
the weight function is

5 In practice d is almost always 1 or 2.
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The tricube kernel is nearly as effective as the Epanechnikov kernel. In prac-
tice, the choice of kernels is not nearly as important as the bandwidth choice.

We now turn our attention to multivariate data. Multivariate data is de-
fined as data comprising at least three covariates per observation and, as
mentioned earlier, most solutions require a thoughtful process. We can apply
the general principles mentioned earlier and enjoy the profusion of options
that are available. If there is one principal that stands above all others it is to
avoid doing too much. This temptation is nearly irresistible. One may violate
the rule profitably when a graphic will do the heavy lifting for several pages
of text or when the graphic can be displayed on a slide for several minutes of
explanation. This is not the norm and data scientists would be wise to split
their story into multiple graphics if the audience is pressed for time.

Figure 5.10 is a reprisal of Fig. 5.8, made multivariate with the addition of
the customer segmentation of the shopping data seen in Chap. 10. A number
of interesting features emerge, notably the separation between secondary and
primary shoppers for all departments except for supplements. The addition
of median lines for each segment aids comprehension, particularly for the
light shoppers, who make up small fraction of the shoppers. Interestingly, we
can now see the compression of the deli spend—this department is one of the
most popular with light shoppers.

Figure 5.10 is, essentially, a two-dimensional data visualization with a third
dimension (segment), layered on top. Using two-dimensional plots with addi-
tional information to encode other variables is a common technique. Another
variation, illustrated by Fig. 5.11 splits a two-dimensional plot into small
multiples of pairs according to a third variable. The term “small multiples”,
coined by Tufte, captures the idea that readers, once they have been oriented
to an individual plot, can quickly discern similarities and differences across
a family of plots.

Each small panel, known as a “facet”, is a scatterplot of spend versus items
within a given department. A loess smoother is added to each panel. The
advantages of faceting versus simply repeating scatterplots are several-fold:
parsimonious code, an efficient use of space on the layout, the ability to order
the facets in a sensible way, and common axes that facilitate comparison.
With this treatment we can quickly identify interesting patterns within the
data:

• The large volume of sales in produce, packaged grocery, and refrigerated
grocery stand out relative to the other departments.

• Steeper curves indicate departments with cheaper items (produce, deli)
while flatter curves show the expensive items (supplements, meat).

• Certain departments do not have large spends (cheese, frozen, and bulk).
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Fig. 5.10 An
example of multi-
variate data. The
spend-department
dotchart is now
colored based
on the segments
of the shoppers
(either primary,
secondary, or
light). The medi-
ans are shown for
each segment as a
color-coded line
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This section has served as a travelogue without a map. We have seen the
destinations, but now we must learn how to get there. Building these plots
requires a surprisingly small amount of code using the package that we will
learn, ggplot2, partially because a great deal of complexity is hidden from
us. Graphical software is a leaky abstraction, unfortunately, and so we will
illustrate how to build up these charts from base elements.

5.4 Harnessing the Machine

The plots in this chapter were made with the R package ggplot2. This
package is our strong recommendation for your personal data visualization
tasks. There are three widely-used graphics packages associated with R: base,
lattice [53], and ggplot. The base package is useful for quick plotting and
for learning the basic techniques. It is possible to control many aspects of the
plot with the base package but constructing publication-quality graphics is
not easy. The second package, lattice, is based very closely on the ideas
of Cleveland, but is not developed on the framework of a formal model. The
lattice framework has limited its extensibility. The package ggplot is more
flexible and easier to use.
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Fig. 5.11 A scat-
terplot, faceted
by department,
of spend versus
items, with a loess
smoother added to
each panel
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The package name, ggplot2, reflects both the version number, two, and
the heritage, Wilkinson’s Grammar of Graphics [69]. To quote Hadley Wick-
ham, the principal author of ggplot2, “Wilkinson created the grammar of
graphics to describe the deep features that underlie all statistical graphics.”
[66] Wickhams’ books covers the grammar in some detail. Our treatment
draws extensively from Wickham’s texts.

The ggplot grammar requires work on the part of the reader. Once it
is mastered, however, ggplot2 provides the user with lots of flexibility and
power. We encourage the reader to learn the grammar.

The grammar of graphics consists of a number of components that merge
to form the grammar. They are

1. data The data to be rendered as a visual. Using ggplot, the data must
be an R data frame. A R data frame is rectangular arrangement of the
data with somewhat more specificity and overhead than a simple matrix.
For example, a data frame may contain variables of several types, say,
quantitative (numeric in the R lexicon) and categorical (a factor in the R
lexicon).

2. aes aes is shorthand for aesthetic mapping. Aesthetic mappings tell
ggplot2 how to translate the data into graphic elements. The aesthetic
mapping identifies the variables to be plotted on the x- and y-axes.
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More may be added to the aesthetic mapping. For example, a categorical
variable that determines the color of the points or lines is identified in
the aesthetic mapping.

3. geoms geoms is shorthand for geometric objects. These are the elements
that visually portray the data. Examples are points, lines, line segments,
error bars, and polygons. All geometric object specifications take a form
such as geom_points().

4. stats These are statistical transformations that are used to reduce and
summarize the data. The smoothers we saw above are examples of sta-
tistical transformations since the data was reduced in some manner to
produce the smooth lines.

5. scales Scales provide the mapping between the raw data and the figure.
Scales are also used to create legends and specialized axes.

6. coord The coordinate system takes us from the data to the plane of the
graphic. This component is used, notably, to change axis scales from the
original units of a variable to different units, say, logarithms.

7. facet As we saw in Fig. 5.11, facetting divides the graphic into sub-
graphics according to a categorical variable. This graphical component
defines how the facets are arranged.

The process of building a visualization as a series of layers in ggplot
is a remarkable improvement on the traditional process. Figures in ggplot
are built by first creating a base consisting of a rudimentary plot and then
adding more information and data to the base in the form of layers. Each
layer may contain specific information from the attribute list above. Usually,
layers inherit most of the attribute values from the initially created plot. The
specification of the layer may be very simple since we only need to change
a few items in each layer. Consequently, layers make the task of building
a complex graphic much easier. We tend to build graphics one layer at a
time. We can see the effect of each layer on the graphic and more easily
correct coding errors. A highly readable tutorial on the subject is available
at https://rpubs.com/hadley/ggplot2-layers.

Our intent in this chapter is not to systematically review ggplot2 tech-
niques but to provide a general understanding of how visualizations are con-
structed in ggplot2. In the remainder of the chapter, we explain how the
graphics discussed above were built. To go further, utilize internet resources
and, in particular, Stack Overflow (https://www.stackoverflow.com). If
you can’t solve a problem or remember an instruction, then search the in-
ternet for information. Adding ggplot to the search string makes one much
more likely to find results related to R and to the ggplot2 plotting package
in particular. Using the vocabulary of the package in the search string is
important to efficient searching.

We now turn to the code that created this chapter’s figures. We first start
by reading in the data and loading the necessary libraries.

https://rpubs.com/hadley/ggplot2-layers
https://www.stackoverflow.com
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library(ggplot2)
library(scales)
library(RColorBrewer)

The first two libraries, ggplot2 and scales are directly related to plotting.
The final one, RColorBrewer, is based on the pioneering work on color and
perception of Brewer et al. [7], is indispensable and we recommend it highly.

5.4.1 Building Fig. 5.2

Figure 5.2 is built from a summary table named month.summary. This data
frame holds the sum of monthly sales for four departments at the co-op. The
first five rows are displayed in Table 5.2.

Table 5.2 The first few rows of the data frame month.summary
Row Month Department Sales

1 6 Packaged grocery 90,516.72
2 6 Produce 103,650.8
3 6 Bulk 37,105.20
4 6 Meat 35,221.97
5 5 Packaged grocery 102,178.30

The code follows.

month.summary <- read.delim("../data/month_summary.txt")

ggplot(data=month.summary,
aes(x=factor(month), y=sales/1000, group=Dept, col=Dept) )

+ scale_color_brewer(palette="Set1")
+ geom_point()
+ geom_line()
+ theme_bw()
+ scale_y_continuous(label=dollar)
+ ylab("Avg Annual Sales in Month (000s)")
+ xlab("Month")
+ theme(legend.key.size=unit(0.5, "cm") )

After reading in the data, we build the plot in ggplot2, layer by layer.

1. data We use the data shown in Table 5.2.
2. aes We assign month to the x-axis and sales-divided-by-one-thousand to

the y-axis. Department is used as a grouping variable. The consequence of
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setting group=Dept is that points belonging to the same department will
be joined by lines. Departments will identified by color. When building
graphics that use grouping and color, it is common to forget to include
the grouping variable in the aesthetic. As an exercise, we encourage the
reader to build the plot without declaring the grouping variable in aes.
The appearance of the resulting plot, with the telltale diagonal lines, are
the mark of a missing grouping variable.

3. geoms There are two geometric objects used in the figure: points and
lines. They are added as separate layers and inherit the grouping and
color from the aesthetic.

4. scales We use a continuous scale and, for the axis labeling, take advan-
tage of the library scales to reduce the effort of the reader to understand
what has been plotted. The units are dollars so we pass the keyword
dollars into the label argument. This parameter will ensure that the
axis labels are formatted with dollar signs, commas, and cents. Other
options include percent and comma, all of which promote readability. We
also use the colors provided by RColorBrewer for the same reason.

5. theme Although not part of our original list, themes help you adjust
the appearance of your plots. We invoke the simple and clean theme_bw,
label the axes, and shrink boxes in the legend a bit. These features are
almost always included in our graphics.

5.4.2 Building Fig. 5.3

Our next code segment builds our histogram and empirical density function.

# Read in grocery store summary data.
working.dir <- "../data/"
gd <- read.delim(paste0(working.dir, "grocery_data.txt"))
ggplot(gd, aes(x = ownerSales/1000))

+ geom_histogram(aes(y=..density..))
+ geom_line(stat="density",col="gray50",size=1.5,

bw="SJ") + # Changing the bandwidth algorithm to ’SJ’
+ theme_bw()
+ scale_x_continuous(label=dollar)
+ ylab("Density")
+ xlab("Monthly Sales (000)")

The key features used to construct the figure are as follows.

1. data Histograms summarize distributions as they are built. We don’t
have to carry out data reduction before building the figure. It’s done by
ggplot in the construction of the histogram.
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2. aes Histograms are defined by a single variable which we assign to the
x-axis. ggplot2 determines the y-values using our guidance.

3. geoms The first geometric object is a histogram. The aes argument sets
the scale for the y-axis. Our choice of units for the histogram are propor-
tions. The y-axis will show the proportion of observations in each interval
and it’s specified by setting y=..density... The syntax of ..density..
looks odd. The pattern of periods (two at the beginning and two at the
end) indicates a statistical computation is necessary. The other commonly
chosen option shows the counts of observations in each interval. Entering
?stat_bin from the console will provide more information.

A second geom, line is also specified. The stat argument specifies
that the line to be drawn is the graph of a empirical density function
(Sect. 5.3.1). Several other attributes are specified: the color, the line
width (by adjusting size), and that the method of computing the band-
width is to be Sheather and Jones’ method [54].

5.4.3 Building Fig. 5.4

The code for the violin plot from Fig. 5.4 is next.

ggplot(gd, aes(x=1, y=ownerSales/1000))
+ geom_violin(draw_quantiles = c(0.25,0.5,0.75))
+ theme_bw()
+ scale_y_continuous(label=dollar)
+ xlab("")
+ ylab("Monthly Sales (000)")
+ theme(axis.text.x=element_blank(),axis.ticks=element_blank())
+ labs(title="Violin Plot of Monthly Sales")

A couple of new techniques emerge.

1. aes The x-axis is set to be a constant. The result is that the violin plot
will be drawn in the center of the graphic.

2. geoms The geom_violinplot accepts an argument specifying that quan-
tiles are to be drawn. We specify that these are to be the first, second,
and third quartiles.

3. theme Since the x-axis does not have any meaning, we would like to
avoid showing ticks marks and labels. The arguments to theme eliminate
those features. A internet search for something similar to “ggplot blank
x axis” will provide details.
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5.4.4 Building Fig. 5.5

The dotchart in Fig. 5.5 requires a prepared data frame dept.summary con-
taining the sample minimum, mean, and maximum sales the 17 departments
of the grocery store co-op. The first five rows are shown in Table 5.3.

Table 5.3 The first five rows of the dept.summary data.frame
Sample

Row Department Minimum Mean Maximum
1 Packaged grocery 79,434.24 99,348.55 112,303.60
2 Produce 76,799.20 98,711.50 116,442.92
3 Bulk 31,610.05 39,482.60 45,908.04
4 Refrigerated grocery 44,239.77 49,940.93 55,656.07
5 Cheese 12,407.99 14,674.32 16,404.14

After reading the summary data into a data frame, it is re-ordered by the
sample mean.

dept.summary <- read.delim("../data/dept_summary.txt")
dept.summary$dept <- reorder(dept.summary$dept, dept.summary$mean.val)

ggplot(dept.summary, aes(x=mean.val, y=dept))
+ theme_bw()
+ geom_errorbarh(aes(x=mean.val, xmax=max.val, xmin=min.val, y=dept),

height=0, color="gray60")
+ geom_point(col="black")
+ ylab("")
+ xlab("Monthly Sales (000s) - Log Scale")
+ scale_x_continuous(label=dollar,trans="log10",

breaks=c(1000,2500,10000,25000,100000))

1. aes When a factor is used as an x- or y-variable in an aesthetic, the factor
levels are mapped to sequential integers, say 1, 2, . . . , g, where g is the
number of levels. Knowing that the levels occur at integer positions on
the x-axis will be important when we add features like jittering.

2. geoms Another new geom, geom_errorbarh, is used. The “h” stands for
horizontal—the vertical variety needs no suffix. The aesthetic mapping for
geom_errorbarh requires us to supply x- or y-variables and the starting
and ending positions for the error bars. The parameter height specifies
the width of the whiskers on the bars. We’ve suppressed the whiskers as
they add no information. Note that points are desired at the median and
receive their own geom.

3. scale_x_continuous We repeat our label trick and instruct ggplot to
transform the variable plotted on x-axis according to the transformation
x → log10(x). Also, we set the label positions using the breaks argument.
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5.4.5 Building Fig. 5.8

We build the plots for Figs. 5.8 and 5.10 in the next series of code segments.
We begin using sample.int to draw a random sample of manageable size
from the shopper data set. Setting the seed of the random number generator
with the instruction set.seed ensures that our results are the same on re-
peated runs. We also order our departments based on the median total sales
by department.

set.seed(3939394)
# Read in grocery store detail data.
gdd <- read.delim(paste0(working.dir,"shopper_dept_segment.txt"))
this.data <- gdd[sample.int(nrow(gdd),size=10000,replace=F),]
this.data$DepartmentName <- reorder(this.data$DepartmentName,

this.data$TotalSales,
FUN=median)

Drawing the vertical lines that depict the medians requires those values
to be calculated and it is clearest if we assign them to a data frame of their
own. We call that data frame medians.

medians <- aggregate(this.data$TotalSales,
list(this.data$DepartmentName),
FUN=median)

names(medians) <- c("DepartmentName","TotalSales")
medians$y.val <- as.numeric(medians$DepartmentName)

We are now ready to build Fig. 5.8.

ggplot(this.data, aes(x = TotalSales, y = DepartmentName))
+ theme_bw()
+ geom_point(position=position_jitter(h = .4),

alpha=0.1)
+ ylab("")
+ xlab("Monthly Customer Spend - Log Scale")
+ scale_x_continuous(label=dollar, trans="log10",

breaks=c(1,10,100,1000))
+ geom_segment(data = medians,

aes(x = TotalSales, xend = TotalSales,
y = y.val -.4, yend = y.val+ .4),

col="red")

1. data Two data sets are used to construct the figure. The principal data
set is the sample of individual shopper grocery data. A second data set
called medians is used for the vertical lines and is passed directly into
the necessary geom_segment.
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2. aes This plot uses an aesthetic that is similar to what we have seen
before, with the categorical variable departmentName assigned to the
y-axis. Individual shopper sales are assigned to the x-axis. There is a
separate set of aesthetic mappings used with geom_segment.

3. geoms There are two geoms used in this plot, one for the points and one
for the line segments. The geom_point has been used before, but now we
show how to add jittering to a plot. Recall that jittering perturbs points
so that there is less over-plotting and individual points are easier to see.
The command, position=position_jitter(h=.4) instructs ggplot2 to
place the points at the original x-axis coordinate and to perturb the y-axis
coordinate. The argument h = .4 controls the magnitude of the random
perturbations.

The other geom layer, geom_segment uses the second data set. We
specify the starting and ending line segment coordinates on the x- and
y-axes.

4. scale Once again we use the dollar labeling from the library scales. As
we have been doing in other plots, we instruct ggplot to transform the
variable plotted on x-axis according to the mapping x → log10(x) and
specify where we would like the labels to appear.

5.4.6 Building Fig. 5.10

The code used to construct Fig. 5.10 is a relatively simple modification of the
code used to construct Fig. 5.8. The key difference is that we wish to color
the points according to segment, as well as have separate median lines for
the segments. First, we must calculate the medians for each department and
segment.

medians <- aggregate(this.data$TotalSales,
list(Segment=this.data$Segment,

DepartmentName=this.data$DepartmentName),
FUN=median)

names(medians)[3] <- "TotalSales"
jit.val <- 0.6 # More jittering with segments

The function aggregate is convenient for summarizing one variable based
on one or more other variables. We rename the column that holds the calcu-
lated medians to match the aesthetic we’ll use in our plot.

As we shall see, it is quick to add a grouping variable that allows coloring
of the points and the technique is analogous to what we did in Fig. 5.2. There
we used grouping and color aesthetics to ensure that the department sales by
month were joined by a line and common color. Here the variable Segment
will fill that role.
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ggplot(this.data,
aes(x=TotalSales, y=DepartmentName, group=Segment, col=Segment))

+ theme_bw()
+ geom_point(position=position_jitter(h=jit.val),

alpha=0.1)
+ ylab("")
+ scale_color_brewer(palette = "Set1")
+ xlab("Monthly Customer Spend - Log Scale")
+ scale_x_continuous(label=dollar,trans="log10", breaks=c(1,10,100,1000))
+ geom_segment(data = medians,

aes(x = TotalSales,xend=TotalSales, group=Segment, col=Segment,
y = y.val-0.5*jit.val, yend=y.val+0.5*jit.val), size=1.25)

What are the differences between this code and the previous code? Just the
addition of the argument group=Segment and col=Segment in the ggplot
aesthetic and geom_segment aesthetics, respectively. Other aspects of our
plots remain the same.

5.4.7 Building Fig. 5.11

Our final example builds Fig. 5.11. The code is reproduced here, though there
are few features we have not seen before.

set.seed(3939394)
this.data <- gdd[sample.int(nrow(gdd),size=25000,replace=F),]
this.data$DepartmentName <- reorder(this.data$DepartmentName,

this.data$TotalSales,
FUN=sum)

ggplot(this.data, aes( x = TotalSales, y = Items))
+ geom_point(alpha=0.1)
+ stat_smooth(se=F)
+ facet_wrap(~DepartmentName)
+ scale_x_continuous(label=dollar, limits=c(0,250),

breaks=c(0,75,150,250))
+ scale_y_continuous(limits=c(0,100),label=comma)
+ theme_bw()
+ xlab("Spend")
+ ylab("Number of Items")

The first new feature is a statistic that stands on its own (as opposed to be-
ing hidden inside geom_line as we saw above). The function, stat_smooth,
is quite useful, adding a line to a plot according to the specified method. In
the code that generated Fig. 5.9, we added two smooths in two layers. One
layer added the default smoothing method, loess, and the second added a fit-
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ted linear regression line using the instruction stat_smooth(method="lm").
The default is to include standard error envelopes. We have suppressed the
envelopes by passing the argument se=F.

The other new feature is facet_wrap, the function that controls the cre-
ation of the panels. The wrap version creates a rectangular array of panels.
One panel is created for each level of the factor DepartmentName. Only ob-
servations associated with a particular level of the factor are graphed in the
panel. Rows and columns can be controlled. Multiple variables can be set on
the right-hand side of the tilde (∼) to partition the data by combinations of
levels of the variables. The analog of facet_wrap is facet_grid, which is
designed to set up the panels in a tabular array, specifying row factors and
column factors using the same tilde operator. One important parameter, not
changed in this code, is the scales value, which can be set to free, free_x,
free_y, and fixed. The default is the last one and it forces a single set of
axes for every panel. The free varieties allow the axes to differ and gener-
ates the best visual fit for each panel. The free option is often a mistake
if the purpose of the panels is to compare and contrast groups because the
reader will have to account for different scales in different panels. The best
visualization depends on the goals of the data scientist.

A final word of caution and encouragement. Plotting with ggplot2 imposes
an initially steep learning curve. The payoff is well worth the effort—do not
underestimate the importance of communicating clearly and efficiently. Vi-
sualization is the best way to do it. The key to learning ggplot is to start
simple and add complexity one layer at a time. Build a simple scatterplot
with geom_point, then add a layer that identifies groups by color. Add a
layer showing smooths. Label the axes clearly and adjust the font sizes. Ev-
ery successful plot that we created for the first 6 months of working with
ggplot2 was made by incremental steps.

5.5 Exercises

5.1. Use the data set grocery_data.txt containing sales by month and build
a dotchart of monthly sales by department. Put department on the y-axis and
sales (in thousands) on the x-axis. Include the following features:

a. Sort the departments based on average sales.
b. Jitter the points vertically and set alpha to help with over-plotting.
c. Label the x-axis using dollars.
d. Suppress the y-axis label and use a sensible label for the x-axis.

What patterns emerge from the departments? How does the spread of sales
vary by department? Why might this be?

5.2. Add vertical red lines representing the median monthly sales by depart-
ment to the figure of Problem 5.1.
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5.3. Build the middle panel from Fig. 5.3 with the bandwidth parameter set
to the values 1, 5, and 25. What is the bandwidth returned by the “SJ”
method? How does it compare to the bw.nrd0 method6?

5.4. Continuing to use the data set grocery_data.txt, build a faceted
graphic showing the empirical density of sales per month by department.
Allow the x- and y-axes to vary within the panels. Use the SheatherJones
bandwidth selection algorithm. Compare the densities.

5.5. Now we fine-tune the solution to Problem 5.4 to make it publication
worthy. Add the following features:

a. Angle the x-axis labels to 45◦. (Hint: ?theme and search for axis.text.x.)
b. Use the black and white theme.
c. Remove the beer & wine segment from the plot since there are very few

observations in the segment.
d. Shrink the font size of the facet titles (called strip.text) to make the

longer names fit.

5.6. Repeat Problem 5.1 with violin plots. Add quartile lines and draw a red
vertical line at the overall average monthly sales across all months and all
departments. Use the parameter scale="width" in the violin plot to avoid
the default behavior of the width being proportional to sample size.

Does this view of the data add to any insights beyond what you learned
from Problem 5.1?

5.7. Build the mosaic plot shown in Fig. 5.6. This plot is not made by ggplot,
but is made with the mosaic function in the package vcd. Controlling the ori-
entation of the axis labels is tricky; we recommend replacing the department
and segment names with abbreviations.

5.8. Use the gdd data to build the sum of sales by year and month, and seg-
ment. Display these in a line chart in chronological order, with each segment
being its own line.

5.9. Use the gdd data to build the sum of sales by year and month and
segment. Plot sum of sales against year and month, with each segment shown
by a separate line. Include the following features in your plot:

a. Vertically align the year-month labels.
b. Plot the y-axis on a log scale and choose sensible breakpoints. Label the

axis with the “dollar” formatting.
c. Label the x-axis every 12 months starting at 2010-1.
d. Add a linear trend line, by segment, to the plot. What information can

you infer about the light segment from this graph?

6 The purpose of these last two questions is to learn how to extract the bandwidth
information from R directly.



Chapter 6
Linear Regression Methods

Abstract Linear regression is a broad and well-developed area of statistics.
If there is a core to statistical methodology, then linear regression is it. The
ubiquity of linear regression methods in statistics and data analytics stems
from the ease with which one may fit tractable models that describe the pri-
mary features of a process or population. Not only is linear regression useful
for description, it’s also very useful for prediction since the models often pro-
vide good approximations of complex relationships. In the field of statistics,
hypothesis testing and confidence intervals are routinely used in linear re-
gression analyses. The extension of these methods to data science is often
unsuccessful because of the prevalence of opportunistically collected data.
Most of the time, opportunistically collected data cannot support inferential
methods because the quality of the inferences produced by the methods is
unknown. We discuss inference herein so that the reader may understand the
potential for success and for failure of these methods. However, the focus
is on the essential and most useful aspects of the subject matter for data
analytics—the fitted models. The topic of linear regression provides an av-
enue to gain experience with the statistical package R, one of the most popular
software packages used by data scientists.

6.1 Introduction

The subject matter of this chapter is applicable a wide collection of data
analytic problems. These problems share a common feature: one of the vari-
ables stands out in importance and the aim is either to gain a greater under-
standing of the process that generated the variable or the aim is to predict
unobserved, often future, values of the variable. For example, if there is a
resource of limited availability and variable demand, it’s important to under-
stand how and why demand varies so that the demand may be met. If the
analyst is able to arrive at a reasonably good understanding of the process

© Springer International Publishing Switzerland 2016
B. Steele et al., Algorithms for Data Science,
DOI 10.1007/978-3-319-45797-0_6

161
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through linear regression analysis, then a logical next step is to develop a pre-
dictive model for forecasting demand in the future. Predictive applications of
linear regression generally are narrower and better defined than the problem
of understanding the relationship between one variable and a set of explana-
tory variables. As a substantial portion of data science involves prediction and
predictive analytics, linear regression is a very important component of data
analytics. It should not be forgotten that linear regression may be success-
fully used for both learning about the origins of the data and for predicting
future and unknown values of a process.

The linear regression model is set up before going on to an example.

6.2 The Linear Regression Model

In the linear regression setting, the data may be viewed as a set of n pairs.
We’ll use the notation D = {(y1,x1), . . ., (yn,xn)} to denote the data. The
statistical view of the situation supposes that yi, i = 1, 2, . . . , n is realization
of a random variable, henceforth identified as the response variable Yi, and
that the concomitant explanatory vector xi paired with yi is not random and
can be used to explain yi in a sense that will be made concrete momentarily.
Occasionally, the statistical objective is to predict an unobserved realized
value y0 from the observed vector x0 using a predictive function constructed
from the data. In statistics, we predict realizations of a random variable
and estimate parameters that describe a distribution of the random variable.

The variables yi and xi are inherently different—the aim is to describe, or
model, the expected value of the random variable Yi whereas xi is a vector
of explanatory variables of secondary interest. Routinely, in statistical appli-
cations, it’s assumed that the explanatory vectors do not have a distribution
but rather are fixed and measured without error, or in complete control of
the researcher. Though this assumption is often specious, linear regression is
a valuable method of extracting information regarding the process or pop-
ulation from which the data originated. In predictive problems, the linear
regression model often provides a good and relatively simple approximation
of complex relationships between the expected value of Y0 and the predictor
vector x0. The vector x may be referred to as either an explanatory or a pre-
dictor vector depending on the objective of analysis. For simplicity though,
we’ll refer to the vectors xi and x0 as predictor vectors with the understand-
ing that the analyst may only be interested in explaining the relationship
between the expected value of the response variable and the concomitant
predictor vector.

The linear regression model specifies that the expected value of Yi is a
linear function of xi given by

E(Yi|xi) = β0 + β1xi,1 + · · · + βpxi,p. (6.1)
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The model may be expressed more compactly using vectors:

E(Yi|xi) = xT
i β,

where β = [β0 β1 · · · βp]T is a vector of unknown constants. The vector
xi = [1 xi,1 · · · xi,p]T contains the observations on the p predictor variables.
For convenience, we set q = p + 1 so that β and xi are of length q.

To illustrate a typical problem that is amenable to regression analysis,
suppose that Yi is the price of a particular stock at time step i. A linear
regression model may describe the expected value of Yi as a function of other
stock prices measured at some previous time step. It’s clear that the realized
prices will not coincide exactly with a linear model (there are far too many
factors that affect price), but it is not unreasonable to suppose that the
average of many observations made when the predictor vector equals xi can be
approximated by a linear combination of the terms in xi. Now with the hope
of predicting the stock price in the future, data can be collected automatically
for some time span,1 and using the collected data, an estimate of β computed.
The next step is evaluating the predictive model. If the observed stock prices
are, on average, close to the model predictions of the stock prices, then the
model is promising for prediction.

The prediction application is simple in the sense that the details of the
predictive model are not particularly important provided that it produces
accurate predictions of Y . Often, more is desired, and we are interested in
understanding the influence of each predictor variable on Y , or more precisely
on the expected value of Y . The model of the expected value of Yi as a linear
function of xi might be expanded to specify a form for the distribution of Yi.
An extended set of inferences are possible when the distribution of Yi meets
certain conditions such as normality.

Extended inferences depend on a set of conditions that are described herein
as the inferential model. The inferential model states that

Y = E(Y |x) + ε,
E(Y |x) = xT β,

and ε ∼ N(0, σ2
ε).

(6.2)

The third statement specifies that the residual random variable ε is dis-
tributed as a normal random variable with expectation 0 and variance σ2

ε .
The variance of ε is unrelated to x and is the same for every value of E(Y |x).
Constant variance implies that the differences between the realized values of
Y and model estimates of E(Y |x) should be roughly equal in magnitude for
any choice of x. A final condition is necessary for accurate hypothesis test-
ing and unbiased estimation of σ2

ε . The condition states that the data values
y1, . . . , yn were generated by independent random variables Y1, . . . , Yn, all of
which follow model (6.2).

1 A Python script for this purpose will be written in Chap. 11, Sect. 11.10.
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Occasionally, the intercept β0 is omitted from the model by not augmenting
x with the constant 1, in which case q = p. An intercept would be omitted
if x = 0 implies that Y must take on the value zero, for example, if Y is the
rate of a reaction and x consists of measurements on the concentration of
reactants.

6.2.1 Example: Depression, Fatalism, and Simplicity

The type of situation for which the inferential linear model (6.2) is useful
is illustrated by the Ginzberg data set [19]. To treat depression, a some-
times incapacitating mental illness, the causes should be understood. It’s
been postulated that depression is associated with a couple of less complex
conditions, fatalism and simplicity [51]. Fatalism refers to a perceived inabil-
ity to control the world in which a person lives. The extent to which a person
views events and circumstances as either positive or negative, without gra-
dation and complexity, is described by the term simplicity. The degree to
which these dispositions are associated with depression might illuminate the
value of treating depression by addressing a person’s fatalistic and simplistic
perceptions. Quantitatively measuring the extent to which fatalism and sim-
plicity are related to depression is an important step toward understanding
the interrelationships between depression and these conditions.

The Ginzberg data set contains 82 observations made on patients hospi-
talized for depression. Patients were scored on depression severity, simplicity,
and fatalism. The variables were scaled so that large values reflect stronger
manifestations of simplicity and fatalism and more severe depression. The
strength of linear association between fatalism and depression as measured
by Pearson’s correlation coefficient is r = .657, and the correlation between
simplicity and depression is r = .643. The correlation coefficients indicate a
moderately strong degree of positive linear association between depression
and each variable individually and some assurance that there is a joint re-
lationship between depression and fatalism and simplicity. The next task is
to quantify the strength of joint association and describe the relationship,
or more precisely, produce an objective and tractable approximation of what
must be a complicated and shifting relationship at the level of individual
patients.

Let us consider the following linear model

E(Y |x) = β0 + β1xfatalism + β2xsimplicity = xT β, (6.3)

where Y is depression score and x = [1 xfatalism xsimplicity]T . Realistically,
model 6.3 is at best a rough approximation of the actual relationship.

We proceed in the hopes of gleaning some information from the approxi-
mation. A computational algorithm was introduced in Chap. 3 for computing
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the estimate of the parameter vector β for a linear model such as the right-
hand side of Eq. (6.3). A similar algorithm produced the parameter estimates
shown in Table 6.1, but it remains to explain the meaning of the confidence
intervals shown in the table. We can, however, interpret the parameter es-
timates mathematically. Since the fatalism and simplicity scores have been
scaled to have the common mean value of 1 and standard deviation of .5,
the parameter estimates can be directly compared. In particular, a one unit
increase in fatalism when simplicity is held fixed is estimated to induce an
increase of .418 units on the depression scale, and a one unit increase in sim-
plicity when fatalism is held fixed is estimated to increase depression score by
.380 units, and so we may argue that fatalism and simplicity are nearly equal
in determining depression score, but that fatalism is more important than
simplicity. The argument is made in an artificial context, because attitudes
and beliefs, and specifically, fatalism and simplicity scores are impossible to
manipulate by increasing one with the other held fixed. In fact, fatalism and
simplicity are correlated (r = .631). Generally, individuals with larger fatal-
ism scores will also manifest larger simplicity scores compared to individuals
with lesser fatalism scores.

Table 6.1 Parameter estimates, standard errors, and approximate 95% confidence in-
tervals for the parameters of model (6.3)

Parameter Standard 95% confidence interval
Variable estimate error Lower bound Upper bound
Constant .2027 .0947 .0133 .3921
Fatalism .4178 .1006 .2166 .6190

Simplicity .3795 .1006 .1783 .5807

A fitted linear model involving a single variable, say ̂E(Y |x1) = ̂β0 + ̂β1x1
describes a line in the sense that every fitted value that may be calculated
using a value of x1 is a point on the same line.2 With two variables, the fitted
model describes a plane in the sense that every fitted value obtained from
the model and a predictor vector x = [x1 x2]T is a point on the same plane.3
Figure 6.1 shows the fitted model of depression. Note that the intersection
of the plane with the vertical sides of the box at opposing sides form lines
with the same slope though the vertical position of the lines are different.
This observation agrees with the interpretation that when fatalism is held
constant, a one unit increase in simplicity produces an increase in depression
score of .380 units regardless of the fatalism score. These statements about the
change in the response variable (depression) as a function of the explanatory
variables are examples of statistical inference. The statements are based on a
sample of data but are being generalized to a larger population of individuals
suffering from depression. The inference may well be wrong, perhaps grossly
2 This is to be expected since the fitted model is the equation of a line.
3 The fitted model is an equation describing a plane.
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wrong to the extent that there is no relationship between depression and the
two explanatory variables.

The possibility of incorrectly describing the population stems from the
estimates having been computed from a sample and the model being an
approximation. Sampling has introduced error into the parameter estimates.
There would be no sampling error if every individual in the population were
measured and the data set amounted to a census of the population.

The degree of error associated with one particular estimate is quantified by
the standard error of the estimator. This statistic may be loosely interpreted
as the average absolute difference between the true, unknown parameter and
a parameter estimate computed from a sample of independent observations
drawn from the population or process. Table 6.1 shows the standard errors
σ̂(̂β1) and σ̂(̂β2) associated with each of the parameter estimates. The stan-
dard errors do not immediately provide useful information about the extent
of error in the estimates. Confidence intervals provide an alternative inter-
pretation and sometimes, a better approach to dealing with imprecision in
the estimates related to sampling. Before expanding on confidence intervals,
we review least squares estimation.

Fig. 6.1 The fitted model of
depression showing the esti-
mated expected value of de-
pression score given fatal-
ism and simplicity scores.
The plane shows the triples
(xfatalism, xsimplicity, ŷ) where
ŷ = .203 + .418 × xfatalism +
.378 × xsimplicity

Fatalism score

Simplicity score

Depression

6.2.2 Least Squares

The first computational task of linear regression analysis is to compute an
estimate of the parameter vector β. In statistics and data science, the least
squares estimator is nearly always the first choice of estimators because it’s
easy to understand and compute. Furthermore, across a very wide breadth
of problems, it’s accuracy rivals that of more complex methods. Confidence
intervals and hypothesis tests regarding the parameters β0, β1, . . ., βp are
straightforward. The accuracy of the inferences drawn from model (6.2)
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depend on the appropriateness of the inferential model for the situation at
hand. All of the computational properties originate from the least squares
method of estimation.

The objective of least squares is to minimize the sum of the squared resid-
uals. The residuals are the differences between the observed values yi and
the fitted values ŷi = xT

i
̂β, i = 1, . . . , n where ̂β is a q-length vector of real

numbers. The sum of the squared residuals is

S(̂β) =
∑n

i=1(yi − ŷi)2

=
∑n

i=1

(

yi − xT
i
̂β
)2

.

The sum of squared residuals is minimized by the choice of β. Of course,
β is unknown—we need to generate a value to do anything further. The
vector ̂β that minimizes S(·) is called the least squares estimator, and, by
definition, every other vector will yield a sum of squared errors at least as
large as the least squares estimator.4 A computational form for the least
squares estimator can be determined using multivariable calculus. Rather
than proceeding through the derivation,5 we limit the discussion to stating
that the least squares estimator of β is the solution to the normal equations

XTXβ = XTy.

The details of building X
n×q

were developed in Sect. 3.9.2. Rencher and
Schaalje [50] provide a lucid and in-depth exposition on the theory of linear
models. In brief, X is formed by stacking the predictor vectors xT

1 , . . . ,xT
n .

The vector y = [ y1 · · · yn ]T consists of the n realizations of the random
variables Y1, . . . , Yn. If XTX is invertible, then the solution to the normal
equations is

̂β = (XTX)−1XTy. (6.4)

If XTX is not invertible, then (XTX)−1 does not exist and solving the normal
equations is more difficult. An algorithm for computing ̂β was the subject of
Sect. 3.10.

If the inferential model (Eq. (6.2)) correctly or approximately describes the
relationship between E(Y ) and x and distribution of ε, then the variances of
the following estimators are simple in form. Let’s assume that the inferential
model is correct. Then, the variance of Y about its conditional expectation
E(Y |x) = xT β is estimated by

σ̂2
ε =

∑n
i=1(yi − ŷi)2

n − q
,

4 If X is not full rank, then the optimality statement needs to be modified.
5 Exercise 3.3.7 guides the reader through the derivation.
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where ŷi = xT
i
̂β. The variance of the parameter estimator ̂β is the q × q

matrix
var(̂β) = σ2

ε(XTX)−1.

The diagonal elements of var(̂β) are the variances of the individual estima-
tors ̂β0, . . . , ̂βp and the off-diagonal elements are the covariances between
the individual estimators. The usual estimator of the variance matrix is
v̂ar(̂β) = σ̂2

ε(XTX)−1. The estimated variance of an individual estimator
̂βi is extracted from the diagonal of v̂ar(̂β). The square root of the estimated
variance usually is referred to as the standard error of ̂βi and is

σ̂(̂βi) =
√

σ̂2(̂βi).

Standard errors are used extensively for confidence interval building and hy-
pothesis testing. As noted above, the appropriateness of these estimators is
contingent in the realism of the inferential model.

The point estimates ̂βi, i = 0, 1, . . . , p, may be interpreted as the single,
best possible estimate of βi. Despite being best, it must be admitted that ̂βi

almost certainly will not be exactly equal to βi. There are other values besides
the point estimate but near the point estimate that are consistent with the
data in the sense that the data set supports the possibility that each may
well be the true value of βi. It’s often desirable to present an interval of data-
consistent values in addition to the point estimate. If so, a confidence interval
is appropriate.

6.2.3 Confidence Intervals

A confidence interval for a parameter is a set of possible values for the pa-
rameter that are consistent with the data. For example, Table 6.1 shows an
approximate 95% confidence interval for βfatalism. It was calculated accord-
ing to

[̂βfatalism −2σ̂(̂βfatalism), ̂βfatalism + 2σ̂(̂βfatalism)] = [.217, .619].

We say that we are 95% confident that βfatalism is between .217 and .619.
All values not contained in the interval are considered to be inconsistent
with the data and so we are confident that the true value is not outside of
the interval. The term 2σ̂(̂β) is referred is the margin of error. The width
of the interval is the difference between the upper and lower bounds, and
hence is approximately 4σ̂(̂β), or twice the margin of error. Narrow confidence
intervals are preferable to wide intervals, and an interval of negligible width
is optimal since we would be 95% confident that the true value is essentially
the estimated value.
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The confidence level is the probability that the procedure will yield an
interval containing the parameter. Mathematically, the confidence level is
1 − α where 0 < α < 1. Standard choices for α are .01, .05 and .1. The
confidence level can be interpreted as follows. If the exercise of collecting the
sample and computing the confidence interval were repeated many times,
then 100(1 − α)% of all confidence intervals will contain the parameter (pro-
vided that the inferential model (Eq. (6.2)) is correct). It should be noted that
the parameter is either in a particular computed interval, say [.217, .619], or
it is not, but it’s impossible for us to know which case is true. Therefore it’s
not correct to say that there is a .95 probability that βfatalism is between
.217 and .619 in value. The correct interpretation is that the probability of
the procedure generating an interval that contains the true parameter value is
1−α. We cannot directly address whether or not βfatalism is between .217 and
.619 using probability. Hence, we settle for a heuristic, somewhat ambiguous
statement and say that we are 100(1 − α)% confident that the parameter is
between .217 and .619.

Whether or not the confidence interval captures the parameter with prob-
ability 1 − α depends on two events. First, the interval must be centered on
the true value β, which in turn depends on the adopted linear model be-
ing correct. If the relationship between E(Y |x) and x is not approximately
linear, then the interval may not be centered on the true value. The accu-
racy of a linear approximation of a nonlinear relationship does not depend
the sample size, so the failures of a poor model cannot be escaped by in-
creasing the number of observations. Secondly, the standard error estimate
σ̂(̂βi) must be an accurate estimate of the true variability in parameter esti-
mates from sample to sample, and the accuracy of σ̂(̂βi) depends on several
distributional conditions describing the population or process which will be
discussed momentarily.

Parameter estimates and confidence intervals obtained from the Ginzberg
data set are summarized in Table 6.1. Table 6.1 gives us some confidence in
the conclusion that there is a relationship between depression and simplicity
given fatalism since the 95% confidence interval for βsimplicity is [.178, .581].
The term given expresses the idea that we have accounted for the effect of
fatalism by including it in the model. The possibility that βsimplicity is zero
is inconsistent with the data since the smallest possible value for βsimplicity
that is consistent with the data is the lower bound, .178, nowhere near zero.

The discussion of confidence intervals up to this point assumed that the
sample size n is not small. If n is small (say, less than 100), then an adjustment
is made to accommodate the lack of precision stemming from small n. For
values of n − q less than 80, a more accurate 100(1 − α)% confidence interval
for β is

̂β ± t∗
n−q,α/2σ̂(̂β),
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where tn−q,α/2 is the 100α/2 percentile from the (central) T -distribution
with n − q degrees of freedom. The T -distribution is very similar to the
standard normal distribution though with somewhat longer tails when n − q
is less than 80. When n > 80, we routinely compute an approximate 95%
confidence interval for β according to ̂β ± 2σ̂(̂β). The justification of the
choice of 2 as a multiplier of σ̂(̂βi) is that the 2.5 percentile of the standard
normal distribution is −1.96, slightly larger than −2.

6.2.4 Distributional Conditions

The confidence level claimed by a confidence interval is approximate since the
accuracy depends a set of conditions being met that in reality cannot be met
exactly. We’ve succinctly described these conditions as the inferential model
(Eq. (6.2)). Given the importance of the conditions for inference, some further
discussion is worthwhile. If the conditions are approximately met, then the
stated confidence level is likely to be close to truth. The conditions are often
referred to as assumptions, a term which is sometimes misinterpreted to mean
that the analyst need only assume or pretend that the conditions hold for
the problem and data under consideration. In fact, the conditions must be
met at least approximately to obtain reliable results. Three of the conditions
describe the distribution of the response variable and the fourth describes
the observations. They are:

1. linearity: the relationship between expectation of Y and x is linear. In
other words, the model E(Y |x) = xT β is correct.

2. Constant variance: for every value of x, the distribution of Y about
E(Y |x) has the same variance σ2

ε .
3. Normality: for every value of x, the distribution of Y is normal. Equiva-

lently, ε ∼ N(0, σ2
ε).

Conditions 1 and 2 specify the mean and variance of Y , and so the normal dis-
tribution condition can be combined with the mean and variance conditions.
In brief, Y ∼ N(E(Y |x), σ2

ε) for every value of x.

4. Independence: The observations are realizations of n independent random
variables. Specifically, yi is a realization of a random variable Yi, for i = 1,
. . . , n, and Y1, Y2, . . . , Yn are independent random variables.

Collecting all the conditions as one leads to the condition that Yi, for i = 1,
. . . , n, are independently distributed as N(xT

i β, σ2
ε) random variables.

The importance of these conditions depends strongly on the intended pur-
pose of a fitted model. If the linearity condition is violated, then the fitted re-
gression model will be locally biased and will under- or over-estimate E(Y |x)
for some values of x. However, when the relationship between E(Y |x) and
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x is not linear, then the linear model may still provide a reasonably accu-
rate approximation to the unknown true relationship. If prediction is the sole
objective, then nonlinearity in the relationship between E(Y |x) and x is tol-
erated provided that the fitted model is sufficiently accurate for its intended
purpose. Investigating the extent to which the model fails is part of residual
analysis, the subject of Sect. 6.8.

Violations of the constant variance condition have little effect on the pa-
rameter estimates and hence on the predictive utility of a fitted model. Non-
constant variance may bias the standard errors σ̂(̂βi). The consequence of
biased standard errors is that confidence intervals are either too wide or too
narrow and the probability that the procedure captures the parameter is not
1 − α as claimed.

The normality condition has relatively little bearing on the parameter es-
timates and the predictive utility of a fitted model. The condition is critical
for confidence intervals only if the sample size is small (say, n − q < 80) be-
cause the Central Limit Theorem insures that linear combinations of random
variables will be approximately normal in distribution for large values of n.
Certain conditions must hold for the Central Limit Theorem to apply but
these conditions do not often fail to hold.

A common error is to investigate the normality of the responses y1, . . . , yn.
This is a mistake since the responses have different expectations, a situa-
tion that muddies the analysis of normality. Instead, the normality condition
should be investigated using the residuals ε̂1 = y1 − ŷ1, . . . , ε̂n = yn − ŷn, or
standardized versions of the residuals. Then, the task is to determine if the
distribution of residuals is consistent with a normal distribution with mean
0. If the sample size is small and the residuals clearly are not normal in dis-
tribution, then confidence intervals may not be consistent with the claimed
confidence level.

6.2.5 Hypothesis Testing

Behind each data set there lurks a population or process from which the
data were collected. It’s certainly not always true, but let’s suppose that the
realized data are a sample taken from the population or a set of realizations
generated by a process. In this context, the random variables Y1, . . . , Yn rep-
resent a random mechanism that creates realizations y1, . . . , yn. Our purpose
for analyzing a set of realizations ultimately is not to learn about the real-
izations. Instead, our purpose is to learn about the underlying population or
process that generated the realizations. We often want to answer the ques-
tion of whether there really is a relationship between the response variable Y
and one or more predictor variables. The question of a relationship between
variables is a recurrent question in applied statistics, and hypothesis testing
is routinely used to assess the strength of evidence supporting the contention
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that there is a relationship. In data science applications of linear regression,
hypothesis testing may be applicable and useful, but often hypothesis testing
is unsuited for the situation at hand. Some data scientists would argue that
hypothesis tests and p-values should not be used at all. We ignore the protests
of the purists and delve into the topic of hypothesis testing to understand
the method and when it is suitable for data analytics.

Let us consider the linear regression model (formula (6.1)) and a test of
whether a linear relationship exists between Y and Xi, the ith predictor
variable. A hypothesis test begins with two competing and contradictory
hypotheses,

Ha : βi �= 0, the alternative, and
H0 : βi = 0, the null. (6.5)

If βi = 0 (hence, H0 is true), then a linear relationship between the expected
value of Y and the ith predictor variable does not exist and the variable has
no explanatory or predictive value. On the other hand, if the data support
Ha, then there is a justification for including the ith variable in the model of
E(Y |x). The traditional statistical approach to model fitting is to retain only
those variables for which the data support the alternative hypothesis. If the
analyst adopts this approach, then for the most part, model fitting is a series
of hypothesis tests conducted on different predictor variables or combinations
of predictor variables.

The hypotheses stated in formulae (6.5) may be enlarged to test whether
there’s a linear relationship between Y and the predictors Xj , . . . , Xk. In this
case, the hypotheses are

Ha : at least one of βj , . . . , βk is not zero,
H0 : βj = · · · = βk = 0,

(6.6)

where 0 ≤ j < k ≤ q. If the test does not support Ha over H0, then the entire
set of variables should not be included in the model. Hypotheses 6.5 and 6.6
are tested using a sample. The term test is often a misnomer since we often
stop short of arriving an unambiguous conclusion such as Ha is true and
instead report the strength of evidence supporting Ha. In most applications,
the p-value is reported along with some interpretation such as there is strong
evidence that X is linearly related to the expected value of Y . Small values of
the p-value support Ha. The p-value is an estimated probability and therefore
is bounded by 0 and 1.

Occasionally, an accept or reject decision is made. The two possibilities
are: reject H0 in favor of Ha (thereby concluding that Ha is true), or fail to
reject H0 (and accept H0). In the second case, H0 is usually not concluded
to be true; instead the conclusion is that there is insufficient evidence to rule
out H0 on the basis of the data. Its often true that more data will show H0
to be incorrect.

Jumping ahead a little, Table 6.2 shows the results of two hypothesis tests
that help answer the question of whether a linear relationship exists between
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expected depression score and the explanatory variables. The column headed
by t-statistic contains test statistics measuring the strength of evidence sup-
porting Ha : βi > 0 and contradicting H0 : βi ≤ 0. The p-value column
shows the strength of evidence. Table 6.2 shows strong evidence of a linear
relationship between depression and fatalism since the p-value is quite small.
The same statement applies to depression and simplicity. A test involving
β0 is omitted since it is not germane to the question of association between
variables.

Table 6.2 Parameter estimates and standard errors obtained from the linear regression
of depression score on fatalism and simplicity. Tests of H0 : βi ≤ 0 versus Ha : βi > 0
are summarized by the t-statistic and the p-value

Variable Estimate Std. Error t-statistic P-value
Constant .2027 .0947
Fatalism .4178 .1006 4.15 < .0001

Simplicity .3795 .1006 3.77 .0002

Let us systematically develop the tests shown in Table 6.2. A determination
of whether there is any association between Y and Xi requires a test of the
hypotheses H0 : βi = 0 and Ha : βi �= 0. A test of this form is logical because
βi = 0 implies that there is no association between Y and Xi. Tests regarding
β0 are not often of much interest though occasionally a test of whether the
intercept is a specific value is of interest. In any case, we will let β denote
any particular parameter in {β0, β1, . . . , βp}.

Occasionally, there’s a specific value for β different from zero which is to
be tested. Let’s call the value βnull. Any real number including zero may be
used for βnull. Three pairs of hypotheses are routinely tested. They are
1. Ha : β > βnull versus H0 : β ≤ βnull,
2. Ha : β < βnull versus H0 : β ≥ βnull,
3. Ha : β �= βnull versus H0 : β = βnull.

Table 6.2 uses the first form because our hypothesis (Ha) is that association
exists between depression and, say fatalism, and the association is positive.
We do not believe that the association could be negative, and so Ha differs
from simply saying that an association exists.

For all three hypothesis pairs, the strength of evidence supporting Ha and
against H0 is determined by a test statistic. In this situation involving a
single regression coefficient, the test statistic is a t-statistic given by

T =
̂β − βnull

σ̂(̂β)
,

where σ̂(̂β) is the standard error of ̂β.
If the null hypothesis is true, then ̂β will be near βnull and the test statistic

is expected to be near 0 because the numerator will be near 0. If Ha is true,
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and it states that β > βnull, then the realized value of T is expected to be
supportive of Ha and therefore relatively large in magnitude and positive.
Translating a realized value of T to a measure of support is accomplished
by computing a p-value. Formally, the p-value is the probability of obtaining
any value of T as or more unlikely than the realization t and, at the same
time, supportive of Ha given that H0 is true. So, if Ha : β > βnull is the
alternative, then large values of T are supportive of Ha, and

p-value = Pr(T ≥ t|H0 is true).

If the p-value is small, then an improbable outcome has been observed, casting
doubt on the premise that H0 is true. For example, it’s usually said that there
is evidence of a positive linear association between Xi and Y if the p-value
is less than .05. The logic behind the statement is that an event has been
observed that occurs less than once in twenty times when H0 is true, and so
either a fluke has occurred or H0 is false and Ha is true.

Despite the analyst’s beliefs,6 the p-value is computed assuming H0 to be
true to convince a skeptical but objective disputant that believes H0 to be
true. In our effort to convince her that Ha is true, we accept her position
for the sake of argument and carry out the test (therefore assuming that
H0 is true). If the p-value is very small, then an improbable event has oc-
curred. Since the disputant is objective, she must admit that the premise
upon which the p-value was computed may well be false. That premise is the
null hypothesis. The objective disputant may not give up their belief in H0,
but will concede that we have provided legitimate evidence in favor of Ha

and contradicting H0.
To expand on the details of the p-value calculation, suppose that the ob-

served value of T is t. Then, p-values are computed according to one of the
following three scenarios.

1. If Ha : β > βnull, then p-value = Pr(T ≥ t|H0).
2. If Ha : β < βnull, then p-value = Pr(T ≤ t|H0).
3. If Ha : β �= βnull, then p-value = 2 Pr(T ≥ |t||H0).

The p-values are computed assuming that T ∼ Tn−q. The third calculation
doubles the right tail area of the T -distribution. The logic in doubling the
tail area is that values of T that contradict H0 : β = βnull and support
Ha : β �= βnull may be either positive or negative and a measurement of the
probability of observing a test statistic as or more contradictory to H0 and
in favor of Ha allows for values that are larger than |t| and smaller than −|t|.
A two-sided p-value is computed according to

p-value = Pr(T < −|t||H0) + Pr(T > |t||H0)
= 2 Pr(T > |t||H0),

6 The analyst often believes Ha to be correct.
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since the T -distributions are symmetric. Two final remarks: if n is sufficiently
large (e.g., n ≥ 80) and H0 is true, then T is approximately standard normal
in distribution and the standard normal distribution may be used to com-
pute the p-value instead of the Tn−q distribution. Secondly, the procedure of
specifying hypotheses, computing the test statistic and p-value, and making
a statement regarding the strength of evidence is generally called a test of
significance. As a rule of thumb, a p-value less than .01 may be described as
strong evidence; a p-value between .01 and .05 is equivalent to evidence (no
modifier); a p-value between .05 and .1 may be described as weak evidence;
and a p-value greater than .1 provides little or no evidence in support of Ha

and in contradiction of H0.
To illustrate, there is no reason to believe that depression score and fa-

talism would be negatively associated even before seeing the data, but it is
logical to postulate a positive association. Then, to measure the strength of
evidence supporting the hypothesis of a (positive) association, the appro-
priate alternative hypothesis is Ha : β > 0 and the counter-hypothesis is
H0 : β ≤ 0.

There’s strong evidence of a linear association between depression score
and fatalism, and likewise, strong evidence of a linear association between
depression score and simplicity (Table 6.2). The adjusted coefficient of deter-
mination is .507 and so together, fatalism and simplicity explain almost 51%
of the variation in depression score.

6.2.6 Cautionary Remarks

Much has been made of the inferential model and the necessity for it to
be realistic. If the inferential model fails to be realistic, then the confidence
intervals and p-values are not accurate. Most of the data used in this text
were collected without benefit of random sampling as is the usual situation
in data science. Hypothesis testing is not applicable in the vast majority of
these cases.

Even when testing is appropriate, hypothesis testing is not very informa-
tive. We are often defeated by the alternative hypothesis statement that the
parameter is simply larger than zero. If we look at it another way, Ha above
states that βi ∈ (0, ∞). The alternative hypothesis is correct if βi is infinites-
imally larger than zero, in which case, we may well favor the null hypothesis
and we don’t want be in the position of reporting that there is an abundance
of evidence favoring Ha even though it is true.

Let’s look at the test statistic when there is only one predictor variable.
The test statistic is
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T =
̂β1 − βnull

σ̂(̂β1)

≈ √
n

σ̂x(̂β1 − βnull)
σ̂ε

,

(6.7)

where σ̂x is the estimated standard deviation of the predictor variable. Both
σ̂x and σ̂ε are largely unaffected by n, and the same holds for the difference
̂β1 − βnull. Thus, if data volume is massively large, T will be very large in
magnitude because of the multiplier

√
n. For example, the combined Medicare

data sets of Sect. 4.7 consisted of over 18 million records. There’s no point
in testing hypotheses about the variables—even the smallest of differences
between ̂β and βnull lead to a large in magnitude T -statistic and a very
small p-value. What is really needed is a test of the hypotheses Ha : βi > η
versus H0 : βi ≤ η, but determining η before the test is carried out (and
never afterward) is hard, and tests of this form are rarely undertaken in
practice.7 Setting η after the model has been fit is poor practice since there
is a temptation to arrange the test to support one’s preconceptions, and even
when the analyst is objectively testing after analysis, many observers are not
inclined to trust the results.

You may ask: how did it come to be that hypothesis testing, the bread-and-
butter of linear regression, is mostly unhelpful in data analytics? The reason
is that in the past century, manual data collection meant that data was ex-
pensive and therefore, it was collected carefully, using designs that generated
representative samples. Sample sizes were usually small and spurious results
were possible. A method of measuring strength of evidence was needed to
account for the uncertainty stemming from small sample sizes. Hypothesis
testing was born from that need. Now, the needs are different, and the utility
of hypothesis testing is greatly diminished.

6.3 Introduction to R

Statistical methods are routinely used in data analytics despite limitations
associated with their application. Linear regression is probably the most heav-
ily used of the many statistical methods useful for data analytics. Not only
is linear regression an essential competency for data scientists, but so is the
ability to use a mature and sophisticated statistical language.8 Thus, we leave
Python in this chapter and turn to a different environment for carrying out
data analytics. The environment is the open-source statistical package R. Car-
rying out statistical calculations in R is usually easy. The R scripting language
is mature (meaning old) and particularly easy to use for matrix-based calcu-
7 Computationally, the test is easy to execute.
8 The stipulation that the language is sophisticated eliminates Excel as a platform for
statistical analysis.



6.4 Tutorial: R 177

lations. For the practicing data scientist, R is a good for analytics in which
the emphasis is on statistical procedures but it’s not a good choice for data
processing.

The goal of the next series of tutorials is to gain competency in working
with R, and in particular, working with data objects, for and while loops,
conditional statements, and linear regression. An essential skill of data sci-
entists is data visualization and so the reader will learn to construct a few
widely used plots. The first tutorial assumes that the reader is familiar with
the R interface and is able to create a “hello world”-type script and execute
the code contained within. Two online tutorials (among many available for
free) that will help the reader gain familiarity with the R environment are de-
scribed in Chap. 1. Our tutorial assumes that R is being used in the integrated
development environment RStudio though there are no actions described in
the tutorial that are substantially different in the base R environment.

6.4 Tutorial: R

The Australian athletes data set [60] consists of measurements on hematology
and morphology measurements collected from national-caliber athletes par-
ticipating in 12 sports. The data set is available from the DAAG library [38]
and provide a smooth introduction to regression analysis using R. The objec-
tive of the tutorial is to determine the relationship between skinfold thickness,
percent body fat, and gender. Percent body fat is measured by submerging an
individual in a water tank to determine the individual’s displacement9 and is
believed to be the most accurate method of body fat measurement. Skinfold
thickness is another method of measuring body fat that uses a caliper to mea-
sure the thickness of the subcutaneous fat underlying the skin. It’s usually
computed as an average of measurements at several sites. Measuring skinfold
thickness is less time-consuming and expensive to determine than tank mea-
surements of percent body fat, but concerns have been expressed regarding
its accuracy for measuring body fat in children [49]. We set out to investigate
the relationship between the two measurements using the Australian athletes
data set.

1. Start R. We’re assuming that R has been installed and that the user is
familiar with the R environment.

2. Determine if the library DAAG is available by submitting the instruc-
tion library(DAAG) in the R console. If the response is Error in library
(DAAG) : there is no package called ‘DAAG’, install the library using
the instruction

9 Body weight is also used in a calculation that incorporates differences in the density
of muscle, bone, and fat.
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install.packages(’DAAG’)

Alternatively, packages may be installed through a drop-down menu. You
may have to select a repository before installing the package.

3. Create a script file by opening a new file from the drop-down menu.
4. The first instruction of the script will load the functions and data sets

from the DAAG library. The instruction is library(DAAG). Run the in-
struction by clicking on the Run button.

5. Add a call to the function head to view the first six records of the data
file. Add a call to the function str to determine the structure of each of
the variables in the data set. The script should appear as so:

library(DAAG)
head(ais)
str(ais)

If you’re using RStudio, then click on the Source button (above the edit
window) to execute the script. Alternatively, highlight a code segment
and press Ctrl-Enter to execute the code segment.

6. Run the command ?ais at the console prompt to learn a little more
about the variables. Note that three variables related to body fat are
recorded for each athlete: percent body fat, skinfold thickness, and body
mass index.

7. Add the instruction

plot(ais$ssf,ais$pcBfat)

to the script to plot percent body fat against skinfold thickness. The
syntax ais$ssf extracts the variable ssf from the dataframe ais as a
column vector. A dataframe is an object with several useful attributes
such as column and row names. A dataframe may contain variables of
different types such as quantitative and qualitative. In contrast, an R
matrix can consist of only one type of variable, say numeric or factor.
Create the plot.

8. There appears to be a strong linear relationship between the two vari-
ables. Add the fitted least squares line to the plot using the instruction

abline(lm(ais$pcBfat ~ ais$ssf))

The outer function, abline, adds a line to an existing plot. The inner
function, lm, fits a linear model by regressing y on x if the argument is
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y~x and returns an object. The function abline extracts the slope and
intercept from the object to create the line.

9. In the console, execute the instruction str(lm(ais$pcBfat ~ ais$ssf)).
You’ll see that the object returned from the call to lm has a number of
attributes that are accessible using the $ operator. Most important of
these are the parameter estimates. You may save the vector of parameter
estimates as a vector b using the instruction

b = lm(ais$pcBfat ~ ais$ssf)$coefficients

Type b in the console to see the contents of b and press the Enter key.
10. Identify the male and female athletes by adding colored points to the

plot:

males = which(ais$sex == ’m’)
points(ais$ssf[males], ais$pcBfat[males], col = ’blue’, pch = 16)
points(ais$ssf[-males], ais$pcBfat[-males], col = ’red’, pch = 16)

The function which creates a vector of indexes of those rows for which
the variable sex is equal to ’m’. The result is that males contains the
indexes of the male athletes. The function points adds solid circles to
the plot because the plotting character pch has been set to 16. The object
-males removes the males from the ais$ssf data vector and so the third
instruction identifies the females using red solid circles.

An examination of the plot reveals that for a particular value of skin-
fold thickness, females tend to have a greater percent body fat. The im-
plication is that females have relatively more visceral fat than males with
a comparable amount of subcutaneous fat.10

11. To view a statistical summary of the fitted regression model, add the
following instructions to your script and execute the script:

lm.obj = lm(ais$pcBfat~ais$ssf)
summary(lm.obj)
confint(lm.obj)

The third line of the code segment computes and displays 95% confidence
intervals for β0 and β1. The analyst should beware of assuming that the
confidence interval procedure just invoked will capture the true parameter
95% of the time. The actual coverage rate depends on the extent to which
these data conform to the conditions described in Sect. 6.2.4. Checking
the conditions are discussed in Sect. 6.9.

10 Visceral fat is located in the abdominal cavity.
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12. Since the relationship is different between males and females, add a vari-
able that identifies females to the model:

females = as.integer(ais$sex == ’f’)
print(females)

The variable females is called an indicator and is defined mathematically
case-wise:

xi,female =
{

1, if the ith athlete is female,
0, if the ith athlete is male.

(6.8)

We incorporate the indicator variable into a model of expected percent
body mass:

E(Yi|xi) = β0 + β1xi,ssf + β2xi,female. (6.9)

Fit this model using the function call lm(ais$pcBfat~ais$ssf+
females). The resulting fitted model for the ith athlete can be expressed
as

ŷi = 1.131 + .158xi,ssf + 2.984xi,female

=
{

1.131 + .158xi,ssf, if the ith athlete is male,
4.115 + .158xi,ssf if the ith athlete is female,

since 4.115 = 2.984 + 1.131. Female Australian athletes are estimated to
carry 2.98% more body fat than male Australian athletes if we compare
male and female athletes with the same skinfold thickness. Verify that
a 95% confidence interval for the true difference is [2.62%, 3.35%]. Since
zero is not included in the interval, we conclude that there truly is a dif-
ference between female and male athletes with respect to the distribution
of body fat (subcutaneous versus visceral).

13. The summary table produced by passing the object lm.obj to the
summary function contains a measure of the proportion of variation in
percent body fat explained by the regression model. This statistic is the
adjusted coefficient of determination, R2

adjusted (formula (3.36)). The val-
ues of R2

adjusted for the models with and without the female indicator vari-
able are .986 and .927, respectively. Both predictive models are accurate,
but the model accounting for differences between gender is more accurate.
The unexplained variation is reduced by 100(.986 − .927)/(1 − .927) =
80.8% by adding the female indicator variable to the first model.

14. Add a blue line to the plot showing the estimated expected percent body
fat as a function of skinfold thickness for the males:

abline(a = 1.131, b = .158, col=’blue’)

15. Add a red line to the plot showing the fitted model for females.
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16. Investigate whether there are differences in percent body fat among ath-
letes grouped by sport. Use a boxplot11 to visualize the distributions by
sport:

boxplot(ais$pcBfat ~ ais$sport, cex.axis=.8, ylab = ’Percent body
fat’)

The axis labels have been reduced in size by setting the argument
cex.axis so that all of the names are visible.12

6.4.1 Remark

The tutorial showed that skinfold thickness is a good proxy for percent body
fat. We infer that analyses of body fat can be conducted using skinfold thick-
ness rather than percent bodyfat with little loss of accuracy particularly if
the analyses are within-gender (that is, by conducting separate analyses for
males and females).

6.5 Tutorial: Large Data Sets and R

The objective of this tutorial is to develop some techniques for processing
large data sets with R. R has been built for statistical analysis, not data
analytics, and so some additional time and effort usually is needed to process
larger data sets compared to using Python.

The Consumer Financial Protection Bureau is a federal agency with the
responsibility of enforcing federal consumer financial laws and protecting con-
sumers from malfeasance on the part of the providers of financial services and
products. The Consumer Financial Protection Bureau maintains a database
of consumer complaints. The database is periodically updated and so the con-
tents change over time. The objective of this tutorial is to determine which
commercial product is most often on the receiving end of a complaint to the
Consumer Financial Protection Bureau.

1. Download the data file from
https://catalog.data.gov/dataset/consumer-complaint-database.

2. Open a Linux terminal window or a Windows Command Prompt window
(see Chap. 4.6, instruction 1a). Write the first few lines of the file to the
console using the Linux command cat or the Windows command type.
The first record of the data file is a list of attributes.

11 Boxplots were discussed briefly in Chap. 3.6.1.
12 Netball is played only by women.

https://catalog.data.gov/dataset/consumer-complaint-database
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3. The usual method of consuming data using R is to read the entire set
into memory.13 We will have to read the data file line-by-line to handle
missing data. Open a new script file. Put the following commands in the
script and revise the file path to match the location of the file on your
computer:

fileName = ".../Consumer_Complaints.csv"
x = read.table(fileName, sep=’,’, header=TRUE)

The file has a csv (comma separated values) extension which identifies
the structure as using commas to delimit variables. There’s no guarantee
that every record will have the same number of commas though.

Run each line separately (highlight the line and press Ctrl+Enter to
execute the line). The first line should not generate an error. Run the
second line. The read.table function attempts to read the data file into
a rectangular (row by column) data frame. It’s likely that the command
will fail with the message that one particular row did not have the same
number of elements as column names in the data file header. Traditionally,
an analyst would open the data file in an editor and attempt to locate
and correct the error. An effort of this type is impractical with a data set
of this size as there may be too many errors to manually correct all of
them. The 2014 edition of the data file is approximately 175 megabytes.
A different strategy must be pursued.

4. Two techniques will be used to handle the file. First, blocks of one or a
few (say, 1000) lines will be read at once so that memory limitations are
not encountered. Secondly, each block will be read as a single character
string so that missing or mildly corrupted data will not generate an error
during the read operation. Add the following code segment to your script.
By executing the code, you will open the file and read one line. The
argument n = 1 instructs the interpreter to read one line.

f = file(fileName, open = "r") # Open the file for reading.
names = readLines(f, n = 1) # Read the first line. It

# contains a comma-delimited
# list of attributes.

print(names)
names = strsplit(names, ’,’) # Split the string into a

# vector of names.
print(names)

5. There are nine categories of commercial products. We will determine the
relative frequency of occurrence for each product and the proportion of

13 The tutorial of Sect. 6.4 used a data set that was loaded into the object ais when the
DAAG library was invoked with the library command.



6.5 Tutorial: Large Data Sets and R 183

times that a complaint about the product was settled in a timely manner.
Set up a vector containing the category of products:

products = c(’Bank account or service’,’Credit card’,’Credit
reporting’,

’Debt collection’,’Money transfers’,’Mortgage’,’Payday loan’,
’Prepaid card’,’Student loan’)

6. Initialize a vector to store the frequencies of occurrence for each product
and a matrix to store the evaluation of whether the complaint was settled
in a timely manner.

countVector = rep(0,length(products))
timelyMatrix = matrix(0, length(products), 2)

The matrix timelyMatrix will contain the number of yes responses and
no responses. Each row of timelyMatrix corresponds to a product and
the two columns contain the counts of yes and no responses, respectively.

7. In the console, execute the command block <- readLines(f, n=10).
The file object f must be open. You may have to execute the command f
= file(fileName, open = "r") discussed in instruction 4. A block of
n = 10 strings will have been read and stored in the array named block.14
Print the contents: print(block). Verify that block is a vector of length
n in which each element is a character string by typing str(block) in
the console. The function str() displays the structure of the argument.

8. Verify that the second entry of block is a character string by submit-
ting the instruction block[2] at the console. Unlike Python, R uses one-
indexing; hence, the first element of a vector is indexed by 1.

9. Split the string apart at the commas, display the result, and extract the
second element:

lst = strsplit(block[2],’,’)
print(lst)
print(lst[[1]][2])

Splitting the block produced a list. You may verify the length of the list
is one using the instruction length(lst). But, the item in the list is a
character vector of 18 or more items (type length(lst[[1]])). The items
in the character vector are the data we’re interested in. The character
vector can be extracted using the instruction unlist(lst).

The records contain variable numbers of items. This explains why
read.table() failed. The function read.table() stores the data in a

14 Strings are delimited by the end-of-line character at the end of each record.
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table structure consisting of rows and columns by splitting the string
at the commas. When a string was encountered containing more or less
than the expected number of items, read.table() terminated with an
error message.

10. In your script, build a while loop for processing the file. The loop pro-
cesses the file by reading blocks and processing each line in the block.
Here is the basic structure:

f = file(fileName, open = "r") # Open the file for reading.
counter = 0
test = TRUE
while (test){

block <- readLines(f, n = 1000)
counter = counter + length(block)
print(c(counter, length(block)))
if (length(block) == 0) break

}
close(f) # Destroy the file object and close the file.

The instructions enclosed by the braces ({ and }) will be executed in
sequence and repeatedly until block is empty and the length of block is
zero. Then, the break command instructs the R interpreter to terminate
the while loop.

The while loop consumes blocks of 1000 lines. A column vector con-
sisting of counter and length(block) is constructed by the statement
c(counter, length(block)). It’s necessary to create a vector because
the print statement will only accept one argument.

11. Returning to the script, insert a for loop within the while loop to extract
the product from each record in the block.

for (i in 1:length(block)){
record = unlist(strsplit(block[i],’,’))
product = record[2]
print(product)

}

We’re converting record from a list to a vector using the command
unlist so that sub-scripting is simpler. Execute the code. You may inter-
rupt execution after noting that the second entry in record may not be
a product.15 Therefore, it’s necessary to test that product is an element
in the set of products.

15 With our particular version of the complaint file, there are a variety of other attributes
in the second position of record.
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12. We will attempt to find a match between the extracted string and one of
the products in the vector products. If there’s a match, then the count
for the product is incremented.

w = which(products == product)
if (length(w) > 0) {

countVector[w] = countVector[w] + 1
}

Insert this code segment in the for loop that processes each string in
block (instruction 11).

The function which is very useful—when passed a boolean vector, it
creates a vector of indexes that identifies the boolean elements that are
true. The statement products == product creates the boolean vector
with the same length as products. If there are no matches, meaning that
product is not a product but some other string, then w has length zero.

13. Process the entire file. After completion, print out the contents of
productVector and countVector. Order the products from smallest to
largest count and print the product names and frequencies of each prod-
uct:

index = order(countVector)
orderedProducts = products[index]
orderedCounts = countVector[index]

The vector index contains the indexes that will put countVector in
order from smallest to largest value. When index is used as a vector of
indexes for products, it arranges the elements in orderedProducts to
correspond with the ordered counts in the vector orderedCounts.

14. Create a dataframe containing the product names, counts of occurrences,
and the percentages of each product (in order from smallest to largest):

df = data.frame(orderedProducts, orderedCounts,
round(100*orderedCounts/sum(orderedCounts), 2))

print(df)

The dataframe df consists of a column of characters containing the prod-
uct names and two numeric columns.
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15. Should you have problems with program flow, the critical instructions are

while (test){
block <- readLines(f, n=10000)
if (length(block) == 0) break
for (i in 1:length(block)){

if (length(w) > 0) {
countVector[w] = countVector[w] + 1

}
}

}

16. The names vector contains the name of the attribute recording the com-
plainants response to the question of whether the company responded
to the complaint in a timely manner. The index of the timely response
variable varies with year, but let’s assume that the correct index is 17
(as it was in May, 2016).

Check that the answer is either yes or no, and if it is, then increment
the counter for the product. There’s a counter for each response (yes
or no) for each product. Add the code segment to the for loop over
blocks (instruction 11).

if (record[17] %in% c(’Yes’,’No’)) {
timelyMatrix[w,1] = timelyMatrix[w,1] + (record[17] ==’Yes’)
timelyMatrix[w,2] = timelyMatrix[w,2] + (record[17] ==’No’)

}

The code (record[17] %in% c(’Yes’,’No’) returns a boolean value
depending on whether or not the timely response string is in the vector
c(’Yes’,’No’). If a boolean variable is added to a numeric variable, the
boolean is automatically converted to 0 if the boolean is false. The value
is converted to 1 if the boolean is true. In this code segment, the result
of the evaluation record[17] ==’Yes’ is boolean (true or false), so we
may add the result to timelyMatrix[w,1].

17. Print the results in order of least to most complaints after all of the
records have been processed and the file closed. Do this by creating a
vector named index that orders the vector of counts. The ordering vector
is used to create a new dataframe from df containing the product names,
the counts, percentages, and the proportion of timely responses in the
desired order.

tv = round(timelyMatrix[,1]/rowSums(timelyMatrix), 2)
cv = round(100*countVector/sum(countVector), 2)
df = data.frame(products, countVector, cv, tv)
index = order(countVector)
print(df[index, ])
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The rowSums function computes the sum of each row of a matrix and
stores the sums in a vector with the same number of rows as the ma-
trix. The syntax df[index,] creates a data frame ordered by index.
The missing column index in the reference df[index,] instructs the R
interpreter to put all columns of df in the data frame. The end result
will be a table similar to (but different from) Table 6.3.

Table 6.3 Distribution of consumer complaint types obtained from n = 269,064 com-
plaints lodged with the Consumer Financial Protection Bureau between January 2012
and July 2014

Relative Fraction of
Type frequency Count timely responses
Payday loan .00 1012 .476
Money transfers .00 1231 .981
Consumer loan .03 7696 .925
Student loan .03 8183 .959
Credit reporting .12 32,547 .983
Debt collection .12 33,478 .376
Bank account or service .13 33,877 .482
Credit card .14 37,554 .984
Mortgage .42 113,486 .072

6.6 Factors

A factor is a qualitative explanatory variable. The consumer complaint type
variable of the tutorial of Sect. 6.5 is an example. The values of a factor cannot
be unambiguously ordered and arithmetic operations cannot be carried out
using the values. Gender is another example. Arithmetic operations with
the values male and female are impossible to define in a manner that is
not open to debate. To distinguish factors from quantitative variables, the
term levels is sometimes is used in place of values when discussing factors
(hence, female is a level of gender). In a regression analysis, factors often
identify subpopulations that potentially differ with respect to the relationship
between the response variable and another predictor variable. For example,
the analysis of the Australian athletes data set investigated the relationship
between percent body fat and skinfold thickness. Figure 6.2 strongly suggests
that the relationship between skinfold thickness and percent body fat differs
between females and males. Specifically, it appears that percent body fat of
females is, on average greater than males with equal skinfold thickness. In
other words, the intercept of the female regression line is greater than the
intercept of the male regression line in Fig. 6.2.
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Fig. 6.2 Percent
body fat plotted
against skinfold
thickness for 202
Australian ath-
letes. Also shown
are least squares
regression lines
that approximate
the relationship
between percent
body fat and skin-
fold thickness for
each gender
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Other analyses of these data may benefit from introducing gender as an
explanatory variable. Furthermore, it may be useful to introduce sport as
a factor in regression analyses because the morphology of the athletes and
physiological demands differ among sports.

Factors are accommodated in linear regression analysis by using indicator
variables. We set up an indicator variable in Sect. 6.4, Eq. (6.8) and used it
to create Fig. 6.2. Generically, an indicator variable for level A of a factor is
defined according to

xi,A =
{

1, if the ith observation was made at level A,

0, if the ith observation was not made at level A.

Let’s examine the model of expected percent body fat as a function of skinfold
thickness (ssf) defined by Eq. (6.9). The model implies that each gender has
a possibly different intercept. If the ith athlete is a male, then xi,female = 0
and the model is

E(Yi|xi) = β0 + β1xi,ssf.

On the other hand, if the ith athlete is a female, then the model is

E(Yi|xi) = β0 + β1xi,ssf + β2 × 1
= (β0 + β2) + β1xi,ssf

= β∗
0 + β1xi,ssf,

where β∗
0 = β0 + β2. If β2 = 0, then β∗

0 = β0 and skinfold thickness is un-
related to gender. The model term β2xfemale accounts for the difference in
mean or expected percent body fat between females and males given that
skinfold thickness is the same. In summary, the relationship between per-
cent body fat and skinfold thickness is modeled by parallel lines offset by
the quantity ̂β2. Parameter estimates and tests of significance for the model
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Table 6.4 Parameter estimates and standard errors obtained from the linear regression
of skinfold thickness on percent body fat. The p-value associated with skinfold thickness
was computed for H0 : β1 = 0 versus Ha : β1 > 0. The p-value associated with β2 is for
the two-sided alternative Ha : β2 �= 0

Parameter
Variable estimate Std. Error t-statistic p-value

Constant 1.131 .184 · ·
Skinfold thickness .1579 .0029 55.11 < .0001
Gender (female)a 2.984 .186 16.03 < .0001

aGender is an indicator variable taking on the value 1 if the athlete is female

are shown in Table 6.4. The table entry for the gender indicator variable
summarizes a test of H0 : β2 = 0 versus Ha : β2 �= 0. The summary shows
strong evidence of a difference in skinfold thickness between females and males
(t = 16.03, p-value < .0001), a result that was uncovered in the Sect. 6.4
tutorial. The alternative hypothesis regarding skinfold thickness (line 2) is
one-sided since the only logical alternative to the hypothesis that there is
no relationship between skinfold thickness is that there is a positive linear
relationship between skinfold thickness and percent body fat. Therefore, the
p-value is Pr(T ≥ 55.11) or half of Pr(T ≥ 55.11) + Pr(T ≤ −55.11), the
value presented in the R summary of the fitted regression model. There’s no
need to do anything though, since Pr(T ≥ 55.11) + Pr(T ≤ −55.11) is less
than .0001. With 202 observations, presenting a p-value with more than three
or four significant digits conveys an artificial sense of accuracy.

If there are r + 1 levels of a factor, then r indicator variables are needed
to identify the level of an observation. With gender, r = 1. If xi,female = 1,
then observation i was obtained from a female, and if xi,female = 0, then
observation i was obtained from a male. We do not need another indicator
variable to identify males. If r > 1, and all r indicator variables are zero
for observation i, then the observation must have been obtained at level
r + 1. An indicator variable for the r + 1st level of a factor in the regression
is not included as it will cause varying degrees of problems depending on
the sophistication of the model fitting algorithm. The source of the fitting
problem is that the r + 1 indicator variables are not linearly independent.
Then, XTX will not be full rank and not invertible. You may investigate the
issue by creating an indicator variable for the males and introducing it into
the model containing the indicator variable for females.

6.6.1 Interaction

A question that often arises in problems that involve a quantitative variable
and one or more factors is whether completely separate regression models are
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appropriate for each level of a factor. Table 6.4 presents results for a model
in which the regression lines are not completely separate because the male
and female models have a common slope, ̂β1 = .158. Different slopes can
be permitted by including an interaction variable between the quantitative
variable and each indicator variable associated with a factor level. As there
are only two levels of gender (male and female), there is only one indicator
variable. The interaction, or unconstrained model is

E(Yi|xi) = β0 + β1xi,ssf + β2xi,female + β3xi,interaction, (6.10)

where
xi,interaction = xi,ssf × xi,female

=
{

xi,ssf, if the ith individual is female,

0, if the ith individual is male.

Consequently, if the ith athlete is a male, the model is

E(Yi|xi) = β0 + β1xi,ssf + β2xi,female + β3xi,ssf × xi,female
= β0 + β1xi,ssf + β2 × 0 + β3xi,ssf × 0
= β0 + β1xi,ssf.

If the ith athlete is a female, the model is

E(Yi|xi) = β0 + β1xi,ssf + β2xi,female + β3xi,ssf × xi,female
= β0 + β1xi,ssf + β2 × 1 + β3xi,ssf × 1
= (β0 + β2) + (β1 + β3)xi,ssf.

With this set-up, β0 is determined entirely by those observations obtained
from males and β2 is the difference between β0 and the intercept that would
be computed using only females in a regression of percent body fat on skinfold
thickness. Consequently, β0+β2 is the intercept that would be computed in a
female-only regression. A parallel set of interpretations can be formulated for
the slope parameters β1 and β3. The fitted interaction model is summarized in
Table 6.5. There is no evidence that the slope depends on gender (t = −1.07,
p-value = .284), and so we adopt model (6.9) over the interaction model. We
prefer no-interaction models as they are simpler to explain and use.

Table 6.5 Parameter estimates and standard errors obtained for the interaction model
(formula (6.10)). Significance tests of no interest have been omitted

Parameter
Variable estimate Std. Error t-statistic p-value

Constant .849 .320 · ·
Skinfold thickness .163 .0058 · ·

Gender (female) 3.416 .4429 · ·
Interaction −.0072 .0067 −1.07 .284
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Table 6.5 omits the test of significance for the individual variables gen-
der and skinfold thickness for two reasons. Recall that in the absence of an
interaction term, a test of Ha : β1 �= 0 tests whether skinfold thickness is
linearly associated with percent body fat. With the interaction term in the
model, a test of Ha : β3 �= 0 amounts to a test of whether skinfold thickness is
linearly related to percent body fat and the relationship depends on gender.
Rejecting the null hypothesis and concluding that Ha : β3 �= 0 is true implies
skinfold thickness is linearly related to percent body fat. There’s no need for
a second test.

The second reason for not removing xfemale from the interaction model is
that if were removed, then the resulting model allows females and males to
have different slopes but constrains the intercept to be the same for both
genders. In many cases, the common intercept constraint is not defensible
from a scientific standpoint. Problem 6.3 asks the reader to show that the
intercept is common to both genders if xfemale is removed from the model.

To expand on the use of factors, we’ll investigate oxygen-carrying ca-
pacity of the athletes’ blood using red blood cell count as a response vari-
able. Let’s consider both gender and sport as factors. The linear model fit-
ting function lm will construct indicator variables accounting for the dif-
ference in mean red blood cell count between a reference sport and each
of the other sports provided that R recognizes the variable sport as a
factor.16 We set the reference sport to be rowing using the instruction
ais$sport = relevel(ais$sport,’Row’) rather than accept the arbitrary
level that would otherwise be designated by R. The reference level is the level
with no indicator variable. The parameter associated with a non-reference
level then measures the average difference between the reference level (row-
ing) and the non-reference level.

The two-factor model is

E(Yi|xi) = β0 + βmalexi,male + βgymxi,gym + · · · + βwPoloxi,wPolo,

where, for an arbitrary sport besides rowing,

xi,sport =
{

1, if the ith athlete participates in the sport,
0, if the ith athlete does not participate in the sport.

Then, βsport is the mean difference in red blood cell count between partic-
ipants in the named sport and rowing provided that gender is held fixed.
The next question to address is whether there are differences among sports
with respect to mean red blood cell count. For example, a positive value
for ̂βT_Sprnt implies that the mean red blood cell count of track and field
sprinters is greater that the mean red blood cell count of rowers.17 While

16 R does recognize the variable sport as a factor so no action is needed. A variable x
can be converted to a factor using the function call x=as.factor(x).
17 The evidence supports the statement.
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comparisons of each level to the reference level may be of central interest,18
it’s often the case that a more general hypothesis is preferred—an alterna-
tive hypothesis that states that the factor is related to the mean level of the
response variable and a null hypothesis that specifies no relationship. The
extra-sums-of-squares F -test is used to test these hypotheses.

6.6.2 The Extra Sums-of-Squares F -test

Suppose that a factor is accounted for by a set of r indicator variables and that
the parameters associated with the indicator variables are βi+1, βi+2, · · · , βi+r.
A test of whether the response depends on the factor is equivalent to a test
the hypotheses

H0 : βi+1 = βi+2 = · · · = βi+r = 0 versus
Ha : at least one of βi+1, βi+2, . . . , βi+r is not 0.

(6.11)

For example, βi+1, βi+2, . . . , βi+r may be the r = 9 parameters accounting for
mean differences in red blood cell count between the reference sport rowing
and the other sports. The null hypothesis imposes a constraint on the r
parameters stating that each of the parameters is zero in value. Consequently,
there are no differences with respect to E(Y |x) between the reference and
every other level. No differences between the reference level and every other
level implies that there are no differences at all among factor levels with
respect E(Y |x) and hence, the factor is not related to E(Y |x). The alternative
hypothesis relaxes the equality constraint and allows the parameters to be any
value. When any parameter differs from 0, then E(Y |x) depends on the factor.
This last condition is equivalent to the alternative hypothesis statement that
at least one level differs from the reference level.

The extra-sums-of-squares F -test provides a test of the hypotheses (6.11)
and, therefore, provides a test of whether the factor is related to the mean
of the response variable. A more expansive interpretation of the extra-sums-
of-squares F -test helps understand when it may and may not be used. The
test compares the fit of two competing models when one model is a con-
strained version of the other. The test statistic compares lack-of-fit, or error,
associated with the constrained version of the model to the lack-of-fit of the
unconstrained version of the model. If there’s a big difference in error be-
tween the models, then the evidence supports the better-fitting model. Let’s
develop the idea with more rigor.

Lack of fit for a given model is quantified by the residual sums-of-squares
∑

(yi − ŷi)2. The residual sums-of-squares cannot increase if an additional
variable is entered into a model since setting the new parameter to 0 recovers
the original (and constrained) model. Additional variables always reduce the

18 For example, the reference level may be a control group in an experiment.
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residual sums-of-squares. Thus, the residual sums-of-squares for the uncon-
strained model, SSRu, cannot be more than the residual sums-of-squares for
the constrained model, SSRc. Hence, SSRu ≤ SSRc.

The estimator of σ2
ε is the estimated residual variance associated with the

unconstrained model:

σ̂2
u = SSRu

n − pu
,

where pu denotes the number of coefficients that parametrize the uncon-
strained model. We use the residual variance about the unconstrained model
since even if the factor is not related to E(Y |x), σ̂2

u will be reasonably ac-
curate. On the other hand, if the factor is related to E(Y |x), then the esti-
mated residual variance associated with the incorrect and constrained model
will over-estimate σ2

ε . The test statistic is the scaled difference in residual
sums-of-squares:

F = SSRc − SSRu

rσ̂2
u

= MSlack-of-fit

σ̂2
u

,

where MSlack-of-fit = (SSRc − SSRu)/r is the mean square error attributable
to lack of fit. If H0 is correct, then F has an F distribution with r numerator
and n − pu denominator degrees of freedom. Large values of F reflect large
differences in the residual sums-of-squares. Therefore, large F -values contra-
dict H0 and support Ha and the p-value is defined to be the upper tail area
of the Fr,n−pu

distribution. Mathematically,

p-value = Pr(F ≥ f |H0),

where f is the observed value of the test statistic.
Table 6.6 provides a summary of the extra-sums-of-squares F -test for

sport. There is convincing evidence that the unconstrained model fit is better
than the fit of the constrained model (F9191 = 5.70, p-value < .0001) and so
it is concluded that mean red blood cell counts differ among athletes with
respect to participating sport and after accounting for gender differences.
Looking closer at Table 6.6, the line labeled Lack-of-fit shows SSRc − SSRu,

Table 6.6 Details of the extra-sums-of-squares F -test for sport. The F -statistic shows
strong evidence that mean red blood cell counts differs among athletes with respect to
participating sport

Source of Residual sum- Degrees of Mean
variation of-squares freedom square F -statistic P-value

Constrained model 22.618 200
Lack-of-fit 4.791 9 .5324 5.70 < .0001

Unconstrained model 17.826 191 .0933
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the difference in residual sums-of-squares between the model without sport
included and the model with sport included as a factor. The mean square
error attributable to lack-of-fit is MSlack-of-fit = .5324. The value of the
F -statistic is F = .5324/.0933 = 5.70 and p-value = Pr(F ≥ 5.70) < .0001.

The R function anova will compute the extra sums-of-squares F -statistic.
Two arguments are passed to the function. The left argument is the linear
model object obtained from the constrained model and the right argument is
the linear model object obtained from the unconstrained model. For example,
a test for interaction between gender and sport is produced by code segment

lm.constr = lm(rcc~sex+sport,data=ais)
lm.unconstr = lm(rcc~sex*sport,data=ais) # interaction model
anova(lm.constr,lm.unconstr)

The output from the function call is

Model 1: rcc ~ sex + sport
Model 2: rcc ~ sex * sport

Res.Df RSS Df Sum of Sq F Pr(>F)
1 191 17.826
2 185 17.376 6 0.45023 0.7989 0.5719

From the output, we can see that n − pc = 191 and n − pu = 185, and
hence the numerator degrees of freedom is r = 6. The participants of seven
sports are both males and females. For the remainder of the sports, only one
gender participates. Therefore, six indicator variables are necessary to allow
the effect of each sport to be independent of gender. The residual sums-of-
squares for the constrained model is SSRc = 17.826 and the sums-of-squares
for the unconstrained model is SSRu = 17.376 and the difference is .4502.
The realized value of the F -statistic is

F = .4502/6
17.376/185 = .799.

The results of the test are summarized in Table 6.7. The residual sums-of-
squares for the constrained model is SSRc = 17.826 in this last test is also
the residual sums-of-squares for the unconstrained model shown in Table 6.6.

Table 6.7 The extra-sums-of-squares F -test for interaction between sport and gender.
There’s no evidence of interaction between participating sport and gender (p-value = .57)

Source of Residual sum- Degrees of Mean
variation of-squares freedom square F -statistic P-value

Constrained model 17.826 191
Lack-of-fit .450 6 .0750 .7989 .5719

Unconstrained model 17.376 185 .0939
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The tutorial of Sect. 6.7 provides the reader with the opportunity to analyze
effect of factors in a bike share program.

6.7 Tutorial: Bike Share

Bike sharing systems allow individuals to rent a bicycle at a particular lo-
cation within a city and return it at a different location. These systems are
a relatively inexpensive way to improve the quality of life in urban areas
by reducing traffic load and providing recreational opportunities. One prob-
lem that faces bike sharing systems is insuring that bicycles are available at
all locations with a high degree of certainty. Human behavior works against
widespread and consistent availability, though. On weekday mornings, there’s
a general movement of bicycles from residential to commercial areas, and a
reverse movement in the late afternoon. The result is an unbalanced spa-
tial distribution of bicycles. Anticipating and meeting demand is essential to
maximize the value of the system [42]. Before demand can be met, the spatio-
temporal distribution of bicycles needs to be understood to some degree. The
objectives of this tutorial are more pedestrian than a spatio-temporal analy-
sis. We set out to determine the effect of a few factors on use over an entire
system.

The data to be used in this tutorial were used in a Kaggle [32] competition.
The reader can learn more about the Capitol bike share system and the com-
petition at their website https://www.kaggle.com/c/bike-sharing-demand.
In brief, the objective of the competition was to accurately forecast bicycle
rental demand in the Washington, D.C. Capital Bikeshare program as a func-
tion of weather and other variables [18]. There are three potential response
variables in the data file: the number of bicycles rented by registered users,
the number of bicycles rented by casual users, and the number of bicycles
rented by both types of users. The data are hourly counts, and hour of the
day is likely to be important for predicting use. While hour can be thought
of as quantitative variable, it will not be appropriate to treat it as such since
usage will not change linearly during the course of a day. If change were lin-
ear, then the change between any 2 hours of the day would depend only on
the difference between the 2 hours. The change from 7 a.m. to 10 a.m. would
be the same as the change between 9 p.m. and 12 p.m. Yet in the morning,
the rate of change will be positive whereas in the evening, the change will
negative.

An efficient analytic approach is to treat hour of the day as a factor so
that each hour will have an effect unrelated to the other hours.
1. The data file is named bikeShare.csv. The csv extension indicates that

columns are comma-delimited. Store the data as an R data frame using
the following instruction.

Data = read.csv(’.../bikeShare.csv’)

https://www.kaggle.com/c/bike-sharing-demand
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2. Assign names to the columns:

names = c(’datetime’, ’season’, ’holiday’, ’workingday’,
’weather’, ’temp’, ’atemp’, ’humidity’, ’windspeed’, ’casual’,
’registered’, ’sum’)

colnames(Data) = names

3. Use the head and str functions to examine the first 25 records of the
data frame and to determine the structure of the column variables.

4. The next step is to examine the relationship between usage counts and
hour of day. Create a variable that identifies the hour of the day in which
a particular record was collected. The hour of the day is contained in the
variable datetime. The values of datetime are character strings and the
hour of the day is stored in positions 12 and 13. The function substr
(sub-string) will extract the hour. Extract the hour from each record and
save the hours as a vector named Hour. Then produce a summary table
showing how many observations were collected during each hour and a
boxplot showing the distribution of the number of bicycles rented by both
types of users:

Hour = as.integer(substr(Data$datetime,12,13))
table(Hour)
boxplot(Data$sum~Hour)

5. Compare the distribution of counts by hour for registered and casual
users by constructing a facet plot using the ggplot2 library. Install the
package using the function call install.packages(’ggplot2’). Then
load the library using the call library(ggplot2).

6. Build an array in which the observations from registered users are stacked
on top of the observations from casual users and include an additional
variable is included that identifies the type of user. The instructions to
build the data frame are

n = dim(Data)[1] # Determine the number of observations.
labels = c(rep(’Casual’,n),rep(’Registered’,n))
df = data.frame(as.factor(rep(Hour,2)),c(Data$casual,Data$registered)

,labels)
colnames(df) = c(’Hour’,’Count’,’Rider’)

The instruction labels = c(rep(’Casual’,n), rep(’Registered’,
n)) creates a vector in which the first n values are the string Casual
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and the second n are the string Registered. The instruction creating the
dataframe is of the form df = data.frame(x,y,z). Since three argu-
ments are passed to the data.frame, the resulting data frame will con-
sist of three columns. The contents of Hour are converted to an R factor
since ggplot2 is expecting a factor. The casual user counts and the reg-
istered user counts are concatenated as one vector by the instruction
c(Data$casual, Data$registered).

7. Construct the plot:

ggplot(data = df, aes(x = Hour, y = Count)) + geom_boxplot(fill=’red’)
+ facet_wrap(~ Rider)

The result will be a figure similar to Fig. 6.3.

Fig. 6.3 The
distribution of
counts by hour
for registered and
casual users
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Because there are substantial differences between the pattern of hourly
use, it’s best to at least consider separate analyses for the registered and
the casual users. For simplicity, we’ll limit the analysis to registered users.

8. We entertain a simple initial model based on the apparently strong asso-
ciation between hour of the day and counts (Fig. 6.3). The initial model
supposes that hour of the day is a factor explaining variation in counts
of registered users. The model is

E(Yi|xi) =
23
∑

h=0

βhxi,h, (6.12)

where

xi,h =
{

1, if the ith observation was collected during hour h,
0, otherwise,
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and h ∈ {0, 1, . . . , 23}. The model contains p = 24 parameters and omits
an intercept. The variables in the model consist of 24 indicator variables.

Fit the model using the lm function and specify that the intercept
term be omitted from the model by including −1 as a model term:

lm.obj = lm(registered ~ -1 + as.factor(Hour),data = Data)
summary(lm.obj)

The Hour variable was created as a vector of integers with values 0, 1, . . .,
23 in instruction 4. We have changed the type of the variable Hour as it
was passed into the lm function. Hour remains a vector of integers outside
of the lm function call.

9. The coefficient of determination computed by the lm function is the rel-
ative difference in the mean sums-of-squares between two models: the
fitted model and a model without the explanatory variables. Usually, the
model without the explanatory variables is the model E(Y ) = β0 and so
represents the simple null model that uses the mean of the observations,
y = ̂β0 against which to measure the information value of the explanatory
variables. But the model that was just fit does not contain an intercept,
and so the null model is E(Y ) = 0. This model is of little value as a
baseline model against which to measure the information value of the
explanatory variables. The baseline model ought to be a simple yet rea-
sonable approximation of the target variable. The model E(Y ) = 0 is
only foolish.

Verify that Multiple R-squared in the output of summary(lm())
equals

σ̂2
null − σ̂2

reg

σ̂2
null

=
∑

y2
i /n −

∑

(yi − ŷi)2/(n − p)
∑

y2
i /n

, (6.13)

where σ̂2
null = n−1∑ y2

i is the mean square residual about the model
E(Y ) = 0. You may compute σ̂2

reg =
∑

(yi − ŷi)2/(n − p) by squaring the
residual mean error or by computing var(lm.obj$resid).

10. Compute the proportional reduction in estimated mean square error com-
paring the fitted model using hour as an explanatory variable to the null
model E(Y ) = β0. Since the null model estimate of β0 is y, the mean
square error for this model is the sample variance σ̂2. The adjusted co-
efficient of determination is the proportional reduction in mean square
error:

R2
adjusted =

σ̂2 − σ̂2
reg

σ̂2 . (6.14)

Notice that the value labeled as the adjusted coefficient of determination
by R (.771) is substantially larger than the correct adjusted coefficient of
determination (.529).

11. With some effort, it can be shown that, in the conventional linear model
with an intercept, the coefficient of determination R2 is the squared sam-



6.7 Tutorial: Bike Share 199

ple correlation between the observed values and the fitted values. Equa-
tion (3.20) implies that

R2
adjusted = [

∑

(yi − y)(ŷi − y)]2 /(n − p)
σ̂2 σ̂2

reg
. (6.15)

The numerator of Eq. (6.15) is the covariance between the residuals about
the fitted model and the residuals about the model E(Y ) = μ. Equa-
tion (6.15) has been derived using the fact that the sample mean of
the fitted values equals the sample mean of the observed values when
the fitted values are computed using linear regression.19 Formula (6.15)
is not necessary though, since R2

adjusted can be computed according
to cor(lm.obj$fitted,Data$registered)^2. The relationship between
the squared correlation coefficient and the proportional reduction in vari-
ance expressed in Eq. (6.14) is very useful because it can be applied for
many situations involving models besides those fit by linear regression
as a measure of the information value of a set of explanatory variables.
An adjusted or pseudo-coefficient of determination can be computed for
prediction functions that will produce fitted values or predictions of the
observed response variable.

Verify that cor(lm.obj$fitted,Data$registered)^2 computes the
adjusted coefficient of determination.

12. The variable workingday identifies those days in the data set that are
considered to be conventional working days—days besides holidays and
weekends. Include an intercept and add workingday to model (6.12). Use
the number of registered users as the response variable:

r.obj = lm(registered ~ as.factor(Hour) + workingday,data = Data)
summary(r.obj)
confint(r.obj)

The confint(r.obj) instruction constructs a 95% confidence interval for
each of the parameters in the model. Fit the same model to the number
of casual users. Notice that the proportion of variation explained by the
casual users model is smaller than that for the registered users.

13. Obtain the parameter estimates associated with the workingday vari-
able for both models (registered and casual users) and verify that the
parameter estimates in Table 6.8 are correct.

19 If the fitted values are computed using a different prediction function (e.g., k-nearest
neighbors regression), then the sample mean may not equal the sample of the fitted
values. In that situation, we advocate computing the measure of fit as the squared
correlation between fitted and observed values for simplicity.
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Table 6.8 Summary statistics from the models of user counts as a function of hour
of the day and the working day indicator variable. A 95% confidence interval for the
working day parameter is shown for both models

95% confidence interval
Model σ̂ε R2

adjusted Lower bound Upper bound
Registered users 102.2 .54 34.95 42.19

Casual users 38.16 .42 −35.89 −32.82

6.7.1 An Incongruous Result

A comparison of the coefficients of determination shown in Table 6.8 reveals
that the registered users model explains relatively more of the variation in the
response variable (number of bicycles checked out by users) than the casual
users model. Yet the confidence interval for the working day parameter is
much wider for the registered users than the confidence interval obtained
from the casual users. The difference lies in the residual standard deviations,
102.2 users versus 38.16 users.20 The registered users model is actually less
accurate with respect to parameter estimation (and for prediction) despite
the larger adjusted coefficient of determination. This incongruity is present
because of much greater variation in the counts of registered users than in
the counts of casual users. The registered users model has reduced propor-
tionally more variation in the response variable than the casual users model,
but there remains much more unexplained variation. The reader should be-
ware of relying on a single statistic, in this case, the adjusted coefficient of
determination, to judge model fit.

6.8 Analysis of Residuals

The purpose of residual analysis is to investigate model adequacy. In some
analyses involving small data sets, the analysis of residuals also may seek
to investigate the origins of specific unusual observations. This discussion
focuses on the different, though related, question of whether the conditions
discussed at the beginning of the chapter are appropriate. First and foremost,
the analysis investigates the question of whether the model is an adequate
approximation of the true relationship between the mean of the response
variable and the predictor variables.

When hypothesis testing is conducted, then the constant variance and in-
dependence conditions should be investigated, and if the sample size is small,
the normality condition also should be examined. The investigation is aimed
at determining whether the residuals are realizations of independent and nor-
mally distributed random variables with mean zero and constant variance.
20 The models were fit using the same number of observations: n = 10,886.
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The constant variance condition was described earlier in the statement that
all residuals have a common variance σ2

ε . The normality condition is rela-
tively easy to confirm or refute in most applications. However, the normality
condition recedes in importance when n is much larger than p because the
Central Limit Theorem implies that the estimator ̂β will be nearly normal
in distribution when n is relatively large, say, n > 100p. Thorough investiga-
tions of the constant variance and independence conditions are often difficult
when p is large.

Examining individual residuals, specifically, outliers, is fruitful when n is
small. When the sample size is small, an analyst may be able to glean in-
formation about the population or process by identifying a few individual
residuals rj = yj − xT

j
̂β, j = 1, . . . , r that are large in magnitude and exam-

ining the origin of the data pairs (yj ,xj), j = 1, . . . , r. It may be that these
data pairs possess characteristics related to Y that had not been previously
recognized. For example, in an analysis of red blood cell counts using the
Australian athletes data set, there may be unusual residuals attributable to
the consumption of performance enhancing drugs. In principle, the analyst
may be able to identify the athlete by name. Furthermore, individual data
pairs may have disproportionate influence on the calculation of ̂β and hence,
on the fitted model when sample sizes are small. When n is large, undertak-
ing an examination of influence is generally pointless because the influence
of one or a few data pairs among many pairs will be negligible. We omit a
discussion of influence and focus on residuals originating from large data sets.
James et al. [29] and Ramsey and Schafer [48] provide accessible discussions
of influence.

As a contrast to the Australian athletes data, consider the bike share data.
Identifying the individual residual associated with a particular day and hour
as unusual has little practical value. Residual analysis is important, though.
We will see soon that a model of registered users containing only hour of
the day as a predictor variable produces a preponderance of negative-valued
residuals on weekend days. This observation about the residuals suggests that
registered users are mostly commuting between home and work when they
borrow bikes. Introducing a variable that accounts for weekday and weekend
differences may improve the model. In summary, the data analytic orientation
is on finding systematic model deficiencies in an effort to improve the model
rather than discovering and investigating individual outliers.

6.8.1 Linearity

The linear model E(Y |x) = xT β should be free of local bias. Local bias is a
condition in which the model over- or under-estimates the response variable in
some sub-region of Rp encompassed by the predictor vectors x1, . . . ,xn. The
objective is to insure that the model does not locally over- or under-predict
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E(Y |x). We use the residuals to identify regions in which the model tends
to over- or under-predict the response variable. The sum of the residuals
is always zero, so on average, the model will never over- or under-predict
E(Y |x). But if we examine neighborhoods of the space spanned by x1, . . . ,xn,
over- or under-prediction is possible. Figure 6.4, from the bike share problem,
illustrates local bias since the model consistently under-predicts registered
counts when the fitted values are small. The next question to be answered is
when are the predictions small. We defer the question now, though.

The investigation of linearity is based on the following maxim. In the
absence of local bias, the residuals

ri = yi − ŷi = yi − xT
i
̂β,

i = 1, . . . , n, will not show trend or pattern when plotted against any variable
(the variables need not be predictor variables). If there is trend or a pattern
exhibited by the residuals, then local bias is present. Linearity is investigated
by plotting the residuals against actual and potential predictor variables.

Local bias should be removed by revising the model, perhaps by adding
another predictor variable or transforming the response variable and refitting
the model. Common transformations are logarithmic, logit, and power func-
tions (e.g., y1/2 = √

y.) Let’s continue with the bike share data to gain some
insight into linearity and residual analysis.

6.8.2 Example: The Bike Share Problem

Residual analysis consists primarily of the application of graphical techniques
that reveal facets of the residual distribution. From this point on, residual
analysis is illustrated through a progression of visualizations. We use the bike
share data and begin with a relatively simple model of registered counts as
a linear function of three factors: hour of the day, holiday, and working day.
The holiday factor identifies days as holidays or not, and the working day
factor identifies the days Monday through Friday.

The starting point is a plot of the residuals against the fitted values
(Fig. 6.4). There are several interesting features. First, the residuals are
stacked in vertical bands since there are at most 24 × 2 × 2 = 96 unique
fitted values because the hour of the day variable has 24 levels and the work-
ing day and holiday variables have two levels each. Secondly, it’s difficult to
see individual residuals because the number of unique fitted values is small
relative to the number of residuals (10,886). Finally, the distribution of the
residuals expands in width as the fitted values become larger. This pattern is
a classic example of nonconstant variance. The distribution of the residuals is
not constant but instead depends on the magnitude of the fitted values. Thus,
one of the conditions necessary for accurate hypothesis testing is not met by
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the model residuals from which the tests are computed. The p-values associ-
ated with the tests of significance may not be accurate. However, each test of
significance unequivocally argued for the inclusion of the associated variable
in the model. We have no doubts about the importance of the variables—we
recognize that bicycle use is related to commuting and the number of com-
muters varies with hour and day of the week. The final observation is that
there appears to be local bias associated with the fitted model since all of
the residuals associated with the smallest five fitted values are positive. This
bias is of minor importance in light of the magnitude of the variability of the
residuals when the fitted values are larger than ten users per hour.

Fig. 6.4 Residuals
plotted against the
fitted values ob-
tained from the
regression of reg-
istered counts
against hour of
the day, holiday,
and workingday;
n = 10,886, and
p = 23+1+1 = 25
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It’s instructive to take a closer look at bias associated with the smallest
fitted values. Let’s consider the model with only hour of the day and holiday
as factors. Specifically, consider

E(Yi|xi) = β0 + β1xi,holiday +
∑23

j=1 βj+1xi,hour j , (6.16)

where each of the variables in the model is an indicator of a particular level.
For instance,

xi,holiday =
{

1 if day i is a holiday,
0 if day i is a not a holiday.

The model can be displayed for every possible combination of hour of day
and holiday (there’s 48 = 24×2 combinations). The model is shown explicitly
for a handful of combinations in Table 6.9. The specific form of the model is
shown for those selected combinations. Note that β0 is a baseline expected
count of registered users because it appears in every cell of the table. All
other expected counts are obtained by making an adjustment to this baseline
level. The parameter β1 is the difference between expected counts on holidays
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versus days that are not holidays averaged over hours, since β1 appears in
every row. The parameter β2 is the average difference in expected counts
between hour 0 (12 p.m. to 1 a.m.) and hour 1 (1 a.m. to 2 a.m.) averaged
over every day (holiday and not holidays). Since all of the parameters are used
to describe multiple combinations of levels, no estimated expected count is
determined independently of the counts observed at other levels. The effect
is to impose constraints on the parameter estimates as they are fit by least
squares. Specifically, the parameter estimates are determined so that sum of
the squared residuals is minimized. If a parameter estimate were manipulated
to produce residuals distributed about zero for an early morning hour, there
will be consequences—the estimates at other levels will not fit as well as
possible and the sum of the squared residuals will not be minimized.

We deduce that reducing the magnitude of the residuals associated with
larger fitted values improves the sum of squared residuals at the expense of
introducing bias into the small fitted values. From the practical standpoint
of predicting counts, this local bias is entirely acceptable. The local bias is
dwarfed by the magnitude of the error associated with larger fitted values,
and so it matters little.

Table 6.9 Model 6.16 for specific combinations of hour of day and holiday. The esti-
mates are ̂β0 = 9.93, ̂β1 = 13.93, ̂β2 = −3.80, and ̂β3 = −5.50

Hour Not holiday Holiday
0 β0 β0 + β1
1 β0 + β2 β0 + β1 + β2
2 β0 + β3 β0 + β1 + β3
...

...
...

6.8.3 Independence

The question of whether the residuals are independent is difficult to exhaus-
tively investigate as there is no single test or plot that immediately provides
information about independence or lack of thereof. The analyst must antic-
ipate a reason for lack of independence. Lack of independence is manifested
in two ways. First, the value of one residual, say ri may provide information
about another residual. For instance, if knowing the value of ri provides some
information about the value of some other residual, say rj , then the residuals
are not independent. Abstractly, the problem in detecting dependency de-
pends on anticipating a reason for dependency, and thus, determining which
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pairs (ri, rj) to investigate. If the same observational unit (for example, an in-
dividual) yields multiple observations, then observations are not independent
based on the presumption that observations from the same observational
unit will be more alike than observations obtained from different observa-
tional units. Detecting lack-of-independence without knowledge of the data
generation mechanism may be very difficult.

Two common sources of lack-of-independence that can be detected by
analysis are serial and spatial correlation. If the residuals are serially corre-
lated, then residuals that are observed near in time will be more similar than
residuals that are well-separated in time. It’s unusual, but serially correlated
residuals may also be more dissimilar than residuals that are well-separated
in time. Residuals will be spatially correlated if observations that are spa-
tially close together are more similar, or more dissimilar, than those that are
well-separated. Spatial correlation cannot be investigated for the bike share
problem as the counts are numbers of bikes in use per hour across the en-
tire region. If a location were attached to the counts, then spatial correlation
likely would be manifested by the residuals.

Serial correlation can be investigated for these data because a time stamp
is attached to each count. Since the residuals may be organized by time,
we may compute the lag correlation coefficients expressing the similarity of
residuals that are separated by 1 h, by 2 h, and so on. The lag-r correla-
tion coefficient, ρr, measures the correlation between observations that are
separated by r time steps (hours in this example). The estimator of the lag-
r correlation coefficient is sample correlation coefficient computed from the
data pairs (yt, yt−r), t = r + 1, . . . , n, where t records the number of time
steps elapsed since the time of the first observation. If there is no serial corre-
lation, then ρ̂1, . . . , ρ̂k for k > 1, should vary randomly about 0 and be small
in magnitude. Figure 6.5 shows the first k = 30 lag-correlation coefficients
computed from the residuals about the model using hour of the day, holiday,
and working day as factors. This figure was generated from the R function acf
and pointlessly includes the lag-zero autocorrelation coefficient (which is, of
course always 1). Notice that ρ̂10, ρ̂11, and ρ̂12 are relatively large, probably
because the number of morning and evening commuters is positively corre-
lated. The large values for ρ̂22, . . . , ρ̂26 imply that use on 1 day is moderately
correlated with use on the next day at the same hour of the day.

Figure 6.5 also obliterates any claim that the observations may be viewed
as approximately independent. The p-values associated with the hypothesis
tests previously conducted are of unknown accuracy because of substantial
autocorrelation in the residuals. While this is unfortunate for hypothesis test-
ing, it does have positive implications for prediction. Specifically, we conclude
that the count from day d at hour h contains information useful for predicting
the count on day d + 1 at hour h.

We presume that the popularity of a bike share system will vary over weeks
and months as people become familiar with the operation and location of bike
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Fig. 6.5 Sample
autocorrela-
tion coefficients
ρ̂r, r = 0, 1, . . . , 30,
plotted against lag
(r). The data are
the residuals from
the regression of
registered counts
against hour, hol-
iday, and working
day
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stands, or perhaps as the bicycles fall into disrepair. If this presumption is
true, then there will be trend over time in the residuals not only on a 24-h
cycle but also according to some non-cyclical long-term pattern. Trend is a
very important attribute of processes occurring over time, and fortunately,
easy to observe. Figure 6.6 plots the residuals from the model against days
since January 1, 2011, the earliest day in the data set. A flexible smooth sum-
marizing the general trend has been graphed along with the residuals. The
regularly occurring gaps in the sequence of days were created as part of the
Kaggle competition. These days were intentionally held out. The contest par-
ticipants were to predict the missing counts.21 Figure 6.6 reveals trend with
time that is neither linear nor cyclical. From the standpoint of prediction,
it would be beneficial to model and incorporate the trend into forecasts of
future counts. At this point in the analysis of the bike share data, one might
entertain the notion of examining the normality condition. However, there’s
nothing to be gained since the only point in examining the normality con-
dition is related to the appropriateness of hypothesis testing and confidence
interval building, neither or which are justifiable given the presence of serial
correlation (from two sources!) in the residuals.

Let’s proceed with an investigation of normality anyway. A quantile-
quantile plot is a convenient device for visualizing the conformity of the sam-
ple distribution of the residuals with the normal distribution. The basis of the
plot is that sampling n observations from a standard normal distribution is
expected to yield a distribution with the smallest observation approximately
equal to the 1/nth quantile, the second-smallest approximately equal to the
2/nth quantile, and so on. This provides a visual check: the sample quantiles
should be in a one-to-one correspondence with the expected quantiles. The
kth standard normal quantile is the value x(k) satisfying k/n = Pr

(

Z < x(k)
)

where Z has a standard normal distribution. A plot of the sample quantiles

21 The administrators of the contest used the held-data as a test set with which to
objectively evaluate the predictions made by the contestants. We think that the hold-
out period (10 days) is too long. A better test of predictive accuracy would use shorter
periods (3 days or less) randomly interspersed in the time series.
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Fig. 6.6 Residuals
from the re-
gression of
registered
counts against
hour of the
day, holiday,
and working
day plotted
against day
since January
1, 2011. A
smooth is
plotted to
summarize
trend
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against the expected quantile should yield a set points describing a straight
line. The degree of conformity to a straight line unfortunately depends on n.
The R function call qqnorm(scale(y)) will produce a quantile-quantile plot
from a vector of observations y. Figure 6.7 is a quantile-quantile plot con-
structed from the residuals of the regression of registered user counts against
hour of the day, holiday, and working day. The horizontal axis label generated
by R is Theoretical Quantiles. (We’ve been using the term expected quantiles
instead of theoretical.) Figure 6.7 provides convincing visual evidence that
the distribution of the sample residuals is not normal. We observe that the
sample quantiles are consistent larger than expected when the standardized
residuals are larger 1.5. Residuals less than the median conform to the shape
of the normal distribution. This observation and the symmetry of normal
distribution implies that distribution of model residuals is right-skewed. The
right tail of a right-skewed distribution is longer than the left tail.

Fig. 6.7 A quantile-
quantile plot comparing the
distribution of the residuals
to the standard normal
distribution. Also shown is
a diagonal line with slope
1 and intercept 0. If the
sample distribution were
normal, then the points will
fall on or near the diagonal
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6.9 Tutorial: Residual Analysis

We continue with the bike share data and use the count of casual users as
the response variable.

1. Repeat the first two instructions of the previous tutorial thereby storing
the data file bikeShare.csv as a data frame named Data.

2. Fit the model of expected count of casual users as a function of the factors
hour of the day (Hour) and workingday. Name the fitted model c.obj.
Verify that the adjusted coefficient of determination is R2

adjusted = .416.
Include an intercept in the model.

3. Extract the residuals and fitted values associated with c.obj and save as
a data frame. Include the hour variable in the data frame:

Hour = as.integer(substr(Data$datetime,12,13))
df = data.frame(c.obj$fitted,c.obj$resid,Hour)
colnames(df) = c(’Fitted’,’Residuals’,’Hour’)

4. Plot the residuals against hour using the ggplot2 library functions:

library(ggplot2)
plt = ggplot(df, aes(x = Fitted,y = Residuals)) + geom_point(alpha = .2,

pch = 16)
plt = plt + xlab("Fitted values") + ylab("Residuals")
print(plt)

The argument alpha = .2 passed to geom_point() produces plotting
symbols that are semiopaque, a very useful feature when plotting large
volumes of data.

Once again, we see that the variance of the residuals increases with
the fitted values and that the model under-predicts the counts when the
counts are small. This statement is based on the observation that the
residuals associated with the smallest fitted values are all positive. A
positive residual, say ri = yi − ŷi, implies that ŷi < yi.

5. Allow for interaction22 between hour of the day and working day by
fitting the model

E(Yi|xi) = β0 +
∑23

j=1 βjxi,hour j + β24xi,working day

+
∑23

j=1 βj+24xi,interaction j ,
(6.17)

where
xi,interaction j = xi,hour j × xi,working day.

22 Interaction was discussed in Sect. 6.6.1.
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The instruction

c.obj = lm(casual ~ as.factor(Hour) * workingday, data = Data)

will fit model (6.17). The interaction model has the effect of allowing
each combination of hour and working day to have an estimated expected
count unconstrained by the observations obtained from other combina-
tions of hour and working day. The consequence is that residuals for any
particular combination of hour and working day will be centered on zero.
In this context, centered on zero means that the sum of the residuals for
any particular combination will be zero. Plot the residuals against the
fitted values for this model. The function call plot(c.obj) will produce
the residual plot and the quantile-quantile plot and two other plots that
are not germane to this discussion.

6. Construct a quantile-quantile plot of the residuals:

qqnorm(scale(c.obj$resid),main=NULL,pch=16,cex=.8)
abline(a=0,b=1)

The observed quantiles are smaller than the normal-distribution quan-
tiles at the lower and upper range of the sample distribution implying a
distinct deviation from the normal distribution.

7. Construct a plot showing the lag-correlation coefficients using the resid-
uals:

acf(c.obj$resid)

8. Plot the residuals against number of days elapsed since January 1, 2011,
the first day for which there is data. First, convert the datetime vari-
able from a factor to a date-time object. The function julian translates
datetime to days elapsed since January 1, 1960.

datetime = strptime(as.character(Data$datetime),
format="%Y-%m-%d %H:%M:%S")

elapsedDays = as.integer(julian(datetime) - 14975)

We subtract 14,975 from all of the julian dates so that the smallest elapsed
day is 0.



210 6 Linear Regression Methods

9. Plot the residuals against elapsedDays using ggplot2 and add a smooth:

df = data.frame(elapsedDays,c.obj$resid)
colnames(df) = c(’Day’,’Residuals’)
plt = ggplot(df, aes(x=Day,y=Residuals)) + geom_point(alpha=.2,pch=16)
plt = plt + xlab("Day") + ylab("Residuals") + geom_hline(yintercept=0)
plt = plt + geom_smooth()
print(plt)

There is a pattern of local over- and under-estimation that appears to be
a manifestation of season.

6.9.1 Final Remarks

Much may be learned about model adequacy by examining the residuals.
Anyone that uses a fitted model should be knowledgeable of its failures and
almost all models fail in some respect.23 Some authors, notably Ramsey and
Shafer [48], argue that residual analysis should be based on the residuals from
a model containing most if not all of the available variables. In other words,
their position is that for residual analysis (and only for residual analysis),
an over-fit model is better than an under-fit model. The logic is that the
presence of uninformative variables will not substantially affect the residuals
since a non-informative variable does not contribute much to the fit of the
model, and hence to the residuals. The exception to this rule occurs when
the number of variables is nearly as large as the number of observations.
In this case, the fitted values will be partially determined by uninformative
variables. On the other hand, a model that is wrong by the omission of
informative variables will yield residuals that will be larger in magnitude
than the residuals from a properly fit model. After the analyst has examined
the residuals from the (perhaps) over-fit model, she may make an informed
decision about the conformity of the residuals to the conditions necessary for
accurate hypothesis testing and confidence interval construction. There’s no
need to repeat the residual analysis after model fitting unless the fit of the
final model is substantially worse that the first model.

There’s a large literature on the subject of model fitting. We’ve largely
ignored the topic as it is something of a digression from data science algo-
rithms. James et al. [29] and Hastie et al. [28] provide modern discussions of
the topic more suited for data science applications than the statistically ori-
ented recommendations of Ramsey and Shafer [48]. Given a relatively small
pool for candidate predictor variables, we find ourselves most often begin-
ning the process of model fitting with one or a few predictors that, in our

23 The aphorism all models are wrong, but some are useful is due to G.E. Box.
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mind, belong in the model and examining residual plots as we try adding
additional predictor variables. We tend to ignore hypothesis tests and focus
on the numerical measures of fit R2

adjusted and σ̂ε, especially when data sets
are large (n > 50,000) since even very small improvements in model fit will be
statistically significant. We may examine p-values at any stage in the search
for a good model to confirm visual evidence of associations. In do so, we
do not hold fast to a particular p-value threshold for including or excluding
variables. In general, our preference is for fewer predictor variables and lim-
iting the number of interaction terms in the model. With many candidate
predictor variables and little knowledge of the variables, we favor the lasso
for automatic variable selection [28, 29].

6.10 Exercises

6.10.1 Conceptual

6.1. Show that formula (6.13) is correct.
6.2. The bike share tutorial of Sect. 6.7 used a model (6.12) with one factor
and no intercept. Based on this specific model, R generates an indicator vari-
able for each level of the factor. The design matrix X used in model fitting
can be extracted using the function call X = model.matrix(lm.obj).
a. What is the dimension of X?
b. Recall that the least squares estimator of β is computed according to
̂β = (XTX)−1XTy. The elements of the matrices XTX, (XTX)−1, and
XTy are recognizable—describe the elements.

c. Describe ̂β in terms of the counts. Why are the standard errors associated
with the individual estimates ̂β0, . . . , ̂β23 approximately equal?

d. Consider the model given in Eq. (6.12) and the test statistics for the hy-
potheses

H0 : βi = 0
Ha : βi �= 0,

(6.18)

i = 0, 1, . . . , 23. R summarizes these tests in the output table generated by
summary(lm()). However, Ha is not appropriate for the situation at hand.
Restate Ha so that it is consistent with the response variable being counts.
Calculate a p-value for the appropriate Ha for β3 and interpret the result
of the hypothesis test.

e. Add the variable holiday to the model of expected registered users. Given
the hour of the day, determine whether the data support the hypothe-
sis that the expected count of registered users varies with the variable
holiday. If there is statistical evidence, report the estimated effect and
give a 95% confidence interval for the true effect. Repeat the analysis for
the casual users. Comment on the accuracy of the inferential methods.
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f. Test the significance of workingday given hour of the day and holiday,
but this time, compute the test statistics for each of the response variables:
counts of registered users, counts of casual users, and the sum of registered
and casual counts (sum). Why do the results of the test for sum not agree
with the results obtained from registered and casual counts?

6.3. Consider the interaction model given by Eq. (6.10). Show that if the
variable xfemale is removed from the model, then the model implies that the
linear model for males and the linear model for females have different slopes
but the same intercept. In most cases, removing xfemale or xssf from the
interaction produces a model that is constrained in an illogical manner.

6.10.2 Computational

6.4. Using the bike share data (Sect. 6.7), answer the following questions.

a. What is the estimated effect of one additional degree of ambient air tem-
perature on the count for registered users? Fit a model to the number of
registered users using workingday, hour of day, and ambient air temper-
ature (temp). Report the parameter estimate associated with temp and a
95% confidence interval for the parameter associated with temp.

b. Does the effect of temperature depend on the hour of the day? Investigate
this question by carrying out an extra sums-of-squares F -test that com-
pares the lack-of-fit of a model that does not allow the effect to depend on
hour to the lack-of-fit of a model that allows different temperature effects
for different hours. Plot the estimated differences in temperature effect
against hour and interpret.

6.5. Return to the Australian athletes data set and consider the model in
which the response variable is percent body fat and the explanatory variable
is skinfold thickness.

a. Fit separate models for females and males by first selecting males only.
This may be accomplished using the subset argument. For example:

plot(ais$ssf,ais$pcBfat)
m.obj = lm(pcBfat~ssf,subset = (sex==’m’),data = ais)
males = which(ais$sex == ’m’)
points(ais$ssf[males],ais$pcBfat[males],col=’blue’,pch=16)
abline(m.obj,col = ’blue’)

Repeat for females. Show both genders and the separate regression lines
on the same plot.
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b. Compare the fitted models. Does it appear that the slopes are nearly equal
allowing for sampling variability? The expression sampling variability im-
plies that a statistical test is necessary to answer the question.

c. Compare the intercepts by retrieving confidence intervals for each fitted
intercept. Do the confidence intervals overlap and what can be inferred
about the true intercepts from the confidence intervals?

6.6. The researchers’ interest in the Australian athletes [60] centered on the
relationship between hematology, morphology, and physiological demands re-
lated to the athletes’ sports.

a. Fit a model in which plasma ferritins, ferr, is the response variable and
skinfold thickness, percent body fat, and female are explanatory variables.
Ferritin is a protein that binds to iron, and iron is key for oxygen transport
in the body. It’s speculated that high levels of ferritin assist in oxygen
transport. Construct a table showing the parameter estimates and their
standard errors.

b. What is the adjusted coefficient of determination associated with the fitted
model? For each of the three explanatory variables, add the t-test and as-
sociated p-value to the table of parameter estimates. Describe the strength
of evidence supporting the contention that skinfold thickness is associated
with plasma ferritins. Repeat for percent body fat and gender.

c. Re-fit the model after removing the variable with the largest p-value. What
is the adjusted coefficient of determination associated with the new fitted
model? For each of the two remaining explanatory variables, report the
p-value and describe the strength of evidence supporting the contention
that the variable is associated with plasma ferritins.

d. Re-fit the original three-variable model and extract the residuals. Con-
struct a set of side-by-side boxplots showing the distribution of residuals
for each sport. Note that a negative residual associated with yi implies that
the model over-predicted yi and a positive residual implies that the model
under-predicted yi. Which athletes appear to have greater than expected
levels of ferritins?

6.7. Seventy-two female anorexia patients participated in an experiment
aimed at assessing the efficacy of two behavioral therapies for the treatment
of anorexia [24]. Each subject participated in one of three treatments: con-
trol, family therapy, or cognitive behavioral therapy for 6 weeks. Pre- and
post-experiment weights were recorded. The objective of this analysis is to
determine if the treatments were effective and to estimate the mean weight
gains provided that there is evidence that the weight gains are real.

It will be necessary to account for pre-experiment weight in the analysis
since there is a great deal of variation due to this variable and a simple com-
parison of post-experiment weights will be compromised by weight variation
within group.
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a. The data are contained in the R library MASS and the data set is named
anorexia. Load the MASS library and retrieve the data set. Examine the
first 50 records. Determine the structure of the variables using the function
str. Determine the number of observations for the three treatment groups
using the instruction table(anorexia$Treat).

b. Using ggplot, plot post-experiment weights against pre-experiment weights.
Identify points originating from a particular treatment group by shape and
color:

plt = ggplot(anorexia, aes(x = Prewt, y = Postwt))
+ geom_point(aes(shape = Treat,color = Treat), size = 3)

c. Enhance the plot by successively adding attributes to the plot. Add least
squares regression lines for each treatment group and identify the lines by
color:

plt = plt + geom_smooth(aes(colour = Treat), method =’lm’)

Print plt and note that ggplot automatically added confidence intervals
for the mean response.

d. Add a line with a slope of one and intercept of zero:

plt = plt + geom_abline(intercept = 0,slope=1)

Examine the plot and notice the position of the treatment-group lines
relative to the line with slope equal to one. What, if anything can be said
about the efficacy of the treatments based on the relative positions of the
treatment-group lines relative to the line with slope one and intercept zero?

e. Another way to view the data splits the plotting window according to
treatment group. Use the ggplot function facet_grid:

plt = ggplot(anorexia, aes(Prewt, Postwt)) + facet_grid(.~Treat)
plt = plt + geom_smooth(aes(colour = Treat), method =’lm’)
plt = plt + geom_point(aes(colour = Treat), size = 2)
plt = plt + scale_colour_discrete(guide="none")

Print plt.
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f. Examine each of the regression models shown in the plots. You’ll need to
fit three separate regression models by using the subset argument in the
lm function call. The control group model can be fit using the instruction

summary(lm(Postwt~Prewt,subset = (Treat==’Cont’),data = anorexia))

Fit the model for the other treatments. For which of the three treatments is
there evidence of an association between pre- and post-treatment weight?

g. Use the centered pre-experiment weight as an explanatory variable:

anorexiaPrewtMean = mean(anorexia$Prewt)
lm.obj = lm(Postwt~I(Prewt - anorexiaPrewtMean),

subset = (Treat==’Cont’),data = anorexia)
summary(lm.obj)

When a variable is transformed in the lm function call, it usually must
be wrapped in the function I, as was done in the expression I(Prewt -
anorexiaPrewtMean).

Consider the intercepts in each of the fitted models (using centered pre-
experiment weight). Report the intercepts and 95% confidence intervals for
each. Carefully explain the interpretation of the intercepts. Keep in mind
that the intercept is the position on the vertical axis at which the fitted
line intersects the vertical axis. If a centered variable is equal to zero, then
the un-centered value equals the mean.

h. Does there appear to be a significant difference between control and fam-
ily therapy groups based on the three intercepts? Does there appear to be
a significant difference between control and cognitive behavioral therapy
groups? Draw a conclusion regarding the therapies: is there statistical evi-
dence that the therapies are effective? What is your basis for drawing your
conclusion?

i. Carry out the extra-sums-of-squares F -test for the significance of treat-
ment. The constrained model should contain pre-treatment weight and
treatment; the unconstrained model should contain pre-treatment weight,
treatment, and the interaction between pre-treatment weight and treat-
ment. Can we conclude with confidence that treatment affects mean post-
experiment weight? Why or why not?



Chapter 7
Healthcare Analytics

Abstract Healthcare analytics refers to data analytic methods applied in
the healthcare domain. Healthcare analytics is becoming a prominent data
science domain because of the societal and economic burden of disease and
the opportunities to better understand the healthcare system through the
analysis of data. This chapter introduces the reader to the domain through
the analysis of diabetes prevalence and incidence. The data are drawn from
the Centers for Disease Control and Prevention’s Behavioral Risk Factor
Surveillance System.

7.1 Introduction

Healthcare accounts for 17% of the gross domestic product of the United
States, much more than any other country in the world [2]. The providers of
healthcare are under immense pressure to improve delivery and reduce costs.
Reigning in costs while maintaining quality of care is critically needed. Fur-
thermore, the healthcare system is complex, opaque, and undergoing change,
all of which makes it difficult to answer even elementary questions about the
system and the people that rely on it. Healthcare analytics has developed
in the pursuit of information that will assist in improving the delivery of
healthcare.

Government agencies, affordable care organizations,1 and insurers are in-
volved in the analysis of electronic medical records with the intent of identi-
fying best medical practices, cost-effective treatments, and interventions. For
example, if an organization identifies a group of clients that are at significant

1 An affordable care organization (ACO) is a network of physicians and hospitals that
provide patient care. ACO’s have a responsibility to insure quality care and limit ex-
penditures while allowing patients some freedom in selecting specific medical services.
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risk of developing a chronic illness, then the organization may provide fi-
nancial incentives to the clients if they engage in activities that reduce risk.
Community and population health is another area in which healthcare analyt-
ics are used. The Centers for Disease Control and Prevention and the World
Health Organization, for example, are engaged in monitoring and forecast-
ing disease incidence and prevalence with the aim of better understanding
relationships between health, health-related behaviors, sanitation and water
quality, and other factors.

At the beginning of the chapter, we reported a remarkable statistic: 17%
of the gross domestic product of the United States is spent on healthcare.
It is not entirely fair to blame institutionalized medicine for this state of
affairs. Some of the responsibility falls on the individuals. Purportedly, many
Americans have not engaged in responsible behaviors and as a result the
incidence of a variety of chronic diseases has increased at the same time
that the healthcare system has become more effective at treating disease.
Intervention is key for turning the situation around, and intervention depends
identifying individuals that are at risk before they become ill. Here lies an
opportunity.

To gain some exposure to healthcare data and analytics, we undertake an
analysis of diabetes prevalence and incidence. Prevalence is the proportion
or percent of a population that is affected by a condition or disease. The
term is generally applied to chronic diseases such as diabetes, asthma, heart
disease, and so in. Incidence is the rate at which new cases appear among
a population. For example, if the prevalence of diabetes is .12, then 12 of
every 100 individuals in the population has the condition. The incidence of
diabetes is the annual rate at which individuals become afflicted with the
disease. If the incidence is .004 then, annually, 4 new cases are expected per
1000 previously undiagnosed individuals.

Type 2, or adult-onset diabetes is of great importance in the U.S. public
health arena because it is a serious chronic disease. Prevalence is in influx
and difficult to estimate in part because it may be undiagnosed in some
individuals, but we estimate that 10% of the U.S. adult population has type
2 diabetes as of 2014. Furthermore, the prevalence of the disease has been
increasing over the past several decades.2 It’s associated with a spectrum
of complications including, but not limited to nerve and kidney damage,
cardiovascular disease, retinopathy, skin conditions, and hearing impairment.
Diabetes is considered to be incurable. For many individuals, however, the
disease is preventable and controllable through diet and exercise.3 Depending
on age at onset, lifetime costs for an individual are estimated to be as much
as $130,800 [71].

2 The tutorials of this chapter will reveal substantial geographic differences in prevalence
and incidence across the United States.
3 It’s controllable in the sense that related conditions such as retinopathy can be avoided
or delayed.
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7.2 The Behavioral Risk Factor Surveillance System

The U.S. Centers for Disease Control and Prevention initiated the Behavioral
Risk Factor Surveillance System in 1984 for the purpose of learning about
the factors that affect health and well-being of the U.S. adult population.
This goal is advanced by conducting the largest annual sample survey in the
world.4 The survey asks a sample of U.S. adult residents a large number of
questions regarding health and health-related behaviors. The focus in this
discussion is on diabetes, and the principal question of interest asks has a
doctor, nurse, or other health professional ever told you that you have dia-
betes? The possible responses are (1) yes, (2) no, (3) no, (but) pre-diabetes
or borderline diabetes, (4) yes, but only during pregnancy, (5) don’t know/not
sure, (6) refused. The interviewer may also enter the code 7 indicating that
the question was not asked. A very large fraction of the responses are in-
formative; to illustrate, response codes 5, 6, and 7 amounted to .18% of the
sample in 2014. The question asked of the respondent does not distinguish
between type 1 and type 2 diabetes; however, type 2 is far more common
since approximately 4.3% of diabetes cases are estimated to be type 1 [4].

The objective of the following tutorial is to estimate prevalence and inci-
dence by state for the time period 2000–2014. For simplicity, we will identify
a case of diabetes only by the first listed answer yes and regard all other an-
swers as no. It’s to be expected that our estimate of prevalence will be biased
downward to a small degree by not eliminating the last three non-responses.
We are not able to address the verisimilitude of the answers. The Centers for
Disease Control and Prevention (CDC) published the respondents’ county of
residence until 2013. Since then, out of privacy concerns, the county identi-
fier has been hidden from view and the finest level of spatial resolution is the
state.

The Behavioral Risk Factor Surveillance System survey is conducted by
telephone, originally by landline only, but since 1993, by contacting respon-
dents via landline and cell phone. The number of sampled individuals has
become remarkably large in recent years (464,664 respondents in 2014). The
sample design specifies that cell phone numbers are randomly sampled and
landline numbers are sampled by disproportionate stratified sampling. A con-
sequence of the design is that the sample is neither random nor representa-
tive. Therefore, conventional estimators such as the sample mean do not
yield unbiased estimates since some sub-groups of the U.S. population are
over-sampled at the expense of other sub-groups. The CDC provides a set of
sampling weights that reflect the likelihood of selecting a respondent belong-
ing to a particular subgroup defined by age, gender, race and several other

4 We’ve discussed and used BRFSS data in Chap. 3.
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demographic variables [10, 11]. These weights provide a means by which bias
may be reduced or perhaps eliminated.5

Let vk, k = 1, . . . , n, denote the sampling weight assigned to the kth record
or observation where n denotes the number of informative responses for a
particular year. It’s helpful from a conceptual standpoint to scale the weights
to sum to 1 by defining a second set of weights wk = vk/

∑n
j=1 vj , for k =

1, . . . , n. To adjust the conventional estimators for sampling bias, we recast
our estimators as linear estimators.

A linear estimator is a linear combination of the observations. Thus, a
linear estimator computed from the observations contained in the vector y =
[y1 · · · yn]T may be expressed as a linear combination

l(y) =
n
∑

k=1

wkyk, (7.1)

where wk’s are known coefficients with the properties 0 ≤ wi ≤ 1 for all i, and
∑n

i=1 wi = 1. For instance, the sample mean is a linear predictor since setting
wk = n−1 for each k yields the sample mean. Alternatively, an estimator of
the mean may be computed by using the BRFSS sampling weights in formula
(7.1).

7.2.1 Estimation of Prevalence

Let’s set an objective of estimating the prevalence, or the proportion of the
adult population that has diabetes for each of the United States, Puerto Rico
and the District of Columbia. Prevalence is equivalent to the probability that
an individual selected at random from the population has diabetes. Since ob-
taining a probability sample of clinical diagnoses from the population of each
state is beyond the reach of all but the most determined researchers, we
instead estimate the proportion of the population that would answer affirma-
tively to the diabetes question on the BRFSS surveys. The sample proportion
of adults that answer affirmatively to the diabetes question on a BRFSS sam-
ple is an estimate of prevalence. Of course, there is a possibility of interviewer
bias skewing the estimates. Interviewer bias is the tendency of some respon-
dents to give answers that are affected by the presence of the interviewer,
say, answers that put the respondent in a more favorable light.

The usual prevalence estimator is the sample proportion of affirmative bi-
nary responses if the sampled individuals have been drawn at random from
the population. Let’s consider random sampling and suppose that the re-
sponses to the question are coded as 1 for yes and 0 for no. The kth binary

5 The sampling weights reflect the likelihood selecting a particular respondent but are
not the probability of selecting the respondent.
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response is denoted as yk, and so yk may take on two values, 0 and 1. Then,
the sample proportion can be computed as n−1∑ yk. The weighted preva-
lence estimator is used if sampling is not random and sampling weights are
available. It is a linear estimator (Eq. (7.1)), and we express it as

π̂(y) =
n
∑

k=1

wkyk =
∑

k vkyk
∑

k vk
,

where vk is the sampling weight associated with the kth respondent.
Another example of a linear estimator is the least squares estimator of the

linear regression parameter vector given in Eqs. (3.29) and (3.33):

̂β
p×1

= (XTX)−1XTy

=
(∑n

k=1 xkxT
k

)−1∑n
k=1 xkyk,

(7.2)

where xk is the vector of predictor variables associated with the kth response
yk. Weights can be incorporated in the estimator of β by replacing each
unweighted sum by a weighted sum

̂βw =
(∑n

k=1 wkxkxT
k

)−1∑n
k=1 wkxkyk

= (XTWX)−1XTWy,
(7.3)

where W is a diagonal matrix with the terms w1, . . . , wn on the diagonal
[33].

We will use linear predictors to estimate prevalence for each combination of
state and year, and so allowing i and j to index state and year, the estimator
of prevalence for state i and year j is

π̂i,j =
nij
∑

k=1

wijkyijk =
∑

k vijkyijk
∑

k vijk
. (7.4)

where yijk is the kth response among the nij responses for state i and year
j and vijk is the BRFSS sampling weight associated with yijk.

7.2.2 Estimation of Incidence

Diabetes incidence, in the context of the problem at hand, is the average
rate of change per year in prevalence for the time period 2000–2014. The
definition implies that single value summarizes incidence over the time period.
In essence, we are treating incidence as if it were constant over the period.
This treatment is pragmatic since 15 years of data is too little to adequately
estimate and summarize time-varying incidence for each of 50 states.
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An estimator of incidence for the ith state is the least squares estimator
of β1,i parameterizing the simple linear regression model

πi,j = β0,i + β1,iyearj . (7.5)

The intercept β0,i has no practical interpretation since it is the prevalence in
year 0 A.D. Let’s change the setup so that β0,i has a practical interpretation.
To do so, let xj denote the difference from midpoint of the time interval
(2007) and yearj , and replace yearj with xj in the model. Then, β0,i is the
prevalence when xj = 0 or equivalently, for yearj = 2007. If forecasting
prevalence were the goal, we might shift year so that β0,i is the prevalence
in year 2014. Shifting year provides two estimates of interest: the estimated
incidence ̂β1,i, and an estimate of prevalence at the midpoint of the time
span, ̂β0,i, that utilizes all 15 years of data instead of the point estimate
π̂i,2007.6 Since shifting the year variable adds a more information to analysis,
we proceed with the model

πi,j = β0,i + β1,ixj , (7.6)

where xj = yearj − 2007. For state i, the data to be used in computing
̂β0,i and ̂β1,i is the set of pairs {(−7, π̂i,0), (−6, π̂i,1), . . . , (7, π̂i,14)}. It should
be recognized that Eq. (7.5) implies a constant rate of change in diabetes
prevalence. However, a linear rate of change is not sustainable over a long
time interval as it would yield absurd estimates for years distant from 2007
(unless the estimated rate of change were zero). We use the model only for the
convenience of obtaining simultaneous estimates of prevalence and incidence
from a relatively short series of years. Our scope of inference is limited to the
time interval 2000–2014.

We turn now to computational aspects of utilizing BRFSS data for esti-
mation of prevalence and incidence of diabetes by U.S. state and year.

7.3 Tutorial: Diabetes Prevalence and Incidence

The data processing strategy is to reduce the data via a succession of maps
to arrive at a dictionary of prevalence estimates organized by year and state.
Each set of annual state estimates will then be used to estimate incidence as
the rate of annual change in prevalence.

The BRFSS data file structure was discussed in Sect. 3.6. To summarize,
the data files are constructed with fixed-width fields. A variable must be
extracted from a record as a substring according to its position in the record.
The fields, or positions of each variable in the record, and the protocol for

6 If incidence is approximately constant over the interval, ̂β0,i is a more precise estimator
of prevalence at the midpoint of the time span.
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coding the variable are described in codebooks maintained by the CDC. The
URL is http://www.cdc.gov/brfss/annual_data/annual_data.htm. Follow the links
to reach the codebook for a specific year.

The variables in the data files are coded as integer-valued labels according
to a format described in the codebooks. Section 7.2 provided an example
of the coding of the diabetes question. If other variables are incorporated
into an analysis, then the analyst usually must map the tabulated responses
to a more convenient variable for analysis.7 Table 7.1 summarizes the field
positions by year for the variables to be used in the tutorials of this chapter.

Table 7.1 BRFSS data file field positions for sampling weight, gender, income, educa-
tion, age class, body mass index (BMI), and diabetes

Sampling weight Gender Income Education Age class BMI Diabetes
Year Start End field Start End field Start End Start End field
2000 832 841 174 155 156 153 887 888 862 864 85
2001 686 695 139 125 126 123 717 718 725 730 90
2002 822 831 149 136 137 134 920 921 933 936 100
2003 745 754 161 144 145 142 840 841 854 857 84
2004 760 769 140 124 125 122 877 878 892 895 102
2005 845 854 148 127 128 112 1204 1205 1219 1222 85
2006 845 854 135 114 115 112 1205 1206 1220 1223 85
2007 845 854 146 120 121 118 1210 1211 1225 1228 85
2008 799 808 143 117 118 115 1244 1245 1259 1262 87
2009 993 1002 146 120 121 118 1438 1439 1453 1456 87
2010 990 999 147 120 121 118 1468 1469 1483 1486 87
2011 1475 1484 151 124 125 122 1518 1519 1533 1536 101
2012 1475 1484 141 116 117 114 1629 1630 1644 1647 97
2013 1953 1962 178 152 153 150 2177 2178 2192 2195 109
2014 2007 2016 178 152 153 150 2232 2233 2247 2250 105

The CDC asks the following question regarding diabetes: Have you ever
been told by a doctor that you have diabetes?8 Answers to the question that
are informative regarding the diabetes status of the respondent are given in
Table 7.2.

Table 7.2 BRFSS codes for diabetes
Value Value label

1 Yes
2 Yes, but female told only during pregnancy
3 No
4 No, pre-diabetes or borderline diabetes

7 The value labels for a specific question are usually the same from year to year.
8 This is the question asked in the year 2004 survey. The exact phrasing has changed
over time.

http://www.cdc.gov/brfss/annual_data/annual_data.htm
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These values must be mapped to 0 or 1, where, informally for now, 0 de-
notes the absence of diabetes and 1 denotes the presence of diabetes. There’s
some question how to handle response values of 2 and 4. One possibility is to
dismiss all response values that are not either unconditionally yes or no. An-
other possibility is to combine values 2, 3, and 4 as a single negative response
based on the logic that diabetes is a chronic, incurable disease, and a response
of 2, 3, or 4 is implies that the respondent does not have chronic diabetes.
In the tutorial, we map responses of 2, 3, or 4 to 0 instead of dismissing the
record.

The tutorial below makes use of functions that have been developed in
previous tutorials. The functions and the sections in which the functions
were developed are listed in Table 7.3.

Table 7.3 Functions, where they were developed, and their purpose
Function name Section Purpose

convertBMI 3.6 Convert string to float
stateCodeBuild 7.3 Build a dictionary of state names

1. Navigate to http://www.cdc.gov/brfss/annual_data/annual_data.htm and re-
trieve the files listed in Table 7.4.9 The individual data files are located
in sub-directories labeled by the year of interest. Download the zipped
text file by clicking on the link 20xx BRFSS Data (ASCII). Unzip the
file in your directory. The BRFSS data files will occupy about 7.8 GB of
disk space.

Table 7.4 Data sets for the analysis of diabetes prevalence and incidence
cdbrfs00.ASC cdbrfs01.ASC cdbrfs02.ASC CDBRFS03.ASC
CDBRFS04.ASC CDBRFS05.ASC CDBRFS06.ASC CDBRFS07.ASC
CDBRFS08.ASC CDBRFS09.ASC CDBRFS10.ASC LLCP2011.ASC
LLCP2012.ASC LLCP2013.ASC LLCP2014.ASC

2. Create a Python script. Enter instructions to load the following modules
and functions at the top of your script:

import os
import sys
from collections import namedtuple
import numpy as np

9 You may already have some of these from having worked on the tutorial of Chap. 3,
Sect. 3.6.

http://www.cdc.gov/brfss/annual_data/annual_data.htm
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3. You’ll need a file that links the state names to the state FIPS10 codes. Go
to http://www2.census.gov/geo/docs/reference/codes/files/national_county.txt
and save the webpage as a file named national_county.txt in the data
directory.

4. Create a dictionary from national_county.txt in which each key is a
state or territory FIPS code and the associated value is the name of the
state or territory. Extract the substrings from each string that contains
the FIPS state code and the two-letter state abbreviation. Alternatively,
you may create a list by splitting the string at the commas and extracting
the FIPS state code and the two-letter abbreviation as items from the
list.

In national_county.txt, the two-letter state or territory abbrevia-
tion occupies positions 0 and 1 of the string and the FIPS state code
occupies fields 3 and 4.

path = r’../national_county.txt’
stateCodes = {}
with open(path, encoding = "utf-8") as f:

for record in f:
stateCode = int(record[3:5])
stateCodes[stateCode] = record[0:2]

5. Construct a function containing the code segment described in instruc-
tion 4. The function builds and returns stateCodesDict. It should appear
as so:

def stateCodeBuild():
path = r’../national_county.txt’
...
return stateCodeDict

6. Test the function using the instructions

stateCodeDict = stateCodeBuild()
print(stateCodeDict)

Remove the function from the Python script and place it in the functions
module (functions.py).11 Compile functions.py by executing the
script.

10 Federal Information Processing Standards
11 Chapter 3 Sect. 3.6 discusses the creation of the functions.py module.

http://www2.census.gov/geo/docs/reference/codes/files/national_county.txt
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7. In Sect. 3.6 of Chap. 3, instruction 4, the reader was guided through
the construction of the fieldDict, a dictionary of dictionaries that
stores the field positions of the BRFSS variables by year. We will use
fieldDict to get the field position of diabetes and sampling weight.
If you haven’t created the function fieldDictBuild and placed it in
your functions module, then do so by following the instructions given
in Chap. 3. In any case, enter field locations for the diabetes variable
shown in Table 7.1 for each the year 2000 through 2014. After edit-
ing fieldDictBuild, execute functions.py so that the new entries are
available when fieldDictBuild is called.

8. Create the dictionary fieldDict by calling fieldDictBuild().
9. Turning now to the BRFSS data files, create a for loop that will read

every file in your data directory by iterating over the files in the direc-
tory. We’ve done this before; see Chap. 3, Sect. 3.6 or Sect. 3.8. All of the
BRFSS file names have the two-digit abbreviation of the sampling year
in the zero-indexed positions 6 and 7 of the file name (see Table 7.4),
and so we try to extract the first two digits of the sampling year from
the file name using the instruction shortYear = int(filename[6:8]).
Converting the string representation of year to an integer representation
provides a test that the file is a BRFSS data file. The variable n counts
the number of informative records and will provide the keys for the data
dictionary. Program the code segment below.

n = 0
dataDict = {}
path = r’../Data/’
fileList = os.listdir(path)
for filename in fileList:

print(filename)
try:

shortYear = int(filename[6:8])
year = 2000 + shortYear
print(year, filename, ’Success’)

except ValueError:
print(year, filename, ’Failure’)

10. Add a code segment in the try branch of the exception handler to extract
the field dictionary for shortYear. Get the field positions for the variables
sampling weight, body mass index, and diabetes:

fields = fieldDict[shortYear]
sWt, eWt = fields[’weight’]
sBMI, eBMI = fields[’bmi’]
fDia = fields[’diabetes’]
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Indent the code segment so that it executes immediately after the state-
ment print(year, filename, ’Success’)

11. Create a namedTuple type with the name data before the for loop it-
erates over fileList. The namedTuple will be used to store the data
extracted from a BRFSS record. We’ll store the year, the state code, the
sampling weight, and the diabetes variable:

data = namedtuple(’dataTuple’,’year stateCode weight diabetes’)

This instruction creates a new tuple subclass with the name dataTuple.
We have named the instance of the subclass data. To get the value of
diabetes, say, stored in an instance of data, we may use the syntax
data.diabetes and do not need to keep track of the position of the
variable in the tuple. This is an advantage since more variables will be
consumed and stored in data in the following tutorial.

12. We are now ready to process the data file using a for loop that reads one
record at a time. As the records are processed, extract the integer-valued
state code and translate the integer to the two-letter representation. De-
termine the two-letter abbreviation for the state name by looking it up
in the stateCodesDict dictionary.

file = path + filename
with open(file, encoding="utf-8") as f:

for record in f:
stateCode = int(record[:2])
stateName = stateCodesDict[stateCode]
weight = float(record[sWt-1:eWt])

This code segment must be indented so that it executes every time
shortYear is successfully extracted as an integer from filename.

13. Build a function to process the diabetes string. It’s probably most efficient
to code the function in place so that the variables can be examined in
the console if there is an error. When the code performs as expected,
move the code to a function. The function, call it getDiabetes, takes
diabetesString as an argument and returns an integer value. Name
the variable diabetes. As was discussed above, we’ll set diabetes =
1 if the response to the diabetes question was unequivocally yes and
set diabetes = 0 for the other informative answers. Non-informative
responses are identified by setting diabetes= −1. The function should
look like this:
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def getDiabetes(diabetesString):
if diabetesString != ’ ’:

diabetes = int(diabetesString)
if diabetes in {2,3,4}:

diabetes = 0
if diabetes in {7,9}:

diabetes = -1
else:

diabetes = -1
return diabetes

Put the function in functions.py and recompile functions.py.
14. Extract diabetes from the record and convert it to an integer code by

calling getDiabetes. Store the data extracted from record in dataDict
as a named tuple:

diabetesString = record[fDia-1]

diabetes = functions.getDiabetes(diabetesString)
if diabetes != -1:

dataDict[n] = data(year, stateCode, weight, diabetes)
n += 1

Note that the dictionary keys are integers from 0 to n and that n is the
number of informative records. Print n after processing each file. You
should end up with n = 5,584,593 entries in dataDict.

15. The next step is to reduce dataDict to a much smaller data dictionary
by mapping the data stored in dataDict to a dictionary that uses pairs
consisting of state and year as keys. The values in the dictionary are the
components needed to compute the weighted estimator of prevalence for
each state and year.

Equation (7.4) shows the prevalence estimator. We’ll compute the
numerator and denominators for state i and year j while iterating over
dataDict. The terms to compute are

∑

k

vijkyijk and
∑

k

vijk,

where yijk and vijk are values of the diabetes variable and the sampling
weight, respectively, and k indexes observations originating from year j
and state i.

For this next mapping, create a dictionary StateDataDict to store
the sums for each state and year as a list [yijk, vijk]. The dictionary keys
are tuples consisting of state code and year:
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StateDataDict = {}
for key in dataDict:

item = dataDict[key]
stateKey = (item.stateCode, item.year)
value = StateDataDict.get(stateKey)

if value is None:
v = item.weight
vy = item.weight*item.diabetes

else:
vy, y = value
v += item.weight
vy += item.weight * item.diabetes

StateDataDict[stateKey] = [vy, v]

Since we’ve completed building dataDict, this code segment executes
after the for loop running over fileList has completed. It should not
be indented.

16. Another reduction step is necessary before incidence is estimated by a
simple linear regression of prevalence on year. As discussed in Sect. 7.2.2,
a separate regression will be carried out for each state. Prevalence will
be regressed on year and the slope coefficient will be the estimate of
incidence for the state. So, we need to store pairs for each state consisting
of prevalence and year.

The dictionary that stores the regression data, regressDataDict, uses
states as the keys. The values are lists consisting of pairs where the el-
ements are year and estimated prevalence. Here we use a function from
the collections module that creates a dictionary entry if none exists
and appends to the existing dictionary entry if an entry exists.

import collections
regressDataDict = collections.defaultdict(list)

for key in StateDataDict.keys():
state, year = key
vy, v = StateDataDict[key]
regressDataDict[state].append((year,vy/v))

Upon completion, the lists associated with a particular state code will
look like this:

[(2001, 0.042), (2010, 0.0660), ..., (2012, 0.0727)]

The observation pairs are not in chronological order, but they need not
be ordered for fitting a linear regression equation.
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17. Compute the regression coefficients for the model given in Eq. (7.6) for
each state. Since the model is to be fit separately for each state, iterate
over the dictionary regressDataDict and collect the data for a particular
state on each iteration. As illustrated by the above example, the data for
state i consists of a list of m pairs [(year1, π̂i,1), . . . , (yearm, π̂i,m)] in which
the elements are year and estimated prevalence. Using a state’s data,
create the m × 2 matrix12 X by mapping each pair to a list containing
the constant 1 and the centered year, for instance [1,year-2007]. As
the lists are created, stack them using the list comprehension instruction
[[1,year-2007] for year,_ in data] where data is the list stored in
regressDataDict with the value stateCode. The last step translates the
list to a Numpy matrix. Create a vector of prevalences y at the same time.
The code segment is

for stateCode in regressDataDict:
data = regressDataDict[stateCode]
X = np.array([[1,year-2007] for year,_ in data])
y = np.array([prevalence for _,prevalence in data])

The underscore character is used as a placeholder when one element of
the pair is not used.

18. Compute and print the regression coefficients for each state as the for
loop iterates over regressDataDict.

b = np.linalg.solve(X.T.dot(X),X.T.dot(y))
print(stateCodesDict[stateCode], b[0], b[1])

Note that ̂β0,i = b[0] is the estimated prevalence when centered year
is 0, or equivalently, for year 2007, for the ith state. Also, ̂β1,i = b[1]
is the estimated annual rate of change of prevalence, i.e., the estimated
incidence.

19. Write the regression coefficients to a file as the estimates are computed.
We’ll do this by opening a file for writing before the for loop executes
and nesting the for loop below the open instruction. The structure is

path = r’.../plottingData.csv’
with open(path, ’w’) as f:

for stateCode in regressDataDict:
data = regressDataDict[stateCode]

12 The number pairs m will be 15 except for Louisiana and some U.S. territories.
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20. Compute and write ̂βi to the output file. Align the indentation of the code
segment with the statement b = np.linalg.solve(X.T*X, X.T*y):

string = ’,’.join([stateCodesDict[stateCode], str(b[0]), str(b[1])])
f.write(string + ’\n’)
print(string)

Prevalence estimates (b[0]) should be between .05 and .25 and an inci-
dence estimates (b[1]) should be between 0 and .005 per year.

21. To visualize the results, plot estimated incidence against estimated preva-
lence for each state. You can use the following R code:

data = read.csv(’../plottingData.csv’, header = FALSE)
colnames(data) = c(’State’, ’Prevalence’, ’Incidence’)
plot(c(.05,.14), c(0,.005), type = ’n’,

xlab = ’2007 Estimated prevalence’, ylab = ’Estimated incidence’)
text(x = data$Prevalence, y = data$Incidence, labels = data$State,

cex = .8)

Your figure should resemble Fig. 7.1. The figure reveals that prevalence
and incidence are moderately correlated (r = .540). Further, there is
evidence of spatial clustering; for example, the largest estimates aside
from Puerto Rico originate from southeastern and Ohio Valley states.

Fig. 7.1 Estimated
diabetes incidence
plotted against es-
timated prevalence
by state and U.S.
territory. Estimated
prevalence and
incidence pairs are
identified by the
two-letter abbrevia-
tion. n = 5,592,946
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7.4 Predicting At-Risk Individuals

There are substantial benefits to identifying individuals whose risk of develop-
ing type 2 diabetes is greater than normal. Once identified, these individuals
may be proactively treated to prevent the disease or delay the onset and



232 7 Healthcare Analytics

severity should it occur. Significant benefits would be realized if a medical
practitioner, affordable care organization, or self-insured organization, could
estimate the risk of an individual developing type 2 diabetes using nothing
more than self-reported demographic variables. Individuals that were identi-
fied as having elevated risk would engage in preventative activities such as
participating in a program that promotes healthy diet and exercise.

In the following tutorial, an estimator of the probability that an individual
has diabetes is constructed from BRFSS data. The estimator is a function
that consumes a predictor vector x0 consisting of demographic variables mea-
sured on the individual—a demographic profile—and returns the probability
estimate. The probability estimate is the estimated proportion of the U.S.
adult resident population with the same demographic profile and having re-
ceived a diabetes diagnosis from a doctor.13 For example, suppose that an
individual has the following demographic profile: the individual is between
30 and 34 years of age, has a college degree, an annual household income
between $25,000 and $35,000, and a body mass index between 30 and 32.
If n0 denotes the number of individuals in the data set that have the same
demographic characteristics, and y0 denotes the number of these individuals
that reported a diabetes diagnosis, then, the estimated probability that the
individual has diabetes is y0/n0. We will call y0/n0 an empirical probability
estimate as it is based purely on the relative frequency of reported diabetes
diagnoses among the sampled individuals with the same demographic pro-
file. Mathematically, if f is the estimator that maps demographic profiles
to empirical probabilities, then f(x0|D) = y0/n0, where D is the data set
from which the demographic profiles were constructed. We cannot compactly
express the function mathematically, though in essence, f is a dictionary in
which the keys are vectors x1, . . . ,xN and the values are empirical probabil-
ities y1/n1, . . . , yN /nN .

The predictive function is not based on a model but instead is based en-
tirely on the available data. Therefore, the predictive function is free of error
attributable to model inadequacies. Being free of a model and the burden of
defending the model is good. But using these probabilities for prediction pro-
duces imprecise estimates when the number of observations with a particular
demographic profile is small. Without a model, the precision of a prediction
depends only on n0, the number of observations in the data set that match a
target predictor vector x0 no matter how large the data set. Thus, if the target
individual is unusual and n0 is small, then neither the associated probability
estimate nor the prediction will be precise.14 A predictive model usually will
produce more precise estimates than a model-free predictive function if the
model is a close approximation of reality. In a sense, the predictive model
gains an advantage over the model-free predictive function because all ob-

13 If the BRFSS samples were random samples, then we would call the probability
estimate an empirical probability.
14 The precision of a prediction is directly related to the variance of the estimator, and
the variance depends on the number of observations used to compute the estimate.
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servations are used for estimating a model. The model is used to produce
a prediction and all of the observations contribute to the prediction though
not equally. Despite the potential advantages of a model-based prediction
function, we proceed in this case with the model-free approach because the
volume of data is sufficiently large to insure precision for the vast majority
of potential predictions. Furthermore, we need not be concerned with the
myriad of difficulties in finding a realistic model.

The demographic variables used for prediction are income, education, age,
and body mass index.15 The BRFSS variables that record income, education,
age are ordinal; for instance, the age of a respondent is recorded as an inter-
val (e.g., age between 30 and 34 years). These variables are ordinal because
any two values can be unambiguously ordered but the interpretation of the
difference between values is not necessarily unambiguous. In contrast, body
mass index is computed from height and weight and is recorded on the scale
kg/m2. It’s convenient, however, to transform body mass index to an ordinal
scale by rounding each value to the nearest even integer for values between
18 and 60 kg/m2. Values greater than 60 and less than 18 are transformed to
60 and 18, respectively. The result is 22 distinct body mass index categories.

Table 7.5 identifies the number of levels of each demographic variable. The
number of possible combinations of levels is 14 × 8 × 6 × 22 = 14,784. Each
combination is associated with a set of individuals, and we refer to a set of
individuals with a common predictor vector (or demographic profile) as a
cohort and the predictor vector as a profile vector. The number of cohorts
or cells, if we envision a four-dimensional cross-tabulation of the variables,
would be prohibitively large for using empirical probabilities for prediction
if this were a conventional data set. Using the data sets from 2000 through
2014 yielded n = 5,195,986 records with informative values on all four vari-
ables. The average number of observations per profile vector is 364.1.16 This

Table 7.5 Ordinal variables and the number of levels of each
Variable Age Income Education Body mass index

Number of levels 14 8 6 22

average number of observations is satisfactory for most applications of em-
pirical probabilities. Of course, the distribution of observations across cells is
variable and there are cells with few or no observations. We’ll address that
issue in the next section. Before putting the data to use, we ought to think
more about the predictive function and its application.

The predictive function consumes a vector, say x0 = [3 4 4 36]T and
returns an empirical probability; specifically, f(x0|D) = 27/251 = .108.
In a traditional statistical learning application, a prediction of whether an

15 Other variables are potentially useful for prediction (race and exercise level).
16 Not every possible profile was observed. The number of observed profiles was 14,270,
slightly less than 14,784.
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individual with the profile x0 has diabetes would be generated from the esti-
mate. Ordinarily, the decision rule would be: if f(x0|D) > .5, then we predict
the individual to have diabetes and if f(x0|D) ≤ .5, then we predict the in-
dividual not to have diabetes.

But this problem is somewhat different. Our aim is to identify individuals
with elevated risk of developing diabetes rather than predicting whether an
individual has diabetes. Individuals with elevated risk may or may not have
the disease. Identifying individuals that have diabetes would only be of in-
terest if there were a significant proportion of individuals with diabetes that
were undiagnosed. So, in this application, the event of interest is elevated
risk of developing diabetes. As stated, the event is ambiguous and we need
to define the event unambiguously to proceed to the next step of labeling
individuals as having elevated or normal risk. We do so by defining a deci-
sion rule g(x, p) such that g(x, p) = 1 identifies elevated risk and g(x, p) = 0
identifies normal risk. The decision rule is

g(x, p) =
{

1, if f(x|D) > p,

0, if f(x|D) ≤ p.
(7.7)

The argument p is a threshold that is adjusted in consideration of the costs
of failing to identify an at-risk individual and mislabeling a normal-risk indi-
vidual as having elevated risk. The data set does not contain information on
risk status, but logically, most of the individuals with diabetes ought to be
identified as having elevated risk by g. However, not all individuals with dia-
betes who have a demographic profile indicative of the disease will have the
disease since there is variability in susceptibility and age of onset. Further, a
person’s diet and exercise level tends to vary over time. So, an individual may
no longer exhibit the attributes (body mass index, in particular) indicative
of the disease but may respond affirmatively to the question about diabetes
diagnosis. Some individuals that are identified as having elevated risk will
be self-identified as not having diabetes. Determining who these individuals
are would be of substantial interest in a practical application of the decision
rule given that the objective is to intervene and reduce elevated risk levels.
Of course, the decision rule must be sufficiently accurate for it to be of any
value.

7.4.1 Sensitivity and Specificity

The accuracy of the decision rule can be investigated by forming the following
pairs: (y1, g(x1, p)),. . ., (yN , g(xN , p)) where yi is 1 if the ith individual was
self-identified as having diabetes and 0 if the ith individual was not self-
identified as having diabetes. Equation (7.7) defined g(xi, p). With respect
to performance of the rule, it’s most important that those individuals having
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diabetes are identified by the decision rule as having elevated risk. Otherwise,
the decision rule is not of much use. To approach the problem analytically,
consider the conditional probability that an individual will be identified as
having elevated risk given that they have diabetes. This probability is

Pr[g(x, p) = 1|y = 1] = Pr[g(x, p) = 1 and y = 1]
Pr(y = 1) . (7.8)

The conditional probability Pr[g(x, p) = 1|y = 1] is called the sensitivity of
the decision rule and also the true positive rate [2]. A good rule will have a
sensitivity close to one. It is also desirable that the specificity, or true negative
rate Pr[g(x, p) = 0|y = 0] is large in conventional testing situations (which
this is not). In this context, the specificity describes the probability that a
person without diabetes is identified as having normal risk.

Our aim is not to predict diabetes but instead to predict elevated risk.17
Therefore, we expect that if the decision rule is applied to the data, then
there will be instances of identifying someone as having elevated risk when
they did not identify themselves as having diabetes. Traditionally, this event
is referred to as a false positive and can be expressed mathematically as the
event {g(x, p) = 1|y = 0}. In this situation, a moderately large false positive
rate does not imply the decision rule is poor because it’s expected that some
at-risk individuals in the BRFSS samples will not have been diagnosed as
diabetic. The false positive rate is related to the specificity since Pr[g(x, p) =
1|y = 0] = 1 − Pr[g(x, p) = 0|y = 0]. Therefore, the specificity Pr[g(x, p) =
0|y = 0] need not be large for the decision rule to be deemed useful.

Computing estimates of sensitivity and specificity begins with mapping the
set {(y1, g(x1, p)),. . . , (yN , g(xN , p))} to a confusion matrix of the form shown
in Table 7.6. Confusion matrices are discussed at length in Sect. 9.7.1. The

Table 7.6 A confusion matrix showing the classification of risk prediction outcomes of
n++ individuals

Predicted risk
Self-identified Normal Elevated Total
No diabetes n00 n01 n0+

Diabetes n10 n11 n1+
Total n+0 n+1 n++

table entries are the numbers of individuals with a particular combination
of self-identified disease state (diabetes or not) and a predicted risk level
(elevated or normal). Sensitivity is estimated by

̂Pr[g(x, p) = 1|y = 1] = n11

n1+
, (7.9)

17 We could define the event of interest more rigorously as metabolic syndrome, a set of
medical conditions that are considered to be precursors to type 2 diabetes.
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where n1+ is the number of individuals that have self-reported diabetes, and
n11 is the number of individuals that have self-reported diabetes and were
predicted to have elevated risk. Specificity is estimated according to

̂Pr[g(x, p) = 0|y = 0] = n00

n0+
. (7.10)

The false positive rate estimate is

̂Pr[g(x, p) = 1|y = 0] = n01

n0+
.

The threshold p determines whether the empirical probability f(x|D) as-
sociated with a profile vector x identifies an individual as having elevated
risk. Small values of p result in more individuals being identified as having
elevated risk. Consequently, lowering the threshold causes n+1 to increase
and n+0 to decrease. Exactly how the increase in n+1 is distributed between
n01 and n11 is unknown, but we may expect some increase n11, the number
of individuals that have diabetes and have elevated risk. Hence, sensitivity is
likely to be improved by reducing p. Lowering the threshold is also likely to
reduce the specificity of the prediction function by increasing n01, the pro-
portion of individuals identified as having elevated risk when in fact they do
not have diabetes. Figure 7.2 shows that if we hold sensitivity and specificity
equally important, then the choice of p = .13 will result in both estimated
sensitivity and specificity roughly equal and .71 in value. If the prediction
function is applied to the BRFSS population, then it’s estimated that 71% of
the time, a diabetic individual will be identified as having elevated risk. As
discussed above, accepting smaller values for specificity than for specificity
is reasonable and even desirable. Hence, the choice p = .1 may be preferred
by noting that we identify an individual as having elevated risk if their de-
mographic cohort contains at least 10% diagnosed diabetics. In this context,
a demographic cohort is a set individuals with the same demographics—
specifically, with the same predictor vector. Using p = .1 as the threshold
results in a sensitivity of .806 and specificity of .622. With this choice of p,
the proportion of individuals that are identified as having elevated risk but
did not report a diagnosis of diabetes is 1 − .622 = .378. These individuals
would be targeted for intervention.

7.5 Tutorial: Identifying At-Risk Individuals

This tutorial builds on the previous and earlier tutorials. In particular, all
of the variables have been used before though not all at the same time. We
use the data files from years 2002 through 2014. Some of these data were
used in the Sect. 7.3 tutorial. Data from years 2002 through 2006 will have
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Fig. 7.2 Sensitivity
and specificity
plotted against
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to be retrieved from the Centers for Disease Control and Prevention web-
page (http://www.cdc.gov/brfss/annual_data/annual_data.htm). Table 7.1 sum-
marizes the field positions by year for the variables to be used in the tutorials
of this chapter.

1. Modify or create, a dictionary fieldDict that contains the field loca-
tions of the variables of interest by year. Field locations are specified in
Table 7.1. As in the tutorial of Sect. 7.3, fieldDict is a dictionary of
dictionaries. The outer dictionary uses the last two digits of the year as
the key. For this tutorial, the associated value is an inner dictionary with
five key-value pairs. Each key of the inner dictionary is a variable name
and the value is the field location of the variable. The initialization of the
dictionary is shown as well as the instruction to fill the inner dictionary
associated with year 2010.

fieldDict = dict.fromkeys([10, 11, 12, 13, 14])
fieldDict[10] = {’bmi’:(1483, 1486), ’diabetes’:87,

’income’:(120, 121), ’education’:118, ’age’:(1468, 1469)}

The dictionary may contain additional variables beyond those used in
this tutorial. They have no effect on the program.

2. Iterate over the files in the directory containing the BRFSS data files
using the code segment from instruction 9 of Sect. 7.3.

3. Create a ZeroDivisionError error if shortYear is less than 2 so that
only data files for years 2001 through 2014 are processed:

http://www.cdc.gov/brfss/annual_data/annual_data.htm
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try:
shortYear = int(filename[6:8])
if shortYear < 2:

1/0
...

except(ZeroDivisionError, ValueError):
pass

4. Extract the dictionary fields from fieldDict. Then, extract the field
positions for age using the command sAge, eAge = fields[’age’].

5. Extract the field positions for the other four variables income, education,
body mass index, and diabetes. Instruction 10 of Sect. 7.3 shows the code
for extracting weight and body mass index. The field positions are ex-
tracted once for each data file and so belong in the code segment above
denoted by ...

6. Open the file with the path and name file and process each record in
sequence:

with open(file, encoding = "utf-8") as f:
for record in f:

n += 1

This code must be aligned with the instructions that retrieve the field
positions of the variables.

7. Use the functions getIncome and getEducation that were programmed
in Chap. 3, Sect. 3.8 to translate the entries in record to usable values.
If these functions are already in your functions module, then load the
module and the functions by placing the instructions

sys.path.append(’/home/.../parent’)
from PythonScripts import functions
dir(functions)

at the top of your script. Here, /home/.../parent is the path to the
parent directory that contains functions.py.18 Instruction 8 of Chap. 3,
Sect. 3.8 provides details on programming the functions.

8. Translate the body mass index string to an integer using the previously
programmed function convertBMI developed in instruction 14, Chap. 3,
Sect. 3.6. Then, map the integer value of body mass index to an ordinal

18 functions.py should reside in a directory below parent. For instance, the full path
might be /home/HealthCare/PythonScripts/functions.py, in which case parent is
/home/HealthCare.
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variable. The calculation int(2*round(bmi/2,0)) rounds body mass in-
dex to the nearest even integer. Finally, we map values greater than 60
to 60 and values less than 18 to 18.

bmi = functions.convertBMI(record[sBMI-1:eBMI],shortYear)
bmi = int(2*round(bmi/2,0))
if bmi > 60:

bmi = 60
if bmi < 18:

bmi = 18

9. Extract the diabetes entry and convert it to a binary response using the
function getDiabetes programmed in instruction 13 of Sect. 7.3.

y = functions.getDiabetes(record[fDia-1])

The argument passed to getDiabetes is the one-character string ex-
tracted from record.

10. Create the profile vector x as a four-tuple but only if the values of all
five variables are informative. If the response to the education or income
questions was a refusal to answer or don’t know, then the answer was
coded as 9. Do not create x if that is the case.

if education < 9 and income < 9 and 0 < age < 15 and bmi != 0
and (y == 0 or y == 1):

x = (income, education, age, bmi)
print(y, income, education, age, bmi)

11. If the profile vector was created in the previous instruction, then update
diabetesDict. The profile vector is the key and the value is a two-element
list [n,

∑n
i y].

value = diabetesDict.get(x)
if value is None:

value = [1, y]
else:

value[0] += 1
value[1] += y

diabetesDict[x] = value

12. The remainder of the program computes the sensitivity and specificity of
a decision rule g(x, p) where p is a threshold (Eq. (7.7)). We’ll compute
sensitivity and specificity for one value of p and then extend to the code to



240 7 Healthcare Analytics

compute sensitivity and specificity over a range of values for p. The data
for computing sensitivity and specificity will be contained in a confusion
matrix.

Consequently, the next step is to write the code for building a con-
fusion matrix (Table 7.6). The confusion matrix summarizes the cross-
classification of every individual in diabetesDict according to their
recorded condition (diabetes diagnosis or not) and their prediction of
risk (elevated or not). The rows correspond to reported diabetes (absent
or present) and the columns correspond to the predicted risk (normal or
elevated).

threshold = .3
confusionMatrix = np.zeros(shape = (2, 2))
for x in diabetesDict:

n, y = diabetesDict[x]
if y/n > threshold: # Predicted to have elevated risk.

confusionMatrix[0,1] += n - y # Diabetes not reported.
confusionMatrix[1,1] += y # Diabetes reported .

if y/n <= threshold: # Predicted to have normal risk.
confusionMatrix[0,0] += n - y # Diabetes not reported.
confusionMatrix[1,0] += y # Diabetes reported.

The boolean result of the statement y/n > threshold determines
whether the prediction function g(x, p) yields a prediction of elevated
risk. Suppose that y/n > threshold is true. The prediction is the same
for all n individuals with the profile vector x because all n have the same
profile and are considered to have the same risk (namely, y/n based on
the available data). Of those n individuals, y reported a diabetes diagno-
sis and n−y did not report a diagnosis. Therefore, we add y to the count
of individuals that were predicted to have elevated risk and were reported
to have a diabetes diagnosis. This count is in confusionMatrix[1,1].
The remaining n − y individuals did not report a diabetes diagnosis yet
were identified as having elevated risk, and we add n − y to the count in
confusionMatrix[0,1].

On the other hand, if y/n <= threshold is true, the same logic applies
to the assignment of counts. Hence, y is added to confusionMatrix[1,0]
and n − y is added to confusionMatrix[0,0] .

13. The terms for computing sensitivity and specificity are extracted from the
confusion matrix after the for loop has completed. Formulas 7.9 and 7.10
are used to compute sensitivity and specificity:

n00, n01 = confusionMatrix[0,:]
n10, n11 = confusionMatrix[1,:]
sensitivity = n11/(n10 + n11)
specificity = n00/(n00 + n01)
print(’sensitivity:’, n10, n11, round(sensitivity, 3))
print(’specificity’, n00, n01, round(specificity, 3))



7.5 Tutorial: Identifying At-Risk Individuals 241

14. The next task is to compute sensitivity and specificity over a range of
threshold values .01, .02, . . . , .99 and store the values in a dictionary that
uses threshold as a key. Begin by creating a vector of threshold values.
Use the Numpy function arange to create a sequence beginning with .01,
ending with .99, and incrementing by .01:

thresholds = np.arange(start=.01, stop=1.0, step =.01)

15. Initialize a dictionary ssDict to contain the sensitivity and specificity
values for different threshold values and build a for loop that iterates
over the threshold values. On each iteration of the for loop, a decision rule
g(x, p) will be applied to the observations in dataDict using the current
threshold p. Then, we fill the confusion matrix for the rule, compute
sensitivity and specificity of the rule, and store the values in ssDict. The
first operation of the for loop initializes the confusion matrix.

ssDict = dict.fromkeys(thresholds)
for threshold in ssDict:

confusionMatrix = np.zeros(shape = (2,2))

16. Insert the code segment (instruction 13) for computing the sensitivity and
specificity inside the for loop and after the initialization of the confusion
matrix. After computing these terms store the sensitivity and specificity
values as a list in ssDict using the threshold as the key.

ssDict[threshold] = [x11/(x10+x11), x00/(x00+x01)]

The left-position element (ssDict[threshold][0]) is sensitivity and the
right-position element is specificity.

17. After the for loop over ssDict has completed, plot sensitivity and speci-
ficity against threshold using mathplotlib. Specifically, plot sensitivity
against threshold and then specificity against threshold. It’s necessary to
sort the values of threshold from smallest to largest and apply the same
sort to sensitivity and specificity before plotting. The first operations are
to import the module operator for sorting and the pyplot function from
matplotlib. Then, sort the dictionary according the threshold.

import operator
import matplotlib.pyplot as plt
sortedList = sorted(ssDict.items(), key = operator.itemgetter(1))
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18. The call to sorted returned a list. Each item in the list is a pair in which
the first item (item[0]) is a key and the second item (item[1]) is a two-
element list consisting of sensitivity and specificity. Extract the variables
from sortedList and create the plot.

ySE = [value[0] for _,value in sortedList]
ySP = [value[1] for _,value in sortedList]
xS = [item[0] for item in sortedList]
plt.plot(xS, ySE)
plt.plot(xS, ySP)

You should obtain a figure similar to Fig. 7.2.
19. A slightly different predictive function will be built in the next tutorial.

We’ll recompute ssDict using the new rule. To lessen the programming
effort, turn your code for building ssDict into a function. Build the
function around the code segment beginning with the initialization of
the vector of thresholds (instruction 14) and ending with the instruction
that stores the sensitivity and specificity values as a list in ssDict.

def ssCompute(diabetesDict):
thresholds = np.arange(start= .01, stop=1.0,step = .01)
ssDict = dict.fromkeys(thresholds)
for threshold in ssDict:

...
ssDict[threshold] = [x11/(x10+x11), x00/(x00+x01)]

return ssDict

20. Move the function to the top of the script. Test the function with the
following code segment.

ssDict = ssCompute(diabetesDict)
sortedList = sorted(ssDict.items(), key=operator.itemgetter(1))
ySE = [value[0] for _,value in sortedList]
ySP = [value[1] for _,value in sortedList]
plt.plot(xS,ySP)
plt.plot(xS,ySE)

If you move ssCompute to your functions.py module, then put the
instruction import numpy as np at the top of functions.py. The Numpy
library has to be imported into every file that uses it (note that we have
called the Numpy function np.arange in instruction 14). The function call
is then ssDict = functions.ssCompute(diabetesDict).
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7.6 Unusual Demographic Attribute Vectors

There remains an outstanding problem that needs to be addressed regard-
ing estimating risk and predicting elevated risk of developing diabetes. Sup-
pose that the demographic profile of a target individual is described by
the vector x0 and that x0 is not among the set of observed profile vectors
X = {x1, . . . ,xN }. Since x0 /∈ X, the empirical probability of a positive
response to the diabetes question is unknown. The predictive function devel-
oped in the previous section does not permit a determination of predicted
risk. But even if x0 ∈ X, it may be that the number of respondents associ-
ated with the vector x0 is small and the empirical probability will then be
imprecise.

The extent of the problem is not large but cannot be ignored. Of the pos-
sible 14,784 profile vectors, N = 14,270, or 96.7%, were observed among the
n = 5,195,986 informative observations. It’s entirely possible that a predic-
tion may be needed for some x0 /∈ X.

Furthermore, among those demographic vectors that were observed (and
hence, are elements of X), 8094 are associated with at least 30 sampled in-
dividuals. The remaining 6176 demographic vectors are each associated with
fewer than 30 sampled individuals. The empirical probabilities associated
with these sample-size deficient vectors are imprecise though the pejorative
imprecise is subjective. Certainly, the precision of the sample-deficient profile
estimates is worse than the estimates associated with commonly occurring
profile vectors. We note parenthetically that these sample size deficient pro-
files do not significantly impact our estimates of sensitivity and specificity
because only 1.03% of all observations in the data set are associated with
what we might call unusual profile vectors. Furthermore, if the prediction
function were applied to a population with a similar demographic structure
to the BRFSS samples, then only 1% of the time would a prediction of risk
originate from one of the unusual profiles.

It’s necessary, however, to accommodate new and unusual profiles if demo-
graphic profile vectors truly are to be used in a practical application. Before
proceeding toward a solution, let us recall some notation. For x0 ∈ X, n0
denotes the number of observations in the data set associated with x0, and
y0 denotes the number of individuals among the n0 that responded affirma-
tively to the question regarding a diabetes diagnosis. We solve the problem
of a new or unusual profile vector by a finding a set of observations that are
similar with respect to demographics. Mathematically, we find a set of xj ’s in
a neighborhood of x0, the target profile. The neighborhood set consists of ob-
servations that are close to x0 with respect to a distance function computed
on the profile vectors. Then, the empirical probability for x0 is computed
using y0 and n0 and the observations in the neighborhood of x0.19

19 The algorithm is essentially an implementation of the one-nearest neighbor prediction
function.
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The algorithm examines each observation triple (y0, n0,x0) in the data
dictionary. If n0 is insufficiently large, say n0 ≤ 50 , then we will find a set
of profile vectors {x1, . . . ,xq} that are most similar to x0 and construct the
nearest neighbors set N1(x0) = {(y1, n1,x1), . . . , (yq, nq,xq)}. The set N1(x0)
contains all of the neighbors whose distance to x0 is equal to the minimum
distance. Then, we compute the neighborhood sums

y∗
0 = y0 +

∑q
j=1 yj = yi +

∑

yj
(yj ,nj ,xj)∈N1(x0)

n∗
0 = n0 +

∑q
j=1 nj = ni +

∑

nj
(yj ,nj ,xj)∈N1(x0)

.
(7.11)

The original empirical probability estimate y0/n0 is then replaced by y∗
0/n∗

0
in the dictionary of profiles. If n∗

0 is still less than the threshold sample
size (50 in the example above), then N2(x0), the set of neighbors whose
distance to x0 is equal to the second-smallest distance is constructed, and
y∗
0 and n∗

0 are computed from the larger neighborhood N1(x0) ∪ N2(x0). We
continue merging neighborhood sets until n∗

0 is sufficiently large. The result
is an updated prediction function f∗(·|D) that operates on a target x0 by
searching the profile set X for a matching profile and assigning the empirical
probability estimate associated with the matching profile to x0.

We haven’t yet addressed the problem presented by an individual whose
profile is not among the observed profile vectors contained in X. Our solution
extends the method used to revise the empirical probability estimates for sam-
ple deficient profiles. Suppose that the individual’s profile is x0. The algorithm
determines the nearest neighbor set N1(x0) = {(y1, n1,x1), . . . , (yq, nq,xq)}
and computes the empirical probability estimate p0 according to

y∗
0 =

∑q
j=1 yj ,

n∗
0 =

∑q
j=1 nj ,

and p0 = y∗
0/n∗

0.

We don’t have to worry about the size of the denominator n∗
0 since the al-

gorithm for boosting the sample sizes of the data set profile vectors (for-
mula (7.11)) insures that all empirical probability estimates are computed
from sufficiently many sample observations.

The next matter to address is that of determining a nearest neighbor set
for a given x0. Our algorithm computes the distance between x0 and each
xi ∈ X as the city-block or Manhattan distance between vectors. The city-
block distance between xi and x0 is

dC(xi,x0) =
p
∑

j=1
|xi,j − x0,j |, (7.12)
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where p is the number of variables that define a profile.20 A formal definition
of the neighbor set is

N1(x0) =
{

(yi, ni,xi)|dC(xi,x0) = min
xk∈X

dC(xk,x0)
}

.

The set N1(x0) may contain one neighbor but often will contain more than
one because the smallest distance may be tied among several neighbors.

The following tutorial implements an algorithm for finding neighborhood
sets and revising the empirical probabilities for those sample-deficient demo-
graphic vectors.

7.7 Tutorial: Building Neighborhood Sets

This tutorial begins where the tutorial of Sect. 7.6 left off. It’s assumed that
the dictionary diabetesDict has been computed. In this dictionary, a key is
a profile vector xi and the value is a data list [ni, yi]. The algorithm begins
by creating two dictionaries from diabetesDict. The first dictionary consists
of key-value pairs with commonly occurring profiles vectors (or keys). The
second dictionary consists of key-value pairs with unusual profiles vectors.
For each profile in the dictionary of unusual demographic profiles, we replace
the entry [ni, yi] with [n∗

i , y∗
i ] (Eq. (7.11)).

1. Initialize two dictionaries, freqDict and infreqDict to store the triples
(yi, ni,xi).

freqDict = {}
infreqDict = {}
count = [0]*2

The dictionary freqDict will contain the profiles for which there were
at least 50 observations and infreqDict will store those profile with less
than 50 observations.

2. Fill the two dictionaries by separating the entries in diabetesDict ac-
cording to the value of ni.

20 In the tutorial of Sect. 7.5, the predictor variables are age, education, income, and
body mass index and so p = 4.
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count = [0]*2
for x in diabetesDict:

n, y = diabetesDict[x]
if n >= 50:

freqDict[x] = n, y
count[0] += n

else:
infreqDict[x] = n, y
count[1] += n

print(len(diabetesDict),len(freqDict),len(infreqDict))
print(count)

The list count will contain the number of observations from which each
dictionary was built.

3. Build a function for computing the city-block distance (formula (7.12))
between vectors xi and x0. Use the zip function to produce an iterable
object consisting of the pairs (xi,1, x0,1) . . . , (xi,p, x0,p). Each pair consists
of two measurements made on the same demographic attribute.

Iterate over the zip object, extract the elements of each pair as w and
z, compute the absolute differences, and add the absolute difference to
the total.

def dist(xi, x0):
s = 0
for w, z in zip(xi, x0):

s += abs(w - z)
return s

4. Now we begin the process of replacing the pairs (y0, n0) for those x0 that
are unusual because n0 < 50.

Iterate over the dictionary infreqDict and extract each profile vector
x0 in turn. Compute the distance between x0 to every profile vector
x ∈ freqDict and find the smallest distance between x0 and every x ∈
freqDict.

for x0 in infreqDict:
d = [dist(x0, x) for x in freqDict]
mn = min(d)

5. Find the neighborhood set N1(x0) for each x0 ∈ infreqDict. First ini-
tialize a list named nHood to contain the lists [ni, yi] from which the
updates to n0 and y0 will be computed (Eq. (7.11)). Then, iterate over
freqDict and compute the distance between x ∈ freqDict and x0. If
the distance between x and x0 is equal to the minimum distance mn, then
extract the list [n, y] associated with x and append the list to nHood:
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nHood = [infreqDict[x0]]
for x in freqDict:

if dist(x0,x) == mn:
lst = freqDict[x]
nHood.append(lst)

This code segment follows immediately after the statement mn = min(d).
The neighborhood list nHood was initialized with the list [n0, y0] con-

tained in infreqDict[x0] since the sums over the neighborhood shown
in Eq. (7.11) include n0 and y0.

6. When the for loop over freqDict has completed, compute the sums
given in Eq. (7.11). Store the revised data list [n∗

0, y∗
0 ] in diabetesDict:

nStar = sum([n for n,_ in nHood])
yStar = sum([y for _,y in nHood])
diabetesDict[x0] = [nStar, yStar] # Careful! Don’t reverse the oder.

This code segment must be aligned with the for x in freqDict: state-
ment.

Warning: the last statement changes the value of an existing dictionary.
If there are any errors in the calculation of n∗

0 and y∗
0 then you’ll have to

recreate diabetesDict.
7. The process of updating diabetesDict is slow because of the distance

calculation and the search for the nearest neighbors. Add a counter to
track the iterations and print the value of the counter every 100 iterations.
Execute the code segment beginning with the for loop that iterates over
infreqDict.

8. The tutorial of Sect. 7.5 instructed the reader to write a function,
ssCompute, for the purpose of computing sensitivity and specificity for
each threshold value in a vector of values. Using that function, build a
new version of ssDict containing sensitivity and specificity values over
the range of threshold values .01, .02, . . . , .99.

9. Recreate the plot built in instruction 17 of the Sect. 7.5 tutorial.

7.7.1 Synopsis

In the tutorials of Sects. 7.5 and 7.7, we’ve tackled the problem of estimating
the risk of an adult developing diabetes. The data reduction algorithms that
were used are exemplars of the core algorithms of data science. What was
done was to reduce nearly 5.2 million observations to 14,270 demographic
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profiles. Each demographic profile characterizes a cohort,21 and collectively,
the profiles are a computationally efficient representation of the population.
In the tutorial of Sect. 7.5, the risk of developing diabetes was estimated for
each profile. When presented with a new individual, our estimate of the indi-
vidual’s risk is obtained by determining their demographic profile, the target
profile, and matching the target profile with a profile contained in the dictio-
nary of profiles. Their risk estimate is the risk associated with the matching
dictionary profile.22 The risk estimate is the empirical probability of diabetes
for the cohort, that is, the sample proportion of individuals with the target
profile that responded affirmatively to the diagnosis question. The statistics
used in the prediction function are trivial, and building the prediction func-
tion would have been trivial as well except for the step of merging infrequently
occurring demographic profiles with frequently occurring profiles.

In a practical application, one would estimate the risk of other chronic
diseases tracked in the Behavioral Risk Factor Surveillance System survey
(asthma, chronic obstructive pulmonary disease, and perhaps mental ill-
nesses, for example).

Our approach to the problem of predicting risk exemplifies the differences
between data science and traditional statistics. The standard statistical ap-
proach to the problem of estimating risk would involve logistic or binomial
regression modeling. A model, or course, is supposed to be an abstraction,
a simplification of reality that promotes understanding. A model of risk as
a function of the four demographic variables provides at most a superficial
understanding of a highly complex process. If we focus on the model not as
an abstraction of reality but simply as a predictive tool then other limitations
come into view. Most notably, the model is constrained to a particular form
such as linear combination of the four demographic variables and perhaps
some transformations of the variables. A fitted regression model would be
highly constrained because every estimate is determined by the fitted model
and the fitted model is determined collectively by all observations. Every ob-
servation has some leverage on the fitted model. Constructing demographic
profiles and estimating risk using the empirical probabilities produces a pre-
diction function free of model constraints. The estimate associated with a
particular profile is completely unrelated to the estimate for any other pro-
file.

Interestingly, a common goodness-of-fit test for binomial regression uses
the empirical probabilities as a gold standard against which the fitted model
is compared. If the fitted model comes close the replicating the empirical
probability estimates, then the model is judged to fit the data well. We have
no model. We simply reduced the data to a convenient form and computed

21 A cohort is a population subgroup with similar characteristics
22 In the unlikely event that the target profile is not in the dictionary, we find a set of
most similar profiles in the dictionary.
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the empirical probability of diabetes for each profile. Our prediction function
is essentially the gold standard against which the performance of the model
is compared.

7.8 Exercises

7.8.1 Conceptual

7.1. Consider the variance of an estimator of prevalence for year x0 obtained
from a linear regression of prevalence on year:

var[μ̂(x0)] = σ2
(

1
n

+ (x0 − x)2
∑

(xi − x)2

)

,

where x0 is a user-selected year of interest and xi is the ith year.

a. What choice of x0 minimizes var[μ̂(x0)]?
b. Suppose that the n years are consecutive. Argue that selecting the midpoint

of the time span to be x0 yields the smallest possible value of var[μ̂(x0)]
among all choices of x0.

7.2. Argue that Eq. (7.3) is correct by determining the vector ̂βw that mini-
mizes the objective function

S(β) =
∑

wi(yi − xT
i β)2

= (Y − Xβ)TW(Y − Xβ) (7.13)

where W = diag(w1 · · · wn). Hint: differentiate S(β) with respect to β.

7.3. The Centers for Disease Control and Prevention’s discussion of the
BRFSS sampling design makes it clear that disproportionate sampling must
be accounted for by the sampling weights. To gain some insight into the ori-
gin of the sampling weights, let us consider the following idealized problem.
The objective is to estimate of the mean of a static and finite population
P = {y1, y2, . . . , yN } from a sample of n observations.

a. Give an expression for the population mean μ involving the elements of P.
b. Suppose that a sample of 1 ≤ n ≤ N observations is drawn randomly

and with replacement from P. What is the probability πj that yj will be
included in the sample?

c. Show that the sample mean Y = n−1∑n
j=1 Yj is unbiased for μ. An es-

timator is unbiased if its expectation equals the target value. Specifically,
show that E(Y ) = μ.

d. Suppose now that the sample is obtained not by random sampling, but by
some design that draws observations with replacement and for which the
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probability that the jth draw selects yi is Pr(Yj = yi) = πi, for j = 1, . . . , n
and i = 1, . . . , N . The sampling probabilities need not be constant, though
it is necessary that

∑N
i=1 πi = 1. Show that the estimator

Y w = N−1
n
∑

i=1
wiyi,

where wi = p−1
i is unbiased for the mean.

7.4. Sampling weights may be incorporated into the sample correlation coef-
ficient by replacing the conventional covariance

σ̂xy =
∑

i(xi − x)(yi − y)
n

with the weighted sum
∑

i wi(xi − x)(yi − y)
∑

i wi
.

The variance estimates should also be weighted sums, say,

σ̂2
x =

∑

i wi(xi − x)2
∑

i wi
.

Then, the weighted sample correlation coefficient is

r =
∑

i wi(xi − x)(yi − y)
σ̂xσ̂y

∑

i wi
.

Show that
r =

∑

i vixiyi − xy

σ̂xσ̂y
.

where vi = wi/
∑

j wj and x and y are also weighted according the sampling
weights w1, . . . , wn.

7.8.2 Computational

7.5. The function dist (instruction 3 of Sect. 7.7) can be replaced by one
line of code. Do so.

7.6. For each of the state-by-state linear regressions of estimated annual
prevalence on centered year, compute the adjusted coefficient of determi-
nation

R2
adjusted =

s2 − σ̂2
reg

s2
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where
s2 =

∑n
i=1(yi − y)2

n − 1
= yTy − ny2

n − 1
is the sample variance and

σ̂2
reg =

∑n
i=1(yi − ŷi)2

n − 2

= yTy − yTX̂β
n − 2

is the residual variance. Unlike previous large sample applications of R2
adjusted,

we must be precise with the denominators. Construct a dot chart showing
the R2

adjusted and the state code. You may use the R function call

dotchart(D$R2,D$State,cex=.5)

after having read the output into an R data frame and assigning the column
names State and R2 to the respective columns.

7.7. Estimate diabetes risk using age, income, body mass index, and exercise
level (EXERANY2 in the BRFSS codebook). Compute sensitivity and specificity
without making any adjustments for small sample sizes. Report the values
for p ∈ {.05, . . . , .2}

7.8. The estimated incidence for District of Columbia is half as large as
any other state though its estimated prevalence is not far from the median
value. Plot the annual estimates of prevalence against year for the District
of Columbia and Virginia, a state that is spatially near to the District of
Columbia and has a similar estimated prevalence. Use ggplot. Note that
lists of year and prevalence estimates stored in statePrevDict are not in
sequential order.

7.9. Return to the tutorial of Sect. 7.5 and replace age with ethnicity. Use the
BRFSS variable _RACE for which ethnicity is grouped as 8 classes. How many
unique profile vectors are produced using each set of predictor vectors? Con-
struct a table that compares sensitivity and specificity at three thresholds:
.05, .15, and .30. Is there a difference between the two prediction functions
with respect to sensitivity and specificity, and if so, which prediction function
is best?



Chapter 8
Cluster Analysis

Abstract Sometimes it’s possible to divide a collection of observations into
distinct subgroups based on nothing more than the observation attributes. If
this can be done, then understanding the population or process generating
the observations becomes easier. The intent of cluster analysis is to carry
out a division of a data set into clusters of observations that are more alike
within cluster than between clusters. Clusters are formed either by aggregat-
ing observations or dividing a single glob of observations into a collection of
smaller sets. The process of cluster formation involves two varieties of algo-
rithms. The first shuffles observations between a fixed number of clusters to
maximize within-cluster similarity. The second process begins with singleton
clusters and recursively merges the clusters. Alternatively, we may begin with
one cluster and recursively split off new clusters. In this chapter, we discuss
two popular cluster analysis algorithms (and representatives of the two va-
rieties of algorithms): the k-means algorithm and hierarchical agglomerative
clustering.

8.1 Introduction

Cluster analysis is a collection of methods for the task of forming groups
where none exist. For example, we may ask whether there are distinct types
of visitors to a grocery store, say, customers that purchase a few items in-
frequently, customers that regularly shop at a particular department, and
customers that make frequent visits and purchase a wide variety of items.
If so, then the visitors of the first and second group might be offered in-
centives aimed at shifting them to the third group. Realistically though, it’s
probably not possible to cleanly divide customers given that many customers
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exhibit multiple shopping behaviors. With a set of observations on customers
and records of their purchases (receipts), cluster analysis may provide insight
into the structure of the customer population and shopping behaviors.1

In this situation, the analyst does not have a set of data that is labeled
according to group. The process of forming groups is therefore without ben-
efit of supervision originating from a training set of labeled observations.
Without knowledge of the number and arrangement of the groups, cluster
formation proceeds by grouping observations that are most alike or by split-
ting groups based on the dissimilarity of the member observations. Similarity
of observations and clusters is measured on the observation attributes. The
only impetus driving cluster formation is similarity and dissimilarity.

Cluster analysis is driven by the mathematical objective of maximizing
the similarity of observations within cluster. This objective does not provide
much guidance on how to proceed. In contrast, linear regression is strongly
driven by the linear model and the objective of minimizing the sum of squared
differences between observations and fitted values. The mathematics and al-
gorithms fall neatly into place from this starting point. Clustering algorithms
on the other hand, have different approaches, all meritorious and occasion-
ally useful. Even determining the appropriate number of clusters is difficult
without prior knowledge of the population sub-divisions. Despite these weak-
nesses, cluster analysis is still a useful tool of data analytics since the ability
to examine groups of similar observations often sheds light on the population
or process generating the data.

In this chapter, we sidestep the difficult issues related to the application
and interpretation of cluster analysis and focus instead on the mechanics
of two somewhat different but fundamental algorithms of cluster analysis:
hierarchical agglomerative and k-means clustering. By understanding these
basic algorithms, we learn of the strengths and weaknesses of cluster analysis.

Let us begin by defining D = {x1, . . . ,xn} to be the data set. As before,
xi is a vector of attributes measured on an observational unit. Unlike the
data sets of Chap. 6, there is no target yi to be predicted.

We begin the discussion of cluster analysis with a popular technique that
recursively builds clusters by merging smaller clusters.

8.2 Hierarchical Agglomerative Clustering

The hierarchical agglomerative approach begins with each observation defin-
ing a singleton cluster. Therefore, the initial set of clusters may be repre-
sented by the singleton clusters {x1}, . . . , {xn}, where n is the number of
observations. The algorithm iteratively reduces the set of clusters by merging

1 Section 10.6, Chap. 10 works with data originating from grocery store receipts.
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similar clusters. On the ith iteration, two clusters A and B, say, are merged
to form a cluster A ∪ B. We write

(A, B) −→ A ∪ B

to describe the merging of clusters A and B. The choice of clusters to merge
is determined by computing a distance between clusters and merging the pair
with the minimum inter-cluster distance. Consequently, a metric is needed to
measure between-cluster distances. For example, the distance between clus-
ters A and B may be defined to be the smallest distance between any vector
belonging A and any vector belonging to B. Mathematically, this distance is
defined as

d1(A, B) = min{dC(xk,xl)|xk ∈ A,xl ∈ B},

where dC(x,y) is the city-block distance between vectors x and y defined by
Eq. (7.12). There’s nothing special about city-block distance—other metrics,
Euclidean distance, for example, also are popular. The minimum distance
metric d1 tends to produce chain-like clusters. More compact clusters result
from a centroid-based metric that utilizes cluster centroids defined by

xA = n−1
A

∑

xk∈A

xk, (8.1)

where nA is the numbers of observations in cluster A. Then, the distance
between A and B is

dave(A, B) = dC(xA,xB). (8.2)

As described above, the algorithm will progressively merge clusters until
there is a single cluster. Merging clusters into a single glob is only interesting
if some of the intermediate cluster sets are interesting. If the clusters are to
be used for some purpose, then it’s necessary to inspect the intermediate sets
of clusters to identify the most useful cluster set.

8.3 Comparison of States

We return to the BRFSS data and search for states that are alike with re-
spect to the distribution of body mass index of residents. The distribution
of body mass index for a particular state is represented by a histogram.
A histogram, mathematically, is a set of intervals spanning the range of body
mass index and the associated sample proportions of individuals belonging to
each interval.2 Each histogram amounts to an empirical distribution—that
is, a distribution that has been constructed from data rather than a model.

2 We worked with the mathematical form of the histogram in Chap. 3, Sect. 3.4.2.
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As usual, data preparation requires a significant effort since we need to con-
struct a histogram for each state, Puerto Rico, and the District of Columbia.
Before delving into the computational problem, let us examine the empirical
body mass index distributions for a handful of states.

Figure 8.1 shows the empirical distributions of body mass index for five
states: Massachusetts, Colorado, Illinois, North Dakota, and Maryland.3 The
distributions from Massachusetts and Colorado are alike as are the distribu-
tions from Illinois, North Dakota, and Maryland. Massachusetts and Colorado
are different from Illinois, North Dakota, and Maryland, principally because
the Massachusetts and Colorado distributions tend to have relatively more
values that are less than 27 kg/m2 than Illinois, North Dakota, and Maryland,
and fewer values that are greater than 27 kg/m2. Interestingly, Colorado and
Massachusetts previously were found to have the second and tenth smallest
estimates of diabetes prevalence (Fig. 7.1).

Fig. 8.1 Empirical
body mass index
distributions for
five states. The
scale has been
truncated on the
right so that dif-
ferences among
distributions may
be more easily
discerned
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Recall that the numerical form of a conventional histogram is a set of pairs
H = {(b1, p1), . . . , (bh, ph)}, where bi = (li, ui] is a bin or interval and pi is
the proportion of observations included in the interval.4 If the data are a rep-
resentative sample from the population, then H is constructed by defining a
set of intervals and counting the number of sample observations falling into
each interval. The BRFSS sampling design does not generate representative
samples since observations are collected with unequal sampling probabilities.
To correct for unequal sampling probabilities, the Centers of Disease Control
and Prevention has attached a sampling weight to each observation. Usually,
the sampling weight can be incorporated into an estimator with the effect
of reducing or eliminating bias created by unequal sampling probabilities.

3 The data shown in this figure may be plotted as a set of histograms. However, we use a
simple line plot instead as it’s easier to see the similarities among empirical distributions.
4 Section 3.4.2 of Chap. 3 discusses histograms in details.
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Section 3.4.2 of Chap. 3 presented an algorithm for constructing histograms
from sampling weights. The adaption replaced the relative frequency of ob-
servations included in a particular interval with the sum of sampling weights
associated with the observations.

Let xj denote a measurement on the variable of interest (in this case,
body mass index) for the jth observation (in this case, a respondent). Let
wj denote the sampling weight assigned to the observation. Let’s suppose
that xj , j = 1, 2, . . . , n are from state A. Then, the total sampling weight
associated with values belonging to interval bi and originating from state A
can be expressed as

sA,i =
n
∑

j=1
wjIi(xj) (8.3)

where Ii(xj) is an indicator variable taking on the value 1 if xj ∈ bi is
true (formula (3.10)).5 If xj ∈ bi is false, then the value of the indicator
variable is 0. Transforming the sum sA,i to the height of the histogram bar
is straightforward: we compute the estimated proportion of the population
belonging to interval bi as

pA,i = sA,i
∑h

k=1 sA,k

. (8.4)

Formula (8.4) was encountered in Chap. 3, formula (3.12). As with a conven-
tional histogram, we iterate over the observations and accumulate the sums
sA,1, . . . , sA,h, and then form the histogram for state A as

HA = {(b1, sA,1), . . . , (bh, sA,h)}, (8.5)

A dictionary is maintained to keep track of the clusters as the algorithm
progresses. A dictionary key is the cluster label A, and the value is the list of
sampling weights [sA,1, . . . , sA,h]. It’s not necessary to store the intervals (the
bi’s) with each histogram since the intervals are the same for every histogram.

When the cluster formation algorithm begins, the cluster singletons are
individual states and the cluster histograms are the histograms for each state.
The distance between clusters A and B is measured by the distance between
the histograms associated with the clusters. This distance is defined to be

dc(A, B) =
∑h

k=1 |pA,k − pB,k|,

where pA,k and pB,k are computed according to Eq. (8.4).
We also need a method for merging the histograms resulting from the

merger of clusters A and B. The estimated proportion for interval k should
not be a simple average of the interval proportions pA,k and pB,k since the
average does not account for the differences in numbers of observations that
are contained in clusters A and B. So instead, we compute a weighted average

5 The statement xj ∈ bi is true if li < xj ≤ ui.
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that utilizes the numbers of observations nA and nB in the respective clusters.
The weighted mean is

pk = nApA,k + nBpB,k

nA + nB
.

The weights are the proportions nA/(nA + nB) and nB/(nA + nB).
In summary, the hierarchical clustering algorithm can be viewed as a se-

quence of mappings where a mapping reduces two clusters A and B to one
cluster according to

[pA,1, . . . , pA,h]
[pB,1, . . . , pB,h]

}

−→ [p1, . . . , ph] . (8.6)

We may also view the mapping as (HA, HB) −→ HA. Instead of creating a
new label A ∪ B, we assign the label A to A ∪ B and delete B from the list
of cluster labels. Metaphorically, A has devoured B.

Operationally, merging two clusters requires a search for the most similar
pair of clusters. Once the pair (A, B) is identified, cluster A absorbs B by
combining the two histograms as one according to the map (8.6). The com-
bined histogram, replaces A. Cluster B is removed from the list of clusters.

The search for most similar clusters requires the inter-cluster distance be-
tween every cluster A and B. If the number of observations were large, we
would not recompute all inter-cluster distances for every search, but instead
maintain a list of inter-cluster distances and only update the distances be-
tween the merged cluster and all other clusters. For simplicity, the tutorial
below recomputes all inter-cluster distances whenever a pair of clusters is
merged.

8.4 Tutorial: Hierarchical Clustering of States

We’ll write an algorithm for hierarchical agglomerative cluster formation. A
substantial amount of data reduction is necessary before cluster formation
can commence. The data reduction stage will map a set of BRFSS annual
files to a dictionary in which each key is a state and the value is a list of the
sampling weights sA,1, . . . , sA,h shown in Eq. (8.3). Most of the data reduction
has been carried out in one form or another in previous tutorials. Each state in
the dictionary will represent one of the initial singleton clusters. The cluster
formation algorithm begins with this set of initial clusters. The algorithm
iterates over a list of clusters and on each iteration, two clusters are merged
as one. When two clusters are merged, the dictionary is updated by replacing
one cluster with the merged cluster. The second cluster is removed from the
dictionary.
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1. At the top of your script, import modules to be used by the program:

import os
import importlib
import sys
sys.path.append(’/home/.../parent’)
from PythonScripts import functions
dir(functions)

2. Use the function stateCodeBuild developed in instruction 4 of Sect. 7.3,
Chap. 7 to create a dictionary of state names and codes. We use the
term state loosely as the dictionary will contain entries for the District
of Columbia and Puerto Rico. The dictionary stateCodeDict uses the
FIPS two-digit state codes as keys. The values are standard United States
Postal Service two-letter state abbreviations. Call the function and create
the dictionary. Also create a list (namesList) containing the two-digit
abbreviations:

stateCodeDict = stateCodeBuild()
namesList = list(stateCodeDict.values())
noDataSet = set(namesList)

The Behavioral Risk Factor Surveillance System collects data from three
U.S. territories as well as the states and the District of Columbia. How-
ever, stateCodeDict contains the names of 57 states, territories, and the
District of Columbia. Not all of these geographic units are sampled by
the BRFSS survey. We’ll identify the geographic units that have no data
by removing names from the set noDataSet whenever a record is encoun-
tered from a particular geographic unit. What’s left in noDataSet are
geographic units with no data.

3. Create a dictionary containing the field positions of body mass index and
sampling weight using the function fieldDictBuild. It was created in
instruction 4 of Sect. 7.3, Chap. 7.

fieldDict = functions.fieldDictBuild()
print(fieldDict)

4. Create a dictionary of state histograms. Each histogram consists of a
set of 30 sub-intervals spanning the interval (12, 72] (kg/m2) and an as-
sociated set of relative frequency measures. The histogram dictionary
histDict maintains the histogram data for cluster A as a list containing
the sampling weight sums sA,1, . . . , sA,h (Eq. (8.3)). The set of intervals
is the same for each cluster and is stored as a single list of pairs named
intervals.
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nIntervals = 30
intervals = [(12+2*i,12+2*(i+1)) for i in range(nIntervals) ]
histDict = {name:[0]*nIntervals for name in namesList}

Dictionary comprehension has been used to create histDict. The value
associated with a name is a list of length 30 containing zeros.

5. We will use the same structure for processing a set of BRFSS files as was
used previously, say instruction 9 of Chap. 7, Sect. 7.3.

n = 0
dataDict = {}
path = r’../Data/’ # Replace with your path.
fileList = os.listdir(path)
for filename in fileList:

try:
shortYear = int(filename[6:8])
year = 2000 + shortYear
fields = fieldDict[shortYear]
sWt, eWt = fields[’weight’]
sBMI, eBMI = fields[’bmi’]
file = path + filename

except(ValueError):
pass

print(n)

A ValueError will be thrown if filename[6:8] does not contain a string
of digits. In that case, the remaining statements in the try branch of the
exception handler are ignored and interpreter executes the pass state-
ment.

6. Open each file in the fileList within the try branch of the excep-
tion handler and process the file records one at a time. Determine the
respondent’s state of residence and extract the state name from the
stateCodeDict:

with open(file, encoding="utf-8", errors=’ignore’) as f:
for record in f:

stateCode = int(record[:2])
stateName = stateCodeDict[stateCode]

It’s difficult to resolve errors when an exception handler is invoked as
errors are often not visible. Thus, it may be helpful to execute the code
segment beginning with with open(file,... as you develop the code
rather than allowing the exception handler to be invoked. If you proceed
this way, you may find it helpful to temporarily set file to be one of the
BRFSS data files in the list fileList.
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7. Extract the sampling weight weight from record (see Sect. 7.3).
8. Translate the body mass index string to a float using the function

convertBMI:

bmiString = record[sBMI-1:eBMI]
bmi = functions.convertBMI(bmiString,shortYear)

The function convertBMI was build in the Chap. 3, Sect. 3.6 tutorial (see
instruction 14). We’re assuming that it resides in your functions module
functions.py.

9. Increment the sampling weight total for the interval containing bmi in
the histogram histDict[stateName]. This histogram corresponds to the
respondent’s state of residence.

for i, interval in enumerate(intervals):
if interval[0] < bmi <= interval[1]:

histDict[stateName][i] += weight
break

noDataSet = noDataSet - set([stateName])
n += 1

The next-to-last instruction computes the set difference between
noDataSet and the singleton data set containing the respondent’s state
of residence. Allow the program to process all of the data sets.

10. Upon completion of the for loop iterating over fileList, remove the
key-value pairs from histDict for which there are no data.

print(len(histDict))
print(noDataSet)
for stateName in noDataSet:

del histDict[stateName]
print(len(histDict))

11. Transform the sums of weights contained histDict so that the sum over
the intervals of a histogram is 1.

for state in histDict:
sumWeights = sum(histDict[state])
histDict[state] = [intervalTotal/sumWeights

for intervalTotal in histDict[state]]

12. We’ll use the data in its reduced form of histDict in the next tutorial.
It’s convenient then to save the dictionary in a file so that histDict need
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not be rebuilt. A standard method of saving data structures is the Python
module pickle. Write histDict as a pickle file:

import pickle
picklePath = ’../data/histDict.pkl’
pickle.dump(histDict, open(picklePath, "wb" ))

The file histDict.pkl will be read from disk into a Python dictionary
at the beginning of the tutorial on the k-means algorithm.

13. Form an initial dictionary of clusters. Each cluster is a key-value pair
where the key is a cluster label and a state abbreviation. The value is a
singleton list containing the state abbreviation. For example, a dictionary
entry will appear as {a : [a]}.

clusterDict = {state: [state] for state in histDict.keys()}

When two clusters A and B are merged, the list of states that belong to
the cluster A will lengthen by adding those belonging to B. Cluster B
will be deleted from the dictionary and the number of key-value pairs in
clusterDict will be reduced by 1.

14. Begin building a function that merges clusters. It’s best not to make it a
function (with the keyword def and a return statement) until the code
segment is complete and free of errors. Create a list of the state codes by
extracting the keys of clusterDict.

stateList = list(clusterDict.keys())

15. We’ll build the code segment that merges the closest two clusters. Three
operations are necessary: build a list of all two-cluster sets, search the list
for the closest two clusters, and merge the closest two as one cluster.
Building the set of cluster pairs is accomplished using list comprehension:

setList = [{a,b} for i,a in enumerate(stateList[:-1])
for b in stateList[i+1:]]

The outer for loop iterates over all elements stateList except the last.
The inner for loop iterates over the elements stateList[i] through the
last (stateList[n-1]).

16. Begin the search for the closest pair by initializing the minimum dis-
tance between cluster to be 2.6 Iterate over setList. With clusters A

6 It can be proved that the distance between any two clusters will be less than 2.
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and B, compute the distance between the associated histograms and if
the distance is less than the minimum distance, update the minimum
distance and save the set with the name closestSet. When the for loop
is complete, closestSet will contain the labels of the clusters to merge.

mn = 2
for a, b in setList:

abD = sum([abs(pai - pbi)
for pai, pbi in zip(histDict[a], histDict[b])])

if abD < mn:
mn = abD
closestSet = {a,b}

print(closestSet,mn)

Our single-line function for computing the distance abD between clus-
ters A and B takes the relative proportions from histDict and forms
pairs (pA,1, pB,1), . . . , (pA,h, pB,h). The zip function performs this oper-
ation. Then, the function iterates over the zip object and builds a list
of the absolute differences, i.e., [|pA,1 − pB,1|, . . . , |pA,h − pB,h|] using list
comprehension. The last operation computes the sum of the absolute
differences.

17. Let A and B denote the closest two clusters. They are merged by replacing
the relative proportions for cluster A with the weighted average of the
relative proportions from A and B. Hence, A consumes B. In this code
segment, the relative proportions for cluster A are updated.

a, b = closestSet
na = len(clusterDict[a])
nb = len(clusterDict[b])
histDict[a] = [(na*pai + nb*pbi)/(na + nb) for pai, pbi

in zip(histDict[a], histDict[b])]

18. Extend the member list of A with the member list of B. Remove B from
the cluster dictionary.

clusterDict[a].extend(clusterDict[b])
del clusterDict[b]
print(len(clusterDict))

You can test the merging operation by repeatedly running the code be-
ginning with the instruction stateList = list(histDict.keys()) and
ending with print(len(clusterDict)). On each execution, the length
of clusterDict will decrement by 1.
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19. When the merging operation functions correctly, move it to a function
mergeClusters that accepts clusterDict and histDict as arguments
and returns clusterDict and histDict, say,

def mergeClusters(clusterDict, histDict):
stateList = list(clusterDict.keys())
...
del clusterDict[b]
return clusterDict, histDict

20. Reduce the initial set of 54 singleton clusters to 5 clusters using a for
loop that repeatedly calls mergeClusters.

while len(clusterDict) > 5:
clusterDict, histDict = mergeClusters(clusterDict, histDict)

21. Print the clusters and the member states to the console.

for k,v in clusterDict.items():
print(k,v)

22. We’ll use pyplot from the matplotlib to draw the cluster histograms on
a single figure. We’ve built almost the same plot in Chap. 3, instruction 26.
To improve the readability, the histograms are truncated at the body
mass index value of 51 kg/m2.

intervals = [(12+2*i,12+2*(i+1)) for i in 30 ]

import matplotlib.pyplot as plt
x = [np.mean(pair) for pair in intervals][:19] # Ignore large BMI

values.
for name in clusterDict:

y = histDict[name][:19]
plt.plot(x, y)

plt.legend([str(label) for label in range(6)], loc=’upper right’)
plt.show()

8.4.1 Synopsis

We have used a hierarchical clustering algorithm to form clusters of states
that are similar with respect to the body mass index of adult residents.
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Fig. 8.2 Estimated
distributions of
body mass index
for five clusters of
states. Clusters are
identified by state
abbreviation
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The analysis began with the estimation of body mass index distributions for
each state. State to state and cluster to cluster similarity was measured by
the distance between relative frequency histograms. When two clusters were
merged, the merged cluster histogram was computed as a weighted average
of the histograms belonging to the merged clusters. The weights reflected the
numbers of states belonging to the respective clusters.

This application of cluster analysis corresponds to a more traditional set-
up in which each observational unit would have provided a vector of observa-
tions on h = 30 variables. In our application, an observational unit is a state.
The similarity calculation would have used the h variables. Some transfor-
mation, say standardization for instance, probably would have been used to
try to account for differences in scale among the variables. Scaling was not
necessary in this application.

Figure 8.2 shows that the cluster distributions are different though perhaps
not to a striking extent. The difference in height between histograms for a
fixed value of the horizontally-plotted variable (body mass index in this case)
is the primary attribute reflecting differences in distributions. With this in
mind, it’s clear that the District of Columbia (DC) is very different than the
Mississippi cluster (MS). For instance, all of the histograms have a mode at
25 kg/m2 and the relative frequencies for the interval [24, 26) are .182 and
.162 for DC and MS respectively. The differences reverse in sign at the body
mass index value 26 kg/m2, reflecting a greater proportion of individuals
with large values of body mass index in the Mississippi cluster than in the
District of Columbia. The District of Columbia is a singleton cluster and so
informally speaking, there are no states similar to it.

Though the differences are small for any single interval, there are 30 inter-
vals, and the cumulative difference are large. In fact, 30.7% of the individuals
in the Mississippi cluster have a body mass index at least 30 kg/m2 and hence
are classified as obese whereas only 21.7% of the District of Columbia sample
is obese.
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It’s often difficult to judge whether a cluster analysis has successfully cre-
ated clusters that are meaningfully different. In this example, we are able to
do so by recalling that the motivation for analyzing body mass index is the
prevalent view in public health circles that body mass index is associated with
a number of chronic diseases (type 2 diabetes in particular). We may attempt
to confirm that position by returning to the analysis of diabetes prevalence
and incidence carried out in Chap. 7. In particular, we reconstructed Fig. 7.1
as Fig. 8.3 and identified cluster membership of states by color. States be-
longing to a particular cluster are usually near each other. Only the green
cluster is not in a well-defined region.

Fig. 8.3 Estimated
incidence and
prevalence of
diabetes. States
have been colored
according to their
membership in
one of five clusters
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8.5 The k-Means Algorithm

Our example of representative-based cluster analysis is the k-means algo-
rithm. Now the number of clusters is determined by the analyst. The al-
gorithm begins by randomly assigning the observation vectors in the data
set D = {x1, . . . ,xn} to k clusters. This initial set of clusters is denoted as
{A1, . . . , Ak}. Then, the centroids are computed for each cluster. Tradition-
ally, the centroids are the multivariate means of the observations belonging to
the cluster. The centroids represent the cluster in the calculation of distance
from observation to cluster.

The initial configuration is rarely satisfactory and so the bulk of compu-
tational effort is aimed at improving on it. The algorithm iterates between
two steps: assign every observation to the nearest cluster, then recompute, or
update the cluster centroids. If any observation is reassigned, that is, moved
out of its currently assigned cluster and into another, then the centroids of
the two clusters will change. Therefore, another iteration should take place.
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The algorithm continues iterating between the two steps until no further
reassignments are made. At that point, each observation belongs to the clus-
ter to which it is closest. Starting from the initial random configuration, the
within cluster sums-of-squares has been minimized. This is because the within
sums-of-squares is equivalent to the sum of the Euclidean distances between
observations and cluster centroids, and because moving any observation now
will increase the sum of Euclidean distances (and the within sums-of-squares).
It follows that the algorithm has reached a best possible assignment of ob-
servations to clusters and a best possible calculation of centroids.

The algorithm has considerable appeal because a popular objective func-
tion has been minimized by the algorithm (the within sums-of-squares). The
drawback of the algorithm is that the initial configuration is random. A dif-
ferent configuration will often lead to a different set of clusters. If the analyst
can begin with a selectively chosen initial configuration, then the algorithm
may produce more satisfactory clusters.

Let’s look at the details. The centroid of cluster Ai is the multivariate
mean

xi = n−1
i

∑

xj∈Ai

xj , (8.7)

where ni is the number of observations belonging to Ai and xj=[xj,1 · · · xj,h]T .
The number of attributes is h and the lth element of xi is

xi,l = n−1
i

∑

xj∈Ai

xj,l, (8.8)

for l = 1, . . . , h. The distance between xj ∈ D and Ai is defined to be the
distance between xj and the centroid of Ai, xi. Since xi = [xi,1 · · · xi,h]T ,
the squared Euclidean distance is

d2
E(xj ,xi) =

h
∑

l=1

(xj,l − xi,l)2. (8.9)

We may use the squared Euclidean distance in the determination of the near-
est centroid to xj instead of Euclidean distance since the ordering, nearest
to most distant, will be the same.

Upon completion of the initialization phase, the algorithm begins iterating
between two steps.

The first step iterates over the data set D and computes the squared Eu-
clidean distances between each xj ∈ D and each cluster centroid according
to Eq. (8.9). If an observation is found to be nearest to a different cluster
than its currently assigned cluster, then it is reassigned to the nearest clus-
ter. The second step updates the centroid of cluster Ai according Eq. (8.7).
Every cluster that has changed membership in the last iteration must have an
update computed to its centroid. That completes the two steps. If any obser-
vation has been reassigned, then another iteration commences. The algorithm
terminates when no further changes in membership occur.
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8.6 Tutorial: The k-Means Algorithm

We’ll continue with the exercise of grouping states with respect to body mass
index distribution of adult residents. The same data set of state body mass
index histograms is used and so this tutorial begins not with data preparation
but with programming the k-means algorithm. It’s assumed that histogram
representations of the body mass index have been computed in the course of
the previous tutorial and are stored in the dictionary histDict. The keys of
the dictionary are states7 and the values are lists containing the estimated
proportion of adult state residents with body mass indexes in the h = 30
intervals (12, 14], (14, 16], . . . , (70, 72].

We choose to create k = 6 clusters. Each observation is a state, as before.
The contents of the observation vector are the same but we’re changing the
notation to be consistent with the development of the k-means algorithm.
For the jth state, the estimated proportion of individuals in interval l is
xj,l, l = 1, 2, . . . , h.8 The vector of estimated proportions associated with
observation j is now denoted generically by

xj = [xj,1 · · · xj,h]T . (8.10)

For cluster Ai, the centroid is xi = [xi,1 · · · xi,h]T . The centroid is computed
using formula (8.7).

A note on programming the algorithm: the k-means algorithm is very fast
and so it may not an advantage to write computationally efficient code if it
requires a significant effort beyond writing simple and relatively slow code.
For example, the first step of every iteration updates the cluster centroids.
There are two ways to update the cluster centroids: recompute every centroid,
or update the centroids that need to be updated by computing the centroid
sum, subtracting from the sum the observation vectors that have been re-
moved from the cluster and adding to the sum the observation vectors that
have been added to the cluster. Then, divide by the number of observations
in the cluster. Which is best? It depends on the use of the algorithm. Saving a
few seconds of computation time is not worth an hour of programming time.
We will recompute all of the centroids.

The program consists of two primary blocks: reading the data and initial-
izing the clusters, and the k-means algorithm.

1. Load your pickle file containing the dictionary of state body mass index
histograms and store the contents of the file in a dictionary with the name
histDict.9

7 Recall from the tutorial of Sect. 8.4 that there are actually 54 geographic entities that
we are loosely referring to as state.
8 The previous notation for the estimated proportion of individuals in interval l and
observation j, was pj,l.
9 The pickle file was created in instruction 12 of the tutorial of Sect. 8.4.
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import numpy as np
import pickle
picklePath = ’../histDict.pkl’
histDict = pickle.load( open(picklePath, "rb" ) )
print(len(histDict))

2. Randomize the list of states so that the initial assignment of state to
cluster will be random. Use the Numpy function random.choice. The
essential arguments to be passed are a list from which to sample from
(we pass the keys of histDict), the number of units to sample (size =
n), and the type of sampling. Sampling must be without replacement so
that a state does not appear in more than one of the k lists of cluster
members.

k = 6
n = len(histDict)
randomizedNames = np.random.choice(list(histDict.keys()), size = n,

replace = False)

The call to randomize returns a random sample of size n without replace-
ment. The effect of this code segment is to randomly shuffle the order of
the states in randomizedNames.

3. Build a dictionary clusterDict that contains the assignments of state to
initial cluster. Use a for loop. The keys are computed as i mod k where
k = 6 is the number of clusters and i ∈ {0, 1, . . . , n − 1}. The dictionary
values are lists of states.

clusterDict = {}
for i, state in enumerate(randomizedNames):

clusterDict.setdefault(i%k,[]).append(state)
print(clusterDict)

The setdefault function was discussed in Sect. 4.6.2 and used in instruc-
tion 27 of Sect. 4.6.2. The enumerate function was described in instruc-
tion 32 of Sect. 4.6.2.

4. Write a function that will recompute a histogram for each cluster in
the cluster dictionary clusterDict. The histogram for each cluster is
computed by iterating over each state in the cluster and adding up the
estimated proportions in each histogram interval (Eq. (8.8)). We begin
creating a dictionary clusterHistDict to store the k cluster histograms.
Then, a for loop iterates over clusters and a second inner for loop iter-
ates over states belonging to clusters. The structure is
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h = 30
clusterHistDict = dict.fromkeys(clusterDict,[0]*h)
for a in clusterDict:

sumList = [0]*h
for state in clusterDict[a]:

print(a,state)

The list sumList will store the sum of estimated proportions for each
interval as the program iterates over members of the cluster.

5. Terms are added to sumList by zipping sumList with the state histogram
histDict[state]. Then, we use list comprehension to update sumList
with the data stored in histDict[state]. The last step is to divide the
sums by the number of states belonging to the cluster and store the list
in the cluster histogram dictionary.

for state in clusterDict[a]:
sumList = [(sumi + pmi) for sumi, pmi in

zip(sumList, histDict[state])]
na = len(clusterDict[a])
clusterHistDict[a] = [sumi/na for sumi in sumList]

This code segment executes within the for loop that iterates over
clusterDict and replaces the last two lines of instruction 4.

6. Turn the code that updates the cluster centroids stored in clusterHist
Dict into a function:

def clusterHistBuild(clusterDict, histDict):
...
return clusterHistDict

7. Move the function to the top of the script. Build the initial cluster cen-
troids by calling the function

clusterHistDict = clusterHistBuild(clusterDict,histDict)

This instruction immediately follows the construction of clusterDict
(instruction 3).

8. The next code segment is the start of the k-means algorithm iteration
phase. There are two steps to be executed. The first step reassigns an
observation (a state) to a different cluster if the state is closest to some
other cluster besides the cluster that it is currently assigned to. The sec-
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ond step updates the centroids stored in clusterHistDict if any states
have been reassigned. These steps are repeated until no state is reassigned
to a different cluster

A conditional structure using the while statement repeatedly executes
the code within the structure. Program flow breaks out of the structure
when the boolean variable repeat is false. The structure is so:

repeat = True
while repeat == True:

updateDict = {}
# Step 1:
...
# Step 2:
if clusterDict != updateDict:

clusterDict = updateDict.copy()
clusterHistDict = clusterHistBuild(clusterDict,histDict)

else:
repeat = False

The dictionary updateDict contains the updated clusters. It has the same
structure as clusterDict and so there are k key-value pairs. A key is a
cluster index (i = 1, 2, . . . , k) and the value is a list of member states. It’s
built by determining the nearest cluster to each state and assigning the
state to the nearest cluster.

If clusterDict is not equal to updateDict then at least one state
has been reassigned to a different cluster. If this is the case, then we
update the cluster dictionary clusterDict and the dictionary of cluster
histograms clusterHistDict. If clusterDict is equal to updateDict,
then the algorithm is complete and program flow is directed to the next
statement following the conditional structure.

We must use the .copy() function when assigning the contents of
updateDict to clusterDict. If we set clusterDict = updateDict,
then the two objects will henceforth use same memory address. Any
change to one dictionary immediately makes the same change to the
other. Using .copy() writes the values of updateDict into the memory
location of clusterDict. The dictionaries contain the same values but
are different objects. A change to one has no effect on the other.

Step 2 is in place.
9. Let’s program step 1. This code segment executes after updateDict is

initialized and replaces the placeholder ... in instruction 8. Its purpose
is to build updateDict. Iterate over states, find the nearest cluster to a
state, and assign the state to that nearest cluster.
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for state in histDict:
mnD = 2 # Initialize the nearest state-to-cluster distance.
stateHist = histDict[state]
for a in clusterDict:

clusterHist = clusterHistDict[a]
abD = sum([(pai-pbi)**2 for pai,pbi in zip(stateHist,

clusterHist)])
if abD < mnD:

nearestCluster = a
mnD = abD

updateDict.setdefault(nearestCluster,[]).append(state)

We initialize the nearest distance to be mn = 2 since the distance between
clusters cannot be larger than 2 (see exercise 8.1).

10. After the else branch (instruction 8), print out the current assignments
of states to clusters.

for a in updateDict:
print(’Cluster =’,a,’ Size = ’,len(updateDict[a]),updateDict[a])

This for statement should be aligned with the if and else keywords.
11. Plot the k histograms. The code below is only slightly different than that

used to plot the cluster histograms in the tutorial of Sect. 3.6.

import matplotlib.pyplot as plt

nIntervals = 30
intervals = [(12+2*i,12+2*(i+1)) for i in range(nIntervals) ]

x = [np.mean(pair) for pair in intervals][:19]
for name in clusterDict:

print(name )
y = clusterHistDict[name][:19]

plt.plot(x, y)
plt.legend([str(label) for label in range(6)], loc=’upper right’)
plt.show()

12. Recall that the initial configuration is random and so the final output
may differ if the algorithm executes more than once. To gain some insight
into the effect of the initial configuration, execute the code that begins
with the random assignment of names to clusters and ends with con-
structing the figure several times. Try a few values of k, say k ∈ {4, 5, 6}.
You should observe that a few associations of states are formed with
regularity.
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8.6.1 Synopsis

The k-means algorithm has the desirable property of always producing the
same number of clusters but it also has the unfortunate property of not be-
ing deterministic in the sense that the initial random cluster configuration
usually affects the final configuration. Having been introduced to two com-
pleting methods of cluster analysis, hierarchical agglomerative and k-means
algorithms, we are faced with a decision: which to use?

Generally, when choosing one method from among a set of candidate meth-
ods that may be used accomplish an analytical objective, we strive to evaluate
the candidate methods with respect to the theoretical foundations motivating
the methods.10 The k-means algorithm is an example of a method that can
be motivated as the solution to a compelling minimization problem [2].

Suppose that we set out to form clusters so that the members are as close as
possible to their centers. To make the objective more concrete, we define the
within-cluster sums of squares associated with a particular set of assignments
of observations to clusters, call it C, as

S(C) =
k
∑

i=1

ni
∑

j=1
||xi,j − xi||2, (8.11)

where xi = n−1
i

∑

j xi,j is the vector of means computed from the ni members
of cluster i, for i = 1, . . . , k, and ||y|| = (yTy)1/2 is the Euclidean norm of
the vector y.

Given a particular initial configuration, the k-means algorithm will pro-
duce a rearrangement C that minimizes the within sums-of-squares. A so-
lution C∗ (i.e., an arrangement of observations into clusters) found by the
k-means algorithm does not necessarily achieve the global minimum of S(·)
over all possible configurations. The global minimum is the smallest value of
the within sums-of-squares over every possible arrangement of states into
k clusters. However, the algorithm may be executed repeatedly using N
different initial configurations. A best solution may be selected as the so-
lution that yielded the smallest value of S(C) among the set of solutions
S(C1), . . . , S(CN ).

There’s a variety of variations on the k-means algorithm. For example, the
k-medoids algorithm uses observation vectors as cluster centers. A somewhat
more complex algorithm with a solid foundation in statistical theory does not
assign observations to clusters but instead estimates the probability of cluster
membership of every observation in each cluster. Adopting this probabilistic
modeling approach leads to the finite mixtures model and an EM algorithm
solution [39].

10 Other criteria are usually considered and may outweigh theoretical considerations.
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8.7 Exercises

8.7.1 Conceptual

8.1. In the Sect. 8.4 tutorial, we set the initial minimum distance between
clusters to be 2 (instruction 15). Prove the maximum distance between any
two clusters is no more than 2, thereby insuring that the final minimum
distance will not be 2. Specifically, prove that

∑

i

|ai − bi| ≤ 2, (8.12)

where
∑

ai =
∑

i bi = 1.

8.2. For a particular configuration C of observations to clusters, show that
the sample mean vectors xi = n−1

i

∑

j xij minimize S(C). Begin with the
objective function

S(C) =
k
∑

i=1

ni
∑

j=1
||xij − μi||2. (8.13)

Determine the vector μ̂i that minimizes S(C) with respect to μi. Argue that
if μ̂i minimizes

∑ni

j=1 ||xij − μi||2, then μ̂1, . . . , μ̂k minimize S(C).

8.7.2 Computational

8.3. Change the k-means algorithm so that the distance between state his-
tograms and the cluster centroid is computed using the city-block (or L1)
metric instead of the Euclidean (or L2) metric. After finding a set of clus-
ters using the Euclidean metric, run the algorithm again using the city-block
metric. Use the final configuration from the Euclidean metric as the initial
configuration for the city-block metric. How often does a change in metric
result in a different arrangement?

8.4. Return to the tutorial of Sect. 8.4 and modify the program so that the
inter-cluster distance between clusters A and B is computed according to

a. The smallest distance between any xi ∈ A and any xj ∈ B, say,

dmin(A, B) = min
xi∈A,xj∈B

dc(xi,xj)

b. The largest distance between any xi ∈ A and any xj ∈ B, say,

dmax(A, B) = max
xi∈A,xj∈B

dc(xi,xj)



8.7 Exercises 275

c. The average distance between xi ∈ A and xj ∈ B, say,

dmean(A, B) = (nAnB)−1
∑

xi∈A,xj∈B

dc(xi,xj)

Each one of these variants has a name [29]: single linkage (a), complete
linkage (b), and average linkage (c). The metric programmed in Sect. 8.4
is known as centroid linkage.

8.5. Use the hierarchical agglomerative algorithm to build k = 6 clusters. Use
these clusters as the initial configuration to the k-means algorithm. Compare
the initial and final configurations.
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Predictive Analytics



Chapter 9
k-Nearest Neighbor Prediction Functions

Abstract The purpose of the k-nearest neighbor prediction function is to
predict a target variable from a predictor vector. Commonly, the target is
a categorical variable, a label identifying the group from which the observa-
tion was drawn. The analyst has no knowledge of the membership label but
does have the information coded in the attributes of the predictor vector.
The predictor vector and the k-nearest neighbor prediction function gener-
ate a prediction of membership. In addition to qualitative attributes, the
k-nearest neighbor prediction function may be used to predict quantitative
target variables. The k-nearest-neighbor prediction functions are conceptually
and computationally simple and often rival far more sophisticated prediction
functions with respect to accuracy. The functions are nonparametric in the
sense that the mathematical basis supporting the prediction functions is not
a model. Instead the k-nearest neighbor prediction function utilizes a set of
training observations on target and predictor vector pairs and, in essence
examines the target values of the training observations nearest to the target.
If the target variable is a group membership label, the target is predicted to
be to the most common label among the nearest neighbors. If the target is
quantitative, then the prediction is an average of the target values associated
with the nearest neighbors.

9.1 Introduction

A common problem in data science is to identify the group or class member-
ship of an observational unit using a set of attributes measured on the unit.
For example, most email clients (programs that handle incoming email) direct
email messages to folders with labels similar to primary, social, promotions,
and spam. It’s desirable that messages that are sent en mass to large num-
bers of recipients are quarantined or rejected. These messages are sometimes
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referred to using the pejorative spam and the content of these messages is
often advertisements. Sometimes malware or links to sites that host malware
are embedded in the messages. Therefore, the client takes on the task of
labeling messages as spam or ham (ham is not spam). But when an email
message is received, there are no definitive attributes that identify a message
as spam and the client must use a predictive function for the assignment of
spam or ham labels to the incoming messages.

An algorithm for classifying email messages extracts information about a
message such as the presence of specific words and characters and the length
of the longest run of capitalized letters. This information is encapsulated in
a vector of predictor attributes that is passed to a prediction function. The
prediction function returns a prediction of the message type, and it will be
one of spam or ham, or perhaps one of primary, social, promotions, or spam.
Before the prediction function is put into use, an assessment of the func-
tion’s accuracy is valuable if not essential. There are a wide variety of predic-
tion functions and several methods for assessing the accuracy of a prediction
function. Collectively, the subject of prediction and accuracy assessment is
referred to as predictive analytics.1 Problems in which the target variable
identifies membership in a group are sometimes referred to as classification
problems.

This chapter discusses the first of two types of prediction functions pre-
sented in this text, the k-nearest-neighbor prediction functions. The k-nearest
neighbor prediction functions are simple conceptually and mathematically yet
are often quite accurate. Their drawback is that the computational demand
of using a k-nearest-neighbor prediction function may be impractically great.
We also discuss accuracy assessment, an essential part of predictive analytics
in this chapter.

9.1.1 The Prediction Task

Our discussion of k-nearest neighbor prediction functions begins with the
prediction task. For now, suppose that the target variable is qualitative, or
categorical, and that it identifies the membership of an observational unit in
one of g possible groups. Section 9.8 discusses the use of k-nearest neighbor
prediction functions for predicting quantitative target variables.

A k-nearest neighbor prediction function will use a set of observation pairs
D = {(y1,x1), . . . , (yn,xn)} for which all of the target values y1, . . . , yn have
been observed. A target observation is a pair (y0,x0) for which the label y0
is missing (or at least is to be predicted) and x0 has been observed. The

1 Predictive analytics is used as a term primarily in data science. Statistics and computer
science have their own names, predominantly, statistical learning and machine learning,
respectively.
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elementary version of the k-nearest neighbor prediction function for classi-
fication problems operates by determining the k most similar observations
to (y0,x0) among the training set based on the distances between x0 and
x1, . . . ,xn. The prediction of y0 is the most common label among the most
similar observations. These k most similar observations are the k-nearest
neighbors. In the case that the target variables are quantitative, the elemen-
tary k-nearest neighbor regression function predicts y0 to be the mean of the
k-nearest neighbor target values.

A simple example is provided by the crabs data set [9, 64] from the R
MASS library. Figure 9.1 shows that the two color forms of the crab species
Leptograpsus variegatus can be imperfectly separated on the basis of carapace
length and frontal lobe size. The graphed line is a boundary between the two
color forms determined by trial and error. The boundary may be used to
build a prediction function that predicts a crab of unknown color form to be
blue or red depending on whether its frontal lobe size and carapace length
locate it above or below the line.

Fig. 9.1 Observations on
carapace length and frontal
lobe size measured on two
color forms of the species
Leptograpsus variegatus.
n = 100
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Alternatively, a five-nearest neighbor prediction function predicts the color
form by determining the five nearest neighbors to (y0,x0) and then the most
common color among the neighbors. For most of the blue form data pairs,
the majority of the nearest five neighbors are also blue. For the majority
of the near neighbors of the orange form with frontal lobe size greater than 15,
the near neighbors of the orange form are also orange. When frontal lobe size
is less than 14 mm, the five nearest neighbors are often predominantly blue,
and so the five-nearest neighbor prediction function will tend to incorrectly
assign membership to orange crabs with frontal lobe size less than 14 mm.

In this example, it appears that the ad hoc boundary line prediction func-
tion will be about as accurate as the five-nearest neighbor function. If there
were another morphological attribute, then determining the boundary be-
comes more difficult.2 If there were more than three morphological attributes,
then determining the boundary by trail and error is impractical and we will
have to resort to a nontrival mathematical solution. The computational de-
mand of a five-nearest neighbor prediction function changes very little as
more attributes are brought to bear on the prediction problem.

2 The boundary would be a plane.
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9.2 Notation and Terminology

An observation pair with an unknown target value y0 is denoted by z0 =
(y0,x0). The p-length predictor vector x0 = [x0,1 · · · x0,p]T has been ob-
served and will be used to predict y0 via a prediction function. The prediction
function f(·|D) is built from, or trained on, the data set D = {z1, z2, . . . , zn}.
The conditional notation in the expression f(·|D) emphasizes the role of the
training set in fitting the predictive function. In this discussion, D is referred
to as the training set, and so zi = (yi,xi) is the ith training observation. For
all pairs zi ∈ D, yi and xi are known. A prediction of y0 is denoted as
ŷ0 = f(x0|D). For example, if the targets are quantitative, we may consider
using the linear regression prediction function f(x0|D) = xT

0
̂β. The predic-

tion function often does not have a simple closed form as just shown and
f(·|D) is more transparently described as a (multi-step) algorithm that takes
x0 as an input and outputs ŷ0.

If the target variable is qualitative, then it is assumed herein that targets
are labels that identify group or subpopulation membership. The number of
possible groups is g, and for convenience, the set of labels is {0, 1, . . . , g − 1}.
Given the predictor vector x0, the probability that z0 is a member of group
j is expressed as Pr(y0 = j|x0). Every unit belongs to exactly one of the g

groups and so
∑g−1

j=0 Pr(y0 = j|x0) = 1.
It’s convenient to use indicator functions to identify group membership.

The indicator of membership in group j is defined to be

Ij(y) =
{

1, if y = j,
0, if y �= j,

where y ∈ R, though usually y is an actual or predicted group label. Without
the predictor vectors as a source of information, the probability of member-
ship in group j routinely is estimated by the sample proportion of training
observations belonging to group j. The sample proportion can be expressed
using indicator functions:

̂Pr(y0 = j) = n−1
n
∑

i=1
Ij(yi).

If we were to predict group membership without knowledge of the predictor
vectors, and we train f(·|D) by maximizing its accuracy when applied to the
training observations, then every unlabeled unit would be predicted to be a
member of the group with the largest sample proportion.3 The accuracy of
this trivial prediction function is a baseline against which the accuracy of
more complex prediction functions may be compared. This baseline is similar
3 We’re assuming that accuracy of the prediction function is estimated by applying the
prediction function to the training observations and computing the proportion of correct
predictions.
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in spirit to the baseline fitted model μ̂i = y, for i = 1, . . . , n, used in the
linear regression measure of fit R2

adjusted.
If the predictor vectors x1,. . .,xn are informative, then the baseline accu-

racy can be improved upon by examining the target values associated with
training vectors that are similar to x0. This is the k-nearest-neighbor idea.
More concretely, only the training observations that are in a neighborhood
of x0 are to be used for prediction. Supposing the targets are group labels,
then the unlabeled unit z0 would then be predicted to belong to the most
commonly occurring group in the neighborhood. The neighborhood and its
members are determined by the distances between x0 and x1, . . . ,xn.

The distances between the predictor vector x0 and x1, . . . ,xn are denoted
as d(x0,x1), d(x0,x2), . . . , d(x0,xn). We determine the order of these dis-
tances from smallest to largest and arrange the training set in the same
order. Mathematically, the ordered training set is an n-tuple4

(z[1], z[2], . . . , z[n]), (9.1)

where z[k] = (y[k],x[k]). The square bracket notation identifies x[1] as the
nearest predictor vector to x0, and x[2] as second-nearest to x0, and so on.
The label, or target value, of the nearest neighbor z[1] is denoted as y[1], the
target value of the second nearest neighbor z[2] is y[2], and so on.

9.3 Distance Metrics

Euclidean and Manhattan metrics are commonly used to compute dis-
tances between predictor vectors. To produce sensible results both met-
rics require that all of the attributes comprising the predictor vector are
quantitative. If this condition is met, then the Euclidean distance between
xi = [xi,1 · · · xi,p]T and x0 = [x0,1 · · · x0,p]T is

dE(xi,x0) =
[

∑p
j=1(xi,j − x0,j)2

]1/2
.

If the predictor variables differ substantially with respect to variability, then
it is often beneficial to scale each variable by the sample standard deviation
of the variable. Without scaling, the squared differences (xi,j − x0,j)2, j =
1, . . . , p will tend to be largest for the variable with the largest variance.
Consequently, the variable with the largest variability will have the greatest
influence toward determining the distance between xi and x0 regardless of
the information content of the variable toward prediction. It’s desirable to

4 A point in the R
2 is a two-tuple, otherwise known as a pair.
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carry out scaling at the same time as the distance is computed. With scaling,
the distance metric becomes

dS(xi,x0) =

⎡

⎣

p
∑

j=1

(

xi,j − x0,j

sj

)2
⎤

⎦

1/2

,

where sj is the estimated standard deviation of the jth predictor variable.
The sample variance, from which sj is computed, is

s2j = (n − g)−1
g
∑

k=1

n
∑

i=1
Ik(yi)(xi,j − xj,k)2, (9.2)

where xj,k is the sample mean of attribute j computed from observations
belonging to group k. The presence of the term Ik(yi) insures that only
observations belonging to group k contribute to the inner sum. In statistics,
s2j is known as the pooled sample variance.

The Manhattan or city-block distance between xi and x0 is

dC(xi,x0) =
p
∑

j=1
|xi,j − x0,j |.

Scaling may be employed with city-block distance. In most applications of
the k-nearest neighbor prediction functions, selecting a best neighborhood
size k is more important than selecting a best distance metric since different
metrics often result in similar orderings and neighborhood sets.

If a predictor variable consists of p qualitative variables, then Hamming
distance is a useful metric for comparing x0 and xi. The Hamming distance
between x0 and xi is the number of the p attributes comprising x0 and xi

are not the same. The distance is computed according to

dH(xi,x0) = p −
p
∑

j=1
Ixi,j

(x0,j). (9.3)

Note that Ixi,j
(x0,j) is 1 if xi,j = x0,j , and 0 otherwise, and so the sum in

Eq. (9.3) counts the number of attributes, or positions, in which x0 and xi

contain the same values. Since there are p total attributes, p−
∑p

j=1 Ixi,j
(x0,j)

is the number of positions that do not match.

9.4 The k-Nearest Neighbor Prediction Function

Assume for now that y0 is a group label. The k-nearest neighbor prediction of
y0 is constructed by determining a neighborhood of k training observations
nearest to x0. Then, the proportion of the k neighbors that belong to group
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j is computed and y0 is predicted to be the group with the largest proportion
of neighbors. This prediction rule is equivalent to predicting z0 to belong to
the most common group among the k nearest neighbors.

To develop the prediction function formally, the estimated probability of
membership in group j is defined to be the proportion of group j members
among the k nearest neighbors:

̂Pr(y0 = j|x0) = nj

k
, j = 1, . . . , g,

where nj is the number of the k-nearest neighbors that belong to group j. An
expression for ̂Pr(y0 = j|x0) in terms of indicator variables will be helpful in
the next section:

̂Pr(y0 = j|x0) = k−1
k
∑

i=1
Ij(y[i]). (9.4)

The estimated probabilities of membership are collected as a vector

p̂0
g×1

=
[

̂Pr(y0 = 1|x0) · · · ̂Pr(y0 = g|x0)
]T

.

The final stage of computing the prediction determines the largest value in p̂0.
The arg max(·) function determines which element of p̂0 is largest. Suppose
that w = [w1 · · · wg]T . Then, arg max(w) is the index of the largest
element in w. For example, if w = [0 0 1]T , then arg max(w) = 3. Thus,
the k-nearest-neighbor prediction function is

f(x0|D) = arg max (p̂0) . (9.5)

If the maximum estimated probability is common to two or more groups,
then the Numpy function argmax returns the index of first occurrence of the
maximum value in the vector. Testing for and breaking ties requires a little
effort. The tie can be broken randomly or by increasing the neighborhood
size by one additional neighbor and recomputing p̂0 until the tie is broken.
We’ll avoid ties entirely by using a variant of the conventional k-nearest-
neighbor function (Sect. 9.5) that does not produce ties among the probability
estimates.

A computationally efficient algorithm for k-nearest neighbor prediction
consists of two functions. The first function computes the complete ordered
arrangement yo = (y[1], y[2], . . . , y[n]) from the inputs x0,x1, . . . ,xn. The sec-
ond function computes the elements of p̂ according to Eq. (9.4) and using the
first k terms of yo. However, the complete arrangement yo is useful if several
k-nearest-neighbor functions are used at once, for example, in a search for a
best k, or if there’s a tie among the largest estimated probabilities of group
membership. Since the first function returns the ordered arrangement, there’s
no need to compute and sort the distances more than once. Computation-
ally, the first function is expensive time-wise because of the sort operation.
In comparison, the second function is very fast.



286 9 k-Nearest Neighbor Prediction Functions

9.5 Exponentially Weighted k-Nearest Neighbors

The conventional k-nearest neighbor prediction function can be improved
modestly with respect to accuracy and programming effort. The idea is to
use all of the neighbors of a target rather than only the nearest k neigh-
bors. Each neighbor is assigned a measure of importance, or weight towards
determining f(x0|D), according to its relative distance to x0. The nearest
neighbor receives the largest weight and the weights decay toward zero as we
move toward more distant neighbors.

We begin by generalizing the estimator defined in formula (9.4) as a
weighted sum over all n neighbors. The weights are

wi =
{

1/k, if i ≤ k
0, if i > k,

(9.6)

for i = 1, . . . , n. Then, an alternative expression for the estimator of the
probability of membership in group j is

̂Pr(y0 = j|x0) =
n
∑

i=1
wiIj(y[i]). (9.7)

In formula (9.7), the weights are equal to 1/k for the first k neighbors and
then are equal to zero for the rest of the neighbors. It’s difficult to justify
the weighting scheme—why should the information content drop abruptly to
0 at a boundary between zk and zk+1? A more plausible scenario is that
information content decreases with each successively more distant neighbor.
These considerations suggest that the weights in formula (9.7) ought to be
replaced with a set of weights that decay smoothly as k increases. Therefore,
let’s replace the weights of formula (9.6) by weights that decay exponentially.

The exponentially weighted k-nearest neighbor prediction function esti-
mates the probability of membership using formula (9.7) with a different
set of weights w1, . . . , wn derived from theoretical considerations [58]. In the
conventional k-nearest-neighbor function, the influence of neighbors is con-
trolled through the choice of the neighborhood size k. With the exponentially
weighted k-nearest neighbor prediction function, the influence of neighbors
is controlled through the choice of a tuning constant α, a number bounded
by zero and one. The weights are a function of α defined by

wi = α(1 − α)i−1, i = 1, 2, . . . , n, (9.8)

for 0 < α < 1. The sum of the weights is approximately 1 provided that n is
large (exercise 9.1). The left panel of Fig. 9.2 shows the weights correspond-
ing to the conventional k-nearest neighbor prediction functions for k equal
to 3, 5, 10, and 20. The right panel shows similar weights for the exponen-
tially weighted k-nearest neighbor prediction functions. Specifically, we show
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weights for α equal to .333, .2, .1, and .05, (the reciprocals of k ∈ {3, 5, 10, 20})
and corresponding to weighting schemes one through four, respectively. Large
values of α place more weight on the nearest neighbors and produce weights
that decay rapidly to zero whereas the rate of decay is slower for smaller
values of α.

Fig. 9.2 Weights
assigned to
neighbors
by the con-
ventional
k-nearest
neighbor and
exponentially-
weighted
k-nearest
neighbor
prediction
functions. See
the text for
details
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Choosing α is sometimes easier if one keeps in mind that the nearest
neighbor receives weight α. For instance, α = .2 implies that the nearest
neighbor receives the same weight as a conventional five-nearest neighbor
prediction function since α = .2 = 1/5.

9.6 Tutorial: Digit Recognition

The Kaggle [32] competition Digit Recognizer provides an interesting data set
for k-nearest-neighbor prediction. The data were donated in a competition
to correctly label optically-scanned handwritten digits. For details, navigate
to the website https://www.kaggle.com/c/digit-recognizer. The data consist
of 42,000 digitized images of digits, one record per image. Accordingly, the
group label of a particular optical image must be one of the set {0, 1, . . . , 9}.
The predictor vector extracted from an optical image consists of darkness
intensity5 measured on each of the 28×28 = 748 pixels comprising the optical
image. The prediction problem is to use the vector of 748 darkness values
obtained from an unlabeled image and correctly predict the handwritten
digit.

5 Darkness is recorded on a scale of 0–255.

https://www.kaggle.com/c/digit-recognizer
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The tutorial guides the reader through the programming of a Python
script that will estimate the accuracy of the conventional and exponentially
weighted k-nearest neighbor prediction functions for the task posed above.
Our approach to accuracy estimation is to draw a subset R from the data
set D and use it to build a conventional k-nearest-neighbor prediction func-
tion and an exponentially weighted k-nearest-neighbor prediction function.
A second subset E, disjoint from R, is drawn to evaluate the accuracy of
the prediction functions. The subsets R and E are referred to as the training
and test sets, respectively. We estimate accuracy by obtaining a prediction
ŷi = f(xi|R) from each observation zi ∈ E. A comparison of the predicted
and actual labels yields the proportion of correct predictions. Insuring that
the training and test sets are disjoint is important because using training ob-
servations to evaluate the accuracy of a prediction function poses a significant
risk of overestimating accuracy.

But more can be done with the results than computing the propor-
tion of correctly labeled test observations. The result of a prediction, say,
ŷi = f(xi|R) may be one of g = 10 values, as may be the actual value.
Thus, there are 10 × 10 possible combinations of outcomes. It may be that
some digits are more frequently confused than others. For instance, 3 and
8 might be confused more often than 1 and 8. To extract some information
on the types of errors that are most likely, we’ll cross-classify the predic-
tions against the actual target labels by tabulating the number of times that
each combination is observed. The table containing the cross-classification
of actual and predicted target values is called the confusion matrix. Let’s
suppose that a prediction is computed for z0 and that the actual label of y0
is j and the predicted label is h. Then, the count in row j and column h
will be incremented by one. After processing a reasonably large number of
test observations, we’ll have an understanding of the type of errors incurred
by the prediction function. A convenient way of determining the number of
correctly classified test observations is to compute the sum of the diagonal
elements of the confusion matrix. Since every test observation is classified
once, the accuracy is estimated by the sum of the diagonal divided by the
sum over the entire table.

Section 9.7 goes into greater depth on the subject of accuracy assessment.
In the tutorial, we’ll build a three-dimensional array consisting of two back-
to-back g ×g confusion matrices, one for the conventional k-nearest-neighbor
prediction function and the second for the exponentially weighted k-nearest-
neighbor prediction function. The label pairs {(yi, ŷi)|zi ∈ E} provide the
data that fills the confusion matrix.

The data set is large by conventional standards with 42,000 observations
and consequently, execution time is slow for the k-nearest neighbor prediction
functions. To speed development and testing of the Python code, the tutorial
does not use all of the observations in D.

The principal four steps of the tutorial are as follows.

1. Create training and test sets. The prediction functions will be constructed
from, or trained on, the training set R and tested on the test set E.
The formation of R and E is accomplished by systematically sampling
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the Kaggle training set, train.csv. Though train.csv is small enough
(66 MB) that in-memory storage is feasible, the tutorial instructs the
reader to process the file one record at a time. In any case, the first task
is to draw training and test sets of nR = 4200 and nE = 420 observations
respectively from the data set.

2. Construct a function forder that will determine the neighbors of z0 ∈ E,
ordered with respect to the distance between x0 and x1, . . . ,xnR

. The
function will return the ordered labels of the neighbors. More formally, the
function will compute an ordered arrangement of the training observation
labels yo = (y[1], . . . , y[nR]), hence, yo = forder(x0|R).

3. Write a function fpred that computes two predictions of y0 from yo us-
ing the conventional and exponentially weighted k-nearest-neighbor pre-
diction functions, respectively. The three arguments passed to fpred are
yo, the neighborhood size k, and the vector of weights w = [w1 · · · wnR

]T
defined by Eq. (9.8). The weight vector determines the exponentially
weighted k-nearest-neighbor function in the same way that k determines
the conventional k-nearest-neighbor function.

4. Fill the confusion matrix with the outcome pairs {(yi, ŷi)|zi ∈ E}. To
do so, every test observation zi = (yi,xi) ∈ E will be cross-classified
according to its actual (yi) and predicted label (ŷi). Accuracy estimates
for the two prediction functions will be computed from the matrix.

Detailed instructions follow.

1. Download train.csv from https://www.kaggle.com/c/digit-recognizer.
The file is rectangular in the sense that aside from the first record con-
taining the variable names, each record has the same number of attribute
values. There are 748 = 282 attributes, each of which is a measurement of
darkness for one pixel in a 28× 28 field. Attributes are comma-delimited.

2. Initialize dictionaries R and E to store the training and test sets, respec-
tively. Read the data file one record at a time. The first record contains
the column names. Extract that record using the readline attribute of
f before iterating over the remainder of the file. Print the variable names.
Iterate over the file and print the record counter i.

import sys
import numpy as np
R = {}
E = {}
path = ’../train.csv’
with open(path, encoding = "utf-8") as f:

variables = f.readline().split(’,’)
print(variables)
for i, string in enumerate(f):

print(i)

On each iteration, i is incremented by using the enumerate function.

https://www.kaggle.com/c/digit-recognizer
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3. As the file is processed, build the dictionaries R and E. The dictionary
keys are record counters, or indexes, and the dictionary values will be
pairs consisting of a target value y and a predictor vector x

748×1
. Store x

as a list.
Add observation pairs to the training dictionary whenever the count

of processed records is a multiple of 10. Add pairs to the test dictionary
whenever i mod 100 = 1. None of the training pairs will be included in
the test set.

if i%10 == 0:
record = string.split(’,’)
y = int(record[0])
x = [int(record[j]) for j in np.arange(1, 785)]
R[i] = (y, x)

if i%100 == 1:
record = string.split(’,’)
y = int(record[0])
x = [int(record[j]) for j in np.arange(1, 785)]
E[i] = (y, x)

Note that the first element in record identifies the digit and therefore is
the target value of the ith observation. This code segment must execute
every time that a record is read.

4. Initialize an array confusionArray to store the results of predicting the
test targets using the conventional and exponentially weighted k-nearest-
neighbor prediction functions. Since there are two prediction functions
(conventional and exponentially weighted k-nearest-neighbor prediction
functions), we need two 10 × 10 confusion matrices to count the occur-
rences of each combination. It’s convenient use one three-dimensional
array to store the two confusion matrices as side-by-side 10 × 10 arrays.

Initialize the constants and the storage array for the confusion matri-
ces.

p = 748 # Number of attributes.
nGroups = 10

confusionArray = np.zeros(shape = (nGroups, nGroups, 2))
acc = [0]*2 # Contains the proportion of correct predictions.

The code segment executes upon completion of building the dictionaries
R and E.

5. Create an nR-element list containing the labels of the training observa-
tions.
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labels = [R[i][0] for i in R]

6. Set the neighborhood size k and smoothing constant α. Construct the nR-
element list of weights for the exponentially weighted k-nearest-neighbor
prediction function.

nR = len(R)
k = 5
alpha = 1/k
wts = [alpha*(1 - alpha)**i for i in range(nR)]

Check that
∑

i wi = 1 by summing the elements of wts.
7. The program flow for the prediction task is shown in the next code seg-

ment. We iterate over the observation pairs in the test set E and extract
a predictor vector and label on each iteration. Each predictor vector (x0)
is passed with the training set R to the function fOrder. The function
fOrder returns the ordered training labels yo as a list named nhbrs. The
list nhbrs is passed to fPredict to compute predictions ŷconv and ŷexp
using the conventional and exponentially weighted k-nearest-neighbor
prediction functions, respectively. The function fPredict returns a two-
element list yhats containing ŷconv and ŷexp. The for loop indexed by
j updates the confusion matrices and computes the estimated accuracy
rates as the proportion of correctly classified test observations.

yhats = [0]*2
for index in E:

y0, x0 = E[index]

#nhbrs = fOrder(R,x0)
#yhats = fPredict(k,wts,nhbrs)
for j in range(2): # Store the results of the prediction.

confusionArray[y0,yhats[j],j] += 1
acc[j] = sum(np.diag(confusionArray[:,:,j]))

/sum(sum(confusionArray[:,:,j]))
print(round(acc[0],3),’ ’,round(acc[1],3))

In the segment code above, accuracy is estimated after each test observa-
tion is processed as a means of tracing the execution of the program. The
functions fOrder and fPredict do not exist at this point, of course. In-
troduce the code segment into your script. To test the code, temporarily
set yhats = [y0, y0]. Execute the script and verify that acc contains
1.0 in both positions.
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8. It remains to implement the k-nearest-neighbor prediction function. It’s
best to implement the code not as a function, but in the main program
because variables computed inside functions are local and cannot be refer-
enced outside the function. When you’re satisfied that the code is correct,
then move the code to a function outside of the loop.

The first function to program is fOrder. Code it within the for loop
that iterates over the test set E. Its purpose is to create the ordered vector
of labels yo from a test vector x0 and the training set R. Ordering is
determined by the distances of each training vector to x0. We’ll compute
the distances in a for loop that iterates over R. On each iteration of
the for loop, compute the distance between x0 and xi ∈ R. Save the
distances in a list named d:

d = [0]*len(R)
for i, key in enumerate(R):

xi = R[key][1] # The ith predictor vector.
d[i] = sum([abs(x0j - xij) for x0j, xij in zip(x0,xi)])

The distance d[i] is computed by zipping the vectors x0 and xi together.
Using list comprehension, we iterate over the zip object and build a list
containing the absolute differences |x0,j − xi,j |, for j = 1, . . . , p. The last
operation computes the sum of the list.

9. Compute a vector v that will sort the distances from smallest to largest.
That is, it is a vector of indexes such that

d[v[0]] ≤ d[v[1]] ≤ d[v[2]] ≤ · · · .

The vector v will also sort the vector of training observation labels so
that the label of the nearest observation is labels[v[0]], the label of
the second nearest observation is labels[v[1]] and so on. The Numpy
function argsort computes v from d. Using v, list comprehension is used
to compute the ordered neighbors yo, or nhbrs.

v = np.argsort(d)
nhbrs = [labels[j] for j in v] # Create a sorted list of labels.

This code segment executes after d has been filled.
10. Test the code by printing the labels of the k-nearest neighbors and the

label y0. There should be good agreement—for most test observations
the majority of neighbors should have the same group label as y0.

11. When the code appears to function correctly, move the fOrder function
outside of the for loop. This function computes the distances between x0
and xi ∈ R and the ordering vector v. Lastly, it arranges the neighbors
according to the distances (instructions 8 and 9). The definition and
return statements are
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def fOrder(R,x0):
...
return nhbrs

The function call is

nhbrs = fOrder(R,x0)

12. Move the code described in instructions 8 and 9 to the function definition.
Call the function instead of executing the code in the main program.
Check that the nearest k neighbors usually match the target y0.

The function fOrder will be used again in the tutorial of Sect. 9.9.
13. The next step is to determine which group is most common among the

k-nearest neighbors. This task will be performed by the function fPred.
As with fOrder, write the code in place. When it works, move it out of
the main program and into a function.

Begin with the conventional k-nearest-neighbor prediction of y0. Ini-
tialize a list of length g to store the number of the k-nearest neighbors
that belong to each of the g groups. Count the number of nearest neigh-
bors belonging to each group:

counts = [0]*nGroups
for nhbr in nhbrs[:k]:

counts[nhbr] += 1

Since nhbr is a group label, and either 0, 1, . . . , 8 or 9, the statement
counts[nhbr] += 1 increments the count of the k-nearest neighbors be-
longing to the group membership of the neighbor.

14. The exponentially weighted k-nearest-neighbor prediction function esti-
mates the group membership probabilities ̂Pr(y0 = j|x0) for each group
j ∈ {0, . . . , g − 1}. The calculation is described by Eq. (9.7), and it uses
the list of weights wts computed in instruction 6. Iterate over the nR

neighbors of z0 using i as an index. Accumulate the weights for each
group by adding wi to the group to which z[i] belongs.

Use the for loop coded in instruction 13 but iterate over all of the
neighbors instead of ending with the kth neighbor. The code segment is
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counts = [0]*nGroups
probs = [0]*nGroups
for i, nhbr in enumerate(nhbrs): # Iterate over all neighbors.

if i < k:
counts[nhbr] += 1

probs[nhbr] += wts[i] # Increment the probability of
# membership in the nhbr’s group.

Execute the code and print probs and the sum of probs as each test
observation is processed. The sums (sum(probs)) must be equal to 1.

15. Identify the most common group among the k-nearest neighbors for the
conventional k-nearest-neighbor prediction function. Also determine the
index of the largest estimated probability for the exponentially weighted
k-nearest-neighbor prediction function:

yhats = [np.argmax(counts), np.argmax(probs)]

The Numpy function np.argmax(u) identifies the index of the largest ele-
ment in u. If more than one value is the maximum in counts, the Numpy
function argmax identifies the first occurrence of the maximum. It’s de-
sirable to break ties in some other fashion. Exercise 9.4 provides some
guidance.

Test the code by printing counts and yhats. The first value of yhats
should index the largest count. The two predictions contained in yhats
should be in agreement most of the time.

16. Build the function fPred using the code segment developed in instruc-
tions 13 through 15. The arguments passed to the function are nhbrs and
nGroups and the function returns yhats.

17. Compute and print the overall accuracy estimates as the program iterates
over the test set observations. Accuracy estimates that are less than .75
are improbable for these data and suggest programming errors.

18. Double nR and nE and execute the script.

9.6.1 Remarks

The k-nearest-neighbor prediction functions are computationally demanding
because of the sorting step. The execution time of the best sorting functions
increase not linearly with the number of items n to sort, but more rapidly
than a linear function of n.6 For the digits problem, using all of the 42,000

6 Sorting algorithm run-times are, at best, on the order of n log(n) [56].
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observations is desirable in a practical application. But using all of the train-
ing observations often would result in a too-slow prediction algorithm if the
algorithm is applied to a process, say, reading zipcodes on envelopes in a post
office.

One solution is to replace the original training set D by a smaller set of
group representatives. For example, the representatives may be chosen by
randomly sampling each group. A concern with this approach is that the
sample may not span the full spectrum of hand-written variants of a digit
present in D. It’s easy to investigate subsampling using the script written
in Sect. 9.6 by modifying the conditional statement that draws every tenth
observation to form R so that every fiftieth observation is drawn into R.

Random sampling may be improved on by applying a k-means clustering
algorithm to each group. The k-means algorithm produces cluster means that
tend to differ and so are more likely to span the range of variation in hand-
written digits. For the digits example, the clustering algorithm may generate
k = 100 representatives, specifically, cluster means, for each digit. Combining
the representatives as a single training set produces a much smaller training
set of 1000 observations. The execution time of a k-nearest-neighbor predic-
tion algorithm constructed from 1000 representatives would be satisfactory
for a wide range of problems.

9.7 Accuracy Assessment

The k-nearest-neighbor prediction functions are two among many prediction
functions that are used in data science. There is no single prediction function
that is uniformly most accurate, or even predictably most accurate among the
commonly used prediction functions. What is most important in determining
accuracies is the extent to which the space X spanned by the predictor vectors
can be partitioned into pure or nearly pure regions. In this context, a region
is pure if all predictor vectors that belong to the region are members of a
single group. Figure 9.1 is an example in which the space is nearly perfectly
split by a straight line boundary. An interrelated factor affecting accuracy
is the complexity of boundaries between pure, or nearly pure regions. Some
prediction functions are defeated by complex boundaries, that is, boundaries
that cannot be described by lines, planes, or other simple geometric objects.
When the number of predictor variables is more than two or three, under-
standing X is difficult because visualizing X is difficult, and in most cases,
trial and error is used to find a good prediction function.

In any case, it’s necessary to analyze estimated accuracy to find a best
prediction function among a set of candidate prediction functions. Once a
best prediction function is selected, it’s necessary to determine whether the
accuracy of the prediction function is sufficient for the intended use. Let’s
consider a prediction function f that is used to detect rabies while the disease
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is treatable. The overall accuracy rate of the function is the probability that
a prediction y0 = f(x0) is correct. But there’s more to consider. Two errors
can be made: predicting that a healthy individual is rabid, and predicting
that an rabid individual is healthy. Both error rates are important and need
to be estimated.

The standard parameters used to describe the accuracy of a prediction
function are the unconditional accuracy rate and the conditional accuracy
rates. The overall accuracy of a prediction function f(·|D) is the proportion of
vectors x in a population, or vectors generated by a process, that are correctly
labeled by f(·|D). This probability is unconditional, since it doesn’t depend
on the group membership y or the prediction of the group membership ŷ. We
express the unconditional accuracy rate as

γ = Pr[f(x0) = y0|D] = Pr(ŷ0 = y0|D),

where z0 = (y0,x0) is a randomly selected observation from the population
of interest.

The accuracy rate for group i is the conditional probability that an obser-
vation belonging to group i is predicted to belong to group i. We express the
conditional probability as

αi = Pr(y0 = ŷ0|y0 = i).

The conditional probability that a prediction of membership in group j is
correct is

βj = Pr(y0 = ŷ0|ŷ0 = j).

In this case, we’re conditioning on the outcome ŷ0 = j. This probability is
of interest after computing the prediction ŷ0 = j and we question how likely
the prediction is to be correct. For example, a drug test is reported to be
positive—should the test result be accepted without dispute or is it possible
that the test is incorrect? The question can be addressed by estimating βj .

The aforementioned probabilities must be estimated in almost all situa-
tions. Superficially, the accuracy estimators are simple. Let’s assume that the
original group labels have been translated to the labels 0, 1 . . . , g − 1. Also,
assume that a test set E is available and that the prediction function f(·|D)
or a close approximation, say f(·|T ), where T ⊂ D, is used to compute a
prediction of y0 for each (y0,x0) ∈ E. The result is a collection of actual and
predicted labels, say

L = [(y0, ŷ0)|(y0,x0) ∈ E]. (9.9)

From these data, we may compute estimates of the accuracy rates γ, αi,
and βj . The estimates are easily computed from the confusion matrix.
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9.7.1 Confusion Matrices

The confusion matrix tabulates the number of test observations belonging to
group i that are predicted to belong to group j, for i = 0, 1, . . . , g − 1, and
j = 0, 1, . . . , g − 1. Rows of the matrix identify the actual group label and
columns identify the predicted group. The entry in row i and column j is the
number of occurrences of (i, j) among a collection of predictions for which
the actual group labels are known. Table 9.1 shows the usual lay-out of a
confusion matrix.

Table 9.1 A confusion matrix showing the results of predicting the group memberships
of a set of test observations. The entry nij is the number of test observations belonging
to group i and predicted to be members of group j. The term ni+ is the sum of row i,
n+j is the sum of column j, and n++ is the sum over all rows and columns

Predicted group
Actual group 0 1 · · · g − 1 Total

0 n00 n01 · · · n0,g−1 n0+
1 n10 n11 · · · n1,g−1 n1+
...

...
...

...
...

g − 1 ng−1,0 ng−1,1 · · · ng−1,g−1 ng−1,+
Total n+0 n+1 · · · n+,g−1 n++

We suppose that a collection of actual and predicted pairs has been cre-
ated as the collection L (Eq. (9.9)). From L, a confusion matrix has been
constructed. Our estimators are defined using the counts contained in the
confusion matrix (Table 9.1). The estimator of the overall accuracy rate γ is
the proportion of correctly predicted test set observations; i.e.,

γ̂ =
∑g−1

j=0 njj

n++
,

where n++ is the number of pairs in L.
The group-specific accuracy rate for group i, αi, is the probability that an

observation belonging to group i is correctly classified. The estimator of αi is
the proportion of test observations belonging to group i that are predicted
to belong to group i:

α̂i = ̂Pr(y0 = ŷ|y0 = i) = nii

ni+
.

Similarly, the estimated probability that an observation predicted to belong
to group j truly is a member of group j is

̂βj = ̂Pr(y0 = ŷ|ŷ = j) = njj

n+j
.
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Table 9.2 provides an example of accuracy estimates from the digit recogni-
tion tutorial. Tabled values are estimates of the conditional probability that a
prediction is correct given that the actual label is i (α̂i), or that the predicted
label is j (̂βj). From the table, we see that a prediction of the digit 8 is least
likely to be correct since ̂β8 = ̂Pr(y0 = ŷ|ŷ = 8) = .883 and that the digit most
likely to be incorrectly identified is 1 since α̂1 = ̂Pr(y0 = ŷ|y0 = 1) = .912.

Table 9.2 Estimated conditional accuracies obtained from the conventional eight-
nearest neighbor prediction function using a training set of 37,800 observations and
a test set of 4200 observations. The overall accuracy rate is estimated to be γ̂ = .958

Digit α̂i = ̂Pr(y0 = ŷ|y0 = i) ̂βi = ̂Pr(y0 = ŷ|ŷ = j)
0 .973 .990
1 .912 .998
2 .986 .926
3 .949 .967
4 .978 .962
5 .953 .945
6 .968 .987
7 .934 .972
8 .994 .883
9 .950 .940

9.8 k-Nearest Neighbor Regression

The k-nearest neighbor prediction functions may be adapted for use with
quantitative target variables without much trouble. For predicting quantita-
tive variables, the k-nearest neighbor prediction functions are nonparametric
alternatives to regression-based prediction functions. The term nonparamet-
ric describes methods that are not based on a model and so are free of pa-
rameters in contrast to parametric models. The objective is to predict the
quantitative target variable y0, and as before, we will use an associated predic-
tor vector x0 and a function trained on a set of target and predictor variable
pairs D = {(y1,x1), . . . , (yn,xn)}. The prediction is a weighted average of
the ordered training set targets y[1], . . . , y[n] given by

ŷ0 =
n
∑

i=1
wiy[i], (9.10)

where the ordered arrangement y[1], . . . , y[n] is determined by the distances
from x0 to x1, . . . ,xn. Formula (9.6) shows the weights used with the con-
ventional k-nearest neighbor regression function and formula (9.8) defines the
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weights used with the exponentially weighted k-nearest neighbor regression
function. Both weighting schemes are used in k-nearest-neighbor regression.

Fig. 9.3 Number
of reported
measles cases
by month in
California.
The red and
black smooths
were obtained
by setting
α = .05 and
α = .02,
respectively
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To illustrate, Fig. 9.3 shows the number of reported measles cases by month
in California from 1930 to 1985 [63]. In addition to the monthly counts, we
show the numbers of measles cases predicted by the exponentially weighted
k-nearest neighbor regression function for two choices of the smoothing con-
stant α. The predictions created with the choice of α = .05 (in red) is much
less smooth than the predictions created from α = .02 (in black). These
lines, which show the trend after removing much of the short term varia-
tion are often called smooths. There was an enormous amount of variation in
the number of cases from 1930 to 1960. A measles vaccine licensed in 1963
accounts for the decline in cases to nearly zero by 1980. The red smooth
suggests a several-year cycle in numbers of cases. The black smooth captures
the long-term trend free of the several-year cycle.

The next tutorial applies the exponentially weighted k-nearest-neighbor
regression function for forecasting.

9.9 Forecasting the S&P 500

In the tutorial that follows, the reader is guided through the development
of a pattern recognition algorithm for 1-day-ahead forecasting of the S&P
500 daily price index. We use the term forecast when the prediction is of a
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target observed in the future. The S&P (Standard and Poor’s) 500 index is a
daily aggregation of the prices of 500 leading companies listed on either the
New York Stock Exchange or the NASDAQ.7 The targets to be predicted
are the S&P 500 daily price indexes. The predictor vectors consist of index
values from the 5 days preceding the target day. The predictor vectors will
be referred to as pattern vectors. The idea behind the pattern recognition
approach is that if two vectors xi and xj exhibit a similar pattern of day-
to-day changes in the S&P index, then the following-day values si+1 and
sj+1 are likely to be similar. If this premise is accepted, then we’ll collect
a set of similar patterns and use an average of the following-day values to
forecast si+1. We’ll use exponentially weighted k-nearest-neighbor regression
for building the prediction function. In essence, on the ith day, the algorithm
searches the past pattern vectors for those that resemble the ith day pattern.
Associated with each past pattern vector is the S&P index observed on the
following day. The forecast is weighted average of the following-day S&P
indexes of those patterns that are most similar to the ith day pattern.

There is a complication. The sequence of S&P 500 indexes varies substan-
tially over the course of several years. Consequently, two 5-day sequences may
exhibit a similar pattern of daily changes yet are relatively dissimilar accord-
ing to a standard metric such as city-block distance because the mean level
of the two sequences are different. For example, the day-to-day movements
exhibited in one pattern about the mean level of 1000 may strongly resemble
the movements in another pattern with a level of 1200, yet the city-block
distance between the patterns will be large because of the differences in the
mean levels. We would like to use one pattern to predict the next price index
of the other, but they will not be close in distance. Even if we succeed in iden-
tifying them as similar, and use one to predict the other, the predictions may
be inaccurate because the mean levels are different. A solution is to center
every pattern by subtracting the mean of the pattern from all values in the
pattern, in which case, the predictor vector consists of differences from the
mean.8 Then, the prediction ŷi+1 is the predicted deviation from the mean.
Adding ŷi+1 to the mean of the ith pattern yields the forecast ŝi+1.

9.10 Tutorial: Forecasting by Pattern Recognition

The objective of this tutorial is to program a pattern recognition algorithm
for forecasting the S&P 500 price index. Using the algorithm, we’ll compute
1-day-ahead forecasts and the plot the forecasts against day and compute a
measure of agreement between actual and forecasted values.

7 NASDAQ is the abbreviation for the National Association of Securities Dealers Auto-
mated Quotations system.
8 Centering is a type of detrending [27].
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Some new notation is needed. Let s1, . . . , sN denote the series of S&P 500
indexes. The index i implies chronological ordering.9 As we aim to forecast
the price index for day i + 1 on the ith day, the forecasting target is si+1. We
cannot use any data observed after the ith day for forecasting si+1.

We’ll use all of the available S&P 500 index patterns created from the
preceding days to forecast a target S&P 500 index, though. The target si+1 is
forecasted using the most recent pattern vector si as an input to a forecasting
function built from all of the patterns preceding the ith pattern. The forecast
is ŝi+1 = f(si|Di), where Di is a training set built on the ith day.

The length of the pattern vectors is p. We’ll use p = 5 days to form the
pattern vectors. Thus, a pattern vector si consists of the five S&P 500 index
values preceding the ith day. Hence,

si = [si−p si−p+1 · · · si−1]T , for 0 < p < i.

The training set consists of data pairs of the form

zi = (si, si) = (si, [si−p si−p+1 · · · si−1]T ). (9.11)

The training set built on day i for forecasting day si+1 consists of the set of
pairs

Di = {(sp+1, sp+1), . . . , (si, si)} = {zp+1, . . . , zi}. (9.12)

The first training pair that can be formed is (sp+1, sp+1), and so the first
training set is Dp+1 = {(sp+1, sp+1)}. The first forecast that can be computed
is ŝp+2 = f(sp+1|Dp+1). We’ll see that ŝp+2 = sp+1. The second forecast that
can be computed is ŝp+3 and it’s a weighted average of sp+1 and sp+2. In
general, ŝi+1 = f(si|Di) is a weighted average of sp+1, . . . , si and the weights
are determined by the similarity of the pattern vectors sp+1, . . . , si to si. The
comparison of each past pattern to the predictor pattern si determines how
the weights are assigned to the past patterns.

Because there’s substantial trend in the S&P index values over several
years, we’ll forecast the detrended, or centered data. The data are centered
by subtracting the mean value of each si from the elements of the si. The
mean of the vector si is

si = p−1
i−1
∑

j=i−p

sj , for 0 < p < i.

9 By chronologically ordered, we mean that i < j implies si was observed before sj .
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The (centered) predictor vector is

xi =

⎡

⎢

⎢

⎢

⎣

si−p − si

si−p+1 − si

...
si−1 − si

⎤

⎥

⎥

⎥

⎦

for 0 < p < i.

The ith target value is also centered. We’ll refer to the centered value as
a deviation, and so the ith target deviation is

yi = si − si.

Since yi = si − si, we can express the S&P index value as si = yi + si. The
k-nearest-neighbor prediction function will compute forecasts of yi+1 from
which the forecast of si+1 is computed according to

ŝi+1 = ŷi+1 + si. (9.13)

Let’s amend the construction of the training sets, Dp+1, . . . , DN . It’s help-
ful to incorporate the mean si into the datum zi so that the forecast ŝi+1
can be readily constructed from the forecast ŷi+1. So, the ith data triple is

zi = (yi,xi, si)

and the forecasting function computes ŷi+1 = f(xi|Di). The centered training
set Di for the S&P index value forecast for day i + 1 consists of triples
(yj ,xj , sj), for p + 1 < j ≤ i observed before day i + 1. Thus,

Dp+1 = {(yp+1,xp+1, sp+1)} = {zp+1},
Dp+2 = {zp+1, zp+2},

...
DN = {zp+1, zp+2, . . . , zN }.

(9.14)

Turning now to the k-nearest-neighbor regression function, the algorithm
computes ŝi+1 = f(xi|Di) in three steps:

1. order the observations in the training set Di according to the distances
between the input pattern xi and xj for zj ∈ Di;

2. compute the forecast of the centered value yi+1 as a weighted mean of
the ordered targets in Di; and,

3. translate the centered forecast to un-centered forecast ŝi+1 .

Turning to the first step, the distance between xi and xj is the city block
distance

dC(xi,xj) =
p
∑

k=1

|xi,k − xj,k|,
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where xj,k is the kth element of xj . With the distances dC(xi,xj), j = p +
1, . . . , i, the training targets are ordered and denoted as y[1], . . . , y[i−p]. The
indexes on the ordered training targets denote the ordering (nearest, second-
nearest, and so on), not the chronological index, which explains why they
begin with 1 and end with i − p . The forecast of yi+1 is

ŷi+1 =
i−p
∑

j=1
wjy[j],

where the wj ’s are scaled weights originating from formula (9.8). The weights
are scaled because they must sum to one, but a short sequence of r terms
α(1 − α)j−1, j = 1, . . . , r, will not sum to one.10 The terms in Eq. (9.8) will
have to be scaled. The scaled weights are

wj = α(1 − α)j−1
∑i−p

k=1 α(1 − α)k−1
, j = 1, . . . , i − p. (9.15)

Because the targets have been centered, the final prediction is obtained
from Eq. (9.13).

1. Download a series of S&P 500 indexes from the Federal Reserve Bank of
St. Louis. The URL is http://research.stlouisfed.org/fred2/series/SP500.

2. We’ll suppose that you have retrieved a file with a txt extension. There-
fore, the observation day and value are tab-delimited. The following code
will ingest the data file.

path = ’../Data/SP500.txt’
s = []
with open(path, encoding = "utf-8") as f:

f.readline()
for string in f:

data = string.replace(’\n’,’’).split(’\t’)
if data[1] != ’0’:

s.append(float(data[1]))
print(s)

The instruction data = string.replace(’\n’,’’).split(’\t’) will
remove the end-of-line marker (’\n’) and split the string at the tab.
The S&P index value is appended to the list s. There are some zero val-
ues in the data series associated with holidays. These values are omitted
from the data list s = [s1, s2, . . . , sN ].

3. The next operation is to create and store the data tuples zp+1, . . . , zN

where

10 Precisely, 1 =
∑∞

k=0 α(1 − α)k. In practice, the sum is sufficiently close to 1 if the
number of terms exceeds 100/α.

http://research.stlouisfed.org/fred2/series/SP500
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zi = (yi,xi, si)
=
(

si − si, [si−p − si · · · si−1 − si]T , si

)

.
(9.16)

We need compute the means sp+1, . . . , sN and create the centered pattern
vectors. To extract the appropriate elements from s, the index j is drawn
from the sequence i − p, i − p + 1, . . . , i − 1 using the Numpy function call
arange(i-p,i). The following for loop iterates over i. For each value of
i, list comprehension is used to create the un-centered pattern vector as
ui. Each xi is created by centering ui:

p = 5
N = len(s)
for i in np.arange(p, N):

u = [s[j] for j in np.arange(i-p, i)] # Using zero-indexing!
sMean = np.mean(u)
x = u - sMean
z = (s[i] - sMean, x, sMean)

if i == p:
zList = [z]

else:
zList.append(z)

print(zList)

The triple created by the statement z = (s[i] - sMean, x, sMean)
contains the centered target yi = si − si, the centered pattern vector xi,
and the uncentered pattern vector mean si.

4. Build a dictionary that contains the target and predictor pair zi and
the training set used to build the function for forecasting si+1, for each
i ∈ {p + 1, p + 2, . . . , N}. The training sets are shown in Eq. (9.14). Once,
again, use a for loop that iterates over i ∈ {p + 1, p + 2, . . . , N}. The
data dictionary Di is built by making a copy of Di−1 and creating a new
entry using i as the key and zi as the value. Add the new data set to the
dictionary of data sets D using i as the key and the data set Di as the
value.

D = {}
for i in np.arange(p, N):

if i == p:
D[i] = [zList[i-p]] # Using zero-indexing.

else:
value = D[i-1].copy()
value.append(zList[i-p])
print(len(value))
D[i] = value

Be sure to copy D[i-1] to value rather than assigning it with the
’=’ operator; otherwise, every dictionary entry will be D[N-1]. If you’re
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using Python 2.7, then the instruction D[i-1].copy() is replaced with
D[i-1].copy.copy() and the module copy must be imported.

5. With the data arranged in a convenient form, we will begin computing
forecasts of yi+1 and si+1. Iterate over D and extract each data set be-
ginning with Dp+1. Remove the test observation zi from training set Di.

for i in np.arange(p,N):
data = D[i] # Using zero-indexing.
zi = data.pop()

The function .pop() removes the last value from the list data and stores
it in the variable zi. We’ll use the centered pattern stored in zi as an
input to the forecasting function constructed from data.

6. From zi, extract yi, xi and si immediately after creating zi using the
instruction yi, xi, sMean = zi.

7. Still within the for loop over np.arange(p,N), create a dictionary11

containing the training data for the prediction of yi+1:

R = {j:z for j, z in enumerate(data)}

Note that R is created using dictionary comprehension.
8. Insert the fOrder function created in Tutorial 9.6 near the top of the

script and before the data processing code segments.
9. Modify the function by replacing the instruction nhbrs = [labels[j]

for j in v] with

nhbrs = [R[j][0] for j in v]

When the function executes, the sorted neighbors will be centered S&P
index values sorted according to the similarity of test predictor xi to the
predictor vectors belonging to R.

10. Return to the for loop. On each iteration of the for loop and after
building R, determine the sorted neighbors of xi by calling fOrder. The
call is

nhbrs = fOrder(R,xi)

The list nhbrs will contain the S&P 500 indexes sorted according to the
distance between the target pattern vector xi and the training pattern
vectors xp+1, . . . ,xi−1.

11 We will use the fOrder function programmed in the previous tutorial and it requires
that the training set is a dictionary.
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11. Set a value for the tuning constant α, say, .2 < α < .5 before the for loop.
Compute the list of weights for the exponentially weighted k-nearest-
neighbor regression function. The weights must sum to one, so scale the
values to sum to one. On every iteration of the for loop, nR increases
and wts must be recomputed.

s = sum([alpha*(1 - alpha)**j for j in range(nR)])
wts = [(alpha/s)*(1 - alpha)**j for j in range(nR)]

12. Compute the predictions immediately after computing wts.

deviation = sum(a*b for a, b in zip(wts, nhbrs))
sHat = deviation + sMean
print(yi + sMean,’ ’,sHat)

The print statement prints the observed and predicted S&P index values.
13. Trace the performance of the prediction function. Initialize a list to store

the squared errors, say sqrErrors = [] and another list to store the plot-
ting data (plottingData). After computing a forecast, store the squared
differences between the centered forecasts and centered observations.

sqrErrors.append((yi - deviation)**2)
plottingData.append([i,yi + sMean,sHat])
print(np.sqrt(sum(sqrErrors)/len(sqrErrors)))

The last statement prints the current estimate of root mean square error.
14. Plot a set of 300 predictions and observations against day.

import matplotlib.pyplot as plt
day = [day for day, _ , _ in plottingData if 1000 < day < 1301]
y = [yobs for day, yobs , _ in plottingData if 1000 < day < 1301]
plt.plot(day, y)
sHat = [hat for day, _ , hat in plottingData if 1000 < day < 1301]
plt.plot(day, sHat)
plt.show()

The observed values will be plotted in blue.
15. Compute a measure of relative forecasting accuracy by comparing the

mean squared difference between the actual and forecasted values to the
sample variance.12 The measure of forecasting accuracy is the adjusted
coefficient of determination

12 Recall that the sample variance is, essentially, the mean squared difference between
the observations and the sample mean.
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R2
adjusted = σ̂2 − σ̂2

kNN
σ̂2 = 1 − σ̂2

kNN
σ̂2 .

We’ll use the Numpy functions mean() and var() to compute the mean
and standard deviation of the target values:

yList = [yobs for _, yobs ,_ in plottingData ]
rAdj = 1 - np.mean(sqrErrors)/np.var(yList)
print(rAdj)

9.10.1 Remark

The adjusted coefficient of determination is very large (R2
adjusted > .99) in the

S&P 500 forecasting problem, a result that begs for explanation. The S&P
index series exhibits a great deal of variation over long periods, say, several
years, and the average change within a week is much smaller (Fig. 9.4). The
long term variation produces a large sample variance σ̂2 since the sample
variance is the average squared difference between the actual values and the
series mean. As a baseline forecasting function, the sample mean sets a very
low bar. It’s much better to use a smaller set of past values for forecasting.

A better baseline against which to compare the k-nearest-neighbor regres-
sion forecasting function is the sample mean of most recent past p days. This
forecast is sometimes called a moving average because it changes (moves) as
time advances. The moving average forecast accounts for long-term trend as
the moving average means will reflect long-term trend.

We computed σ̂2
MV, the mean squared difference between the targets and

the sample mean of the preceding p = 10 values. With σ̂2
MV, we then com-

puted the relative reduction in mean square error

σ̂2
MV − σ̂2

kNN
σ̂2
MV

. (9.17)

The relative reduction in mean square forecasting error was .562, and so it
can be said that the k-nearest-neighbor regression prediction function reduced
the mean square forecasting error by 56.2% relative to the moving average
forecasting function. Exercise 9.5 asks the reader to compute σ̂2

MV.
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9.11 Cross-Validation

Let’s take a closer look at accuracy assessment. As usual, let D={(y1,x1), . . .,
(yn,xn)} denote the data set. The usual approach to accuracy assessment be-
gins by creating a test set E and training set R. Suppose that R∩E �= ∅. This
situation presents a potentially serious problem—some observations (those in
R∩E) are being used for both building the prediction function and estimating
the error of the prediction function. The resulting accuracy estimates often
are optimistically biased. Accuracy estimates are called apparent or plug-in
estimates in the worst case of D = R = E. The extent of bias is difficult to
determine without an involved analysis.

There is a somewhat unique case in which the consequence of using the
same observations in both sets can be seen with no trouble. Consider the one-
nearest neighbor prediction function, and suppose that x0 ∈ R ∩ E. Suppose
that there are no ties whatsoever and we investigate the accuracy of f(x0|R)
using the test observations in E. Since x0 ∈ R, x0 will be closest to itself and
the nearest neighbor label will be its own label. The prediction of y0 is certain
to be correct, and every observation in R ∩ E will be correctly predicted. We
learn nothing of how the function will perform given x0 /∈ R from these test
observations. Even worse, the accuracy estimates will be optimistically biased
because the prediction function fits the test data better than a completely
unrelated or independent data set. This phenomenon is known as over-fitting.

Over-fitting can be eliminated by insuring that no observation in R is used
as a test observation. Suppose then that random or systematic sampling has
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produced E and R such that D = R∪E and R∩E = ∅. In other words, E and
R form a partition of D. We’ll approximate the prediction function f(·|D)
that we intend to use by the function f(·|R) and apply f(·|R) to every test
observation in E. The result is a set of predictions that are free of over-fitting
bias. This process is called validation accuracy assessment. We used it in the
digit recognition and S&P tutorials.

Occasionally, D is too small for validation accuracy assessment because
removing a sufficiently large test set results in f(·|R) being a poor approxi-
mation of f(·|D). Then, the accuracy of f(·|R) will be significantly less than
the accuracy of f(·|D). Furthermore, when the sample is small, there will be
a substantial degree of variation among accuracy estimates computed from
different test sets. It would be wise not to trust the results derived from a
single random partitioning of D.

The k-fold cross-validation algorithm is a solution to these accuracy esti-
mation problems.

A cross-validation algorithm withdraws a set of observation pairs E from
the training sample D to serve as a test set. The remaining observations in
R are used to construct a prediction function f(·|R). Then f(·|R) is applied
to each test set vector x0 ∈ E to produce a prediction. The result is a set
L = {(y0, f [x0|R])|(y0,x0) ∈ E} from which a confusion matrix and estimates
of the accuracy parameters γ, αi, and βj can be computed. Since the held-out
sample was not used in constructing the prediction function, over-fitting bias
has been eliminated.

So far, nothing is new. What is new with cross-validation is that not one
test set is drawn from D, but instead k, where 1 < k ≤ n. The hold-out test
sets are E1, . . . , Ek, and the training sets are Rk = D ∩ Ec

k. The outcomes of
predicting x0 ∈ Ei are collected in the set Li = {(y0, f [x0|Ri])|(y0,x0) ∈ Ei}.
After all test sets have been processed, the confusion matrix is computed from
L = ∪k

i=1Li. Now the training sets Ri can be much closer to D in size and the
prediction functions f(·|Ri) will be good approximations of f(·|D). Finally,
the accuracy estimates will be good because L is large (and provided that D
is representative of the population or process to which the prediction function
will be applied).

It’s best if E1, . . . , Ek form a partition of D so that every observation is
a target exactly once.13 Formally, a k-fold cross-validation algorithm parti-
tions D as k disjoint subsets each containing approximately n/k observations.
There are a variety of ways to implement the algorithm. For example, each
observation i = 1, 2, . . . , n, may be assigned a random number drawn from
{1, 2, . . . , k} that identifies membership in one of the subsets E1, . . . , Ek. The
cross-validation algorithm iterates over i ∈ {1, 2, . . . , k}. On the ith iteration,
Ei is the test set and Ri = D∩Ec

i is the training set. The prediction function
f(·|Ri) is constructed and used to predict y0 for each x0 ∈ Ei. The results

13 A lazy alternative is to draw independent random samples E1, . . . , Ek. A test obser-
vation may appear in more than one test set. This presents no risk of bias, but there’s
less information gained on the second and subsequent predictions of a test observation.
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are collected in Li. Accuracy estimates are computed from L = ∪iLi at the
completion of the k iterations. A commonly used value for k is 10. Another
popular choice is k = n.

As the cross-validation accuracy estimates will depend on the initial parti-
tioning of D, some number of repetitions of the algorithm may be carried out
using different random partitions. Sufficiently many repetitions will reduce
the variation associated with random partitioning to a negligible fraction
of the estimate. At completion, the estimates from different repetitions are
aggregated in the construction of the confusion matrix.

9.12 Exercises

9.12.1 Conceptual

9.1. Show that for 0 < α < 1, 1 =
∑∞

i=0 α(1 − α)i.

9.2. Consider the exponentially weighted k-nearest-neighbor prediction func-
tion. Argue that the prediction of y0 will be y[1] for any choice of α ≥ .5, and
hence, the exponentially weighted k-nearest neighbor prediction function is
equivalent to the conventional one-nearest neighbor prediction function.

9.3. Suppose that the conventional k-nearest neighbor prediction function is
used for predicting group membership in one of g = 2 groups. Compute the
possible values of ̂Pr(y0 = l|x0) for k ∈ {1, 3, 5} where l is the label of one
of the groups. Comment on the accuracy of ̂Pr(y0 = l|x0) as an estimator of
Pr(y0 = l|x0) for small values of k.

9.12.2 Computational

9.4. Revisit instruction 15 of the Sect. 9.6 tutorial. Modify the function fPred
to break ties if more than one value is the maximum among the values in
counts. Proceed as follows. After computing the conventional k-nearest-
neighbor prediction, test whether there is more than one count in counts
equal to the maximum. If so, then enlarge the neighborhood to include k + 1
neighbors and recompute the maximum and the prediction. Test for ties.
Repeat the process of enlarging the neighborhood until the tie is broken.

9.5. Return to the S&P prediction problem and compute the moving average
mean squared error using the most recent p observations

ŷMV,i = p−1
i
∑

j=i−p+1
yj ,
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at time step i, for i = p + 1, . . . , N . As pointed out in Sect. 9.10.1, a more
informative measure of forecasting error compares σ̂2

MV (Eq. (9.17)), the mean
square prediction error associated with the moving average forecasts, to σ̂2

kNN.

a. Verify that .562 is the relative reduction in forecasting error.
b. Use ggplot to plot a set of 300 observations on S&P 500 index against

day as points. Add two more layers, one showing the k-nearest-neighbor
regression forecasts as a line and another showing the moving average
forecasts as a line. Distinguish between the two sets of forecasts using
color.

9.6. Use the Wisconsin breast cancer data set, a small training set consist-
ing of observations obtained from biopsies on benign and malignant breast
cancer tumors.14 You may retrieve it from the University of California Irvine
Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/. The
problem posed by the breast cancer data is to predict the type of tumor from
a vector of measurements on tumor cell morphology.

Compute apparent and leave-one-out cross-validation accuracy estimates
for neighborhood sizes k ∈ {1, 2, 4, 8, 16} and using the conventional k-
nearest-neighbor prediction function. Use the R function knn for computing
apparent accuracy estimates and knn.cv for cross-validation accuracy esti-
mates. knn and knn.cv are part of the class package and the BreastCancer
data set is part of the package mlbench. Construct a summary table of the
form exhibited by Table 9.3. Comment on the relationship between over-
fitting bias and k.

9.7. The tutorial of Sect. 9.10 discussed a k-nearest-neighbor prediction func-
tion for predicting the S&P 500 index 1 day ahead.

a. Modify the algorithm so that the predictions are made several days ahead.
Predict yi+d, for each combination of d ∈ {1, 3, 5} and α ∈ {.05, .1, .3}
using exponentially weighted k-nearest-neighbor regression. Build a table
showing the estimated root mean square error σ̂kNN for each combination
of α and d.

b. Investigate the effect of different pattern lengths p on the estimated root
mean square error σ̂kNN. Try p ∈ {5, 10, 20}.

14 The Wisconsin breast cancer data set is widely used as a machine learning benchmark
data set.

https://archive.ics.uci.edu/ml/datasets/
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Table 9.3 Apparent and cross-validation accuracy estimates for the k-nearest-neighbor
prediction function. The differences between apparent estimates and cross-validation
estimates are attributable to over-fitting bias

Accuracy estimate
k Apparent Cross-validation
1 γ̂apparent

1 γ̂cv
1

2 γ̂apparent
2 γ̂cv

2
...

...
...

16 γ̂apparent
16 γ̂cv

16



Chapter 10
The Multinomial Naïve Bayes Prediction
Function

Abstract The naïve Bayes prediction function is a computationally and con-
ceptually simple algorithm. While the performance of the algorithm generally
is not best among competitors when the predictor variables are quantitative,
it does well with categorical predictor variables, and it’s especially well-suited
for categorical predictor variables with many categories. In this chapter we
develop the multinomial naïve Bayes prediction function, the incarnation of
naïve Bayes for categorical predictors. We develop the function from its math-
ematical foundation before applying it to two very different problems: predict-
ing the authorship of the Federalist Papers and a problem from the business
marketing domain—classifying shoppers based on their grocery store pur-
chases. The Federalist Papers application provides the opportunity to work
with textual data.

10.1 Introduction

Consider prediction problems in which the predictor variables are categori-
cal. For instance, suppose that customers that shop at a membership grocery
store are to be classified into one of several groups based on buying habits at
the time of a sale. The training data may consist of a rather long list of pur-
chased items, each of which may be identified by a category such as grocery,
hardware, electronics, and so on. The number of categories may be large, for
instance, 1102 items are used for prediction in the tutorial of Sect. 10.5. The
computational demands preclude using k-nearest-neighbor prediction func-
tions when the training samples and numbers of items are large and an alter-
native approach is necessary. There are a variety of possibilities, though one
stands alone with respect to algorithmic simplicity—the multinomial naïve
Bayes prediction function. Before developing the mathematics behind the
algorithm, we discuss a different application of multinomial naïve Bayes.

© Springer International Publishing Switzerland 2016
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10.2 The Federalist Papers

The Federalist Papers are a collection of 85 essays written by James Madison,
Alexander Hamilton, and John Jay arguing for the ratification of the United
States Constitution. The Federalist Papers go beyond the legal framework
laid out in the relatively short Constitution and expound upon the founda-
tions and principles supporting the Constitution. At the time of publication,
between October 1787 and August 1788, the authors of the Federalist Papers
were anonymous. All were signed with the pseudonym Publius. Authorship
of most of the papers were revealed some years later by Hamilton, though
his claim to authorship of 12 papers were disputed for nearly 200 years. Ta-
ble 10.1 shows the authors and the papers attributed to each. Analyses carried
out by Adair [1] and Mosteller and Wallace [41] in the mid-twentieth cen-
tury attributed authorship of the disputed papers to James Madison and the
question presumably has been put to rest. In this chapter, we take another
look at the disputed papers.

Table 10.1 Authors of the Federalist papers
Author Papers

Jay 2, 3, 4, 5, 64
Madison 10, 14, 37–48

Hamilton 1, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 21–36, 59, 60, 61, 65–85
Hamilton and Madison 18, 19, 20

Disputed 49–58 62, 63

Assigning authorship to the disputed 12 papers is a problem appropriate
for the multinomial naïve Bayes prediction function. The process of predicting
authorship centers around building a prediction function trained on undis-
puted papers. The prediction function may be applied to a disputed paper
in two steps. First, the paper is mapped to a vector of predictor variables.
The second step produces a prediction of authorship by estimating the prob-
abilities that each of the candidate authors wrote the paper. The author is
predicted to the candidate author whose estimated probability of being the
author is largest among the three. Our analysis suggests that Madison was
not the author of all 12 disputed papers and that Hamilton was author of six
of the disputed papers.

A significant amount of preliminary data processing is necessary to trans-
form a Federalist Paper to an appropriate unit for predictive analysis. In this
context, each of the 73 Federalist papers of undisputed authorship represents
an observational unit with a known label (the author). Each paper is mapped
to a predictor vector consisting of quantitative attributes. The attributes are
identified with two qualities in mind. First, the mapping g : P0 → x0 of paper
P0 to predictor vector x0 must be well-defined—there can be only one pos-
sible value for a particular paper. Secondly, the attributes of x0 ought to be
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useful for discriminating among authors. Quantifiable stylistic attributes such
as sentence length and most frequently used words are appropriate provided
that the three authors differ with respect to the attributes.

The mapping of a passage of text to a vector of quantitative variables is
one of several challenging steps in algorithmic extraction of information from
textual data [6]. We dedicate the first of two tutorials to the process. The
second tutorial builds a prediction function by exploiting differences in word
choice among the authors. Before tackling the data, the multinomial naïve
Bayes prediction function is developed in the next section.

10.3 The Multinomial Naïve Bayes Prediction Function

The problem is set up as follows. The class membership of a target z0 =
(y0,x0) is y0 and x0 is a concomitant predictor vector. A prediction function
f(·|D) is to be built from D, the training set of observation pairs. The predic-
tion of y0 is ŷ0 = f(x0|D). What is novel is that x0 is a vector of counts. Each
element of x0 records the number of times that a particular type, category, or
level of a qualitative variable was observed. For instance, x0,j may denote the
number of times that word wj appeared in a disputed Federalist paper P0.
The vector x0 consists of the frequencies of each of n different words in P0.

We’ll continue to develop the multinomial naïve Bayes prediction function
in the context of the authorship attribution problem with the tacit under-
standing that the algorithm generalizes straightforwardly to other situations.
Exercise 10.3 provides the reader with the opportunity to do so as it involves
predicting the type of shopping trip made by a Walmart shopper based on
the types of items purchased (groceries, hardware, etc.).

Let x0,j denote the number of times that word wj appeared in paper P0.
Then, x0 = [x0,1 · · · x0,n]T contains the word frequencies for paper P0.
There are n different words across all of the Federalist Papers and these
words are collected as a set W .1 The author of P0 is denoted by y0, where
y0 ∈ {Hamilton, Jay, Madison} = {A1, A2, A3}. The probability that word
wj is drawn at random from P0 is

πk,j = Pr(wj ∈ P0|y0 = Ak). (10.1)

The probability πk,j is specific to the author but does not vary among papers
written by the author. Since wj is certain to be a member of W , 1 =

∑n
j πk,j .

The probabilities of occurrence for wj may vary among authors, hence, π1,j

1 Standard practice is to omit very common words such as prepositions and pronouns
from W .
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may differ from π2,j and π3,j . If the differences are substantial for more than
a few words, then the prediction function will be able to discriminate among
authors given a vector of word frequencies x0.

If there were only two words used among all three authors, and their
appearances in a paper were independent, then the probability of observing
a particular vector of frequencies, say x0 = [25 37]T , could be calculated
using the binomial distribution:

Pr(x0|y0 = Ak) = (25 + 37)!
25!37! π25

k,1π37
k,2.

If this notation troublesome, recall that the binomial random variable com-
putes the probability of observing x successes in n trials. The variable x
counts the number of successes. The probability of observing x successes and
n − x failures is

Pr(x) = n!
x!(n − x)!π

x(1 − π)n−x, (10.2)

for x ∈ {0, 1, . . . , n}. Formula 10.2 uses the fact that π2 = 1 − π1. If the
authorship of P0 is disputed, then based on the word frequency vector x0 =
[25 37]T , we would predict that the author is A∗ where Pr(x0|y0 = A∗) is
largest among Pr(x0|y0 = A1), Pr(x0|y0 = A2), and Pr(x0|y0 = A3). The
πk,i’s usually must be estimated. If so, we substitute probability estimates in
the calculation.

A precise definition of the prediction function is

ŷ0 = f(x0|D) = arg max{̂Pr(x0|y0 = A1),̂Pr(x0|y0 = A2),̂Pr(x0|y0 = A3)}.

For the author attribution problem, the number of words is much greater
than two and the probability calculation requires an extension of the binomial
distribution. The multinomial probability function provides the extension
as it accommodates n ≥ 2 words. As with the binomial distribution, if it
were true that the occurrences of the words in a paper were independent
events, then the probability of observing a frequency vector x0 is given by
the multinomial probability function

Pr(x0|y0 = Ak) =
(
∑n

i=1 x0,i)!
∏n

i=1 x0,i!
π

x0,1
k,1 × · · · × π

x0,n

k,n . (10.3)

The leftmost term involving factorials is known as the multinomial coefficient,
just as the term n!/[x!(n − x)!] is known as the binomial coefficient. We’ll see
below that the multinomial coefficient can be ignored in the calculation of
the prediction function.
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10.3.1 Posterior Probabilities

The multinomial naïve Bayes prediction function improves on the method
just discussed by accounting for prior information. In this situation, there
are 70 papers of undisputed authorship, 51 of which were written by Alexan-
der Hamilton, 14 by James Madison, and 5 by John Jay. If there were a
tie among the probabilities obtained from formula (10.3), then based on the
larger numbers of papers written by Hamilton, we are inclined to attribute
authorship to Hamilton. Naïve Bayes quantifies the tyranny of the majority
logic. Prior to observing the word frequencies, the prior probabilities of au-
thorship are estimated to be Pr(y0 = A1) = 51/70, Pr(y0 = A2) = 14/70, and
Pr(y0 = A3) = 5/70. In fact, if we had no information besides the numbers of
papers written by each then we would predict that Hamilton was the author
of any and all disputed papers because the estimated prior probability that
Hamilton wrote P0 is largest among the three estimates. The use of the term
prior stems from assigning some probability of authorship prior to observing
the information contained in the frequency vector x0.

Bayes formula brings together the information contained in the word fre-
quencies and the prior information by computing the posterior2 probability
of authorship

Pr(y0 = Ak|x0) = Pr(x0|y0 = Ak) Pr(y0 = Ak)
Pr(x0) .

The predicted author is the author with the largest posterior probability.
Specifically, the predicted author is

ŷ0 = arg max
k

{Pr(y0 = Ak|x0)}

= arg max
k

{

Pr(x0|y0 = Ak) Pr(y0 = Ak)
Pr(x0)

}

The denominator Pr(x0) scales each of the posterior probabilities by the same
quantity and doesn’t affect the relative ordering of the posterior probabili-
ties. Therefore, a simpler and more practical expression for the prediction
function is

ŷ0 = arg max
k

{Pr(x0|y0 = Ak) Pr(y0 = Ak)} .

The multinomial coefficient depends only on x0 and so takes on the same
value for every Ak. Therefore, it may be ignored in the calculation Pr(x0|y0 =
Ak) if we are only interested in determining which posterior probability is
largest.

The multinomial probabilities (the πk,j ’s) are unknown but easily esti-
mated. We’ll drop the multinomial coefficient and write the multinomial naïve
Bayes function in terms of the estimated probabilities:

2 After having seen the data.
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ŷ0 = arg max
k

{̂Pr(y0 = Ak|x0)}

= arg max
k

{

π̂
x0,1
k,1 × · · · × π̂

x0,n

k,n × π̂k

}

,
(10.4)

where x0,j is the frequency of occurrence of wj in the target paper P0.
The probability estimate π̂k,j is the relative frequency of occurrence of

wj across all papers written by author Ak. Lastly, π̂k = ̂Pr(y0 = Ak) is the
estimated prior probability that the paper was written by Ak. Once x0 is ob-
served, we use the information carried by x0 to update the prior probabilities
in the form of posterior probabilities. If the analyst has no information regard-
ing priors, she should use the non-informative priors π1 = · · · = πg = 1/g,
assuming that there are g classes (authors). In this application of the multi-
nomial naïve Bayes prediction function, the prior probability πk is estimated
by the proportion of undisputed papers that have been attributed to Ak.

The application of formula (10.4) requires estimates for the probabilities
πk, πk,j , j = 1, 2, . . . , n, and k = 1, 2, and 3. We use the sample proportions
or empirical probabilities:

π̂k,j = xk,j

nk
, (10.5)

where xk,j is the number of instances of wj in the papers written by author
Ak and nk =

∑

j xk,j is the total of all word frequencies for author Ak.
Arithmetic underflow may occur when the some of the exponents in formula
(10.4) are large and the bases are small. Underflow is avoided by identifying
the author with the largest log-posterior probability since

arg max
k

{̂Pr(y0 = Ak|x0)} = arg max
k

{

log
[

̂Pr(y0 = Ak|x0)
]}

.

The final version of the multinomial naïve Bayes prediction function is

ŷ0 = arg max
k

{

log
[

̂Pr(y0 = Ak|x0)
]}

= arg max
k

{

log(π̂k) +
∑n

j=1 x0,j log(π̂k,j)
}

.
(10.6)

The following tutorial instructs the reader in creating the first of two
Python scripts for the Federalist Papers authorship attribution problem. The
task of attributing authorship requires a considerable amount of data pro-
cessing and coding because of the nature of the data: a single unstructured
text file containing all 85 papers. The file will be read and stored as one
long character string from which the individual papers are extracted. Each
paper is then split into words. Many words are regarded as useless for nat-
ural language processing.3 These words are referred to as stop-words. They
consist of ubiquitous words such as prepositions (e.g., the, and, at) and sim-
ple verbs (e.g., is, be, go). A reduced set of words is created by discarding

3 A sub-area of linguistics devoted to using machines to extract information from text.
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the stopwords and keeping only those words that have been used at least
once by each author. The last step of the reduction produces word frequency
distributions for each paper and for each author.

The reader will program an algorithm for assigning authorship to a dis-
puted paper using the multinomial naïve Bayes prediction function in the
second tutorial. The prediction function compares the word frequency distri-
bution of the disputed paper to each author’s word frequency distribution.
Authorship is predicted based on the similarity of the frequency distribution
of a disputed paper to each author’s frequency distribution. Therefore, word
frequency distributions must be computed for each paper and for each author
using the undisputed papers. Building the word frequency distributions is the
next subject.

10.4 Tutorial: Reducing the Federalist Papers

Several mappings are needed to transform the textual data to a form com-
patible with the naïve Bayes prediction function. When applied one after
the other, the mappings form the composite mapping discussed in Sect. 10.2.
Specifically, g : P0 → x0 maps a Federalist paper P0 to a word frequency
distribution x0. The tutorial begins with retrieving two data sets.
1. Retrieve an electronic version of the Federalist Papers from the Guten-

berg project [44], https://www.gutenberg.org/. Use the search facility to
search for Federalist Papers. Several versions are available; this tutorial
has been developed using the plain text version 1404-8.txt.

2. Table 10.1 lists the presumptive authors of each paper. A file (owners.txt)
containing the paper numbers and authors as shown in Table 10.1 may
be obtained from the textbook website. The 12 disputed are papers 49
through 58 and 62 and 63. In owners.txt, the disputed papers are
attributed to Madison. Retrieve the file or create a facsimile from Ta-
ble 10.1.

3. Create a set of stopwords using the stop-words module. Install the mod-
ule by submitting the instruction pip install stop-words from within
a Linux terminal or a Windows command prompt window. Add the fol-
lowing instructions to your Python script to import the module and save
the English stop-words as a set.

from stop_words import get_stop_words
stop_words = get_stop_words(’en’)
stopWordSet = set(stop_words) | set(’ ’)
print(len(stopWordSet))

We’ll prevent the blank string ’ ’ from becoming a word in the word
frequency distributions by adding it to the stop-words.

https://www.gutenberg.org/
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4. Build a dictionary from owners.txt that identifies the author of each
Federalist paper. Read the file as a sequence of character strings. Remove
the end-of-line or new-line character ’\n’ from each string.

paperDict = {}
path = ’../Data/owners.txt’
with open(path, "rU") as f:

for string in f:
string = string.replace(’\n’, ’ ’)
print(string)

The first instruction initializes a dictionary paperDict for storing the
authors and paper numbers.

5. Split each string at the comma and use the first element of the list (the
paper number) as a dictionary key in paperDict and the second element
(the author) as the value.

key, value = string.split(’,’)
paperDict[int(key)] = value

The code segment must have the same indentation as the print instruc-
tion.

6. Read the text file containing the Federalist papers and create a single
string.

path = ’../Data/1404-8.txt’
sentenceDict = {}
nSentences = 0
sentence = ’’
String = ’’
with open(path, "rU") as f:

for string in f:
String = String + string.replace(’\n’,’ ’)

The end-of-line marker \n is replaced with a white space before extending
the string.

7. The next code segment builds a dictionary that contains each Federalist
paper as a list of words. The key will be a pair—a two-tuple consisting of
the paper number and the presumed author. The principal difficulty in
building the dictionary is to form the papers. To do this, it’s necessary
to determine where each paper begins and ends.

The phrase To the People of the State of New York opens each pa-
per. We’ll use the phrase to identify the beginning of a paper. The
pseudonym PUBLIUS marks the end of all papers except 37. Open the
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file 1404-8.txt in an editor and insert PUBLIUS at the end of Paper 37
if it is missing.

The program iterates over String and determines beginning and end-
ing positions of each paper in String. We’ll use the re.finditer func-
tion, so import the regular expression module at the top of the script
(import re). The finditer function returns an iterator so that all in-
stances of a sub-string in a string can be located. The following code
segment creates a dictionary in which the keys are the paper number and
the values are lists containing the position of the first and last character
in the paper. We iterate over String twice—once to find the starting
position of each paper and a second time to find the ending position.

positionDict = {}
opening = ’To the People of the State of New York’
counter = 0
for m in re.finditer(opening, String):

counter+= 1
positionDict[counter] = [m.end()]

close = ’PUBLIUS’
counter = 0
for m in re.finditer(close, String):

counter+= 1
positionDict[counter].append(m.start())

In the first iteration, we search String until the starting position is found
as the ending character in the phrase To the People of the State of New
York. Then, counter is incremented and the position marking the start of
the paper is stored in positionDict. Another iteration begins the search
for the next starting position. Iterations continue until the end of String
is found.

The second for loop determines the end of the paper by finding the
position of the first character in PUBLIUS.

8. Now extract each paper from String by extracting the text between each
starting and ending position. Iterate over the dictionary positionDict
to get the beginning and ending positions. Also, create a label consisting
of the paper number and the author’s name.

wordDict = {}
for paperNumber in positionDict:

b, e = positionDict[paperNumber]
author = paperDict[paperNumber]
label = (paperNumber,author)
paper = String[b+1:e-1]

The last statement stores the extracted text as a sub-string named paper.
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9. There’s a substantial amount of bookkeeping in the mapping of papers to
word frequency distributions. To expedite matters, we use a namedtuple
type for dictionary keys. The elements of a named tuple may be addressed
using a name rather than a positional index thereby improving readabil-
ity of the code and reducing the likelihood of programming errors. The
namedtuple type is contained within the collections module. Import
namedtuple by putting an import instruction at the beginning of the
Python script. Create a type of tuple named identifier with two ele-
ments, a class name and field identifiers. The class name will be label and
the field identifiers are index and author. The import and initialization
instructions are

from collections import namedtuple
from collections import Counter
identifier = namedtuple(’label’, ’index author’)

We are importing the dictionary subclass Counter to expedite computing
the word frequency distributions.

10. In the code segment above (instruction 8), replace label = (paperCount,
author) with

label = identifier(paperCount,author)

This change allows us to reference the author of a particular paper using
label.author or by position, i.e., label[1].

11. We’ll add the instructions necessary to convert the string paper to a set
of words. Three operations are carried out: remove punctuation marks,
translate each letter to lowercase, and remove the stop-words from the
paper. Still in the for loop and after extracting paper from String, add
the code segment

for char in ’.,?!/;:-"()’:
paper = paper.replace(char,’’)

paper = paper.lower().split(’ ’)
for sw in stopWordSet:

paper = [w for w in paper if w != sw]

The instruction paper = paper.lower().split(’ ’) translates capital
letters to lowercase. Then, the string is by split into sub-strings wherever
a blank is encountered. The result is a list.

The for loop over stopWordSet uses list comprehension to repeatedly
build a new copy of paper. On each iteration of the for loop, a stop word
is removed from paper.
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12. The last step is to generate the word distributions. We use a Counter
dictionary subclass from the collections module. The function call
Counter(paper) returns a dictionary in which the keys of the dictio-
nary are items in the list (words in this case) and the values are the
frequencies of occurrence of each item in the argument (the paper in this
case).

wordDict[label] = Counter(paper)
print(label.index,label.author,len(wordDict[label]))

The last statement prints the paper number and author and the number of
words in the word frequency distribution for the paper. Both statements
must be indented to execute within the for loop.

13. Construct a table showing the numbers of papers attributed to each au-
thor.

table = dict.fromkeys(set(paperDict.values()),0)
for label in wordDict:

table[label.author] += 1
print(table)

You should find that Jay is identified as the author of 5 papers, Madison
is identified as the author of 26 papers, and Hamilton is identified as the
author of 51 papers.

14. Since some of the papers are of disputed authorship and three are joint,
we should not use all 85 for building the prediction function.4 The next
code segment constructs a list trainLabels containing the labels of pa-
pers that will be used to build the prediction function. Specifically, these
papers will be used to build word frequency distributions for Hamilton,
Madison, and Jay.

skip = [18, 19, 20, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 62, 63]
trainLabels = []
for label in wordDict:

number, author = label
if number not in skip:

trainLabels.append(label)
print(len(trainLabels))

The list skip contains the numbers of the three co-authored papers and
the 12 disputed papers.

4 The disputed papers are in fact the targets though we’ve used an ownership list that
attributes authorship to all 85 papers.
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15. Build a list of words that were used in the training set papers and by
all of the authors.5 We refer these words as the common words. The first
operation is to create a list of training papers.

disputedList = [18,19,20,49,50,51,52,53,54,55,56,57,58,62,63]
trainLabels = []
for label in wordDict:

number, author = label
if number not in disputedList:

trainLabels.append(label)
print(len(trainLabels))

The 85 dictionaries of word frequencies contain words that were not
used by all authors. This will cause a difficulty when comparing dis-
tributions. If a word is not used by Hamilton, say, then the estimated
probability of its use by Hamilton is zero since the probability estimate
is the relative frequency of use. Probability estimates of zero have se-
vere consequences, and we discuss the matter at length in the tutorial of
Sect. 10.6.1. One solution is to modify all of the probability estimates so
that none can take on the value zero. A second solution is to eliminate
words that are not used by all three authors. We proceed with the second
solution.

16. To construct the list of common words, we begin by building a dictionary
named usedDict that uses words as keys. The value associated with a
word is the set of authors that used the word. The list of common words—
we call it commonList—is built from those words in the dictionary that
were used by all three authors.

Iterate over the training set, specifically, iterate over trainLabels.

usedDict = {}
for label in trainLabels:

words = list(wordDict[label].keys())
for word in words:

value = usedDict.get(word)
if value is None:

usedDict[word] = set([label.author])
else:

usedDict[word] = value | set([label.author])
commonList = [word for word in usedDict if len(usedDict[word]) == 3]

The instruction wordDict[label].keys() extracts the words used in the
paper indexed by label. The | operator is the set function union (hence,
A | B = A ∪ B). The list commonList is built by list comprehension.
The test for three authors in the set insures that words included in the
common list have been used by all three authors.

5 Stop-words are excluded.
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17. Remove any word appearing in wordDict that is not common to the three
authors. Items cannot be removed from an object while iterating over
the object. To work around this constraint, we create a new dictionary
named newDict for each paper in wordDict and fill it with words from
the dictionary associated with the paper. After iterating over all of the
words in the frequency distribution associated with a particular paper,
we replace the longer dictionary with the shortened, common words only
dictionary.

for label in wordDict:
D = wordDict[label]
newDict = {}
for word in D:

if word in commonList:
newDict[word] = D[word]

wordDict[label] = newDict
print(label,len(wordDict[label]))

Not every paper has the same length word frequency distribution. However,
every word appearing in a word frequency distribution has been used by all
three authors. Therefore, the probability estimates π̂k,i are non-zero for every
author (indexed by k) and every word (indexed by i).

10.4.1 Summary

The Federalist papers have been mapped to a set of word frequency distribu-
tions stored in the dictionary wordDict. Each distribution lists the non-zero
frequency of occurrence words in a common set of 1102 words. The frequency
of each word in the common set is easily determined for a particular paper of
interest, and so we are now ready to construct the multinomial naïve Bayes
prediction function.

10.5 Tutorial: Predicting Authorship of the Disputed
Federalist Papers

We proceed under the premise that stylistic differences in the authors’ writing
may be used to predict the author of a disputed paper. We use one stylistic
attribute for this purpose: word choice. Word choice is quantified by the
relative frequency of occurrence of each word in the set of common words. We
hope that there are substantial differences among authors with respect to the
relative frequencies of occurrence of a significant number of words. If so, then
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we should be able to construct an accurate naïve Bayes prediction function
for the purpose of predicting authorship of a Federalist paper. To build the
prediction function, we compute, for each author, the relative frequency of
occurrence of each word in the common set. The relative frequencies are our
estimates of the probability of observing a particular word in a random draw
from a Federalist paper written by a particular author (Eq. (10.5)).

Given a disputed paper and its prediction vector x0 consisting of the fre-
quencies of occurrence of words in the common set, we compute the esti-
mated probability of observing x0 if the author was Jay, Madison, and then
Hamilton. Our prediction of the author y0 is determined by the largest es-
timated posterior probability ̂Pr(y0 = Jay|x0), ̂Pr(y0 = Madison|x0), and
̂Pr(y0 = Hamilton|x0).

It remains to estimate the probability πk,i that the common set word
wi will be randomly sampled from among the non-stop-words comprising a
Federalist paper written by author Ak, for k = 1, 2, 3.

1. For each of the three authors, a frequency distribution will be created
in the form of a dictionary in which the keys are words and the values
are the frequencies of occurrence of each word. This will be accomplished
by summing the frequencies of occurrence of a particular word over all
undisputed papers that are attributed to the author. The code segment
begins by counting the number of papers attributed to each author. These
counts yield the estimated prior probabilities of authorship.

logPriors = dict.fromkeys(authors,0)
freqDistnDict = dict.fromkeys(authors)
for label in trainLabels:

number, author = label
D = wordDict[label]
distn = freqDistnDict.get(author)
if distn is None:

distn = D
else:

for word in D:
value = distn.get(word)
if value is not None:

distn[word] += D[word]
else:

distn[word] = D[word]
freqDistnDict[author] = distn
logPriors[author] +=1

The dictionary freqDistnDict contains a dictionary for each the three
authors. The value associated with a particular author is a frequency
dictionary, hence, each key is a word and the associated value is the
frequency of occurrence of the word.
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2. Before constructing the prediction function compute the relative fre-
quency distributions for each author. A relative frequency distribution
is constructed as a dictionary. Each key is a word and the associated
value is the log-relative frequency of occurrence of the word (identified
as log(π̂k,j) in formula (10.6)). The relative frequency of occurrence of a
word is computed as the number of times that an author used the word
in his undisputed papers divided by total number of uses of any common
word across his undisputed papers. The dictionary distnDict will con-
tain the estimated priors and estimated probabilities of word occurrence
for the three authors.

nR = len(trainLabels)
logProbDict = dict.fromkeys(authors,{})
distnDict = dict.fromkeys(authors)
for author in authors:

authorDict = {}
logPriors[author] = np.log(logPriors[author]/nR)

nWords = sum([freqDistnDict[author][word] for word in commonList ])
print(nWords)

for word in commonList:
relFreq = freqDistnDict[author][word]/nWords
authorDict[word] = np.log(relFreq)

distnDict[author] = [logPriors[author], authorDict]

The total number of uses of common words by an author is computed as
nWords. We iterate over the words in commonList to compute log(π̂k,j)
for the jth word and author k. The estimate is stored temporarily in
authorDict using word as a key. After completing the iteration over
commonList, authorDict is stored with the estimated log-prior probabil-
ity in distnDict.

3. The next code segment applies the multinomial naïve Bayes prediction
function to the undisputed papers to gain some information about the
accuracy of the prediction function. Recall that a predictor vector xi =
[xi,1 · · · xi,n]T is the vector of frequencies of occurrence for each of the
n words in paper i. The prediction of authorship is

f(xi|R) = arg max
k

⎧

⎨

⎩

log(π̂k) +
n
∑

j=1
xi,j log(π̂k,j)

⎫

⎬

⎭

, (10.7)

where n is the number of common words. The terms log(π̂k) and log(π̂k,j)
for the three authors are stored in the dictionary distnDict and the
test vector xj is stored in a dictionary in wordDict. Therefore, we treat
wordDict as a test set, and apply the prediction function to each xi in this
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test set by iterating over wordDict. None of the papers in the list skip
should be used since we are excluding disputed papers from accuracy
assessment. Iterate over papers in wordDict and exclude disputed and
joint authorship papers:

nGroups = len(authors)
confusionMatrix = np.zeros(shape = (nGroups,nGroups))

skip = [18,19,20,49,50,51,52,53,54,55,56,57,58,62,63]

for label in wordDict:
testNumber, testAuthor = label

if testNumber not in skip:
xi = wordDict[label]
postProb = dict.fromkeys(authors,0)
for author in authors:

logPrior, logProbDict = distnDict[author]
postProb[author] = logPrior

+ sum([xi[word]*logProbDict[word] for word in xi])

postProbList = list(postProb.values())
postProbAuthors = list(postProb.keys())
maxIndex = np.argmax(postProbList)
prediction = postProbAuthors[maxIndex]
print(testAuthor,prediction)

The estimated log-posterior probabilities are computed for xi according
to

log(π̂k|xi) = log(π̂k) +
n
∑

j=1
xi,j log(π̂k,j). (10.8)

The predicted author of the paper corresponds to the largest of the three
log-posterior probability estimates log(π̂Hamilton|xi), log(π̂Madison|xi), and
log(π̂Jay|xi). We’ve converted the dictionary keys and values to lists and
used the Numpy function argmax to extract the index of the largest log-
posterior probability estimate. We’ve used it before in instruction 15 of
the Sect. 9.6 tutorial (Chap. 9).

4. Tabulate the result in the confusion matrix. Rows of the confusion matrix
correspond to the known author and columns correspond to the predicted
author. Insert the following code segment so that it executes immediately
after the statement print(testAuthor, prediction).

i = list(authors).index(testAuthor)
j = list(authors).index(prediction)
confusionMatrix[i,j] += 1
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5. Print the confusion matrix and the estimated overall accuracy at the
completion of the for loop.

print(confusionMatrix)
print(’acc = ’,sum(np.diag(confusionMatrix))/sum(sum(confusionMatrix)))

You should find that the prediction function has an apparent accuracy
rate of 1.

6. Determine the predictions of the disputed papers by changing the skip
list so that only the joint papers are excluded from the calculation of
accuracy. The outcome is shown in Table 10.2.

Table 10.2 A confusion matrix showing the results of predicting the authors of the
Federalist papers. The actual authors consist of the known authors and the predicted
authors according to researchers [1, 41]. Predicted authors are the outcomes of the
multinomial naïve Bayes prediction function

Predicted author
Actual author Jay Madison Hamilton Total

Jay 5 0 0 5
Madison 0 20 6 26
Hamilton 0 0 51 51

Total 5 20 57 82

10.5.1 Remark

Our results disagree with the results of Mosteller and Wallace [41] as we find
that six of the disputed papers were more likely authored by Hamilton as he
claimed.

10.6 Tutorial: Customer Segmentation

A recurring challenge in business marketing is to identify customers that
are alike with regard to purchasing habits. If distinct groups or segments of
customers can be identified, then a business may characterize their customers
with respect to demographics or behavior. Tailoring their communications
to specific segments allows for more relevant messages and improvements in
customer experience. From the standpoint of the business, monitoring activity
by customer segment promotes the understanding of their customers and
allows for timely changes and improvements to business practices. A group
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of customers that are alike with respect to purchasing habits is referred to
as a customer segment. The process of partitioning a set of customers into
segments is known as customer segmentation.

We return to the grocery store data set of Chap. 5. The investigation was
loosely organized about understanding shopping behaviors by customer seg-
ment. There are clear differences between segments with respect to several
variables.

The following customer segments have been identified:

Primary These members appear to utilize the co-op as the primary place
they grocery shop.

Secondary These members shop regularly at the co-op but are likely to
shop at other grocery stores.

Light These members have joined the co-op but shop very seldom and tend
to purchase few items.

Niche This is a collection of 17 segments containing relatively few mem-
bers. These customers shop one department almost exclusively. Examples
of the niche segments are produce, packaged grocery, and cheese.

Both members and non-members buy at the co-op. Non-members are not
identifiable by segment at the time of a transaction. However, the co-op
would like to provide incentives and services at the time of sale to the non-
members based on their predicted customer segment. With this goal in mind,
we ask the following question: based on the receipt, that is, a list of purchased
items, can we identify a customer segment that the non-member customer
most resembles?6 In analytical terms, the objective is to estimate the relative
likelihood that a non-member belongs to each of the 20 customer segments
based on their point-of-sale receipt. The last step is to label the non-member
according to the most likely segment.

We return to a problem already encountered in the Federalist Papers anal-
ysis before tackling the prediction problem.

10.6.1 Additive Smoothing

The incidence of non-stop words that were not used by all three authors pre-
sented a complication in the Federalist Papers problem. Some of the non-stop
words were not used by all three authors, and so the frequency of occurrence
of such a word was zero for at least one author. For these words, the estimated
probability of use for one or more authors was zero. Here lies the problem.
The prediction function computes a linear combination of the frequencies of
use and the logarithms of the estimated probability of use. If one such word
appears in a paper, then an estimate of zero for author A eliminates A from
6 If so, then the non-members may be offered segment-specific information and incen-
tives.
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being the author of the paper, no matter how similar the rest of the paper’s
word distribution is to the word distribution of author A. We had the lux-
ury with the Federalist Papers of ignoring those zero-frequency words since
there were more than 1100 words that were used by all three. With only
three authors, enough common words were left to build an accurate predic-
tion function. If there had been a larger number of authors, then ignoring
words not common to all authors may have been costly with respect to the
discriminative information carried by the words.

In the customer segmentation analysis, a group is a customer segment.
There are thousands of items for sale (at least 12,890), and most of the seg-
ments are niche segments. Members of the niche segments are very exclusive
in their selection of store items and some niche segments may not purchase
a significant number of items. Our casual approach to dismissing items with
zero frequency of purchase may negatively affect the prediction function.

Let’s consider a more conservative approach to handling categories (a word
or a store item) for which there are no observations on use (or purchase) for
one or more the groups. The solution is to smooth the probability estimates.
We recommend a technique known as additive smoothing (also known as
Laplace smoothing). The idea is to add terms to both the numerator and
denominator of a sample proportion so that if the numerator is zero, then
the estimate will not be zero, but instead a small positive fraction.

Let d denote the number of groups or classes, and n denote the number
of categories. In the Federalist Papers analysis, there were d = 3 groups of
papers, each belonging to one of the authors, and n = 1103 categories, as
there were 1103 non-stop words used at least once by all three authors. The
probability of drawing item j from among the items bought by a customer
belonging to segment k is denoted by πk,j . The sample proportion estimator
of πk,j is

pk,j = xk,j
∑n

i=1 xk,i
,

where xk,j is the frequency of purchases of item j by members of segment k.
The sum of pk,j over items (indexed by j) is one since every purchase must
be one of the n items. We found 12,890 unique items among the purchases of
the members. The smoothed estimator of πk,j is a modification of the sample
proportion given by

π̂k,j = xk,j + α
∑n

i=1 xk,i + dα
, (10.9)

where α is the smoothing parameter. A common choice is α = 1 though
smaller values are sometimes preferred. To illustrate, suppose that α = 1
and xk,j = 0 for some segment and item. Then, π̂k,j = 1/(

∑n
i=1 xk,i + d).

On the other hand, if every purchase from a segment k was of item j, then
xk,j =

∑n
i=1 xk,i and π̂k,j = (xk,j + 1)/(xk,j + d).
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10.6.2 The Data

Returning to the data at hand, there are two data sets, one consisting of re-
ceipts from members and the other consisting of receipts from non-members.
Both data sets were collected during the month of December 2015. The file
named member_transactions.txt has contains 50,193 observations, each of
which is best thought of as a receipt. Columns are tab-delimited and contain
the following information:
1. owner: an anonymized identifier of the co-op member.
2. transaction identifier: a unique identifier for the transaction, or equiv-

alently, the receipt.
3. segment: the segment membership of the owner.
4. date: the date of the transaction.
5. hour: the hour of the transaction.
6. item list: a variable-length list of the items that were purchased.

Table 10.3 shows a partial record. Note that one item, a bag of St. Paul
bagels, appears twice in the list of items.

Table 10.3 A partial record from the data file. The entire receipt is not shown since
40 items were purchased
Variable Value
Owner 11,144
Transaction identifier m22
Segment Primary
Date 2015-12-30
Hour 12
Item list Tilapia \t St.Paul Bagels (Bagged) \t St.Paul Bagels (Bagged)

\t Salmon Atlantic Fillet \t O.Broccoli 10oz CF \t . . .

A second file, nonmember_transactions.txt, contains transaction infor-
mation for non-member customers. The non-members data file has the same
columns as the previous data set except that the owner and customer segment
identifiers are absent.
1. We begin by importing modules and defining the paths to the two data

sets.

import sys
import numpy as np
from collections import defaultdict

working_dir = ’../Data/’
mem_file_name = "member_transactions.txt"
non_mem_file_name = "nonmember_transactions.txt"
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2. Initialize a dictionary of dictionaries named segmentDict to store the
items that were purchased by the members of each segment. Initialize
two more dictionaries to store the numbers of items purchased by each
segment and the number of purchases of each item.

segmentDict = defaultdict(lambda: defaultdict(int))
segmentTotals = defaultdict(int) # A count of purchases by segment
itemTotals = defaultdict(int) # A count of purchases by item

The instruction defaultdict(lambda: defaultdict(int)) creates a
dictionary of dictionaries. The outer dictionary is named segmentDict.
The keys for this dictionary will be the groups—the customer segments.
The inner dictionaries are not named, but the keys of these dictionaries
are the item names and the values are the frequencies of occurrence of
each item in the segment stored as integers. Because the dictionaries are
defaultdict dictionaries, we do not need to test for and create an entry
for each item if it’s not already in the inner dictionary. Likewise, the inner
dictionaries (the segment dictionaries) are automatically created when a
newly encountered segment is passed to segmentDict.

3. The member transactions data file is read in this code segment. The
code builds segmentDict, the dictionary containing the frequencies of
occurrence of each item in each segment. The total number of transactions
for each segment is computed and stored in segmentTotals. The totals
are used to estimate the prior probabilities. Lastly, the totals for each
item are computed and stored in itemTotals.

path = working_dir + mem_file_name
print(path)
with open(path,’r’) as f :

next(f) # skip header
for record in f :

record = record.strip().split("\t")
segment = record[2]
items = record[5:]
segmentTotals[segment] += 1

for item in items :
item = item.lower()
itemTotals[item] += 1
segmentDict[segment][item] += 1

print(len(segmentDict))
print(segmentDict.keys())

As each record is read, leading and trailing blanks are removed using the
.strip() function.
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The instruction segmentDict[segment][item] += 1 increments the
frequency of occurrence of the item in the segment dictionary. The item is
a key for a particular segment dictionary, namely, segmentDict[segment].

4. After all of the data is processed, calculate the natural logarithms of the
prior probability estimates (the π̂k’s) (Eq. (10.6)).

totalItems = sum([n for n in segmentTotals.values()])
logPriorDict = {seg : np.log(n/totalItems)

for seg, n in segmentTotals.items()}
nSegments = len(logPriorDict)

The calculation of logPriorDict makes use of dictionary comprehension.
Segments are used as keys and the values are the natural logarithms of
the prior probability estimates. Check that the number of segments is 20.

5. The next step is to build the prediction function, f(x0|D). The function
will consume a predictor vector x0 consisting of a receipt listing each
item that was purchased by a customer. The prediction of y0 is com-
puted from the posterior probability estimates (the π̂k,j ’s) which in turn
are computed from segmentTotals. We also use the prior probability es-
timates π̂k, k = 1, 2, . . . , d. The logarithms of these estimates are passed
in as well.

The function declaration is

def predictFunction(x0, segmentTotals, logPriorDict, segmentDict, alpha):
’’’ Predicts segment from x0

Input: x0: a transaction list to classify
segmentTotals: the counts of transactions by segment
logPriorDict: the log-priors for each segment
segmentDict: transaction by segment by item.
alpha: the Laplace smoothing parameter.

’’’

6. Continuing with the predictFunction, the next code segment computes
the logarithm of the posterior probability estimates of segment member-
ship for the target x0. Recall that the prediction of group (or segment)
membership is determined by the function (see Eq. (10.7))

f(x0|D) = arg max
k

⎧

⎨

⎩

log(π̂k) +
n
∑

j=1
x0,j log(π̂k,j)

⎫

⎬

⎭

,

where k indexes customer segments, π̂k is the estimated prior probability
of membership in the kth segment, and π̂k,j is the estimated probability
of purchasing the jth item by a customer belonging to segment k. Also,
the logarithm of π̂k,j is (see Eq. (10.9))
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log(π̂k,j) = log(xk,j + α) − log (
∑n

i=1 xk,i + dα) , (10.10)

where xk,j is the total number of purchases of the jth item by members
of customer segment k. The denominator

∑n
i=1 xk,i +dα of the estimator

π̂k,i is a constant—it doesn’t depend on the item (indexed by j) so it
can be computed once for each segment (indexed by k). Since the pre-
diction function operates on the natural logarithm scale, we compute the
logarithm of the denominator.

Be aware that customers often purchase several of the same items, in
which case one might expect the count would be greater than one in x0.
However, our item list is different: the item will have multiple occurrences
in the list if the item was scanned more than once (see Table 10.3 for an
example of a receipt).

We use nested for loops. The outer for loop iterates over the segments
and the inner iterates over items in the transaction vector x0.

logProbs = defaultdict(float)
for segment in segmentDict :

denominator = sum([itemTotals[item] for item in itemTotals])
+ alpha * nSegments

logDen = np.log(denominator)
for item in x0 :

logProbs[segment] += np.log(segmentDict[segment][item] + alpha)
- logDen

Because segmentDict[segment] is a defaultdict, it returns zero if
there is no entry for item in segmentDict[segment] rather than a
keyError.

Even if we pass α = 0 and segmentDict[segment][item] is zero,
an exception is not created. Instead, the np.log function returns -inf,
mathematically, −∞. The practical effect is that the segment without any
purchases of the item cannot yield the maximum probability of segment
membership since the estimated log-posterior probability of membership
in the segment will be −∞. This strategy is reasonable if the number
of observations in the data set is large, as it is in this case with 50,192
transactions.

7. The last code segment in the predictFunction determines the segment
associated with the maximum estimated posterior probability (on the
logarithmic scale). The first line of code creates a list of two-element
lists from the logProbs dictionary. The Numpy function argmax is used
to extract the index of the largest element.7

7 We used the function in instruction of 3 of the Sect. 10.5 tutorial.
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lstLogProbs = [[seg, logProb] for seg, logProb in logProbs.items()]
index = np.argmax([logProb for _,logProb in lstLogProbs])
prediction, maxProb = lstLogProbs[index]
return(prediction)

The calculation of index uses list comprehension to build a list containing
only the log-probability estimates. The underscore character _ instructs
the Python interpreter to ignore the first element of each pair in building
the list.

8. Now that the prediction function has been programmed, we need to ver-
ify that it produces reasonable results. The first check is to apply the
function to the membership data and determine the proportion of train-
ing observations that are assigned to the correct segment. We’ll re-use
the code from the beginning of the tutorial to process the data file. We
create an empty list named outcomes to store the pairs (yi, ŷi) as the
with open loop iterates over records and computes the predictions.

outcomes = []
alpha = 0
with open(working_dir + mem_file_name,’r’) as f :

next(f) # skip headers
for idx, record in enumerate(f) :

record = record.strip().split("\t")
segment, item_list = record[2], record[5:]
x0 = [item.lower() for item in item_list]

9. Call predictFunction and save the results by appending to the outcomes
list:

prediction = predictFunction(x0, segmentTotals, logPriorDict,
segmentDict, alpha)

outcomes.append([segment,prediction])

This code segment immediately follows the translation of item_list to
x0.

10. Every 100 records, compute an estimate of the overall accuracy of the
function.

if idx % 100 == 0 :
acc = np.mean([int(segment==prediction )

for segment, prediction in outcomes])
print(str(idx),acc)
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List comprehension is used to construct a list of boolean values (true
or false) by the comparison segment==prediction. The conversion of
a boolean to integer produces 1 if the boolean variable is true and 0 if
the value is false. The mean of the binary vector is the proportion of
observations that were correctly classified. With our choice of α = 0, we
obtained an estimated accuracy rate of .711.

11. The nonmember data set contains 23,251 receipts. We will compute pre-
dictions for each receipt and track the number of receipts that are pre-
dicted to belong to each of the 20 market segments.

a. Change the input file name to read the non-members data set.
b. Change the instruction that extracts the item_list and the record

identifier. The new instruction should look like this:

recordID, item_list = record[0], record[3:]

c. Initialize a defaultdict for which the values are sets before the non-
members data file is processed. The keys of the dictionary will be
segments, and the values will be a set of record identifiers that were
predicted to belong to the segment.

segCounts = defaultdict(set)

d. After predictionFunction returns prediction, add the record iden-
tifier to the dictionary. The key is the predicted segment.

segCounts[prediction].add(recordID)

The function add adds a record identifier to a set.
e. Run the script and print the contents of segCounts. Our results are

shown in Table 10.4.

for seg in segCounts :
total += len(segCounts[seg])
print(" & ".join([seg,str(round(len(segCounts[seg])/idx,3))] ) )

10.6.3 Remarks

We have some concerns with the results of the prediction function. First, the
accuracy estimate is not a great deal larger than the proportion of members
that have been identified as members of the primary segment (.649). If we had
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Table 10.4 Predicted customer segments for non-members. The tabled values are the
proportion of predictions by customer segment. N = 23,251 receipts were classified to
segment

Segment Proportion
Primary .873

Secondary .077
Light .0

Niche-juice bar .003
Niche-frozen .0

Niche-supplements .0
Niche-meat .001

Niche-bread .0
Niche-personal care .001

Niche-herbs & spices .001
Niche-general merchandise .0

Niche-beer & wine .0
Niche-packaged grocery .014

Niche-produce .007
Niche-bulk .001

Niche-cheese .0
Niche-refrigerated grocery .002

Niche-deli .02

assigned every member to the primary segment, the accuracy rate estimate
would be .649. We are not out-performing a simple baseline prediction func-
tion by a lot. Another item of some concern is the rate at which non-members
are assigned to the primary segment—.873. This rate is substantially larger
than the proportion of primary segment customers (.649). This observation
raises a second concern that the prediction function is biased and assigns too
many receipts to the primary segment. The problem is difficult to address
and it may be that non-members tend to purchase items similar to those
preferred by the primary segment customers in which case, the prediction
function is not necessarily biased.

10.7 Exercises

10.7.1 Conceptual

10.1. The sample proportions were used as estimators of the conditional
probabilities of membership πk,i, k = 1, 2, . . . , d, i = 1, . . . , n without justi-
fication for the multinomial prediction function. It ought to be established
that the sample proportions are good estimators. We may instead determine
a vector of estimators

π̂k = [π̂k,1 · · · π̂k,n]T (10.11)
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that maximize the probability of obtaining the observation vector x =
[x1 · · · xn]T . The estimator π̂k is optimal in the sense of making the
estimates as consistent with the data as possible, and so we would choose to
use π̂k over any other estimator. Determine an estimator of πk by max-
imizing the probability of obtaining x (formula (10.3)) as a function of
πk = [πk,1 · · · πk,n]T . For convenience, you may drop the subscript k.

10.2. Consider the two-word problem and prediction of authorship based on
x = [25 37]T (Eq. (10.2)). Suppose that π1,1 = .5, π2,1 = .3, and π3,1 = .4.

a. Compute Pr(x0|y0 = Ak) for A1, A2 and A3 and determine the prediction

ŷ0 = arg max{Pr(x0|y0 = A1), Pr(x0|y0 = A2), Pr(x0|y0 = A3)}.

b. Suppose that the prior probabilities are π1 = .8, π2 = π3 = .1. Compute
the posterior probabilities Pr(y0 = Ak|x0) for A1, A2 and A3. Determine
the prediction ŷ0.

c. Return to the multinomial naïve Bayes prediction problem and the tu-
torial of Sect. 10.5. The algorithm set the prior probability estimates to
be the relative frequency of undisputed papers attributed to each author.
Perhaps this is not the best scheme—there are limitations to the number
of papers that any author may write in a year. Recompute the predictions
of authorship for all papers using non-informative priors (Sect. 10.3.1). Is
there a difference in the results?

10.7.2 Computational

10.3. Walmart sponsored a Kaggle competition to predict shopping trip type
(https://www.kaggle.com/c/walmart-recruiting-trip-type-classification). This problem
challenges the participants to classify a set of items referred to as a market
basket purchased by a customer. The classification system consists of a set
of 38 classes or types. The class labels are referred to as shopping trip type,
or trip type. Walmart provides no information on the characteristics of the
types, presumably to protect commercial interests.

They have provided a training set comprised of 647,053 purchased items
from 95,674 visits. This exercise involves using one categorical variable, the
department description of each purchased item, to predict trip type. There
are 69 departments and a customer’s purchases are distributed across the
departments. The question to be answered in this analysis is: how much pre-
dictive information about trip type can be extracted from the departments?

More information is available from Kaggle. Some guidance toward answer-
ing the question is provided below.

a. Get the data file from Kaggle. The first record contains the names of the
variables.

https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
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b. The first segment of code should map each record of a purchase to a visit.
It’s best to build a dictionary in which the key is the visit number (second
column) and the value is a list consisting of departments from which the
items were purchased. For instance, the three records from visit 9 are

8,9,"Friday",1070080727,1,"IMPULSE MERCHANDISE",115
8,9,"Friday",3107,1,"PRODUCE",103
8,9,"Friday",4011,1,"PRODUCE",5501

The trip type is 8 and the first department from which an item was pur-
chased from is IMPULSE MERCHANDISE.8 The dictionary entry for visit 9
is

[3, [’IMPULSE MERCHANDISE’, ’PRODUCE’, ’PRODUCE’]]

The trip type in our dictionary entry is 3, not 8, as it is in data file because
we have relabeled trip type using the integers 0, 1, . . . , 37.
Iterate over the data file and build the visit dictionary by aggregating all
of the purchases from a single trip. It’s a good idea to relabel trip types
as consecutive integers 0, 1, . . . , 37. If you relabel trip types, then you will
need to build a dictionary in which the keys are the Walmart trip type
codes and the values are the integer-valued labels. You can build both
dictionaries as the script iterates over the data file.

c. Construct a dictionary, we’ll call it dataDict, in which the keys are visits
and values are lists of length p = 69 and contain the number of items
purchased from each department. The lists correspond to the predictor
vectors x1, . . . ,xn, where n = 95,674. To build dataDict, note that the
keys are the same as for the visit dictionary. Iterate over the keys and
for each entry in the visit dictionary, count the number of items from
each department and store the count in a list. Save the list as the value
associated with the key. You can count the number of times a particular
department d occurred in a list x using the count function:

counts = [0]*p # p is the number of departments.
for i,d in enumerate(depts):

counts[i] += x.count(d)

The variable depts is the list of departments from which items were pur-
chased in the course of the visit. Store the count list and the trip type as
the value associated with visit.

8 The UPS code 1070080727 is a barcode symbol that specifically identifies the item.
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d. The frequency distributions of each trip type (similar to the count list)
may be constructed using the same code structure. The difference is that
the dictionary keys are the trips.

e. Build a dictionary that contains the log-relative frequencies of occurrence
of each department for each trip (the log(π̂k,i)’s where k indexes trip and
i indexes department). Also compute the log-priors (the log(π̂k)’s).

f. Compute an estimate of the accuracy of the multinomial naïve Bayes pre-
diction function. Iterate over dataDict and extract each test vector. Com-
pute the sum of log-probabilities as shown in formula (10.7) and determine
the most-likely trip:

yhat = np.argmax(postProbList)

where the list postProbList contains the sums for each trip.
g. While iterating over dataDict, tabulate the prediction outcomes in a con-

fusion matrix. The confusion matrix may be a Numpy array initialized ac-
cording to

confusionMatrix = np.zeros(shape = (nTrips,nTrips))

If the visit in question has been labeled as trip y0, then increment the
entry in the confusion matrix in row y0 and column yhat. (Relabeling
the trip classes as integers from 0 to g − 1 has made it easy to build the
confusion matrix in this manner.) While iterating, compute and print the
overall estimate of accuracy:

acc = sum(np.diag(confusionMatrix))/sum(sum(confusionMatrix))

h. Report the estimated overall accuracy and the confusion matrix.
10.4. The member_transactions.txt data file is large enough that we can
simply split it into a training and test set for rule evaluation. Randomly split
the data into a training set containing 80% of the observations and a test
set containing the remaining observations. Produce a confusion matrix com-
paring the actual segment to the predicted segment. Compute the estimated
accuracy rate α̂.
10.5. The member_transactions.txt data file contains dates and hours of
the day associated with each transaction. Build a contingency table that
tabulates the numbers of transactions by day of the week and hour of the
day for the primary segment, and then again for all other segments combined.
The Python module datetime has a function that will translate a date to
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day of the week. Use the weekday function from the module to identify the
day of the week. Import the module using the instruction from datetime
import datetime. The datetime.weekday() function labels a Monday as
0, a Tuesday as 1, and so on. Does it appear that the two segments differ
with respect when they shop? What are the implications for using day of the
week and hour of the day for prediction?



Chapter 11
Forecasting

Abstract This chapter provides an introduction to time series and founda-
tional algorithms related to and for forecasting. We adopt a pragmatic, first-
order approach aimed at capturing the dominant attributes of the time series
useful for prediction. Two forecasting methods are developed: Holt-Winters
exponential forecasting and linear regression with time-varying coefficients.
The first two tutorials, using complaints received by the U.S. Consumer Fi-
nancial Protection Bureau, instruct the reader on processing data with time
attributes and computing autocorrelation coefficients. The following tutorials
guide the reader through forecasting using economic and stock price series.

11.1 Introduction

Health insurers annually set premiums for their customers so that claims are
covered and premiums are competitive. Accurately forecasting future costs
is essential for competitiveness and profitability. Information for forecasting
health insurance costs originates from a variety of sources, but most notably,
number and cost of claims, number of insured clients, and institutional costs.
All of these variables are subject to trend over time and ought to be forecasted
to anticipate next-year costs. Forecasting is also prominent in other arenas,
for example, public health, business, and of course, climatology. Forecasting,
then, is an essential skill of the data scientist. The data analytic algorithms for
forecasting are not terribly dissimilar from those of the more general class of
algorithms for predictive analytics. There are, however, aspects of forecasting
related to time that ought to be understood and exploited if one is to engage
in forecasting.

The term forecasting refers to predicting an outcome that will be realized,
or observed, in the future. Prediction is a more general term for predicting
an unobserved value for which there may or may not be a time component.
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Broadly speaking, forecasting functions are constructed by estimating the
mean level of a process at a future time. Since the estimated mean level
becomes the forecast, the central aim is to estimate the expected value, or
the mean, of the random variable of interest at a future time step. In this
discussion, the current time step is n so that the estimated mean level μ̂n+τ

is a forecast τ time steps in the future.
The data of interest are traditionally referred to as time series because the

process generating the data possesses a chronological attribute. As a result,
the data are generated and observed in chronological order, and the chrono-
logical ordering is presumed to be useful for understanding the process and
for forecasting. Streaming data are time series data observed in real-time, and
the aim often is to compute forecasts as new observations arrive—also in real-
time.1 Effective algorithms for extracting information from time series data
ought to exploit the chronological ordering, but only if chronologically near
observations are not independent but instead are autocorrelated. If autocor-
relation is present, then data that are most recently observed are most useful
for forecasting and the forecasting function ought to place greater value on
more recent observations at the expense of observations observed in the more
distant past.

It’s assumed in this discussion that the process generating the data stream
is at drift. A process is at drift if the mean level and possibly the variance
are not constant but instead are changing, and the change is predominantly
toward larger, or smaller, values. The direction of trend and rate of change
may vary with time as well. Figure 11.1 provides an example. In this fig-
ure, the number of consumer complaints related to mortgages and filed with
the U.S. Consumer Financial Protection Bureau are plotted against the date
that the complaint was received. Many more complaints were made on week-
days compared to weekends. Weekend counts show little trend over time, but
weekday counts show several spikes and some downward trend preceding the
end of a year. Since trend in weekday counts varies with time, trend at time
step n must be estimated by data not too distant from n to be reflective of
the current process.

The visual evidence of trend in the weekday counts imply that past ob-
servations are predictive of future observations and that the data are auto-
correlated. The term serial correlation is used interchangeably with autocor-
relation but it is more to the point since autocorrelation may originate from
other sources such as spatial proximity. In any case, a claim that these data
are independent is indefensible and it would be foolish to analyze the data
for forecasting purposes as if they were independent.

If trend is present in a data series, then the mean of all observations is not
terribly informative about what is happening to the process generating the
series. If the aim is to forecast future values as data arrive in a stream, then
a sensible approach is to update a previously-made forecast by incorporating

1 Chapter 12 discusses computational aspects of processing streaming data.
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Fig. 11.1 Number of con-
sumer complaints about
mortgages plotted against
date. Complaints were filed
with the U.S. Consumer
Financial Protection Bureau
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the most recent observation. When a new observation is incorporated, then
the importance of each of the preceding observations is reduced to some
extent. The extent to which the recent observations dominate the forecast at
the expense of past observations ought to be tied to the rate of change in
trend. If the process changes slowly, then old observations are more useful
than if the process is changing rapidly.

11.2 Tutorial: Working with Time

Before proceeding further with the statistical aspects of forecasting, we ad-
dress a computational issue. Many data sets created by instrumentation or
automatic data logging contain time stamps that must be translated from
character string such as ‘Feb042015’ or ‘2015:02:04:23:34:12’ to a numerical
representation. For analytical purposes, it’s efficient to construct a variable
that is ordered chronologically such as the number of days or hours elapsed
since 12 p.m., December 31, 2000. The Python modules time, datetime, and
calendar, among others, are useful for this task. However, it’s sometimes bet-
ter to have greater control over the translation if the data are non-standard
or contain errors. We take the do-it-yourself approach in this tutorial.

The reader is introduced to working with time variables by investigating
trend and autocorrelation in the numbers of complaints submitted to the
U.S. Consumer Financial Protection Bureau.2 The data consist of complaint
records received by the Consumer Financial Protection Bureau from indi-
viduals. A rich set of attributes are recorded in these data. In particular,
complaints are classified as related to a specific product or service such as
mortgages, credit reporting, and credit cards. Figure 11.1 was constructed

2 We used these data in Sect. 6.5.
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using data from this source. While the data from the Consumer Financial
Protection Bureau is an excellent publicly available resource for studying
the quality of service provided by companies to consumers, it’s not perfectly
suited for our objective of investigating trend and estimating autocorrelation.
Therefore, we’ll have to restructure the data.

Since we are interested in analyzing counts over time, we’ll map individual
complaint records to the day that the complaint was received. The mapping
produces a dictionary in which the keys are day (represented as a character
string) and the values are lists of three items: a chronologically ordered integer
representation of day (e.g., 1, 2, . . .), a label identifying the day as a weekday
or a weekend day, and the number of complaints that were submitted on the
day in question.

The dictionary will be written to a second file and used as the data source
for the tutorial on computing autocorrelation coefficients. When writing the
file, days will be chronologically ordered for plotting and computing auto-
correlation coefficients. The task at hand, then, is to count the number of
complaints for each day, label each day as a weekend or weekday day, and
order the days chronologically.

1. Go to https://catalog.data.gov/dataset/consumer-complaint-database
and retrieve the data file Consumer_Complaints.csv.

2. Create an empty dictionary dataDict to contain the counts of complaints
for each day in the file. Dictionary keys will be a string in the format
month/day/year and dictionary values will be three-element lists con-
taining the number of elapsed days between the date that the complaint
was received and December 31, 2009, a label identifying whether the day
is a weekday or weekend day, and the number of complaints received on
the day.

3. Before processing the data set, read the first line of the data file using
the readline() function and inspect the column positions and names of
the variables:

path = ’../Consumer_Complaints.csv’
with open(path, encoding = "utf-8") as f:

variables = f.readline()
for i,v in enumerate(variables.split(’,’)):

print(i,v)

The variable named Product identifies the product or service and the
variable Date received contains the date that the complaint was re-
ceived by the Consumer Financial Protection Bureau. Be aware that the
column identifiers for these variables may change if the Bureau restruc-
tures the data file.

4. Process each line of the data file but save only those complaints of a
particular type, say credit reporting. The format for dates are the form

https://catalog.data.gov/dataset/consumer-complaint-database
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month/day/year where month and day are both represented by two char-
acters and year is represented by four characters. Extract day, month, and
year from lines with entries for the chosen product or service.

for record in f:
line = record.split(’,’)
if line[1] == ’Credit reporting’:

received = line[0]
month = int(received[0:2])
day = int(received[3:5])
year = int(received[6:10])

The product entry may be missing from some of the records so it’s best
to use an exception handler. The exception handler wraps around the
code as follows:

try:
if line[1] == ’Credit reporting’:

...
n += 1

except:
pass

The variable n will count the number of valid records. Initialize n before
the for loop.

5. Count the number of days elapsed between the time that a complaint was
received and December 31, 2009. First, define a list daysPerMonth with
the numbers of days in each of the months January through November.

daysPerMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30]

In leap years, there is an additional day in February. We will handle the
leap year in the code with a conditional statement. Define daysPerMonth
before the for loop.

6. Compute the number of days elapsed between December 31, 2009 and
the day that the complaint was received as follows. Sum over past years
and past months and the number of days elapsed since the beginning of
the current month. We’ll need the number of days since the beginning of
the year through the months preceding the current month. The function
call sum(daysPerMonth[:month-1]) computes the sum according to
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sum(daysPerMonth[:month-1]) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if month = 1,

31, if month = 2,
...

...
344, if month = 12.

(11.1)

Compute the total number of elapsed days:

elapsedDay = (year - 2010)*365 + sum(daysPerMonth[:month-1]) + day \
+ int(year == 2014 and month >= 3) + int(year > 2014)

We’re taking into account leap years by adding an additional day to the
count of elapsed days if the complaint was received after the last day
of February, 2014. The terms int(year == 2014 and month >= 3) +
int(year > 2014) will add an additional day to the count if necessary.
The most recent leap day occurred in 2014 and the next leap day will
occur in 2018. Adapt the statement if the current date is later than March
1, 2018.

Indent the statement so that it executes only if the product matches
the selected type of product.

7. Use the weekday function from the datetime module to identify the day
of the week. Import the module using the instruction from datetime
import datetime at the beginning of the script.

The datetime function weekday() labels a Monday as 0, a Tuesday
as 1, and so on. Compute the day of the week and store it as a variable
named dOfWeek.

dOfWeek = datetime.strptime(received, ’%m/%d/%Y’).weekday()

The function call datetime.strptime(received, ’%m/%d/%Y’) trans-
lates received to a datetime object from which the day of the week can
be computed.

8. Translate the integer-valued day of the week to a label identifying week-
days and weekend days:

label =
{

’Weekend’, if dOfWeek ∈ {5, 6},

’Weekday’, if dOfWeek /∈ {5, 6}.
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9. Create an entry if the received date is not in the dictionary dataDict.
Otherwise increment the number of complaints received on the date:

if dataDict.get(received) is None:
dataDict[received] = [elapsedDay,label,1]

else :
dataDict[received][2] += 1

10. Import the module operator at the beginning of the script. When all of
the records have been processed, sort the dictionary according to elapsed
day. Store the sorted dictionary as a list.

lst = sorted(dataDict.items(), key=operator.itemgetter(1))

The argument dataDict.items() instructs the sorted function to return
the dictionary keys and values as a two-tuple, each containing the key
and the value, for example, (’12/31/2014’, [1826, ’Weekday’, 78]).
The key argument specifies which variable to use for sorting, sometimes
called the sorting key (not to be confused with the dictionary key). It
is to be the zeroth argument in the value since we must sort on days
elapsed since December 31, 2009. If the dictionary were to be sorted by
the number of complaints, then the instruction would be

sorted(dataDict.items(),key=lambda item: item[1][2])

11. We’ll use the data in the next tutorial so save the list by creating a binary
file containing lst that can be loaded back into memory later.

import pickle
path = ’../Data/lst.pkl’
with open(path, ’wb’) as f:

pickle.dump(lst, f)

We used the pickle module in instruction 12 of the Chap. 8, Sect. 8.4
tutorial.

12. Check that the pickle operation has successful saved the data.

with open(path, ’rb’) as f:
lst = pickle.load(f)

print(lst)
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13. Plot the count of complaints against elapsed day:

import matplotlib.pyplot as plt
day = [value[0] for _,value in lst]
y = [value[2] for _,value in lst]
plt.plot(day, y)

14. Plot a sub-series, say days 500 through 1000.

indices = np.arange(500,1001)
plt.plot([day[i] for i in indices],[y[i] for i in indices])

We turn now to analytical methods.

11.3 Analytical Methods

11.3.1 Notation

For the time being, we will consider univariate data and denote the observed
data as an ordered arrangement of n values

Dn = (y1, y2, . . . , yt, . . . , yn),

where yt is a realization of the random variable Yt. The indexing system orders
the observations chronologically so that yt is observed after yt−1 for every
0 < t ≤ n. It won’t be assumed that the inter-arrival times of observations
are constant, and so the index t orders the data chronologically but is not
equivalent to clock time. Instead, t denotes a time step.

If forecasting is carried out at the same time that the data arrive, then the
data are referred to as streaming data, and the analytical methods are often
called real-time analytics.

11.3.2 Estimation of the Mean and Variance

If streaming data are generated by a process that is believed to be stationary,
and so, not at drift, then all observations ought to be used for estimating μ,
σ2, and any other relevant parameters that describe the process. The only
relevant issue posed by streaming data is data storage. Storing a large number
of observations is neither practical nor necessary since an associative statistic
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can be updated as the data arrive. For example, an associative statistic for
estimating the mean and variance was discussed in Sect. 3.4. We’ll add the
subscript n to the elements of the associative statistic and write them as

s(Dn) = (s1,n, s2,n, s3,n)
=
(∑n

t=1 yt,
∑n

t=1 y2
t , n
)

.
(11.2)

The estimators of μ and σ2 at time step n are functions of s(Dn) given by

μ̂n = s1,n/s3,n,
σ̂2

n = s2,n/s3,n − (s1,n/s3,n)2.
(11.3)

An algorithm for computing μ̂n and σ̂2
n at time step n updates s(Dn−1) by

computing
s1,n ← s1,n−1 + yn

s2,n ← s2,n−1 + y2
n

s3,n ← s3,n−1 + 1.

Upon completion, μ̂n and σ2
n are computed using formulas (11.3).

Another approach is necessary if it is believed that the mean level is not
constant but rather is at drift. Since older observations contain less informa-
tion about the current level, older observations should be omitted or down-
weighted when estimating the mean level. A moving window is an elementary
approach to estimating the mean level in the presence of drift. A moving
window is a set consisting of the most recently observed m observations. The
moving window changes with each new observation as if you were looking in
a fixed direction from the window of a moving vehicle. As each new observa-
tion arrives, it replaces the oldest observation in the set. Hence, a constant
number of observations are contained in the moving window. An estimate of
μn computed from the moving window is called a simple moving average.3
The moving average estimator of μn is

μ̂MA
n = m−1

n
∑

t=n−m+1
yt.

There are limitations to moving windows. If m is too small, the mean will be
sensitive to random deviations and as a forecasting tool, it will be imprecise.
If m is too large, then a change in the mean may not be detectable until
undesirably many time steps have passed. Furthermore, a simple average of m
observations treats each observation equally rather than assigning the largest
weights to the most recent observations. Our premise is that the information
value of yt decreases regularly as n increases and so the two-weight system
(either 1/m or zero) is crude.

3 Exercise 9.5 of Chap. 9 asked the reader to program a moving average.
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11.3.3 Exponential Forecasting

It’s possible to use the complete set of observations y1, . . . , yn and assign
every observation a weight that depends on the time step at which it was
observed. We can use the exponential weights of the k-nearest-neighbor pre-
diction function of Chap. 9 for this purpose. The exponentially weighted mean
estimator of E(Yn|y1, . . . , yn) = μn is

μ̂n =
n
∑

t=1
wtyt (11.4)

where 0 ≤ wt ≤ 1 and 1 =
∑n

t=1 wt [27]. The weights are defined according
to

wt = α(1 − α)n−t, t ∈ {1, 2, . . . , n}.

Since 0 < α < 1, the weights increase to α as t increases from 1 to n. If it is
the case that

∑n
t=1 wt < 1, then we use a set of scaled weights. The scaled

weights are vt = wt/
∑n

t=1 wt, t = 1, . . . , n.
The effect of different choices of α on the weights are shown in Fig. 11.2.

Values of α greater than .25 lead to estimators that reflect the behavior of
the most recent observations since the weights diminish rapidly as t recedes
from n to zero. In contrast, values of α less than .05 lead to estimators that
reflect the values of a larger and older set of observations.

Fig. 11.2 Exponential
weights wn−t plotted against
n − t, where n is the current
time step and t is a preceding
time step
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If wt is replaced with α(1 − α)n−t in formula (11.4), then it is readily
deduced that μ̂n is a linear combination of the previous step estimate μ̂n−1
and the most recent observation yn. Specifically,

μ̂n = (1 − α)μ̂n−1 + αyn. (11.5)
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Exercise 11.1 asks the reader to verify Eq. (11.5). Equation (11.5) provides
some guidance towards choosing α since it’s apparent that the most recent
observation receives the weight α whereas the older observations collectively
receive the weight 1 − α. Further insight toward choosing α can be obtained
from an investigation of autocorrelation, the subject of the next section. Equa-
tion (11.5) also shows that μ̂n can be computed simply and quickly by up-
dating the previous step estimate μ̂n−1 and hence, the past observations need
not be stored.

Exponentially weighted mean estimators are sometimes used for visually
representing the drift in a series. If there’s no interest in forecasting, then
values observed both before and after a time step t are used in the computa-
tion of the exponential mean μ̂t. The term exponential smoothing is used to
describe the process.

Updating formulas such as Eq. (11.5) are useful for streaming data be-
cause the computational effort of computing μ̂n is trivial. The exponentially
weighted mean μ̂n can be used to forecast a future value Yn+τ , where τ counts
the number of steps forward from time step n. We’ll refer to forecasting us-
ing Eq. (11.5) as exponential forecasting. The subject is discussed in detail in
Sect. 11.6.

11.3.4 Autocorrelation

Effective algorithms for extracting information from time series data exploit
the tendency of observations that are near in time to be similar in value, or
serially correlated. The statistical term for these observations is dependent,
and the exponentially weighted mean is an example of exploiting serial cor-
relation. However, there aren’t any gains to using exponential forecasting if
observations are not dependent. Instead, there’s a loss of precision because
early observations are lost (or nearly so) from the estimator. It’s desirable,
then, to be able to assess the degree of intra-series correlation. The terms
autocorrelation and serial correlation are used to describe intra-series corre-
lation in an ordered arrangement of observations (y1, . . . , yn). In Sect. 6.8.3,
we used sample autocorrelation coefficients to assess serial correlation in an
arrangement of linear regression residuals. This discussion develops the ideas
of serial correlation and autocorrelation coefficients in detail.

Autocorrelation is quantified by a set of process or population parameters
ρ0, ρ1, . . . , ρr where r is a positive integer. The parameter ρτ is commonly
referred to as the lag-τ autocorrelation coefficient since it measures the degree
of linear association between one set of observations that lag behind another
set by τ time steps. A definition is

ρτ = E[(Yt − μ)(Yt−τ − μ)]
σ2 , (11.6)
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where σ2 = E[(Yt−μ)2] is the variance of Yt [27]. Formula (11.6) assumes that
the process is stationary since there is single population mean μ and variance
σ2 rather than a series of means, say μ1, μ2, . . ., and a series of variances.
Note that Eq. (11.6) implies ρ0 = 1.

An estimate of the lag-τ autocorrelation coefficient is

ρ̂τ =
∑n−τ

t=1 (yt − μ̂)(yt+τ − μ̂)
(n − τ)σ̂2 . (11.7)

Formula (11.7) provides appropriate estimates of ρτ if the mean level and
variance of the process are constant and hence, not at drift. The estimator
ρ̂τ is the Pearson correlation coefficient computed from the n − τ data pairs

{(y1, yτ+1), (y2, yτ+2), . . . , (yn−τ , yn)}. (11.8)

A set of estimates {ρ̂1, ρ̂2, . . . , ρ̂τ } that are mostly large in magnitude
suggest the process is predictable in the sense that the most recently observed
values will be similar in magnitude to future values provided that the future
values are not too far ahead of the most recent observation. A process subject
to drift will manifest autocorrelation because when yt is substantially greater
(or smaller) than μ, then observations near in time step are also likely to be
greater (or smaller) than the mean and more similar than a random selection
of observations. Typically, the autocorrelation coefficients will be positive and
will diminish slowly towards zero as τ tends to larger values.

Figure 11.3 shows two sets of estimated autocorrelation coefficients com-
puted from the numbers of mortgage-related complaints received by the U.S.
Consumer Financial Protection Bureau. Notice that the autocorrelation coef-
ficients computed from both weekday and weekend counts reveal substantive
and persistent autocorrelation. The successive weekend days are either 1 day
apart, e.g., Saturday then Sunday, or 6 days apart when Sunday is followed
by the Saturday of the next weekend.4 Note that larger values of ρ̂ are as-
sociated with lags 5, 10, 15, and 20 in the weekday series. The implication
is that the counts observed on a particular day of the week (e.g., Mondays)
are more similar compared to counts received on different days of the week.
Therefore, we conclude that the numbers of received complaints depends on
the day of the week.

11.4 Tutorial: Computing ̂ρτ

The tutorial of Sect. 11.2 guided the reader through the reduction of the
consumer complaints data file and the creation of a Python list in which each
item consisted of the data recorded on a particular day. The list was ordered

4 This is an example of a time series with time steps of distinctly different lengths.
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Fig. 11.3 Estimates
of the autocorrelation
coefficient for lags
1, 2, . . . , 20. The target
variable, number of
consumer complaints
regarding mortgages
received by the U.S.
Consumer Financial
Protection Bureau,
have been grouped by
weekday and weekend
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chronologically. The list items contain the date, the number of days elapsed
between the date and December 31, 2009, an identifier of the date as weekday
or weekend, and the number of complaints received on the date. The task of
this tutorial is to estimate autocorrelation coefficients ρ̂1, ρ̂2, . . . , ρ̂20 for the
weekday observations and again for the weekend data. The coefficients will
then be plotted against lag to produce a figure analogous to Fig. 11.3.

Computing the lag-τ autocorrelation coefficient requires the variance esti-
mate σ̂2 which in turn requires the sample mean μ̂. These terms are computed
from Eq. (11.2). Section 11.3.2 provides guidance. In addition to σ̂2, the cal-
culation of ρ̂τ requires the sum

Cn =
n
∑

t=τ+1
(yt − μ̂)(yt−τ − μ̂) =

n
∑

t=τ+1
ct. (11.9)

The term
ct = (yt − μ̂)(yt−τ − μ̂)

is referred to as the cross-product.
Suppose that Cn is computed for successive time steps, from t = τ + 1 to

t = n.5 At time step t, Ct−1 is available, having been computed for the last
step. We need to compute Ct = Ct−1 + ct. The computation of ct at time
step t requires the past observation yt−τ . Therefore, it’s necessary to store
some of the data values. For this data set, there’s no problem storing all of
the data, but if the computations are being carried out as the data arrive
in a stream at great velocity, we may not be able to store all observations.
The solution is to maintain a set (a Python list to be precise) containing the
necessary past observations. At time t, past observations are stored in the set
Pt = {yt−τ , yt−τ+1, . . . , yt−1}. When yt is to be processed, we extract yt−τ

5 As would be done if the data were arriving in a stream.
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from Pt, and compute ct and the update Ct = Ct−1 + ct. Then, yt replaces
yt−τ in Pt, thereby creating Pt+1 and t is advanced to t + 1.

Table 11.1 shows the contents of the past-values storage list and the loca-
tion of yt−τ in the list as t advances. The modulo function provides a simple
means of extracting and replacing the oldest values in a list of τ observations.
The list is updated at time step t by replacing yt−τ in position t mod τ with
yt. For example, suppose that t = 10 and τ = 5. Then 10 mod 5 = 0 and
y5 is stored in position 0. We extract that value and replace it with y10. On
the next step, 11 mod 5 = 1, so y6 is extracted from position 1. Lastly, y11
stored in position 1. We continue advancing through the five positions of the
list until t = 15. At that point, we’re back to the beginning of the cycle and
y10 is extracted from position 0.

Table 11.1 Contents of the past-values storage list for τ = 5 for time steps t, t + 1 and
t + 4 when t is a multiple of τ (and hence, t mod τ = 0). The boxed value, yt−τ+i, is
used in the calculation of the cross-product. The contents of the list are shown at the
start of the iteration and after the list has been updated. Note that the position of the
replaced value is (t + i) mod τ , for i ∈ {0, 1, 2, 3, 4}

Position
i Time step 0 1 2 3 4
0 t start yt−5 yt−4 yt−3 yt−2 yt−1

t end yt yt−4 yt−3 yt−2 yt−1
1 t + 1 start yt yt−4 yt−3 yt−2 yt−1

t + 1 end yt yt+1 yt−3 yt−2 yt−1
...

...
...

...
...

...
...

4 t + 4 start yt yt+1 yt+2 yt+3 yt−1

t + 4 end yt yt+1 yt+2 yt+3 yt+4

The following code demonstrates. The list storing the past data is named
pastData. We use t as the replacement value instead of yt:

tau = 5
pastData = [0]*tau
for t in range(16) :

print(’step =’, t, ’ start. position =’, t%tau, ’value =’,
pastData[t%tau])

pastData[t%tau] = t
print(’step =’, t, ’ end. position =’, t%tau, ’value =’,

pastData[t%tau])

This code block may be executed in a console.
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The tutorial instructs the reader to compute ρ̂τ using two iterations. The
first iteration computes the sample mean μ̂ and variance σ̂2. The second
iteration computes the sum of the cross-products.

1. Read the pickle file and store the contents.

import pickle
path = ’../Data/lst.pkl’
with open(path, ’rb’) as f:

lst = pickle.load(f)
print(lst[:20])

2. Initialize lists sDay and eDay to store the associative statistics s(Dn) for
weekdays and weekends (Eq. (11.2)). For instance, sDay = [0]*3 initial-
izes a three-element list containing zeros.

3. Iterate over lst and extract the data.

for item in lst:
date, triple = item
elapsed, dayOfWeek, y = triple

4. As the script iterates over lst, update sDay and eDay. We’ll build a
function updateStat to update the statistics. Put the function definition
before the for loop. The function is

def updateStat(y,assocStat):
assocStat[0] += y
assocStat[1] += y**2
assocStat[2] += 1
return assocStat

5. Use a conditional statement so that sDay is updated if the day of the
week is a weekday (see instruction 8 of Sect. 11.2). Otherwise, update
eDay. The function call sDay = updateStat(y, sDay) updates sDay.
Update the statistics after extracting the elements of triple.

6. Process the entire data set. Then, compute μ̂ = n−1∑ yi and σ̂2 =
n−1∑ y2

i − μ̂2 (Eq. (11.2)) for the weekday counts. Name them meanEst
and varEst in the Python code.

7. The next step is to compute the sum of the cross-product terms Cn =
∑n

t=τ+1 ct for the weekday counts. Initialize a τ -length list pastData as
described above. Build a for loop that iterates over lst to compute the
sum. Extract elapsed days and the count on each iteration.
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crossSum = 0
weekdayCounter = 0
for item in lst:

date, triple = item
elapsed, dayOfWeek, y = triple

8. Update the storage list pastData. Update Cn if t ≥ τ .

if dayOfWeek == ’Weekday’:
if weekdayCounter >= tau:

crossSum += (y-meanEst)*(pastData[weekdayCounter%tau]-meanEst)
pastData[weekdayCounter%tau] = y
weekdayCounter += 1

Note that the index weekdayCounter%tau points to a value, namely, yt−τ ,
that was stored earlier.

9. At the completion of the for loop, compute ρ̂τ :

rhoTau = crossSum/((weekdayCounter - tau)*varEst)

10. The next task is to compute estimates of ρτ over a range of values for
τ , say τ ∈ {1, 2, . . . , 20}, once using the weekday data and again us-
ing the weekend data. This can be accomplished by wrapping the exist-
ing for loop that processes lst in an outer for loop that iterates over
{1, 2, . . . , 20}. At the completion of each iteration of the outer loop, save
ρ̂τ in a list. Be sure to recompute the sample mean and variance (instruc-
tion 6) whenever changing the data source from weekend data to weekday
data, and vice versa.

11. We’ll suppose that the weekend data was used to fill a list of estimated au-
tocorrelation coefficients named WeekendRho and that the weekday data
filled WeekdayRho. With these lists, plot the estimated autocorrelation
coefficients against lag using the code segment below.

import matplotlib.pyplot as plt
lag = np.arange(1,21)
plt.plot(lag, WeekdayRho)
plt.plot(lag, WeekendRho)
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11.4.1 Remarks

It should be kept in mind that the time steps vary with respect to the elapsed
time between steps. For the weekday series, the interval between the begin-
ning of one step and the next step is approximately 1 day except when 1
day is Friday and the following weekday is Monday. For the weekend data
series, the variation in time step length is greater: the interval between the
beginning of one step and the next is 1 day or 5 days. Logically, the similarity
between counts ought to be greater for shorter time step intervals and so a
comparison of autocorrelation estimates between the weekday and weekend
series is somewhat muddied by the differences in time steps. We could have
maintained uniform intervals of 24 h between time steps if the data series had
not been split into weekday and weekend series. But, the difference between
weekday and weekend sample means provides very convincing evidence that
two distinct processes are generating counts: weekday and weekend processes,
and failing to separate the data implies that analysis and forecasting will ei-
ther be more complicated or less accurate than analysis and forecasting using
the two series.

Despite the variation in time step length, it’s clear that there is a significant
degree of autocorrelation in the underlying complaint generation processes.
Time step length variation does not explain why the weekend series of sample
autocorrelation coefficients has a sawtooth appearance (Fig. 11.3). The saw-
tooth phenomenon suggests that the number of complaints made on different
Saturdays are more alike than complaints made on different days of the week.
The same statement holds for Sundays. The weekday series similarly suggests
that Mondays are similar to other Mondays, Tuesdays similar to other Tues-
days, and so on. From these observations, it’s deduced that day of the week
differences are persistent and substantive. This suggests that a forecasting
model ought to account for differences between day of the week and that a
linear model containing day of the week as a factor is a good starting point
for developing a forecasting algorithm. Figure 11.1, the mortgage complaint
series, suggests that the mean level drifts over time in a somewhat predictable
fashion. A forecasting model ought to account for drift as well.

11.5 Drift and Forecasting

The level of the consumer complaints series shown in Fig. 11.1 changes over
time. This phenomenon has been referred to as drift, an admittedly imprecise
term synonymous with trend. Our intent in using the term drift rather than
trend is to articulate the tendency for the rate of change and direction of
the trend to morph over time. Often, the observed changes in trend are in
response to factors that are either unidentifiable or unquantifiable. We think
of trend as is more regular and predictable than drift. Yet drift is distinctly
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different from random movements since there is a clear direction of move-
ment. Though drift is often difficult to explain using other variables or series,
referred to as exogenous variables in economics, it is possible to at least par-
tially account for drift using past observations. The degree of success in this
regard depends on the consistency of the drift.

The objective of forecasting is to predict an observation Yn+τ that will
be realized τ time steps from the current time step n. We use the observed
data Dn = (y1, , . . . , yn) to forecast Yn+τ . If it were assumed that the process
generating the data was not at drift, then a best predictor of Yn+τ is the
mean level E(Yt) = μ. Without knowledge of μ, the sample mean is used as
the forecast of Yn+τ . Furthermore, because μ is not expected to change, we
use the same estimate as a forecast for all values of τ . The prediction of yn+τ

is
ŷn+τ = yn.

We are rarely comfortable with the assumption that the process is not subject
to drift, and so turn now to methods that accommodate drift.

Our interest centers on nonstationary processes, that is, processes that
are at drift. We have already been introduced to exponentially weighted fore-
casting, a technique that computes a weighted mean placing greater weight
on recent observations and less weight on older observations. Not only does
this estimator capture drift by responding to recent observations, but it is
also computationally efficient and it easily accommodates different rates of
change by manipulating of the tuning constant α. Computations are carried
out using the updating formula given in Eq. (11.5).

While the series of estimates μ̂1, . . . , μ̂n obtained from the exponentially
weighted mean will reflect trend provided that α is appropriately chosen, the
estimator of μn+τ and the forecast of yn+τ is unfortunately, μ̂n for all values
of 0 ≤ τ . For small values of τ and a slowly drifting mean, the exponentially
weighted mean may yield accurate estimates. However, even with obvious
trend in the recent estimates of μn, the forecasts do not account for trend.
To accommodate trend, we turn to Holt-Winters forecasting.

11.6 Holt-Winters Exponential Forecasting

The Holt-Winters method is an extension of exponential weighting that in-
cludes an additional term for trend. The Holt-Winters exponential forecast
ŷn+τ extends exponential forecasting (Sect. 11.3.3) by introducing a rate of
change parameter βn. The estimated mean level is updated according to

μ̂n = (1 − αh)(μ̂n−1 + ̂βn) + αhyn, (11.10)

where 0 < αh < 0 is a smoothing constant analogous to α in exponential
forecasting. The difference between exponential forecasting (Eq. (11.5)) and
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Holt-Winters forecasting is the inclusion of the coefficient ̂βn. The coefficient
̂βn is the estimated rate of change in the mean level between time step n − 1
and n. The coefficient ̂βn may be described as a time-varying slope estimate.
The forecast of Yn+τ made at time step n for τ steps in the future is

ŷn+τ = μ̂n + ̂βnτ. (11.11)

Equation (11.11) explicitly accounts for trend in the forecast through the term
̂βnτ . The forecast takes the same form as a linear regression model E(Y |x) =
β0 +β1x. However, the slope coefficient is fixed in the linear regression model
whereas Holt-Winters allows the slope to vary over time.

The next matter to address is an algorithm for computing the coefficients
μ̂1, . . . , μ̂n, ̂β1, . . . , ̂βn. Formula (11.10) is used for μ̂1, . . . , μ̂n. Once again, we
use exponential weighting to compute ̂β1, . . . , ̂βn. In other words, ̂βn will be
a linear combination of the past estimate ̂βn−1 and the change between μ̂n

and μ̂n−1. Another tuning constant is needed to control the rate of change in
the slope coefficients. The tuning constant is 0 < αb < 1, and the updating
formula for the slope coefficients is

̂βn = (1 − αb)̂βn−1 + αb(μ̂n − μ̂n−1). (11.12)

Equation (11.12) incorporates the observed change in estimated mean level,
μ̂n − μ̂n−1, which may be thought of as an elementary estimate of the current
rate of change in the mean level. Large values of αb allow the slope estimates
to change rapidly in response to large changes in the estimated mean level
whereas small values of αb suppress the effect of large changes in the estimated
mean level.

At time step n, μ̂n is computed using Eq. (11.10) and then ̂βn is computed
(Eq. (11.12)). Reasonable choices for the initial values are μ̂1 = y1 and ̂β1 = 0.
The updating equations begin at time step n = 2 since the updates of μ̂n

and ̂βn require the previous values μ̂n−1 and ̂βn−1.
Figure 11.4 illustrates Holt-Winters and exponential forecasting. A short

series of price quotations for Apple stock circa 2013 are shown along exponen-
tially weighted and Holt-Winters forecasts for τ = 20 time steps in the future.
The smoothing constant for exponential smoothing was set to be αe = .02
and for Holt-Winters forecasting, we set αh = .02 and αb = .015. The fore-
casts appear to be ahead of the observed values. It’s not the case, however, if
we consider a single time step, say 26,600, and look at the forecasts and actual
values. The observed value is greater than the forecast because the forecast
was made 20 time steps earlier and at that time the level of the series was less
than at time step 26,600. By setting αh and αb to be larger, the forecasts will
change more rapidly with the data series; however, rapid changes in the data
series induce large, and often inaccurate changes in the forecast series. In any
case, there’s relatively little difference between exponentially weighted and
Holt-Winters exponential forecasting. We found it difficult to significantly
improve on exponential smoothing using Holt-Winters forecasting for this
problem.
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Fig. 11.4 Apple stock prices
circa 2013 (points). Fore-
casts obtained from exponen-
tial smoothing are shown in
blue and Holt-Winters fore-
casts are in red for τ = 20.
The root mean square fore-
casting error was estimated to
be $.710 and $.705 for expo-
nential smoothing and Holt-
Winters, respectively 627.5
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11.6.1 Forecasting Error

Forecasting error is estimated by comparing observations to forecasts. When-
ever a new observation is observed, the difference between the forecast of the
new value and the actual value provides a data point for error estimation.
From the differences, the median absolute deviation or the root mean square
error may be computed. How far in the future the forecasts are made will
affect the accuracy, and so our estimator explicitly defines the mean square
error as a function of τ :

Err(τ) =
∑N

n=τ+2(yn − ŷn)2

N − τ − 1 . (11.13)

The denominator is the number of terms in the sum. In this formulation,
ŷn is a forecast of yn made at time step n − τ . Said another way, ŷn+τ is a
forecast of yn+τ made at time step n. The first possible forecast (assuming
that Holt-Winters forecasting is used) is made at time step n = 2 and the
first evaluation of prediction error may be computed at time step n = τ + 2
when the target value yτ+2 comes into view. Early forecasts are likely to be
less accurate than later forecasts since the information content of few obser-
vations is less than a substantive number of observations. It’s usually better
to evaluate forecasting error using the root mean square error

√
Err(τ) since

the root mean square error is measured in the same units as the observations.
In a real-time application of Holt-Winters exponential forecasting, it’s of-

ten desirable that the error estimates reflect recent performance rather mea-
sure average performance over a long history. Therefore, older forecasts may
be given less weight in the error estimate by computing the error estimate
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using exponential weights. For example, the time step n estimator may be
computed as

Errn(τ) =
{

(yn − ŷn)2, if n = τ + 2,
αe(yn − ŷn)2 + (1 − αe)Errn−1(τ), if τ + 2 < n.

(11.14)

where 0 < αe < 1 is a tuning constant.
Forecasting errors produced by the competing forecasting functions (to be

discussed in Sect. 11.8) are shown in Fig. 11.5. The figure gives the impression
that the average forecast

yn+τ =
ŷA

n+τ + ŷB
n+τ

2

would out-perform both forecasting function with respect to forecasting error.

Fig. 11.5 Forecasting er-
rors for a sequence of 10,000
time steps obtained from
two linear regression predic-
tion functions. Predictor set
A consists of past Apple and
Alphabet values (R2

adjusted
= .924) and set B consists
of 18 stocks besides Apple
(R2

adjusted = .952) -2.5
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11.7 Tutorial: Holt-Winters Forecasting

The National Association of Securities Dealers Automated Quotations (NAS-
DAQ) is an online securities exchange, more commonly referred to as a stock
market. The NASDAQ data stream is a sequence of updates on price quo-
tations, bid and asked, that may be consumed by the public possessing the
appropriate technology.6 NASDAQ streams are widely used by automated
trading systems. A key component to these systems are the algorithms that
produce intra-day and sometimes intra-hour forecasts of future prices.

The objective of this tutorial is to implement the exponential and Holt-
Winters forecasting algorithms for forecasting stock market prices. The reader
is guided through the process using a static set of observations collected

6 We’ll do just this in the Chap. 12.
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from the Yahoo Finance NASDAQ price quotation stream. The data were
collected by requesting an update on the most recent bid price roughly every
30 s over the course of 2 months. The file name is QuotesLong.txt. It is
space-delimited and contains prices for 27 well-known technology companies.
Ticket symbols are shown below. As the data set is not large, R is used in
this tutorial.

We will compute forecasts of bid price at each time step beginning with n =
2 using three functions: the sample mean, exponential weighting, and Holt
Winters exponential forecasting. The sample mean represents the simplest of
all data based forecasting functions and serves as a baseline against which to
compare the other two methods.

1. Retrieve the data file QuotesLong.txt from the textbook website.
2. Read the data into a data frame named D. Assign column names to the

data frame.

fileName = ’../QuotesLong.txt’
D = read.table(fileName)
names = ’AAPL,ADBE,ADSK,AMAT,BMC,CA,CSCO,CTXS,DELL,GOOG,GRMN,

INFY,INTC,INTU,LLTC,LRCX,MCHP,MSFT,MU,NVDA,ORCL,QCOM,SNDK,
STX,SYMC,TXN,YHOO’

colnames(D) = unlist(strsplit(names,’,’))

Each of the names is a symbol for a NASDAQ stock; for instance,
AAPL is the symbol for Apple Inc. Each row in D is viewed as a vec-
tor of bid prices with one value for each of the 27 stocks. The object
strsplit(names,’,’) is a R list of length one; the function unlist con-
verts the list to a character vector of length p = 27. You can determine the
internal structure of an R object using the function str (not be confused
with the Python function by that name7).

3. Initialize matrices to store the estimated means, forecasts, and errors at
each time step n ∈ {1, 2, . . . , N}, where N = 28, 387 denotes the number
of time steps (and observation vectors in the dataframe D). Choose a
stock, extract the corresponding column, and store the values in a vector
y of length N .

7 The Python function with the same purpose is named type.
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N = dim(D)[1]
F = matrix(0,N,3)
muEst = matrix(0,N,3)
errMatrix = matrix(0,N,3)
colnames(F) = c(’Mean’,’Exponential’,’Holt-Winters’)
colnames(muEst) = c(’Mean’,’Exponential’,’Holt-Winters’)
colnames(error) = c(’Mean’,’Exponential’,’Holt-Winters’)
y = D$AAPL # Our choice of stocks is Apple Inc

The instruction F = matrix(0,N,3) initializes the matrix for storing the
forecasts.

4. Set the initial estimates to be y1 for each method using the instruction
muEst[1,] = y[1].

5. The updating formula for the sample mean is

yn = n−1 [(n − 1)yn−1 + yn

]

.

Iterate over time step and store each update:

tau = 20
for (n in 2:(N - tau)){

muEst[n,1] = ((n - 1)*muEst[n-1, 1] + y[n])/n
}

At the completion of the for loop, you’ll have a series of estimates and
observed values.

6. Plot a short sequence of the data and the sample means:

n = 200:1200
plot(n,y[n],pch=16,cex = .4)
lines(n,muEst[n,1])

The sample means do not form a straight line since the estimates are
updated as n increases. Visually, yn appears to be a poor technique for
estimating the mean in the presence of drift.

7. Compute the exponentially weighted means after setting a value for αe.
The instruction for updating the estimator at time step n is

muEst[n,2] = a.e*y[n] + (1 - a.e)*muEst[n-1,2]

We use the R object a.e to store αe. Set αe to be a value between .01 and
.05, add the calculation to the for loop (item 5) and execute the code.
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8. Add the exponentially weighted estimates to the plot by executing
the instructions in item 6 and the instruction lines(n,muEst[n,2],
col=’red’). You might repeat these calculations for a different value
of αe and plot with a different color.

9. In the next step, the Holt-Winters forecasting algorithm will be pro-
grammed. For now, choose the two tuning constants for Holt-Winters by
setting the tuning constant for the mean (αh) to be the same value as for
exponential smoothing. Set the tuning constant for slope equation (αb)
to 0. By setting αb = 0, the Holt-Winters estimate will be the same as
exponential smoothing, thereby providing a check on your code. Initialize
a vector of length N to store the ̂βn’s, say, beta= rep(0,N).

10. Code the updating formulas for Holt-Winters. This code segment imme-
diately follows the computation of the exponentially weighted forecast
(item 7).

muEst[n,3] = a.h*y[n]+ (1- a.h)*(muEst[n-1,3] + beta[n-1])
beta[n] = a.b*(muEst[n,3] - muEst[n-1,3]) + (1 - a.b)*beta[n-1]

Compute the means for n = 2, . . . , N using Holt-Winters and add the
values to your plot. Holt-Winters and exponential smoothing estimates
should coincide. If the estimates are different, then there is an error in
your code. When the estimates are the same, reset αb to .01, recompute
the estimates and plot again.

11. Set τ to be a value between 5 and 50. Compute and store the forecasts
for a choice of τ . Change the termination step of the for loop so that it
completes before the index n exceeds N − τ . The for loop should look
like this:

for (n in 2:(N - tau)){
...
F[n+tau,1:2] = muEst[n,1:2]
F[n+tau,3] = muEst[n,3] + beta[n]*tau

Be sure to update muEst and beta before computing the forecasts.
12. Add the Holt-Winters forecasts to your plot using the instruction

lines(n,F[n,3],col=’magenta’)

Larger values of τ result in poorer performance since there is less infor-
mation in the observed data y1, . . . , yn about yn+τ .

13. Initialize errMatrix as a N × 3 matrix of zeros to store the forecasting
errors.
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14. Compute the estimated root mean forecasting error for the three meth-
ods. We’ll compute the terms contributing to the sum in Eq. (11.13) as
the for loop iterates over n. So, within the for loop, compute and store
the squared errors provided that τ + 2 ≤ n ≤ N − τ .

if ((tau+2 <= n)&(n <= N-tau)) errMatrix[i,] = (y[n] - F[n,])^2

Since we’ve stored the forecasts for time step n+ τ at position n+ τ in F,
y[n] is the target of F[n,] and the forecasting errors are y[n] - F[n,].

15. Upon completion of the for loop, compute and print the estimated root
mean prediction error for the three methods, say,

print(sqrt(colSums(errMatrix)/(N-2*tau))

16. Change the tuning constant associated with ̂βn to a small but positive
number, say .02. Try to reduce the estimated error for the Holt-Winters
estimator by manipulating the tuning constants.

17. Keep the tuning constants fixed, compute
√

Err(τ) for τ∈{5, 10, 20, 40, 80},
and plot

√
Err(τ) against τ for the three forecasting functions.

11.8 Regression-Based Forecasting of Stock Prices

Linear regression provides a somewhat different approach to forecasting com-
pared to Holt-Winters and exponential forecasting. Rather than attempt to
exploit recent trends in the underlying process to forecast the target variable,
we’ll simply use a prediction function constructed from concomitant predictor
variables. The essential new aspect of the algorithm is that the forecasting
function is fit to a data set in which the data pairs are staggered with respect
to time step. For example, (yn+τ ,xn) is a staggered data pair, where n is a
time step and τ is a positive integer. We can also describe the predictor vec-
tor as lagged relative to the target variable. Because the forecasting function
is trained on targets observed τ time steps after the predictor vector was ob-
served, the forecasting function yields predictions of the target τ time steps
after the time step when the input predictor vector was realized. For example,
if the current time step is n, then f(xn|D) = xT

n
̂β = ŷn+τ is a forecast of

Yn+τ . The vector ̂β is computed as a solution to the problem of minimizing
the sum of the squared differences between forecasts made at time step n
and targets observed at time step n + τ . The k-nearest-neighbor forecasting
function built in Sect. 9.10 for forecasting the S&P 500 index used similarly
staggered data pairs to train the prediction function.
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The data set, therefore, consists of staggered pairs (yn+τ ,xn), n = 1, . . . ,
N − τ , where xn is a vector of variables measured at time step n. The ratio-
nale for the linear regression approach is the supposition that an underlying
process is generating the realized target values. We postulate that there is in-
formation contained in the predictor vector xn that’s informative with respect
to the future price of the target. Mathematically, this statement translates
to saying that the conditional mean E(Yn+τ |xn) is approximately equal to
μn+τ . If these ideas are reasonable, then a regression-based approach to the
forecast problem is promising.

Stock market forecasting is a good application for the method because a
collection of stocks usually can be identified that are similar in price move-
ment to the target stock. For instance, we hypothesize that technology stocks
prices tend to respond similarly to events in the financial world. We’ll use a
collection of technology stock prices observed at time step n to forecast one
of the stock prices at time step n + τ in the following tutorial.

In the linear regression context, xT
n
̂β is an optimal estimator of the ex-

pected future value, i.e., E(Yn+τ |xn) = xT
n β. Theoretically, the expected

value is an optimal predictor of Yn+τ having minimal mean square prediction
error provided a number of conditions are met. For the problem at hand, we
don’t believe that the conditions hold or that E(Yn+τ |xn) is equivalent to the
process mean, but instead speculate that a linear combination of past values
may overcome some of the random variation in the target series and estimate
the process mean with more accuracy than exponential or Holt-Winters fore-
casts. Certainly, the linear regression forecasting function involves more data
and a forecasting function optimized to minimize the forecasting errors. In
contrast, Holt-Winters involves two tuning constants αh and αb that are quite
difficult to fit. It’s reasonable to postulate that the information carried by
the predictor vectors will translate to more information for forecasting.

11.9 Tutorial: Regression-Based Forecasting

This tutorial guides the reader through the development of a forecasting algo-
rithm based on linear regression. The forecasting function is used to predict
future prices of Apple Inc. from prices observed on p = 27 technology stocks.
The data set consists of nearly 372,267 quotations on the technology-related
stocks collected between October 2012 and January 2013. The data are less
than perfect because on a few occasions the recording device did not suspend
when the market closed. There were apparently a few occasions when the
device did not restart when the market reopened. Consequently, there are
sub-series exhibiting very abrupt changes.

Observations have been arranged in the data file so that an observation
pair (yn,xn−τ ), n = τ + 1, τ + 2, . . . , N is composed of yn, an asking price
for a share of Apple Inc. stock recorded τ = 10,000 time steps (or approxi-
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mately 2.75 h) after the 27 stock quotations contained in the vector xn−τ . By
staggering the elements of the data pairs, the forecasting function computed
from these data will predict the Apple asking price 10,000 steps ahead of the
time step at which time the predictor vector was observed. Therefore, if the
prediction function consumes a predictor vector observed at the current time
or very nearly so, then the prediction will be for a price in the future.

In more detail, suppose that the current time step is n and a forecast of
the price τ time steps ahead of n is to be computed. The forecast of the future
price Yn+τ is ̂Yn+τ = xT

n
̂β since the function has been trained on a data set

for which each predictor vector xn has been paired with target value yn+τ

observed τ time steps in the future.
If we think of each row of the data file as a vector, then the data set

consists of the set of row vectors. Row vector rn contains the elements of
(yn,xn−τ ), and so the data file consists of the following row vectors:

r1+τ = [y1+τ , x1,1, x1,2, · · · x1,p
︸ ︷︷ ︸

x1

]

...
...

rn = [yn, xn−τ,1, xn−τ,2, · · · xn−τ,p
︸ ︷︷ ︸

xn−τ

]

...
...

rN = [yN , xN−τ,1, xN−τ,2, · · · xN−τ,p
︸ ︷︷ ︸

xN−τ

].

(11.15)

We’ll include the past price of Apple Inc. in the predictor vector as it is
presumed that the past Apple prices will be informative even with 26 other
stocks included in the predictor vector.

Recall from Sect. 3.9.2, formulas (3.30) and (3.31), that the matrix form
of ̂β can be expressed as

̂β = (XTX)−1XTy = A−1z,

where A = XTX and z = XTy.
Let’s introduce a subscript n since we will compute a forecasting function

at time step n using the matrices A and z computed from the data pairs
(y1+τ ,x1), . . . , (yn,xn−τ ). At time step n, we compute A according to

An =
n−τ
∑

i=1
xixT

i . (11.16)

The vector zn is computed according to

zn =
n−τ
∑

i=1
xiyi+τ . (11.17)
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The last step of computing the forecasting function computes ̂βn = A−1
n zn.

This computation is carried out by passing An and zn to the Numpy function
linalg.solve(). The matrix An will not be full rank unless n is substantially
larger than p = 27. Thus, ̂βn is not computed until n > 1000.

1. Retrieve NASDAQ.csv from the textbook website. The file is comma-
delimited and contains no missing values. The first row contains the vari-
able names. There are n = 372,267 rows and 28 columns. Each row is
of the form shown in formulae (11.15). Set path to be the name of the
file including the full path to the containing folder. Read the first line
containing the stock ticker symbols of each (potential) predictor variable
and print the names.

path = ’../NASDAQ.csv’
with open(path) as f:

variables = f.readline().split(’,’)
for i, name in enumerate(variables):

print(i, name)

You can look up the company names at http://www.nasdaq.com/symbol/.
2. Import Numpy as np.
3. Choose any set of p variables and set up an index vector. This discussion

assumes that the specification is predictorIndex = [1, 10]. Selecting
the first and tenth predictor variables yields the past values of Apple Inc.
and Alphabet Inc. (previously known as Google).

4. Before computing the matrices A and z, it is necessary to initialize them
as zero matrices. Initializations must take place before any records are
processed. Set

p = len(predictorIndex)
A = np.matrix(np.zeros(shape=(p+1, p+1)))
x = np.matrix(np.ones(shape=(p+1, 1)))
z = np.matrix(np.zeros(shape=(p+1, 1)))
s = 0

The variable s will store
∑

y2
i so that the variance estimate σ̂2 =

n−1∑ y2
i − y2 can be computed.

5. Process the data file by iterating over lines. Extract yn+τ and fill the
predictor vector xn from the list data.8

8 It’s not necessary to stagger the data because the data set has been constructed from
staggered data pairs.

http://www.nasdaq.com/symbol/
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for line in f:
data = line.split(’,’)
for k, pIndex in enumerate(predictorIndex):

x[k+1] = float(data[pIndex])
y = float(data[0])

The function enumerate instructs the Python compiler to generate
an index k as the variable pIndex is drawn from the Numpy array
predictorIndex. Whereas pIndex will take on the values stored in
predictorIndex, k will take on the values 0, 1, . . . , p.

6. Update A, z, and s. The time step n is stored in a1,1, the first row and
first column element of A. Extract n.

A += x*x.T
z += x*y
s += y**2
n = A[0,0]

7. If the time step n exceeds 1000, then compute the least squares estimator
of βn. Print the parameter estimate associated with the past values of
Apple assuming that the first element of predictorIndex is 1.

if n > 1000:
betaHat = np.linalg.solve(A,z)
if n%1000 == 0:

print(int(n), round(float(betaHat[1]),2))

Again, assuming that the second column of Xn contains the past Apple
prices, then the coefficient ̂βn,1 appears in the linear forecasting equation

ŷn+τ = ̂βn,0 + ̂βn,1xn,AAPL + ̂βn,2xn,GOOL

as a multiplier of the past Apple price xn,AAPL. Thus, a one unit change
in xn,AAPL results in a ̂βn,1 change in the forecasted price.

8. Compute R2
adjusted (formula (3.36)) as the program iterates over the file

by coding the following equations:
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σ̂2 = n−1∑
i y2

i − y2

σ̂2
reg =

∑

y2
i − zT

̂β

n
,

and R2
adjusted =

σ̂2 − σ̂2
reg

σ̂2 .

9. Print R2
adjusted and σ̂reg every hundred iterations.

if n%100 == 0 and n < 372200:
s2 = s/n - (float(z[0])/n)**2
sReg = s/n - z.T*betaHat/n
rAdj = 1 - float(sReg/s2)
print(int(n), round(float(betaHat[1]), 2),

round(np.sqrt(float(sReg)), 2), round(rAdj, 3))

Allow the script to execute until all records in the data file have been
processed.

10. The last step of operations will compute and save a subset of forecasts,
target values, and forecasting errors from which a couple of plots will be
constructed. The forecasting error en+τ associated with the time step n
forecast is the difference between the future value yn+τ and the forecast
ŷn+τ = xT

n
̂βn. Specifically, the forecasting errors are

en+τ = yn+τ − xT
n
̂βn, n = k, k + 1, . . . , N, (11.18)

where k is the time step of the first forecast.
Create a dictionary to store the errors computed over some range of

time steps, say 190,000 through 210,000.

indices = np.arange(190000,210000)
errDict = dict.fromkeys(indices,0)

The dictionary keys correspond to the time steps for which the errors are
going to be computed and saved. The dictionary must be created before
the data file is processed since it will be filled as the data are processed.

11. Insert the following code segment in the for loop.

try:
errDict[n] = (y, float(x.T*betaHat), y - float(x.T*betaHat))

except(keyError):
pass
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If n is not a key in the dictionary, then the attempt to store the three-
tuple will cause a KeyError exception that is trapped by the exception
handler.

In a real-time application, the code segment should execute after ex-
tracting xn and yn+τ from the data file and before ̂βn is computed. This
order simulates what would happen in practice: the forecast is made be-
fore the forecasting target comes into view and the error is computed
after the forecasting target comes into view. Because we cannot compute
̂βn without the target yn+τ , we would use the previous time step estimate
of β and compute ŷn+τ = xT

n
̂βn−1.

12. After the data file is completely consumed, create a figure showing the
forecasts and the target values.

import matplotlib.pyplot as plt
forecastLst = [errDict[key][1] for key in indices]
targetLst = [errDict[key][0] for key in indices]
plt.plot(indices, forecastLst)
plt.plot(indices, targetLst)

Figure 11.5 is an example comparing errors generated by two different
prediction functions.

11.9.1 Remarks

An essential aspect of the forecasting function is the use of staggered data
for training. By staggering the data pairs, the forecasting function has been
optimized for forecasting τ time steps in the future. Linear regression in-
sured that the forecasting function possessed the optimality property of least
squares. The mean squared difference between the forecasted and observed
target values was as small as possible because each predictor vector xn has
been paired with a target value yn+τ observed τ time steps in the future.
Yet, the root mean squared forecasting error was relatively large.

To understand why, let’s suppose that the model consists of a single pre-
dictor containing the past values of the target, say E(Yn+τ |yn) = β0 + β1yn.
If the data series exhibits positive trend, then ̂β1 ought to be greater than
one, and if the trend is downward, then ̂β1 ought to be less than one. In the
Apple price series, the mean level appears to drift in both directions (though
not at the same time). At a time step n distant from the start of the series,
the time step n estimate of ̂β1 will reflect overall trend, and not necessarily
recent trend. As a result, the forecasting function is not terribly accurate.
The root mean square error σ̂reg manifested the problem—it grew larger as
n grew larger. The problem is drift—the price-generating process changed
over time and consequently, the relationship between the future value of Y
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and the present value of x changed. A forecasting function built from a long
series of data pairs often is inaccurate.

A solution to the drift problem is to allow the regression parameters to vary
in response to recent changes in the underlying process. The implementation
of this approach is a remarkably simple fusion of exponential weighting and
regression. We develop the approach in the next section.

11.10 Time-Varying Regression Estimators

Suppose that the process generating the data is subject to drift. Not only may
the mean level of the target variable Y drift, but the relationship between the
expected value of Yn+τ and the associated predictor vector xn may change.
Therefore, the model E(Yn+τ |xn) = xT

n β, n = 1, 2, . . . , is incorrect. A differ-
ent linear model describes E(Yn+τ |xn) for different values of n, let’s say,

E(Yn+τ |xn) = xT
n βn, n = 1, 2, . . . , (11.19)

Conceptually, Eq. (11.19) is preferable to the model with a single parameter
vector β. From a practical standpoint, Eq. (11.19) is difficult to work with
since it’s impossible to fit a separate linear model using a single pair of
observations (yn+τ ,xn).

To formulate an approximation of the relationship between E(Yn+τ |xn)
and xn given drift, we presume that the parameter vector, or the model,
changes slowly relative to the time step. In other words, the rate of incom-
ing pairs (yi,xi) is rapid enough that chronologically near observation pairs
(yi,xi) and (yj ,xj) are similar with respect to the parameter vectors βi and
βj describing the expectations of Yi and Yj as functions of xi−τ and xj−τ .
Therefore, we may use chronologically near observations to estimate βn, al-
beit with some small degree of error. Logically, the observations that are
nearest chronologically to (yn,xn) ought to have the largest influence in the
computation of βn.

Once again, we turn to exponential weighting to assign the largest weight
to (yn,xn−τ ) at time n and successively smaller weights to (yt,xt−τ ) as the
time step t recedes in the past. Recall that Eq. (11.5) expressed the exponen-
tially weighted estimator of μn as a linear combination of the most recent
observation and the previous estimate of μ, say, μ̂n = αyn + (1 − α)μ̂n−1.

We allow the parameter estimator ̂βn = A−1
n zn to vary in response to

the most recent observation pair by modifying the definition of An and zn.
Specifically, the new terms, A∗

n and z∗
n, are computed as linear combinations

of the most recently observed pair (yn,xn−τ ) and the previous time step
values. The exponentially weighted versions of A and z at time step n are

A∗
n = (1 − α)A∗

n−1 + αxn−τxT
n−τ

z∗
n = (1 − α)z∗

n−1 + αxn−τ yn,
(11.20)
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where 0 < α < 1 is the tuning constant controlling the importance of the
most recent pair towards the time-varying estimator ̂β

∗
n. Lastly, the estimate

̂β
∗
n is computed according to

̂β
∗
n = A∗

n
−1z∗

n. (11.21)

The forecast of Yn+τ is ŷn+τ = xT
n
̂β

∗
n.

11.11 Tutorial: Time-Varying Regression Estimators

We continue with the Apple price forecasting problem of Sect. 11.9. There’s
only a few modifications to be made of the Sect. 11.9 Python script. The only
substantive change is to replace the updating equations for An and zn with
the updating equations for A∗

n and z∗
n. The revised updating formulae are

Eq. (11.20).
We won’t be able to compute the variance estimate σ̂2 = n−1∑ y2

i − y2

from the terms in A∗ and z∗. For example, a1,1 (the element in row one and
column one of A) contained the numbers of data pairs used in the calculation
of ̂β. Now a∗

1,1 contains the sum of the exponential weights, and hence has
the value 1. Instead, we’ll use the data stored in the dictionary errDict to
compute error estimates. The dictionary will contain the target values and the
forecasts. The mean squared forecasting error σ̂2

reg and R2
adj will be computed

at the completion of the for loop using the terms stored in errDict.
There’s a undesirable side-effect of exponential weighting for this problem.

The matrix A∗
n may be singular, in which case, the call to the Numpy function

linalg.solve returns an error instead of the solution to the equation A∗
nβ =

z∗
n. The solution, had it existed, would be ̂β

∗
n. Larger values of α increase the

likelihood of the matrix being singular.

1. Initialize the tuning constant α, errDict, and the predictor variable in-
dexes.

a = .005
errDict = {}
predictorIndex = [1,10]

We’re using past Apple values and Google (now Alphabet Inc) for fore-
casting.
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2. Add a counter to the for loop:

for counter, line in enumerate(f):
data = line.split(’,’)
for k, pIndex in enumerate(predictorIndex):

x[k+1] = float(data[pIndex])

3. Replace the variable n with the counter throughout the program. Remove
the instruction n = A[0,0].

4. Replace the updating equations for A and z with

A = a*x*x.T + (1 - a)*A
z = a*x*y +(1 - a)*z

5. Begin computing forecasts when at least 5000 observations have been
processed.

if counter >= 5000:
try:

yhat = float(x.T*betaHat)
errDict[counter] = (y, yhat)

except:
pass

betaHat = np.linalg.solve(A,z)
if counter%1000 == 0 and counter < 327200:

print(counter, round(float(betaHat[1]), 2))

The exception handler avoids the error of attempting to compute a fore-
cast before ̂β

∗
as been computed.

6. When the for loop has finished executing, compute σ̂2 and σ̂2
reg. Compute

R2
adj and print the results.

s2 = np.var([v[0] for v in errDict.values()])
sReg = np.mean([(v[0] - v[1])**2 for v in errDict.values()])
rAdj = 1 - float(sReg/s2)
print(s2,sReg,rAdj)

7. Plot a sequence of 10,000 forecast values and observations, say

indices = np.arange(300000,310000)
forecastLst = [errDict[key][1] for key in indices]
targetLst = [errDict[key][0] for key in indices]
plt.plot(indices, forecastLst)
plt.plot(indices, targetLst)
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11.11.1 Remarks

The accuracy estimates obtained from the time-varying regression forecast-
ing estimates are remarkably good, σ̂reg = $.402 and R2

adj = .999 versus
σ̂reg = $4.82 and R2

adj = .919 obtained from the conventional linear regres-
sion forecasting function. Such a large difference deserves explanation.

The time-varying regression approach to forecasting incorporates the best
components of the least squares and exponential weighting forecasting algo-
rithms. The exponential weighting component introduces recency into the
least squares objective function. The regression component of the solution
provides a tractable method of optimizing the forecasting function. The ob-
jective function is

S(βn) =
∑n

i=1 wn−i

(

yi+τ − xT
i βn

)2
, (11.22)

where wn−i = α(1 − α)n−i for i ∈ {1, 2, . . . , n}. The objective is to minimize
S(βn) by the choice of βn. Minimizing S(βn) yields the smallest possible sum
of the weighted forecasting errors. Because the largest weights are assigned to
the most recent errors, the solution ̂β

∗
n = A∗

n
−1z∗

n yields the smallest possible
sum of recent forecasting errors.9 All of the data are used in the calculation of
the forecasting function f(xn|D) = xT

n
̂β

∗
n. At the same time, the forecasting

function is determined to a greater extent by recent history at the expense
of the more distant history.

The algorithm is computationally efficient because A∗
n and z∗

n are rapidly
updated when a new observation pair comes into view, and ̂β

∗
n is easily

computed from A∗
n and z∗

n. Consequently, the algorithm may be used to
process high-speed data streams in real-time. Real-time analytics are the
subject of the next chapter.

11.12 Exercises

11.12.1 Conceptual

11.1. Verify that Eq. (11.5) can be derived from Eq. (11.4).

11.2. Consider exponential smoothing. Argue that if α is small, then the
weights decrease to 0 approximately linearly as t → 0.

11.3. Determine the vector β that optimizes Eq. (11.22).

9 This statement is mathematically vague—the influence of recent errors on the deter-
mination of ̂β

∗
n depends on α.
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11.12.2 Computational

11.4. Download data on the urban Consumer Price Index from the US.
Bureau of Labor Statistics. The URL is

https://research.stlouisfed.org/fred2/series/CPIAUCSL/downloaddata.
These data are monthly values of percent change in a measure of the cost
of food, clothing, shelter, and fuels relative to a initial date. Large changes
in the Consumer Price Index indicate economic inflation or deflation. Us-
ing these data, compare the performance of exponential and Holt-Winters
prediction. Also, compare these prediction functions to a time-varying least
squares regression function that uses time as a predictor variable. To get
started, read that data and convert the character representation of month to
the date format:

D = read.table(’ConsumerPriceIndex.txt’,header=TRUE)
D = data.frame(as.Date(D[,1]),D[,2])
colnames(D) = c("Year",’Index’)

Don’t make any predictions using the regression predictor until at least
50 observations have been processed and accumulated in the matrix A∗

n and
the vector z∗

n. The for loop should begin as follows:

x = matrix(0,2,1)
for (n in (tau+1):N){

x[1] = n - tau

a. Compute and plot the auto-correlation function using the R function acf.
Describe and interpret the pattern of autocorrelation. What does the pat-
tern suggest with respect to trend in Consumer Price Index?

b. Compute the root mean prediction error for τ ∈ {12, 24} months. Good
initial values for the smoothing constants are between .01 and .1. Find
good values of each smoothing constant. Construct a table showing the
root mean prediction error realized by the three methods and for the two
values of τ . Report the values that were used as smoothing constants.

c. Construct a figure showing the Consumer Price Index and the three sets
of predictions plotted against month. The following code may be helpful:

library(ggplot2)
interval = 51:N
df = data.frame(D[,’Year’],y,pred)[interval,]
colnames(df) = c(’Year’,’Index’,colnames(pred))
plt = ggplot(df, aes(Year,Index)) + geom_point()
plt = plt + geom_line(aes(Year,Exponential.smooth), color = ’blue’)
plt = plt + geom_line(aes(Year,Holt.Winters), color = ’red’)
plt = plt + geom_line(aes(Year,LS),color = ’green’)

https://research.stlouisfed.org/fred2/series/CPIAUCSL/downloaddata


11.12 Exercises 379

11.5. Compute the root mean square forecasting error for three predictive
models using the NASDAQ.csv data set:

E(Yn+τ ) = β∗
1n

E(Yn+τ ) = β∗
1xn,AAPL

E(Yn+τ ) = β∗
1xn,GOOG

(11.23)

where xn,AAPL and xn,GOOG denotes the Apple Inc. and Alphabet (Google) Inc.
price for step n. Determine a good choice of α for each of the three models.



Chapter 12
Real-time Analytics

Abstract Streaming data are data transmitted by a source to a host com-
puter immediately after being produced. The intent of real-time data ana-
lytics is to analyze the data as they are received and at a rate sufficiently
fast to keep up with the stream. Analyses of streaming data center about
characterizing the current level of the data-generating process, forecasting
future values, and determining whether the process is undergoing unexpected
change. In this chapter, we focus on computational aspects of real-time an-
alytics. Methods were discussed in Chap. 11. The tutorials guide the reader
through the analysis of data streams originating from two public and very dif-
ferent sources: tweets originating from the Twitter API and stock quotations
originating from the NASDAQ.

12.1 Introduction

A data stream is a series of observations that are received by a device (for
example, a computer) for a sustained period of time. The stream is generated
by a device that automatically produces or sends the data to the receiver.
Self-driving cars are fantastic examples of the generation and use of stream-
ing data. A variety of sensors collect information regarding physical location,
speed, position on the roadway, and nearby objects and their movement. The
data are sent from the sensors to the guidance system as data streams. As
much as a gigabyte of data per second may be sent by the sensors. Conse-
quently, data processing must be rapid, and saving all of the data is neither
necessary nor practical.

The Twitter stream is accessible to the public with only the minor incon-
venience of requesting authorization from Twitter Inc. A Twitter data stream
consists of a series of text messages sent by the Twitter application program-
ming interface (API) to a host computer. A tweet appearing in the Twitter
stream consists of the familiar short text message and, less familiar to most
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people, a remarkably large number of other variables related to the origin of
the tweet. A connection to the public Twitter stream will receive perhaps 100
tweets per second depending on the time of day and the size of the geographic
area from which tweets are directed.

Streaming data, or data in motion differ from static data, or data-at-rest,
by origin and objective. The goal of real-time analytics is to analyze data
streams at a rate equal to or greater than the arrival rate. In most cases,
analysis involves re-computing a few simple statistics whenever an observa-
tion is received, or better, updating the statistics of interest whenever new
observations arrive. The goal of this continual analysis is to make decisions
and take actions as rapidly as possible, say at the same rate as the data are
received.

Another publicly accessible data stream are stock prices retrieved from the
Yahoo Financial application programming interface. The data are quotations
originating from any of the approximately 3100 companies listed with the
NASDAQ stock exchange. The stream is generated by the local or host com-
puter by repeatedly sending requests to the Yahoo Financial API for a price
quotation. The analytics applied to the Yahoo Finance stream are aimed at
computationally fast forecasting as would be appropriate for intra-day trad-
ing and automated stock trading.

This chapter discusses real-time analytics by example. The first example,
the NASDAQ quotation stream, consists of quantitative values. The second
example, the Twitter stream, consists of text messages. The objectives and
the analytics applied to the streams are, of course quite different.

12.2 Forecasting with a NASDAQ Quotation Stream

We begin with a quantitatively-valued data stream of stock prices generated
from the Yahoo Finance API (http://finance.yahoo.com/). Yahoo Finance
collects stock quotations from the NASDAQ stock market and provides the
information as a public service through their website. Most users interact with
the website by point-and-click navigation. Computer-generated requests for
stock quotations are also handled by the website. When the requests are
correctly formatted, responses are returned to the requesting computer. The
following tutorial uses a Python script to repeatedly ask for price quotations.
The series of requests generates a stream of responses in the form of price
quotations.

A trader may buy shares of a stock from a seller by paying the asking price
and may sell the stock to buyer for the bid price. The data sent by the Yahoo
Financial API in response for a quotation contains the most recent bid price
and asked price and a number of other attributes. Of course, the bid and
asked prices of a stock fluctuates and drifts over time. The rate of change in
the most recent price depends on traders’ interest level in the stock.

http://finance.yahoo.com/
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Quotations originating from the NASDAQ source are received by and
rapidly updated by Yahoo Finance when the market is open for trading.
There is however, a delay of perhaps 15 min between the time that a stock
price changes on the NASDAQ and the time that its price is updated on Ya-
hoo Finance. Consequently, the data stream received by the Python script is
not a real-time stream from NASDAQ. However, the application of forecast-
ing algorithms to the delayed NASDAQ quotation data stream does approx-
imate a real-time analysis and is useful for developing a forecasting function
for use with a real-time stream. Since multiple requests for quotations may
be sent in a single second to the Yahoo Finance, the velocity of the generated
stream of responses is reasonably good.

The Python script developed in the following tutorial will repeatedly send
Hypertext Transfer Protocol (HTTP) requests to Yahoo Finance for quota-
tions on a stock of interest to generate a stream of asking prices. We’ll use
a third-party module ystockquote [22] to make the request and extract the
price from the JSON object (JavaScript Object Notation) returned from Ya-
hoo Finance. Keep in mind that new quotations can be received only when
the market is open. Most trading takes place during the weekday market
hours of 9:30 a.m. to 4:00 p.m. Eastern time; the remainder occurs during
pre- and post-market trading periods spanning 4:00 a.m. to 8:00 p.m.

The tutorial assists in developing Python code to support the following
hypothetical enterprise. A trader is holding stocks S1, . . . , Sk at time step
τ . Forecasts are made of each stock at time step n + τ . The stock with the
smallest forecasted change in price is sold at time step n and the proceeds
are used to buy shares of the stock with the largest forecasted increase in
asking price.

12.2.1 Forecasting Algorithms

Two algorithms will be used for forecasting. We’ll use Holt-Winters exponen-
tial forecasting and linear regression with time-varying coefficients.

Recall from the discussion of Sect. 11.6 that at time step n, the Holt-
Winters forecast of the target yn+τ is

ŷHW
n+τ = μ̂n + τ ̂βHW

n . (12.1)

The term μ̂n is the estimated mean level of the stock, free, in principle, of
short-term variation, and ̂βHW

n is the estimated rate of change of the process
generating the sequence of prices . . . , yn−1, yn, . . .. Whenever a price quota-
tion is received from the Yahoo Financial API, the estimates μ̂HW

n and ̂βHW
n

are updated according to Eqs. (11.10) and (11.12). Then, the forecast

ŷHW
n+τ = μ̂HW

n + τ ̂βHW
n (12.2)
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is computed. When yn+τ arrives at τ steps after the present step, the forecast
error yn+τ − ŷHW

n+τ will be computed.
The second forecasting algorithm is linear regression with time-varying

coefficients (Sect. 11.10).
The time-varying slope βLR

n is estimated by computing

̂β
LR
n = A∗

n
−1z∗

n

(Eq. (11.21)). The statistics A∗
n and z∗

n are updated by computing a weighted
sum of the past time step value of the statistics and terms computed from
the most recent observations (Eq. (11.20)).

The linear regression forecasting function uses time step as the predictor
variable in the tutorial. At time step n, the predictor is simply xn = n, and
the forecasting model is

E(Yn+τ |xn) = βn,0 + nβn,1.

The data pair used to fit the model at time step n is (yn, xn) = (yn, n − τ)
and the predictor vector at time step n is xn = [1 n]T . A comparison of
Holt-Winters to time-varying linear regression forecasting is on more level
ground without the advantage of exogenous information carried by others
stocks. The time-varying linear regression forecasting method still has the
advantage of being optimized for prediction via least squares whereas Holt-
Winters depends on a wise choice of tuning parameters αe and αb. In practice,
an analyst will compute forecasting error using each pair (αe, αb) in a set of
candidate pairs to find a good pair of tuning constants. The search for best
tuning constants should be conducted on a regular basis.

12.3 Tutorial: Forecasting the Apple Inc. Stream

The Python script will repeatedly send requests to the Yahoo Financial API
for the current quote of Apple Inc. If the returned value has changed from
the previous response, then the forecasts are updated. If there’s no change in
value, the program waits for a short time, and sends another request. When a
forecasted value comes into view, the time step n forecast errors are computed
and estimates of forecasting error are computed. (Recall that the time step
n forecast was made at time step n − τ .) When n = 1000 values have been
received, the program terminates.

We’ll use Corey Goldberg’s Python module ystockquote [22] to send quo-
tation requests to Yahoo Finance. The first task, then, is to install the module
by submitting the instruction pip install ystockquote from within a
Linux terminal or a Windows command prompt window.
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The vast majority of trading takes place during the market hours of 9:30
a.m. to 4:00 p.m., Eastern, on weekdays. Trading also occurs during pre-
and post-market trading periods spanning 4:00 a.m. to 8:00 p.m. No data is
streamed outside of the interval 4:00 a.m. to 8:00 p.m. The script will only
generate a stream between 4 a.m. and 8 p.m. on trading days.

Upon arrival of a price yn not equal the previous price yn−1, the two
forecasts of the future value at time step n + τ will be computed. To assess
the performance of the algorithm, at time step n, for n = τ + 1, . . . , N , the
target price yn and forecasts of the future target yn+τ will be saved in a
dictionary. The forecasts of yn+τ are ŷHW

n+τ and ŷLR
n+τ . Time step is used as

the dictionary key and so yn is stored with the key n. The forecasts ŷHW
n+τ and

ŷLR
n+τ are stored with the key n + τ .

When program execution has completed, the dictionary entries are used to
compute the root mean square forecasting errors σ̂HW and σ̂LR. A plot of the
three series provides visual information on the source of differences between
the two estimates of forecasting error. For example, Figure 12.1 shows that
the Holt-Winters and time-varying linear regression forecasts appear to be
very similar. However, there is some difference in the estimated forecasting
error since σ̂HW = $.0766 and σ̂LR = $.0585. We made no attempt to find
better tuning constants than the first choice of αr = αe = αb = .1.

Fig. 12.1 Observed
and forecasted
prices of Apple Inc.
stock. Forecasts
were computed
for τ = 20 time
steps ahead of
the current time
step. The tuning
constants were set
to the same value,
αr = αe = αb = .1
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1. Create a Python script and import the modules sys, time, numpy and
ystockquote.

2. Choose a stock for forecasting and set the variable symbol to be the ticket
symbol, say symbol = ’AAPL’. A list of the most actively trading stocks
can be viewed at the webpage http://www.nasdaq.com/symbol/.

http://www.nasdaq.com/symbol/
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3. Initialize the tuning constants according to αr = αh = αb = .1. Set τ = 5
for now. Once the code appears to work, set τ = 20. Initialize a dictionary
sDict to store the forecasts and the target values. Initialize a variable to
store the price of the previous quotation. Set the time step counter n to
be zero.

ar = ae = ab = .1
tau = 5
sDict = {}
previousPrice = 0
n = 0

4. Initialize the terms used in the computation of the time-varying linear
regression forecast.

p = 1
A = np.matrix(np.zeros(shape=(p+1, p+1)))
z = np.matrix(np.zeros(shape=(p+1, 1)))
x = np.matrix(np.ones(shape=(p+1, 1)))

5. Use a while loop to request quotations.

while n <= 1000 :
try:

print(’Sending request .. ’)
data = ystockquote.get_price(symbol)
dataReceived = True
print(data)

except:
print(’Error’)
time.sleep(10)
dataReceived = False

Transmission errors are possible. An exception handler is used to catch
transmission errors. If there is an error, then the program idles for 10–20 s
before resuming execution.

6. If the request for a quote has returned a price, then translate the string
value to a floating point value. If the time step variable is zero, then
initialize the Holt-Winter estimates of the mean to be the received value
and set βHW

0 = 0. Test whether the received value y has changed since
the last request. If it has, then the forecasting operations will commence
with the next instruction.
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if dataReceived:
y = float(data)
if n == 0:

mu = y
muOld = y
beta = 0

if y != previousPrice:
n += 1
previousPrice = y

This code block executes for every iteration of the while loop, so indent
the segment accordingly.

The variable n counts the time step. The first time step is n = 1 since
time step is advanced before computing the forecasts.

7. We have not yet programmed the updating algorithms for the calcula-
tion of the forecasts ŷHW

n and ŷLR
n . However, we will create the code for

appending the new value yn to the dictionary entry [ŷHW
n , ŷLR

n ] at this
point.

Keep in mind that forecasts are stored with the future time step as the
key. However, an entry with the key n will exist only if n > τ because the
entry would have been created at time step n − τ (instruction 10 below).
So, if n > τ , then a dictionary entry with the current time step n exists
in sDict and we should append y to the dictionary entry with key n.

try:
sDict[n].append(y)

except(KeyError):
pass

The code segment follows directly after the assignment previousPrice
= y. The code segment and the assignment must have the same indenta-
tion.

8. Update μ̂HW
n and ̂βHW

n and compute the Holt-Winters forecast of yn+τ .

mu = ae*y+ (1- ae)*(mu + beta)
beta = ab*(mu - muOld) + (1 - ab)*beta
HWforecast = mu + beta*tau
muOld = mu

Only update μ̂HW
n and ̂βHW

n if y has changed since the previous time step
so take care with indentation.
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9. Compute the predictor vector xn by updating the second element. Update
the statistics A∗

n and z∗
n.

x[1] = n - tau
A = ar*x*x.T + (1 - ar)*A
z = ar*x*y + (1 - ar)*z

10. Compute the least squares estimator of β∗
n if n > 1. At least two predictor

vectors must be accumulated in A∗
n before it is nonsingular. If A∗

n is
singular, the attempt to compute the estimator will produce an error.

if n > 1:
betaHat = np.linalg.solve(A, z)
LRforecast = float(x.T*betaHat)
x[1] = n
sDict[n + tau] = [HWforecast, LRforecast]

The list [HWforecast, LRforecast] is stored with the future time step
key n + τ since each forecast is a prediction of yn+τ . We’ll have to wait
τ time steps until the actual value yn+τ comes into view before we can
compute the forecasting errors associated with the two forecasts. At that
time step (n+τ), we attach the price to the sDict entry just created (in-
struction 7). The next item computes the estimates of root mean square
prediction error.

11. Compute the mean square forecasting errors for the two forecasting func-
tions. For example, the error estimate for Holt-Winters is

σ̂HW =
∑n

i=τ+1(yi − ŷHW
i )2

n − τ
.

The calculation is simplified by having stored the triples (ŷHW
i , ŷLR

i , yi)
for i ∈ {τ + 1, . . . , n} in sDict using i as the key.

Initialize a list to store the error estimates at the top of the script, say
err =[0]*2. We’ll compute error estimates if n > τ . This is accomplished
by extracting the forecast and the actual value pairs from sDict. A list
of the squared differences is constructed using list comprehension. The
mean of the list is computed, and then the square root of the mean. The
result is the estimated root mean square forecasting error.

if n > tau:
for j in range(2):

errList = [(sDict[i][2] - sDict[i][j])**2
for i in sDict if len(sDict[i]) == 3]

err[j] = np.sqrt(np.mean(errList))
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The test len(sDict[i]) == 3 insures that a forecast has been computed
for the target price. The first τ prices have no associated forecasts and
so the length of the associated dictionary entries is 1.

12. Write the error estimates to the console. Write the slope estimates ob-
tained from the two forecasting methods.

print(’Error = ’, round(err[0], 5), round(err[1], 5))
print(’LR slope = ’, round(float(betaHat[1]), 5),

’ HW slope = ’, round(beta,5))

13. Upon completion of the while loop, extract and plot the three series and
note the error estimates for the two forecasting functions.

import matplotlib.pyplot as plt
plt.plot(x,y)
plt.plot(x,lr)
plt.plot(x,hw)

12.3.1 Remarks

Using time step as the predictor variable produced a time-varying linear
regression forecasting function very similar to the Holt-Winters forecasting
function. Both functions forecast the future value yn+τ using an estimate of
E(Yn+τ |Dn) = μn+τ , where Dn = (y1, . . . , yn) represents the data stream.
Both models describe the future process mean as the sum of the current
process mean and an increment determined by the current rate of change in
μ1, . . . , μn. For instance, the Holt-Winters model is

μn+τ = μn + τβn.

where βn is the current rate of change in the process mean. Both parameters
μn and βn are allowed to vary with time step. Both estimators are either
weighted averages of the previous step estimates and the most recent obser-
vation or are computed from weighted averages of the previous step estimates
and the most recent observation.1

There’s not much more that can be done easily to forecast Yn+τ without
more data. One way to bring in more data in this situation is extend the linear
regression predictor vector to include past prices of the target and other
stocks as we did in Sect. 11.8. Extending the predictor vector is relatively
easy. The primary hurdle is that A∗

n may be singular and so an alternative
1 The time-varying linear regression estimator of βn is computed from the statistics A∗

n

and z∗
n which are weighted averages of the previous step estimates and the most recent

observation.
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forecasting algorithm should be available to compute the forecast in the case
that A∗

n is singular. Another approach is the pattern matching approach of
Sect. 9.10. The pattern matching approach requires more effort as a set of
recent patterns needs to be updated at regular intervals.

We turn now to a substantially different source of streaming data, the
Twitter stream.

12.4 The Twitter Streaming API

Twitter is an online social networking service that enjoys enormous pop-
ularity. As of the first quarter of 2016, more than 300 million users were
broadcasting in excess of 500 million tweets daily [8]. Twitter users send
and read text-based messages of up to 140 characters, referred to as tweets.
Unregistered users can read tweets, while registered users can post tweets
through the website interface and mobile devices. An analyst may tap the
Twitter stream and receive some or all of the messages broadcast for public
consumption and a considerable amount of associated information regarding
the senders. The Twitter stream has been used for a variety of political and
research purposes. For example, Twitter was used by government opponents
to disseminate information during the Arab Spring rebellions in Egypt and
Tunisia [36]. Perhaps as a consequence, it has been proposed that Twitter be
used for monitoring group dynamics in real-time for purposes such as early
detection of disease outbreaks [55]. Opportunities for exploiting the Twitter
stream for financial gain surely exist but we have not yet determined what
they are.

Tweets possess 30 or more attributes besides the text message sent by the
user [52, 61]. The attributes, which may be blocked by the user, include user
name, a short self-description, and geographic origin of the tweet (latitude
and longitude and the country of origin). The description of the sender, when
it exists, has been written by the user to describe herself, and so provides
potentially useful information about the sender. Tweets are JSON-encoded,
and consequently, the attributes are easily extracted. Two streams may be
tapped through the Twitter API. The streams are the public stream, which re-
quires a set of access credentials that are obtained by registering with Twitter
Inc. through their API, and the Twitter Firehose [62] which requires special
permissions. The public stream consists of a small sample of all tweets trans-
mitted by the Twitter Firehose. It is however, adequate for learning how to
process the Twitter stream and, in some cases, testing prototypes.

Given the massive volume of messages that are broadcast within the Twit-
ter sphere, an individual that wishes to communicate with others regarding a
specific topic faces the challenge of getting their messages to others interested
in the topic. A popular solution is to include one or more identifying hash-
tags in the message. A hashtag is a word preceded by the hashtag symbol:
#. Because Twitter users can search for and view tweets containing specific
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words or phrases, users that include a hashtag within their messages are
providing an identifier so that others with similar interests can find their
message. Consequently, hashtags lead to the formation of transitory groups
of users united by a common topical interest. For the analyst, the senders
of hashtag-labeled messages may be thought of as members of a group, and
the division of a Twitter-sphere into groups of similar individuals is often ad-
vantageous in the study of the population. The possibility of collecting very
large volumes of data on the thoughts of participants imply that Twitter is
an attractive data source for the study of social networks and human behav-
ior. For example, reaction to external stimuli such as political events can be
measured by sentiment analysis of tweets. However, Twitter users differ from
the general population to an unknown degree, and the analyst must recog-
nize that the appropriate scope of inference is most likely limited to Twitter
users.2

12.5 Tutorial: Tapping the Twitter Stream

In this tutorial, the reader will construct a dictionary of hashtags from a live
Twitter stream and compute the relative frequency of occurrence for each
observed hashtag. A dictionary with hashtags as keys and counts as values
will be built so that the hashtags with the greatest amount of traffic can be
determined.

There are two preliminary steps that must be carried out before the Twit-
ter stream may be accessed using a Python script. The steps are to gain
permission to tap the Twitter stream and to install a module that will inter-
act with the Twitter API. Instructions for obtaining credentials are described
in Appendix B.

The Twitter API consists of a set of programs and services that enables
registered users to post and retrieve tweets and gain access to a live stream of
tweets. A third-party Python module will create a communication link called
a socket between a local host (computer) and the Twitter API. The socket
allows the Twitter API to write to a reserved memory location called a port
in the host. The Python program awaits new tweets, and whenever a tweet
is received, it is scanned for hashtags. We will use the TwitterAPI module
[20] to open the port and receive the stream.

1. Create a Twitter account if you do not already have one. Obtain the
credentials necessary to unlock access to the API. Appendix B provides
instructions.

2 The scope of inference of a study is the target population to which the conclusions
apply. A representative sample must be obtained from the target population for infer-
ences to be statistically defensible. Individuals that send tweets are self-selected and it
is hard to identify a larger population of which they are representative of.
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2. Install TwitterAPI. Submit the instruction pip install TwitterAPI
from within a Linux terminal or a Windows command prompt window.

3. Open a new Python script. The first action is to send a request to the
Twitter API to stream tweets to the host computer. Pass your credentials,
that is the four codes obtained from the Twitter API. The codes are
named Consumer Key (a1), Consumer Secret (a2), Access Token (a3),
and Access Token Secret (a4). Code the following instructions.

import sys
import time
from TwitterAPI import TwitterAPI

a1 = ’www’ # Replace ’xxx’ with your credentials.
a2 = ’xxx’
a3 = ’yyy’
a4 = ’zzz’
api = TwitterAPI(a1, a2, a3, a4)

4. Create an iterable object (it’s named stream) that will request tweets
from the Twitter API. Pass a string of coordinates that defines a sampling
region. The tweets that are received from the Twitter API originate from
within the region.

coordinates = ’-125, 26, -68, 49’ # Roughly the continental U.S.
stream = api.request(’statuses/filter’, {’locations’:coordinates})

The instruction api.request(...) sends a request to the Twitter API
to open the stream. If the request is accepted, then the api function will
handle the stream sent by the Twitter API. As the stream is received,
each tweet is written to a port.3

The list coordinates defines the source region from which tweets are
streamed to the host port of your computer. The four values in the coordi-
nate list define the southwestern and northeastern corners of a rectangle
that roughly covers the continental United States. The southwestern cor-
ner is defined by longitude = −125 and latitude = 26.

5. Create a generator that will yield a series of items from the object
stream.4 The generator is a function that when called, generates a
series of returns without terminating. A conventional function returns
an object and then terminates. In a sense, the instruction yield replaces

3 Port 80 is the standard port for non-secure web traffic.
4 The object stream may itself be a generator. Creating the generator tweetGenerator
may not be necessary.
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the function instruction return. The generator does not terminate after
executing the instruction yield but instead continues to return items.
Since the object stream created by the api.request call is iterable, the
generator will yield a stream of tweets when called in a for loop.

def generator(iterable):
for item in iterable:

yield item
tweetGenerator = generator(stream)

6. Iterations begin with the statement for tweet in tweetGenerator. A
tweet is produced by the generator whenever a tweet is received from
the Twitter API. The tweet produced by the TwitterAPI module is a
dictionary containing a lot of information besides the message. The key
’text’ extracts the message.

stopAt = 5000
for tweet in tweetGenerator:

try:
txt = tweet[’text’].lower()
print(txt)

except:
print(time.ctime(),tweet)

if n > StopAt:
break

The .lower() attribute translates the characters to lowercase.
If tweets are received by the host computer more rapidly than they

can be processed by the program, then tweet will consist only of a limit
notice and the number of tweets that were lost. In this case, the text
attribute will be missing from tweet and an exception will be raised. It
is for this reason that an exception handler is invoked. The exception
handler will trap other errors as well. If you have problems with the code
and cannot see the error, then suppress the exception handler. You may
replace the statement try with if len(tweet) > 1 and except with
else so that an error message is written to the console. If, at some point,
the program was capturing tweets and then fails and reports a 401 error,
then try restarting the kernel. If that fails, reboot the computer before
restarting the program.

7. Temporarily replace the instruction txt = tweet[’text’] with desc =
tweet[’user’][’description’]. The object tweet[’user’] is a dic-
tionary. The contents of desc is a self-authored description of the user.
Examining the keys of tweet[’user’] will reveal 38 attributes associ-
ated with the user, one of which is the self-authored description. The
instruction print(tweet[’user’].keys()) shows the keys.
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Execute the script. After examining some of the user descriptions,
change the script so that the messages are assigned to txt.

8. Import the re module at the top if the script. Immediately after extract-
ing the message from tweet, extract the hashtags, if any, from txt.

hashtags = re.findall(r"#(\w+)", txt)

The instruction re.findall(r"#(\w+)", txt) uses the re module (reg-
ular expressions) to extract the strings in txt that follow a hashtag sym-
bol (#). A list is returned. If no hashtags are found, then the returned
value is an empty list.

9. We’ll build a frequency table in the form of a dictionary in which the
keys are hashtags and the values are the frequencies of occurrence. Use a
counter dictionary to count the occurrences of hashtags. First, import the
collections module. Initialize a dictionary named hashtagDict to store
the hastags and frequencies of occurrence before consuming the Twitter
stream.

import collections
hashtagDict = collections.Counter()

10. Iterate over the list of hashtags extracted from the message. Increment
the count of incidences of each tag in hashtag using the update attribute
of the counter dictionary.

for tag in hashtags:
hashtagDict.update([tag])

print(n,len(hashtagDict), hashtagDict[tag])

If hashtags is empty, then the for loop will not execute.
11. The for tweet in tweetGenerator loop will terminate when n >

StopAt. At that point in the code, create a list containing the sorted
hashtag dictionary entries. Sort according to frequency of occurrence and
extract the twenty-most common.

sortedList = sorted(hashtagDict.items(), key=operator.itemgetter(1))
shortList = sortedList[len(hashtagDict)-20:]

12. Construct a horizontal barchart showing the frequency of occurrence of
the 20 most common hashtags. An example is shown in Fig. 12.2.
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y = [n for _,n in shortList]
tags = [name for name, _ in shortList]
index = [i+1 for i in range(len(tags))]
plt.barh(index, y, align=’center’)
plt.yticks(index, tags)

You’ll have to execute the instruction import matplotlib.pyplot as
plt before attempting to use the plotting functions.

Fig. 12.2 Frequencies
of the 20 most common
hashtags collected from
a stream of 50,000
tweets, December 9,
2015
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12.5.1 Remarks

With a real-time data stream, we may begin to ask questions about the
population from which the stream is originating. For instance, we may view
Twitter users that use a particular hashtag, say, #NeverTrump, as a population
of interest and attempt to quantify the response of the population to events of
the day. Quantifying the response of individuals toward an event or topic can
be approached by measuring the sentiment of tweets containing the hashtag.
In this situation, we’re interested in determining whether there is a prevalent
attitude, positive or negative, toward the event or person. We won’t pursue
a deeper level of sophistication here, but it’s also possible to measure the
expression of several broad emotional states such as happiness, sadness, fear,
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disgust, and anger.5 In any case, the stream of tweets containing a hashtag
are a source of data from which information may be gleaned. The next topic
is the measurement of sentiment contained in textual data.

12.6 Sentiment Analysis

We will broaden the discussion beyond streaming data and Twitter and dis-
cuss the process of extracting sentiment from textual data. The general ob-
jective of sentiment analysis is to extract information from a passage of text
about the sentiment expressed within, usually positive or negative, but also
with respect to emotional state. Sentiment analysis is used in various arenas,
for instance, in marketing for assessing product perception and customer
satisfaction and in politics for assisting in strategizing and resource alloca-
tion [34]. Presently, data sources are almost entirely textual. Sources include
Twitter, blogs, social network sites, and discussion forums. The sentiment
of topical subjects may change rapidly, particularly if important events are
taking place at the time that the data is observed. Because the Twitter API
generates a data stream in real-time, Twitter is a unique resource for near-
real-time assessment of sentiment.

Sentiment analysis is complicated by the use slang, abbreviations, incor-
rect spellings, and emoticons. The problem of incorrect speech is most acute
in the Twitter sphere. The 140 character limitation apparently encourages
non-standard spellings and rampant use of abbreviations. Automatic spelling
correction algorithms are of limited help since purposeful spelling deviations
are common and difficult to correct (e.g., gonna). Another complication is
that sentiment analysis is built upon assigning sentiment to individual words
but often a phrase is used to express sentiment. Linguistic analyses of multi-
word phrases is very difficult if only because of the vast number multi-word
phrases and variations used in common speech. Negation is also a problem;
for instance, a simplistic algorithm for measuring sentiment is likely to gen-
erate a positive sentiment for the phrase I’m not at all happy because the
word happy is present. The negation is difficult to detect.

The simplest real task in sentiment analysis is determining the polarity of
a text (or a block of text such as a sentence). Polarity is usually described as
positive, negative, or neutral. A finer level of measurement attempts to assign
a numerical score, say between −1 and 1, or perhaps assigns an emotive state
such as disgusted or happy to the text, or a polarity score for one or more
emotive states.

5 Exercise 12.5 provides an opportunity to work with emotional states.
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The sentiment analysis of a text or a corpus6 begins with splitting the
text into units such as tweets, sentences, or articles. The units are character
strings which must be split again into words, or tokens, using a tokenizer that
splits a character string whenever a white space is encountered. We refer to
these sub-strings as tokens because they not necessarily words but generally
represent something of meaning.

The next step assigns a sentiment score to each token contained in a tex-
tual unit. This operation requires a sentiment dictionary listing words and
sentiment values. The values may consist of polarity (positive or negative)
and perhaps the strength of the sentiment voiced by the word. For exam-
ple, Table 12.1 shows four entries from a popular sentiment dictionary [67].
A pair is assigned to each word showing the strength (weak or strong) and
the direction (positive or negative). Words encountered in the text that are
not listed in the sentiment dictionary are assigned a neutral score or simply
ignored because no information is available regarding sentiment. Words that
occur with high frequency and are neutral in sentiment are sometimes called
stopwords. Examples of stopwords are pronouns (e.g., he, it), prepositions
(e.g., on, at), and conjunctions (e.g., and, when).

Table 12.1 A few dictionary entries showing polarity strength and direction. There are
6518 entries in the dictionary [31, 67]

Word Strength Direction
Abandoned Weak Negative

Abandonment Weak Negative
Abandon Weak Negative

Abase Strong Negative

The classification of words by strength and direction illustrated by Table 12.1
leads to four classes, or groups of sentiment values: (strong, positive), (strong,
negative), (weak, positive), and (weak, negative). Polarity may be measured
in other ways; in particular, numerical values can be assigned to each sen-
timent. Table 12.2 shows our codification of strength and direction of sen-
timent. Textual units can be assigned numerical scores based on the values
associated with each token in the textual unit. The analyst may search for
each token in the sentiment dictionary, determine a sentiment score of the
token from the sentiment dictionary, and compute a total or mean sentiment
value. In the following tutorial, the sentiment associated with a hashtag is
measured by the mean sentiment of all words that co-occur with the hashtag
and are entered in the sentiment dictionary.

6 A corpus is a collection of writings; for example, a collection of tweets containing a
particular hashtag.
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Table 12.2 Numerical scores assigned to sentiment classes
Direction

Strength Positive Negative
Weak .5 −.5

Strong 1 −1

12.7 Tutorial: Sentiment Analysis of Hashtag Groups

The objective of this tutorial is to compute the sentiment of a hashtag group.
A hashtag group is a collection of hashtags related to a common subject. For
example, the hashtags jobs and hiring belong to a group of hashtags that
are used by prospective employers to advertise job openings. Our objective is
to measure the sentiment expressed in messages containing a hashtag group
representative. The sentiment of the hashtag group is estimated in real-time.

In this tutorial, we’ll extract messages from the Twitter stream that con-
tain a hashtag of interest. A measure of the message sentiment is computed
for each of these messages. Specifically, the sentiment score of each token in
the message is determined from the sentiment dictionary. The message sen-
timent score is defined to be the total of the sentiment scores. The sentiment
of a hashtag group is estimated by the mean sentiment score of all words
co-occurring with a hashtag in the hashtag group.

The tutorial begins by building a sentiment dictionary and defining a hash-
tag group. Then, a port to the Twitter stream is opened and the stream is
processed.

1. Build a list containing one or more popular hashtags. We’re using a group
that’s related to jobs and hiring. We’ve chosen the hashtags by inspecting
Fig. 12.2. Our hashtag group is the following set.

hashtagSet = set([’job’,’hiring’,’careerarc’,’jobs’,’hospitality’])

2. Retrieve the sentiment dictionary [67] from Tim Jurka’s github webpage
https://github.com/timjurka. The file is named subjectivity.csv and
can be accessed by navigating to the sentiment repository. A few dictio-
nary entries are shown in Table 12.1.

3. Read the file subjectivity.csv and extract the word, strength, and
polarity.

path = ’../Data/subjectivity.csv’
sentDict = {}
with open(path, mode= "r",encoding=’latin-1’) as f:

for record in f:
word, strength, polarity = record.replace(’\n’,’’).split(’,’)

https://github.com/timjurka
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We’ve initialized an empty dictionary named sentDict to store the sen-
timent words and sentiment values.

4. Compute a numerical score for each sentiment word in the file using the
codification scheme shown in Table 12.2. Store the word as the key and
the sentiment score as the value in sentDict.

score = 1.0
if polarity == "negative":

score = -1.0
if strength == "weaksubj":

score *= 0.5
sentDict[word] = score

5. Request access to the Twitter stream using the calls TwitterAPI(...)
and api.request(...) described in instructions 3 and 4 of Sect. 12.5.

6. Include the definition of the generator function (Sect. 12.5, instruction 5)
in your script.

7. Initialize a list for the computation of the mean sentiment of messages
containing a hashtag in the hashtag group of interest. Create the gener-
ator.

meanSent = [0]*2
tweetGenerator = generator(stream)

8. Initialize a counter by setting counter = 0.
9. Build a for loop using the tweetGenerator object. If possible, extract

the hashtags from each tweet and increment the number of times that a
hashtag belonging to the hashtag group was encountered in the Twitter
stream.

for n, tweet in enumerate(tweetGenerator):
try:

txt = tweet[’text’].lower()
hashtags = set(re.findall(r"#(\w+)", txt)) & hashtagSet

except:
print(time.ctime(),tweet)

The command set(re.findall(r"#(\w+)", txt)) & hashtagSet com-
putes the intersection of hashtagSet and the set of hashtags appearing
txt.

10. If there are hashtags of interest in the message, then compute the senti-
ment of the message. To accomplish this, iterate over the tokens contained
in the message and look up each token in the sentiment dictionary. Inc-
rement the sum of the sentiment values and the count of messages that
contain a hashtag from the hashtag group.
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if len(hashtags) > 0:
sent = 0
for token in txt.split(’ ’):

try:
sent += sentDict[token]

except(KeyError):
pass

meanSent[0] += 1
meanSent[1] += sent
print(n,meanSent[0],round(meanSent[1]/meanSent[0],3))

The test len(hashtags) > 0 determines whether there are hashtags of
interest in the message.

The code segment immediately follows the statement hashtags = · · · .
11. Collect 1000 messages that contain hashtags from the hashtag group and

terminate the program.
12. Create a different hashtag group and run the script again. The web-

site https://www.hashtags.org/trending-on-twitter.html provides a list of
popular hashtags. It appears that hashtags with commercial purposes
have been omitted from their lists.

12.8 Exercises

Problem 12.1. Return to instruction 13 of the Sect. 12.3 tutorial and plot
the observations as points and the forecasts as lines using ggplot2. Use dif-
ferent colors for the two types of forecasts.

Problem 12.2. Emoticon are often used to express emotion in the text-based
social media. The set A = {:-), :), :D, :o), :], :3, :>, :}, :ˆ} contains some
commonly-used emoticons used to express happiness or amusement, and the
emoticons in the set B = {:-(, :(, :-c, :C, :-{, :-[, :[, :{, :-{} are used
to convey unhappiness.

a. Compute the mean sentiment of tweets that contain emoticons from set
A and again for set B.

b. Compute the mean sentiment of all tweets.
c. Compute the standard error of the mean σ̂(y) = σ̂/

√
n for the three sets

A, B, and all tweets.

Problem 12.3. Returning to the Tutorial of Sect. 12.3, investigate relation-
ship between forecasting error, τ , and the tuning constants αr, αe, and αb.
Calculate estimates of forecasting error for the Holt-Winters forecasting func-
tion and linear regression with time-varying coefficients forecasting function
using τ ∈ {10, 50, 100} and α ∈ {.05, .1, .2}. Set αr = αe = αb = α.

https://www.hashtags.org/trending-on-twitter.html
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Problem 12.4. In the Sect. 12.5 tutorial, you were asked to construct a bar-
chart using pyplot (instruction 12). Build the barchart using ggplot.

Problem 12.5. Investigate sentiment associated with the emotions anger,
disgust, fear, joy, sadness, and surprise. A list of words and their classification
as expressions of one of the five emotions can be obtained from Jurka’s github
webpage https://github.com/timjurka. Use the data file containing the words
and emotions, emotions.csv, to compute the mean sentiment of messages
containing a token expressing a particular emotion. Summarize your results
in a table.

https://github.com/timjurka


Appendix A
Solutions to Exercises

Chapter 2

2.1. Show
n2 =

∑n
i=1
∑i−1

j=1 1 +
∑n

i=1
∑n

j=i+1 1 + n,

and solve for
∑n

i=1
∑n

j=i+1 1.
2.2. Formulas for combinations.

a.
Cn,3 = n(n − 1)(n − 2)

3 · 2 · 1 = n!
3!(n − 3)! ,

C5,3 = 10,
C100,3 = 161, 700.

b. Python code to generate and print the three-tuples:

i = j = k = 0
threeTuples = [(i, j, k)]
for i in range(3):

for j in range(i+1, 4):
for k in range(j+1, 5):

print(i, j, k)

2.4.

import operator
l = [(1,2,3),(4,1,5),(0,0,6)]
#sort by second coordinate
sortedList = sorted(l, key = operator.itemgetter(1))

© Springer International Publishing Switzerland 2016
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2.6.

import timeit
lcStart = timeit.default_timer()
lcSetpairs ={(i,j) for i in range(n) for j in range(i+1,n+1)}
lcTime=timeit.default_timer() - lcStart

joinStart = timeit.default_timer()
setJoin=set()
for i in range(n):

for j in range(i+1,n+1):
pairSet =set({(i,j)})
setJoin=setJoin.union(pairSet)
joinTime =timeit.default_timer() - joinStart

Chapter 3

3.1. Suppose that for some n ∈ {1, 2, . . . , },

s(∪n
i=1) =

n
∑

i=1
s(Di).

Then,
s(∪n+1

i=1 Di) = s (Dn+1 ∪ [∪n
i=1Di])

= s (Dn+1) + s ([∪n
i=1Di]) .

Hence, s(∪n
i=1) =

∑n
i=1 s(Di) ⇒ s(∪n+1

i=1 ) =
∑n+1

i=1 s(Di). Therefore, the
statement is true for every integer n > 0.

3.3. Let y = [y1 · · · yn]T . Then,

s(β) = (y − Xβ)T (y − Xβ)

⇒ s(β)
∂β

= −2XT (y − Xβ).

Set the vector of partial derivatives equal to 0 and solve for β.

3.5. Let X
n×p

=
[

X1
n ×1

· · · Xp
n×1

]

.

a. Since jT = [1 · · · 1], jTx =
∑

xi.
b. (jT j)−1jTX = n−1 [jTX1 · · · jTXp

]

.
c. j.T.dot(X)/j.T.dot(j)
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Chapter 4

4.1. Let E denote the event of a cluster failure. Pr(E) = 1 − Pr(Ec
1) × · · · ×

Pr(Ec
n). If p = .001 and n = 1000, then Pr(E) = .6323.

4.4. The key elements of the mapper program are shown below.

for record in sys.stdin:
variables = record.split(’\t’)
try:

allowed = round(float(variables[22]), 2)
print(str(n%100) + ’\t’ + provider + ’|’ +

str(payment)+ ’|’ + str(submitted)+ ’|’ + str(allowed))
except(ValueError):

pass

The key elements of the reducer program are shown below.

A = np.zeros(shape= (q, q))
w = np.matrix([1,0,0,0]).T
for record in sys.stdin:

_,data = record.replace(’\n’,’’).split(’\t’)
numerics = data.split(’|’)
for i,x in enumerate(numerics[1:]):

w[i+1,0] = float(x)
A += w*w.T

for row in A:
print(’,’.join([str(r) for r in row]))

After computing A =
∑r

i Ai, the correlation matrix is computed using
the algorithm of Chap. 3 and formula (3.21).

n = A[0,0]
mean = np.matrix(A[1:,0]/n).T
CenMoment = A[1:,1:]/n - mean.T*mean
s = np.sqrt(np.diag(CenMoment))
D = np.diag(1/s)
corMatrix = D*CenMoment*D
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Chapter 5

5.1. See Fig. A.1.
5.4. See Fig. A.2.
5.4. See Fig. A.3.
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Fig. A.2 A faceted
graphic showing
the empirical
density of sales
per month by
department
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Fig. A.3 Monthly
sales
by department
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Chapter 6

6.1.
∑

y2
i /n −

∑

(yi − ŷi)2/(n − p)
∑

y2
i /n

= 47007.17 − 10746.03
47007.17 = R2.

6.3. The model without xfemale can be expressed conditionally as

E(Yi|xi) = β0 + β1xssf,i + β3xinteraction,i

=
{

β0 + β1xssf,i, if xfemale = 0,

β0 + (β1 + β3)xssf,i if xfemale = 1.

6.5.

a. Figure A.4 shows the fitted models and data.
b. Table A.1 shows the fitted models. The slopes are not much different in a

practical sense.
c. Table A.2 shows confidence intervals. The confidence intervals overlap to

a substantial extent and so the data do not support the contention that
the true slopes are different.

6.7. Anorexia data set.

a. nCBT = 29, nCont = 26, nFT = 17.
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Fig. A.4 Percent body
fat plotted against skin-
fold thickness for 202 Aus-
tralian athletes. Separate
regression lines are shown
for each gender. Males are
shown as open circles and
females are shown as filled
circles
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Table A.1 Fitted models for males and females
Group ̂β0 ̂β1 σ̂(β1)

Females 4.26 .156 .0040
Males .849 .163 .0042

Table A.2 Confidence intervals for β1 for males and females. Separate regression lines

95% confidence
interval bounds

Group Lower Upper
Females .148 .164

Males .155 .172

b. See Fig. A.5.
c. See Fig. A.6.
d. See Fig. A.6. The black line consists of points with equal pre- and post-

experiment weights. Because the fitted regression lines for the two treat-
ments are positioned above the diagonal line, most of these patients have
gained weight. For the control, there’s no apparent relationship between
pre- and post-experiment weight. There’s no explanation in the data for
why there’s no relationship.

e. See Fig. A.7.
f. There’s evidence of a relationship for the two treatments (p-value = .026

for the family therapy treatment and p-value = .007 for the cognitive
behavioral therapy treatment). The p-values are obtained from a two-
sided test of the alternative hypothesis Ha : β1 �= 0. There’s insufficient
evidence to conclude that a relationship exists for the control group.

g. Table A.3 shows the estimates and 95% confidence intervals.
The intercepts are the estimated mean post-treatment weight of a patient
given that their pre-treatment weight is equal to the mean pre-treatment
weight of all patients. By centering, we have adjusted for, and removed
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Fig. A.5 Pre-
and post-
experiment
weights for
n = 72 anorexia
patients. Points
are identified by
treatment group
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Fig. A.6 Pre-
and post-
experiment
weights for
n = 72 anorexia
patients. Sepa-
rate regression
lines are shown
for each treat-
ment group
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Table A.3 Confidence intervals for the centered intercepts. The centered intercept is the
estimated mean post-treatment weight after adjusting for differences in pre-treatment
weight. Separate regression lines were fit for each treatment group

95% confidence
interval bounds

Treatment Estimate Lower Upper
Control 80.99 79.04 82.95

Cognitive behavioral therapy 85.46 82.63 88.28
Family therapy 89.75 85.88 93.16

the effects of differences among groups with respect to the pre-experiment
weights. The estimates in Table A.3 can be compared to assess the efficacy
of the two treatments.
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Fig. A.7 Pre-
and post-
experiment
weights for
n = 72 anorexia
patients. Data
are plotted by
treatment group
along with a
regression line
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h. There appears to be a significant difference between control and the cogni-
tive behavioral therapy means (the E(Y |x)’s) since the confidence intervals
do not overlap. The estimated difference is 4.47 lbs for patients that have
a pre-treatment mean weight of ypre-treatment = 82.40 lbs. The same state-
ment holds for the family therapy versus control comparison. Moreover,
the cognitive behavioral therapy and family therapy confidence intervals
do not overlap, and so we conclude that the family therapy treatment
mean is larger than the cognitive behavioral therapy mean. Both thera-
pies are concluded to be effective and promoting weight gain, and family
therapy is better than cognitive behavioral therapy. Our conclusion are
based on the confidence interval principle: if a value is not contained in an
interval, then the conjecture that the value is the group mean is inconsis-
tent with the data. The approach of comparing confidence intervals may
not always yield a firm conclusion. The analysis of variance test does yield
and indisputable conclusion.

i. f = 5.41, dfnum = 2, dfden = 66, p-value = .0067. There’s strong evidence
that treatment affects the expected post-experiment weight and that the
effect of the treatment depends on the pre-treatment weight.1 The state-
ment that the effect depends on the pre-treatment weight is unremarkable
since it’s obvious that the post-treatment weight strongly depends on the
patient’s weight at the beginning of the treatment.

1 This statement is supported by the outcome of the analysis of variance test for inter-
action.
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Chapter 7

7.1.

a. Setting x0 = x implies that the second term in the sum is zero.
b. Suppose that the observations are equidistant and ordered as x1 < · · · <

xn. The midpoint is the point equi-distant from x1 and xn. Suppose that
n is even and that m is the midpoint. Then, xn −m = m−x1, xn−1 −m =
m − x2, and so on. Therefore,

∑n/2
i=1 m − xi =

∑n
i=n/2+1 xi − m ⇒ m = x.

Therefore, the midpoint is the mean and m = x0 minimizes the variance
of var[μ̂(x0)].

7.3

a. μ = N−1∑N
i=1 yi.

b. πj = nN−1.
c. Let Zj be an indicator of the event that yj is in the sample. Then, Y =

n−1∑N
j=1 Zjyj = n−1∑n

i=1 yi ⇒ E(Y ) = n−1∑N
j=1 nN−1yj = μ.

d. Use E
(

Y w

)

= E
(

N−1∑N
j=1 wjZjyj

)

.

7.5 Use zip(x, x0) and list comprehension. The question of which code is
best, the function with three lines of code, or the single-line code, is difficult
to answer as we must weigh the compactness of the one-liner against the
clarity of the three-liner function.

7.7 Using exercise in place of education reduces the predictive accuracy of the
rule. If we compare sensitivity and specificity for p = .1, we see that the new
rule has a lower level of sensitivity (.780 versus .873). Specificity is larger,
(.661 versus .548), but sensitivity is more important (Table A.4).

Table A.4 Values of sensitivity and specificity for five choices of the threshold p

p Specificity Sensitivity
.2 .879 .458

.19 .867 .483

.18 .851 .516

.17 .833 .55
...

...
...

.1 .661 .780

Chapter 8

8.1. Expand
∑

(ai − bi)2 and use the fact that 0 ≤ ai ≤ 1 ⇒ a2
i ≤ ai.
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Chapter 9

9.1. Use the fact that
∑∞

i=0 αi = (1 − α)−1, for 0 < α < 1.
9.3. Table A.5 shows the possible values of ̂Pr(y0 = l|x0) and of max̂Pr(y0 =
l|x0).

Table A.5 Estimated probabilities of group membership from the conventional k-
nearest-neighbor prediction function

Possible values
k ̂Pr(y0 = l|x0) max ̂Pr(y0 = l|x0)
1 0, 1 1
3 0, 1/3, 2/3, 1 2/3, 1
5 0, 1/5, 2/5, 3/5, 4/5, 1 3/5, 4/5, 1

9.4.

i = np.argmax(counts)
if sum([counts[i] ==count for count in counts ]) > 1:

counts[nhbr]+=1

9.5 The root mean square errors are 16.9 and 25.6.
9.7.

a. Table A.6 shows some of the estimates.

Table A.6 Estimates of root mean square prediction error σ̂kNN as a function of d
and α

d
α 1 3 5

.05 15.7 24.5 30.7
.1 15.7
.3 16.1 25.6

b. For p = 10, α = .1, and d = 1, σ̂kNN = 16.9 and for p = 10, α = .05 and
d = 4, σ̂kNN = 30.5. These estimates differ only slightly from the results
using p = 5. The pattern length doesn’t appear to have much effect.
However, as might be expected, the analysis indicates that shorter lengths
are better when the forecasted number of days ahead is small versus large.
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Chapter 10

10.1 Maximize the log-probability given the constraint
∑n

i=1 πk = 1 by in-
troducing a Lagrange multiplier. The objective function is

f(π, λ) =
n
∑

i=1
xi log πi + λ(1 −

n
∑

i=1
πi).

Setting ∂f/∂πi = 0 implies xi = λπi ⇒ λ =
∑

xi.

Chapter 11

11.1. Expand μ̂n =
∑n

t wtyt:

μ̂n = αyn +
∑n−1

t=0 wtyt

= αyn + α(1 − α)yn−1 + α(1 − α)2yn−2 + · · ·
= αyn + (1 − α)[αyn−1 + α(1 − α)yn−2 + · · · ].

11.3 Let W be a diagonal matrix with the weights w0, . . . , wn−1 arranged on
the diagonal such that

S(βn) =
∑n

t=1 wn−t

(

yt+τ − xT
t βn

)2

= (y − Xβ)TW(y − Xβ).
(A.1)

Differentiating S(βn) with respect to β and setting the vector of partial
derivatives equal to zero leads to the normal equations

XTWy = XTWXβ. (A.2)

Solve for β and argue that XTWX =
∑

wixxT and XTWy =
∑

wixiyi.

11.5. Table A.7 shows estimates of σ̂2
reg for some choices of α.

Table A.7 Estimates of σ2
reg for three choices of α and predictor variable

α
Predictor .02 .05 .1

n .639 .624 .999
AAPL .652 .623 .622

GOOG .651 .629 .949
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Chapter 12

12.2. The code for computing the sentiment of messages containing happy
emoticons follows.

happySent = [0]*2
for n,tweet in enumerate(tweetGenerator):

try:
txt = tweet[’text’].lower()
tokens = set(txt.split(’ ’))

if len(tokens & A) > 0:
sent = 0
for token in tokens:

try:
sent += sentDict[token]

except(KeyError):
pass

happySent[0] += 1
happySent[1] += sent
happySent[2] += sent**2
se = np.sqrt((happySent[2]/happySent[0]

- (happySent[1]/happySent[0])**2)/happySent[0])
print(’Happy ’,n,happySent[0],

round(happySent[1]/happySent[0],3),round(se,3))
except:

print(time.ctime(),tweet)
if 1000 < happySent[0]:

sys.exit()

12.5. The tutorial of Sect. 12.7 can be used with a few modifications.

1. Read the data file emotions.csv and build a dictionary that uses token
as a key and the emotion as the value. It’s named emotionDict. Build a
dictionary emotionSentDict that uses emotion as a key and two-element
lists as values. The lists will contain the number of occurrences of a
particular emotion and the associated sum of sentiment values. Build a
set containing the five emotions.

emotionDict = {}
path = ’../Data/emotions.csv’
with open(path,mode= "r",encoding=’utf-8’) as f:

for record in f:
token, emotion = record.strip(’\n’).split(’,’)
emotionDict[token] = emotion

keys = emotionDict.keys()
emotionSentDict = dict.fromkeys(emotionDict.values(),[0]*2)
emotions = set(emotionDict.values())
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2. After extracting the tokens from the message (txt), increment the en-
tries in emotionSentDict[emotion] for those emotions appearing in the
message.

emotionTokens = tokens & keys
if len(emotionTokens) > 0:

sent = 0
for token in tokens:

try:
sent += sentDict[token]

except(KeyError):
pass

for token in emotionTokens:
emotion = emotionDict[token]
n,Sum = emotionSentDict[emotion]
n += 1
Sum += sent
emotionSentDict[emotion] = [n,Sum]

Our results are shown in Table A.8.

Table A.8 Mean sentiment of tweets containing a particular emotion
Emotion Mean

Joy 1.115
Surprise .312

Anger −.005
Sadness −.471
Disgust −.553

Fear −.593



Appendix B
Accessing the Twitter API

There are two preliminary steps to tapping the Twitter API: getting a Twitter
account and getting credentials. The credentials unlock access to the API and
you need an account to get credentials.1

1. Get a Twitter account if you do not have one. Navigate to the URL
https://twitter.com/signup. Open an account and make note of your user
name and password.

2. Navigate to https://apps.twitter.com/ and login with your user name
and password.

3. Navigate to the URL https://apps.twitter.com/app/new and fill in the
required details. In essence, you’re informing Twitter that you’re going
to create an account and agree to their conditions in exchange for access
to the Twitter stream. You will not actually create an app in the course
of the tutorials, but registering an app releases the credentials that are
necessary for accessing the Twitter stream.

a. For the website entry, enter the URL of a website that is accessible
by the public. We will not attempt to access the website.

b. You may leave the Callback URL blank.
c. Agree to the Twitter Development Agreement and click on Create

your Twitter application.

4. The next page will contain a tab to Keys and Access Tokens. Click on the
tab. There’s a button that will create the access tokens at the bottom of
the page that opens. Click on the button.

5. The next page that opens shows the credentials. Copy the Consumer Key
(a1), Consumer Secret (a2), Access Token (a3), and Access Token Secret
(a4) and paste the keys into your Python script. Set the assignments, say,

1 The webpages used for obtaining the credentials have changed in the past few years
but the process has not. It’s of course possible that the webpages will change again in
the future.

© Springer International Publishing Switzerland 2016
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a1 = ’xxx’ in the Python script. Instruction 3 of the Sect. 12.5 tutorial
provides details.

6. Return to the Twitter app development page and click on the Test OAuth
button.

7. Check that the keys copied into the Python script match the OAuth
settings. At the bottom of the OAuth Tool page is a button titled Get
OAuth Signature. Click on that button.

8. Close the page. You’re authorized to receive tweets through the Twitter
API.

9. In your Python script for accessing the Twitter stream, there is a function
call that requests access to the Twitter API. The function call appears so:

api = TwitterAPI(a1,a2,a3,a4)

The keys a1, a2, a3, a4 are identified in instruction 5.
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