
M A N N I N G

Andrew Lock

SECOND EDITION

The endpoint middleware executes the
selected endpoint and returns the response.

The routing middleware selects an
endpoint based on the request URL
and application's route templates.

The AuthorizationMiddleware must be
placed after authentication so the user
is known. It must be placed before the
endpoint middleware.

Middleware placed before the routing
middleware cannot tell which endpoint
will be executed.

Middleware placed before the
AuthenticationMiddleware will not
see the request as authenticated.
Middleware placed afterwards can
access the ClaimsPrincipal.

The CorsMiddleware is placed after the
routing middleware so it can determine
which endpoint was selected and access
metadata about the endpoint.

ASP.NET Core in Action, Second Edition

ASP.NET Core
in Action

SECOND EDITION

ANDREW LOCK

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Marina Michaels
Technical development editor: Mark Elston

Manning Publications Co. Review editor: Mihaela Batinic
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Jason Everett

Technical proofreader: Tanya Wilke
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298301
Printed in the United States of America

www.manning.com

brief contents
PART 1 GETTING STARTED WITH ASP.NET CORE1

1 ■ Getting started with ASP.NET Core 3

2 ■ Your first application 25

3 ■ Handling requests with the middleware pipeline 58

4 ■ Creating a website with Razor Pages 91

5 ■ Mapping URLs to Razor Pages using routing 122

6 ■ The binding model: Retrieving and validating
user input 156

7 ■ Rendering HTML using Razor views 188

8 ■ Building forms with Tag Helpers 223

9 ■ Creating a Web API for mobile and client
applications using MVC 255

PART 2 BUILDING COMPLETE APPLICATIONS289

10 ■ Service configuration with dependency injection 291

11 ■ Configuring an ASP.NET Core application 330

12 ■ Saving data with Entity Framework Core 364
v

BRIEF CONTENTSvi
13 ■ The MVC and Razor Pages filter pipeline 398

14 ■ Authentication: Adding users to your
application with Identity 436

15 ■ Authorization: Securing your application 470

16 ■ Publishing and deploying your application 503

PART 3 EXTENDING YOUR APPLICATIONS537

17 ■ Monitoring and troubleshooting errors
with logging 539

18 ■ Improving your application’s security 572

19 ■ Building custom components 609

20 ■ Building custom MVC and Razor Pages components 640

21 ■ Calling remote APIs with IHttpClientFactory 667

22 ■ Building background tasks and services 689

23 ■ Testing your application 714

contents
preface xix
acknowledgments xxi
about this book xxiii
about the author xxviii
about the cover illustration xxix

PART 1 GETTING STARTED WITH ASP.NET CORE1

1 Getting started with ASP.NET Core 3
1.1 An introduction to ASP.NET Core 4

Using a web framework 5 ■ What is ASP.NET Core? 7

1.2 When to choose ASP.NET Core 9
What type of applications can you build? 9 ■ If you’re new to .NET
development 12 ■ If you’re a .NET Framework developer creating
a new application 14 ■ Converting an existing ASP.NET
application to ASP.NET Core 18

1.3 How does ASP.NET Core work? 19
How does an HTTP web request work? 19 ■ How does ASP.NET
Core process a request? 21

1.4 What you will learn in this book 23
vii

CONTENTSviii
2 Your first application 25
2.1 A brief overview of an ASP.NET Core application 26
2.2 Creating your first ASP.NET Core application 29

Using a template to get started 29 ■ Building the application 32

2.3 Running the web application 34
2.4 Understanding the project layout 35
2.5 The .csproj project file: Defining your dependencies 37
2.6 The Program class: Building a web host 39
2.7 The Startup class: Configuring your application 42

Adding and configuring services 44 ■ Defining how requests
are handled with middleware 45

2.8 Generating responses with Razor Pages 50
Generating HTML with Razor Pages 51 ■ Handling request logic
with PageModels and handlers 53

3 Handling requests with the middleware pipeline 58
3.1 What is middleware? 60
3.2 Combining middleware in a pipeline 64

Simple pipeline scenario 1: A holding page 65 ■ Simple pipeline
scenario 2: Handling static files 68 ■ Simple pipeline scenario 3:
A Razor Pages application 72

3.3 Handling errors using middleware 77
Viewing exceptions in development: DeveloperExceptionPage 78
Handling exceptions in production: ExceptionHandlerMiddleware 80
Handling other errors: StatusCodePagesMiddleware 84
Error handling middleware and Web APIs 89

4 Creating a website with Razor Pages 91
4.1 An introduction to Razor Pages 93

Exploring a typical Razor Page 93 ■ The MVC design
pattern 94 ■ Applying the MVC design pattern to Razor
Pages 97 ■ Adding Razor Pages to your application 104

4.2 Razor Pages vs. MVC in ASP.NET Core 107
MVC controllers in ASP.NET Core 108 ■ The benefits of
Razor Pages 110 ■ When to choose MVC controllers over
Razor Pages 112

4.3 Razor Pages and page handlers 113
Accepting parameters to page handlers 115 ■ Returning responses
with ActionResults 117

CONTENTS ix
5 Mapping URLs to Razor Pages using routing 122
5.1 What is routing? 123
5.2 Routing in ASP.NET Core 126

Using endpoint routing in ASP.NET Core 127 ■ Convention-
based routing vs. attribute routing 130 ■ Routing to Razor
Pages 132

5.3 Customizing Razor Page route templates 134
Adding a segment to a Razor Page route template 136
Replacing a Razor Page route template completely 137

5.4 Exploring the route template syntax 138
Using optional and default values 138 ■ Adding additional
constraints to route parameters 139 ■ Matching arbitrary URLs
with the catch-all parameter 142

5.5 Generating URLs from route parameters 143
Generating URLs for a Razor Page 144 ■ Generating URLs for an
MVC controller 145 ■ Generating URLs with ActionResults 146
Generating URLs from other parts of your application 147

5.6 Selecting a page handler to invoke 149
5.7 Customizing conventions with Razor Pages 151

6 The binding model: Retrieving and validating user input 156

6.1 Understanding the models in Razor Pages and MVC 157
6.2 From request to model: Making the request useful 160

Binding simple types 164 ■ Binding complex types 168
Choosing a binding source 172

6.3 Handling user input with model validation 174
The need for validation 174 ■ Using DataAnnotations attributes
for validation 176 ■ Validating on the server for safety 178
Validating on the client for user experience 182

6.4 Organizing your binding models in Razor Pages 184

7 Rendering HTML using Razor views 188

7.1 Views: Rendering the user interface 189
7.2 Creating Razor views 193

Razor views and code-behind 194 ■ Introducing Razor
templates 195 ■ Passing data to views 197

CONTENTSx
7.3 Creating dynamic web pages with Razor 199
Using C# in Razor templates 200 ■ Adding loops and conditionals
to Razor templates 201 ■ Rendering HTML with Raw 204

7.4 Layouts, partial views, and _ViewStart 206
Using layouts for shared markup 207 ■ Overriding parent
layouts using sections 209 ■ Using partial views to encapsulate
markup 211 ■ Running code on every view with _ViewStart and
_ViewImports 213

7.5 Selecting a view from an MVC controller 215

8 Building forms with Tag Helpers 223
8.1 Catering to editors with Tag Helpers 225
8.2 Creating forms using Tag Helpers 228

The Form Tag Helper 233 ■ The Label Tag Helper 235
The Input and Textarea Tag Helpers 236 ■ The Select Tag
Helper 240 ■ The Validation Message and Validation Summary
Tag Helpers 245

8.3 Generating links with the Anchor Tag Helper 248
8.4 Cache-busting with the Append Version Tag Helper 250
8.5 Using conditional markup with the Environment

Tag Helper 251

9 Creating a Web API for mobile and client applications
using MVC 255
9.1 What is a Web API and when should you use one? 256
9.2 Creating your first Web API project 259
9.3 Applying the MVC design pattern to a Web API 266
9.4 Attribute routing: Linking action methods to URLs 270

Combining route attributes to keep your route templates DRY 272
Using token replacement to reduce duplication in attribute
routing 274 ■ Handling HTTP verbs with attribute
routing 274

9.5 Using common conventions with the [ApiController]
attribute 276

9.6 Generating a response from a model 280
Customizing the default formatters: Adding XML support 282
Choosing a response format with content negotiation 284

CONTENTS xi
PART 2 BUILDING COMPLETE APPLICATIONS289

10 Service configuration with dependency injection 291
10.1 Introduction to dependency injection 292

Understanding the benefits of dependency injection 293
Creating loosely coupled code 298 ■ Dependency injection
in ASP.NET Core 300

10.2 Using the dependency injection container 302
Adding ASP.NET Core framework services to the container 302
Registering your own services with the container 304 ■ Registering
services using objects and lambdas 307 ■ Registering a service in
the container multiple times 311 ■ Injecting services into action
methods, page handlers, and views 315

10.3 Understanding lifetimes: When are services created? 318
Transient: Everyone is unique 321 ■ Scoped: Let’s stick
together 322 ■ Singleton: There can be only one 323
Keeping an eye out for captured dependencies 324

11 Configuring an ASP.NET Core application 330
11.1 Introducing the ASP.NET Core configuration

model 331
11.2 Configuring your application with

CreateDefaultBuilder 333
11.3 Building a configuration object for your app 335

Adding a configuration provider in Program.cs 338
Using multiple providers to override configuration values 340
Storing configuration secrets safely 342 ■ Reloading configuration
values when they change 346

11.4 Using strongly typed settings with the options
pattern 347
Introducing the IOptions interface 349 ■ Reloading strongly typed
options with IOptionsSnapshot 350 ■ Designing your options
classes for automatic binding 351 ■ Binding strongly typed
settings without the IOptions interface 353

11.5 Configuring an application for multiple
environments 354
Identifying the hosting environment 355 ■ Loading environment-
specific configuration files 356 ■ Setting the hosting
environment 358

CONTENTSxii
12 Saving data with Entity Framework Core 364
12.1 Introducing Entity Framework Core 366

What is EF Core? 366 ■ Why use an object-relational
mapper? 367 ■ When should you choose EF Core? 369
Mapping a database to your application code 370

12.2 Adding EF Core to an application 372
Choosing a database provider and installing EF Core 373
Building a data model 375 ■ Registering a data context 377

12.3 Managing changes with migrations 378
Creating your first migration 379 ■ Adding a second
migration 382

12.4 Querying data from and saving data to the database 384
Creating a record 385 ■ Loading a list of records 387
Loading a single record 389 ■ Updating a model with changes 390

12.5 Using EF Core in production applications 394

13 The MVC and Razor Pages filter pipeline 398
13.1 Understanding filters and when to use them 399

The MVC filter pipeline 401 ■ The Razor Pages filter
pipeline 403 ■ Filters or middleware: Which should you
choose? 404 ■ Creating a simple filter 406 ■ Adding filters
to your actions, controllers, Razor Pages, and globally 408
Understanding the order of filter execution 411

13.2 Creating custom filters for your application 413
Authorization filters: Protecting your APIs 415 ■ Resource filters:
Short-circuiting your action methods 416 ■ Action filters:
Customizing model binding and action results 419 ■ Exception
filters: Custom exception handling for your action methods 423
Result filters: Customizing action results before they execute 425
Page filters: Customizing model binding for Razor Pages 427

13.3 Understanding pipeline short-circuiting 429
13.4 Using dependency injection with filter attributes 431

14 Authentication: Adding users to your application
with Identity 436

14.1 Introducing authentication and authorization 437
Understanding users and claims in ASP.NET Core 438
Authentication in ASP.NET Core: Services and middleware 439
Authentication for APIs and distributed applications 442

CONTENTS xiii
14.2 What is ASP.NET Core Identity? 446
14.3 Creating a project that uses ASP.NET Core Identity 448

Creating the project from a template 448 ■ Exploring the template
in Solution Explorer 450 ■ The ASP.NET Core Identity data
model 453 ■ Interacting with ASP.NET Core Identity 455

14.4 Adding ASP.NET Core Identity to an existing
project 458
Configuring the ASP.NET Core Identity services and
middleware 459 ■ Updating the EF Core data model to
support Identity 460 ■ Updating the Razor views to link
to the Identity UI 461

14.5 Customizing a page in ASP.NET Core Identity’s
default UI 463

14.6 Managing users: Adding custom data to users 466

15 Authorization: Securing your application 470
15.1 Introduction to authorization 471
15.2 Authorization in ASP.NET Core 474

Preventing anonymous users from accessing your application 476
Handling unauthorized requests 478

15.3 Using policies for claims-based authorization 481
15.4 Creating custom policies for authorization 484

Requirements and handlers: The building blocks of a policy 484
Creating a policy with a custom requirement and handler 486

15.5 Controlling access with resource-based
authorization 492
Manually authorizing requests with IAuthorizationService 493
Creating a resource-based AuthorizationHandler 495

15.6 Hiding elements in Razor templates from
unauthorized users 498

16 Publishing and deploying your application 503
16.1 Understanding the ASP.NET Core hosting model 504

Running vs. publishing an ASP.NET Core app 506
Choosing a deployment method for your application 510

16.2 Publishing your app to IIS 511
Configuring IIS for ASP.NET Core 512 ■ Preparing and
publishing your application to IIS 514

CONTENTSxiv
16.3 Hosting an application on Linux 517
Running an ASP.NET Core app behind a reverse proxy on
Linux 517 ■ Preparing your app for deployment to Linux 520

16.4 Configuring the URLs for your application 522
16.5 Optimizing your client-side assets using

BundlerMinifier 525
Speeding up an app using bundling and minification 527
Adding BundlerMinifier to your application 529 ■ Using
minified files in production with the Environment Tag Helper 532
Serving common files from a CDN 533

PART 3 EXTENDING YOUR APPLICATIONS537

17 Monitoring and troubleshooting errors with logging 539
17.1 Using logging effectively in a production app 541

Highlighting problems using custom log messages 542
The ASP.NET Core logging abstractions 543

17.2 Adding log messages to your application 545
Log level: How important is the log message? 547 ■ Log category:
Which component created the log 549 ■ Formatting messages and
capturing parameter values 550

17.3 Controlling where logs are written using
logging providers 552
Adding a new logging provider to your application 553
Replacing the default ILoggerFactory with Serilog 556

17.4 Changing log verbosity with filtering 559
17.5 Structured logging: Creating searchable, useful logs 564

Adding a structured logging provider to your app 565
Using scopes to add additional properties to your logs 568

18 Improving your application’s security 572
18.1 Adding HTTPS to an application 573

Using the ASP.NET Core HTTPS development certificates 576
Configuring Kestrel with a production HTTPS certificate 579
Enforcing HTTPS for your whole app 580

18.2 Defending against cross-site scripting (XSS) attacks 584
18.3 Protecting from cross-site request forgery (CSRF)

attacks 588

CONTENTS xv
18.4 Calling your web APIs from other domains using
CORS 593
Understanding CORS and how it works 594 ■ Adding a global
CORS policy to your whole app 596 ■ Adding CORS to specific
Web API actions with EnableCorsAttribute 598 ■ Configuring
CORS policies 599

18.5 Exploring other attack vectors 601
Detecting and avoiding open redirect attacks 601 ■ Avoiding
SQL injection attacks with EF Core and parameterization 603
Preventing insecure direct object references 605 ■ Protecting your
users’ passwords and data 605

19 Building custom components 609
19.1 Customizing your middleware pipeline 610

Creating simple endpoints with the Run extension 611
Branching middleware pipelines with the Map extension 612
Adding to the pipeline with the Use extension 616 ■ Building
a custom middleware component 619

19.2 Creating custom endpoints with endpoint routing 621
Creating a custom endpoint routing component 622 ■ Creating
simple endpoints with MapGet and WriteJsonAsync 625 ■ Applying
authorization to endpoints 627

19.3 Handling complex configuration requirements 629
Partially building configuration to configure additional
providers 630 ■ Using services to configure IOptions with
IConfigureOptions 632

19.4 Using a third-party dependency injection container 635

20 Building custom MVC and Razor Pages components 640
20.1 Creating a custom Razor Tag Helper 641

Printing environment information with a custom Tag Helper 642
Creating a custom Tag Helper to conditionally hide elements 645
Creating a Tag Helper to convert Markdown to HTML 647

20.2 View components: Adding logic to partial views 649
20.3 Building a custom validation attribute 654
20.4 Replacing the validation framework with

FluentValidation 659
Comparing FluentValidation to DataAnnotations attributes 660
Adding FluentValidation to your application 663

CONTENTSxvi
21 Calling remote APIs with IHttpClientFactory 667

21.1 Calling HTTP APIs: The problem with HttpClient 668
21.2 Creating HttpClients with IHttpClientFactory 674

Using IHttpClientFactory to manage HttpClientHandler
lifetime 674 ■ Configuring named clients at registration
time 677 ■ Using typed clients to encapsulate HTTP calls 679

21.3 Handling transient HTTP errors with Polly 681
21.4 Creating a custom HttpMessageHandler 684

22 Building background tasks and services 689

22.1 Running background tasks with IHostedService 690
Running background tasks on a timer 691 ■ Using scoped services
in background tasks 694

22.2 Creating headless worker services using IHost 696
Creating a worker service from a template 698 ■ Running worker
services in production 700

22.3 Coordinating background tasks using Quartz.NET 703
Installing Quartz.NET in an ASP.NET Core application 704
Configuring a job to run on a schedule with Quartz.NET 706
Using clustering to add redundancy to your background tasks 708

23 Testing your application 714

23.1 An introduction to testing in ASP.NET Core 716
23.2 Unit testing with xUnit 717

Creating your first test project 718 ■ Running tests with dotnet
test 720 ■ Referencing your app from your test project 721
Adding Fact and Theory unit tests 724 ■ Testing failure
conditions 727

23.3 Unit testing custom middleware 728
23.4 Unit testing API controllers 731
23.5 Integration testing: Testing your whole app

in-memory 734
Creating a TestServer using the Test Host package 735 ■ Testing
your application with WebApplicationFactory 738 ■ Replacing
dependencies in WebApplicationFactory 740 ■ Reducing
duplication by creating a custom WebApplicationFactory 742

CONTENTS xvii
23.6 Isolating the database with an in-memory
EF Core provider 744

appendix A Preparing your development environment 751
appendix B Understanding the .NET ecosystem 758
appendix C Useful references 776

index 783

preface
ASP.NET Core 5.0 was released in 2020, more than four years after the release of
ASP.NET Core 1.0. But ASP.NET also has a long history prior to ASP.NET Core. That
history provided the basis and impetus for the development of ASP.NET Core.

 Microsoft released the first version of ASP.NET in 2002 as part of the original .NET
Framework 1.0. Since then, it’s been through multiple iterations, with each version
bringing added features and extensibility. However, each iteration has been built on
top of the .NET Framework, and so comes preinstalled in all versions of Windows.

 This brings mixed blessings—on the one hand, the ASP.NET 4.x framework today
is a reliable, battle-tested platform for building modern applications on Windows. On
the other hand, it is also limited by this reliance—changes to the underlying .NET
Framework are far-reaching and so consequently slow to roll out, and it fundamentally
excludes the many developers building and deploying to Linux or macOS.

 When I first began looking into ASP.NET Core, I was one of those developers. A
Windows user at heart, I was issued a Mac by my employer and so was stuck working in
a virtual machine all day. ASP.NET Core promised to change all that, allowing me to
develop natively on both my Windows machine and my Mac.

 I was relatively late to the party in many respects, only taking an active interest just
before the time of the RC2 release of ASP.NET Core. By that point there had already
been eight beta releases, many of which contained significant breaking changes. By not
diving in fully until RC2, I was spared the pain of dodgy tooling and changing APIs.

 What I saw at that point really impressed me. ASP.NET Core let developers lever-
age their existing knowledge of the .NET framework, and of ASP.NET MVC applications
xix

PREFACExx
in particular, while baking in current best practices like dependency injection, strongly
typed configuration, and logging. On top of that, you could build and deploy cross-
platform. I was sold.

 This book came about largely due to my approach to learning about ASP.NET
Core. Rather than simply reading documentation and blog posts, I decided to try
something new and start writing about what I learned. Each week I would dedicate
some time to exploring a new aspect of ASP.NET Core, and I’d write a blog post about
it. When the possibility of writing a book came about, I jumped at the chance—
another excuse to dive further into the framework!

 Since I started this book, a lot has changed, both with the book and ASP.NET
Core. The first major release of the framework in June 2016 still had many rough
edges, in particular around the tooling experience. With the release of .NET 5.0 in
November 2020, ASP.NET Core has really come into its own, with the APIs and tooling
reaching mature levels. This book targets the .NET 5.0 release of ASP.NET Core, but
as long as you’re using at least .NET Core 3.1, you will be able to follow along without
any issues.

 This book covers everything you need to get started with ASP.NET Core, whether
you’re completely new to web development or you’re an existing ASP.NET developer.
It focuses very much on the framework itself, so I don’t go into details about client-
side frameworks such as Angular and React or technologies like Docker. I also don’t
cover all the new features in .NET 5.0 such as Blazor and gRPC. Instead, I provide
links where you can find more information.

 We'll focus on building server-rendered applications using Razor Pages and Web
APIs using MVC controllers. You’ll learn the fundamentals of ASP.NET Core, such as
middleware, dependency injection, and configuration, and how to customize each for
your requirements. You’ll learn how to add authentication and authorization to your
apps, how to improve their security, and how to deploy and monitor them. Finally,
you’ll learn how to test your applications using both unit tests and integration tests.

 Personally, I find it a joy working with ASP.NET Core apps compared to apps using
the previous version of ASP.NET, and I hope that passion comes through in this book!

acknowledgments
While there is only one name on the cover of this book, a plethora of people contrib-
uted to both its writing and production. In this section I’d like to thank everyone who
encouraged me, contributed, and put up with me for the past year.

 Firstly, and most importantly, I’d like to thank my girlfriend, Becky. Your continual
support and encouragement mean the world to me and have kept me going through
such a busy time. You’ve taken the brunt of my stress and pressure, and I’m eternally
grateful. I love you always.

 I’d also like to thank my whole family for their support. In particular my parents,
Jan and Bob, for putting up with my ranting, and my sister, Amanda, for all your
upbeat chats.

 On a professional level, I’d like to thank Manning for giving me this opportunity.
Brian Sawyer “discovered” me in the first version of this book and encouraged me to
tackle the second version. Marina Michaels served as my development editor for the
second time running, and again proved alternately meticulous, critical, encouraging,
and enthusiastic. The book is undoubtedly better thanks to your involvement. Thanks
also to Deirdre Hiam, my project editor; Andy Carroll, my copyeditor; Jason Everett,
my proofreader; and Mihaela Batinic, my reviewing editor.

 My thanks also go to Mark Elston and Tanya Wilke who served as technical develop-
ment editor and technical proofer, respectively. Mark provided invaluable feedback,
highlighting my incorrect assumptions and technical biases that come from working
with a framework I know so well. Tanya Wilke verified that the code I wrote actually ran
and made sense, working through the chapters with formidable efficiency.
xxi

ACKNOWLEDGMENTSxxii
 To everyone at Manning who helped get this book published and marketed, a
heartfelt thanks. I’d also like to thank all the MEAP reviewers for their comments,
which helped improve the book in innumerable ways.

 I would have never been in a position to write this book if it weren’t for the excel-
lent content produced by the .NET community and those I follow on Twitter. In par-
ticular, thanks to Jon Galloway for regularly featuring my blog on the ASP.NET
community standup.

 Finally, thanks to all those friends who encouraged and supported me, and showed
interest generally. We may not have been able to meet up as much as we’d like, but I
look forward to getting together for a drink as soon as it’s possible.

 To all the reviewers: Al Pezewski, Ben McNamara, Daniel Vásquez, Filip Wojcieszyn,
Foster Haines, Gustavo Filipe Ramos Gomes, Jean-François Morin, Joel Kotarski, John
Guthrie, Juan Luis Barreda, Luis Moux, Mike Erickson, Raushan Jha, Rob Ruetsch,
Ron Lease, Ruben Vandeginste, Sau Fai Fong, Steve Love, Tanya Wilke, Vincent
Delcoigne, and Willis G. Hampton, your suggestions helped make this a better book.

about this book
This book is about the ASP.NET Core framework: what it is, and how you can use it to
build web applications. While some of this content is already available online, it’s scat-
tered around the internet in disparate documents and blog posts. This book guides
you through building your first applications, introducing additional complexity as you
cement previous concepts.

 I present each topic using relatively small examples, rather than building on a sin-
gle example application through the book. There are merits to both approaches, but I
wanted to ensure the focus remained on the specific topics being taught, without the
mental overhead of navigating an increasingly large project.

 By the end of the book, you should have a solid understanding of how to build
apps with ASP.NET Core, the framework’s strengths and weaknesses, and how to lever-
age its features to build apps securely. While I don’t spend a lot of time on application
architecture, I do make sure to point out best practices, especially where I only super-
ficially cover architecture in the name of brevity.

Who should read this book
This book is for C# developers who are interested in learning a cross-platform web
framework. It doesn’t assume you have any experience building web applications—
you may be a mobile or desktop developer, for example—though previous experience
with ASP.NET or another web framework is undoubtedly beneficial.

 Other than a working knowledge of C# and .NET, I assume some knowledge of
common object-oriented practices and a basic understanding of relational databases
xxiii

ABOUT THIS BOOKxxiv
in general. I assume a passing familiarity with HTML and CSS and of JavaScript’s
place as a client-side scripting language. You don’t need to know any JavaScript or
CSS frameworks for this book, though ASP.NET Core works well with both if that is
your forte.

 Web frameworks naturally touch on a wide range of topics, from the database and
network to visual design and client-side scripting. I provide as much context as possi-
ble, and I include links to sites and books where you can learn more.

How this book is organized: A roadmap
This book is divided into 3 parts, 23 chapters, and 3 appendixes. Ideally, you will
read the book cover to cover and then use it as a reference, but I realize that won’t
suit everyone. While I use small sample apps to demonstrate a topic, some chapters
build on the work of previous ones, so the content will make more sense when read
sequentially.

 I strongly suggest reading the chapters in part 1 in sequence, as each chapter
builds on topics introduced in the previous chapters. Part 2 is also best read sequen-
tially, though most of the chapters are independent if you wish to jump around. You
can read the chapters in part 3 out of order, though I recommend only doing so after
you have covered parts 1 and 2.

 Part 1 provides a general introduction to ASP.NET Core and the overall architecture
of a typical web application. Once we have covered the basics, we’ll dive into the Razor
Pages framework, which makes up the bulk of most ASP.NET Core server-rendered web
applications, and the underlying Model-View-Controller (MVC) architecture.

■ Chapter 1 introduces ASP.NET Core and its place in the web development land-
scape. It discusses when you should and shouldn’t use ASP.NET Core, the basics
of web requests in ASP.NET Core, and the options available for a development
environment.

■ Chapter 2 walks through all the components of a basic ASP.NET Core applica-
tion, discussing their roles and how they combine to generate a response to a
web request.

■ Chapter 3 describes the middleware pipeline, which is the main application
pipeline in ASP.NET Core. This defines how incoming requests are processed
and how a response should be generated.

■ Chapter 4 shows how to use Razor Pages to build page-based websites. Razor
Pages are the recommended way to build server-rendered applications in
ASP.NET Core, and they are designed for page-based applications.

■ Chapter 5 describes the Razor Pages routing system. Routing is the process of
mapping incoming request URLs to a specific class and method, which then
executes to generate a response.

■ Chapter 6 looks at model-binding—the process of mapping form data and URL
parameters passed in a request to concrete C# objects.

ABOUT THIS BOOK xxv
■ Chapter 7 shows how to generate HTML web pages using the Razor template
language.

■ Chapter 8 builds on chapter 7 by introducing Tag Helpers, which can greatly
reduce the amount of code required to build forms and web pages.

■ Chapter 9 describes how to use MVC controllers to build APIs that can be called
by client-side apps.

Part 2 covers important topics for building full-featured web applications, once you
have understood the basics.

■ Chapter 10 describes how to use ASP.NET Core’s built-in dependency injection
container to configure your application’s services.

■ Chapter 11 discusses how to read settings and secrets in ASP.NET Core, and
how to map these to strongly typed objects.

■ Chapter 12 introduces Entity Framework Core for saving data into a relational
database.

■ Chapter 13 builds on the topics in part 1 by introducing the MVC and Razor
Pages filter pipeline.

■ Chapter 14 describes how to add user profiles and authentication to your appli-
cation using ASP.NET Core Identity.

■ Chapter 15 builds on the previous chapter by introducing authorization for
users, so you can restrict which pages a signed-in user can access.

■ Chapter 16 looks at how to publish your app, how to configure your app for a
production environment, and how to optimize your client-side assets.

The chapters that make up part 3 cover important, cross-cutting aspects of ASP.NET
Core development.

■ Chapter 17 shows how to configure logging in your application, and how to
write log messages to multiple locations.

■ Chapter 18 explores some of the security considerations you should be aware of
when developing your application, including how to configure your application
for HTTPS.

■ Chapter 19 describes how to build and use a variety of custom components, such
as custom middleware, and how to handle complex configuration requirements.

■ Chapter 20 expands on chapter 19 and shows how to build custom Razor Page
components, such as custom Tag Helpers and custom validation attributes.

■ Chapter 21 discusses the new IHttpClientFactory and how to use it to create
HttpClient instances for calling remote APIs.

■ Chapter 22 explores the generic IHost abstraction, which you can use to create
Windows Services and Linux daemons. You’ll also learn to run tasks in the back-
ground of your applications.

■ Chapter 23 shows how to test an ASP.NET Core application with the xUnit testing
framework. It covers both unit tests and integration tests using the Test Host.

ABOUT THIS BOOKxxvi
The three appendixes provide supplementary information.

■ Appendix A describes how to configure your development environment,
whether you’re on Windows, Linux, or macOS.

■ Appendix B provides some background to .NET 5.0, .NET Core, and .NET
Standard, discusses how they fit in the .NET landscape, and explains what they
mean for your apps.

■ Appendix C contains a number of links that I have found useful in learning
about ASP.NET Core.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

 Source code is provided for all chapters except chapter 1. You can view the source
code for each chapter in my GitHub repository at https://github.com/andrewlock/
asp-dot-net-core-in-action-2e. A zip file containing all the source code is also available
from the publisher’s website at www.manning.com/books/asp-net-core-in-action-second-
edition.

 All the code examples in this book use .NET 5.0 and were built using both Visual
Studio and Visual Studio Code. To build and run the examples, you will need to install
the .NET SDK, as described in appendix A.

liveBook discussion forum
Purchase of ASP.NET Core in Action, Second Edition, includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum, go to https://livebook.manning.com/book/asp-net-core-in-action-
second-edition/discussion. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We

https://github.com/andrewlock/asp-dot-net-core-in-action-2e
https://github.com/andrewlock/asp-dot-net-core-in-action-2e
https://www.manning.com/books/asp-net-core-in-action-second-edition
https://www.manning.com/books/asp-net-core-in-action-second-edition
https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://livebook.manning.com/#!/discussion

ABOUT THIS BOOK xxvii
suggest you try asking the author some challenging questions lest his interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

about the author
ANDREW LOCK graduated with an Engineering degree from
Cambridge University, specializing in Software Engineering,
and went on to obtain a PhD in Digital Image Processing. He
has been developing professionally using .NET for the last 10
years, using a wide range of technologies including WinForms,
ASP.NET WebForms, ASP.NET MVC, and ASP.NET Webpages.
He has been building and maintaining applications with
ASP.NET Core since the release of 1.0 in 2016. Andrew has a
very active blog at https://andrewlock.net dedicated to ASP.NET

Core. It is frequently featured in the community spotlight by the ASP.NET team at
Microsoft, on the .NET blog, and in the weekly community standups. Andrew has
been a Microsoft Valued Professional (MVP) since 2017.
xxviii

https://andrewlock.net

about the cover illustration
The caption for the illustration on the cover of ASP.NET Core in Action, Second Edition is
“The Captain Pasha. Kapudan pasha, admiral of the Turkish navy.” The Kapudan
Pasha was the highest military rank of the Ottoman Navy from 1567 until 1867 when
the post was abolished and replaced with the Naval Minister. The illustration is taken
from a collection of costumes of the Ottoman Empire published on January 1, 1802,
by William Miller of Old Bond Street, London. The title page is missing from the col-
lection and we have been unable to track it down to date. The book’s table of contents
identifies the figures in both English and French, and each illustration bears the
names of two artists who worked on it, both of whom would no doubt be surprised to
find their art gracing the front cover of a computer programming book ... two hun-
dred years later. The collection was purchased by a Manning editor at an antiquarian
flea market in the “Garage” on West 26th Street in Manhattan. The seller was an
American based in Ankara, Turkey, and the transaction took place just as he was pack-
ing up his stand for the day. The Manning editor didn’t have on his person the sub-
stantial amount of cash that was required for the purchase, and a credit card and
check were both politely turned down. With the seller flying back to Ankara that eve-
ning, the situation was getting hopeless. What was the solution? It turned out to be
nothing more than an old-fashioned verbal agreement sealed with a handshake. The
seller simply proposed that the money be transferred to him by wire, and the editor
walked out with the bank information on a piece of paper and the portfolio of images
under his arm. Needless to say, we transferred the funds the next day, and we remain
grateful and impressed by this unknown person’s trust in one of us. We at Manning
xxix

ABOUT THE COVER ILLUSTRATIONxxx
celebrate the inventiveness, the initiative, and, yes, the fun of the computer business
with book covers based on the rich diversity of regional life of two centuries ago‚
brought back to life by the pictures from this collection.

Part 1

Getting started
with ASP.NET Core

Web applications are everywhere these days, from social media web apps
and news sites to the apps on your phone. Behind the scenes, there is almost
always a server running a web application or an HTTP API. Web applications are
expected to be infinitely scalable, deployed to the cloud, and highly performant.
Getting started can be overwhelming at the best of times, and doing so with such
high expectations can be even more of a challenge.

 The good news for you as readers is that ASP.NET Core was designed to meet
those requirements. Whether you need a simple website, a complex e-commerce
web app, or a distributed web of microservices, you can use your knowledge of
ASP.NET Core to build lean web apps that fit your needs. ASP.NET Core lets you
build and run web apps on Windows, Linux, or macOS. It’s highly modular, so
you only use the components you need, keeping your app as compact and per-
formant as possible.

 In part 1 you’ll go from a standing start all the way to building your first web
applications and APIs. Chapter 1 gives a high-level overview of ASP.NET Core,
which you’ll find especially useful if you’re new to web development in general.
You’ll get your first glimpse of a full ASP.NET Core application in chapter 2, and
we’ll look at each component of the app in turn and see how they work together
to generate a response.

 Chapter 3 looks in detail at the middleware pipeline, which defines how
incoming web requests are processed and how a response is generated. We’ll look

at several standard pieces of middleware and see how the Razor Pages framework fits
in to the pipeline. In chapters 4 through 8 we’ll focus on Razor Pages, which is the
main approach to generating responses in ASP.NET Core apps. In chapters 4 through 6
we’ll examine the behavior of the Razor Pages framework itself, routing, and model
binding. In chapters 7 and 8 we’ll look at how you can build the UI for your application
using the Razor syntax and Tag Helpers, so that users can navigate and interact with
your app. Finally, in chapter 9 we’ll explore specific features of ASP.NET Core that let
you build Web APIs and see how that differs from building UI-based applications.

 There’s a lot of content in part 1, but by the end you’ll be well on your way to
building simple applications with ASP.NET Core. Inevitably, I’ll gloss over some of the
more complex configuration aspects of the framework, but you should get a good
understanding of the Razor Pages framework and how you can use it to build dynamic
web apps. In later parts of this book we’ll dive deeper into the ASP.NET Core frame-
work, where you’ll learn how to configure your application and add extra features,
such as user profiles.

Getting started
with ASP.NET Core
Choosing to learn and develop with a new framework is a big investment, so it’s
important to establish early on whether it’s right for you. In this chapter, I provide
some background about ASP.NET Core: what it is, how it works, and why you
should consider it for building your web applications.

 If you’re new to .NET development, this chapter will help you to understand the
.NET landscape. For existing .NET developers, I provide guidance on whether now
is the right time to consider moving your focus to .NET Core and .NET 5.0, and on
the advantages ASP.NET Core can offer over previous versions of ASP.NET.

 By the end of this chapter, you should have a good overview of the .NET land-
scape, the role of .NET 5.0, and the basic mechanics of how ASP.NET Core works—
so without further ado, let’s dive in!

This chapter covers
 What is ASP.NET Core?

 Things you can build with ASP.NET Core

 The advantages and limitations of .NET Core
and .NET 5.0

 How ASP.NET Core works
3

4 CHAPTER 1 Getting started with ASP.NET Core
1.1 An introduction to ASP.NET Core
ASP.NET Core is a cross-platform, open source, web application framework that you
can use to quickly build dynamic, server-side rendered applications. You can also use
ASP.NET Core to create HTTP APIs that can be consumed by mobile applications, by
browser-based single-page applications such as Angular and React, or by other back-
end applications.

 ASP.NET Core provides structure, helper functions, and a framework for build-
ing applications, which saves you having to write a lot of this code yourself. The
ASP.NET Core framework code then calls into your “handlers” which, in turn, call
methods in your application’s business logic, as shown in figure 1.1. This business
logic is the core of your application. You can interact with other services here, such
as databases or remote APIs, but your business logic does not typically depend
directly on ASP.NET Core.

 In this section I cover

 The reasons for using a web framework
 The previous ASP.NET framework’s benefits and limitations
 What ASP.NET Core is and its motivations

At the end of this section you should have a good sense of why ASP.NET Core was cre-
ated, its design goals, and why you might want to use it.

ASP.NET Core apps can serve
browser-based clients or can
provide APIs for mobile and
other clients.

The ASP.NET framework code
handles the raw requests and
calls into Razor Pages and Web
API controller “handlers.”

Your domain can use
external services and
databases to perform
its function and to
persist data.

You write these handlers using
primitives provided by the
framework. These typically invoke
methods in your domain logic.

Figure 1.1 A typical ASP.NET Core application consists of several layers. The ASP.NET Core framework code
handles requests from a client, dealing with the complex networking code. The framework then calls into handlers
(Razor Pages and Web API controllers) that you write using primitives provided by the framework. Finally, these
handlers call into your application’s domain logic, which are typically C# classes and objects without any
ASP.NET Core-specific dependencies.

5An introduction to ASP.NET Core
1.1.1 Using a web framework

If you’re new to web development, it can be daunting moving into an area with so
many buzzwords and a plethora of ever-changing products. You may be wondering if
they’re all necessary—how hard can it be to return a file from a server?

 Well, it’s perfectly possible to build a static web application without the use of a
web framework, but its capabilities will be limited. As soon as you want to provide any
kind of security or dynamism, you’ll likely run into difficulties, and the original sim-
plicity that enticed you will fade before your eyes.

 Just as desktop or mobile development frameworks can help you build native applica-
tions, ASP.NET Core makes writing web applications faster, easier, and more secure than
trying to build everything from scratch. It contains libraries for common things like

 Creating dynamically changing web pages
 Letting users log in to your web app
 Letting users use their Facebook account to log in to your web app using OAuth
 Providing a common structure for building maintainable applications
 Reading configuration files
 Serving image files
 Logging requests made to your web app

The key to any modern web application is the ability to generate dynamic web pages.
A dynamic web page may display different data depending on the current logged-in
user, or it could display content submitted by users. Without a dynamic framework, it
wouldn’t be possible to log in to websites or to display any sort of personalized data on
a page. In short, websites like Amazon, eBay, and Stack Overflow (seen in figure 1.2)
wouldn’t be possible.

User notifications
Currently logged-in user

Viewing
statistics

Adverts and
suggestions based
on location and
user profile

Questions
submitted by
users

User votes
update scores
on the server

Answers
submitted by
users

Figure 1.2 The Stack Overflow website (https://stackoverflow.com) is built using ASP.NET and is
almost entirely dynamic content.

https://stackoverflow.com/

6 CHAPTER 1 Getting started with ASP.NET Core
The benefits and limitations of ASP.NET
ASP.NET Core is the latest evolution of Microsoft’s popular ASP.NET web framework,
released in June 2016. Previous versions of ASP.NET have seen many incremental
updates, focusing on high developer productivity and prioritizing backwards compati-
bility. ASP.NET Core bucks that trend by making significant architectural changes that
rethink the way the web framework is designed and built.

ASP.NET Core owes a lot to its ASP.NET heritage, and many features have been
carried forward from before, but ASP.NET Core is a new framework. The whole tech-
nology stack has been rewritten, including both the web framework and the under-
lying platform.

At the heart of the changes is the philosophy that ASP.NET should be able to hold its
head high when measured against other modern frameworks, but that existing .NET
developers should continue to have a sense of familiarity.

To understand why Microsoft decided to build a new framework, it’s important to
understand the benefits and limitations of the previous ASP.NET web framework.

The first version of ASP.NET was released in 2002 as part of .NET Framework 1.0, in
response to the then conventional scripting environments of classic ASP and PHP.
ASP.NET Web Forms allowed developers to rapidly create web applications using a
graphical designer and a simple event model that mirrored desktop application-build-
ing techniques.

The ASP.NET framework allowed developers to quickly create new applications, but
over time the web development ecosystem changed. It became apparent that
ASP.NET Web Forms suffered from many issues, especially when building larger appli-
cations. In particular, a lack of testability, a complex stateful model, and limited influ-
ence over the generated HTML (making client-side development difficult) led
developers to evaluate other options.

In response, Microsoft released the first version of ASP.NET MVC in 2009, based on
the Model-View-Controller pattern, a common web design pattern used in other frame-
works such as Ruby on Rails, Django, and Java Spring. This framework allowed you
to separate UI elements from application logic, made testing easier, and provided
tighter control over the HTML-generation process.

ASP.NET MVC has been through four more iterations since its first release, but they
have all been built on the same underlying framework provided by the System.Web.dll
file. This library is part of .NET Framework, so it comes pre-installed with all versions
of Windows. It contains all the core code that ASP.NET uses when you build a web
application.

This dependency brings both advantages and disadvantages. On the one hand, the
ASP.NET framework is a reliable, battle-tested platform that’s fine for building web
applications on Windows. It provides a wide range of features, which have seen many
years in production, and it is well known by virtually all Windows web developers.

On the other hand, this reliance is limiting—changes to the underlying System.Web.dll
file are far-reaching and, consequently, slow to roll out. This limits the extent to which

7An introduction to ASP.NET Core
1.1.2 What is ASP.NET Core?

The development of ASP.NET Core was motivated by the desire to create a web frame-
work with four main goals:

 To be run and developed cross-platform
 To have a modular architecture for easier maintenance
 To be developed completely as open source software
 To be applicable to current trends in web development, such as client-side

applications and deployment to cloud environments

To achieve all these goals, Microsoft needed a platform that could provide underlying
libraries for creating basic objects such as lists and dictionaries, and for performing, for
example, simple file operations. Up to this point, ASP.NET development had always
been focused, and dependent, on the Windows-only .NET Framework. For ASP.NET
Core, Microsoft created a lightweight platform that runs on Windows, Linux, and
macOS called .NET Core (and subsequently .NET 5.0), as shown in figure 1.3.

DEFINITION .NET 5.0 is the next version of .NET Core after 3.1. It represents a
unification of .NET Core and other .NET platforms into a single runtime and
framework. The terms .NET Core and .NET 5.0 are often used interchange-
ably, but for consistency with Microsoft’s language, I use the term .NET 5.0 to
refer to the latest version of .NET Core, and .NET Core when referring to pre-
vious versions.

.NET Core (and its successor, .NET 5.0) employs many of the same APIs as .NET
Framework, but it’s more modular and only implements a subset of the features
.NET Framework does, with the goal of providing a simpler implementation and pro-
gramming model. It’s a completely separate platform, rather than a fork of .NET
Framework, though it uses similar code for many of its APIs.

 With .NET 5.0 alone, it’s possible to build console applications that run cross-
platform. Microsoft created ASP.NET Core to be an additional layer on top of console
applications, such that converting to a web application involves adding and compos-
ing libraries, as shown in figure 1.4.

ASP.NET is free to evolve and results in release cycles only happening every few
years. There’s also an explicit coupling with the Windows web host, Internet Informa-
tion Service (IIS), which precludes its use on non-Windows platforms.

More recently, Microsoft has declared .NET Framework to be “done.” It won’t be
removed or replaced, but it also won’t receive any new features. Consequently,
ASP.NET based on System.Web.dll will not receive new features or updates either.

In recent years, many web developers have started looking at cross-platform web
frameworks that can run on Windows as well as Linux and macOS. Microsoft felt the
time had come to create a framework that was no longer tied to its Windows legacy,
and thus ASP.NET Core was born.

8 CHAPTER 1 Getting started with ASP.NET Core
.NET Core runs on
multiple platforms

.NET Framework runs
on Windows only

ASP.NET Core runs on both
.NET Core and .NET 5.0

ASP.NET 4.x runs on the
.NET Framework only

Figure 1.3 The relationship between ASP.NET Core, ASP.NET, .NET Core/.NET 5.0, and .NET
Framework. ASP.NET Core runs on .NET Core and .NET 5.0, so it can run cross-platform.
Conversely, ASP.NET runs on .NET Framework only, so it is tied to the Windows OS.

You write a .NET 5.0 console app
that starts up an instance of an
ASP.NET Core web server.

Microsoft provides a cross-platform
web server by default, called Kestrel.

Your web application logic is run by
Kestrel. You’ll use various libraries to
enable features such as logging and
HTML generation as required.

Figure 1.4 The ASP.NET Core application model. The .NET 5.0 platform provides a
base console application model for running command-line apps. Adding a web server
library converts this into an ASP.NET Core web app. Additional features, such as
configuration and logging, are added by way of additional libraries.

9When to choose ASP.NET Core
By adding an ASP.NET Core web server to your .NET 5.0 app, your application can
run as a web application. ASP.NET Core is composed of many small libraries that you
can choose from to provide your application with different features. You’ll rarely need
all the libraries available to you, and you only add what you need. Some of the librar-
ies are common and will appear in virtually every application you create, such as the
ones for reading configuration files or performing logging. Other libraries build on
top of these base capabilities to provide application-specific functionality, such as
third-party logging-in via Facebook or Google.

 Most of the libraries you’ll use in ASP.NET Core can be found on GitHub, in the
Microsoft ASP.NET Core organization repositories at https://github.com/dotnet/
aspnetcore. You can find the core libraries there, such as the authentication and logging
libraries, as well as many more peripheral libraries, such as the third-party authentica-
tion libraries.

 All ASP.NET Core applications will follow a similar design for basic configuration,
as suggested by the common libraries, but in general the framework is flexible, leaving
you free to create your own code conventions. These common libraries, the extension
libraries that build on them, and the design conventions they promote are covered by
the somewhat nebulous term ASP.NET Core.

1.2 When to choose ASP.NET Core
Hopefully, you now have a general grasp of what ASP.NET Core is and how it was
designed. But the question remains: should you use it? Microsoft is recommending
that all new .NET web development should use ASP.NET Core, but switching to or
learning a new web stack is a big ask for any developer or company. In this section I
cover

 What sort of applications you can build with ASP.NET Core
 Some of the highlights of ASP.NET Core
 Why you should consider using ASP.NET Core for new applications
 Things to consider before converting existing ASP.NET applications to ASP.NET

Core

1.2.1 What type of applications can you build?

ASP.NET Core provides a generalized web framework that can be used for a variety of
applications. It can most obviously be used for building rich, dynamic websites,
whether they’re e-commerce sites, content-based sites, or large n-tier applications—
much the same as the previous version of ASP.NET.

 When .NET Core was originally released, there were few third-party libraries avail-
able for building these types of complex applications. After several years of active
development, that’s no longer the case. Many developers have updated their libraries
to work with ASP.NET Core, and many other libraries have been created to target
ASP.NET Core specifically. For example, the open source content management system

https://github.com/dotnet/aspnetcore
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/aspnetcore

10 CHAPTER 1 Getting started with ASP.NET Core
(CMS) Orchard1 has been redeveloped as Orchard Core2 to run on ASP.NET Core. In
contrast, the cloudscribe3 CMS project (figure 1.5) was written specifically for ASP.NET
Core from its inception.

Traditional page-based server-side-rendered web applications are the bread and butter
of ASP.NET development, both with the previous version of ASP.NET and with ASP.NET
Core. Additionally, single-page applications (SPAs), which use a client-side framework
that commonly talks to a REST server, are easy to create with ASP.NET Core. Whether
you’re using Angular, Vue, React, or some other client-side framework, it’s easy to cre-
ate an ASP.NET Core application to act as the server-side API.

DEFINITION REST stands for representational state transfer. RESTful applications
typically use lightweight and stateless HTTP calls to read, post (create/update),
and delete data.

1 The Orchard project source code is at https://github.com/OrchardCMS.
2 Orchard Core (www.orchardcore.net). Source code at https://github.com/OrchardCMS/OrchardCore.
3 The cloudscribe project (www.cloudscribe.com). Source code at https://github.com/cloudscribe.

Figure 1.5 The .NET Foundation website (https://dotnetfoundation.org/) is built using the cloudscribe CMS and
ASP.NET Core.

https://github.com/OrchardCMS/
https://www.orchardcore.net/
https://github.com/OrchardCMS/OrchardCore
https://www.cloudscribe.com/
https://github.com/cloudscribe
https://dotnetfoundation.org/

11When to choose ASP.NET Core
ASP.NET Core isn’t restricted to creating RESTful services. It’s easy to create a web
service or remote procedure call (RPC)-style service for your application, depending
on your requirements, as shown in figure 1.6. In the simplest case, your application
might expose only a single endpoint, narrowing its scope to become a microservice.
ASP.NET Core is perfectly designed for building simple services, thanks to its cross-
platform support and lightweight design.

NOTE In this book I focus on building traditional, page-based server-side-
rendered web applications and RESTful web APIs. I also show how to create
“headless” worker services in chapter 22.

You should consider multiple factors when choosing a platform, not all of which are
technical. One such factor is the level of support you can expect to receive from its

Synchronous request
via HTTP

Asynchronous request
via HTTP

Response: Partial page data
as JSON or XML

Synchronous or asynchronous
request via HTTP

Response: data as JSON,
XML, or binary

</>

{ }

Response: HTML web page

{ }

Figure 1.6 ASP.NET Core can act as the server-side application for a variety of
clients: it can serve HTML pages for traditional web applications, it can act as a
REST API for client-side SPA applications, or it can act as an ad hoc RPC service
for client applications.

12 CHAPTER 1 Getting started with ASP.NET Core
creators. For some organizations, this can be one of the main obstacles to adopting
open source software. Luckily, Microsoft has pledged to provide full support for Long
Term Support (LTS) versions of .NET Core and ASP.NET Core for at least three years
from the time of their release.4 And as all development takes place in the open, you
can sometimes get answers to your questions from the general community, as well as
from Microsoft directly.

 When deciding whether to use ASP.NET Core, you have two primary dimensions
to consider: whether you’re already a .NET developer, and whether you’re creating a
new application or looking to convert an existing one.

1.2.2 If you’re new to .NET development

If you’re new to .NET development and are considering ASP.NET Core, then wel-
come! Microsoft is pushing ASP.NET Core as an attractive option for web develop-
ment beginners, but taking .NET cross-platform means it’s competing with many
other frameworks on their own turf. ASP.NET Core has many selling points when
compared to other cross-platform web frameworks:

 It’s a modern, high-performance, open source web framework.
 It uses familiar design patterns and paradigms.
 C# is a great language (or you can use VB.NET or F# if you prefer).
 You can build and run on any platform.

ASP.NET Core is a re-imagining of the ASP.NET framework, built with modern soft-
ware design principles on top of the new .NET Core/.NET 5.0 platform. Although
new in one sense, .NET Core has several years of widespread production use and has
drawn significantly from the mature, stable, and reliable .NET Framework, which has
been used for nearly two decades. You can rest easy knowing that by choosing
ASP.NET Core and .NET 5.0, you’ll be getting a dependable platform as well as a full-
featured web framework.

 Many of the web frameworks available today use similar well-established design pat-
terns, and ASP.NET Core is no different. For example, Ruby on Rails is known for its
use of the Model-View-Controller (MVC) pattern; Node.js is known for the way it pro-
cesses requests using small discrete modules (called a pipeline); and dependency injec-
tion is found in a wide variety of frameworks. If these techniques are familiar to you,
you should find it easy to transfer them across to ASP.NET Core; if they’re new to you,
then you can look forward to using industry best practices!

NOTE You’ll encounter a pipeline in chapter 3, MVC in chapter 4, and
dependency injection in chapter 10.

The primary language of .NET development, and ASP.NET Core in particular, is C#.
This language has a huge following, and for good reason! As an object-oriented C-based

4 View the support policy at https://dotnet.microsoft.com/platform/support/policy/dotnet-core.

https://dotnet.microsoft.com/platform/support/policy/dotnet-core

13When to choose ASP.NET Core
language, it provides a sense of familiarity to those used to C, Java, and many other
languages. In addition, it has many powerful features, such as Language Integrated
Query (LINQ), closures, and asynchronous programming constructs. The C# lan-
guage is also designed in the open on GitHub, as is Microsoft’s C# compiler, code-
named Roslyn.5

NOTE I use C# throughout this book and will highlight some of the newer
features it provides, but I won’t be teaching the language from scratch. If you
want to learn C#, I recommend C# in Depth, fourth edition by Jon Skeet (Man-
ning, 2019), and Code like a Pro in C# by Jort Rodenburg (Manning, 2021).

One of the major selling points of ASP.NET Core and .NET 5.0 is the ability to
develop and run on any platform. Whether you’re using a Mac, Windows, or Linux,
you can run the same ASP.NET Core apps and develop across multiple environments.
As a Linux user, a wide range of distributions are supported (RHEL, Ubuntu, Debian,
CentOS, Fedora, and openSUSE, to name a few), so you can be confident your operat-
ing system of choice will be a viable option. ASP.NET Core even runs on the tiny
Alpine distribution, for truly compact deployments to containers.

As well as running on each platform, one of the selling points of .NET is the ability to
write and compile only once. Your application is compiled to Intermediate Language
(IL) code, which is a platform-independent format. If a target system has the .NET 5.0
runtime installed, you can run compiled IL from any platform. That means you can,
for example, develop on a Mac or a Windows machine and deploy the exact same files to

5 The C# language and .NET Compiler Platform GitHub source code repository can be found at https://github
.com/dotnet/roslyn.

Built with containers in mind
Traditionally, web applications were deployed directly to a server, or more recently, to
a virtual machine. Virtual machines allow operating systems to be installed in a layer
of virtual hardware, abstracting away the underlying hardware. This has several advan-
tages over direct installation, such as easy maintenance, deployment, and recovery.
Unfortunately, they’re also heavy, both in terms of file size and resource use.

This is where containers come in. Containers are far more lightweight and don’t have
the overhead of virtual machines. They’re built in a series of layers and don’t require
you to boot a new operating system when starting a new one. That means they’re
quick to start and are great for quick provisioning. Containers, and Docker in partic-
ular, are quickly becoming the go-to platform for building large, scalable systems.

Containers have never been a particularly attractive option for ASP.NET applications,
but with ASP.NET Core, .NET 5.0, and Docker for Windows, that’s all changing. A light-
weight ASP.NET Core application running on the cross-platform .NET 5.0 framework
is perfect for thin container deployments. You can learn more about your deployment
options in chapter 16.

https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn

14 CHAPTER 1 Getting started with ASP.NET Core
your production Linux machines. This compile-once, run-anywhere promise has finally
been realized with ASP.NET Core and .NET Core/.NET 5.0.

1.2.3 If you’re a .NET Framework developer creating a new application

If you’re a .NET developer, the choice of whether to invest in ASP.NET Core for new
applications has largely been a question of timing. Early versions of .NET Core were
lacking in some features that made it hard to adopt. With the release of .NET Core 3.1
and .NET 5.0, that is no longer a problem; Microsoft now explicitly advises that all
new .NET applications should use .NET 5.0. Microsoft has pledged to provide bug
and security fixes for the older ASP.NET framework, but it won’t provide any more
feature updates. .NET Framework isn’t being removed, so your old applications will
continue to work, but you shouldn’t use it for new development.

 The main benefits of ASP.NET Core over the previous ASP.NET framework are

 Cross-platform development and deployment
 A focus on performance as a feature
 A simplified hosting model
 Regular releases with a shorter release cycle
 Open source
 Modular features

As a .NET developer, if you aren’t using any Windows-specific constructs, such as the
Registry, the ability to build and deploy cross-platform opens the door to a whole new
avenue of applications: take advantage of cheaper Linux VM hosting in the cloud, use
Docker containers for repeatable continuous integration, or write .NET code on your
Mac without needing to run a Windows virtual machine. ASP.NET Core, in combina-
tion with .NET 5.0, makes all this possible.

 .NET Core and .NET 5.0 are inherently cross-platform, but you can still use plat-
form-specific features if you need to. For example, Windows-specific features like the
Registry or Directory Services can be enabled with a compatibility pack that makes
these APIs available in .NET 5.0.6 They’re only available when running .NET 5.0 on
Windows, not on Linux or macOS, so you need to take care that such applications
only run in a Windows environment or account for the potential missing APIs.

 The hosting model for the previous ASP.NET framework was a relatively complex
one, relying on Windows IIS to provide the web server hosting. In a cross-platform
environment, this kind of symbiotic relationship isn’t possible, so an alternative host-
ing model has been adopted—one that separates web applications from the underly-
ing host. This opportunity has led to the development of Kestrel: a fast, cross-platform
HTTP server on which ASP.NET Core can run.

 Instead of the previous design, whereby IIS calls into specific points of your appli-
cation, ASP.NET Core applications are console applications that self-host a web server

6 The Windows Compatibility Pack is designed to help port code from .NET Framework to .NET Core/.NET 5.0.
See https://docs.microsoft.com/dotnet/core/porting/windows-compat-pack.

https://docs.microsoft.com/dotnet/core/porting/windows-compat-pack

15When to choose ASP.NET Core
and handle requests directly, as shown in figure 1.7. This hosting model is conceptu-
ally much simpler and allows you to test and debug your applications from the command

IIS receives
a request. IIS calls into specific

methods in the ASP.NET
application.

Control transfers back
and forth between IIS
and ASP.NET as events
are raised.

Application_BeginRequest() {}

Application_AuthenticateRequest (){}

Application_AuthorizeRequest (){}

Application_ProcessRequest() {}

Application_EndRequest() {}

Application_HandleError() {}

Reverse
proxy
receives a
request.

Reverse proxy passes
raw request to Kestrel
web server.

Kestrel processes the
incoming request and
passes it to the rest of
the application.

Legacy ASP.NET
apps rely on
IIS to invoke
methods directly
in your app.

ASP.NET Core
apps run
independently
of IIS and other
proxies.

IIS receives
a request.

Kestrel processes the
incoming request and
passes it to the rest of
the application.

ASP.NET Core
apps can also
run in-process
inside IIS.

Figure 1.7 The difference between hosting models in ASP.NET (top) and ASP.NET Core (bottom). With the
previous version of ASP.NET, IIS is tightly coupled with the application. The hosting model in ASP.NET Core is
simpler; IIS hands off the request to a self-hosted web server in the ASP.NET Core application and receives the
response, but has no deeper knowledge of the application.

16 CHAPTER 1 Getting started with ASP.NET Core
line, though it doesn’t necessarily remove the need to run IIS (or equivalent) in pro-
duction, as you’ll see in section 1.3.

NOTE You can also optionally run ASP.NET Core inside of IIS, as shown in fig-
ure 1.7, which can have performance benefits over the reverse-proxy version.
This is primarily a deployment detail and doesn’t change the way you build
ASP.NET Core applications.

Changing the hosting model to use a built-in HTTP web server has created another
opportunity. Performance has been somewhat of a sore point for ASP.NET applications
in the past. It’s certainly possible to build high-performing applications—Stack Overflow
(https://stackoverflow.com) is a testament to that—but the web framework itself isn’t
designed with performance as a priority, so it can end up being somewhat of an obstacle.

 To be competitive cross-platform, the ASP.NET team has focused on making the
Kestrel HTTP server as fast as possible. TechEmpower (www.techempower.com/
benchmarks) has been running benchmarks on a whole range of web frameworks
from various languages for several years now. In Round 19 of the plain text bench-
marks, TechEmpower announced that ASP.NET Core with Kestrel was the fastest of
over 400 frameworks tested!7

Web servers: naming things is hard
One of the difficult aspects of programming for the web is the confusing array of often
conflicting terminology. For example, if you’ve used IIS in the past, you may have
described it as a web server, or possibly a web host. Conversely, if you’ve ever built
an application using Node.js, you may have also referred to that application as a web
server. Alternatively, you may have called the physical machine on which your appli-
cation runs a web server!

Similarly, you may have built an application for the internet and called it a website or
a web application, probably somewhat arbitrarily based on the level of dynamism it
displayed.

In this book, when I say “web server” in the context of ASP.NET Core, I am referring
to the HTTP server that runs as part of your ASP.NET Core application. By default, this
is the Kestrel web server, but that’s not a requirement. It would be possible to write
a replacement web server and substitute it for Kestrel if you desired.

The web server is responsible for receiving HTTP requests and generating responses.
In the previous version of ASP.NET, IIS took this role, but in ASP.NET Core, Kestrel is
the web server.

I will only use the term “web application” to describe ASP.NET Core applications in
this book, regardless of whether they contain only static content or are completely
dynamic. Either way, they’re applications that are accessed via the web, so that name
seems the most appropriate.

7 As always in web development, technology is in a constant state of flux, so these benchmarks will evolve over
time. Although ASP.NET Core may not maintain its top-ten slot, you can be sure that performance is one of
the key focal points of the ASP.NET Core team.

https://stackoverflow.com
http://www.techempower.com/benchmarks
http://www.techempower.com/benchmarks
http://www.techempower.com/benchmarks

17When to choose ASP.NET Core
Many of the performance improvements made to Kestrel did not come from the
ASP.NET team members themselves, but from contributors to the open source project
on GitHub.8 Developing in the open means you typically see fixes and features make
their way to production faster than you would for the previous version of ASP.NET,
which was dependent on .NET Framework and Windows and, as such, had long
release cycles.

 In contrast, .NET 5.0, and hence ASP.NET Core, is designed to be released in small
increments. Major versions will be released on a predictable cadence, with a new ver-
sion every year, and a new Long Term Support (LTS) version released every two years.9

In addition, bug fixes and minor updates can be released as and when they’re needed.
Additional functionality is provided as NuGet packages, independent of the underly-
ing .NET 5.0 platform.

NOTE NuGet is a package manager for .NET that enables importing libraries
into your projects. It’s equivalent to Ruby Gems, npm for JavaScript, or Maven
for Java.

To enable this approach to releases, ASP.NET Core is highly modular, with as little
coupling to other features as possible. This modularity lends itself to a pay-for-play
approach to dependencies, where you start with a bare-bones application and only
add the additional libraries you require, as opposed to the kitchen-sink approach of
previous ASP.NET applications. Even MVC is an optional package! But don’t worry,
this approach doesn’t mean that ASP.NET Core is lacking in features; it means you
need to opt in to them. Some of the key infrastructure improvements include

 Middleware “pipeline” for defining your application’s behavior
 Built-in support for dependency injection
 Combined UI (MVC) and API (Web API) infrastructure
 Highly extensible configuration system
 Scalable for cloud platforms by default using asynchronous programming

Each of these features was possible in the previous version of ASP.NET but required a
fair amount of additional work to set up. With ASP.NET Core, they’re all there, ready,
and waiting to be connected!

 Microsoft fully supports ASP.NET Core, so if you have a new system you want to
build, there’s no significant reason not to use it. The largest obstacle you’re likely to
come across is wanting to use programming models that are no longer supported in
ASP.NET Core, such as Web Forms or WCF server, as I’ll discuss in the next section.

 Hopefully, this section has whetted your appetite with some of the many reasons to
use ASP.NET Core for building new applications. But if you’re an existing ASP.NET

8 The Kestrel HTTP server GitHub project can be found in the ASP.NET Core repository at https://github
.com/dotnet/aspnetcore.

9 The release schedule for .NET 5.0 and beyond: https://devblogs.microsoft.com/dotnet/introducing-net-5/.

https://github.com/dotnet/aspnetcore
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/aspnetcore
https://devblogs.microsoft.com/dotnet/introducing-net-5/

18 CHAPTER 1 Getting started with ASP.NET Core
developer considering whether to convert an existing ASP.NET application to ASP.NET
Core, that’s another question entirely.

1.2.4 Converting an existing ASP.NET application to ASP.NET Core

In contrast with new applications, an existing application is presumably already pro-
viding value, so there should always be a tangible benefit to performing what may
amount to a significant rewrite in converting from ASP.NET to ASP.NET Core. The
advantages of adopting ASP.NET Core are much the same as for new applications:
cross-platform deployment, modular features, and a focus on performance. Whether
the benefits are sufficient will depend largely on the particulars of your application,
but there are some characteristics that are clear indicators against conversion:

 Your application uses ASP.NET Web Forms
 Your application is built using WCF
 Your application is large, with many “advanced” MVC features

If you have an ASP.NET Web Forms application, attempting to convert it to ASP.NET
Core isn’t advisable. Web Forms is inextricably tied to System.Web.dll, and as such will
likely never be available in ASP.NET Core. Converting an application to ASP.NET
Core would effectively involve rewriting the application from scratch, not only shifting
frameworks but also shifting design paradigms. A better approach would be to slowly
introduce Web API concepts and try to reduce the reliance on legacy Web Forms con-
structs such as ViewData. You can find many resources online to help you with this
approach, in particular the www.asp.net/web-api website.10

 Windows Communication Foundation (WCF) is only partially supported in ASP.NET
Core.11 It’s possible to consume some WCF services, but support is spotty at best. There’s
no supported way to host a WCF service from an ASP.NET Core application, so if you
absolutely must support WCF, then ASP.NET Core may be best avoided for now.

TIP If you like WCFs RPC-style of programming, but you don’t have a hard
requirement on WCF itself, consider using gRPC instead. gRPC is a modern
RPC framework with many concepts similar to WCF, and it’s supported by
ASP.NET Core out of the box.12

If your existing application is complex and makes extensive use of the previous MVC
or Web API extensibility points or message handlers, then porting your application to
ASP.NET Core may be more difficult. ASP.NET Core is built with many similar fea-
tures to the previous version of ASP.NET MVC, but the underlying architecture is

10 An alternative approach would be to consider converting your application to Blazor using the community-
driven effort to create Blazor versions of common WebForms components: https://github.com/FritzAnd-
Friends/BlazorWebFormsComponents.

11 You can find the client libraries for using WCF with .NET Core at https://github.com/dotnet/wcf.
12 You can find an eBook from Microsoft on gRPC for WCF developers at https://docs.microsoft.com/en-

us/dotnet/architecture/grpc-for-wcf-developers/.

http://www.asp.net/web-api
https://github.com/FritzAndFriends/BlazorWebFormsComponents
https://github.com/FritzAndFriends/BlazorWebFormsComponents
https://github.com/dotnet/wcf
https://docs.microsoft.com/en-us/dotnet/architecture/grpc-for-wcf-developers/
https://docs.microsoft.com/en-us/dotnet/architecture/grpc-for-wcf-developers/

19How does ASP.NET Core work?
different. Several of the previous features don’t have direct replacements and so will
require rethinking.

 The larger the application, the greater the difficulty you’re likely to have convert-
ing your application to ASP.NET Core. Microsoft itself suggests that porting an appli-
cation from ASP.NET MVC to ASP.NET Core is at least as big a rewrite as porting from
ASP.NET Web Forms to ASP.NET MVC. If that doesn’t scare you, then nothing will!

 If an application is rarely used, isn’t part of your core business, or won’t need sig-
nificant development in the near term, I strongly suggest you don’t try to convert it to
ASP.NET Core. Microsoft will support .NET Framework for the foreseeable future
(Windows itself depends on it!), and the payoff in converting these “fringe” applica-
tions is unlikely to be worth the effort.

 So, when should you port an application to ASP.NET Core? As I’ve already men-
tioned, the best opportunity for getting started is on small, green-field, new projects
instead of existing applications. That said, if the existing application in question is
small or will need significant future development, then porting may be a good option.
It is always best to work in small iterations where possible, rather than attempting to
convert the entire application at once. But if your application consists primarily of
MVC or Web API controllers and associated Razor views, moving to ASP.NET Core
may well be a good choice.

1.3 How does ASP.NET Core work?
By now, you should have a good idea of what ASP.NET Core is and the sort of applica-
tions you should use it for. In this section, you’ll see how an application built with
ASP.NET Core works, from the user requesting a URL to a page being displayed in
the browser. To get there, first you’ll see how an HTTP request works for any web
server, and then you’ll see how ASP.NET Core extends the process to create dynamic
web pages.

1.3.1 How does an HTTP web request work?

As you know, ASP.NET Core is a framework for building web applications that serve
data from a server. One of the most common scenarios for web developers is building
a web app that you can view in a web browser. The high-level process you can expect
from any web server is shown in figure 1.8.

 The process begins when a user navigates to a website or types a URL in their
browser. The URL or web address consists of a hostname and a path to some resource on
the web app. Navigating to the address in the browser sends a request from the user’s
computer to the server on which the web app is hosted, using the HTTP protocol.

DEFINITION The hostname of a website uniquely identifies its location on the
internet by mapping via the Domain Name Service (DNS) to an IP address.
Examples include microsoft.com, www.google.co.uk, and facebook.com.

https://www.google.co.uk

20 CHAPTER 1 Getting started with ASP.NET Core
The request passes through the internet, potentially to the other side of the world,
until it finally makes its way to the server associated with the given hostname, on which
the web app is running. The request is potentially received and rebroadcast at multi-
ple routers along the way, but it’s only when it reaches the server associated with the
hostname that the request is processed.

1. User requests a webpage by a URL. 5. Browser renders HTML on page.

4. Server sends HTML in HTTP
response back to browser.

3. Server interprets request and
generates appropriate HTML.

2. Browser sends HTTP
request to server.

<HTML>
<HEAD></HEAD
<BODY></BODY>
</HTML>

Figure 1.8 Requesting a web page. The user starts by requesting a web page, which causes an
HTTP request to be sent to the server. The server interprets the request, generates the necessary
HTML, and sends it back in an HTTP response. The browser can then display the web page.

21How does ASP.NET Core work?
Once the server receives the request, it will check that the request makes sense, and if
it does, it will generate an HTTP response. Depending on the request, this response
could be a web page, an image, a JavaScript file, or a simple acknowledgment. For this
example, I’ll assume the user has reached the home page of a web app, so the server
responds with some HTML. The HTML is added to the HTTP response, which is then
sent back across the internet to the browser that made the request.

 As soon as the user’s browser begins receiving the HTTP response, it can start dis-
playing content on the screen, but the HTML page may also reference other pages
and links on the server. To display the complete web page, instead of a static, colorless,
raw HTML file, the browser must repeat the request process, fetching every refer-
enced file. HTML, images, CSS for styling, and JavaScript files for extra behavior are
all fetched using the exact same HTTP request process.

 Pretty much all interactions that take place on the internet are a facade over this
same basic process. A basic web page may only require a few simple requests to fully
render, whereas a modern, large web page may take hundreds. At the time of writing,
the Amazon.com homepage (www.amazon.com), for example, makes 606 requests,
including ones for 3 CSS files, 12 JavaScript files, and 402 image files!

 Now that you have a feel for the process, let’s see how ASP.NET Core dynamically
generates the response on the server.

1.3.2 How does ASP.NET Core process a request?

When you build a web application with ASP.NET Core, browsers will still be using
the same HTTP protocol as before to communicate with your application. ASP.NET
Core itself encompasses everything that takes place on the server to handle a
request, including verifying that the request is valid, handling login details, and gen-
erating HTML.

A brief primer on HTTP
Hypertext Transfer Protocol (HTTP) is the application-level protocol that powers the
web. It is a stateless request-response protocol, whereby a client machine sends a
request to a server, which sends a response in turn.

Every HTTP request consists of a verb indicating the “type” of the request and a path
indicating the resource to interact with. They typically also include headers, which are
key-value pairs, and in some cases a body, such as the contents of a form, when
sending data to the server.

An HTTP response contains a status code, indicating whether the request was suc-
cessful, and optionally headers and a body.

For a more detailed look at the HTTP protocol itself, as well as more examples, see
section 1.3 (“A quick introduction to HTTP”) in Go Web Programming by Sau Sheong
Chang (Manning, 2016), https://livebook.manning.com/book/go-web-programming/
chapter-1/point-9018-55-145-1.

http://www.amazon.com
https://livebook.manning.com/book/go-web-programming/chapter-1/point-9018-55-145-1
https://livebook.manning.com/book/go-web-programming/chapter-1/point-9018-55-145-1
https://livebook.manning.com/book/go-web-programming/chapter-1/point-9018-55-145-1

22 CHAPTER 1 Getting started with ASP.NET Core
 Just as with the generic web page example, the request process starts when a user’s
browser sends an HTTP request to the server, as shown in figure 1.9.

The request is received from the network by your ASP.NET Core application. Every
ASP.NET Core application has a built-in web server, Kestrel by default, which is
responsible for receiving raw requests and constructing an internal representation of
the data, an HttpContext object, which can be used by the rest of the application.

 From this representation, your application should have all the details it needs to
create an appropriate response to the request. It can use the details stored in Http-
Context to generate an appropriate response, which may be to generate some HTML,
to return an “access denied” message, or to send an email, all depending on your
application’s requirements.

 Once the application has finished processing the request, it will return the
response to the web server. The ASP.NET Core web server will convert the representa-
tion into a raw HTTP response and send it to the network, which will forward it to the
user’s browser.

 To the user, this process appears to be the same as for the generic HTTP request
shown in figure 1.8—the user sent an HTTP request and received an HTTP response.
All the differences are server-side, within your application.

1. HTTP request is made to the
server and is received by
ASP.NET Core web server.

2. ASP.NET Core web server
receives the HTTP request
and passes it to middleware. 4. Response passes through

middleware back to web
server.

3. Request is processed by the application,
which generates a response.

5. Web server sends
response to browser.

Figure 1.9 How an ASP.NET Core application processes a request. A request is received by the
ASP.NET Core application, which runs a self-hosted web server. The web server processes the
request and passes it to the body of the application, which generates a response and returns it to
the web server. The web server sends this response to the browser.

23What you will learn in this book
You’ve seen how requests and responses find their way to and from an ASP.NET Core
application, but I haven’t yet touched on how the response is generated. In part 1 of
this book, we’ll look at the components that make up a typical ASP.NET Core applica-
tion and how they all fit together. A lot goes into generating a response in ASP.NET
Core, typically all within a fraction of a second, but over the course of the book we’ll
step through an application slowly, covering each of the components in detail.

1.4 What you will learn in this book
This book will take you on an in-depth tour of the ASP.NET Core framework. To ben-
efit from the book, you should be familiar with C# or a similar objected-oriented lan-
guage. Basic familiarity with web concepts like HTML and JavaScript will also be
beneficial. You will learn

 How to create page-based applications with Razor Pages
 Key ASP.NET Core concepts like model-binding, validation, and routing
 How to generate HTML for web pages using Razor syntax and Tag Helpers
 To use features like dependency injection, configuration, and logging as your

applications grow more complex
 How to protect your application using security best practices

ASP.NET Core and reverse proxies
You can expose ASP.NET Core applications directly to the internet, so that Kestrel
receives requests directly from the network. However, it’s more common to use a
reverse proxy between the raw network and your application. In Windows, the
reverse-proxy server will typically be IIS, and on Linux or macOS it might be NGINX,
HAProxy, or Apache.

A reverse proxy is software responsible for receiving requests and forwarding them to
the appropriate web server. The reverse proxy is exposed directly to the internet,
whereas the underlying web server is exposed only to the proxy. This setup has sev-
eral benefits, primarily security and performance for the web servers.

You may be thinking that having a reverse proxy and a web server is somewhat redun-
dant. Why not have one or the other? Well, one of the benefits is the decoupling of
your application from the underlying operating system. The same ASP.NET Core web
server, Kestrel, can be cross-platform and used behind a variety of proxies without
putting any constraints on a particular implementation. Alternatively, if you wrote a
new ASP.NET Core web server, you could use that in place of Kestrel without needing
to change anything else about your application.

Another benefit of a reverse proxy is that it can be hardened against potential threats
from the public internet. They’re often responsible for additional aspects, such as
restarting a process that has crashed. Kestrel can remain a simple HTTP server not
having to worry about these extra features when it’s used behind a reverse proxy. Think
of it as a simple separation of concerns: Kestrel is concerned with generating HTTP
responses; the reverse proxy is concerned with handling the connection to the internet.

24 CHAPTER 1 Getting started with ASP.NET Core
Throughout the book we’ll use a variety of examples to learn and explore concepts.
The examples are generally small and self-contained so we can focus on a single fea-
ture at a time.

 I’ll be using Visual Studio for most of the examples in this book, but you’ll be able
to follow along using your favorite editor or IDE. Appendix A includes details on set-
ting up your editor or IDE and installing the .NET 5.0 SDK. Even though the exam-
ples in this book show Windows tools, everything you see can be achieved equally well
on Linux or Mac platforms.

TIP You can install .NET 5.0 from https://dotnet.microsoft.com/download.
Appendix A contains further details on how to configure your development
environment for working with ASP.NET Core and .NET 5.0.

In the next chapter, you’ll create your first application from a template and run it.
We’ll walk through each of the main components that make up your application and
see how they all work together to render a web page.

Summary
 ASP.NET Core is a new web framework built with modern software architecture

practices and modularization as its focus.
 It’s best used for new, “green-field” projects.
 Legacy technologies such as WCF Server and Web Forms can’t be used with

ASP.NET Core.
 ASP.NET Core runs on the cross-platform .NET 5.0 platform. You can access

Windows-specific features such as the Windows Registry by using the Windows
Compatibility Pack.

 .NET 5.0 is the next version of .NET Core after .NET Core 3.1.
 Fetching a web page involves sending an HTTP request and receiving an HTTP

response.
 ASP.NET Core allows you to dynamically build responses to a given request.
 An ASP.NET Core application contains a web server, which serves as the entry

point for a request.
 ASP.NET Core apps are typically protected from the internet by a reverse-proxy

server, which forwards requests to the application.

https://dotnet.microsoft.com/download

Your first application
After reading chapter 1, you should have a general idea of how ASP.NET Core
applications work and when you should use them. You should have also set up a
development environment you can use to start building applications.

TIP See appendix A for guidance on installing the .NET 5.0 SDK and choos-
ing an editor/IDE.

In this chapter, you’ll dive right in by creating your first web app. You’ll get to kick
the tires and poke around a little to get a feel for how it works, and in later chapters
I’ll show you how to go about customizing and building your own applications.

 As you work through this chapter, you should begin to get a grasp of the various
components that make up an ASP.NET Core application, as well as an understand-
ing of the general application-building process. Most applications you create will
start from a similar template, so it’s a good idea to get familiar with the setup as soon
as possible.

This chapter covers
 Creating your first ASP.NET Core web application

 Running your application

 Understanding the components of your
application
25

26 CHAPTER 2 Your first application
DEFINITION A template provides the basic code required to build an applica-
tion. You can use a template as the starting point for building your own apps.

I’ll start by showing you how to create a basic ASP.NET Core application using one of
the Visual Studio templates. If you’re using other tooling, such as the .NET CLI, you’ll
have similar templates available. I use Visual Studio 2019 and ASP.NET Core 5.0 with
.NET 5.0 in this chapter, but I also provide tips for working with the .NET CLI.

TIP You can view the application code for this chapter in the GitHub repository
for the book at https://github.com/andrewlock/asp-dot-net-core-in-action-2e.

Once you’ve created your application, I’ll show you how to restore all the necessary
dependencies, compile your application, and run it to see the HTML output. The
application will be simple in some respects—it will only have two different pages—but
it’ll be a fully configured ASP.NET Core application.

 Having run your application, the next step will be to understand what’s going on!
We’ll take a journey through all the major parts of an ASP.NET Core application, look-
ing at how to configure the web server, the middleware pipeline, and HTML genera-
tion, among other things. We won’t go into detail at this stage, but you’ll get a feel for
how they all work together to create a complete application.

 We’ll begin by looking at the plethora of files created when you start a new project,
and you’ll learn how a typical ASP.NET Core application is laid out. In particular, I’ll
focus on the Program.cs and Startup.cs files. Virtually the entire configuration of your
application takes place in these two files, so it’s good to get to grips with what they’re
for and how they’re used. You’ll see how to define the middleware pipeline for your
application and how you can customize it.

 Finally, you’ll see how the app generates HTML in response to a request, looking
at each of the components that make up the Razor Pages endpoint. You’ll see how it
controls what code is run in response to a request and how to define the HTML that
should be returned for a particular request.

 At this stage, don’t worry if you find parts of the project confusing or complicated;
you’ll be exploring each section in detail as you move through the book. By the end of
the chapter, you should have a basic understanding of how ASP.NET Core applica-
tions are put together, from when your application is first run to when a response is
generated. Before we begin, though, we’ll review how ASP.NET Core applications
handle requests.

2.1 A brief overview of an ASP.NET Core application
In chapter 1, I described how a browser makes an HTTP request to a server and
receives a response, which it uses to render HTML on the page. ASP.NET Core
allows you to dynamically generate that HTML depending on the particulars of the
request, so that you can, for example, display different data depending on the cur-
rent logged-in user.

https://github.com/andrewlock/asp-dot-net-core-in-action-2e

27A brief overview of an ASP.NET Core application
 Say you want to create a web app to display information about your company. You
could create a simple ASP.NET Core app to achieve this; then, later, you could add
dynamic features to your app. Figure 2.1 shows how the application would handle a
request for a page in your application.

Much of this diagram should be familiar to you from figure 1.8 in chapter 1; the
request and response, the reverse proxy, and the ASP.NET Core web server are all still
there, but you’ll notice that I’ve expanded the ASP.NET Core application itself to

1. An HTTP request is
made to the server
for the home page.

7. The HTML response
is sent to the browser.

2. Request is forwarded by
IIS/Nginx/Apache to your
ASP.NET Core app.

3. The ASP.NET Core web server
receives the HTTP request and
passes it to the middleware.

6. Response passes through
middleware back to the
web server.4. Middleware processes the

request and passes it to the
endpoint middleware.

5. The endpoint middleware
generates an HTML response.

Figure 2.1 An overview of an ASP.NET Core application. The ASP.NET Core application receives an
incoming HTTP request from the browser. Every request passes to the middleware pipeline, which
potentially modifies it and then passes it to the endpoint middleware at the end of the pipeline to
generate a response. The response passes back through the middleware to the server, and finally
out to the browser.

28 CHAPTER 2 Your first application
show the middleware pipeline and the endpoint middleware. This is the main custom
part of your app that goes into generating the response from a request.

 The first port of call after the reverse proxy forwards a request is the ASP.NET
Core web server, which is the default cross-platform Kestrel server. Kestrel takes the
raw incoming network request and uses it to generate an HttpContext object that
the rest of the application can use.

NOTE Kestrel isn’t the only HTTP server available in ASP.NET Core, but it’s
the most performant and is cross-platform. I’ll only refer to Kestrel through-
out the book. The main alternative, HTTP.sys, only runs on Windows and
can’t be used with IIS.1

Kestrel is responsible for receiving the request data and constructing a C# representa-
tion of the request, but it doesn’t attempt to generate a response directly. For that,
Kestrel hands the HttpContext to the middleware pipeline found in every ASP.NET
Core application. This is a series of components that process the incoming request
to perform common operations such as logging, handling exceptions, or serving
static files.

NOTE You’ll learn about the middleware pipeline in detail in the next chapter.

At the end of the middleware pipeline is the endpoint middleware. This middleware is
responsible for calling the code that generates the final response. In most applications
that will be an MVC or Razor Pages block.

 Razor Pages are responsible for generating the HTML that makes up the pages of
a typical ASP.NET Core web app. They’re also typically where you find most of the
business logic of your app, calling out to various services in response to the data con-
tained in the original request. Not every app needs an MVC or Razor Pages block, but
it’s typically how you’ll build most apps that display HTML to a user.

NOTE I’ll cover Razor Pages and MVC controllers in chapter 4, including
how to choose between them. I cover generating HTML in chapters 7 and 8.

The HttpContext object
The HttpContext constructed by the ASP.NET Core web server is used by the appli-
cation as a sort of storage box for a single request. Anything that’s specific to this
particular request and the subsequent response can be associated with it and stored
in it. This could include properties of the request, request-specific services, data
that’s been loaded, or errors that have occurred. The web server fills the initial Http-
Context with details of the original HTTP request and other configuration details and
passes it on to the rest of the application.

1 If you want to learn more about HTTP.sys, the documentation describes the server and how to use it:
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys

29Creating your first ASP.NET Core application
Most ASP.NET Core applications follow this basic architecture, and the example in
this chapter is no different. First you’ll see how to create and run your application,
and then we’ll look at how the code corresponds to the outline in figure 2.1. Without
further ado, let’s create an application!

2.2 Creating your first ASP.NET Core application
You can start building applications with ASP.NET Core in many different ways,
depending on the tools and operating system you’re using. Each set of tools will have
slightly different templates, but they have many similarities. The example used
throughout this chapter is based on a Visual Studio 2019 template, but you can easily
follow along with templates from the .NET CLI or Visual Studio for Mac.

REMINDER This chapter uses Visual Studio 2019 and ASP.NET Core 5.0 with
.NET 5.0.

Getting an application up and running typically involves four basic steps, which we’ll
work through in this chapter:

1 Generate—Create the base application from a template to get started.
2 Restore—Restore all the packages and dependencies to the local project folder

using NuGet.
3 Build—Compile the application and generate all the necessary assets.
4 Run—Run the compiled application.

Visual Studio and the .NET CLI include many ASP.NET Core templates for building
different types of applications. For example,

 Razor Pages web application—Razor Pages applications generate HTML on the
server and are designed to be viewed by users in a web browser directly.

 MVC (Model-View-Controller) application—MVC applications are similar to Razor
Pages apps in that they generate HTML on the server and are designed to be
viewed by users directly in a web browser. They use traditional MVC controllers
instead of Razor Pages.

 Web API application—Web API applications return data in a format that can be
consumed by single-page applications (SPAs) and APIs. They are typically used
in conjunction with client-side applications like Angular and React.js or mobile
applications.

We will look at each of these application types in this book, but in this chapter we will
focus on the Razor Pages template.

2.2.1 Using a template to get started

Using a template can quickly get you up and running with an application, automati-
cally configuring many of the fundamental pieces. Both Visual Studio and the .NET
CLI come with a number of standard templates for building web applications, console
applications, and class libraries.

30 CHAPTER 2 Your first application
TIP In .NET, a project is a unit of deployment, which will be compiled into a
.dll file or an executable, for example. Each separate app is a separate project.
Multiple projects can be built and developed at once in a solution.

To create your first web application, open Visual Studio and perform the following
steps:

1 Choose Create a New Project from the splash screen, or choose File > New >
Project from the main Visual Studio screen.

2 From the list of templates, choose ASP.NET Core Web Application, ensuring
you select the C# language template, as shown in figure 2.2. Click Next.

3 On the next screen, enter a project name, location, and solution name, and
click Create, as shown in figure 2.3. For example, use WebApplication1 as both
the project and solution name.

4 On the following screen (figure 2.4):
– Ensure .NET Core is selected.
– Select ASP.NET Core 5.0. If this option isn’t available, ensure you have .NET

5.0 installed. See appendix A for details on configuring your environment.
– Select ASP.NET Core Web App to create a Razor Pages web application.
– Ensure No Authentication is specified. You’ll learn how to add users to your

app in chapter 14.
– Ensure Configure for HTTPS is checked.
– Ensure Enable Docker Support is unchecked.
– Click Create.

Click Next to
configure your
template.

Use the filters or
search box to find
the template.

Recently used
templates are
shown on
the left.

Select the C#
ASP.NET Core
Web Application
template.

Figure 2.2 The new project dialog box. Select the C# ASP.NET Core Web Application template
from the list on the right side. When you next create a new project, you can select from the recent
templates list on the left.

31Creating your first ASP.NET Core application
5 Wait for Visual Studio to generate the application from the template. Once
Visual Studio has finished, you’ll be presented with an introductory page about
ASP.NET Core, and you should be able to see that Visual Studio has created and
added a number of files to your project, as shown in figure 2.5.

Click Create to
proceed to template
selection.

Ensure ASP.NET Core
Web Application
is selected.

Enter a name
and location for
your project
and solution.

Figure 2.3 The Configure Your New Project dialog box. To create a new .NET 5.0 application,
select ASP.NET Core Web Application from the template screen. On the following screen, enter a
project name, location, and solution name, and click Create.

Ensure the
authentication
scheme is set to
No Authentication.

Ensure ASP.NET Core 5.0 is selected.

Select ASP.NET
Core Web App.

Click Create to
generate the
application from
the selected template.

Ensure HTTPS is
checked and Enable
Docker Support is
unchecked.

Ensure .NET Core
is selected.

Figure 2.4 The web application template screen. This screen follows on from the Configure Your
Project dialog box and lets you customize the template that will generate your application. For this
starter project, you’ll create a Razor Pages web application without authentication.

32 CHAPTER 2 Your first application
If you’re not using Visual Studio, you can create a similar template using the .NET
CLI. Create a folder to hold your new project. Open a PowerShell or cmd prompt in
the folder (on Windows) or a terminal session (on Linux or macOS) and run the
commands in the following listing.

dotnet new sln -n WebApplication1
dotnet new webapp -o WebApplication1
dotnet sln add WebApplication1

Whether you use Visual Studio or the .NET CLI, you now have the basic files required
to build and run your first ASP.NET Core application.

2.2.2 Building the application

At this point, you have most of the files necessary to run your application, but you’ve
got two steps left. First, you need to ensure all the dependencies used by your project
are copied to your local directory, and second, you need to compile your application
so that it can be run.

 The first of these steps isn’t strictly necessary, as both Visual Studio and the .NET
CLI automatically restore packages when they first create your project, but it’s good to
know what’s going on. In earlier versions of the .NET CLI, before 2.0, you needed to
manually restore packages using dotnet restore.

 You can compile your application by choosing Build > Build Solution, by using the
shortcut Ctrl-Shift-B, or by running dotnet build from the command line. If you
build from Visual Studio, the output window shows the progress of the build, and
assuming everything is hunky dory, will compile your application, ready for running.

Listing 2.1 Creating a new Razor Page application with the .NET CLI

Solution Explorer
shows the files in
your project.

An introductory
page is shown
when your
project is first
created.

Figure 2.5 Visual Studio after creating a new ASP.NET Core application from a template. The
Solution Explorer shows your newly created project. The introductory page has helpful links for
learning about ASP.NET Core.

Create a solution file
called WebApplication1
in the current folder.

Create a Razor Pages project in
a subfolder, WebApplication1.

Add the new project to
the solution file.

33Creating your first ASP.NET Core application
You can also run the dotnet build console commands from the Package Manager
Console in Visual Studio.

TIP Visual Studio and the .NET CLI tools will automatically build your appli-
cation when you run it if they detect that a file has changed, so you generally
won’t need to explicitly perform this step yourself.

NuGet packages and the .NET command-line interface
One of the foundational components of .NET 5.0 cross-platform development is the
.NET command-line interface (CLI). This provides several basic commands for creat-
ing, building, and running .NET 5.0 applications. Visual Studio effectively calls these
automatically, but you can also invoke them directly from the command line if you’re
using a different editor. The most common commands used during development are

 dotnet restore
 dotnet build
 dotnet run

Each of these commands should be run inside your project folder and will act on that
project alone.

Most ASP.NET Core applications have dependencies on various external libraries,
which are managed through the NuGet package manager. These dependencies are
listed in the project, but the files of the libraries themselves aren’t included. Before
you can build and run your application, you need to ensure there are local copies of
each dependency in your project folder. The first command, dotnet restore, ensures
your application’s NuGet dependencies are copied to your project folder.

ASP.NET Core projects list their dependencies in the project’s .csproj file. This is an
XML file that lists each dependency as a PackageReference node. When you run
dotnet restore, it uses this file to establish which NuGet packages to download
and copy to your project folder. Any dependencies listed are available for use in your
application.

The restore process typically happens implicitly when you build or run your applica-
tion, but it can sometimes be useful to run it explicitly, in continuous-integration build
pipelines, for example.

You can compile your application using dotnet build. This will check for any errors
in your application and, if there are no issues, will produce output that can be run
using dotnet run.

Each command contains a number of switches that can modify its behavior. To see
the full list of available commands, run

dotnet --help

or to see the options available for a particular command, new for example, run

dotnet new --help

34 CHAPTER 2 Your first application
2.3 Running the web application
You’re ready to run your first application, and there are a number of different ways to
go about it. In Visual Studio, you can either click the green arrow on the toolbar next
to IIS Express, or press the F5 shortcut. Visual Studio will automatically open a web
browser window for you with the appropriate URL and, after a second or two, you
should be presented with your brand-new application, as shown in figure 2.6. Alterna-
tively, you can run the application from the command line with the .NET CLI tools
using dotnet run, and open the URL in a web browser manually, using the address
provided on the command line.

TIP The first time you run the application from Visual Studio, you will be
prompted to install the development certificate. Doing so ensures your browser
doesn’t display warnings about an invalid certificate.2 See chapter 18 for more
about HTTPS certificates.

By default, this page shows a simple Welcome banner and a link to the official Micro-
soft documentation for ASP.NET Core. At the top of the page are two links: Home

2 You can install the development certificate on Windows and macOS. For instructions on trusting the certifi-
cate on Linux, see your distribution’s instructions. Not all browsers (Mozilla Firefox, for example) use the cer-
tificate store, so follow your browser’s guidelines for trusting the certificate. If you still have difficulties, see
the troubleshooting tips at http://mng.bz/1rmy.

Figure 2.6 The home page of your new ASP.NET Core application. When you run it from Visual Studio,
IIS Express chooses a random port by default. If you’re running from the command line with dotnet
run, your application will be available at http:/ /localhost:5000 and https:/ /localhost:5001.

http://mng.bz/1rmy

35Understanding the project layout
and Privacy. The Home link is the page you’re currently on. Clicking Privacy will take
you to a new page, as shown in figure 2.7. As you’ll see shortly, you can use Razor
Pages in your application to define these two pages and build the HTML they display.

At this point, you need to notice a couple of things. First, the header containing the
links and the application title, “WebApplication1,” is the same on both pages. Second,
the title of the page, as shown in the tab of the browser, changes to match the current
page. You’ll see how to achieve these features in chapter 7, when we discuss the ren-
dering of HTML using Razor templates.

NOTE You can only view the application on the same computer that is run-
ning it at the moment; your application isn’t exposed to the internet yet.
You’ll learn how to publish and deploy your application in chapter 16.

There isn’t any more to the user experience of the application at this stage. Click
around a little and, once you’re happy with the behavior of the application, roll up
your sleeves—it’s time to look at some code!

2.4 Understanding the project layout
When you’re new to a framework, creating an application from a template like this can
be a mixed blessing. On the one hand, you can get an application up and running
quickly, with little input required on your part. Conversely, the number of files can
sometimes be overwhelming, leaving you scratching your head working out where to
start. The basic web application template doesn’t contain a huge number of files and
folders, as shown in figure 2.8, but I’ll run through the major ones to get you oriented.

Figure 2.7 The Privacy page of your application. You can navigate between the two pages of the
application using the Home and Privacy links in the application’s header. The app generates the content
of the pages using Razor Pages.

36 CHAPTER 2 Your first application
The first thing to notice is that the main project, WebApplication1, is nested in a top-
level directory with the name of the solution, which is also WebApplication1 in this
case. Within this top-level folder, you’ll also find the solution (.sln) file for use by
Visual Studio and files related to Git version control,3 though these are hidden in
Visual Studio’s Solution Explorer view.

NOTE Visual Studio uses the concept of a solution to work with multiple proj-
ects. The example solution only consists of a single project, which is listed in
the .sln file. If you use a CLI template to create your project, you won’t have a
.sln or Git files unless you generate them explicitly using additional .NET CLI
templates.

Inside the solution folder, you’ll find your project folder, which in turn contains
three subfolders—Pages, Properties, and wwwroot. Pages (unsurprisingly) contains
the Razor Pages files you’ll use to build your application. The Properties folder con-
tains a single file, launchSettings.json, which controls how Visual Studio will run and

3 The Git files will only be added if you choose Add to Source Control in Visual Studio. You don’t have to use
Git, but I strongly recommend using some sort of version control when you build applications. If you’re some-
what familiar with Git, but still find it a bit daunting, and a rebase terrifying, I highly recommend reading
“Think Like (a) Git,” http://think-like-a-git.net/. It helped me achieve Git enlightenment.

The .sln and Git version
control files are found
outside the project folder.

The root project folder
is nested in a top-level
solution directory.

The wwwroot and Properties
folders are shown as special
nodes in Visual Studio, but
they do exist on disk.

The Connected Services
and Dependencies nodes
do not exist on disk.

Program.cs and Startup.cs
control the startup and
configuration of your
application at runtime.

The .csproj file contains all
the details required to build
your project, including the
NuGet packages used by
your project.

Figure 2.8 The Solution Explorer and folder on disk for a new ASP.NET Core application. The Solution
Explorer also displays the Connected Services and Dependencies nodes, which list NuGet and other
dependencies, though the folders themselves don’t exist on disk.

http://think-like-a-git.net/

37The .csproj project file: Defining your dependencies
debug the application. The wwwroot folder is special, in that it’s the only folder in
your application that browsers are allowed to directly access when browsing your
web app. You can store your CSS, JavaScript, images, or static HTML files in here
and browsers will be able to access them. They won’t be able to access any file that
lives outside of wwwroot.

 Although the wwwroot and Properties folders exist on disk, you can see that Solu-
tion Explorer shows them as special nodes, out of alphabetical order, near the top of
your project. You’ve got two more special nodes in the project, Dependencies and
Connected Services, but they don’t have corresponding folders on disk. Instead, they
show a collection of all the dependencies, such as NuGet packages, and remote ser-
vices that the project relies on.

 In the root of your project folder, you’ll find two JSON files: appsettings.json and
appsettings.Development.json. These provide configuration settings that are used at
runtime to control the behavior of your app.

 The most important file in your project is WebApplication1.csproj, as it describes
how to build your project. Visual Studio doesn’t explicitly show the .csproj file, but you
can edit it if you double-click the project name in Solution Explorer. We’ll have a
closer look at this project file in the next section.

 Finally, Visual Studio shows two C# files in the project folder—Program.cs and
Startup.cs. In sections 2.6 and 2.7, you’ll see how these fundamental classes are
responsible for configuring and running your application.

2.5 The .csproj project file: Defining your dependencies
The .csproj file is the project file for .NET applications and contains the details required
for the .NET tooling to build your project. It defines the type of project being built (web
app, console app, or library), which platform the project targets (.NET Core 3.1, .NET
5.0, and so on), and which NuGet packages the project depends on.

 The project file has been a mainstay of .NET applications, but in ASP.NET Core it
has had a facelift to make it easier to read and edit. These changes include

 No GUIDs—Previously, globally unique identifiers (GUIDs) were used for many
things, but now they’re rarely used in the project file.

 Implicit file includes—Previously, every file in the project had to be listed in the
.csproj file for it to be included in the build. Now, files are automatically
compiled.

 No paths to NuGet package .dll files—Previously, you had to include the path to the
.dll files contained in NuGet packages in the .csproj, as well as listing the depen-
dencies in a packages.config file. Now you can reference the NuGet package
directly in your .csproj, and you don’t need to specify the path on disk.

All of these changes combine to make the project file far more compact than you’ll be
used to from previous .NET projects. The following listing shows the entire .csproj file
for your sample app.

38 CHAPTER 2 Your first application
<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 </PropertyGroup>
</Project>

For simple applications, you probably won’t need to change the project file much.
The Sdk attribute on the Project element includes default settings that describe how
to build your project, whereas the TargetFramework element describes the framework
your application will run on. For .NET Core 3.1 projects, this will have the netcore-
app3.1 value; if you’re running on .NET 5.0, this will be net5.0.

TIP With the new csproj style, Visual Studio users can double-click a proj-
ect in Solution Explorer to edit the .csproj file without having to close the
project first.

The most common changes you’ll make to the project file are to add additional NuGet
packages using the PackageReference element. By default, your app doesn’t refer-
ence any NuGet packages at all.

Listing 2.2 The .csproj project file, showing SDK, target framework, and references

Using NuGet libraries in your project
Even though all apps are unique in some way, they also share common requirements.
For example, most apps need to access a database or manipulate JSON or XML for-
matted data. Rather than having to reinvent that code in every project, you should
use existing reusable libraries.

NuGet is the library package manager for .NET, where libraries are packaged into
NuGet packages and published to https://nuget.org. You can use these packages in
your project by referencing the unique package name in your .csproj file. These make
the package’s namespace and classes available in your code files. You can publish
(and host) NuGet packages to repositories other than https://nuget.org—see
https://docs.microsoft.com/nuget for details.

You can add a NuGet reference to your project by running dotnet add package
<packagename> from inside the project folder. This updates your project file with a
<PackageReference> node and restores the NuGet package for your project. For
example, to install the popular Newtonsoft.Json library, you would run

dotnet add package Newtonsoft.Json

This adds a reference to the latest version of the library to your project file, as shown
next, and makes the Newtonsoft.Json namespace available in your source code files.

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 </PropertyGroup>

The SDK attribute
specifies the type of
project you’re building.

The TargetFramework is the framework
you’ll run on, in this case, .NET 5.0.

https://nuget.org
https://nuget.org
https://docs.microsoft.com/nuget

39The Program class: Building a web host
The simplified project file format is much easier to edit by hand than previous ver-
sions, which is great if you’re developing cross-platform. But if you’re using Visual Stu-
dio, don’t feel like you have to take this route. You can still use the GUI to add project
references, exclude files, manage NuGet packages, and so on. Visual Studio will update
the project file itself, as it always has.

TIP For further details on the changes to the csproj format, see the docu-
mentation at http://mng.bz/PPGg.

The project file defines everything Visual Studio and the .NET CLI need to build your
app. Everything, that is, except the code! In the next section we’ll take a look at the
entry point for your ASP.NET Core application—the Program.cs class.

2.6 The Program class: Building a web host
All ASP.NET Core applications start in the same way as .NET Console applications—
with a Program.cs file. This file contains a static void Main function, which is a stan-
dard characteristic of console apps. This method must exist and is called whenever
you start your web application.

TIP .NET 5.0 and C# 9 introduced “top-level statements,” which implicitly
create the Main entry point. I don’t use top-level statements in this book, but
they are supported in ASP.NET Core 5.0. See the documentation for details:
http://mng.bz/JDaP.

In ASP.NET Core applications, the Main entry point is used to build and run an IHost
instance, as shown in the following listing, which shows the default Program.cs file.
The IHost is the core of your ASP.NET Core application, containing the application
configuration and the Kestrel server that listens for requests and sends responses.

 <ItemGroup>
 <PackageReference Include="NewtonSoft.Json" Version="12.0.3" />
 </ItemGroup>
</Project>

If you’re using Visual Studio, you can manage packages with the NuGet Package
Manager by right-clicking the solution name or a project and choosing Manage NuGet
Packages.

As a point of interest, there’s no officially agreed upon pronunciation for NuGet. Feel
free to use the popular “noo-get” or “nugget” styles, or if you’re feeling especially posh,
“noo-jay”!

http://mng.bz/PPGg
http://mng.bz/JDaP

40 CHAPTER 2 Your first application

Ru

l
re
public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args)
 .Build()
 .Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 };
 }
}

The Main function contains all the basic initialization code required to create a web
server and to start listening for requests. It uses an IHostBuilder, created by the call
to CreateDefaultBuilder, to define how the IHost is configured, before instantiating
the IHost with a call to Build().

NOTE You’ll find this pattern of using a builder object to configure a com-
plex object repeated throughout the ASP.NET Core framework. It’s a useful
technique for allowing users to configure an object, delaying its creation until
all configuration has finished. It’s one of the patterns described in the “Gang
of Four” book, Design Patterns: Elements of Reusable Object-Oriented Software by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison
Wesley, 1994).

Much of your app’s configuration takes place in the IHostBuilder created by the call
to CreateDefaultBuilder, but it delegates some responsibility to a separate class,
Startup. The Startup class referenced in the generic UseStartup<> method is where
you configure your app’s services and define your middleware pipeline. In section 2.7,
we’ll spend a while delving into this crucial class.

 At this point, you may be wondering why you need two classes for configuration:
Program and Startup. Why not include all your app’s configuration in one class or the
other?

 Figure 2.9 shows the typical split of configuration components between Program
and Startup. Generally speaking, Program is where you configure the infrastructure
of your application, such as the HTTP server, integration with IIS, and configuration
sources. In contrast, Startup is where you define which components and features
your application uses, and the middleware pipeline for your app.

 The Program class for two different ASP.NET Core applications will generally be
similar, but the Startup classes will often differ significantly (though they generally

Listing 2.3 The default Program.cs file configures and runs an IWebHost

Create an IHostBuilder using
the CreateHostBuilder method.

Build and return an instance of
IHost from the IHostBuilder.

n the IHost
and start

istening for
quests and
generating
responses.

Create an IHostBuilder
using the default
configuration.

Configure the application
to use Kestrel and listen
to HTTP requests.

The Startup class defines
most of your application’s

configuration.

41The Program class: Building a web host
follow a similar pattern, as you’ll see shortly). You’ll rarely find that you need to mod-
ify Program as your application grows, whereas you’ll normally update Startup when-
ever you add additional features. For example, if you add a new NuGet dependency to
your project, you’ll normally need to update Startup to make use of it.

 The Program class is where a lot of app configuration takes place, but in the default
templates this is hidden inside the CreateDefaultBuilder method. CreateDefault-
Builder is a static helper method that simplifies the bootstrapping of your app by cre-
ating an IHostBuilder with some common configuration. In chapter 11 we’ll peek
inside this method and explore the configuration system, but for now it’s enough to
keep figure 2.9 in mind, and to be aware that you can completely change the IHost
configuration if you need to.

 The other helper method used by default is ConfigureWebHostDefaults. This uses
a WebHostBuilder object to configure Kestrel to listen for HTTP requests.

Creating services with the generic host
It might seem strange that you must call ConfigureWebHostDefaults as well as
CreateDefaultBuilder—couldn’t we just have one method? Isn’t handling HTTP
requests the whole point of ASP.NET Core?

Well, yes and no! ASP.NET Core 3.0 introduced the concept of a generic host. This
allows you to use much of the same framework as ASP.NET Core applications to write

Program Startup

Loads configuration settings
at runtime, such as connection
strings, usernames, and
passwords.

Program.cs is used to configure
infrastructure that rarely changes
over the lifetime of a project.

Startup is used to configure the
majority of your application's
custom behavior.

The middleware
pipeline is defined
in code in Startup.

To correctly create
classes at runtime,
dependencies are
registered with a
container.

Figure 2.9 The difference in configuration scope for Program and Startup. Program
is concerned with infrastructure configuration that will typically remain stable throughout
the lifetime of the project. In contrast, you’ll often modify Startup to add new features
and to update application behavior.

42 CHAPTER 2 Your first application

ices

ion.
Once the configuration of the IHostBuilder is complete, the call to Build produces
the IHost instance, but the application still isn’t handling HTTP requests yet. It’s the
call to Run that starts the HTTP server listening. At this point, your application is fully
operational and can respond to its first request from a remote browser.

2.7 The Startup class: Configuring your application
As you’ve seen, Program is responsible for configuring a lot of the infrastructure for
your app, but you configure some of your app’s behavior in Startup. The Startup
class is responsible for configuring two main aspects of your application:

 Service registration—Any classes that your application depends on for providing
functionality—both those used by the framework and those specific to your appli-
cation—must be registered so that they can be correctly instantiated at runtime.

 Middleware and endpoints—How your application handles and responds to
requests.

You configure each of these aspects in its own method in Startup: service registration
in ConfigureServices, and middleware configuration in Configure. A typical outline
of Startup is shown in the following listing.

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 // method details
 }
 public void Configure(IApplicationBuilder app)
 {
 // method details
 }
}

(continued)

non-HTTP applications. These apps can be run as console apps or can be installed
as Windows services (or as systemd daemons on Linux), to run background tasks or
read from message queues, for example.

Kestrel and the web framework of ASP.NET Core builds on top of the generic host
functionality introduced in ASP.NET Core 3.0. To configure a typical ASP.NET Core
app, you configure the generic host features that are common across all apps; fea-
tures such as configuration, logging, and dependency services. For web applications,
you then also configure the services, such as Kestrel, that are necessary to handle
web requests.

In chapter 22 you’ll see how to build applications using the generic host to run sched-
uled tasks and build services.

Listing 2.4 An outline of Startup.cs showing how each aspect is configured

Configure serv
by registering
them with the
IServiceCollect

Configure the middleware
pipeline for handling
HTTP requests.

43The Startup class: Configuring your application
The IHostBuilder created in Program calls ConfigureServices and then Configure,
as shown in figure 2.10. Each call configures a different part of your application, mak-
ing it available for subsequent method calls. Any services registered in the Configure-
Services method are available to the Configure method. Once configuration is
complete, an IHost is created by calling Build() on the IHostBuilder.

An interesting point about the Startup class is that it doesn’t implement an interface
as such. Instead, the methods are invoked by using reflection to find methods with the
predefined names of Configure and ConfigureServices. This makes the class more
flexible and enables you to modify the signature of the method to accept additional
parameters that are fulfilled automatically. I’ll cover how this works in detail in chap-
ter 10; for now it’s enough to know that anything that’s configured in Configure-
Services can be accessed by the Configure method.

DEFINITION Reflection in .NET allows you to obtain information about types in
your application at runtime. You can use reflection to create instances of
classes at runtime and to invoke and access them.

Because the Startup class is fundamental to ASP.NET Core applications, the rest of
section 2.7 walks you through both ConfigureServices and Configure to give you a

Program

Startup

IHostBuilder

ConfigureServices()

Configure()

IHost
Once configuration is complete,
the IHost is created by calling
Build() on the HostBuilder.

The IHost is created in Program
using the builder pattern, and the
CreateDefaultBuilder and
CreateWebDefaults helper methods.

Build()

The middleware pipeline is
defined in the Configure
method. It controls how
your application responds
to requests.

The HostBuilder calls out
to Startup to configure
your application.

To correctly create classes at
runtime, dependencies are
registered with a container in
the ConfigureServices method.

Figure 2.10 The IHostBuilder is created in Program.cs and calls methods on Startup to
configure the application’s services and middleware pipeline. Once configuration is complete, the
IHost is created by calling Build() on the IHostBuilder.

44 CHAPTER 2 Your first application
taste of how they’re used. I won’t explain them in detail (we have the rest of the book
for that!), but you should keep in mind how they follow on from each other and how
they contribute to the application’s configuration as a whole.

2.7.1 Adding and configuring services

ASP.NET Core uses small, modular components for each distinct feature. This allows
individual features to evolve separately, with only a loose coupling to others, and it’s
generally considered good design practice. The downside to this approach is that it
places the burden on the consumer of a feature to correctly instantiate it. Within your
application, these modular components are exposed as one or more services that are
used by the application.

DEFINITION Within the context of ASP.Net Core, service refers to any class that
provides functionality to an application. These could be classes exposed by a
library or code you’ve written for your application.

For example, in an e-commerce app, you might have a TaxCalculator that calculates
the tax due on a particular product, taking into account the user’s location in the
world. Or you might have a ShippingCostService that calculates the cost of shipping
to a user’s location. A third service, OrderTotalCalculatorService, might use both
of these services to work out the total price the user must pay for an order. Each ser-
vice provides a small piece of independent functionality, but you can combine them to
create a complete application. This is known as the single responsibility principle.

DEFINITION The single responsibility principle (SRP) states that every class should
be responsible for only a single piece of functionality—it should only need to
change if that required functionality changes. It’s one of the five main design
principles promoted by Robert C. Martin in Agile Software Development, Princi-
ples, Patterns, and Practices (Pearson, 2013).

OrderTotalCalculatorService needs access to an instance of ShippingCostService
and TaxCalculator. A naive approach to this problem is to use the new keyword and
create an instance of a service whenever you need it. Unfortunately, this tightly cou-
ples your code to the specific implementation you’re using and can completely undo
all the good work achieved by modularizing the features in the first place. In some
cases, it may break the SRP by making you perform initialization code in addition to
using the service you created.

 One solution to this problem is to make it somebody else’s problem. When writing
a service, you can declare your dependencies and let another class fill those depen-
dencies for you. Your service can then focus on the functionality for which it was
designed, instead of trying to work out how to build its dependencies.

 This technique is called dependency injection or the Inversion of Control (IoC)
principle, and it is a well-recognized design pattern that is used extensively.

DEFINITION Design patterns are solutions to common software design problems.

45The Startup class: Configuring your application
Typically, you’ll register the dependencies of your application into a “container,”
which can then be used to create any service. This is true for both your own custom
application services and the framework services used by ASP.NET Core. You must reg-
ister each service with the container before it can be used in your application.

NOTE I’ll describe the dependency inversion principle and the IoC con-
tainer used in ASP.NET Core in detail in chapter 10.

In an ASP.NET Core application, this registration is performed in the Configure-
Services method. Whenever you use a new ASP.NET Core feature in your applica-
tion, you’ll need to come back to this method and add in the necessary services. This
is not as arduous as it sounds, as shown in the following listing, taken from the exam-
ple application.

public class Startup
{
 // This method gets called by the runtime.
 // Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }
}

You may be surprised that a complete Razor Pages application only includes a single
call to add the necessary services, but the AddRazorPages() method is an extension
method that encapsulates all the code required to set up the Razor Pages services.
Behind the scenes, it adds various Razor services for rendering HTML, formatting ser-
vices, routing services, and many more.

 As well as registering framework-related services, this method is where you’d reg-
ister any custom services you have in your application, such as the example Tax-
Calculator discussed previously. IServiceCollection is a list of every known service
that your application will need to use. By adding a new service to it, you ensure that
whenever a class declares a dependency on your service, the IoC container knows how
to provide it.

 With your services all configured, it’s time to move on to the final configuration
step: defining how your application responds to HTTP requests.

2.7.2 Defining how requests are handled with middleware

So far, in the IHostBuilder and Startup classes, you’ve defined the infrastructure of
the application and registered your services with the IoC container. In the final config-
uration method of the Startup class, Configure, you define the middleware pipeline
for the application, which defines how your app handles HTTP requests. Here’s the
Configure method for the template application.

Listing 2.5 Startup.ConfigureServices: adding services to the IoC container

46 CHAPTER 2 Your first application
public class Startup
{
 public void Configure(
 IApplicationBuilder app,
 IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 app.UseRouting();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 }
 }
}

As I described previously, middleware consists of small components that execute in
sequence when the application receives an HTTP request. They can perform a whole
host of functions, such as logging, identifying the current user for a request, serving
static files, and handling errors.

 The IApplicationBuilder that’s passed to the Configure method is used to
define the order in which middleware executes. The order of the calls in this method
is important, as the order in which they’re added to the builder is the order in which
they’ll execute in the final pipeline. Middleware can only use objects created by previ-
ous middleware in the pipeline—it can’t access objects created by later middleware.

WARNING It’s important that you consider the order of middleware when
adding it to the pipeline. Middleware can only use objects created by earlier
middleware in the pipeline.

You should also note that an IWebHostEnvironment parameter is used to provide dif-
ferent behavior when you’re in a development environment. When you’re running in
development (when EnvironmentName is set to "Development"), the Configure method
adds one piece of exception-handling middleware to the pipeline; in production, it
adds a different one.

Listing 2.6 Startup.Configure: defining the middleware pipeline

IApplicationBuilder is used to
build the middleware pipeline.

Other services can be
accepted as parameters.

Different behavior when in
development or production

Only runs in a development
environment

Only runs in a production
environment

Adds the static-file
middleware

Adds the endpoint routing
middleware, which determines
which endpoint to execute

Adds the authorization middleware,
which can block access to specific
pages as required

Adds the endpoint middleware,
which executes a Razor Page to
generate an HTML response

47The Startup class: Configuring your application
 The IWebHostEnvironment object contains details about the current environment,
as determined by IHostBuilder in Program. It exposes a number of properties:

 ContentRootPath—Location of the working directory for the app, typically the
folder in which the application is running

 WebRootPath—Location of the wwwroot folder that contains static files
 EnvironmentName—Whether the current environment is a development or pro-

duction environment

IWebHostEnvironment is already set by the time Startup is invoked; you can’t change
these values using the application settings in Startup. EnvironmentName is typically set
externally by using an environment variable when your application starts.

NOTE You’ll learn about hosting environments and how to change the cur-
rent environment in chapter 11.

In development, DeveloperExceptionPageMiddleware (added by the UseDeveloper-
ExceptionPage() call) ensures that if your application throws an exception that isn’t
caught, you’ll be presented with as much information as possible in the browser to
diagnose the problem, as shown in figure 2.11. It’s akin to the “yellow screen of death”
in the previous version of ASP.NET, but this time it’s white, not yellow.

Figure 2.11 The developer exception page contains many different sources of information to help you diagnose
a problem, including the exception stack trace and details about the request that generated the exception.

48 CHAPTER 2 Your first application
NOTE The default templates also add HstsMiddleware in production, which
sets security headers in your response, in line with industry best practices. See
chapter 18 for details about this and other security-related middleware.

When you’re running in a production environment, exposing this amount of data to
users would be a big security risk. Instead, ExceptionHandlerMiddleware is registered
so that if users encounter an exception in your method, they will be presented with a
friendly error page that doesn’t reveal the source of the problems. If you run the
default template in production mode and trigger an error, you’ll be presented with
the message shown in figure 2.12 instead. Obviously, you’d need to update this page
to be more visually appealing and more user-friendly, but at least it doesn’t reveal the
inner workings of your application.

 The next piece of middleware added to the pipeline is HttpsRedirectionMiddle-
ware, using this statement:

app.UseHttpsRedirection();

This ensures your application only responds to secure (HTTPS) requests and is an
industry best practice. We’ll look more at HTTPS in chapter 18.

Figure 2.12 The default exception-handling page. In contrast to the developer exception page, this one
doesn’t reveal any details about your application to users. In reality, you’d update the message to something
more user-friendly.

49The Startup class: Configuring your application
StaticFileMiddleware is added to the pipeline next with this statement:

app.UseStaticFiles();

This middleware is responsible for handling requests for static files such as CSS files,
JavaScript files, and images. When a request arrives at the middleware, it checks to see
if the request is for an existing file. If it is, the middleware returns the file. If not, the
request is ignored and the next piece of middleware can attempt to handle the request.
Figure 2.13 shows how the request is processed when a static file is requested. When

1. HTTP request is made for a static file
at https://localhost:507 4/css/site.css.1

7. HTTP response containing the
site.css page is sent to browser.

2. Request is forwarded by
IIS/Nginx/Apache to ASP.NET Core.

3. ASP.NET Core web server receives
the HTTP request and passes it
to the middleware.

6. Response passes through
middleware back to the
web server.

4. The request passes through
the error handler and HTTPS
redirection middleware unmodified
and into the static file middleware.

As the static-file middleware
handled the request, all
subsequent middleware in
the pipeline is never run and
never sees the request.

5. The static file middleware handles
the request by returning the
appropriate site.css file, short-
circuiting the pipeline.

Figure 2.13 An overview of a request for a static file at /css/site.css for an ASP.NET Core application.
The request passes through the middleware pipeline until it’s handled by the static-file middleware. This returns
the requested CSS file as the response, which passes back to the web server. The endpoint middleware is never
invoked and never sees the request.

50 CHAPTER 2 Your first application
the static-file middleware handles a request, other middleware that comes later in the
pipeline, such as the routing middleware or the endpoint middleware, won’t be called
at all.

 Now we come to the most substantial pieces of middleware in the pipeline: the
routing middleware and the endpoint middleware. Together, this pair of middleware
are responsible for interpreting the request to determine which Razor Page to invoke,
for reading parameters from the request, and for generating the final HTML. Very lit-
tle configuration is required—you need only to add the middleware to the pipeline
and specify that you wish to use Razor Page endpoints by calling MapRazorPages. For
each request, the routing middleware uses the request’s URL to determine which
Razor Page to invoke. The endpoint middleware actually executes the Razor Page to
generate the HTML response.

NOTE The default templates also add the AuthorizationMiddleware between
the routing middleware and the endpoint middleware. This allows the autho-
rization middleware to decide whether to allow access before the Razor Page is
executed. You’ll learn more about this approach in chapter 5 on routing and
chapter 15 on authorization.

Phew! You’ve finally finished configuring your application with all the settings, ser-
vices, and middleware it needs. Configuring your application touches on a wide range
of different topics that we’ll delve into further throughout the book, so don’t worry if
you don’t fully understand all the steps yet.

 Once the application is configured, it can start handling requests. But how does it
handle them? I’ve already touched on StaticFileMiddleware, which will serve the
image and CSS files to the user, but what about the requests that require an HTML
response? In the rest of this chapter, I’ll give you a glimpse into Razor Pages and how
they generate HTML.

2.8 Generating responses with Razor Pages
When an ASP.NET Core application receives a request, it progresses through the mid-
dleware pipeline until a middleware component can handle it, as you saw in figure
2.13. Normally, the final piece of middleware in a pipeline is the endpoint middle-
ware. This middleware works with the routing middleware to match a request URL’s
path to a configured route, which defines which Razor Page to invoke.

DEFINITION A path is the remainder of the request URL, once the domain
has been removed. For example, for a request to www.microsoft.com/account/
manage, the path is /account/manage.

Once a Razor Page has been selected, the routing middleware notes the selected
Razor Page in the request’s HttpContext and continues executing the middleware
pipeline. Eventually the request will reach the endpoint middleware. The endpoint
middleware executes the Razor Page to generate the HTML response and sends it
back to the browser, as shown in figure 2.14.

http://www.microsoft.com/account/manage
http://www.microsoft.com/account/manage
http://www.microsoft.com/account/manage

51Generating responses with Razor Pages
In the next section we’ll look at how Razor Pages generate HTML using the Razor syn-
tax. After that we’ll look at how you can use page handlers to add business logic and
behavior to your Razor Pages.

2.8.1 Generating HTML with Razor Pages

Razor Pages are stored in .cshtml files (a portmanteau of .cs and .html) within the
Pages folder of your project. In general, the routing middleware maps request URL
paths to a single Razor Page by looking in the Pages folder of your project for a Razor
Page with the same path. For example, you can see in figure 2.14 that the Privacy page
of your app corresponds to the path /Privacy in the browser’s address bar. If you look
inside the Pages folder of your project, you’ll find the Privacy.cshtml file, shown in the
following listing.

@page
@model PrivacyModel
@{
 ViewData["Title"] = "Privacy Policy";
}
<h1>@ViewData["Title"]</h1>

<p>Use this page to detail your site's privacy policy.</p>

Razor Pages use a templating syntax, called Razor, that combines static HTML with
dynamic C# code and HTML generation. The @page directive on the first line of the

Listing 2.7 The Privacy.cshtml Razor Page

Figure 2.14 Rendering a Razor template to HTML. The Razor Page is selected based on the URL page
/Privacy and is executed to generate the HTML.

Indicates that this is a Razor Page

Links the Razor Page to
a specific PageModel C# code that doesn’t

write to the response

HTML with dynamic C# values
written to the response Standalone,

static HTML

52 CHAPTER 2 Your first application
Razor Page is the most important. This directive must always be placed on the first line
of the file, as it tells ASP.NET Core that the .cshtml file is a Razor Page. Without it, you
won’t be able to view your page correctly.

 The next line of the Razor Page defines which PageModel in your project the Razor
Page is associated with:

@model PrivacyModel

In this case the PageModel is called PrivacyModel, and it follows the standard conven-
tion for naming Razor Page models. You can find this class in the Privacy.cshtml.cs file
in the Pages folder of your project, as shown in figure 2.15. Visual Studio nests these
files underneath the Razor Page .cshtml files in Solution Explorer. We’ll look at the
page model in the next section.

In addition to the @page and @model directives, you can see that static HTML is always
valid in a Razor Page and will be rendered “as is” in the response.

<p>Use this page to detail your site’s privacy policy.</p>

You can also write ordinary C# code in Razor templates by using this construct:

@{ /* C# code here */ }

The filesystem path of the
Razor Page corresponds to
the URL path it responds to.

Page model files are nested
under their corresponding
Razor Page in Solution Explorer.

In the filesystem the Razor
Pages and page models are
in the same folder.

Figure 2.15 By convention, page models for Razor Pages are placed in a file with the same name as
the Razor Page with a .cs suffix appended. Visual Studio nests these files under the Razor Page in
Solution Explorer.

53Generating responses with Razor Pages
Any code between the curly braces will be executed but won’t be written to the response.
In the listing, you’re setting the title of the page by writing a key to the ViewData dictio-
nary, but you aren’t writing anything to the response at this point:

@{
 ViewData["Title"] = "Privacy Policy";
}

Another feature shown in this template is that you can dynamically write C# variables
to the HTML stream using the @ symbol. This ability to combine dynamic and static
markup is what gives Razor Pages their power. In the example, you’re fetching the
"Title" value from the ViewData dictionary and writing the values to the response
inside an <h1> tag:

<h1>@ViewData["Title"]</h1>

At this point, you might be a little confused by the template in listing 2.7 when it’s
compared to the output shown in figure 2.14. The title and the static HTML content
appear in both the listing and figure, but some parts of the final web page don’t
appear in the template. How can that be?

 Razor Pages have the concept of layouts, which are “base” templates that define
the common elements of your application, such as headers and footers. The HTML of
the layout combines with the Razor Page template to produce the final HTML that’s
sent to the browser. This prevents you from having to duplicate code for the header
and footer in every page, and it means that, if you need to tweak something, you’ll
only need to do it in one place.

NOTE I’ll cover Razor templates, including layouts, in detail in chapter 7. You
can find layouts in the Pages/Shared folder of your project.

As you’ve already seen, you can include C# code in your Razor Pages by using curly
braces @{ }, but generally speaking you’ll want to limit the code in your .cshtml file to
presentational concerns only. Complex logic, code to access services such as a data-
base, and data manipulation should be handled in the PageModel instead.

2.8.2 Handling request logic with PageModels and handlers

As you’ve already seen, the @page directive in a .cshtml file marks the page as a Razor
Page, but most Razor Pages also have an associated page model. By convention, this is
placed in a file commonly known as a “code behind” file that has a .cs extension, as
you saw in figure 2.15. Page models should derive from the PageModel base class, and
they typically contain one or more methods called page handlers that define how to
handle requests to the Razor Page.

54 CHAPTER 2 Your first application
DEFINITION A page handler is a method that runs in response to a request.
Razor Page models must be derived from the PageModel class. They can con-
tain multiple page handlers, though typically they only contain one or two.

The following listing shows the page model for the Privacy.cshtml Razor Page, found
in the file Privacy.cshtml.cs.

public class PrivacyModel: PageModel
{
 private readonly ILogger<PrivacyModel> _logger;
 public PrivacyModel(ILogger<PrivacyModel> logger)
 {
 _logger = logger;
 }

 public void OnGet()
 {
 }
}

This page model is extremely simple, but it demonstrates a couple of important points:

 Page handlers are driven by convention.
 Page models can use dependency injection to interact with other services.

Page handlers are typically named by convention, based on the HTTP verb that they
respond to. They return either void, indicating that the Razor Page’s template should
be rendered, or an IActionResult that contains other instructions for generating the
response, such as redirecting the user to a different page.

DEFINITION Every HTTP request includes a verb that indicates the “type” of
the request. When browsing a website, the default verb is GET, which fetches
a resource from the server so you can view it. The second most common
verb is POST, which is used to send data to the server, such as when complet-
ing a form.

The PrivacyModel contains a single handler, OnGet, which indicates it should run in
response to GET requests for the page. As the method returns void, executing the han-
dler will execute the associated Razor template for the page to generate the HTML.

NOTE Razor Pages are focused on building page-based apps, so you typically
want to return HTML rather than JSON or XML. However, you can also use
an IActionResult to return any sort of data, to redirect users to a new page,
or to send an error. You’ll learn more about IActionResults in chapter 4.

Listing 2.8 The PrivacyModel in Privacy.cshtml.cs—a Razor Page page model

Razor Pages must inherit
from PageModel.

You can use
dependency injection
to provide services in
the constructor.

The default page handler is
OnGet. Returning void indicates
HTML should be generated.

55Generating responses with Razor Pages
Dependency injection is used to inject an ILogger<PrivacyModel> instance into the
constructor of the page model. The service is unused in this example, but it can be
used to record useful information to a variety of destinations, such as the console, a
file, or a remote logging service. You can access additional services in your page model
by accepting them as parameters in the constructor—the ASP.NET Core framework
will take care of configuring and injecting instances of any services you request.

NOTE I describe the dependency inversion principle and the IoC container
used in ASP.NET Core in detail in chapter 10. Logging is covered in chapter 17.

Clearly, the PrivacyModel page model does not do much in this case, and you may be
wondering why it’s worth having. If all they do is tell the Razor Page to generate
HTML, then why do we need page models at all?

 The key thing to remember here is that you now have a framework for performing
arbitrarily complex functions in response to a request. You could easily update the
handler method to load data from the database, send an email, add a product to a bas-
ket, or create an invoice—all in response to a simple HTTP request. This extensibility
is where a lot of the power in Razor Pages (and the MVC pattern in general) lies.

 The other important point is that you’ve separated the execution of these meth-
ods from the generation of the HTML itself. If the logic changes and you need to
add behavior to a page handler, you don’t need to touch the HTML generation
code, so you’re less likely to introduce bugs. Conversely, if you need to change the
UI slightly, change the color of the title for example, then your handler method
logic is safe.

 And there you have it, a complete ASP.NET Core Razor Pages application!
Before we move on, let’s take one last look at how our application handles a request.
Figure 2.16 shows a request to the /Privacy path being handled by the sample appli-
cation. You’ve seen everything here already, so the process of handling a request
should be familiar. It shows how the request passes through the middleware pipeline
before being handled by the endpoint middleware. The Privacy.cshtml Razor Page
executes the OnGet handler and generates the HTML response, which passes back
through the middleware to the ASP.NET Core web server before being sent to the
user’s browser.

 It’s been a pretty intense trip, but you now have a good overview of how an entire
application is configured and how it handles a request using Razor Pages. In the next
chapter, you’ll take a closer look at the middleware pipeline that exists in all ASP.NET
Core applications. You’ll learn how it’s composed, how you can use it to add function-
ality to your application, and how you can use it to create simple HTTP services.

56 CHAPTER 2 Your first application
1. An HTTP request is made
to the URL/Privacy.

8. The HTTP response
containing HTML for
the Privacy page is
sent to browser.

2. The request is forwarded by
IIS/Nginx/Apache to ASP.NET Core.

3. ASP.NET Core web server
receives the HTTP request
and passes it to the
middleware.

7. The HTML response
passes back through
each middleware to the
ASP.NET Core web server.4. The request path /Privacy

is routed to the Privacy.cshtml
Razor Page, so it passes
through the middleware
pipeline unmodified.

6. The OnGet handler
returns void, indicating
the Razor Page should
generate an HTML
response from its
Razor template in
Privacy.cshtml.

5. The Privacy.cshtml.cs
Razor Page handles the
request by executing the
OnGet page handler.

Figure 2.16 An overview of a request to the /Privacy URL for the sample ASP.NET Razor Pages
application. The routing middleware routes the request to the OnGet handler of the Privacy.cshtml.cs
Razor Page. The Razor Page generates an HTML response by executing the Razor template in
Privacy.cshtml and passes the response back through the middleware pipeline to the browser.

57Summary
Summary
 The .csproj file contains details of how to build your project, including which

NuGet packages it depends on. It’s used by Visual Studio and the .NET CLI to
build your application.

 Restoring the NuGet packages for an ASP.NET Core application downloads all
your project’s dependencies so it can be built and run.

 Program.cs defines the static void Main entry point for your application. This
function is run when your app starts, the same as for console applications.

 Program.cs is where you build an IHost instance, using an IHostBuilder. The
helper method, Host.CreateDefaultBuilder() creates an IHostBuilder that
loads configuration settings and sets up logging. Calling Build() creates the
IHost instance.

 The ConfigureWebHostDefaults extension method configures the generic host
using a WebHostBuilder. It configures the Kestrel HTTP server, adds IIS inte-
gration if necessary, and specifies the application’s Startup class.

 You can start the web server and begin accepting HTTP requests by calling Run
on the IHost.

 Startup is responsible for service configuration and defining the middleware
pipeline.

 All services, both framework and custom application services, must be regis-
tered in the call to ConfigureServices in order to be accessed later in your
application.

 Middleware is added to the application pipeline with IApplicationBuilder.
Middleware defines how your application responds to requests.

 The order in which middleware is registered defines the final order of the mid-
dleware pipeline for the application. Typically, EndpointMiddleware is the last
middleware in the pipeline. Earlier middleware, such as StaticFileMiddle-
ware, will attempt to handle the request first. If the request is handled, End-
pointMiddleware will never receive the request.

 Razor Pages are located in the Pages folder and are typically named according to
the URL path they handle. For example, Privacy.cshtml handles the path /Privacy.

 Razor Pages must contain the @page directive as the first line of the file.
 Page models derive from the PageModel base class and contain page handlers.

Page handlers are methods named using conventions that indicate the HTTP
verb they handle. For example, OnGet handles the GET verb.

 Razor templates can contain standalone C#, standalone HTML, and dynamic
HTML generated from C# values. By combining all three, you can build highly
dynamic applications.

 Razor layouts define common elements of a web page, such as headers and
footers. They let you extract this code into a single file, so you don’t have to
duplicate it across every Razor template.

Handling requests with
the middleware pipeline
In the previous chapter, you had a whistle-stop tour of a complete ASP.NET Core
application to see how the components come together to create a web application.
In this chapter, we’ll focus in on one small subsection: the middleware pipeline.

 In ASP.NET Core, middleware are C# classes or functions that handle an HTTP
request or response. They are chained together, with the output of one middleware
acting as the input to the next middleware, to form a pipeline.

 The middleware pipeline is one of the most important parts of configuration
for defining how your application behaves and how it responds to requests. Under-
standing how to build and compose middleware is key to adding functionality to
your applications.

 In this chapter you’ll learn what middleware is and how to use it to create a
pipeline. You’ll see how you can chain multiple middleware components together,

This chapter covers
 What middleware is

 Serving static files using middleware

 Adding functionality using middleware

 Combining middleware to form a pipeline

 Handling exceptions and errors with middleware
58

59
with each component adding a discrete piece of functionality. The examples in this
chapter are limited to using existing middleware components, showing how to arrange
them in the correct way for your application. In chapter 19 you’ll learn how to build
your own middleware components and incorporate them into the pipeline.

 We’ll begin by looking at the concept of middleware, all the things you can achieve
with it, and how a middleware component often maps to a “cross-cutting concern.”
These are the functions of an application that cut across multiple different layers.
Logging, error handling, and security are classic cross-cutting concerns that are all
required by many different parts of your application. Because all requests pass
through the middleware pipeline, it’s the preferred location to configure and handle
this functionality.

 In section 3.2, I’ll explain how you can compose individual middleware compo-
nents into a pipeline. You’ll start out small, with a web app that only displays a holding
page. From there, you’ll learn how to build a simple static-file server that returns
requested files from a folder on disk.

 Next, you’ll move on to a more complex pipeline containing multiple middle-
ware. In this example you’ll explore the importance of ordering in the middleware
pipeline and see how requests are handled when your pipeline contains more than
one middleware.

 In section 3.3 you’ll learn how you can use middleware to deal with an important
aspect of any application: error handling. Errors are a fact of life for all applications,
so it’s important that you account for them when building your app. As well as ensur-
ing that your application doesn’t break when an exception is thrown or an error
occurs, it’s important that users of your application are informed about what went
wrong in a user-friendly way.

 You can handle errors in a few different ways, but they are one of the classic cross-
cutting concerns, and middleware is well placed to provide the required functionality.
In section 3.3 I’ll show how you can handle exceptions and errors using middleware
provided by Microsoft. In particular, you’ll learn about three different components:

 DeveloperExceptionPageMiddleware—Provides quick error feedback when
building an application

 ExceptionHandlerMiddleware—Provides a user-friendly generic error page in
production

 StatusCodePagesMiddleware—Converts raw error status codes into user-friendly
error pages

By combining these pieces of middleware, you can ensure that any errors that do
occur in your application won’t leak security details and won’t break your app. On top
of that, they will leave users in a better position to move on from the error, giving
them as friendly an experience as possible.

 You won’t see how to build your own middleware in this chapter—instead you’ll
see that you can go a long way using the components provided as part of ASP.NET

60 CHAPTER 3 Handling requests with the middleware pipeline
Core. Once you understand the middleware pipeline and its behavior, it will be much
easier to understand when and why custom middleware is required. With that in
mind, let’s dive in!

3.1 What is middleware?
The word middleware is used in a variety of contexts in software development and IT,
but it’s not a particularly descriptive word—what is middleware?

 In ASP.NET Core, middleware are C# classes1 that can handle an HTTP request or
response. Middleware can

 Handle an incoming HTTP request by generating an HTTP response
 Process an incoming HTTP request, modify it, and pass it on to another piece of

middleware
 Process an outgoing HTTP response, modify it, and pass it on to either another

piece of middleware or the ASP.NET Core web server

You can use middleware in a multitude of ways in your own applications. For example,
a piece of logging middleware might note when a request arrived and then pass it on
to another piece of middleware. Meanwhile, an image-resizing middleware compo-
nent might spot an incoming request for an image with a specified size, generate the
requested image, and send it back to the user without passing it on.

 The most important piece of middleware in most ASP.NET Core applications is the
EndpointMiddleware class. This class normally generates all your HTML pages and
API responses (for Web API applications) and is the focus of most of this book. Like
the image-resizing middleware, it typically receives a request, generates a response,
and then sends it back to the user, as shown in figure 3.1.

DEFINITION This arrangement, where a piece of middleware can call another
piece of middleware, which in turn can call another, and so on, is referred to
as a pipeline. You can think of each piece of middleware as a section of pipe—
when you connect all the sections, a request flows through one piece and into
the next.

One of the most common use cases for middleware is for the cross-cutting concerns of
your application. These aspects of your application need to occur for every request,
regardless of the specific path in the request or the resource requested. These include
things like

 Logging each request
 Adding standard security headers to the response
 Associating a request with the relevant user
 Setting the language for the current request

1 Technically middleware just needs to be a function, as you’ll see in chapter 19, but it’s very common to imple-
ment middleware as a C# class with a single method.

61What is middleware?
In each of these examples, the middleware would receive a request, modify it, and
then pass the request on to the next piece of middleware in the pipeline. Subse-
quent middleware could use the details added by the earlier middleware to handle
the request in some way. For example, in figure 3.2, the authentication middleware
associates the request with a user. The authorization middleware uses this detail to
verify whether the user has permission to make that specific request to the applica-
tion or not.

 If the user has permission, the authorization middleware will pass the request on
to the endpoint middleware to allow it to generate a response. If the user doesn’t have
permission, the authorization middleware can short-circuit the pipeline, generating a
response directly. It returns the response to the previous middleware before the end-
point middleware has even seen the request.

 A key point to glean from this is that the pipeline is bidirectional. The request passes
through the pipeline in one direction until a piece of middleware generates a response,
at which point the response passes back through the pipeline, passing through each
piece of middleware for a second time, until it gets back to the first piece of middle-
ware. Finally, this first/last piece of middleware will pass the response back to the
ASP.NET Core web server.

6. The response is returned to
ASP.NET Core web server.1. ASP.NET Core web server

passes the request to the
middleware pipeline.

2. The logging middleware
notes down the time the
request arrived and passes
the request on to the next
middleware.

3. If the request is for an image of
a specific size, the image resize
middleware will handle it. If not,
the request is passed on to the
next middleware.

5. The response passes through
each middleware that ran
previously in the pipeline.

4. If the request makes it through
the pipeline to the endpoint
middleware, it will handle the
request and generate a response.

Figure 3.1 Example of a middleware pipeline. Each middleware handles the request and passes it on
to the next middleware in the pipeline. After a middleware generates a response, it passes the
response back through the pipeline. When it reaches the ASP.NET Core web server, the response is
sent to the user’s browser.

62 CHAPTER 3 Handling requests with the middleware pipeline
The HttpContext object
I mentioned the HttpContext in chapter 2, and it’s sitting behind the scenes here
too. The ASP.NET Core web server constructs an HttpContext for each request,
which the ASP.NET Core application uses as a sort of storage box for a single request.
Anything that’s specific to this particular request and the subsequent response can
be associated with and stored in it. This could include properties of the request,
request-specific services, data that’s been loaded, or errors that have occurred. The
web server fills the initial HttpContext with details of the original HTTP request and
other configuration details and passes it on to the rest of the application.

All middleware has access to the HttpContext for a request. It can use this, for
example, to determine whether the request contains any user credentials, to identify
which page the request is attempting to access, and to fetch any posted data. It can
then use these details to determine how to handle the request.

Once the application has finished processing the request, it will update the Http-
Context with an appropriate response and return it through the middleware pipeline
to the web server. The ASP.NET Core web server then converts the representation
into a raw HTTP response and sends it back to the reverse proxy, which forwards it
to the user’s browser.

6. The response is returned to
ASP.NET Core web server.

Because the authorization
middleware handled the
request, the endpoint
middleware is never run.

1. The ASP.NET Core web
server passes the request
to the middleware pipeline.

2. The authentication middleware
associates a user with the
current request.

3. The authorization middleware
checks if the request is allowed
to be executed for the user.

5. The response passes back
through each middleware
that ran previously in the
pipeline.

4. If the user is not allowed,
the authorization middleware
will short-circuit the pipeline.

Figure 3.2 Example of a middleware component modifying a request for use later in the pipeline.
Middleware can also short-circuit the pipeline, returning a response before the request reaches later
middleware.

63What is middleware?
As you saw in chapter 2, you define the middleware pipeline in code as part of your
initial application configuration in Startup. You can tailor the middleware pipeline
specifically to your needs—simple apps may need only a short pipeline, whereas large
apps with a variety of features may use much more middleware. Middleware is the fun-
damental source of behavior in your application. Ultimately, the middleware pipeline
is responsible for responding to any HTTP requests it receives.

 Requests are passed to the middleware pipeline as HttpContext objects. As you saw
in chapter 2, the ASP.NET Core web server builds an HttpContext object from an
incoming request, which passes up and down the middleware pipeline. When you’re
using existing middleware to build a pipeline, this is a detail you’ll rarely have to deal
with. But, as you’ll see in the final section of this chapter, its presence behind the
scenes provides a route to exerting extra control over your middleware pipeline.

 You can also think of your middleware pipeline as being a series of concentric
components, similar to a traditional matryoshka (Russian) doll, as shown in figure 3.3.
A request progresses “through” the pipeline by heading deeper into the stack of mid-
dleware until a response is returned. The response then returns through the middle-
ware, passing through them in the reverse order to the request.

Middleware vs. HTTP modules and HTTP handlers
In the previous version of ASP.NET, the concept of a middleware pipeline isn’t used.
Instead, you have HTTP modules and HTTP handlers.

An HTTP handler is a process that runs in response to a request and generates the
response. For example, the ASP.NET page handler runs in response to requests for

You can view middleware
as a series of nested
components. Each layer
can inspect the request
and execute logic. It then
passes the request on to
the next middleware.

next()

next()

// logic

// logic

// logic

// logic

// logic

When middleware
generates a response,
control passes back to
the outer middleware,
and finally the response
is sent to the client.

Figure 3.3 You can also think of middleware as being a series of nested components, where a request is sent
deeper into the middleware, and the response resurfaces out of it. Each middleware can execute logic before
passing the response on to the next middleware and can execute logic after the response has been created, on
the way back out of the stack.

64 CHAPTER 3 Handling requests with the middleware pipeline
That’s pretty much all there is to the concept of middleware. In the next section, I’ll
discuss ways you can combine middleware components to create an application, and
how to use middleware to separate the concerns of your application.

3.2 Combining middleware in a pipeline
Generally speaking, each middleware component has a single primary concern. It will
handle one aspect of a request only. Logging middleware will only deal with logging
the request, authentication middleware is only concerned with identifying the current
user, and static-file middleware is only concerned with returning static files.

 Each of these concerns is highly focused, which makes the components themselves
small and easy to reason about. It also gives your app added flexibility; adding a static-
file middleware doesn’t mean you’re forced into having image-resizing behavior or
authentication. Each of these features is an additional piece of middleware.

 To build a complete application, you compose multiple middleware components
together into a pipeline, as shown in the previous section. Each middleware has access
to the original request, plus any changes made by previous middleware in the pipe-
line. Once a response has been generated, each middleware can inspect and/or mod-
ify the response as it passes back through the pipeline before it’s sent to the user. This
allows you to build complex application behaviors from small, focused components.

 In the rest of this section, you’ll see how to create a middleware pipeline by com-
posing small components together. Using standard middleware components, you’ll
learn to create a holding page and to serve static files from a folder on disk. Finally,
you’ll take another look at the default middleware pipeline you built in chapter 2 and
decompose it to understand why it’s built like it is.

(continued)

.aspx pages. Alternatively, you could write a custom handler that returns resized
images when an image is requested.

HTTP modules handle the cross-cutting concerns of applications, such as security,
logging, or session management. They run in response to the lifecycle events that a
request progresses through when it’s received by the server. Examples of events
include BeginRequest, AcquireRequestState, and PostAcquireRequestState.

This approach works, but it’s sometimes tricky to reason about which modules will
run at which points. Implementing a module requires a relatively detailed understand-
ing of the state of the request at each individual lifecycle event.

The middleware pipeline makes understanding your application far simpler. The
pipeline is completely defined in code, specifying which components should run and
in which order. Behind the scenes, the middleware pipeline in ASP.NET Core is sim-
ply a chain of method calls, where each middleware function calls the next in the
pipeline.

65Combining middleware in a pipeline
3.2.1 Simple pipeline scenario 1: A holding page

For your first app, and your first middleware pipeline, you’ll learn how to create an
app consisting of a holding page. This can be useful when you’re first setting up your
application, to ensure it’s processing requests without errors.

TIP Remember, you can view the application code for this book in the GitHub
repository at https://github.com/andrewlock/asp-dot-net-core-in-action-2e.

In previous chapters, I’ve mentioned that the ASP.NET Core framework is composed
of many small, individual libraries. You typically add a piece of middleware by refer-
encing a package in your application’s .csproj project file and configuring the middle-
ware in the Configure method of your Startup class. Microsoft ships many standard
middleware components with ASP.NET Core for you to choose from, and you can also
use third-party components from NuGet and GitHub, or you can build your own cus-
tom middleware.

NOTE I’ll discuss building custom middleware in chapter 19.

Unfortunately, there isn’t a definitive list of middleware available, but you can view the
source code for all the middleware that comes as part of ASP.NET Core in the main
ASP.NET Core GitHub repository (https://github.com/aspnet/aspnetcore). You can
find most of the middleware in the src/Middleware folder, though some middleware
is in other folders where it forms part of a larger feature. For example, the authentica-
tion and authorization middleware can be found in the src/Security folder instead.
Alternatively, with a bit of searching on https://nuget.org you can often find middle-
ware with the functionality you need.

 In this section, you’ll see how to create one of the simplest middleware pipelines,
consisting of WelcomePageMiddleware only. WelcomePageMiddleware is designed to
quickly provide a sample page when you’re first developing an application, as you can
see in figure 3.4. You wouldn’t use it in a production app, as you can’t customize the
output, but it’s a single, self-contained middleware component you can use to ensure
your application is running correctly.

TIP WelcomePageMiddleware is included as part of the base ASP.NET Core
framework, so you don’t need to add a reference to any additional NuGet
packages.

Even though this application is simple, the exact same process you’ve seen before
occurs when the application receives an HTTP request, as shown in figure 3.5.

 The request passes to the ASP.NET Core web server, which builds a representation
of the request and passes it to the middleware pipeline. As it’s the first (only!) middle-
ware in the pipeline, WelcomePageMiddleware receives the request and must decide
how to handle it. The middleware responds by generating an HTML response, no
matter what request it receives. This response passes back to the ASP.NET Core web
server, which forwards it on to the user to display in their browser.

https://github.com/andrewlock/asp-dot-net-core-in-action-2e
https://github.com/aspnet/aspnetcore
https://nuget.org

66 CHAPTER 3 Handling requests with the middleware pipeline
Figure 3.4 The Welcome page middleware response. Every request to the application, at any path, will
return the same Welcome page response.

1. The browser makes an
HTTP request to the server.

6. The HTTP response containing
the HTML is sent to the browser.

2. The request is forwarded by
IIS/Nginx/Apache to ASP.NET Core.

3. The ASP.NET Core web server
receives the HTTP request,
builds an HttpContext object,
and passes it to the middleware
pipeline.

4. The request is handled by the
welcome page middleware,
which generates an HTML
response and returns it
to the pipeline.

ASP.NET Core application

5. The response is passed to
the ASP.NET Core web server.

Figure 3.5 WelcomePageMiddleware handles a request. The request passes from the reverse proxy to the
ASP.NET Core web server and, finally, to the middleware pipeline, which generates an HTML response.

67Combining middleware in a pipeline
As with all ASP.NET Core applications, you define the middleware pipeline in the
Configure method of Startup by adding middleware to an IApplicationBuilder
object. To create your first middleware pipeline, consisting of a single middleware
component, you need just a single method call.

using Microsoft.AspNetCore.Builder;
namespace CreatingAHoldingPage
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app)
 {
 app.UseWelcomePage();
 }
 }
}

As you can see, the Startup class for this application is very simple. The application
has no configuration and no services, so Startup doesn’t have a constructor or a
ConfigureServices method. The only required method is Configure, in which you
call UseWelcomePage.

 You build the middleware pipeline in ASP.NET Core by calling methods on
IApplicationBuilder, but this interface doesn’t define methods like UseWelcomePage
itself. Instead, these are extension methods.

 Using extension methods allows you to effectively add functionality to the
IApplicationBuilder class, while keeping their implementations isolated from it.
Under the hood, the methods are typically calling another extension method to add
the middleware to the pipeline. For example, behind the scenes, the UseWelcomePage
method adds the WelcomePageMiddleware to the pipeline using

UseMiddleware<WelcomePageMiddleware>();

This convention of creating an extension method for each piece of middleware and
starting the method name with Use is designed to improve discoverability when add-
ing middleware to your application.2 ASP.NET Core includes a lot of middleware as
part of the core framework, so you can use IntelliSense in Visual Studio and other
IDEs to view all the middleware available, as shown in figure 3.6.

 Calling the UseWelcomePage method adds the WelcomePageMiddleware as the next
middleware in the pipeline. Although you’re only using a single middleware compo-
nent here, it’s important to remember that the order in which you make calls to

Listing 3.1 Startup for a Welcome page middleware pipeline

2 The downside to this approach is that it can hide exactly which middleware is being added to the pipeline.
When the answer isn’t clear, I typically search for the source code of the extension method directly on GitHub
https://github.com/aspnet/aspnetcore.

The Startup class is
very simple for this
basic application.

The Configure
method is used
to define the
middleware
pipeline.

The only middleware
in the pipeline

https://github.com/aspnet/aspnetcore

68 CHAPTER 3 Handling requests with the middleware pipeline
IApplicationBuilder in Configure defines the order in which the middleware will
run in the pipeline.

WARNING Always take care when adding middleware to the pipeline and con-
sider the order in which it will run. A component can only access data created
by middleware that comes before it in the pipeline.

This is the most basic of applications, returning the same response no matter which
URL you navigate to, but it shows how easy it is to define your application behavior
using middleware. Now we’ll make things a little more interesting and return differ-
ent responses when you make requests to different paths.

3.2.2 Simple pipeline scenario 2: Handling static files

In this section, I’ll show you how to create one of the simplest middleware pipelines
you can use for a full application: a static-file application.

 Most web applications, including those with dynamic content, serve a number of
pages using static files. Images, JavaScript, and CSS stylesheets are normally saved to
disk during development and are served up when requested, normally as part of a full
HTML page request.

 For now, you’ll use StaticFileMiddleware to create an application that only
serves static files from the wwwroot folder when requested, as shown in figure 3.7. In
this example, an image called moon.jpg exists in the wwwroot folder. When you
request the file using the /moon.jpg path, it’s loaded and returned as the response to
the request.

 If the user requests a file that doesn’t exist in the wwwroot folder, such as miss-
ing.jpg, the static-file middleware won’t serve a file. Instead, a 404 HTTP error code
response will be sent to the user’s browser, which will show its default “File Not Found”
page, as shown in figure 3.8.

By convention, extension
methods to add middleware
to the pipeline start with Use.

IntelliSense allows you
to easily view all the
middleware currently
available to add.

Figure 3.6 IntelliSense makes it easy to view all the middleware available to add to your
middleware pipeline.

69Combining middleware in a pipeline
NOTE How this page looks will depend on your browser. In some browsers,
such as Internet Explorer (IE), you might see a completely blank page.

Building the middleware pipeline for this application is easy. It consists of a single
piece of middleware, StaticFileMiddleware, as you can see in the following listing.
You don’t need any services, so configuring the middleware pipeline in Configure
with UseStaticFiles is all that’s required.

FILE

1. The static-file middleware
handles the request by
returning the file requested.

2. The file stream is sent back
through the middleware pipeline
and out to the browser.

3. The browser displays the file
returned in the response.

FILE

Figure 3.7 Serving a static image file using the static-file middleware

404

1. The static-file middleware
handles the request by
trying to return the requested
file, but as it doesn’t exist, it
returns a raw 404 response.

2. The 404 HTTP error code
is sent back through the
middleware pipeline to
the user.

3. The browser displays its
default “File Not Found”
error page.

!

404!

Figure 3.8 Returning a 404 to the browser when a file doesn’t exist. The requested file did not
exist in the wwwroot folder, so the ASP.NET Core application returned a 404 response. The
browser, Microsoft Edge in this case, will then show the user a default “File Not Found” error.

70 CHAPTER 3 Handling requests with the middleware pipeline
using Microsoft.AspNetCore.Builder;

namespace CreatingAStaticFileWebsite
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app)
 {
 app.UseStaticFiles();
 }
 }

TIP Remember, you can view the application code for this book in the GitHub
repository at https://github.com/andrewlock/asp-dot-net-core-in-action-2e.

When the application receives a request, the ASP.NET Core web server handles it and
passes it to the middleware pipeline. StaticFileMiddleware receives the request and
determines whether or not it can handle it. If the requested file exists, the middleware
handles the request and returns the file as the response, as shown in figure 3.9.

Listing 3.2 Startup for a static-file middleware pipeline

The Startup class is very
simple for this basic
static-file application.

The Configure
method is used
to define the
middleware
pipeline.

The only middleware
in the pipeline

1. An HTTP request is made
for the file moon.jpg.

7. The HTTP response containing
the file is sent to the browser.

2. The request is forwarded by
IIS/Nginx/Apache to ASP.NET Core.

3. The ASP.NET Core web server
receives the HTTP request,
builds an HttpContext object,
and passes it to the middleware.

5. As the moon.jpg file exists, it is
returned as the response to the
request.

4. The static-file middleware
checks if the moon.jpg file
exists in the wwwroot folder,
and if so retrieves it.

6. The response is passed to the
ASP.NET Core web server.

Figure 3.9 StaticFileMiddleware handles a request for a file. The middleware checks the wwwroot folder
to see if the requested moon.jpg file exists. The file exists, so the middleware retrieves it and returns it as the
response to the web server and, ultimately, to the browser.

https://github.com/andrewlock/asp-dot-net-core-in-action-2e

71Combining middleware in a pipeline
If the file doesn’t exist, the request effectively passes through the static-file middleware
unchanged. But wait, you only added one piece of middleware, right? Surely you can’t
pass the request through to the next middleware if there isn’t another one?

 ASP.NET Core automatically adds a “dummy” piece of middleware to the end of
the pipeline. This middleware always returns a 404 response if it’s called.

TIP Remember, if no middleware generates a response for a request, the
pipeline will automatically return a simple 404 error response to the browser.

This basic ASP.NET Core application allows you to easily see the behavior of the
ASP.NET Core middleware pipeline and the static-file middleware in particular, but
it’s unlikely your applications will be as simple as this. It’s more likely that static files
will form one part of your middleware pipeline. In the next section you’ll see how to
combine multiple middleware as we look at a simple Razor Pages application.

HTTP response status codes
Every HTTP response contains a status code and, optionally, a reason phrase describ-
ing the status code. Status codes are fundamental to the HTTP protocol and are a
standardized way of indicating common results. A 200 response, for example, means
the request was successfully answered, whereas a 404 response indicates that the
resource requested couldn’t be found.

Status codes are always three digits long and are grouped into five different classes,
based on the first digit:

 1xx—Information. Not often used, provides a general acknowledgment.
 2xx—Success. The request was successfully handled and processed.
 3xx—Redirection. The browser must follow the provided link, to allow the user

to log in, for example.
 4xx—Client error. There was a problem with the request. For example, the

request sent invalid data or the user isn’t authorized to perform the request.
 5xx—Server error. There was a problem on the server that caused the request

to fail.

These status codes typically drive the behavior of a user’s browser. For example, the
browser will handle a 301 response automatically, by redirecting to the provided new
link and making a second request, all without the user’s interaction.

Error codes are found in the 4xx and 5xx classes. Common codes include a 404
response when a file couldn’t be found, a 400 error when a client sends invalid data
(an invalid email address for example), and a 500 error when an error occurs on the
server. HTTP responses for error codes may or may not include a response body,
which is content to display when the client receives the response.

72 CHAPTER 3 Handling requests with the middleware pipeline
3.2.3 Simple pipeline scenario 3: A Razor Pages application

By this point, you should have a decent grasp of the middleware pipeline, insofar as
understanding that it defines your application’s behavior. In this section you’ll see
how to combine several standard middleware components to form a pipeline. As
before, this is performed in the Configure method of Startup by adding middleware
to an IApplicationBuilder object.

 You’ll begin by creating a basic middleware pipeline that you’d find in a typical
ASP.NET Core Razor Pages template and then extend it by adding middleware. The
output when you navigate to the home page of the application is shown in figure 3.10—
identical to the sample application shown in chapter 2.

Creating this application requires only four pieces of middleware: routing middleware
to choose a Razor Page to execute, endpoint middleware to generate the HTML from
a Razor Page, static-file middleware to serve the CSS and image files from the wwwroot
folder, and an exception handler middleware to handle any errors that might occur.

 The configuration of the middleware pipeline for the application occurs in the
Configure method of Startup, as always, and is shown in the following listing. As well
as the middleware configuration, this listing also shows the call to AddRazorPages() in
ConfigureServices, which is required when using Razor Pages. You’ll learn more
about service configuration in chapter 10.

Figure 3.10 A simple Razor Pages application. The application uses only four pieces of middleware:
routing middleware to choose a Razor Page to run, endpoint middleware to generate the HTML from a
Razor Page, static-file middleware to serve the CSS files, and an exception handler middleware to
capture any errors.

73Combining middleware in a pipeline
public class Startup
{
 public void ConfigureServices(IServiceCollection services
 {
 services.AddRazorPages();
 }
 public void Configure(IApplicationBuilder app)
 {
 app.UseExceptionHandler("/Error");
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

The addition of middleware to IApplicationBuilder to form the pipeline should be
familiar to you now, but there are a couple of points worth noting in this example.
First, all the methods for adding middleware start with Use. As I mentioned earlier,
this is thanks to the convention of using extension methods to extend the functional-
ity of IApplicationBuilder; by prefixing the methods with Use, they should be easier
to discover.

 Another important point about this listing is the order of the Use methods in the
Configure method. The order in which you add the middleware to the IApplication-
Builder object is the order in which they’re added to the pipeline. This creates a pipe-
line similar to that shown in figure 3.11.

 The exception handler middleware is called first, and it passes the request on to
the static-file middleware. The static-file handler will generate a response if the
request corresponds to a file; otherwise it will pass the request on to the routing mid-
dleware. The routing middleware selects a Razor Page based on the request URL, and
the endpoint middleware executes the selected Razor Page. If no Razor Page can han-
dle the requested URL, the automatic dummy middleware returns a 404 response.

NOTE In versions 1.x and 2.x of ASP.NET Core, the routing and endpoint
middleware were combined into a single “MVC” middleware. Splitting the
responsibilities for routing from execution makes it possible to insert middle-
ware between the routing and endpoint middleware. I discuss routing further
in chapter 5.

The impact of ordering can most obviously be seen when you have two pieces of
middleware that are both listening for the same path. For example, the endpoint mid-
dleware in the example pipeline currently responds to a request to the homepage of
the application (with the "/" path) by generating the HTML response shown previ-
ously in figure 3.10. Figure 3.12 shows what happens if you re-introduce a piece of

Listing 3.3 A basic middleware pipeline for a Razor Pages application

74 CHAPTER 3 Handling requests with the middleware pipeline
The error handling middleware was added first,
so it is the first (and last) middleware to process
the request.

The static-file middleware is the second middleware
in the pipeline. It handles requests for static files
before they get to the endpoint middleware.

The routing middleware attempts to find a
Razor Page endpoint that will handle the request.

The endpoint middleware is the last in the pipeline.
If there is no Razor Page to handle the request,
the pipeline returns a 404 response.

Figure 3.11 The middleware pipeline for the example application in listing 3.3. The
order in which you add the middleware to IApplicationBuilder defines the
order of the middleware in the pipeline.

Figure 3.12 The Welcome page middleware response. The Welcome page middleware comes before
the endpoint middleware, so a request to the home page returns the Welcome page middleware instead
of the Razor Pages response.

75Combining middleware in a pipeline
middleware you saw previously, WelcomePageMiddleware, and configure it to respond
to the "/" path as well.

 As you saw in section 3.2.1, WelcomePageMiddleware is designed to return a fixed
HTML response, so you wouldn’t use it in a production app, but it illustrates the point
nicely. In the following listing, it’s added to the start of the middleware pipeline and
configured to respond only to the "/" path.

public class Startup
{
 public void ConfigureServices(IServiceCollection services
 {
 services.AddRazorPages();
 }
 public void Configure(IApplicationBuilder app)
 {
 app.UseWelcomePage("/");
 app.UseExceptionHandler("/Error");
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

Even though you know the endpoint middleware can also handle the "/" path, Welcome-
PageMiddleware is earlier in the pipeline, so it returns a response when it receives the
request to "/", short-circuiting the pipeline, as shown in figure 3.13. None of the
other middleware in the pipeline runs for the request, so none has an opportunity to
generate a response.

 If you moved WelcomePageMiddleware to the end of the pipeline, after the call to
UseEndpoints, you’d have the opposite situation. Any requests to "/" would be han-
dled by the endpoint middleware and you’d never see the Welcome page.

TIP You should always consider the order of middleware when adding it to
the Configure method. Middleware added earlier in the pipeline will run
(and potentially return a response) before middleware added later.

All the examples shown so far attempt to handle an incoming request and generate a
response, but it’s important to remember that the middleware pipeline is bidirec-
tional. Each middleware component gets an opportunity to handle both the incoming
request and the outgoing response. The order of middleware is most important for
those components that create or modify the outgoing response.

 In the previous example, I included ExceptionHandlerMiddleware at the start of
the application’s middleware pipeline, but it didn’t seem to do anything. Error handling

Listing 3.4 Adding WelcomePageMiddleware to the pipeline

WelcomePageMiddleware handles all
requests to the "/" path and returns
a sample HTML response.

Requests to "/" will never
reach the endpoint
middleware.

76 CHAPTER 3 Handling requests with the middleware pipeline
middleware characteristically ignores the incoming request as it arrives in the pipe-
line, and instead inspects the outgoing response, only modifying it when an error has
occurred. In the next section, I’ll detail the types of error handling middleware that
are available to use with your application and when to use them.

1. An HTTP request is made to the URL
http://localhost:49392/.

6. The HTTP response containing the
welcome page is sent to the browser.

2. The Request is forwarded by
IIS/Nginx/Apache to ASP.NET Core.

3. The ASP.NET Core web server receives
the HTTP request and passes it to the
middleware. 5. The HTML response is

passed back to ASP.NET
Core web server.

4. The Welcome page middleware handles
the request. It returns an HTML response,
short-circuiting the pipeline.

None of the other middleware is run for
the request, so the endpoint middleware
does not get a chance to handle the request.

Figure 3.13 Overview of the application handling a request to the "/" path. The welcome page middleware
is first in the middleware pipeline, so it receives the request before any other middleware. It generates an
HTML response, short-circuiting the pipeline. No other middleware runs for the request.

77Handling errors using middleware
3.3 Handling errors using middleware
Errors are a fact of life when developing applications. Even if you write perfect code,
as soon as you release and deploy your application, users will find a way to break it,
whether by accident or intentionally! The important thing is that your application
handles these errors gracefully, providing a suitable response to the user, and doesn’t
cause your whole application to fail.

 The design philosophy for ASP.NET Core is that every feature is opt-in. So, as error
handling is a feature, you need to explicitly enable it in your application. Many differ-
ent types of errors could occur in your application, and there are many different ways
to handle them, but in this section I focus on two: exceptions and error status codes.

 Exceptions typically occur whenever you find an unexpected circumstance. A typi-
cal (and highly frustrating) exception you’ll no doubt have experienced before is
NullReferenceException, which is thrown when you attempt to access an object that
hasn’t been initialized.3 If an exception occurs in a middleware component, it propa-
gates up the pipeline, as shown in figure 3.14. If the pipeline doesn’t handle the excep-
tion, the web server will return a 500 status code back to the user.

3 C# 8.0 introduced non-nullable reference types. These provide a way to handle null values more clearly, with
the promise of finally ridding .NET of NullReferenceExceptions! It will take a while for that to come true,
as the feature is opt-in and requires library support, but the future’s bright. See the documentation to get
started: http://mng.bz/7V0g.

5. If the exception is not handled by
the middleware, a raw 500 status
code is sent to the browser.

3. The endpoint middleware
throws an exception during

1. ASP.NET Core web server passes
the request to the middleware
pipeline.

2. Each middleware component
processes the request in turn.

4. The exception propagates back
through the pipeline, giving each
middleware the opportunity to
handle it.

500

execution.

Figure 3.14 An exception in the endpoint middleware propagates through the pipeline. If the exception
isn’t caught by middleware earlier in the pipeline, then a 500 “Server error” status code is sent to the
user’s browser.

http://mng.bz/7V0g

78 CHAPTER 3 Handling requests with the middleware pipeline
In some situations, an error won’t cause an exception. Instead, middleware might gen-
erate an error status code. One such case is when a requested path isn’t handled. In
that situation, the pipeline will return a 404 error, which results in a generic, unfriendly
page being shown to the user, as you saw in figure 3.8. Although this behavior is “cor-
rect,” it doesn’t provide a great experience for users of your application.

 Error handling middleware attempts to address these problems by modifying the
response before the app returns it to the user. Typically, error handling middleware
either returns details of the error that occurred, or it returns a generic, but friendly,
HTML page to the user. You should always place error handling middleware early in
the middleware pipeline to ensure it will catch any errors generated in subsequent
middleware, as shown in figure 3.15. Any responses generated by middleware earlier
in the pipeline than the error handling middleware can’t be intercepted.

 The remainder of this section shows several types of error handling middleware
that are available for use in your application. They are available as part of the base
ASP.NET Core framework, so you don’t need to reference any additional NuGet pack-
ages to use them.

3.3.1 Viewing exceptions in development: DeveloperExceptionPage

When you’re developing an application, you typically want access to as much informa-
tion as possible when an error occurs somewhere in your app. For that reason, Micro-
soft provides DeveloperExceptionPageMiddleware, which can be added to your
middleware pipeline using

app.UseDeveloperExceptionPage();

When an exception is thrown and propagates up the pipeline to this middleware, it
will be captured. The middleware then generates a friendly HTML page, which it
returns with a 500 status code to the user, as shown in figure 3.16. This page contains a
variety of details about the request and the exception, including the exception stack
trace, the source code at the line the exception occurred, and details of the request,
such as any cookies or headers that had been sent.

 Having these details available when an error occurs is invaluable for debugging a
problem, but they also represent a security risk if used incorrectly. You should never
return more details about your application to users than absolutely necessary, so you
should only ever use DeveloperExceptionPage when developing your application.
The clue is in the name!

WARNING Never use the developer exception page when running in produc-
tion. Doing so is a security risk as it could publicly reveal details about your
application’s code, making you an easy target for attackers.

79Handling errors using middleware
HTML

500

4. The error handling middleware
can modify the raw response
to a user-friendly HTML page.

1. If middleware is placed after
the error handling middleware
in the pipeline, any response it
generates will pass through the
error handling middleware.

2. For example, imagine an error
occurs in an image-resizing
middleware, which then
generates a raw 500 error
response.

3. If the image-resizing middleware
generates a raw 500 status code,
it will be sent directly back to the
user unmodified.

2. The error handling middleware
processes the response of
middleware later in the pipeline,
but it never sees the response
generated by the image-resizing
middleware.

1. If the image-resizing middleware is
placed early in the pipeline, before
the error handling middleware,
then any error codes returned by
the middleware will not be modified.

3. This raw response passes
through the error handling
middleware as it passes back
through the pipeline.

HTML

!

500!

500!

Figure 3.15 Error handling middleware should be placed early in the pipeline to catch raw status code errors.
In the first case, the error handling middleware is placed before the image-resizing middleware, so it can
replace raw status code errors with a user-friendly error page. In the second case, the error handling
middleware is placed after the image-resizing middleware, so raw error status codes can’t be modified.

80 CHAPTER 3 Handling requests with the middleware pipeline
If the developer exception page isn’t appropriate for production use, what should you
use instead? Luckily, there’s another general-purpose error handling middleware you
can use in production. It’s one that you’ve already seen and used: ExceptionHandler-
Middleware.

3.3.2 Handling exceptions in production: ExceptionHandlerMiddleware

The developer exception page is handy when developing your applications, but you
shouldn’t use it in production as it can leak information about your app to potential
attackers. You still want to catch errors, though; otherwise users will see unfriendly
error pages or blank pages, depending on the browser they’re using.

 You can solve this problem by using ExceptionHandlerMiddleware. If an error
occurs in your application, the user will be presented with a custom error page that’s
consistent with the rest of the application, but that only provides the necessary details
about the error. For example, a custom error page, such as the one shown in figure 3.17,
can keep the look and feel of the application by using the same header, displaying the
currently logged-in user, and displaying an appropriate message to the user instead of
the full details of the exception.

 If you were to peek at the Configure method of almost any ASP.NET Core applica-
tion, you’d almost certainly find the developer exception page used in combination
with ExceptionHandlerMiddleware in a similar manner to that shown in listing 3.5.

Title indicating the problem

Buttons to click that reveal
further details about the
request that caused the
exception

Detail of the exception
that occurred

Full stack trace for
the exception

Location in the code where
the exception occured

Code that caused
the exception

Figure 3.16 The developer exception page shows details about the exception when it occurs during
the process of a request. The location in the code that caused the exception, the source code line
itself, and the stack trace are all shown by default. You can also click the Query, Cookies, Headers, or
Routing buttons to reveal further details about the request that caused the exception.

81Handling errors using middleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 }

 // additional middleware configuration
}

As well as demonstrating how to add ExceptionHandlerMiddleware to your middle-
ware pipeline, this listing shows that it’s perfectly acceptable to configure different
middleware pipelines depending on the environment when the application starts up.
You could also vary your pipeline based on other values, such as settings loaded from
configuration.

NOTE You’ll see how to use configuration values to customize the middle-
ware pipeline in chapter 11.

When adding ExceptionHandlerMiddleware to your application, you’ll typically pro-
vide a path to the custom error page that will be displayed to the user. In the example
in listing 3.5, you used an error handling path of "/Error":

app.UseExceptionHandler("/Error");

Listing 3.5 Configuring exception handling for development and production

Menu bar consistent
with the rest of your
application

Error page contains
appropriate details
for the user

Dynamic details such as the current
user can be shown on the error page.

Footer consistent with
the rest of your application

The default error page
reminds you about the
developer exception page.
You would change this text
in your application to
something more generic.

Figure 3.17 A custom error page created by ExceptionHandlerMiddleware. The custom error
page can keep the same look and feel as the rest of the application by reusing elements such as the
header and footer. More importantly, you can easily control the error details displayed to users.

Configure a different pipeline
when running in development.

The developer exception page
should only be used when
running in development mode.

When in production,
ExceptionHandlerMiddleware
is added to the pipeline.

82 CHAPTER 3 Handling requests with the middleware pipeline
ExceptionHandlerMiddleware will invoke this path after it captures an exception, in
order to generate the final response. The ability to dynamically generate a response is
a key feature of ExceptionHandlerMiddleware—it allows you to re-execute a middle-
ware pipeline in order to generate the response sent to the user.

 Figure 3.18 shows what happens when ExceptionHandlerMiddleware handles an
exception. It shows the flow of events when the Index.chstml Razor Page generates an
exception when a request is made to the "/" path. The final response returns an error
status code but also provides an HTML response to display to the user, using the
"/Error" path.

 The sequence of events when an exception occurs somewhere in the middleware
pipeline after ExceptionHandlerMiddleware is as follows:

1 A piece of middleware throws an exception.
2 ExceptionHandlerMiddleware catches the exception.
3 Any partial response that has been defined is cleared.
4 The middleware overwrites the request path with the provided error handling

path.
5 The middleware sends the request back down the pipeline, as though the origi-

nal request had been for the error handling path.
6 The middleware pipeline generates a new response as normal.
7 When the response gets back to ExceptionHandlerMiddleware, it modifies the

status code to a 500 error and continues to pass the response up the pipeline to
the web server.

The main advantage that re-executing the pipeline brings is the ability to have your
error messages integrated into your normal site layout, as shown previously in figure 3.17.
It’s certainly possible to return a fixed response when an error occurs, but you
wouldn’t be able to have a menu bar with dynamically generated links or display the
current user’s name in the menu. By re-executing the pipeline, you can ensure that all
the dynamic areas of your application are correctly integrated, as if the page was a
standard page of your site.

NOTE You don’t need to do anything other than add ExceptionHandler-
Middleware to your application and configure a valid error handling path to
enable re-executing the pipeline. The middleware will catch the exception
and re-execute the pipeline for you. Subsequent middleware will treat the re-
execution as a new request, but previous middleware in the pipeline won’t be
aware anything unusual happened.

Re-executing the middleware pipeline is a great way to keep consistency in your web
application for error pages, but there are some gotchas to be aware of. First, middle-
ware can only modify a response generated further down the pipeline if the response
hasn’t yet been sent to the client. This can be a problem if, for example, an error occurs
while ASP.NET Core is sending a static file to a client. In that case, where bytes have

83Handling errors using middleware
The exception handler middleware
uses the new response but updates
the status code of the response to a
500 status code. This indicates to the
browser that an error occurred, but
the user sees a friendly web page
indicating something went wrong.

HTML

HTML

HTML

The ExceptionHandlerMiddleware
ignores the request initially.

The endpoint middleware throws
an exception in the Index.cshtml
Razor Page while handling the request.

The exception propagates up the pipeline and
is caught by the ExceptionHandlerMiddleware.
This changes the path of the request to the
error path /Error and sends the request
down the middleware pipeline again.

The middleware pipeline executes
the new error path and generates
a response as usual. In this case,
the endpoint middleware generates
an HTML response.

A request is passed to the pipeline
for the URL path /.

/Error

/Error

HTML

!

!

Figure 3.18 ExceptionHandlerMiddleware handling an exception to generate an HTML
response. A request to the / path generates an exception, which is handled by the middleware.
The pipeline is re-executed using the /Error path to generate the HTML response.

84 CHAPTER 3 Handling requests with the middleware pipeline
already begun to be sent, the error handling middleware won’t be able to run, as it
can’t reset the response. Generally speaking, there’s not a lot you can do about this
issue, but it’s something to be aware of.

 A more common problem occurs when the error handling path throws an error
during the re-execution of the pipeline. Imagine there’s a bug in the code that gener-
ates the menu at the top of the page:

1 When the user reaches your homepage, the code for generating the menu bar
throws an exception.

2 The exception propagates up the middleware pipeline.
3 When reached, ExceptionHandlerMiddleware captures it and the pipe is re-

executed using the error handling path.
4 When the error page executes, it attempts to generate the menu bar for your

app, which again throws an exception.
5 The exception propagates up the middleware pipeline.
6 ExceptionHandlerMiddleware has already tried to intercept a request, so it will

let the error propagate all the way to the top of the middleware pipeline.
7 The web server returns a raw 500 error, as though there was no error handling

middleware at all.

Thanks to this problem, it’s often good practice to make your error handling pages as
simple as possible, to reduce the possibility of errors occurring.

WARNING If your error handling path generates an error, the user will see a
generic browser error. It’s often better to use a static error page that will
always work, rather than a dynamic page that risks throwing more errors.

ExceptionHandlerMiddleware and DeveloperExceptionPageMiddleware are great
for catching exceptions in your application, but exceptions aren’t the only sort of
errors you’ll encounter. In some cases, your middleware pipeline will return an HTTP
error status code in the response. It’s important to handle both exceptions and error
status codes to provide a coherent user experience.

3.3.3 Handling other errors: StatusCodePagesMiddleware

Your application can return a wide range of HTTP status codes that indicate some sort
of error state. You’ve already seen that a 500 “server error” is sent when an exception
occurs and isn’t handled and that a 404 “file not found” error is sent when a URL isn’t
handled by any middleware. 404 errors, in particular, are common, often occurring
when a user enters an invalid URL.

TIP As well as indicating a completely unhandled URL, 404 errors are often
used to indicate that a specific requested object was not found. For example,
a request for the details of a product with an ID of 23 might return a 404 if no
such product exists.

85Handling errors using middleware
If you don’t handle these status codes, users will see a generic error page, such as in
figure 3.19, which may leave many confused and thinking your application is broken.
A better approach would be to handle these error codes and return an error page
that’s in keeping with the rest of your application or, at the very least, doesn’t make
your application look broken.

Microsoft provides StatusCodePagesMiddleware for handling this use case. As with all
error handling middleware, you should add it early in your middleware pipeline, as it
will only handle errors generated by later middleware components.

 You can use the middleware a number of different ways in your application. The
simplest approach is to add the middleware to your pipeline without any additional
configuration, using

app.UseStatusCodePages();

With this method, the middleware will intercept any response that has an HTTP status
code that starts with 4xx or 5xx and has no response body. For the simplest case, where
you don’t provide any additional configuration, the middleware will add a plain text
response body, indicating the type and name of the response, as shown in figure 3.20.

Figure 3.19 A generic browser error page. If the middleware pipeline can’t handle a request, it will
return a 404 error to the user. The message is of limited usefulness to users and may leave many
confused or thinking your web application is broken.

86 CHAPTER 3 Handling requests with the middleware pipeline
This is arguably worse than the default message at this point, but it is a starting point
for providing a more consistent experience to users.

A more typical approach to using StatusCodePagesMiddleware in production is to re-
execute the pipeline when an error is captured, using a similar technique to the
ExceptionHandlerMiddleware. This allows you to have dynamic error pages that fit
with the rest of your application. To use this technique, replace the call to UseStatus-
CodePages with the following extension method:

app.UseStatusCodePagesWithReExecute("/{0}");

This extension method configures StatusCodePagesMiddleware to re-execute the
pipeline whenever a 4xx or 5xx response code is found, using the provided error han-
dling path. This is similar to the way ExceptionHandlerMiddleware re-executes the
pipeline, as shown in figure 3.21.

 Note that the error handling path "/{0}" contains a format string token, {0}.
When the path is re-executed, the middleware will replace this token with the status
code number. For example, a 404 error would re-execute the /404 path. The handler
for the path (typically a Razor Page) has access to the status code and can optionally
tailor the response, depending on the status code. You can choose any error handling
path, as long as your application knows how to handle it.

NOTE You’ll learn about how routing maps request paths to Razor Pages in
chapter 5.

Figure 3.20 Status code error page for a 404 error. You generally won’t use this version of the
middleware in production as it doesn’t provide a great user experience, but it demonstrates that the
error codes are being correctly intercepted.

87Handling errors using middleware
The StatusCodePagesMiddleware
ignores the request initially.

The endopint middleware returns
an error status code, in this case,
a 404 response.

The middleware pipeline executes
the new error path and generates
a response as usual. In this case,
the endpoint middleware generates
an HTML response.

A request is passed to the pipeline
for the URL path /.

/

/404

/

/404

404

The response propagates up the pipeline and is
intercepted by the StatusCodePagesMiddleware.
This changes the path of the request to the error
path /404 and sends the request down the
middleware pipeline again.

The StatusCodePagesMiddleware
uses the new response but updates
the status code of the response to a
404 status code. This indicates to the
browser that an error occurred, but
the user sees a friendly web page
indicating something went wrong.

HTML

HTML

HTML!

HTML!

Figure 3.21 StatusCodePagesMiddleware re-executing the pipeline to generate an HTML body
for a 404 response. A request to the / path returns a 404 response, which is handled by the status
code middleware. The pipeline is re-executed using the /404 path to generate the HTML response.

88 CHAPTER 3 Handling requests with the middleware pipeline
With this approach in place, you can create different error pages for different error
codes, such as the 404-specific error page shown in figure 3.22. This technique
ensures your error pages are consistent with the rest of your application, including
any dynamically generated content, while also allowing you to tailor the message for
common errors.

WARNING As before, when re-executing the pipeline, you must be careful
your error handling path doesn’t generate any errors.

You can use StatusCodePagesMiddleware in combination with other exception han-
dling middleware by adding both to the pipeline. StatusCodePagesMiddleware will
only modify the response if no response body has been written. So if another compo-
nent, such as ExceptionHandlerMiddleware, returns a message body along with an
error code, it won’t be modified.

NOTE StatusCodePagesMiddleware has additional overloads that let you exe-
cute custom middleware when an error occurs, instead of re-executing a Razor
Pages path.

Error handling is essential when developing any web application; errors happen, and
you need to handle them gracefully. But depending on your application, you may not
always want your error handling middleware to generate HTML pages.

Figure 3.22 An error status code page for a missing file. When an error code is detected (in this case,
a 404 error), the middleware pipeline is re-executed to generate the response. This allows dynamic
portions of your web page to remain consistent on error pages.

89Summary
3.3.4 Error handling middleware and Web APIs

ASP.NET Core isn’t only great for creating user-facing web applications, it’s also great
for creating HTTP services that can be accessed from another server application, from
a mobile app, or from a user’s browser when running a client-side single-page applica-
tion. In all these cases, you probably won’t be returning HTML to the client, but
rather XML or JSON.

 In that situation, if an error occurs, you probably don’t want to be sending back a
big HTML page saying, “Oops, something went wrong.” Returning an HTML page to
an application that’s expecting JSON could easily break it unexpectedly. Instead, the
HTTP 500 status code and a JSON body describing the error is more useful to a con-
suming application. Luckily, ASP.NET Core allows you to do exactly this when you cre-
ate Web API controllers.

NOTE I discuss MVC and Web API controllers in chapter 4. I discuss Web
APIs and handling errors in detail in chapter 9.

That brings us to the end of middleware in ASP.NET Core for now. You’ve seen how to
use and compose middleware to form a pipeline, as well as how to handle errors in
your application. This will get you a long way when you start building your first ASP.NET
Core applications. Later you’ll learn how to build your own custom middleware, as
well as how to perform complex operations on the middleware pipeline, such as fork-
ing it in response to specific requests.

 In the next chapter, you’ll look in more depth at Razor Pages, and at how they
can be used to build websites. You’ll also learn about the MVC design pattern, its
relationship with Razor Pages in ASP.NET Core, and when to choose one approach
over the other.

Summary
 Middleware has a similar role to HTTP modules and handlers in ASP.NET but

is more easily reasoned about.
 Middleware is composed in a pipeline, with the output of one middleware pass-

ing to the input of the next.
 The middleware pipeline is two-way: requests pass through each middleware on

the way in, and responses pass back through in the reverse order on the way out.
 Middleware can short-circuit the pipeline by handling a request and returning

a response, or it can pass the request on to the next middleware in the pipeline.
 Middleware can modify a request by adding data to, or changing, the Http-

Context object.
 If an earlier middleware short-circuits the pipeline, not all middleware will exe-

cute for all requests.
 If a request isn’t handled, the middleware pipeline will return a 404 status code.

90 CHAPTER 3 Handling requests with the middleware pipeline
 The order in which middleware is added to IApplicationBuilder defines the
order in which middleware will execute in the pipeline.

 The middleware pipeline can be re-executed, as long as a response’s headers
haven’t been sent.

 When it’s added to a middleware pipeline, StaticFileMiddleware will serve
any requested files found in the wwwroot folder of your application.

 DeveloperExceptionPageMiddleware provides a lot of information about errors
when developing an application, but it should never be used in production.

 ExceptionHandlerMiddleware lets you provide user-friendly custom error han-
dling messages when an exception occurs in the pipeline. It is safe for use in
production, as it does not expose sensitive details about your application.

 StatusCodePagesMiddleware lets you provide user-friendly custom error han-
dling messages when the pipeline returns a raw error response status code.

 Microsoft provides some common middleware, and there are many third-party
options available on NuGet and GitHub.

Creating a website
with Razor Pages
In chapter 3 you learned about the middleware pipeline, which defines how an
ASP.NET Core application responds to a request. Each piece of middleware can
modify or handle an incoming request before passing the request to the next mid-
dleware in the pipeline.

 In ASP.NET Core web applications, your middleware pipeline will normally
include the EndpointMiddleware. This is typically where you write the bulk of your
application logic, calling various other classes in your app. It also serves as the main
entry point for users to interact with your app. It typically takes one of three forms:

 An HTML web application designed for direct use by users—If the application is
consumed directly by users, as in a traditional web application, then Razor
Pages is responsible for generating the web pages that the user interacts with.

This chapter covers
 Introducing Razor Pages and the Model-View-

Controller (MVC) design pattern

 Using Razor Pages in ASP.NET Core

 Choosing between Razor Pages and MVC
controllers

 Controlling application flow using action results
91

92 CHAPTER 4 Creating a website with Razor Pages
It handles requests for URLs, it receives data posted using forms, and it gener-
ates the HTML that users use to view and navigate your app.

 An API designed for consumption by another machine or in code—The other main
possibility for a web application is to serve as an API to backend server pro-
cesses, to a mobile app, or to a client framework for building single-page appli-
cations (SPAs). In this case, your application serves data in machine-readable
formats such as JSON or XML instead of the human-focused HTML output.

 Both an HTML web application and an API—It is also possible to have applica-
tions that serve both needs. This can let you cater to a wider range of clients
while sharing logic in your application.

In this chapter you’ll learn how ASP.NET Core uses Razor Pages to handle the first of
these options, creating server-side rendered HTML pages. You’ll start by looking at
the Model-View-Controller (MVC) design pattern to see the benefits that can be
achieved through its use and learn why it’s been adopted by so many web frameworks
as a model for building maintainable applications.

 Next you’ll learn how the MVC design pattern applies to ASP.NET Core. The MVC
pattern is a broad concept that can be applied in a variety of situations, but the use
case in ASP.NET Core is specifically as a UI abstraction. You’ll see how Razor Pages
implements the MVC design pattern, how it builds on top of the ASP.NET Core MVC
framework, and compare the two approaches.

 Next you’ll see how to add Razor Pages to an existing application, and how to cre-
ate your first Razor Pages. You’ll learn how to define page handlers to execute when
your application receives a request and how to generate a result that can be used to
create an HTTP response to return.

 I won’t cover how to create Web APIs in this chapter. Web APIs still use the ASP.NET
Core MVC framework, but they’re used in a slightly different way to Razor Pages.
Instead of returning web pages that are directly displayed in a user’s browser, they
return data formatted for consumption in code. Web APIs are often used for providing
data to mobile and web applications, or to other server applications. But they still follow
the same general MVC pattern. You’ll see how to create a Web API in chapter 9.

NOTE This chapter is the first of several on Razor Pages and MVC in ASP.NET
Core. As I’ve already mentioned, these frameworks are often responsible for
handling all the business logic and UI code for your application, so, perhaps
unsurprisingly, they’re large and somewhat complicated. The next five chap-
ters all deal with a different aspect of the MVC pattern that makes up the
MVC and Razor Pages frameworks.

In this chapter I’ll try to prepare you for each of the upcoming topics, but you may
find that some of the behavior feels a bit like magic at this stage. Try not to become
too concerned with exactly how all the pieces tie together; focus on the specific con-
cepts being addressed. It should all become clear as we cover the associated details in
the remainder of this first part of the book.

93An introduction to Razor Pages

4.1 An introduction to Razor Pages
The Razor Pages programming model was introduced in ASP.NET Core 2.0 as a way to
build server-side rendered “page-based” websites. It builds on top of the ASP.NET
Core infrastructure to provide a streamlined experience, using conventions where
possible to reduce the amount of boilerplate code and configuration required.

DEFINITION A page-based website is one in which the user browses between
multiple pages, enters data into forms, and generally consumes content. This
contrasts with applications like games or single-page applications (SPAs),
which are heavily interactive on the client side.

You’ve already seen a very basic example of a Razor Page in chapter 2. In this section
we’ll start by looking at a slightly more complex Razor Page, to better understand the
overall design of Razor Pages. I will cover

 An example of a typical Razor Page
 The MVC design pattern and how it applies to Razor Pages
 How to add Razor Pages to your application

At the end of this section, you should have a good understanding of the overall design
behind Razor Pages and how they relate to the MVC pattern.

4.1.1 Exploring a typical Razor Page

In chapter 2 we looked at a very simple Razor Page. It didn’t contain any logic and
instead just rendered the associated Razor view. This pattern may be common if
you’re building a content-heavy marketing website, for example, but more commonly
your Razor Pages will contain some logic, load data from a database, or use forms to
allow users to submit information.

 To give you more of a flavor of how typical Razor Pages work, in this section we’ll
look briefly at a slightly more complex Razor Page. This page is taken from a to-do list
application and is used to display all the to-do items for a given category. We’re not
focusing on the HTML generation at this point, so the following listing shows only the
PageModel code-behind for the Razor Page.

public class CategoryModel : PageModel
{
 private readonly ToDoService _service;
 public CategoryModel(ToDoService service)
 {
 _service = service;
 }

 public ActionResult OnGet(string category)
 {
 Items = _service.GetItemsForCategory(category);

Listing 4.1 A Razor Page for viewing all to-do items in a given category

The ToDoService is provided in
the model constructor using
dependency injection.

The OnGet handler takes
a parameter, category.

The handler calls out
to the ToDoService to
retrieve data and sets
the Items property.

94 CHAPTER 4 Creating a website with Razor Pages
 return Page();
 }

 public List<ToDoListModel> Items { get; set; }
}

This example is still relatively simple, but it demonstrates a variety of features com-
pared to the basic example from chapter 2:

 The page handler, OnGet, accepts a method parameter, category. This parame-
ter is automatically populated by the Razor Page infrastructure using values
from the incoming request in a process called model binding. I discuss model
binding in detail in chapter 6.

 The handler doesn’t interact with the database directly. Instead, it uses the
category value provided to interact with the ToDoService, which is injected as
a constructor argument using dependency injection.

 The handler returns Page() at the end of the method to indicate that the asso-
ciated Razor view should be rendered. The return statement is actually optional
in this case; by convention, if the page handler is a void method, the Razor view
will still be rendered, behaving as if you had called return Page() at the end of
the method.

 The Razor View has access to the CategoryModel instance, so it can access the
Items property that is set by the handler. It uses these items to build the HTML
that is ultimately sent to the user.

The pattern of interactions in the Razor Page of listing 4.1 shows a common pattern.
The page handler is the central controller for the Razor Page. It receives an input
from the user (the category method parameter), calls out to the “brains” of the appli-
cation (the ToDoService) and passes data (by exposing the Items property) to the
Razor view, which generates the HTML response. If you squint, this looks like the
Model-View-Controller (MVC) design pattern.

 Depending on your background in software development, you may have previously
come across the MVC pattern in some form. In web development, MVC is a common
paradigm and is used in frameworks such as Django, Rails, and Spring MVC. But as it’s
such a broad concept, you can find MVC in everything from mobile apps to rich-client
desktop applications. Hopefully that’s indicative of the benefits the pattern can bring
if used correctly! In the next section we’ll look at the MVC pattern in general and how
it’s used by ASP.NET Core.

4.1.2 The MVC design pattern

The MVC design pattern is a common pattern for designing apps that have UIs. The
original MVC pattern has many different interpretations, each of which focuses on a
slightly different aspect of the pattern. For example, the original MVC design pattern
was specified with rich-client graphical user interface (GUI) apps in mind, rather than

Returns a PageResult indicating the
Razor view should be rendered

The Razor View can access
the Items property when
it is rendered.

95An introduction to Razor Pages
web applications, so it uses terminology and paradigms associated with a GUI environ-
ment. Fundamentally, though, the pattern aims to separate the management and
manipulation of data from its visual representation.

 Before I dive too far into the design pattern itself, let’s consider a typical request.
Imagine that a user of your application requests the Razor Page from the previous sec-
tion that displays a to-do list category. Figure 4.1 shows how a Razor Page handles dif-
ferent aspects of a request, all of which combine to generate the final response.

In general, three “components” make up the MVC design pattern:

 Model—This is the data that needs to be displayed, the global state of the appli-
cation. It’s accessed via the ToDoService in listing 4.1.

 View—The template that displays the data provided by the model.
 Controller—This updates the model and provides the data for display to the view.

This role is taken by the page handler in Razor Pages. This is the OnGet method
in listing 4.1.

Each component in the MVC design pattern is responsible for a single aspect of the
overall system, which, when combined, can be used to generate a UI. The to-do list
example considers MVC in terms of a web application using Razor Pages, but a
request could also be equivalent to the click of a button in a desktop GUI application.

3. The page handler requests the current
items on the list from the application
model, using the ToDoService. The model
may retrieve them from memory, a file,
or a database, for instance.

4. The page handler passes the list items
from the model to the Razor view by
setting a property on the Razor Page.

5. The Razor view plugs the items into the
HTML template and sends the completed
HTML page back to the user.

1. The request to view a to-do list
category is received from a user.

2. The CategoryModel.OnGet
Razor Page handler handles
the request.

Figure 4.1 Requesting a to-do list page for a Razor Pages application. A different “component” handles
each aspect of the request.

96 CHAPTER 4 Creating a website with Razor Pages
 In general, the order of events when an application responds to a user interaction
or request is as follows:

1 The controller (the Razor Page handler) receives the request.
2 Depending on the request, the controller either fetches the requested data

from the application model using injected services, or it updates the data that
makes up the model.

3 The controller selects a view to display and passes a representation of the model
to it.

4 The view uses the data contained in the model to generate the UI.

When we describe MVC in this format, the controller (the Razor Page handler) serves
as the entry point for the interaction. The user communicates with the controller to
instigate an interaction. In web applications, this interaction takes the form of an
HTTP request, so when a request to a URL is received, the controller handles it.

 Depending on the nature of the request, the controller may take a variety of
actions, but the key point is that the actions are undertaken using the application
model. The model here contains all the business logic for the application, so it’s able
to provide requested data or perform actions.

NOTE In this description of MVC, the model is considered to be a complex
beast, containing all the logic for how to perform an action, as well as any
internal state. The Razor Page PageModel class is not the model we’re talking
about! Unfortunately, as in all software development, naming things is hard.

Consider a request to view a product page for an e-commerce application. The con-
troller would receive the request and would know how to contact some product ser-
vice that’s part of the application model. This might fetch the details of the requested
product from a database and return them to the controller.

 Alternatively, imagine that a controller receives a request to add a product to the
user’s shopping cart. The controller would receive the request and most likely would
invoke a method on the model to request that the product be added. The model
would then update its internal representation of the user’s cart, by adding, for exam-
ple, a new row to a database table holding the user’s data.

TIP You can think of each Razor Page handler as a mini controller focused
on a single page. Every web request is another independent call to a control-
ler that orchestrates the response. Although there are many different control-
lers, the handlers all interact with the same application model.

After the model has been updated, the controller needs to decide what response to
generate. One of the advantages of using the MVC design pattern is that the model
representing the application’s data is decoupled from the final representation of that
data, called the view. The controller is responsible for deciding whether the response
should generate an HTML view, whether it should send the user to a new page, or
whether it should return an error page.

97An introduction to Razor Pages
 One of the advantages of the model being independent of the view is that it
improves testability. UI code is classically hard to test, as it’s dependent on the envi-
ronment—anyone who has written UI tests simulating a user clicking buttons and typ-
ing in forms knows that it’s typically fragile. By keeping the model independent of the
view, you can ensure the model stays easily testable, without any dependencies on UI
constructs. As the model often contains your application’s business logic, this is clearly
a good thing!

 The view can use the data passed to it by the controller to generate the appropriate
HTML response. The view is only responsible for generating the final representation
of the data; it’s not involved in any of the business logic.

 This is all there is to the MVC design pattern in relation to web applications. Much
of the confusion related to MVC seems to stem from slightly different uses of the term
for slightly different frameworks and types of applications. In the next section, I’ll
show how the ASP.NET Core framework uses the MVC pattern with Razor Pages,
along with more examples of the pattern in action.

4.1.3 Applying the MVC design pattern to Razor Pages

In the previous section I discussed the MVC pattern as it’s typically used in web applica-
tions; Razor Pages use this pattern. But ASP.NET Core also includes a framework called
ASP.NET Core MVC. This framework (unsurprisingly) very closely mirrors the MVC
design pattern, using controllers and action methods in place of Razor Pages and page
handlers. Razor Pages builds directly on top of the underlying ASP.NET Core MVC
framework, using the MVC framework under the hood for their behavior.

 If you prefer, you can avoid Razor Pages entirely and work with the MVC frame-
work directly in ASP.NET Core. This was the only option in early versions of ASP.NET
Core and the previous version of ASP.NET.

TIP I look in greater depth at choosing between Razor Pages and the MVC
framework in section 4.2.

In this section we’ll look in greater depth at how the MVC design pattern applies to
Razor Pages in ASP.NET Core. This will also help clarify the role of various features of
Razor Pages.

Do Razor Pages use MVC or MVVM?
Occasionally I’ve seen people describe Razor Pages as using the Model-View-View
Model (MVVM) design pattern, rather than the MVC design pattern. Personally, I don’t
agree, but it’s worth being aware of the differences.

MVVM is a UI pattern that is often used in mobile apps, desktop apps, and some
client-side frameworks. It differs from MVC in that there is a bidirectional interaction
between the view and the view model. The view model tells the view what to display,
but the view can also trigger changes directly on the view model. It’s often used with
two-way data binding where a view model is “bound” to a view.

98 CHAPTER 4 Creating a website with Razor Pages
As you’ve seen in previous chapters, ASP.NET Core implements Razor Page endpoints
using a combination of RoutingMiddleware and EndpointMiddleware, as shown in
figure 4.2. Once a request has been processed by earlier middleware (and assuming
none of them has handled the request and short-circuited the pipeline), the routing
middleware will select which Razor Page handler should be executed, and the end-
point middleware executes the page handler.

(continued)

Some people consider the Razor Pages PageModel to be filling this role, but I’m not
convinced. Razor Pages definitely seems based on the MVC pattern to me (it’s based
on the ASP.NET Core MVC framework after all!), and it doesn’t have the same two-
way binding that I would expect with MVVM.

The request passes through each
middleware in the pipeline.

Each middleware gets an opportunity
to handle the request.

The routing middleware attempts to
find an endpoint that will handle the
request.

The endpoint middleware is the last
in the pipeline. The MVC pattern is
implemented entirely by individual
Razor Page endpoints.

Figure 4.2 The middleware pipeline for a typical ASP.NET Core application. The
request is processed by each middleware in sequence. If the request reaches the
routing middleware, the middleware selects an endpoint, such as a Razor Page,
to execute. The endpoint middleware executes the selected endpoint.

99An introduction to Razor Pages
Middleware often handles cross-cutting concerns or narrowly defined requests, such
as requests for files. For requirements that fall outside of these functions, or that have
many external dependencies, a more robust framework is required. Razor Pages
(and/or ASP.NET Core MVC) can provide this framework, allowing interaction with
your application’s core business logic and the generation of a UI. It handles every-
thing from mapping the request to an appropriate controller to generating the
HTML or API response.

 In the traditional description of the MVC design pattern, there’s only a single type
of model, which holds all the non-UI data and behavior. The controller updates this
model as appropriate and then passes it to the view, which uses it to generate a UI.

 One of the problems when discussing MVC is the vague and ambiguous terms that
it uses, such as “controller” and “model.” Model, in particular, is such an overloaded
term that it’s often difficult to be sure exactly what it refers to—is it an object, a collec-
tion of objects, an abstract concept? Even ASP.NET Core uses the word “model” to
describe several related, but different, components, as you’ll see shortly.

DIRECTING A REQUEST TO A RAZOR PAGE AND BUILDING A BINDING MODEL

The first step when your app receives a request is routing the request to an appropri-
ate Razor Page handler. Let’s think about the category to-do list page again, from list-
ing 4.1. On this page, you’re displaying a list of items that have a given category label.
If you’re looking at the list of items with a category of “Simple,” you’d make a request
to the /category/Simple path.

 Routing takes the headers and path of the request, /category/Simple, and maps it
against a preregistered list of patterns. These patterns each match a path to a single
Razor Page and page handler. You’ll learn more about routing in the next chapter.

TIP I’m using the term Razor Page to refer to the combination of the Razor
view and the PageModel that includes the page handler. Note that that Page-
Model class is not the “model” we’re referring to when describing the MVC
pattern. It fulfills other roles, as you will see later in this section.

Once a page handler is selected, the binding model (if applicable) is generated. This
model is built based on the incoming request, the properties of the PageModel marked
for binding, and the method parameters required by the page handler, as shown in fig-
ure 4.3. A binding model is normally one or more standard C# objects, with properties
that map to the requested data. We’ll look at binding models in detail in chapter 6.

DEFINITION A binding model is one or more objects that act as a “container” for
the data provided in a request—data that’s required by a page handler.

In this case, the binding model is a simple string, category, which is bound to the
"Simple" value. This value is provided in the request URL’s path. A more complex
binding model could also have been used, where multiple properties were populated.

 The binding model in this case corresponds to the method parameter of the OnGet
page handler. An instance of the Razor Page is created using its constructor, and the

100 CHAPTER 4 Creating a website with Razor Pages
binding model is passed to the page handler when it executes, so it can be used to
decide how to respond. For this example, the page handler uses it to decide which to-
do items to display on the page.

EXECUTING A HANDLER USING THE APPLICATION MODEL

The role of the page handler as the controller in the MVC pattern is to coordinate the
generation of a response to the request it’s handling. That means it should perform
only a limited number of actions. In particular, it should

 Validate that the data contained in the binding model provided is valid for the
request

 Invoke the appropriate actions on the application model using services
 Select an appropriate response to generate based on the response from the

application model

Figure 4.4 shows the page handler invoking an appropriate method on the applica-
tion model. Here, you can see that the application model is a somewhat abstract con-
cept that encapsulates the remaining non-UI parts of your application. It contains the
domain model, a number of services, and the database interaction.

DEFINITION The domain model encapsulates complex business logic in a series
of classes that don’t depend on any infrastructure and can be easily tested.

The page handler typically calls into a single point in the application model. In our
example of viewing a to-do list category, the application model might use a variety of

1. A request is received and passes
through the middleware pipeline.

2. The routing middleware directs the
request to a specific Razor Page and
page handler.

3. A binding model is built from the
details provided in the request.

4. The Razor Page is passed the binding
model, and the page handler method
is executed.

category = "Simple"

OnGet(category)

CategoryModel.OnGet

/category/Simple

Figure 4.3 Routing a request to a controller and building a binding model. A request to the /category/
Simple URL results in the CategoryModel.OnGet page handler being executed, passing in a populated
binding model, category.

101An introduction to Razor Pages
services to check whether the current user is allowed to view certain items, to search
for items in the given category, to load the details from the database, or to load a pic-
ture associated with an item from a file.

 Assuming the request is valid, the application model will return the required
details to the page handler. It’s then up to the page handler to choose a response to
generate.

BUILDING HTML USING THE VIEW MODEL

Once the page handler has called out to the application model that contains the
application business logic, it’s time to generate a response. A view model captures the
details necessary for the view to generate a response.

DEFINITION A view model in the MVC pattern is all the data required by the
view to render a UI. It’s typically some transformation of the data contained
in the application model, plus extra information required to render the page,
such as the page’s title.

The term view model is used extensively in ASP.NET Core MVC, where it typically refers
to a single object that is passed to the Razor view to render. However, with Razor Pages,
the Razor view can access the Razor Page’s page model class directly. Therefore, the Razor
Page PageModel typically acts as the view model in Razor Pages, with the data required by
the Razor view exposed via properties, as you saw previously in listing 4.1.

NOTE Razor Pages use the PageModel class itself as the view model for the
Razor view, by exposing the required data as properties.

The Razor view uses the data exposed in the page model to generate the final HTML
response. Finally, this is sent back through the middleware pipeline and out to the
user’s browser, as shown in figure 4.5.

 It’s important to note that although the page handler selects whether to execute the
view and the data to use, it doesn’t control what HTML is generated. It’s the view itself
that decides what the content of the response will be.

1. The page handler uses the
category provided in the
binding model to determine
which method to invoke in
the application model.

2. The page handler method calls into
services that make up the application
model. This might use the domain
model to determine whether to include
completed to-do items, for example.

3. The services load the details
of the to-do items from the
database and return them
to the action method.

Figure 4.4 When executed, an action will invoke the appropriate methods in the application model.

102 CHAPTER 4 Creating a website with Razor Pages
PUTTING IT ALL TOGETHER: A COMPLETE RAZOR PAGE REQUEST

Now that you’ve seen each of the steps that goes into handling a request in ASP.NET
Core using Razor Pages, let’s put it all together from request to response. Figure 4.6
shows how the steps combine to handle the request to display the list of to-do items
for the “Simple” category. The traditional MVC pattern is still visible in Razor Pages,
made up of the page handler (controller), the view, and the application model.

 By now, you might be thinking this whole process seems rather convoluted—so
many steps to display some HTML! Why not allow the application model to create the
view directly, rather than having to go on a dance back and forth with the page han-
dler method?

 The key benefit throughout this process is the separation of concerns:

 The view is responsible only for taking some data and generating HTML.
 The application model is responsible only for executing the required business

logic.
 The page handler (controller) is responsible only for validating the incoming

request and selecting which response is required, based on the output of the
application model.

By having clearly defined boundaries, it’s easier to update and test each of the compo-
nents without depending on any of the others. If your UI logic changes, you won’t
necessarily have to modify any of your business logic classes, so you’re less likely to
introduce errors in unexpected places.

1. The page handler builds
a view model from the data
provided by the application
model by setting properties
on the PageModel.

2. The page handler indicates
that a view should be rendered.

3. The Razor view uses the provided
view model to generate an HTML
response containing the details
of the to-dos to display.

4. The response is sent
back through the
middleware pipeline.

Figure 4.5 The page handler builds a view model by setting properties on the PageModel. It’s the
view that generates the response.

103An introduction to Razor Pages
The examples shown in this chapter demonstrate the bulk of the Razor Pages func-
tionality. It has additional features, such as the filter pipeline, which I’ll cover later

The dangers of tight coupling
Generally speaking, it’s a good idea to reduce coupling between logically separate
parts of your application as much as possible. This makes it easier to update your
application without causing adverse effects or requiring modifications in seemingly
unrelated areas. Applying the MVC pattern is one way to help with this goal.

As an example of when coupling rears its head, I remember a case a few years ago
when I was working on a small web app. In our haste, we had not properly decoupled
our business logic from our HTML generation code, but initially there were no obvious
problems—the code worked, so we shipped it!

A few months later, someone new started working on the app and immediately
“helped” by renaming an innocuous spelling error in a class in the business layer.
Unfortunately, the names of those classes had been used to generate our HTML
code, so renaming the class caused the whole website to break in users’ browsers!
Suffice it to say, we made a concerted effort to apply the MVC pattern after that and
ensure that we had a proper separation of concerns.

1. A request is received to the
URL /category/Simple.

2. The routing middleware directs
the request to the OnGet page
handler on the Category Razor
Page and builds a binding model.

4. The page handler indicates
a view should be rendered
and passes it the view model
containing the details about
the to-do items. 5. The view uses the provided

view model to generate an
HTML response, which is
returned to the user.

3. The page handler calls into
services that make up the
application model to fetch
details about the to-do item
and to build a view model.

Figure 4.6 A complete Razor Pages request for the list of to-dos in the “Simple” category

104 CHAPTER 4 Creating a website with Razor Pages
(chapter 13), and I’ll discuss binding models in greater depth in chapter 6, but the
overall behavior of the system is the same.

 Similarly, in chapter 9 I’ll discuss how the MVC design pattern applies when you’re
generating machine-readable responses using Web API controllers. The process is, for
all intents and purposes, identical, apart from the final result generated.

 In the next section, you’ll see how to add Razor Pages to your application. Some
templates in Visual Studio and the .NET CLI will include Razor Pages by default, but
you’ll see how to add it to an existing application and explore the various options
available.

4.1.4 Adding Razor Pages to your application

The MVC infrastructure, whether used by Razor Pages or MVC/API controllers, is a
foundational aspect of all but the simplest ASP.NET Core applications, so virtually all
templates include it configured by default in some way. But to make sure you’re com-
fortable with adding Razor Pages to an existing project, I’ll show you how to start with
a basic empty application and add Razor Pages to it from scratch.

 The result of your efforts won’t be exciting yet. We’ll display “Hello World” on a
web page, but this will show how simple it is to convert an ASP.NET Core applica-
tion to use Razor Pages. It will also emphasize the pluggable nature of ASP.NET
Core—if you don’t need the functionality provided by Razor Pages, you don’t have
to use it.

 Here’s how you add Razor Pages to your application:

1 In Visual Studio 2019, choose File > New > Project or choose Create a New Proj-
ect from the splash screen.

2 From the list of templates, choose ASP.NET Core Web Application, ensuring
you select the C# language template.

3 On the next screen, enter a project name, location, and solution name, and
click Create.

4 On the following screen, create a basic template without MVC or Razor Pages
by selecting the ASP.NET Core Empty project template in Visual Studio, as
shown in figure 4.7. You can create a similar empty project using the .NET CLI
with the dotnet new web command.

5 Add the necessary Razor Page services (shown in bold) in your Startup.cs file’s
ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();
}

6 Replace the existing basic endpoint configured in the EndpointMiddleware at
the end of your middleware pipeline with the MapRazorPages() extension method

105An introduction to Razor Pages
(in bold). For simplicity, also remove the existing error handler middleware
from the Configure method of Startup.cs for now:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

7 Right-click your project in Solution Explorer and choose Add > New Folder to
add a new folder to the root of your project. Name the new folder “Pages”.

You have now configured your project to use Razor Pages, but you don’t have
any pages yet. The following steps add a new Razor Page to your application.
You can create a similar Razor Page using the .NET CLI by running dotnet new
page -n Index -o Pages/ from the project directory.

8 Right-click the new pages folder and choose Add > Razor Page, as shown in fig-
ure 4.8.

9 On the following page, select Razor Page – Empty and click Add. In the follow-
ing dialog box, name your page Index.cshtml, as shown in figure 4.9.

Ensure the authentication scheme
is set to No Authentication.

Ensure ASP.NET Core 5.0 is selected.

Select ASP.NET
Core Empty.

Click Create to generate the
application from the selected
template.

Ensure HTTPS is checked
and Enable Docker Support
is unchecked.

Ensure .NET Core
is selected.

Figure 4.7 Creating an empty ASP.NET Core template. The empty template will create a simple ASP.NET
Core application that contains a small middleware pipeline without Razor Pages.

106 CHAPTER 4 Creating a website with Razor Pages
10 After Visual Studio has finished generating the file, open the Index.cshtml file,
and update the HTML to say Hello World! by replacing the file contents with
the following:

@page
@model AddingRazorPagesToEmptyProject.IndexModel
@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>

3. Choose Razor Page to add a
Razor Page to your project.

1. Right-click the Pages folder
to bring up the context menu.

2. Click Add to open
the Add submenu.

Figure 4.8 Adding a new Razor Page to your project

Click Add to add the
class to your project.

Ensure Razor Page -
Empty is selected.

Enter a name for the
new Razor Page.

Figure 4.9 Creating a new Razor Page using the Add Razor Page dialog box

107Razor Pages vs. MVC in ASP.NET Core
<body>
 <h1>Hello World!</h1>
</body>
</html>

Once you’ve completed all these steps, you should be able to restore, build, and run
your application.

NOTE You can run your project by pressing F5 from within Visual Studio (or
by calling dotnet run at the command line from the project folder). This will
restore any referenced NuGet packages, build your project, and start your
application. Visual Studio will automatically open a browser window to access
your application’s home page.

When you make a request to the root "/" path, the application invokes the OnGet han-
dler on the IndexModel due to the conventional way routing works for Razor Pages
based on the filename. Don’t worry about this for now; we’ll go into it in detail in the
next chapter.

 The OnGet handler is a void method, which causes the Razor Page to render the
associated Razor view and send it to the user’s browser in the response.

 Razor Pages rely on a number of internal services to perform their functions,
which must be registered during application startup. This is achieved with the call to
AddRazorPages in the ConfigureServices method of Startup.cs. Without this, you’ll
get exceptions when your app starts, reminding you that the call is required.

 The call to MapRazorPages in Configure registers the Razor Page endpoints with
the endpoint middleware. As part of this call, the routes that are used to map URL
paths to specific Razor Page handlers are registered automatically.

NOTE I cover routing in detail in the next chapter.

The instructions in this section described how to add Razor Pages to your application,
but that’s not the only way to add HTML generation to your application. As I men-
tioned previously, Razor Pages builds on top of the ASP.NET Core MVC framework
and shares many of the same concepts. In the next section, we’ll take a brief look at
MVC controllers, see how they compare to Razor Pages, and discuss when you should
choose to use one approach over the other.

4.2 Razor Pages vs. MVC in ASP.NET Core
In this book, I focus on Razor Pages, as that has become the recommended approach
for building server-side rendered applications with ASP.NET Core. However, I also
mentioned that Razor Pages uses the ASP.NET Core MVC framework behind the
scenes, and that you can choose to use it directly if you wish. Additionally, if you’re
creating a Web API for working with mobile or client-side apps, you will almost cer-
tainly be using the MVC framework directly.

108 CHAPTER 4 Creating a website with Razor Pages
NOTE I look at how to build Web APIs in chapter 9.

So what are the differences between Razor Pages and MVC, and when should you
choose one or the other?

 If you’re new to ASP.NET Core, the answer is pretty simple—use Razor Pages for
server-side rendered applications, and use the MVC framework for building Web APIs.
There are nuances I’ll discuss in later sections, but that distinction will serve you very
well initially.

 If you’re familiar with the previous version of ASP.NET or earlier versions of
ASP.NET Core and are deciding whether to use Razor Pages, then this section should
help you choose. Developers coming from those backgrounds often have misconcep-
tions about Razor Pages initially (as I did!), incorrectly equating them to Web Forms
and overlooking their underlying basis of the MVC framework.

 Before we can get to comparisons, though, we should take a brief look at the
ASP.NET Core MVC framework itself. Understanding the similarities and differences
between MVC and Razor Pages can be very useful, as you’ll likely find a use for MVC at
some point, even if you use Razor Pages most of the time.

4.2.1 MVC controllers in ASP.NET Core

In section 4.1 we looked at the MVC design pattern, and at how it applies to Razor
Pages in ASP.NET Core. Perhaps unsurprisingly, you can use the ASP.NET Core MVC
framework in almost exactly the same way. To demonstrate the difference between
Razor Pages and MVC, we’ll look at an MVC version of the Razor Page from listing 4.1,
which displays a list of to-do items for a given category.

 Instead of a PageModel and page handler, MVC uses the concept of controllers and
action methods. These are almost directly analogous to their Razor Pages counter-
parts, as you can see in figure 4.10, which shows an MVC equivalent of figure 4.6. On
the other hand, MVC controllers use explicit view models to pass data to a Razor view,
rather than exposing the data as properties on itself (as Razor Pages do with page
models).

DEFINITION An action (or action method) is a method that runs in response to a
request. An MVC controller is a class that contains a number of logically
grouped action methods.

Listing 4.2 shows an example of how an MVC controller that provides the same func-
tionality as the Razor Page in listing 4.1 might look. In MVC, controllers are often
used to aggregate similar actions together, so the controller in this case is called ToDo-
Controller, as it would typically contain additional action methods for working with
to-do items, such as actions to view a specific item, or to create a new one.

109Razor Pages vs. MVC in ASP.NET Core
public class ToDoController : Controller
{
 private readonly ToDoService _service;
 public ToDoController(ToDoService service)
 {
 _service = service;
 }

 public ActionResult Category(string id)
 {
 var items = _service.GetItemsForCategory(id);
 var viewModel = new CategoryViewModel(items);

 return View(viewModel);
 }

Listing 4.2 An MVC controller for viewing all to-do items in a given category

1. A request is received to the
URL /todo/category/ 23.1

2. The routing middleware directs the
request to the Category action on
the ToDoController and builds a
binding model.

4. The controller selects a Razor view to use
and passes it the view model containing
the details about the product.

5. The view uses the provided view model
to generate an HTML response, which is
returned to the user.

3. The action method calls into services
that make up the application model
to fetch details about the product
and to build a view model.

Figure 4.10 A complete MVC controller request for a category. The MVC controller pattern is almost
identical to that of Razor Pages, shown in figure 4.6. The controller is equivalent to a Razor Page, and the
action is equivalent to a page handler.

The ToDoService is provided
in the controller constructor
using dependency injection.

The Category action
method takes a
parameter, id.

The action method
calls out to the
ToDoService to
retrieve data
and build a
view model.

The view model
is a simple C#
class, defined
elsewhere in

your application.

Returns a ViewResult indicating the
Razor view should be rendered,

passing in the view model

110 CHAPTER 4 Creating a website with Razor Pages
 public ActionResult Create(ToDoListModel model)
 {
 // ...
 }
}

Aside from some naming differences, the ToDoController looks very similar to the
Razor Page equivalent from listing 4.1. Indeed, architecturally, Razor Pages and MVC
are essentially equivalent, as they both use the MVC design pattern. The most obvi-
ous differences relate to where the files are placed in your project, as I discuss in the
next section.

4.2.2 The benefits of Razor Pages

In the previous section I showed that the code for an MVC controller looks very simi-
lar to the code for a Razor Page PageModel. If that’s the case, what benefit is there to
using Razor Pages? In this section I discuss some of the pain points of MVC controllers
and how Razor Pages attempts to address them.

In MVC, a single controller can have multiple action methods. Each action handles
a different request and generates a different response. The grouping of multiple
actions in a controller is somewhat arbitrary, but it’s typically used to group actions
related to a specific entity: to-do list items in this case. A more complete version of
the ToDoController in listing 4.2 might include action methods for listing all to-do

Razor Pages are not Web Forms
A common argument I hear from existing ASP.NET developers against Razor Pages is
“oh, they’re just Web Forms.” That sentiment misses the mark in many different
ways, but it’s common enough that it’s worth addressing directly.

Web Forms was a web-programming model that was released as part of .NET Frame-
work 1.0 in 2002. They attempted to provide a highly productive experience for devel-
opers moving from desktop development to the web for the first time.

Web Forms are much maligned now, but their weakness only became apparent later.
Web Forms attempted to hide the complexities of the web away from you, to give you
the impression of developing with a desktop app. That often resulted in apps that
were slow, with lots of interdependencies, and that were hard to maintain.

Web Forms provided a page-based programming model, which is why Razor Pages
sometimes gets associated with them. However, as you’ve seen, Razor Pages is
based on the MVC design pattern, and it exposes the intrinsic features of the web
without trying to hide them from you.

Razor Pages optimizes certain flows using conventions (some of which you’ve seen),
but it’s not trying to build a stateful application model over the top of a stateless web
application, in the way that Web Forms did.

MVC controllers often
contain multiple action
methods that respond
to different requests.

111Razor Pages vs. MVC in ASP.NET Core
items, for creating new items, and for deleting items, for example. Unfortunately,
you can often find that your controllers become very large and bloated, with many
dependencies.1

NOTE You don’t have to make your controllers very large like this. It’s just a
common pattern. You could, for example, create a separate controller for
every action instead.

Another pitfall of the MVC controllers is the way they’re typically organized in your
project. Most action methods in a controller will need an associated Razor view, and a
view model for passing data to the view. The MVC approach traditionally groups
classes by type (controller, view, view model), while the Razor Page approach groups by
function—everything related to a specific page is co-located.

 Figure 4.11 compares the file layout for a simple Razor Pages project with the MVC
equivalent. Using Razor Pages means much less scrolling up and down between the
controller, views, and view model folders whenever you’re working on a particular
page. Everything you need is found in two files, the .cshtml Razor view and the .cshtml.cs
PageModel file.

1 Before moving to Razor Pages, the ASP.NET Core template that includes user login functionality contained
two such controllers, each containing over 20 action methods and over 500 lines of code!

Razor Pages groups
everything related to
a single page in two
co-located files.

MVC traditionally groups
files by concept instead of
feature, spreading the files
needed for a given page
throughout the project.

Figure 4.11 Comparing the folder structure for an MVC project to the folder structure for a Razor
Pages project

112 CHAPTER 4 Creating a website with Razor Pages
There are additional differences between MVC and Razor Pages, which I’ll highlight
throughout the book, but this layout difference is really the biggest win. Razor Pages
embraces the fact that you’re building a page-based application and optimizes your
workflow by keeping everything related to a single page together.

TIP You can think of each Razor Page as a mini controller focused on a sin-
gle page. Page handlers are functionally equivalent to MVC controller action
methods.

This layout also has the benefit of making each page a separate class. This contrasts
with the MVC approach of making each page an action on a given controller. Each
Razor Page is cohesive for a particular feature, such as displaying a to-do item. MVC
controllers contain action methods that handle multiple different features for a more
abstract concept, such as all the features related to to-do items.

 Another important point is that Razor Pages doesn’t lose any of the separation-of-
concerns that MVC has. The view part of Razor Pages is still only concerned with ren-
dering HTML, and the handler is the coordinator that calls out to the application
model. The only real difference is the lack of the explicit view model that you have in
MVC, but it’s perfectly possible to emulate this in Razor Pages if that’s a deal breaker
for you.

 The benefits of using Razor Pages are particularly noticeable when you have “con-
tent” websites, such as marketing websites, where you’re mostly displaying static data,
and there’s no real logic. In that case, MVC adds complexity without any real benefits,
as there’s not really any logic in the controllers at all. Another great use case is when
you’re creating forms for users to submit data. Razor Pages is especially optimized for
this scenario, as you’ll see in later chapters.

 Clearly, I’m a fan of Razor Pages, but that’s not to say they’re perfect for every situ-
ation. In the next section I discuss some of the cases when you might choose to use
MVC controllers in your application. Bear in mind it’s not an either-or choice—it’s
possible to use both MVC controllers and Razor Pages in the same application, and in
many cases that may be the best option.

4.2.3 When to choose MVC controllers over Razor Pages

Razor Pages are great for building page-based server-side rendered applications. But
not all applications fit that mold, and even some applications that do fall in that cate-
gory might be best developed using MVC controllers instead of Razor Pages. These
are a few such scenarios:

 When you don’t want to render views—Razor Pages are best for page-based applica-
tions, where you’re rendering a view for the user. If you’re building a Web API,
you should use MVC controllers instead.

 When you’re converting an existing MVC application to ASP.NET Core—If you already
have an ASP.NET application that uses MVC, it’s probably not worth converting
your existing MVC controllers to Razor Pages. It makes more sense to keep your

113Razor Pages and page handlers
existing code, and perhaps to look at doing new development in the application
with Razor Pages.

 When you’re doing a lot of partial page updates—It’s possible to use JavaScript in an
application to avoid doing full page navigations by only updating part of the
page at a time. This approach, halfway between fully server-side rendered and a
client-side application may be easier to achieve with MVC controllers than
Razor Pages.

Hopefully by this point you’re sold on Razor Pages and their overall design. So far, all
the Razor Pages we’ve looked at have used a single page handler. In the next section
we’ll look in greater depth at page handlers: how to define them, how to invoke them,
and how to use them to render Razor views.

4.3 Razor Pages and page handlers
In the first section of this chapter, I described the MVC design pattern and how it
relates to ASP.NET Core. In the design pattern, the controller receives a request and is
the entry point for UI generation. For Razor Pages, the entry point is a page handler

When not to use Razor Pages or MVC controllers
Typically you’ll use either Razor Pages or MVC controllers to write most of your appli-
cation logic for an app. You’ll use it to define the APIs and pages in your application
and to define how they interface with your business logic. Razor Pages and MVC pro-
vide an extensive framework (as you’ll see over the next six chapters) that provide a
great deal of functionality to help build your apps quickly and efficiently. But they’re
not suited to every app.

Providing so much functionality necessarily comes with a certain degree of perfor-
mance overhead. For typical apps, the productivity gains from using MVC or Razor
Pages strongly outweigh any performance impact. But if you’re building small, light-
weight apps for the cloud, you might consider using custom middleware directly (see
chapter 19) or an alternative protocol like gRPC (https://docs.microsoft.com/aspnet/
core/grpc). You might want to also take a look at Microservices in .NET Core by Chris-
tian Horsdal Gammelgaard (Manning, 2017).

Alternatively, if you’re building an app with real-time functionality, you’ll probably want
to consider using WebSockets instead of traditional HTTP requests. ASP.NET Core
SignalR can be used to add real-time functionality to your app by providing an abstrac-
tion over WebSockets. SignalR also provides simple transport fallbacks and a remote
procedure call (RPC) app model. For details, see the documentation at https://docs
.microsoft.com/aspnet/core/signalr.

Another option available in ASP.NET Core 5.0 is Blazor. This framework allows you to
build interactive client-side web applications by either leveraging the WebAssembly
standard to run .NET code directly in your browser, or by using a stateful model with
SignalR. See the documentation for details, at https://docs.microsoft.com/aspnet/
core/blazor/.

https://docs.microsoft.com/aspnet/core/grpc
https://docs.microsoft.com/aspnet/core/grpc
https://docs.microsoft.com/aspnet/core/grpc
https://docs.microsoft.com/aspnet/core/signalr
https://docs.microsoft.com/aspnet/core/signalr
https://docs.microsoft.com/aspnet/core/signalr
https://docs.microsoft.com/
aspnet/core/blazor/
https://docs.microsoft.com/
aspnet/core/blazor/
https://docs.microsoft.com/
aspnet/core/blazor/

114 CHAPTER 4 Creating a website with Razor Pages
that resides in a Razor Page’s PageModel. A page handler is a method that runs in
response to a request.

 By default, the path of a Razor Page on disk controls the URL path that the Razor
Page responds to. For example, a request to the URL /products/list corresponds to
the Razor Page at the path pages/Products/List.cshtml. Razor Pages can contain
any number of page handlers, but only one runs in response to a given request.

NOTE You’ll learn more about this process of selecting a Razor Page and han-
dler, called routing, in the next chapter.

The responsibility of a page handler is generally threefold:

 Confirm that the incoming request is valid.
 Invoke the appropriate business logic corresponding to the incoming request.
 Choose the appropriate kind of response to return.

A page handler doesn’t need to perform all these actions, but at the very least it must
choose the kind of response to return. Page handlers typically return one of three
things:

 A PageResult object—This causes the associated Razor view to generate an HTML
response.

 Nothing (the handler returns void or Task)—This is the same as the previous case,
causing the Razor view to generate an HTML response.

 A RedirectToPageResult—This indicates that the user should be redirected to
a different page in your application.

These are the most commonly used results for Razor Pages, but I describe some addi-
tional options in section 4.3.2.

 It’s important to realize that a page handler doesn’t generate a response directly; it
selects the type of response and prepares the data for it. For example, returning a
PageResult doesn’t generate any HTML at that point; it merely indicates that a view
should be rendered. This is in keeping with the MVC design pattern in which it’s the
view that generates the response, not the controller.

TIP The page handler is responsible for choosing what sort of response to
send; the view engine in the MVC framework uses the result to generate the
response.

It’s also worth bearing in mind that page handlers should generally not be perform-
ing business logic directly. Instead, they should call appropriate services in the appli-
cation model to handle requests. If a page handler receives a request to add a product
to a user’s cart, it shouldn’t directly manipulate the database or recalculate cart totals,
for example. Instead, it should make a call to another class to handle the details. This
approach of separating concerns ensures your code stays testable and maintainable as
it grows.

115Razor Pages and page handlers

Un
p
w

mod
4.3.1 Accepting parameters to page handlers

Some requests made to page handlers will require additional values with details about
the request. If the request is for a search page, the request might contain details of the
search term and the page number they’re looking at. If the request is posting a form
to your application, such as a user logging in with their username and password, those
values must be contained in the request. In other cases, there will be no values, such as
when a user requests the home page for your application.

 The request may contain additional values from a variety of different sources. They
could be part of the URL, the query string, headers, or the body of the request itself.
The middleware will extract values from each of these sources and convert them into
.NET types.

DEFINITION The process of extracting values from a request and converting
them to .NET types is called model binding. I discuss model binding in chap-
ter 6.

ASP.NET Core can bind two different targets in Razor Pages:

 Method arguments—If a page handler has method arguments, the values from
the request are used to create the required parameters.

 Properties marked with a [BindProperty] attribute—Any properties marked with
the attribute will be bound. By default, this attribute does nothing for GET
requests.

Model-bound values can be simple types, such as strings and integers, or they can be a
complex type, as shown in the following listing. If any of the values provided in the
request are not bound to a property or page handler argument, the additional values
will go unused.

public class SearchModel : PageModel
{
 private readonly SearchService _searchService;
 public SearchModel(SearchService searchService)
 {
 _searchService = searchService;
 }

 [BindProperty]
 public BindingModel Input { get; set; }
 public List<Product> Results { get; set; }

 public void OnGet()
 {
 }

 public IActionResult OnPost(int max)
 {

Listing 4.3 Example Razor Page handlers

The SearchService is
provided to the SearchModel
for use in page handlers.

Properties decorated
with the [BindProperty]
attribute will be model-
bound.

decorated
roperties
ill not be
el-bound.

The page handler doesn’t need to check if the
model is valid. Returning void will render the view.

The max parameter in this page
handler will be model-bound
using the values in the request.

116 CHAPTER 4 Creating a website with Razor Pages

wa
me

t
b
t

 if (ModelState.IsValid)
 {
 Results = _searchService.Search (Input.SearchTerm, max);
 return Page();
 }
 return RedirectToPage("./Index");
 }
}

In this example, the OnGet handler doesn’t require any parameters, and the method is
simple—it returns void, which means the associated Razor view will be rendered. It
could also have returned a PageResult; the effect would have been the same. Note
that this handler is for HTTP GET requests, so the Input property decorated with
[BindProperty] is not bound.

TIP To bind properties for GET requests too, use the SupportsGet property of
the attribute; for example, [BindProperty(SupportsGet = true)].

The OnPost handler, conversely, accepts a parameter max as an argument. In this case
it’s a simple type, int, but it could also be a complex object. Additionally, as this han-
dler corresponds to an HTTP POST request, the Input property is also model-bound to
the request.

NOTE Unlike most .NET classes, you can’t use method overloading to have
multiple page handlers on a Razor Page with the same name.

When an action method uses model-bound properties or parameters, it should always
check that the provided model is valid using ModelState.IsValid. The ModelState
property is exposed as a property on the base PageModel class and can be used to
check that all the bound properties and parameters are valid. You’ll see how the pro-
cess works in chapter 6 when you learn about validation.

 Once a page handler establishes that the method parameters provided to an
action are valid, it can execute the appropriate business logic and handle the request.
In the case of the OnPost handler, this involves calling the provided SearchService
and setting the result on the Results property. Finally, the handler returns a Page-
Result by calling the base method

return Page();

If the model wasn’t valid, you don’t have any results to display! In this example, the
action returns a RedirectToPageResult using the RedirectToPage helper method.
When executed, this result will send a 302 redirect response to the user, which will
cause their browser to navigate to the Index Razor Page.

 Note that the OnGet method returns void in the method signature, whereas the
OnPost method returns an IActionResult. This is required in the OnPost method in
order to allow the C# to compile (as the Page and RedirectToPage helper methods

If the request
s not valid, the
thod indicates
he user should
e redirected to
he Index page.

117Razor Pages and page handlers
return different types), but it doesn’t change the final behavior of the methods. You
could just as easily have called Page in the OnGet method and returned an IAction-
Result, and the behavior would be identical.

TIP If you’re returning more than one type of result from a page handler,
you’ll need to ensure your method returns an IActionResult.

In the next section we’ll look in more depth at action results and what they’re used for.

4.3.2 Returning responses with ActionResults

In the previous section, I emphasized that page handlers decide what type of response
to return, but they don’t generate the response themselves. It’s the IActionResult
returned by a page handler that, when executed by the Razor Pages infrastructure
using the view engine, will generate the response.

 This approach is key to following the MVC design pattern. It separates the decision
of what sort of response to send from the generation of the response. This allows you
to easily test your action method logic to confirm that the right sort of response is sent
for a given input. You can then separately test that a given IActionResult generates
the expected HTML, for example.

 ASP.NET Core has many different types of IActionResult:

 PageResult—Generates an HTML view for an associated page in Razor Pages
 ViewResult—Generates an HTML view for a given Razor view when using MVC

controllers
 RedirectToPageResult—Sends a 302 HTTP redirect response to automatically

send a user to another page
 RedirectResult—Sends a 302 HTTP redirect response to automatically send a

user to a specified URL (doesn’t have to be a Razor Page)
 FileResult—Returns a file as the response
 ContentResult—Returns a provided string as the response
 StatusCodeResult—Sends a raw HTTP status code as the response, optionally

with associated response body content
 NotFoundResult—Sends a raw 404 HTTP status code as the response

Each of these, when executed by Razor Pages, will generate a response to send back
through the middleware pipeline and out to the user.

TIP When you’re using Razor Pages, you generally won’t use some of these
action results, such as ContentResult and StatusCodeResult. It’s good to be
aware of them, though, as you will likely use them if you are building Web
APIs with MVC controllers.

In this section I’ll give a brief description of the most common IActionResult classes
that you’ll use with Razor Pages.

118 CHAPTER 4 Creating a website with Razor Pages
PAGERESULT AND REDIRECTTOPAGERESULT

When you’re building a traditional web application with Razor Pages, usually you’ll be
using PageResult, which generates an HTML response using Razor. We’ll look at how
this happens in detail in chapter 7.

 You’ll also commonly use the various redirect-based results to send the user to a
new web page. For example, when you place an order on an e-commerce website, you
typically navigate through multiple pages, as shown in figure 4.12. The web applica-
tion sends HTTP redirects whenever it needs you to move to a different page, such as
when a user submits a form. Your browser automatically follows the redirect requests,
creating a seamless flow through the checkout process.

The user clicks the buy
button on the checkout
page, which sends a
POST to the web

The ASP.NET Core application
begins the checkout process
and sends a 302 REDIRECT
response to the payment page.

The user s browser’
automatically follows
the redirect to the
payment page.

The request for the payment
page is handled by the app,
generating an HTML page and
returning it to the browser.

The user fills in the
payment form and
clicks the Submit
button, which sends
a POST to the web
application.

The ASP.NET Core application
processes the payment and
sends a 302 REDIRECT response
to the Order Complete page.

The user s browser’
automatically follows
the redirect to the
Order Complete page. The request for the Order

Complete page is handled by
generating an HTML page and
returning it to the browser.The user views the HTML

Order Complete page.

The user begins by navigating
to the checkout page, which
sends a GET request to the
ASP.NET Core application. The request for the Checkout

page is handled by the app,
generating an HTML page and
returning it to the browser.

application.

Figure 4.12 A typical POST, REDIRECT, GET flow through a website. A user sends their shopping basket to a
checkout page, which validates its contents and redirects to a payment page without the user having to
manually change the URL.

119Razor Pages and page handlers
In this flow, whenever you return HTML you use a PageResult; when you redirect to a
new page, you use a RedirectToPageResult.

TIP Razor Pages are generally designed to be stateless, so if you want to per-
sist data between multiple pages, you need to place it in a database or similar
store. If you just want to store data for a single request, you may be able to use
TempData, which stores small amounts of data in cookies for a single request.
See the documentation for details: http://mng.bz/XdXp.

NOTFOUNDRESULT AND STATUSCODERESULT

As well as HTML and redirect responses, you’ll occasionally need to send specific
HTTP status codes. If you request a page for viewing a product on an e-commerce
application, and that product doesn’t exist, a 404 HTTP status code is returned to the
browser, and you’ll typically see a “Not found” web page. Razor Pages can achieve this
behavior by returning a NotFoundResult, which will return a raw 404 HTTP status
code. You could achieve a similar result using StatusCodeResult and setting the sta-
tus code returned explicitly to 404.

 Note that NotFoundResult doesn’t generate any HTML; it only generates a raw 404
status code and returns it through the middleware pipeline. But, as discussed in the
previous chapter, you can use the StatusCodePagesMiddleware to intercept this raw
404 status code after it’s been generated and provide a user-friendly HTML response
for it.

CREATING ACTIONRESULT CLASSES USING HELPER METHODS

ActionResult classes can be created and returned using the normal new syntax of C#:

return new PageResult()

However, the Razor Pages PageModel base class also provides a number of helper
methods for generating responses. It’s common to use the Page method to generate
an appropriate PageResult, the RedirectToPage method to generate a RedirectTo-
PageResult, or the NotFound method to generate a NotFoundResult.

TIP Most ActionResult classes have a helper method on the base PageModel
class. They’re typically named Type, and the result generated is called Type-
Result. For example, the StatusCode method returns a StatusCodeResult
instance.

As discussed earlier, the act of returning an IActionResult doesn’t immediately gener-
ate the response—it’s the execution of an IActionResult by the Razor Pages infrastruc-
ture, which occurs outside the action method. After producing the response, Razor
Pages returns it to the middleware pipeline. From there, it passes through all the reg-
istered middleware in the pipeline, before the ASP.NET Core web server finally sends
it to the user.

http://mng.bz/XdXp

120 CHAPTER 4 Creating a website with Razor Pages
 By now, you should have an overall understanding of the MVC design pattern and
how it relates to ASP.NET Core and Razor Pages. The page handler methods on a
Razor Page are invoked in response to given requests and are used to select the type of
response to generate by returning an IActionResult.

 It’s important to remember that the MVC and Razor Pages infrastructure in ASP.NET
Core runs as part of the EndpointMiddleware pipeline, as you saw in the previous
chapter. Any response generated, whether a PageResult or a RedirectToPageResult,
will pass back through the middleware pipeline, providing a potential opportunity for
middleware to observe the response before the web server sends it to the user.

 An aspect I’ve only vaguely touched on is how the RoutingMiddleware decides
which Razor Page and handler to invoke for a given request. You don’t want to have a
Razor Page for every URL in an app. It would be difficult to have, for example, a differ-
ent page per product in an e-shop—every product would need its own Razor Page!
Handling this and other scenarios is the role of the routing infrastructure, and it’s a
key part of ASP.NET Core. In the next chapter, you’ll see how to define routes, how to
add constraints to your routes, and how they deconstruct URLs to match a single
Razor Page handler.

Summary
 The MVC design pattern allows for a separation of concerns between the busi-

ness logic of your application, the data that’s passed around, and the display of
data in a response.

 Razor Pages are built on the ASP.NET Core MVC framework, and they use
many of the same primitives. They use conventions and a different project lay-
out to optimize for page-based scenarios.

 MVC controllers contain multiple action methods, typically grouped around a high-
level entity. Razor Pages groups all the page handlers for a single page in one
place, grouping around a page/feature instead of an entity.

 Each Razor Page is equivalent to a mini controller focused on a single page,
and each Razor Page handler corresponds to a separate action method.

 Razor Pages should inherit from the PageModel base class.
 A single Razor Page handler is selected based on the incoming request’s URL,

the HTTP verb, and the request’s query string, in a process called routing.
 Page handlers should generally delegate to services to handle the business logic

required by a request, instead of performing the changes themselves. This
ensures a clean separation of concerns that aids testing and improves applica-
tion structure.

 Page handlers can have parameters whose values are taken from properties of
the incoming request in a process called model binding. Properties decorated
with [BindProperty] can also be bound to the request.

121Summary
 By default, properties decorated with [BindProperty] are not bound for GET
requests. To enable binding, use [BindProperty(SupportsGet = true)].

 Page handlers can return a PageResult or void to generate an HTML response.
 You can send users to a new Razor Page using a RedirectToPageResult.
 The PageModel base class exposes many helper methods for creating an

ActionResult.

Mapping URLs to Razor
Pages using routing
In chapter 4 you learned about the MVC design pattern and how ASP.NET Core
uses it to generate the UI for an application using Razor Pages. Razor Pages contain
page handlers that act as mini controllers for a request. The page handler calls the
application model to retrieve or save data. The handler then passes data from the
application model to the Razor view, which generates an HTML response.

 Although not part of the MVC design pattern per se, one crucial part of Razor
Pages is selecting which Razor Page to invoke in response to a given request. This
process is called routing and is the focus of this chapter.

 This chapter begins by identifying the need for routing and why it’s useful.
You’ll learn about the endpoint routing system introduced in ASP.NET Core 3.0,
see several examples of routing techniques, and explore the separation routing can
bring between the layout of your Razor Page files and the URLs you expose.

 The bulk of this chapter focuses on how to use routing with Razor Pages to cre-
ate dynamic URLs, so that a single Razor Page can handle requests to multiple

This chapter covers
 Mapping URLs to Razor Pages

 Using constraints and default values to
match URLs

 Generating URLs from route parameters
122

123What is routing?
URLs. I’ll show you how to build powerful route templates and give you a taste of the
available options.

 In section 5.5, I describe how to use the routing system to generate URLs, which you
can use to create links and redirect requests for your application. One of the benefits
of using a routing system is that it decouples your Razor Pages from the underlying
URLs that are used to execute them. You can use URL generation to avoid littering
your code with hardcoded URLs like /Product/View/3. Instead, you can generate the
URLs at runtime, based on the routing system. The benefit of this is that it makes
changing the URL configuration for a Razor Page easier. Instead of having to hunt
down everywhere you used the Razor Page’s URL, the URLs will be automatically
updated for you, with no other changes required.

 I finish the chapter by describing how you can customize the conventions Razor
Pages uses, giving you complete control over the URLs your application uses. You’ll
see how to change the built-in conventions, such as using lowercase for your URLs, as
well as how to write your own convention and apply it globally to your application.

 By the end of this chapter, you should have a much clearer understanding of how
an ASP.NET Core application works. You can think of routing as the glue that ties the
middleware pipeline to Razor Pages and the MVC framework. With middleware,
Razor Pages, and routing under your belt, you’ll be writing web apps in no time!

5.1 What is routing?
Routing is the process of mapping an incoming request to a method that will handle
it. You can use routing to control the URLs you expose in your application. You can
also use routing to enable powerful features like mapping multiple URLs to the same
Razor Page and automatically extracting data from a request’s URL.

 In chapter 3 you saw that an ASP.NET Core application contains a middleware
pipeline, which defines the behavior of your application. Middleware is well suited to
handling both cross-cutting concerns, such as logging and error handling, and nar-
rowly focused requests, such as requests for images and CSS files.

 To handle more complex application logic, you’ll typically use the Endpoint-
Middleware at the end of your middleware pipeline, as you saw in chapter 4. This mid-
dleware can handle an appropriate request by invoking a method, known as a page
handler on a Razor Page or an action method on an MVC controller, and using the
result to generate a response.

 One aspect that I glossed over in chapter 4 was how to select which Razor Page or
action method to execute when you receive a request. What makes a request “appro-
priate” for a given Razor Page handler? The process of mapping a request to a han-
dler is called routing.

DEFINITION Routing in ASP.NET Core is the process of mapping an incoming
HTTP request to a specific handler. In Razor Pages, the handler is a page
handler method in a Razor Page. In MVC, the handler is an action method in
a controller.

124 CHAPTER 5 Mapping URLs to Razor Pages using routing
At this point you’ve already seen several simple applications built with Razor Pages in
previous chapters, so you’ve seen routing in action, even if you didn’t realize it at the
time. Even a simple URL path—for example, /Index—uses routing to determine that
the Index.cshtml Razor Page should be executed, as shown in figure 5.1.

On the face of it, that seems pretty simple. You may be wondering why I need a whole
chapter to explain that obvious mapping. The simplicity of the mapping in this case
belies how powerful routing can be. If this file layout-based approach were the only
one available, you’d be severely limited in the applications you could feasibly build.

 For example, consider an e-commerce application that sells multiple products.
Each product needs to have its own URL, so if you were using a purely file layout-
based routing system, you’d only have two options:

 Use a different Razor Page for every product in your product range. That would be com-
pletely unfeasible for almost any realistically sized product range.

 Use a single Razor Page and use the query string to differentiate between products. This is
much more practical, but you would end up with somewhat ugly URLs, like
"/product?name=big-widget", or "/product?id=12".

DEFINITION The query string is part of a URL that contains additional data that
doesn’t fit in the path. It isn’t used by the routing infrastructure for identify-
ing which action to execute, but it can be used for model binding, as you’ll
see in chapter 6.

With routing, you can have a single Razor Page that can handle multiple URLs, without
having to resort to ugly query strings. From the point of the view of the Razor Page,

The endpoint middleware
executes the selected endpoint
and returns the response.

/Index
The routing middleware maps the
/Index URL to the Index.cshtml

The routing middleware records
the selected endpoint in the
request object on the

endpoint.

HttpContext.

Figure 5.1 The router compares the request URL against a list of configured route templates to
determine which action method to execute.

125What is routing?
the query string and routing approaches are very similar—the Razor Page dynamically
displays the results for the correct product as appropriate. The difference is that with
routing, you can completely customize the URLs, as shown in figure 5.2. This gives
you much more flexibility and can be important in real-life applications for search
engine optimization (SEO) reasons.1

1 Importantly, you can properly encode the hierarchy of your site in your URLs, as described in Google’s SEO
starter guide: https://support.google.com/webmasters/answer/7451184.

products/simple-widget

products/big-widget

products/small-widget

products?name=simple-widget

products?name=big-widget

products?name=small-widget

products/simple-widget

products/big-widget

products/small-widget

name=simple-widget

Every URL maps to a file on disk.

The URL maps to a single page, and the
query string is used to show dynamic data.

Routing maps URLs to a single page, and the
final URL segment identifies the dynamic data.

{name} = simple-widget

Figure 5.2 If you use file layout-based mapping, you need a different Razor Page for every
product in your product range. With routing, multiple URLs map to a single Razor Page, and a
dynamic parameter captures the difference in the URL.

https://support.google.com/webmasters/answer/7451184

126 CHAPTER 5 Mapping URLs to Razor Pages using routing
As well as enabling dynamic URLs, routing fundamentally decouples the URLs in your
application from the filenames of your Razor Pages. For example, say you had a cur-
rency converter application with a Razor Page in your project located at the path
Pages/Rates/View.cshtml, which is used to view the exchange rate for a currency, say
USD. By default, this might correspond to the /rates/view/1 URL for users. This
would work fine, but it doesn’t tell users much—which currency will this show? Will it
be a historical view or the current rate?

 Luckily, with routing it’s easy to modify your exposed URLs without having to change
your Razor Page filenames or locations. Depending on your routing configuration, you
could set the URL pointing to the View.cshtml Razor Page to any of the following:

 /rates/view/1

 /rates/view/USD

 /rates/current-exchange-rate/USD

 /current-exchange-rate-for-USD

I know which of these I’d most like to see in the URL bar of my browser, and which I’d
be most likely to click! This level of customization isn’t often necessary, and the
default URLs are normally the best option in the long run, but it’s very useful to have
the capability to customize the URLs when you need it.

 In the next section we’ll look at how routing works in practice in ASP.NET Core.

5.2 Routing in ASP.NET Core
Routing has been a part of ASP.NET Core since its inception, but in ASP.NET Core 3.0
it went through some big changes. In ASP.NET Core 2.0 and 2.1, routing was
restricted to Razor Pages and the ASP.NET Core MVC framework. There was no dedi-
cated routing middleware in your middleware pipeline—routing happened only
within Razor Pages or MVC components.

 Given that most of the logic of your application is implemented in Razor Pages,
only using routing for Razor Pages was fine for the most part. Unfortunately, restrict-
ing routing to the MVC infrastructure made some things a bit messy. It meant some
cross-cutting concerns, like authorization, were restricted to the MVC infrastructure
and were hard to use from other middleware in your application. That restriction
caused inevitable duplication, which wasn’t ideal.

 In ASP.NET Core 3.0, a new routing system was introduced, endpoint routing. End-
point routing makes the routing system a more fundamental feature of ASP.NET Core
and no longer ties it to the MVC infrastructure. Razor Pages and MVC still rely on
endpoint routing, but now other middleware can use it too. ASP.NET Core 5.0 uses
the same endpoint routing system as ASP.NET Core 3.0.

 In this section I cover

 How endpoint routing works in ASP.NET Core
 The two types of routing available: convention-based routing and attribute routing
 How routing works for Razor Pages

127Routing in ASP.NET Core
At the end of this section you should have a good sense of how routing in ASP.NET
Core works with Razor Pages.

5.2.1 Using endpoint routing in ASP.NET Core

Endpoint routing is fundamental to all but the simplest ASP.NET Core apps. It’s
implemented using two pieces of middleware, which you’ve seen previously:

 EndpointMiddleware—You use this middleware to register the endpoints in rout-
ing the system when you start your application. The middleware executes one of
the endpoints at runtime.

 EndpointRoutingMiddleware—This middleware chooses which of the endpoints
registered by the EndpointMiddleware should execute for a given request at
runtime. To make it easier to distinguish between the two types of middleware,
I’ll be referring to this middleware as the RoutingMiddleware throughout
this book.

The EndpointMiddleware is where you configure all the endpoints in your system. This
is where you register your Razor Pages and MVC controllers, but you can also register
additional handlers that fall outside of the MVC framework, such as health-check end-
points that confirm your application is still running.

DEFINITION An endpoint in ASP.NET Core is some handler that returns a
response. Each endpoint is associated with a URL pattern. Razor Page han-
dlers and MVC controller action methods typically make up the bulk of the
endpoints in an application, but you can also use simple middleware as an
endpoint, or a health-check endpoint.

To register endpoints in your application, call UseEndpoints in the Configure
method of Startup.cs. This method takes a configuration lambda action that defines
the endpoints in your application, as shown in the following listing. You can automati-
cally register all the Razor Pages in your application using extensions such as Map-
RazorPages. Additionally, you can register other endpoints explicitly using methods
such as MapGet.

public void Configure(IApplicationBuilder app)
{
 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz");

Listing 5.1 Registering multiple endpoints in Startup.Configure

Add the EndpointRoutingMiddleware
to the middleware pipeline.

Add the EndpointMiddleware
to the pipeline and provide a
configuration lambda.

Register all the Razor Pages in
your application as endpoints.

Register a health-check
endpoint at the route
/healthz.

128 CHAPTER 5 Mapping URLs to Razor Pages using routing

t
 endpoints.MapGet("/test", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
}

Each endpoint is associated with a route template that defines which URLs the endpoint
should match. You can see two route templates, "/healthz" and "/test", in the previ-
ous listing.

DEFINITION A route template is a URL pattern that is used to match against
request URLs. They’re strings of fixed values, like "/test" in the previous list-
ing. They can also contain placeholders for variables, as you’ll see in section 5.3.

The EndpointMiddleware stores the registered routes and endpoints in a dictionary,
which it shares with the RoutingMiddleware. At runtime the RoutingMiddleware com-
pares an incoming request to the routes registered in the dictionary. If the Routing-
Middleware finds a matching endpoint, it makes a note of which endpoint was
selected and attaches that to the request’s HttpContext object. It then calls the next
middleware in the pipeline. When the request reaches the EndpointMiddleware, the
middleware checks to see which endpoint was selected and executes it, as shown in fig-
ure 5.3.

Register an endpoin
inline that returns
“Hello World!” at
the route /test.

4. The endpoint middleware
executes the selected
endpoint and returns
the response.

start-checkout

Privacy

Index

/Index

/Checkout/Start.cshtml

/Privacy.cshtml

/Index.cshtml

1. The routing middleware checks
the incoming request against the
list of route templates.

2. The URL matches the Index route
template, and the Index.cshtml
Razor Page is selected as the endpoint.

3. The routing middleware
records the selected
endpoint in the request
object. All subsequent
middleware can view
which endpoint was
selected.

If no route matches the request
URL, no endpoint is selected,
the endpoint middleware does
not run, and the dummy
middleware returns a 404.

Figure 5.3 Endpoint routing uses a two-step process. The RoutingMiddleware selects which endpoint to
execute, and the EndpointMiddleware executes it. If the request URL doesn’t match a route template, the
endpoint middleware will not generate a response.

129Routing in ASP.NET Core
If the request URL doesn’t match a route template, the RoutingMiddleware doesn’t
select an endpoint, but the request still continues down the middleware pipeline. As
no endpoint is selected, the EndpointMiddleware silently ignores the request and
passes it to the next middleware in the pipeline. The EndpointMiddleware is typically
the final middleware in the pipeline, so the “next” middleware is normally the dummy
middleware that always returns a 404 Not Found response, as you saw in chapter 3.

TIP If the request URL does not match a route template, no endpoint is
selected or executed. The whole middleware pipeline is still executed, but
typically a 404 response is returned when the request reaches the dummy 404
middleware.

The advantage of having two separate pieces of middleware to handle this process
might not be obvious at first blush. Figure 5.3 hinted at the main benefit—all middle-
ware placed after the RoutingMiddleware can see which endpoint is going to be exe-
cuted before it is.

NOTE Only middleware placed after the RoutingMiddleware can detect which
endpoint is going to be executed.

Figure 5.4 shows a more realistic middleware pipeline, where middleware is placed both
before the RoutingMiddleware and between the RoutingMiddleware and the Endpoint-
Middleware.

The endpoint middleware executes the
selected endpoint and returns the response.

The routing middleware selects
an endpoint based on the request
URL and application's route templates.

The authorization middleware is
placed after the routing middleware,
so it can tell which endpoint was
selected and access metadata
about the endpoint.

Middleware placed before the
routing middleware cannot tell
which endpoint will be executed.

Figure 5.4 Middleware placed before the routing middleware doesn’t know which endpoint the routing
middleware will select. Middleware placed between the routing middleware and the endpoint middleware
can see the selected endpoint.

130 CHAPTER 5 Mapping URLs to Razor Pages using routing
The StaticFileMiddleware in figure 5.4 is placed before the RoutingMiddleware, so it
executes before an endpoint is selected. Conversely, the AuthorizationMiddleware is
placed after the RoutingMiddleware, so it can tell that the Index.cshtml Razor Page
endpoint will be executed eventually. In addition, it can access certain metadata about
the endpoint, such as its name and what the required permissions are to access the
Razor Page.

TIP The AuthorizationMiddleware needs to know which endpoint will be
executed, so it must be placed after the RoutingMiddleware and before the
EndpointMiddleware in your middleware pipeline. I discuss authorization in
more detail in chapter 15.

It’s important to remember the different roles of the two types of routing middleware
when building your application. If you have a piece of middleware that needs to know
which endpoint (if any) a given request will execute, then you need to make sure you
place it after the RoutingMiddleware and before the EndpointMiddleware.

 We’ve covered how the RoutingMiddleware and EndpointMiddleware interact to
provide routing capabilities in ASP.NET Core, but we haven’t yet looked at how the
RoutingMiddleware matches the request URL to an endpoint. In the next section
we’ll look at the two different approaches used in ASP.NET Core.

5.2.2 Convention-based routing vs. attribute routing

Routing is a key part of ASP.NET Core, as it maps the incoming request’s URL to a spe-
cific endpoint to execute. You have two different ways to define these URL-endpoint
mappings in your application:

 Using global, convention-based routing
 Using attribute routing

Which approach you use will typically depend on whether you’re using Razor Pages or
MVC controllers, and whether you’re building an API or a website (using HTML).
These days I lean heavily toward attribute routing, as you’ll see shortly.

 Convention-based routing is defined globally for your application. You can use
convention-based routes to map endpoints (MVC controller actions) in your applica-
tion to URLs, but your MVC controllers must adhere strictly to the conventions you
define. Traditionally, applications using MVC controllers to generate HTML tend to
use this approach to routing. The downside to this approach is that it makes customiz-
ing the URLs for a subset of controllers and actions more difficult.

 Alternatively, you can use attribute-based routes to tie a given URL to a specific end-
point. For MVC controllers, this involves placing [Route] attributes on the action meth-
ods themselves, hence the term attribute-routing. This provides a lot more flexibility, as
you can explicitly define what the URL for each action method should be. This
approach is generally more verbose than the convention-based approach, as it requires
applying attributes to every action method in your application. Despite this, the addi-
tional flexibility it provides can be very useful, especially when building Web APIs.

131Routing in ASP.NET Core
 Somewhat confusingly, Razor Pages uses conventions to generate attribute routes! In
many ways this combination gives the best of both worlds—you get the predictability
and terseness of convention-based routing with the easy customization of attribute
routing. There are trade-offs to each of the approaches, as shown in table 5.1.

So which approach should you use? My opinion is that convention-based routing is
not worth the effort in 99% of cases and that you should stick to attribute routing. If
you’re following my advice of using Razor Pages, then you’re already using attribute
routing under the covers. Also, if you’re creating APIs using MVC controllers, attri-
bute routing is the best option and is the recommended approach.2

 The only scenario where convention-based routing is used traditionally is if you’re
using MVC controllers to generate HTML. But if you are following my advice from
chapter 4, you’ll be using Razor Pages for HTML-generating applications, and only
falling back to MVC controllers when completely necessary. For consistency, I would
still stick with attribute routing in that scenario.

Table 5.1 The advantages and disadvantages of the routing styles available in ASP.NET Core

Routing style Typical use Advantages Disadvantages

Convention-
based routes

HTML-generat-
ing MVC con-
trollers

Very terse definition in one loca-
tion in your application

Forces a consistent layout of
MVC controllers

Routes are defined in a different
place from your controllers.

Overriding the route conventions
can be tricky and error prone.

Adds an extra layer of indirec-
tion when routing a request

Attribute routes Web API MVC
controllers

Gives complete control over
route templates for every action.

Routes are defined next to the
action they execute.

Verbose compared to conven-
tion-based routing

Can be easy to over-customize
route templates.

Route templates are scattered
throughout your application,
rather than in one location.

Convention-
based genera-
tion of attribute
routes

Razor Pages Encourages consistent set of
exposed URLs

Terse when you stick to the
conventions

Easily override the route tem-
plate for a single page.

Customize conventions globally
to change exposed URLs.

Possible to over-customize route
templates

You must calculate what the
route template for a page is,
rather than it being explicitly
defined in your app.

2 .NET 5.0 also includes support for building simple APIs without the overhead (or convenience) of either
MVC or Razor Pages. Filip W. has an excellent post on creating small, simple API apps using C# 9 and .NET
5.0: http://mng.bz/yYey.

http://mng.bz/yYey

132 CHAPTER 5 Mapping URLs to Razor Pages using routing
NOTE For the reasons above, this book focuses on attribute routing. Virtually
all the features described in this section also apply to convention-based rout-
ing. For details on convention-based routing, see Microsoft’s “Routing to con-
troller actions in ASP.NET Core” documentation: http://mng.bz/ZP0O.

Whichever technique you use, you’ll define your application’s expected URLs using
route templates. These define the pattern of the URL you’re expecting, with placehold-
ers for the parts that may vary.

DEFINITION Route templates define the structure of known URLs in your appli-
cation. They’re strings with placeholders for variables that can contain optional
values.

A single route template can match many different URLs. For example, the /customer/1
and /customer/2 URLs would both be matched by the "customer/{id}" route tem-
plate. The route template syntax is powerful and contains many different features that
are controlled by splitting a URL into multiple segments.

DEFINITION A segment is a small contiguous section of a URL. It’s separated
from other URL segments by at least one character, often by the / character.
Routing involves matching the segments of a URL to a route template.

For each route template, you can define

 Specific, expected strings
 Variable segments of the URL
 Optional segments of a URL
 Default values when an optional segment isn’t provided
 Constraints on segments of a URL, such as ensuring that it’s numeric

Most applications will use a variety of these features, but you’ll often only use one or
two features here and there. For the most part, the default convention-based attribute
route templates generated by Razor Pages will be all you need. In the next section
we’ll look at those conventions and how routing maps a request’s URL to a Razor Page
in detail.

5.2.3 Routing to Razor Pages

As I mentioned in section 5.2.2, Razor Pages uses attribute routing by creating route
templates based on conventions. ASP.NET Core creates a route template for every Razor
Page in your app during app startup, when you call MapRazorPages in the Configure
method of Startup.cs:

app.UseEndpoints(endpoints =>
{
 endpoints.MapRazorPages();
});

http://mng.bz/ZP0O

133Routing in ASP.NET Core
For every Razor Page in your application, the framework uses the path of the Razor Page
file relative to the Razor Pages root directory (Pages/), excluding the file extension
(.cshtml). For example, if you have a Razor Page located at the path Pages/Products/
View.cshtml, the framework creates a route template with the value "Products/View",
as shown in figure 5.5.

Requests to the URL /products/view match the route template "Products/View",
which in turn corresponds to the View.cshtml Razor Page. The RoutingMiddleware
selects the View.cshtml Razor Page as the endpoint for the request, and the Endpoint-
Middleware executes the page’s handler once the request reaches it in the middle-
ware pipeline.

TIP Routing is not case sensitive, so the request URL does not need to have
the same URL casing as the route template to match.

In chapter 4 you learned that Razor Page handlers are the methods that are invoked
on a Razor Page. When we say “a Razor Page is executed,” we really mean “an instance
of the Razor Page’s PageModel is created, and a page handler on the model is invoked.”
Razor Pages can have multiple page handlers, so once the RoutingMiddleware selects

The Razor Pages root directory is called Pages.

The Pages/Products/View.cshtml page
has a route template of Products/View.

Route templates are based on the file path
relative to the Razor Pages root directory.

The Pages/Search/Products/StartSearch.cshtml page
has a route template of Search/Products/StartSearch.

The Pages/Privacy.cshtml page
has a route template of Privacy.

Figure 5.5 By default, route templates are generated for Razor Pages based on the path of the file
relative to the root directory, Pages.

134 CHAPTER 5 Mapping URLs to Razor Pages using routing
a Razor Page, the EndpointMiddleware still needs to choose which handler to execute.
You’ll learn how the framework selects which page handler to invoke in section 5.6.

 By default, each Razor Page creates a single route template based on its file path.
The exception to this rule is for Razor Pages that are called Index.cshtml. Index.cshtml
pages create two route templates, one ending with "Index" and the other without an
ending. For example, if you have a Razor Page at the path Pages/ToDo/Index.cshtml,
that will generate two route templates:

 "ToDo"

 "ToDo/Index"

When either of these routes are matched, the same Index.cshtml Razor Page is selected.
For example, if your application is running at the URL https://example.org, you can
view the page by executing https://example.org/ToDo or https://example.org/ToDo/
Index.

 As a final example, consider the Razor Pages created by default when you create a
Razor Pages application using Visual Studio or by running dotnet new web using the
.NET CLI, as we did in chapter 2. The standard template includes three Razor Pages
in the Pages directory:

 Pages/Error.cshtml

 Pages/Index.cshtml

 Pages/Privacy.cshtml

That creates a collection of four routes for the application, defined by the following
templates:

 "" maps to Index.cshtml
 "Index" maps to Index.cshtml
 "Error" maps to Error.cshtml
 "Privacy" maps to Privacy.cshtml

At this point, routing probably feels laughably trivial, but this is just the basics that you
get for free with the default Razor Pages conventions, which is often sufficient for a
large portion of any website. At some point, though, you’ll find you need something
more dynamic, such as an e-commerce site where you want each product to have its
own URL, but which map to a single Razor Page. This is where route templates and
route data come in and show the real power of routing.

5.3 Customizing Razor Page route templates
The route templates for a Razor Page are based on the file path by default, but
you’re also able to customize the final template for each page, or even to replace it
entirely. In this section I show how to customize the route templates for individual
pages, so you can customize your application’s URLs and map multiple URLs to a
single Razor Page.

https://example.org
https://example.org/ToDo
https://example.org/ToDo/Index
https://example.org/ToDo/Index
https://example.org/ToDo/Index

135Customizing Razor Page route templates
 Route templates have a rich, flexible syntax, but a simple example is shown in fig-
ure 5.6.

The routing middleware parses a route template by splitting it into a number of seg-
ments. A segment is typically separated by the / character, but it can be any valid char-
acter. Each segment is either

 A literal value—For example, product in figure 5.6
 A route parameter—For example, {category} and {name} in figure 5.6

Literal values must be matched exactly (ignoring case) by the request URL. If you
need to match a particular URL exactly, you can use a template consisting only of liter-
als. This is the default case for Razor Pages, as you saw in section 5.2.3; each Razor
Page consists of a series of literal segments, for example "ToDo/Index".

TIP Literal segments in ASP.NET Core are not case-sensitive.

Imagine you have a contact page in your application at the path Pages/About/Contact
.cshtml. The route template for this page is "About/Contact". This route template
consists of only literal values and so only matches the exact URL. None of the follow-
ing URLs would match this route template:

 /about

 /about-us/contact

 /about/contact/email

 /about/contact-us

Route parameters are sections of a URL that may vary but will still be a match for the
template. They are defined by giving them a name and placing them in braces, such as
{category} or {name}. When used in this way, the parameters are required, so there
must be a segment in the request URL that they correspond to, but the value can vary.

TIP Some words can’t be used as names for route parameters: area, action,
controller, handler, and page.

The ability to use route parameters gives you great flexibility. For example, the simple
route template "{category}/{name}" could be used to match all the product-page
URLs in an e-commerce application, such as

 /bags/rucksack-a—Where category=bags and name=rucksack-a
 /shoes/black-size9—Where category=shoes and name=black-size9

product/{category}/{name}

Literal
segment

Required route parameter

Required route
parameter

Figure 5.6 A simple route template showing a literal
segment and two required route parameters

136 CHAPTER 5 Mapping URLs to Razor Pages using routing
But note that this template would not map the following URLs:

 /socks/—No name parameter specified
 /trousers/mens/formal—Extra URL segment, formal, not found in route

template

When a route template defines a route parameter, and the route matches a URL, the
value associated with the parameter is captured and stored in a dictionary of values
associated with the request. These route values typically drive other behavior in the
Razor Page, such as model binding.

DEFINITION Route values are the values extracted from a URL based on a given
route template. Each route parameter in a template will have an associated
route value and they are stored as a string pair in a dictionary. They can be
used during model binding, as you’ll see in chapter 6.

Literal segments and route parameters are the two cornerstones of ASP.NET Core route
templates. With these two concepts it’s possible to build all manner of URLs for your
application. But how can you customize a Razor Page to use one of these patterns?

5.3.1 Adding a segment to a Razor Page route template

To customize the Razor Page route template, you update the @page directive at the
top of the Razor Page’s .cshtml file. This directive must be the first thing in the Razor
Page file for the page to be registered correctly.

NOTE You must include the @page directive at the top of a Razor Page’s .cshtml
file. Without it, ASP.NET Core will not treat the file as a Razor Page, and you
will not be able to view the page.

To add an additional segment to a Razor Page’s route template, add a space followed
by the desired route template, after the @page statement. For example, to add "Extra"
to a Razor Page’s route template, use

@page "Extra"

This appends the provided route template to the default template generated for the
Razor Page. For example, the default route template for the Razor Page at Pages/
Privacy.html is "Privacy". With the preceding directive, the new route template for
the page would be "Privacy/Extra".

NOTE The route template provided in the @page directive is appended to the
end of the default template for the Razor Page.

The most common reason for customizing a Razor Page’s route template like this is to
add a route parameter. For example, you could have a single Razor Page for displaying
the products in an e-commerce site at the path Pages/Products.cshtml, and use a
route parameter in the @page directive

@page "{category}/{name}"

137Customizing Razor Page route templates
 This would give a final route template of Products/{category}/{name}, which
would match all of the following URLs:

 /products/bags/white-rucksack

 /products/shoes/black-size9

 /Products/phones/iPhoneX

It’s very common to add route segments to the Razor Page template like this, but what
if that’s not enough? Maybe you don’t want to have the /products segment at the start
of the preceding URLs, or you want to use a completely custom URL for a page. Luck-
ily that’s just as easy to achieve.

5.3.2 Replacing a Razor Page route template completely

You’ll be most productive working with Razor Pages if you can stick to the default
routing conventions where possible, adding additional segments for route parameters
where necessary. But sometimes you just need more control. That’s often the case for
important pages in your application, such as the checkout page for an e-commerce
application, or even the product pages, as you saw in the previous section.

 To specify a custom route for a Razor Page, prefix the route with / in the @page
directive. For example, to remove the "product/" prefix from the route templates in
the previous section, use this directive:

@page "/{category}/{name}"

Note that this directive includes the "/" at the start of the route, indicating that this is
a custom route template, instead of an addition. The route template for this page will be
"{category}/{name}", no matter which Razor Page it is applied to.

 Similarly, you can create a static custom template for a page by starting the tem-
plate with a "/" and using only literal segments. For example,

@page "/checkout"

Wherever you place your checkout Razor Page within the Pages folder, using this
directive ensures it always has the route template "checkout", so it will always match
the request URL /checkout.

TIP You can also think of custom route templates that start with "/" as abso-
lute route templates, while other route templates are relative to their loca-
tion in the file hierarchy.

It’s important to note that when you customize the route template for a Razor Page,
both when appending to the default and when replacing it with a custom route, the
default template is no longer valid. For example, if you use the "checkout" route tem-
plate above on a Razor Page located at Pages/Payment.cshtml, you can only access it
using the URL /checkout; the URL /Payment is no longer valid and will not execute
the Razor Page.

138 CHAPTER 5 Mapping URLs to Razor Pages using routing
TIP Customizing the route template for a Razor Page using the @page direc-
tive replaces the default route template for the page. In section 5.7 I show how
you can add additional routes while preserving the default route template.

In this section you learned how to customize the route template for a Razor Page. In
the next section we’ll look in more depth at the route template syntax and some of
the other features available.

5.4 Exploring the route template syntax
In addition to the basic elements of literals and route parameter segments, route tem-
plates have extra features that give you more control over your application’s URLs.
These features let you have optional URL segments, provide default values when a
segment isn’t specified, or place additional constraints on the values that are valid for
a given route parameter. This section takes a look at these features and the ways you
can apply them.

5.4.1 Using optional and default values

In the previous section, you saw a simple route template with a literal segment and two
required routing parameters. In figure 5.7, you can see a more complex route that
uses a number of additional features.

The literal product segment and the required {category} parameter are the same as
you saw in figure 5.6. The {name} parameter looks similar, but it has a default value
specified for it using =all. If the URL doesn’t contain a segment corresponding to the
{name} parameter, the router will use the all value instead.

 The final segment of figure 5.7, {id?}, defines an optional route parameter called
id. This segment of the URL is optional—if present, the router will capture the value
for the {id} parameter; if it isn’t there, then it won’t create a route value for id.

 You can specify any number of route parameters in your templates, and these val-
ues will be available to you when it comes to model binding. The complex route tem-
plate of figure 5.7 allows you to match a greater variety of URLs by making {name} and
{id} optional, and providing a default for {name}. Table 5.2 shows some of the possi-
ble URLs this template would match and the corresponding route values the router
would set.

product/{category}/{name=all}/{id?}

Optional route parameter with
default value if not provided

Optional route
parameter

Required route
parameter

Literal
segment

Figure 5.7 A more complex route template
showing literal segments, named route
parameters, optional parameters, and
default values

139Exploring the route template syntax
Note that there’s no way to specify a value for the optional {id} parameter without
also specifying the {category} and {name} parameters. You can only put an optional
parameter (that doesn’t have a default) at the end of a route template. For example,
imagine your route template had an optional {category} parameter:

{category?}/{name}

Now try to think of a URL that would specify the {name} parameter, but not the
{category}. It can’t be done! Patterns like this won’t cause errors per se; the category
parameter is just essentially required, even though you’ve marked it as optional.

 Using default values allows you to have multiple ways to call the same URL, which
may be desirable in some cases. For example, given the route template in figure 5.7,
the following two URLs are equivalent:

 /product/shoes

 /product/shoes/all

Both of these URLs will execute the same Razor Page, with the same route values of
category=shoes and name=all. Using default values allows you to use shorter and
more memorable URLs in your application for common URLs, but still have the flexi-
bility to match a variety of routes in a single template.

5.4.2 Adding additional constraints to route parameters

By defining whether a route parameter is required or optional, and whether it has a
default value, you can match a broad range of URLs with a pretty terse template syn-
tax. Unfortunately, in some cases this can end up being a little too broad. Routing only
matches URL segments to route parameters; it doesn’t know anything about the data
that you’re expecting those route parameters to contain. If you consider a template
similar to that in figure 5.7, "{category}/{name=all}/{id?}, the following URLs
would all match:

 /shoes/sneakers/test

 /shoes/sneakers/123

Table 5.2 URLs that would match the template of figure 5.7 and their corresponding route values

URL Route values

/product/shoes/formal/3 category=shoes, name=formal, id=3

/product/shoes/formal category=shoes, name=formal

/product/shoes category=shoes, name=all

/product/bags/satchels category=bags, name=satchels

/product/phones category=phones, name=all

/product/computers/laptops/ABC-123 category=computes, name=laptops,
id=ABC-123

140 CHAPTER 5 Mapping URLs to Razor Pages using routing
 /Account/ChangePassword

 /ShoppingCart/Checkout/Start

 /1/2/3

These URLs are all perfectly valid given the template’s syntax, but some might cause
problems for your application. These URLs all have two or three segments, so the
router happily assigns route values and matches the template when you might not
want it to! These are the route values assigned:

 /shoes/sneakers/test—category=shoes, name=sneakers, id=test
 /shoes/sneakers/123—category=shoes, name=sneakers, id=123
 /Account/ChangePassword—category=Account, name=ChangePassword
 /Cart/Checkout/Start—category=Cart, name=Checkout, id=Start
 /1/2/3—category=1, name=2, id=3

Typically, the router passes route values to Razor Pages through a process called
model binding, which you saw briefly in chapter 4 (and which we’ll discuss in detail in
the next chapter). For example, a Razor Page with the handler public void
OnGet(int id) would obtain the id argument from the id route value. If the id route
parameter ends up assigned a non-integer value from the URL, you’ll get an exception
when it’s bound to the integer id parameter.

 To avoid this problem, it’s possible to add additional constraints to a route template
that must be satisfied for a URL to be considered a match. Constraints can be defined
in a route template for a given route parameter using : (a colon). For example,
{id:int} would add the IntRouteConstraint to the id parameter. For a given URL
to be considered a match, the value assigned to the id route value must be convertible
to an integer.

 You can apply a large number of route constraints to route templates to ensure
that route values are convertible to appropriate types. You can also check more
advanced constraints, for example, that an integer value has a particular minimum
value, or that a string value has a maximum length. Table 5.3 describes a number of
the possible constraints available, but you can find a more complete list online in Mic-
rosoft’s “Routing in ASP.NET Core” documentation at http://mng.bz/xmae.

Table 5.3 A few route constraints and their behavior when applied

Constraint Example Match examples Description

int {qty:int} 123, -123, 0 Matches any integer

Guid {id:guid} d071b70c-a812-4b54-
87d2-7769528e2814

Matches any Guid

decimal {cost:decimal} 29.99, 52, -1.01 Matches any decimal
value

min(value) {age:min(18)} 18, 20 Matches integer val-
ues of 18 or greater

http://mng.bz/xmae

141Exploring the route template syntax
TIP As you can see from table 5.3, you can also combine multiple constraints
by separating the constraints with colons.

Using constraints allows you to narrow down the URLs that a given route template will
match. When the routing middleware matches a URL to a route template, it interro-
gates the constraints to check that they’re all valid. If they aren’t valid, the route tem-
plate isn’t considered a match, and the Razor Page won’t be executed.

WARNING Don’t use route constraints to validate general input, such as to
check that an email address is valid. Doing so will result in 404 “Page not
found” errors, which will be confusing for the user.

Constraints are best used sparingly, but they can be useful when you have strict
requirements on the URLs used by the application, as they can allow you to work
around some otherwise tricky combinations.

length(value) {name:length(6)} andrew,123456 Matches string values
with a length of 6

optional int {qty:int?} 123, -123, 0, null Optionally matches any
integer

optional int
max(value)

{qty:int:max(10)?} 3, -123, 0, null Optionally matches any
integer of 10 or less

Constraints and ordering in attribute routing
If you have a well-designed set of URLs for your application, you will probably find that
you don’t really need to use route constraints. Route constraints really come in useful
when you have “overlapping” route templates.

For example, imagine you have a Razor Page with the route template "{num-
ber}/{name}" and another with the template "{product}/{id}". When a request
with the URL /shoes/123 arrives, which template is chosen? They both match, so
the routing middleware panics and throws an exception. Not ideal.

Using conventions can fix this. For example, if you update the first template to
"{number:int}/{name}", then the integer constraint means the URL is no longer a
match, and the routing middleware can choose correctly. Note, however, that the URL
/123/shoes does still match both route templates, so you’re not out of the woods.

Generally, you should avoid overlapping route templates like these, as they’re often
confusing and more trouble than they’re worth.

Attribute routing (used by Razor Pages and MVC controllers for building APIs) allows
you to explicitly control the order the routing middleware looks at your route tem-
plates, which can also be used to resolve issues like the one above. However, if you

Table 5.3 A few route constraints and their behavior when applied (continued)

Constraint Example Match examples Description

142 CHAPTER 5 Mapping URLs to Razor Pages using routing
We’re coming to the end of our look at route templates, but before we move on
there’s one more type of parameter to think about: the catch-all parameter.

5.4.3 Matching arbitrary URLs with the catch-all parameter

You’ve already seen how route templates take URL segments and attempt to match
them to parameters or literal strings. These segments normally split around the slash
character, /, so the route parameters themselves won’t contain a slash. What do you
do if you need them to contain a slash, or you don’t know how many segments you’re
going to have?

 Imagine you are building a currency-converter application that shows the exchange
rate from one currency to one or more other currencies. You’re told that the URLs
for this page should contain all the currencies as separate segments. Here are some
examples:

 /USD/convert/GBP—Show USD with exchange rate to GBP
 /USD/convert/GBP/EUR—Show USD with exchange rates to GBP and EUR
 /USD/convert/GBP/EUR/CAD—Show USD with exchange rates for GBP, EUR,

and CAD

If you want to support showing any number of currencies as the URLs above do, you
need a way of capturing everything after the convert segment. You could achieve this
for the Pages/Convert.cshtml Razor Page by using a catch-all parameter in the @page
directive, as shown in figure 5.8.

(continued)

find yourself needing to manually control the order, this is a very strong indicator that
your URLs are confusing.a

If your route templates are well defined, such that each URL only maps to a single
template, ASP.NET Core routing will work without any difficulties. Sticking to the built-
in conventions as far as possible is the best way to stay on the happy path!

a If you’re really sure you do need to control route template ordering, see the documentation at
http://mng.bz/MXqo. Note that you can only control the order for additional routes added using
conventions, as you’ll see in section 5.7.

@page "/{currency}/convert/{**others}"

Catch-all
parameter

Convert from
currency

Literal
segment

Replace default route
instead of append

Figure 5.8 You can use catch-all parameters
to match the remainder of a URL. Catch-all
parameters may include the "/" character or
may be an empty string.

http://mng.bz/MXqo

143Generating URLs from route parameters
Catch-all parameters can be declared using either one or two asterisks inside the
parameter definition, like {*others} or {**others}. These will match the remaining
unmatched portion of a URL, including any slashes or other characters that aren’t part
of earlier parameters. They can also match an empty string. For the USD/convert/
GBP/EUR URL, the value of the route value others would be the single string "GBP/EUR".

TIP Catch-all parameters are greedy and will capture the whole unmatched
portion of a URL. Where possible, to avoid confusion, avoid defining route
templates with catch-all parameters that overlap other route templates.

The one- and two-asterisk versions of the catch-all parameter behave identically when
routing an incoming request to a Razor Page. The difference only comes when you’re
generating URLs (which we’ll cover in the next section): the one-asterisk version URL
encodes forward slashes, and the two-asterisk version doesn’t. The round-trip behav-
ior of the two-asterisk version is typically what you want.3

 You read that correctly—mapping URLs to Razor Pages is only half of the responsi-
bilities of the routing system in ASP.NET Core. It’s also used to generate URLs so that
you can easily reference your Razor Pages from other parts of your application.

5.5 Generating URLs from route parameters
In this section, we’ll look at the other half of routing—generating URLs. You’ll learn
how to generate URLs as a string you can use in your code, and how to automatically
send redirect URLs as a response from your Razor Pages.

 One of the by-products of using the routing infrastructure in ASP.NET Core is that
your URLs can be somewhat fluid. If you rename a Razor Page, the URL associated
with that page will also change. For example, renaming the Pages/Cart.cshtml page
to Pages/Basket/View.cshtml would cause the URL you use to access the page to
change from /Cart to /Basket/View.

 Trying to manually manage these links within your app would be a recipe for heart-
ache, broken links, and 404s. If your URLs were hardcoded, you’d have to remember
to do a find-and-replace with every rename!

 Luckily, you can use the routing infrastructure to generate appropriate URLs
dynamically at runtime instead, freeing you from the burden. Conceptually, this is
almost an exact reverse of the process of mapping a URL to a Razor Page, as shown
in figure 5.9. In the “routing” case, the routing middleware takes a URL, matches it
to a route template, and splits it into route values. In the “URL generation” case, the
generator takes in the route values and combines them with a route template to build
a URL.

3 For details and examples of this behavior, see the documentation: http://mng.bz/aoGo.

http://mng.bz/aoGo

144 CHAPTER 5 Mapping URLs to Razor Pages using routing
5.5.1 Generating URLs for a Razor Page

You will need to generate URLs in various places in your application, and one com-
mon location is in your Razor Pages and MVC controllers. The following listing shows
how you could generate a link to the Pages/Currency/View.cshtml Razor Page, using
the Url helper from the PageModel base class.

public class IndexModel : PageModel
{
 public void OnGet()
 {
 var url = Url.Page("Currency/View", new { code = "USD" });
 }
}

The Url property is an instance of IUrlHelper that allows you to easily generate URLs
for your application by referencing other Razor Pages by their file path. It exposes a
Page method to which you pass the name of the Razor Page and any additional route
data. The route data is packaged as key-value pairs into a single C# anonymous object.

Listing 5.2 Generating a URL using IUrlHelper and the Razor Page name

Routing takes in a URL,
uses the collection of
route templates, and
outputs route values.

URL generation takes in a
collection of route values and
uses the collection of route
templates to output a URL.

Figure 5.9 A comparison between routing and URL generation. Routing takes
in a URL and generates route values, but URL generation uses route values to
generate a URL.

Deriving from PageModel gives
access to the Url property.

You provide the relative path to the Razor
Page, along with any additional route values.

145Generating URLs from route parameters
If you need to pass more than one route value, you can add additional properties to
the anonymous object. The helper will then generate a URL based on the referenced
page’s route template.

TIP You can provide the relative file path to the Razor Page, as shown in list-
ing 5.2. Alternatively, you can provide the absolute file path (relative to the
Pages folder) by starting the path with a "/", for example, "/Currency/View".

The IUrlHelper has several different overloads of the Page method. Some of these
methods allow you to specify a specific page handler, others let you generate an abso-
lute URL instead of a relative URL, and some let you pass in additional route values.

 In listing 5.2, as well as providing the file path, I passed in an anonymous object,
new { code = "USD" }. This object provides additional route values when generating
the URL, in this case setting the code parameter to "USD".

 If a selected route explicitly includes the defined route value in its definition, such
as in the "Currency/View/{code}" route template, the route value will be used in the
URL path, giving /Currency/View/GBP.

 If a route doesn’t contain the route value explicitly, as in the "Currency/View"
template, the route value is appended as additional data as part of the query string,
for example /Currency/View?code=GBP.

 Generating URLs based on the page you want to execute is convenient, and it’s
the usual approach taken in most cases. If you’re using MVC controllers for your
APIs, the process is much the same as for Razor Pages, though the methods are
slightly different.

5.5.2 Generating URLs for an MVC controller

Generating URLs for MVC controllers is very similar to Razor Pages. The main differ-
ence is that you use the Action method on the IUrlHelper, and you provide an MVC
controller name and action name instead of a page path. The following listing shows
an MVC controller generating a link from one action method to another, using the
Url helper from the Controller base class.

public class CurrencyController : Controller
{
 [HttpGet("currency/index")]
 public IActionResult Index()
 {
 var url = Url.Action("View", "Currency",
 new { code = "USD" });
 return Content($"The URL is {url}");
 }

 [HttpGet("currency/view/{code}")]
 public IActionResult View(string code)
 {

Listing 5.3 Generating a URL using IUrlHelper and the action name

Deriving from Controller
gives access to the Url
property.

You provide the action and
controller name, along with
any additional route values.

This will return "The URL is
/Currency/View/USD".

The URL generated will route
to the View action method.

146 CHAPTER 5 Mapping URLs to Razor Pages using routing
 /* method implementation*/
 }
}

You can call the Action and Page methods on IUrlHelper from both Razor Pages and
MVC controllers, so you can generate links back and forth between them if you
need to. The important question is, what is the destination of the URL? If the URL
you need refers to a Razor Page, use the Page method. If the destination is an MVC
action, use the Action method.

TIP Instead of using strings for the name of the action method, use the C# 6
nameof operator to make the value refactor-safe, for example, nameof(View).

If you’re routing to an action in the same controller, you can use a different overload
of Action that omits the controller name when generating the URL. The IUrlHelper
uses ambient values from the current request and overrides these with any specific val-
ues you provide.

DEFINITION Ambient values are the route values for the current request. They
include controller and action when called from an MVC controller but can
also include additional route values that were set when the action or Razor
Page was initially located using routing. See Microsoft’s “Routing in ASP.NET
Core” documentation for further details: http://mng.bz/xmae.

Generating URLs using the Url property doesn’t tend to be very common in practice.
Instead, it’s more common to generate URLs implicitly with an ActionResult.

5.5.3 Generating URLs with ActionResults

You’ve seen how to generate a string containing a URL for both Razor Pages and MVC
actions. This is useful if you need to display the URL to a user, or to include the URL
in an API response, for example. However, you don’t need to display URLs very often.
More commonly, you want to automatically redirect a user to a URL. For that situation
you can use an ActionResult to handle the URL generation instead.

 The following listing shows how you can generate a URL that automatically redi-
rects a user to a different Razor Page using an ActionResult. The RedirectToPage
method takes the path to a Razor Page and any required route parameters, and gener-
ates a URL in the same way as the Url.Page method. The framework automatically
sends the generated URL as the response, so you never see the URL in your code. The
user’s browser then reads the URL from the response and automatically redirects to
the new page.

public class CurrencyModel : PageModel
{
 public IActionResult OnGetRedirectToPage()
 {

Listing 5.4 Generating a redirect URL from an ActionResult

http://mng.bz/xmae

147Generating URLs from route parameters
 return RedirectToPage("Currency/View", new { id = 5 });
 }
}

You can use a similar method, RedirectToAction, to automatically redirect to an
MVC action instead. Just as with the Page and Action methods, it is the destination that
controls whether you need to use RedirectToPage or RedirectToAction. Redirect-
ToAction is only necessary if you’re using MVC controllers to generate HTML instead
of Razor Pages.

TIP I recommend you use Razor Pages instead of MVC controllers for HTML
generation. For a discussion of the benefits of Razor Pages, refer to chapter 4.

As well as generating URLs from your Razor Pages and MVC controllers, you’ll often
find you need to generate URLs when building HTML in your views. This is necessary
in order to provide navigation links in your web application. You’ll see how to achieve
this when we look at Razor Tag Helpers in chapter 8.

 If you need to generate URLs from parts of your application outside of the Razor
Page or MVC infrastructure, you won’t be able to use the IUrlHelper helper or an
ActionResult. Instead, you can use the LinkGenerator class.

5.5.4 Generating URLs from other parts of your application

If you’re writing your Razor Pages and MVC controllers following the advice from chap-
ter 4, you should be trying to keep your Razor Pages relatively simple. That requires you
to execute your application’s business and domain logic in separate classes and services.

 For the most part, the URLs your application uses shouldn’t be part of your domain
logic. That makes it easier for your application to evolve over time, or even to change
completely. For example, you may want to create a mobile application that reuses the
business logic from an ASP.NET Core app. In that case, using URLs in the business
logic wouldn’t make sense, as they wouldn’t be correct when the logic is called from
the mobile app!

TIP Where possible, try to keep knowledge of the frontend application design
out of your business logic. This pattern is known generally as the Dependency
Inversion principle.4

Unfortunately, sometimes that separation is not possible, or it makes things signifi-
cantly more complicated. One example might be when you’re creating emails in a
background service—it’s likely you’ll need to include a link to your application in the
email. The LinkGenerator class lets you generate that URL, so that it updates auto-
matically if the routes in your application change.

4 Steve Smith maintains a project template that applies this pattern rigorously, called the Clean Architecture.
You can find the template, along with many useful links and books on the topic, here: https://github
.com/ardalis/CleanArchitecture.

The RedirectToPage method generates a
RedirectToPageResult with the generated URL.

https://github.com/ardalis/CleanArchitecture
https://github.com/ardalis/CleanArchitecture
https://github.com/ardalis/CleanArchitecture

148 CHAPTER 5 Mapping URLs to Razor Pages using routing

 The LinkGenerator class is available in any part of your application, so you can use
it inside middleware and any other services. You can use it from Razor Pages and MVC
too, if you wish, but the IUrlHelper is typically easier and hides some details of using
the LinkGenerator.

 LinkGenerator has various methods for generating URLs, such as GetPathByPage,
GetPathByAction, and GetUriByPage, as shown in the following listing. There are
some subtleties to using these methods, especially in complex middleware pipelines,
so stick to the IUrlHelper where possible, and be sure to consult the documentation
if you have problems.5

public class CurrencyModel : PageModel
{
 private readonly LinkGenerator _link;
 public CurrencyModel(LinkGenerator linkGenerator)
 {
 _link = linkGenerator;
 }

 public void OnGet ()
 {
 var url1 = Url.Page("Currency/View", new { id = 5 });
 var url3 = _link.GetPathByPage(
 HttpContext,
 "/Currency/View",
 values: new { id = 5 });
 var url2 = _link.GetPathByPage(
 "/Currency/View",
 values: new { id = 5 });
 var url4 = _link.GetUriByPage(
 page: "/Currency/View",
 handler: null,
 values: new { id = 5 },
 scheme: "https",
 host: new HostString("example.com"));
 }
}

Whether you’re generating URLs using the IUrlHelper or LinkGenerator you need
to be careful when using the route generation methods. Make sure you provide the
correct Razor Page path and any necessary route parameters. If you get something
wrong—you have a typo in your path or you forgot to include a required route param-
eter, for example—the URL generated will be null. It’s worth checking the generated
URL for null explicitly, just to be sure there’s no problems.

Listing 5.5 Generating URLs using the LinkGeneratorClass

5 You can find the LinkGenerator documentation here: http://mng.bz/goWx.

LinkGenerator can
be accessed using
dependency injection.

Url can
generate
relative

paths using
Url.Page.

You can use
relative or

absolute
Page paths.

GetPathByPage is equivalent to
Url.Page when you pass in HttpContext.
You can’t use relative paths.

Other overloads don’t
require an HttpContext.

GetUriByPage
generates an absolute
URL instead of a
relative URL.

http://mng.bz/goWx

149Selecting a page handler to invoke
 So far in this chapter we’ve looked extensively at how incoming requests are
routed to Razor Pages, but we haven’t really seen where page handlers come into it. In
the next section we’ll look at page handlers and how you can have multiple handlers
on a Razor Page.

5.6 Selecting a page handler to invoke
At the start of this chapter I said routing was about mapping URLs to a handler. For
Razor Pages, that means a page handler, but so far we’ve only been talking about rout-
ing based on a Razor Page’s route template. In this section you’ll learn how the End-
pointMiddleware selects which page handler to invoke when it executes a Razor Page.

 You learned about page handlers in chapter 4, and their role within Razor Pages,
but we haven’t discussed how a page handler is selected for a given request. Razor Pages
can have multiple handlers, so if the RoutingMiddleware selects a Razor Page, the
EndpointMiddleware still needs to know how to choose which handler to execute.

 Consider the Razor Page SearchModel shown in the following listing. This Razor
Page has three handlers: OnGet, OnPostAsync, and OnPostCustomSearch. The bodies
of the handler methods aren’t shown, as, at this point, we’re only interested in how
the RoutingMiddleware chooses which handler to invoke.

public class SearchModel : PageModel
{
 public void OnGet()
 {
 // Handler implementation
 }

 public Task OnPostAsync()
 {
 // Handler implementation
 }

 public void OnPostCustomSearch()
 {
 // Handler implementation
 }
}

Razor Pages can contain any number of page handlers, but only one runs in response
to a given request. When the EndpointMiddleware executes a selected Razor Page, it
selects a page handler to invoke based on two variables:

 The HTTP verb used in the request (for example GET, POST, or DELETE)
 The value of the handler route value

The handler route value typically comes from a query string value in the request URL,
for example, /Search?handler=CustomSearch. If you don’t like the look of query
strings (I don’t!) you can include the {handler} route parameter in your Razor Page’s

Listing 5.6 Razor Page with multiple page handlers

Handles GET requests

Handles POST requests. The
async suffix is optional and is
ignored for routing purposes.

Handles POST requests where
the handler route value has
the value CustomSearch

150 CHAPTER 5 Mapping URLs to Razor Pages using routing
route template. For example, for the Search page in listing 5.6, you could update the
page’s directive to

@page "{handler}"

This would give a complete route template something like "Search/{handler}",
which would match URLs such as /Search/CustomSearch.

 The EndpointMiddleware uses the handler route value and the HTTP verb
together with a standard naming convention to identify which page handler to exe-
cute, as shown in figure 5.10. The handler parameter is optional and is typically pro-
vided as part of the request’s query string or as a route parameter, as described above.
The async suffix is also optional and is often used when the handler uses asynchro-
nous programming constructs such as Task or async/await.6

Based on this convention, we can now identify what type of request each page handler
in listing 5.6 corresponds to:

 OnGet—Invoked for GET requests that don’t specify a handler value.
 OnPostAsync—Invoked for POST requests that don’t specify a handler value.

Returns a Task, so it uses the Async suffix, which is ignored for routing purposes.
 OnPostCustomSearch—Invoked for POST requests that specify a handler value

of "CustomSearch".

The Razor Page in listing 5.6 specifies three handlers, so it can handle only three verb-
handler pairs. But what happens if you get a request that doesn’t match these, such as
a request using the DELETE verb, a GET request with a non-blank handler value, or a
POST request with an unrecognized handler value?

 For all these cases, the EndpointMiddleware executes an implicit page handler
instead. Implicit page handlers contain no logic; they just render the Razor view. For
example, if you sent a DELETE request to the Razor Page in listing 5.6, an implicit
handler would be executed. The implicit page handler is equivalent to the follow-
ing handler code:

public void OnDelete() { }

6 The async suffix naming convention is suggested by Microsoft, though it is unpopular with some developers.
NServiceBus provides a reasoned argument against it here (along with Microsoft’s advice): http://mng.bz/
e59P.

On{verb}[handler][Async]

Required

HTTP verb

Optional
handler name

Optional async suffix

Figure 5.10 Razor Page handlers are matched to
a request based on the HTTP verb and the optional
handler parameter.

http://mng.bz/e59P
http://mng.bz/e59P
http://mng.bz/e59P

151Customizing conventions with Razor Pages
DEFINITION If a page handler does not match a request’s HTTP verb and
handler value, an implicit page handler is executed that renders the associated
Razor view. Implicit page handlers take part in model binding and use page
filters but execute no logic.

There’s one exception to the implicit page handler rule: if a request uses the HEAD
verb, and there is no corresponding OnHead handler, Razor Pages will execute the
OnGet handler instead (if it exists).7

 At this point we’ve covered mapping request URLs to Razor Pages and generating
URLs using the routing infrastructure, but most of the URLs we’ve been using have
been kind of ugly. If seeing capital letters in your URLs bothers you, the next section is
for you. In the next section we’ll customize the conventions your application uses to
generate route templates.

5.7 Customizing conventions with Razor Pages
Razor Pages is built on a series of conventions that are designed to reduce the amount
of boilerplate code you need to write. In this section you’ll see some of the ways you
can customize those conventions. By customizing the conventions Razor Pages uses in
your application, you get full control over your application’s URLs without having to
manually customize every Razor Page’s route template.

 By default, ASP.NET Core generates URLs that match the filenames of your Razor
Pages very closely. For example, the Razor Page located at the path Pages/Products/
ProductDetails.cshtml, would correspond to the route template Products/Product-
Details.

 These days, it’s not very common to see capital letters in URLs. Similarly, words in
URLs are usually separated using “kebab-case” rather than “PascalCase”, for example,
product-details instead of ProductDetails. Finally, it’s also common to ensure
your URLs always end with a trailing slash, for example, /product-details/ instead
of /product-details. Razor Pages gives you complete control over the conventions
your application uses to generate route templates, but these are two common changes
I make.

 The following listing shows how you can ensure URLs are always lowercase and
that they always have a trailing slash. You can change these conventions by configuring
a RouteOptions object in Startup.cs. This object contains configuration for the whole
ASP.NET Core routing infrastructure, so any changes you make will apply to both
Razor Pages and MVC. You’ll learn more about configuring options in chapter 10.

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();

7 HEAD requests are typically sent automatically by the browser and don’t return a response body. They’re
often used for security purposes, as you’ll see in chapter 18.

Listing 5.7 Configuring routing conventions using RouteOptions in Startup.cs

Add the standard
Razor Pages services.

152 CHAPTER 5 Mapping URLs to Razor Pages using routing

Conf
Rout

o
pr

confi

par
a

 services.Configure<RouteOptions>(options =>
 {
 options.AppendTrailingSlash = true;
 options.LowercaseUrls = true;
 options.LowercaseQueryStrings = true;
 });
}

To use kebab-case for your application, annoyingly you must create a custom parame-
ter transformer. This is a somewhat advanced topic, but it’s relatively simple to imple-
ment in this case. The following listing shows how you can create a parameter
transformer that uses a regular expression to replace PascalCase values in a generated
URL with kebab-case.

public class KebabCaseParameterTransformer
 : IOutboundParameterTransformer
{
 public string TransformOutbound(object value)
 {
 if (value == null) return null;

 return Regex.Replace(value.ToString(),
 "([a-z])([A-Z])", "$1-$2").ToLower();
 }
}

You can register the parameter transformer in your application with the AddRazor-
PagesOptions extension method in Startup.cs. This method is chained after the
AddRazorPages method and can be used to completely customize the conventions
used by Razor Pages. The following listing shows how to register the kebab-case trans-
former. It also shows how to add an extra page route convention for a given Razor
Page.

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages()
 .AddRazorPagesOptions(opts =>
 {
 opts.Conventions.Add(
 new PageRouteTransformerConvention(
 new KebabCaseParameterTransformer()));
 opts.Conventions.AddPageRoute(
 "/Search/Products/StartSearch", "/search-products");
 });
}

Listing 5.8 Creating a kebab-case parameter transformer

Listing 5.9 Registering a parameter transformer using RazorPagesOptions

igure the
eOptions
bject by

oviding a
guration
method.

You can change the conventions
used to generate URLs. By default,
these properties are false.

Create a class that
implements the parameter
transformer interface.

Guard against null values to
avoid runtime exceptions.

The regular expression
replaces PascalCase patterns
with kebab-case.

AddRazorPagesOptions can be used
to customize the conventions used
by Razor Pages.

Registers the
ameter transformer
s a convention used

by all Razor Pages

AddPageRoute adds an
additional route template to

Pages/Search/Products/StartSearch.cshtml.

153Customizing conventions with Razor Pages
The AddPageRoute convention adds an alternative way to execute a single Razor Page.
Unlike when you customize the route template for a Razor Page using the @page
directive, using AddPageRoute adds an extra route template to the page instead of replac-
ing the default. That means there are two route templates that can access the page.

 There are many other ways you can customize the conventions for your Razor
Pages applications, but most of the time that’s not necessary. If you do find you need
to customize all the pages in your application in some way, such as to add an extra
header to every page’s response, you can use a custom convention. Microsoft’s “Razor
Pages route and app conventions in ASP.NET Core” documentation contains details
on everything that’s available: http://mng.bz/A0BK.

 Conventions are a key feature of Razor Pages, and you should lean on them when-
ever you can. While you can manually override the route templates for individual
Razor Pages, as you’ve seen in previous sections, I advise against it where possible. In
particular,

 Avoid replacing the route template with an absolute path in a page’s @page
directive.

 Avoid adding literal segments to the @page directive. Rely on the file hierarchy
instead.

 Avoid adding additional route templates to a Razor Page with the AddPageRoute
convention. Having multiple ways to access a page can sometimes be confusing.

 Do add route parameters to the @page directive to make your routes dynamic,
for example, @page {name}.

 Do consider using global conventions when you want to change the route tem-
plates for all your Razor Pages, such as using kebab-case, as you saw in the previ-
ous section.

In a nutshell, these rules amount to “stick to the conventions.” The danger, if you
don’t, is that you may accidentally create two Razor Pages that have overlapping route
templates. Unfortunately, if you end up in that situation, you won’t get an error at
compile time. Instead, you’ll get an exception at runtime when your application
receives a request that matches multiple route templates, as shown in figure 5.11.

 Congratulations, you’ve made it all the way through this detailed discussion on
routing! Routing is one of those topics that people often get stuck on when they come
to building an application, which can be frustrating. We’ll revisit routing again when I
describe how to create Web APIs in chapter 9, but rest assured, you’ve already covered
all the tricky details in this chapter!

 In chapter 6 we’ll dive into model binding. You’ll see how the route values gener-
ated during routing are bound to your action method (MVC) or page handler (Razor
Pages) parameters, and perhaps more importantly, how to validate the values you’re
provided.

http://mng.bz/A0BK

154 CHAPTER 5 Mapping URLs to Razor Pages using routing
Summary
 Routing is the process of mapping an incoming request URL to a Razor Page

that will execute to generate a response. You can use routing to decouple your
URLs from the files in your project and to have multiple URLs map to the same
Razor Page.

 ASP.NET Core uses two pieces of middleware for routing. The EndpointRout-
ingMiddleware is added in Startup.cs by calling UseRouting() and the End-
pointMiddleware is added by calling UseEndpoints().

 The EndpointRoutingMiddleware selects which endpoint should be executed
by using routing to match the request URL. The EndpointMiddleware executes
the endpoint.

 Any middleware placed between the calls to UseRouting() and UseEndpoints()
can tell which endpoint will be executed for the request.

 Route templates define the structure of known URLs in your application.
They’re strings with placeholders for variables that can contain optional values
and map to Razor Pages or to MVC controller actions.

 Route parameters are variable values extracted from a request’s URL.
 Route parameters can be optional and can use default values when a value is

missing.
 Route parameters can have constraints that restrict the possible values allowed.

If a route parameter doesn’t match its constraints, the route isn’t considered a
match.

Figure 5.11 If multiple Razor Pages are registered with overlapping route templates, you’ll get an exception at
runtime when the router can’t work out which one to select.

155Summary
 Don’t use route constraints as general input validators. Use them to disambigu-
ate between two similar routes.

 Use a catch-all parameter to capture the remainder of a URL into a route value.
 You can use the routing infrastructure to generate internal URLs for your

application.
 The IUrlHelper can be used to generate URLs as a string based on an action

name or Razor Page.
 You can use the RedirectToAction and RedirectToPage methods to generate

URLs while also generating a redirect response.
 The LinkGenerator can be used to generate URLs from other services in your

application, where you don’t have access to an HttpContext object.
 When a Razor Page is executed, a single page handler is invoked based on the

HTTP verb of the request and the value of the handler route value.
 If there is no page handler for a request, an implicit page handler is used that

renders the Razor view.
 You can control the routing conventions used by ASP.NET Core by configuring

the RouteOptions object, such as to force all URLs to be lowercase, or to always
append a trailing slash.

 You can add additional routing conventions for Razor Pages by calling Add-
RazorPagesOptions() after AddRazorPages() in Startup.cs. These conventions
can control how route parameters are displayed or can add additional route
templates for specific Razor Pages.

 Where possible, avoid customizing the route templates for a Razor Page and
rely on the conventions instead.

The binding model:
Retrieving and

validating user input
In chapter 5 I showed you how to define a route with parameters—perhaps for the
day in a calendar or the unique ID for a product page. But say a user requests a
given product page—what then? Similarly, what if the request includes data from
a form, to change the name of the product, for example? How do you handle that
request and access the values the user provided?

 In the first half of this chapter, we’ll look at using binding models to retrieve those
parameters from the request so that you can use them in your Razor Pages. You’ll
see how to take the data posted in the form or in the URL and bind them to C#
objects. These objects are passed to your Razor Page handlers as method parame-
ters or are set as properties on your Razor Page PageModel. When your page han-
dler executes, it can use these values to do something useful—return the correct
diary entry or change a product’s name, for instance.

This chapter covers
 Using request values to create binding models

 Customizing the model-binding process

 Validating user input using DataAnnotations
attributes
156

157Understanding the models in Razor Pages and MVC
 Once your code is executing in a page handler method, you might be forgiven for
thinking that you can happily use the binding model without any further thought.
Hold on though, where did that data come from? From a user—you know they can’t
be trusted! The second half of the chapter focuses on how to make sure that the val-
ues provided by the user are valid and make sense for your app.

 You can think of the binding models as the input to a Razor Page, taking the user’s
raw HTTP request and making it available to your code by populating “plain old CLR
objects” (POCOs).1 Once your page handler has run, you’re all set up to use the out-
put models in ASP.NET Core’s implementation of MVC—the view models and API
models. These are used to generate a response to the user’s request. We’ll cover them
in chapters 7 and 9.

 Before we go any further, let’s recap the MVC design pattern and how binding
models fit into ASP.NET Core.

6.1 Understanding the models in Razor Pages and MVC
In this section I describe how binding models fit into the MVC design pattern we cov-
ered in chapter 4. I describe the difference between binding models and the other
“model” concepts in the MVC pattern, and how they’re each used in ASP.NET Core.

 MVC is all about the separation of concerns. The premise is that by isolating each
aspect of your application to focus on a single responsibility, it reduces the interde-
pendencies in your system. This separation makes it easier to make changes without
affecting other parts of your application.

 The classic MVC design pattern has three independent components:

 Controller—Calls methods on the model and selects a view
 View—Displays a representation of data that makes up the model
 Model—The data to display and the methods for updating itself

In this representation, there’s only one model, the application model, which rep-
resents all the business logic for the application as well as how to update and modify
its internal state. ASP.NET Core has multiple models, which takes the single responsi-
bility principle one step further than some views of MVC.

 In chapter 4 we looked at an example of a to-do list application that can show all
the to-do items for a given category and username. With this application, you make a
request to a URL that’s routed using todo/listcategory/{category}/{username}.
This returns a response showing all the relevant to-do items, as shown in figure 6.1.

 The application uses the same MVC constructs you’ve already seen, such as routing
to a Razor Page handler, as well as a number of different models. Figure 6.2 shows how
a request to this application maps to the MVC design pattern and how it generates the
final response, including additional details around the model binding and validation
of the request.

1 POCOs are regular C# classes and objects that live in memory. There are no special inheritance requirements
or attributes required to use them with ASP.NET Core.

158 CHAPTER 6 The binding model: Retrieving and validating user input
The category and username are provided in the URL.
The category and
username are used
to filter the list of
to-do task items.

The category and
username can also
be shown in the
view model.

Figure 6.1 A basic to-do list application that displays to-do list items. A user can filter the list
of items by changing the category and username parameters in the URL.

1. A request is received for the URL
/todo/listcategory/open/Andrew.
The routing middleware matches
the request to the ListCategory
Razor Page and derives the route
parameters category=open and
username=Andrew.

6. The page handler sets the
the list of to-do items as a
property on the PageModel.
It then returns a PageResult
to execute the Razor view. 7. The view uses the properties on

the PageModel to generate an
HTML response, which is returned
to the user.

5. The page handler calls into
services that make up the
application model to fetch the
list of to-do items and to build
a view model.

2. The route parameters parsed from
the request are used to build a
binding model, setting the properties
Username and Category on the
binding model, an instance of a
custom class, InputModel.

3. After binding, the model is
validated to check it has
acceptable values. The result
of the validation is stored in
ModelState.

4. The binding model (InputModel)
and ModelState are set as properties
on the ListCategory PageModel.
The binding model could also be passed
as a parameter to the page handler.

Figure 6.2 The MVC pattern in ASP.NET Core handling a request to view a subset of items in a to-do
list Razor Pages application.

159Understanding the models in Razor Pages and MVC
ASP.NET Core Razor Pages uses several different models, most of which are POCOs,
and the application model, which is more of a concept around a collection of services.
Each of the models in ASP.NET Core is responsible for handling a different aspect of
the overall request:

 Binding model—The binding model is all the information that’s provided by the
user when making a request, as well as additional contextual data. This includes
things like route parameters parsed from the URL, the query string, and form
or JSON data in the request body. The binding model itself is one or more
POCO objects that you define. Binding models in Razor Pages are typically
defined by creating a public property on the page’s PageModel and decorating
it with the [BindProperty] attribute. They can also be passed to a page handler
as parameters.

For this example, the binding model would include the name of the cate-
gory, open, and the username, Andrew. The Razor Pages infrastructure inspects
the binding model before the page handler executes to check whether the pro-
vided values are valid, though the page handler will execute even if they’re not,
as you’ll see when we discuss validation in section 6.3.

 Application model—The application model isn’t really an ASP.NET Core model
at all. It’s typically a whole group of different services and classes and is more of
a concept—anything needed to perform some sort of business action in your
application. It may include the domain model (which represents the thing your
app is trying to describe) and database models (which represent the data stored
in a database), as well as any other, additional services.

In the to-do list application, the application model would contain the com-
plete list of to-do items, probably stored in a database, and would know how to
find only those to-do items in the open category assigned to Andrew.

Modeling your domain is a huge topic, with many different possible approaches,
so it’s outside the scope of this book, but we’ll touch briefly on creating database
models in chapter 11.

 Page model—The PageModel of a Razor Page serves two main functions: it acts as
the controller for the application by exposing page handler methods, and it
acts as the view model for a Razor view. All the data required for the view to gen-
erate a response is exposed on the PageModel, such as the list of to-dos in the
open category assigned to Andrew.

The PageModel base class that you derive your Razor Pages from contains var-
ious helper properties and methods. One of these, the ModelState property,
contains the result of the model validation as a series of key-value pairs. You’ll
learn more about validation and the ModelState property in section 6.3.

These models make up the bulk of any Razor Pages application, handling the input,
business logic, and output of each page handler. Imagine you have an e-commerce

160 CHAPTER 6 The binding model: Retrieving and validating user input
application that allows users to search for clothes by sending requests to the /search/
{query} URL, where {query} holds their search term:

 Binding model—This would take the {query} route parameter from the URL
and any values posted in the request body (maybe a sort order, or the number
of items to show), and bind them to a C# class, which typically acts as a throw-
away data transport class. This would be set as a property on the PageModel
when the page handler is invoked.

 Application model—This is the services and classes that perform the logic. When
invoked by the page handler, this model would load all the clothes that match
the query, applying the necessary sorting and filters, and return the results to
the controller.

 Page model—The values provided by the application model would be set as prop-
erties on the Razor Page’s PageModel, along with other metadata, such as the
total number of items available, or whether the user can currently check out.
The Razor view would use this data to render the Razor view to HTML.

The important point about all these models is that their responsibilities are well
defined and distinct. Keeping them separate and avoiding reuse helps to ensure your
application stays agile and easy to update.

 The obvious exception to this separation is the PageModel, as it is where the bind-
ing models and page handlers are defined, and it also holds the data required for ren-
dering the view. Some people may consider the apparent lack of separation to be
sacrilege, but in reality it’s not generally an issue. The lines of demarcation are pretty
apparent. So long as you don’t try to, for example, invoke a page handler from inside
a Razor view, you shouldn’t run into any problems!

 Now that you’ve been properly introduced to the various models in ASP.NET Core,
it’s time to focus on how to use them. This chapter looks at the binding models that
are built from incoming requests—how are they created, and where do the values
come from?

6.2 From request to model: Making the request useful
In this section you will learn

 How ASP.NET Core creates binding models from a request
 How to bind simple types, like int and string, as well as complex classes
 How to choose which parts of a request are used in the binding model

By now, you should be familiar with how ASP.NET Core handles a request by executing
a page handler on a Razor Page. You’ve also already seen several page handlers, such as

public void OnPost(ProductModel product)

Page handlers are normal C# methods, so the ASP.NET Core framework needs to be
able to call them in the usual way. When page handlers accept parameters as part of

161From request to model: Making the request useful
their method signature, such as product in the preceding example, the framework
needs a way to generate those objects. Where exactly do they come from, and how are
they created?

 I’ve already hinted that, in most cases, these values come from the request itself.
But the HTTP request that the server receives is a series of strings—how does
ASP.NET Core turn that into a .NET object? This is where model binding comes in.

DEFINITION Model binding extracts values from a request and uses them to cre-
ate .NET objects. These objects are passed as method parameters to the page
handler being executed or are set as properties of the PageModel that are
marked with the [BindProperty] attribute.

The model binder is responsible for looking through the request that comes in and
finding values to use. It then creates objects of the appropriate type and assigns these
values to your model in a process called binding.

NOTE Model binding in Razor Pages and MVC is a one-way population of
objects from the request, not the two-way data binding that desktop or mobile
development sometimes uses.

Any properties on your Razor Page’s PageModel (in the .cshtml.cs file for your Razor
Page), that are decorated with the [BindProperty] attribute are created from the incom-
ing request using model binding, as shown in the following listing. Similarly, if your page
handler method has any parameters, these are also created using model binding.

public class IndexModel: PageModel
{
 [BindProperty]
 public string Category { get; set; }

 [BindProperty(SupportsGet = true)]
 public string Username { get; set; }

 public void OnGet()
 {
 }

 public void OnPost(ProductModel model)
 {
 }
}

As shown in the preceding listing, PageModel properties are not model-bound for GET
requests, even if you add the [BindProperty] attribute. For security reasons, only
requests using verbs like POST and PUT are bound. If you do want to bind GET requests,
you can set the SupportsGet property on the [BindProperty] attribute to opt in to
model binding.

Listing 6.1 Model binding requests to properties in a Razor Page

Properties decorated with
[BindProperty] take part
in model binding.

Properties are not model-bound
for GET requests, unless you use
SupportsGet.

Parameters to page handlers
are also model-bound when
that handler is selected.

162 CHAPTER 6 The binding model: Retrieving and validating user input
TIP To bind PageModel properties for GET requests, use the SupportsGet
property of the attribute, for example, [BindProperty(SupportsGet = true)].

ASP.NET Core automatically populates your binding models for you using properties
of the request, such as the request URL, any headers sent in the HTTP request, any
data explicitly POSTed in the request body, and so on.

 By default, ASP.NET Core uses three different binding sources when creating your
binding models. It looks through each of these in order and takes the first value it
finds (if any) that matches the name of the binding model:

 Form values—Sent in the body of an HTTP request when a form is sent to the
server using a POST

 Route values—Obtained from URL segments or through default values after
matching a route, as you saw in chapter 5

 Query string values—Passed at the end of the URL, not used during routing

The model binding process is shown in figure 6.3. The model binder checks each
binding source to see if it contains a value that could be set on the model. Alterna-
tively, the model can also choose the specific source the value should come from, as
you’ll see in section 6.2.3. Once each property is bound, the model is validated and is

Which part is the binding model?
Listing 6.1 shows a Razor Page that uses multiple binding models: the Category
property, the Username property, and the ProductModel property (in the OnPost han-
dler) are all model-bound.

Using multiple models in this way is fine, but I prefer to use an approach that keeps
all the model binding in a single, nested class, which I often call InputModel. With
this approach, the Razor Page in listing 6.1 could be written as follows:

public class IndexModel: PageModel
{
 [BindProperty]
 public InputModel Input { get; set; }
 public void OnGet()
 {
 }

 public class InputModel
 {
 public string Category { get; set; }
 public string Username { get; set; }
 public ProductModel Model { get; set; }
 }
}

This approach has some organizational benefits that you’ll learn more about in sec-
tion 6.4.

163From request to model: Making the request useful
set as a property on the PageModel or is passed as a parameter to the page handler.
You’ll learn about the validation process in the second half of this chapter.

PageModel properties or page handler parameters?
There are two different ways to use model binding in Razor Pages:

 Decorate properties on your PageModel with the [BindProperty] attribute.
 Add parameters to your page handler method.

Which of these approaches should you choose?

This answer to this question is largely a matter of taste. Setting properties on the
PageModel and marking them with [BindProperty] is the approach you’ll see most
often in examples. If you use this approach, you’ll be able to access the binding
model when the view is rendered, as you’ll see in chapters 7 and 8.

The alternative approach, adding parameters to page handler methods, provides
more separation between the different MVC stages, because you won’t be able to
access the parameters outside of the page handler. On the downside, if you do need
to display those values in the Razor view, you’ll have to manually copy the parameters
across to properties that can be accessed in the view.

The approach I choose tends to depend on the specific Razor Page I’m building. If I’m
creating a form, I will favor the [BindProperty] approach, as I typically need access
to the request values inside the Razor view. For simple pages, where the binding
model is a product ID for example, I tend to favor the page handler parameter
approach for its simplicity, especially if the handler is for a GET request. I give some
more specific advice on my approach in section 6.4.

class ProductModel
{

public int Id {get; set;}
public string Name {get; set;}

}

Each of the properties on the
binding model tries to bind to
a value from a binding source.

The binding sources are
checked in order, and the
first value that matches
is used. In this case,
the Id property is
bound to a route value.

As there is a form value
that matches the Name
property, the route values
and query string values are
not checked in this case.

Figure 6.3 Model binding involves mapping values from binding sources, which correspond to
different parts of a request.

164 CHAPTER 6 The binding model: Retrieving and validating user input
Figure 6.4 shows an example of a request creating the ProductModel method argu-
ment using model binding for the example shown at the start of this section:

public void OnPost(ProductModel product)

The Id property has been bound from a URL route parameter, but the Name and
SellPrice properties have been bound from the request body. The big advantage of
using model binding is that you don’t have to write the code to parse requests and
map the data yourself. This sort of code is typically repetitive and error-prone, so
using the built-in conventional approach lets you focus on the important aspects of
your application: the business requirements.

TIP Model binding is great for reducing repetitive code. Take advantage of it
whenever possible and you’ll rarely find yourself having to access the Request
object directly.

If you need to, the capabilities are there to let you completely customize the way
model binding works, but it’s relatively rare that you’ll find yourself needing to dig too
deep into this. For the majority of cases it works as-is, as you’ll see in the remainder of
this section.

6.2.1 Binding simple types

We’ll start our journey into model binding by considering a simple Razor Page han-
dler. The next listing shows a simple Razor Page that takes one number as a method
parameter and squares it by multiplying the number by itself.

An HTTP request is received and is
directed to the EditProduct Razor
Page by routing. A property of type
ProductModel is decorated with a
[BindProperty] attribute.

The model binder builds a new
ProductModel object using
values taken from the request.
This includes route values from
the URL, as well as data sent in
the body of the request.

Figure 6.4 Using model binding to create an instance of a model that’s used to execute a Razor
Page.

165From request to model: Making the request useful
public class CalculateSquareModel : PageModel
{
 public void OnGet(int number)
 {
 Square = number * number;
 }

 public int Square { get; set; }
}

In the last chapter, you learned about routing and how it selects a Razor Page to exe-
cute. You can update the route template for the Razor Page to be "CalculateSquare/
{number}" by adding a {number} segment to the Razor Page’s @page directive in the
.cshtml file, as we discussed in chapter 5:

@page "{number}"

When a client requests the URL /CalculateSquare/5, the Razor Page framework uses
routing to parse it for route parameters. This produces the route value pair:

number=5

The Razor Page’s OnGet page handler contains a single parameter—an integer called
number—which is your binding model. When ASP.NET Core executes this page han-
dler method, it will spot the expected parameter, flick through the route values associ-
ated with the request, and find the number=5 pair. It can then bind the number
parameter to this route value and execute the method. The page handler method
itself doesn’t care about where this value came from; it goes along its merry way, calcu-
lating the square of the value, and setting it on the Square property.

 The key thing to appreciate is that you didn’t have to write any extra code to try to
extract the number from the URL when the method executed. All you needed to do
was create a method parameter (or public property) with the right name and let
model binding do its magic.

 Route values aren’t the only values the model binder can use to create your bind-
ing models. As you saw previously, the framework will look through three default bind-
ing sources to find a match for your binding models:

 Form values
 Route values
 Query string values

Each of these binding sources store values as name-value pairs. If none of the binding
sources contain the required value, the binding model is set to a new, default instance

Listing 6.2 A Razor Page accepting a simple parameter

The method parameter
is the binding model.

A more complex example would do
this work in an external service, in
the application model.

The result is exposed as a property and is
used by the view to generate a response.

166 CHAPTER 6 The binding model: Retrieving and validating user input
of the type instead. The exact value the binding model will have in this case depends
on the type of the variable:

 For value types, the value will be default(T). For an int parameter this would
be 0, and for a bool it would be false.

 For reference types, the type is created using the default (parameterless) con-
structor. For custom types like ProductModel, that will create a new object. For
nullable types like int? or bool?, the value will be null.

 For string types, the value will be null.

WARNING It’s important to consider the behavior of your page handler when
model binding fails to bind your method parameters. If none of the binding
sources contain the value, the value passed to the method could be null or
could unexpectedly have a default value (for value types).

Listing 6.2 showed how to bind a single method parameter. Let’s take the next logical
step and look at how you’d bind multiple method parameters.

 In the previous chapter, we discussed routing for building a currency converter
application. As the next step in your development, your boss asks you to create a
method in which the user provides a value in one currency and you must convert it to
another. You first create a Razor Page called Convert.cshtml and then customize the
route template for the page using the @page directive to use an absolute path contain-
ing two route values:

@page "/{currencyIn}/{currencyOut}"

You then create a page handler that accepts the three values you need, as shown in the
following listing.

public class ConvertModel : PageModel
{
 public void OnGet(
 string currencyIn,
 string currencyOut,
 int qty
)
 {
 /* method implementation */
 }
}

As you can see, there are three different parameters to bind. The question is, where
will the values come from and what will they be set to? The answer is, it depends!
Table 6.1 shows a whole variety of possibilities. All these examples use the same route
template and page handler, but depending on the data sent, different values will be

Listing 6.3 A Razor Page handler accepting multiple binding parameters

167From request to model: Making the request useful
bound. The actual values might differ from what you expect, as the available binding
sources offer conflicting values!

For each example, be sure you understand why the bound values have the values that
they do. In the first example, the qty value isn’t found in the form data, in the route
values, or in the query string, so it has the default value of 0. In each of the other
examples, the request contains one or more duplicated values; in these cases, it’s
important to bear in mind the order in which the model binder consults the binding
sources. By default, form values will take precedence over other binding sources,
including route values!

NOTE The default model binder isn’t case sensitive, so a binding value of
QTY=50 will happily bind to the qty parameter.

Although this may seem a little overwhelming, it’s relatively unusual to be binding
from all these different sources at once. It’s more common to have your values all
come from the request body as form values, maybe with an ID from URL route values.
This scenario serves as more of a cautionary tale about the knots you can twist yourself
into if you’re not sure how things work under the hood.

 In these examples, you happily bound the qty integer property to incoming val-
ues, but as I mentioned earlier, the values stored in binding sources are all strings.
What types can you convert a string to? The model binder will convert pretty much
any primitive .NET type such as int, float, decimal (and string obviously), plus any-
thing that has a TypeConverter.2 There are a few other special cases that can be con-
verted from a string, such as Type, but thinking of it as primitives only will get you a
long way there!

Table 6.1 Binding request data to page handler parameters from multiple binding sources

URL (route values) HTTP body data (form values) Parameter values bound

/GBP/USD currencyIn=GBP
currencyOut=USD qty=0

/GBP/USD?currencyIn=CAD QTY=50 currencyIn=GBP
currencyOut=USD qty=50

/GBP/USD?qty=100 qty=50 currencyIn=GBP
currencyOut=USD qty=50

/GBP/USD?qty=100 currencyIn=CAD&
currencyOut=EUR&qty=50

currencyIn=CAD
currencyOut=EUR qty=50

2 TypeConverters can be found in the System.ComponentModel.TypeConverter package. You can read more
about them in Microsoft’s “Type conversion in .NET” documentation: http://mng.bz/A0GK.

https://shortener.manning.com/A0GK

168 CHAPTER 6 The binding model: Retrieving and validating user input
6.2.2 Binding complex types

If it seems like only being able to bind simple primitive types is a bit limiting, then
you’re right! Luckily, that’s not the case for the model binder. Although it can only
convert strings directly to those primitive types, it’s also able to bind complex types by
traversing any properties your binding models expose.

 If this doesn’t make you happy straight off the bat, let’s look at how you’d have to
build your page handlers if simple types were your only option. Imagine a user of
your currency converter application has reached a checkout page and is going to
exchange some currency. Great! All you need now is to collect their name, email,
and phone number. Unfortunately, your page handler method would have to look
something like this:

public IActionResult OnPost(string firstName, string lastName, string
phoneNumber, string email)

Yuck! Four parameters might not seem that bad right now, but what happens when
the requirements change and you need to collect other details? The method signature
will keep growing. The model binder will bind the values quite happily, but it’s not
exactly clean code. Using the [BindProperty] approach doesn’t really help either—
you still have to clutter up our PageModel with lots of properties and attributes!

SIMPLIFYING METHOD PARAMETERS BY BINDING TO COMPLEX OBJECTS

A common pattern for any C# code when you have many method parameters is to
extract a class that encapsulates the data the method requires. If extra parameters
need to be added, you can add a new property to this class. This class becomes your
binding model, and it might look something like this.

public class UserBindingModel
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string PhoneNumber { get; set; }
}

With this model, you can now update your page handler’s method signature to

public IActionResult OnPost(UserBindingModel user)

Or alternatively, using the [BindProperty] approach, create a property on the Page-
Model:

[BindProperty]
public UserBindingModel User { get; set; }

Listing 6.4 A binding model for capturing a user’s details

169From request to model: Making the request useful
Now you can simplify the page handler signature even further:

public IActionResult OnPost()

Functionally, the model binder treats this new complex type a little differently. Rather
than looking for parameters with a value that matches the parameter name (user, or
User for the property), the model binder creates a new instance of the model using
new UserBindingModel().

NOTE You don’t have to use custom classes for your methods; it depends on
your requirements. If your page handler needs only a single integer, then it
makes more sense to bind to the simple parameter.

Next, the model binder loops through all the properties your binding model has,
such as FirstName and LastName in listing 6.4. For each of these properties, it consults
the collection of binding sources and attempts to find a name-value pair that matches.
If it finds one, it sets the value on the property and moves on to the next.

TIP Although the name of the model isn’t necessary in this example, the
model binder will also look for properties prefixed with the name of the prop-
erty, such as user.FirstName and user.LastName for a property called User.
You can use this approach when you have multiple complex parameters to a
page handler, or multiple complex [BindProperty] properties. In general,
for simplicity, you should avoid this situation if possible. As for all model bind-
ing, the casing of the prefix does not matter.

Once all the properties that can be bound on the binding model are set, the model is
passed to the page handler (or the [BindProperty] property is set), and the handler
is executed as usual. The behavior from this point on is identical to when you have lots
of individual parameters—you’ll end up with the same values set on your binding
model—but the code is cleaner and easier to work with.

TIP For a class to be model-bound, it must have a default public constructor.
You can only bind properties that are public and settable.

With this technique you can bind complex hierarchical models whose properties are
themselves complex models. As long as each property exposes a type that can be model-
bound, the binder can traverse it with ease.

BINDING COLLECTIONS AND DICTIONARIES

As well as ordinary custom classes and primitives, you can bind to collections, lists, and
dictionaries. Imagine you had a page in which a user selected all the currencies they
were interested in; you’d display the rates for all those selected, as shown in figure 6.5.

 To achieve this, you could create a page handler that accepts a List<string> type,
such as

public void OnPost(List<string> currencies);

170 CHAPTER 6 The binding model: Retrieving and validating user input
You could then POST data to this method by providing values in several different formats:

 currencies[index]—Where currencies is the name of the parameter to bind
and index is the index of the item to bind, for example, currencies[0]=
GBP¤cies[1]=USD.

 [index]—If you’re only binding to a single list (as in this example), you can
omit the name of the parameter, for example, [0]=GBP&[1]=USD.

 currencies—Alternatively, you can omit the index and send currencies as the
key for every value, for example, currencies=GBP¤cies=USD.

The key values can come from route values and query values, but it’s far more com-
mon to POST them in a form. Dictionaries can use similar binding, where the dictio-
nary key replaces the index both when the parameter is named and when it’s omitted.

 If this all seems a bit confusing, don’t feel too alarmed. If you’re building a tradi-
tional web application and using Razor views to generate HTML, the framework will
take care of generating the correct names for you. As you’ll see in chapter 8, the
Razor view will ensure that any form data you POST will be generated in the correct
format.

BINDING FILE UPLOADS WITH IFORMFILE

A common feature of many websites is the ability to upload files. This could be a rela-
tively infrequent activity, such as a user uploading a profile picture for their Stack
Overflow profile, or it may be integral to the application, like uploading photos to
Facebook.

Figure 6.5 The select list in the currency converter application will send a list of
selected currencies to the application. Model binding can bind the selected
currencies and customize the view for the user to show the equivalent cost in the
selected currencies.

171From request to model: Making the request useful
ASP.NET Core supports uploading files by exposing the IFormFile interface. You can
use this interface as your binding model, either as a method parameter to your page
handler, or using the [BindProperty] approach, and it will be populated with the
details of the file upload:

public void OnPost(IFormFile file);

You can also use an IEnumerable<IFormFile> if you need to accept multiple files:

public void OnPost(IEnumerable<IFormFile> file);

The IFormFile object exposes several properties and utility methods for reading the
contents of the uploaded file, some of which are shown here:

public interface IFormFile
{
 string ContentType { get; }
 long Length { get; }
 string FileName { get; }
 Stream OpenReadStream();
}

As you can see, this interface exposes a FileName property, which returns the filename
that the file was uploaded with. But you know not to trust users, right? You should
never use the filename directly in your code—always generate a new filename for the
file before you save it anywhere.

WARNING Never use posted filenames in your code. Users can use them to
attack your website and access files they shouldn’t be able to.

The IFormFile approach is fine if users are only going to be uploading small files.
When your method accepts an IFormFile instance, the whole content of the file is
buffered in memory and on disk before you receive it. You can then use the Open-
ReadStream method to read the data out.

Letting users upload files to your application
Uploading files to websites is a pretty common activity, but you should carefully con-
sider whether your application needs that ability. Whenever files can be uploaded by
users, the road is fraught with danger.

You should be careful to treat the incoming files as potentially malicious: don’t trust
the filename provided, take care of large files being uploaded, and don’t allow the
files to be executed on your server.

Files also raise questions as to where the data should be stored—should they go in a
database, in the filesystem, or in some other storage? None of these questions has
a straightforward answer, and you should think hard about the implications of choosing
one over the other. Better yet, if you can avoid it, don’t let users upload files!

172 CHAPTER 6 The binding model: Retrieving and validating user input
 If users post large files to your website, you may find you start to run out of space in
memory or on disk, as it buffers each of the files. In that case, you may need to stream
the files directly to avoid saving all the data at once. Unfortunately, unlike the model-
binding approach, streaming large files can be complex and error-prone, so it’s out-
side the scope of this book. For details, see Microsoft’s “Upload files in ASP.NET Core”
documentation at http://mng.bz/SH7X.

TIP Don’t use the IFormFile interface to handle large file uploads as you
may see performance issues. Be aware that you can’t rely on users not to
upload large files, so better yet, avoid file uploads entirely!

For the vast majority of Razor Pages, the default configuration of model binding for
simple and complex types works perfectly well, but you may find some situations
where you need to take a bit more control. Luckily, that’s perfectly possible, and you
can completely override the process if necessary by replacing the ModelBinders used
in the guts of the framework.

 However, it’s rare to need that level of customization—I’ve found it’s more com-
mon to want to specify which binding source to use for a page’s binding model instead.

6.2.3 Choosing a binding source

As you’ve already seen, by default the ASP.NET Core model binder will attempt to
bind your binding models from three different binding sources: form data, route
data, and the query string.

 Occasionally, you may find it necessary to specifically declare which binding source
to bind to. In other cases, these three sources won’t be sufficient at all. The most com-
mon scenarios are when you want to bind a method parameter to a request header
value, or when the body of a request contains JSON-formatted data that you want to
bind to a parameter. In these cases, you can decorate your binding models with attri-
butes that say where to bind from, as shown in the following listing.

public class PhotosModel: PageModel
{
 public void OnPost(
 [FromHeader] string userId,
 [FromBody] List<Photo> photos)
 {
 /* method implementation */
 }
}

In this example, a page handler updates a collection of photos with a user ID. There
are method parameters for the ID of the user to be tagged in the photos, userId, and
a list of Photo objects to tag, photos.

 Rather than binding these method parameters using the standard binding sources,
I’ve added attributes to each parameter, indicating the binding source to use. The

Listing 6.5 Choosing a binding source for model binding

The userId will be bound from
an HTTP header in the request.

The list of photo objects will be
bound to the body of the request,
typically in JSON format.

http://mng.bz/SH7X

173From request to model: Making the request useful
[FromHeader] attribute has been applied to the userId parameter. This tells the
model binder to bind the value to an HTTP request header value called userId.

 We’re also binding a list of photos to the body of the HTTP request by using the
[FromBody] attribute. This will read JSON from the body of the request and will bind
it to the List<Photo> method parameter.

WARNING Developers familiar with the previous version of ASP.NET should
take note that the [FromBody] attribute is explicitly required when binding to
JSON requests in Razor Pages. This differs from previous ASP.NET behavior,
in which no attribute was required.

You aren’t limited to binding JSON data from the request body—you can use other
formats too, depending on which InputFormatters you configure the framework to
use. By default, only a JSON input formatter is configured. You’ll see how to add an
XML formatter in chapter 9, when I discuss Web APIs.

 You can use a few different attributes to override the defaults and to specify a bind-
ing source for each binding model (or each property on the binding model):

 [FromHeader]—Bind to a header value
 [FromQuery]—Bind to a query string value
 [FromRoute]—Bind to route parameters
 [FromForm]—Bind to form data posted in the body of the request
 [FromBody]—Bind to the request’s body content

You can apply each of these to any number of handler method parameters or prop-
erties, as you saw in listing 6.5, with the exception of the [FromBody] attribute—only
one value may be decorated with the [FromBody] attribute. Also, as form data is sent
in the body of a request, the [FromBody] and [FromForm] attributes are effectively
mutually exclusive.

TIP Only one parameter may use the [FromBody] attribute. This attribute
will consume the incoming request as HTTP request bodies can only be safely
read once.

As well as these attributes for specifying binding sources, there are a few other attri-
butes for customizing the binding process even further:

 [BindNever]—The model binder will skip this parameter completely.3

 [BindRequired]—If the parameter was not provided, or was empty, the binder
will add a validation error.

 [FromServices]—This is used to indicate the parameter should be provided
using dependency injection (see chapter 10 for details).

3 You can use the [BindNever] attribute to prevent mass assignment, as discussed in these two posts on my
blog: http://mng.bz/QvfG and http://mng.bz/Vd90.

http://mng.bz/QvfG
https://shortener.manning.com/Vd90

174 CHAPTER 6 The binding model: Retrieving and validating user input
In addition, you have the [ModelBinder] attribute, which puts you into “God mode”
with respect to model binding. With this attribute, you can specify the exact binding
source, override the name of the parameter to bind to, and specify the type of binding
to perform. It’ll be rare that you need this one, but when you do, at least it’s there!

 By combining all these attributes, you should find you’re able to configure the
model binder to bind to pretty much any request data your page handler wants to use.
In general, though, you’ll probably find you rarely need to use them; the defaults
should work well for you in most cases.

 That brings us to the end of this section on model binding. If all has gone well,
your page handler should have access to a populated binding model, and it’s ready to
execute its logic. It’s time to handle the request, right? Nothing to worry about?

 Not so fast! How do you know that the data you received was valid? That you
haven’t been sent malicious data attempting a SQL injection attack, or a phone num-
ber full of letters?

 The binder is relatively blindly assigning values sent in a request, which you’re hap-
pily going to plug into your own methods? What’s to stop nefarious little Jimmy from
sending malicious values to your application?

 Except for basic safeguards, there’s nothing stopping him, which is why it’s import-
ant that you always validate the input coming in. ASP.NET Core provides a way to do
this in a declarative manner out of the box, which is the focus of the second half of
this chapter.

6.3 Handling user input with model validation
In this section I discuss

 What is validation, and why do you need it?
 Using DataAnnotations attributes to describe the data you expect
 How to validate your binding models in page handlers

Validation in general is a pretty big topic, and it’s one that you’ll need to consider in
every app you build. ASP.NET Core makes it relatively easy to add validation to your
applications by making it an integral part of the framework.

6.3.1 The need for validation

Data can come from many different sources in your web application—you could load
it from files, read it from a database, or accept values that a user typed into a form in
requests. Although you might be inclined to trust that the data already on your server
is valid (though this is sometimes a dangerous assumption!), you definitely shouldn’t
trust the data sent as part of a request.

 Validation occurs in the Razor Pages framework after model binding, but before
the page handler executes, as you saw in figure 6.2. Figure 6.6 shows a more compact
view of where model validation fits in this process, demonstrating how a request to a
checkout page that requests a user’s personal details is bound and validated.

175Handling user input with model validation
You should always validate data provided by users before you use it in your methods. You have
no idea what the browser may have sent you. The classic example of “little Bobby
Tables” (https://xkcd.com/327/) highlights the need to always validate any data sent
by a user.

 Validation isn’t only to check for security threats, though; it’s also needed to check
for non-malicious errors:

 Data should be formatted correctly (email fields have a valid email format).
 Numbers might need to be in a particular range (you can’t buy -1 copies of this

book!).
 Some values may be required but others are optional (name may be required

for a profile but phone number is optional).
 Values must conform to your business requirements (you can’t convert a cur-

rency to itself, it needs to be converted to a different currency).

It might seem like some of these can be dealt with easily enough in the browser. For
example, if a user is selecting a currency to convert to, don’t let them pick the same
currency; and we’ve all seen the “please enter a valid email address” messages.

 Unfortunately, although this client-side validation is useful for users, as it gives them
instant feedback, you can never rely on it, as it will always be possible to bypass these
browser protections. It’s always necessary to validate the data as it arrives at your web
application using server-side validation.

1. A request is received for the
URL /checkout/saveuser, and
the routing middleware selects
the SaveUser Razor Page
endpoint in the Checkout folder.

2. The framework builds a
UserBindingModel from the
details provided in the request.

4. The UserBindingModel and
validation ModelState are
set on the SaveUser Razor
Page, and the page handler
is executed.

3. The UserBindingModel is
validated according to the
DataAnnotations attributes
on its properties.

Figure 6.6 Validation occurs after model binding but before the page handler
executes. The page handler executes whether or not validation is successful.

https://xkcd.com/327/

176 CHAPTER 6 The binding model: Retrieving and validating user input

m
Re
m

pro
WARNING Always validate user input on the server side of your application.

If that feels a little redundant, like you’ll be duplicating logic and code, then I’m
afraid you’re right. It’s one of the unfortunate aspects of web development; the dupli-
cation is a necessary evil. Thankfully, ASP.NET Core provides several features to try to
reduce this burden.

TIP Blazor, the new C# SPA framework promises to solve some of these
issues. For details, see https://dotnet.microsoft.com/apps/aspnet/web-apps/
blazor and Blazor in Action by Chris Sainty (Manning, 2021).

If you had to write this validation code fresh for every app, it would be tedious and
likely error prone. Luckily, you can simplify your validation code significantly using a
set of attributes provided by .NET Core and .NET 5.0.

6.3.2 Using DataAnnotations attributes for validation

Validation attributes, or more precisely DataAnnotations attributes, allow you to spec-
ify the rules that your binding model should conform to. They provide metadata about
your model by describing the sort of data the binding model should contain, as
opposed to the data itself.

DEFINITION Metadata describes other data, specifying the rules and character-
istics the data should adhere to.

You can apply DataAnnotations attributes directly to your binding models to indicate
the type of data that’s acceptable. This allows you to, for example, check that required
fields have been provided, that numbers are in the correct range, and that email fields
are valid email addresses.

 As an example, let’s consider the checkout page for your currency converter appli-
cation. You need to collect details about the user before you can continue, so you ask
them to provide their name, email, and, optionally, a phone number. The following
listing shows the UserBindingModel decorated with validation attributes that repre-
sent the validation rules for the model. This expands on the example you saw in list-
ing 6.4.

public class UserBindingModel
{
 [Required]
 [StringLength(100)]
 [Display(Name = "Your name")]
 public string FirstName { get; set; }

 [Required]
 [StringLength(100)]

Listing 6.6 Adding DataAnnotations to a binding model to provide metadata

Values
arked

quired
ust be
vided.

The StringLengthAttribute sets the
maximum length for the property.

Customizes the name used
to describe the property

The StringLengthAttribute sets the
maximum length for the property.

https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor

177Handling user input with model validation

Value
Requ

be

Val
valu

ema
 [Display(Name = "Last name")]
 public string LastName { get; set; }

 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Phone]
 [Display(Name = "Phone number")]
 public string PhoneNumber { get; set; }
}

Suddenly your binding model contains a whole wealth of information where previ-
ously it was pretty sparse on details. For example, you’ve specified that the FirstName
property should always be provided, that it should have a maximum length of 100
characters, and that when it’s referred to (in error messages, for example) it should
be called "Your name" instead of "FirstName".

 The great thing about these attributes is that they clearly declare the expected
state of the model. By looking at these attributes, you know what the properties will,
or should, contain. They also provide hooks for the ASP.NET Core framework to val-
idate that the data set on the model during model binding is valid, as you’ll see
shortly.

 You’ve got a plethora of attributes to choose from when applying DataAnnota-
tions to your models. I’ve listed some of the common ones here, but you can find
more in the System.ComponentModel.DataAnnotations namespace. For a more com-
plete list, I recommend using IntelliSense in Visual Studio/Visual Studio Code, or you
can always look at the source code directly on GitHub (http://mng.bz/5jxZ).

 [CreditCard]—Validates that a property has a valid credit card format.
 [EmailAddress]—Validates that a property has a valid email address format.
 [StringLength(max)]—Validates that a string has at most max number of

characters.
 [MinLength(min)]—Validates that a collection has at least the min number of

items.
 [Phone]—Validates that a property has a valid phone number format.
 [Range(min, max)]—Validates that a property has a value between min and max.
 [RegularExpression(regex)]—Validates that a property conforms to the regex

regular expression pattern.
 [Url]—Validates that a property has a valid URL format.
 [Required]—Indicates the property must not be null.
 [Compare]—Allows you to confirm that two properties have the same value (for

example, Email and ConfirmEmail).

Customizes the name
used to describe the
property

s marked
ired must
 provided.

idates the
e of Email
is a valid

il address

http://mng.bz/5jxZ

178 CHAPTER 6 The binding model: Retrieving and validating user input
WARNING The [EmailAddress] and other attributes only validate that the for-
mat of the value is correct. They don’t validate that the email address exists.4

The DataAnnotations attributes aren’t a new feature—they have been part of the .NET
Framework since version 3.5—and their usage in ASP.NET Core is almost the same
as in the previous version of ASP.NET.

 They’re also used for other purposes, in addition to validation. Entity Framework
Core (among others) uses DataAnnotations to define the types of columns and rules
to use when creating database tables from C# classes. You can read more about Entity
Framework Core in chapter 12, and in Jon P. Smith’s Entity Framework Core in Action,
second edition (Manning, 2021).

 If the DataAnnotation attributes provided out of the box don’t cover everything
you need, it’s also possible to write custom attributes by deriving from the base Vali-
dationAttribute. You’ll see how to create a custom attribute for your currency con-
verter application in chapter 19.

 Alternatively, if you’re not a fan of the attribute-based approach, ASP.NET Core is
flexible enough that you can completely replace the validation infrastructure with
your preferred technique. For example, you could use the popular FluentValidation
library (https://github.com/JeremySkinner/FluentValidation) in place of the Data-
Annotations attributes if you prefer. You’ll see how to do this in chapter 20.

TIP DataAnnotations are good for input validation of properties in isola-
tion, but not so good for validating business rules. You’ll most likely need to
perform this validation outside the DataAnnotations framework.

Whichever validation approach you use, it’s important to remember that these tech-
niques don’t protect your application by themselves. The Razor Pages framework will
ensure that validation occurs, but it doesn’t automatically do anything if validation
fails. In the next section we’ll look at how to check the validation result on the server
and handle the case where validation has failed.

6.3.3 Validating on the server for safety

Validation of the binding model occurs before the page handler executes, but note
that the handler always executes, whether the validation failed or succeeded. It’s the
responsibility of the page handler to check the result of the validation.

NOTE Validation happens automatically, but handling validation failures is
the responsibility of the page handler.

The Razor Pages framework stores the output of the validation attempt in a property
on the PageModel called ModelState. This property is a ModelStateDictionary object,

4 The phone number attribute is particularly lenient in the formats it allows. For an example of this, and how
to do more rigorous phone number validation, see this post on the Twilio blog: http://mng.bz/xmZe.

https://shortener.manning.com/xmZe
https://github.com/JeremySkinner/FluentValidation

179Handling user input with model validation
which contains a list of all the validation errors that occurred after model binding, as
well as some utility properties for working with it.

 As an example, the following listing shows the OnPost page handler for the Check-
out.cshtml Razor Page. The Input property is marked for binding and uses the
UserBindingModel type shown previously in listing 6.6. This page handler doesn’t do
anything with the data currently, but the pattern of checking ModelState early in the
method is the key takeaway here.

public class CheckoutModel : PageModel
{
 [BindProperty]
 public UserBindingModel Input { get; set; }

 public IActionResult OnPost()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 /* Save to the database, update user, return success */

 return RedirectToPage("Success");
 }
}

If the ModelState property indicates an error occurred, the method immediately calls
the Page helper method. This returns a PageResult that will ultimately generate
HTML to return to the user, as you saw in chapter 4. The view uses the (invalid) values
provided in the Input property to repopulate the form when it’s displayed, as shown
in figure 6.7. Also, helpful messages for the user are added automatically, using the
validation errors in the ModelState property.

NOTE The error messages displayed on the form are the default values for each
validation attribute. You can customize the message by setting the ErrorMessage
property on any of the validation attributes. For example, you could custom-
ize a [Required] attribute using [Required(ErrorMessage="Required")].

If the request is successful, the page handler returns a RedirectToPageResult (using
the RedirectToPage() helper method) that redirects the user to the Success.cshtml
Razor Page. This pattern of returning a redirect response after a successful POST is
called the POST-REDIRECT-GET pattern.

Listing 6.7 Checking model state to view the validation result

The ModelState property is available
on the PageModel base class.

The Input property contains
the model-bound data.

The binding model is validated before
the page handler is executed.

If there were validation errors,
IsValid will be false.

Validation failed, so redisplay the form
with errors and finish the method early.

Validation passed, so it’s safe
to use the data provided in

the model.

180 CHAPTER 6 The binding model: Retrieving and validating user input
POST-REDIRECT-GET
The POST-REDIRECT-GET design pattern is a web development pattern that prevents
users from accidently submitting the same form multiple times. Users typically sub-
mit a form using the standard browser POST mechanism, sending data to the server.
This is the normal way by which you might take a payment, for example.

If a server takes the naive approach and responds with a 200 OK response and some
HTML to display, the user will still be on the same URL. If the user then refreshes

Figure 6.7 When validation fails, you can redisplay the form to display ModelState
validation errors to the user. Note the Your Name field has no associated validation
errors, unlike the other fields.

181Handling user input with model validation
You might be wondering why ASP.NET Core doesn’t handle invalid requests for you
automatically—if validation has failed, and you have the result, why does the page
handler get executed at all? Isn’t there a risk that you might forget to check the valida-
tion result?

 This is true, and in some cases the best thing to do is to make the generation of the
validation check and response automatic. In fact, this is exactly the approach we will
use for Web APIs when we cover them in chapter 9.

 For Razor Pages apps however, you typically still want to generate an HTML response,
even when validation failed. This allows the user to see the problem and potentially
correct it. This is much harder to make automatic.

 For example, you might find you need to load additional data before you can
redisplay the Razor Page—such as loading a list of available currencies. That becomes

their browser, they will be making an additional POST to the server, potentially making
another payment! Browsers have some mechanisms to avoid this, such as in the fol-
lowing figure, but the user experience isn’t desirable.

The POST-REDIRECT-GET pattern says that in response to a successful POST, you
should return a REDIRECT response to a new URL, which will be followed by the
browser making a GET to the new URL. If the user refreshes their browser now, they’ll
be refreshing the final GET call to the new URL. No additional POST is made, so no
additional payments or side effects should occur.

This pattern is easy to achieve in ASP.NET Core MVC applications using the pattern
shown in listing 6.7. By returning a RedirectToPageResult after a successful POST,
your application will be safe if the user refreshes the page in their browser.

Refreshing a browser window after a POST causes a warning message to be shown to the user.

182 CHAPTER 6 The binding model: Retrieving and validating user input
simpler and more explicit with the IsValid pattern. Trying to do that automatically
would likely end up with you fighting against edge cases and workarounds.

 Also, by including the IsValid check explicitly in your page handlers, it’s easier to
control what happens when additional validation checks fail. For example, if the user
tries to update a product, the DataAnnotations validation won’t know whether a
product with the requested ID exists, only whether the ID has the correct format. By
moving the validation to the handler method, you can treat data and business rule val-
idation failures in the same way.

 I hope I’ve hammered home how important it is to validate user input in ASP.NET
Core, but just in case: VALIDATE! There, we’re good. Having said that, only perform-
ing validation on the server can leave users with a slightly poor experience. How many
times have you filled out a form online, submitted it, gone to get a snack, and come
back to find out you mistyped something and have to redo it. Wouldn’t it be nicer to
have that feedback immediately?

6.3.4 Validating on the client for user experience

You can add client-side validation to your application in a couple of different ways.
HTML5 has several built-in validation behaviors that many browsers will use. If you
display an email address field on a page and use the “email” HTML input type, the
browser will automatically stop you from submitting an invalid format, as shown in fig-
ure 6.8.

Your application doesn’t control this validation; it’s built into modern HTML5 brows-
ers.5 The alternative approach is to perform client-side validation by running Java-
Script on the page and checking the values the user has entered before submitting the
form. This is the most common approach used in Razor Pages.

5 HTML5 constraint validation support varies by browser. For details on the available constraints, see the
Mozilla documentation (http://mng.bz/daX3) and https://caniuse.com/#feat=constraint-validation.

Figure 6.8 By default, modern browsers will automatically validate fields of the email
type before a form is submitted.

http://mng.bz/daX3
https://caniuse.com/#feat=constraint-validation

183Handling user input with model validation
 I’ll go into detail on how to generate the client-side validation helpers in the next
chapter, where you’ll see the DataAnnotations attributes come to the fore once again.
By decorating a view model with these attributes, you provide the necessary metadata
to the Razor engine for it to generate the appropriate HTML.

 With this approach, the user sees any errors with their form immediately, even
before the request is sent to the server, as shown in figure 6.9. This gives a much
shorter feedback cycle, providing a much better user experience.

 If you’re building an SPA, the onus is on the client-side framework to validate the
data on the client side before posting it to the Web API. The Web API will still validate
the data when it arrives at the server, but the client-side framework is responsible for
providing the smooth user experience.

Figure 6.9 With client-side validation, clicking Submit will trigger validation to be shown in the browser before
the request is sent to the server. As shown in the right pane, no request is sent.

184 CHAPTER 6 The binding model: Retrieving and validating user input
When you use Razor Pages to generate your HTML, you get much of this validation
for free. It automatically configures client-side validation for most of the built-in attri-
butes without requiring additional work, as you’ll see in chapter 7. Unfortunately, if
you’ve used custom ValidationAttributes, these will only run on the server by
default; you need to do some additional wiring up of the attribute to make it work on
the client side too. Despite this, custom validation attributes can be useful for han-
dling common validation scenarios in your application, as you’ll see in chapter 20.

 The model binding framework in ASP.NET Core gives you a lot of options on how
to organize your Razor Pages: page handler parameters or PageModel properties; one
binding model or multiple; options for where to define your binding model classes. In
the next section I give some advice on how I like to organize my Razor Pages.

6.4 Organizing your binding models in Razor Pages
In this section I give some general advice on how I like to configure the binding mod-
els in my Razor Pages. If you follow the patterns in this section, your Razor Pages will
follow a consistent layout, making it easier for others to understand how each Razor
Page in your app works.

NOTE This advice is just personal preference, so feel free to adapt it if there
are aspects you don’t agree with. The important thing is to understand why I
make each suggestion, and to take that on board. Where appropriate, I devi-
ate from these guidelines too!

Model binding in ASP.NET Core has a lot of equivalent approaches to take, so there is
no “correct” way to do it. The following listing shows an example of how I would
design a simple Razor Page. This Razor Page displays a form for a product with a given
ID and allows you to edit the details using a POST request. It’s a much longer sample
than we’ve looked at so far, but I highlight the important points below.

public class EditProductModel : PageModel
{
 private readonly ProductService _productService;
 public EditProductModel(ProductService productService)
 {
 _productService = productService;
 }

 [BindProperty]
 public InputModel Input { get; set; }

 public IActionResult OnGet(int id)
 {
 var product = _productService.GetProduct(id);

Listing 6.8 Designing an edit product Razor Page

The ProductService
is injected using DI
and provides access
to the application
model.

A single property is marked
with BindProperty.

The id parameter is model-
bound from the route
template for both OnGet
and OnPost handlers.

Load the
product
details

from the
application

model.

185Organizing your binding models in Razor Pages

redi
w

Inp
ne

the
 Input = new InputModel
 {
 Name = product.ProductName,
 Price = product.SellPrice,
 };
 return Page();
 }

 public IActionResult OnPost(int id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _productService.UpdateProduct(id, Input.Name, Input.Price);

 return RedirectToPage("Index");
 }

 public class InputModel
 {
 [Required]
 public string Name { get; set; }

 [Range(0, int.MaxValue)]
 public decimal Price { get; set; }
 }
}

This page shows the PageModel for a typical “edit form.” These are very common in
many line-of-business applications, among others, and it’s a scenario that Razor Pages
works very well for. You’ll see how to create the HTML side of forms in chapter 8.

NOTE The purpose of this example is only to highlight the model-binding
approach. The code is overly simplistic from a logic point of view. For exam-
ple, it doesn’t check that the product with the provided ID exists, or include
any error handling.

This form shows several patterns related to model binding that I try to adhere to when
building Razor Pages:

 Only bind a single property with [BindProperty]. I favor having a single property
decorated with [BindProperty] for model binding in general. When more
than one value needs to be bound, I create a separate class, InputModel, to hold
the values, and I decorate that single property with [BindProperty]. Decorat-
ing a single property like this makes it harder to forget to add the attribute, and
it means all of your Razor Pages use the same pattern.

 Define your binding model as a nested class. I define the InputModel as a nested
class inside my Razor Page. The binding model is normally highly specific to

Build an instance of
the InputModel for
editing in the form
from the existing
product’s details.

The id parameter is model-
bound from the route
template for both OnGet
and OnPost handlers.

If the request
was not valid,
splay the form
ithout saving.

Update the
product in the

application
model using the
ProductService.

Redirect to a new
page using the
POST-REDIRECT-
GET pattern.

Define the
utModel as a
sted class in
 Razor Page.

186 CHAPTER 6 The binding model: Retrieving and validating user input
that single page, so doing this keeps everything you’re working on together.
Additionally, I normally use that exact class name, InputModel, for all my pages.
Again, this adds consistency to your Razor Pages.

 Don’t use [BindProperties]. In addition to the [BindProperty] attribute, there
is a [BindProperties] attribute (note the different spelling) that can be applied
to the Razor Page PageModel directly. This will cause all properties in your
model to be model-bound, which can leave you open to over-posting attacks if
you’re not careful. I suggest you don’t use the [BindProperties] attribute and
stick to binding a single property with [BindProperty] instead.

 Accept route parameters in the page handler. For simple route parameters, such as
the id passed into the OnGet and OnPost handlers in listing 6.8, I add parame-
ters to the page handler method itself. This avoids the clunky Supports-
Get=true syntax for GET requests.

 Always validate before using data. I said it before, so I’ll say it again. Validate user
input!

That concludes this look at model-binding in Razor Pages. You saw how the ASP.NET
Core framework uses model binding to simplify the process of extracting values from
a request and turning them into normal .NET objects you can quickly work with. The
most important aspect of this chapter is the focus on validation—this is a common
concern for all web applications, and the use of DataAnnotations can make it easy to
add validation to your models.

 In the next chapter, we’ll continue our journey through Razor Pages by looking at
how to create views. In particular, you’ll learn how to generate HTML in response to a
request using the Razor templating engine.

Summary
 Razor Pages uses three distinct models, each responsible for a different aspect

of a request. The binding model encapsulates data sent as part of a request. The
application model represents the state of the application. The PageModel is the
backing class for the Razor Page, and it exposes the data used by the Razor view
to generate a response.

 Model binding extracts values from a request and uses them to create .NET
objects the page handler can use when they execute.

 Any properties on the PageModel marked with the [BindProperty] attribute,
and method parameters of the page handlers, will take part in model binding.

 Properties decorated with [BindProperty] are not bound for GET requests. To
bind GET requests, you must use [BindProperty(SupportsGet = true)] instead.

 By default, there are three binding sources: POSTed form values, route values,
and the query string. The binder will interrogate these in order when trying to
bind your binding models.

187Summary
 When binding values to models, the names of the parameters and properties
aren’t case sensitive.

 You can bind to simple types or to the properties of complex types.
 To bind complex types, they must have a default constructor and public, setta-

ble properties.
 Simple types must be convertible to strings to be bound automatically; for

example, numbers, dates, and Boolean values.
 Collections and dictionaries can be bound using the [index]=value and [key]

=value syntax, respectively.
 You can customize the binding source for a binding model using [From*] attri-

butes applied to the method, such as [FromHeader] and [FromBody]. These can
be used to bind to nondefault binding sources, such as headers or JSON body
content.

 In contrast to the previous version of ASP.NET, the [FromBody] attribute is
required when binding JSON properties (previously it was not required).

 Validation is necessary to check for security threats. Check that data is format-
ted correctly and confirm that it conforms to expected values and that it meets
your business rules.

 ASP.NET Core provides DataAnnotations attributes to allow you to declara-
tively define the expected values.

 Validation occurs automatically after model binding, but you must manually
check the result of the validation and act accordingly in your page handler by
interrogating the ModelState property.

 Client-side validation provides a better user experience than server-side valida-
tion alone, but you should always use server-side validation.

 Client-side validation uses JavaScript and attributes applied to your HTML ele-
ments to validate form values.

Rendering HTML
using Razor views
It’s easy to get confused between the terms involved in Razor Pages—PageModel,
page handlers, Razor views—especially as some of the terms describe concrete fea-
tures, and others describe patterns and concepts. We’ve touched on all these terms
in detail in previous chapters, but it’s important to get them straight in your mind:

 Razor Pages—Razor Pages generally refers to the page-based paradigm that
combines routing, model binding, and HTML generation using Razor views.

 Razor Page—A single Razor Page represents a single page or “endpoint.” It
typically consists of two files: a .cshtml file containing the Razor view, and a
.cshtml.cs file containing the page’s PageModel.

 PageModel—The PageModel for a Razor Page is where most of the action
happens. It’s where you define the binding models for a page, which extracts
data from the incoming request. It’s also where you define the page’s page
handlers.

This chapter covers
 Creating Razor views to display HTML to a user

 Using C# and the Razor markup syntax to
generate HTML dynamically

 Reusing common code with layouts and partial
views
188

189Views: Rendering the user interface
 Page handler—Each Razor Page typically handles a single route, but it can handle
multiple HTTP verbs like GET and POST. Each page handler typically handles a
single HTTP verb.

 Razor view—Razor views (also called Razor templates) are used to generate
HTML. They are typically used in the final stage of a Razor Page to generate the
HTML response to send back to the user.

In the previous four chapters, I’ve covered a whole cross section of Razor Pages,
including the MVC design pattern, the Razor Page PageModel, page handlers, rout-
ing, and binding models. This chapter covers the last part of the MVC pattern—using
a view to generate the HTML that’s delivered to the user’s browser.

 In ASP.NET Core, views are normally created using the Razor markup syntax
(sometimes described as a templating language), which uses a mixture of HTML and
C# to generate the final HTML. This chapter covers some of the features of Razor and
how to use it to build the view templates for your application. Generally speaking,
users will have two sorts of interactions with your app: they’ll read data that your app
displays, and they’ll send data or commands back to it. The Razor language contains a
number of constructs that make it simple to build both types of applications.

 When displaying data, you can use the Razor language to easily combine static
HTML with values from your PageModel. Razor can use C# as a control mechanism, so
adding conditional elements and loops is simple—something you couldn’t achieve
with HTML alone.

 The normal approach to sending data to web applications is with HTML forms.
Virtually every dynamic app you build will use forms; some applications will be pretty
much nothing but forms! ASP.NET Core and the Razor templating language include a
number of Tag Helpers that make generating HTML forms easy.

NOTE You’ll get a brief glimpse of Tag Helpers in the next section, but I’ll
explore them in detail in the next chapter.

In this chapter we’ll be focusing primarily on displaying data and generating HTML
using Razor, rather than creating forms. You’ll see how to render values from your
PageModel to the HTML, and how to use C# to control the generated output. Finally,
you’ll learn how to extract the common elements of your views into sub-views called
layouts and partial views, and how to compose them to create the final HTML page.

7.1 Views: Rendering the user interface
In this section, I provide a quick introduction to rendering HTML using Razor views.
We’ll recap the MVC design pattern used by Razor Pages, and where the view fits in.
I’ll then introduce you to how Razor syntax allows you to mix C# and HTML to gener-
ate dynamic UIs.

 As you know from earlier chapters on the MVC design pattern, it’s the job of the
Razor Page’s page handler to choose what to return to the client. For example, if

190 CHAPTER 7 Rendering HTML using Razor views
you’re developing a to-do list application, imagine a request to view a particular to-do
item, as shown in figure 7.1.

A typical request follows the steps shown in figure 7.1:

1 The middleware pipeline receives the request, and the routing middleware
determines the endpoint to invoke—in this case, the View Razor Page in the
ToDo folder.

2 The model binder (part of the Razor Pages framework) uses the request to
build the binding models for the page, as you saw in the previous chapter. The
binding models are set as properties on the Razor Page or are passed to the
page handler method as arguments when the handler is executed. The page
handler checks that you have passed a valid id for the to-do item, making the
request valid.

3 Assuming all looks good, the page handler calls out to the various services that
make up the application model. This might load the details about the to-do

1. A request is received for the
URL /ToDo/View/3. The routing
middleware matches the request
to the View Razor Page in the
ToDo folder and derives the
route parameter id=3.

3. The page handler exposes
the details about the to-do
item as properties on the
Razor PageModel for use
in the view.

4. The view uses the provided
model to generate an HTML
response, which is returned
to the user.

2. The page handler calls into
services that make up the
application model to fetch
details about the to-do item.

Figure 7.1 Handling a request for a to-do list item using ASP.NET Core Razor Pages. The page
handler builds the data required by the view and exposes it as properties on the PageModel. The
view generates HTML based only on the data provided; it doesn’t need to know where that data
come from.

191Views: Rendering the user interface
from a database, or from the filesystem, returning them to the handler. As part
of this process, either the application model or the page handler itself gener-
ates values to pass to the view and sets them as properties on the Razor Page
PageModel.

Once the page handler has executed, the PageModel should contain all the
data required to render a view. In this example, it contains details about the to-
do itself, but it might also contain other data: how many to-dos you have left,
whether you have any to-dos scheduled for today, your username, and so on—
anything that controls how to generate the end UI for the request.

4 The Razor view template uses the PageModel to generate the final response and
returns it to the user via the middleware pipeline.

A common thread throughout this discussion of MVC is the separation of concerns
MVC brings, and it’s no different when it comes to your views. It would be easy
enough to directly generate the HTML in your application model or in your con-
troller actions, but instead you delegate that responsibility to a single component,
the view.

 But even more than that, you’ll also separate the data required to build the view
from the process of building it by using properties on the PageModel. These properties
should contain all the dynamic data needed by the view to generate the final output.

TIP Views shouldn’t call methods on the PageModel—the view should gener-
ally only be accessing data that has already been collected and exposed as
properties.

Razor Page handlers indicate that the Razor view should be rendered by returning a
PageResult (or by returning void), as you saw in chapter 4. The Razor Pages infra-
structure executes the Razor view associated with a given Razor Page to generate the
final response. The use of C# in the Razor template means you can dynamically gener-
ate the final HTML sent to the browser. This allows you to, for example, display the
name of the current user in the page, hide links the current user doesn’t have access
to, or render a button for every item in a list.

 Imagine your boss asks you to add a page to your application that displays a list of
the application’s users. You should also be able to view a user from the page, or create
a new one, as shown in figure 7.2.

 With Razor templates, generating this sort of dynamic content is simple. For exam-
ple, listing 7.1 shows a template that could be used to generate the interface in fig-
ure 7.2. It combines standard HTML with C# statements and uses Tag Helpers to
generate the form elements.

192 CHAPTER 7 Rendering HTML using Razor views
@page
@model IndexViewModel
<div class="row">
<div class="col-md-6">
<form method="post">
 <div class="form-group">
 <label asp-for="NewUser"></label>
 <input class="form-control" asp-for="NewUser" />

 </div>
 <div class="form-group">
 <button type="submit"
 class="btn btn-success">Add</button>
 </div>
</form>
</div>
</div>

<h4>Number of users: @Model.ExistingUsers.Count</h4>
<div class="row">
<div class="col-md-6">
<ul class="list-group">
@foreach (var user in Model.ExistingUsers)

Listing 7.1 A Razor template to list users, and a form for adding a new user

Form elements can be used
to send values back to the
application.

The PageModel contains the data
you wish to display on the page.

Razor markup describes how to display
this data using a mixture of HTML and C#.

By combining the data in your view model with
the Razor markup, HTML can be generated
dynamically instead of being fixed at compile time.

@foreach(var user in Model.ExistingUsers)
{

@user
<button>View</button>

}

Model.ExistingUsers = new[] {
"Andrew",
"Robbie",
"Jimmy",
"Bart"

};

Figure 7.2 The use of C# in Razor lets you easily generate dynamic HTML that varies at runtime. In this
example, using a foreach loop inside the Razor view dramatically reduces the duplication in the HTML that
you would otherwise have to write.

Normal HTML is sent to
the browser unchanged.

Tag Helpers attach
to HTML elements
to create forms.

Values can be
written from C#
objects to the HTML.

C# constructs like
for loops can be
used in Razor.

193Creating Razor views
{
<li class="list-group-item d-flex justify-content-between">
 @user
 <a class="btn btn-info"
 asp-page="ViewUser"
 asp-route-userName="@user">View

}

</div>
</div>

This example demonstrates a variety of Razor features. There’s a mixture of HTML
that’s written unmodified to the response output, and there are various C# constructs
used to dynamically generate HTML. In addition, you can see several Tag Helpers.
These look like normal HTML attributes that start asp-, but they’re part of the Razor
language. They can customize the HTML element they’re attached to, changing how
it’s rendered. They make building HTML forms much simpler than they would be
otherwise. Don’t worry if this template is a bit overwhelming at the moment; we’ll
break it all down as you progress through this chapter and the next.

 Razor Pages are compiled when you build your application. Behind the scenes,
they become just another C# class in your application. It’s also possible to enable run-
time compilation of your Razor Pages. This allows you to modify your Razor Pages
while your app is running, without having to explicitly stop and rebuild. This can be
handy when developing locally, but it’s best avoided when you deploy to production.1

NOTE Like most things in ASP.NET Core, it’s possible to swap out the Razor
templating engine and replace it with your own server-side rendering engine.
You can’t replace Razor with a client-side framework like Angular or React. If
you want to take this approach, you’d use Web APIs instead. I’ll discuss Web
APIs in detail in chapter 9.

In the next section we’ll look in more detail at how Razor views fit into the Razor
Pages framework, and how you can pass data from your Razor Page handlers to the
Razor view to help build the HTML response.

7.2 Creating Razor views
In this section we’ll look at how Razor views fit into the Razor Pages framework. You’ll
learn how to pass data from your page handlers to your Razor views, and how you can
use that data to generate dynamic HTML.

 With ASP.NET Core, whenever you need to display an HTML response to the user,
you should use a view to generate it. Although it’s possible to directly generate a
string from your page handlers, which will be rendered as HTML in the browser, this

1 For details on enabling runtime compilation, including enabling conditional precompilation for production
environments, see the documentation: http://mng.bz/opwy.

Tag Helpers can also be
used outside of forms to
help in other HTML
generation.

http://mng.bz/opwy

194 CHAPTER 7 Rendering HTML using Razor views
approach doesn’t adhere to the MVC separation of concerns and will quickly leave
you tearing your hair out.

NOTE Some middleware, such as the WelcomePageMiddleware you saw in
chapter 3, may generate HTML responses without using a view, which can
make sense in some situations. But your Razor Page and MVC controllers
should always generate HTML using views.

Instead, by relying on Razor views to generate the response, you get access to a wide
variety of features, as well as editor tooling to help. This section serves as a gentle
introduction to Razor views, the things you can do with them, and the various ways
you can pass data to them.

7.2.1 Razor views and code-behind

In this book you’ve already seen that Razor Pages typically consist of two files:

 The .cshtml file, commonly called the Razor view.
 The .cshtml.cs file, commonly called the code-behind, which contains the Page-

Model.

The Razor view contains the @page directive, which makes it a Razor Page, as you saw in
chapter 4. Without this directive, the Razor Pages framework will not route requests to
the page, and the file will be ignored for most purposes.

DEFINITION A directive is a statement in a Razor file that changes the way the
template is parsed or compiled. Another common directive is the @using
newNamespace directive, which makes objects in the newNamespace namespace
available.

The code-behind .cshtml.cs file contains the PageModel for an associated Razor Page.
It contains the page handlers that respond to requests, and it is where the Razor Page
typically interacts with other parts of your application.

 Even though the .cshtml and .cshtml.cs files share the same name, such as
ToDoItem.cshtml and ToDoItem.cshtml.cs, it’s not the filename that’s linking them
together. But if it’s not by filename, how does the Razor Pages framework know which
PageModel is associated with a given Razor Page view file?

 At the top of each Razor Page, just after the @page directive, is an @model directive
with a Type, indicating which PageModel is associated with the Razor view. For exam-
ple, the following directives indicate that the ToDoItemModel is the PageModel associ-
ated with the Razor Page:

@page
@model ToDoItemModel

Once a request is routed to a Razor Page, as we covered in chapter 5, the framework
looks for the @model directive to decide which PageModel to use. Based on the Page-
Model selected, it then binds to any properties in the PageModel marked with the

195Creating Razor views
[BindProperty] attribute (as we covered in chapter 6) and executes the appropriate
page handler (based on the request’s HTTP verb).

NOTE Technically, the PageModel and @model directive are optional. If you
don’t specify a PageModel, the framework will execute a default page handler,
as you saw in chapter 5. It’s also possible to combine the .cshtml and .cshtml.cs
files into a single .cshtml file. In practice, neither of these approaches are very
common, even for simple pages, but it’s something to be aware of if you run
into it.2

In addition to the @page and @model directives, the Razor view file contains the Razor
template that is executed to generate the HTML response.

7.2.2 Introducing Razor templates

Razor view templates contain a mixture of HTML and C# code interspersed with one
another. The HTML markup lets you easily describe exactly what should be sent to the
browser, whereas the C# code can be used to dynamically change what is rendered.
For example, the following listing shows an example of Razor rendering a list of
strings, representing to-do items.

@page
@{
 var tasks = new List<string>
 { "Buy milk", "Buy eggs", "Buy bread" };
}
<h1>Tasks to complete</h1>

@for(var i=0; i< tasks.Count; i++)
{
 var task = tasks[i];
 @i - @task
}

The pure HTML sections in this template are in the angle brackets. The Razor engine
copies this HTML directly to the output, unchanged, as though you were writing a
normal HTML file.

NOTE The ability of Razor syntax to know when you are switching between
HTML and C# can be both uncanny and infuriating at times. I discuss the
details on how to control this transition in section 7.3.

As well as HTML, you can also see a number of C# statements in there. The advantage
of being able to, for example, use a for loop rather than having to explicitly write out

2 These alternative approaches are not generally considered idiomatic, so I don’t discuss them in this book, but
you can read more about them here: https://www.learnrazorpages.com/razor-pages.

Listing 7.2 Razor template for rendering a list of strings

Arbitrary C# can be executed in
a template. Variables remain in
scope throughout the page.

Standard HTML markup will be
rendered to the output unchanged.

Mixing C# and HTML allows
you to dynamically create
HTML at runtime.

https://www.learnrazorpages.com/razor-pages

196 CHAPTER 7 Rendering HTML using Razor views
each element should be self-evident. I’ll dive a little deeper into more of the C#
features of Razor in the next section. When rendered, the template in listing 7.2
would produce the following HTML.

<h1>Tasks to complete</h1>

 0 - Buy milk
 1 - Buy eggs
 2 - Buy bread

As you can see, the final output of a Razor template after it’s been rendered is simple
HTML. There’s nothing complicated left, just straight HTML markup that can be sent
to the browser and rendered. Figure 7.3 shows how a browser would render it.

In this example, I hardcoded the list values for simplicity—there was no dynamic data
provided. This is often the case on simple Razor Pages, like what you might have on
your home page—you need to display an almost static page. For the rest of your appli-
cation, it will be far more common to have some sort of data you need to display, typi-
cally exposed as properties on your PageModel.

Listing 7.3 HTML output produced by rendering a Razor template

HTML from the Razor template is
written directly to the output.

The elements are generated
dynamically based on the data.

HTML from the Razor template is
written directly to the output.

The data to display is defined in C#.

Razor markup describes how to display
this data using a mixture of HTML and C#.

By combining the C# object data with the Razor
markup, HTML can be generated dynamically,
instead of being fixed at compile time.

<h1>Tasks to complete</h1>

@for(var i=0; i<tasks.Count; i++)
{

var task = tasks[i];
@i - @task

}

var tasks = new List<string>
{

"Buy milk",
"Buy eggs",
"Buy bread"

}

Figure 7.3 Razor templates can be used to generate the HTML dynamically at runtime from C#
objects. In this case, a for loop is used to create repetitive HTML elements.

197Creating Razor views
7.2.3 Passing data to views

In ASP.NET Core, you have several ways of passing data from a page handler in a
Razor Page to its view. Which approach is best will depend on the data you’re trying to
pass through, but in general you should use the mechanisms in the following order:

 PageModel properties—You should generally expose any data that needs to be
displayed as properties on your PageModel. Any data that is specific to the asso-
ciated Razor view should be exposed this way. The PageModel object is available
in the view when it’s rendered, as you’ll see shortly.

 ViewData—This is a dictionary of objects with string keys that can be used to
pass arbitrary data from the page handler to the view. In addition, it allows you
to pass data to _layout files, as you’ll see in section 7.4. This is the main reason
for using ViewData instead of setting properties on the PageModel.

 HttpContext—Technically, the HttpContext object is available in both the page
handler and Razor view, so you could use it to transfer data between them. But
don’t—there’s no need for it with the other methods available to you.

 @inject services—You can use dependency injection to make services available
in your views, though this should normally be used very sparingly. I describe
dependency injection and the @inject directive in chapter 10.

Far and away the best approach for passing data from a page handler to a view is to
use properties on the PageModel. There’s nothing special about the properties them-
selves; you can store anything there to hold the data you require.

NOTE Many frameworks have the concept of a data context for binding UI
components. The PageModel is a similar concept, in that it contains values to
display in the UI, but the binding is only one-directional; the PageModel pro-
vides values to the UI, and once the UI is built and sent as a response, the
PageModel is destroyed.

As I described in section 7.2.1, the @model directive at the top of your Razor view
describes which Type of PageModel is associated with a given Razor Page. The Page-
Model associated with a Razor Page contains one or more page handlers, and exposes
data as properties for use in the Razor view.

public class ToDoItemModel : PageModel
{
 public List<string> Tasks { get; set; }
 public string Title { get; set; }

 public void OnGet(int id)
 {

Listing 7.4 Exposing data as properties on a PageModel

The PageModel is passed to the
Razor view when it executes.

The public properties can be
accessed from the Razor view.

198 CHAPTER 7 Rendering HTML using Razor views
 Title = "Tasks for today";
 Tasks = new List<string>
 {
 "Get fuel",
 "Check oil",
 "Check tyre pressure"
 };
 }
}

You can access the PageModel instance itself from the Razor view using the Model prop-
erty. For example, to display the Title property of the ToDoItemModel in the Razor
view, you’d use <h1>@Model.Title</h1>. This would render the string provided in the
ToDoItemModel.Title property, producing the <h1>Tasks for today</h1> HTML.

TIP Note that the @model directive should be at the top of your view, just after
the @page directive, and it has a lowercase m. The Model property can be
accessed anywhere in the view and has an uppercase M.

In the vast majority of cases, using public properties on your PageModel is the way to
go; it’s the standard mechanism for passing data between the page handler and the
view. But in some circumstances, properties on your PageModel might not be the best
fit. This is often the case when you want to pass data between view layouts (you’ll see
how this works in section 7.4).

 A common example is the title of the page. You need to provide a title for every
page in your application, so you could create a base class with a Title property and
make every PageModel inherit from it. But that’s very cumbersome, so a common
approach for this situation is to use the ViewData collection to pass data around.

 In fact, the standard Razor Page templates use this approach by default by setting
values on the ViewData dictionary from within the view itself:

@{
 ViewData["Title"] = "Home Page";
}
<h2>@ViewData["Title"].</h2>

This template sets the value of the "Title" key in the ViewData dictionary to "Home
Page" and then fetches the key to render in the template. This set and immediate
fetch might seem superfluous, but as the ViewData dictionary is shared throughout
the request, it makes the title of the page available in layouts, as you’ll see later. When
rendered, the preceding template would produce the following output:

<h2>Home Page.</h2>

You can also set values in the ViewData dictionary from your page handlers in two dif-
ferent ways, as shown in the following listing.

Building the required
data: this would
normally call out to a
service or database
to load the data.

199Creating dynamic web pages with Razor
public class IndexModel: PageModel
{
 [ViewData]
 public string Title { get; set; }

 public void OnGet()
 {
 Title = "Home Page";
 ViewData["Subtitle"] = "Welcome";
 }
}

You can display the values in the template in the same way as before:

<h1>@ViewData["Title"]</h3>
<h2>@ViewData["Subtitle"]</h3>

TIP I don’t find the [ViewData] attribute especially useful, but it’s another
feature to look out for. Instead, I create a set of global, static constants for any
ViewData keys, and I reference those instead of typing "Title" repeatedly.
You’ll get IntelliSense for the values, they’ll be refactor-safe, and you’ll avoid
hard-to-spot typos.

As I mentioned previously, there are other mechanisms besides PageModel properties
and ViewData that you can use to pass data around, but these two are the only ones I
use personally, as you can do everything you need with them. As a reminder, always
use PageModel properties where possible, as you benefit from strong typing and Intel-
liSense. Only fall back to ViewData for values that need to be accessed outside of your
Razor view.

 You’ve had a small taste of the power available to you in Razor templates, but in the
next section we’ll dive a little deeper into some of the available C# capabilities.

7.3 Creating dynamic web pages with Razor
You might be glad to know that pretty much anything you can do in C# is possible in
Razor syntax. Under the covers, the .cshtml files are compiled into normal C# code
(with string for the raw HTML sections), so whatever weird and wonderful behavior
you need can be created!

 Having said that, just because you can do something doesn’t mean you should.
You’ll find it much easier to work with, and maintain, your files if you keep them as
simple as possible. This is true of pretty much all programming, but I find it to be
especially so with Razor templates.

 This section covers some of the more common C# constructs you can use. If you
find you need to achieve something a bit more exotic, refer to the Razor syntax docu-
mentation at http://mng.bz/opj2.

Listing 7.5 Setting ViewData values using an attribute

Properties marked with the [ViewData]
attribute are set in the ViewData.

The value of ViewData["Title"]
will be set to "Home Page".

You can set keys in the
ViewData dictionary directly.

http://mng.bz/opj2

200 CHAPTER 7 Rendering HTML using Razor views
7.3.1 Using C# in Razor templates

One of the most common requirements when working with Razor templates is to
render a value you’ve calculated in C# to the HTML. For example, you might want
to print the current year to use with a copyright statement in your HTML, to give
this result:

<p>Copyright 2020 ©</p>

Or you might want to print the result of a calculation:

<p>The sum of 1 and 2 is <i>3</i><p>

You can do this in two ways, depending on the exact C# code you need to execute. If
the code is a single statement, you can use the @ symbol to indicate you want to write
the result to the HTML output, as shown in figure 7.4. You’ve already seen this used to
write out values from the PageModel or from ViewData.

If the C# you want to execute is something that needs a space, then you need to use
parentheses to demarcate the C#, as shown in figure 7.5.

These two approaches, in which C# is evaluated and written directly to the HTML out-
put, are called Razor expressions.

TIP If you want to write a literal @ character, rather than a C# expression, use
a second @ character: @@.

<p>Copyright @DateTime.Now.Year ©</p>

@ indicates start
of C# expression

Whitespace indicates
end of C# expression

HTML HTMLC# expression. The
result will be written
to the HTML output.

Figure 7.4 Writing the result of a C#
expression to HTML. The @ symbol
indicates where the C# code begins, and
the expression ends at the end of the
statement, in this case at the space.

<p>The sum of 1 and 2 is <i>@(1 + 2)</i></p>

HTML HTML

The whole C# expression within @() is
evaluated and written to the HTML output. Figure 7.5 When a C# expression

contains whitespace, you must
wrap it in parentheses using @()
so the Razor engine knows where
the C# stops and HTML begins.

201Creating dynamic web pages with Razor
Sometimes you’ll want to execute some C#, but you don’t need to output the values.
We used this technique when we were setting values in ViewData:

@{
 ViewData["Title"] = "Home Page";
}

This example demonstrates a Razor code block, which is normal C# code, identified by
the @{} structure. Nothing is written to the HTML output here; it’s all compiled as
though you’d written it in any other normal C# file.

TIP When you execute code within code blocks, it must be valid C#, so you
need to add semicolons. Conversely, when you’re writing values directly to
the response using Razor expressions, you don’t need them. If your output
HTML breaks unexpectedly, keep an eye out for missing or rogue extra
semicolons.

Razor expressions are one of the most common ways of writing data from your Page-
Model to the HTML output. You’ll see the other approach, using Tag Helpers, in the next
chapter. Razor’s capabilities extend far further than this, however, as you’ll see in the next
section, where you’ll learn how to include traditional C# structures in your templates.

7.3.2 Adding loops and conditionals to Razor templates

One of the biggest advantages of using Razor templates over static HTML is the ability
to dynamically generate the output. Being able to write values from your PageModel to
the HTML using Razor expressions is a key part of that, but another common use is
loops and conditionals. With these, you can hide sections of the UI, or produce
HTML for every item in a list, for example.

 Loops and conditionals include constructs such as if and for loops. Using them
in Razor templates is almost identical to C#, but you need to prefix their usage with
the @ symbol. In case you’re not getting the hang of Razor yet, when in doubt, throw
in another @!

 One of the big advantages of Razor in the context of ASP.NET Core is that it uses lan-
guages you’re already familiar with: C# and HTML. There’s no need to learn a whole
new set of primitives for some other templating language: it’s the same if, foreach, and
while constructs you already know. And when you don’t need them, you’re writing raw
HTML, so you can see exactly what the user will be getting in their browser.

 In listing 7.6, I’ve applied a number of these different techniques in the template
for displaying a to-do item. The PageModel has a bool IsComplete property, as well as
a List<string> property called Tasks, which contains any outstanding tasks.

@page
@model ToDoItemModel

Listing 7.6 Razor template for rendering a ToDoItemViewModel

The @model directive indicates
the type of PageModel in Model.

202 CHAPTER 7 Rendering HTML using Razor views
<div>
 @if (Model.IsComplete)
 {
 Well done, you’re all done!
 }
 else
 {
 The following tasks remain:

 @foreach (var task in Model.Tasks)
 {
 @task
 }

 }
</div>

This code definitely lives up to the promise of mixing C# and HTML! There are tradi-
tional C# control structures, like if and foreach, that you’d expect in any normal pro-
gram, interspersed with the HTML markup that you want to send to the browser. As
you can see, the @ symbol is used to indicate when you’re starting a control statement,
but you generally let the Razor template infer when you’re switching back and forth
between HTML and C#.

 The template shows how to generate dynamic HTML at runtime, depending on
the exact data provided. If the model has outstanding Tasks, the HTML will generate
a list item for each task, producing output something like that shown in figure 7.6.

The if control structure checks
the value of the PageModel’s
IsComplete property at runtime.

The foreach structure
will generate the
elements once for each
task in Model.Tasks.

A Razor expression is
used to write the task
to the HTML output.

The data to display is defined on
properties in the PageModel.

Razor markup can include C# constr ucts
such as if statements and for loops.

Only the relevant “if” block is rendered to
the HTML, and the content within a foreach
loop is rendered once for every item.

@if (Model.IsComplete)
{

<p>Well done, you're all done!</p>
} else {

<p>The following tasks remain:</p>

@foreach(var task in Model.Tasks)
{
@task

}

}

Model.IsComplete = false;
Model.Tasks = new List<string>
{
"Get fuel",
"Check oil",
"Check Tyre pressure"

};

Figure 7.6 The Razor template generates a item for each remaining task, depending on the data
passed to the view at runtime. You can use an if block to render completely different HTML depending
on the values in your model.

203Creating dynamic web pages with Razor
A common trope of the ASP.NET Core team is that they try to ensure you “fall into the
pit of success” when building an application. This refers to the idea that, by default,
the easiest way to do something should be the correct way of doing it. This is a great phi-
losophy, as it means you shouldn’t get burned by, for example, security problems if

IntelliSense and tooling support
The mixture of C# and HTML might seem hard to read in the book, and that’s a rea-
sonable complaint. It’s also another valid argument for trying to keep your Razor tem-
plates as simple as possible.

Luckily, if you’re using an editor like Visual Studio or Visual Studio Code, the tooling
can help somewhat. As you can see in this figure, the C# portions of the code are
shaded to help distinguish them from the surrounding HTML.

Although the ability to use loops and conditionals is powerful—they’re one of the
advantages of Razor over static HTML—they also add to the complexity of your view.
Try to limit the amount of logic in your views to make them as easy to understand and
maintain as possible.

Visual Studio shades the C# regions of code and highlights @ symbols where C#
transitions to HTML. This makes the Razor templates easier to read.

204 CHAPTER 7 Rendering HTML using Razor views
you follow the standard approaches. Occasionally, however, you may need to step
beyond the safety rails; a common use case is when you need to render some HTML
contained in a C# object to the output, as you’ll see in the next section.

7.3.3 Rendering HTML with Raw

In the previous example, we rendered the list of tasks to HTML by writing the string
task using the @task Razor expression. But what if the task variable contains HTML you
want to display, so instead of "Check oil" it contains "Check oil"?
If you use a Razor expression to output this as you did previously, you might hope to
get this:

Check oil

But that’s not the case. The HTML generated comes out like this:

Check oil

Hmm, looks odd, right? What’s happened here? Why did the template not write your
variable to the HTML, like it has in previous examples? If you look at how a browser
displays this HTML, like in figure 7.7, then hopefully it makes more sense.

Figure 7.7 The second item, "Check oil" has been
HTML-encoded, so the elements are visible to the user as part of the
task. This avoids any security issues, as users can’t inject malicious scripts into
your HTML.

205Creating dynamic web pages with Razor
Razor templates encode C# expressions before they’re written to the output stream.
This is primarily for security reasons; writing out arbitrary strings to your HTML could
allow users to inject malicious data and JavaScript into your website. Consequently, the
C# variables you print in your Razor template get written as HTML-encoded values.

 In some cases you might need to directly write out HTML contained in a string
to the response. If you find yourself in this situation, first, stop. Do you really need to
do this? If the values you’re writing have been entered by a user, or were created
based on values provided by users, there’s a serious risk of creating a security hole in
your website.

 If you really need to write the variable out to the HTML stream, you can do so using
the Html property on the view page and calling the Raw method:

@Html.Raw(task)

With this approach, the string in task will be directly written to the output stream, pro-
ducing the HTML you originally wanted, Check oil,
which renders as shown in figure 7.8.

WARNING Using Html.Raw on user input creates a security risk that users could
use to inject malicious code into your website. Avoid using Html.Raw if possible.

Figure 7.8 The second item, "Check oil" has been output
using Html.Raw(), so it hasn’t been HTML-encoded. The elements
result in the second item being shown in bold instead. Using Html.Raw() in this
way should be avoided where possible, as it is a security risk.

206 CHAPTER 7 Rendering HTML using Razor views
The C# constructs shown in this section can be useful, but they can make your tem-
plates harder to read. It’s generally easier to understand the intention of Razor tem-
plates that are predominantly HTML markup rather than C#.

 In the previous version of ASP.NET, these constructs, and in particular the Html
helper property, were the standard way to generate dynamic markup. You can still use
this approach in ASP.NET Core by using the various HtmlHelper3 methods on the Html
property, but these have largely been superseded by a cleaner technique: Tag Helpers.

NOTE I’ll discuss Tag Helpers, and how to use them to build HTML forms, in
the next chapter.

Tag Helpers are a useful feature that’s new to Razor in ASP.NET Core, but a number
of other features have been carried through from the previous version of ASP.NET. In
the next section of this chapter, you’ll see how you can create nested Razor templates
and use partial views to reduce the amount of duplication in your views.

7.4 Layouts, partial views, and _ViewStart
In this section you’ll learn about layouts and partial views, which allow you to extract
common code to reduce duplication. These files make it easier to make changes to
your HTML that affect multiple pages at once. You’ll also learn how to run common
code for every Razor Page using _ViewStart and _ViewImports, and how to include
optional sections in your pages.

 Every HTML document has a certain number of elements that are required: <html>,
<head>, and <body>. As well, there are often common sections that are repeated on every
page of your application, such as the header and footer, as shown in figure 7.9. Each page
in your application will also probably reference the same CSS and JavaScript files.

3 HTMLHelpers are almost obsolete, though they’re still available if you prefer to use them.

Header common to
every page in the app

Sidebar common to
some views in the app

Body content specific
to this view only

Figure 7.9 A typical web application has a block-based layout, where some blocks are common to every page of
your application. The header block will likely be identical across your whole application, but the sidebar may only
be identical for the pages in one section. The body content will differ for every page in your application.

207Layouts, partial views, and _ViewStart
All these different elements add up to a maintenance nightmare. If you had to manu-
ally include these in every view, then making any changes would be a laborious, error-
prone process involving editing every page. Instead, Razor lets you extract these com-
mon elements into layouts.

DEFINITION A layout in Razor is a template that includes common code. It
can’t be rendered directly, but it can be rendered in conjunction with normal
Razor views.

By extracting your common markup into layouts, you can reduce the duplication in
your app. This makes changes easier, makes your views easier to manage and main-
tain, and is generally good practice!

7.4.1 Using layouts for shared markup

Layout files are, for the most part, normal Razor templates that contain markup com-
mon to more than one page. An ASP.NET Core app can have multiple layouts, and
layouts can reference other layouts. A common use for this is to have different layouts
for different sections of your application. For example, an e-commerce website might
use a three-column view for most pages, but a single-column layout when you come to
the checkout pages, as shown in figure 7.10.

You’ll often use layouts across many different Razor Pages, so they’re typically placed
in the Pages/Shared folder. You can name them anything you like, but there’s a com-
mon convention to use _Layout.cshtml as the filename for the base layout in your
application. This is the default name used by the Razor Page templates in Visual Stu-
dio and the .NET CLI.

Three-column layout Single-column layout

Figure 7.10 The https://manning.com website uses different layouts for different parts of the web
application. The product pages use a three-column layout, but the cart page uses a single-column
layout.

https://manning.com

208 CHAPTER 7 Rendering HTML using Razor views
TIP A common convention is to prefix your layout files with an underscore
(_) to distinguish them from standard Razor templates in your Pages folder.

A layout file looks similar to a normal Razor template, with one exception: every lay-
out must call the @RenderBody() function. This tells the templating engine where to
insert the content from the child views. A simple layout is shown in the following list-
ing. Typically, your application will reference all your CSS and JavaScript files in the
layout, as well as include all the common elements, such as headers and footers, but
this example includes pretty much the bare minimum HTML.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>@ViewData["Title"]</title>
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 @RenderBody()
</body>
</html>

As you can see, the layout file includes the required elements, such as <html> and
<head>, as well as elements you need on every page, such as <title> and <link>. This
example also shows the benefit of storing the page title in ViewData; the layout can
render it in the <title> element so that it shows in the browser’s tab, as shown in fig-
ure 7.11.

NOTE Layout files are not standalone Razor Pages and do not take part in
routing, so they do not start with the @page directive.

Views can specify a layout file to use by setting the Layout property inside a Razor
code block.

@{
 Layout = "_Layout";

Listing 7.7 A basic _Layout.cshtml file calling RenderBody

Listing 7.8 Setting the Layout property from a view

ViewData is the standard
mechanism for passing data
to a layout from a view.

Elements common
to every page, such
as your CSS, are
typically found in
the layout.

Tells the templating
engine where to insert
the child view’s content

Figure 7.11 The contents of the <title> element is used to name the tab in the
user’s browser, in this case Home Page.

Set the layout for the
page to _Layout.cshtml.

209Layouts, partial views, and _ViewStart
 ViewData["Title"] = "Home Page";
}
<h1>@ViewData["Title"]</h1>
<p>This is the home page</p>

Any contents in the view will be rendered inside the layout, where the call to @Render-
Body() occurs. Combining the two previous listings will result in the following HTML
being generated and sent to the user.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Home Page</title>
 <link rel="stylesheet" href="/css/site.css" />
</head>
<body>
 <h1>Home Page</h1>
 <p>This is the home page</p>
</body>
<html>

Judicious use of layouts can be extremely useful in reducing the duplication between
pages. By default, layouts only provide a single location where you can render content
from the view, at the call to @RenderBody. In cases where this is too restrictive, you can
render content using sections.

7.4.2 Overriding parent layouts using sections

A common requirement when you start using multiple layouts in your application is to
be able to render content from child views in more than one place in your layout.
Consider the case of a layout that uses two columns. The view needs a mechanism for
saying “render this content in the left column” and “render this other content in the
right column.” This is achieved using sections.

NOTE Remember, all of the features outlined in this chapter are specific to
Razor, which is a server-side rendering engine. If you’re using a client-side
SPA framework to build your application, you’ll likely handle these require-
ments in other ways, either within the client code or by making multiple
requests to a Web API endpoint.

Sections provide a way of organizing where view elements should be placed within a
layout. They’re defined in the view using an @section definition, as shown in the fol-
lowing listing, which defines the HTML content for a sidebar separate from the main
content, in a section called Sidebar. The @section can be placed anywhere in the file,
top or bottom, wherever is convenient.

Listing 7.9 Rendered output from combining a view with its layout

ViewData is a convenient
way of passing data from a
Razor view to the layout.The content in the

Razor view to render
inside the layout

ViewData set in the
view is used to render
the layout.

The RenderBody call renders
the contents of the view.

210 CHAPTER 7 Rendering HTML using Razor views

@{
 Layout = "_TwoColumn";
}
@section Sidebar {
 <p>This is the sidebar content</p>
}
<p>This is the main content </p>

The section is rendered in the parent layout with a call to @RenderSection(). This
renders the content contained in the child section into the layout. Sections can be
either required or optional. If they’re required, a view must declare the given @sec-
tion; if they’re optional, they can be omitted, and the layout will skip them. Skipped
sections won’t appear in the rendered HTML. The following listing shows a layout
that has a required section called Sidebar and an optional section called Scripts.

@{
 Layout = "_Layout";
}
<div class="main-content">
 @RenderBody()
</div>
<div class="side-bar">
 @RenderSection("Sidebar", required: true)
</div>
@RenderSection("Scripts", required: false)

TIP It’s common to have an optional section called Scripts in your layout
pages. This can be used to render additional JavaScript that’s required by some
views, but that isn’t needed on every view. A common example is the jQuery
Unobtrusive Validation scripts for client-side validation. If a view requires the
scripts, it adds the appropriate @section Scripts to the Razor markup.

You may notice that the previous listing defines a Layout property, even though it’s a
layout itself, not a view. This is perfectly acceptable and lets you create nested hierar-
chies of layouts, as shown in figure 7.12.

TIP Most websites these days need to be “responsive,” so they work on a wide
variety of devices. You generally shouldn’t use layouts for this. Don’t serve dif-
ferent layouts for a single page based on the device making the request.
Instead, serve the same HTML to all devices, and use CSS on the client side to
adapt the display of your web page as required.

Listing 7.10 Defining a section in a view template

Listing 7.11 Rendering a section in a layout file, _TwoColumn.cshtml

All content inside the braces is
part of the Sidebar section, not
the main body content.

Any content not inside an @section will
be rendered by the @RenderBody call.

This layout is nested
inside a layout itself.

Renders all the content
from a view that isn’t
part of a section Renders the Sidebar section; if

the Sidebar section isn’t defined
in the view, throws an error

Renders the Scripts section; if the Scripts
section isn’t defined in the view, ignore it.

211Layouts, partial views, and _ViewStart
Layout files and sections provide a lot of flexibility for building sophisticated UIs, but
one of their most important uses is in reducing the duplication of code in your
application. They’re perfect for avoiding duplication of content that you’d need to
write for every view. But what about those times when you find you want to reuse part
of a view somewhere else? For those cases, you have partial views.

7.4.3 Using partial views to encapsulate markup

Partial views are exactly what they sound like—they’re part of a view. They provide a
means of breaking up a larger view into smaller, reusable chunks. This can be useful
for both reducing the complexity in a large view by splitting it into multiple partial
views, or for allowing you to reuse part of a view inside another.

 Most web frameworks that use server-side rendering have this capability—Ruby on
Rails has partial views, Django has inclusion tags, and Zend has partials. All of these
work in the same way, extracting common code into small, reusable templates. Even
client-side templating engines such as Mustache and Handlebars, used by client-side
frameworks like Angular and Ember, have similar “partial view” concepts.

 Consider a to-do list application again. You might find you have a Razor Page
called ViewToDo.cshtml that displays a single to-do with a given id. Later on, you cre-
ate a new Razor Page, RecentToDos.cshtml, that displays the five most recent to-do
items. Instead of copying and pasting the code from one page to the other, you could
create a partial view, called _ToDo.cshtml as in the following listing.

_Layout.cshtml defines the HTML
in the header and footer.

The main content of the view is
rendered in _TwoColumn.cshtml
by RenderBody.

_TwoColumn.cshtml is rendered
inside _Layout.cshtml.

The sidebar content of the view is
rendered in _TwoColumn.cshtml
by RenderSection(Sidebar).

Figure 7.12 Multiple layouts can be nested to create complex hierarchies. This allows you to keep
the elements common to all views in your base layout and extract layout common to multiple views
into sub-layouts.

212 CHAPTER 7 Rendering HTML using Razor views
@model ToDoItemViewModel
<h2>@Model.Title</h2>

 @foreach (var task in Model.Tasks)
 {
 @task
 }

Partial views are a bit like Razor Pages without the PageModel and handlers. Partial
views are purely about rendering small sections of HTML, rather than handling
requests, model binding, and validation, and calling the application model. They are
great for encapsulating small usable bits of HTML that you need to generate on multi-
ple Razor Pages.

 Both the ViewToDo.cshtml and RecentToDos.cshtml Razor Pages can render the
_ToDo.cshtml partial view, which handles generating the HTML for a single class. Par-
tial views are rendered using the <partial /> Tag Helper, providing the name of the
partial view to render and the data (the model) to render. For example, the RecentTo-
Dos.cshtml view could achieve this as shown in the following listing.

@page
@model RecentToDoListModel

@foreach(var todo in Model.RecentItems)
{
 <partial name="_ToDo" model="todo" />
}

When you render a partial view without providing an absolute path or file extension,
such as _ToDo in listing 7.13, the framework tries to locate the view by searching the
Pages folder, starting from the Razor Page that invoked it. For example, if your Razor
Page is located at Pages/Agenda/ToDos/RecentToDos.chstml, the framework would
look in the following places for a file called _ToDo.chstml:

 Pages/Agenda/ToDos/ (the current Razor Page’s folder)
 Pages/Agenda/
 Pages/
 Pages/Shared/
 Views/Shared/

The first location that contains a file called _ToDo.cshtml will be selected. If you
include the .cshtml file extension when you reference the partial view, the framework

Listing 7.12 Partial view _ToDo.cshtml for displaying a ToDoItemViewModel

Listing 7.13 Rendering a partial view from a Razor Page

Partial views can
bind to data in the
Model property, like
a normal Razor Page
uses a PageModel.

The content of the
partial view, which
previously existed in
the ViewToDo.cshtml
file

This is a Razor Page, so it uses the @page
directive. Partial views do not use @page.

The PageModel contains the
list of recent items to render.

Loop through the recent items.
todo is a ToDoItemViewModel,
as required by the partial view.

Use the partial tag helper to render the _ToDo
partial view, passing in the model to render.

213Layouts, partial views, and _ViewStart
will only look in the current Razor Page’s folder. Also, if you provide an absolute path
to the partial, such as /Pages/Agenda/ToDo.cshtml, that’s the only place the frame-
work will look.4

NOTE Like layouts, partial views are typically named with a leading underscore.

The Razor code contained in a partial view is almost identical to a standard view. The
main difference is the fact that partial views are only called from other views. The
other difference is that partial views don’t run _ViewStart.cshtml when they execute,
which you’ll see shortly.

Partial views aren’t the only way to reduce duplication in your view templates. Razor
also allows you to pull common elements such as namespace declarations and layout
configuration into centralized files. In the next section you’ll see how to wield these
files to clean up your templates.

7.4.4 Running code on every view with _ViewStart and _ViewImports

Due to the nature of views, you’ll inevitably find yourself writing certain things repeat-
edly. If all of your views use the same layout, then adding the following code to the top
of every page feels a little redundant:

@{
 Layout = "_Layout";
}

4 As with most of Razor Pages, the search locations are conventions that you can customize if you wish. If you
find the need, you can customize the paths as shown here: http://mng.bz/nM9e.

Child actions in ASP.NET Core
In the previous version of ASP.NET MVC, there was the concept of a child action. This
was an action method that could be invoked from inside a view. This was the main
mechanism for rendering discrete sections of a complex layout that had nothing to
do with the main action method. For example, a child action method might render the
shopping cart on an e-commerce site.

This approach meant you didn’t have to pollute every page’s view model with the view
model items required to render the shopping cart, but it fundamentally broke the MVC
design pattern by referencing controllers from a view.

In ASP.NET Core, child actions are no more. View components have replaced them.
These are conceptually quite similar in that they allow both the execution of arbitrary
code and the rendering of HTML, but they don’t directly invoke controller actions. You
can think of them as a more powerful partial view that you should use anywhere a
partial view needs to contain significant code or business logic. You’ll see how to
build a small view component in chapter 20.

http://mng.bz/nM9e

214 CHAPTER 7 Rendering HTML using Razor views
Similarly, if you find you need to reference objects from a different namespace in your
Razor views, then having to add @using WebApplication1.Models to the top of every
page can get to be a chore. Thankfully, ASP.NET Core includes two mechanisms for
handling these common tasks: _ViewImports.cshtml and _ViewStart.cshtml.

IMPORTING COMMON DIRECTIVES WITH _VIEWIMPORTS

The _ViewImports.cshtml file contains directives that will be inserted at the top of
every view. This includes things like the @using and @model statements that you’ve
already seen—basically any Razor directive. To avoid adding a using statement to
every view, you can include it in _ViewImports.cshtml instead of in your Razor Pages.

@using WebApplication1
@using WebApplication1.Pages
@using WebApplication1.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The _ViewImports.cshtml file can be placed in any folder, and it will apply to all views
and sub-folders in that folder. Typically, it’s placed in the root Pages folder so that it
applies to every Razor Page and partial view in your app.

 It’s important to note that you should only put Razor directives in _ViewImports
.cshtml—you can’t put any old C# in there. As you can see in the previous listing, this
is limited to things like @using or the @addTagHelper directive that you’ll learn about
in the next chapter. If you want to run some arbitrary C# at the start of every view in
your application, such as to set the Layout property, you should use the _ViewStart
.cshtml file instead.

RUNNING CODE FOR EVERY VIEW WITH _VIEWSTART

You can easily run common code at the start of every Razor Page by adding a _View-
Start.cshtml file to the Pages folder in your application. This file can contain any
Razor code, but it’s typically used to set the Layout for all the pages in your applica-
tion, as shown in the following listing. You can then omit the Layout statement from
all pages that use the default layout. If a view needs to use a non-default layout, you
can override it by setting the value in the Razor Page itself.

@{
 Layout = "_Layout";
}

Any code in the _ViewStart.cshtml file runs before the view executes. Note that _View-
Start.cshtml only runs for Razor Page views—it doesn’t run for layouts or partial views.

Listing 7.14 A typical _ViewImports.cshtml file importing additional namespaces

Listing 7.15 A typical _ViewStart.cshtml file setting the default layout

The default namespace of your
application and the Pages folder

Add this directive
to avoid placing it
in every view.Makes Tag Helpers available in

your views, added by default

215Selecting a view from an MVC controller
Also note that the names for these special Razor files are enforced rather than conven-
tions you can change.

WARNING You must use the names _ViewStart.cshtml and _ViewImports.cshtml
for the Razor engine to locate and execute them correctly. To apply them to
all your app’s pages, add them to the root of the Pages folder, not to the
Shared subfolder.

You can specify additional _ViewStart.cshtml or _ViewImports.cshtml files to run for a
subset of your views by including them in a subfolder in Pages. The files in the sub-
folders will run after the files in the root Pages folder.

In this chapter I’ve focused on using Razor views with the Razor Page framework, as
that’s the approach I suggest if you’re creating a server-side rendered ASP.NET Core
application. However, as I described in chapter 4, you may want to use MVC control-
lers in some cases. In the final section of this chapter, we’ll look at how you can render
Razor views from your MVC controller actions, and how the framework locates the
correct Razor view to render.

7.5 Selecting a view from an MVC controller
This section covers

 How MVC controllers use ViewResults to render Razor views
 How to create a new Razor view
 How the framework locates a Razor view to render

Partial views, layouts, and AJAX
This chapter describes using Razor to render full HTML pages server-side, which are
then sent to the user’s browser in traditional web apps. A common alternative approach
when building web apps is to use a JavaScript client-side framework to build a Single
Page Application (SPA), which renders the HTML client-side in the browser.

One of the technologies SPAs typically use is AJAX (Asynchronous JavaScript and XML),
in which the browser sends requests to your ASP.NET Core app without reloading a
whole new page. It’s also possible to use AJAX requests with apps that use server-side
rendering. To do so, you’d use JavaScript to request an update for part of a page.

If you want to use AJAX with an app that uses Razor, you should consider making
extensive use of partial views. You can then expose these via additional Razor Page
handlers, as shown in this article: http://mng.bz/vzB1. Using AJAX can reduce the
overall amount of data that needs to be sent back and forth between the browser and
your app, and it can make your app feel smoother and more responsive, as it requires
fewer full-page loads. But using AJAX with Razor can add complexity, especially for
larger apps. If you foresee yourself making extensive use of AJAX to build a highly
dynamic web app, you might want to consider using Web API controllers with a client-
side framework (see chapter 9), or consider Blazor instead.

http://mng.bz/vzB1

216 CHAPTER 7 Rendering HTML using Razor views
If you follow my advice from chapter 4, you should be using Razor Pages for your
server-side rendered applications instead of the MVC controllers that were common
in versions 1.x and 2.x. One of the big advantages Razor Pages gives is the close cou-
pling of a Razor view to the associated page handlers, instead of having to navigate
between multiple folders in your solution.

 If for some reason you do need to use MVC controllers instead of Razor Pages, it’s
important to understand how you choose which view to render once an action
method has executed. Figure 7.13 shows a zoomed-in view of this process, right after
the action has invoked the application model and received some data back.

Some of this figure should be familiar—it’s the lower half of figure 4.6 from chapter 4
(with a couple of additions) and is the MVC equivalent of figure 7.1. It shows that the
MVC controller action method uses a ViewResult object to indicate that a Razor view
should be rendered. This ViewResult contains the name of the Razor view template
to render and a view model, an arbitrary POCO class containing the data to render.

1. The final step taken by
the MVC action method is
to generate a view model
and select the name of the
Razor view to render.

4. Once located, the Razor view
is passed the view model and
invoked to generate the final
HTML output.

2. The view name and view model are
encapsulated in a ViewResult object,
which is returned from the action method.

3. The MVC framework uses the
view name to find the specific
Razor view template to render.

5. The generated HTML is
passed back through the
middleware pipeline and
back to the user's browser.

Figure 7.13 The process of generating HTML from an MVC controller using a ViewResult. This is
very similar to the process for a Razor Page. The main difference is that for Razor Pages, the view is an
integral part of the Razor Page; for MVC controllers, the view must be located at runtime.

217Selecting a view from an MVC controller
NOTE I discussed ViewResults in chapter 4. They are the MVC equivalent of
Razor Page’s PageResult. The main difference is that a ViewResult includes
a view name to render and a model to pass to the view template, while a Page-
Result always renders the Razor Page’s associated view and passes the Page-
Model to the view template.

After returning a ViewResult from an action method, the control flow passes back to
the MVC framework, which uses a series of heuristics to locate the view, based on the
template name provided. Once a Razor view template has been located, the Razor
engine passes the view model from the ViewResult to the view and executes the tem-
plate to generate the final HTML. This final step, rendering the HTML, is essentially
the same process as for Razor Pages.

 You saw how to create controllers in chapter 4, and in this section you’ll see how to
create views and ViewResult objects and how to specify the template to render. You can
add a new view template to your application in Visual Studio by right-clicking in an MVC
application in Solution Explorer and choosing Add > New Item, and then selecting
Razor View from the dialog, as shown in figure 7.14. If you aren’t using Visual Studio,
create a blank new file in the Views folder with the file extension .cshtml.

 With your view template created, you now need to invoke it. In most cases you
won’t create a ViewResult directly in your action methods. Instead, you’ll use one of
the View helper methods on the Controller base class. These helper methods sim-
plify passing in a view model and selecting a view template, but there’s nothing magic
about them—all they do is create ViewResult objects.

Figure 7.14 The Add New Item dialog box. Choosing Razor View - Empty will add a new Razor view template file
to your application.

218 CHAPTER 7 Rendering HTML using Razor views
In the simplest case you can call the View method without any arguments, as shown in
the following listing. This helper method returns a ViewResult that will use conven-
tions to find the view template to render, and will not supply a view model when exe-
cuting the view.

public class HomeController : Controller
{
 public IActionResult Index()
 {
 return View();
 }
}

In this example, the View helper method returns a ViewResult without specifying
the name of a template to run. Instead, the name of the template to use is based on
the name of the controller and the name of the action method. Given that the con-
troller is called HomeController and the method is called Index, by default the Razor
template engine looks for a template at the Views/Home/Index.cshtml location, as
shown in figure 7.15.

Listing 7.16 Returning ViewResult from an action method using default conventions

Inheriting from the Controller
base class makes the View
helper methods available.

The View helper method
returns a ViewResult.

Razor view files reside
in the Views folder.

Views for the HomeController
will be found in the Home
folder by default.

Views in the Shared folder
can be called by any controller.

Views have the
same name as
their corresponding
action method.

Figure 7.15 View files are located at runtime based on naming conventions. Razor view files reside
in a folder based on the name of the associated MVC controller and are named with the name of the
action method that requested them. Views in the Shared folder can be used by any controller.

219Selecting a view from an MVC controller
This is another case of using conventions in MVC to reduce the amount of boilerplate
you have to write. As always, the conventions are optional. You can also explicitly pass
the name of the template to run as a string to the View method. For example, if the
Index method instead returned View("ListView"), the templating engine would look
for a template called ListView.cshtml instead. You can even specify the complete path
to the view file, relative to your application’s root folder, such as View("Views/global
.cshtml"), which would look for the template at the Views/global.chtml location.

NOTE When specifying the absolute path to a view, you must include both
the top-level Views folder and the .cshtml file extension in the path. This is
similar to the rules for locating partial view templates.

The process of locating an MVC Razor view is very similar to the process of locating a
partial view to render, as you saw in section 7.4. The framework searches in multiple
locations to find the requested view. The difference is that for Razor Pages the search
process only happens for partial view rendering, as the main Razor view to render is
already known—it’s the Razor Page’s view template.

 Figure 7.16 shows the complete process used by the MVC framework to locate
the correct View template to execute when a ViewResult is returned from an MVC
controller. It’s possible for more than one template to be eligible, such as if an
Index.chstml file exists in both the Home and Shared folders. Similar to the rules for
locating partial views, the engine will use the first template it finds.

TIP You can modify all these conventions, including the algorithm shown in
figure 7.16, during initial configuration. In fact, you can replace the whole
Razor templating engine if required, but that’s beyond the scope of this book.

You may find it tempting to explicitly provide the name of the view file you want to ren-
der in your controller; if so, I’d encourage you to fight that urge. You’ll have a much sim-
pler time if you embrace the conventions as they are and go with the flow. That extends
to anyone else who looks at your code; if you stick to the standard conventions, there’ll
be a comforting familiarity when they look at your app. That can only be a good thing!

 As well as providing a view template name, you can also pass an object to act as the
view model for the Razor view. This object should match the type specified in the
view’s @model directive, and it’s accessed in exactly the same way as for Razor Pages;
using the Model property. The following listing shows two examples of passing a view
model to a view.

public class ToDoController : Controller
{
 public IActionResult Index()
 {
 var listViewModel = new ToDoListModel();
 return View(listViewModel);
 }

Listing 7.17 Returning ViewResult from an action method using default conventions

Creating an instance of the
view model to pass to the
Razor view.

The view model is passed
as an argument to View.

220 CHAPTER 7 Rendering HTML using Razor views
 public IActionResult View(int id)
 {
 var viewModel = new ViewToDoModel();
 return View("ViewToDo", viewModel);
 }

}

You can provide the view
template name at the same
time as the view model.

Figure 7.16 A flow chart describing how the Razor templating engine locates
the correct view template to execute. Avoiding the complexity of this diagram
is one of the reasons I recommend using Razor Pages wherever possible!

221Summary
Once the Razor view template has been located, the view is rendered using the Razor
syntax you’ve seen throughout this chapter. You can use all the features you’ve already
seen—layouts, partial views, _ViewImports, and _ViewStart, for example. From the
point of view of the Razor view, there’s no difference between a Razor Pages view and
an MVC Razor view.

 That concludes our first look at rendering HTML using the Razor templating
engine. In the next chapter you’ll learn about Tag Helpers and how to use them to
build HTML forms, a staple of modern web applications. Tag Helpers are one of the
biggest improvements to Razor in ASP.NET Core over the previous version, so getting
to grips with them will make editing your views an overall more pleasant experience!

Summary
 In the MVC design pattern, views are responsible for generating the UI for your

application.
 Razor is a templating language that allows you to generate dynamic HTML

using a mixture of HTML and C#.
 HTML forms are the standard approach for sending data from the browser to

the server. You can use Tag Helpers to easily generate these forms.
 Razor Pages can pass strongly typed data to a Razor view by setting public prop-

erties on the PageModel. To access the properties on the view model, the view
should declare the model type using the @model directive.

 Page handlers can pass key-value pairs to the view using the ViewData dictionary.
 Razor expressions render C# values to the HTML output using @ or @(). You don’t

need to include a semicolon after the statement when using Razor expressions.
 Razor code blocks, defined using @{}, execute C# without outputting HTML.

The C# in Razor code blocks must be complete statements, so it must include
semicolons.

 Loops and conditionals can be used to easily generate dynamic HTML in tem-
plates, but it’s a good idea to limit the number of if statements in particular, to
keep your views easy to read.

 If you need to render a string as raw HTML you can use Html.Raw, but do so
sparingly—rendering raw user input can create a security vulnerability in your
application.

 Tag Helpers allow you to bind your data model to HTML elements, making it
easier to generate dynamic HTML while staying editor friendly.

 You can place HTML common to multiple views in a layout. The layout will ren-
der any content from the child view at the location @RenderBody is called.

 Encapsulate commonly used snippets of Razor code in a partial view. A partial
view can be rendered using the <partial /> tag.

 _ViewImports.cshtml can be used to include common directives, such as @using
statements, in every view.

222 CHAPTER 7 Rendering HTML using Razor views
 _ViewStart.cshtml is called before the execution of each Razor Page and can be
used to execute code common to all Razor Pages, such as setting a default lay-
out page. It doesn’t execute for layouts or partial views.

 _ViewImports.cshtml and _ViewStart.cshtml are hierarchical—files in the root
folder execute first, followed by files in controller-specific view folders.

 Controllers can invoke a Razor view by returning a ViewResult. This may con-
tain the name of the view to render and optionally a view model object to use
when rendering the view. If the view name is not provided, a view is chosen
using conventions.

 By convention, MVC Razor views are named the same as the action method that
invokes them. They reside either in a folder with the same name as the action
method’s controller or in the Shared folder.

Building forms
with Tag Helpers
In chapter 7 you learned about Razor templates and how to use them to generate
the views for your application. By mixing HTML and C#, you can create dynamic
applications that can display different data based on the request, the logged-in
user, or any other data you can access.

 Displaying dynamic data is an important aspect of many web applications, but
it’s typically only half of the story. As well as displaying data to the user, you often
need the user to be able to submit data back to your application. You can use data to
customize the view, or to update the application model by saving it to a database,
for example. For traditional web applications, this data is usually submitted using
an HTML form.

 In chapter 6 you learned about model binding, which is how you accept the data
sent by a user in a request and convert it into C# objects that you can use in your
Razor Pages. You also learned about validation, and how important it is to validate
the data sent in a request. You used DataAnnotations attributes to define the rules

This chapter covers
 Building forms easily with Tag Helpers

 Generating URLs with the Anchor Tag Helper

 Using Tag Helpers to add functionality to Razor
223

224 CHAPTER 8 Building forms with Tag Helpers
associated with your models, as well as other associated metadata like the display name
for a property.

 The final aspect we haven’t yet looked at is how to build the HTML forms that users
use to send this data in a request. Forms are one of the key ways users will interact with
your application in the browser, so it’s important they’re both correctly defined for
your application and also user friendly. ASP.NET Core provides a feature to achieve
this, called Tag Helpers.

 Tag Helpers are new to ASP.NET Core. They’re additions to Razor syntax that you
can use to customize the HTML generated in your templates. Tag Helpers can be
added to an otherwise standard HTML element, such as an <input>, to customize its
attributes based on your C# model, saving you from having to write boilerplate code.
Tag Helpers can also be standalone elements and can be used to generate completely
customized HTML.

NOTE Remember, Razor, and therefore Tag Helpers, are for server-side HTML
rendering. You can’t use Tag Helpers directly in frontend frameworks like
Angular or React.

If you’ve used the previous version of ASP.NET, then Tag Helpers may sound remi-
niscent of HTML Helpers, which could also be used to generate HTML based on
your C# classes. Tag Helpers are the logical successor to HTML Helpers, as they pro-
vide a more streamlined syntax than the previous, C#-focused helpers. HTML Help-
ers are still available in ASP.NET Core, so if you’re converting some old templates to
ASP.NET Core, you can still use them in your templates, but I won’t be covering
them in this book.

 In this chapter, you’ll primarily learn how to use Tag Helpers when building forms.
They simplify the process of generating correct element names and IDs so that model
binding can occur seamlessly when the form is sent back to your application. To put
them into context, you’re going to carry on building the currency converter applica-
tion that you’ve seen in previous chapters. You’ll add the ability to submit currency
exchange requests to it, validate the data, and redisplay errors on the form using Tag
Helpers to do the legwork for you, as shown in figure 8.1.

 As you develop the application, you’ll meet the most common Tag Helpers you’ll
encounter when working with forms. You’ll also see how you can use Tag Helpers to
simplify other common tasks, such as generating links, conditionally displaying data in
your application, and ensuring users see the latest version of an image file when they
refresh their browser.

 To start, I’ll talk a little about why you need Tag Helpers when Razor can already
generate any HTML you like by combining C# and HTML in a file.

225Catering to editors with Tag Helpers
8.1 Catering to editors with Tag Helpers
One of the common complaints about the mixture of C# and HTML in Razor tem-
plates is that you can’t easily use standard HTML editing tools with them; all the @ and
{} symbols in the C# code tend to confuse the editors. Reading the templates can be
similarly difficult for people; switching paradigms between C# and HTML can be a bit
jarring sometimes.

 This arguably wasn’t such a problem when Visual Studio was the only supported
way to build ASP.NET websites, as it could obviously understand the templates with-
out any issues and helpfully colorize the editor. But with ASP.NET Core going cross-
platform, the desire to play nicely with other editors reared its head again.

 This was one of the big motivations for Tag Helpers. They integrate seamlessly into
the standard HTML syntax by adding what look to be attributes, typically starting with
asp-*. They’re most often used to generate HTML forms, as shown in the following
listing. This listing shows a view from the first iteration of the currency converter
application, in which you choose the currencies and quantity to convert.

@page
@model ConvertModel

Listing 8.1 User registration form using Tag Helpers

Figure 8.1 The currency converter application forms, built using Tag Helpers. The labels, drop-downs, input
elements, and validation messages are all generated using Tag Helpers.

This is the view for the Razor Page Convert.cshtml.
The Model type is ConvertModel.

226 CHAPTER 8 Building forms with Tag Helpers

ge

l

s
s the
ype,
me,
ation
s for
el.
<form method="post">
 <div class="form-group">
 <label asp-for="CurrencyFrom"></label>
 <input class="form-control" asp-for="CurrencyFrom" />

 </div>
 <div class="form-group">
 <label asp-for="Quantity"></label>
 <input class="form-control" asp-for="Quantity" />

 </div>
 <div class="form-group">
 <label asp-for="CurrencyTo"></label>
 <input class="form-control" asp-for="CurrencyTo" />

 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

At first glance, you might not even spot the Tag Helpers, they blend in so well with the
HTML! This makes it easy to edit the files with any standard HTML text editor. But
don’t be concerned that you’ve sacrificed readability in Visual Studio—as you can see
in figure 8.2, elements with Tag Helpers are clearly distinguishable from the standard
HTML <div> element and the standard HTML class attribute on the <input> ele-
ment. The C# properties of the view model being referenced (CurrencyFrom, in this
case) are also still shaded, as with other C# code in Razor files. And, of course, you get
IntelliSense, as you’d expect.1

1 Other editors like Visual Studio Code, JetBrains Rider, and Visual Studio for Mac also include syntax high-
lighting and IntelliSense support.

asp-for
on Labels

nerates the
caption for

abels based
on the view

model.

asp-for
on Input
generate
correct t
value, na
and valid
attribute
the mod

Validation messages are written
to a span using Tag Helpers.

Figure 8.2 In Visual Studio, Tag Helpers are distinguishable from normal elements by being bold
and a different color, C# is shaded, and IntelliSense is available.

227Catering to editors with Tag Helpers
Tag Helpers are extra attributes on standard HTML elements (or new elements
entirely) that work by modifying the HTML element they’re attached to. They let you
easily integrate your server-side values, such as those exposed on your PageModel, with
the generated HTML.

 Notice that listing 8.1 didn’t specify the captions to display in the labels. Instead,
you declaratively used asp-for="CurrencyFrom" to say, “for this <label>, use the
CurrencyFrom property to work out what caption to use.” Similarly, for the <input>
elements, Tag Helpers are used to

 Automatically populate the value from the PageModel property.
 Choose the correct id and name, so that when the form is POSTed back to the

Razor Page, the property will be model-bound correctly.
 Choose the correct input type to display (for example, a number input for the

Quantity property).
 Display any validation errors, as shown in figure 8.3.2

Tag Helpers can perform a variety of functions by modifying the HTML elements
they’re applied to. This chapter introduces a number of common Tag Helpers and
how to use them, but it’s not an exhaustive list. I don’t cover all of the helpers that
come out of the box in ASP.NET Core (there are more coming with every release!),

2 To learn more about the internals of Tag Helpers, read the documentation at http://mng.bz/Idb0.

Label caption
calculated from
[Display] attribute

Validation error
message populated
from ModelState

Input types
determined from
DataAnnotations
and property type

Figure 8.3 Tag Helpers hook into the metadata provided by
DataAnnotations attributes, as well as the property types themselves.
The Validation Tag Helper can even populate error messages based on the
ModelState, as you saw in the last chapter on validation.

http://mng.bz/Idb0

228 CHAPTER 8 Building forms with Tag Helpers
and you can easily create your own, as you’ll see in chapter 19. Alternatively, you could
use those published by others on NuGet or GitHub.3 As with all of ASP.NET Core,
Microsoft is developing Tag Helpers in the open on GitHub, so you can always take a
look at the source code to see how they’re implemented.

8.2 Creating forms using Tag Helpers
In this section you’ll learn how to use some of the most useful Tag Helpers: Tag
Helpers that work with forms. You’ll learn how to use them to generate HTML
markup based on properties of your PageModel, creating the correct id and name attri-
butes and setting the value of the element to the model property’s value (among
other things). This capability significantly reduces the amount of markup you need
to write manually.

 Imagine you’re building the checkout page for the currency converter application,
and you need to capture the user’s details on the checkout page. In chapter 6 you
built a UserBindingModel model (shown in listing 8.2), added DataAnnotations attri-
butes for validation, and saw how to model-bind it in a POST to a Razor Page. In this
chapter you’ll see how to create the view for it, by exposing the UserBindingModel as a
property on your PageModel.

3 A good example is Damian Edwards’ (of the ASP.NET Core team) Tag Helper pack: https://github.com/
DamianEdwards/TagHelperPack.

WebForms flashbacks
For those who used ASP.NET back in the day of WebForms, before the advent of the
MVC pattern for web development, Tag Helpers may be triggering bad memories.
Although the asp- prefix is somewhat reminiscent of ASP.NET Web Server control
definitions, never fear—the two are different beasts.

Web Server controls were directly added to a page’s backing C# class and had a
broad scope that could modify seemingly unrelated parts of the page. Coupled with
that, they had a complex lifecycle that was hard to understand and debug when things
weren’t working. The perils of trying to work with that level of complexity haven’t been
forgotten, and Tag Helpers aren’t the same.

Tag Helpers don’t have a lifecycle—they participate in the rendering of the element
to which they’re attached, and that’s it. They can modify the HTML element they’re
attached to, but they can’t modify anything else on your page, making them concep-
tually much simpler. An additional capability they bring is the ability to have multiple
Tag Helpers acting on a single element—something Web Server controls couldn’t
easily achieve.

Overall, if you’re writing Razor templates, you’ll have a much more enjoyable experi-
ence if you embrace Tag Helpers as integral to its syntax. They bring a lot of benefits
without obvious downsides, and your cross-platform-editor friends will thank you!

https://github.com/DamianEdwards/TagHelperPack
https://github.com/DamianEdwards/TagHelperPack
https://github.com/DamianEdwards/TagHelperPack

229Creating forms using Tag Helpers
WARNING With Razor Pages, you often expose the same object in your view
that you use for model binding. When you do this, you must be careful to not
include sensitive values (that shouldn’t be edited) in the binding model, to
avoid mass-assignment attacks on your app.4

public class UserBindingModel
{
 [Required]
 [StringLength(100, ErrorMessage = "Maximum length is {1}")]
 [Display(Name = "Your name")]
 public string FirstName { get; set; }

 [Required]
 [StringLength(100, ErrorMessage = "Maximum length is {1}")]
 [Display(Name = "Last name")]
 public string LastName { get; set; }

 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Phone(ErrorMessage = "Not a valid phone number.")]
 [Display(Name = "Phone number")]
 public string PhoneNumber { get; set; }
}

The UserBindingModel is decorated with a number of DataAnnotations attributes. In
chapter 6 you saw that these attributes are used during model validation when the
model is bound to a request, before the page handler is executed. These attributes are
also used by the Razor templating language to provide the metadata required to gen-
erate the correct HTML when you use Tag Helpers.

 You can use the pattern I described in chapter 6, exposing a UserBindindModel as
an Input property of your PageModel, to use the model for both model binding and in
your Razor view:

public class CheckoutModel: PageModel
{
 [BindProperty]
 public UserBindingModel Input { get; set; }
}

With the help of the UserBindingModel property, Tag Helpers, and a little HTML, you
can create a Razor view that lets the user enter their details, as shown in figure 8.4.

Listing 8.2 UserBindingModel for creating a user on a checkout page

4 You can read more about over-posting attacks on my blog at http://mng.bz/RXw0.

https://shortener.manning.com/RXw0

230 CHAPTER 8 Building forms with Tag Helpers
The Razor template to generate this page is shown in listing 8.3. This code uses a vari-
ety of tag helpers, including

 A Form Tag Helper on the <form> element
 Label Tag Helpers on the <label>
 Input Tag Helpers on the <input>
 Validation Message Tag Helpers on validation elements for each prop-

erty in the UserBindingModel

@page
@model CheckoutModel
@{

Listing 8.3 Razor template for binding to UserBindingModel on the checkout page

Figure 8.4 The checkout page for an application. The HTML is generated based
on a UserBindingModel, using Tag Helpers to render the required element
values, input types, and validation messages.

The CheckoutModel is the PageModel,
which exposes a UserBindingModel on
the Input property.

231Creating forms using Tag Helpers

y.

The

dis

wit
 ViewData["Title"] = "Checkout";
}
<h1>@ViewData["Title"]</h1>
<form asp-page="Checkout">
 <div class="form-group">
 <label asp-for="Input.FirstName"></label>
 <input class="form-control" asp-for="Input.FirstName" />

 </div>
 <div class="form-group">
 <label asp-for="Input.LastName"></label>
 <input class="form-control" asp-for="Input.LastName" />

 </div>
 <div class="form-group">
 <label asp-for="Input.Email"></label>
 <input class="form-control" asp-for="Input.Email" />

 </div>
 <div class="form-group">
 <label asp-for="Input.PhoneNumber"></label>
 <input class="form-control" asp-for="Input.PhoneNumber" />

 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

You can see the HTML markup that this template produces in listing 8.4. This Razor
markup and the resulting HTML produces the results you saw in figure 8.4. You can
see that each of the HTML elements with a Tag Helper has been customized in the
output: the <form> element has an action attribute, the <input> elements have an id
and name based on the name of the referenced property, and both the <input> and
 have data-* attributes for validation.

<form action="/Checkout" method="post">
 <div class="form-group">
 <label for="Input_FirstName">Your name</label>
 <input class="form-control" type="text"
 data-val="true" data-val-length="Maximum length is 100"
 id="Input_FirstName" data-val-length-max="100"
 data-val-required="The Your name field is required."
 Maxlength="100" name="Input.FirstName" value="" />
 <span data-valmsg-for="Input.FirstName"
 class="field-validation-valid" data-valmsg-replace="true">
 </div>
 <div class="form-group">
 <label for="Input_LastName">Your name</label>
 <input class="form-control" type="text"
 data-val="true" data-val-length="Maximum length is 100"
 id="Input_LastName" data-val-length-max="100"
 data-val-required="The Your name field is required."

Listing 8.4 HTML generated by the Razor template on the checkout page

Form Tag Helpers use routing
to determine the URL the
form will be posted to. The Label Tag

Helper uses
DataAnnotations
on a property to
determine the
caption to displa

The Input Tag
Helper uses
DataAnnotations
to determine the
type of input to
generate. Validation

Tag Helper
plays error

messages
associated
h the given

property.

232 CHAPTER 8 Building forms with Tag Helpers
 Maxlength="100" name="Input.LastName" value="" />
 <span data-valmsg-for="Input.LastName"
 class="field-validation-valid" data-valmsg-replace="true">
 </div>
 <div class="form-group">
 <label for="Input_Email">Email</label>
 <input class="form-control" type="email" data-val="true"
 data-val-email="The Email field is not a valid e-mail address."
 Data-val-required="The Email field is required."
 Id="Input_Email" name="Input.Email" value="" />
 <span class="text-danger field-validation-valid"
 data-valmsg-for="Input.Email" data-valmsg-replace="true">
 </div>
 <div class="form-group">
 <label for="Input_PhoneNumber">Phone number</label>
 <input class="form-control" type="tel" data-val="true"
 data-val-phone="Not a valid phone number." Id="Input_PhoneNumber"
 name="Input.PhoneNumber" value="" />
 <span data-valmsg-for="Input.PhoneNumber"
 class="text-danger field-validation-valid"
 data-valmsg-replace="true">
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 <input name="__RequestVerificationToken" type="hidden"
 value="CfDJ8PkYhAINFx1JmYUVIDWbpPyy_TRUNCATED" />
</form>

Wow, that’s a lot of markup! If you’re new to working with HTML, this might all seem
a little overwhelming, but the important thing to notice is that you didn’t have to write
most of it! The Tag Helpers took care of most of the plumbing for you. That’s basically
Tag Helpers in a nutshell; they simplify the fiddly mechanics of building HTML forms,
leaving you to concentrate on the overall design of your application instead of writing
boilerplate markup.

NOTE If you’re using Razor to build your views, Tag Helpers will make your
life easier, but they’re entirely optional. You’re free to write raw HTML with-
out them, or to use the legacy HTML Helpers.

Tag Helpers simplify and abstract the process of HTML generation, but they generally
try to do so without getting in your way. If you need the final generated HTML to have
a particular attribute, you can add it to your markup. You can see that in the previous
listings where class attributes are defined on <input> elements, such as <input
class="form-control" asp-for="Input.FirstName" />. They pass untouched from
Razor to the HTML output.

TIP This is different from the way HTML Helpers worked in the previous
version of ASP.NET; HTML helpers often require jumping through hoops to
set attributes in the generated markup.

Even better than this, you can also set attributes that are normally generated by a
Tag Helper, like the type attribute on an <input> element. For example, if the

233Creating forms using Tag Helpers
FavoriteColor property on your PageModel was a string, then by default Tag Help-
ers would generate an <input> element with type="text". Updating your markup to
use the HTML5 color picker type is trivial; set the type explicitly in your Razor view:

<input type="color" asp-for="FavoriteColor" />

TIP HTML5 adds a huge number of features, including lots of form elements
that you may not have come across before, such as range inputs and color
pickers. We’re not going to cover them in this book, but you can read about
them on the Mozilla Developer Network website at http://mng.bz/qOc1.

In this section, you’ll build the currency calculator Razor templates from scratch, add-
ing Tag Helpers as you find you need them. You’ll probably find you use most of the
common form Tag Helpers in every application you build, even if it’s on a simple
login page.

8.2.1 The Form Tag Helper

The first thing you need to start building your HTML form is, unsurprisingly, the
<form> element. In the previous example, the <form> element was augmented with an
asp-page Tag Helper attribute:

<form asp-page="Checkout">

This results in action and method attributes being added to the final HTML, indicating
which URL the form should be sent to when it’s submitted and the HTTP verb to use:

<form action="/Checkout" method="post">

Setting the asp-page attribute allows you to specify a different Razor Page in your
application that the form will be posted to when it’s submitted. If you omit the asp-
page attribute, the form will post back to the same URL it was served from. This is very
common with Razor Pages. You normally handle the result of a form post in the same
Razor Page that is used to display it.

WARNING If you omit the asp-page attribute, you must manually add the
method="post" attribute. It’s important to add this attribute so the form is
sent using the POST verb, instead of the default GET verb. Using GET for forms
can be a security risk.

The asp-page attribute is added by a FormTagHelper. This Tag Helper uses the value
provided to generate a URL for the action attribute, using the URL generation fea-
tures of routing that I described at the end of chapter 5.

NOTE Tag Helpers can make multiple attributes available on an element.
Think of them like properties on a Tag Helper configuration object. Adding
a single asp- attribute activates the Tag Helper on the element. Adding addi-
tional attributes lets you override further default values of its implementation.

http://mng.bz/qOc1

234 CHAPTER 8 Building forms with Tag Helpers
The Form Tag Helper makes several other attributes available on the <form> element
that you can use to customize the generated URL. Hopefully you’ll remember from
chapter 5 that you can set route values when generating URLs. For example, if you
have a Razor Page called Product.cshtml that uses the directive

@page "{id}"

then the full route template for the page would be "Product/{id}". To correctly gen-
erate the URL for this page, you must provide the {id} route value. How can you set
that value using the Form Tag Helper?

 The Form Tag Helper defines an asp-route-* wildcard attribute that you can use
to set arbitrary route parameters. Set the * in the attribute to the route parameter
name. For example, to set the id route parameter, you’d set the asp-route-id value
(it’s shown with a fixed value of 5 in the following example, but it more commonly
would be dynamic):

<form asp-page="Product" asp-route-id="5">

Based on the route template of the Product.cshtml Razor Page, this would generate
the following markup:

<form action="/Product/5" method="post">

You can add as many asp-route-* attributes as necessary to your <form> to generate
the correct action URL. You can also set the Razor Page handler to use the asp-
page-handler attribute. This ensures the form POST will be handled by the handler
you specify.

NOTE The Form Tag Helper has many additional attributes, such as asp-
action and asp-controller, that you generally won’t need to use with Razor
Pages. Those are only useful if you’re using MVC controllers with views. In
particular, look out for the asp-route attribute—this is not the same as the
asp-route-* attribute. The former is used to specify a named route (not used
with Razor Pages), and the latter is used to specify the route values to use
during URL generation.

Just as for all other Razor constructs, you can use C# values from your PageModel (or
C# in general) in Tag Helpers. For example, if the ProductId property of your Page-
Model contains the value required for the {id} route value, you could use

<form asp-page="Product" asp-route-id="@Model.ProductId">

The main job of the Form Tag Helper is to generate the action attribute, but it per-
forms one additional, important function: generating a hidden <input> field needed
to prevent cross-site request forgery (CSRF) attacks.

235Creating forms using Tag Helpers
DEFINITION Cross-site request forgery (CSRF) attacks are a website exploit that
can allow actions to be executed on your website by an unrelated malicious
website. You’ll learn about them in detail in chapter 18.

You can see the generated hidden <input> at the bottom of the <form> in listing 8.4;
it’s named __RequestVerificationToken and contains a seemingly random string of
characters. This field won’t protect you on its own, but I’ll describe in chapter 18 how
it’s used to protect your website. The Form Tag Helper generates it by default, so you
generally won’t need to worry about it, but if you need to disable it, you can do so by
adding asp-antiforgery="false" to your <form> element.

 The Form Tag Helper is obviously useful for generating the action URL, but it’s
time to move on to more interesting elements—those that you can see in your
browser!

8.2.2 The Label Tag Helper

Every <input> field in your currency converter application needs to have an associ-
ated label so the user knows what the <input> is for. You could easily create those
yourself, manually typing the name of the field and setting the for attribute as appro-
priate, but luckily there’s a Tag Helper to do that for you.

 The Label Tag Helper is used to generate the caption (the visible text) and the for
attribute for a <label> element, based on the properties in the PageModel. It’s used by
providing the name of the property in the asp-for attribute:

<label asp-for="FirstName"></label>

The Label Tag Helper uses the [Display] DataAnnotations attribute that you saw in
chapter 6 to determine the appropriate value to display. If the property you’re gener-
ating a label for doesn’t have a [Display] attribute, the Label Tag Helper will use the
name of the property instead. Consider this model in which the FirstName property
has a [Display] attribute, but the Email property doesn’t:

public class UserModel
{
 [Display(Name = "Your name")]
 public string FirstName { get; set; }
 public string Email { get; set; }
}

The following Razor

<label asp-for="FirstName"></label>
<label asp-for="Email"></label>

would generate this HTML:

<label for="FirstName">Your name</label>
<label for="Email">Email</label>

236 CHAPTER 8 Building forms with Tag Helpers
The caption text inside the <label> element uses the value set in the [Display] attri-
bute, or the property name in the case of the Email property. Also note that the for
attribute has been generated with the name of the property. This is a key bonus of
using Tag Helpers—it hooks in with the element IDs generated by other Tag Helpers,
as you’ll see shortly.

NOTE The for attribute is important for accessibility. It specifies the ID of
the element to which the label refers. This is important for users who are
using a screen reader, for example, as they can tell what property a form field
relates to.

As well as properties on the PageModel, you can also reference sub-properties on child
objects. For example, as I described in chapter 6, it’s common to create a nested class
in a Razor Page, expose that as a property, and decorate it with the [BindProperty]
attribute:

public class CheckoutModel: PageModel
{
 [BindProperty]
 public UserBindingModel Input { get; set; }
}

You can reference the FirstName property of the UserBindingModel by “dotting” into
the property as you would in any other C# code. Listing 8.3 shows more examples of this.

<label asp-for="Input.FirstName"></label>
<label asp-for="Input.Email"></label>

As is typical with Tag Helpers, the Label Tag Helper won’t override values that you set
yourself. If, for example, you don’t want to use the caption generated by the helper,
you could insert your own manually. The following code,

<label asp-for="Email">Please enter your Email</label>

would generate this HTML:

<label for="Email">Please enter your Email</label>

As ever, you’ll generally have an easier time with maintenance if you stick to the stan-
dard conventions and don’t override values like this, but the option is there. Next up
is a biggie: the Input and Textarea Tag Helpers.

8.2.3 The Input and Textarea Tag Helpers

Now you’re getting into the meat of your form—the <input> elements that handle
user input. Given that there’s such a wide array of possible input types, there’s a variety
of different ways they can be displayed in the browser. For example, Boolean values are
typically represented by a checkbox type <input> element, whereas integer values

237Creating forms using Tag Helpers
would use a number type <input> element, and a date would use the date type, as shown
in figure 8.5.

To handle this diversity, the Input Tag Helper is one of the most powerful Tag Help-
ers. It uses information based on both the type of the property (bool, string, int,
and so on) and any DataAnnotations attributes applied to it ([EmailAddress] and
[Phone], among others) to determine the type of the input element to generate. The
DataAnnotations are also used to add data-val-* client-side validation attributes to
the generated HTML.

 Consider the Email property from listing 8.2 that was decorated with the [Email-
Address] attribute. Adding an <input> is as simple as using the asp-for attribute:

<input asp-for="Input.Email" />

Figure 8.5 Various input element types. The exact way in which each
type is displayed varies by browser.

238 CHAPTER 8 Building forms with Tag Helpers
The property is a string, so ordinarily the Input Tag Helper would generate an
<input> with type="text". But the addition of the [EmailAddress] attribute provides
additional metadata about the property. Consequently, the Tag Helper generates an
HTML5 <input> with type="email":

<input type="email" id="Input_Email" name="Input.Email"
 value="test@example.com" data-val="true"
 data-val-email="The Email Address field is not a valid e-mail address."
 Data-val-required="The Email Address field is required."
 />

You can take a whole host of things away from this example. First, the id and name
attributes of the HTML element have been generated from the name of the property.
The value of the id attribute matches the value generated by the Label Tag Helper in
its for attribute, Input_Email. The value of the name attribute preserves the “dot”
notation, Input.Email, so that model binding works correctly when the field is POSTed
to the Razor Page.

 Also, the initial value of the field has been set to the value currently stored in the
property ("test@example.com", in this case). The type of the element has also been
set to the HTML5 email type, instead of using the default text type.

 Perhaps the most striking addition is the swath of data-val-* attributes. These can
be used by client-side JavaScript libraries such as jQuery to provide client-side valida-
tion of your DataAnnotations constraints. Client-side validation provides instant feed-
back to users when the values they enter are invalid, providing a smoother user
experience than can be achieved with server-side validation alone, as I described in
chapter 6.

Client-side validation
In order to enable client-side validation in your application, you need to add some
jQuery libraries to your HTML pages. In particular, you need to include the jQuery,
jQuery-validation, and jQuery-validation-unobtrusive JavaScript libraries. You can do
this in a number of ways, but the simplest is to include the script files at the bottom
of your view using

<script src="~/lib/jquery-
validation/dist/jquery.validate.min.js"></script>

<script src="~/lib/jquery-validation-
unobtrusive/jquery.validate.unobtrusive.min.js"></script>

The default templates include these scripts for you, in a handy partial template that
you can add to your page in a Scripts section. If you’re using the default layout and
need to add client-side validation to your view, add the following section somewhere
on your view:

@section Scripts{
 @Html.Partial("_ValidationScriptsPartial")
}

239Creating forms using Tag Helpers
The Input Tag Helper tries to pick the most appropriate template for a given prop-
erty based on DataAnnotations attributes or the type of the property. Whether this
generates the exact <input> type you need may depend, to an extent, on your appli-
cation. As always, you can override the generated type by adding your own type
attribute to the element in your Razor template. Table 8.1 shows how some of the
common data types are mapped to <input> types, and how the data types them-
selves can be specified.

The Input Tag Helper has one additional attribute that can be used to customize the
way data is displayed: asp-format. HTML forms are entirely string-based, so when
the value of an <input> is set, the Input Tag Helper must take the value stored in the
property and convert it to a string. Under the covers, this performs a string.Format()
on the property’s value, passing in the format string.

 The Input Tag Helper uses a default format string for each different data type, but
with the asp-format attribute, you can set the specific format string to use. For example,

This partial view references files in your wwwroot folder. The default _layout template
includes jQuery itself, as that’s required by the front-end component library Bootstrap.a

a You can also load these files from a content delivery network (CDN). If you wish to take this
approach, you should consider scenarios where the CDN is unavailable or compromised, as I
discuss in this blog post: http://mng.bz/2e6d.

Table 8.1 Common data types, how to specify them, and the input element type they map to

Data type How it’s specified Input element type

byte, int, short,
long, uint

Property type number

decimal, double,
float

Property type text

bool Property type checkbox

string Property type, [DataType(DataType.Text)]
attribute

text

HiddenInput [HiddenInput] attribute hidden

Password [Password] attribute password

Phone [Phone] attribute tel

EmailAddress [EmailAddress] attribute email

Url [Url] attribute url

Date DateTime property type,
[DataType(DataType.Date)] attribute

date

https://shortener.manning.com/2e6d

240 CHAPTER 8 Building forms with Tag Helpers
you could ensure a decimal property, Dec, is formatted to three decimal places with
the following code:

<input asp-for="Dec" asp-format="{0:0.000}" />

If the Dec property had a value of 1.2, this would generate HTML similar to

<input type="text" id="Dec" name="Dec" value="1.200">

NOTE You may be surprised that decimal and double types are rendered as
text fields and not as number fields. This is due to several technical reasons,
predominantly related to the way some cultures render numbers with com-
mas and spaces. Rendering as text avoids errors that would only appear in cer-
tain browser-culture combinations.

In addition to the Input Tag Helper, ASP.NET Core provides the Textarea Tag
Helper. This works in a similar way, using the asp-for attribute, but it’s attached to a
<textarea> element instead:

<textarea asp-for="BigtextValue"></textarea>

This generates HTML similar to the following. Note that the property value is ren-
dered inside the tag, and data-val-* validation elements are attached as usual:

<textarea data-val="true" id="BigtextValue" name="BigtextValue"
 data-val-length="Maximum length 200." data-val-length-max="200"
 data-val-required="The Multiline field is required." >This is some text,
I'm going to display it
in a text area</textarea>

Hopefully, this section has hammered home how much typing Tag Helpers can cut
down on, especially when using them in conjunction with DataAnnotations for gener-
ating validation attributes. But this is more than reducing the number of keystrokes
required; Tag Helpers ensure that the markup generated is correct, and has the correct
name, id, and format to automatically bind your binding models when they’re sent to
the server.

 With <form>, <label>, and <input> under your belt, you’re able to build most of
your currency converter forms. Before we look at displaying validation messages,
there’s one more element to look at: the <select>, or drop-down, input.

8.2.4 The Select Tag Helper

As well as <input> fields, a common element you’ll see on web forms is the <select>
element, or drop-downs and list boxes. Your currency converter application, for exam-
ple, could use a <select> element to let you pick which currency to convert from a list.

 By default, this element shows a list of items and lets you select one, but there are
several variations, as shown in figure 8.6. As well as the normal drop-down box, you
could show a list box, add multiselection, or display your list items in groups.

241Creating forms using Tag Helpers
To use <select> elements in your Razor code, you’ll need to include two properties
in your PageModel: one property for the list of options to display, and one to hold the
value (or values) selected. For example, listing 8.5 shows the properties on the Page-
Model used to create the three left-most select lists shown in figure 8.6. Displaying
groups requires a slightly different setup, as you’ll see shortly.

public class SelectListsModel: PageModel
{
 [BindProperty]
 public class InputModel Input { get; set; }

 public IEnumerable<SelectListItem> Items { get; set; }
 = new List<SelectListItem>
 {
 new SelectListItem{Value= "csharp", Text="C#"},
 new SelectListItem{Value= "python", Text= "Python"},
 new SelectListItem{Value= "cpp", Text="C++"},
 new SelectListItem{Value= "java", Text="Java"},
 new SelectListItem{Value= "js", Text="JavaScript"},
 new SelectListItem{Value= "ruby", Text="Ruby"},
 };

 public class InputModel
 {

Listing 8.5 View model for displaying select element drop-downs and list boxes

Figure 8.6 Some of the many ways to display <select> elements using the Select Tag Helper.

The InputModel for
binding the user’s
selections to the
select boxes

The list of items
to display in the
select boxes

242 CHAPTER 8 Building forms with Tag Helpers

ties

d

ct
 public string SelectedValue1 { get; set; }
 public string SelectedValue2 { get; set; }
 public IEnumerable<string> MultiValues { get; set; }
 }
}

This listing demonstrates a number of aspects of working with <select> lists:

 SelectedValue1/SelectedValue2—Used to hold the value selected by the user.
They’re model-bound to the value selected from the drop-down/listbox and
used to preselect the correct item when rendering the form.

 MultiValues—Used to hold the selected values for a multiselect list. It’s an
IEnumerable, so it can hold more than one selection per <select> element.

 Items—Provides the list of options to display in the <select> elements. Note
that the element type must be SelectListItem, which exposes the Value and
Text properties, to work with the Select Tag Helper. This isn’t part of the
InputModel, as we don’t want to model-bind these items to the request—they
would normally be loaded directly from the application model or hardcoded.

NOTE The Select Tag Helper only works with SelectListItem elements. That
means you’ll normally have to convert from an application-specific list set of
items (for example, a List<string> or List<MyClass>) to the UI-centric
List<SelectListItem>.

The Select Tag Helper exposes the asp-for and asp-items attributes that you can
add to <select> elements. As for the Input Tag Helper, the asp-for attribute speci-
fies the property in your PageModel to bind to. The asp-items attribute is provided
for the IEnumerable<SelectListItem> to display the available <option> elements.

TIP It’s common to want to display a list of enum options in a <select> list.
This is so common that ASP.NET Core ships with a helper for generating a
SelectListItem for any enum. If you have an enum of the TEnum type, you can
generate the available options in your view using asp-items="Html.GetEnum-
SelectList<TEnum>()".

The following listing shows how to display a drop-down list, a single-selection list box,
and a multiselection list box. It uses the PageModel from the previous listing, binding
each <select> list to a different property, but reusing the same Items list for all of
them.

@page
@model SelectListsModel
<select asp-for="Input.SelectedValue1"
 asp-items="Model.Items"></select>
<select asp-for="Input.SelectedValue2"
 asp-items="Model.Items" size="4"></select>

Listing 8.6 Razor template to display a select element in three different ways

These proper
will hold the
values selecte
by the single-
selection sele
boxes.

To create a multiselect list box,
use an IEnumerable<>.

Creates a standard drop-down
select list by binding to a
standard property in asp-for

Creates a single-select list box
of height 4 by providing the
standard HTML size attribute

243Creating forms using Tag Helpers

o
<select asp-for="Input.MultiValues"
 asp-items="Model.Items"></select>

Hopefully, you can see that the Razor for generating a drop-down <select> list is
almost identical to the Razor for generating a multiselect <select> list. The Select
Tag Helper takes care of adding the multiple HTML attribute to the generated out-
put if the property it’s binding to is an IEnumerable.

WARNING The asp-for attribute must not include the Model. prefix. The
asp-items attribute, on the other hand, must include it if referencing a prop-
erty on the PageModel. The asp-items attribute can also reference other C#
items, such as objects stored in ViewData, but using a PageModel property is
the best approach.

You’ve seen how to bind three different types of select list so far, but the one I haven’t
yet covered from figure 8.6 is how to display groups in your list boxes using <opt-
group> elements. Luckily, nothing needs to change in your Razor code; you just have
to update how you define your SelectListItems.

 The SelectListItem object defines a Group property that specifies the Select-
ListGroup the item belongs to. The following listing shows how you could create two
groups and assign each list item to either a “dynamic” or “static” group, using a Page-
Model similar to that shown in listing 8.5. The final list item, C#, isn’t assigned to a
group, so it will be displayed as normal, without an <optgroup>.

public class SelectListsModel: PageModel
{
 [BindProperty]
 public IEnumerable<string> SelectedValues { get; set; }
 public IEnumerable<SelectListItem> Items { get; set; }

 public SelectListsModel()
 {
 var dynamic = new SelectListGroup { Name = "Dynamic" };
 var stat = new SelectListGroup { Name = "Static" };
 Items = new List<SelectListItem>
 {
 new SelectListItem {
 Value= "js",
 Text="Javascript",
 Group = dynamic
 },
 new SelectListItem {
 Value= "cpp",
 Text="C++",
 Group = stat
 },
 new SelectListItem {

Listing 8.7 Adding Groups to SelectListItems to create optgroup elements

Creates a multiselect list box
by binding to an IEnumerable
property in asp-for

Used to hold the selected values
where multiple selections are

allowed

Initializes the list items
in the constructor Creates a single

instance of each
group to pass t
SelectListItems

Sets the appropriate
group for each
SelectListItem

244 CHAPTER 8 Building forms with Tag Helpers
 Value= "python",
 Text="Python",
 Group = dynamic
 },
 new SelectListItem {
 Value= "csharp",
 Text="C#",
 }
 };
 }
}

With this in place, the Select Tag Helper will generate <optgroup> elements as neces-
sary when rendering the Razor to HTML. This Razor template,

@page
@model SelectListsModel
<select asp-for="SelectedValues" asp-items="Model.Items"></select>

would be rendered to HTML as follows:

<select id="SelectedValues" name="SelectedValues" multiple="multiple">
 <optgroup label="Dynamic">
 <option value="js">JavaScript</option>
 <option value="python">Python</option>
 </optgroup>
 <optgroup label="Static Languages">
 <option value="cpp">C++</option>
 </optgroup>
 <option value="csharp">C#</option>
</select>

Another common requirement when working with <select> elements is to include an
option in the list that indicates that no value has been selected, as shown in figure 8.7.
Without this extra option, the default <select> drop-down will always have a value,
and it will default to the first item in the list.

 You can achieve this in one of two ways: you could either add the “not selected”
option to the available SelectListItems, or you could manually add the option to the
Razor, for example by using

<select asp-for="SelectedValue" asp-items="Model.Items">
 <option Value = "">**Not selected**</option>
</select>

This will add an extra <option> at the top of your <select> element, with a blank
Value attribute, allowing you to provide a “no selection” option for the user.

TIP Adding a “no selection” option to a <select> element is so common
that you might want to create a partial view to encapsulate this logic.

Sets the appropriate group
for each SelectListItem

If a SelectListItem doesn’t
have a Group, it won’t be
added to an <optgroup>.

245Creating forms using Tag Helpers
With the Input Tag Helper and Select Tag Helper under your belt, you should be able
to create most of the forms that you’ll need. You have all the pieces you need to create
the currency converter application now, with one exception.

 Remember, whenever you accept input from a user, you should always validate the
data. The Validation Tag Helpers provide a way to display model validation errors to
the user on your form, without having to write a lot of boilerplate markup.

8.2.5 The Validation Message and Validation Summary Tag Helpers

In section 8.2.3 you saw that the Input Tag Helper generates the necessary data-val-*
validation attributes on form input elements themselves. But you also need some-
where to display the validation messages. This can be achieved for each property in
your view model using the Validation Message Tag Helper applied to a by
using the asp-validation-for attribute:

When an error occurs during client-side validation, the appropriate error message for
the referenced property will be displayed in the , as shown in figure 8.8. This
 element will also be used to show appropriate validation messages if server-
side validation fails and the form is being redisplayed.

Figure 8.7 Without a “not selected” option, the <select> element will always have a value. This
may not be the behavior you desire if you don’t want an <option> to be selected by default.

246 CHAPTER 8 Building forms with Tag Helpers
Any errors associated with the Email property stored in ModelState will be rendered
in the element body, and the element will have appropriate attributes to hook into
jQuery validation:

<span class="field-validation-valid" data-valmsg-for="Email"
 data-valmsg-replace="true">The Email Address field is required.

The validation error shown in the element will be replaced when the user updates the
Email <input> field and client-side validation is performed.

NOTE For further details on ModelState and server-side model validation,
see chapter 6.

As well as displaying validation messages for individual properties, you can also display
a summary of all the validation messages in a <div> by using the Validation Summary
Tag Helper, shown in figure 8.9. This renders a containing a list of the Model-
State errors.

The Validation Summary Tag Helper is applied to a <div> using the asp-validation-
summary attribute and providing a ValidationSummary enum value, such as

<div asp-validation-summary="All"></div>

Figure 8.8 Validation messages can be shown in an associated by using the
Validation Message Tag Helper.

Validation Message
Tag Helpers

Validation Summary
Tag Helper

Figure 8.9 Form showing validation
errors. The Validation Message Tag
Helper is applied to , close to
the associated input. The Validation
Summary Tag Helper is applied to a
<div>, normally at the top or bottom
of the form.

247Creating forms using Tag Helpers
The ValidationSummary enum controls which values are displayed, and it has three
possible values:

 None—Don’t display a summary. (I don’t know why you’d use this.)
 ModelOnly—Only display errors that are not associated with a property.
 All—Display errors either associated with a property or with the model.

The Validation Summary Tag Helper is particularly useful if you have errors associated
with your page that aren’t specific to a single property. These can be added to the
model state by using a blank key, as shown in listing 8.8. In this example, the property
validation passed, but we provide additional model-level validation to check that we
aren’t trying to convert a currency to itself.

public class ConvertModel : PageModel
{
 [BindProperty]
 public InputModel Input { get; set; }

 [HttpPost]
 public IActionResult OnPost()
 {
 if(Input.CurrencyFrom == Input.CurrencyTo)
 {
 ModelState.AddModelError(
 string.Empty,
 "Cannot convert currency to itself");
 }
 if (!ModelState.IsValid)
 {
 return Page();
 }

 //store the valid values somewhere etc
 return RedirectToPage("Checkout");
 }
}

Without the Validation Summary Tag Helper, the model-level error would still be
added if the user used the same currency twice, and the form would be redisplayed.
Unfortunately, there would have been no visual cue to the user indicating why the
form did not submit—obviously that’s a problem! By adding the Validation Summary
Tag Helper, the model-level errors are shown to the user so they can correct the prob-
lem, as shown in figure 8.10.

NOTE For simplicity, I added the validation check to the page handler. A bet-
ter approach might be to create a custom validation attribute to achieve this
instead. That way, your handler stays lean and sticks to the single responsibil-
ity principle. You’ll see how to achieve this in chapter 20.

Listing 8.8 Adding model-level validation errors to the ModelState

Can’t convert
currency to itself

Adds model-level error, not
tied to a specific property,
by using empty key

If there are any property-
level or model-level errors,
display them.

248 CHAPTER 8 Building forms with Tag Helpers
This section has covered most of the common Tag Helpers available for working with
forms, including all the pieces you need to build the currency converter forms. They
should give you everything you need to get started building forms in your own applica-
tions. But forms aren’t the only area in which Tag Helpers are useful; they’re generally
applicable any time you need to mix server-side logic with HTML generation.

 One such example is generating links to other pages in your application using
routing-based URL generation. Given that routing is designed to be fluid as you refac-
tor your application, keeping track of the exact URLs the links should point to would
be a bit of a maintenance nightmare if you had to do it by hand. As you might expect,
there’s a Tag Helper for that: the Anchor Tag Helper.

8.3 Generating links with the Anchor Tag Helper
At the end of chapter 5, I showed how you could generate URLs for links to other
pages in your application from inside your page handlers by using ActionResults.
Views are the other common place where you need to link to other pages in your
application, normally by way of an <a> element with an href attribute pointing to the
appropriate URL.

 In this section I’ll show how you can use the Anchor Tag Helper to generate the
URL for a given Razor Page using routing. Conceptually, this is almost identical to the
way the Form Tag Helper generates the action URL, as you saw in section 8.2.1. For
the most part, using the Anchor Tag Helper is identical too; you provide asp-page
and asp-page-handler attributes, along with asp-route-* attributes as necessary.
The default Razor Page templates use the Anchor Tag Helper to generate the links
shown in the navigation bar using the code in the following listing.

<ul class="navbar-nav flex-grow-1">
 <li class="nav-item">

Listing 8.9 Using the Anchor Tag Helper to generate URLs in _Layout.cshtml

Identical currencies
cause model-level
validation error.

Without Tag Helper,
the user has no idea
why the form has
been redisplayed.

Identical currencies
cause model-level
validation error.

Tag Helper shows
model-level errors.

Figure 8.10 Model-level errors are only displayed by the Validation Summary Tag Helper. Without
one, users won’t have any indication that there were errors on the form, and so won’t be able to
correct them.

249Generating links with the Anchor Tag Helper
 <a class="nav-link text-dark"
 asp-area="" asp-page="/Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark"
 asp-area="" asp-page="/Privacy">Privacy

As you can see, each <a> element has an asp-page attribute. This Tag Helper uses the
routing system to generate an appropriate URL for the <a>, resulting in the following
markup:

<ul class="nav navbar-nav">
 <li class="nav-item">
 Home

 <li class="nav-item">
 Privacy
 t

The URLs use default values where possible, so the Index Razor Page generates the
simple "/" URL instead of "/Index".

 If you need more control over the URL generated, the Anchor Tag Helper exposes
several additional properties you can set, which will be used during URL generation.
These are the most commonly used with Razor Pages:

 asp-page—Sets the Razor Page to execute.
 asp-page-handler—Sets the Razor Page handler to execute.
 asp-area—Sets the area route parameter to use. Areas can be used to provide

an additional layer of organization to your application.5
 asp-host—If set, the link will point to the provided host and will generate an

absolute URL instead of a relative URL.
 asp-protocol—Sets whether to generate an http or https link. If set, it will gen-

erate an absolute URL instead of a relative URL.
 asp-route-*—Sets the route parameters to use during generation. Can be

added multiple times for different route parameters.

By using the Anchor Tag Helper and its attributes, you generate your URLs using the
routing system, as described in chapter 5. This reduces the duplication in your code
by removing the hardcoded URLs you’d otherwise need to embed in all your views.

 If you find yourself writing repetitive code in your markup, chances are some-
one has written a Tag Helper to help with it. The Append Version Tag Helper in the

5 I won’t cover areas in detail in this book. They’re an optional aspect of MVC that are often only used on large
projects. You can read about them here: http://mng.bz/3X64.

http://mng.bz/3X64

250 CHAPTER 8 Building forms with Tag Helpers
following section is a great example of using Tag Helpers to reduce the amount of fid-
dly code required.

8.4 Cache-busting with the Append Version Tag Helper
A common problem with web development, both when developing and when an appli-
cation goes into production, is ensuring that browsers are all using the latest files. For
performance reasons, browsers often cache files locally and reuse them for subsequent
requests, rather than calling your application every time a file is requested.

 Normally this is great—most of the static assets in your site rarely change, so cach-
ing them significantly reduces the burden on your server. Think of an image of your
company logo—how often does that change? If every page shows your logo, then
caching the image in the browser makes a lot of sense.

 But what happens if it does change? You want to make sure users get the updated
assets as soon as they’re available. A more critical requirement might be if the Java-
Script files associated with your site change. If users end up using cached versions of
your JavaScript, they might see strange errors, or your application might appear bro-
ken to them.

 This conundrum is a common one in web development, and one of the most com-
mon ways for handling it is to use a cache-busting query string.

DEFINITION A cache-busting query string adds a query parameter to a URL, such
as ?v=1. Browsers will cache the response and use it for subsequent requests
to the URL. When the resource changes, the query string is also changed, for
example to ?v=2. Browsers will see this as a request for a new resource and will
make a fresh request.

The biggest problem with this approach is that it requires you to update a URL every
time an image, CSS, or JavaScript file changes. This is a manual step that requires
updating every place the resource is referenced, so it’s inevitable that mistakes are
made. Tag Helpers to the rescue! When you add a <script>, , or <link> ele-
ment to your application, you can use Tag Helpers to automatically generate a cache-
busting query string:

<script src="~/js/site.js" asp-append-version="true"></script>

The asp-append-version attribute will load the file being referenced and generate a
unique hash based on its contents. This is then appended as a unique query string to
the resource URL:

<script src="/js/site.js?v=EWaMeWsJBYWmL2g_KkgXZQ5nPe"></script>

As this value is a hash of the file contents, it will remain unchanged as long as the file
isn’t modified, so the file will be cached in users’ browsers. But if the file is modified,
the hash of the contents will change and so will the query string. This ensures browsers

251Using conditional markup with the Environment Tag Helper
are always served the most up-to-date files for your application without your having to
worry about manually updating every URL whenever you change a file.

 So far in this chapter you’ve seen how to use Tag Helpers for forms, link genera-
tion, and cache busting. You can also use Tag Helpers to conditionally render differ-
ent markup depending on the current environment. This uses a technique you
haven’t seen yet, where the Tag Helper is declared as a completely separate element.

8.5 Using conditional markup with the Environment
Tag Helper
In many cases, you want to render different HTML in your Razor templates depend-
ing on whether your website is running in a development or production environment.
For example, in development you typically want your JavaScript and CSS assets to be
verbose and easy to read, but in production you’d process these files to make them as
small as possible. Another example might be the desire to apply a banner to the appli-
cation when it’s running in a testing environment, which is removed when you move
to production, as shown in figure 8.11.

NOTE You’ll learn about configuring your application for multiple environ-
ments in chapter 11.

You’ve already seen how to use C# to add if statements to your markup, so it would be
perfectly possible to use this technique to add an extra div to your markup when the
current environment has a given value. If we assume that the env variable contains
the current environment, you could use something like this:

Figure 8.11 The warning banner will be shown whenever you’re running in a testing
environment, to make it easy to distinguish from production.

252 CHAPTER 8 Building forms with Tag Helpers
@if(env == "Testing" || env == "Staging")
{
 <div class="warning">You are currently on a testing environment</div>
}

There’s nothing wrong with this, but a better approach would be to use the Tag
Helper paradigm to keep your markup clean and easy to read. Luckily, ASP.NET Core
comes with the EnvironmentTagHelper, which can be used to achieve the same result
in a slightly clearer way:

<environment include="Testing,Staging">
 <div class="warning">You are currently on a testing environment</div>
</environment>

This Tag Helper is a little different from the others you’ve seen before. Instead of aug-
menting an existing HTML element using an asp- attribute, the whole element is the
Tag Helper. This Tag Helper is completely responsible for generating the markup,
and it uses an attribute to configure it.

 Functionally, this Tag Helper is identical to the C# markup (although for now I’ve
glossed over how the env variable could be found), but it’s more declarative in its
function than the C# alternative. You’re obviously free to use either approach, but
personally I like the HTML-like nature of Tag Helpers.

 We’ve reached the end of this chapter on Tag Helpers, and with it, our first look at
building traditional web applications that display HTML to users. In the last part of
the book, we’ll revisit Razor templates, and you’ll learn how to build custom compo-
nents like custom Tag Helpers and view components. For now, you have everything
you need to build complex Razor layouts—the custom components can help tidy up
your code down the line.

 Part 1 of this book has been a whistle-stop tour of how to build Razor Page applica-
tions with ASP.NET Core. You now have the basic building blocks to start making sim-
ple ASP.NET Core applications. In the second part of this book, I’ll show you some of
the additional features you’ll need to understand to build complete applications. But
before we get to that, I’ll take a chapter to discuss building Web APIs.

 I’ve mentioned the Web API approach previously, in which your application serves
data using the MVC framework, but instead of returning user-friendly HTML, it
returns machine-friendly JSON. In the next chapter you’ll see why and how to build a
Web API, take a look at an alternative routing system designed for APIs, and learn how
to generate JSON responses to requests.

Summary
 With Tag Helpers, you can bind your data model to HTML elements, making it

easier to generate dynamic HTML while remaining editor friendly.
 As with Razor in general, Tag Helpers are for server-side rendering of HTML only.

You can’t use them directly in frontend frameworks, such as Angular or React.

253Summary
 Tag Helpers can be standalone elements or can attach to existing HTML using
attributes. This lets you both customize HTML elements and add entirely new
elements.

 Tag Helpers can customize the elements they’re attached to, add additional
attributes, and customize how they’re rendered to HTML. This can greatly
reduce the amount of markup you need to write.

 Tag Helpers can expose multiple attributes on a single element. This makes it
easier to configure the Tag Helper, as you can set multiple, separate values.

 You can add the asp-page and asp-page-handler attributes to the <form> ele-
ment to set the action URL using the URL generation feature of Razor Pages.

 You specify route values to use during routing with the Form Tag Helper using
asp-route-* attributes. These values are used to build the final URL or are
passed as query data.

 The Form Tag Helper also generates a hidden field that you can use to prevent
CSRF attacks. This is added automatically and is an important security measure.

 You can attach the Label Tag Helper to a <label> using asp-for. It generates
an appropriate for attribute and caption based on the [Display] Data-Anno-
tations attribute and the PageModel property name.

 The Input Tag Helper sets the type attribute of an <input> element to the
appropriate value based on a bound property’s Type and any DataAnnotations
applied to it. It also generates the data-val-* attributes required for client-
side validation. This significantly reduces the amount of HTML code you need
to write.

 To enable client-side validation, you must add the necessary JavaScript files to
your view for jQuery validation and unobtrusive validation.

 The Select Tag Helper can generate drop-down <select> elements as well as
list boxes, using the asp-for and asp-items attributes. To generate a multise-
lect <select> element, bind the element to an IEnumerable property on the
view model. You can use these approaches to generate several different styles of
select box.

 The items supplied in asp-for must be an IEnumerable<SelectListItem>. If
you try to bind another type, you’ll get a compile-time error in your Razor view.

 You can generate an IEnumerable<SelectListItem> for an enum TEnum using
the Html.GetEnumSelectList<TEnum>() helper method. This saves you having
to write the mapping code yourself.

 The Select Tag Helper will generate <optgroup> elements if the items supplied
in asp-for have an associated SelectListGroup on the Group property. Groups
can be used to separate items in select lists.

 Any extra additional <option> elements added to the Razor markup will be
passed through to the final HTML. You can use these additional elements to
easily add a “no selection” option to the <select> element.

254 CHAPTER 8 Building forms with Tag Helpers
 The Validation Message Tag Helper is used to render the client- and server-side
validation error messages for a given property. This gives important feedback to
your users when elements have errors. Use the asp-validation-for attribute
to attach the Validation Message Tag Helper to a .

 The Validation Summary Tag Helper is used to display validation errors for the
model, as well as for individual properties. You can use model-level properties
to display additional validation that doesn’t apply to just one property. Use the
asp-validation-summary attribute to attach the Validation Summary Tag
Helper to a <div>.

 You can generate <a> URLs using the Anchor Tag Helper. This helper uses
routing to generate the href URL using asp-page, asp-page-handler, and
asp-route-* attributes, giving you the full power of routing.

 You can add the asp-append-version attribute to <link>, <script>, and
elements to provide cache-busting capabilities based on the file’s contents. This
ensures users cache files for performance reasons, yet still always get the latest
version of files.

 You can use the Environment Tag Helper to conditionally render different
HTML based on the app’s current execution environment. You can use this to
render completely different HTML in different environments if you wish.

Creating a Web API
for mobile and client

applications using MVC
In the previous five chapters, you’ve worked through each layer of a server-side
rendered ASP.NET Core application, using Razor Pages to render HTML to the
browser. In this chapter you’ll see a different take on an ASP.NET Core application.
Instead of using Razor Pages, we’ll explore Web APIs, which serve as the backend
for client-side SPAs and mobile apps.

 You can apply much of what you’ve already learned to Web APIs; they use the
same MVC design pattern, and the concepts of routing, model binding, and valida-
tion all carry through. The differentiation from traditional web applications is pri-
marily in the view part of MVC. Instead of returning HTML, they return data as
JSON or XML, which client applications use to control their behavior or update
the UI.

This chapter covers
 Creating a Web API controller to return JSON to

clients

 Using attribute routing to customize your URLs

 Generating a response using content negotiation

 Applying common conventions with the
[ApiController] attribute
255

256 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
 In this chapter you’ll learn how to define controllers and actions and see how sim-
ilar they are to the Razor Pages and controllers you already know. You’ll learn how to
create an API model to return data and HTTP status codes in response to a request, in
a way that client apps can understand.

 After exploring how the MVC design pattern applies to Web APIs, you’ll see how a
related topic works with Web APIs: routing. We’ll look at how attribute routing reuses
many of the same concepts from chapter 5 but applies them to your action methods
rather than to Razor Pages.

 One of the big features added in ASP.NET Core 2.1 was the [ApiController] attri-
bute. This attribute applies several common conventions used in Web APIs, which
reduces the amount of code you must write yourself. In section 9.5 you’ll learn how
automatic 400 Bad Requests for invalid requests, model-binding parameter inference,
and ProblemDetails objects can make building APIs easier and more consistent.

 You’ll also learn how to format the API models returned by your action methods
using content negotiation, to ensure you generate a response that the calling client
can understand. As part of this, you’ll learn how to add support for additional format
types, such as XML, so that you can generate XML responses if the client requests it.

 One of the great aspects of ASP.NET Core is the variety of applications you can cre-
ate with it. The ability to easily build a generalized HTTP Web API presents the possi-
bility of using ASP.NET Core in a greater range of situations than can be achieved with
traditional web apps alone. But should you build a Web API and why? In the first sec-
tion of this chapter, I’ll go over some of the reasons why you might or might not want
to create a Web API.

9.1 What is a Web API and when should you use one?
Traditional web applications handle requests by returning HTML to the user, which is
displayed in a web browser. You can easily build applications of this nature using Razor
Pages to generate HTML with Razor templates, as you’ve seen in recent chapters. This
approach is common and well understood, but the modern application developer also
has a number of other possibilities to consider, as shown in figure 9.1.

 Client-side single-page applications (SPAs) have become popular in recent years
with the development of frameworks such as Angular, React, and Vue. These frame-
works typically use JavaScript that runs in a user’s web browser to generate the HTML
they see and interact with. The server sends this initial JavaScript to the browser when
the user first reaches the app. The user’s browser loads the JavaScript and initializes
the SPA before loading any application data from the server.

NOTE Blazor WebAssembly is an exciting new SPA framework. Blazor lets you
write an SPA that runs in the browser just like other SPAs, but it uses C# and
Razor templates instead of JavaScript by using the new web standard, WebAs-
sembly. I don’t cover Blazor in this book, so to find out more, I recommend
Blazor in Action, by Chris Sainty (Manning, 2021).

257What is a Web API and when should you use one?
Once the SPA is loaded in the browser, communication with a server still occurs over
HTTP, but instead of sending HTML directly to the browser in response to requests,
the server-side application sends data (normally in a format such as JSON) to the client-
side application. The SPA then parses the data and generates the appropriate HTML
to show to a user, as shown in figure 9.2. The server-side application endpoint that the
client communicates with is sometimes called a Web API.

DEFINITION A Web API exposes multiple URLs that can be used to access or
change data on a server. It’s typically accessed using HTTP.

These days, mobile applications are common and are, from the server application’s
point of view, similar to client-side SPAs. A mobile application will typically communi-
cate with a server application using an HTTP Web API, receiving data in a common

Synchronous request
via HTTP

Asynchronous request
via HTTP

Response: Partial page data
as JSON or XML

Synchronous or asynchronous
request via HTTP

Response: data as JSON,
XML, or binary

</>

{ }

Response: HTML web page

{ }

Figure 9.1 Modern developers have to consider a number of different consumers
of their applications. As well as traditional users with web browsers, these could
be SPAs, mobile applications, or other apps.

258 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
format, such as JSON, just like an SPA. It then modifies the application’s UI depend-
ing on the data it receives.

 One final use case for a Web API is where your application is designed to be par-
tially or solely consumed by other backend services. Imagine you’ve built a web appli-
cation to send emails. By creating a Web API, you can allow other application
developers to use your email service by sending you an email address and a message.
Virtually all languages and platforms have access to an HTTP library they could use to
access your service from code.

 This is all there is to a Web API. It exposes a number of endpoints (URLs) that cli-
ent applications can send requests to and retrieve data from. These are used to power
the behavior of the client apps, as well as to provide all the data the client apps need
to display the correct interface to a user.

 Whether you need or want to create a Web API for your ASP.NET Core application
depends on the type of application you want to build. If you’re familiar with client-
side frameworks, you need to develop a mobile application, or you already have an
SPA build-pipeline configured, you’ll most likely want to add Web APIs that they can
use to access your application.

 One of the selling points of using a Web API is that it can serve as a generalized back-
end for all your client applications. For example, you could start by building a client-side
application that uses a Web API. Later you could add a mobile app that uses the same
Web API, with little or no modification required to your ASP.NET Core code.

 If you’re new to web development, you have no need to call your application from
outside a web browser, or you don’t want or need the effort involved in configuring a
client-side application, you probably won’t need Web APIs initially. You can stick to
generating your UI using Razor Pages and you’ll no doubt be highly productive!

Initial requests fetch
a client-side Blazor
application.

Subsequent requests
fetch data in JSON
format.

Figure 9.2 A sample client-side SPA using Blazor WebAssembly. The initial requests load the SPA
files into the browser, and subsequent requests fetch data from a Web API, formatted as JSON.

259Creating your first Web API project
NOTE Although there has been an industry shift toward client-side frame-
works, server-side rendering using Razor is still relevant. Which approach you
choose will depend largely on your preference for building HTML applica-
tions in the traditional manner versus using JavaScript on the client.

Having said that, adding Web APIs to your application isn’t something you have to
worry about ahead of time. Adding them later is simple, so you can always ignore
them initially and add them as the need arises. In many cases, this will be the best
approach.

Once you’ve established that you need a Web API for your application, creating one is
easy, as it’s built in to ASP.NET Core. In the next section you’ll see how to create a
Web API project and your first API controller.

9.2 Creating your first Web API project
In this section you’ll learn how to create an ASP.NET Core Web API project and create
your first Web API controllers. You’ll see how to use controller action methods to han-
dle HTTP requests, and how to use ActionResults to generate a response.

 Some people think of the MVC design pattern as only applying to applications that
directly render their UI, like the Razor views you’ve seen in previous chapters. In
ASP.NET Core, the MVC pattern applies equally well when building a Web API, but
the view part of MVC involves generating a machine -friendly response rather than a
user -friendly response.

 As a parallel to this, you create Web API controllers in ASP.NET Core in the very
same way you create traditional MVC controllers. The only thing that differentiates
them from a code perspective is the type of data they return—MVC controllers typi-
cally return a ViewResult; Web API controllers generally return raw .NET objects
from their action methods, or an IActionResult such as StatusCodeResult, as you
saw in chapter 4.

SPAs with ASP.NET Core
The cross-platform and lightweight design of ASP.NET Core means it lends itself well
to acting as a backend for your SPA framework of choice. Given the focus of this book
and the broad scope of SPAs in general, I won’t be looking at Angular, React, or other
SPAs here. Instead, I suggest checking out the resources appropriate to your chosen
SPA. Books are available from Manning for all the common client-side JavaScript
frameworks, as well as Blazor:

 React in Action by Mark Tielens Thomas (Manning, 2018)
 Angular in Action by Jeremy Wilken (Manning, 2018)
 Vue.js in Action by Erik Hanchett with Benjamin Listwon (Manning, 2018)
 Blazor in Action, by Chris Sainty (Manning, 2021)

260 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
NOTE This is different from the previous version of ASP.NET, where the
MVC and Web API stacks were completely independent. ASP.NET Core uni-
fies the two stacks into a single approach (and adds Razor Pages to the mix),
which makes using any option in a project painless!

To give you an initial taste of what you’re working with, figure 9.3 shows the result of
calling a Web API endpoint from your browser. Instead of a friendly HTML UI, you
receive data that can be easily consumed in code. In this example, the Web API
returns a list of string fruit names as JSON when you request the URL /fruit.

TIP Web APIs are normally accessed from code by SPAs or mobile apps, but
by accessing the URL in your web browser directly, you can view the data the
API is returning.

ASP.NET Core 5.0 apps also include a useful endpoint for testing and exploring your
Web API project in development called Swagger UI, as shown in figure 9.4. This lets
you browse the endpoints in your application, view the expected responses, and
experiment by sending requests.

NOTE Swagger UI is based on the industry standard OpenAPI specification
(previously called Swagger, www.openapis.org), which is enabled by default in
Web API apps. OpenAPI provides a way of documenting your API, so that you
can automatically generate clients for interacting with it in dozens of different
languages. For more on OpenAPI and Swagger in ASP.NET Core apps, see
Microsoft’s documentation: http://mng.bz/QmjR.

You can create a new Web API project in Visual Studio using the same New Project
process you saw in chapter 2. Create a new ASP.NET Core application providing a
project name, and, when you reach the New Project dialog box, select the ASP.NET
Core Web API template, as shown in figure 9.5. If you’re using the CLI, you can create
a similar template using dotnet new webapi -o WebApplication1.

 The API template configures the ASP.NET Core project for Web API controllers
only. This configuration occurs in the Startup.cs file, as shown in listing 9.1. If you
compare this template to your Razor Pages projects, you’ll see that the Web API project

Figure 9.3 Testing a Web API by accessing the URL in the browser. A GET request is made to the
/fruit URL, which returns a List<string> that has been JSON-encoded into an array of strings.

http://mng.bz/QmjR
http://www.openapis.org

261Creating your first Web API project
Path to the swagger/
OpenAPI definition file
driving Swagger UI

Controller name

URLs available and
their HTTP verb

Send a request to the
selected endpoint

Details of the request
made to the API

The response status
code, headers, and body

Figure 9.4 The default ASP.NET Core 5.0 Web API templates are configured to use Swagger UI.
Swagger UI provides a convenient web page for exploring and interacting with your Web API. By
default, this UI is only enabled in development, but you can also enable it in production if you wish.

Ensure the
authentication
scheme is set to
No Authentication.

Ensure ASP.NET Core 5.0 is selected.

Select ASP.NET
Core Web API.

Click Create to
generate the
application from
the selected
template.

Ensure HTTPS is
checked and Enable
Docker Support is
unchecked.

Ensure .NET Core
is selected.

Figure 9.5 The web application template screen. This screen follows on from the Configure Your
Project dialog box and lets you customize the template that will generate your application.
Choose the ASP.NET Core Web API template to create a Web API project.

262 CHAPTER 9 Creating a Web API for mobile and client applications using MVC

Swa
uses AddControllers() instead of AddRazorPages() in the ConfigureServices method.
Also, the API controllers are added instead of Razor Pages by calling MapControllers()
in the UseEndpoints method. The default Web API template also adds the Swagger
services and endpoints required by the Swagger UI shown previously in figure 9.4. If
you’re using both Razor Pages and Web APIs in a project, you’ll need to add all these
method calls to your application.

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllers();
 services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new OpenApiInfo {
 Title = "DefaultApiTemplate", Version = "v1" });
 });
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseSwagger();
 app.UseSwaggerUI(c => c.SwaggerEndpoint(
 "/swagger/v1/swagger.json", "DefaultApiTemplate v1"));
 }

 app.UseHttpsRedirection();
 app.UseRouting();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
 }
}

The Startup.cs file in listing 9.1 instructs your application to find all API controllers in
your application and to configure them in the EndpointMiddleware. Each action
method becomes an endpoint and can receive requests when the RoutingMiddleware
maps an incoming URL to the action method.

NOTE You don’t have to use separate projects for Razor Pages and Web API
controllers, but I prefer to do so where possible. There are certain aspects
(such as error handling and authentication) that are made easier by taking this
approach. Of course, running two separate applications has its own difficulties!

Listing 9.1 The Startup class for the default Web API project

AddControllers adds the
necessary services for API
controllers to your application.

Adds services
required to

generate the
gger/OpenAPI
specification

document

Adds Swagger UI
middleware for
exploring your

Web API

MapControllers configures
the API controller actions in
your app as endpoints.

263Creating your first Web API project
You can add a Web API controller to your project by creating a new .cs file anywhere
in your project. Traditionally these are placed in a folder called Controllers, but that’s
not a technical requirement. Listing 9.2 shows the code that was used to create the
Web API demonstrated in figure 9.3. This trivial example highlights the similarity to
traditional MVC controllers.

[ApiController]
public class FruitController : ControllerBase
{
 List<string> _fruit = new List<string>
 {
 "Pear",
 "Lemon",
 "Peach"
 };

 [HttpGet("fruit")]
 public IEnumerable<string> Index()
 {
 return _fruit;
 }
}

Web APIs typically use the [ApiController] attribute (introduced in .NET Core 2.1)
on API controllers and derive from the ControllerBase class. The base class provides
several helper methods for generating results, and the [ApiController] attribute
automatically applies some common conventions, as you’ll see in section 9.5.

TIP There is also a Controller base class, which is typically used when you
use MVC controllers with Razor views. That’s not necessary for Web API con-
trollers, so ControllerBase is the better option.

In listing 9.2 you can see that the action method, Index, returns a list of strings directly
from the action method. When you return data from an action like this, you’re provid-
ing the API model for the request. The client will receive this data. It’s formatted into
an appropriate response, a JSON representation of the list in the case of figure 9.3,
and sent back to the browser with a 200 OK status code.

TIP ASP.NET Core formats data as JSON by default. You’ll see how to format
the returned data in other ways in section 9.6.

The URL at which a Web API controller action is exposed is handled in the same way
as for traditional MVC controllers and Razor Pages—using routing. The [HttpGet
("fruit")] attribute applied to the Index method indicates the method should use
the route template "fruit" and should respond to HTTP GET requests. You’ll learn
more about attribute routing in section 9.5.

Listing 9.2 A simple Web API controller

Web API controllers typically use
the [ApiController] attribute to
opt in to common conventions.

The ControllerBase class
provides several useful
functions for creating
IActionResults.

The data returned would
typically be fetched from
the application model in
a real app.

The [HttpGet] attribute
defines the route template
used to call the action.

The name of the action method,
Index, isn’t used for routing.
It can be anything you like.

The controller
exposes a single action
method that returns
the list of fruit.

264 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
 In listing 9.2, data is returned directly from the action method, but you don’t have to
do that. You’re free to return an ActionResult instead, and often this is required.
Depending on the desired behavior of your API, you may sometimes want to return data,
and other times you may want to return a raw HTTP status code, indicating whether the
request was successful. For example, if an API call is made requesting details of a product
that does not exist, you might want to return a 404 Not Found status code.

 Listing 9.3 shows an example of just such a case. It shows another action on the
same FruitController as before. This method exposes a way for clients to fetch a spe-
cific fruit by an id, which we’ll assume for this example is its index in the list of _fruit
you defined in the previous listing. Model binding is used to set the value of the id
parameter from the request.

NOTE API controllers use model binding, as you saw in chapter 6, to bind
action method parameters to the incoming request. Model binding and vali-
dation work in exactly the same way as for Razor Pages: you can bind the
request to simple primitives, as well as to complex C# objects. The only differ-
ence is that there isn’t a PageModel with [BindProperty] properties—you can
only bind to action method parameters.

[HttpGet("fruit/{id}")]
public ActionResult<string> View(int id)
{
 if (id >= 0 && id < _fruit.Count)
 {
 return _fruit[id];
 }
 return NotFound();
}

In the successful path for the action method, the id parameter has a value greater
than 0 and less than the number of elements in _fruit. When that’s true, the value of
the element is returned to the caller. As in listing 9.2, this is achieved by simply
returning the data directly, which generates a 200 status code and returns the ele-
ment in the response body, as shown in figure 9.6. You could also have returned the
data using an OkResult, by returning Ok(_fruit[id]), using the Ok helper method1

on the ControllerBase class—under the hood, the result is identical.

Listing 9.3 A Web API action returning IActionResult to handle error conditions

1 Some people get uneasy when they see the phrase “helper method,” but there’s nothing magic about the
ControllerBase helpers—they’re shorthand for creating a new IActionResult of a given type. You don’t
have to take my word for it, though. You can always view the source code for the base class on GitHub at
http://mng.bz/goG8.

Defines the route template
for the action method

The action method returns
an ActionResult<string>,
so it can return a string or
an ActionResult.

An element can only be
returned if the id value is a
valid _fruit element index.

Returning the data directly
will return the data with a
200 status code.NotFound returns a NotFoundResult,

which will send a 404 status code.

http://mng.bz/goG8

265Creating your first Web API project
If the id is outside the bounds of the _fruit list, the method calls NotFound to create
a NotFoundResult. When executed, this method generates a 404 Not Found status
code response. The [ApiController] attribute automatically converts the response
into a standard ProblemDetails instance, as shown in figure 9.7.

DEFINITION ProblemDetails is a web specification for providing machine-
readable errors for HTTP APIs. You’ll learn more about them in section 9.5.

One aspect you might find confusing from listing 9.3 is that for the successful case, we
return a string, but the method signature of View says we return an ActionResult
<string>. How is that possible? Why isn’t it a compiler error?

The data is
returned in
the response
body.

The response is sent with
a 200 OK status code.

Figure 9.6 Data returned from an action method is serialized into the response body, and it generates a
response with status code 200 OK.

The response is sent with a
404 Not Found status code.

The [ApiResponse] attribute
generates a ProblemDetails
instance, serialized to JSON,
as the response body.

Figure 9.7 The [ApiController] attribute converts error responses (in this case a 404 response)
into the standard ProblemDetails format.

266 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
 The generic ActionResult<T> uses some fancy C# gymnastics with implicit conver-
sions to make this possible.2 Using ActionResult<T> has two benefits:

 You can return either an instance of T or an ActionResult implementation like
NotFoundResult from the same method. This can be convenient, as in listing 9.3.

 It enables better integration with ASP.NET Core’s OpenAPI support.

You’re free to return any type of ActionResult from your Web API controllers, but
you’ll commonly return StatusCodeResult instances, which set the response to a spe-
cific status code, with or without associated data. NotFoundResult and OkResult both
derive from StatusCodeResult, for example. Another commonly used status code is
400 Bad Request, which is normally returned when the data provided in the request
fails validation. This can be generated using a BadRequestResult. In many cases the
[ApiController] attribute can automatically generate 400 responses for you, as you’ll
see in section 9.5.

TIP You learned about various ActionResults in chapter 4. BadRequest-
Result, OkResult, and NotFoundResult all inherit from StatusCodeResult
and set the appropriate status code for their type (200, 404, and 400, respec-
tively). Using these wrapper classes makes the intention of your code clearer
than relying on other developers to understand the significance of the various
status code numbers.

Once you’ve returned an ActionResult (or other object) from your controller, it’s
serialized to an appropriate response. This works in several ways, depending on

 The formatters that your app supports
 The data you return from your method
 The data formats the requesting client can handle

You’ll learn more about formatters and serializing data in section 9.6, but before we
go any further, it’s worth zooming out a little and exploring the parallels between tra-
ditional server-side rendered applications and Web API endpoints. The two are simi-
lar, so it’s important to establish the patterns that they share and where they differ.

9.3 Applying the MVC design pattern to a Web API
In the previous version of ASP.NET, Microsoft commandeered the generic term “Web
API” to create the ASP.NET Web API framework. This framework, as you might expect,
was used to create HTTP endpoints that could return formatted JSON or XML in
response to requests.

 The ASP.NET Web API framework was completely separate from the MVC frame-
work, even though it used similar objects and paradigms. The underlying web stacks
for them were completely different beasts and couldn’t interoperate.

2 You can see how this is achieved in the source code: http://mng.bz/5j27.

http://mng.bz/5j27

267Applying the MVC design pattern to a Web API
 In ASP.NET Core, that all changed. You now have a single framework that you can
use to build both traditional web applications and Web APIs. The same underlying
framework is used in conjunction with Web API controllers, Razor Pages, and MVC con-
trollers with views. You’ve already seen this yourself; the Web API FruitController you
created in section 9.2 looks very similar to the MVC controllers you’ve seen fleetingly
in previous chapters.

 Consequently, even if you’re building an application that consists entirely of Web
APIs, using no server-side rendering of HTML, the MVC design pattern still applies.
Whether you’re building traditional web applications or Web APIs, you can structure
your application virtually identically.

 By now you’re, I hope, nicely familiar with how ASP.NET Core handles a request.
But just in case you’re not, figure 9.8 shows how the framework handles a typical

1. A request is received for
the URL /fruit/apples.

2. The routing middleware matches
the request to the Fruit.cshtml
Razor Page and derives the route
parameter category=apples.

6. The view uses the provided data
to generate an HTML response,
which is returned to the user via
the middleware pipeline.

4. The page handler calls into
services that make up the
application model to fetch the
data required to render the view.

3. The method parameters for
the Razor Page handler and
[BindProperty] properties are
bound and validated, and the
page handler is executed.

5. The page handler exposes
the details about the apples
and other data required
by the view as properties
on the PageModel.

Figure 9.8 Handling a request to a traditional Razor Pages application, in which the view generates
an HTML response that’s sent back to the user. This diagram should be very familiar by now!

268 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
Razor Pages request after it passes through the middleware pipeline. This example
shows how a request to view the available fruit on a traditional grocery store website
might look.

 The RoutingMiddleware routes the request to view all the fruit listed in the apples
category to the Fruit.cshtml Razor Page. The EndpointMiddleware then constructs a
binding model, validates it, sets it as a property on the Razor Page’s PageModel, and
sets the ModelState property on the PageModel base class with details of any validation
errors. The page handler interacts with the application model by calling into services,
talking to a database, and fetching any necessary data.

 Finally, the Razor Page executes its Razor view using the PageModel to generate the
HTML response. The response returns through the middleware pipeline and out to
the user’s browser.

 How would this change if the request came from a client-side or mobile applica-
tion? If you want to serve machine-readable JSON instead of HTML, what is different?
As shown in figure 9.9, the answer is “very little.” The main changes are related to
switching from Razor Pages to controllers and actions, but as you saw in chapter 4,
both approaches use the same general paradigms.

 As before, the routing middleware selects an endpoint to invoke based on the
incoming URL. For API controllers this is a controller and action instead of a
Razor Page.

 After routing comes model-binding, in which the binder creates a binding model
and populates it with values from the request. Web APIs often accept data in more for-
mats than Razor Pages, such as XML, but otherwise the model-binding process is the
same as for the Razor Pages request. Validation also occurs in the same way, and
the ModelState property on the ControllerBase base class is populated with any vali-
dation errors.

NOTE Web APIs use input formatters to accept data sent to them in a variety of
formats. Commonly these formats are JSON or XML, but you can create input
formatters for any sort of type, such as CSV. I show how to enable the XML
input formatter in section 9.6. You can see how to create a custom input for-
matter at http://mng.bz/e5gG.

The action method is the equivalent of the Razor Page handler; it interacts with the
application model in exactly the same way. This is an important point; by separating
the behavior of your app into an application model, instead of incorporating it into
your pages and controllers themselves, you’re able to reuse the business logic of your
application with multiple UI paradigms.

TIP Where possible, keep your page handlers and controllers as simple as
practicable. Move all your business logic decisions into the services that make
up your application model, and keep your Razor Pages and API controllers
focused on the mechanics of interacting with a user.

http://mng.bz/e5gG

269Applying the MVC design pattern to a Web API
After the application model has returned the data necessary to service the request—
the fruit objects in the apples category—you see the first significant difference
between API controllers and Razor Pages. Instead of adding values to the PageModel
to be used in a Razor view, the action method creates an API model. This is analogous
to the PageModel, but rather than containing data used to generate an HTML view, it
contains the data that will be sent back in the response.

DEFINITION View models and PageModels contain both the data required to
build a response and metadata about how to build the response. API models
typically only contain the data to be returned in the response.

When we looked at the Razor Pages app, we used the PageModel in conjunction with a
Razor view template to build the final response. With the Web API app, we use the API

1. A request is received for
the URL /fruit/apples.

2. The routing middleware
matches the request to
the View action on the
FruitController and derives
the route parameter
category=apples.

5. The controller selects the
JSON formatter and passes
it the API model containing
the data to return.

6. The formatter uses the provided
API model to generate a JSON
response, which is returned to
the SPA / mobile app via the
middleware pipeline.

4. The action method calls into
services that make up the
application model to fetch the
data required for the API model.

3. The method parameters for
the View action method are
bound and validated, and the
action method is executed.

Figure 9.9 A call to a Web API endpoint in an e-commerce ASP.NET Core web application. The
ghosted portion of the diagram is identical to figure 9.8.

270 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
model in conjunction with an output formatter. An output formatter, as the name sug-
gests, serializes the API model into a machine-readable response, such as JSON or
XML. The output formatter forms the “V” in the Web API version of MVC, by choos-
ing an appropriate representation of the data to return.

 Finally, as for the Razor Pages app, the generated response is then sent back
through the middleware pipeline, passing through each of the configured middle-
ware components, and back to the original caller.

 Hopefully, the parallels between Razor Pages and Web APIs are clear; the majority
of the behavior is identical—only the response varies. Everything from when the
request arrives to the interaction with the application model is similar between the
paradigms.

 Most of the differences between Razor Pages and Web APIs have less to do with the
way the framework works under the hood and are instead related to how the different
paradigms are used. For example, in the next section, you’ll learn how the routing
constructs you learned about in chapter 5 are used with Web APIs, using attribute
routing.

9.4 Attribute routing: Linking action methods to URLs
In this section you’ll learn about attribute routing: the mechanism for associating API
controller actions with a given route template. You’ll see how to associate controller
actions with specific HTTP verbs like GET and POST and how to avoid duplication in
your templates.

 We covered route templates in depth in chapter 5 in the context of Razor Pages,
and you’ll be pleased to know that you use exactly the same route templates with API
controllers. The only difference is how you specify the templates: with Razor Pages you
use the @page directive, whereas with API controllers you use routing attributes.

NOTE Both Razor Pages and API controllers use attribute routing under the
hood. The alternative, conventional routing, is typically used with traditional
MVC controllers and views. As discussed previously, I don’t recommend using
that approach, so I don’t cover conventional routing in this book.

With attribute routing, you decorate each action method in an API controller with an
attribute and provide the associated route template for the action method, as shown
in the following listing.

public class HomeController: Controller
{
 [Route("")]
 public IActionResult Index()
 {
 /* method implementation*/
 }

Listing 9.4 Attribute routing example

The Index action will be
executed when the / URL
is requested.

271Attribute routing: Linking action methods to URLs
 [Route("contact")]
 public IActionResult Contact()
 {
 /* method implementation*/
 }
}

Each [Route] attribute defines a route template that should be associated with the
action method. In the example provided, the / URL maps directly to the Index method
and the /contact URL maps to the Contact method.

 Attribute routing maps URLs to a specific action method, but a single action
method can still have multiple route templates and hence can correspond to multiple
URLs. Each template must be declared with its own RouteAttribute, as shown in this
listing, which shows the skeleton of a Web API for a car-racing game.

public class CarController
{
 [Route("car/start")]
 [Route("car/ignition")]
 [Route("start-car")]
 public IActionResult Start()
 {
 /* method implementation*/
 }

 [Route("car/speed/{speed}")]
 [Route("set-speed/{speed}")]
 public IActionResult SetCarSpeed(int speed)
 {
 /* method implementation*/
 }
}

The listing shows two different action methods, both of which can be accessed from
multiple URLs. For example, the Start method will be executed when any of the fol-
lowing URLs are requested:

 /car/start

 /car/ignition
 /start-car

These URLs are completely independent of the controller and action method names;
only the value in the RouteAttribute matters.

NOTE By default, the controller and action name have no bearing on the
URLs or route templates when RouteAttributes are used.

The templates used in route attributes are standard route templates, the same as
you used in chapter 5. You can use literal segments and you’re free to define route

Listing 9.5 Attribute routing with multiple attributes

The Contact action will be
executed when the /contact
URL is requested.

The Start method will be
executed when any of these
route templates are matched.

The name of the action
method has no effect on
the route template.

The RouteAttribute template
can contain route parameters,
in this case {speed}.

272 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
parameters that will extract values from the URL, as shown by the SetCarSpeed method
in the previous listing. That method defines two route templates, both of which define
a route parameter, {speed}.

TIP I’ve used multiple [Route] attributes on each action in this example, but
it’s best practice to expose your action at a single URL. This will make your
API easier to understand and for other applications to consume.

Route parameters are handled in the very same way as for Razor Pages—they repre-
sent a segment of the URL that can vary. As for Razor Pages, the route parameters in
your RouteAttribute templates can

 Be optional
 Have default values
 Use route constraints

For example, you could update the SetCarSpeed method in the previous listing to
constrain {speed} to an integer and to default to 20 like so:

[Route("car/speed/{speed=20:int}")]
[Route("set-speed/{speed=20:int}")]
public IActionResult SetCarSpeed(int speed)

NOTE As discussed in chapter 5, don’t use route constraints for validation.
For example, if you call the preceding "set-speed/{speed=20:int}" route
with an invalid value for speed, /set-speed/oops, you will get a 404 Not
Found response, as the route does not match. Without the int constraint, you
would receive the more sensible 400 Bad Request response.

If you managed to get your head around routing in chapter 5, then routing with API
controllers shouldn’t hold any surprises for you. One thing you might begin noticing
when you start using attribute routing with API controllers is the amount you repeat
yourself. Razor Pages removes a lot of repetition by using conventions to calculate
route templates based on the Razor Page’s filename.

 Luckily there are a few features available to make your life a little easier. In particu-
lar, combining route attributes and token replacement can help reduce duplication in
your code.

9.4.1 Combining route attributes to keep your route templates DRY

Adding route attributes to all of your API controllers can get a bit tedious, especially if
you’re mostly following conventions where your routes have a standard prefix, such as
"api" or the controller name. Generally, you’ll want to ensure you don’t repeat your-
self (DRY) when it comes to these strings. The following listing shows two action meth-
ods with a number of [Route] attributes. (This is for demonstration purposes only.
Stick to one per action if you can!)

273Attribute routing: Linking action methods to URLs
public class CarController
{
 [Route("api/car/start")]
 [Route("api/car/ignition")]
 [Route("/start-car")]
 public IActionResult Start()
 {
 /* method implementation*/
 }

 [Route("api/car/speed/{speed}")]
 [Route("/set-speed/{speed}")]
 public IActionResult SetCarSpeed(int speed)
 {
 /* method implementation*/
 }
}

There’s quite a lot of duplication here—you’re adding "api/car" to most of your
routes. Presumably, if you decided to change this to "api/vehicles", you’d have to go
through each attribute and update it. Code like that is asking for a typo to creep in!

 To alleviate this pain, it’s possible to apply RouteAttributes to controllers, in addi-
tion to action methods, as you saw briefly in chapter 5. When a controller and an
action method both have a route attribute, the overall route template for the method
is calculated by combining the two templates.

[Route("api/car")]
public class CarController
{
 [Route("start")]
 [Route("ignition")]
 [Route("/start-car")]
 public IActionResult Start()
 {
 /* method implementation*/
 }

 [Route("speed/{speed}")]
 [Route("/set-speed/{speed}")]
 public IActionResult SetCarSpeed(int speed)
 {
 /* method implementation*/
 }
}

Combining attributes in this way can reduce some of the duplication in your route
templates and makes it easier to add or change the prefixes (such as switching "car"
to "vehicle") for multiple action methods. To ignore the RouteAttribute on the

Listing 9.6 Duplication in RouteAttribute templates

Listing 9.7 Combining RouteAttribute templates

Multiple route
templates use the
same "api/car" prefix.

Combines to give the
"api/car/start" template

Combines to give the
"api/car/ignition" template

Does not combine because
it starts with /; gives the
"start-car" template

Combines to give the
"api/car/speed/{speed}" template

Does not combine because it
starts with /; gives the "set-
speed/{speed}" template

274 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
controller and create an absolute route template, start your action method route tem-
plate with a slash (/). Using a controller RouteAttribute reduces a lot of the duplica-
tion, but you can do one better by using token replacement.

9.4.2 Using token replacement to reduce duplication
in attribute routing

The ability to combine attribute routes is handy, but you’re still left with some duplica-
tion if you’re prefixing your routes with the name of the controller, or if your route
templates always use the action name. If you wish, you can simplify even further!

 Attribute routes support the automatic replacement of the [action] and [con-
troller] tokens in your attribute routes. These will be replaced with the name of the
action and the controller (without the “Controller” suffix), respectively. The tokens
are replaced after all attributes have been combined, so this is useful when you have
controller inheritance hierarchies. This listing shows how you can create a Base-
Controller class that you can use to apply a consistent route template prefix to all the
API controllers in your application.

[Route("api/[controller]")]
public abstract class BaseController { }

public class CarController : BaseController
{
 [Route("[action]")]
 [Route("ignition")]
 [Route("/start-car")]
 public IActionResult Start()
 {
 /* method implementation*/
 }
}

WARNING If you use token replacement for [controller] or [action],
remember that renaming classes and methods will change your public API. If
that worries you, you can stick to using static strings like "car" instead.

When combined with everything you learned in chapter 5, we’ve covered pretty much
everything there is to know about attribute routing. There’s just one more thing to
consider: handling different HTTP request types like GET and POST.

9.4.3 Handling HTTP verbs with attribute routing

In Razor Pages, the HTTP verb, such as GET or POST, isn’t part of the routing process.
The RoutingMiddleware determines which Razor Page to execute based solely on the
route template associated with the Razor Page. It’s only when a Razor Page is about to

Listing 9.8 Token replacement in RouteAttributes

You can apply attributes to
a base class, and derived
classes will inherit them.

Token replacement happens
last, so [controller] is replaced
with "car" not "base".

Combines and replaces tokens to
give the "api/car/start" template

Combines and replaces tokens to give
the "api/car/ignition" template

Does not combine with base
attributes because it starts with /,

so it remains as "start-car"

275Attribute routing: Linking action methods to URLs
be executed that the HTTP verb is used to decide which page handler to execute:
OnGet for the GET verb, or OnPost for the POST verb, for example.

 With API controllers, things work a bit differently. For API controllers, the HTTP
verb takes part in the routing process itself, so a GET request may be routed to one
action, and a POST request may be routed to a different action, even though the request
used the same URL. This pattern, where the HTTP verb is an important part of routing,
is common in HTTP API design.

 For example, imagine you’re building an API to manage your calendar. You want
to be able to list and create appointments. Well, a traditional HTTP REST service
might define the following URLs and HTTP verbs to achieve this:

 GET /appointments—List all your appointments
 POST /appointments—Create a new appointment

Note that these two endpoints use the same URL; only the HTTP verb differs. The
[Route] attribute we’ve used so far responds to all HTTP verbs, which is no good for
us here—we want to select a different action based on the combination of the URL
and the verb. This pattern is common when building Web APIs and, luckily, it’s easy to
model in ASP.NET Core.

 ASP.NET Core provides a set of attributes that you can use to indicate which verb
an action should respond to. For example,

 [HttpPost] handles POST requests only.
 [HttpGet] handles GET requests only.
 [HttpPut] handles PUT requests only.

There are similar attributes for all the standard HTTP verbs, like DELETE and OPTIONS.
You can use these attributes instead of the [Route] attribute to specify that an action
method should correspond to a single verb, as shown in the following listing.

public class AppointmentController
{
 [HttpGet("/appointments")]
 public IActionResult ListAppointments()
 {
 /* method implementation */
 }

 [HttpPost("/appointments")]
 public IActionResult CreateAppointment()
 {
 /* method implementation */
 }
}

If your application receives a request that matches the route template of an action
method, but which doesn’t match the required HTTP verb, you’ll get a 405 Method not

Listing 9.9 Using HTTP verb attributes with attribute routing

Only executed in
response to GET
/appointments

Only executed in
response to POST
/appointments

276 CHAPTER 9 Creating a Web API for mobile and client applications using MVC

t
te

[Fr

pa
s
b

the

allowed error response. For example, if you send a DELETE request to the /appoint-
ments URL in the previous listing, you’ll get a 405 error response.

 Attribute routing has been used with API controllers since the first days of ASP.NET
Core, as it allows tight control over the URLs that your application exposes. When
you’re building API controllers, there is some code that you’ll find yourself writing
repeatedly. The [ApiController] attribute, introduced in ASP.NET Core 2.1, is
designed to handle some of this for you and reduce the amount of boilerplate you
need.

9.5 Using common conventions with the [ApiController]
attribute
In this section you’ll learn about the [ApiController] attribute and how it can
reduce the amount of code you need to write to create consistent Web API control-
lers. You’ll learn about the conventions it applies, why they’re useful, and how to turn
them off if you need to.

 The [ApiController] attribute was introduced in .NET Core 2.1 to simplify the
process of creating Web API controllers. To understand what it does, it’s useful to
look at an example of how you might write a Web API controller without the [Api-
Controller] attribute, and compare that to the code required to achieve the same
thing with the attribute.

public class FruitController : ControllerBase
{
 List<string> _fruit = new List<string>
 {
 "Pear", "Lemon", "Peach"
 };

 [HttpPost("fruit")]
 public ActionResult Update([FromBody] UpdateModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(
 new ValidationProblemDetails(ModelState));
 }

 if (model.Id < 0 || model.Id > _fruit.Count)
 {
 return NotFound(new ProblemDetails()
 {
 Status = 404,
 Title = "Not Found",
 Type = "https://tools.ietf.org/html/rfc7231"
 + "#section-6.5.4",
 });
 }

Listing 9.10 Creating a Web API controller without the [ApiController] attribute

The list of strings serves as
the application model in
this example.

Web
APIs use
attribute

routing
to define
he route
mplates.

The
omBody]
attribute
indicates
that the
rameter
hould be
ound to
 request

body.

You need to check
if model validation
succeeded and
return a 400
response if it failed.

If the data sent does
not contain a valid
ID, return a 404
ProblemDetails
response.

277Using common conventions with the [ApiController] attribute
 _fruit[model.Id] = model.Name;
 return Ok();
 }

 public class UpdateModel
 {
 public int Id { get; set; }

 [Required]
 public string Name { get; set; }
 }
}

This example demonstrates many common features and patterns used with Web API
controllers:

 Web API controllers read data from the body of a request, typically sent as
JSON. To ensure the body is read as JSON and not as form values, you have to
apply the [FromBody] attribute to the method parameters to ensure it is model-
bound correctly.

 As discussed in chapter 6, after model-binding, the model is validated, but it’s
up to you to act on the validation results. You should return a 400 Bad Request
response if the values provided failed validation. You typically want to provide
details of why the request was invalid: this is done in listing 9.10 by returning a
ValidationProblemDetails object in the response body, built from the Model-
State.

 Whenever you return an error status, such as a 404 Not Found, where possible
you should return details of the problem that will allow the caller to diagnose
the issue. The ProblemDetails class is the recommended way of doing that in
ASP.NET Core.

The code in listing 9.10 is representative of what you might see in an ASP.NET Core
API controller prior to .NET Core 2.1. The introduction of the [ApiController] attri-
bute in .NET Core 2.1 (and subsequent refinement in later versions), makes this same
code much simpler, as shown in the following listing.

[ApiController]
public class FruitController : ControllerBase
{
 List<string> _fruit = new List<string>
 {
 "Pear", "Lemon", "Peach"
 };

 [HttpPost("fruit")]
 public ActionResult Update(UpdateModel model)
 {
 if (model.Id < 0 || model.Id > _fruit.Count)

Listing 9.11 Creating a Web API controller with the [ApiController] attribute

Update the model and
return a 200 Response.

UpdateModel is only valid if
the Name value is provided,
as set by the [Required]
attribute.

Adding the [ApiController]
attribute applies several
conventions common to
API controllers.

The [FromBody] attribute is
assumed for complex action

method parameters.

The model validation
is automatically
checked, and if
invalid, returns a
400 response.

278 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
 {
 return NotFound();
 }

 _fruit[model.Id] = model.Name;

 return Ok();
 }

 public class UpdateModel
 {
 public int Id { get; set; }

 [Required]
 public string Name { get; set; }
 }
}

If you compare listing 9.10 to listing 9.11, you’ll see that all the bold code in listing 9.10
can be removed and replaced with the [ApiController] attribute in listing 9.11. The
[ApiController] attribute automatically applies several conventions to your controllers:

 Attribute routing—You must use attribute routing with your controllers; you can’t
use conventional routing. Not that you would, as we’ve only discussed this
approach for API controllers anyway.

 Automatic 400 responses—I said in chapter 6 that you should always check the
value of ModelState.IsValid in your Razor Page handlers and MVC actions,
but the [ApiController] attribute does this for you by adding a filter. We’ll cover
filters in detail in chapter 13.

 Model binding source inference—Without the [ApiController] attribute, complex
types are assumed to be passed as form values in the request body. For Web APIs,
it’s much more common to pass data as JSON, which ordinarily requires adding
the [FromBody] attribute. The [ApiController] attribute takes care of that
for you.

 ProblemDetails for error codes—You often want to return a consistent set of data
when an error occurs in your API. ProblemDetails is a type based on a web stan-
dard that serves as this consistent data. The [ApiController] attribute will inter-
cept any error status codes returned by your controller (for example, a 404 Not
Found response), and convert them into the ProblemDetails type automatically.

A key feature of the [ApiController] attribute is using the Problem Details format
to return errors in a consistent format across all your controllers.3 A typical
ProblemDetails object looks something like the following, which shows an example
ValidationProblemDetails object generated automatically for an invalid request:

3 Problem Details is a proposed standard for handling errors in a machine-readable way that is gaining popu-
larity. You can find the specification here, but be warned, it makes for dry reading: https://tools.ietf.org/
html/rfc7807.

Error status codes are
automatically converted to
a ProblemDetails object.

https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807

279Using common conventions with the [ApiController] attribute
{
 type: "https://tools.ietf.org/html/rfc7231#section-6.5.1"
 title: "One or more validation errors occurred."
 status: 400
 traceId: "|17a2706d-43736ad54bed2e65."
 errors: {
 name: ["The name field is required."]
 }
}

The [ApiController] conventions can significantly reduce the amount of boilerplate
code you have to write. They also ensure consistency across your whole application.
For example, you can be sure that all your controllers will return the same error type,
ValidationProblemDetails (a sub-type of ProblemDetails), when a bad request is
received.

As is common in ASP.NET Core, you will be most productive if you follow the conven-
tions rather than trying to fight them. However, if you don’t like some of the conven-
tions, or want to customize them, you can easily do so.

 You can customize the conventions your application uses by calling Configure-
ApiBehaviorOptions() on the IMvcBuilder object returned from the AddControllers()
method in your Startup.cs file. For example, you could disable the automatic 400
responses on validation failure, as shown in the following listing.4

Converting all your errors to ProblemDetails
The [ApiController] attribute ensures that all error responses returned by your
API controllers are converted into ProblemDetails objects, which keeps the error
responses consistent across your application.

The only problem with this is that your API controllers aren’t the only thing that could
generate errors. For example, if a URL is received that doesn’t match any action in
your controllers, the end-of-the-pipeline middleware we discussed in chapter 3 would
generate a 404 Not Found response. As this error is generated outside of the API
controllers, it won’t use ProblemDetails. Similarly, when your code throws an excep-
tion, you want this to be returned as a ProblemDetails object too, but this doesn’t
happen by default.

In chapter 3 I described several types of error handling middleware that you could use
to handle these cases, but it can be complicated to handle all the edge cases. I pre-
fer to use a community-created package, Hellang.Middleware.ProblemDetails, which
takes care of this for you. You can read about how to use this package on my blog at
http://mng.bz/Gx7D.

4 You can disable all the automatic features enabled by the [ApiController] attribute, but I’d encourage you
to stick to the defaults unless you really need to change them. You can read more about disabling features in
the documentation at https://docs.microsoft.com/aspnet/core/web-api.

http://mng.bz/Gx7D
https://docs.microsoft.com/aspnet/core/web-api

280 CHAPTER 9 Creating a Web API for mobile and client applications using MVC

g
public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllers()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.SuppressModelStateInvalidFilter = true;
 })
 }

 // ...
}

The ability to customize each aspect of ASP.NET Core is one of the features that sets it
apart from the previous version of ASP.NET. ASP.NET Core configures the vast major-
ity of its internal components using one of two mechanisms—dependency injection or
by configuring an Options object when you add the service to your application, as
you’ll see in chapters 10 (dependency injection) and 11 (Options object).

 In the next section you’ll learn how to control the format of the data returned by
your Web API controllers—whether that’s JSON, XML, or a different, custom format.

9.6 Generating a response from a model
This brings us to the final topic in this chapter: formatting a response. It’s common
for API controllers to return JSON these days, but that’s not always the case. In this
section you’ll learn about content negotiation and how to enable additional output
formats such as XML. You’ll also learn about an important change in the JSON for-
matter for ASP.NET Core 3.0.

 Consider this scenario: You’ve created a Web API action method for returning a
list of cars, as in the following listing. It invokes a method on your application model,
which hands back the list of data to the controller. Now you need to format the
response and return it to the caller.

[ApiController]
public class CarsController : Controller
{
 [HttpGet("api/cars")]
 public IEnumerable<string> ListCars()
 {
 return new string[]
 { "Nissan Micra", "Ford Focus" };
 }
}

Listing 9.12 Customizing [ApiAttribute] behaviors

Listing 9.13 A Web API controller to return a list of cars

Control which
conventions are
applied by providin
a configuration
lambda.

This would disable the automatic 400
responses for invalid requests.

The action is executed with
a request to GET /api/cars.

The API model containing the data
is an IEnumerable<string>.

This data would normally be
fetched from the application model.

281Generating a response from a model
You saw in section 9.2 that it’s possible to return data directly from an action method,
in which case the middleware formats it and returns the formatted data to the caller.
But how does the middleware know which format to use? After all, you could serialize
it as JSON, as XML, or even with a simple ToString() call.

 The process of determining the format of data to send to clients is known gener-
ally as content negotiation (conneg). At a high level, the client sends a header indicating
the types of content it can understand—the Accept header—and the server picks one
of these, formats the response, and sends a content-type header in the response,
indicating which type it chose.

You’re not forced into only sending a content-type the client expects, and, in some
cases, you may not even be able to handle the types it requests. What if a request stipu-
lates it can only accept Excel spreadsheets? It’s unlikely you’d support that, even if
that’s the only content-type the request contains.

 When you return an API model from an action method, whether directly (as in list-
ing 9.13) or via an OkResult or other StatusCodeResult, ASP.NET Core will always
return something. If it can’t honor any of the types stipulated in the Accept header, it
will fall back to returning JSON by default. Figure 9.10 shows that even though XML
was requested, the API controller formatted the response as JSON.

NOTE In the previous version of ASP.NET, objects were serialized to JSON
using PascalCase, where properties start with a capital letter. In ASP.NET
Core, objects are serialized using camelCase by default, where properties start
with a lowercase letter.

The Accept and content-type headers
The Accept header is sent by a client as part of a request to indicate the type of con-
tent that the client can handle. It consists of a number of MIME types,a with optional
weightings (from 0 to 1) to indicate which type would be preferred. For example, the
application/json,text/xml;q=0.9,text/plain;q=0.6 header indicates that the
client can accept JSON, XML, and plain text, with weightings of 1.0, 0.9, and 0.6,
respectively. JSON has a weighting of 1.0, as no explicit weighting was provided. The
weightings can be used during content negotiation to choose an optimal representa-
tion for both parties.

The content-type header describes the data sent in a request or response. It con-
tains the MIME type of the data, with an optional character encoding. For example,
the application/json; charset=utf-8 header would indicate that the body of the
request or response is JSON, encoded using UTF-8.

a For more on MIME types, see the Mozilla documentation: http://mng.bz/gop8.

http://mng.bz/gop8

282 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
However the data is sent, it’s serialized by an IOutputFormatter implementation.
ASP.NET Core ships with a limited number of output formatters out of the box, but as
always, it’s easy to add additional ones or change the way the defaults work.

9.6.1 Customizing the default formatters: Adding XML support

As with most of ASP.NET Core, the Web API formatters are completely customizable.
By default, only formatters for plain text (text/plain), HTML (text/html), and
JSON (application/json) are configured. Given the common use case of SPAs and
mobile applications, this will get you a long way. But sometimes you need to be able to
return data in a different format, such as XML.

Newtonsoft.Json vs. System.Text.Json
Newtonsoft.Json, also known as Json.NET, has for a long time been the canonical
way to work with JSON in .NET. It’s compatible with every version of .NET under the
sun, and it will no doubt be familiar to virtually all .NET developers. Its reach was so
great that even ASP.NET Core took a dependency on it!

That all changed with the introduction of a new library in ASP.NET Core 3.0, System
.Text.Json, which focuses on performance. In ASP.NET Core 3.0 onwards, ASP.NET
Core uses System.Text.Json by default instead of Newtonsoft.Json.

The main difference between the libraries is that System.Text.Json is very picky about
its JSON. It will generally only deserialize JSON that matches its expectations. For
example, System.Text.Json won’t deserialize JSON that uses single quotes around
strings; you have to use double quotes.

If you’re creating a new application, this is generally not a problem—you quickly learn
to generate the correct JSON. But if you’re migrating an application from ASP.NET
Core 2.0 or are receiving JSON from a third party, these limitations can be real stum-
bling blocks.

A request is sent to the
Web API with an Accept
header type of text/xml.

The ASP.NET Core app is not
configured to return text/xml,
so it returns JSON by default
instead.

Figure 9.10 Even though the request was made with an Accept header of text/xml, the
response returned was JSON, as the server was not configured to return XML.

283Generating a response from a model
You can add XML output to your application by adding an output formatter. You configure
your application’s formatters in Startup.cs, by customizing the IMvcBuilder object
returned from AddControllers(). To add the XML output formatter,5 use the following:

services.AddControllers()
 .AddXmlSerializerFormatters();

With this simple change, your API controllers can now format responses as XML. Run-
ning the same request as shown in figure 9.10 with XML support enabled means the
app will respect the text/xml accept header. The formatter serializes the string
array to XML as requested instead of defaulting to JSON, as shown in figure 9.11.

Luckily, you can easily switch back to the Newtonsoft.Json library instead. Install the
Microsoft.AspNetCore.Mvc.NewtonsoftJson package into your project and update the
AddControllers() method in Startup.cs to the following:

services.AddControllers()
 .AddNewtonsoftJson();

This will switch ASP.NET Core’s formatters to use Newtonsoft.Json behind the scenes,
instead of System.Text.Json. For more details on the differences between the libraries,
see Microsoft’s article “How to migrate from Newtonsoft.Json to System.Text.Json”:
http://mng.bz/0mRJ. For more advice on when to switch to the Newtonsoft.Json for-
matter, see the section “Add Newtonsoft.Json-based JSON format support” in Micro-
soft’s “Format response data in ASP.NET Core Web API” documentation: http://mng
.bz/zx11.

5 Technically this also adds an XML input formatter as well, which means your application can now receive XML
in requests too. For a detailed look at formatters, including creating a custom formatter, see the documenta-
tion at http://mng.bz/e5gG.

A request is sent to the
Web API with an Accept
header type of text/xml.

With the XML formatters
added, the Accept header
can be honored, so
text/xml is returned
instead of the default
JSON response.

.

Figure 9.11 With the XML output formatters added, the text/xml Accept header is
respected and the response can be serialized to XML.

http://mng.bz/0mRJ
http://mng.bz/zx11
http://mng.bz/zx11
http://mng.bz/zx11
http://mng.bz/e5gG

284 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
This is an example of content negotiation, where the client has specified what formats
it can handle and the server selects one of those, based on what it can produce. This
approach is part of the HTTP protocol, but there are some quirks to be aware of when
relying on it in ASP.NET Core. You won’t often run into these, but if you’re not aware
of them when they hit you, they could have you scratching your head for hours!

9.6.2 Choosing a response format with content negotiation

Content negotiation is where a client says which types of data it can accept using the
Accept header and the server picks the best one it can handle. Generally speaking, this
works as you’d hope: the server formats the data using a type the client can understand.

 The ASP.NET Core implementation has some special cases that are worth bearing
in mind:

 By default, ASP.NET Core will only return application/json, text/plain, and
text/html MIME types. You can add additional IOutputFormatters to make
other types available, as you saw in the previous section for text/xml.

 By default, if you return null as your API model, whether from an action
method or by passing null in a StatusCodeResult, the middleware will return
a 204 No Content response.

 When you return a string as your API model, if no Accept header is set, the
middleware will format the response as text/plain.

 When you use any other class as your API model and there’s either no Accept
header or none of the supported formats were requested, the first formatter
that can generate a response will be used (typically JSON by default).

 If the middleware detects that the request is probably from a browser (the
accept header contains */*), then it will not use conneg. Instead, it will format
the response as though no Accept header was provided, using the default for-
matter (typically JSON).

These defaults are relatively sane, but they can certainly bite you if you’re not aware of
them. The last point in particular, where the response to a request from a browser is
virtually always formatted as JSON, has certainly caught me out when trying to test
XML requests locally!

 As you should expect by now, all these rules are configurable; you can easily
change the default behavior in your application if it doesn’t fit your requirements. For
example, the following listing, taken from Startup.cs, shows how you can force the
middleware to respect the browser’s Accept header, and remove the text/plain for-
matter for strings.

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers(options =>

Listing 9.14 Customizing MVC to respect the browser’s Accept header in Web APIs

AddControllers has an overload
that takes a lambda function.

285Summary
 {
 options.RespectBrowserAcceptHeader = true;
 options.OutputFormatters.RemoveType<StringOutputFormatter>();
 });
}

In most cases, conneg should work well for you out of the box, whether you’re build-
ing an SPA or a mobile application. In some cases, you may find you need to bypass
the usual conneg mechanisms for specific action methods, and there are a number of
ways to achieve this, but I won’t cover them in this book as I’ve found I rarely need to
use them. For details, see Microsoft’s “Format response data in ASP.NET Core Web
API” documentation: http://mng.bz/zx11.

 That brings us to the end of this chapter on Web APIs and, with it, part 1 of this
book! It’s been a pretty intense tour of ASP.NET Core, with a heavy focus on Razor
Pages and the MVC pattern. By making it this far, you now have all the knowledge you
need to start building simple applications using Razor Pages or to create a Web API
server for your SPA or mobile app.

 In part 2 you’ll get into some juicy topics: you’ll learn the details needed to build
complete apps, like adding users to your application, saving data to a database, and
deploying your application.

 In chapter 10 we’ll look at dependency injection in ASP.NET Core and how it
helps create loosely coupled applications. You’ll learn how to register the ASP.NET
Core framework services with a container and set up your own classes as dependency-
injected services. Finally, you’ll see how to replace the built-in container with a third-
party alternative.

Summary
 A Web API exposes a number of methods or endpoints that can be used to

access or change data on a server. It’s typically accessed using HTTP by mobile
or client-side web applications.

 Web API action methods can return data directly or can use ActionResult<T>
to generate an arbitrary response.

 If you return more than one type of result from an action method, the method
signature must return ActionResult<T>.

 Web APIs follow the same MVC design pattern as traditional web applications.
The formatters that generate the final response form the view.

 The data returned by a Web API action is called an API model. It contains the
data the middleware will serialize and send back to the client. This differs from
view models and PageModels, which contain both data and metadata about how
to generate the response.

False by default, a number of other
properties are also available to be set.

Removes the output
formatter that formats

strings as text/plain

http://mng.bz/zx11

286 CHAPTER 9 Creating a Web API for mobile and client applications using MVC
 Web APIs are associated with route templates by applying RouteAttributes to
your action methods. These give you complete control over the URLs that make
up your application’s API.

 Route attributes applied to a controller combine with attributes on action
methods to form the final template. These are also combined with attributes on
inherited base classes. You can use inherited attributes to reduce the amount of
duplication in the attributes, such as where you’re using a common prefix on
your routes.

 By default, the controller and action name have no bearing on the URLs or
route templates when you use attribute routing. However, you can use the
"[controller]" and "[action]" tokens in your route templates to reduce rep-
etition. They’ll be replaced with the current controller and action name.

 The [HttpPost] and [HttpGet] attributes allow you to choose between actions
based on the request’s HTTP verb when two actions correspond to the same
URL. This is a common pattern in RESTful applications.

 The [ApiController] attribute applies several common conventions to your
controllers. Controllers decorated with the attribute will automatically bind to a
request’s body instead of using form values, will automatically generate a 400
Bad Request response for invalid requests, and will return ProblemDetails
objects for status code errors. This can dramatically reduce the amount of boil-
erplate code you must write.

 You can control which of the conventions to apply by using the ConfigureApi-
BehaviorOptions() method and providing a configuration lambda. This is useful
if you need to fit your API to an existing specification, for example.

 By default, ASP.NET Core formats the API model returned from a Web API
controller as JSON. Virtually every platform can handle JSON, making your API
highly interoperable.

 In contrast to the previous version of ASP.NET, JSON data is serialized using
camelCase rather than PascalCase. You should consider this change if you get
errors or missing values when migrating from ASP.NET to ASP.NET Core.

 ASP.NET Core 3.0 onwards uses System.Text.Json, which is a strict, high perfor-
mance library for JSON serialization and deserialization. You can replace this
serializer with the common Newtonsoft.Json formatter by calling AddNewton-
softJson() on the return value from services.AddControllers().

 Content negotiation occurs when the client specifies the type of data it can han-
dle and the server chooses a return format based on this. It allows multiple cli-
ents to call your API and receive data in a format they can understand.

 By default, ASP.NET Core can return text/plain, text/html, and applica-
tion/json, but you can add additional formatters if you need to support other
formats.

287Summary
 You can add XML formatters by calling AddXmlSerializerFormatters() on the
return value from services.AddControllers() in your Startup class. These let
you format the response as XML, as well as receive XML in a request body.

 Content negotiation isn’t used when the Accept header contains */*, such as in
most browsers. Instead, your application will use the default formatter, JSON.
You can disable this option by modifying the RespectBrowserAcceptHeader
option when adding your MVC controller services in Startup.cs.

Part 2

Building complete
applications

We covered a lot of ground in part 1. You saw how an ASP.NET Core appli-
cation is composed of middleware, and we focused heavily on the Razor Pages
framework. You saw how to use it to build traditional server-side rendered apps
using Razor syntax and how to build APIs for mobile and client-side apps.

 In part 2 we’ll dive deeper into the framework and look at a variety of compo-
nents that you’ll inevitably need when you want to build more complex apps. By
the end of this part, you’ll be able to build dynamic applications, customized to
specific users, that can be deployed to multiple environments, each with a differ-
ent configuration.

 ASP.NET Core uses dependency injection (DI) throughout its libraries, so it’s
important that you understand how this design pattern works. In chapter 10 I’ll
introduce DI, why it is used, and how to configure the services in your applica-
tions to use DI.

 Chapter 11 looks at the ASP.NET Core configuration system, which lets you
pass configuration values to your app from a range of sources—JSON files, envi-
ronment variables, and many more. You’ll learn how to configure your app to use
different values depending on the environment in which it is running, and how to
bind strongly typed objects to your configuration to help reduce runtime errors.

 Most web applications require some sort of data storage, so in chapter 12 I’ll
introduce Entity Framework Core (EF Core). This is a new cross-platform library
that makes it easier to connect your app to a database. EF Core is worthy of a

book in and of itself, so I’ll only provide a brief introduction and point you to John
Smith’s excellent book Entity Framework Core in Action, second edition (Manning,
2021). I’ll show you how to create a database and how to insert, update, and query
simple data.

 In chapters 13 through 15, we’ll look at how to build more complex applications.
You’ll see how you can add ASP.NET Core Identity to your apps so that users can log
in and enjoy a customized experience. You’ll learn how to protect your apps using
authorization to ensure only certain users can access certain action methods, and
you’ll see how to refactor your app to extract common code out of your Razor Pages
and API controllers using filters.

 In the final chapter of this part, I’ll cover the steps required to make an app live,
including how to publish your app to IIS, how to configure the URLs your app listens
on, and how to optimize your client-side assets for improved performance.

Service configuration
with dependency injection
In part 1 of this book, you saw the bare bones of how to build applications with
ASP.NET Core. You learned how to compose middleware to create your application
and how to use the MVC pattern to build traditional web applications with Razor
Pages and Web APIs. This gave you the tools to start building simple applications.

 In this chapter you’ll see how to use dependency injection (DI) in your ASP.NET
Core applications. DI is a design pattern that helps you develop loosely coupled
code. ASP.NET Core uses the pattern extensively, both internally in the framework
and in the applications you build, so you’ll need to use it in all but the most trivial
of applications.

 You may have heard of DI before, and possibly even used it in your own applica-
tions. If so, this chapter shouldn’t hold many surprises for you. If you haven’t used DI
before, never fear; I’ll make sure you’re up to speed by the time the chapter is done!

This chapter covers
 Understanding the benefits of dependency

injection

 How ASP.NET Core uses dependency injection

 Configuring your services to work with
dependency injection

 Choosing the correct lifetime for your services
291

292 CHAPTER 10 Service configuration with dependency injection
 This chapter starts by introducing DI in general, the principles it drives, and why you
should care about it. You’ll see how ASP.NET Core has embraced DI throughout its
implementation and why you should do the same when writing your own applications.

 Once you have a solid understanding of the concept, you’ll see how to apply DI to
your own classes. You’ll learn how to configure your app so that the ASP.NET Core
framework can create your classes for you, removing the pain of having to create new
objects manually in your code. Toward the end of the chapter, you’ll learn how to con-
trol how long your objects are used for and some of the pitfalls to be aware of when
you come to write your own applications.

 In chapter 19, we’ll look at some of the more advanced ways to use DI, including
how to wire up a third-party DI container. For now, though, let’s get back to basics:
what is DI and why should you care about it?

10.1 Introduction to dependency injection
This section aims to give you a basic understanding of what dependency injection is,
why you should care about it, and how ASP.NET Core uses it. The topic itself extends
far beyond the reach of this single chapter. If you want a deeper background, I highly
recommend checking out Martin Fowler’s articles online.1

TIP For a more directly applicable read with many examples in C#, I recom-
mend picking up Dependency Injection Principles, Practices, and Patterns by Steven
van Deursen and Mark Seemann (Manning, 2019).

The ASP.NET Core framework has been designed from the ground up to be modular
and to adhere to “good” software engineering practices. As with anything in software,
what is considered best practice varies over time, but for object-oriented program-
ming, the SOLID2 principles have held up well.

 On that basis, ASP.NET Core has dependency injection (sometimes called dependency
inversion, DI, or inversion of control3) baked into the heart of the framework. Whether
or not you want to use it within your own application code, the framework libraries
themselves depend on it as a concept.

 I begin this section by starting with a common scenario: a class in your application
depends on a different class, which in turn depends on another. You’ll see how depen-
dency injection can help alleviate this chaining of dependencies for you and provide a
number of extra benefits.

1 Martin Fowler’s website at https://martinfowler.com is a goldmine of best-practice goodness. One of the most
applicable articles to this chapter can be found at www.martinfowler.com/articles/injection.html.

2 SOLID is a mnemonic for single responsibility, open-closed, Liskov substitution, interface segregation, and
dependency inversion: https://en.wikipedia.org/wiki/SOLID_(object-oriented_design).

3 Although related, dependency injection and dependency inversion are two different things. I cover both in a
general sense in this chapter, but for a good explanation of the differences, see this post by Derick Bailey titled
“Dependency Injection Is NOT the Same as the Dependency Inversion Principle”: http://mng.bz/5jvB.

https://martinfowler.com
http://www.martinfowler.com/articles/injection.html
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://shortener.manning.com/5jvB

293Introduction to dependency injection
10.1.1 Understanding the benefits of dependency injection

When you first started programming, the chances are you didn’t immediately use a DI
framework. That’s not surprising, or even a bad thing; DI adds a certain amount of
extra wiring that’s often not warranted in simple applications or when you’re getting
started. But when things start to get more complex, DI comes into its own as a great
tool to help keep that complexity in check.

 Let’s consider a simple example, written without any sort of DI. Imagine a user has
registered on your web app and you want to send them an email. This listing shows
how you might approach this initially in an API controller.

NOTE I’m using an API controller for this example, but I could just as easily
have used a Razor Page. Razor Pages and API controllers both use constructor
dependency injection, as you’ll see in section 10.2.

public class UserController : ControllerBase
{
 [HttpPost("register")]
 public IActionResult RegisterUser(string username)
 {
 var emailSender = new EmailSender();
 emailSender.SendEmail(username);
 return Ok();
 }
}

In this example, the RegisterUser action on UserController executes when a new
user registers on your app. This creates a new instance of an EmailSender class and
calls SendEmail() to send the email. The EmailSender class is the one that does the
sending of the email. For the purposes of this example, you can imagine it looks some-
thing like this:

public class EmailSender
{
 public void SendEmail(string username)
 {
 Console.WriteLine($"Email sent to {username}!");
 }
}

Console.Writeline stands in here for the real process of sending the email.

NOTE Although I’m using sending email as a simple example, in practice you
might want to move this code out of your Razor Page and controller classes
entirely. This type of asynchronous task is well suited to using message queues
and a background process. For more details, see http://mng.bz/pVWR.

Listing 10.1 Sending an email without DI when there are no dependencies

The action method is
called when a new
user is created.

Creates a new instance
of EmailSender

Uses the new instance
to send the email

http://mng.bz/pVWR

294 CHAPTER 10 Service configuration with dependency injection
If the EmailSender class is as simple as the previous example and it has no dependen-
cies, you might not see any need to adopt a different approach to creating objects.
And to an extent, you’d be right. But what if you later update your implementation of
EmailSender so that it doesn’t implement the whole email-sending logic itself?

 In practice, EmailSender would need to do many things to send an email. It would
need to

 Create an email message
 Configure the settings of the email server
 Send the email to the email server

Doing all of that in one class would go against the single responsibility principle (SRP),
so you’d likely end up with EmailSender depending on other services. Figure 10.1 shows
how this web of dependencies might look. UserController wants to send an email
using EmailSender, but to do so, it also needs to create the MessageFactory, Network-
Client, and EmailServerSettings objects that EmailSender depends on.

Each class has a number of dependencies, so the “root” class, in this case User-
Controller, needs to know how to create every class it depends on, as well as every
class its dependencies depend on. This is sometimes called the dependency graph.

DEFINITION The dependency graph is the set of objects that must be created in
order to create a specific requested “root” object.

EmailSender

MessageFactory EmailServerSettings

UserController

NetworkClient

The EmailSender depends on the
MessageFactory and the NetworkClient.

The UserController depends
on the EmailSender.

The NetworkClient depends
on the EmailServerSettings.

To use the EmailSender, the
UserController must create
all of the dependencies.

Figure 10.1 Dependency diagram without dependency injection. UserController
indirectly depends on all the other classes, so it has to create them all.

295Introduction to dependency injection

Ins
depe

pr

You
new M

Th
Clie
dep
EmailSender depends on the MessageFactory and NetworkClient objects, so they’re
provided via the constructor, as shown here.

public class EmailSender
{
 private readonly NetworkClient _client;
 private readonly MessageFactory _factory;
 public EmailSender(MessageFactory factory, NetworkClient client)
 {
 _factory = factory;
 _client = client;
 }
 public void SendEmail(string username)
 {
 var email = _factory.Create(username);
 _client.SendEmail(email);
 Console.WriteLine($"Email sent to {username}!");
 }
}

On top of that, the NetworkClient class that EmailSender depends on also has a
dependency on an EmailServerSettings object:

public class NetworkClient
{
 private readonly EmailServerSettings _settings;
 public NetworkClient(EmailServerSettings settings)
 {
 _settings = settings;
 }
}

This might feel a little contrived, but it’s common to find this sort of chain of depen-
dencies. In fact, if you don’t have this in your code, it’s probably a sign that your classes
are too big and aren’t following the single responsibility principle.

 So, how does this affect the code in UserController? The following listing shows
how you now have to send an email, if you stick to new-ing up objects in the controller.

public IActionResult RegisterUser(string username)
{
 var emailSender = new EmailSender(
 new MessageFactory(),
 new NetworkClient(
 new EmailServerSettings
 (
 host: "smtp.server.com",
 port: 25
))

Listing 10.2 A service with multiple dependencies

Listing 10.3 Sending email without DI when you manually create dependencies

The EmailSender now
depends on two other
classes.

tances of the
ndencies are
ovided in the
constructor.

The EmailSender coordinates
the dependencies to create
and send an email.

To create EmailSender,
you must create all of
its dependencies.

 need a
essage-

Factory.

e Network-
nt also has
endencies.

You’re already two
layers deep, but
there could feasibly
be more.

296 CHAPTER 10 Service configuration with dependency injection
);
 emailSender.SendEmail(username);
 return Ok();
}

This is turning into some gnarly code. Improving the design of EmailSender to sepa-
rate out the different responsibilities has made calling it from UserController a real
chore. This code has several issues:

 Not obeying the single responsibility principle—Our code is now responsible for both
creating an EmailSender object and using it to send an email.

 Considerable ceremony—Of the 11 lines of code in the RegisterUser method,
only the last two are doing anything useful. This makes it harder to read and
harder to understand the intent of the method.

 Tied to the implementation—If you decide to refactor EmailSender and add
another dependency, you’d need to update every place it’s used. Likewise, if any
of the dependencies are refactored, you would need to update this code too.

UserController has an implicit dependency on the EmailSender class, as it manually
creates the object itself as part of the RegisterUser method. The only way to know
that UserController uses EmailSender is to look at its source code. In contrast,
EmailSender has explicit dependencies on NetworkClient and MessageFactory, which
must be provided in the constructor. Similarly, NetworkClient has an explicit depen-
dency on the EmailServerSettings class.

TIP Generally speaking, any dependencies in your code should be explicit,
not implicit. Implicit dependencies are hard to reason about and difficult to
test, so you should avoid them wherever you can. DI is useful for guiding you
along this path.

Dependency injection aims to solve the problem of building a dependency graph by
inverting the chain of dependencies. Instead of the UserController creating its depen-
dencies manually, deep inside the implementation details of the code, an already-
created instance of EmailSender is injected via the constructor.

 Now, obviously something needs to create the object, so the code to do that has to
live somewhere. The service responsible for creating an object is called a DI container
or an IoC container, as shown in figure 10.2.

DEFINITION The DI container or IoC container is responsible for creating
instances of services. It knows how to construct an instance of a service by cre-
ating all its dependencies and passing these to the constructor. I’ll refer to it
as a DI container throughout this book.

The term dependency injection is often used interchangeably with inversion of control
(IoC). DI is a specific version of the more general principle of IoC. IoC describes the

Finally, you can
send the email.

297Introduction to dependency injection
pattern where the framework calls your code to handle a request, instead of you writing
the code to parse the request from bytes on the network card yourself. DI takes this
further, where you allow the framework to create your dependencies too: instead of
your UserController controlling how to create an EmailSender instance, it’s pro-
vided one by the framework instead.

NOTE Many DI containers are available for .NET: Autofac, Lamar, Unity,
Ninject, Simple Injector... The list goes on! In chapter 19 you’ll see how to
replace the default ASP.NET Core container with one of these alternatives.

The advantage of adopting this pattern becomes apparent when you see how much it
simplifies using dependencies. The following listing shows how UserController
would look if you used DI to create EmailSender instead of doing it manually. All of
the new cruft has gone, and you can focus purely on what the controller is doing—call-
ing EmailSender and returning an OkResult.

EmailSender

MessageFactory EmailServerSettings

UserController

NetworkClient

EmailSender depends
on MessageFactory
and NetworkClient.

UserController depends
on EmailSender.

NetworkClient depends
on EmailServerSettings.

The DI container creates
the complete dependency
graph and provides an
instance of EmailSender
to the UserController.

Figure 10.2 Dependency diagram using dependency injection. UserController
indirectly depends on all the other classes but doesn’t need to know how to create them.
UserController declares that it requires EmailSender, and the container provides it.

298 CHAPTER 10 Service configuration with dependency injection
public class UserController : ControllerBase
{
 private readonly EmailSender _emailSender;
 public UserController(EmailSender emailSender)
 {
 _emailSender = emailSender;
 }

 [HttpPost("register")]
 public IActionResult RegisterUser(string username)
 {
 _emailSender.SendEmail(username);
 return Ok();
 }
}

One of the advantages of a DI container is that it has a single responsibility: creating
objects or services. You ask a container for an instance of a service and it takes care of
figuring out how to create the dependency graph, based on how you configure it.

NOTE It’s common to refer to services when talking about DI containers,
which is slightly unfortunate as it’s one of the most overloaded terms in soft-
ware engineering! In this context, a service refers to any class or interface that
the DI container creates when required.

The beauty of this approach is that by using explicit dependencies, you never have to
write the mess of code you saw in listing 10.3. The DI container can inspect your ser-
vice’s constructor and work out how to write much of the code itself. DI containers are
always configurable, so if you want to describe how to manually create an instance of a
service you can, but by default you shouldn’t need to.

TIP You can inject dependencies into a service in other ways; for example, by
using property injection. But constructor injection is the most common and is
the only one supported out of the box in ASP.NET Core, so I’ll only be using
that in this book.

Hopefully the advantages of using DI in your code are apparent from this quick exam-
ple, but DI provides additional benefits that you get for free. In particular, it helps
keep your code loosely coupled by coding to interfaces.

10.1.2 Creating loosely coupled code

Coupling is an important concept in object-oriented programming. It refers to how a
given class depends on other classes to perform its function. Loosely coupled code
doesn’t need to know a lot of details about a particular component to use it.

 The initial example of UserController and EmailSender was an example of tight
coupling; you were creating the EmailSender object directly and needed to know

Listing 10.4 Sending an email using DI to inject dependencies

Instead of creating
the dependencies
implicitly, they’re
injected via the
constructor.

The action method
is easy to read and
understand again.

299Introduction to dependency injection
exactly how to wire it up. On top of that, the code was difficult to test. Any attempts to
test UserController would result in an email being sent. If you were testing the con-
troller with a suite of unit tests, that would be a surefire way to get your email server
blacklisted for spam!

 Taking EmailSender as a constructor parameter and removing the responsibility of
creating the object helps reduce the coupling in the system. If the EmailSender imple-
mentation changes so that it has another dependency, you no longer have to update
UserController at the same time.

 One issue that remains is that UserController is still tied to an implementation
rather than an interface. Coding to interfaces is a common design pattern that helps
further reduce the coupling of a system, as you’re not tied to a single implementation.
This is particularly useful in making classes testable, as you can create “stub” or
“mock” implementations of your dependencies for testing purposes, as shown in fig-
ure 10.3.

TIP You can choose from many different mocking frameworks. My favorite is
Moq, but NSubstitute and FakeItEasy are also popular options.

As an example, you might create an IEmailSender interface, which EmailSender would
implement:

public interface IEmailSender
{
 public void SendEmail(string username);
}

UserController could then depend on this interface instead of the specific Email-
Sender implementation, as shown in the following listing. That would allow you to use
a different implementation during unit tests, such as a DummyEmailSender.

IEmailSender EmailSenderUserController

Instead of depending on a
specific implementation,
UserController depends
on the interface IEmailSender.

MockEmailSender

HtmlEmailSender

At runtime we can choose a
specific implementation to use.
We can even use “stub” or “mock”
implementations for unit tests.

Figure 10.3 By coding to interfaces instead of an explicit implementation, you can
use different IEmailSender implementations in different scenarios, such as a
MockEmailSender in unit tests.

300 CHAPTER 10 Service configuration with dependency injection
public class UserController : ControllerBase
{
 private readonly IEmailSender _emailSender;
 public UserController(IEmailSender emailSender)
 {
 _emailSender = emailSender;
 }

 [HttpPost("register")]
 public IActionResult RegisterUser(string username)
 {
 _emailSender.SendEmail(username);
 return Ok();
 }
}

The key point here is that the consuming code, UserController, doesn’t care how
the dependency is implemented, only that it implements the IEmailSender inter-
face and exposes a SendEmail method. The application code is now independent of
the implementation.

 Hopefully the principles behind DI seem sound—by having loosely coupled code,
it’s easy to change or swap out implementations completely. But this still leaves you
with a question: how does the application know to use EmailSender in production
instead of DummyEmailSender? The process of telling your DI container “when you
need IEmailSender, use EmailSender” is called registration.

DEFINITION You register services with a DI container so that it knows which
implementation to use for each requested service. This typically takes the
form of “for interface X, use implementation Y.”

Exactly how you register your interfaces and types with a DI container can vary
depending on the specific DI container implementation, but the principles are gener-
ally all the same. ASP.NET Core includes a simple DI container out of the box, so let’s
look at how it’s used during a typical request.

10.1.3 Dependency injection in ASP.NET Core

ASP.NET Core was designed from the outset to be modular and composable, with an
almost plugin-style architecture, which is generally complemented by DI. Conse-
quently, ASP.NET Core includes a simple DI container that all the framework libraries
use to register themselves and their dependencies.

 This container is used, for example, to register the Razor Pages and Web API infra-
structure—the formatters, the view engine, the validation system, and so on. It’s only a
basic container, so it only exposes a few methods for registering services, but you can
also replace it with a third-party DI container. This can give you extra capabilities, such

Listing 10.5 Using interfaces with dependency injection

You now depend on
IEmailSender instead of
the specific EmailSender
implementation.

You don’t care what the
implementation is, as long as
it implements IEmailSender.

301Introduction to dependency injection
as auto-registration or setter injection. The DI container is built into the ASP.NET Core
hosting model, as shown in figure 10.4.

The hosting model pulls dependencies from the DI container when they’re needed. If
the framework determines that UserController is required due to the incoming
URL/route, the controller activator responsible for creating an API controller instance
will ask the DI container for an IEmailSender implementation.

NOTE This approach, where a class calls the DI container directly to ask for a
class is called the service locator pattern. Generally speaking, you should try to
avoid this pattern in your code; include your dependencies as constructor
arguments directly and let the DI container provide them for you.4

The DI container needs to know what to create when asked for IEmailSender, so you
must have registered an implementation, such as EmailSender, with the container.
Once an implementation is registered, the DI container can inject it anywhere. That

4 You can read about the Service Locator antipattern in Dependency Injection Principles, Practices, and Patterns by
Steven van Deursen and Mark Seemann (Manning, 2019): http://mng.bz/6g4o.

UserController

1. A request is received for
the URL /RegisterUser.

2. The routing middleware
routes the request to the
RegisterUser action on
the UserController.

EmailSender

3. The controller activator
calls the DI container to
create an instance of the
UserController, including
all of its dependencies.

4. The RegisterUser method on
the UserController instance
is invoked, passing in the
binding model.

Figure 10.4 The ASP.NET Core hosting model uses the DI container to fulfill
dependencies when creating controllers.

http://mng.bz/6g4o

302 CHAPTER 10 Service configuration with dependency injection
means you can inject framework-related services into your own custom services, as
long as they are registered with the container. It also means you can register alterna-
tive versions of framework services and have the framework automatically use those in
place of the defaults.

 The flexibility to choose exactly how and which components you combine in
your applications is one of the selling points of DI. In the next section, you’ll learn
how to configure DI in your own ASP.NET Core application, using the default, built-in
container.

10.2 Using the dependency injection container
In previous versions of ASP.NET, using dependency injection was entirely optional. In
contrast, to build all but the most trivial ASP.NET Core apps, some degree of DI is
required. As I’ve mentioned, the underlying framework depends on it, so things like
using Razor Pages and API controllers require you to configure the required services.

 In this section you’ll see how to register these framework services with the built-in
container, as well as how to register your own services. Once services are registered,
you can use them as dependencies and inject them into any of the services in your
application.

10.2.1 Adding ASP.NET Core framework services to the container

As I described earlier, ASP.NET Core uses DI to configure its internal components
as well as your own custom services. To use these components at runtime, the DI
container needs to know about all the classes it will need. You register these in the
ConfigureServices method of your Startup class.

NOTE The dependency injection container is set up in the ConfigureServices
method of your Startup class in Startup.cs.

Now, if you’re thinking, “Wait, I have to configure the internal components myself?”
then don’t panic. Although true in one sense—you do need to explicitly register the
components with the container in your app—all the libraries you’ll use expose handy
extension methods to take care of the nitty-gritty details for you. These extension
methods configure everything you’ll need in one fell swoop, instead of leaving you to
manually wire everything up.

 For example, the Razor Pages framework exposes the AddRazorPages() extension
method that you saw in chapters 2, 3, and 4. Invoke the extension method in Configure-
Services of Startup.

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();
}

Listing 10.6 Registering the MVC services with the DI container

The AddRazorPages extension
method adds all necessary services
to the IServiceCollection.

303Using the dependency injection container
It’s as simple as that. Under the hood, this call is registering multiple components
with the DI container, using the same APIs you’ll see shortly for registering your own
services.

TIP The AddControllers() method registers the required services for API con-
trollers, as you saw in chapter 9. There is a similar method, AddControllers-
WithViews() if you’re using MVC controllers with Razor views, and an AddMvc()
method to add all of them and the kitchen sink!

Most nontrivial libraries that you add to your application will have services that you
need to add to the DI container. By convention, each library that has necessary ser-
vices should expose an Add*() extension method that you can call in Configure-
Services.

 There’s no way of knowing exactly which libraries will require you to add services
to the container; it’s generally a case of checking the documentation for any libraries
you use. If you forget to add them, you may find the functionality doesn’t work, or you
might get a handy exception like the one shown in figure 10.5. Keep an eye out for
these and be sure to register any services that you need.

It’s also worth noting that some of the Add*() extension methods allow you to specify
additional options when you call them, often by way of a lambda expression. You can
think of these as configuring the installation of a service into your application. The
AddControllers method, for example, provides a wealth of options for fine-tuning its
behavior if you want to get your fingers dirty, as shown by the IntelliSense snippet in
figure 10.6.

 Once you’ve added the required framework services, you can get down to business
and register your own services, so you can use DI in your own code.

Figure 10.5 If you fail to call AddRazorPages in the ConfigureServices of Startup, you’ll
get a friendly exception message at runtime.

304 CHAPTER 10 Service configuration with dependency injection
10.2.2 Registering your own services with the container

In the first section of this chapter, I described a system for sending emails when a new
user registers on your application. Initially, UserController was manually creating an
instance of EmailSender, but you subsequently refactored this, so you inject an instance
of IEmailSender into the constructor instead.

 The final step to make this refactoring work is to configure your services with the
DI container. This lets the DI container know what to use when it needs to fulfill
the IEmailSender dependency. If you don’t register your services, you’ll get an excep-
tion at runtime, like the one in figure 10.7. Luckily, this exception is useful, letting you
know which service wasn’t registered (IEmailSender) and which service needed it
(UserController).

 In order to completely configure the application, you need to register EmailSender
and all of its dependencies with the DI container, as shown in figure 10.8.

 Configuring DI consists of making a series of statements about the services in your
app. For example,

 When a service requires IEmailSender, use an instance of EmailSender.
 When a service requires NetworkClient, use an instance of NetworkClient.
 When a service requires MessageFactory, use an instance of MessageFactory.

Figure 10.6 Configuring services when adding them to the service collection. The AddControllers()
function allows you to configure a wealth of the internals of the API controller services. Similar configuration
options are available in the AddRazorPages() function.

305Using the dependency injection container
UserController

1. A request is received for
the URL /user/register.

IEmailSender

2. The controller activator
calls the DI container to
create an instance of the
UserController, including
its dependencies.

4. The exception passes back
up the middleware pipeline
and out to the user. Here
DeveloperExceptionPageMiddleware
displays the error in the browser.

3. As IEmailSender has not
been registered, the DI
container can’t create
UserController, so it throws
an InvalidOperationException.

500!

Figure 10.7 If you don’t register all your required dependencies in ConfigureServices, you’ll get
an exception at runtime, telling you which service wasn’t registered.

Dependency injection container

EmailSender

IEmailSender NetworkClient MessageFactory

NetworkClient MessageFactory

You register services and
implementations in pairs.

For each pair, you indicate the type
of service that will be requested and
what type of implementation to create.

Alternatively, the service and
implementation can be the same
type, such as for NetworkClient
and MessageFactory

These can be different types, where
the implementation implements the
service, such as the EmailSender
that implements IEmailSender

Figure 10.8 Configuring the DI container in your application involves telling it what type to use
when a given service is requested; for example, “Use EmailSender when IEmailSender is
required.”

306 CHAPTER 10 Service configuration with dependency injection

.

NOTE You’ll also need to register the EmailServerSettings object with the
DI container—we’ll do that slightly differently in the next section.

These statements are made by calling various Add* methods on IServiceCollection
in the ConfigureServices method. Each method provides three pieces of informa-
tion to the DI container:

 Service type—TService. This is the class or interface that will be requested as a
dependency. It’s often an interface, such as IEmailSender, but sometimes a con-
crete type, such as NetworkClient or MessageFactory.

 Implementation type—TService or TImplementation. This is the class the con-
tainer should create to fulfill the dependency. It must be a concrete type, such
as EmailSender. It may be the same as the service type, as for NetworkClient
and MessageFactory.

 Lifetime—transient, singleton, or scoped. This defines how long an instance of the
service should be used. I’ll discuss lifetimes in detail in section 10.3.

The following listing shows how you can configure EmailSender and its dependen-
cies in your application using three different methods: AddScoped<TService>, Add-
Singleton<TService>, and AddScoped<TService, TImplementation>. This tells the
DI container how to create each of the TService instances when they’re required.

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();

 services.AddScoped<IEmailSender, EmailSender>();
 services.AddScoped<NetworkClient>();
 services.AddSingleton<MessageFactory>();
}

That’s all there is to dependency injection! It may seem a little bit like magic,5 but
you’re just giving the container instructions on how to make all the constituent
parts. You give it a recipe for how to cook the chili, shred the lettuce, and grate the
cheese, so that when you ask for a burrito, it can put all the parts together and hand
you your meal!

 The service type and implementation type are the same for NetworkClient and
MessageFactory, so there’s no need to specify the same type twice in the AddScoped
method, and hence the slightly simpler signature.

Listing 10.7 Registering services with the DI container

5 Under the hood, the built-in ASP.NET Core DI container uses optimized reflection to create dependencies,
but different DI containers may use other approaches.

You’re using API controllers, so
you must call AddControllers.

Whenever you require
an IEmailSender, use
EmailSender.

Whenever you require a
NetworkClient, use NetworkClient

Whenever you require a
MessageFactory, use MessageFactory.

307Using the dependency injection container
NOTE The EmailSender instance is only registered as an IEmailSender, so
you can’t retrieve it by requesting the specific EmailSender implementation;
you must use the IEmailSender interface.

These generic methods aren’t the only way to register services with the container. You
can also provide objects directly or by using lambdas, as you’ll see in the next section.

10.2.3 Registering services using objects and lambdas

As I mentioned earlier, I didn’t quite register all the services required by UserController.
In all my previous examples, NetworkClient depends on EmailServerSettings,
which you’ll also need to register with the DI container for your project to run without
exceptions.

 I avoided registering this object in the preceding example because you have to use
a slightly different approach. The preceding Add* methods use generics to specify the
Type of the class to register, but they don’t give any indication of how to construct an
instance of that type. Instead, the container makes a number of assumptions that you
have to adhere to:

 The class must be a concrete type.
 The class must only have a single “valid” constructor that the container can use.
 For a constructor to be “valid,” all constructor arguments must be registered

with the container or they must be arguments with a default value.

NOTE These limitations apply to the simple built-in DI container. If you
choose to use a third-party container in your app, it may have a different set
of limitations.

The EmailServerSettings class doesn’t meet these requirements, as it requires you
to provide a host and port in the constructor, which are strings without default val-
ues:

public class EmailServerSettings
{
 public EmailServerSettings(string host, int port)
 {
 Host = host;
 Port = port;
 }
 public string Host { get; }
 public int Port { get; }
}

You can’t register these primitive types in the container; it would be weird to say, “For
every string constructor argument, in any type, use the "smtp.server.com" value.”

 Instead, you can create an instance of the EmailServerSettings object yourself
and provide that to the container, as shown next. The container uses the precon-
structed object whenever an instance of the EmailServerSettings object is required.

308 CHAPTER 10 Service configuration with dependency injection
public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();

 services.AddScoped<IEmailSender, EmailSender>();
 services.AddSingleton<NetworkClient>();
 services.AddScoped<MessageFactory>();
 services.AddSingleton(
 new EmailServerSettings
 (
 host: "smtp.server.com",
 port: 25
));
}

This works fine if you only want to have a single instance of EmailServerSettings in
your application—the same object will be shared everywhere. But what if you want to cre-
ate a new object each time one is requested?

NOTE When the same object is used whenever it’s requested, it’s known as a
singleton. If you create an object and pass it to the container, it’s always registered
as a singleton. You can also register any class using the AddSingleton<T>()
method, and the container will only use one instance throughout your appli-
cation. I discuss singletons along with other lifetimes in detail in section 10.3.
The lifetime is how long the DI container should use a given object to fulfill a
service’s dependencies.

Instead of providing a single instance that the container will always use, you can also
provide a function that the container invokes when it needs an instance of the type, as
shown in figure 10.9.

Listing 10.8 Providing an object instance when registering services

This instance of
EmailServerSettings
will be used whenever
an instance is required.

EmailServerSettings

EmailServerSettings
An instance of EmailServerSettings
is required by the DI container to
create an instance of NetworkClient.

Instead of creating the EmailServerSettings
instance using the constructor directly, the
DI container invokes the provided function
and uses the instance it returns.

provider => new EmailServerSettings(
host: "smtp.server.com",
port: 25

);

Figure 10.9 You can register a function with the DI container that will be invoked whenever a new
instance of a service is required.

309Using the dependency injection container
The easiest way to do this is to use a lambda function (an anonymous delegate), in
which the container creates a new EmailServerSettings object when it’s needed.

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddScoped<IEmailSender, EmailSender>();
 services.AddSingleton<NetworkClient>();
 services.AddScoped<MessageFactory>();
 services.AddScoped(
 provider =>
 new EmailServerSettings
 (
 host: "smtp.server.com",
 port: 25
));
}

In this example, I’ve changed the lifetime of the created EmailServerSettings object
to be scoped instead of singleton and provided a factory lambda function that returns a
new EmailServerSettings object. Every time the container requires a new Email-
ServerSettings, it executes the function and uses the new object it returns.

 When you use a lambda to register your services, you’re provided with an IService-
Provider instance at runtime, called provider in listing 10.9. This is the public API of
the DI container itself which exposes the GetService() function. If you need to
obtain dependencies to create an instance of your service, you can reach into the con-
tainer at runtime in this way, but you should avoid doing so if possible.

TIP Avoid calling GetService() in your factory functions if possible. Instead,
favor constructor injection—it’s more performant as well as being simpler to
reason about.

Listing 10.9 Using a lambda factory function to register a dependency

Open generics and dependency injection
As already mentioned, you couldn’t use the generic registration methods with Email-
ServerSettings because it uses primitive dependencies (in this case, string) in
its constructor. You also can’t use the generic registration methods to register open
generics.

Open generics are types that contain a generic type parameter, such as Repository
<T>. You normally use this sort of type to define a base behavior that you can use
with multiple generic types. In the Repository<T> example, you might inject
IRepository<Customer> into your services, which should inject an instance of
DbRepository<Customer>, for example.

Because you’re providing a
function to create the object,
you aren’t restricted to a
singleton.

The lambda is
provided an
instance of

IService-
Provider.

The constructor is called every
time an EmailServerSettings
object is required, instead of
only once.

310 CHAPTER 10 Service configuration with dependency injection

od
At this point, all your dependencies are registered. But ConfigureServices is starting
to look a little messy, isn’t it? It’s entirely down to personal preference, but I like to
group my services into logical collections and create extension methods for them, as in
the following listing. This creates an equivalent of the framework’s AddControllers()
extension method—a nice, simple, registration API. As you add more and more fea-
tures to your app, I think you’ll appreciate it too.

public static class EmailSenderServiceCollectionExtensions
{
 public static IServiceCollection AddEmailSender(
 this IServiceCollection services)
 {
 services.AddScoped<IEmailSender, EmailSender>();
 services.AddSingleton<NetworkClient>();
 services.AddScoped<MessageFactory>();
 services.AddSingleton(
 new EmailServerSettings
 (
 host: "smtp.server.com",
 port: 25
));
 return services;
 }
}

With the preceding extension method created, the ConfigureServices method is
much easier to grok!

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();
 services.AddEmailSender();
}

So far, you’ve seen how to register the simple DI cases where you have a single implemen-
tation of a service. In some scenarios, you might find you have multiple implementations

(continued)

To register these types, you must use a different overload of the Add* methods. For
example,

services.AddScoped(typeof(IRespository<>), typeof(DbRepository<>));

This ensures that whenever a service constructor requires IRespository<T>, the
container injects an instance of DbRepository<T>.

Listing 10.10 Creating an extension method to tidy up adding multiple services

Create an extension meth
on IServiceCollection by
using the “this” keyword.

Cut and paste your
registration code from
ConfigureServices.

By convention, return the
IServiceCollection to allow
method chaining.

311Using the dependency injection container
of an interface. In the next section you’ll see how to register these with the container
to match your requirements.

10.2.4 Registering a service in the container multiple times

One of the advantages of coding to interfaces is that you can create multiple imple-
mentations of a service. For example, imagine you want to create a more generalized
version of IEmailSender so that you can send messages via SMS or Facebook, as well
as by email. You create an interface for it,

public interface IMessageSender
{
 public void SendMessage(string message);
}

as well as several implementations: EmailSender, SmsSender, and FacebookSender. But
how do you register these implementations in the container? And how can you inject
these implementations into your UserController? The answer varies slightly depend-
ing on whether you want to use all the implementations in your consumer or only one
of them.

INJECTING MULTIPLE IMPLEMENTATIONS OF AN INTERFACE

Imagine you want to send a message using each of the IMessageSender implementa-
tions whenever a new user registers, so that they get an email, an SMS, and a Facebook
message, as shown in figure 10.10.

The easiest way to achieve this is to register all the service implementations in your DI
container and have it inject one of each type into UserController. UserController
can then use a simple foreach loop to call SendMessage() on each implementation,
as in figure 10.11.

Welcome!

Welcome!

1. A new user registers with your
app and enters their details,
posting to the RegisterUser
action method.

Welcome!

2. Your app sends them a
welcome message by email,
SMS, and Facebook using the
IMessageSender implementations.

RegisterUser

UserController

Figure 10.10 When a user registers with your application, they call the RegisterUser method.
This sends them an email, an SMS, and a Facebook message using the IMessageSender
classes.

312 CHAPTER 10 Service configuration with dependency injection
You register multiple implementations of the same service with a DI container in exactly
the same way as for single implementations, using the Add* extension methods. For
example,

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();
 services.AddScoped<IMessageSender, EmailSender>();
 services.AddScoped<IMessageSender, SmsSender>();
 services.AddScoped<IMessageSender, FacebookSender>();
}

You can then inject IEnumerable<IMessageSender> into UserController, as shown in
the following listing. The container injects an array of IMessageSender containing
one of each of the implementations you have registered, in the same order as you reg-
istered them. You can then use a standard foreach loop in the RegisterUser method
to call SendMessage on each implementation.

public class UserController : ControllerBase
{

Listing 10.11 Injecting multiple implementations of a service into a consumer

3. The RegisterUser method on the
UserController loops over the
IMessageSender instances and
calls SendMessage on each.

1. During Startup, multiple implementations
of IMessageSender are registered with the
DI container using the normal Add* methods.

EmailSender SmsSender FacebookSender

IMessageSender IMessageSenderIMessageSender

UserController

IEnumerable<IMessageSender>

EmailSender SmsSender FacebookSender

foreach (var messageSender in _messageSenders)
{
messageSender.SendMessage(username);

}

2. The DI container creates one of each
IMessageSender implementation and
injects them into the UserController
as an IEnumerable<IMessageSender>.

_messageSenders

Figure 10.11 You can register multiple implementations of a service with the DI container, such as
IEmailSender in this example. You can retrieve an instance of each of these implementations by
requiring IEnumerable<IMessageSender> in the UserController constructor.

313Using the dependency injection container

R
IEnu
inje
IMe
 private readonly IEnumerable<IMessageSender> _messageSenders;
 public UserController(
 IEnumerable<IMessageSender> messageSenders)
 {
 _messageSenders = messageSenders;
 }

 [HttpPost("register")]
 public IActionResult RegisterUser(string username)
 {
 foreach (var messageSender in _messageSenders)
 {
 messageSender.SendMessage(username);
 }

 return Ok();
 }
}

WARNING You must use IEnumerable<T> as the constructor argument to
inject all the registered types of a service, T. Even though this will be injected
as a T[] array, you can’t use T[] or ICollection<T> as your constructor argu-
ment. Doing so will cause an InvalidOperationException, similar to that in
figure 10.7.

It’s simple enough to inject all the registered implementations of a service, but what if
you only need one? How does the container know which one to use?

INJECTING A SINGLE IMPLEMENTATION WHEN MULTIPLE SERVICES ARE REGISTERED

Imagine you’ve already registered all the IMessageSender implementations; what hap-
pens if you have a service that requires only one of them? For example,

public class SingleMessageSender
{
 private readonly IMessageSender _messageSender;
 public SingleMessageSender(IMessageSender messageSender)
 {
 _messageSender = messageSender;
 }
}

The container needs to pick a single IMessageSender to inject into this service, out of
the three implementations available. It does this by using the last registered imple-
mentation—the FacebookSender from the previous example.

NOTE The DI container will use the last registered implementation of a ser-
vice when resolving a single instance of the service.

This can be particularly useful for replacing built-in DI registrations with your own
services. If you have a custom implementation of a service that you know is regis-
tered within a library’s Add* extension method, you can override that registration by

equesting an
merable will

ct an array of
ssageSender.

Each IMessageSender
in the IEnumerable is a
different implementation.

314 CHAPTER 10 Service configuration with dependency injection
registering your own implementation afterwards. The DI container will use your
implementation whenever a single instance of the service is requested.

 The main disadvantage with this approach is that you still end up with multiple
implementations registered—you can inject an IEnumerable<T> as before. Sometimes
you want to conditionally register a service, so you only ever have a single registered
implementation.

CONDITIONALLY REGISTERING SERVICES USING TRYADD

Sometimes you’ll only want to add an implementation of a service if one hasn’t
already been added. This is particularly useful for library authors; they can create a
default implementation of an interface and only register it if the user hasn’t already
registered their own implementation.

 You can find several extension methods for conditional registration in the
Microsoft.Extensions.DependencyInjection.Extensions namespace, such as Try-
AddScoped. This checks to make sure a service hasn’t been registered with the container
before calling AddScoped on the implementation. The following listing shows how you
can conditionally add SmsSender, only if there are no existing IMessageSender imple-
mentations. As you previously registered EmailSender, the container will ignore the
SmsSender registration, so it won’t be available in your app.

public void ConfigureServices(IServiceCollection services)
{
 services.AddScoped<IMessageSender, EmailSender>();
 services.TryAddScoped<IMessageSender, SmsSender>();
}

Code like this often doesn’t make a lot of sense at the application level, but it can be
useful if you’re building libraries for use in multiple apps. The ASP.NET Core frame-
work, for example, uses TryAdd* in many places, which lets you easily register alterna-
tive implementations of internal components in your own application if you want.

 You can also replace a previously registered implementation by using the Replace()
extension method. Unfortunately, the API for this method isn’t as friendly as the Try-
Add methods. To replace a previously registered IMessageSender with SmsSender, you
would use

services.Replace(new ServiceDescriptor(
 typeof(IMessageSender), typeof(SmsSender), ServiceLifetime.Scoped
));

TIP When using Replace, you must provide the same lifetime as was used to
register the service that is being replaced.

Listing 10.12 Conditionally adding a service using TryAddScoped

EmailSender is
registered with
the container.

There’s already an IMessageSender
implementation, so SmsSender isn’t registered.

315Using the dependency injection container
That pretty much covers registering dependencies. Before we look in more depth at
the “lifetime” aspect of dependencies, we’ll take a quick detour and look at two ways
other than a constructor to inject dependencies in your app.

10.2.5 Injecting services into action methods, page handlers, and views

I mentioned in section 10.1 that the ASP.NET Core DI container only supports con-
structor injection, but there are three additional locations where you can use depen-
dency injection:

 Action methods
 Page handler methods
 View templates

In this section, I’ll briefly discuss these three situations, how they work, and when you
might want to use them.

INJECTING SERVICES DIRECTLY INTO ACTION METHODS AND PAGE HANDLERS USING [FROMSERVICES]
API controllers typically contain multiple action methods that logically belong together.
You might group all the action methods related to managing user accounts into the
same controller, for example. This allows you to apply filters and authorization to all
the action methods collectively, as you’ll see in chapter 13.

 As you add additional action methods to a controller, you may find that the con-
troller needs additional services to implement new action methods. With constructor
injection, all these dependencies are provided via the constructor. That means the DI
container must create all the dependencies for every action method in a controller,
even if none of them are required by the action method being called.

 Consider listing 10.13 for example. This shows UserController with two stub
methods: RegisterUser and PromoteUser. Each action method requires a different
dependency, so both dependencies will be created and injected, whichever action
method is called by the request. If IPromotionService or IMessageSender have lots
of dependencies themselves, the DI container may have to create lots of objects for a
service that is often not used.

public class UserController : ControllerBase
{
 private readonly IMessageSender _messageSender;
 private readonly IPromotionService _promoService;
 public UserController(
 IMessageSender messageSender, IPromotionService promoService)
 {
 _messageSender = messageSender;
 _promoService = promoService;
 }

 [HttpPost("register")]
 public IActionResult RegisterUser(string username)

Listing 10.13 Injecting services into a controller via the constructor

Both IMessageSender
and IPromotionService
are injected into the
constructor every time.

316 CHAPTER 10 Service configuration with dependency injection

.

 {
 _messageSender.SendMessage(username);
 return Ok();
 }

 [HttpPost("promote")]
 public IActionResult PromoteUser(string username, int level)
 {
 _promoService.PromoteUser(username, level);
 return Ok();
 }
}

If you know a service is particularly expensive to create, you can choose to inject it as a
dependency directly into the action method, instead of into the controller’s construc-
tor. This ensures the DI container only creates the dependency when the specific action
method is invoked, as opposed to when any action method on the controller is invoked.

NOTE Generally speaking, your controllers should be sufficiently cohesive
that this approach isn’t necessary. If you find you have a controller that’s
dependent on many services, each of which is used by a single action method,
you might want to consider splitting up your controller.

You can directly inject a dependency into an action method by passing it as a parame-
ter to the method and using the [FromServices] attribute. During model binding,
the framework will resolve the parameter from the DI container, instead of from the
request values. This listing shows how you could rewrite listing 10.13 to use [From-
Services] instead of constructor injection.

public class UserController : ControllerBase
{
 [HttpPost("register")]
 public IActionResult RegisterUser(
 [FromServices] IMessageSender messageSender,
 string username)
 {
 messageSender.SendMessage(username);
 return Ok();
 }

 [HttpPost("promote")]
 public IActionResult PromoteUser(
 [FromServices] IPromotionService promoService,
 string username, int level)
 {
 promoService.PromoteUser(username, level);
 return Ok();
 }
}

Listing 10.14 Injecting services into a controller using the [FromServices] attribute

The RegisterUser
method only uses
IMessageSender.

The PromoteUser
method only uses
IPromotionService.

The [FromServices] attribute
ensures IMessageSender is
resolved from the DI container

IMessageSender is
only available in
RegisterUser.

IPromotionService is resolved
from the DI container and
injected as a parameter.

Only the PromoteUser
method can use
IPromotionService.

317Using the dependency injection container
You might be tempted to use the [FromServices] attribute in all your action meth-
ods, but I’d encourage you to use standard constructor injection most of the time.
Having the constructor as a single location that declares all the dependencies of a
class can be useful, so I only use [FromServices] in the rare cases where creating an
instance of a dependency is expensive and is only used in a single action method.

 The [FromServices] attribute can be used in exactly the same way with Razor
Pages. You can inject services into a Razor Page’s page handler, instead of into the
constructor, as shown in listing 10.15.

TIP Just because you can inject services into page handlers like this doesn’t
mean you should. Razor Pages are inherently designed to be small and cohe-
sive, so it’s better to just use constructor injection.

public class PromoteUserModel: PageModel
{
 public void OnGet()
 {
 }

 public IActionResult OnPost(
 [FromServices] IPromotionService promoService,
 string username, int level)
 {
 promoService.PromoteUser(username, level);
 return RedirectToPage("success");
 }

}

Generally speaking, if you find you need to use the [FromServices] attribute, you
should step back and look at your controller/Razor Page. It’s likely that you’re trying to
do too much in one class. Instead of working around the issue with [FromServices],
consider splitting the class up or pushing some behavior down into your application
model services.

INJECTING SERVICES INTO VIEW TEMPLATES

Injecting dependencies into the constructor is recommended, but what if you don’t
have a constructor? In particular, how do you go about injecting services into a Razor
view template when you don’t have control over how the template is constructed?

 Imagine you have a simple service, HtmlGenerator, to help you generate HTML in
your view templates. The question is, how do you pass this service to your view tem-
plates, assuming you’ve already registered it with the DI container?

 One option is to inject the HtmlGenerator into your Razor Page using constructor
injection and expose the service as a property on your PageModel, as you saw in chap-
ter 7. This will often be the easiest approach, but in some cases you might not want to

Listing 10.15 Injecting services into a Razor Page using the [FromServices] attribute

The OnGet handler
does not require
any services.

IPromotionService is
resolved from the DI
container and injected
as a parameter.

Only the OnPost
page handler can use
IPromotionService.

318 CHAPTER 10 Service configuration with dependency injection
have references to the HtmlGenerator service in your PageModel at all. In those cases
you can directly inject HtmlGenerator into your view templates.

NOTE Some people take offense to injecting services into views in this way.
You definitely shouldn’t be injecting services related to business logic into
your views, but I think it makes sense for services that are related to HTML
generation.

You can inject a service into a Razor template with the @inject directive by providing
the type to inject and a name for the injected service in the template.

@inject HtmlGenerator htmlHelper
<h1>The page title</h1>
<footer>
 @htmlHelper.Copyright()
</footer>

Injecting services directly into views can be a useful way of exposing UI-related ser-
vices to your view templates without having to take a dependency on the service in
your PageModel. You probably won’t find you need to rely on it too much, but it’s a
useful tool to have.

 That pretty much covers registering and using dependencies, but there’s one
important aspect I’ve only vaguely touched on: lifetimes, or when does the container
create a new instance of a service? Understanding lifetimes is crucial to working with
DI containers, so it’s important to pay close attention to them when registering your
services with the container.

10.3 Understanding lifetimes: When are services created?
Whenever the DI container is asked for a particular registered service, such as an
instance of IMessageSender, it can do one of two things:

 Create and return a new instance of the service
 Return an existing instance of the service

The lifetime of a service controls the behavior of the DI container with respect to these
two options. You define the lifetime of a service during DI service registration. This
dictates when a DI container will reuse an existing instance of the service to fulfill ser-
vice dependencies, and when it will create a new one.

DEFINITION The lifetime of a service is how long an instance of a service should
live in a container before it creates a new instance.

It’s important to get your head around the implications for the different lifetimes
used in ASP.NET Core, so this section looks at each available lifetime option and when
you should use it. In particular, you’ll see how the lifetime affects how often the DI

Listing 10.16 Injecting a service into a Razor view template with @inject

Injects an instance of HtmlGenerator
into the view, named htmlHelper

Uses the injected service by
calling the htmlHelper instance

319Understanding lifetimes: When are services created?
container creates new objects. In section 10.3.4, I’ll show you a pattern of lifetimes to
look out for, where a short-lifetime dependency is “captured” by a long-lifetime depen-
dency. This can cause some hard-to-debug issues, so it’s important to bear in mind
when configuring your app.

 In ASP.NET Core, you can specify three different lifetimes when registering a ser-
vice with the built-in container:

 Transient—Every time a service is requested, a new instance is created. This
means you can potentially have different instances of the same class within the
same dependency graph.

 Scoped—Within a scope, all requests for a service will give you the same object.
For different scopes you’ll get different objects. In ASP.NET Core, each web
request gets its own scope.

 Singleton—You’ll always get the same instance of the service, no matter which
scope.

NOTE These concepts align well with most other DI containers, but the ter-
minology often differs. If you’re familiar with a third-party DI container, be
sure you understand how the lifetime concepts align with the built-in ASP.NET
Core DI container.

To illustrate the behavior of each lifetime, I’ll use a simple representative example in
this section. Imagine you have DataContext, which has a connection to a database, as
shown in listing 10.17. It has a single property, RowCount, which displays the number
of rows in the Users table of a database. For the purposes of this example, we emulate
calling the database by setting the number of rows in the constructor, so you will get
the same value every time you call RowCount on a given DataContext instance. Different
instances of DataContext will return a different RowCount value.

public class DataContext
{
 static readonly Random _rand = new Random();
 public DataContext()
 {
 RowCount = _rand.Next(1, 1_000_000_000);
 }

 public int RowCount { get; }
}

You also have a Repository class that has a dependency on the DataContext, as shown
in the next listing. This also exposes a RowCount property, but this property delegates
the call to its instance of DataContext. Whatever value DataContext was created with,
the Repository will display the same value.

Listing 10.17 DataContext generating a random RowCount in its constructor

Generates a random
number between 1
and 1,000,000,000

Read-only property set in
the constructor, so it always
returns the same value

320 CHAPTER 10 Service configuration with dependency injection
public class Repository
{
 private readonly DataContext _dataContext;
 public Repository(DataContext dataContext)
 {
 _dataContext = dataContext;
 }
 public int RowCount => _dataContext.RowCount;
}

Finally, you have the Razor Page RowCountModel, which takes a dependency on both
Repository and on DataContext directly. When the Razor Page activator creates an
instance of RowCountModel, the DI container injects an instance of DataContext and
an instance of Repository. To create Repository, it also creates a second instance of
DataContext. Over the course of two requests, a total of four instances of DataContext
will be required, as shown in figure 10.12.

RowCountModel records the value of RowCount returned from both Repository and
DataContext as properties on the PageModel. These are then rendered using a Razor
template (not shown).

Listing 10.18 Repository service that depends on an instance of DataContext

An instance of
DataContext is
provided using DI.

RowCount returns the same value as
the current instance of DataContext.

Figure 10.12 The DI container uses two instances of DataContext for each request.
Depending on the lifetime with which the DataContext type is registered, the container
might create one, two, or four different instances of DataContext.

321Understanding lifetimes: When are services created?
public class RowCountModel : PageModel
{
 private readonly Repository _repository;
 private readonly DataContext _dataContext;
 public RowCountPageModel(
 Repository repository,
 DataContext dataContext)
 {
 _repository = repository;
 _dataContext = dataContext;
 }

 public void OnGet()
 {
 DataContextCount = _dataContext.RowCount;
 RepositoryCount = _repository.RowCount;
 }

 public int DataContextCount { get; set ;}
 public int RepositoryCount { get; set ;}
}

The purpose of this example is to explore the relationship between the four Data-
Context instances, depending on the lifetimes you use to register the services with the
container. I’m generating a random number in DataContext as a way of uniquely
identifying a DataContext instance, but you can think of this as being a point-in-time
snapshot of the number of users logged in to your site, for example, or the amount of
stock in a warehouse.

 I’ll start with the shortest-lived lifetime, transient, move on to the common scoped
lifetime, and then take a look at singletons. Finally, I’ll show an important trap you
should be on the lookout for when registering services in your own apps.

10.3.1 Transient: Everyone is unique

In the ASP.NET Core DI container, transient services are always created new, when-
ever they’re needed to fulfill a dependency. You can register your services using the
AddTransient extension methods:

services.AddTransient<DataContext>();
services.AddTransient<Repository>();

When registered in this way, every time a dependency is required the container will
create a new one. This applies both between requests but also within requests; the Data-
Context injected into the Repository will be a different instance from the one
injected into the RowCountModel.

NOTE Transient dependencies can result in different instances of the same
type within a single dependency graph.

Listing 10.19 RowCountModel depends on DataContext and Repository

DataContext and
Repository are
passed in using DI.

When invoked, the page
handler retrieves and
records RowCount from
both dependencies.

The counts are exposed
on the PageModel and
are rendered to HTML
in the Razor view.

322 CHAPTER 10 Service configuration with dependency injection
Figure 10.13 shows the results you get from two consecutive requests when you use the
transient lifetime for both services. Note that, by default, Razor Page and API control-
ler instances are also transient and are always created anew.

Transient lifetimes can result in a lot of objects being created, so they make the most
sense for lightweight services with little or no state. It’s equivalent to calling new every
time you need a new object, so bear that in mind when using it. You probably won’t
use the transient lifetime too often; the majority of your services will probably be
scoped instead.

10.3.2 Scoped: Let’s stick together

The scoped lifetime states that a single instance of an object will be used within a given
scope, but a different instance will be used between different scopes. In ASP.NET Core, a
scope maps to a request, so within a single request the container will use the same
object to fulfill all dependencies.

 For the row count example, this means that, within a single request (a single
scope), the same DataContext will be used throughout the dependency graph. The
DataContext injected into the Repository will be the same instance as that injected
into RowCountModel.

 In the next request, you’ll be in a different scope, so the container will create a new
instance of DataContext, as shown in figure 10.14. A different instance means a differ-
ent RowCount for each request, as you can see.

 You can register dependencies as scoped using the AddScoped extension methods.
In this example, I registered DataContext as scoped and left Repository as transient,
but you’d get the same results in this case if they were both scoped:

services.AddScoped<DataContext>();

Figure 10.13 When registered using the transient lifetime, all four DataContext objects are different. That can
be seen by the four different numbers displayed over the course of two requests.

323Understanding lifetimes: When are services created?
Due to the nature of web requests, you’ll often find services registered as scoped
dependencies in ASP.NET Core. Database contexts and authentication services are
common examples of services that should be scoped to a request—anything that you
want to share across your services within a single request but that needs to change
between requests.

 Generally speaking, you’ll find a lot of services registered using the scoped life-
time—especially anything that uses a database or is dependent on a specific request.
But some services don’t need to change between requests, such as a service that calcu-
lates the area of a circle or that returns the current time in different time zones. For
these, a singleton lifetime might be more appropriate.

10.3.3 Singleton: There can be only one

The singleton is a pattern that came before dependency injection; the DI container
provides a robust and easy-to-use implementation of it. The singleton is conceptually
simple: an instance of the service is created when it’s first needed (or during registra-
tion, as in section 10.2.3) and that’s it. You’ll always get the same instance injected into
your services.

 The singleton pattern is particularly useful for objects that are expensive to cre-
ate, that contain data that must be shared across requests, or that don’t hold state.
The latter two points are important—any service registered as a singleton should be
thread-safe.

WARNING Singleton services must be thread-safe in a web application, as
they’ll typically be used by multiple threads during concurrent requests.

Let’s consider what using singletons means for the row count example. I can update
the registration of DataContext to be a singleton in ConfigureServices:

services.AddSingleton<DataContext>();

Figure 10.14 Scoped dependencies use the same instance of DataContext within a single request but a new
instance for a separate request. Consequently, the RowCounts are identical within a request.

324 CHAPTER 10 Service configuration with dependency injection
We can then call the RowCountModel Razor Page twice and observe the results in fig-
ure 10.15. You can see that every instance has returned the same value, indicating that
all four instances of DataContext are the same single instance.

Singletons are convenient for objects that need to be shared or that are immutable
and expensive to create. A caching service should be a singleton, as all requests need
to share it. It must be thread-safe though. Similarly, you might register a settings
object loaded from a remote server as a singleton if you load the settings once at
startup and reuse them through the lifetime of your app.

 On the face of it, choosing a lifetime for a service might not seem too tricky, but
there’s an important “gotcha” that can come back to bite you in subtle ways, as you’ll
see shortly.

10.3.4 Keeping an eye out for captured dependencies

Imagine you’re configuring the lifetime for the DataContext and Repository examples.
You think about the suggestions I’ve provided and decide on the following lifetimes:

 DataContext—Scoped, as it should be shared for a single request
 Repository—Singleton, as it has no state of its own and is thread-safe, so why

not?

WARNING This lifetime configuration is to explore a bug—don’t use it in
your code or you’ll experience a similar problem!

Unfortunately, you’ve created a captured dependency because you’re injecting a scoped
object, DataContext, into a singleton, Repository. As it’s a singleton, the same Reposi-
tory instance is used throughout the lifetime of the app, so the DataContext that was
injected into it will also hang around, even though a new one should be used with every
request. Figure 10.16 shows this scenario, where a new instance of DataContext is

Figure 10.15 Any service registered as a singleton will always return the same instance. Consequently, all the
calls to RowCount return the same value, both within a request and between requests.

325Understanding lifetimes: When are services created?
created for each scope, but the instance inside Repository hangs around for the life-
time of the app.

 Captured dependencies can cause subtle bugs that are hard to root out, so you
should always keep an eye out for them. These captured dependencies are relatively
easy to introduce, so always think carefully when registering a singleton service.

WARNING A service should only use dependencies with a lifetime longer than
or equal to the lifetime of the service. A service registered as a singleton can
only safely use singleton dependencies. A service registered as scoped can safely
use scoped or singleton dependencies. A transient service can use dependen-
cies with any lifetime.

At this point, I should mention that there’s one glimmer of hope in this cautionary
tale. ASP.NET Core automatically checks for these kinds of captured dependencies
and will throw an exception on application startup if it detects them, as shown in fig-
ure 10.17.

 This scope validation check has a performance impact, so by default it’s only
enabled when your app is running in a development environment, but it should help
you catch most issues of this kind. You can enable or disable this check regardless of
environment by setting the ValidateScopes option when creating your HostBuilder
in Program.cs, as shown in listing 10.20.

Repository

RowCountModel

DataContext

DataContext

As the repository has been registered
as a singleton, the DataContext it uses
will act also as a singleton, even though
it is registered as scoped.

Repository

RowCountModel

DataContext

DataContext

The DataContext dependency has been
captured by the repository, breaking
the scoped lifetime.

Figure 10.16 DataContext is registered as a scoped dependency, but Repository
is a singleton. Even though you expect a new DataContext for every request,
Repository captures the injected DataContext and causes it to be reused for
the lifetime of the app.

326 CHAPTER 10 Service configuration with dependency injection

Y
v

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 })
 .UseDefaultServiceProvider(options =>
 {
 options.ValidateScopes = true;
 options.ValidateOnBuild = true;
 });
}

Listing 10.20 shows another setting you can enable, ValidateOnBuild, that goes one
step further. When it’s enabled, the DI container checks on application startup that it
has dependencies registered for every service it needs to build. If it doesn’t, it throws
an exception, as shown in figure 10.18, letting you know about the misconfiguration.
This also has a performance impact, so it’s only enabled in development environ-
ments by default, but it’s very useful for pointing out any missed service registrations6.

Listing 10.20 Setting the ValidateScopes property to always validate scopes

6 Unfortunately, the container can’t catch everything. For a list of caveats and exceptions, see this post from my
blog: http://mng.bz/QmwG.

In a development environment,
you will get an exception when
the DI container detects a
captured dependency.

The exception message describes
which service was captured...

...and which service captured
the dependency.

Figure 10.17 When ValidateScopes is enabled, the DI container will throw an exception
when it creates a service with a captured dependency. By default, this check is only enabled
for development environments.

The default builder sets
ValidateScopes to validate
only in development
environments.ou can override the

alidation check with
the UseDefault-
ServiceProvider

extension.

Setting this to true will
validate scopes in all
environments. This has
performance implications.

ValidateOnBuild checks that every
registered service has all its

dependencies registered.

http://mng.bz/QmwG

327Summary
With that, you’ve reached the end of this introduction to DI in ASP.NET Core. You
now know how to add framework services to your app using Add* extension meth-
ods like AddRazorPages(), as well as how to register your own services with the DI
container. Hopefully that will help you keep your code loosely coupled and easy to
manage.

 In the next chapter we’ll look at the ASP.NET Core configuration model. You’ll see
how to load settings from a file at runtime, how to store sensitive settings safely, and
how to make your application behave differently depending on which machine it’s
running on. We’ll even use a bit of DI; it gets everywhere in ASP.NET Core!

Summary
 Dependency injection is baked into the ASP.NET Core framework. You need to

ensure your application adds all the framework's dependencies in Startup or
you will get exceptions at runtime when the DI container can’t find the
required services.

 The dependency graph is the set of objects that must be created in order to cre-
ate a specific requested “root” object. The DI container handles creating all
these dependencies for you.

 You should aim to use explicit dependencies over implicit dependencies in
most cases. ASP.NET Core uses constructor arguments to declare explicit
dependencies.

 When discussing DI, the term service is used to describe any class or interface
registered with the container.

 You register services with a DI container so it knows which implementation to
use for each requested service. This typically takes the form of “for interface X,
use implementation Y.”

Figure 10.18 When ValidateOnBuild is enabled, the DI container will check on app startup
that it can create all of the registered services. If it finds a service it can’t create, it throws an
exception. By default, this check is only enabled for development environments.

328 CHAPTER 10 Service configuration with dependency injection
 The DI or IoC container is responsible for creating instances of services. It
knows how to construct an instance of a service by creating all the service’s
dependencies and passing these in the service constructor.

 The default built-in container only supports constructor injection. If you
require other forms of DI, such as property injection, you can use a third-party
container.

 You must register services with the container by calling Add* extension methods
on IServiceCollection in ConfigureServices in Startup. If you forget to reg-
ister a service that’s used by the framework or in your own code, you’ll get an
InvalidOperationException at runtime.

 When registering your services, you describe three things: the service type, the
implementation type, and the lifetime. The service type defines which class or
interface will be requested as a dependency. The implementation type is the
class the container should create to fulfill the dependency. The lifetime is how
long an instance of the service should be used for.

 You can register a service using generic methods if the class is concrete and all
its constructor arguments are registered with the container or have default
values.

 You can provide an instance of a service during registration, which will register
that instance as a singleton. This can be useful when you already have an
instance of the service available.

 You can provide a lambda factory function that describes how to create an
instance of a service with any lifetime you choose. You can use this approach
when your services depend on other services that are only accessible once your
application is running.

 Avoid calling GetService() in your factory functions if possible. Instead, favor
constructor injection—it’s more performant, as well as being simpler to reason
about.

 You can register multiple implementations for a service. You can then inject
IEnumerable<T> to get access to all the implementations at runtime.

 If you inject a single instance of a multiple-registered service, the container
injects the last implementation registered.

 You can use the TryAdd* extension methods to ensure that an implementation
is only registered if no other implementation of the service has been registered.
This can be useful for library authors to add default services while still allowing
consumers to override the registered services.

 You define the lifetime of a service during DI service registration. This dictates
when a DI container will reuse an existing instance of the service to fulfill ser-
vice dependencies and when it will create a new one.

 The transient lifetime means that every single time a service is requested, a new
instance is created.

329Summary
 The scoped lifetime means that within a scope all requests for a service will give
you the same object. For different scopes, you’ll get different objects. In ASP.NET
Core, each web request gets its own scope.

 You’ll always get the same instance of a singleton service, no matter which scope.
 A service should only use dependencies with a lifetime longer than or equal to

the lifetime of the service.

Configuring
an ASP.NET

Core application
In part 1 of this book, you learned the basics of getting an ASP.NET Core app up
and running and how to use the MVC design pattern to create a traditional web
app or a Web API. Once you start building real applications, you will quickly find
that you want to tweak various settings at deploy time, without necessarily having to
recompile your application. This chapter looks at how you can achieve this in
ASP.NET Core using configuration.

 I know. Configuration sounds boring, right? But I have to confess, the configu-
ration model is one of my favorite parts of ASP.NET Core. It’s so easy to use and so
much more elegant than the previous version of ASP.NET. In section 11.3 you’ll
learn how to load values from a plethora of sources—JSON files, environment vari-
ables, and command-line arguments—and combine them into a unified configura-
tion object.

This chapter covers
 Loading settings from multiple configuration

providers

 Storing sensitive settings safely

 Using strongly typed settings objects

 Using different settings in different hosting
environments
330

331Introducing the ASP.NET Core configuration model
 On top of that, ASP.NET Core brings the ability to easily bind this configuration to
strongly typed options objects. These are simple POCO classes that are populated from
the configuration object, which you can inject into your services, as you’ll see in sec-
tion 11.4. This lets you nicely encapsulate settings for different features in your app.

 In the final section of this chapter, you’ll learn about the ASP.NET Core hosting
environments. You often want your app to run differently in different situations, such as
when running on your developer machine compared to when you deploy it to a pro-
duction server. These different situations are known as environments. By letting the app
know in which environment it’s running, it can load a different configuration and
vary its behavior accordingly.

 Before we get to that, let’s go back to basics: what is configuration, why do we need
it, and how does ASP.NET Core handle these requirements?

11.1 Introducing the ASP.NET Core configuration model
In this section I’ll provide a brief description of what we mean by configuration and
what you can use it for in ASP.NET Core applications. Configuration is the set of
external parameters provided to an application that controls the application’s behav-
ior in some way. It typically consists of a mixture of settings and secrets that the applica-
tion will load at runtime.

DEFINITION A setting is any value that changes the behavior of your applica-
tion. A secret is a special type of setting that contains sensitive data, such as a
password, an API key for a third-party service, or a connection string.

The obvious question before we get started is to consider why you need app configura-
tion, and what sort of things you need to configure. You should normally move any-
thing that you can consider a setting or a secret out of your application code. That
way, you can easily change these values at deploy time, without having to recompile
your application.

 You might, for example, have an application that shows the locations of your brick-
and-mortar stores. You could have a setting for the connection string to the database
in which you store the details of the stores, but also settings such as the default loca-
tion to display on a map, the default zoom level to use, and the API key for accessing
the Google Maps API, as shown in figure 11.1. Storing these settings and secrets out-
side of your compiled code is good practice, as it makes it easy to tweak them without
having to recompile your code.

 There’s also a security aspect to this; you don’t want to hardcode secret values like
API keys or passwords into your code, where they could be committed to source con-
trol and made publicly available. Even values embedded in your compiled application
can be extracted, so it’s best to externalize them whenever possible.

 Virtually every web framework provides a mechanism for loading configuration,
and the previous version of ASP.NET was no different. It used the <appsettings> ele-
ment in a web.config file to store key-value configuration pairs. At runtime you’d use

332 CHAPTER 11 Configuring an ASP.NET Core application
the static (*wince*) ConfigurationManager to load the value for a given key from the
file. You could do more advanced things using custom configuration sections, but this
was painful and so was rarely used, in my experience.

 ASP.NET Core gives you a totally revamped experience. At the most basic level,
you’re still specifying key-value pairs as strings, but instead of getting those values
from a single file, you can now load them from multiple sources. You can load values
from files, but they can now be any format you like: JSON, XML, YAML, and so on. On
top of that, you can load values from environment variables, from command-line argu-
ments, from a database, or from a remote service. Or you could create your own cus-
tom configuration provider.

DEFINITION ASP.NET Core uses configuration providers to load key-value pairs
from a variety of sources. Applications can use many different configuration
providers.

Figure 11.1 You can store the default map location, zoom level, and mapping API Key in configuration
and load them at runtime. It’s important to keep secrets like API keys in configuration and out of your code.

333Configuring your application with CreateDefaultBuilder

Creat
insta

HostB
ry
n
The ASP.NET Core configuration model also has the concept of overriding settings. Each
configuration provider can define its own settings, or it can overwrite settings from a
previous provider. You’ll see this incredibly useful feature in action in section 11.3.

 ASP.NET Core makes it simple to bind these key-value pairs, which are defined as
strings, to POCO-setting classes you define in your code. This model of strongly
typed configuration makes it easy to logically group settings around a given feature
and lends itself well to unit testing.

 Before we get into the details of loading configuration from providers, we’ll take a
step back and look at where this process happens—inside HostBuilder. For ASP.NET
Core 5.0 apps built using the default templates, that’s invariably inside the Host.Create-
DefaultBuilder() method in Program.cs.

11.2 Configuring your application with
CreateDefaultBuilder
As you saw in chapter 2, the default templates in ASP.NET Core 5.0 use the Create-
DefaultBuilder method. This is an opinionated helper method that sets up a num-
ber of defaults for your app. In this section we’ll look inside this method to see all the
things it configures, and what they’re used for.

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

In chapter 2 I glossed over this method, as you will only rarely need to change it for
simple apps. But as your application grows, and if you want to change how configura-
tion is loaded for your application, you may find you need to break it apart.

 This listing shows an overview of the CreateDefaultBuilder method, so you can
see how HostBuilder is constructed.

public static IHostBuilder CreateDefaultBuilder(string[] args)
{
 var builder = new HostBuilder()
 .UseContentRoot(Directory.GetCurrentDirectory())

Listing 11.1 Using CreateDefaultBuilder to set up configuration

Listing 11.2 The Host.CreateDefaultBuilder method

The entry point for your
application creates an
IHostBuilder, builds an
IHost, and calls Run.

CreateDefaultBuilder sets
up a number of defaults,
including configuration.

ing an
nce of
uilder

The content root
defines the directo
where configuratio
files can be found.

334 CHAPTER 11 Configuring an ASP.NET Core application

sett
o

Co
D

 .ConfigureHostConfiguration(config =>
 {
 // Configuration provider setup
 })
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 // Configuration provider setup
 })
 .ConfigureLogging((hostingContext, logging) =>
 {
 logging.AddConfiguration(
 hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })
 .UseDefaultServiceProvider((context, options) =>
 {
 var isDevelopment = context.HostingEnvironment
 .IsDevelopment();
 options.ValidateScopes = isDevelopment;
 options.ValidateOnBuild = isDevelopment;
 });

 return builder;
}

The first method called on HostBuilder is UseContentRoot. This tells the application
in which directory it can find any configuration or view files it will need later. This is
typically the folder in which the application is running, hence the call to GetCurrent-
Directory.

TIP ContentRoot is not where you store static files that the browser can
access directly—that’s the WebRoot, typically wwwroot.

The ConfigureHostingConfiguration() method is where your application deter-
mines which HostingEnvironment it’s currently running in. The framework looks for
environment variables and command-line arguments by default, to determine if it’s
running in a development or production environment. You’ll learn more about host-
ing environments in section 11.5.

 ConfigureLogging is where you can specify the logging settings for your applica-
tion. We’ll look at logging in detail in chapter 17; for now, it’s enough to know that
CreateDefaultBuilder sets this up for you.

 The last method call in CreateDefaultBuilder, UseDefaultServiceProvider,
configures your app to use the built-in DI container. It also sets the ValidateScopes
and ValidateOnBuild options based on the current HostingEnvironment. When run-
ning the application in the development environment, the app will automatically
check for captured dependencies, which you learned about in chapter 10.

 The ConfigureAppConfiguration() method is the focus of section 11.3. It’s
where you load the settings and secrets for your app, whether they’re in JSON files,

Configures hosting settings
such as determining the
hosting environment

Configures
application

ings, the topic
f this chapter

Sets up
the logging
infrastructure

nfigures the
I container,

optionally
enabling

verification
settings

Returns HostBuilder for further
configuration by calling extra
methods before calling Build()

335Building a configuration object for your app
environment variables, or command-line arguments. In the next section, you’ll see
how to use this method to load configuration values from various configuration pro-
viders using the ASP.NET Core ConfigurationBuilder.

11.3 Building a configuration object for your app
In this section we’ll get into the meat of the configuration system. You’ll learn how to
load settings from multiple sources, how they’re stored internally in ASP.NET Core,
and how settings can override other values to give “layers” of configuration. You’ll also
learn how to store secrets securely while ensuring they’re still available when you run
your app.

 In section 11.2 you saw how the CreateDefaultBuilder method can be used to
create an instance of IHostBuilder. IHostBuilder is responsible for setting up many
things about your app, including the configuration system in the ConfigureApp-
Configuration method. This method is passed an instance of a Configuration-
Builder, which is used to define your app’s configuration.

 The ASP.NET Core configuration model centers on two main constructs:
ConfigurationBuilder and IConfiguration.

NOTE ConfigurationBuilder describes how to construct the final configura-
tion representation for your app, and IConfiguration holds the configuration
values themselves.

You describe your configuration setup by adding a number of IConfiguration-
Providers to the ConfigurationBuilder in ConfigureAppConfiguration. These
describe how to load the key-value pairs from a particular source; for example, a
JSON file or environment variables, as shown in figure 11.2. Calling Build() on
ConfigurationBuilder queries each of these providers for the values they contain to
create the IConfigurationRoot instance.

NOTE Calling Build() creates an IConfigurationRoot instance, which imple-
ments IConfiguration. You will generally work with the IConfiguration
interface in your code.

ASP.NET Core ships with configuration providers for loading data from common
locations:

 JSON files
 XML files
 Environment variables
 Command-line arguments
 INI files

If these don’t fit your requirements, you can find a whole host of alternatives on
GitHub and NuGet, and it’s not difficult to create your own custom provider. For

336 CHAPTER 11 Configuring an ASP.NET Core application
example, you could use the official Azure Key Vault provider NuGet package1 or the
YAML file provider I wrote.2

 In many cases, the default providers will be sufficient. In particular, most templates
start with an appsettings.json file, which contains a variety of settings, depending on
the template you choose. The following listing shows the default file generated by the
ASP.NET Core 5.0 Web App template without authentication.

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }

1 The Azure Key Vault provider is available on NuGet: http://mng.bz/OEKj.
2 You can find my YAML provider on GitHub at http://mng.bz/Yqdj.

Listing 11.3 Default appsettings.json file created by an ASP.NET Core Web template

1. You start by creating an instance
of the ConfigurationBuilder.

2. You add providers to the builder
using various extension methods.
These providers can pull configuration
values from multiple sources.

ConfigurationBuilder

IConfigurationRoot

Build()

JsonConfigurationProvider

EnvironmentVariablesProvider

CommandLineProvider

AddJsonFile()

AddEnvironmentVariables()

AddCommandLine()

3. Calling Build() on the ConfigurationBuilder
loads the values from each provider and
stores them in the IConfigurationRoot.

key:value

key:value

key:value

Figure 11.2 Using ConfigurationBuilder to create an instance of IConfiguration. Configuration
providers are added to the builder with extension methods. Calling Build() queries each provider to create
the IConfigurationRoot, which implements IConfiguration.

http://mng.bz/OEKj
http://mng.bz/Yqdj

337Building a configuration object for your app
 },
 "AllowedHosts": "*"
}

As you can see, this file mostly contains settings to control logging, but you can add
additional configuration for your app here too.

WARNING Don’t store sensitive values, such as passwords, API keys, or connec-
tion strings, in this file. You’ll see how to store these securely in section 11.3.3.

Adding your own configuration values involves adding a key-value pair to the JSON.
It’s a good idea to “namespace” your settings by creating a base object for related set-
tings, as in the MapSettings object shown here.

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "MapSettings": {
 "DefaultZoomLevel": 9,
 "DefaultLocation": {
 "latitude": 50.500,
 "longitude": -4.000
 }
 }
}

I’ve nested the new configuration inside the MapSettings parent key; this creates a
“section” which will be useful later when it comes to binding your values to a POCO
object. I also nested the latitude and longitude keys under the DefaultLocation
key. You can create any structure of values that you like; the configuration provider
will read them just fine. Also, you can store them as any data type—numbers, in this
case—but be aware that the provider will read and store them internally as strings.

TIP The configuration keys are not case-sensitive in your app, so bear that in
mind when loading from providers in which the keys are case-sensitive.

Now that you have a configuration file, it’s time for your app to load it using
ConfigurationBuilder. For this, we’ll return to the ConfigureAppConfiguration()
method exposed by HostBuilder in Program.cs.

Listing 11.4 Adding additional configuration values to an appsettings.json file

Nest all the configuration
under the MapSettings key.

Values can be numbers in the JSON file, but they’ll
be converted to strings when they’re read.

You can create deeply nested structures to
better organize your configuration values.

338 CHAPTER 11 Configuring an ASP.NET Core application
11.3.1 Adding a configuration provider in Program.cs

The default templates in ASP.NET Core use the CreateDefaultBuilder helper method
to bootstrap HostBuilder for your app, as you saw in section 11.2. As part of this config-
uration, the CreateDefaultBuilder method calls ConfigureAppConfiguration and
sets up a number of default configuration providers, which we’ll look at in more detail
throughout this chapter:

 JSON file provider—Loads settings from an optional JSON file called appset-
tings.json. It also loads settings from an optional environment-specific JSON file
called appsettings.ENVIRONMENT.json. I’ll show how to use environment-spe-
cific files in section 11.5.

 User Secrets—Loads secrets that are stored safely during development.
 Environment variables—Loads environment variables as configuration variables.

These are great for storing secrets in production.
 Command-line arguments—Uses values passed as arguments when you run your app.

Using the default builder ties you to this default set, but the default builder is
optional. If you want to use different configuration providers, you can create your own
HostBuilder instance instead. If you take this approach, you’ll need to set up every-
thing that CreateHostBuilder does: logging, hosting configuration, service provider
configuration, as well as your app configuration.

 An alternative approach is to add additional configuration providers by adding an
extra call to ConfigureAppConfiguration, as shown in the following listing. This
allows you to add extra providers on top of those added by CreateHostBuilder. In the
following listing, you explicitly clear the default providers, which lets you completely
customize where configuration is loaded from, without having to replace the defaults
CreateHostBuilder adds for logging and so on.

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration(AddAppConfiguration)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

 public static void AddAppConfiguration(
 HostBuilderContext hostingContext,
 IConfigurationBuilder config)

Listing 11.5 Loading appsettings.json using a custom HostBuilder

Adds the
configuration

setup function
to HostBuilder

HostBuilder provides a hosting
context and an instance of
ConfigurationBuilder.

339Building a configuration object for your app
 {
 config.Sources.Clear();
 config.AddJsonFile("appsettings.json", optional: true);
 }

TIP In listing 11.5 I extracted the configuration to a static helper method, Add-
AppConfiguration, but you can also provide this inline as a lambda method.

The HostBuilder creates a ConfigurationBuilder instance before invoking the
ConfigureAppConfiguration method. All you need to do is add the configuration
providers for your application.

 In this example, you’ve added a single JSON configuration provider by calling the
AddJsonFile extension method and providing a filename. You’ve also set the value of
optional to true. This tells the configuration provider to skip over files it can’t find at
runtime, instead of throwing FileNotFoundException. Note that the extension method
just registers the provider at this point; it doesn’t try to load the file yet.

 And that’s it! The HostBuilder instance takes care of calling Build(), which gen-
erates IConfiguration, which represents your configuration object. This is then regis-
tered with the DI container, so you can inject it into your classes. You’d commonly
inject this into the constructor of your Startup class, so you can use it in the Configure
and ConfigureServices methods:

public class Startup
{
 public Startup(IConfiguration config)
 {
 Configuration = config;
 }
 public IConfiguration Configuration { get; }
}

NOTE The ConfigurationBuilder creates an IConfigurationRoot instance,
which implements IConfiguration. This is registered as an IConfiguration
in the DI container, not an IConfigurationRoot. IConfiguration is one of
the few things that you can inject into the Startup constructor.

At this point, at the end of the Startup constructor, you have a fully loaded configura-
tion object. But what can you do with it? IConfiguration stores configuration as a set
of key-value string pairs. You can access any value by its key, using standard dictionary
syntax. For example, you could use

var zoomLevel = Configuration["MapSettings:DefaultZoomLevel"];

to retrieve the configured zoom level for your application. Note that I used a colon (:)
to designate a separate section. Similarly, to retrieve the latitude key, you could use

Configuration["MapSettings:DefaultLocation:Latitude"];

Clears the providers configured by
default in CreateDefaultBuilder

Adds a JSON configuration provider,
providing the filename of the

configuration file

340 CHAPTER 11 Configuring an ASP.NET Core application
NOTE If the requested configuration key does not exist, you will get a null
value.

You can also grab a whole section of the configuration using the GetSection(section)
method, which returns an IConfigurationSection, which implements IConfiguration.
This grabs a chunk of the configuration and resets the namespace. Another way of
getting the latitude key would be

Configuration.GetSection("MapSettings")["DefaultLocation:Latitude"];

Accessing setting values like this is useful in the ConfigureServices and Configure
methods of Startup, when you’re defining your application. When setting up your
application to connect to a database, for example, you’ll often load a connection
string from the Configuration object (you’ll see a concrete example of this in the
next chapter, when we look at Entity Framework Core).

 If you need to access the configuration object like this from classes other than
Startup, you can use DI to take it as a dependency in your service’s constructor. But
accessing configuration using string keys like this isn’t particularly convenient; you
should try to use strongly typed configuration instead, as you’ll see in section 11.4.

 So far, this is probably all feeling a bit convoluted and run-of-the-mill to load set-
tings from a JSON file, and I’ll grant you, it is. Where the ASP.NET Core configuration
system shines is when you have multiple providers.

11.3.2 Using multiple providers to override configuration values

You’ve seen that ASP.NET Core uses the Builder pattern to construct the configura-
tion object, but so far you’ve only configured a single provider. When you add provid-
ers, it’s important to consider the order in which you add them, as that defines the
order in which the configuration values are added to the underlying dictionary. Con-
figuration values from later providers will overwrite values with the same key from ear-
lier providers.

NOTE This bears repeating: the order in which you add configuration provid-
ers to ConfigurationBuilder is important. Later configuration providers can
overwrite the values of earlier providers.

Think of the configuration providers as adding “layers” of configuration values to a
stack, where each layer may overlap with some or all of the layers below, as shown in fig-
ure 11.3. When you call Build(), ConfigurationBuilder collapses these layers down
into one, to create the final set of configuration values stored in IConfiguration.

 Update your code to load configuration from three different configuration provid-
ers—two JSON providers and an environment variable provider—by adding them to
ConfigurationBuilder. I’ve only shown the AddAppConfiguration method in list-
ing 11.6 for brevity.

341Building a configuration object for your app
public class Program
{
 /* Additional Program configuration*/
 public static void AddAppConfiguration(
 HostBuilderContext hostingContext,
 IConfigurationBuilder config)
 {
 config.Sources.Clear();
 config
 .AddJsonFile("sharedSettings.json", optional: true)
 .AddJsonFile("appsettings.json", optional: true)
 .AddEnvironmentVariables();
 }
}

This layered design can be useful for a number of things. Fundamentally, it allows
you to aggregate configuration values from a number of different sources into a sin-
gle, cohesive object. To cement this in place, consider the configuration values in
figure 11.4.

 Most of the settings in each provider are unique and are added to the final
IConfiguration. But the "MyAppConnString" key appears both in appsettings.json
and as an environment variable. Because the environment variable provider is added
after the JSON providers, the environment variable configuration value is used in
IConfiguration.

 The ability to collate configuration from multiple providers is a handy trait on its
own, but this design is especially useful when it comes to handling sensitive configu-
ration values, such as connection strings and passwords. The next section shows how

Listing 11.6 Loading from multiple providers in Startup.cs

Each configuration provider
adds a layer of configuration
values to the stack.

Calling Build() collapses the
stack, taking the topmost
configuration values, as
viewed from above.

The values at the top of
a vertical slice are the
final values found in the
IConfiguration.

sharedsettings.json

appsettings.json

Environment
variables

Figure 11.3 Each configuration provider adds a “layer” of values to ConfigurationBuilder.
Calling Build() collapses that configuration. Later providers will overwrite configuration values
with the same keys as earlier providers.

Loads configuration
from a different JSON

configuration file before
the appsettings.json file

Adds the machine’s
environment variables as
a configuration provider

342 CHAPTER 11 Configuring an ASP.NET Core application
to deal with this problem, both locally on your development machine and on pro-
duction servers.

11.3.3 Storing configuration secrets safely

As soon as you build a nontrivial app, you’ll find you have a need to store some sort of
sensitive data as a setting somewhere. This could be a password, a connection string,
or an API key for a remote service, for example.

 Storing these values in appsettings.json is generally a bad idea, as you should never
commit secrets to source control; the number of secret API keys people have commit-
ted to GitHub is scary! Instead, it’s much better to store these values outside of your
project folder, where they won’t get accidentally committed.

 You can do this in a few ways, but the easiest and most commonly used approaches
are to use environment variables for secrets on your production server and User
Secrets locally.

 Neither approach is truly secure, in that they don’t store values in an encrypted
format. If your machine is compromised, attackers will be able to read the stored val-
ues because they’re stored in plaintext. They’re intended to help you avoid commit-
ting secrets to source control.

"StoreDetails:", ""

"StoreDetails:Name", "Head office"

"MyAppConnString", "localDB;"

"MapSettings:", ""

"MapSettings:DefaultZoomLevel", 5

"MapSettings:DefaultLocation:Latitude", "50.5"

"MapSettings:DefaultLocation:Longitude", "-4.0"

"MyAppConnString", "productionDB;"

"GoogleMapsApiKey", "123456ABCD"

{

"MyAppConnString": "localDB;",

"MapSettings": {

"DefaultZoomLevel": 5,

"DefaultLocation: {

"Latitude": 50.5,

"Longitude": -4.0

}

}

}

appsettings.json

{

"StoreDetails": {

"Name": "Head office"

}

}

sharedsettings.json

Environment variables

MyAppConnString: "productionDB;"

GoogleMapsApiKey: "123456ABCD"

IConfiguration

Each configuration provider adds
a number of configuration values to
the final IConfiguration. They are
added in the order the configuration
providers were added to the
ConfigurationBuilder.

The environment variables are loaded
after appsettings.json, so the “localDB”;
MyAppConString value is overwritten
with the “productionDB”; value.

Figure 11.4 The final IConfiguration includes the values from each of the providers. Both
appsettings.json and the environment variables include the MyAppConnString key. As the
environment variables are added later, that configuration value is used.

343Building a configuration object for your app
TIP Azure Key Vault3 is a secure alternative, in that it stores the values
encrypted in Azure. But you will still need to use the following approach for
storing the Azure Key Value connection details. Another popular option is
Vault by Hashicorp (www.vaultproject.io/), which can be run on your prem-
ises or in the cloud.

Whichever approach you use to store your application secrets, make sure you aren’t
storing them in source control, if possible. Even private repositories may not stay pri-
vate forever, so it’s best to err on the side of caution.

STORING SECRETS IN ENVIRONMENT VARIABLES IN PRODUCTION

You can add the environment variable configuration provider using the AddEnvironment-
Variables extension method, as you’ve already seen in listing 11.6. This adds all
of the environment variables on your machine as key-value pairs in the configura-
tion object.

NOTE The environment variable provider is added by default in Create-
DefaultBuilder as you saw in section 11.2.

You can create the same hierarchical sections in environment variables that you typi-
cally see in JSON files by using a colon (:) or a double underscore (__) to demarcate
a section; for example, MapSettings:MaxNumberOfPoints or MapSettings__MaxNumber-
OfPoints.

TIP Some environments, such as Linux, don’t allow the colon in environment
variables. You must use the double underscore approach in these environments
instead. The double underscore in environment variables will be converted
into a colon when they’re imported into the IConfiguration object. You
should always use the colon when retrieving values from an IConfiguration in
your app.

The environment variable approach is particularly useful when you’re publishing your
app to a self-contained environment, such as a dedicated server, Azure, or a Docker
container. You can set environment variables on your production machine or on your
Docker container, and the provider will read them at runtime, overriding the defaults
specified in your appsettings.json files.4

 For a development machine, environment variables are less useful, as all your apps
would be using the same values. For example, if you set the ConnectionStrings__
DefaultConnection environment variable, that would be added for every app you run
locally. That sounds like more of a hassle than a benefit!

3 The Azure Key Vault configuration provider is available as a Microsoft.Extensions.Configuration.AzureKey-
Vault NuGet package. For details on using it in your application, see Microsoft’s “Azure Key Vault Configura-
tion Provider in ASP.NET Core” documentation at http://mng.bz/BR7v.

4 For instructions on how to set environment variables for your operating system, see Microsoft’s “Use multiple
environments in ASP.NET Core” documentation at http://mng.bz/d4OD.

http://mng.bz/BR7v
https://www.vaultproject.io/
http://mng.bz/d4OD

344 CHAPTER 11 Configuring an ASP.NET Core application
 For development scenarios, you can use the User Secrets Manager. This effectively
adds per-app environment variables, so you can have different settings for each app
but store them in a different location from the app itself.

STORING SECRETS WITH THE USER SECRETS MANAGER IN DEVELOPMENT

The idea behind User Secrets is to simplify storing per-app secrets outside of your
app’s project tree. This is similar to environment variables, but you use a unique key
for each app to keep the secrets segregated.

WARNING The secrets aren’t encrypted, so they shouldn’t be considered secure.
Nevertheless, it’s an improvement on storing them in your project folder.

Setting up User Secrets takes a bit more effort than using environment variables, as
you need to configure a tool to read and write them, add the User Secrets configura-
tion provider, and define a unique key for your application:

1 ASP.NET Core includes the User Secrets provider by default. The .NET SDK
also includes a global tool for working with secrets from the command line.

2 If you’re using Visual Studio, right-click your project and choose Manage User
Secrets. This opens an editor for a secrets.json file in which you can store your
key-value pairs, as if it were an appsettings.json file, as shown in figure 11.5.

Figure 11.5 Select Manage User Secrets to open an editor for the User Secrets app. You can use
this file to store secrets when developing your app locally. These are stored outside your project
folder, so they won’t be committed to source control accidentally.

345Building a configuration object for your app
3 Add a unique identifier to your .csproj file. Visual Studio does this automatically
when you click Manage User Secrets, but if you’re using the command line
you’ll need to add it yourself. Typically, you’d use a unique ID, like a GUID:

<PropertyGroup>
 <UserSecretsId>96eb2a39-1ef9-4d8e-8b20-8e8bd14038aa</UserSecretsId>
</PropertyGroup>

4 If you aren’t using Visual Studio, you can add User Secrets using the command
line

dotnet user-secrets set "MapSettings:GoogleMapsApiKey" F5RJT9GFHKR7

or you can edit the secret.json file directly using your favorite editor. The exact
location of this file depends on your operating system and may vary. Check the
documentation for details.5

Phew, that’s a lot of setup, and if you’re customizing the HostBuilder, you’re not
done yet! You need to update your app to load the User Secrets at runtime using the
AddUserSecrets extension method in your ConfigureAppConfiguration method:

if(env.IsDevelopment())
{
 configBuilder.AddUserSecrets<Startup>();
}

NOTE You should only use the User Secrets provider in development, not in
production, so in the preceding snippet you conditionally add the provider to
ConfigurationBuilder. In production you should use environment variables
or Azure Key Vault, as discussed earlier. This is all configured correctly by
default if you use Host.CreateDefaultBuilder().

This method has a number of overloads, but the simplest is a generic method that you
can call passing your application’s Startup class as a generic argument. The User
Secrets provider needs to read the UserSecretsId property that you (or Visual Stu-
dio) added to the .csproj file. The Startup class acts as a simple marker to indicate
which assembly contains this property.

NOTE If you’re interested, the User Secrets package uses the UserSecretsId
property in your .csproj file to generate an assembly-level UserSecretsId-
Attribute. The provider then reads this attribute at runtime to determine
the UserSecretsId of the app, and hence generates the path to the secrets
.json file.

5 The Secret Manager Tool stores the secrets.json file in the user profile. You can read more about the this tool
specifically in Microsoft’s “Safe storage of app secrets in development in ASP.NET Core” documentation:
http://mng.bz/ryAg. You can find more about .NET tools in general in Microsoft’s “How to manage .NET
tools” documentation: http://mng.bz/VdmX.

http://mng.bz/ryAg
http://mng.bz/VdmX

346 CHAPTER 11 Configuring an ASP.NET Core application
And there you have it—safe storage of your secrets outside your project folder during
development. This might seem like overkill, but if you have anything that you con-
sider remotely sensitive that you need to load into configuration, I strongly urge you
to use environment variables or User Secrets.

 It’s almost time to leave configuration providers behind, but before we do, I’d like
to show you the ASP.NET Core configuration system’s party trick: reloading files on
the fly.

11.3.4 Reloading configuration values when they change

Besides security, not having to recompile your application every time you want to
tweak a value is one of the advantages of using configuration and settings. In the pre-
vious version of ASP.NET, changing a setting by editing web.config would cause your
app to have to restart. This beat having to recompile, but waiting for the app to start
up before it could serve requests was a bit of a drag.

 In ASP.NET Core you finally get the ability to edit a file and have the configuration
of your application automatically update, without having to recompile or restart.

 An often cited scenario where you might find this useful is when you’re trying to
debug an app you have in production. You typically configure logging to one of a
number of levels:

 Error
 Warning
 Information
 Debug

Each of these settings is more verbose than the last, but it also provides more context.
By default, you might configure your app to only log warning and error-level logs in
production, so you don’t generate too many superfluous log entries. Conversely, if
you’re trying to debug a problem, you want as much information as possible, so you
might want to use the debug log level.

 Being able to change configuration at runtime means you can easily switch on
extra logs when you encounter an issue and switch them back afterwards by editing
your appsettings.json file.

NOTE Reloading is generally only available for file-based configuration pro-
viders, as opposed to the environment variable or User Secrets provider.

You can enable the reloading of configuration files when you add any of the file-based
providers to your ConfigurationBuilder. The Add*File extension methods include
an overload with a reloadOnChange parameter. If this is set to true, the app will moni-
tor the filesystem for changes to the file and will trigger a complete rebuild of the
IConfiguration, if needs be. This listing shows how to add configuration reloading to
the appsettings.json file loaded inside the AddAppConfiguration method.

347Using strongly typed settings with the options pattern
public class Program
{
 /* Additional Program configuration*/

 public static void AddAppConfiguration(
 HostBuilderContext hostingContext,
 IConfigurationBuilder config)
 {
 config.AddJsonFile(
 "appsettings.json",
 optional: true
 reloadOnChange: true);
 }
}

With that in place, any changes you make to the file will be mirrored in the
IConfiguration. But as I said at the start of this chapter, IConfiguration isn’t the pre-
ferred way to pass settings around in your application. Instead, as you’ll see in the
next section, you should favor strongly typed POCO objects.

11.4 Using strongly typed settings with the options pattern
In this section you’ll learn about strongly typed configuration and the Options pat-
tern. This is the preferred way of accessing configuration in ASP.NET Core. By using
strongly typed configuration, you can avoid issues with typos when accessing configu-
ration. It also makes classes easier to test, as you can use simple POCO objects for con-
figuration instead of relying on the IConfiguration abstraction.

 Most of the examples I’ve shown so far have been about how to get values into
IConfiguration, as opposed to how to use them. You’ve seen that you can access a key
using the Configuration["key"] dictionary syntax, but using string keys like this
feels messy and prone to typos.

 Instead, ASP.NET Core promotes the use of strongly typed settings. These are
POCO objects that you define and create and that represent a small collection of set-
tings, scoped to a single feature in your app.

 The following listing shows both the settings for your store locator component and
display settings to customize the homepage of the app. They’re separated into two dif-
ferent objects with "MapSettings" and "AppDisplaySettings" keys, corresponding
to the different areas of the app they impact.

{
 "MapSettings": {
 "DefaultZoomLevel": 6,
 "DefaultLocation": {
 "latitude": 50.500,
 "longitude": -4.000

Listing 11.7 Reloading appsettings.json when the file changes

Listing 11.8 Separating settings into different objects in appsettings.json

IConfiguration will be rebuilt
if the appsettings.json file
changes.

Settings related
to the store
locator section
of the app

348 CHAPTER 11 Configuring an ASP.NET Core application

ex
POCO
 }
 },
 "AppDisplaySettings": {
 "Title": "Acme Store Locator",
 "ShowCopyright": true
 }
}

The simplest approach to making the home page settings available in the Index.cshtml
Razor Page would be to inject IConfiguration into the PageModel and access the val-
ues using the dictionary syntax:

public class IndexModel : PageModel
{
 public IndexModel(IConfiguration config)
 {
 var title = config["HomePageSettings:Title"];
 var showCopyright = bool.Parse(
 config["HomePageSettings:ShowCopyright"]);
 }
}

But you don’t want to do this; too many strings for my liking! And that bool.Parse?
Yuk! Instead, you can use custom strongly typed objects, with all the type safety and
IntelliSense goodness that brings.

public class IndexModel: PageModel
{
 public IndexModel(IOptions<AppDisplaySettings> options)
 {
 AppDisplaySettings settings = options.Value;
 var title = settings.Title;
 bool showCopyright = settings.ShowCopyright;
 }
}

The ASP.NET Core configuration system includes a binder, which can take a collection
of configuration values and bind them to a strongly typed object, called an options class.
This is similar to the concept of model binding from chapter 6, where request values
were bound to your POCO binding model classes.

 This section shows how to set up the binding of configuration values to a POCO
options class and how to make sure it reloads when the underlying configuration val-
ues change. We’ll also have a look at the different sorts of objects you can bind.

Listing 11.9 Injecting strongly typed options into a PageModel using IOptions<T>

General settings related
to displaying the app

You can inject a strongly typed options class
using the IOptions<> wrapper interface.

The Value
property

poses the
 settings

object.
The settings object
contains properties
that are bound to
configuration values
at runtime.

The binder can also convert string
values directly to primitive types.

349Using strongly typed settings with the options pattern
11.4.1 Introducing the IOptions interface

ASP.NET Core introduced strongly typed settings as a way of letting configuration
code adhere to the single responsibility principle and to allow the injection of config-
uration classes as explicit dependencies. Such settings also make testing easier; instead
of having to create an instance of IConfiguration to test a service, you can create an
instance of the POCO options class.

 For example, the AppDisplaySettings class shown in the previous example could
be simple, exposing just the values related to the homepage:

public class AppDisplaySettings
{
 public string Title { get; set; }
 public bool ShowCopyright { get; set; }
}

Your options classes need to be non-abstract and have a public parameterless con-
structor to be eligible for binding. The binder will set any public properties that match
configuration values, as you’ll see shortly.

TIP You’re not restricted to primitive types like string and bool; you can
use nested complex types too. The options system will bind sections to com-
plex properties. See the associated source code for examples.

To help facilitate the binding of configuration values to your custom POCO options
classes, ASP.NET Core introduces the IOptions<T> interface. This is a simple inter-
face with a single property, Value, which contains your configured POCO options
class at runtime. Options classes are set up in the ConfigureServices section of
Startup, as shown here.

public IConfiguration Configuration { get; }
public void ConfigureServices(IServiceCollection services)
{
 services.Configure<MapSettings>(
 Configuration.GetSection("MapSettings"));

 services.Configure<AppDisplaySettings>(
 Configuration.GetSection("AppDisplaySettings"));
}

TIP You don’t have to use the same name for both the section and class as I
do in listing 11.10; it’s just a convention I like to follow. With this convention,
you can use the nameof() operator to further reduce the chance of typos,
such as by calling GetSection(nameof(MapSettings)).

Listing 11.10 Configuring the options classes using Configure<T> in Startup.cs

Binds the
MapSettings section
to the POCO options
class MapSettings

Binds the AppDisplaySettings section to the
POCO options class AppDisplaySettings

350 CHAPTER 11 Configuring an ASP.NET Core application
Each call to Configure<T> sets up the following series of actions internally:

1 Creates an instance of ConfigureOptions<T>, which indicates that IOptions<T>
should be configured based on configuration.

If Configure<T> is called multiple times, multiple ConfigureOptions<T>
objects will be used, all of which can be applied to create the final object, in
much the same way as IConfiguration is built from multiple layers.

2 Each ConfigureOptions<T> instance binds a section of IConfiguration to an
instance of the T POCO class. This sets any public properties on the options
class based on the keys in the provided ConfigurationSection.

Remember that the section name ("MapSettings" in listing 11.10) can have
any value; it doesn’t have to match the name of your options class.

3 The IOptions<T> interface is registered in the DI container as a singleton, with
the final bound POCO object in the Value property.

This last step lets you inject your options classes into controllers and services by inject-
ing IOptions<T>, as you’ve seen. This gives you encapsulated, strongly typed access to
your configuration values. No more magic strings, woo-hoo!

WARNING If you forget to call Configure<T> and inject IOptions<T> into
your services, you won’t see any errors, but the T options class won’t be bound
to anything and will only have default values in its properties.

The binding of the T options class to ConfigurationSection happens when you first
request IOptions<T>. The object is registered in the DI container as a singleton, so
it’s only bound once.

 There’s one catch with this setup: you can’t use the reloadOnChange parameter I
described in section 11.3.4 to reload your strongly typed options classes when using
IOptions<T>. IConfiguration will still be reloaded if you edit your appsettings.json
files, but it won’t propagate to your options class.

 If that seems like a step backwards, or even a deal-breaker, then don’t worry.
IOptions<T> has a cousin, IOptionsSnapshot<T>, for such an occasion.

11.4.2 Reloading strongly typed options with IOptionsSnapshot

In the previous section, you used IOptions<T> to provide strongly typed access to con-
figuration. This provided a nice encapsulation of the settings for a particular service,
but with a specific drawback: the options class never changes, even if you modify the
underlying configuration file from which it was loaded, such as appsettings.json.

 This is often not a problem (you shouldn’t really be modifying files on live produc-
tion servers anyway), but if you need this functionality, you can use the IOptions-
Snapshot<T> interface.

 Conceptually, IOptionsSnaphot<T> is identical to IOptions<T> in that it’s a
strongly typed representation of a section of configuration. The difference is when,
and how often, the POCO options objects are created when each of these are used.

351Using strongly typed settings with the options pattern
 IOptions<T>—The instance is created once, when first needed. It always con-
tains the configuration from when the object instance was first created.

 IOptionsSnapshot<T>—A new instance is created, when needed, if the underly-
ing configuration has changed since the last instance was created.

IOptionsSnaphot<T> is automatically set up for your options classes at the same time
as IOptions<T>, so you can use it in your services in exactly the same way. This listing
shows how you could update your IndexModel home page so that you always get the
latest configuration values in your strongly typed AppDisplaySettings options class.

public class IndexModel: PageModel
{
 public IndexModel(
 IOptionsSnapshot<AppDisplaySettings> options)
 {
 AppDisplaySettings settings = options.Value;
 var title = settings.Title;
 }
}

Whenever you edit the settings file and cause IConfiguration to be reloaded, IOptions-
Snapshot<AppDisplaySettings> will be rebuilt. A new AppDisplaySettings object is
created with the new configuration values and will be used for all future dependency
injection. Until you edit the file again, of course! It’s as simple as that; update your
code to use IOptionsSnapshot<T> instead of IOptions<T> wherever you need it.

 An important consideration when using the options pattern is the design of your
POCO options classes themselves. These are typically simple collections of properties,
but there are a few things to bear in mind so that you don’t get stuck debugging why
the binding seemingly hasn’t worked.

11.4.3 Designing your options classes for automatic binding

I’ve already touched on some of the requirements for POCO classes to work with the
IOptions<T> binder, but there are a few rules to bear in mind.

 The first key point is that the binder will be creating instances of your options
classes using reflection, so your POCO options classes need to

 Be non-abstract
 Have a default (public parameterless) constructor

If your classes satisfy these two points, the binder will loop through all the properties
on your class and bind any it can. In the broadest sense, the binder can bind any prop-
erty that

 Is public
 Has a getter—the binder won’t write set-only properties

Listing 11.11 Injecting reloadable options using IOptionsSnapshot<T>

IOptionsSnapshot<T> will
update if the underlying

configuration values change. The Value property
exposes the POCO
settings object,
the same as for
IOptions<T>.

The settings object will match the configuration
values at some point, instead of at first run.

352 CHAPTER 11 Configuring an ASP.NET Core application

ple
s,
s

The bin
bind

includin
dictio
have

The
bin

set-onl
onl

The
pro
 Has a setter or, for complex types, a non-null value
 Is not an indexer

The following listing shows an extensive options class with a whole host of different
types of properties, some of which are valid to bind, and some of which aren’t.

public class TestOptions
{
 public string String { get; set; }
 public int Integer { get; set; }
 public SubClass Object { get; set; }
 public SubClass ReadOnly { get; } = new SubClass();
 public Dictionary<string, SubClass> Dictionary { get; set; }
 public List<SubClass> List { get; set; }
 public IDictionary<string, SubClass> IDictionary { get; set; }
 public IEnumerable<SubClass> IEnumerable { get; set; }
 public ICollection<SubClass> IEnumerable { get; }
 = new List<SubClass>();

 internal string NotPublic { get; set; }
 public SubClass SetOnly { set => _setOnly = value; }
 public SubClass NullReadOnly { get; } = null;
 public SubClass NullPrivateSetter { get; private set; } = null;
 public SubClass this[int i] {
 get => _indexerList[i];
 set => _indexerList[i] = value;
 }
 public List<SubClass> NullList { get; }
 public Dictionary<int, SubClass> IntegerKeys { get; set; }
 public IEnumerable<SubClass> ReadOnlyEnumerable { get; }
 = new List<SubClass>();
 public SubClass _setOnly = null;
 private readonly List<SubClass> _indexerList
 = new List<SubClass>();
 public class SubClass
 {
 public string Value { get; set; }
 }
}

As shown in the listing, the binder generally supports collections—both implementa-
tions and interfaces. If the collection property is already initialized, it will use that, but
the binder can also create backing fields for them. If your property implements any of
the following classes, the binder will create a List<> of the appropriate type as the
backing object:

 IReadOnlyList<>

 IReadOnlyCollection<>

 ICollection<>

 IEnumerable<>

Listing 11.12 An options class containing binding and nonbinding properties

The binder can bind sim
and complex object type
and read-only propertie
with a default.

der will also
 collections,
g interfaces;
naries must
 string keys.

binder can’t
d nonpublic,
y, null-read-
y, or indexer

properties.

se collection
perties can’t

be bound.

The backing fields for implementing
SetOnly and Indexer properties—
not bound directly

353Using strongly typed settings with the options pattern
WARNING You can’t bind to an IEnumerable<> property that has already
been initialized, as the underlying type doesn’t expose an Add function. You
can bind to an IEnumerable<> if you leave its initial value as null.

Similarly, the binder will create a Dictionary<,> as the backing field for properties
with dictionary interfaces, as long as they use string keys:

 IDictionary<string,>

 IReadOnlyDictionary<string,>

WARNING You can’t bind dictionaries with non-string keys, such as int. For
examples of binding collection types, see the associated source code for this
book.

Clearly there are quite a few nuances here, but if you stick to the simple cases from the
preceding example, you’ll be fine. Be sure to check for typos in your JSON files!

TIP The options pattern is most commonly used to bind POCO classes to
configuration, but you can also configure your strongly typed settings classes
in code by providing a lambda to the Configure function; for example, ser-
vices.Configure<TestOptions>(opt => opt.Value=true).

The Options pattern is used throughout ASP.NET Core, but not everyone is a fan. In
the next section you’ll see how to use strongly typed settings and the configuration
binder without the Options pattern.

11.4.4 Binding strongly typed settings without the IOptions interface

The IOptions interface is very much canonical in ASP.NET Core—it’s used by the
core ASP.NET Core libraries and has various convenience functions for binding
strongly typed settings, as you’ve already seen.

 In many cases, however, the IOptions interface doesn’t give many benefits for
consumers of the strongly typed settings objects. Services must take a dependency on
the IOptions interface but then immediately extract the “real” object by calling
IOptions<T>.Value. This can be especially annoying if you’re building a reusable
library that isn’t inherently tied to ASP.NET Core, as you must expose the IOptions<T>
interface in all your public APIs.

 Luckily, the configuration binder that maps IConfiguration objects to strongly
typed settings objects isn’t inherently tied to IOptions. Listing 11.13 shows how you
can manually bind a strongly typed settings object to a configuration section and regis-
ter it with the DI container.

public IConfiguration Configuration { get; }
public void ConfigureServices(IServiceCollection services)
{
 var settings = new MapSettings ();

Listing 11.13 Configuring strongly typed settings without IOptions in Startup.cs

Create a new instance of
the MapSettings object.

354 CHAPTER 11 Configuring an ASP.NET Core application

on
 to
t.
 Configuration.GetSection("MapSettings").Bind(settings);
 services.AddSingleton(settings);
}

You can now inject the MapSettings object directly into your services without the
additional ceremony required to use IOptions<MapSettings>.

public class MyMappingController
{
 private readonly MapSettings _settings;
 public MyMappingController(MapSettings settings)
 {
 _settings = settings;
 }
}

If you use this approach, you won’t benefit from the ability to reload strongly typed
settings without further work, or from some of the more advanced usages of IOptions,
but in most cases that’s not a big problem. I’m a fan of this approach generally, but as
always, consider what you’re losing before adopting it wholeheartedly.

TIP In chapter 19 I show one such scenario, where you configure an IOptions
object using services in your DI container. For other advanced scenarios see
Microsoft’s “Options pattern in ASP.NET Core” documentation, http://mng
.bz/DR7y, or see the various IOptions posts on my blog, such as this one:
http://mng.bz/l1Aj.

That brings us to the end of this section on strongly typed settings. In the next section
we’ll look at how you can dynamically change your settings at runtime, based on the
environment in which your app is running.

11.5 Configuring an application for multiple environments
In this section you’ll learn about hosting environments in ASP.NET Core. You’ll learn
how to set and determine which environment an application is running in, and how
to change which configuration values are used, based on the environment. This lets
you easily switch between different sets of configuration values in production com-
pared to development, for example.

 Any application that makes it to production will likely have to run in multiple envi-
ronments. For example, if you’re building an application with database access, you’ll
probably have a small database running on your machine that you use for develop-
ment. In production, you’ll have a completely different database running on a server
somewhere else.

 Another common requirement is to have different amounts of logging depend-
ing on where your app is running. In development it’s great to generate lots of logs
as it helps debugging, but once you get to production, too much logging can be

Bind the
MapSettings secti
in IConfiguration
the settings objecRegister the settings

object as a singleton.

http://mng.bz/DR7y
http://mng.bz/DR7y
http://mng.bz/DR7y
http://mng.bz/l1Aj

355Configuring an application for multiple environments
overwhelming. You’ll want to log warnings and errors, and maybe information-level
logs, but definitely not debug-level logs!

 To handle these requirements, you need to make sure your app loads different
configuration values depending on the environment it’s running in: load the produc-
tion database connection string when in production, and so on. You need to consider
three aspects:

 How does your app identify which environment it’s running in?
 How do you load different configuration values based on the current environ-

ment?
 How can you change the environment for a particular machine?

This section tackles each of these questions in turn, so you can easily tell your develop-
ment machine apart from your production servers and act accordingly.

11.5.1 Identifying the hosting environment

As you saw in section 11.2, the ConfigureHostingConfiguration method on Host-
Builder is where you define how your application calculates the hosting environment.
By default, CreateDefaultBuilder uses, perhaps unsurprisingly, an environment
variable to identify the current environment. The HostBuilder looks for a magic envi-
ronment variable called ASPNETCORE_ENVIRONMENT and uses it to create an IHost-
Environment object.

NOTE You can use either the DOTNET_ENVIRONMENT or ASPNETCORE_ENVIRON-
MENT environment variables. The ASPNETCORE_ value overrides the DOTNET_
value if both are set. I use the ASPNETCORE_ version throughout this book.

The IHostEnvironment interface exposes a number of useful properties about the
running context of your app. Some of these you’ve already seen, such as Content-
RootPath, which points to the folder containing your application’s content files;
for example, the appsettings.json files. The property you’re interested in here is
EnvironmentName.

 The IHostEnvironment.EnvironmentName property is set to the value of the
ASPNETCORE_ENVIRONMENT environment variable, so it can be anything, but you should
stick to three commonly used values in most cases:

 "Development"

 "Staging"

 "Production"

ASP.NET Core includes several helper methods for working with these three values, so
you’ll have an easier time if you stick to them. In particular, whenever you’re testing
whether your app is running in a particular environment, you should use one of the
following extension methods:

 IHostEnvironment.IsDevelopment()

 IHostEnvironment.IsStaging()

356 CHAPTER 11 Configuring an ASP.NET Core application

e

 IHostEnvironment.IsProduction()

 IHostEnvironment.IsEnvironment(string environmentName)

These methods all make sure they do case-insensitive checks of the environment vari-
able, so you don’t get any wonky errors at runtime if you don’t capitalize the environ-
ment variable value.

TIP Where possible, use the IHostEnvironment extension methods over direct
string comparison with EnvironmentValue, as they provide case-insensitive
matching.

IHostEnvironment doesn’t do anything other than expose the details of your current
environment, but you can use it in various ways. In chapter 8 you saw the Environment
Tag Helper, which you used to show and hide HTML based on the current environ-
ment. Now you know where it was getting its information—IHostEnvironment.

 You can use a similar approach to customize which configuration values you load
at runtime by loading different files when running in development versus production.
This is common and is included out of the box in most ASP.NET Core templates, as
well as in the CreateDefaultBuilder helper method.

11.5.2 Loading environment-specific configuration files

The EnvironmentName value is determined early in the process of bootstrapping your
application, before the ConfigurationBuilder passed to ConfigureAppConfiguration
is created. This means you can dynamically change which configuration providers are
added to the builder, and hence which configuration values are loaded when the
IConfiguration is built.

 A common pattern is to have an optional, environment-specific appsettings
.ENVIRONMENT.json file that’s loaded after the default appsettings.json file. This
listing shows how you could achieve this if you’re customizing the ConfigureApp-
Configuration method in Program.cs.

public class Program
{
 public static void AddAppConfiguration(
 HostBuilderContext hostingContext,
 IConfigurationBuilder config)
 {
 var env = hostingContext.HostingEnvironment;
 config
 .AddJsonFile(
 "appsettings.json",
 optional: false)
 .AddJsonFile
 $"appsettings.{env.EnvironmentName}.json",
 optional: true);
 }
}

Listing 11.14 Adding environment-specific appsettings.json files

The current
IHostEnvironment
is available on
HostBuilderContext.

It’s common to make the
base appsettings.json
compulsory.

Adds an optional
nvironment-specific
JSON file where the

filename varies with
the environment

357Configuring an application for multiple environments

m

With this pattern, a global appsettings.json file contains settings applicable to most
environments. Additional, optional JSON files called appsettings.Development.json,
appsettings.Staging.json, and appsettings.Production.json are subsequently added to
ConfigurationBuilder, depending on the current EnvironmentName.

 Any settings in these files will overwrite values from the global appsettings.json, if
they have the same key, as you’ve seen previously. This lets you do things like set the
logging to be verbose in the development environment only and switch to more selec-
tive logs in production.

 Another common pattern is to completely add or remove configuration providers
depending on the environment. For example, you might use the User Secrets pro-
vider when developing locally, but Azure Key Vault in production. This listing shows
how you can use IHostEnvironment to conditionally include the User Secrets provider
in development only.

public class Program
{
 /* Additional Program configuration*/
 public static void AddAppConfiguration(
 HostBuilderContext hostingContext,
 IConfigurationBuilder config)
 {
 var env = hostingContext.HostingEnvironment
 config
 .AddJsonFile(
 "appsettings.json",
 optional: false)
 .AddJsonFile(
 $"appsettings.{env.EnvironmentName}.json",
 optional: true);
 if(env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }
 }
}

It’s also common to customize your application’s middleware pipeline based on the
environment. In chapter 3 you learned about DeveloperExceptionPageMiddleware
and how you should use it when developing locally. The following listing shows how
you can use IHostEnvironment to control your pipeline in this way, so that when
you’re in staging or production, your app uses ExceptionHandlerMiddleware instead.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{

Listing 11.15 Conditionally including the User Secrets configuration provider

Listing 11.16 Using the hosting environment to customize your middleware pipeline

Extension
ethods make
checking the
environment

simple and
explicit. In Staging and Production,

the User Secrets provider
won’t be used.

358 CHAPTER 11 Configuring an ASP.NET Core application
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();
 app.UseAuthorization();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });

}

NOTE In listing 11.16 we injected IWebHostEnvironment instead of IHost-
Environment. This interface extends IHostEnvironment by adding the Web-
RootPath property—the path to the wwwroot folder in your application. We
don’t need that path here, but it’s good to be aware of its existence!

You can inject IHostEnvironment anywhere in your app, but I’d advise against using it
in your own services, outside of Startup and Program. It’s far better to use the config-
uration providers to customize strongly typed settings based on the current hosting
environment, and inject these settings into your application instead.

 As useful as it is, setting IHostEnvironment with an environment variable can be a
little cumbersome if you want to switch back and forth between different environ-
ments during testing. Personally, I’m always forgetting how to set environment vari-
ables on the various operating systems I use. The final skill I’d like to teach you is how
to set the hosting environment when you’re developing locally.

11.5.3 Setting the hosting environment

In this section I’ll show you a couple of ways to set the hosting environment when you’re
developing. This makes it easy to test a specific app’s behavior in different environments
without having to change the environment for all the apps on your machine.

 If your ASP.NET Core application can’t find an ASPNETCORE_ENVIRONMENT environ-
ment variable when it starts up, it defaults to a production environment, as shown in
figure 11.6. This means that when you deploy to production, you’ll be using the cor-
rect environment by default.

TIP By default, the current hosting environment is logged to the console at
startup, which can be useful for quickly checking that the environment vari-
able has been picked up correctly.

In development, Developer-
ExceptionPageMiddleware is
added to the pipeline.

In staging or production, the pipeline
uses ExceptionHandlerMiddleware
instead.

359Configuring an application for multiple environments

lau
brow

yo
a

lau
brow

yo
a

Another option is to use a launchSettings.json file to control the environment. All the
default ASP.NET Core applications include this file in the Properties folder. Launch-
Settings.json defines profiles for running your application.

TIP Profiles can be used to run your application with different environment
variables. You can also use profiles to emulate running on Windows behind
IIS by using the IIS Express profile. Personally, I rarely use this profile, even
on Windows, and I always choose the “project” profile.

A typical launchSettings.json file is shown in the following listing, which defines two
profiles: "IIS Express", and "StoreViewerApplication". The latter profile is equiva-
lent to using dotnet run to run the project, and it’s conventionally named the same as
the project containing the launchSettings.json file.

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:53846",
 "sslPort": 44399
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "StoreViewerApplication": {
 "commandName": "Project",
 "launchBrowser": true,

Listing 11.17 A typical launchSettings.json file defining two profiles

If the HostBuilder can't find the
ASPNETCORE_ENVIRONMENT
variable at runtime, it will
default to Production.

Figure 11.6 By default, ASP.NET Core applications run in the production hosting
environment. You can override this by setting the ASPNETCORE_ENVIRONMENT variable.

Defines settings for
when running behind
IIS or using the IIS
Express profile

The IIS Express profile is
used by default in Visual
Studio on Windows.

If true,
nches the
ser when
u run the
pplication Defines custom environment

variables for the profile.
Sets the environment to
Development.

The “project” profile,
equivalent to calling
dotnet run on the project

If true,
nches the
ser when
u run the
pplication

360 CHAPTER 11 Configuring an ASP.NET Core application
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl":
 "https://localhost:5001;http://localhost:5000"
 }
 }
}

The advantage of using the launchSettings.json file locally is that it allows you to set
“local” environment variables for a project. For example, in listing 11.17, the environ-
ment is set to the development environment. This lets you use different environment
variables for each project, and even for each profile, and store them in source control.

 You can choose a profile to use in Visual Studio by selecting from the drop-down
list next to the Debug button on the toolbar, as shown in figure 11.7. You can choose a
profile to run from the command line using dotnet run --launch-profile <Profile
Name>. If you don’t specify a profile, the first “project” type profile is used. If you don’t
want to use any profile, you must explicitly ignore the launchSettings.json file by using
dotnet run --no-launch-profile.

If you’re using Visual Studio, you can also edit the launchSettings.json file visually:
double-click the Properties node and choose the Debug tab. You can see in figure 11.8
that the ASPNETCORE_ENVIRONMENT is set to development; any changes made in this tab
are mirrored in launchSettings.json.

Each profile can have
different environment
variables.

Defines the URLs the application
will listen on in this profile

Figure 11.7 You can choose the profile to use from Visual Studio by selecting from the Debug drop-down list.
Visual Studio defaults to using the IIS Express profile. The default profile running with dotnet run is the first
“project” profile—StoreViewerApplication in this case.

361Configuring an application for multiple environments
The launchSettings.json file is intended for local development only; by default, the
file isn’t deployed to production servers. While you can deploy and use the file in pro-
duction, it’s generally not worth the hassle. Environment variables are a better fit.

 One final trick I’ve used to set the environment in production is to use command-
line arguments. For example, you could set the environment to staging like this:

dotnet run --no-launch-profile --environment Staging

Note that you also have to pass --no-launch-profile if there’s a launchSettings.json
file; otherwise the values in the file take precedence.

 That brings us to the end of this chapter on configuration. Configuration isn’t
glamorous, but it’s an essential part of all apps. The ASP.NET Core configuration pro-
vider model handles a wide range of scenarios, letting you store settings and secrets in
a variety of locations.

 Simple settings can be stored in appsettings.json, where they’re easy to tweak and
modify during development, and they can be overwritten by using environment-spe-
cific JSON files. Meanwhile, your secrets and sensitive settings can be stored outside
the project file in the User Secrets manager, or as environment variables. This gives
you both flexibility and safety—as long as you don’t go writing your secrets to appset-
tings.json!

 In the next chapter we’ll take a brief look at the new object-relational mapper that
fits well with ASP.NET Core: Entity Framework Core. We’ll only be getting a taste of it
in this book, but you’ll learn how to load and save data, build a database from your
code, and migrate the database as your code evolves.

Select a profile to edit.

Customize the command
the profile runs when
executed.

Add enviornment variables
used with this profile only.

Figure 11.8 You can use Visual Studio to edit the launchSettings.json file if you prefer. Changes
will be mirrored between the launchSettings.json file and the Properties dialog box.

362 CHAPTER 11 Configuring an ASP.NET Core application
Summary
 Anything that could be considered a setting or a secret is normally stored as a

configuration value.
 ASP.NET Core uses configuration providers to load key-value pairs from a vari-

ety of sources. Applications can use many different configuration providers.
 ConfigurationBuilder describes how to construct the final configuration rep-

resentation for your app, and IConfiguration holds the configuration values
themselves.

 You create a configuration object by adding configuration providers to an instance
of ConfigurationBuilder using extension methods such as AddJsonFile().
HostBuilder creates the ConfigurationBuilder instance for you and calls
Build() to create an instance of IConfiguration.

 ASP.NET Core includes built-in providers for JSON files, XML files, environ-
ment files, and command-line arguments, among others. NuGet packages exist
for many other providers, such as YAML files and Azure Key Vault.

 The order in which you add providers to ConfigurationBuilder is important;
subsequent providers replace the values of settings defined in earlier providers.

 Configuration keys aren’t case-sensitive.
 You can retrieve settings from IConfiguration directly using the indexer syn-

tax; for example, Configuration["MySettings:Value"].
 The CreateDefaultBuilder method configures JSON, environment variables,

command-line arguments, and User Secret providers for you. You can custom-
ize the configuration providers used in your app by calling ConfigureApp-
Configuration.

 In production, store secrets in environment variables. These can be loaded
after your file-based settings in the configuration builder.

 On development machines, the User Secrets Manager is a more convenient
tool than using environment variables. It stores secrets in your OS user’s profile,
outside the project folder.

 Be aware that neither environment variables nor the User Secrets Manager tool
encrypt secrets, they merely store them in locations that are less likely to be
made public, as they’re outside your project folder.

 File-based providers, such as the JSON provider, can automatically reload con-
figuration values when the file changes. This allows you to update configuration
values in real time, without having to restart your app.

 Use strongly typed POCO options classes to access configuration in your app.
 Use the Configure<T>() extension method in ConfigureServices to bind your

POCO options objects to ConfigurationSection.
 You can inject the IOptions<T> interface into your services using DI. You can

access the strongly typed options object on the Value property.

363Summary
 You can configure IOptions<T> objects in code instead of using configuration
values by passing a lambda to the Configure() method.

 If you want to reload your POCO options objects when your configuration
changes, use the IOptionsSnapshot<T> interface instead.

 Applications running in different environments, development versus produc-
tion for example, often require different configuration values.

 ASP.NET Core determines the current hosting environment using the ASPNETCORE
_ENVIRONMENT environment variable. If this variable isn’t set, the environment is
assumed to be production.

 You can set the hosting environment locally by using the launchSettings.json
file. This allows you to scope environment variables to a specific project.

 The current hosting environment is exposed as an IHostEnvironment interface.
You can check for specific environments using IsDevelopment(), IsStaging(),
and IsProduction().

 You can use the IHostEnvironment object to load files specific to the current
environment, such as appsettings.Production.json.

Saving data with
Entity Framework Core
Most applications that you’ll build with ASP.NET Core will require storing and
loading some kind of data. Even the examples so far in this book have assumed you
have some sort of data store—storing exchange rates, user shopping carts, or the
locations of physical stores. I’ve glossed over this for the most part, but typically
you’ll store this data in a database.

 Working with databases can often be a rather cumbersome process. You have to
manage connections to the database, translate data from your application to a for-
mat the database can understand, and handle a plethora of other subtle issues.

This chapter includes
 What Entity Framework Core is and why you

should use it

 Adding Entity Framework Core to an ASP.NET
Core application

 Building a data model and using it to create a
database

 Querying, creating, and updating data using
Entity Framework Core
364

365
 You can manage this complexity in a variety of ways, but I’m going to focus on
using a library built primarily for .NET Core and .NET 5.0: Entity Framework Core
(EF Core). EF Core is a library that lets you quickly and easily build database access
code for your ASP.NET Core applications. It’s modeled on the popular Entity Frame-
work 6.x library, but it has significant changes that mean it stands alone in its own
right and is more than an upgrade.

 The aim of this chapter is to provide a quick overview of EF Core and how you can
use it in your applications to quickly query and save to a database. You’ll learn enough
to connect your app to a database and to manage schema changes to the database, but
I won’t be going into great depth on any topics.

NOTE For an in-depth look at EF Core, I recommend Entity Framework Core in
Action, 2nd ed., by Jon P. Smith (Manning, 2021). Alternatively, you can read
about EF Core and its cousin, Entity Framework, on the Microsoft documen-
tation website at https://docs.microsoft.com/ef/core/.

Section 12.1 introduces EF Core and explains why you might want to use it in your
applications. You’ll learn how the design of EF Core helps you to quickly iterate on
your database structure and reduce the friction of interacting with a database.

 In section 12.2 you’ll learn how to add EF Core to an ASP.NET Core app and con-
figure it using the ASP.NET Core configuration system. You’ll see how to build a
model for your app that represents the data you’ll store in the database and how to
hook it into the ASP.NET Core DI container.

NOTE For this chapter and the rest of the book, I’m going to be using SQL
Server Express’s LocalDB feature. This is installed as part of Visual Studio
2019 (when you choose the ASP.NET and Web Development workload), and
it provides a lightweight SQL Server engine.1 Very little of the code is specific
to SQL Server, so you should be able to follow along with a different database
if you prefer. The code sample for the book includes a version using SQLite,
for example.

No matter how carefully you design your original data model, the time will come when
you need to change it. In section 12.3 I show how you can easily update your model and
apply these changes to the database itself, using EF Core for all the heavy lifting.

 Once you have EF Core configured and a database created, section 12.4 shows how
to use EF Core in your application code. You’ll see how to create, read, update, and
delete (CRUD) records, and you’ll learn about some of the patterns to use when
designing your data access.

 In section 12.5 I highlight a few of the issues you’ll want to take into consideration
when using EF Core in a production app. A single chapter on EF Core can only offer a
brief introduction to all of the related concepts, so if you choose to use EF Core in your

1 You can read more about LocalDB in Microsoft’s “SQL Server Express LocalDB” documentation at http://
mng.bz/5jEa.

https://docs.microsoft.com/ef/core/
http://mng.bz/5jEa
http://mng.bz/5jEa
http://mng.bz/5jEa

366 CHAPTER 12 Saving data with Entity Framework Core
own applications—especially if this is your first time using such a data access library—
I strongly recommend reading more once you have the basics from this chapter.

 Before we get into any code, let’s look at what EF Core is, what problems it solves,
and when you might want to use it.

12.1 Introducing Entity Framework Core
Database access code is ubiquitous across web applications. Whether you’re building
an e-commerce app, a blog, or the Next Big Thing™, chances are you’ll need to inter-
act with a database.

 Unfortunately, interacting with databases from app code is often a messy affair,
and there are many different approaches you can take. For example, something as
simple as reading data from a database requires handling network connections, writ-
ing SQL statements, and handling variable result data. The .NET ecosystem has a
whole array of libraries you can use for this, ranging from the low-level ADO.NET
libraries to higher-level abstractions like EF Core.

 In this section, I describe what EF Core is and the problem it’s designed to solve. I
cover the motivation behind using an abstraction such as EF Core, and how it helps to
bridge the gap between your app code and your database. As part of that, I present
some of the trade-offs you’ll make by using it in your apps, which should help you
decide if it’s right for your purposes. Finally, we’ll take a look at an example EF Core
mapping, from app code to database, to get a feel for EF Core’s main concepts.

12.1.1 What is EF Core?

EF Core is a library that provides an object-oriented way to access databases. It acts as
an object-relational mapper (ORM), communicating with the database for you and map-
ping database responses to .NET classes and objects, as shown in figure 12.1.

DEFINITION With an object-relational mapper (ORM), you can manipulate a data-
base using object-oriented concepts such as classes and objects by mapping
them to database concepts such as tables and columns.

EF Core is based on, but is distinct from, the existing Entity Framework libraries (cur-
rently up to version 6.x). It was built as part of the .NET Core push to work cross-plat-
form, but with additional goals in mind. In particular, the EF Core team wanted to
make a highly performant library that could be used with a wide range of databases.

 There are many different types of databases, but probably the most commonly
used family is relational databases, accessed using Structured Query Language (SQL).
This is the bread and butter of EF Core; it can map Microsoft SQL Server, MySQL,
Postgres, and many other relational databases. It even has a cool in-memory feature
you can use when testing, to create a temporary database. EF Core uses a provider
model, so that support for other relational databases can be plugged in later, as they
become available.

367Introducing Entity Framework Core
NOTE As of .NET Core 3.0, EF Core now also works with nonrelational,
NoSQL, or document databases like Cosmos DB too. I’m only going to consider
mapping to relational databases in this book, however, as that’s the most com-
mon requirement in my experience. Historically, most data access, especially
in the .NET ecosystem, has been using relational databases, so it generally
remains the most popular approach.

That covers what EF Core is, but it doesn’t dig into why you’d want to use it. Why not
access the database directly using the traditional ADO.NET libraries? Most of the argu-
ments for using EF Core can be applied to ORMs in general, so what are the advantages
of an ORM?

12.1.2 Why use an object-relational mapper?

One of the biggest advantages an ORM brings is the speed with which you can develop
an application. You can stay in the familiar territory of object-oriented .NET, often
without ever needing to directly manipulate a database or write custom SQL.

 Imagine you have an e-commerce site, and you want to load the details of a prod-
uct from the database. Using low-level database access code, you’d have to open a con-
nection to the database, write the necessary SQL using the correct table and column
names, read the data over the connection, create a POCO to hold the data, and

.NET classes map to
tables and properties
map to columns.

References between types
map to foreign-key
relationships between
tables.

Each object (an instance
of a class) maps to a
row in a table.

Figure 12.1 EF Core maps .NET classes and objects to database concepts such as tables and rows.

368 CHAPTER 12 Saving data with Entity Framework Core
manually set the properties on the object, converting the data to the correct format as
you go. Sounds painful, right?

 An ORM, such as EF Core, takes care of most of this for you. It handles the connec-
tion to the database, generating the SQL, and mapping data back to your POCO
objects. All you need to provide is a LINQ query describing the data you want to
retrieve.

 ORMs serve as high-level abstractions over databases, so they can significantly
reduce the amount of plumbing code you need to write to interact with a database. At
the most basic level, they take care of mapping SQL statements to objects and vice
versa, but most ORMs take this a step further and provide additional features.

 ORMs like EF Core keep track of which properties have changed on any objects
they retrieve from the database. This lets you load an object from the database by
mapping it from a database table, modify it in .NET code, and then ask the ORM to
update the associated record in the database. The ORM will work out which proper-
ties have changed and issue update statements for the appropriate columns, saving
you a bunch of work.

 As is so often the case in software development, using an ORM has its drawbacks.
One of the biggest advantages of ORMs is also their Achilles’ heel—they hide the
database from you. Sometimes this high level of abstraction can lead to problematic
database query patterns in your apps. A classic example is the N+1 problem, where
what should be a single database request turns into separate requests for every single
row in a database table.

 Another commonly cited drawback is performance. ORMs are abstractions over
several concepts, so they inherently do more work than if you were to handcraft every
piece of data access in your app. Most ORMs, EF Core included, trade off some degree
of performance for ease of development.

 That said, if you’re aware of the pitfalls of ORMs, you can often drastically simplify
the code required to interact with a database. As with anything, if the abstraction
works for you, use it; otherwise, don’t. If you only have minimal database access
requirements or you need the best performance you can get, an ORM such as EF Core
may not be the right fit.

 An alternative is to get the best of both worlds: use an ORM for the quick develop-
ment of the bulk of your application, and then fall back to lower-level APIs such as
ADO.NET for those few areas that prove to be the bottlenecks in your application.
That way, you can get good-enough performance with EF Core, trading off perfor-
mance for development time, and only optimize those areas that need it.

 Even if you do decide to use an ORM in your app, there are many different ORMs
available for .NET, of which EF Core is one. Whether EF Core is right for you will
depend on the features you need and the trade-offs you’re willing to make to get
them. The next section compares EF Core to Microsoft’s other offering, Entity Frame-
work, but there many other alternatives you could consider, such as Dapper and NHi-
bernate, each with their own set of trade-offs.

369Introducing Entity Framework Core
12.1.3 When should you choose EF Core?

Microsoft designed EF Core as a reimagining of the mature Entity Framework 6.x (EF
6.x) ORM, which it released in 2008. With ten years of development behind it, EF 6.x
is a stable and feature-rich ORM.

 In contrast, EF Core is a comparatively new project. The APIs of EF Core are
designed to be close to those of EF 6.x—though they aren’t identical—but the core
components have been completely rewritten. You should consider EF Core as distinct
from EF 6.x; upgrading directly from EF 6.x to EF Core is nontrivial.

 Microsoft supports both EF Core and EF 6.x, and both will see ongoing improve-
ments, so which should you choose? You need to consider a number of things:

 Cross-platform—EF Core 5.0 targets .NET Standard, so it can be used in cross-
platform apps that target .NET Core 3.0 or later. Since version 6.3, EF 6.x is also
cross-platform, with some limitations when running on .NET 5.0, such as no
designer support.

 Database providers—Both EF 6.x and EF Core let you connect to various database
types by using pluggable providers. EF Core has a growing number of provid-
ers, but there aren’t as many for EF 6.x, especially if you want to run EF 6.x on
.NET 5.0. If there isn’t a provider for the database you’re using, that’s a bit of a
deal breaker!

 Performance—The performance of EF 6.x has been a bit of a black mark on its
record, so EF Core aims to rectify that. EF Core is designed to be fast and light-
weight, significantly outperforming EF 6.x. But it’s unlikely to ever reach the
performance of a more lightweight ORM, such as Dapper, or handcrafted SQL
statements.

 Features—Features are where you’ll find the biggest disparity between EF 6.x
and EF Core, though this difference is smaller with EF Core 5.0 than ever
before. EF Core now has many features that EF 6.x doesn’t have (batching state-
ments, client-side key generation, in-memory database for testing). EF Core is
still missing some features compared to EF 6.x, such as stored procedure map-
ping and Table-Per-Concrete-Type (TPC), but as EF Core is under active devel-
opment, these features are on the backlog for implementation.2 In contrast, EF
6.x will likely only see incremental improvements and bug fixes, rather than
major feature additions.

Whether these trade-offs and limitations are a problem for you will depend a lot on
your specific app. It’s a lot easier to start a new application bearing these limitations in
mind than trying to work around them later.

TIP EF Core isn’t recommended for everyone, but it’s recommended over
EF 6.x for new applications. Be sure you understand the trade-offs involved,

2 For a detailed list of feature differences between EF 6.x and EF Core, see the documentation at http://mng
.bz/GxgA.

http://mng.bz/GxgA
http://mng.bz/GxgA
http://mng.bz/GxgA

370 CHAPTER 12 Saving data with Entity Framework Core
and keep an eye on the guidance from the EF team here: https://docs.micro-
soft.com/ef/efcore-and-ef6.

If you’re working on a new ASP.NET Core application, you want to use an ORM for
rapid development, and you don’t require any of the unavailable features, then EF
Core is a great contender. It’s also supported out of the box by various other subsys-
tems of ASP.NET Core. For instance, in chapter 14 you’ll see how to use EF Core with
the ASP.NET Core Identity authentication system for managing users in your apps.

 Before we get into the nitty-gritty of using EF Core in your app, I’ll describe the
application we’re going to be using as the case study for this chapter. We’ll go over
the application and database details and how to use EF Core to communicate
between the two.

12.1.4 Mapping a database to your application code

EF Core focuses on the communication between an application and a database, so to
show it off, we need an application. This chapter uses the example of a simple cooking
app that lists recipes and lets you view a recipe’s ingredients, as shown in figure 12.2.
Users can browse for recipes, add new ones, edit recipes, and delete old ones.

 This is obviously a simple application, but it contains all the database interactions
you need with its two entities: Recipe and Ingredient.

The main page of the application
shows a list of all current recipes.

Click View to show the detail page
for the recipe. This includes the
ingredients associated with the recipe.

Click Create to add a new
recipe to the application.

You can also edit or delete the recipe.

Figure 12.2 The cookery app lists recipes. You can view, update, and delete recipes, or create
new ones.

https://docs.microsoft.com/ef/efcore-and-ef6
https://docs.microsoft.com/ef/efcore-and-ef6

371Introducing Entity Framework Core
DEFINITION An entity is a .NET class that’s mapped by EF Core to the data-
base. These are classes you define, typically as POCO classes, that can be saved
and loaded by mapping to database tables using EF Core.

When you interact with EF Core, you’ll be primarily using POCO entities and a data-
base context that inherits from the DbContext EF Core class. The entity classes are the
object-oriented representations of the tables in your database; they represent the data
you want to store in the database. You use the DbContext in your application to both
configure EF Core and to access the database at runtime.

NOTE You can potentially have multiple DbContexts in your application and
can even configure them to integrate with different databases.

When your application first uses EF Core, EF Core creates an internal representation
of the database, based on the DbSet<T> properties on your application’s DbContext
and the entity classes themselves, as shown in figure 12.3.

The application’s DbContext
serves as the entry point for
all interactions with EF Core.

2. It scans all the properties
on known entities for linked
types and adds them to its
internal model.

1. EF Core looks for any DbSet properties
on the DbContext (Recipes) and adds
them to its internal model.

3. EF Core uses relationships
between .NET classes to
model the relationship
between database tables.

Figure 12.3 EF Core creates an internal model of your application’s data model by exploring the types
in your code. It adds all of the types referenced in the DbSet<> properties on your app’s DbContext,
and any linked types.

372 CHAPTER 12 Saving data with Entity Framework Core
For your recipe app, EF Core will build a model of the Recipe class because it’s
exposed on the AppDbContext as a DbSet<Recipe>. Furthermore, EF Core will loop
through all the properties on Recipe, looking for types it doesn’t know about, and
add them to its internal model. In your app, the Ingredients collection on Recipe
exposes the Ingredient entity as an ICollection<Ingredient>, so EF Core models
the entity appropriately.

 Each entity is mapped to a table in the database, but EF Core also maps the rela-
tionships between the entities. Each recipe can have many ingredients, but each ingre-
dient (which has a name, quantity, and unit) belongs to one recipe, so this is a many-to-
one relationship. EF Core uses that knowledge to correctly model the equivalent
many-to-one database structure.

NOTE Two different recipes, say fish pie and lemon chicken, may use an
ingredient that has both the same name and quantity, such as the juice of one
lemon, but they’re fundamentally two different instances. If you update the
lemon chicken recipe to use two lemons, you wouldn’t want this change to
automatically update the fish pie to use two lemons too!

EF Core uses the internal model it builds when interacting with the database. This
ensures it builds the correct SQL to create, read, update, and delete entities.

 Right, it’s about time for some code! In the next section, you’ll start building the
recipe app. You’ll see how to add EF Core to an ASP.NET Core application, configure
a database provider, and design your application’s data model.

12.2 Adding EF Core to an application
In this section, we’ll focus on getting EF Core installed and configured in your
ASP.NET Core recipe app. You’ll learn how to install the required NuGet packages
and how to build the data model for your application. As we’re talking about EF Core
in this chapter, I’m not going to go into how to create the application in general—I
created a simple Razor Pages app as the basis, nothing fancy.

TIP The sample code for this chapter shows the state of the application at
three points in this chapter: at the end of section 12.2, at the end of section
12.3, and at the end of the chapter. It also includes examples using both
LocalDB and SQLite providers.

Interaction with EF Core in the example app occurs in a service layer that encapsu-
lates all the data access outside of the Razor Pages framework, as shown in figure 12.4.
This keeps your concerns separated and makes your services testable.

 Adding EF Core to an application is a multistep process:

1 Choose a database provider; for example, Postgres, SQLite, or MS SQL Server.
2 Install the EF Core NuGet packages.
3 Design your app’s DbContext and entities that make up your data model.
4 Register your app’s DbContext with the ASP.NET Core DI container.

373Adding EF Core to an application
5 Use EF Core to generate a migration describing your data model.
6 Apply the migration to the database to update the database’s schema.

This might seem a little daunting already, but we’ll walk through steps 1–4 in this sec-
tion, and steps 5–6 in section 12.3, so it won’t take long. Given the space constraints of
this chapter, I’m going to be sticking to the default conventions of EF Core in the
code I show. EF Core is far more customizable than it may initially appear, but I
encourage you to stick to the defaults wherever possible. It will make your life easier in
the long run.

 The first step in setting up EF Core is to decide which database you’d like to inter-
act with. It’s likely that a client or your company’s policy will dictate this to you, but it’s
still worth giving the choice some thought.

12.2.1 Choosing a database provider and installing EF Core

EF Core supports a range of databases by using a provider model. The modular
nature of EF Core means you can use the same high-level API to program against dif-
ferent underlying databases, and EF Core knows how to generate the necessary imple-
mentation-specific code and SQL statements.

 You probably already have a database in mind when you start your application, and
you’ll be pleased to know that EF Core has got most of the popular ones covered.

1. A request is received for
the URL /recipes.

2. The request is routed to
the Recipes/Index.cshtml
Razor Page.

5. The PageModel exposes the
RecipeSummary list returned
by the RecipeService for use by
the view to render the HTML.

RecipeService

IndexModel

3. The page handler calls the
RecipeService to fetch the
list of RecipeSummary models.

4. The RecipeService calls into
EF Core to load the Recipes from
the database and uses them to
create a RecipeSummary list.

Figure 12.4 Handling a request by loading data from a database using EF Core. Interaction with EF Core
is restricted to RecipeService only—the Razor Page doesn’t access EF Core directly.

374 CHAPTER 12 Saving data with Entity Framework Core

e
Adding support for a given database involves adding the correct NuGet package to
your .csproj file. For example,

 PostgreSQL—Npgsql.EntityFrameworkCore.PostgreSQL
 Microsoft SQL Server—Microsoft.EntityFrameworkCore.SqlServer
 MySQL—MySql.Data.EntityFrameworkCore
 SQLite—Microsoft.EntityFrameworkCore.SQLite

Some of the database provider packages are maintained by Microsoft, some are main-
tained by the open source community, and some may require a paid license (for
example, the Oracle provider), so be sure to check your requirements. You can find a
list of providers at https://docs.microsoft.com/ef/core/providers/.

 You install a database provider into your application in the same way as any other
library: by adding a NuGet package to your project’s .csproj file and running dotnet
restore from the command line (or letting Visual Studio automatically restore for you).

 EF Core is inherently modular, so you’ll need to install multiple packages. I’m
using the SQL Server database provider with LocalDB for the recipe app, so I’ll be
using the SQL Server packages:

 Microsoft.EntityFrameworkCore.SqlServer—This is the main database provider pack-
age for using EF Core at runtime. It also contains a reference to the main EF
Core NuGet package.

 Microsoft.EntityFrameworkCore.Design—This contains shared design-time compo-
nents for EF Core.

TIP You’ll also want to install tooling to help you create and update your
database. I show how to install these in section 12.3.1.

Listing 12.1 shows the recipe app’s .csproj file after adding the EF Core packages.
Remember, you add NuGet packages as PackageReference elements.

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="5.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design"
 Version="5.0.0" />
 </ItemGroup>
</Project>

Listing 12.1 Installing EF Core into an ASP.NET Core application

The app targets
.NET 5.0.

Install the appropriate
NuGet package for
your selected DB.

Contains shared design-tim
components for EF Core

https://docs.microsoft.com/ef/core/providers/

375Adding EF Core to an application
With these packages installed and restored, you have everything you need to start
building the data model for your application. In the next section we’ll create the
entity classes and the DbContext for your recipe app.

12.2.2 Building a data model

In section 12.1.4, I showed an overview of how EF Core builds up its internal model of
your database from the DbContext and entity models. Apart from this discovery mech-
anism, EF Core is pretty flexible in letting you define your entities the way you want to,
as POCO classes.

 Some ORMs require your entities to inherit from a specific base class or you to dec-
orate your models with attributes to describe how to map them. EF Core heavily favors
a convention over configuration approach, as you can see in this listing, which shows
the Recipe and Ingredient entity classes for your app.

public class Recipe
{
 public int RecipeId { get; set; }
 public string Name { get; set; }
 public TimeSpan TimeToCook { get; set; }
 public bool IsDeleted { get; set; }
 public string Method { get; set; }
 public ICollection<Ingredient> Ingredients { get; set; }
}
public class Ingredient
{
 public int IngredientId { get; set; }
 public int RecipeId { get; set; }
 public string Name { get; set; }
 public decimal Quantity { get; set; }
 public string Unit { get; set; }
}

These classes conform to certain default conventions that EF Core uses to build up a
picture of the database it’s mapping. For example, the Recipe class has a RecipeId
property, and the Ingredient class has an IngredientId property. EF Core identifies
this pattern of an Id suffix as indicating the primary key of the table.

DEFINITION The primary key of a table is a value that uniquely identifies the
row among all the others in the table. It’s often an int or a Guid.

Another convention visible here is the RecipeId property on the Ingredient class. EF
Core interprets this to be a foreign key pointing to the Recipe class. When considered
with ICollection<Ingredient> on the Recipe class, this represents a many-to-one
relationship, where each recipe has many ingredients, but each ingredient only
belongs to a single recipe, as shown in figure 12.5.

Listing 12.2 Defining the EF Core entity classes

A Recipe can have
many Ingredients,

represented by
ICollection.

376 CHAPTER 12 Saving data with Entity Framework Core
DEFINITION A foreign key on a table points to the primary key of a different
table, forming a link between the two rows.

Many other conventions are at play here, such as the names EF Core will assume for
the database tables and columns, or the database column types it will use for each
property, but I’m not going to discuss them here. The EF Core documentation con-
tains details about all of the conventions, as well as how to customize them for your
application: https://docs.microsoft.com/ef/core/modeling/.

TIP You can also use DataAnnotations attributes to decorate your entity
classes, controlling things like column naming or string length. EF Core will
use these attributes to override the default conventions.

As well as the entities, you also define the DbContext for your application. This is the
heart of EF Core in your application, used for all your database calls. Create a custom
DbContext, in this case called AppDbContext, and derive from the DbContext base
class, as shown next. This exposes the DbSet<Recipe> so EF Core can discover and
map the Recipe entity. You can expose multiple instances of DbSet<> in this way, for
each of the top-level entities in your application.

public class AppDbContext : DbContext
{
 public AppDbContext(DbContextOptions<AppDbContext> options)
 : base(options) { }
 public DbSet<Recipe> Recipes { get; set; }
}

Listing 12.3 Defining the application DbContext

The Recipe object can have
many Ingredients, indicated
by an ICollection<Ingredient>.

Each Ingredient belongs to a single Recipe,
indicated by a RecipeId property on Ingredient.

The many-to-one relationship
between the entities corresponds
to a foreign-key relationship
between the database tables.

Figure 12.5 Many-to-one relationships in code are translated to foreign-key relationships between
tables.

The constructor options
object, containing details

such as the connection string
You’ll use the Recipes property

to query the database.

https://docs.microsoft.com/ef/core/modeling/

377Adding EF Core to an application
The AppDbContext for your app is simple, containing a list of your root entities, but
you can do a lot more with it in a more complex application. If you wanted, you could
completely customize how EF Core maps entities to the database, but for this app
you’re going to use the defaults.

NOTE You didn’t list Ingredient on AppDbContext, but it will be modeled by
EF Core as it’s exposed on the Recipe. You can still access the Ingredient
objects in the database, but you must navigate via the Recipe entity’s
Ingredients property to do so, as you’ll see in section 12.4.

For this simple example, your data model consists of these three classes: AppDbContext,
Recipe, and Ingredient. The two entities will be mapped to tables and their columns
to properties, and you’ll use the AppDbContext to access them.

NOTE This code-first approach is typical, but if you have an existing database,
you can automatically generate the EF entities and DbContext instead. (More
information can be found in Microsoft’s “Reverse Engineering” article in the
EF Core documentation: http://mng.bz/mgd4.)

The data model is complete, but you’re not quite ready to use it yet. Your ASP.NET
Core app doesn’t know how to create your AppDbContext, and your AppDbContext
needs a connection string so that it can talk to the database. In the next section
we’ll tackle both of these issues, and we’ll finish setting up EF Core in your ASP.NET
Core app.

12.2.3 Registering a data context

Like any other service in ASP.Net Core, you should register your AppDbContext with
the DI container. When registering your context, you also configure the database pro-
vider and set the connection string, so EF Core knows how to talk with the database.

 You register the AppDbContext in the ConfigureServices method of Startup.cs.
EF Core provides a generic AddDbContext<T> extension method for this purpose,
which takes a configuration function for a DbContextOptionsBuilder instance. This
builder can be used to set a host of internal properties of EF Core and lets you com-
pletely replace the internal services of EF Core if you want.

 The configuration for your app is, again, nice and simple, as you can see in the fol-
lowing listing. You set the database provider with the UseSqlServer extension
method, made available by the Microsoft.EntityFrameworkCore.SqlServer package,
and pass it a connection string.

public void ConfigureServices(IServiceCollection services)
{
 var connString = Configuration
 .GetConnectionString("DefaultConnection");

Listing 12.4 Registering a DbContext with the DI container

The connection
string is taken from
configuration, from
the ConnectionStrings
section.

http://mng.bz/mgd4

378 CHAPTER 12 Saving data with Entity Framework Core
 services.AddDbContext<AppDbContext>(
 options => options.UseSqlServer(connString));

 // Add other services.
}

NOTE If you’re using a different database provider, such as a provider for
SQLite, you will need to call the appropriate Use* method on the options
object when registering your AppDbContext.

The connection string is a typical secret, as I discussed in the previous chapter, so
loading it from configuration makes sense. At runtime the correct configuration
string for your current environment will be used, so you can use different databases
when developing locally and in production.

TIP You can configure your AppDbContext in other ways and provide the
connection string, such as with the OnConfiguring method, but I recommend
the method shown here for ASP.NET Core websites.

You now have a DbContext, AppDbContext, registered with the DI container, and a
data model corresponding to your database. Code-wise, you’re ready to start using EF
Core, but the one thing you don’t have is a database! In the next section, you’ll see
how you can easily use the .NET CLI to ensure your database stays up to date with your
EF Core data model.

12.3 Managing changes with migrations
In this section you’ll learn how to generate SQL statements to keep your database’s
schema in sync with your application’s data model, using migrations. You’ll learn how
to create an initial migration and use it to create the database. You’ll then update your
data model, create a second migration, and use it to update the database schema.

 Managing schema changes for databases, such as when you need to add a new table
or a new column, is notoriously difficult. Your application code is explicitly tied to a
particular version of a database, and you need to make sure the two are always in sync.

DEFINITION Schema refers to how the data is organized in a database, including,
among others things, the tables, columns, and relationships between them.

When you deploy an app, you can normally delete the old code/executable and
replace it with the new code—job done. If you need to roll back a change, delete that
new code and deploy an old version of the app.

 The difficulty with databases is that they contain data! That means that blowing it
away and creating a new database with every deployment isn’t possible.

 A common best practice is to explicitly version a database’s schema along with your
application’s code. You can do this in a number of ways, but typically you need to store
a diff between the previous schema of the database and the new schema, often as a

Register your app’s
DbContext by using
it as the generic
parameter.Specify the database provider

in the customization options
for the DbContext.

379Managing changes with migrations
SQL script. You can then use libraries such as DbUp and FluentMigrator3 to keep
track of which scripts have been applied and ensure your database schema is up to
date. Alternatively, you can use external tools to manage this for you.

 EF Core provides its own version of schema management called migrations. Migra-
tions provide a way to manage changes to a database schema when your EF Core data
model changes. A migration is a C# code file in your application that defines how the
data model changed—which columns were added, new entities, and so on. Migrations
provide a record over time of how your database schema evolved as part of your appli-
cation, so the schema is always in sync with your app’s data model.

 You can use command-line tools to create a new database from the migrations, or
to update an existing database by applying new migrations to it. You can even roll back
a migration, which will update a database to a previous schema.

WARNING Applying migrations modifies the database, so you always have to
be aware of data loss. If you remove a table from the database using a migra-
tion and then roll back the migration, the table will be recreated, but the data
it previously contained will be gone forever!

In this section, you’ll see how to create your first migration and use it to create a data-
base. You’ll then update your data model, create a second migration, and use it to
update the database schema.

12.3.1 Creating your first migration

Before you can create migrations, you’ll need to install the necessary tooling. There
are two primary ways to do this:

 Package manager console—You can use PowerShell cmdlets inside Visual Studio’s
Package Manager Console (PMC). You can install them directly from the PMC or
by adding the Microsoft.EntityFrameworkCore.Tools package to your project.

 .NET tool—Cross-platform tooling that you can run from the command line and
which extends the .NET SDK. You can install these tools globally for your
machine by running dotnet tool install --global dotnet-ef.4

In this book, I’ll be using the cross-platform .NET tools, but if you’re familiar with
EF 6.x or prefer to use the Visual Studio PMC, there are equivalent commands for
all of the steps you’re going to take.5 You can check that the .NET tool installed cor-
rectly by running dotnet ef. This should produce a help screen like the one shown
in figure 12.6.

3 DbUp (https://github.com/DbUp/DbUp) and FluentMigrator (https://github.com/fluentmigrator/fluent-
migrator) are open source projects.

4 Alternatively, you can install the tools locally using a tool manifest file. To see how to use this approach, see my
blog article: https://andrewlock.net/new-in-net-core-3-local-tools/.

5 Documentation for PowerShell cmdlets can be found at https://docs.microsoft.com/ef/core/miscella-
neous/cli/powershell.

https://github.com/DbUp/DbUp
https://github.com/fluentmigrator/fluentmigrator
https://github.com/fluentmigrator/fluentmigrator
https://andrewlock.net/new-in-net-core-3-local-tools/
https://docs.microsoft.com/ef/core/miscellaneous/cli/powershell
https://docs.microsoft.com/ef/core/miscellaneous/cli/powershell

380 CHAPTER 12 Saving data with Entity Framework Core
TIP If you get the “No executable found matching command ‘dotnet-ef’” mes-
sage when running the preceding command, make sure you have installed the
global tool using dotnet tool install --global dotnet-ef. In general, you
need to run the dotnet ef tools from the project folder in which you have reg-
istered your AppDbContext (not at the solution-folder level).

With the tools installed and your database context configured, you can create your
first migration by running the following command from inside your web project
folder and providing a name for the migration—in this case, InitialSchema:

dotnet ef migrations add InitialSchema

This command creates three files in the Migrations folder in your project:

 Migration file—A file with the Timestamp_MigrationName.cs format. This
describes the actions to take on the database, such as create table or add col-
umn. Note that the commands generated here are database-provider specific,
based on the database provider configured in your project.

 Migration designer.cs file—This file describes EF Core’s internal model of your
data model at the point in time the migration was generated.

 AppDbContextModelSnapshot.cs—This describes EF Core’s current internal model.
This will be updated when you add another migration, so it should always be
the same as the current, latest migration.

EF Core can use AppDbContextModelSnapshot.cs to determine a database’s
previous state when creating a new migration, without interacting with the data-
base directly.

These three files encapsulate the migration process, but adding a migration doesn’t
update anything in the database itself. For that, you must run a different command to
apply the migration to the database.

Figure 12.6 Running the dotnet ef command to check that the .NET EF Core
tools are installed correctly

381Managing changes with migrations
TIP You can, and should, look inside the migration file EF Core generates to
check what it will do to your database before running the following com-
mands. Better safe than sorry!

You can apply migrations in one of three ways:

 Using the .NET tool
 Using the Visual Studio PowerShell cmdlets
 In code, by obtaining an instance of your AppDbContext from the DI container

and calling context.Database.Migrate()

Which is best for you depends on how you’ve designed your application, how you’ll
update your production database, and your personal preference. I’ll use the .NET
tool for now, but I discuss some of these considerations in section 12.5.

 You can apply migrations to a database by running

dotnet ef database update

from the project folder of your application. I won’t go into the details of how this
works, but this command performs four steps:

1 Builds your application.
2 Loads the services configured in your app’s Startup class, including AppDb-

Context.
3 Checks whether the database in the AppDbContext connection string exists. If

not, it creates it.
4 Updates the database by applying any unapplied migrations.

If everything is configured correctly, as I showed in section 12.2, then running this com-
mand will set you up with a shiny new database, such as the one shown in figure 12.7.

NOTE If you get an error message saying “No project was found” when run-
ning these commands, check that you’re running them in your application’s
project folder, not the top-level solution folder.

The __EFMigrationsHistory table
contains a list of all the migrations that
have been applied to the database.

The entities in our data model,
Recipe and Ingredient, correspond
to tables in the database.

The properties on the Recipe entity
correspond to the columns in the
Recipes table.

Figure 12.7 Applying migrations to a database will create the database if it
doesn’t exist and update the database to match EF Core’s internal data model. The
list of applied migrations is stored in the __EFMigrationsHistory table.

382 CHAPTER 12 Saving data with Entity Framework Core
When you apply the migrations to the database, EF Core creates the necessary tables
in the database and adds the appropriate columns and keys. You may have also
noticed the __EFMigrationsHistory table. EF Core uses this to store the names of
migrations that it’s applied to the database. Next time you run dotnet ef database
update, EF Core can compare this table to the list of migrations in your app and will
apply only the new ones to your database.

 In the next section, we’ll look at how this makes it easy to change your data model
and update the database schema, without having to recreate the database from scratch.

12.3.2 Adding a second migration

Most applications inevitably evolve, whether due to increased scope or simple mainte-
nance. Adding properties to your entities, adding new entities entirely, and removing
obsolete classes—all are likely.

 EF Core migrations make this simple. Imagine you decide that you’d like to high-
light vegetarian and vegan dishes in your recipe app by exposing IsVegetarian and
IsVegan properties on the Recipe entity. Change your entities to your desired state,
generate a migration, and apply it to the database, as shown in figure 12.8.

dotnet ef migrations add NewFields

20170525220541_ExtraRecipeFields.cs

dotnet ef database update

1. Update your entities by
adding new properties
and relationships.

2. Create a new migration
from the command line
and provide a name for it.

3. Creating a migration generates a migration file
and a migration designer file. It also updates the
app’s DbContext snapshot, but it does not update
the database.

4. You can apply the migration to the
database using the command line.
This will update the database schema
to match your entities.

Figure 12.8 Creating a second migration and applying it to the database using the command-line tools.

383Managing changes with migrations
public class Recipe
{
 public int RecipeId { get; set; }
 public string Name { get; set; }
 public TimeSpan TimeToCook { get; set; }
 public bool IsDeleted { get; set; }
 public string Method { get; set; }
 public bool IsVegetarian { get; set; }
 public bool IsVegan { get; set; }
 public ICollection<Ingredient> Ingredients { get; set; }
}

After changing your entities, you need to update EF Core’s internal representation of
your data model. You do this in the exact same way as for the first migration, by calling
dotnet ef migrations add and providing a name for the migration:

dotnet ef migrations add ExtraRecipeFields

This creates a second migration in your project by adding the migration file and its
.designer.cs snapshot file and updating AppDbContextModelSnapshot.cs, as shown in
figure 12.9.

As before, this creates the migration’s files, but it doesn’t modify the database. You can
apply the migration and update the database by running

dotnet ef database update

This compares the migrations in your application to the __EFMigrationsHistory
table in your database to see which migrations are outstanding, and then it runs
them. EF Core will run the 20200511204457_ExtraRecipeFields migration, adding
the IsVegetarian and IsVegan fields to the database, as shown in figure 12.10.

Listing 12.5 Adding properties to the Recipe entity

Creating a migration adds
a .cs file to your solution
with a timestamp and the
name you gave the migration.

It also adds a Designer.cs
file that contains a snapshot
of EF Core’s internal data
model at that point in time.

The AppDbContextModelSnapshot
is updated to match the snapshot
for the new migration.

Figure 12.9 Adding a second migration adds a new migration file and a migration Designer.cs file.
It also updates AppDbContextModelSnapshot to match the new migration’s Designer.cs file.

384 CHAPTER 12 Saving data with Entity Framework Core
Using migrations is a great way to ensure your database is versioned along with your
app code in source control. You can easily check out your app’s source code for a his-
torical point in time and recreate the database schema that your application used at
that point.

 Migrations are easy to use when you’re working alone, or when you’re deploying to
a single web server, but even in these cases there are important things to consider
when deciding how to manage your databases. For apps with multiple web servers
using a shared database, or for containerized applications, you have even more things
to think about.

 This book is about ASP.NET Core, not EF Core, so I don’t want to dwell on data-
base management too much, but section 12.5 points out some of the things you need
to bear in mind when using migrations in production.

 In the next section, we’ll get back to the meaty stuff—defining our business logic
and performing CRUD operations on the database.

12.4 Querying data from and saving data to the database
Let’s review where you are in creating the recipe application:

 You created a simple data model for the application, consisting of recipes and
ingredients.

 You generated migrations for the data model, to update EF Core’s internal
model of your entities.

 You applied the migrations to the database, so its schema matches EF Core’s
model.

In this section, you’ll build the business logic for your application by creating a Recipe-
Service. This will handle querying the database for recipes, creating new recipes, and
modifying existing ones. As this app only has a simple domain, I’ll be using Recipe-
Service to handle all the requirements, but in your own apps you may have multiple
services that cooperate to provide the business logic.

NOTE For simple apps, you may be tempted to move this logic into your Razor
Pages. I’d encourage you to resist this urge; extracting your business logic to
other services decouples the HTTP-centric nature of Razor Pages and Web

Applying the second
migration to the database
adds the new fields to the
Recipes table. Figure 12.10 Applying the

ExtraRecipeFields migration
to the database adds the
IsVegetarian and IsVegan
fields to the Recipes table.

385Querying data from and saving data to the database
APIs from the underlying business logic. This will often make your business
logic easier to test and more reusable.

Our database doesn’t have any data in it yet, so we’d better start by letting you create
a recipe.

12.4.1 Creating a record

In this section you’re going to build the functionality to let users create a recipe in the
app. This will primarily consist of a form that the user can use to enter all the details of
the recipe using Razor Tag Helpers, which you learned about in chapters 7 and 8. This
form is posted to the Create.cshtml Razor Page, which uses model binding and valida-
tion attributes to confirm the request is valid, as you saw in chapter 6.

 If the request is valid, the page handler calls RecipeService to create the new
Recipe object in the database. As EF Core is the topic of this chapter, I’m going to
focus on this service alone, but you can always check out the source code for this book
if you want to see how everything fits together.

 The business logic for creating a recipe in this application is simple—there is no
logic! Map the command binding model provided in the Create.cshtml Razor Page to a
Recipe entity and its Ingredients, add the Recipe object to AppDbContext, and save
that in the database, as shown in figure 12.11.

1. A request is POSTed to
the URL /Recipes/Create.

RedirectToPage

2. The request is routed to the
Create.cshtml Razor Page, and
the form body is bound to a
CreateRecipeCommand.

7. The page handler uses
the RecipeId to create a
RedirectToPageResult to
the new Recipe detail
Razor Page.

Recipe

RecipeService.CreateRecipe()

3. The page handler calls the
CreateRecipe method on the
RecipeService, passing in
the CreateRecipeCommand.

RecipeId

CreateRecipeCommand

SQL

4. A new Recipe object
is created from the
CreateRecipeCommand.

5. The Recipe is added
to EF Core using the
app’s DbContext.

6. EF Core generates the
SQL necessary to insert
a new row into the
Recipes table and
returns the new row’s
RecipeId.

Figure 12.11 Calling the Create.cshtml Razor Page and creating a new entity. A Recipe is created from the
CreateRecipeCommand binding model and is added to the DbContext. EF Core generates the SQL to add a
new row to the Recipes table in the database.

386 CHAPTER 12 Saving data with Entity Framework Core

Tel
to

new
WARNING Many simple, equivalent sample applications using EF or EF Core
allow you to bind directly to the Recipe entity as the view model for your MVC
actions. Unfortunately, this exposes a security vulnerability known as over-
posting, and it is a bad practice. If you want to avoid the boilerplate map-
ping code in your applications, consider using a library such as AutoMapper
(http://automapper.org/). For more details on overposting, see my blog post
on the subject: http://mng.bz/d48O.

Creating an entity in EF Core involves adding a new row to the mapped table. For your
application, whenever you create a new Recipe, you also add the linked Ingredient
entities. EF Core takes care of linking these all correctly by creating the correct RecipeId
for each Ingredient in the database.

 The bulk of the code required for this example involves translating from Create-
RecipeCommand to the Recipe entity—the interaction with the AppDbContext consists
of only two methods: Add() and SaveChangesAsync().

readonly AppDbContext _context;
public async Task<int> CreateRecipe(CreateRecipeCommand cmd)
{
 var recipe = new Recipe
 {
 Name = cmd.Name,
 TimeToCook = new TimeSpan(
 cmd.TimeToCookHrs, cmd.TimeToCookMins, 0),
 Method = cmd.Method,
 IsVegetarian = cmd.IsVegetarian,
 IsVegan = cmd.IsVegan,
 Ingredients = cmd.Ingredients?.Select(i =>
 new Ingredient
 {
 Name = i.Name,
 Quantity = i.Quantity,
 Unit = i.Unit,
 }).ToList()
 };
 _context.Add(recipe);
 await _context.SaveChangesAsync();
 return recipe.RecipeId;
}

All interactions with EF Core and the database start with an instance of AppDbContext,
which is typically DI-injected via the constructor. Creating a new entity requires
three steps:

1 Create the Recipe and Ingredient entities.
2 Add the entities to EF Core’s list of tracked entities using _context.Add(entity).

Listing 12.6 Creating a Recipe entity in the database

An instance of the AppDbContext is
injected in the class constructor using DI.

CreateRecipeCommand is
passed in from the Razor

Page handler.

Create a Recipe by
mapping from the
command object to
the Recipe entity.

Map each
CreateIngredientCommand
onto an Ingredient entity.

l EF Core
track the
 entities.

Tell EF Core to write the entities
to the database. This uses the
async version of the command.EF Core populates the RecipeId field

on your new Recipe when it’s saved.

http://automapper.org/
http://mng.bz/d48O

387Querying data from and saving data to the database
3 Execute the SQL INSERT statements against the database, adding the necessary
rows to the Recipe and Ingredient tables, by calling _context.SaveChanges-
Async().

TIP There are sync and async versions of most of the EF Core commands that
involve interacting with the database, such as SaveChanges() and SaveChanges-
Async(). In general, the async versions will allow your app to handle more
concurrent connections, so I tend to favor them whenever I can use them.

If there’s a problem when EF Core tries to interact with your database—you haven’t
run the migrations to update the database schema, for example—it will throw an
exception. I haven’t shown it here, but it’s important to handle these in your applica-
tion so you don’t present users with an ugly error page when things go wrong.

 Assuming all goes well, EF Core updates all the auto-generated IDs of your entities
(RecipeId on Recipe, and both RecipeId and IngredientId on Ingredient). Return
the recipe ID to the Razor Page so it can use it; for example, to redirect to the View
Recipe page.

 And there you have it—you’ve created your first entity using EF Core. In the next
section we’ll look at loading these entities from the database so you can view them
in a list.

12.4.2 Loading a list of records

Now that you can create recipes, you need to write the code to view them. Luckily,
loading data is simple in EF Core, relying heavily on LINQ methods to control which
fields you need. For your app, you’ll create a method on RecipeService that returns
a summary view of a recipe, consisting of the RecipeId, Name, and TimeToCook as a
RecipeSummaryViewModel, as shown in figure 12.12.

NOTE Creating a view model is technically a UI concern rather than a busi-
ness logic concern. I’m returning them directly from RecipeService here
mostly to hammer home that you shouldn’t be using EF Core entities directly
in your Razor Pages.

The GetRecipes method in RecipeService is conceptually simple and follows a com-
mon pattern for querying an EF Core database, as shown in figure 12.13.

 EF Core uses a fluent chain of LINQ commands to define the query to return on
the database. The DbSet<Recipe> property on AppDataContext is an IQueryable, so
you can use all the usual Select() and Where() clauses that you would with other
IQueryable providers. EF Core will convert these into a SQL statement to query the
database with when you call an execute function such as ToListAsync(), ToArray-
Async(), SingleAsync(), or their non-async brethren.

 You can also use the Select() extension method to map to objects other than your
entities as part of the SQL query. You can use this to efficiently query the database by
only fetching the columns you need.

388 CHAPTER 12 Saving data with Entity Framework Core
Listing 12.7 shows the code to fetch a list of RecipeSummaryViewModels, following the
same basic pattern as in figure 12.12. It uses a Where LINQ expression to filter out rec-
ipes marked as deleted and a Select clause to map to the view models. The ToList-
Async() command instructs EF Core to generate the SQL query, execute it on the
database, and build RecipeSummaryViewModel from the data returned.

public async Task<ICollection<RecipeSummaryViewModel>> GetRecipes()
{
 return await _context.Recipes
 .Where(r => !r.IsDeleted)

Listing 12.7 Loading a list of items using EF Core in RecipeService

1. A request is made
for the URL /.

2. The request is routed to the
Index.cshtml Razor Page, which
calls the RecipeService to load
the view models.

6. The action method passes the
view models to the view by
exposing them as properties
on the PageModel.

RecipeService.GetRecipes()

3. The GetRecipes method uses
the app’s DbContext to query
the database for the data
needed for the view models.

RecipeSummaryViewModel SQL

4. EF Core generates
SQL and queries
the database.

5. The database returns the data
as rows, and EF Core maps them
to view model objects.

Figure 12.12 Calling the Index.cshtml Razor Page and querying the database to retrieve a list of
RecipeSummaryViewModels. EF Core generates the SQL to retrieve the necessary fields from the
database and maps them to view model objects.

_context.Recipes.Where(r => !r.IsDeleted).ToListAsync()

AppDbContext DbSet
Property access

LINQ commands to
modify data returned

Execute query
command

Figure 12.13 The three parts of an EF Core database query

A query starts from
a DbSet property.

389Querying data from and saving data to the database

EF C
th

nee
 .Select(r => new RecipeSummaryViewModel
 {
 Id = r.RecipeId,
 Name = r.Name,
 TimeToCook = $"{r.TimeToCook.TotalMinutes}mins"
 })
 .ToListAsync();
}

Notice that in the Select method you convert the TimeToCook property from a Time-
Span to a string using string interpolation:

TimeToCook = $"{r.TimeToCook.TotalMinutes}mins"

I said before that EF Core converts the series of LINQ expressions into SQL, but that’s
only a half-truth; EF Core can’t or doesn’t know how to convert some expressions to
SQL. For those cases, such as in this example, EF Core finds the fields from the DB
that it needs in order to run the expression on the client side, selects those from the
database, and then runs the expression in C# afterwards. This lets you combine the
power and performance of database-side evaluation without compromising the func-
tionality of C#.

WARNING Client-side evaluation is both powerful and useful but has the
potential to cause issues. In general, recent versions of EF Core will throw an
exception if a query requires dangerous client-side evaluation. For examples,
including how to avoid these issues, see the documentation at http://mng
.bz/zxP6.

At this point, you have a list of records, displaying a summary of the recipe’s data, so
the obvious next step is to load the detail for a single record.

12.4.3 Loading a single record

For most intents and purposes, loading a single record is the same as loading a list of
records. They share the same common structure you saw in figure 12.13, but when
loading a single record, you’ll typically use a Where clause and execute a command
that restricts the data to a single entity.

 Listing 12.8 shows the code to fetch a recipe by ID, following the same basic pat-
tern as before (figure 12.12). It uses a Where() LINQ expression to restrict the query
to a single recipe, where RecipeId == id, and a Select clause to map to Recipe-
DetailViewModel. The SingleOrDefaultAsync() clause will cause EF Core to gener-
ate the SQL query, execute it on the database, and build the view model.

NOTE SingleOrDefaultAsync() will throw an exception if the previous
Where clause returns more than one record.

ore will only query
e Recipe columns it
ds to map the view

model correctly.

This executes the SQL query and
creates the final view models.

http://mng.bz/zxP6
http://mng.bz/zxP6
http://mng.bz/zxP6

390 CHAPTER 12 Saving data with Entity Framework Core

t

public async Task<RecipeDetailViewModel> GetRecipeDetail(int id)
{
 return await _context.Recipes
 .Where(x => x.RecipeId == id)
 .Select(x => new RecipeDetailViewModel
 {
 Id = x.RecipeId,
 Name = x.Name,
 Method = x.Method,
 Ingredients = x.Ingredients
 .Select(item => new RecipeDetailViewModel.Item
 {
 Name = item.Name,
 Quantity = $"{item.Quantity} {item.Unit}"
 })
 })
 .SingleOrDefaultAsync();
}

Notice that as well as mapping the Recipe to a RecipeDetailViewModel, you also map
the related Ingredients for a Recipe, as though you’re working with the objects
directly in memory. This is one of the advantages of using an ORM—you can easily
map child objects and let EF Core decide how best to build the underlying queries to
fetch the data.

NOTE EF Core logs all the SQL statements it runs as LogLevel.Information
events by default, so you can easily see what queries are being run against the
database.

Our app is definitely shaping up; you can create new recipes, view them all in a list,
and drill down to view individual recipes with their ingredients and method. Pretty
soon, though, someone’s going to introduce a typo and want to change their data. To
do this, you’ll have to implement the U in CRUD: update.

12.4.4 Updating a model with changes

Updating entities when they have changed is generally the hardest part of CRUD
operations, as there are so many variables. Figure 12.14 gives an overview of this pro-
cess as it applies to your recipe app.

 I’m not going to handle the relationship aspect in this book because that’s gener-
ally a complex problem, and how you tackle it depends on the specifics of your data
model. Instead, I’ll focus on updating properties on the Recipe entity itself.6

Listing 12.8 Loading a single item using EF Core in RecipeService

6 For a detailed discussion on handling relationship updates in EF Core, see Entity Framework Core in Action, 2nd
ed., by Jon P. Smith (Manning, 2021), chapter 3, section 3.4: http://mng.bz/w9D2.

The id of the recipe to load is
passed as a parameter.

As before, a query starts
from a DbSet property.

Limit the
query to the
recipe with

he provided id.
Map the Recipe to a
RecipeDetailViewModel.

Load and map
linked Ingredients
as part of the
same query.

Execute the query and map
the data to the view model.

http://mng.bz/w9D2

391Querying data from and saving data to the database

y
es
.

For web applications, when you update an entity, you’ll typically follow the steps out-
lined in figure 12.14:

1 Read the entity from the database.
2 Modify the entity’s properties.
3 Save the changes to the database.

You’ll encapsulate these three steps in a method on RecipeService called Update-
Recipe. This method takes an UpdateRecipeCommand parameter and contains the
code to change the Recipe entity.

NOTE As with the Create command, you don’t directly modify the entities in
the Razor Page, ensuring you keep the UI concern separate from the business
logic.

The following listing shows the RecipeService.UpdateRecipe method, which updates
the Recipe entity. It performs the three steps we defined previously to read, modify,
and save the entity. I’ve extracted the code to update the recipe with the new values to
a helper method.

public async Task UpdateRecipe(UpdateRecipeCommand cmd)
{
 var recipe = await _context.Recipes.FindAsync(cmd.Id);

Listing 12.9 Updating an existing entity with EF Core in RecipeService

Command

SQL

2. The DbContext generates the
SQL necessary to load the entity
from the database.

SQL

Recipe

1. The update method
receives a command
indicating which entity
to update and the new
property values.

Recipe

3. The command is used to
update the properties on
the Recipe entity.

4. If the ingredients of the
Recipe have changed,
these are also updated
using the Command.

5. Save is called on the DbContext,
which generates the necessary
SQL to update the entity in the
database.

Figure 12.14 Updating an entity involves three steps: read the entity using EF Core, update the
properties of the entity, and call SaveChangesAsync() on the DbContext to generate the SQL to
update the correct rows in the database.

Find is exposed directl
by Recipes and simplifi
reading an entity by id

392 CHAPTER 12 Saving data with Entity Framework Core

Set
valu
Recip

s

 if(recipe == null) {
 throw new Exception("Unable to find the recipe");
 }
 UpdateRecipe(recipe, cmd);
 await _context.SaveChangesAsync();
}

static void UpdateRecipe(Recipe recipe, UpdateRecipeCommand cmd)
{
 recipe.Name = cmd.Name;
 recipe.TimeToCook =
 new TimeSpan(cmd.TimeToCookHrs, cmd.TimeToCookMins, 0);
 recipe.Method = cmd.Method;
 recipe.IsVegetarian = cmd.IsVegetarian;
 recipe.IsVegan = cmd.IsVegan;
}

In this example I read the Recipe entity using the FindAsync(id) method exposed
by DbSet. This is a simple helper method for loading an entity by its ID, in this case
RecipeId. I could have written a similar query using LINQ as

_context.Recipes.Where(r=>r.RecipeId == cmd.Id).FirstOrDefault();

Using FindAsync() or Find() is a little more declarative and concise.

TIP Find is actually a bit more complicated. Find first checks to see if the entity
is already being tracked in EF Core’s DbContext. If it is (because the entity was
previously loaded in this request), the entity is returned immediately without
calling the DB. This can obviously be faster if the entity is tracked, but it can
also be slower if you know the entity isn’t being tracked yet.

You may be wondering how EF Core knows which columns to update when you call
SaveChangesAsync(). The simplest approach would be to update every column—if
the field hasn’t changed, then it doesn’t matter if you write the same value again. But
EF Core is a bit more clever than that.

 EF Core internally tracks the state of any entities it loads from the database. It cre-
ates a snapshot of all the entity’s property values, so it can track which ones have
changed. When you call SaveChanges(), EF Core compares the state of any tracked
entities (in this case, the Recipe entity) with the tracking snapshot. Any properties
that have been changed are included in the UPDATE statement sent to the database,
and unchanged properties are ignored.

NOTE EF Core provides other mechanisms to track changes, as well as options
to disable change-tracking altogether. See the documentation or chapter 3 of
Jon P. Smith’s Entity Framework Core in Action, 2nd ed., (Manning, 2021) for
details: http://mng.bz/q9PJ.

With the ability to update recipes, you’re almost done with your recipe app. “But
wait,” I hear you cry, “we haven’t handled the D in CRUD—delete!” And that’s true,
but in reality, I’ve found few occasions when you want to delete data.

If an invalid id is
provided, recipe
will be null.

 the new
es on the
e entity.

Execute the SQL to save the
changes to the database.

A helper
method for
setting the
new propertie
on the Recipe
entity

http://mng.bz/q9PJ

393Querying data from and saving data to the database
 Let’s consider the requirements for deleting a recipe from the application, as shown
in figure 12.15. You need to add a (scary-looking) Delete button next to a recipe. After
the user clicks Delete, the recipe is no longer visible in the list and can’t be viewed.

You could achieve this by deleting the recipe from the database, but the problem with
data is that once it’s gone, it’s gone! What if a user accidentally deletes a record? Also,
deleting a row from a relational database typically has implications on other entities.
For example, you can’t delete a row from the Recipe table in your application without
also deleting all the Ingredient rows that reference it, thanks to the foreign-key con-
straint on Ingredient.RecipeId.

 EF Core can easily handle these true deletion scenarios for you with the DbContext
.Remove(entity) command, but typically what you mean when you find a need to delete
data is to “archive” it or hide it from the UI. A common approach to handling this sce-
nario is to include some sort of “Is this entity deleted” flag on your entity, such as the
IsDeleted flag I included on the Recipe entity:

public bool IsDeleted {get;set;}

If you take this approach, deleting data suddenly becomes simpler, as it’s nothing
more than an update to the entity. No more issues of lost data, and no more referen-
tial integrity problems.

The main page of the application
shows a list of all current recipes.

Clicking Delete returns you to
the list view, but the deleted
recipe is no longer visible.

Clicking View opens the
recipe detail page.

Figure 12.15 The desired behavior when deleting a recipe from the app. Clicking Delete should
return you to the application’s main list view, with the deleted recipe no longer visible.

394 CHAPTER 12 Saving data with Entity Framework Core

M
R

NOTE The main exception I’ve found to this pattern is when you’re storing
your users’ personally identifying information. In these cases, you may be
duty-bound (and, potentially, legally bound) to scrub their information from
your database on request.

With this approach, you can create a delete method on RecipeService that updates the
IsDeleted flag, as shown in the following listing. In addition, you should ensure you
have Where() clauses in all the other methods in your RecipeService, to ensure you
can’t display a deleted Recipe, as you saw in listing 12.9 for the GetRecipes() method.

public async Task DeleteRecipe(int recipeId)
{
 var recipe = await _context.Recipes.FindAsync(recipeId);
 if(recipe is null) {
 throw new Exception("Unable to find the recipe");
 }
 recipe.IsDeleted = true;
 await _context.SaveChangesAsync();
}

This approach satisfies the requirements—it removes the recipe from the UI of the
application—but it simplifies a number of things. This soft delete approach won’t work
for all scenarios, but I’ve found it to be a common pattern in projects I’ve worked on.

TIP EF Core has a handy feature called global query filters. These allow you to
specify a Where clause at the model level, so you could, for example, ensure
that EF Core never loads Recipes for which IsDeleted is true. This is also use-
ful for segregating data in a multi-tenant environment. See the documenta-
tion for details: https://docs.microsoft.com/ef/core/querying/filters.

We’re almost at the end of this chapter on EF Core. We’ve covered the basics of add-
ing EF Core to your project and using it to simplify data access, but you’ll likely need
to learn more about EF Core as your apps become more complex. In the final section
of this chapter, I’d like to pinpoint a number of things you need to take into consider-
ation before using EF Core in your own applications, so you’re familiar with some of
the issues you’ll face as your apps grow.

12.5 Using EF Core in production applications
This book is about ASP.NET Core, not EF Core, so I didn’t want to spend too much
time exploring EF Core. This chapter should’ve given you enough to get up and run-
ning, but you’ll definitely need to learn more before you even think about putting EF
Core into production. As I’ve said several times, I recommend Entity Framework Core in
Action, 2nd ed., by Jon P. Smith (Manning, 2021) for details (http://mng.bz/7Vme) or
exploring the EF Core documentation site at https://docs.microsoft.com/ef/core/.

Listing 12.10 Marking entities as deleted in EF Core

Fetch the Recipe entity by id.

If an invalid id is
provided, recipe
will be null.

ark the
ecipe as
deleted.

Execute the SQL to save the
changes to the database.

https://docs.microsoft.com/ef/core/querying/filters
http://mng.bz/7Vme
https://docs.microsoft.com/ef/core/

395Using EF Core in production applications
 The following topics aren’t essential for getting started with EF Core, but you’ll
quickly come up against them if you build a production-ready app. This section isn’t a
prescriptive guide to tackling each of these; it’s more a set of things to consider before
you dive into production.

 Scaffolding of columns—EF Core uses conservative values for things like string
columns by allowing strings of large or unlimited length. In practice, you may
want to restrict these and other data types to sensible values.

 Validation—You can decorate your entities with DataAnnotations validation attri-
butes, but EF Core won’t automatically validate the values before saving to the
database. This differs from EF 6.x behavior, in which validation was automatic.

 Handling concurrency—EF Core provides a few ways to handle concurrency,
where multiple users attempt to update an entity at the same time. One partial
solution is to use Timestamp columns on your entities.

 Synchronous vs. asynchronous—EF Core provides both synchronous and asyn-
chronous commands for interacting with the database. Often, async is better for
web apps, but there are nuances to this argument that make it impossible to rec-
ommend one approach over the other in all situations.

EF Core is a great tool for being productive when writing data-access code, but there
are some aspects of working with a database that are unavoidably awkward. The issue
of database management is one of the thorniest issues to tackle. This book is about
ASP.NET Core, not EF Core, so I don’t want to dwell on database management too
much. Having said that, most web applications use some sort of database, so the fol-
lowing issues are likely to impact you at some point:

 Automatic migrations—If you automatically deploy your app to production as
part of some sort of DevOps pipeline, you’ll inevitably need some way of apply-
ing migrations to a database automatically. You can tackle this in several ways,
such as scripting the .NET tool, applying migrations in your app’s startup code,
or using a custom tool. Each approach has its pros and cons.

 Multiple web hosts—One specific consideration is whether you have multiple web
servers hosting your app, all pointing to the same database. If so, then applying
migrations in your app’s startup code becomes harder, as you must ensure only
one app can migrate the database at a time.

 Making backward-compatible schema changes—A corollary of the multiple web
host approach is that you’ll often be in a situation where your app is accessing
a database that has a newer schema than the app thinks. That means you should
normally endeavor to make schema changes backward-compatible wherever
possible.

 Storing migrations in a different assembly—In this chapter I included all my logic in
a single project, but in larger apps, data access is often in a different project
than the web app. For apps with this structure, you must use slightly different
commands when using the .NET CLI or PowerShell cmdlets.

396 CHAPTER 12 Saving data with Entity Framework Core
 Seeding data—When you first create a database, you often want it to have some
initial seed data, such as a default user. EF 6.x had a mechanism for seeding data
built in, whereas EF Core requires you to explicitly seed your database yourself.

How you choose to handle each of these issues will depend on the infrastructure and
deployment approach you take with your application. None of them are particularly
fun to tackle, but they’re an unfortunate necessity. Take heart, though, they can all be
solved one way or another!

 That brings us to the end of this chapter on EF Core. In the next chapter we’ll look
at one of the slightly more advanced topics of MVC and Razor Pages: the filter pipe-
line, and how you can use it to reduce duplication in your code.

Summary
 EF Core is an object-relational mapper (ORM) that lets you interact with a data-

base by manipulating standard POCO classes, called entities, in your applica-
tion. This can reduce the amount of SQL and database knowledge you need to
have to be productive.

 EF Core maps entity classes to tables, properties on the entity to columns in the
tables, and instances of entity objects to rows in these tables. Even if you use EF
Core to avoid working with a database directly, you need to keep this mapping
in mind.

 EF Core uses a database-provider model that lets you change the underlying
database without changing any of your object manipulation code. EF Core has
database providers for Microsoft SQL Server, SQLite, PostgreSQL, MySQL, and
many others.

 EF Core is cross-platform and has good performance for an ORM, but it has a
different feature set than EF 6.x. Nevertheless, EF Core is recommended for all
new applications over EF 6.x.

 EF Core stores an internal representation of the entities in your application and
how they map to the database, based on the DbSet<T> properties on your appli-
cation’s DbContext. EF Core builds a model based on the entity classes them-
selves and any other entities they reference.

 You add EF Core to your app by adding a NuGet database provider package.
You should also install the design packages for EF Core. This works in conjunc-
tion with the .NET tools to generate and apply migrations to a database.

 EF Core includes many conventions for how entities are defined, such as pri-
mary keys and foreign keys. You can customize how entities are defined either
declaratively, using DataAnnotations, or using a fluent API.

 Your application uses a DbContext to interact with EF Core and the database.
You register it with a DI container using AddDbContext<T>, defining the data-
base provider and providing a connection string. This makes your DbContext
available in the DI container throughout your app.

397Summary
 EF Core uses migrations to track changes to your entity definitions. They’re
used to ensure that your entity definitions, EF Core’s internal model, and the
database schema all match.

 After changing an entity, you can create a migration either using the .NET tool
or using Visual Studio PowerShell cmdlets.

 To create a new migration with the .NET CLI, run dotnet ef migrations add
NAME in your project folder, where NAME is the name you want to give the migra-
tion. This compares your current DbContext snapshot to the previous version
and generates the necessary SQL statements to update your database.

 You can apply the migration to the database using dotnet ef database update.
This will create the database if it doesn’t already exist and apply any outstand-
ing migrations.

 EF Core doesn’t interact with the database when it creates migrations, only
when you explicitly update the database, so you can still create migrations when
you’re offline.

 You can add entities to an EF Core database by creating a new entity, e, calling
_context.Add(e) on an instance of your application’s data context, _context,
and calling _context.SaveChangesAsync(). This generates the necessary SQL
INSERT statements to add the new rows to the database.

 You can load records from a database using the DbSet<T> properties on your
app’s DbContext. These expose the IQueryable interface, so you can use LINQ
statements to filter and transform the data in the database before it’s returned.

 Updating an entity consists of three steps: reading the entity from the data-
base, modifying the entity, and saving the changes to the database. EF Core
will keep track of which properties have changed so that it can optimize the
SQL it generates.

 You can delete entities in EF Core using the Remove method, but you should
consider carefully whether you need this functionality. Often a soft delete tech-
nique using an IsDeleted flag on entities is safer and easier to implement.

 This chapter only covers a subset of the issues you must consider when using EF
Core in your application. Before using it in a production app, you should con-
sider, among other things, the data types generated for fields, validation, how to
handle concurrency, the seeding of initial data, handling migrations on a run-
ning application, and handling migrations in a web-farm scenario.

The MVC and Razor
Pages filter pipeline
In part 1 I covered the MVC and Razor Pages frameworks of ASP.NET Core in some
detail. You learned how routing is used to select an action method or Razor Page to
execute. You also saw model binding, validation, and how to generate a response by
returning an IActionResult from your actions and page handlers. In this chapter
I’m going to head deeper into the MVC/Razor Pages frameworks and look at the
filter pipeline, sometimes called the action invocation pipeline.

 MVC and Razor Pages use several built-in filters to handle cross-cutting concerns,
such as authorization (controlling which users can access which action methods and

This chapter covers
 The filter pipeline and how it differs from

middleware

 Creating custom filters to refactor complex
action methods

 Using authorization filters to protect your action
methods and Razor Pages

 Short-circuiting the filter pipeline to bypass
action and page handler execution

 Injecting dependencies into filters
398

399Understanding filters and when to use them
pages in your application). Any application that has the concept of users will use
authorization filters as a minimum, but filters are much more powerful than this sin-
gle use case.

 This chapter describes the filter pipeline primarily in the context of an API con-
troller request. You’ll learn how to create custom filters that you can use in your own
apps, and how you can use them to reduce duplicate code in your action methods.
You’ll learn how to customize your application’s behavior for specific actions, as well
as how to apply filters globally to modify all of the actions in your app.

 You’ll also learn how the filter pipeline applies to Razor Pages. The Razor Pages fil-
ter pipeline is almost identical to the MVC/API controller filter pipeline, so we’ll
focus on where it differs. You’ll see how to use page filters in your Razor Pages and
learn how they differ from action filters.

 Think of the filter pipeline as a mini middleware pipeline running inside the MVC
and Razor Pages frameworks. Like the middleware pipeline in ASP.NET Core, the fil-
ter pipeline consists of a series of components connected as a pipe, so the output of
one filter feeds into the input of the next.

 This chapter starts by looking at the similarities and differences between filters and
middleware, and when you should choose one over the other. You’ll learn about all
the different types of filters and how they combine to create the filter pipeline for a
request that reaches the MVC or Razor Pages framework.

 In section 13.2 I’ll take you through each filter type in detail, how they fit into the
MVC pipeline, and what to use them for. For each one, I’ll provide example imple-
mentations that you might use in your own application.

 A key feature of filters is the ability to short-circuit a request by generating a
response and halting progression through the filter pipeline. This is similar to the way
short-circuiting works in middleware, but there are subtle differences. On top of that,
the exact behavior is slightly different for each filter, and I cover that in section 13.3.

 You typically add filters to the pipeline by implementing them as attributes added
to your controller classes, action methods, and Razor Pages. Unfortunately, you can’t
easily use DI with attributes due to the limitations of C#. In section 13.4 I’ll show you
how to use the ServiceFilterAttribute and TypeFilterAttribute base classes to
enable dependency injection in your filters.

 Before we can start writing code, we should get to grips with the basics of the filter
pipeline. The first section of this chapter explains what the pipeline is, why you might
want to use it, and how it differs from the middleware pipeline.

13.1 Understanding filters and when to use them
In this section you’ll learn all about the filter pipeline. You’ll see where it fits in the
lifecycle of a typical request, how it differs between MVC and Razor Pages, and how fil-
ters differ from middleware. You’ll learn about the six types of filters, how you can add
them to your own apps, and how to control the order in which they execute when
handling a request.

400 CHAPTER 13 The MVC and Razor Pages filter pipeline
 The filter pipeline is a relatively simple concept, in that it provides hooks into the
normal MVC request, as shown in figure 13.1. For example, say you wanted to ensure
that users can create or edit products on an e-commerce app only if they’re logged in.
The app would redirect anonymous users to a login page instead of executing the
action.

Without filters, you’d need to include the same code to check for a logged-in user at the
start of each specific action method. With this approach, the MVC framework would still
execute the model binding and validation, even if the user were not logged in.

 With filters, you can use the hooks in the MVC request to run common code across
all, or a subset of, requests. This way you can do a wide range of things, such as

1. A request is received for
the URL /api/product/ .1

2. The routing middleware matches
the request to the Get action on the
ProductController and sets id= .1

3. A variety of different filters
run as part of the execution
in the endpoint middleware.

4. Filters run before model
binding, before the action
method runs, and before
and after the IActionResult
is executed.

Endpoint middleware

Figure 13.1 Filters run at multiple points in the EndpointMiddleware as part of
the normal handling of an MVC request. A similar pipeline exists for Razor Page
requests.

401Understanding filters and when to use them
 Ensure a user is logged in before an action method, model binding, or valida-
tion runs

 Customize the output format of particular action methods
 Handle model validation failures before an action method is invoked
 Catch exceptions from an action method and handle them in a special way

In many ways, the filter pipeline is like a middleware pipeline, but restricted to MVC
and Razor Pages requests only. Like middleware, filters are good for handling cross-
cutting concerns for your application and are a useful tool for reducing code duplica-
tion in many cases.

13.1.1 The MVC filter pipeline

As you saw in figure 13.1, filters run at a number of different points in an MVC
request. The linear view of an MVC request and the filter pipeline that I’ve used so far
doesn’t quite match up with how these filters execute. There are five types of filters
that apply to MVC requests, each of which runs at a different stage in the MVC frame-
work, as shown in figure 13.2.

Authorization filters run first,
for every MVC request. If the
request isn’t authorized, it will
short-circuit the pipeline.

Resource filters run next,
before model binding runs.

Action filters run before and after
the action method executes. As
they run after model binding, you
can use them to customize the
arguments passed to the action.

If an exception occurs somewhere
in the pipeline, the ExceptionFilter
will execute.

If the action method returns
an IActionResult, the Result
filters will execute before and
after the IActionResult is
executed.

Resource filters also run at
the end of the pipeline, after
the result has been executed.

Request Response

Figure 13.2 The MVC filter pipeline, including the five different filter stages. Some filter stages (resource,
action, and result) run twice, before and after the remainder of the pipeline.

402 CHAPTER 13 The MVC and Razor Pages filter pipeline
Each filter stage lends itself to a particular use case, thanks to its specific location in
the pipeline, with respect to model binding, action execution, and result execution.

 Authorization filters—These run first in the pipeline, so they’re useful for pro-
tecting your APIs and action methods. If an authorization filter deems the
request unauthorized, it will short-circuit the request, preventing the rest of the
filter pipeline (or action) from running.

 Resource filters—After authorization, resource filters are the next filters to run in
the pipeline. They can also execute at the end of the pipeline, in much the same
way that middleware components can handle both the incoming request and
the outgoing response. Alternatively, resource filters can completely short-cir-
cuit the request pipeline and return a response directly.

Thanks to their early position in the pipeline, resource filters can have a vari-
ety of uses. You could add metrics to an action method, prevent an action method
from executing if an unsupported content type is requested, or, as they run
before model binding, control the way model binding works for that request.

 Action filters—Action filters run just before and after an action method is exe-
cuted. As model binding has already happened, action filters let you manipulate
the arguments to the method—before it executes—or they can short-circuit the
action completely and return a different IActionResult. Because they also run
after the action executes, they can optionally customize an IActionResult
returned by the action before the action result is executed.

 Exception filters—Exception filters can catch exceptions that occur in the filter
pipeline and handle them appropriately. You can use exception filters to write
custom MVC-specific error-handling code, which can be useful in some situa-
tions. For example, you could catch exceptions in API actions and format them
differently from exceptions in your Razor Pages.

 Result filters—Result filters run before and after an action method’s IAction-
Result is executed. You can use result filters to control the execution of the
result, or even to short-circuit the execution of the result.

Exactly which filter you pick to implement will depend on the functionality you’re try-
ing to introduce. Want to short-circuit a request as early as possible? Resource filters
are a good fit. Need access to the action method parameters? Use an action filter.

 Think of the filter pipeline as a small middleware pipeline that lives by itself in the
MVC framework. Alternatively, you could think of filters as hooks into the MVC action
invocation process that let you run code at a particular point in a request’s lifecycle.

 This section described how the filter pipeline works for MVC controllers, such as
you would use to create APIs; Razor Pages uses an almost identical filter pipeline.

403Understanding filters and when to use them
13.1.2 The Razor Pages filter pipeline

The Razor Pages framework uses the same underlying architecture as API controllers,
so it’s perhaps not surprising that the filter pipeline is virtually identical. The only dif-
ference between the pipelines is that Razor Pages do not use action filters. Instead,
they use page filters, as shown in figure 13.3.

The authorization, resource, exception, and result filters are exactly the same filters as
you saw for the MVC pipeline. They execute in the same way, serve the same purposes,
and can be short-circuited in the same way.

NOTE These filters are literally the same classes shared between the Razor
Pages and MVC frameworks. For example, if you create an exception filter

Authorization and resource
filters run in exactly the
same way for MVC and
Razor Pages requests.

Page filters can short-circuit
the page handler so that it
doesn’t execute, the same
way action filters can short-
circuit an action invocation.

Exception and result
filters run in exactly the
same way for MVC and
Razor Pages requests.

Request Response

Page filters run three times:
after page handler selection,
after model binding, and after
page handler execution.

Figure 13.3 The Razor Pages filter pipeline, including the five different filter stages.
Authorization, resource, exception, and result filters execute in exactly the same way
as for the MVC pipeline. Page filters are specific to Razor Pages and execute in three
places: after page hander selection, after model binding and validation, and after page
handler execution.

404 CHAPTER 13 The MVC and Razor Pages filter pipeline
and register it globally, the filter will apply to all your API controllers and all
your Razor Pages equally.

The difference with the Razor Pages filter pipeline is that it uses page filters instead of
action filters. In contrast to other filter types, page filters run three times in the fil-
ter pipeline:

 After page handler selection—After the resource filters have executed, a page han-
dler is selected, based on the request’s HTTP verb and the {handler} route
value, as you learned in chapter 5. After page handler selection, a page filter
method executes for the first time. You can’t short-circuit the pipeline at this
stage, and model binding and validation has not yet executed.

 After model binding—After the first page filter execution, the request is model-
bound to the Razor Page’s binding models and is validated. This execution is
highly analogous to the action filter execution for API controllers. At this point
you could manipulate the model-bound data or short-circuit the page handler
execution completely by returning a different IActionResult.

 After page handler execution—If you don’t short-circuit the page handler execu-
tion, the page filter runs a third and final time after the page handler has exe-
cuted. At this point you could customize the IActionResult returned by the
page handler before the result is executed.

The triple execution of page filters makes it a bit harder to visualize the pipeline, but
you can generally just think of them as beefed-up action filters. Everything you can do
with an action filter, you can do with a page filter. Plus, you can hook in after page
handler selection if necessary.

TIP Each execution of a filter executes a different method of the appropri-
ate interface, so it’s easy to know where you are in the pipeline and to only
execute a filter in one of its possible locations if you wish.

One of the main questions I hear when people learn about filters in ASP.NET Core is
“Why do we need them?” If the filter pipeline is like a mini middleware pipeline, why
not use a middleware component directly, instead of introducing the filter concept?
That’s an excellent point, which I’ll tackle in the next section.

13.1.3 Filters or middleware: Which should you choose?

The filter pipeline is similar to the middleware pipeline in many ways, but there are
several subtle differences that you should consider when deciding which approach to
use. When considering the similarities, they have three main parallels:

 Requests pass through a middleware component on the way “in” and responses pass through
again on the way “out.” Resource, action, and result filters are also two-way, though
authorization and exception filters run only once for a request, and page filters
run three times.

405Understanding filters and when to use them
 Middleware can short-circuit a request by returning a response, instead of passing it on to
later middleware. Filters can also short-circuit the filter pipeline by returning a
response.

 Middleware is often used for cross-cutting application concerns, such as logging, perfor-
mance profiling, and exception handling. Filters also lend themselves to cross-cut-
ting concerns.

In contrast, there are three main differences between middleware and filters:

 Middleware can run for all requests; filters will only run for requests that reach
the EndpointMiddleware and execute an API controller action or Razor Page.

 Filters have access to MVC constructs such as ModelState and IActionResults.
Middleware, in general, is independent from MVC and Razor Pages and works
at a “lower level,” so it can’t use these concepts.

 Filters can be easily applied to a subset of requests; for example, all actions on a
single controller, or a single Razor Page. Middleware doesn’t have this concept
as a first-class idea (though you could achieve something similar with custom
middleware components).

That’s all well and good, but how should we interpret these differences? When should
we choose one over the other?

 I like to think of middleware versus filters as a question of specificity. Middleware is
the more general concept, which operates on lower-level primitives like the Http-
Context, so it has the wider reach. If the functionality you need has no MVC-specific
requirements, you should use a middleware component. Exception handling is a
great example of this; exceptions could happen anywhere in your application, and
you need to handle them, so using exception handling middleware makes sense.

 On the other hand, if you do need access to MVC constructs, or you want to behave
differently for some MVC actions, then you should consider using a filter. Ironically,
this can also be applied to exception handling. You don’t want exceptions in your Web
API controllers to automatically generate HTML error pages when the client is
expecting JSON. Instead, you could use an exception filter on your Web API actions
to render the exception to JSON, while letting the exception handling middleware
catch errors from Razor Pages in your app.

TIP Where possible, consider using middleware for cross-cutting concerns.
Use filters when you need different behavior for different action methods, or
where the functionality relies on MVC concepts like ModelState validation.

The middleware versus filters argument is a subtle one, and it doesn’t matter which
you choose as long as it works for you. You can even use middleware components
inside the filter pipeline as filters, but that’s outside the scope of this book.

TIP The middleware as filters feature was introduced in ASP.NET Core 1.1
and is also available in later versions. The canonical use case is for localizing

406 CHAPTER 13 The MVC and Razor Pages filter pipeline
requests to multiple languages. I have a blog series on how to use the feature
here: http://mng.bz/RXa0.

Filters can be a little abstract in isolation, so in the next section we’ll look at some
code and learn how to write a custom filter in ASP.NET Core.

13.1.4 Creating a simple filter

In this section, I’ll show you how to create your first filters; in section 13.1.5 you’ll see
how to apply them to MVC controllers and actions. We’ll start small, creating filters
that just write to the console, but in section 13.2 we’ll look at some more practical
examples and discuss some of their nuances.

 You implement a filter for a given stage by implementing one of a pair of inter-
faces—one synchronous (sync), one asynchronous (async):

 Authorization filters—IAuthorizationFilter or IAsyncAuthorizationFilter
 Resource filters—IResourceFilter or IAsyncResourceFilter
 Action filters—IActionFilter or IAsyncActionFilter
 Page filters—IPageFilter or IAsyncPageFilter
 Exception filters—IExceptionFilter or IAsyncExceptionFilter
 Result filters—IResultFilter or IAsyncResultFilter

You can use any POCO class to implement a filter, but you’ll typically implement them
as C# attributes, which you can use to decorate your controllers, actions, and Razor
Pages, as you’ll see in section 13.1.5. You can achieve the same results with either the
sync or async interface, so which you choose should depend on whether any services
you call in the filter require async support.

NOTE You should implement either the sync interface or the async interface,
not both. If you implement both, only the async interface will be used.

Listing 13.1 shows a resource filter that implements IResourceFilter and writes to
the console when it executes. The OnResourceExecuting method is called when a
request first reaches the resource filter stage of the filter pipeline. In contrast, the
OnResourceExecuted method is called after the rest of the pipeline has executed:
after model binding, action execution, result execution, and all intermediate filters
have run.

public class LogResourceFilter : Attribute, IResourceFilter
{
 public void OnResourceExecuting(
 ResourceExecutingContext context)
 {
 Console.WriteLine("Executing!");
 }

Listing 13.1 Example resource filter implementing IResourceFilter

Executed at the start of the pipeline,
after authorization filters

The context contains the HttpContext,
routing details, and information
about the current action.

http://mng.bz/RXa0

407Understanding filters and when to use them

e,

ates
b
r

 public void OnResourceExecuted(
 ResourceExecutedContext context)
 {
 Console.WriteLine("Executed”");
 }
}

The interface methods are simple and are similar for each stage in the filter pipeline,
passing a context object as a method parameter. Each of the two-method sync filters
has an *Executing and an *Executed method. The type of the argument is different
for each filter, but it contains all the details for the filter pipeline.

 For example, the ResourceExecutingContext passed to the resource filter con-
tains the HttpContext object itself, details about the route that selected this action,
details about the action itself, and so on. Contexts for later filters will contain addi-
tional details, such as the action method arguments for an action filter and the
ModelState.

 The context object for the ResourceExecutedContext method is similar, but it also
contains details about how the rest of the pipeline executed. You can check whether
an unhandled exception occurred, you can see if another filter from the same stage
short-circuited the pipeline, or you can see the IActionResult used to generate the
response.

 These context objects are powerful and are the key to advanced filter behaviors
like short-circuiting the pipeline and handling exceptions. We’ll make use of them in
section 13.2 when we create more complex filter examples.

 The async version of the resource filter requires implementing a single method, as
shown in listing 13.2. As for the sync version, you’re passed a ResourceExecuting-
Context object as an argument, and you’re passed a delegate representing the remain-
der of the filter pipeline. You must call this delegate (asynchronously) to execute the
remainder of the pipeline, which will return an instance of ResourceExecutedContext.

public class LogAsyncResourceFilter : Attribute, IAsyncResourceFilter
{
 public async Task OnResourceExecutionAsync(
 ResourceExecutingContext context,
 ResourceExecutionDelegate next)
 {
 Console.WriteLine("Executing async!");
 ResourceExecutedContext executedContext = await next();
 Console.WriteLine("Executed async!");
 }
}

The sync and async filter implementations have subtle differences, but for most pur-
poses they’re identical. I recommend implementing the sync version if possible, and
only falling back to the async version if you need to.

Listing 13.2 Example resource filter implementing IAsyncResourceFilter

Executed after model binding, action
execution, and result execution

Contains additional context
information, such as the IActionResult
returned by the action

Executed at the start of the pipelin
after authorization filters

You’re provided a delegate, which encapsul
the remainder of the filter pipeline.

Called
efore the
est of the

pipeline
executes Executes the rest of the

pipeline and obtains a
ResourceExecutedContext

instance
Called after the rest of

the pipeline executes

408 CHAPTER 13 The MVC and Razor Pages filter pipeline
 You’ve created a couple of filters now, so we should look at how to use them in the
application. In the next section we’ll tackle two specific issues: how to control which
requests execute your new filters, and how to control the order in which they execute.

13.1.5 Adding filters to your actions, controllers, Razor Pages,
and globally

In section 13.1.2 I discussed the similarities and differences between middleware and
filters. One of those differences is that filters can be scoped to specific actions or con-
trollers, so that they only run for certain requests. Alternatively, you can apply a filter
globally, so that it runs for every MVC action and Razor Page.

 By adding filters in different ways, you can achieve several different results. Imag-
ine you have a filter that forces you to log in to execute an action. How you add the fil-
ter to your app will significantly change your app’s behavior:

 Apply the filter to a single action or Razor Page—Anonymous users could browse the
app as normal, but if they tried to access the protected action or Razor Page,
they would be forced to log in.

 Apply the filter to a controller—Anonymous users could access actions from other
controllers, but accessing any action on the protected controller would force
them to log in.

 Apply the filter globally—Users couldn’t use the app without logging in. Any attempt
to access an action or Razor Page would redirect the user to the login page.

NOTE ASP.NET Core comes with just such a filter out of the box: Authorize-
Filter. I’ll discuss this filter in section 13.2.1, and you’ll be seeing a lot more
of it in chapter 15.

As I described in the previous section, you normally create filters as attributes, and for
good reason—it makes it easy for you to apply them to MVC controllers, actions, and
Razor Pages. In this section you’ll see how to apply LogResourceFilter from listing 13.1
to an action, a controller, a Razor Page, and globally. The level at which the filter
applies is called its scope.

DEFINITION The scope of a filter refers to how many different actions it applies
to. A filter can be scoped to the action method, to the controller, to a Razor
Page, or globally.

You’ll start at the most specific scope—applying filters to a single action. The follow-
ing listing shows an example of an MVC controller that has two action methods: one
with LogResourceFilter and one without.

409Understanding filters and when to use them
public class RecipeController : ControllerBase
{
 [LogResourceFilter]
 public IActionResult Index()
 {
 return Ok();
 }
 public IActionResult View()
 {
 return OK();
 }
}

Alternatively, if you want to apply the same filter to every action method, you could
add the attribute at the controller scope, as in the next listing. Every action method in
the controller will use LogResourceFilter, without having to specifically decorate
each method.

[LogResourceFilter]
public class RecipeController : ControllerBase
{
 public IActionResult Index ()
 {
 return Ok();
 }
 public IActionResult View()
 {
 return Ok();
 }
}

For Razor Pages, you can apply attributes to your PageModel, as shown in the following
listing. The filter applies to all page handlers in the Razor Page—it’s not possible to
apply filters to a single page handler; you must apply them at the page level.

[LogResourceFilter]
public class IndexModel : PageModel
{
 public void OnGet()
 {
 }

 public void OnPost()
 {
 }
}

Listing 13.3 Applying filters to an action method

Listing 13.4 Applying filters to a controller

Listing 13.5 Applying filters to a Razor Page

LogResourceFilter
will run as part of the
pipeline when executing
this action.

This action method
has no filters at the
action level.

The LogResourceFilter Is
added to every action on
the controller.

Every action in
the controller is
decorated with
the filter.

The LogResourceFilter
Is added to the Razor
Page’s PageModel.

The filter applies to
every page handler
in the page.

410 CHAPTER 13 The MVC and Razor Pages filter pipeline

f

d
p

to
Filters you apply as attributes to controllers, actions, and Razor Pages are automati-
cally discovered by the framework when your application starts up. For common
attributes, you can go one step further and apply filters globally, without having to deco-
rate individual classes.

 You add global filters in a different way than controller- or action-scoped filters—
by adding a filter directly to the MVC services when configuring your controllers and
Razor Pages in Startup. This listing shows three equivalent ways to add a globally
scoped filter.

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllers(options =>
 {
 options.Filters.Add(new LogResourceFilter());
 options.Filters.Add(typeof(LogResourceFilter));
 options.Filters.Add<LogResourceFilter>();
 });
 }
}

You can configure the MvcOptions by using the AddControllers() overload. When you
configure filters globally, they apply both to controllers and to any Razor Pages in your
application. If you’re using Razor Pages in your application instead, there isn’t an over-
load for configuring the MvcOptions. Instead you need to use the AddMvcOptions()
extension method to configure the filters, as shown in the following listing.

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages()
 .AddMvcOptions(options =>
 {
 options.Filters.Add(new LogResourceFilter());
 options.Filters.Add(typeof(LogResourceFilter));
 options.Filters.Add<LogResourceFilter>();
 });
 }
}

With potentially three different scopes in play, you’ll often find action methods that
have multiple filters applied to them: some applied directly to the action method, and
others inherited from the controller or globally. The question then becomes, which
filter runs first?

Listing 13.6 Applying filters globally to an application

Listing 13.7 Applying filters globally to a Razor Pages application

Adds filters using
the MvcOptions
object

You can pass an
instance of the

ilter directly. or pass in
the Type of the
filter and let
the framework
create it.

Alternatively, the framework can
create a global filter using a

generic type parameter.

This method
oesn’t let you
ass a lambda
configure the
MvcOptions.

You must use an extension method to
add the filters to the MvcOptions object.

You can configure the filters in
any of the ways shown previously.

411Understanding filters and when to use them
13.1.6 Understanding the order of filter execution

You’ve seen that the filter pipeline contains five different stages, one for each type of
filter. These stages always run in the fixed order I described in sections 13.1.1 and
13.1.2. But within each stage, you can also have multiple filters of the same type (for
example, multiple resource filters) that are part of a single action method’s pipeline.
These could all have multiple scopes, depending on how you added them, as you saw in
the last section.

 In this section, we’re thinking about the order of filters within a given stage and how
scope affects this. We’ll start by looking at the default order and then move on to ways
to customize the order to your own requirements.

THE DEFAULT SCOPE EXECUTION ORDER

When thinking about filter ordering, it’s important to remember that resource,
action, and result filters implement two methods: an *Executing before method
and an *Executed after method. On top of that, page filters implement three meth-
ods! The order in which each method executes depends on the scope of the filter, as
shown in figure 13.4 for the resource filter stage.

By default, filters execute from the broadest scope (global) to the narrowest (action)
when running the *Executing method for each stage. The filters’ *Executed methods
run in reverse order, from the narrowest scope (action) to the broadest (global).

 The ordering for Razor Pages is somewhat simpler, given that you only have two
scopes—global scope filters and Razor Page scope filters. For Razor Pages, global scope

Global filters run first
in each filter stage.

The scope of the filters
determines the order in
which they run within a
single stage.

Filters scoped to the
controller level run
after global filters and
before action filters.

Filters can also be applied
to base controller classes.
Base class scoped filters
run later than filters on
the derived controllers.

Filters scoped to the
action level run last
in a filter stage.

Figure 13.4 The default filter ordering within a given stage, based on the scope of the
filters. For the *Executing method, globally scoped filters run first, followed by controller-
scoped, and finally, action-scoped filters. For the *Executed method, the filters run in
reverse order.

412 CHAPTER 13 The MVC and Razor Pages filter pipeline
filters run the *Executing and PageHandlerSelected methods first, followed by the
page scope filters. For the *Executed methods, the filters run in reverse order.

 You’ll sometimes find you need a bit more control over this order, especially if you
have, for example, multiple action filters applied at the same scope. The filter pipe-
line caters to this requirement by way of the IOrderedFilter interface.

OVERRIDING THE DEFAULT ORDER OF FILTER EXECUTION WITH IORDEREDFILTER

Filters are great for extracting cross-cutting concerns from your controller actions and
Razor Page, but if you have multiple filters applied to an action, you’ll often need to
control the precise order in which they execute.

 Scope can get you some of the way, but for those other cases, you can implement
IOrderedFilter. This interface consists of a single property, Order:

public interface IOrderedFilter
{
 int Order { get; }
}

You can implement this property in your filters to set the order in which they execute.
The filter pipeline orders the filters in a given stage based on this value first, from low-
est to highest, and uses the default scope order to handle ties, as shown in figure 13.5.

The Order and scope of the
filters determines the order
in which they run within a
single stage.

Filters with the lowest
Order number run first.
Scope is used to decide
tie breaks.

Filters with the highest
value of Order run last
for the stage.

By default, filters have
an Order of 0.

Figure 13.5 Controlling the filter order for a stage using the IOrderedFilter interface.
Filters are ordered by the Order property first, and then by scope.

413Creating custom filters for your application
The filters for Order = -1 execute first, as they have the lowest Order value. The con-
troller filter executes first because it has a broader scope than the action-scope filter.
The filters with Order = 0 execute next, in the default scope order, as shown in fig-
ure 13.5. Finally, the filter with Order = 1 executes.

 By default, if a filter doesn’t implement IOrderedFilter, it’s assumed to have
Order = 0. All the filters that ship as part of ASP.NET Core have Order = 0, so you can
implement your own filters relative to these.

 This section has covered most of the technical details you need to use filters and
create custom implementations for your own application. In the next section you’ll
see some of the built-in filters provided by ASP.NET Core, as well as some practical
examples of filters you might want to use in your own applications.

13.2 Creating custom filters for your application
ASP.NET Core includes a number of filters that you can use, but often the most use-
ful filters are the custom ones that are specific to your own apps. In this section we’ll
work through each of the six types of filters. I’ll explain in more detail what they’re
for and when you should use them. I’ll point out examples of these filters that are
part of ASP.NET Core itself, and you’ll see how to create custom filters for an exam-
ple application.

 To give you something realistic to work with, we’ll start with a Web API controller
for accessing the recipe application from chapter 12. This controller contains two
actions: one for fetching a RecipeDetailViewModel and another for updating a Recipe
with new values. This listing shows your starting point for this chapter, including both
of the action methods.

[Route("api/recipe")]
public class RecipeApiController : ControllerBase
{
 private const bool IsEnabled = true;
 public RecipeService _service;
 public RecipeApiController(RecipeService service)
 {
 _service = service;
 }

 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 if (!IsEnabled) { return BadRequest(); }
 try
 {
 if (!_service.DoesRecipeExist(id))
 {
 return NotFound();
 }
 var detail = _service.GetRecipeDetail(id);

Listing 13.8 Recipe Web API controller before refactoring to use filters

This field would be passed in
as configuration and is used
to control access to actions.

If the API isn’t
enabled, block
further execution.

If the requested Recipe
doesn’t exist, return a
404 response.

Fetch
RecipeDetail
ViewModel.

414 CHAPTER 13 The MVC and Razor Pages filter pipeline
 Response.GetTypedHeaders().LastModified =
 detail.LastModified;
 return Ok(detail);
 }
 catch (Exception ex)
 {
 return GetErrorResponse(ex);
 }
 }

 [HttpPost("{id}")]
 public IActionResult Edit(
 int id, [FromBody] UpdateRecipeCommand command)
 {
 if (!IsEnabled) { return BadRequest(); }
 try
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 if (!_service.DoesRecipeExist(id))
 {
 return NotFound();
 }
 _service.UpdateRecipe(command);
 return Ok();
 }
 catch (Exception ex)
 {
 return GetErrorResponse(ex);
 }
 }

 private static IActionResult GetErrorResponse(Exception ex)
 {
 var error = new ProblemDetails
 {
 Title = "An error occurred",
 Detail = context.Exception.Message,
 Status = 500,
 Type = "https://httpstatuses.com/500"
 };

 return new ObjectResult(error)
 {
 StatusCode = 500
 };
 }
}

These action methods currently have a lot of code to them, which hides the intent of
each action. There’s also quite a lot of duplication between the methods, such as
checking that the Recipe entity exists and formatting exceptions.

Sets the Last-
Modified response
header to the value
in the modelReturns the

view model
with a 200

response
If an exception occurs, catch it and
return the error in an expected
format, as a 500 error.

If the API isn’t enabled,
block further execution.

Validate the binding model
and return a 400 response
if there are errors.

If the requested Recipe
doesn’t exist, return a
404 response. Update the Recipe

from the command
and return a 200
response.

If an exception occurs, catch it and
return the error in an expected
format, as a 500 error.

415Creating custom filters for your application
 In this section you’re going to refactor this controller to use filters for all the code
in the methods that’s unrelated to the intent of each action. By the end of the chapter,
you’ll have a much simpler controller that’s far easier to understand, as shown here.

[Route("api/recipe")]
[ValidateModel, HandleException, FeatureEnabled(IsEnabled = true)]
public class RecipeApiController : ControllerBase
{
 public RecipeService _service;
 public RecipeApiController(RecipeService service)
 {
 _service = service;
 }

 [HttpGet("{id}"), EnsureRecipeExists, AddLastModifiedHeader]
 public IActionResult Get(int id)
 {
 var detail = _service.GetRecipeDetail(id);
 return Ok(detail);
 }

 [HttpPost("{id}"), EnsureRecipeExists]
 public IActionResult Edit(
 int id, [FromBody] UpdateRecipeCommand command)
 {
 _service.UpdateRecipe(command);
 return Ok();
 }
}

I think you’ll have to agree that the controller in listing 13.9 is much easier to read! In
this section, you’ll refactor the controller bit by bit, removing cross-cutting code to get
to something more manageable. All the filters we’ll create in this section will use the
sync filter interfaces—I’ll leave it to you, as an exercise, to create their async counter-
parts. We’ll start by looking at authorization filters and how they relate to security in
ASP.NET Core.

13.2.1 Authorization filters: Protecting your APIs

Authentication and authorization are related, fundamental concepts in security that we’ll
be looking at in detail in chapters 14 and 15.

DEFINITION Authentication is concerned with determining who made a request.
Authorization is concerned with what a user is allowed to access.

Authorization filters run first in the MVC filter pipeline, before any other filters. They
control access to the action method by immediately short-circuiting the pipeline when
a request doesn’t meet the necessary requirements.

Listing 13.9 Recipe Web API controller after refactoring to use filters

The filters encapsulate
the majority of logic
common to multiple

action methods.

Placing filters at the action level
limits them to a single action.

The intent of the action,
return a Recipe view
model, is much clearer.

Placing filters at the
action level can control
the order in which they
execute.

The intent of the action, update
a Recipe, is much clearer.

416 CHAPTER 13 The MVC and Razor Pages filter pipeline
 ASP.NET Core has a built-in authorization framework that you should use when
you need to protect your MVC application or your Web APIs. You can configure this
framework with custom policies that let you finely control access to your actions.

TIP It’s possible to write your own authorization filters by implementing
IAuthorizationFilter or IAsyncAuthorizationFilter, but I strongly advise
against it. The ASP.NET Core authorization framework is highly configurable
and should meet all your needs.

At the heart of the ASP.NET Core authorization framework is an authorization fil-
ter, AuthorizeFilter, which you can add to the filter pipeline by decorating your
actions or controllers with the [Authorize] attribute. In its simplest form, adding the
[Authorize] attribute to an action, as in the following listing, means the request must
be made by an authenticated user to be allowed to continue. If you’re not logged in, it
will short-circuit the pipeline, returning a 401 Unauthorized response to the browser.

public class RecipeApiController : ControllerBase
{
 public IActionResult Get(int id)
 {
 // method body
 }

 [Authorize]
 public IActionResult Edit(
 int id, [FromBody] UpdateRecipeCommand command)
 {
 // method body
 }
}

As with all filters, you can apply the [Authorize] attribute at the controller level to
protect all the actions on a controller, to a Razor Page to protect all the page handler
methods in a page, or even globally to protect every endpoint in your app.

NOTE We’ll explore authorization in detail in chapter 15, including how to
add more detailed requirements, so that only specific sets of users can exe-
cute an action.

The next filters in the pipeline are resource filters. In the next section you’ll extract
some of the common code from RecipeApiController and see how easy it is to create
a short-circuiting filter.

13.2.2 Resource filters: Short-circuiting your action methods

Resource filters are the first general-purpose filters in the MVC filter pipeline. In
section 13.1.4 you saw minimal examples of both sync and async resource filters,
which logged to the console. In your own apps, you can use resource filters for a wide

Listing 13.10 Adding [Authorize] to an action method

The Get method has no
[Authorize] attribute, so it
can be executed by anyone.

Adds the AuthorizeFilter to the
filter pipeline using [Authorize]

The Edit method can
only be executed if
you’re logged in.

417Creating custom filters for your application
range of purposes, thanks to the fact that they execute so early (and late) in the fil-
ter pipeline.

 The ASP.NET Core framework includes a few different implementations of
resource filters you can use in your apps:

 ConsumesAttribute—Can be used to restrict the allowed formats an action
method can accept. If your action is decorated with [Consumes("application/
json")] but the client sends the request as XML, the resource filter will short-
circuit the pipeline and return a 415 Unsupported Media Type response.

 DisableFormValueModelBindingAttribute—This filter prevents model bind-
ing from binding to form data in the request body. This can be useful if you
know an action method will be handling large file uploads that you need to
manage manually. The resource filters run before model binding, so you can
disable the model binding for a single action in this way.1

Resource filters are useful when you want to ensure the filter runs early in the pipe-
line, before model binding. They provide an early hook into the pipeline for your
logic, so you can quickly short-circuit the request if you need to.

 Look back at listing 13.8 and see if you can refactor any of the code into a resource
filter. One candidate line appears at the start of both the Get and Edit methods:

if (!IsEnabled) { return BadRequest(); }

This line of code is a feature toggle that you can use to disable the availability of the
whole API, based on the IsEnabled field. In practice, you’d probably load the
IsEnabled field from a database or configuration file so you could control the avail-
ability dynamically at runtime, but for this example I’m using a hardcoded value.2

 This piece of code is self-contained cross-cutting logic, which is somewhat tangen-
tial to the main intent of each action method—a perfect candidate for a filter. You
want to execute the feature toggle early in the pipeline, before any other logic, so a
resource filter makes sense.

TIP Technically, you could also use an authorization filter for this exam-
ple, but I’m following my own advice of “Don’t write your own Authoriza-
tion filters!”

The next listing shows an implementation of FeatureEnabledAttribute, which extracts
the logic from the action methods and moves it into the filter. I’ve also exposed the
IsEnabled field as a property on the filter.

1 For details on handling file uploads, see Microsoft’s documentation: http://mng.bz/4Z2D.
2 To read more about using feature toggles in your applications, see my series: “Adding feature flags to an

ASP.NET Core app” blog entry: http://mng.bz/2e40.

http://mng.bz/4Z2D
http://mng.bz/2e40

418 CHAPTER 13 The MVC and Razor Pages filter pipeline

whe
fe
public class FeatureEnabledAttribute : Attribute, IResourceFilter
{
 public bool IsEnabled { get; set; }
 public void OnResourceExecuting(
 ResourceExecutingContext context)
 {
 if (!IsEnabled)
 {
 context.Result = new BadRequestResult();
 }
 }
 public void OnResourceExecuted(
 ResourceExecutedContext context) { }
}

This simple resource filter demonstrates a number of important concepts, which are
applicable to most filter types:

 The filter is an attribute as well as a filter. This lets you decorate your controller,
action methods, and Razor Pages with it using [FeatureEnabled(IsEnabled =
true)].

 The filter interface consists of two methods: *Executing, which runs before
model binding, and *Executed, which runs after the result has been executed.
You must implement both, even if you only need one for your use case.

 The filter execution methods provide a context object. This provides access to,
among other things, the HttpContext for the request and metadata about the
action method the middleware will execute.

 To short-circuit the pipeline, set the context.Result property to an IAction-
Result instance. The framework will execute this result to generate the response,
bypassing any remaining filters in the pipeline and skipping the action method
(or page handler) entirely. In this example, if the feature isn’t enabled, you
bypass the pipeline by returning BadRequestResult, which will return a 400
error to the client.

By moving this logic into the resource filter, you can remove it from your action meth-
ods and instead decorate the whole API controller with a simple attribute:

[Route("api/recipe"), FeatureEnabled(IsEnabled = true)]
public class RecipeApiController : ControllerBase

You’ve only extracted two lines of code from your action methods so far, but you’re on
the right track. In the next section we’ll move on to action filters and extract two more
filters from the action method code.

Listing 13.11 The FeatureEnabledAttribute resource filter

Defines
ther the
ature is
enabled

Executes before
model binding, early
in the filter pipeline

If the feature isn’t enabled,
short-circuits the pipeline by
setting the context.Result
property

Must be implemented to
satisfy IResourceFilter, but
not needed in this case

419Creating custom filters for your application
13.2.3 Action filters: Customizing model binding and action results

Action filters run just after model binding, before the action method executes.
Thanks to this positioning, action filters can access all the arguments that will be used
to execute the action method, which makes them a powerful way of extracting com-
mon logic out of your actions.

 On top of this, they also run just after the action method has executed and can
completely change or replace the IActionResult returned by the action if you want.
They can even handle exceptions thrown in the action.

NOTE Action filters don’t execute for Razor Pages. Similarly, page filters don’t
execute for action methods.

The ASP.NET Core framework includes several action filters out of the box. One of
these commonly used filters is ResponseCacheFilter, which sets HTTP caching head-
ers on your action-method responses.

TIP Caching is a broad topic that aims to improve the performance of an
application over the naive approach. But caching can also make debugging
issues difficult and may even be undesirable in some situations. Consequently,
I often apply ResponseCacheFilter to my action methods to set HTTP cach-
ing headers that disable caching! You can read about this and other approaches
to caching in Microsoft’s “Response caching in ASP.NET Core” documenta-
tion at http://mng.bz/2eGd.

The real power of action filters comes when you build filters tailored to your own apps
by extracting common code from your action methods. To demonstrate, I’m going to
create two custom filters for RecipeApiController:

 ValidateModelAttribute—This will return BadRequestResult if the model
state indicates that the binding model is invalid and will short-circuit the action
execution. This attribute used to be a staple of my Web API applications, but
the [ApiController] attribute now handles this (and more) for you. Neverthe-
less, I think it’s useful to understand what’s going on behind the scenes.

 EnsureRecipeExistsAttribute—This will use each action method’s id argu-
ment to validate that the requested Recipe entity exists before the action
method runs. If the Recipe doesn’t exist, the filter will return NotFoundResult
and will short-circuit the pipeline.

As you saw in chapter 6, the MVC framework automatically validates your binding
models before executing your actions, but it’s up to you to decide what to do about it.
For Web API controllers, it’s common to return a 400 Bad Request response contain-
ing a list of the errors, as shown in figure 13.6.

 You should ordinarily use the [ApiController] attribute on your Web API con-
trollers, which gives you this behavior automatically. But if you can’t, or don’t want
to use that attribute, you can create a custom action filter instead. Listing 13.12

http://mng.bz/2eGd

420 CHAPTER 13 The MVC and Razor Pages filter pipeline

Mode
and v

hav
ru

poin
c
t

shows a basic implementation that is similar to the behavior you get with the [Api-
Controller] attribute.

public class ValidateModelAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(
 ActionExecutingContext context)
 {
 if (!context.ModelState.IsValid)
 {
 context.Result =
 new BadRequestObjectResult(context.ModelState);
 }
 }
}

This attribute is self-explanatory and follows a similar pattern to the resource filter in
section 13.2.2, but with a few interesting points:

 I have derived from the abstract ActionFilterAttribute. This class imple-
ments IActionFilter and IResultFilter, as well as their async counterparts,
so you can override the methods you need as appropriate. This avoids needing
to add an unused OnActionExecuted() method, but using the base class is entirely
optional and a matter of preference.

Listing 13.12 The action filter for validating ModelState

A 400 Bad Request response is
sent, indicating that validation
failed for the request.

The response body is sent
as a JSON object, providing
the name of each field and
the error.

The request is POSTed to
the RecipeApiController.

The request body is bound
to the action method's
binding model.

Figure 13.6 Posting data to a Web API using Postman. The data is bound to the action method’s
binding model and validated. If validation fails, it’s common to return a 400 Bad Request response
with a list of the validation errors.

For convenience, you derive from the
ActionFilterAttribute base class.

Overrides the Executing
method to run the filter
before the Action executes

l binding
alidation
e already
n at this
t, so you
an check
he state.

If the model isn’t valid, set the Result property;
this short-circuits the action execution.

421Creating custom filters for your application

w
R

 Action filters run after model binding has taken place, so context.ModelState
contains the validation errors if validation failed.

 Setting the Result property on context short-circuits the pipeline. But due to
the position of the action filter stage, only the action method execution and later
action filters are bypassed; all the other stages of the pipeline run as though the
action had executed as normal.

If you apply this action filter to your RecipeApiController, you can remove this
code from the start of both the action methods, as it will run automatically in the fil-
ter pipeline:

if (!ModelState.IsValid)
{
 return BadRequest(ModelState);
}

You’ll use a similar approach to remove the duplicate code that checks whether the
id provided as an argument to the action methods corresponds to an existing Rec-
ipe entity.

 The following listing shows the EnsureRecipeExistsAttribute action filter. This
uses an instance of RecipeService to check whether the Recipe exists and returns a
404 Not Found if it doesn’t.

public class EnsureRecipeExistsAtribute : ActionFilterAttribute
{
 public override void OnActionExecuting(
 ActionExecutingContext context)
 {
 var service = (RecipeService) context.HttpContext
 .RequestServices.GetService(typeof(RecipeService));
 var recipeId = (int) context.ActionArguments["id"];
 if (!service.DoesRecipeExist(recipeId))
 {
 context.Result = new NotFoundResult();
 }
 }
}

As before, you’ve derived from ActionFilterAttribute for simplicity and overridden
the OnActionExecuting method. The main functionality of the filter relies on the Does-
RecipeExist() method of RecipeService, so the first step is to obtain an instance of
RecipeService. The context parameter provides access to the HttpContext for the
request, which in turn lets you access the DI container and use RequestServices
.GetService() to return an instance of RecipeService.

Listing 13.13 An action filter to check whether a Recipe exists

Fetches an instance of
RecipeService from the DI

container

Retrieves the id
parameter that
will be passed
to the action
method when it
executes

Checks
whether a

Recipe entity
ith the given

ecipeId exists

If it doesn’t exist, returns a 404 Not Found
result and short-circuits the pipeline

422 CHAPTER 13 The MVC and Razor Pages filter pipeline
WARNING This technique for obtaining dependencies is known as service loca-
tion and is generally considered an antipattern.3 In section 13.4 I’ll show you a
better way to use the DI container to inject dependencies into your filters.

As well as RecipeService, the other piece of information you need is the id argument
of the Get and Edit action methods. In action filters, model binding has already
occurred, so the arguments that the framework will use to execute the action method
are already known and are exposed on context.ActionArguments.

 The action arguments are exposed as Dictionary<string, object>, so you can
obtain the id parameter using the "id" string key. Remember to cast the object to
the correct type.

TIP Whenever I see magic strings like this, I always try to replace them by
using the nameof operator. Unfortunately, nameof won’t work for method
arguments like this, so be careful when refactoring your code. I suggest
explicitly applying the action filter to the action method (instead of globally,
or to a controller) to remind you about that implicit coupling.

With RecipeService and id in place, it’s a case of checking whether the identifier corre-
sponds to an existing Recipe entity and, if not, setting context.Result to NotFound-
Result. This short-circuits the pipeline and bypasses the action method altogether.

NOTE Remember, you can have multiple action filters running in a single
stage. Short-circuiting the pipeline by setting context.Result will prevent
later filters in the stage from running, as well as bypass the action method exe-
cution.

Before we move on, it’s worth mentioning a special case for action filters. The
ControllerBase base class implements IActionFilter and IAsyncActionFilter
itself. If you find yourself creating an action filter for a single controller and you want
to apply it to every action in that controller, you can override the appropriate methods
on your controller.

public class HomeController : ControllerBase
{
 public override void OnActionExecuting(
 ActionExecutingContext context)
 { }
 public override void OnActionExecuted(
 ActionExecutedContext context)
 { }
}

3 For a detailed discussion of DI patterns and antipatterns, see chapter 5 of Dependency Injection Principles, Prac-
tices, and Patterns by Steven van Deursen and Mark Seemann (Manning, 2019) http://mng.bz/RXOK.

Listing 13.14 Overriding action filter methods directly on ControllerBase

Derives from the
ControllerBase class

Runs before any other action filters
for every action in the controller

Runs after all other action filters
for every action in the controller

http://mng.bz/RXOK

423Creating custom filters for your application
If you override these methods on your controller, they’ll run in the action filter stage
of the filter pipeline for every action on the controller. The OnActionExecuting
ControllerBase method runs before any other action filters, regardless of ordering
or scope, and the OnActionExecuted method runs after all other action filters.

TIP The controller implementation can be useful in some cases, but you
can’t control the ordering related to other filters. Personally, I generally pre-
fer to break logic into explicit, declarative filter attributes but, as always, the
choice is yours.

With the resource and action filters complete, your controller is looking much tidier,
but there’s one aspect in particular that would be nice to remove: the exception han-
dling. In the next section, we’ll look at how to create a custom exception filter for
your controller, and why you might want to do this instead of using exception han-
dling middleware.

13.2.4 Exception filters: Custom exception handling for
your action methods

In chapter 3 I went into some depth about types of error-handling middleware you
can add to your apps. These let you catch exceptions thrown from any later middle-
ware and handle them appropriately. If you’re using exception handling middleware,
you may be wondering why we need exception filters at all.

 The answer to this is pretty much the same as I outlined in section 13.1.3: filters are
great for cross-cutting concerns, when you need behavior that’s either specific to MVC
or that should only apply to certain routes.

 Both of these can apply in exception handling. Exception filters are part of the
MVC framework, so they have access to the context in which the error occurred, such
as the action or Razor Page that was executing. This can be useful for logging addi-
tional details when errors occur, such as the action parameters that caused the error.

WARNING If you use exception filters to record action method arguments,
make sure you’re not storing sensitive data in your logs, such as passwords or
credit card details.

You can also use exception filters to handle errors from different routes in different
ways. Imagine you have both Razor Pages and Web API controllers in your app, as we
do in the recipe app. What happens when an exception is thrown by a Razor Page?

 As you saw in chapter 3, the exception travels back up the middleware pipeline
and is caught by exception handler middleware. The exception handler middleware
will re-execute the pipeline and generate an HTML error page.

 That’s great for your Razor Pages, but what about exceptions in your Web API con-
trollers? If your API throws an exception, and consequently returns HTML generated
by the exception handler middleware, that’s going to break a client that has called the
API expecting a JSON response!

424 CHAPTER 13 The MVC and Razor Pages filter pipeline

p
ob
in
 Instead, exception filters let you handle the exception in the filter pipeline and gen-
erate an appropriate response body. The exception handler middleware only intercepts
errors without a body, so it will let the modified Web API response pass untouched.

NOTE The [ApiController] attribute converts error StatusCodeResults to
a ProblemDetails object, but it doesn’t catch exceptions.

Exception filters can catch exceptions from more than just your action methods and
page handlers. They’ll run if an exception occurs at these times:

 During model binding or validation
 When the action method or page handler is executing
 When an action filter or page filter is executing

You should note that exception filters won’t catch exceptions thrown in any filters
other than action and page filters, so it’s important that your resource and result fil-
ters don’t throw exceptions. Similarly, they won’t catch exceptions thrown when exe-
cuting an IActionResult, such as when rendering a Razor view to HTML.

 Now that you know why you might want an exception filter, go ahead and implement
one for RecipeApiController, as shown next. This lets you safely remove the try-catch
block from your action methods, knowing that your filter will catch any errors.

public class HandleExceptionAttribute : ExceptionFilterAttribute
{
 public override void OnException(ExceptionContext context)
 {
 var error = new ProblemDetails
 {
 Title = "An error occurred",
 Detail = context.Exception.Message,
 Status = 500,
 Type = "https://httpstatuses.com/500"
 };

 context.Result = new ObjectResult(error)
 {
 StatusCode = 500
 };
 context.ExceptionHandled = true;
 }
}

It’s quite common to have an exception filter in your application, especially if you are
mixing API controllers and Razor Pages in your application, but they’re not always

Listing 13.15 The HandleExceptionAttribute exception filter

ExceptionFilterAttribute is an abstract base
class that implements IExceptionFilter.

There’s only a single
method to override for

IExceptionFilter.Building a
roblem details
ject to return
 the response

Creates an ObjectResult to
serialize the ProblemDetails
and to set the response
status code

Marks the exception as handled to prevent it
propagating into the middleware pipeline

425Creating custom filters for your application
necessary. If you can handle all the exceptions in your application with a single piece
of middleware, then ditch the exception filters and go with that instead.

 You’re almost done refactoring your RecipeApiController. You just have one
more filter type to add: result filters. Custom result filters tend to be relatively rare in
the apps I’ve written, but they have their uses, as you’ll see.

13.2.5 Result filters: Customizing action results before they execute

If everything runs successfully in the pipeline, and there’s no short-circuiting, the next
stage of the pipeline, after action filters, is result filters. These run just before and
after the IActionResult returned by the action method (or action filters) is executed.

WARNING If the pipeline is short-circuited by setting context.Result, the
result filter stage won’t be run, but IActionResult will still be executed to
generate the response. The exceptions to this rule are action and page fil-
ters—these only short-circuit the action execution, as you saw in figures 13.2
and 13.3, so result filters run as normal, as though the action or page handler
itself generated the response.

Result filters run immediately after action filters, so many of their use cases are similar,
but you typically use result filters to customize the way the IActionResult executes.
For example, ASP.NET Core has several result filters built into its framework:

 ProducesAttribute—This forces a Web API result to be serialized to a specific
output format. For example, decorating your action method with [Produces
("application/xml")] forces the formatters to try to format the response as
XML, even if the client doesn’t list XML in its Accept header.

 FormatFilterAttribute—Decorating an action method with this filter tells
the formatter to look for a route value or query string parameter called format,
and to use that to determine the output format. For example, you could call
/api/recipe/11?format=json and FormatFilter will format the response as
JSON, or call api/recipe/11?format=xml and get the response as XML.4

As well as controlling the output formatters, you can use result filters to make any last-
minute adjustments before IActionResult is executed and the response is generated.

 As an example of the kind of flexibility available, in the following listing I demon-
strate setting the LastModified header, based on the object returned from the action.
This is a somewhat contrived example—it’s specific enough to a single action that it
doesn’t warrant being moved to a result filter—but hopefully you get the idea.

4 Remember, you need to explicitly configure the XML formatters if you want to serialize to XML. For details
on formatting results based on the URL, see my blog entry on the topic: http://mng.bz/1rYV.

http://mng.bz/1rYV

426 CHAPTER 13 The MVC and Razor Pages filter pipeline
public class AddLastModifedHeaderAttribute : ResultFilterAttribute
{
 public override void OnResultExecuting(
 ResultExecutingContext context)
 {
 if (context.Result is OkObjectResult result
 && result.Value is RecipeDetailViewModel detail)
 {
 var viewModelDate = detail.LastModified;
 context.HttpContext.Response
 .GetTypedHeaders().LastModified = viewModelDate;
 }
 }
}

I’ve used another helper base class here, ResultFilterAttribute, so you only need
to override a single method to implement the filter. Fetch the current IActionResult,
exposed on context.Result, and check that it’s an OkObjectResult instance with a
RecipeDetailViewModel value. If it is, fetch the LastModified field from the view
model and add a Last-Modified header to the response.

TIP GetTypedHeaders() is an extension method that provides strongly typed
access to request and response headers. It takes care of parsing and format-
ting the values for you. You can find it in the Microsoft.AspNetCore.Http
namespace.

As with resource and action filters, result filters can implement a method that runs after
the result has been executed: OnResultExecuted. You can use this method, for example,
to inspect exceptions that happened during the execution of IActionResult.

WARNING Generally, you can’t modify the response in the OnResultExecuted
method, as you may have already started streaming the response to the client.

Listing 13.16 Setting a response header in a result filter

Running result filters after short-circuits with IAlwaysRunResultFilter
Result filters are designed to “wrap” the execution of an IActionResult returned by
an action method or action filter so that you can customize how the action result is
executed. However, this customization doesn’t apply to IActionResults set when
you short-circuit the filter pipeline by setting context.Result in an authorization fil-
ter, resource filter, or exception filter.

That’s often not a problem, as many result filters are designed to handle “happy
path” transformations. But sometimes you want to make sure a transformation is
always applied to an IActionResult, regardless of whether it was returned by an
action method or a short-circuiting filter.

ResultFilterAttribute provides a useful
base class you can override.

You could also override the
Executed method, but the response
would already be sent by then.

Checks whether the action result returned
a 200 Ok result with a view model.

Checks whether
the view model
type is Recipe-

DetailView-
Model . . .

. . . if it is, fetches the LastModified property and
sets the Last-Modified header in the response

427Creating custom filters for your application
We’ve finished simplifying the RecipeApiController now. By extracting various pieces
of functionality to filters, the original controller in listing 13.8 has been simplified to
the version in listing 13.9. This is obviously a somewhat extreme and contrived
demonstration, and I’m not advocating that filters should always be your go-to option.

TIP Filters should be a last resort in most cases. Where possible, it is often
preferable to use a simple private method in a controller, or to push function-
ality into the domain instead of using filters. Filters should generally be used
to extract repetitive, HTTP-related, or common cross-cutting code from your
controllers.

There’s still one more filter we haven’t looked at yet, because it only applies to Razor
Pages: page filters.

13.2.6 Page filters: Customizing model binding for Razor Pages

As already discussed, action filters only apply to controllers and actions; they have no
effect on Razor Pages. Similarly, page filters have no effect on controllers and actions.
Nevertheless, page filters and action filters fulfill similar roles.

 As is the case for action filters, the ASP.NET Core framework includes several page
filters out of the box. One of these is the Razor Page equivalent of the caching action
filter, ResponseCacheFilter, called PageResponseCacheFilter. This works identically
to the action-filter equivalent I described in section 13.2.3, setting HTTP caching
headers on your Razor Page responses.

 Page filters are somewhat unusual, as they implement three methods, as dis-
cussed in section 13.1.2. In practice, I’ve rarely seen a page filter that implements all
three. It’s unusual to need to run code immediately after page handler selection
and before model validation. It’s far more common to perform a role directly analo-
gous to action filters.

 For example, the following listing shows a page filter equivalent to the Ensure-
RecipeExistsAttribute action filter.

For those cases, you can implement IAlwaysRunResultFilter or IAsyncAlways-
RunResultFilter. These interfaces extend (and are identical) to the standard result
filter interfaces, so they run just like normal result filters in the filter pipeline. But
these interfaces mark the filter to also run after an authorization filter, resource filter,
or exception filter short-circuits the pipeline, where standard result filters won’t run.

You can use IAlwaysRunResultFilter to ensure that certain action results are
always updated. For example, the documentation shows how to use an IAlwaysRun-
ResultFilter to convert a 415 StatusCodeResult into a 422 StatusCodeResult,
regardless of the source of the action result. See the “IAlwaysRunResultFilter and
IAsyncAlwaysRunResultFilter” section of Microsoft’s “Filters in ASP.NET Core” docu-
mentation: http://mng.bz/JDo0.

http://mng.bz/JDo0

428 CHAPTER 13 The MVC and Razor Pages filter pipeline
public class PageEnsureRecipeExistsAtribute : Attribute, IPageFilter
{
 public void OnPageHandlerSelected(
 PageHandlerSelectedContext context)
 {}

 public void OnPageHandlerExecuting(
 PageHandlerExecutingContext context)
 {
 var service = (RecipeService) context.HttpContext
 .RequestServices.GetService(typeof(RecipeService));
 var recipeId = (int) context.HandlerArguments["id"];
 if (!service.DoesRecipeExist(recipeId))
 {
 context.Result = new NotFoundResult();
 }
 }

 public void OnPageHandlerExecuted(
 PageHandlerExecutedContext context)
 { }
}

The page filter is very similar to the action filter equivalent. The most obvious differ-
ence is the need to implement three methods to satisfy the IPageFilter interface.
You’ll commonly want to implement the OnPageHandlerExecuting method, which
runs just after model binding and validation, and before the page handler executes.

 A subtle difference between the action filter code and the page filter code is that
the action filter accesses the model-bound action arguments using context.Action-
Arguments. The page filter uses context.HandlerArguments in the example, but
there’s also another option.

 Remember from chapter 6 that Razor Pages often bind to public properties on the
PageModel using the [BindProperty] attribute. You can access those properties
directly, instead of having to use magic strings, by casting a HandlerInstance property
to the correct PageModel type, and accessing the property directly. For example,

var recipeId = ((ViewRecipePageModel)context.HandlerInstance).Id

Just as the ControllerBase class implements IActionFilter, so PageModel imple-
ments IPageFilter and IAsyncPageFilter. If you want to create an action filter for a
single Razor Page, you could save yourself the trouble of creating a separate page filter
and override these methods directly in your Razor Page.

Listing 13.17 A page filter to check whether a Recipe exists

Implement IPageFilter and as an attribute so
you can decorate the Razor Page PageModel.

Executed after handler selection,
before model binding—not used
in this example

Executed after model binding and
validation, before page handler execution

Fetches an instance of RecipeService
from the DI container

Retrieves the id parameter that will be passed
to the page handler method when it executes

Checks whether
a Recipe entity
with the given
RecipeId exists

If it doesn’t exist, returns a
404 Not Found result and
short-circuits the pipeline

Executed after page handler
execution (or short-circuiting)—
not used in this example

429Understanding pipeline short-circuiting
TIP I generally find it’s not worth the hassle of using page filters unless you
have a very common requirement. The extra level of indirection page filters
add, coupled with the typically bespoke nature of individual Razor Pages,
means I normally find they aren’t worth using. Your mileage may vary of course,
but don’t jump to them as a first option.

That brings us to the end of this detailed look at each of the filters in the MVC pipe-
line. Looking back and comparing listings 13.8 and 13.9, you can see filters allowed us
to refactor the controllers and make the intent of each action method much clearer.
Writing your code in this way makes it easier to reason about, as each filter and action
has a single responsibility.

 In the next section, we’ll take a slight detour into exactly what happens when you
short-circuit a filter. I’ve described how to do this, by setting the context.Result prop-
erty on a filter, but I haven’t yet described exactly what happens. For example, what if
there are multiple filters in the stage when it’s short-circuited? Do those still run?

13.3 Understanding pipeline short-circuiting
In this short section you’ll learn about the details of filter-pipeline short-circuiting.
You’ll see what happens to the other filters in a stage when the pipeline is short-cir-
cuited, and how to short-circuit each type of filter.

 A brief warning: the topic of filter short-circuiting can be a little confusing. Unlike
middleware short-circuiting, which is cut-and-dried, the filter pipeline is a bit more
nuanced. Luckily, you won’t often find you need to dig into it, but when you do, you’ll
be glad of the detail.

 You short-circuit the authorization, resource, action, page, and result filters by
setting context.Result to IActionResult. Setting an action result in this way
causes some, or all, of the remaining pipeline to be bypassed. But the filter pipeline
isn’t entirely linear, as you saw in figures 13.2 and 13.3, so short-circuiting doesn’t
always do an about-face back down the pipeline. For example, short-circuited action
filters only bypass action method execution—the result filters and result execution
stages still run.

 The other difficultly is what happens if you have more than one type of filter.
Let’s say you have three resource filters executing in a pipeline. What happens if the
second filter causes a short circuit? Any remaining filters are bypassed, but the first
resource filter has already run its *Executing command, as shown in figure 13.7.
This earlier filter gets to run its *Executed command too, with context.Cancelled
= true, indicating that a filter in that stage (the resource filter stage) short-circuited
the pipeline.

 Understanding which other filters will run when you short-circuit a filter can be
somewhat of a chore, but I’ve summarized each filter in table 13.1. You’ll also find it
useful to refer to figures 13.2 and 13.3 to visualize the shape of the pipeline when
thinking about short-circuits.

430 CHAPTER 13 The MVC and Razor Pages filter pipeline
The most interesting point here is that short-circuiting an action filter (or a page fil-
ter) doesn’t short-circuit much of the pipeline at all. In fact, it only bypasses later
action filters and the action method execution itself. By primarily building action filters,

Table 13.1 The effect of short-circuiting filters on filter-pipeline execution

Filter type How to short-circuit? What else runs?

Authorization
filters

Set context.Result Only runs IAlwaysRunResultFilters.

Resource filters Set context.Result Resource-filter *Executed functions from earlier
filters run with context.Cancelled = true.
Runs IAlwaysRunResultFilters before exe-
cuting the IActionResult.

Action filters Set context.Result Only bypasses action method execution. Action fil-
ters earlier in the pipeline run their *Executed
methods with context.Cancelled = true,
then result filters, result execution, and resource
filters’ *Executed methods all run as normal.

Page filters Set context.Result in
OnPageHandlerSelected

Only bypasses page handler execution. Page filters
earlier in the pipeline run their *Executed meth-
ods with context.Cancelled = true, then
result filters, result execution, and resource filters’
*Executed methods all run as normal.

Exception filters Set context.Result and
Exception.Handled =
true

All resource-filter *Executed functions run. Runs
IAlwaysRunResultFilters before executing
the IActionResult.

Result filters Set context.Cancelled =
true

Result filters earlier in the pipeline run their
*Executed functions with context.Cancelled
= true. All resource-filter *Executed functions
run as normal.

OnResourceExecuting

OnResourceExecuting

OnResourceExecuted

1 1. Resource filter runs
its *Executing function.

2. Resource filter 2 runs
its *Executing function
and short-circuits the
pipeline by setting
context.Result. context.Result

3. Resource filter 3 (or the
rest of the pipeline)
never runs.

5. Resource filter runs its1

*Executed function. Cancelled
is set to true, indicating the
pipeline was cancelled.

4. Resource filter 2 doesn’t run
its *Executed function as it
short-circuited the pipeline.

context.cancelled=true

Figure 13.7 The effect of short-circuiting a resource filter on other resource filters in that stage. Later
filters in the stage won’t run at all, but earlier filters run their OnResourceExecuted function.

431Using dependency injection with filter attributes
you can ensure that other filters, such as result filters that define the output format,
run as usual, even when your action filters short-circuit.

 The last thing I’d like to talk about in this chapter is how to use DI with your filters.
You saw in chapter 10 that DI is integral to ASP.NET Core, and in the next section
you’ll see how to design your filters so that the framework can inject service depen-
dencies into them for you.

13.4 Using dependency injection with filter attributes
In this section you’ll learn how to inject services into your filters so you can take
advantage of the simplicity of DI in your filters. You’ll learn to use two helper filters to
achieve this, TypeFilterAttribute and ServiceFilterAttribute, and you’ll see how
they can be used to simplify the action filter you defined in section 13.2.3.

 The previous version of ASP.NET used filters, but they suffered from one problem
in particular: it was hard to use services from them. This was a fundamental issue with
implementing them as attributes that you decorate your actions with. C# attributes
don’t let you pass dependencies into their constructors (other than constant values),
and they’re created as singletons, so there’s only a single instance for the lifetime of
your app.

 In ASP.NET Core, this limitation is still there in general, in that filters are typically
created as attributes that you add to your controller classes, action methods, and
Razor Pages. What happens if you need to access a transient or scoped service from
inside the singleton attribute?

 Listing 13.13 showed one way of doing this, using a pseudo-service locator pattern
to reach into the DI container and pluck out RecipeService at runtime. This works
but is generally frowned upon as a pattern, in favor of proper DI. How can you add DI
to your filters?

 The key is to split the filter into two. Instead of creating a class that’s both an attri-
bute and a filter, create a filter class that contains the functionality and an attribute
that tells the framework when and where to use the filter.

 Let’s apply this to the action filter from listing 13.13. Previously I derived from
ActionFilterAttribute and obtained an instance of RecipeService from the con-
text passed to the method. In the following listing, I show two classes, EnsureRecipe-
ExistsFilter and EnsureRecipeExistsAttribute. The filter class is responsible for
the functionality and takes in RecipeService as a constructor dependency.

public class EnsureRecipeExistsFilter : IActionFilter
{
 private readonly RecipeService _service;
 public EnsureRecipeExistsFilter(RecipeService service)
 {
 _service = service;
 }

Listing 13.18 Using DI in a filter by not deriving from Attribute

Doesn’t derive from
an Attribute class

RecipeService is
injected into the
constructor.

432 CHAPTER 13 The MVC and Razor Pages filter pipeline
 public void OnActionExecuting(ActionExecutingContext context)
 {
 var recipeId = (int) context.ActionArguments["id"];
 if (!_service.DoesRecipeExist(recipeId))
 {
 context.Result = new NotFoundResult();
 }
 }

 public void OnActionExecuted(ActionExecutedContext context) { }
}

public class EnsureRecipeExistsAttribute : TypeFilterAttribute
{
 public EnsureRecipeExistsAttribute()
 : base(typeof(EnsureRecipeExistsFilter)) {}
}

EnsureRecipeExistsFilter is a valid filter; you could use it on its own by adding it as
a global filter (as global filters don’t need to be attributes). But you can’t use it directly
by decorating controller classes and action methods, as it’s not an attribute. That’s
where EnsureRecipeExistsAttribute comes in.

 You can decorate your methods with EnsureRecipeExistsAttribute instead. This
attribute inherits from TypeFilterAttribute and passes the Type of filter to create as
an argument to the base constructor. This attribute acts as a factory for EnsureRecipe-
ExistsFilter by implementing IFilterFactory.

 When ASP.NET Core initially loads your app, it scans your actions and controllers,
looking for filters and filter factories. It uses these to form a filter pipeline for every
action in your app, as shown in figure 13.8.

The rest of
the method
remains the

same. You must implement the
Executed action to satisfy

the interface.

Derives from TypeFilter, which is used to
fill dependencies using the DI container

Passes the type
EnsureRecipeExistsFilt
er as an argument to
the base TypeFilter
constructor

public class RecipeApiController
{

[ValidateModel]
[EnsureRecipeExistsFilter]
public IActionResult Index()
{
return Ok();

}

}

ValidateModelAttribute

EnsureRecipeExistsFilter

IFilterFactory

Attributes that implement
filter interfaces are added
directly to the pipeline.

The framework calls CreateInstance() on each
IFilterFactory when a request is received to create
a filter instance, which is added to the pipeline.

CreateInstance()

The framework scans your app
looking for filters or attributes
that implement IFilterFactory.

Figure 13.8 The framework scans your app on startup to find both filters and attributes that implement
IFilterFactory. At runtime, the framework calls CreateInstance() to get an instance of the filter.

433Summary
When an action decorated with EnsureRecipeExistsAttribute is called, the frame-
work calls CreateInstance() on the attribute. This creates a new instance of Ensure-
RecipeExistsFilter and uses the DI container to populate its dependencies
(RecipeService).

 By using this IFilterFactory approach, you get the best of both worlds: you can
decorate your controllers and actions with attributes, and you can use DI in your fil-
ters. Out of the box, two similar classes provide this functionality, which have slightly
different behaviors:

 TypeFilterAttribute—Loads all of the filter’s dependencies from the DI con-
tainer and uses them to create a new instance of the filter.

 ServiceFilterAttribute—Loads the filter itself from the DI container. The DI
container takes care of the service lifetime and building the dependency graph.
Unfortunately, you also have to explicitly register your filter with the DI con-
tainer in ConfigureServices in Startup:

services.AddTransient<EnsureRecipeExistsFilter>();

Whether you choose to use TypeFilterAttribute or ServiceFilterAttribute is
somewhat a matter of preference, and you can always implement a custom IFilter-
Factory if you need to. The key takeaway is that you can now use DI in your filters. If
you don’t need to use DI for a filter, then implement it as an attribute directly, for
simplicity.

TIP I like to create my filters as a nested class of the attribute class when
using this pattern. This keeps all the code nicely contained in a single file and
indicates the relationship between the classes.

That brings us to the end of this chapter on the filter pipeline. Filters are a somewhat
advanced topic, in that they aren’t strictly necessary for building basic apps, but I find
them extremely useful for ensuring my controller and action methods are simple and
easy to understand.

 In the next chapter, we’ll take our first look at securing your app. We’ll discuss the
difference between authentication and authorization, the concept of identity in
ASP.NET Core, and how you can use the ASP.NET Core Identity system to let users
register and log in to your app.

Summary
 The filter pipeline executes as part of the MVC or Razor Pages execution. It

consists of authorization filters, resource filters, action filters, page filters,
exception filters, and result filters. Each filter type is grouped into a stage and
can be used to achieve effects specific to that stage.

 Resource, action, and result filters run twice in the pipeline: an *Executing
method on the way in and an *Executed method on the way out. Page filters

434 CHAPTER 13 The MVC and Razor Pages filter pipeline
run three times: after page handler selection, and before and after page han-
dler execution.

 Authorization and exception filters only run once as part of the pipeline; they
don’t run after a response has been generated.

 Each type of filter has both a sync and an async version. For example, resource
filters can implement either the IResourceFilter interface or the IAsync-
ResourceFilter interface. You should use the synchronous interface unless
your filter needs to use asynchronous method calls.

 You can add filters globally, at the controller level, at the Razor Page level, or at
the action level. This is called the scope of the filter. Which scope you should
choose depends on how broadly you want to apply the filter.

 Within a given stage, global-scoped filters run first, then controller-scoped, and
finally, action-scoped. You can also override the default order by implementing
the IOrderedFilter interface. Filters will run from lowest to highest Order and
use scope to break ties.

 Authorization filters run first in the pipeline and control access to APIs.
ASP.NET Core includes an [Authorization] attribute that you can apply to
action methods so that only logged-in users can execute the action.

 Resource filters run after authorization filters, and again after an IAction-
Result has been executed. They can be used to short-circuit the pipeline, so
that an action method is never executed. They can also be used to customize
the model-binding process for an action method.

 Action filters run after model binding has occurred, just before an action
method executes. They also run after the action method has executed. They
can be used to extract common code out of an action method to prevent dupli-
cation. They don’t execute for Razor Pages, only for MVC controllers.

 The ControllerBase base class also implements IActionFilter and IAsyncAc-
tionFilter. They run at the start and end of the action filter pipeline, regard-
less of the ordering or scope of other action filters. They can be used to create
action filters that are specific to one controller.

 Page filters run three times: after page handler selection, after model binding,
and after the page handler method executes. You can use page filters for similar
purposes as action filters. Page filters only execute for Razor Pages; they don’t
run for MVC controllers.

 Razor Page PageModels implement IPageFilter and IAsyncPageFilter, so
they can be used to implement page-specific page filters. These are rarely used,
as you can typically achieve similar results with simple private methods.

 Exception filters execute after action and page filters, when an action method
or page handler has thrown an exception. They can be used to provide custom
error handling specific to the action executed.

435Summary
 Generally, you should handle exceptions at the middleware level, but you can
use exception filters to customize how you handle exceptions for specific
actions, controllers, or Razor Pages.

 Result filters run just before and after an IActionResult is executed. You can
use them to control how the action result is executed, or to completely change
the action result that will be executed.

 Result filters aren’t executed when you short-circuit the pipeline using author-
ization, resource, or exception filters. You can ensure result filters also run for
these short-circuit cases by implementing a result filter as IAlwaysRunResult-
Filter or IAsyncAlwaysRunResultFilter.

 You can use ServiceFilterAttribute and TypeFilterAttribute to allow
dependency injection in your custom filters. ServiceFilterAttribute requires
that you register your filter and all its dependencies with the DI container,
whereas TypeFilterAttribute only requires that the filter’s dependencies have
been registered.

Authentication:
Adding users to your

application with Identity
One of the selling points of a web framework like ASP.NET Core is the ability to
provide a dynamic app, customized to individual users. Many apps have the con-
cept of an “account” with the service, which you can “sign in” to and get a different
experience.

 Depending on the service, an account gives you varying things: on some apps
you may have to sign in to get access to additional features, and on others you
might see suggested articles. On an e-commerce app, you’d be able to place orders
and view your past orders; on Stack Overflow you can post questions and answers;
whereas on a news site you might get a customized experience based on previous
articles you’ve viewed.

This chapter covers
 How authentication works in web apps in

ASP.NET Core

 Creating a project using the ASP.NET Core Identity
system

 Adding user functionality to an existing web app

 Customizing the default ASP.NET Core Identity UI
436

437Introducing authentication and authorization
 When you think about adding users to your application, you typically have two
aspects to consider:

 Authentication—The process of creating users and letting them log in to your app
 Authorization—Customizing the experience and controlling what users can do,

based on the current logged-in user

In this chapter I’m going to be discussing the first of these points, authentication and
membership, and in the next chapter I’ll tackle the second point, authorization. In
section 14.1 I discuss the difference between authentication and authorization, how
authentication works in a traditional ASP.NET Core web app, and ways you can archi-
tect your system to provide sign-in functionality.

 I also touch on the typical differences in authentication between a traditional
web app and Web APIs used with client-side or mobile web apps. This book focuses
on traditional web apps for authentication, but many of the principles are applica-
ble to both.

 In section 14.2 I introduce a user-management system called ASP.NET Core Iden-
tity (or Identity for short). Identity integrates with EF Core and provides services for
creating and managing users, storing and validating passwords, and signing users in
and out of your app.

 In section 14.3 you’ll create an app using a default template that includes ASP.NET
Core Identity out of the box. This will give you an app to explore, to see the features
Identity provides, as well as everything it doesn’t.

 Creating an app is great for seeing how the pieces fit together, but you’ll often
need to add users and authentication to an existing app. In section 14.4 you’ll see the
steps required to add ASP.NET Core Identity to an existing app: the recipe applica-
tion from chapters 12 and 13.

 In sections 14.5 and 14.6 you’ll learn how to replace pages from the default Iden-
tity UI by “scaffolding” individual pages. In section 14.5 you’ll see how to customize
the Razor templates to generate different HTML on the user registration page, and in
section 14.6 you’ll learn how to customize the logic associated with a Razor Page.
You’ll see how to store additional information about a user (such as their name or
date of birth) and how to provide them with permissions that you can later use to cus-
tomize the app’s behavior (if the user is a VIP, for example).

 Before we look at the ASP.NET Core Identity system specifically, let’s take a look at
authentication and authorization in ASP.NET Core—what’s happening when you sign
in to a website and how you can design your apps to provide this functionality.

14.1 Introducing authentication and authorization
When you add sign-in functionality to your app and control access to certain functions
based on the currently signed-in user, you’re using two distinct aspects of security:

 Authentication—The process of determining who you are
 Authorization—The process of determining what you’re allowed to do

438 CHAPTER 14 Authentication: Adding users to your application with Identity
Generally you need to know who the user is before you can determine what they’re
allowed to do, so authentication always comes first, followed by authorization. In this
chapter, we’re only looking at authentication; we’ll cover authorization in chapter 15.

 In this section I’ll start by discussing how ASP.NET Core thinks about users and
cover some of the terminology and concepts that are central to authentication. I
always found this to be the hardest part to grasp when first learning about authentica-
tion, so I’ll take it slow.

 Next we’ll look at what it means to sign in to a traditional web app. After all, you
only provide your password and sign in to an app on a single page—how does the app
know the request came from you for subsequent requests?

 Finally, we’ll look at how authentication works when you need to support client-side
apps and mobile apps that call Web APIs, in addition to traditional web apps. Many of
the concepts are similar, but the requirement to support multiple types of users, tradi-
tional apps, client-side apps, and mobile apps has led to alternative solutions.

14.1.1 Understanding users and claims in ASP.NET Core

The concept of a user is baked in to ASP.NET Core. In chapter 3, you learned that the
HTTP server, Kestrel, creates an HttpContext object for every request it receives. This
object is responsible for storing all the details related to that request, such as the
request URL, any headers sent, the body of the request, and so on.

 The HttpContext object also exposes the current principal for a request as the User
property. This is ASP.NET Core’s view of which user made the request. Any time your
app needs to know who the current user is, or what they’re allowed to do, it can look
at the HttpContext.User principal.

DEFINITION You can think of the principal as the user of your app.

In ASP.NET Core, principals are implemented as ClaimsPrincipals, which has a col-
lection of claims associated with it, as shown in figure 14.1.

Email=test@test.com

ClaimsPrincipal

FirstName=Andrew

LastName=LockHomePhone=555 123

HasAdminAccess

The principal associated with
the request is the current user. The principal is implemented

by the ClaimsPrincipal class,
which has a collection of Claims.

Claims describe properties of the
principal. These normally consist
of a type and a value, but can
be a name only.

Figure 14.1 The principal is the current user, implemented as ClaimsPrincipal. It contains a
collection of Claims that describe the user.

439Introducing authentication and authorization
You can think about claims as properties of the current user. For example, you could
have claims for things like email, name, or date of birth.

DEFINITION A claim is a single piece of information about a principal; it con-
sists of a claim type and an optional value.

Claims can also be indirectly related to permissions and authorization, so you could
have a claim called HasAdminAccess or IsVipCustomer. These would be stored in
exactly the same way—as claims associated with the user principal.

NOTE Earlier versions of ASP.NET used a role-based approach to security,
rather than claims-based. The ClaimsPrincipal used in ASP.NET Core is com-
patible with this approach for legacy reasons, but you should use the claims-
based approach for new apps.

Kestrel assigns a user principal to every request that arrives at your app. Initially that
principal is a generic, anonymous, unauthenticated principal with no claims. How
do you log in, and how does ASP.NET Core know that you’ve logged in on subse-
quent requests?

 In the next section, we’ll look at how authentication works in a traditional web app
using ASP.NET Core, and the process of signing in to a user account.

14.1.2 Authentication in ASP.NET Core: Services and middleware

Adding authentication to any web app involves a number of moving parts. The same
general process applies whether you’re building a traditional web app or a client-
side app, though there are often differences in implementation, as I’ll discuss in sec-
tion 14.1.3:

1 The client sends an identifier and a secret to the app, which identify the current
user. For example, you could send an email address (identifier) and a password
(secret).

2 The app verifies that the identifier corresponds to a user known by the app and
that the corresponding secret is correct.

3 If the identifier and secret are valid, the app can set the principal for the cur-
rent request, but it also needs a way of storing these details for subsequent
requests. For traditional web apps, this is typically achieved by storing an
encrypted version of the user principal in a cookie.

This is the typical flow for most web apps, but in this section I’m going to look at how
it works in ASP.NET Core. The overall process is the same, but it’s good to see how this
pattern fits into the services, middleware, and MVC aspects of an ASP.NET Core appli-
cation. We’ll step through the various pieces at play in a typical app when you sign in
as a user, what that means, and how you can make subsequent requests as that user.

440 CHAPTER 14 Authentication: Adding users to your application with Identity
SIGNING IN TO AN ASP.NET CORE APPLICATION

When you first arrive on a site and sign in to a traditional web app, the app will send
you to a sign-in page and ask you to enter your username and password. After you sub-
mit the form to the server, the app redirects you to a new page, and you’re magically
logged in! Figure 14.2 shows what’s happening behind the scenes in an ASP.NET Core
app when you submit the form.

This shows the series of steps from the moment you submit the login form on a Razor
Page to the point the redirect is returned to the browser. When the request first arrives,
Kestrel creates an anonymous user principal and assigns it to the HttpContext.User
property. The request is then routed to the Login.cshtml Razor Page, which reads the
email and password from the request using model binding.

 The meaty work happens inside the SignInManager service. This is responsible for
loading a user entity with the provided username from the database and validating
that the password they provided is correct.

WARNING Never store passwords in the database directly. They should be
hashed using a strong one-way algorithm. The ASP.NET Core Identity system
does this for you, but it’s always wise to reiterate this point!

1. The user enters their login
details and clicks submit to
POST them to the server.

5. Finally, the user principal is
serialized and returned as an
encrypted cookie to the browser.

SignInManager

3. The login page calls the sign-in manager.
This loads the user from the database
using EF Core and validates their password.

4. If the password is correct, the user is
signed in. A ClaimsPrincipal is created
and set as the User property on the
HttpContext.

HttpContext.User

HttpContext.User

2. Initially, the User property
is set to an anonymous
user principal.

IdentityUser

Figure 14.2 Signing in to an ASP.NET Core application. SignInManager is responsible for setting
HttpContext.User to the new principal and serializing the principal to the encrypted cookie.

441Introducing authentication and authorization
If the password is correct, SignInManager creates a new ClaimsPrincipal from the
user entity it loaded from the database and adds the appropriate claims, such as the
email address. It then replaces the old, anonymous HttpContext.User principal with
the new, authenticated principal.

 Finally, SignInManager serializes the principal, encrypts it, and stores it as a cookie.
A cookie is a small piece of text that’s sent back and forth between the browser and
your app along with each request, consisting of a name and a value.

 This authentication process explains how you can set the user for a request when
they first log in to your app, but what about subsequent requests? You only send your
password when you first log in to an app, so how does the app know that it’s the same
user making the request?

AUTHENTICATING USERS FOR SUBSEQUENT REQUESTS

The key to persisting your identity across multiple requests lies in the final step of fig-
ure 14.2, where you serialized the principal in a cookie. Browsers will automatically
send this cookie with all requests made to your app, so you don’t need to provide your
password with every request.

 ASP.NET Core uses the authentication cookie sent with the requests to rehydrate
ClaimsPrincipal and set the HttpContext.User principal for the request, as shown
in figure 14.3. The important thing to note is when this process happens—in the
AuthenticationMiddleware.

1. An authenticated user
makes a request for /recipes.

HttpContext.User

2. The browser sends the
authentication cookie
with the request.

3. Any middleware before the
authentication middleware
treats the request as though
it is unauthenticated.

4. The authentication middleware
calls the Authentication services,
which deserialize the user principal
from the cookie and confirms it’s valid.

HttpContext.User

6. All middleware after the
authentication middleware
sees the request as from
the authenticated user.

5. The HttpContext.User property
is set to the deserialized principal
and the request is now authenticated.

Figure 14.3 A subsequent request after signing in to an application. The cookie sent with the
request contains the user principal, which is validated and used to authenticate the request.

442 CHAPTER 14 Authentication: Adding users to your application with Identity
When a request containing the authentication cookie is received, Kestrel creates the
default, unauthenticated, anonymous principal and assigns it to the HttpContext
.User principal. Any middleware that runs at this point, before Authentication-
Middleware, will see the request as unauthenticated, even if there’s a valid cookie.

TIP If it looks like your authentication system isn’t working, double-check
your middleware pipeline. Only middleware that runs after Authentication-
Middleware will see the request as authenticated.

AuthenticationMiddleware is responsible for setting the current user for a request.
The middleware calls the authentication services, which reads the cookie from the
request, decrypts it, and deserializes it to obtain the ClaimsPrincipal created when
the user logged in.

 AuthenticationMiddleware sets the HttpContext.User principal to the new, authen-
ticated principal. All subsequent middleware will now know the user principal for the
request and can adjust their behavior accordingly (for example, displaying the user’s
name on the home page, or restricting access to some areas of the app).

NOTE The AuthenticationMiddleware is only responsible for authenticating
incoming requests and setting the ClaimsPrincipal if the request contains
an authentication cookie. It is not responsible for redirecting unauthenticated
requests to the login page or rejecting unauthorized requests—that is han-
dled by the AuthorizationMiddleware, as you’ll see in chapter 15.

The process described so far, in which a single app authenticates the user when they
log in and sets a cookie that’s read on subsequent requests, is common with tradi-
tional web apps, but it isn’t the only possibility. In the next section we’ll take a look at
authentication for Web API applications, used by client-side and mobile apps, and
at how the authentication system changes for those scenarios.

14.1.3 Authentication for APIs and distributed applications

The process I’ve outlined so far applies to traditional web apps, where you have a sin-
gle endpoint that’s doing all the work. It’s responsible for authenticating and manag-
ing users, as well as serving your app data, as shown in figure 14.4.

Browsers call traditional
web apps.

Traditional web apps serve requests, and
handle authentication/authorization of users.

Figure 14.4 Traditional apps typically handle all the functionality of an app: the business
logic, generating the UI, authentication, and user management.

443Introducing authentication and authorization
In addition to this traditional web app, it’s common to use ASP.NET Core as a Web
API to serve data for mobile and client-side SPAs. Similarly, the trend toward micro-
services on the backend means that even traditional web apps using Razor often need
to call APIs behind the scenes, as shown in figure 14.5.

In this situation, you have multiple apps and APIs, all of which need to understand
that the same user is making a request across all the apps and APIs. If you keep the
same approach as before, where each app manages its own users, things can quickly
become unmanageable!

 You’d need to duplicate all the sign-in logic between the apps and APIs, as well
as needing to have some central database holding the user details. Users may need
to sign in multiple times to access different parts of the service. On top of that,
using cookies becomes problematic for some mobile clients in particular, or where
you’re making requests to multiple domains (as cookies only belong to a single
domain).

 How can you improve this? The typical approach is to extract the code that’s
common to all of the apps and APIs, and move it to an identity provider, as shown in
figure 14.6.

 Instead of signing in to an app directly, the app redirects to an identity provider
app. The user signs in to this identity provider, which passes bearer tokens back to the
client that indicate who the user is and what they’re allowed to access. The clients and
apps can pass these tokens to the APIs to provide information about the logged-in
user, without needing to re-authenticate or manage users directly.

Browsers call traditional
web apps.

Client-side and mobile
apps call APIs.

Both traditional web apps
and APIs call other APIs.

Each app or API needs to be
authenticated/authorized.

Figure 14.5 Modern applications typically need to expose Web APIs for mobile and client-side apps, as well
as potentially calling APIs on the backend. When all of these services need to authenticate and manage users,
this becomes logistically complicated.

444 CHAPTER 14 Authentication: Adding users to your application with Identity
This architecture is clearly more complicated on the face of it, as you’ve thrown a
whole new service—the identity provider—into the mix, but in the long run this has
a number of advantages:

 Users can share their identity between multiple services. As you’re logged in to the cen-
tral identity provider, you’re essentially logged in to all apps that use that ser-
vice. This gives you the single-sign-on experience, where you don’t have to keep
logging in to multiple services.

 Reduced duplication. All of the sign-in logic is encapsulated in the identity pro-
vider, so you don’t need to add sign-in screens to all your apps.

 Can easily add new providers. Whether you use the identity provider approach or
the traditional approach, it’s possible to use external services to handle the
authentication of users. You’ll have seen this on apps that allow you to “log in
using Facebook” or “log in using Google,” for example. If you use a centralized
identity provider, adding support for additional providers can be handled in
one place, instead of having to configure every app and API explicitly.

Out of the box, ASP.NET Core supports architectures like this, and for consuming
issued bearer tokens, but it doesn’t include support for issuing those tokens in the
core framework. That means you’ll need to use another library or service for the iden-
tity provider.

 One option for an identity provider is to delegate all the authentication responsi-
bilities to a third-party identity provider, such as Facebook, Okta, Auth0, or Azure Active

Instead of authenticating directly
with the app, browsers and APIs
authenticate with an identity
provider that issues tokens.

The tokens are passed
to the traditional web
apps and APIs.

Authentication is now
centralized. Tokens can
be passed between APIs
and services as necessary.

Figure 14.6 An alternative architecture involves using a central identity provider to handle
all the authentication and user management for the system. Tokens are passed back and
forth between the identity provider, apps, and APIs.

445Introducing authentication and authorization
Directory B2C. These manage users for you, so user information and passwords are
stored in their database, rather than your own. The biggest advantage of this approach
is that you don’t have to worry about making sure your customer data is safe; you can
be pretty sure that a third party will protect it, as it’s their whole business.

TIP Wherever possible, I recommend this approach, as it delegates security
responsibilities to someone else. You can’t lose your user’s details if you never
had them!

Another common option is to build your own identity provider. This may sound like a
lot of work, but thanks to excellent libraries like OpenIddict (https://github.com/
openiddict) and IdentityServer (https://docs.identityserver.io/), it’s perfectly possible
to write your own identity provider to serve bearer tokens that will be consumed by
an application.

 An aspect often overlooked by people getting started with OpenIddict and Identi-
tyServer is that they aren’t prefabricated solutions. You, as a developer, need to write
the code that knows how to create a new user (normally in a database), how to load a
user’s details, and how to validate their password. In that respect, the development
process of creating an identity provider is similar to the traditional web app with
cookie authentication that I discussed in section 14.1.2.

 In fact, you can almost think of an identity provider as a traditional web app that
only has account management pages. It also has the ability to generate tokens for
other services, but it contains no other app-specific logic. The need to manage users
in a database, as well as provide an interface for users to log in, is common to both
approaches and is the focus of this chapter.

NOTE Hooking up your apps and APIs to use an identity provider can
require a fair amount of tedious configuration, both of the app and the iden-
tity provider. For simplicity, this book focuses on traditional web apps using
the process outlined in section 14.1.2. ASP.NET Core includes a helper
library for working with IdentityServer and client-side SPAs. For details on
how to get started, see Microsoft’s “Authentication and authorization for
SPAs” documentation at http://mng.bz/w9Mq and the IdentityServer docs:
https://docs.identityserver.io/.

ASP.NET Core Identity (hereafter shortened to Identity) is a system that makes build-
ing the user-management aspect of your app (or identity provider app) simpler. It
handles all of the boilerplate for saving and loading users to a database, as well as a
number of best practices for security, such as user lock-out, password hashing, and
two-factor authentication.

DEFINITION Two-factor authentication (2FA) is where you require an extra piece
of information to sign in, in addition to a password. This could involve send-
ing a code to a user’s phone by SMS, or using a mobile app to generate a code,
for example.

https://github.com/openiddict
https://github.com/openiddict
https://github.com/openiddict
https://docs.identityserver.io/
http://mng.bz/w9Mq
https://docs.identityserver.io/

446 CHAPTER 14 Authentication: Adding users to your application with Identity
In the next section I’m going to talk about the ASP.NET Core Identity system, the prob-
lems it solves, when you’d want to use it, and when you might not want to use it. In sec-
tion 14.3 we’ll take a look at some code and see ASP.NET Core Identity in action.

14.2 What is ASP.NET Core Identity?
Whether you’re writing a traditional web app using Razor Pages or are setting up a
new identity provider using a library like IdentityServer, you’ll need a way of persisting
details about your users, such as their usernames and passwords.

 This might seem like a relatively simple requirement, but, given that this is related
to security and people’s personal details, it’s important you get it right. As well as stor-
ing the claims for each user, it’s important to store passwords using a strong hashing
algorithm to allow users to use 2FA where possible, and to protect against brute force
attacks, to name a few of the many requirements. Although it’s perfectly possible to
write all the code to do this manually and to build your own authentication and mem-
bership system, I highly recommend you don’t.

 I’ve already mentioned third-party identity providers such as Auth0 or Azure
Active Directory B2C. These are Software-as-a-Service (SaaS) solutions that take care
of the user-management and authentication aspects of your app for you. If you’re in
the process of moving apps to the cloud generally, then solutions like these can
make a lot of sense.

 If you can’t or don’t want to use these third-party solutions, I recommend you con-
sider using the ASP.NET Core Identity system to store and manage user details in your
database. ASP.NET Core Identity takes care of most of the boilerplate associated with
authentication, but it remains flexible and lets you control the login process for users
if you need to.

NOTE ASP.NET Core Identity is an evolution of ASP.NET Identity, with some
design improvements and converted to work with ASP.NET Core.

By default, ASP.NET Core Identity uses EF Core to store user details in the database. If
you’re already using EF Core in your project, this is a perfect fit. Alternatively, it’s pos-
sible to write your own stores for loading and saving user details in another way.

 Identity takes care of the low-level parts of user management, as shown in table 14.1.
As you can see from this list, Identity gives you a lot, but not everything—by a long shot!

Table 14.1 Which services are and aren’t handled by ASP.NET Core Identity

Managed by ASP.NET Core Identity Requires implementing by the developer

Database schema for storing users and claims. UI for logging in, creating, and managing users
(Razor Pages or controllers). This is included in an
optional package, which provides a default UI.

Creating a user in the database. Sending email messages.

Password validation and rules. Customizing claims for users (adding new claims).

447What is ASP.NET Core Identity?
The biggest missing piece is the fact that you need to provide all the UI for the appli-
cation, as well as tying all the individual Identity services together to create a function-
ing sign-in process. That’s a pretty big missing piece, but it makes the Identity system
extremely flexible.

 Luckily, ASP.NET Core includes a helper NuGet library, Microsoft.AspNet-
Core.Identity.UI, that gives you the whole of the UI boilerplate for free. That’s over 30
Razor Pages with functionality for logging in, registering users, using two-factor
authentication, and using external login providers, among others. You can still cus-
tomize these pages if you need to, but having a whole login process working out of the
box, with no code required on your part, is a huge win. We’ll look at this library and
how you use it in sections 14.3 and 14.4.

 For that reason, I strongly recommend using the default UI as a starting point,
whether you’re creating an app or adding user management to an existing app. But
the question still remains: when should you use Identity, and when should you con-
sider rolling your own?

 I’m a big fan of Identity, so I tend to suggest it in most situations, as it handles a lot
of security-related things for you that are easy to mess up. I’ve heard several argu-
ments against it, some of which are valid, and others less so:

 I already have user authentication in my app—Great! In that case, you’re probably
right, Identity may not be necessary. But does your custom implementation use
2FA? Do you have account lockout? If not, and you need to add them, then con-
sidering Identity may be worthwhile.

 I don’t want to use EF Core—That’s a reasonable stance. You could be using Dap-
per, some other ORM, or even a document database for your database access.
Luckily, the database integration in Identity is pluggable, so you could swap out
the EF Core integration and use your own database integration libraries instead.

 My use case is too complex for Identity—Identity provides lower-level services for
authentication, so you can compose the pieces however you like. It’s also exten-
sible, so if you need to, for example, transform claims before creating a princi-
pal, you can.

Handling user account lockout (to prevent brute-
force attacks).

Configuring third-party identity providers.

Managing and generating 2FA codes.

Generating password-reset tokens.

Saving additional claims to the database.

Managing third-party identity providers (for exam-
ple, Facebook, Google, Twitter).

Table 14.1 Which services are and aren’t handled by ASP.NET Core Identity (continued)

Managed by ASP.NET Core Identity Requires implementing by the developer

448 CHAPTER 14 Authentication: Adding users to your application with Identity
 I don’t like the default Razor Pages UI—The default UI for Identity is entirely
optional. You can still use the Identity services and user management but pro-
vide your own UI for logging in and registering users. However, be aware that
although doing this gives you a lot of flexibility, it’s also very easy to introduce
a security flaw in your user-management system—the last place you want secu-
rity flaws!

 I’m not using Bootstrap to style my application—The default Identity UI uses Boot-
strap as a styling framework, the same as the default ASP.NET Core templates.
Unfortunately, you can’t easily change that, so if you’re using a different frame-
work, or you need to customize the HTML generated, you can still use Identity
but you’ll need to provide your own UI.

 I don’t want to build my own identity system—I’m glad to hear it. Using an external
identity provider like Azure Active Directory B2C or Auth0 is a great way of
shifting the responsibility and risk associated with storing users’ personal infor-
mation onto a third party.

Any time you’re considering adding user management to your ASP.NET Core applica-
tion, I’d recommend looking at Identity as a great option for doing so. In the next sec-
tion I’ll demonstrate what Identity provides by creating a new Razor Pages application
using the default Identity UI. In section 14.4 we’ll take that template and apply it to an
existing app instead, and in sections 14.5 and 14.6 you’ll see how to override the
default pages.

14.3 Creating a project that uses ASP.NET Core Identity
I’ve covered authentication and Identity in general terms, but the best way to get a
feel for it is to see some working code. In this section we’re going to look at the
default code generated by the ASP.NET Core templates with Identity, how the project
works, and where Identity fits in.

14.3.1 Creating the project from a template

You’ll start by using the Visual Studio templates to generate a simple Razor Pages
application that uses Identity for storing individual user accounts in a database.

TIP You can create an equivalent project using the .NET CLI by running
dotnet new webapp -au Individual -uld.

To create the template using Visual Studio, you must be using VS 2019 or later and
have the .NET 5.0 SDK installed:

1 Choose File > New > Project or choose Create a New Project from the splash
screen.

2 From the list of templates, choose ASP.NET Core Web Application, ensuring
you select the C# language template.

3 On the next screen, enter a project name, location, and a solution name, and
click Create.

449Creating a project that uses ASP.NET Core Identity
4 Choose the Web Application template and click Change under Authentication
to bring up the Authentication dialog box, shown in figure 14.7.

5 Choose Individual User Accounts to create an application configured with EF
Core and ASP.NET Core Identity. Click OK.

6 Click Create to create the application. Visual Studio will automatically run dotnet
restore to restore all the necessary NuGet packages for the project.

7 Run the application to see the default app, as shown in figure 14.8.

Choose No Authentication
to create a template without
authentication.

Choose Individual User Accounts
to store local user accounts using
ASP.NET Core Identity and EF Core.

Work or School Accounts will
configure the application to use
an external Identity Provider—
using Active Directory (or Office
365, for example) to handle user
management and authentication.

Choose Windows Authentication for
intranet sites where the Windows
login of the user provides the
authentication mechanism.

Choose Store User
Accounts In-app.

Figure 14.7 Choosing the authentication mode of the new ASP.NET Core application template in
VS 2019

You can create new
users and sign in
using the Login widget.

Figure 14.8 The default template with individual account authentication looks similar to the no
authentication template, with the addition of a Login widget at the top right of the page.

450 CHAPTER 14 Authentication: Adding users to your application with Identity
This template should look familiar, with one twist: you now have Register and Login
buttons! Feel free to play with the template—creating a user, logging in and out—to
get a feel for the app. Once you’re happy, look at the code generated by the template
and the boilerplate it saved you from writing.

14.3.2 Exploring the template in Solution Explorer

The project generated by the template, shown in figure 14.9, is very similar to the
default no-authentication template. That’s largely due to the default UI library, which
brings in a big chunk of functionality without exposing you to the nitty-gritty details.

The biggest addition is the Areas folder in the root of your project, which contains an
Identity subfolder. Areas are sometimes used for organizing sections of functionality.
Each area can contain its own Pages folder, which is analogous to the main Pages
folder in your application.

DEFINITION Areas are used to group Razor Pages into separate hierarchies for
organizational purposes. I rarely use areas and prefer to create subfolders in
the main Pages folder instead. The one exception is the Identity UI, which
uses a separate Identity area by default. For more details on areas, see Micro-
soft’s “Areas in ASP.NET Core” documentation: http://mng.bz/7Vw9.

The Microsoft.AspNetCore.Identity.UI package creates Razor Pages in the Identity area.
You can override any page in this default UI by creating a corresponding page in the

You can override individual files
in the default UI by placing files
in corresponding locations in the
Areas/Identity folder.

The template includes an EF Core
DbContext and migrations to
configure the database schema
for ASP.NET Core Identity.

The Pages folder is identical
to the no-authentication
template, with an additional
_LoginPartial view.

The ASP.NET Core Identity
default UI is contained in
an Area called Identity.

Figure 14.9 The project layout of the default template. Depending on your version of Visual Studio,
the exact files may vary slightly.

http://mng.bz/7Vw9

451Creating a project that uses ASP.NET Core Identity
Areas/Identity/Pages folder in your application. For example, as shown in figure 14.9,
the default template adds a _ViewStart.cshtml file that overrides the version that is
included as part of the default UI. This file contains the following code, which sets the
default Identity UI Razor Pages to use your project’s default _Layout.cshtml file:

@{
 Layout = "/Pages/Shared/_Layout.cshtml";
}

Some obvious questions at this point might be “how do you know what’s included in
the default UI,” and “which files you can override”? You’ll see the answer to both of
those in section 14.5, but in general you should try to avoid overriding files where pos-
sible. After all, the goal with the default UI is to reduce the amount of code you have
to write!

 The Data folder in your new project template contains your application’s EF Core
DbContext, called ApplicationDbContext, and the migrations for configuring the data-
base schema to use Identity. I’ll discuss this schema in more detail in section 14.3.3.

 The final additional file included in this template compared to the no-authentica-
tion version is the partial Razor view Pages/Shared/_LoginPartial.cshtml. This pro-
vides the Register and Login links you saw in figure 14.8, and it’s rendered in the
default Razor layout, _Layout.cshtml.

 If you look inside _LoginPartial.cshtml, you can see how routing works with areas
by combining the Razor Page path with an {area} route parameter using Tag Help-
ers. For example, the Login link specifies that the Razor Page /Account/Login is in
the Identity area using the asp-area attribute:

<a asp-area="Identity" asp-page="/Account/Login">Login

TIP You can reference Razor Pages in the Identity area by setting the area
route value to Identity. You can use the asp-area attribute in Tag Helpers
that generate links.

In addition to the new files included thanks to ASP.NET Core Identity, it’s worth open-
ing up Startup.cs and looking at the changes there. The most obvious change is the
additional configuration in ConfigureServices, which adds all the services Identity
requires.

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDefaultIdentity<IdentityUser>(options =>

Listing 14.1 Adding ASP.NET Core Identity services to ConfigureServices

ASP.NET Core Identity uses EF Core, so it
includes the standard EF Core configuration.

Adds the Identity system, including the default
UI, and configures the user type as IdentityUser

452 CHAPTER 14 Authentication: Adding users to your application with Identity
 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();
 services.AddRazorPages();
}

The AddDefaultIdentity() extension method does several things:

 Adds the core ASP.NET Core Identity services.
 Configures the application user type to be IdentityUser. This is the entity

model that is stored in the database and represents a “user” in your application.
You can extend this type if you need to, but that’s not always necessary, as you’ll
see in section 14.6.

 Adds the default UI Razor Pages for registering, logging in, and managing users.
 Configures token providers for generating 2FA and email confirmation tokens.

There’s another, very important change in Startup, in the Configure method:

app.UseAuthentication();

This adds AuthenticationMiddleware to the pipeline, so that you can authenticate
incoming requests, as you saw in figure 14.3. The location of this middleware is very import-
ant. It should be placed after UseRouting() and before UseAuthorization() and
UseEndpoints(), as shown in the following listing.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

If you don’t use this specific order of middleware, you can run into strange bugs
where users aren’t authenticated correctly, or where authorization policies aren’t cor-
rectly applied. This order is configured for you automatically in your templates, but

Listing 14.2 Adding AuthenticationMiddleware to your middleware pipeline

Requires users to confirm
their accounts (typically by

email) before they log inConfigures Identity to
store its data in EF Core

Middleware placed before UseAuthentication
will see all requests as anonymous.

The routing middleware determines which
page is requested based on the request URL.

UseAuthentication should be
placed after UseRouting.

UseAuthorization should be placed after
UseAuthentication so it can access the user principal.

UseEndpoints should be last,
after the user principal is set
and authorization has been
applied.

453Creating a project that uses ASP.NET Core Identity
it’s something to be careful about if you’re upgrading an existing application or mov-
ing middleware around.

IMPORTANT UseAuthentication() and UseAuthorization() must be placed
between UseRouting() and UseEndpoints(). Additionally, UseAuthorization()
must be placed after UseAuthentication(). You can add additional middle-
ware between each of these calls, as long as this overall middleware order is
preserved.

Now that you’ve got an overview of the additions made by Identity, we’ll look in a bit
more detail at the database schema and how Identity stores users in the database.

14.3.3 The ASP.NET Core Identity data model

Out of the box, and in the default templates, Identity uses EF Core to store user
accounts. It provides a base DbContext that you can inherit from, called IdentityDb-
Context, which uses an IdentityUser as the user entity for your application.

 In the template, the app’s DbContext is called ApplicationDbContext. If you open
up this file, you’ll see it’s very sparse; it inherits from the IdentityDbContext base
class I described earlier, and that’s it. What does this base class give you? The easiest
way to see is to update a database with the migrations and take a look.

 Applying the migrations is the same process as in chapter 12. Ensure the connection
string points to where you want to create the database, open a command prompt in your
project folder, and run this command to update the database with the migrations:

dotnet ef database update

If the database doesn’t yet exist, the CLI will create it. Figure 14.10 shows what the
database looks like for the default template.1

1 If you’re using MS SQL Server (or LocalDB), you can use the SQL Server Object Explorer in Visual Studio to
browse tables and objects in your database. See Microsoft’s “How to: Connect to a Database and Browse Exist-
ing Objects” for details: http://mng.bz/mg8r.

The claims associated with
each user are stored in
AspNetUserClaims.

ASP.NET Core uses EF Core migrations.
The history of applied migrations is
stored in the __EFMigrationsHistory
table.

The AspNetUserLogins and
AspNetUserTokens are used
to manage details of third-
party logins like Facebook
and Google.

The AspNetRoles, AspNetRoleClaims,
and AspNetUserRoles provide role-
based authorization for legacy reasons.

The user entities are stored
in the AspNetUsers table.

Figure 14.10 The database schema used by ASP.NET Core Identity

http://mng.bz/mg8r

454 CHAPTER 14 Authentication: Adding users to your application with Identity
TIP If you see an error after running the dotnet ef command, ensure you
have the .NET tool installed by following the instructions provided in sec-
tion 12.3.1. Also ensure you run the command from the project folder, not the
solution folder.

That’s a lot of tables! You shouldn’t need to interact with these tables directly—Identity
handles that for you—but it doesn’t hurt to have a basic grasp of what they’re for:

 __EFMigrationsHistory—The standard EF Core migrations table that records
which migrations have been applied.

 AspNetUsers—The user profile table itself. This is where IdentityUser is serial-
ized to. We’ll take a closer look at this table shortly.

 AspNetUserClaims—The claims associated with a given user. A user can have
many claims, so it’s modeled as a many-to-one relationship.

 AspNetUserLogins and AspNetUserTokens—These are related to third-party logins.
When configured, these let users sign in with a Google or Facebook account
(for example), instead of creating a password on your app.

 AspNetUserRoles, AspNetRoles, and AspNetRoleClaims—These tables are somewhat
of a legacy left over from the old role-based permission model of the pre-.NET
4.5 days, instead of the claims-based permission model. These tables let you
define roles that multiple users can belong to. Each role can be assigned a num-
ber of claims. These claims are effectively inherited by a user principal when
they are assigned that role.

You can explore these tables yourself, but the most interesting of them is the AspNet-
Users table, shown in figure 14.11.

Most of the columns in the AspNetUsers table are security related—the user’s email,
password hash, whether they have confirmed their email, whether they have 2FA

By default, ASP.NET Core Identity
uses Guids for the user Id, stored
as strings in the database.

The table contains all the neccessary
fields for authenticating a user, email
and phone number confirmation,
two-factor authentication, and account
lockout.

Figure 14.11 The AspNetUsers table is used to store all the details required
to authenticate a user.

455Creating a project that uses ASP.NET Core Identity
enabled, and so on. By default, there are no columns for additional information, like
the user’s name.

NOTE You can see from figure 14.11 that the primary key Id is stored as a
string column. By default, Identity uses Guid for the identifier. To customize
the data type, see the “Change the primary key type” section of Microsoft’s
“Identity model customization in ASP.NET Core” documentation: http://
mng.bz/5jdB.

Any additional properties of the user are stored as claims in the AspNetUserClaims
table associated with that user. This lets you add arbitrary additional information,
without having to change the database schema to accommodate it. Want to store the
user’s date of birth? You could add a claim to that user—no need to change the data-
base schema. You’ll see this in action in section 14.6, when you add a Name claim to
every new user.

NOTE Adding claims is often the easiest way to extend the default Identity-
User, but you can also add additional properties to the IdentityUser
directly. This requires database changes but is nevertheless useful in many sit-
uations. You can read how to add custom data using this approach here:
http://mng.bz/Xd61.

It’s important to understand the difference between the IdentityUser entity (stored
in the AspNetUsers table) and the ClaimsPrincipal, which is exposed on Http-
Context.User. When a user first logs in, an IdentityUser is loaded from the database.
This entity is combined with additional claims for the user from the AspNetUser-
Claims table to create a ClaimsPrincipal. It’s this ClaimsPrincipal that is used for
authentication and is serialized to the authentication cookie, not the IdentityUser.

 It’s useful to have a mental model of the underlying database schema Identity uses,
but in day-to-day work, you shouldn’t have to interact with it directly—that’s what
Identity is for, after all! In the next section, we’ll look at the other end of the scale—
the UI of the app, and what you get out of the box with the default UI.

14.3.4 Interacting with ASP.NET Core Identity

You’ll want to explore the default UI yourself, to get a feel for how the pieces fit
together, but in this section I’ll highlight what you get out of the box, as well as areas
that typically require additional attention right away.

 The entry point to the default UI is the user registration page of the application,
shown in figure 14.12. The register page enables users to sign up to your application
by creating a new IdentityUser with an email and a password. After creating an
account, users are redirected to a screen indicating that they should confirm their
email. No email service is enabled by default, as this is dependent of you configuring
an external email service. You can read how to enable email sending in Microsoft’s
“Account confirmation and password recovery in ASP.NET Core” documentation at

http://mng.bz/5jdB
http://mng.bz/5jdB
http://mng.bz/5jdB
http://mng.bz/Xd61

456 CHAPTER 14 Authentication: Adding users to your application with Identity
http://mng.bz/6gBo. Once you configure this, users will automatically receive an email
with a link to confirm their account.

 By default, user emails must be unique (you can’t have two users with the same
email), and the password must meet various length and complexity requirements. You
can customize these options and more in the configuration lambda of the call to
AddDefaultIdentity() in Startup.cs, as shown in the following listing.

services.AddDefaultIdentity<IdentityUser>(options =>
{
 options.SignIn.RequireConfirmedAccount = true;
 options.Lockout.AllowedForNewUsers = true;
 options.Password.RequiredLength = 12;
 options.Password.RequireNonAlphanumeric = false;
 options.Password.RequireDigit = false;
})
.AddEntityFrameworkStores<AppDbContext>();

After a user has registered with your application, they need to log in, as shown in fig-
ure 14.13. On the right side of the login page, the default UI templates describe how
you, the developer, can configure external login providers, such as Facebook and
Google. This is useful information for you, but it’s one of the reasons you may need to
customize the default UI templates, as you’ll see in section 14.5.

 Once a user has signed in, they can access the management pages of the identity
UI. These allow users to change their email, change their password, configure 2FA

Listing 14.3 Customizing Identity settings in ConfigureServices in Startup.cs

Users enter an email and
password to register with the
app and are redirected to a
registration confirmation page.

The default UI templates include
links to ASP.NET Core documentation
for enabling external login providers
and an email-sending service.

Figure 14.12 The registration flow for users using the default Identity UI. Users enter an email
and password and are redirected to a “confirm your email” page. This is a placeholder page by
default, but if you enable email confirmation, this page will update appropriately.

Require users to confirm
their account by email
before they can log in.

Enables user-lockout, to prevent brute-force
attacks against user passwords

Update password
requirements. Current
guidance is to require
long passwords.

http://mng.bz/6gBo

457Creating a project that uses ASP.NET Core Identity
with an authenticator app, or delete all their personal data. Most of these functions
work without any effort on your part, assuming you’ve already configured an email-
sending service.2

 That covers everything you get in the default UI templates. It may seem somewhat
minimal, but it covers a lot of the requirements that are common to almost all apps.
Nevertheless, there are a few things you’ll nearly always want to customize:

 Configure an email-sending service, to enable account confirmation and pass-
word recovery, as described in Microsoft’s “Account confirmation and password
recovery in ASP.NET Core” documentation: http://mng.bz/vzy7.

 Add a QR code generator for the enable 2FA page, as described in Microsoft’s
“Enable QR Code generation for TOTP authenticator apps in ASP.NET Core”
documentation: http://mng.bz/4Zmw.

 Customize the register and login pages to remove the documentation link for
enabling external services. You’ll see how to do this in section 14.5. Alterna-
tively, you may want to disable user registration entirely, as described in Micro-
soft’s “Scaffold Identity in ASP.NET Core projects” documentation: http://mng
.bz/QmMG.

2 You can improve the 2FA authenticator page by enabling QR code generation, as described in Microsoft’s
“Enable QR Code generation for TOTP authenticator apps in ASP.NET Core” document: http://mng.bz/
nM5a.

After logging in, you can
access the management
pages by clicking the email
link in the header.

The default UI templates include
links to documentation on the login
page and on the enable 2FA page.

The management pages
allow users to update
their email and password,
enable 2FA, and delete
their account.

Figure 14.13 Logging in with an existing user and managing the user account. The Login page
describes how to configure external login providers, such as Facebook and Google. The user-
management pages allow users to change their email and password and to configure two-factor
authentication (2FA).

https://shortener.manning.com/nM5a
https://shortener.manning.com/nM5a
https://shortener.manning.com/nM5a
http://mng.bz/vzy7
http://mng.bz/4Zmw
http://mng.bz/QmMG
http://mng.bz/QmMG
http://mng.bz/QmMG

458 CHAPTER 14 Authentication: Adding users to your application with Identity
 Collect additional information about users on the registration page. You’ll see
how to do this in section 14.6.

There are many more ways you can extend or update the Identity system and lots of
options available, so I encourage you to explore Microsoft’s “Overview of ASP.NET
Core authentication” at http://mng.bz/XdGv to see your options. In the next section,
you’ll see how to achieve another common requirement: adding users to an existing
application.

14.4 Adding ASP.NET Core Identity to an existing project
In this section we’re going to add users to the recipe application from chapters 12 and
13. This is a working app that you want to add user functionality to. In chapter 15 we’ll
extend this work to restrict control regarding who’s allowed to edit recipes on the app.

 By the end of this section, you’ll have an application with a registration page, a
login screen, and a manage account screen, like the default templates. You’ll also have
a persistent widget in the top right of the screen showing the login status of the cur-
rent user, as shown in figure 14.14.

As in section 14.3, I’m not going to customize any of the defaults at this point, so we
won’t set up external login providers, email confirmation, or 2FA. I’m only concerned
with adding ASP.NET Core Identity to an existing app that’s already using EF Core.

TIP It’s worth making sure you’re comfortable with the new project tem-
plates before you go about adding Identity to an existing project. Create a test
app and consider setting up an external login provider, configuring an email
provider, and enabling 2FA. This will take a bit of time, but it’ll be invaluable
for deciphering errors when you come to adding Identity to existing apps.

The Login widget shows the
current signed in user’s email
and a link for them to log out.

Figure 14.14 The recipe app after adding authentication, showing the login widget.

http://mng.bz/XdGv

459Adding ASP.NET Core Identity to an existing project

The

confi
is unc

,
To add Identity to your app, you’ll need to do the following:

1 Add the ASP.NET Core Identity NuGet packages.
2 Configure Startup to use AuthenticationMiddleware and add Identity ser-

vices to the DI container.
3 Update the EF Core data model with the Identity entities.
4 Update your Razor Pages and layouts to provide links to the Identity UI.

This section will tackle each of these steps in turn. At the end of section 14.4, you’ll
have successfully added user accounts to the recipe app.

14.4.1 Configuring the ASP.NET Core Identity services and middleware

You can add ASP.NET Core Identity with the default UI to an existing app by referenc-
ing two NuGet packages:

 Microsoft.AspNetCore.Identity.EntityFrameworkCore—Provides all the core
Identity services and integration with EF Core

 Microsoft.AspNetCore.Identity.UI—Provides the default UI Razor Pages

Update your project .csproj file to include these two packages:

<PackageReference
 Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore"
 Version="5.0.0" />
<PackageReference
 Include="Microsoft.AspNetCore.Identity.UI" Version="5.0.0" />

These packages bring in all the additional required dependencies you need to add
Identity with the default UI. Be sure to run dotnet restore after adding them to
your project.

 Once you’ve added the Identity packages, you can update your Startup.cs file to
include the Identity services, as shown next. This is similar to the default template
setup you saw in listing 14.1, but make sure to reference your existing AppDbContext.

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<AppDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));

 services.AddDefaultIdentity<ApplicationUser>(options =>
 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<AppDbContext>();

 services.AddRazorPages();
 services.AddScoped<RecipeService>();
}

Listing 14.4 Adding ASP.NET Core Identity services to the recipe app

 existing
service

guration
hanged.

Adds the Identity
services to the DI
container and uses
a custom user type
ApplicationUserMakes sure you

use the name of
your existing

DbContext app

460 CHAPTER 14 Authentication: Adding users to your application with Identity
This adds all the necessary services and configures Identity to use EF Core. I’ve intro-
duced a new type here, ApplicationUser, which we’ll use to customize our user entity
later. You’ll see how to add this type in section 14.4.2.

 Configuring AuthenticationMiddleware is somewhat easier: add it to the pipeline
in the Configure method. As you can see in listing 14.5, I’ve added the middleware
after UseRouting(), just before UseAuthorization(). As I mentioned in section 14.3.2,
it’s important you use this order for middleware in your application.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 // other configuration not shown
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

You’ve configured your app to use Identity, so the next step is to update EF Core’s
data model. You’re already using EF Core in this app, so you need to update your data-
base schema to include the tables that Identity requires.

14.4.2 Updating the EF Core data model to support Identity

The code in listing 14.4 won’t compile, as it references the ApplicationUser type,
which doesn’t yet exist. Create the ApplicationUser in the Data folder, using the fol-
lowing line:

public class ApplicationUser : IdentityUser { }

It’s not strictly necessary to create a custom user type in this case (for example, the
default templates use the raw IdentityUser), but I find it’s easier to add the derived
type now rather than try to retrofit it later if you need to add extra properties to your
user type.

 In section 14.3.3 you saw that Identity provides a DbContext called IdentityDb-
Context, which you can inherit from. The IdentityDbContext base class includes the
necessary DbSet<T> to store your user entities using EF Core.

 Updating an existing DbContext for Identity is simple—update your app’s DbContext
to inherit from IdentityDbContext, as shown in the following listing. We’re using the

Listing 14.5 Adding AuthenticationMiddleware to the recipe app

StaticFileMiddleware will never see requests
as authenticated, even after you sign in.

Adds AuthenticationMiddleware
after UseRouting() and before
UseAuthorization

Middleware after
AuthenticationMiddleware
can read the user principal
from HttpContext.User.

461Adding ASP.NET Core Identity to an existing project
generic version of the base Identity context in this case and providing the Application-
User type.

public class AppDbContext : IdentityDbContext<ApplicationUser>
{
 public AppDbContext(DbContextOptions<AppDbContext> options)
 : base(options)
 { }

 public DbSet<Recipe> Recipes { get; set; }
}

Effectively, by updating the base class of your context in this way, you’ve added a whole
load of new entities to EF Core’s data model. As you saw in chapter 12, whenever EF
Core’s data model changes, you need to create a new migration and apply those
changes to the database.

 At this point, your app should compile, so you can add a new migration called
AddIdentitySchema using

dotnet ef migrations add AddIdentitySchema

The final step is to update your application’s Razor Pages and layouts to reference the
default identity UI. Normally, adding 30 new Razor Pages to your application would
be a lot of work, but using the default Identity UI makes it a breeze.

14.4.3 Updating the Razor views to link to the Identity UI

Technically, you don’t have to update your Razor Pages to reference the pages
included in the default UI, but you probably want to add the login widget to your
app’s layout at a minimum. You’ll also want to make sure that your Identity Razor
Pages use the same base Layout.cshtml as the rest of your application.

 We’ll start by fixing the layout for your Identity pages. Create a file at the “magic”
path Areas/Identity/Pages/_ViewStart.cshtml, and add the following contents:

@{ Layout = "/Pages/Shared/_Layout.cshtml"; }

This sets the default layout for your Identity pages to your application’s default layout.
Next, add a _LoginPartial.cshtml file in Pages/Shared to define the login widget, as
shown in the following listing. This is pretty much identical to the template generated
by the default template, but using our custom ApplicationUser instead of the default
IdentityUser.

Listing 14.6 Updating AppDbContext to use IdentityDbContext

Updates to inherit from the Identity context, instead of directly from DbContext

The remainder
of the class
remains the
same.

462 CHAPTER 14 Authentication: Adding users to your application with Identity
@using Microsoft.AspNetCore.Identity
@using RecipeApplication.Data;
@inject SignInManager<ApplicationUser> SignInManager
@inject UserManager<ApplicationUser> UserManager

<ul class="navbar-nav">
@if (SignInManager.IsSignedIn(User))
{
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="Identity"
 asp-page="/Account/Manage/Index" title="Manage">Hello
 User.Identity.Name!

 <li class="nav-item">
 <form class="form-inline" asp-page="/Account/Logout"
 asp-route-returnUrl="@Url.Page("/", new { area = "" })"
 asp-area="Identity" method="post" >
 <button class="nav-link btn btn-link text-dark"
 type="submit">Logout</button>
 </form>

}
else
{
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="Identity"
 asp-page="/Account/Register">Register

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="Identity"
 asp-page="/Account/Login">Login

}

This partial shows the current login status of the user and provides links to register or
sign in. All that remains is to render the partial by calling

<partial name="_LoginPartial" />

in the main layout file of your app, _Layout.cshtml.
 And there you have it: you’ve added Identity to an existing application. The

default UI makes doing this relatively simple, and you can be sure you haven’t intro-
duced any security holes by building your own UI!

 As I described in section 14.3.4, there are some features that the default UI doesn’t
provide that you need to implement yourself, such as email confirmation and 2FA QR
code generation. It’s also common to find that you want to update a single page here
and there. In the next section I’ll show how you can replace a page in the default UI,
without having to rebuild the entire UI yourself.

Listing 14.7 Adding a _LoginPartial.cshtml to an existing app

Update to your project’s namespace
that contains ApplicationUser

The default template
uses IdentityUser.
Update to use
ApplicationUser instead.

463Customizing a page in ASP.NET Core Identity’s default UI
14.5 Customizing a page in ASP.NET Core Identity’s
default UI
In this section you’ll learn how to use “scaffolding” to replace individual pages in the
default Identity UI. You’ll learn to scaffold a page so that it overrides the default UI,
allowing you to customize both the Razor template and the PageModel page handlers.

 Having Identity provide the whole UI for your application is great in theory, but in
practice there are a few wrinkles, as you’ve already seen in section 14.3.4. The default
UI provides as much as it can, but there are some things you may want to tweak. For
example, both the login and register pages describe how to configure external login
providers for your ASP.NET Core applications, as you saw in figures 14.12 and 14.13.
That’s useful information for you as a developer, but not something you want to be
showing to your users. Another often-cited requirement is the desire to change the
look and feel of one or more pages.

 Luckily, the default Identity UI is designed to be incrementally replaceable, so that
you can override a single page without having to rebuild the entire UI yourself. On
top of that, both Visual Studio and the .NET CLI have functions that allow you to
scaffold any (or all) of the pages in the default UI, so that you don’t have to start from
scratch when you want to tweak a page.

DEFINITION Scaffolding is the process of generating files in your project that
serve as the basis for customization. The Identity scaffolder adds Razor Pages
in the correct locations so they override equivalent pages with the default UI.
Initially, the code in the scaffolded pages matches that in the default Identity
UI, but you are free to customize it.

As an example of the changes you can easily make, we’ll scaffold the registration page
and remove the additional information section about external providers. The follow-
ing steps describe how to scaffold the Register.cshtml page in Visual Studio. Alterna-
tively, you can use the .NET CLI to scaffold the registration page.3

1 Add the Microsoft.VisualStudio.Web.CodeGeneration.Design and Microsoft
.EntityFrameworkCore.Tools NuGet packages to your project file, if they’re not
already added. Visual Studio uses these packages to scaffold your application
correctly, and without them you may get an error running the scaffolder.

<PackageReference Version="5.0.0"
 Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" />
<PackageReference Version="5.0.0"
 Include="Microsoft.EntityFrameworkCore.Tools" />

2 Ensure your project builds—if it doesn’t build, the scaffolder will fail before
adding your new pages.

3 Install the necessary .NET CLI tools and packages as described in Microsoft’s “Scaffold Identity in ASP.NET
Core projects” documentation: http://mng.bz/yYGB. Then run dotnet aspnet-codegenerator identity
-dc RecipeApplication.Data.AppDbContext --files "Account.Register".

http://mng.bz/yYGB

464 CHAPTER 14 Authentication: Adding users to your application with Identity
3 Right-click your project and choose Add > New Scaffolded Item.
4 In the selection dialog box, choose Identity from the category, and click Add.
5 In the Add Identity dialog box, select the Account/Register page, and select your

application’s AppDbContext as the Data context class, as shown in figure 14.15.
Click Add to scaffold the page.

Visual Studio builds your application and then generates the Register.cshtml page
for you, placing it into the Areas/Identity/Pages/Account folder. It also generates
several supporting files, as shown in figure 14.16. These are mostly required to ensure
your new Register.cshtml page can reference the remaining pages in the default
Identity UI.

Leave the layout field empty.

Override the Account\Register file.

Select the existing data context.

Click Add to scaffold the file.

Figure 14.15 Using Visual Studio to scaffold Identity pages. The generated Razor Pages will
override the versions provided by the Default UI.

The scaffolded Register.cshtml
page and the Register.cshtml.cs
PageModel

_ViewImports files add
namespace references
for your custom pages.

_ViewStart sets the layout
for identity UI pages to
your app's layout.

A duplicate of the validation
scripts partial view used by
the default UI
An artifact of the scaffold process
that can be safely deleted.

Figure 14.16 The scaffolder generates the Register.cshtml Razor Page, along with supporting files
required to integrate with the remainder of the default Identity UI.

465Customizing a page in ASP.NET Core Identity’s default UI
We’re interested in the Register.cshtml page, as we want to customize the UI on the
Register page, but if you look inside the code-behind page, Register.cshtml.cs, you’ll
see how much complexity the default Identity UI is hiding from you. It’s not insur-
mountable (we’ll customize the page handler in section 14.6) but it’s always good to
avoid writing code if you can help it.

 Now that you have the Razor template in your application, you can customize it to
your heart’s content. The downside is that you’re now maintaining more code than
you were with the default UI. You didn’t have to write it, but you may still have to
update it when a new version of ASP.NET Core is released.

 I like to use a bit of a trick when it comes to overriding the default Identity UI like
this. In many cases, you don’t actually want to change the page handlers for the Razor
Page, just the Razor view. You can achieve this by deleting the Register.cshtml.cs Page-
Model file, and pointing your newly scaffolded .cshtml file at the original PageModel,
which is part of the default UI NuGet package.

 The other benefit of this approach is that you can delete some of the other files
that were auto-scaffolded. In total, you can make the following changes:

1 Update the @model directive in Register.cshtml to point to the default UI Page-
Model:

@model Microsoft.AspNetCore.Identity.UI.V4.Pages.Account.Internal
.RegisterModel

2 Update Areas/Identity/Pages/_ViewImports.cshtml to the following:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

3 Delete Areas/Identity/Pages/IdentityHostingStartup.cs.
4 Delete Areas/Identity/Pages/_ValidationScriptsPartial.cshtml.
5 Delete Areas/Identity/Pages/Account/Register.cshtml.cs.
6 Delete Areas/Identity/Pages/Account/_ViewImports.cshtml.

After making all these changes, you’ll have the best of both worlds—you can update
the default UI Razor Pages HTML without taking on the responsibility of maintaining
the default UI code-behind.

TIP In the source code for the book, you can see these changes in action,
where the Register view has been customized to remove the references to
external identity providers.

Unfortunately, it’s not always possible to use the default UI PageModel. Sometimes you
need to update the page handlers, such as when you want to change the functionality
of your Identity area, rather than just the look and feel. A common requirement is
needing to store additional information about a user, as you’ll see in the next section.

466 CHAPTER 14 Authentication: Adding users to your application with Identity
14.6 Managing users: Adding custom data to users
In this section you’ll see how to customize the ClaimsPrincipal assigned to your
users by adding additional claims to the AspNetUserClaims table when the user is cre-
ated. You’ll also see how to access these claims in your Razor Pages and templates.

 Very often, the next step after adding Identity to an application is to customize it.
The default templates only require an email and password to register. What if you
need more details, like a friendly name for the user? Also, I’ve mentioned that we
use claims for security, so what if you want to add a claim called IsAdmin to certain
users?

 You know that every user principal has a collection of claims, so, conceptually, add-
ing any claim just requires adding it to the user’s collection. There are two main times
that you would want to grant a claim to a user:

 For every user, when they first register on the app. For example, you might want to add
a Name field to the Register form and add that as a claim to the user when they
register.

 Manually, after the user has already registered. This is common for claims used as
permissions, where an existing user might want to add an IsAdmin claim to a
specific user after they have registered on the app.

In this section I’ll show you the first approach, automatically adding new claims to a
user when they’re created. The latter approach is more flexible and, ultimately, is the
approach many apps will need, especially line-of-business apps. Luckily, there’s noth-
ing conceptually difficult to it; it requires a simple UI that lets you view users and add
a claim through the same mechanism I’ll show here.

TIP Another common approach is to customize the IdentityUser entity, by
adding a Name property, for example. This approach is sometimes easier to
work with if you want to give users the ability to edit that property. Microsoft’s
“Add, download, and delete custom user data to Identity in an ASP.NET Core
project” documentation describes the steps required to achieve that: http://
mng.bz/aoe7.

Let’s say you want to add a new Claim to a user, called FullName. A typical approach
would be as follows:

1 Scaffold the Register.cshtml Razor Page, as you did in section 14.5.
2 Add a “Name” field to the InputModel in the Register.cshtml.cs PageModel.
3 Add a “Name” input field to the Register.cshtml Razor view template.
4 Create the new ApplicationUser entity as before in the OnPost() page handler

by calling CreateAsync on UserManager<ApplicationUser>.
5 Add a new Claim to the user by calling UserManager.AddClaimAsync().
6 Continue the method as before, sending a confirmation email or signing the

user in if email confirmation is not required.

http://mng.bz/aoe7
http://mng.bz/aoe7
http://mng.bz/aoe7

467Managing users: Adding custom data to users
Steps 1–3 are fairly self-explanatory and just require updating the existing templates
with the new field. Steps 4–6 all take place in Register.cshtml.cs in the OnPost() page
handler, which is summarized in the following listing. In practice, the page handler
has more error checking and boilerplate; our focus here is on the additional lines that
add the extra Claim to the ApplicationUser.

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser {
 UserName = Input.Email, Email = Input.Email };
 var result = await _userManager.CreateAsync(
 user, Input.Password);
 if (result.Succeeded)
 {
 var claim = new Claim("FullName", Input.Name);
 await _userManager.AddClaimAsync(user, claim);

 var code = await _userManager
 .GenerateEmailConfirmationTokenAsync(user);
 await _emailSender.SendEmailAsync(
 Input.Email, "Confirm your email", code);
 await _signInManager.SignInAsync(user);
 return LocalRedirect(returnUrl);
 }
 foreach (var error in result.Errors)
 {
 ModelState.AddModelError(
 string.Empty, error.Description);
 }
 }
 return Page();
}

TIP Listing 14.8 shows how you can add extra claims at registration time, but
you will often need to add additional data later, such as permission-related
claims or other information. You will need to create additional endpoints and
pages for adding this data, securing the pages as appropriate (so that users
can’t update their own permissions, for example).

This is all that’s required to add the new claim, but you’re not using it anywhere cur-
rently. What if you want to display it? Well, you’ve added a claim to the ClaimsPrincipal,
which was assigned to the HttpContext.User property when you called SignInAsync.
That means you can retrieve the claims anywhere you have access to the Claims-
Principal—including in your page handlers and in view templates. For example, you
could display the user’s FullName claim anywhere in a Razor template with the follow-
ing statement:

@User.Claims.FirstOrDefault(x=>x.Type == "FullName")?.Value

Listing 14.8 Adding a custom claim to a new user in the Register.cshtml.cs page

Creates an
instance of the
ApplicationUser
entity, as usual

Validates that the
provided password is
valid, and creates the
user in the database

Creates a
claim, with

a string name
of "FullName"

and the
provided value

Adds the new
claim to the

ApplicationUser’s
collection

Sends a confirmation
email to the user, if
you have configured
the email sender

Signs the user in
by setting the

HttpContext.User;
the principal will

include the
custom claim There was a problem

creating the user. Add the
errors to the ModelState,
and redisplay the page.

468 CHAPTER 14 Authentication: Adding users to your application with Identity
This finds the first claim on the current user principal with a Type of "FullName" and
prints the assigned value (or if the claim is not found, it prints nothing). The Identity
system even includes a handy extension method that tidies up this LINQ expression
(found in the System.Security.Claims namespace):

@User.FindFirstValue("FullName")

With that last tidbit, we’ve reached the end of this chapter on ASP.NET Core Identity.
I hope you’ve come to appreciate the amount of effort using Identity can save you,
especially when you make use of the default Identity UI package.

 Adding user accounts and authentication to an app is typically the first step to cus-
tomizing your app further. Once you have authentication, you can have authorization,
which lets you lock down certain actions in your app, based on the current user. In the
next chapter you’ll learn about the ASP.NET Core authorization system and how you
can use it to customize your apps; in particular, the recipe application, which is com-
ing along nicely!

Summary
 Authentication is the process of determining who you are, and authorization is

the process of determining what you’re allowed to do. You need to authenticate
users before you can apply authorization.

 Every request in ASP.NET Core is associated with a user, also known as a princi-
pal. By default, without authentication, this is an anonymous user. You can use
the claims principal to behave differently depending on who made a request.

 The current principal for a request is exposed on HttpContext.User. You can
access this value from your Razor Pages and views to find out properties of the
user such as their, ID, name, or email.

 Every user has a collection of claims. These claims are single pieces of informa-
tion about the user. Claims could be properties of the physical user, such as
Name and Email, or they could be related to things the user has, such as Has-
AdminAccess or IsVipCustomer.

 Earlier versions of ASP.NET used roles instead of claims. You can still use roles if
you need to, but you should use claims where possible.

 Authentication in ASP.NET Core is provided by AuthenticationMiddleware
and a number of authentication services. These services are responsible for set-
ting the current principal when a user logs in, saving it to a cookie, and loading
the principal from the cookie on subsequent requests.

 The AuthenticationMiddleware is added by calling UseAuthentication() in
your middleware pipeline. This must be placed after the call to UseRouting()
and before UseAuthorization() and UseEndpoints().

 ASP.NET Core includes support for consuming bearer tokens for authenticat-
ing API calls and includes helper libraries for configuring IdentityServer. For

469Summary
more details see Microsoft’s “Authentication and authorization for SPAs” docu-
mentation: http://mng.bz/go0V.

 ASP.NET Core Identity handles low-level services needed for storing users in a
database, ensuring their passwords are stored safely, and for logging users in
and out. You must provide the UI for the functionality yourself and wire it up to
the Identity subsystem.

 The Microsoft.AspNetCore.Identity.UI package provides a default UI for the
Identity system and includes email confirmation, 2FA, and external login pro-
vider support. You need to do some additional configuration to enable these
features.

 The default template for Web Application with Individual Account Authentica-
tion uses ASP.NET Core Identity to store users in the database with EF Core. It
includes all the boilerplate code required to wire the UI up to the Identity system.

 You can use the UserManager<T> class to create new user accounts, load them
from the database, and change their passwords. SignInManager<T> is used to
sign a user in and out by assigning the principal for the request and by setting
an authentication cookie. The default UI uses these classes for you, to facilitate
user registration and login.

 You can update an EF Core DbContext to support Identity by deriving from
IdentityDbContext<TUser>, where TUser is a class that derives from Identity-
User.

 You can add additional claims to a user using the UserManager<TUser>.Add-
ClaimAsync(TUser user, Claim claim) method. These claims are added to the
HttpContext.User object when the user logs in to your app.

 Claims consist of a type and a value. Both values are strings. You can use stan-
dard values for types exposed on the ClaimTypes class, such as ClaimTypes
.GivenName and ClaimTypes.FirstName, or you can use a custom string, such
as "FullName".

http://mng.bz/go0V

Authorization:
Securing your application
In chapter 14 I showed you how to add users to an ASP.NET Core application by
adding authentication. With authentication, users can register and log in to your app
using an email address and password. Whenever you add authentication to an app,
you inevitably find you want to be able to restrict what some users can do. The pro-
cess of determining whether a user can perform a given action on your app is
called authorization.

 On an e-commerce site, for example, you may have admin users who are allowed
to add new products and change prices, sales users who are allowed to view completed
orders, and customer users who are only allowed to place orders and buy products.

This chapter covers
 Using authorization to control who can use

your app

 Using claims-based authorization with policies

 Creating custom policies to handle complex
requirements

 Authorizing a request depending upon the
resource being accessed

 Hiding elements from a Razor template that the
user is unauthorized to access
470

471Introduction to authorization
 In this chapter I’ll show you how to use authorization in an app to control what
your users can do. In section 15.1 I’ll introduce authorization and put it in the con-
text of a real-life scenario you’ve probably experienced: an airport. I’ll describe the
sequence of events, from checking in, to passing through security, to entering an
airport lounge, and you’ll see how these relate to the authorization concepts in this
chapter.

 In section 15.2 I’ll show how authorization fits into an ASP.NET Core web applica-
tion and how it relates to the ClaimsPrincipal class you saw in the previous chapter.
You’ll see how to enforce the simplest level of authorization in an ASP.NET Core app,
ensuring that only authenticated users can execute a Razor Page or MVC action.

 We’ll extend that approach in section 15.3 by adding in the concept of policies.
These let you set specific requirements for a given authenticated user, requiring that
they have specific pieces of information in order to execute an action or Razor Page.

 You’ll use policies extensively in the ASP.NET Core authorization system, so in sec-
tion 15.4 we’ll explore how to handle more complex scenarios. You’ll learn about
authorization requirements and handlers, and how you can combine them to create
specific policies that you can apply to your Razor Pages and actions.

 Sometimes, whether a user is authorized depends on which resource or document
they’re attempting to access. A resource is anything that you’re trying to protect, so it
could be a document or a post in a social media app. For example, you may allow
users to create documents, or to read documents from other users, but only to edit
documents that they created themselves. This type of authorization, where you need
the details of the document to determine if the user is authorized, is called resource-
based authorization, and it’s the focus of section 15.5.

 In the final section of this chapter, I’ll show how you can extend the resource-
based authorization approach to your Razor view templates. This lets you modify the
UI to hide elements that users aren’t authorized to interact with. In particular, you’ll
see how to hide the Edit button when a user isn’t authorized to edit the entity.

 We’ll start by looking more closely at the concept of authorization, how it differs
from authentication, and how it relates to real-life concepts you might see in an airport.

15.1 Introduction to authorization
In this section I provide an introduction to authorization and discuss how it compares
to authentication. I use the real-life example of an airport as a case study to illustrate
how claims-based authorization works.

 For people who are new to web apps and security, authentication and authoriza-
tion can sometimes be a little daunting. It certainly doesn’t help that the words look
so similar! The two concepts are often used together, but they’re definitely distinct:

 Authentication—The process of determining who made a request
 Authorization—The process of determining whether the requested action is

allowed

472 CHAPTER 15 Authorization: Securing your application
Typically, authentication occurs first, so that you know who is making a request to your
app. For traditional web apps, your app authenticates a request by checking the
encrypted cookie that was set when the user logged in (as you saw in the previous chap-
ter). Web APIs typically use a header instead of a cookie for authentication, but the
process is the same.

 Once a request is authenticated and you know who is making the request, you can
determine whether they’re allowed to execute an action on your server. This process is
called authorization and is the focus of this chapter.

 Before we dive into code and start looking at authorization in ASP.NET Core, I’ll
put these concepts into a real-life scenario you’re hopefully familiar with: checking in
at an airport. To enter an airport and board a plane, you must pass through several
steps: an initial step to prove who you are (authentication); and subsequent steps that
check whether you’re allowed to proceed (authorization). In simplified form, these
might look like this:

1 Show your passport at the check-in desk. Receive a boarding pass.
2 Show your boarding pass to enter security. Pass through security.
3 Show your frequent flyer card to enter the airline lounge. Enter the lounge.
4 Show your boarding pass to board the flight. Enter the airplane.

Obviously, these steps, also shown in figure 15.1, will vary somewhat in real life (I don’t
have a frequent flyer card!), but we’ll go with them for now. Let’s explore each step a
little further.

 When you arrive at the airport, the first thing you do is go to the check-in counter.
Here, you can purchase a plane ticket, but to do so, you need to prove who you are by
providing a passport; you authenticate yourself. If you’ve forgotten your passport, you
can’t authenticate, and you can’t go any further.

 Once you’ve purchased your ticket, you’re issued a boarding pass, which says
which flight you’re on. We’ll assume it also includes a BoardingPassNumber. You can
think of this number as an additional claim associated with your identity.

DEFINITION A claim is a piece of information about a user that consists of a
type and an optional value.

The next step is security. The security guards will ask you to present your boarding
pass for inspection, which they’ll use to check that you have a flight and so are allowed
deeper into the airport. This is an authorization process: you must have the required
claim (a BoardingPassNumber) to proceed.

 If you don’t have a valid BoardingPassNumber, there are two possibilities for what
happens next:

 If you haven’t yet purchased a ticket—You’ll be directed back to the check-in desk,
where you can authenticate and purchase a ticket. At that point, you can try to
enter security again.

473Introduction to authorization
 If you have an invalid ticket—You won’t be allowed through security, and there’s
nothing else you can do. If, for example, you show up with a boarding pass a
week late for your flight, they probably won’t let you through. (Ask me how
I know!)

Once you’re through security, you need to wait for your flight to start boarding, but
unfortunately there aren’t any seats free. Typical! Luckily, you’re a regular flyer, and
you’ve notched up enough miles to achieve a Gold frequent flyer status, so you can
use the airline lounge.

At security, you must
present your boarding
pass number to proceed.

If you don’t have a valid
boarding pass, you’re
not authorized to pass
through security.

To enter the aircraft lounge
you must present a Gold
frequent flyer class card.

If you’re not authorized, you
can’t enter the aircraft lounge.

To board the airplane, you
must present a boarding pass.

If you’re not authorized,
you can’t board the plane.

Authentication

AuthorizationAuthorization

AuthorizationAuthorization

Authorization

Figure 15.1 When boarding a plane at an airport, you pass through
several authorization steps. At each authorization step, you must present
a claim in the form of a boarding pass or a frequent flyer card. If you’re
not authorized, access will be denied.

474 CHAPTER 15 Authorization: Securing your application
 You head to the lounge, where you’re asked to present your Gold Frequent Flyer
card to the attendant, and they let you in. This is another example of authorization.
You must have a FrequentFlyerClass claim with a value of Gold to proceed.

NOTE You’ve used authorization twice so far in this scenario. Each time, you
presented a claim to proceed. In the first case, the presence of any Boarding-
PassNumber was sufficient, whereas for the FrequentFlyerClass claim, you
needed the specific value of Gold.

When you’re boarding the airplane, you have one final authorization step, in which
you must present the BoardingPassNumber claim again. You presented this claim ear-
lier, but boarding the aircraft is a distinct action from entering security, so you have to
present it again.

 This whole scenario has lots of parallels with requests to a web app:

 Both processes start with authentication.
 You have to prove who you are in order to retrieve the claims you need for

authorization.
 You use authorization to protect sensitive actions like entering security and the

airline lounge.

I’ll reuse this airport scenario throughout the chapter to build a simple web applica-
tion that simulates the steps you take in an airport. We’ve covered the concept of
authorization in general, so in the next section we’ll look at how authorization works
in ASP.NET Core. We’ll start with the most basic level of authorization, ensuring only
authenticated users can execute an action, and look at what happens when you try to
execute such an action.

15.2 Authorization in ASP.NET Core
In this section you’ll see how the authorization principles described in the previous
section apply to an ASP.NET Core application. You’ll learn about the role of the
[Authorize] attribute and AuthorizationMiddleware in authorizing requests to
Razor Pages and MVC actions. Finally, you’ll learn about the process of preventing
unauthenticated users from executing endpoints, and what happens when users are
unauthorized.

 The ASP.NET Core framework has authorization built in, so you can use it any-
where in your app, but it’s most common in ASP.NET Core 5.0 to apply authorization
via the AuthorizationMiddleware. The AuthorizationMiddleware should be placed
after both the routing middleware and the authentication middleware, but before the
endpoint middleware, as shown in figure 15.2.

NOTE In ASP.NET Core, an endpoint refers to the handler selected by the
routing middleware, which will generate a response when executed. It is typi-
cally a Razor Page or a Web API action method.

475Authorization in ASP.NET Core
With this configuration, the RoutingMiddleware selects an endpoint to execute based
on the request’s URL, such as a Razor Page, as you saw in chapter 5. Metadata about
the selected endpoint is available to all middleware that occurs after the routing mid-
dleware. This metadata includes details about any authorization requirements for the
endpoint, and it’s typically attached by decorating an action or Razor Page with an
[Authorize] attribute.

 The AuthenticationMiddleware deserializes the encrypted cookie (or bearer
token for APIs) associated with the request to create a ClaimsPrincipal. This object
is set as the HttpContext.User for the request, so all subsequent middleware can
access this value. It contains all the Claims that were added to the cookie when the
user authenticated.

 Now we come to the AuthorizationMiddleware. This middleware checks if the
selected endpoint has any authorization requirements, based on the metadata pro-
vided by the RoutingMiddleware. If the endpoint has authorization requirements, the
AuthorizationMiddleware uses the HttpContext.User to determine if the current
request is authorized to execute the endpoint.

 If the request is authorized, the next middleware in the pipeline executes as nor-
mal. If the request is not authorized, the AuthorizationMiddleware short-circuits the
middleware pipeline, and the endpoint middleware is never executed.

A request is made to
the /recipe/index URL.

EndpointMiddleware

The authentication middleware
deserializes the ClaimsPrincipal
from the encrypted cookie.

The authorization middleware
runs after authentication,
before the endpoint middleware.

If authorization is successful,
the endpoint executes and
generates a response as
normal.

If authorization fails, the authorization
middleware returns an error to the
user and the endpoint is not executed.

/

The routing middleware routes the
request to the Recipe/Index.cshtml
endpoint, which is decorated with
an [Authorize] attribute.

The authorization middleware uses
the ClaimsPrincipal and authorization
requirements of the selected endpoint
to determine if the request is authorized
to execute the endpoint.

[Authorize]

Figure 15.2 Authorization occurs after an endpoint has been selected and after the request is
authenticated, but before the action method or Razor Page endpoint is executed.

476 CHAPTER 15 Authorization: Securing your application
NOTE The order of middleware in your pipeline is very important. The call to
UseAuthorization() must come after UseRouting() and UseAuthentication(),
but before UseEndpoints().

The AuthorizationMiddleware is responsible for applying authorization require-
ments and ensuring that only authorized users can execute protected endpoints. In
section 15.2.1 you’ll learn how to apply the simplest authorization requirement, and
in section 15.2.2 you’ll see how the framework responds when a user is not authorized
to execute an endpoint.

15.2.1 Preventing anonymous users from accessing your application

When you think about authorization, you typically think about checking whether a
particular user has permission to execute an endpoint. In ASP.NET Core you nor-
mally achieve this by checking whether a user has a given claim.

 There’s an even more basic level of authorization we haven’t considered yet—only
allowing authenticated users to execute an endpoint. This is even simpler than the
claims scenario (which we’ll come to later) as there are only two possibilities:

 The user is authenticated—The action executes as normal.
 The user is unauthenticated—The user can’t execute the endpoint.

You can achieve this basic level of authorization by using the [Authorize] attribute,
which you saw in chapter 13 when we discussed authorization filters. You can apply
this attribute to your actions and Razor Pages, as shown in the following listing, to
restrict them to authenticated (logged-in) users only. If an unauthenticated user tries
to execute an action or Razor Page protected with the [Authorize] attribute, they’ll
be redirected to the login page.

Changes to authorization in ASP.NET Core 3.0
The authorization system changed significantly in ASP.NET Core 3.0. Prior to this
release, the AuthorizationMiddleware did not exist. Instead, the [Authorize]
attribute executed the authorization logic as part of the MVC filter pipeline.

In practice, from the point of view of using authorization in your actions and Razor
Pages, there is no real difference from a developer’s point of view. Why change it
then?

The new design, using the AuthorizationMiddleware in conjunction with endpoint
routing (introduced at the same time), enables additional scenarios. The changes
make it easier to apply authorization to non-MVC/Razor Page endpoints. You’ll see
how to create these types of endpoints in chapter 19. You can also read more about
the authorization changes in the “Authorization” section of Microsoft’s “Migrate from
ASP.NET Core 2.2 to 3.0” documentation: http://mng.bz/1rvj.

http://mng.bz/1rvj

477Authorization in ASP.NET Core
public class RecipeApiController : ControllerBase
{
 public IActionResult List()
 {
 return Ok();
 }

 [Authorize]
 public IActionResult View()
 {
 return Ok();
 }
}

Applying the [Authorize] attribute to an endpoint attaches metadata to it, indicating
only authenticated users may access the endpoint. As you saw in figure 15.2, this meta-
data is made available to the AuthorizationMiddleware when an endpoint is selected
by the RoutingMiddleware.

 You can apply the [Authorize] attribute at the action scope, controller scope,
Razor Page scope, or globally, as you saw in chapter 13. Any action or Razor Page that
has the [Authorize] attribute applied in this way can be executed only by an authen-
ticated user. Unauthenticated users will be redirected to the login page.

TIP There are several different ways to apply the [Authorize] attribute glob-
ally. You can read about the different options, and when to choose which
option, on my blog: http://mng.bz/opQp.

Sometimes, especially when you apply the [Authorize] attribute globally, you might
need to poke holes in this authorization requirement. If you apply the [Authorize]
attribute globally, then any unauthenticated request will be redirected to the login
page for your app. But if the [Authorize] attribute is global, then when the login page
tries to load, you’ll be unauthenticated and redirected to the login page again. And
now you’re stuck in an infinite redirect loop.

 To get around this, you can designate specific endpoints to ignore the [Autho-
rize] attribute by applying the [AllowAnonymous] attribute to an action or Razor
Page, as shown next. This allows unauthenticated users to execute the action, so you
can avoid the redirect loop that would otherwise result.

[Authorize]
public class AccountController : ControllerBase
{
 public IActionResult ManageAccount()
 {
 return Ok();
 }

Listing 15.1 Applying [Authorize] to an action

Listing 15.2 Applying [AllowAnonymous] to allow unauthenticated access

This action can be executed by
anyone, even when not logged in.

Applies [Authorize] to individual actions,
whole controllers, or Razor Pages

This action can only be executed
by authenticated users.

Applied at the controller
scope, so the user must be
authenticated for all actions
on the controller.

Only authenticated users
may execute ManageAccount.

http://mng.bz/opQp

478 CHAPTER 15 Authorization: Securing your application
 [AllowAnonymous]
 public IActionResult Login()
 {
 return Ok();
 }
}

WARNING If you apply the [Authorize] attribute globally, be sure to add the
[AllowAnonymous] attribute to your login actions, error actions, password
reset actions, and any other actions that you need unauthenticated users to
execute. If you’re using the default Identity UI described in chapter 14, this is
already configured for you.

If an unauthenticated user attempts to execute an action protected by the [Authorize]
attribute, traditional web apps will redirect them to the login page. But what about
Web APIs? And what about more complex scenarios, where a user is logged in but
doesn’t have the necessary claims to execute an action? In section 15.2.2 we’ll look at
how the ASP.NET Core authentication services handle all of this for you.

15.2.2 Handling unauthorized requests

In the previous section you saw how to apply the [Authorize] attribute to an action to
ensure only authenticated users can execute it. In section 15.3 we’ll look at more com-
plex examples that require you to also have a specific claim. In both cases, you must
meet one or more authorization requirements (for example, you must be authenti-
cated) to execute the action.

 If the user meets the authorization requirements, then the request passes unim-
peded through the AuthorizationMiddleware, and the endpoint is executed in the
EndpointMiddleware. If they don’t meet the requirements for the selected endpoint,
the AuthorizationMiddleware will short-circuit the request. Depending on why the
request failed authorization, the AuthorizationMiddleware generates one of two dif-
ferent types of responses, as shown in figure 15.3:

 Challenge—This response indicates the user was not authorized to execute the
action because they weren’t yet logged in.

 Forbid—This response indicates that the user was logged in but didn’t meet the
requirements to execute the action. They didn’t have a required claim, for
example.

NOTE If you apply the [Authorize] attribute in basic form, as you did in sec-
tion 15.2.1, you will only generate challenge responses. In this case, a challenge
response will be generated for unauthenticated users, but authenticated users
will always be authorized.

The exact HTTP response generated by a challenge or forbid response typically depends
on the type of application you’re building and so the type of authentication your applica-
tion uses: a traditional web application with Razor Pages, or an API application.

[AllowAnonymous]
overrides [Authorize] to
allow unauthenticated users.

Login can be executed
by anonymous users.

479Authorization in ASP.NET Core
For traditional web apps using cookie authentication, such as when you use ASP.NET
Core Identity, as in chapter 14, the challenge and forbid responses generate an HTTP
redirect to a page in your application.

 A challenge response indicates the user isn’t yet authenticated, so they’re redi-
rected to the login page for the app. After logging in, they can attempt to execute the
protected resource again.

 A forbid response means the request was from a user that already logged in, but
they’re still not allowed to execute the action. Consequently, the user is redirected to a
“forbidden” or “access denied” web page, as shown in figure 15.4, which informs them
they can’t execute the action or Razor Page.

 The preceding behavior is standard for traditional web apps, but Web APIs typi-
cally use a different approach to authentication, as you saw in chapter 14. Instead of
logging in and using the API directly, you’d typically log in to a third-party application

A request is made to
the /recipe/index URL.

The authentication middleware
deserializes the ClaimsPrincipal
from the encrypted cookie.

The authorization middleware
uses the [Authorize] details
associated with the endpoint
to determine if the request
is authorized.

If authorization is successful,
the endpoint executes and
generates a response as
normal.

The routing middleware
selects the Recipe/Index.cshtml
endpoint, which is decorated
with an [Authorize] attribute.

Recipe/Index.cshtml

[Authorize]

If the user is not authenticated,
the authorization middleware
generates a challenge
response and short-circuits
the pipeline.

If the user is authenticated
but fails the authorization
requirements, a forbid
response is generated and
short-circuits the pipeline.

Figure 15.3 The three types of response to an authorization attempt. In the left example, the request
contains an authentication cookie, so the user is authenticated in the AuthenticationMiddleware. The
AuthorizationMiddleware confirms the authenticated user can access the selected endpoint, so the
endpoint is executed. In the center example, the request is not authenticated, so the Authorization-
Middleware generates a challenge response. In the right example, the request is authenticated, but the
user does not have permission to execute the endpoint, so a forbid response is generated.

480 CHAPTER 15 Authorization: Securing your application
that provides a token to the client-side SPA or mobile app. The client-side app sends
this token when it makes a request to your Web API.

 Authenticating a request for a Web API using tokens is essentially identical to a
traditional web app that uses cookies; AuthenticationMiddleware deserializes the
cookie or token to create the ClaimsPrincipal. The difference is in how a Web API
handles authorization failures.

 When a Web API app generates a challenge response, it returns a 401 Unauthorized
error response to the caller. Similarly, when the app generates a forbid response, it
returns a 403 Forbidden response. The traditional web app essentially handled these
errors by automatically redirecting unauthorized users to the login or “access denied”
page, but the Web API doesn’t do this. It’s up to the client-side SPA or mobile app to
detect these errors and handle them as appropriate.

TIP The difference in authorization behavior is one of the reasons I gener-
ally recommend creating separate apps for your APIs and Razor pages apps—
it’s possible to have both in the same app, but the configuration is more
complex.

The different behavior between traditional web apps and SPAs can be confusing ini-
tially, but you generally don’t need to worry about that too much in practice. Whether
you’re building a Web API or a traditional MVC web app, the authorization code in
your app looks the same in both cases. Apply [Authorize] attributes to your end-
points, and let the framework take care of the differences for you.

NOTE In chapter 14 you saw how to configure ASP.NET Core Identity in a
Razor Pages app. This chapter assumes you’re building a Razor Pages app
too, but the chapter is equally applicable if you’re building a Web API. Autho-
rization policies are applied in the same way, whichever style of app you’re
building. It’s only the final response of unauthorized requests that differs.

Figure 15.4 A forbid response in traditional web apps using cookie authentication. If you don’t have permission
to execute a Razor Page and you’re already logged in, you’ll be redirected to an “access denied” page.

481Using policies for claims-based authorization
You’ve seen how to apply the most basic authorization requirement—restricting an
endpoint to authenticated users only—but most apps need something more subtle
than this all-or-nothing approach.

 Consider the airport scenario from section 15.1. Being authenticated (having a
passport) isn’t enough to get you through security. Instead, you also need a specific
claim: BoardingPassNumber. In the next section we’ll look at how you can implement
a similar requirement in ASP.NET Core.

15.3 Using policies for claims-based authorization
In the previous section, you saw how to require that users be logged in to access an
endpoint. In this section you’ll see how to apply additional requirements. You’ll learn
to use authorization policies to perform claims-based authorization to require that a
logged in user have the required claims to execute a given endpoint.

 In chapter 14 you saw that authentication in ASP.NET Core centers around a
ClaimsPrincipal object, which represents the user. This object has a collection of
claims that contain pieces of information about the user, such as their name, email,
and date of birth.

 You can use these to customize the app for each user, by displaying a welcome mes-
sage addressing the user by name, for example, but you can also use claims for autho-
rization. For example, you might only authorize a user if they have a specific claim
(such as BoardingPassNumber) or if a claim has a specific value (FrequentFlyerClass
claim with the value Gold).

 In ASP.NET Core the rules that define whether a user is authorized are encapsu-
lated in a policy.

DEFINITION A policy defines the requirements you must meet for a request to
be authorized.

Policies can be applied to an action using the [Authorize] attribute, similar to the
way you saw in section 15.2.1. This listing shows a Razor Page PageModel that rep-
resents the first authorization step in the airport scenario. The AirportSecurity.cshtml
Razor Page is protected by an [Authorize] attribute, but you’ve also provided a policy
name: "CanEnterSecurity".

[Authorize("CanEnterSecurity")]
public class AirportSecurityModel : PageModel
{
 public void OnGet()
 {

 }
}

Listing 15.3 Applying an authorization policy to a Razor Page

Applying the "CanEnterSecurity"
policy using [Authorize]

Only users that satisfy the
"CanEnterSecurity" policy
can execute the Razor Page.

482 CHAPTER 15 Authorization: Securing your application
If a user attempts to execute the AirportSecurity.cshtml Razor Page, the authorization
middleware will verify whether the user satisfies the policy’s requirements (we’ll look
at the policy itself shortly). This gives one of three possible outcomes:

 The user satisfies the policy—The middleware pipeline continues, and the Endpoint-
Middleware executes the Razor Page as normal.

 The user is unauthenticated—The user is redirected to the login page.
 The user is authenticated but doesn’t satisfy the policy—The user is redirected to a

“forbidden” or “access denied” page.

These three outcomes correlate with the real-life outcomes you might expect when
trying to pass through security at the airport:

 You have a valid boarding pass—You can enter security as normal.
 You don’t have a boarding pass—You’re redirected to purchase a ticket.
 Your boarding pass is invalid (you turned up a day late, for example)—You’re blocked

from entering.

Listing 15.3 shows how you can apply a policy to a Razor Page using the [Authorize]
attribute, but you still need to define the CanEnterSecurity policy.

 You add policies to an ASP.NET Core application in the ConfigureServices
method of Startup.cs, as shown in listing 15.4. First you add the authorization services
using AddAuthorization(), and then you can add policies by calling AddPolicy() on
the AuthorizationOptions object. You define the policy itself by calling methods on a
provided AuthorizationPolicyBuilder (called policyBuilder here).

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options =>
 {
 options.AddPolicy(
 "CanEnterSecurity",
 policyBuilder => policyBuilder
 .RequireClaim("BoardingPassNumber"));
 });
 // Additional service configuration
}

When you call AddPolicy you provide a name for the policy, which should match the
value you use in your [Authorize] attributes, and you define the requirements of the
policy. In this example, you have a single simple requirement: the user must have a
claim of type BoardingPassNumber. If a user has this claim, whatever its value, the pol-
icy will be satisfied and the user will be authorized.

REMEMBER A claim is information about the user, as a key-value pair. A pol-
icy defines the requirements for successful authorization. A policy can require

Listing 15.4 Adding an authorization policy using AuthorizationPolicyBuilder

Calls AddAuthorization to
configure AuthorizationOptions

Adds a
new policy

Provides a name for the policy

Defines the policy
requirements using
AuthorizationPolicyBuilder

483Using policies for claims-based authorization
that a user have a given claim, as well as specify more complex requirements,
as you’ll see shortly.

AuthorizationPolicyBuilder contains several methods for creating simple policies
like this, as shown in table 15.1. For example, an overload of the RequireClaim()
method lets you specify a specific value that a claim must have. The following would
let you create a policy where the "BoardingPassNumber" claim must have a value of
"A1234":

policyBuilder => policyBuilder.RequireClaim("BoardingPassNumber", "A1234");

You can use these methods to build simple policies that can handle basic situations,
but often you’ll need something more complicated. What if you wanted to create a
policy that enforces that only users over the age of 18 can execute an endpoint?

 The DateOfBirth claim provides the information you need, but there’s not a single
correct value, so you couldn’t use the RequireClaim() method. You could use the

Table 15.1 Simple policy builder methods on AuthorizationPolicyBuilder

Method Policy behavior

RequireAuthenticatedUser() The required user must be authenticated. Creates a policy simi-
lar to the default [Authorize] attribute, where you don’t set
a policy.

RequireClaim(claim, values) The user must have the specified claim. If provided, the claim
must be one of the specified values.

RequireUsername(username) The user must have the specified username.

RequireAssertion(function) Executes the provided lambda function, which returns a bool,
indicating whether the policy was satisfied.

Role-based authorization vs. claims-based authorization
If you look at all of the methods available on the AuthorizationPolicyBuilder
type using IntelliSense, you might notice that there’s a method I didn’t mention in
table 15.1, RequireRole(). This is a remnant of the role-based approach to autho-
rization used in previous versions of ASP.NET, and I don’t recommend using it.

Before Microsoft adopted the claims-based authorization used by ASP.NET Core and
recent versions of ASP.NET, role-based authorization was the norm. Users were
assigned to one or more roles, such as Administrator or Manager, and authoriza-
tion involved checking whether the current user was in the required role.

This role-based approach to authorization is possible in ASP.NET Core, but it’s pri-
marily used for legacy compatibility reasons. Claims-based authorization is the sug-
gested approach. Unless you’re porting a legacy app that uses roles, I suggest you
embrace claims-based authorization and leave those roles behind.

484 CHAPTER 15 Authorization: Securing your application
RequireAssertion() method and provide a function that calculates the age from the
DateOfBirth claim, but that could get messy pretty quickly.

 For more complex policies that can’t be easily defined using the RequireClaim()
method, I recommend you take a different approach and create a custom policy, as
you’ll see in the following section.

15.4 Creating custom policies for authorization
You’ve already seen how to create a policy by requiring a specific claim, or requiring a
specific claim with a specific value, but often the requirements will be more complex
than that. In this section you’ll learn how to create custom authorization require-
ments and handlers. You’ll also see how to configure authorization requirements
where there are multiple ways to satisfy a policy, any of which are valid.

 Let’s return to the airport example. You’ve already configured the policy for pass-
ing through security, and now you’re going to configure the policy that controls
whether you’re authorized to enter the airline lounge.

 As you saw in figure 15.1, you’re allowed to enter the lounge if you have a Frequent-
FlyerClass claim with a value of Gold. If this was the only requirement, you could use
AuthorizationPolicyBuilder to create a policy like this:

options.AddPolicy("CanAccessLounge", policyBuilder =>
 policyBuilder.RequireClaim("FrequentFlyerClass", "Gold");

But what if the requirements are more complicated than this? For example, suppose
you can enter the lounge if you’re at least 18 years old (as calculated from the DateOf-
Birth claim) and you’re one of the following:

 You’re a gold-class frequent flyer (have a FrequentFlyerClass claim with value
"Gold")

 You’re an employee of the airline (have an EmployeeNumber claim)

If you’ve ever been banned from the lounge (you have an IsBannedFromLounge
claim), you won’t be allowed in, even if you satisfy the other requirements.

 There’s no way of achieving this complex set of requirements with the basic
usage of AuthorizationPolicyBuilder you’ve seen so far. Luckily, these methods
are a wrapper around a set of building blocks that you can combine to achieve the
desired policy.

15.4.1 Requirements and handlers: The building blocks of a policy

Every policy in ASP.NET Core consists of one or more requirements, and every require-
ment can have one or more handlers. For the airport lounge example, you have a sin-
gle policy ("CanAccessLounge"), two requirements (MinimumAgeRequirement and
AllowedInLoungeRequirement), and several handlers, as shown in figure 15.5.

 For a policy to be satisfied, a user must fulfill all the requirements. If the user fails
any of the requirements, the authorize middleware won’t allow the protected endpoint

485Creating custom policies for authorization
to be executed. In this example, a user must be allowed to access the lounge and must
be over 18 years old.

 Each requirement can have one or more handlers, which will confirm that the
requirement has been satisfied. For example, as shown in figure 15.5, AllowedIn-
LoungeRequirement has two handlers that can satisfy the requirement:

 FrequentFlyerHandler

 IsAirlineEmployeeHandler

If the user satisfies either of these handlers, then AllowedInLoungeRequirement is sat-
isfied. You don’t need all handlers for a requirement to be satisfied, you just need one.

NOTE Figure 15.5 shows a third handler, BannedFromLoungeHandler, which
I’ll cover in section 15.4.2. It’s slightly different in that it can only fail a
requirement, not satisfy it.

You can use requirements and handlers to achieve most any combination of behavior
you need for a policy. By combining handlers for a requirement, you can validate con-
ditions using a logical OR: if any of the handlers are satisfied, the requirement is satis-
fied. By combining requirements, you create a logical AND: all the requirements must
be satisfied for the policy to be satisfied, as shown in figure 15.6.

TIP You can also add multiple policies to a Razor Page or action method by
applying the [Authorize] attribute multiple times; for example, [Authorize
("Policy1"), Authorize("Policy2")]. All policies must be satisfied for the
request to be authorized.

CanAccessLounge policy

A policy consists of one
or more requirements.

AllowedInLoungeRequirement

Each requirement can have
one or more handlers.

MinimumAgeRequirement

FrequentFlyerHandler

IsAirlineEmployeeHandler

BannedFromLoungeHandler

DateOfBirthHandler

Figure 15.5 A policy can have many requirements, and every requirement can have many
handlers. By combining multiple requirements in a policy, and by providing multiple handler
implementations, you can create complex authorization policies that meet any of your business
requirements.

486 CHAPTER 15 Authorization: Securing your application
I’ve highlighted requirements and handlers that will make up your "CanAccess-
Lounge" policy, so in the next section you’ll build each of the components and apply
them to the airport sample app.

15.4.2 Creating a policy with a custom requirement and handler

You’ve seen all the pieces that make up a custom authorization policy, so in this sec-
tion we’ll explore the implementation of the "CanAccessLounge" policy.

CREATING AN IAUTHORIZATIONREQUIREMENT TO REPRESENT A REQUIREMENT

As you’ve seen, a custom policy can have multiple requirements, but what is a require-
ment in code terms? Authorization requirements in ASP.NET Core are any class that
implements the IAuthorizationRequirement interface. This is a blank, marker inter-
face, which you can apply to any class to indicate that it represents a requirement.

 If the interface doesn’t have any members, you might be wondering what the
requirement class needs to look like. Typically, they’re simple POCO classes. The fol-
lowing listing shows AllowedInLoungeRequirement, which is about as simple as a
requirement can get. It has no properties or methods; it implements the required
IAuthorizationRequirement interface.

public class AllowedInLoungeRequirement
 : IAuthorizationRequirement { }

This is the simplest form of requirement, but it’s also common for them to have one
or two properties that make the requirement more generalized. For example, instead
of creating the highly specific MustBe18YearsOldRequirement, you could instead cre-
ate a parameterized MinimumAgeRequirement, as shown in the following listing. By
providing the minimum age as a parameter to the requirement, you can reuse the
requirement for other policies with different minimum age requirements.

Listing 15.5 AllowedInLoungeRequirement

AND AND AND...=

OR OR OR...

For the policy to be satisfied, every
requirement must be satisfied.

If any of the handlers are satisfied,
the requirement is satisfied.

Figure 15.6 For a policy to be satisfied, every requirement must be satisfied. A requirement is
satisfied if any of the handlers are satisfied.

The interface identifies the class
as an authorization requirement.

487Creating custom policies for authorization

A

C
h
ent
public class MinimumAgeRequirement : IAuthorizationRequirement
{
 public MinimumAgeRequirement(int minimumAge)
 {
 MinimumAge = minimumAge;
 }
 public int MinimumAge { get; }
}

The requirements are the easy part. They represent each of the components of the
policy that must be satisfied for the policy to be satisfied overall.

CREATING A POLICY WITH MULTIPLE REQUIREMENTS

You’ve created the two requirements, so now you can configure the "CanAccess-
Lounge" policy to use them. You configure your policies as you did before, in the
ConfigureServices method of Startup.cs. Listing 15.7 shows how to do this by creat-
ing an instance of each requirement and passing them to AuthorizationPolicy-
Builder. The authorization handlers will use these requirement objects when
attempting to authorize the policy.

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options =>
 {
 options.AddPolicy(
 "CanEnterSecurity",
 policyBuilder => policyBuilder
 .RequireClaim(Claims.BoardingPassNumber));
 options.AddPolicy(
 "CanAccessLounge",
 policyBuilder => policyBuilder.AddRequirements(
 new MinimumAgeRequirement(18),
 new AllowedInLoungeRequirement()
));
 });
 // Additional service configuration
}

You now have a policy called "CanAccessLounge" with two requirements, so you can
apply it to a Razor Page or action method using the [Authorize] attribute, in exactly
the same way you did for the "CanEnterSecurity" policy:

[Authorize("CanAccessLounge")]
public class AirportLoungeModel : PageModel
{

Listing 15.6 The parameterized MinimumAgeRequirement

Listing 15.7 Creating an authorization policy with multiple requirements

The interface
identifies the class

as an authorization
requirement.

The minimum
age is provided

when the
requirement is

created.Handlers can use the exposed
minimum age to determine whether

the requirement is satisfied.

Adds the previous
simple policy for
passing through
securitydds a new policy

for the airport
lounge, called

anAccessLounge
Adds an instance of eac
IAuthorizationRequirem
object

488 CHAPTER 15 Authorization: Securing your application

.

co

Cl r

 public void OnGet() { }
}

When a request is routed to the AirportLounge.cshtml Razor Page, the authorize mid-
dleware executes the authorization policy and each of the requirements is inspected.
But you saw earlier that the requirements are purely data; they indicate what needs
to be fulfilled, but they don’t describe how that has to happen. For that, you need to
write some handlers.

CREATING AUTHORIZATION HANDLERS TO SATISFY YOUR REQUIREMENTS

Authorization handlers contain the logic of how a specific IAuthorizationRequirement
can be satisfied. When executed, a handler can do one of three things:

 Mark the requirement handling as a success
 Not do anything
 Explicitly fail the requirement

Handlers should implement AuthorizationHandler<T>, where T is the type of
requirement they handle. For example, the following listing shows a handler for Allowed-
InLoungeRequirement that checks whether the user has a claim called Frequent-
FlyerClass with a value of Gold.

public class FrequentFlyerHandler :
 AuthorizationHandler<AllowedInLoungeRequirement>
{
 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 AllowedInLoungeRequirement requirement)
 {
 if(context.User.HasClaim("FrequentFlyerClass", "Gold"))
 {
 context.Succeed(requirement);
 }
 return Task.CompletedTask;
 }
}

This handler is functionally equivalent to the simple RequireClaim() handler you saw
at the start of section 15.4, but using the requirement and handler approach instead.

 When a request is routed to the AirportLounge.cshtml Razor Page, the authoriza-
tion middleware sees the [Authorize] attribute on the endpoint with the "CanAccess-
Lounge" policy. It loops through all the requirements in the policy, and all the handlers
for each requirement, calling the HandleRequirementAsync method for each.

 The authorization middleware passes the current AuthorizationHandlerContext
and the requirement to be checked to each handler. The current ClaimsPrincipal

Listing 15.8 FrequentFlyerHandler for AllowedInLoungeRequirement

The handler implements
AuthorizationHandler<T>

You must override the abstract HandleRequirementAsync method.

The context
ntains details

such as the
aimsPrincipal

user object.

The requirement
instance to handle

Checks whethe
the user has
the Frequent-
FlyerClass claim
with the Gold
value

If the user had
the necessary
claim, then mark
the requirement
as satisfied by
calling Succeed.

If the requirement wasn’t
satisfied, do nothing.

489Creating custom policies for authorization

.

I

cla

a
ca
being authorized is exposed on the context as the User property. In listing 15.8,
FrequentFlyerHandler uses the context to check for a claim called FrequentFlyer-
Class with the Gold value, and if it exists, indicates that the user is allowed to enter
the airline lounge by calling Succeed().

NOTE Handlers mark a requirement as being successfully satisfied by calling
context.Succeed() and passing the requirement as an argument.

It’s important to note the behavior when the user doesn’t have the claim. Frequent-
FlyerHandler doesn’t do anything if this is the case (it returns a completed Task to
satisfy the method signature).

NOTE Remember, if any of the handlers associated with a requirement pass,
then the requirement is a success. Only one of the handlers must succeed for
the requirement to be satisfied.

This behavior, whereby you either call context.Succeed() or do nothing, is typical for
authorization handlers. The following listing shows the implementation of IsAirline-
EmployeeHandler, which uses a similar claim check to determine whether the require-
ment is satisfied.

public class IsAirlineEmployeeHandler :
 AuthorizationHandler<AllowedInLoungeRequirement>
{
 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 AllowedInLoungeRequirement requirement)
 {
 if(context.User.HasClaim(c => c.Type == "EmployeeNumber"))
 {
 context.Succeed(requirement);
 }
 return Task.CompletedTask;
 }
}

TIP It’s possible to write very generic handlers that can be used with multiple
requirements, but I suggest sticking to handling a single requirement only. If
you need to extract some common functionality, move it to an external ser-
vice and call that from both handlers.

This pattern of authorization handler is common,1 but in some cases, instead of
checking for a success condition, you might want to check for a failure condition. In the

Listing 15.9 IsAirlineEmployeeHandler

1 I’ll leave the implementation of MinimumAgeHandler for MinimumAgeRequirement as an exercise. You can
find an example in the code samples for the chapter.

The handler implements
AuthorizationHandler<T>

You must override the abstract
HandleRequirementAsync
method.

Checks whether
the user has the

EmployeeNumber claim

f the user has
the necessary
im, mark the
requirement
s satisfied by
lling Succeed.

If the requirement wasn’t
satisfied, do nothing.

490 CHAPTER 15 Authorization: Securing your application

.

airport example, you don’t want to authorize someone who was previously banned
from the lounge, even if they would otherwise be allowed to enter.

 You can handle this scenario by using the context.Fail() method exposed on the
context, as shown in the following listing. Calling Fail() in a handler will always cause
the requirement, and hence the whole policy, to fail. You should only use it when you
want to guarantee failure, even if other handlers indicate success.

public class BannedFromLoungeHandler :
 AuthorizationHandler<AllowedInLoungeRequirement>
{
 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 AllowedInLoungeRequirement requirement)
 {
 if(context.User.HasClaim(c => c.Type == "IsBanned"))
 {
 context.Fail();
 }

 return Task.CompletedTask;
 }
}

In most cases, your handlers will either call Succeed() or will do nothing, but the
Fail() method is useful when you need a kill-switch to guarantee that a requirement
won’t be satisfied.

NOTE Whether a handler calls Succeed(), Fail(), or neither, the authoriza-
tion system will always execute all of the handlers for a requirement, and all
the requirements for a policy, so you can be sure your handlers will always
be called.

The final step to complete your authorization implementation for the app is to regis-
ter the authorization handlers with the DI container, as shown in the following listing.

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options =>
 {
 options.AddPolicy(
 "CanEnterSecurity",
 policyBuilder => policyBuilder
 .RequireClaim(Claims.BoardingPassNumber));
 options.AddPolicy(
 "CanAccessLounge",

Listing 15.10 Calling context.Fail() in a handler to fail the requirement

Listing 15.11 Registering the authorization handlers with the DI container

The handler implements
AuthorizationHandler<T>

You must override the abstract
HandleRequirementAsync
method.

Checks whether
the user has the
IsBanned claimIf the user has

the claim, fail the
requirement by
calling Fail. The
whole policy will fail.If the claim wasn’t

found, do nothing.

491Creating custom policies for authorization
 policyBuilder => policyBuilder.AddRequirements(
 new MinimumAgeRequirement(18),
 new AllowedInLoungeRequirement()
));
 });
 services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>();
 services.AddSingleton<IAuthorizationHandler, FrequentFlyerHandler>();
 services
 .AddSingleton<IAuthorizationHandler, BannedFromLoungeHandler>();
 services
 .AddSingleton<IAuthorizationHandler, IsAirlineEmployeeHandler>();
 // Additional service configuration
}

For this app, the handlers don’t have any constructor dependencies, so I’ve registered
them as singletons with the container. If your handlers have scoped or transient
dependencies (the EF Core DbContext, for example), you might want to register them
as scoped instead, as appropriate.

NOTE Services are registered with a lifetime of either transient, scoped, or
singleton, as discussed in chapter 10.

You can combine the concepts of policies, requirements, and handlers in many ways
to achieve your goals for authorization in your application. The example in this sec-
tion, although contrived, demonstrates each of the components you need to apply
authorization declaratively at the action method or Razor Page level, by creating poli-
cies and applying the [Authorize] attribute as appropriate.

 As well as applying the [Authorize] attribute explicitly to actions and Razor Pages,
you can also configure it globally, so that a policy is applied to every Razor Page or
controller in your application. Additionally, for Razor Pages you can apply different
authorization policies to different folders. You can read more about applying authori-
zation policies using conventions in Microsoft’s “Razor Pages authorization conven-
tions in ASP.NET Core” documentation: http://mng.bz/nMm2.

 There’s one area, however, where the [Authorize] attribute falls short: resource-
based authorization. The [Authorize] attribute attaches metadata to an endpoint, so
the authorization middleware can authorize the user before an endpoint is executed,
but what if you need to authorize the action during the action method or Razor Page
handler?

 This is common when you’re applying authorization at the document or resource
level. If users are only allowed to edit documents they created, then you need to load
the document before you can tell whether they’re allowed to edit it! This isn’t easy
with the declarative [Authorize] attribute approach, so you must use an alternative,
imperative approach. In the next section, you’ll see how to apply this resource-based
authorization in a Razor Page handler.

http://mng.bz/nMm2

492 CHAPTER 15 Authorization: Securing your application
15.5 Controlling access with resource-based authorization
In this section you’ll learn about resource-based authorization. This is used when
you need to know details about the resource being protected to determine if a user
is authorized. You’ll learn how to apply authorization policies manually using the
IAuthorizationService, and how to create resource-based AuthorizationHandlers.

 Resource-based authorization is a common problem for applications, especially
when you have users who can create or edit some sort of document. Consider the rec-
ipe application you built in the previous three chapters. This app lets users create,
view, and edit recipes.

 Up to this point, everyone can create new recipes, and anyone can edit any recipe,
even if they haven’t logged in. Now you want to add some additional behavior:

 Only authenticated users should be able to create new recipes.
 You can only edit the recipes you created.

You’ve already seen how to achieve the first of these requirements: decorate the
Create.cshtml Razor Page with an [Authorize] attribute and don’t specify a policy, as
shown in this listing. This will force the user to authenticate before they can create a
new recipe.

[Authorize]
public class CreateModel : PageModel
{
 [BindProperty]
 public CreateRecipeCommand Input { get; set; }

 public void OnGet()
 {
 Input = new CreateRecipeCommand();
 }

 public async Task<IActionResult> OnPost()
 {
 // Method body not shown for brevity
 }
}

TIP As with all filters, you can only apply the [Authorize] attribute to the
Razor Page, not to individual page handlers. The attribute applies to all page
handlers in the Razor Page.

Adding the [Authorize] attribute fulfills your first requirement, but unfortunately,
with the techniques you’ve seen so far, you have no way to fulfill the second. You
could apply a policy that either permits or denies a user the ability to edit all recipes,
but there’s currently no easy way to restrict this so that a user can only edit their
own recipes.

Listing 15.12 Adding AuthorizeAttribute to the Create.cshtml Razor Page

Users must be authenticated
to execute the Create.cshtml
Razor Page.

All page handlers are
protected. You can only
apply [Authorize] to the
PageModel, not handlers.

493Controlling access with resource-based authorization

The
the r
to e
pro
by m
bin
 In order to find out who created the Recipe, you must first load it from the data-
base. Only then can you attempt to authorize the user, taking the specific recipe
(resource) into account. The following listing shows a partially implemented page
handler for how this might look, where authorization occurs partway through the
method, after the Recipe object has been loaded.

public IActionResult OnGet(int id)
{
 var recipe = _service.GetRecipe(id);
 var createdById = recipe.CreatedById;
 // Authorize user based on createdById
 if(isAuthorized)
 {
 return View(recipe);
 }
}

You need access to the resource (in this case, the Recipe entity) to perform the autho-
rization, so the declarative [Authorize] attribute can’t help you. In section 15.5.1 you’ll
see the approach you need to take to handle these situations and to apply authoriza-
tion inside the action method or Razor Page.

WARNING Be careful when exposing the integer ID of your entities in the
URL, as in listing 15.13. Users will be able to edit every entity by modifying the
ID in the URL to access a different entity. Be sure to apply authorization
checks, or you could expose a security vulnerability called insecure direct object
reference (IDOR).2

15.5.1 Manually authorizing requests with IAuthorizationService

All of the approaches to authorization so far have been declarative. You apply the
[Authorize] attribute, with or without a policy name, and you let the framework take
care of performing the authorization itself.

 For this recipe-editing example, you need to use imperative authorization, so you
can authorize the user after you’ve loaded the Recipe from the database. Instead of
applying a marker saying, “Authorize this method,” you need to write some of the
authorization code yourself.

DEFINITION Declarative and imperative are two different styles of programming.
Declarative programming describes what you’re trying to achieve and lets the
framework figure out how to achieve it. Imperative programming describes
how to achieve something by providing each of the steps needed.

Listing 15.13 The Edit.cshtml page must load the Recipe before authorizing the request

2 You can read about insecure direct object reference (IDOR) and ways to counteract it on the Open Web
Application Security Project (OWASP): https://owasp.org/www-chapter-ghana/assets/slides/IDOR.pdf.

 id of
ecipe
dit is
vided
odel

ding.

You must load the Recipe
from the database before you
know who created it.

You must authorize the
current user to verify
they’re allowed to edit
this specific Recipe.

The action method can
only continue if the
user was authorized.

https://owasp.org/www-chapter-ghana/assets/slides/IDOR.pdf

494 CHAPTER 15 Authorization: Securing your application

n-

ASP.NET Core exposes IAuthorizationService, which you can inject into your
Razor Pages and controllers for imperative authorization. The following listing shows
how you can update the Edit.cshtml Razor Page (shown partially in listing 15.13) to
use the IAuthorizationService and verify whether the action is allowed to con-
tinue execution.

[Authorize]
public class EditModel : PageModel
{
 [BindProperty]
 public Recipe Recipe { get; set; }

 private readonly RecipeService _service;
 private readonly IAuthorizationService _authService;

 public EditModel(
 RecipeService service,
 IAuthorizationService authService)
 {
 _service = service;
 _authService = authService;
 }

 public async Task<IActionResult> OnGet(int id)
 {
 Recipe = _service.GetRecipe(id);
 var authResult = await _authService
 .AuthorizeAsync(User, Recipe, "CanManageRecipe");
 if (!authResult.Succeeded)
 {
 return new ForbidResult();
 }

 return Page();
 }
}

IAuthorizationService exposes an AuthorizeAsync method, which requires three
things to authorize the request:

 The ClaimsPrincipal user object, exposed on the PageModel as User
 The resource being authorized: Recipe
 The policy to evaluate: "CanManageRecipe"

The authorization attempt returns an AuthorizationResult object, which indicates
whether the attempt was successful via the Succeeded property. If the attempt wasn’t
successful, you should return a new ForbidResult, which will be converted either into
an HTTP 403 Forbidden response or will redirect the user to the “access denied”

Listing 15.14 Using IAuthorizationService for resource-based authorization

Only authenticated users should
be allowed to edit recipes.

IAuthorizationService
is injected into the
class constructor
using DI.

Load the
Recipe

from the
database.

Calls IAuthorizatio
Service, providing
ClaimsPrinicipal,
resource, and the
policy name

If authorization
failed, returns a
Forbidden result

If authorization was
successful, continues
displaying the Razor Page

495Controlling access with resource-based authorization
page, depending on whether you’re building a traditional web app with Razor Pages
or a Web API.

NOTE As mentioned in section 15.2.2, which type of response is generated
depends on which authentication services are configured. The default Iden-
tity configuration, used by Razor Pages, generates redirects. The JWT bearer
token authentication typically used with Web APIs generates HTTP 401 and
403 responses instead.

You’ve configured the imperative authorization in the Edit.cshtml Razor Page itself,
but you still need to define the "CanManageRecipe" policy that you use to authorize
the user. This is the same process as for declarative authorization, so you have to do
the following:

 Create a policy in ConfigureServices by calling AddAuthorization()
 Define one or more requirements for the policy
 Define one or more handlers for each requirement
 Register the handlers in the DI container

With the exception of the handler, these steps are all identical to the declarative
authorization approach with the [Authorize] attribute, so I’ll only run through them
briefly here.

 First, you can create a simple IAuthorizationRequirement. As with many require-
ments, this contains no data and simply implements the marker interface.

public class IsRecipeOwnerRequirement : IAuthorizationRequirement { }

Defining the policy in ConfigureServices is similarly simple, as you have only this sin-
gle requirement. Note that there’s nothing resource-specific in any of this code so far:

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options => {
 options.AddPolicy("CanManageRecipe", policyBuilder =>
 policyBuilder.AddRequirements(new IsRecipeOwnerRequirement()));
 });
}

You’re halfway there; all you need to do now is create an authorization handler for
IsRecipeOwnerRequirement and register it with the DI container.

15.5.2 Creating a resource-based AuthorizationHandler

Resource-based authorization handlers are essentially the same as the authorization
handler implementations you saw in section 15.4.2. The only difference is that the
handler also has access to the resource being authorized.

 To create a resource-based handler, you should derive from the Authorization-
Handler<TRequirement, TResource> base class, where TRequirement is the type of

496 CHAPTER 15 Authorization: Securing your application

>

A

r

p

requirement to handle, and TResource is the type of resource that you provide when
calling IAuthorizationService. Compare this to the AuthorizationHandler<T> class
you implemented previously, where you only specified the requirement.

 This listing shows the handler implementation for your recipe application. You can
see that you’ve specified the requirement as IsRecipeOwnerRequirement and the
resource as Recipe, and you have implemented the HandleRequirementAsync method.

public class IsRecipeOwnerHandler :
 AuthorizationHandler<IsRecipeOwnerRequirement, Recipe>
{
 private readonly UserManager<ApplicationUser> _userManager;
 public IsRecipeOwnerHandler(
 UserManager<ApplicationUser> userManager)
 {
 _userManager = userManager;
 }
 protected override async Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 IsRecipeOwnerRequirement requirement,
 Recipe resource)
 {
 var appUser = await _userManager.GetUserAsync(context.User);
 if(appUser == null)
 {
 return;
 }
 if(resource.CreatedById == appUser.Id)
 {
 context.Succeed(requirement);
 }
 }
}

This handler is slightly more complicated than the examples you’ve seen previously,
primarily because you’re using an additional service, UserManager<>, to load the
ApplicationUser entity based on ClaimsPrincipal from the request.

NOTE In practice, the ClaimsPrincipal will likely already have the Id added
as a claim, making the extra step unnecessary in this case. This example shows
the general pattern if you need to use dependency-injected services.

The other significant difference is that the HandleRequirementAsync method has pro-
vided the Recipe resource as a method argument. This is the same object that you
provided when calling AuthorizeAsync on IAuthorizationService. You can use this
resource to verify whether the current user created it. If so, you Succeed() the
requirement; otherwise you do nothing.

Listing 15.15 IsRecipeOwnerHandler for resource-based authorization

Implements the necessary base class,
specifying the requirement and resource type

Injects an
instance of the
UserManager<T
class using DI

s well as the
context and
equirement,
you’re also
rovided the

resource
instance. If you aren’t authenticated,

appUser will be null.

Checks whether the current
user created the Recipe by
checking the CreatedById
propertyIf the user created the document,

Succeed the requirement;
otherwise, do nothing.

497Controlling access with resource-based authorization
 The final task is to add IsRecipeOwnerHandler to the DI container. Your handler
uses an additional dependency, UserManager<>, which uses EF Core, so you should
register the handler as a scoped service:

services.AddScoped<IAuthorizationHandler, IsRecipeOwnerHandler>();

TIP If you’re wondering how to know whether you register a handler as
scoped or a singleton, think back to chapter 10. Essentially, if you have scoped
dependencies, you must register the handler as scoped; otherwise singleton
is fine.

With everything hooked up, you can take the application for a spin. If you try to edit a
recipe you didn’t create by clicking the Edit button on the recipe, you’ll either be
redirected to the login page (if you hadn’t yet authenticated) or you’ll be presented
with an “access denied” page, as shown in figure 15.7.

Click Edit
button

Figure 15.7 If you’re logged in but not authorized to edit a recipe, you’ll be redirected to an “access
denied” page. If you’re not logged in, you’ll be redirected to the login page.

498 CHAPTER 15 Authorization: Securing your application
By using resource-based authorization, you’re able to enact more fine-grained autho-
rization requirements that you can apply at the level of an individual document or
resource. Instead of only being able to authorize that a user can edit any recipe, you
can authorize whether a user can edit this recipe.

All the authorization techniques you’ve seen so far have focused on server-side checks.
Both the [Authorize] attribute and resource-based authorization approaches focus
on stopping users from executing a protected action on the server. This is important
from a security point of view, but there’s another aspect you should consider too: the
user experience when they don’t have permission.

 You’ve protected the code executing on the server, but arguably the Edit button
should never have been visible to the user if they weren’t going to be allowed to edit
the recipe! In the next section we’ll look at how you can conditionally hide the Edit
button by using resource-based authorization in your view models.

15.6 Hiding elements in Razor templates from
unauthorized users
All the authorization code you’ve seen so far has revolved around protecting action
methods or Razor Pages on the server side, rather than modifying the UI for users.
This is important and should be the starting point whenever you add authorization to
an app.

Resource-based authorization versus business-logic checks
The value proposition of using the ASP.NET Core framework’s resource-based autho-
rization approach isn’t always clear when compared to using simple, manual, busi-
ness-logic based checks (as in listing 15.13). Using IAuthorizationService and
the authorization infrastructure adds an explicit dependency on the ASP.NET Core
framework that you may not want to use if you’re performing authorization checks in
your domain model services.

This is a valid concern without an easy answer. I tend to favor simple business-logic
checks inside the domain, without relying on the framework’s authorization infrastruc-
ture, to make my domain easier to test and framework-independent. But doing so
loses some of the benefits of such a framework:

 The IAuthorizationService uses declarative policies, even though you are
calling the authorization framework imperatively.

 You can decouple the need to authorize an action from the actual requirements.
 You can easily rely on peripheral services and properties of the request, which

may be harder (or undesirable) with business logic checks.

You can achieve these benefits in business-logic checks, but that typically requires
creating a lot of infrastructure too, so you lose a lot of the benefits of keeping things
simple. Which approach is best will depend on the specifics of your application design,
and there may well be cases for using both.

499Hiding elements in Razor templates from unauthorized users
WARNING Malicious users can easily circumvent your UI, so it’s important to
always authorize your actions and Razor Pages on the server, never on the cli-
ent alone.

From a user-experience point of view, however, it’s not friendly to have buttons or
links that look like they’re available, but which present you with an “access denied”
page when they’re clicked. A better experience would be for the links to be disabled,
or not visible at all.

 You can achieve this in several ways in your own Razor templates. In this section,
I’m going to show you how to add an additional property to the PageModel, called
CanEditRecipe, which the Razor view template will use to change the rendered HTML.

TIP An alternative approach would be to inject IAuthorizationService
directly into the view template using the @inject directive, as you saw in chap-
ter 10, but you should prefer to keep logic like this in the page handler.

When you’re finished, the rendered HTML will look unchanged for recipes you cre-
ated, but the Edit button will be hidden when viewing a recipe someone else created,
as shown in figure 15.8.

The following listing shows the PageModel for the View.cshtml Razor Page, which is
used to render the recipe page shown in figure 15.8. As you’ve already seen for
resource-based authorization, you can use the IAuthorizationService to determine
whether the current user has permission to edit the Recipe by calling Authorize-
Async. You can then set this value as an additional property on the PageModel, called
CanEditRecipe.

public class ViewModel : PageModel
{
 public Recipe Recipe { get; set; }
 public bool CanEditRecipe { get; set; }

Listing 15.16 Setting the CanEditRecipe property in the View.cshtml Razor Page

If the user created
the recipe, they can
see the Edit button
for the recipe.

For recipes
created by other
users, the Edit
button is hidden.

Figure 15.8 Although the HTML will appear unchanged for recipes you created, the Edit button is
hidden when you view recipes created by a different user.

The CanEditRecipe property will
be used to control whether the
Edit button is rendered.

500 CHAPTER 15 Authorization: Securing your application

e

 private readonly RecipeService _service;
 private readonly IAuthorizationService _authService;
 public ViewModel(
 RecipeService service,
 IAuthorizationService authService)
 {
 _service = service;
 _authService = authService;
 }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Recipe = _service.GetRecipe(id);
 var isAuthorised = await _authService
 .AuthorizeAsync(User, recipe, "CanManageRecipe");
 CanEditRecipe = isAuthorised.Succeeded;
 return Page();
 }
}

Instead of blocking execution of the Razor Page (as you did previously in the
Edit.cshtml page handler), use the result of the call to AuthorizeAsync to set the Can-
EditRecipe value on the PageModel. You can then make a simple change to the
View.chstml Razor template: add an if clause around the rendering of the Edit link.

@if(Model.CanEditRecipe)
{
 <a asp-page="Edit" asp-route-id="@Model.Id"
 class="btn btn-primary">Edit
}

This ensures that only users who will be able to execute the Edit.cshtml Razor Page
can see the link to that page.

WARNING The if clause means the Edit link will not be displayed unless the
user created the recipe, but a malicious user can still circumvent your UI. It’s
important to keep the server-side authorization check in your Edit.cshtml
page handler to protect against these circumvention attempts.

With that final change, you’ve finished adding authorization to the recipe application.
Anonymous users can browse the recipes created by others, but they must log in to
create new recipes. Additionally, authenticated users can only edit the recipes that
they created, and they won’t see an Edit link for other people’s recipes.

 Authorization is a key aspect of most apps, so it’s important to bear it in mind from
an early point. Although it’s possible to add authorization later, as you did with the
recipe app, it’s normally preferable to consider authorization sooner rather than later
in the app’s development.

 In the next chapter we’re going to be looking at your ASP.NET Core application
from a different point of view. Instead of focusing on the code and logic behind your
app, we’re going to look at how you prepare an app for production. You’ll see how to

Loads the Recipe
resource for use with
IAuthorizationService

Verifies whether th
user is authorized
to edit the Recipe

Sets the CanEditRecipe
property on the PageModel
as appropriate

501Summary
specify the URLs your application uses and how to publish an app so that it can be
hosted in IIS. Finally, you’ll learn about the bundling and minification of client-side
assets, why you should care, and how to use BundlerMinifier in ASP.NET Core.

Summary
 Authentication is the process of determining who a user is. It’s distinct from

authorization, the process of determining what a user can do. Authentication
typically occurs before authorization.

 You can use the authorization services in any part of your application, but
it’s typically applied using the AuthorizationMiddleware by calling Use-
Authorization(). This should be placed after the calls to UseRouting() and
UseAuthentication(), and before the call to UseEndpoints() for correct
operation.

 You can protect Razor Pages and MVC actions by applying the [Authorize]
attribute. The routing middleware records the presence of the attribute as
metadata with the selected endpoint. The authorization middleware uses this
metadata to determine how to authorize the request.

 The simplest form of authorization requires that a user be authenticated before
executing an action. You can achieve this by applying the [Authorize] attribute
to a Razor Page, action, controller, or globally. You can also apply attributes con-
ventionally to a subset of Razor Pages.

 Claims-based authorization uses the current user’s claims to determine whether
they’re authorized to execute an action. You define the claims needed to exe-
cute an action in a policy.

 Policies have a name and are configured in Startup.cs as part of the call to Add-
Authorization() in ConfigureServices. You define the policy using Add-
Policy(), passing in a name and a lambda that defines the claims needed.

 You can apply a policy to an action or Razor Page by specifying the policy in the
authorize attribute; for example, [Authorize("CanAccessLounge")]. This pol-
icy will be used by the AuthorizationMiddleware to determine if the user is
allowed to execute the selected endpoint.

 In a Razor Pages app, if an unauthenticated user attempts to execute a pro-
tected action, they’ll be redirected to the login page for your app. If they’re
already authenticated but don’t have the required claims, they’ll be shown an
“access denied” page instead.

 For complex authorization policies, you can build a custom policy. A custom
policy consists of one or more requirements, and a requirement can have one
or more handlers. You can combine requirements and handlers to create poli-
cies of arbitrary complexity.

 For a policy to be authorized, every requirement must be satisfied. For a require-
ment to be satisfied, one or more of the associated handlers must indicate suc-
cess, and none must indicate explicit failure.

502 CHAPTER 15 Authorization: Securing your application
 AuthorizationHandler<T> contains the logic that determines whether a require-
ment is satisfied. For example, if a requirement requires that users be over 18, the
handler could look for a DateOfBirth claim and calculate the user’s age.

 Handlers can mark a requirement as satisfied by calling context.Succeed
(requirement). If a handler can’t satisfy the requirement, then it shouldn’t call
anything on the context, as a different handler could call Succeed() and satisfy
the requirement.

 If a handler calls context.Fail(), the requirement will fail, even if a different
handler marked it as a success using Succeed(). Only use this method if you
want to override any calls to Succeed() from other handlers, to ensure the
authorization policy will fail authorization.

 Resource-based authorization uses details of the resource being protected to
determine whether the current user is authorized. For example, if a user is only
allowed to edit their own documents, you need to know the author of the docu-
ment before you can determine whether they’re authorized.

 Resource-based authorization uses the same policy, requirements, and handler
system as before. Instead of applying authorization with the [Authorize] attri-
bute, you must manually call IAuthorizationService and provide the resource
you’re protecting.

 You can modify the user interface to account for user authorization by adding
additional properties to your PageModel. If a user isn’t authorized to execute an
action, you can remove or disable the link to that action method in the UI. You
should always authorize on the server, even if you’ve removed links from the UI.

Publishing and deploying
your application
We’ve covered a vast amount of ground so far in this book. We’ve gone over the
basic mechanics of building an ASP.NET Core application, such as configuring
dependency injection, loading app settings, and building a middleware pipeline.
We’ve looked at the UI side, using Razor templates and layouts to build an HTML
response. And we’ve looked at higher-level abstractions, such as EF Core and
ASP.NET Core Identity, that let you interact with a database and add users to your
application. In this chapter we’re taking a slightly different route. Instead of look-
ing at ways to build bigger and better applications, we’ll focus on what it means to
deploy your application so that users can access it.

 We’ll start by looking again at the ASP.NET Core hosting model in section 16.1
and examining why you might want to host your application behind a reverse proxy
instead of exposing your app directly to the internet. I’ll show you the difference

This chapter covers
 Publishing an ASP.NET Core application

 Hosting an ASP.NET Core application in IIS

 Customizing the URLs for an ASP.NET Core app

 Optimizing client-side assets with bundling and
minification
503

504 CHAPTER 16 Publishing and deploying your application
between running an ASP.NET Core app in development using dotnet run and pub-
lishing the app for use on a remote server. Finally, I’ll describe some of the options
available to you when deciding how and where to deploy your app.

 In section 16.2, I’ll show you how to deploy your app to one such option, a Win-
dows server running IIS (Internet Information Services). This is a typical deployment
scenario for many developers already familiar with ASP.NET, so it will act as a useful
case study, but it’s certainly not the only possibility. I won’t go into all the technical
details of configuring the venerable IIS system, but I’ll show you the bare minimum
required to get it up and running. If your focus is cross-platform development, then
don’t worry, I don’t dwell on IIS for too long.

 In section 16.3, I’ll provide an introduction to hosting on Linux. You’ll see how it
differs from hosting applications on Windows, learn the changes you need to make to
your apps, and find out about some gotchas to look out for. I’ll describe how reverse
proxies on Linux differ from IIS and point you to some resources you can use to con-
figure your environments, rather than giving exhaustive instructions in this book.

 If you’re not hosting your application using IIS, you’ll likely need to set the
URL that your ASP.NET Core app is using when you deploy your application. In sec-
tion 16.4 I’ll show two approaches to this: using the special ASPNETCORE_URLS envi-
ronment variable and using command-line arguments. Although generally not an
issue during development, setting the correct URLs for your app is critical when you
need to deploy it.

 In the final section of this chapter, we’ll look at a common optimization step used
when deploying your application. Bundling and minification are used to reduce the
number and size of requests that browsers must make to your app to fully load a page.
I’ll show you how to use a simple tool to create bundles when you build your applica-
tion, and how to conditionally load these when in production to optimize your app’s
page size.

 This chapter covers a relatively wide array of topics, all related to deploying your
app. But before we get into the nitty-gritty, I’ll go over the hosting model for ASP.NET
Core so that we’re on the same page. This is significantly different from the hosting
model of the previous version of ASP.NET, so if you’re coming from that background,
it’s best to try to forget what you know!

16.1 Understanding the ASP.NET Core hosting model
If you think back to chapter 1, you may remember that we discussed the hosting
model of ASP.NET Core. ASP.NET Core applications are, essentially, console applica-
tions. They have a static void Main function that serves as the entry point for the
application, like a standard .NET console app would.

 What makes an app an ASP.NET Core app is that it runs a web server, typically Kes-
trel, inside the console app process. Kestrel provides the HTTP functionality to
receive requests and return responses to clients. Kestrel passes any requests it receives
to the body of your application to generate a response, as shown in figure 16.1. This

505Understanding the ASP.NET Core hosting model
hosting model decouples the server and reverse proxy from the application itself, so
that the same application can run unchanged in multiple environments.

 In this book we’ve focused on the lower half of figure 16.1—the ASP.NET Core
application itself—but the reality is that you’ll often want to place your ASP.NET
Core apps behind a reverse proxy, such as IIS on Windows, or NGINX or Apache on
Linux. The reverse proxy is the program that listens for HTTP requests from the inter-
net and then makes requests to your app as though the request had come from the
internet directly.

DEFINITION A reverse proxy is software that’s responsible for receiving requests
and forwarding them to the appropriate web server. The reverse proxy is
exposed directly to the internet, whereas the underlying web server is exposed
only to the proxy.

1. HTTP request is made to the server
and is received by the reverse proxy. 7. HTTP response is

sent to the browser.

2. Request is forwarded by IIS/
NGINX/Apache to ASP.NET Core.

3. ASP.NET Core web server
receives the HTTP request
and passes it to the middleware.

5. Response passes through the
middleware back to the web server.

4. Request is processed by the application,
which generates a response.

6. Web server forwards the
response to reverse proxy.

Figure 16.1 The hosting model for ASP.NET Core. Requests are received by the reverse proxy and are
forwarded to the Kestrel web server. The same application can run behind various reverse proxies without
modification.

506 CHAPTER 16 Publishing and deploying your application
If you’re running your application using a Platform as a Service (PaaS) offering, such
as Azure App Service, you’re using a reverse proxy there too—one that is managed by
Azure. Using a reverse proxy has many benefits:

 Security—Reverse proxies are specifically designed to be exposed to malicious
internet traffic, so they’re typically well-tested and battle-hardened.

 Performance—You can configure reverse proxies to provide performance improve-
ments by aggressively caching responses to requests.

 Process management—An unfortunate reality is that apps sometimes crash. Some
reverse proxies can act as monitors/schedulers to ensure that if an app crashes,
the proxy can automatically restart it.

 Support for multiple apps—It’s common to have multiple apps running on a single
server. Using a reverse proxy makes it easier to support this scenario by using the
host name of a request to decide which app should receive the request.

I don’t want to make it seem like using a reverse proxy is all sunshine and roses. There
are some downsides:

 Complexity—One of the biggest complaints is how complex reverse proxies can
be. If you’re managing the proxy yourself (as opposed to relying on a PaaS
implementation), there can be lots of proxy-specific pitfalls to look out for.

 Inter-process communication—Most reverse proxies require two processes: a reverse
proxy and your web app. Communicating between the two is often slower than
if you directly exposed your web app to requests from the internet.

 Restricted features—Not all reverse proxies support all the same features as an
ASP.NET Core app. For example, Kestrel supports HTTP/2, but if your reverse
proxy doesn’t, you won’t see the benefits.

Whether you choose to use a reverse proxy or not, when the time comes to host your
app, you can’t copy your code files directly to the server. First you need to publish your
ASP.NET Core app, to optimize it for production. In section 16.1.1, we’ll look at build-
ing an ASP.NET Core app so it can be run on your development machine, compared
to publishing it so that it can be run on a server.

16.1.1 Running vs. publishing an ASP.NET Core app

One of the key changes in ASP.NET Core from previous versions of ASP.NET is mak-
ing it easy to build apps using your favorite code editors and IDEs. Previously, Visual
Studio was required for ASP.NET development, but with the .NET CLI and the
OmniSharp plugin you can now build apps with the tools you’re comfortable with,
on any platform.

 As a result, whether you build using Visual Studio or the .NET CLI, the same tools
are being used under the hood. Visual Studio provides an additional GUI, functional-
ity, and wrappers for building your app, but it executes the same commands as the
.NET CLI behind the scenes.

507Understanding the ASP.NET Core hosting model
 As a refresher, you’ve used four main .NET CLI commands so far to build your
apps:

 dotnet new—Creates an ASP.NET Core application from a template
 dotnet restore—Downloads and installs any referenced NuGet packages for

your project
 dotnet build—Compiles and builds your project
 dotnet run—Executes your app, so you can send requests to it

If you’ve ever built a .NET application, whether it’s an ASP.NET app or a .NET Frame-
work console app, you’ll know that the output of the build process is written to the bin
folder. The same is true for ASP.NET Core applications.

 If your project compiles successfully when you call dotnet build, the .NET CLI will
write its output to a bin folder in your project’s directory. Inside this bin folder are sev-
eral files required to run your app, including a .dll file that contains the code for your
application. Figure 16.2 shows part of the output of the bin folder for an ASP.NET
Core application.

NOTE On Windows you will also have an executable .exe file, ExampleApp
.exe. This is a simple wrapper file for convenience that makes it easier to run
the application contained in ExampleApp.dll.

When you call dotnet run in your project folder (or run your application using Visual
Studio), the .NET CLI uses the .dll to run your application. But this doesn’t contain
everything you need to deploy your app.

 To host and deploy your app on a server, you first need to publish it. You can pub-
lish your ASP.NET Core app from the command line using the dotnet publish com-
mand. This builds and packages everything your app needs to run. The following
command packages the app from the current directory and builds it to a subfolder

The bin folder contains
the compiled output
of your app.

Your app code is compiled into
a single .dll, ExampleApp.dll
in this case.The additional files are

required to run the app
using dotnet run.

Figure 16.2 The bin folder for an ASP.NET Core app after running dotnet build. The
application is compiled into a single .dll file, ExampleApp.dll.

508 CHAPTER 16 Publishing and deploying your application
called publish. I’ve used the Release configuration, instead of the default Debug con-
figuration, so that the output will be fully optimized for running in production:

dotnet publish --output publish --configuration Release

TIP Always use the release configuration when publishing your app for
deployment. This ensures the compiler generates optimized code for your app.

Once the command completes, you’ll find your published application in the publish
folder, as shown in figure 16.3.

As you can see, the ExampleApp.dll file is still there, along with some additional files.
Most notably, the publish process has copied across the wwwroot folder of static
files. When running your application locally with dotnet run, the .NET CLI uses
these files from your application’s project folder directly. Running dotnet publish
copies the files to the output directory, so they’re included when you deploy your app
to a server.

 If your first instinct is to try running the application in the publish folder using the
dotnet run command you already know and love, then you’ll be disappointed. Instead
of the application starting up, you’ll be presented with a somewhat confusing mes-
sage: “Couldn’t find a project to run.”

 To run a published application, you need to use a slightly different command.
Instead of calling dotnet run, you must pass the path to your application’s .dll file to
the dotnet command. If you’re running the command from the publish folder, then
for the example app in figure 16.3, that would look something like

dotnet ExampleApp.dll

The published output includes
additional files compared to
the bin folder.

Your app code is still compiled
into ExampleApp.dll.

The same files from the
bin folder are also copied
to the publish folder.

The wwwroot folder is copied
to the publish folder.

The publish process adds
a web.config file for easier
hosting in IIS.

Figure 16.3 The publish folder for the app after running dotnet publish. The app is still compiled
into a single .dll file, but all the additional files, such as wwwroot and appsettings.json, are also
copied to the output.

509Understanding the ASP.NET Core hosting model
This is the command that your server will run when running your application in
production.

 When you’re developing, the dotnet run command does a whole load of work to
make things easier on you: it makes sure your application is built, looks for a project
file in the current folder, works out where the corresponding .dlls will be (in the bin
folder), and finally, runs your app.

 In production, you don’t need any of this extra work. Your app is already built; it
only needs to be run. The dotnet <dll> syntax does this alone, so your app starts
much faster.

NOTE The dotnet command used to run your published application is part
of the .NET Runtime, whereas the dotnet command used to build and run
your application during development is part of the .NET SDK.

Framework-dependent deployments vs. self-contained deployments
.NET Core applications can be deployed in two different ways: runtime-dependent
deployments (RDD) and self-contained deployments (SCD).

Most of the time, you’ll use an RDD. This relies on the .NET 5.0 runtime being installed
on the target machine that runs your published app, but you can run your app on any
platform—Windows, Linux, or macOS—without having to recompile.

In contrast, an SCD contains all the code required to run your app, so the target
machine doesn’t need to have .NET 5.0 installed. Instead, publishing your app will
package up the .NET 5.0 runtime with your app’s code and libraries.

Each approach has its pros and cons, but in most cases I tend to create RDDs. The
final size of RDDs is much smaller, as they only contain your app code, instead of the
whole .NET 5.0 framework, which SCDs contain. Also, you can deploy your RDD apps
to any platform, whereas SCDs must be compiled specifically for the target machine’s
operating system, such as Windows 10 64-bit or Red Hat Enterprise Linux 64bit.

That said, SCD deployments are excellent for isolating your application from depen-
dencies on the hosting machine. SCD deployments don’t rely on the version of .NET
installed on a hosting provider, so you can, for example, use preview versions of .NET
in Azure App Service without needing the preview version to be supported.

In this book, I only discuss RDDs for simplicity, but if you want to create an SCD, just
provide a runtime identifier, in this case Windows 10 64-bit, when you publish your app:

dotnet publish -c Release -r win10-x64 -o publish_folder

The output will contain an .exe file, which is your application, and a ton of .dlls (about
65 MB of .dlls for a sample app), which are the .NET 5.0 framework. You need to deploy
this whole folder to the target machine to run your app. In .NET 5.0 it’s possible to trim
some of these assemblies during the publish process, but this comes with risks in
some scenarios. For more details, see Microsoft’s “.NET Core application publishing
overview” documentation at https://docs.microsoft.com/dotnet/core/deploying/.

https://docs.microsoft.com/dotnet/core/deploying/

510 CHAPTER 16 Publishing and deploying your application
We’ve established that publishing your app is important for preparing it to run in pro-
duction, but how do you go about deploying it? How do you get the files from your com-
puter onto a server so that people can access your app? You have many, many options
for this, so in the next section I’ll give you a brief list of approaches to consider.

16.1.2 Choosing a deployment method for your application

To deploy any application to production, you generally have two fundamental require-
ments:

 A server that can run your app
 A means of loading your app onto the server

Historically, putting an app into production was a laborious and error-prone process.
For many people, this is still true. If you’re working at a company that hasn’t changed
practices in recent years, you may need to request a server or virtual machine for your
app and provide your application to an operations team who will install it for you. If
that’s the case, you may have your hands tied regarding how you deploy.

 For those who have embraced continuous integration (CI) or continuous deliv-
ery/deployment (CD), there are many more possibilities. CI/CD is the process of
detecting changes in your version control system (for example, Git, SVN, Mercurial,
Team Foundation Version Control) and automatically building, and potentially
deploying, your application to a server with little to no human intervention.1

 You can find many different CI/CD systems out there: Azure DevOps, GitHub
Actions, Jenkins, TeamCity, AppVeyor, Travis, and Octopus Deploy, to name a few.
Each can manage some or all of the CI/CD process and can integrate with many dif-
ferent systems.

 Rather than pushing any particular system, I suggest trying out some of the ser-
vices available and seeing which works best for you. Some are better suited to open
source projects, some are better when you’re deploying to cloud services—it all
depends on your particular situation.

 If you’re getting started with ASP.NET Core and don’t want to have to go through
the setup process of getting CI working, you still have lots of options. The easiest way
to get started with Visual Studio is to use the built-in deployment options. These are
available from Visual Studio via the Build > Publish AppName menu option, which
presents you with the screen shown in figure 16.4.

 From here, you can publish your application directly from Visual Studio to many
different locations.2 This is great when you’re getting started, though I recommend
looking at a more automated and controlled approach for larger applications, or
when you have a whole team working on a single app.

1 There are important but subtle differences between these terms. Atlassian has a good comparison article,
“Continuous integration vs. continuous delivery vs. continuous deployment,” here: http://mng.bz/vzp4.

2 For guidance on choosing your Visual Studio publishing options, see Microsoft’s “Deploy your app to a folder,
IIS, Azure, or another destination” documentation: http://mng.bz/4Z8j.

http://mng.bz/vzp4
http://mng.bz/4Z8j

511Publishing your app to IIS
Given the number of possibilities available in this space, and the speed with which
these options change, I’m going to focus on one specific scenario in this chapter:
You’ve built an ASP.NET Core application and you need to deploy it. You have access
to a Windows server that’s already serving (previous version) ASP.NET applications
using IIS, and you want to run your ASP.NET Core app alongside them.

 In the next section, you’ll see an overview of the steps required to run an ASP.NET
Core application in production, using IIS as a reverse proxy. It won’t be a master class in
configuring IIS (there’s so much depth to the 20-year-old product that I wouldn’t know
where to start!), but I’ll cover the basics needed to get your application serving requests.

16.2 Publishing your app to IIS
In this section I’ll briefly show you how to publish your first app to IIS. You’ll add an
application pool and website to IIS and ensure your app has the necessary configura-
tion to work with IIS as a reverse proxy. The deployment itself will be as simple as
copying your published app to IIS’s hosting folder.

Figure 16.4 The Publish application screen in Visual Studio 2019. This provides easy options for publishing your
application directly to Azure App Service, to IIS, to an FTP site, or to a folder on the local machine.

512 CHAPTER 16 Publishing and deploying your application
 In section 16.1 you learned about the need to publish an app before you deploy it,
and the benefits of using a reverse proxy when you run an ASP.NET Core app in pro-
duction. If you’re deploying your application to Windows, IIS will be your reverse
proxy and will be responsible for managing your application.

 IIS is an old and complex beast, and I can’t possibly cover everything related to
configuring it in this book. Nor would you want me to—it would be very boring!
Instead, in this section I’ll provide an overview of the basic requirements for running
ASP.NET Core behind IIS, along with the changes you may need to make to your
application to support IIS.

 If you’re on Windows and want to try out these steps locally, you’ll need to manu-
ally enable IIS on your development machine. If you’ve done this with older versions
of Windows, nothing much has changed. You can find a step-by-step guide to configur-
ing IIS and troubleshooting tips in the ASP.NET Core documentation at http://mng
.bz/6g2R.

16.2.1 Configuring IIS for ASP.NET Core

The first step in preparing IIS to host ASP.NET Core applications is to install the
ASP.NET Core Windows Hosting Bundle.3 This includes several components needed
to run .NET apps:

 The .NET Runtime —Runs your .NET 5.0 application
 The ASP.NET Core Runtime—Required to run ASP.NET Core apps
 The IIS AspNetCore Module—Provides the link between IIS and your app, so that

IIS can act as a reverse proxy

If you’re going to be running IIS on your development machine, make sure you install
the bundle as well, or you’ll get strange errors from IIS.

TIP The Windows Hosting Bundle provides everything you need for running
ASP.NET Core behind IIS on Windows. If you’re hosting your application on
Linux or Mac, or aren’t using IIS on Windows, you’ll need to install the .NET
Runtime and ASP.NET Core Runtime to run runtime-dependent ASP.NET
Core apps.

Once you’ve installed the bundle, you need to configure an application pool in IIS for
your ASP.NET Core apps. Previous versions of ASP.NET would run in a managed app
pool that used .NET Framework, but for ASP.NET Core you should create a No Man-
aged Code pool. The native ASP.NET Core Module runs inside the pool, which boots
the .NET 5.0 Runtime itself.

DEFINITION An application pool in IIS represents an application process. You
can run each app in IIS in a separate application pool to keep them isolated
from one another.

3 You can download the ASP.NET Core Windows Hosting Bundle from http://mng.bz/opED.

http://mng.bz/6g2R
http://mng.bz/6g2R
http://mng.bz/6g2R
http://mng.bz/opED

513Publishing your app to IIS
To create an unmanaged application pool, right-click Application Pools in IIS and
choose Add Application Pool. Provide a name for the app pool in the resulting dialog
box, such as NetCore, and set the .NET CLR version to No Managed Code, as shown
in figure 16.5.

Now that you have an app pool, you can add a new website to IIS. Right-click the Sites
node and choose Add Website. In the Add Website dialog box, shown in figure 16.6,
you provide a name for the website and the path to the folder where you’ll publish
your website. I’ve created a folder that I’ll use to deploy the Recipe app from previous
chapters. It’s important to change the Application Pool for the app to the new Net-
Core app pool you created. In production, you’d also provide a hostname for the
application, but I’ve left it blank for now and changed the port to 81, so the applica-
tion will bind to the URL http:/ /localhost:81.

NOTE When you deploy an application to production, you need to register a
host name with a domain registrar, so your site is accessible by people on the
internet. Use that hostname when configuring your application in IIS, as
shown in figure 16.6.

Set the .NET CLR
version to No
Managed Code.

Enter a name for
the app pool.

Leave the
pipeline mode
as Integrated. Figure 16.5 Creating an app

pool in IIS for your ASP.NET
Core app. The .NET CLR
version should be set to No
Managed Code.

Enter the path to the
folder where you will
publish your app.

Change the app pool
to the No Managed
Code pool.

In production you will
likely leave this as
port 80 and must
enter a hostname.

Figure 16.6 Adding a new website to IIS for your app. Be sure to change the Application
Pool to the No Managed Code pool created in the previous step. You also provide a name,
the path where you’ll publish your app files, and the URL that IIS will use for your app.

514 CHAPTER 16 Publishing and deploying your application
Once you click OK, IIS creates the application and attempts to start it. But you haven’t
published your app to the folder, so you won’t be able to view it in a browser yet.

 You need to carry out one more critical setup step before you can publish and run
your app: you must grant permissions for the NetCore app pool to access the path
where you’ll publish your app. To do this, right-click the folder that will host your app
in Windows File Explorer and choose Properties. In the Properties dialog box, choose
Security > Edit > Add. Enter IIS AppPool\NetCore in the text box, as shown in figure
16.7, where NetCore is the name of your app pool, and click OK. Close all the dialog
boxes by clicking OK, and you’re all set.

Out of the box, the ASP.NET Core templates are configured to work seamlessly with
IIS, but if you’ve created an app from scratch, you may need to make a couple of
changes. In the next section I’ll briefly show the changes you need to make and
explain why they’re necessary.

16.2.2 Preparing and publishing your application to IIS

As I discussed in section 16.1, IIS acts as a reverse proxy for your ASP.NET Core app.
That means IIS needs to be able to communicate directly with your app to forward
incoming requests to and outgoing responses from your app.

 IIS handles this with the ASP.NET Core Module, but there’s a certain degree of
negotiation required between IIS and your app. For this to work correctly, you need to
configure your app to use IIS integration.

 IIS integration is added by default when you use the IHostBuilder.Configure-
WebHostDefaults() helper method used in the default templates. If you’re customiz-
ing your own HostBuilder, you need to ensure you add IIS integration with the
UseIIS() or UseIISIntegration() extension method.

public class Program
{
 public static void Main(string[] args)
 {

Listing 16.1 Adding IIS Integration to a host builder

Enter IIS AppPool, followed
by the name of the No Managed
Code app pool; for example, IIS
AppPool\NetCore.

Click OK to
add permission.

Figure 16.7 Adding permission for the NetCore app pool to the website’s publish folder.

515Publishing your app to IIS
 CreateHostBuilder(args).Build().Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHost(webBuilder =>
 {
 webBuilder.UseKestrel();
 webBuilder.UseStartup<Startup>();
 webBuilder.UseIIS();
 webBuilder.UseIISIntegration();

 });
}

NOTE If you’re not using your application with IIS, the UseIIS() and UseIIS-
Integration() methods will have no effect on your app, so it’s safe to include
them anyway.

When running behind IIS, these extension methods configure your app to pair with
IIS so that it can seamlessly accept requests. Among other things, the extensions do
the following:

 Define the URL that IIS will use to forward requests to your app and configure
your app to listen on this URL

 Configure your app to interpret requests coming from IIS as coming from the
client by setting up header forwarding

 Enable Windows authentication if required

In-process vs. out-of-process hosting in IIS
The reverse-proxy description I gave in section 16.1 assumes that your application is
running in a separate process from the reverse proxy itself. That is the case if you’re
running on Linux and was the default for IIS up until ASP.NET Core 3.0.

In ASP.NET Core 3.0, ASP.NET Core switched to using an in-process hosting model by
default for applications deployed to IIS. In this model, IIS hosts your application directly
in the IIS process, reducing inter-process communication and boosting performance.

You can switch to the out-of-process hosting model with IIS if you wish, which can
sometimes be useful for troubleshooting problems. Rick Strahl has an excellent post
on the differences between the hosting models, how to switch between them, and
the advantages of each: “ASP.NET Core In Process Hosting on IIS with ASP.NET Core”
at http://mng.bz/QmEv.

In general, you shouldn’t need to worry about the differences between the hosting mod-
els, but it’s something to be aware of if you’re deploying to IIS. If you choose to use the
out-of-process hosting model, you should use the UseIISIntegration() extension
method. If you use the in-process model, use UseIIS(). Alternatively, play it safe and
use both—the correct extension method will be activated based on the hosting model
used in production. Neither extension does anything if you don’t use IIS.

Using a custom builder,
instead of the default
ConfigureWebHostDefaults
used in templates

Configures your
application for

use with IIS with
an in-process

hosting model Configures your application
for use with IIS with an out-
of-process hosting model

http://mng.bz/QmEv

516 CHAPTER 16 Publishing and deploying your application
Adding the IIS extension methods is the only change you need to make to your appli-
cation to be able to host in IIS, but there's one additional aspect to be aware of when
you publish your app.

 As with previous versions of ASP.NET, IIS relies on a web.config file to configure
the applications it runs. It’s important that your application include a web.config file
when it’s published to IIS; otherwise you could get broken behavior or even expose
files that shouldn’t be exposed.4

 If your ASP.NET Core project already includes a web.config file, the .NET CLI or
Visual Studio will copy it to the publish directory when you publish your app. If your
app doesn’t include a web.config file, the publish command will create the correct
one for you. If you don’t need to customize the web.config file, it’s generally best not
to include one in your project and let the CLI create the correct file for you.

 With these changes, you’re finally in a position to publish your application to IIS.
Publish your ASP.NET Core app to a folder, either from Visual Studio or with the
.NET CLI, by running

dotnet publish --output publish_folder --configuration Release

This will publish your application to the publish_folder folder. You can then copy your
application to the path specified in IIS, as shown in figure 16.6. At this point, if all has
gone smoothly, you should be able to navigate to the URL you specified for your app
(http:/ /localhost:81, in my case) and see it running, as shown in figure 16.8.

And there you have it, your first application running behind a reverse proxy. Even
though ASP.NET Core uses a different hosting model than previous versions of
ASP.NET, the process of configuring IIS is similar.

4 For details on using web.config to customize the IIS AspNetCore Module, see Microsoft’s “ASP.NET Core
Module” documentation: http://mng.bz/Xdna.

The app is served using
IIS as a reverse proxy and
using the URL specified in
the Add Website dialog box.

Figure 16.8 The published application, using IIS as a reverse proxy listening at the URL
http:/ /localhost:81.

http://mng.bz/Xdna

517Hosting an application on Linux
 As is often the case when it comes to deployment, the success you have is highly
dependent on your precise environment and your app itself. If, after following these
steps, you find you can’t get your application to start, I highly recommend checking
out the documentation at https://docs.microsoft.com/aspnet/core/publishing/iis.
This contains many troubleshooting steps to get you back on track if IIS decides to
throw a hissy fit.

 This section was deliberately tailored to deploying to IIS, as it provides a great
segue for developers who are already used to deploying ASP.NET apps and want to
deploy their first ASP.NET Core app. But that’s not to say that IIS is the only, or best,
place to host your application.

 In the next section I’ll provide a brief introduction to hosting your app on Linux,
behind a reverse proxy like NGINX or Apache. I won’t go into configuration of the
reverse proxy itself, but I will provide an overview of things to consider and resources
you can use to run your applications on Linux.

16.3 Hosting an application on Linux
One of the great new features in ASP.NET Core is the ability to develop and deploy
applications cross-platform, whether that be on Windows, Linux, or macOS. The abil-
ity to run on Linux, in particular, opens up the possibility of cheaper deployments to
cloud hosting, deploying to small devices like a Raspberry Pi or to Docker containers.

 One of the characteristics of Linux is that it’s almost infinitely configurable.
Although that’s definitely a feature, it can also be extremely daunting, especially if
you’re coming from the Windows world of wizards and GUIs. This section provides an
overview of what it takes to run an application on Linux. It focuses on the broad steps
you need to take, rather than the somewhat tedious details of the configuration itself.
Instead, I’ll point to resources you can refer to as necessary.

16.3.1 Running an ASP.NET Core app behind a reverse proxy on Linux

You’ll be glad to hear that running your application on Linux is broadly the same as
running your application on Windows with IIS:

1 Publish your app using dotnet publish. If you’re creating an RDD, the output is
the same as you’d use with IIS. For an SCD, you must provide the target plat-
form moniker, as described in section 16.1.1.

2 Install the necessary prerequisites on the server. For an RDD deployment, you must
install the .NET 5.0 Runtime and the necessary prerequisites. You can find
details on this in Microsoft’s “Install .NET on Linux” documentation at https://
docs.microsoft.com/en-gb/dotnet/core/install/linux.

3 Copy your app to the server. You can use any mechanism you like: FTP, USB stick,
whatever you need to get your files onto the server!

4 Configure a reverse proxy and point it to your app. As you know by now, you may want
to run your app behind a reverse proxy, for the reasons described in section 16.1.

https://docs.microsoft.com/en-gb/dotnet/core/install/linux
https://docs.microsoft.com/en-gb/dotnet/core/install/linux
https://docs.microsoft.com/en-gb/dotnet/core/install/linux
https://docs.microsoft.com/aspnet/core/publishing/iis

518 CHAPTER 16 Publishing and deploying your application
On Windows, you’d use IIS, but on Linux you have more options. NGINX,
Apache, and HAProxy are all commonly used options.

5 Configure a process-management tool for your app. On Windows, IIS acts both as a
reverse proxy and a process manager, restarting your app if it crashes or stops
responding. On Linux you typically need to configure a separate process man-
ager to handle these duties; the reverse proxies won’t do it for you.

The first three points are generally the same, whether you’re running on Windows
with IIS or on Linux, but the last two points are more interesting. In contrast to the
monolithic IIS, Linux has a philosophy of small applications, each with a single
responsibility.

 IIS runs on the same server as your app and takes on multiple duties—proxying
traffic from the internet to your app, but also monitoring the app process itself. If
your app crashes or stops responding, IIS will restart the process to ensure you can
keep handling requests.

 In Linux, the reverse proxy might be running on the same server as your app, but
it’s also common for it to be running on a different server entirely, as shown in fig-
ure 16.9. This is similarly true if you choose to deploy your app to Docker; your app
would typically be deployed in a container without a reverse proxy, and a reverse
proxy on a server would point to your Docker container.

As the reverse proxies aren’t necessarily on the same server as your app, they can’t be
used to restart your app if it crashes. Instead, you need to use a process manager such
as systemd to monitor your app. If you’re using Docker, you’d typically use a con-
tainer orchestrator such as Kubernetes (https://kubernetes.io) to monitor the health
of your containers.

The client sends a
request to your app
at your app's URL;
for example,
http://localhost:8080.

The reverse proxy
handles the request
and forwards it to the
server where your
app is running.

Your app handles the
request and returns
a response via the
reverse proxy.

The process manager
monitors your app for
issues and starts and
stops it as appropriate.

A reverse proxy can forward
requests to multiple apps
on multiple servers.

Figure 16.9 On Linux it’s common for a reverse proxy to be on a different server from your app.
The reverse proxy forwards incoming requests to your app, while a process manager, such as
systemd, monitors your apps for crashes and restarts it as appropriate.

https://kubernetes.io

519Hosting an application on Linux
Configuring these systems is a laborious task that makes for dry reading, so I won’t
detail them here. Instead, I recommend checking out the ASP.NET Core docs. They
have a guide for NGINX and systemd, “Host ASP.NET Core on Linux with Nginx”
(http://mng.bz/yYGd), and a guide for configuring Apache with systemd, “Host
ASP.NET Core on Linux with Apache” (http://mng.bz/MXVB).

 Both guides cover the basic configuration of the respective reverse proxies and sys-
temd supervisors, but more importantly, they also show how to configure them securely.
The reverse proxy sits between your app and the unfettered internet, so it’s important
to get it right!

 Configuring the reverse proxy and the process manager is typically the most com-
plex part of deploying to Linux, and that isn’t specific to .NET development: the same
would be true if you were deploying a Node.js web app. But you need to consider a few
things inside your application when you’re going to be deploying to Linux, as you’ll
see in the next section.

Running ASP.NET Core applications in Docker
Docker is the most commonly used engine for containerizing your applications. A con-
tainer is like a small, lightweight virtual machine, specific to your app. It contains an
operating system, your app, and any dependencies for your app. This container can
then be run on any machine that runs Docker, and your app will run exactly the same,
regardless of the host operating system and what’s installed on it. This makes
deployments highly repeatable: you can be confident that if the container runs on your
machine, it will run on the server too.

ASP.NET Core is well-suited to container deployments, but moving to Docker involves
a big shift in your deployment methodology and may or may not be right for you and
your apps. If you’re interested in the possibilities afforded by Docker and want to
learn more, I suggest checking out the following resources:

 Docker in Practice, 2nd ed., by Ian Miell and Aidan Hobson Sayers (Manning,
2019) provides a vast array of practical techniques to help you get the most
out of Docker (http://mng.bz/nM8d).

 Even if you’re not deploying to Linux, you can use Docker with Docker for Win-
dows. Check out the free e-book, Introduction to Windows Containers by John
McCabe and Michael Friis (Microsoft Press, 2017) from https://aka.ms/
containersebook.

 You can find a lot of details on building and running your ASP.NET Core appli-
cations on Docker in the .NET documentation at http://mng.bz/vz5a.

 Steve Gordon has an excellent blog post series on Docker for ASP.NET Core
developers at https://www.stevejgordon.co.uk/docker-dotnet-developers.

http://mng.bz/vz5a
http://mng.bz/nM8d
https://aka.ms/containersebook
https://aka.ms/containersebook
https://aka.ms/containersebook
https://www.stevejgordon.co.uk/docker-dotnet-developers
http://mng.bz/yYGd
http://mng.bz/MXVB

520 CHAPTER 16 Publishing and deploying your application
16.3.2 Preparing your app for deployment to Linux

Generally speaking, your app doesn’t care which reverse proxy it sits behind, whether
it’s NGINX, Apache, or IIS—your app receives requests and responds to them without
the reverse proxy affecting things. When you’re hosting behind IIS, you need to add
UseIISIntegration(); similarly, when you’re hosting on Linux, you need to add an
extension method to your app setup.

 When a request arrives at the reverse proxy, it contains some information that is lost
after the request is forwarded to your app. For example, the original request comes with
the IP address of the client/browser connecting to your app: once the request is for-
warded from the reverse proxy, the IP address is that of the reverse proxy, not the browser.
Also, if the reverse proxy is used for SSL offloading (see chapter 18), then a request that
was originally made using HTTPS may arrive at your app as an HTTP request.

 The standard solution to these issues is for the reverse proxy to add additional head-
ers before forwarding requests to your app. For example, the X-Forwarded-For header
identifies the original client’s IP address, while the X-Forwarded-Proto header indi-
cates the original scheme of the request (http or https).

 For your app to behave correctly, it needs to look for these headers in incoming
requests and modify the request as appropriate. A request to http:/ /localhost with the
X-Forwarded-Proto header set to https should be treated the same as if the request
was to https:/ /localhost.

 You can use ForwardedHeadersMiddleware in your middleware pipeline to achieve
this. This middleware overrides Request.Scheme and other properties on HttpContext
to correspond to the forwarded headers. If you’re using the default Host.Create-
DefaultBuilder() method in Program.cs, this is partially handled for you—the mid-
dleware is automatically added to the pipeline in a disabled state. To enable it, set the
environment variable ASPNETCORE_FORWARDEDHEADERS_ENABLED=true.

 If you’re using your own HostBuilder instance, instead of the default builder, you
can add the middleware to the start of your middleware pipeline manually, as shown
in listing 16.2, and configure it with the headers to look for.

WARNING It’s important that ForwardedHeadersMiddleware be placed early
in the middleware pipeline to correct Request.Scheme before any middle-
ware that depends on the scheme runs.

public class Startup
{
 public class Configure(IApplicationBuilder app)
 {
 app.UseForwardedHeaders(new ForwardedHeadersOptions
 {
 ForwardedHeaders = ForwardedHeaders.XForwardedFor |
 ForwardedHeaders.XForwardedProto
 });

Listing 16.2 Configuring an app to use forwarded headers in Startup.cs

Adds ForwardedHeadersMiddleware
early in your pipeline

Configures the
headers the
middleware
should look
for and use

521Hosting an application on Linux
 app.UseHttpsRedirection();
 app.UseRouting();

 app.UseAuthentication();
 app.UseMvc();
 }
}

NOTE This behavior isn’t specific to reverse proxies on Linux; the UseIis()
extension adds ForwardedHeadersMiddleware under the hood as part of its
configuration when your app is running behind IIS.

Aside from considering the forwarded headers, you need to consider a few minor things
when deploying your app to Linux that may trip you up if you’re used to deploying to
Windows alone:

 Line endings (LF on Linux versus CRLF on Windows)—Windows and Linux use dif-
ferent character codes in text to indicate the end of a line. This isn’t often an
issue for ASP.NET Core apps, but if you’re writing text files on one platform
and reading them on a different platform, it’s something to bear in mind.

 Path directory separator ("\" on Windows, "/" on Linux)—This is one of the most
common bugs I see when Windows developers move to Linux. Each platform
uses a different separator in file paths, so while loading a file using the "subdir\
myfile.json" path will work fine on Windows, it won’t on Linux. Instead, you
should use Path.Combine to create the appropriate separator for the current
platform; for example, Path.Combine("subdir", "myfile.json").

 Environment variables can’t contain ":"—On some Linux distributions, the colon
character (:) isn’t allowed in environment variables. As you saw in chapter 11,
this character is typically used to denote different sections in ASP.NET Core
configuration, so you often need to use it in environment variables. Instead,
you can use a double underscore in your environment variables (__) and
ASP.NET Core will treat it the same as if you’d used a colon.

 Time zone and culture data may be missing—Linux distributions don’t always come
with time zone or culture data, which can cause localization issues and excep-
tions at runtime. You can install the time zone data using your distribution’s
package manager.5

 Directory structures are different—Linux distributions use a completely different
folder structure than Windows, so you need to bear that in mind if your app hard-
codes paths. In particular, consider differences in temporary/cache folders.

The preceding list is not exhaustive by any means, but as long as you set up Forwarded-
HeadersMiddleware and take care to use cross-platform constructs like Path.Combine,

5 I ran into this problem myself. You can read about the issue in detail and how I solved it on my blog:
http://mng.bz/aoem.

The forwarded
headers middleware
must be placed before
all other middleware.

http://mng.bz/aoem

522 CHAPTER 16 Publishing and deploying your application
you shouldn’t have too many problems running your applications on Linux. But con-
figuring a reverse proxy isn’t the simplest of activities, so wherever you’re planning on
hosting your app, I suggest checking the documentation for guidance at https://docs
.microsoft.com/aspnet/core/publishing.

16.4 Configuring the URLs for your application
At this point, you’ve deployed an application, but there’s one aspect you haven’t con-
figured: the URLs for your application. When you’re using IIS as a reverse proxy, you
don’t have to worry about this inside your app. IIS integration with the ASP.NET Core
Module works by dynamically creating a URL that’s used to forward requests between
IIS and your app. The hostname you configure in IIS (in figure 16.6) is the URL that
external users see for your app; the internal URL that IIS uses when forwarding
requests is never exposed.

 If you’re not using IIS as a reverse proxy—maybe you’re using NGINX or exposing
your app directly to the internet—you may find you need to configure the URLs your
application listens to directly.

 By default, ASP.NET Core will listen for requests on the URL http:/ /localhost
:5000. There are lots of ways to set this URL, but in this section I’ll describe two: using
environment variables or using command-line arguments. These are the two most
common approaches I see (outside of IIS) for controlling which URLs your app uses.

TIP For further ways to set your application’s URL, see my “5 ways to set the
URLs for an ASP.NET Core app” blog entry: http://mng.bz/go0v.

In chapter 10 you learned about configuration in ASP.NET Core, and in particular
about the concept of hosting environments so that you can use different settings
when running in development compared to production. You choose the hosting
environment by setting an environment variable on your machine called ASPNETCORE
_ENVIRONMENT. The ASP.NET Core framework magically picks up this variable when
your app starts and uses it to set the hosting environment.

 You can use a similar special environment variable to specify the URL that your
app uses; this variable is called ASPNETCORE_URLS. When your app starts up, it looks for
this value and uses it as the application’s URL. By changing this value, you can change
the default URL used by all ASP.NET Core apps on the machine.

 For example, you could set a temporary environment variable in Windows from
the command window using

set ASPNETCORE_URLS=http://localhost:8000

Running a published application using dotnet <app.dll> within the same command
window, as shown in figure 16.10, shows that the app is now listening on the URL pro-
vided in the ASPNETCORE_URLS variable.

https://docs.microsoft.com/aspnet/core/publishing
https://docs.microsoft.com/aspnet/core/publishing
https://docs.microsoft.com/aspnet/core/publishing
http://mng.bz/go0v

523Configuring the URLs for your application
You can instruct an app to listen on multiple URLs by separating them with a semico-
lon, or you can listen to a specific port without specifying the localhost hostname. If
you set the ASPNETCORE_URLS environment variable to

http://localhost:5001;http://*:5002

your ASP.NET Core apps will listen for requests sent to the following:

 http:/ /localhost:5001—This address is only accessible on your local computer,
so it will not accept requests from the wider internet.

 http:/ /*:5002—Any URL on port 5002. External requests from the internet can
access the app on port 5002, using any URL that maps to your computer.

Note that you can’t specify a different hostname, like tastyrecipes.com, for example.
ASP.NET Core will listen to all requests on a given port. The exception is the localhost
hostname, which only allows requests that came from your own computer.

NOTE If you find the ASPNETCORE_URLS variable isn’t working properly, ensure
you don’t have a launchSettings.json file in the directory. When present, the
values in this file take precedence. By default, launchSettings.json isn’t included
in the publish output, so this generally won’t be an issue in production.

Setting the URL of an app using a single environment variable works great for some
scenarios, most notably when you’re running a single application in a virtual machine,
or within a Docker container.6

 If you’re not using Docker containers, the chances are you’re hosting multiple
apps side-by-side on the same machine. A single environment variable is no good for
setting URLs in this case, as it would change the URL of every app.

6 ASP.NET Core is well-suited to running in containers, but working with containers is a separate book in its
own right. For details on hosting and publishing apps using Docker, see Microsoft’s “Host ASP.NET Core in
Docker containers” documentation: http://mng.bz/e5GV.

Set the ASPNETCORE_URLS
environment variable. It
applies for the lifetime of
the console window.

Your app listens using
the URL from the
ASPNETCORE_URLS variable.

Figure 16.10 Change the ASPNETCORE_URLS environment variable to change the URL used by
ASP.NET Core apps.

http://mng.bz/e5GV

524 CHAPTER 16 Publishing and deploying your application
 In chapter 11 you saw that you could set the hosting environment using the
ASPNETCORE_ENVIRONMENT variable, but you could also set the environment using
the --environment flag when calling dotnet run:

dotnet run --no-launch-profile --environment Staging

You can set the URLs for your application in a similar way, using the --urls parame-
ter. Using command-line arguments enables you to have multiple ASP.NET Core
applications running on the same machine, listening to different ports. For example,
the following command would run the recipe application, set it to listen on port 8081,
and set the environment to staging, as shown in figure 16.11:

dotnet RecipeApplication.dll --urls "http://*:8081" --environment Staging

Remember, you don’t need to set your URLs in this way if you’re using IIS as a reverse
proxy; IIS integration handles this for you. Setting the URLs is only necessary when
you’re manually configuring the URL your app is listening on; for example, if you’re
using NGINX or are exposing Kestrel directly to clients.

WARNING If you are running your ASP.NET Core application without a
reverse proxy, you should use host filtering for security reasons, to ensure your
app only responds to requests for hostnames you expect. For more details, see
my “Adding host filtering to Kestrel in ASP.NET Core” blog entry: http://
mng.bz/pVXK.

Continuing the theme of deployment-related tasks, in the next section we’ll take a
look at optimizing some of your client-side assets for production. If you’re building a
Web API, this isn’t something you’ll have to worry about in your ASP.NET Core app,
but for traditional web apps it’s worth considering.

The command-line
arguments are used
to set both the hosting
environment and the URLs.

Figure 16.11 Setting the hosting environment and URLs for an application using command-
line arguments. The values passed at the command line override values provided from
appSettings.json or environment variables.

http://mng.bz/pVXK
http://mng.bz/pVXK
http://mng.bz/pVXK

525Optimizing your client-side assets using BundlerMinifier
16.5 Optimizing your client-side assets using
BundlerMinifier
In this section we’ll explore the performance of your ASP.NET Core application in
terms of the number and size of requests. You’ll see how to improve the performance
of your app using bundling and minification but ensure your app is still easy to debug
while you’re building it. Finally, we’ll look at a common technique for improving app
performance in production: using a content delivery network (CDN).

 Have you ever used a web app or opened a web page that seemed to take forever to
load? Once you stray off the beaten track of Amazon, Google, or Microsoft, it’s only a
matter of time before you’re stuck twiddling your thumbs while the web page slowly
pops into place.

 Next time this happens to you, open the browser developer tools (for example,
press F12 in Edge or Chrome) and take a look at the number and size of the requests
the web app is making. In many cases, a high number of requests generating large
responses will be responsible for the slow loading of a web page.

 We’ll start by exploring the problem of performance by looking at a single page
from your recipe application: the login page. This is a simple page, and it isn’t inher-
ently slow, but even this is sufficient to investigate the impact of request size.

 As a user, when you click the Login button, the browser sends a request to /Iden-
tity/Account/Login. Your ASP.NET Core app executes the Login.cshtml Razor Page
in the default UI, which executes a Razor template and returns the generated HTML
in the response, as shown in figure 16.12. That’s a single request-response—a single
round-trip.

 But that’s not it for the web page. The HTML returned by the page includes links to
CSS files (for styling the page), JavaScript files (for client-side functionality—client-side
form validation, in this case), and, potentially, images and other resources (though
you don’t have any others in this recipe app).

 The browser must request each of these additional files and wait for the server to
return them before the whole page is loaded. When you’re developing locally, this all
happens quickly, as the request doesn’t have far to go, but once you deploy your app
to production, it’s a different matter.

 Users will be requesting pages from your app from a wide variety of distances from
the server, and over a wide variety of network speeds. Suddenly, the number and size
of the requests and responses for your app will have a massive impact on the overall
perceived speed of your app. This, in turn, can have a significant impact on how users
perceive your site, and, for e-commerce sites, even how much money they spend.7

 A great way to explore how your app will behave for non-optimal networks is to use
the network-throttling feature in Chrome’s and Edge’s developer tools. This simulates
the delays and network speeds associated with different types of networks, so you can

7 There has been a lot of research done on this, including stats such as “a 0.1-second delay in page load time
equals 7% loss in conversions” from http://mng.bz/4Z2Q.

http://mng.bz/4Z2Q

526 CHAPTER 16 Publishing and deploying your application
get an idea of how your app behaves in the wild. In figure 16.13 I’ve loaded the login
page for the recipe app, but this time with the network set to a modest Fast 3G speed.

<html>
<head>
<title>Recipes</title>
<link href="/site.css" />
<script src="/site.js"></script>
</head>
<body>...</body>
</html

1. The user clicks Login,
which sends a request
to the app.

Login

2. The ASP.NET Core app
executes the Login.cshtml
Razor Page and generates
the HTML response from
the Razor view.

3. The browser parses the
response and makes
additional requests for
any referenced resources,
such as images, CSS, and
JavaScript files.

CSS

JavaScript

5. The app responds
with the additional
resources.

6. Once all the referenced
resources have been loaded,
the browser can display the
complete page.

4. The browser requests
resources in parallel
to reduce the total
load time.

GET /Account/Login

GET site.css

GET site.js

Figure 16.12 Loading a complete page for your app. The initial request returns the HTML for the page, but
this may include links to other resources, such as CSS and JavaScript files. The browser must make additional
requests to your app for all the outstanding resources before the page can be fully loaded.

Throttling adds latency to each request
and reduces the maximum data rate.

Right-click the reload button and
choose Empty Cache and Hard Refresh.

A maximum of 6 requests
can be made concurrently
to a domain.

Loading the page fully takes 01

requests, 835 KB, and 5.47 s.

Figure 16.13 Exploring the effect of network speed on application load times. Chrome and Edge let
you simulate a slower network, so you can get an impression of the experience users will have when
loading your application once it’s in production.

527Optimizing your client-side assets using BundlerMinifier
NOTE I’ve added additional files to the template—navigation.css and global.js—
to make the page more representative of a real app.

Throttling the network doesn’t change anything about the page or the data requested—
there are 10 separate requests and almost 1 MB loaded for this single page—but it
dramatically impacts the time for the page to load. Without throttling, the login
page loads locally in 200 ms; with Fast 3G throttling, the login page takes 5.47 sec-
onds to load!

NOTE Don’t be too alarmed by these numbers. I’m making a point of reload-
ing all the files with every request to emphasize the point, whereas in practice
browsers go to great lengths to cache files to avoid having to send this amount
of data.

The time it takes to fully load a page of your app is based primarily on two things:

 The total size of the responses—This is straight-up math; you can only return data at
a certain speed, so the more data you need to return, the longer it takes.

 The number of requests—In general, the more requests the browser must make,
the longer it takes to fully load the page. In HTTP/1.0 and HTTP/1.1, you can
only make six concurrent requests to a server, so any requests after the sixth
must wait for an earlier request to finish before they can even start. HTTP/2.0,
which is supported by Kestrel, doesn’t have this limit, but you can’t always rely
on clients using it.

How can you improve your app speed, assuming all the files you’re serving are
needed? In general, this is a big topic with lots of possibilities, such as using a CDN to
serve your static files. Two of the simplest ways to improve your site’s performance are
to use bundling and minification to reduce the number and size of requests the browser
must make to load your app.

16.5.1 Speeding up an app using bundling and minification

In figure 16.13 for the recipe app, you made a total of 10 requests to the server:

 One initial request for the HTML
 Three requests for CSS files
 Six requests for JavaScript files

Some of the CSS and JavaScript files are standard vendor libraries, like Bootstrap and
jQuery, that are included as part of the default Razor templates, and some (naviga-
tion.css, site.css, global.js, and site.js) are files specific to your app. In this section,
we’re going to look at optimizing your custom CSS and JavaScript files.

 If you’re trying to reduce the number of requests for your app, an obvious first
thought is to avoid creating multiple files in the first place. For example, instead of
creating a navigation.css file and a site.css file, you could use a single file that contains
all the CSS, instead of separating it out.

528 CHAPTER 16 Publishing and deploying your application
 That’s a valid solution, but putting all your code into one file may make it harder
to manage and debug. As developers, we generally try to avoid this sort of monster
file. A better solution is to split your code into as many files as you want, and then bun-
dle the files when you come to deploy your code.

DEFINITION Bundling is the process of concatenating multiple files into a sin-
gle file, to reduce the number of requests.

Similarly, when you write JavaScript, you should use descriptive variables names, com-
ments where necessary, and whitespace to create easily readable and debuggable
code. When you come to deploy your scripts, you can process and optimize them for
size, instead of readability. This process is called minification.

DEFINITION Minification involves processing code to reduce its size without
changing the behavior of the code. Processing has many different levels,
which typically include removing comments and whitespace, and can extend
to renaming variables to give them shorter names or removing whole sections
of code entirely if they’re unused.

As an example, look at the JavaScript in the following listing. This (very contrived)
function adds up some numbers and returns them. It includes (excessively) descrip-
tive variable names, comments, and plenty of use of whitespace, but it’s representative
of the JavaScript you might find in your own app.

function myFunc() {
 // this function doesn't really do anything,
 // it's just here so that we can show off minifying!
 function innerFunctionToAddTwoNumbers(
 thefirstnumber, theSecondNumber) {
 // i'm nested inside myFunc
 return thefirstnumber + theSecondNumber;
 }
 var shouldAddNumbers = true;
 var totalOfAllTheNumbers = 0;

 if (shouldAddNumbers == true) {
 for (var index = 0; i < 10; i++) {
 totalOfAllTheNumbers =
 innerFunctionToAddTwoNumbers(totalOfAllTheNumbers, index);
 }
 }
 return totalOfAllTheNumbers;
}

This function takes a total of 588 bytes as it’s currently written, but after minification
it’s reduced to 95 bytes—16% of its original size. The behavior of the code is identical,
but the output, shown in the following listing, is optimized to reduce its size. It’s clearly

Listing 16.3 Example JavaScript function before minification

529Optimizing your client-side assets using BundlerMinifier
not something you’d want to debug: you’d only use minified versions of your file in
production; you’d use the original source files when developing.

function myFunc(){function r(n,t){return n+t}var
n=0,t;if(1)for(t=0;i<10;i++)n=r(n,t);return n}

Optimizing your static files using bundling and minification can provide a free boost
to your app’s performance when you deploy your app to production, while still letting
you develop using easy-to-read and separated files.

 Figure 16.14 shows the impact of bundling and minifying the files for the login
page of the recipe app. Each of the vendor files has been minified to reduce its size,
and the custom assets have been bundled and minified to reduce both their size and
the number of requests. This reduced the number of requests from 10 to 8, the total
amount of data from 580 KB to 270 KB, and the load time from 6.45 s to 3.15 s.

NOTE The vendor assets, such as jQuery and Bootstrap, aren’t bundled with
your custom scripts in figure 16.14. This lets you load those files from a CDN,
as I’ll touch on in section 16.5.4.

This performance improvement can be achieved with little effort on your part, and
with no impact on your development process. In the next section I’ll show how you
can include bundling and minification as part of your ASP.NET Core build process,
and how to customize the bundling and minification processes for your app.

16.5.2 Adding BundlerMinifier to your application

Bundling and minification isn’t a new idea, so you have many ways to achieve the same
result. The previous version of ASP.NET performed bundling and minification in
managed code, whereas JavaScript task runners such as gulp, Grunt, and webpack are

Listing 16.4 Example JavaScript function after minification

The vendor assets like
Bootstrap and JQuery
are individually minified.

The custom JavaScript and
CSS assets for the app are
bundled into a single file.

Loading the page fully
takes 8 requests, 378 KB,
and 3.67 s—50% faster and
50% less data than before.

Figure 16.14 By bundling and minifying your client-side resources, you can reduce both the number
of requests required and the total data to transfer, which can significantly improve performance. In
this example, bundling and minification cut the time to fully load in half.

530 CHAPTER 16 Publishing and deploying your application
commonly used for these sorts of tasks. In fact, if you’re writing a SPA, you’re almost
certainly already performing bundling and minification as a matter of course.

 ASP.NET Core includes support for bundling and minification via a NuGet pack-
age called BuildBundlerMinifier or a Visual Studio extension version called Bundler
& Minifier. You don’t have to use either of these, and if you’re already using other
tools such as gulp or webpack, I suggest you continue to use them instead. But if
you’re getting started with a new project, I suggest considering BundlerMinifier; you
can always switch to a different tool later.

 You have two options for adding BundlerMinifier to your project:

 You can install the Bundler & Minifier Visual Studio extension from Tools >
Extensions and Updates.

 You can add the BuildBundlerMinifier NuGet package to your project.

Whichever approach you use, they both use the same underlying BundlerMinifier
library.8 I prefer to use the NuGet package approach, as it’s cross-platform and will
automatically bundle your resources for you, but the extension is useful for perform-
ing ad hoc bundling. If you do use the Visual Studio extension, make sure you enable
Bundle on build, as you’ll see shortly.

 You can install the BuildBundlerMinifier NuGet package in your project with this
command:

dotnet add package BuildBundlerMinifier

With the BuildBundlerMinifier package installed, whenever you build your project,
the BundlerMinifier will check your CSS and JavaScript files for changes. If something
has changed, new bundled and minified files are created, as shown in figure 16.15,
where I modified a JavaScript file.

8 The BundlerMinifier library and extension are open source on GitHub: https://github.com/madskristensen/
BundlerMinifier/.

If a file has changed,
the BundlerMinifier
will rebuild and
minify the bundle.

Building the project will
run the BundlerMinifier
process.

Figure 16.15 Whenever the project is built, the BuildBundlerMinifier tool looks for changes in
the input files and builds new bundles as necessary.

https://github.com/madskristensen/BundlerMinifier/
https://github.com/madskristensen/BundlerMinifier/
https://github.com/madskristensen/BundlerMinifier/

531Optimizing your client-side assets using BundlerMinifier

Y

bu

J

T
bund

addit
As you can see in figure 16.15, the bundler minified your JavaScript code and created
a new file at wwwroot/js/site.min.js. But why did it pick this name? Well, because you
told it to in bundleconfig.json. You add this JSON file to the root folder of your proj-
ect, and it controls the BundlerMinifier process.

 Listing 16.5 shows a typical bundleconfig.json configuration for a small app. This
defines which files to include in each bundle, where to write each bundle, and what
minification options to use. Two bundles are configured here: one for CSS and one
for JavaScript. You can add bundles to the JSON array, or you can customize the exist-
ing provided bundles.

[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"
 "wwwroot/css/navigation.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
 "wwwroot/js/*.js",
 "!wwwroot/js/site.min.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true
 },
 "sourceMap": false
 }
]

For each bundle you can list a specific set of files to include, as specified in the input-
Files property. If you add a new CSS or JavaScript file to your project, you have to
remember to come back to bundleconfig.json and add it to the list.

 Alternatively, you can use globbing patterns to automatically include new files by
default. This isn’t always possible, such as when you need to ensure that files are con-
catenated in a given order, but I find it preferable in many cases. The example in the
previous listing uses globbing for the JavaScript bundle: the pattern includes all .js
files in the wwwroot/js folder but excludes the minified output file itself.

DEFINITION Globbing patterns use wildcards to represent many different char-
acters. For example, *.css would match all files with a .css extension, whatever
the filename.

Listing 16.5 A typical bundleconfig.json file

The bundler will
create a file with
this name.

The files listed in inputFiles
are minified and concatenated
into outputFileName.

You can specify multiple
bundles, each with an
output filename.

ou should
create

separate
ndles for
CSS and

avaScript.

You can use globbing
patterns to specify
files to include.

The ! symbol excludes
the matching file
from the bundle.

he JavaScript
ler has some

ional options.

You can optionally create
a source map for the
bundled JavaScript file.

532 CHAPTER 16 Publishing and deploying your application
When you build your project, the BundlerMinifier optimizes your CSS files into a sin-
gle wwwroot/css/site.min.css file and your JavaScript into a single wwwroot/js/site
.min.js file, based on the settings in bundleconfig.json. In the next section we’ll look
at how to include these files when you run in production, continuing to use the origi-
nal files when developing locally.

NOTE The BundlerMinifier package is great for optimizing your CSS and
JavaScript resources. But images are another important resource to consider
for optimization, and they can easily constitute the bulk of your page’s size.
Unfortunately, there aren’t any built-in tools for this, so you’ll need to look at
other options; TinyPNG (https://tinypng.com) is one.

16.5.3 Using minified files in production with the Environment
Tag Helper

Optimizing files using bundling and minification is great for performance, but you
want to use the original files during development. The easiest way to achieve this
split in ASP.NET Core is to use the Environment Tag Helper to conditionally
include the original files when running in the development hosting environment,
and to use the optimized files in other environments.

 You learned about the Environment Tag Helper in chapter 8, where we used it to
show a banner on the homepage when the app was running in the testing environment.
Listing 16.6 shows how you can take a similar approach in the _Layout .cshtml page for
the CSS files of your recipe app by using two Environment Tag Helpers: one for when
you’re in development, and one for when you aren’t (you’re in production or staging,
for example). You can use similar Tag Helpers for the JavaScript files in the app.

<environment include="Development">
 <link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/navigation.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</environment>
<environment exclude="Development">
 <link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <link rel="stylesheet" href="~/css/site.min.css" />
</environment>

When the app detects it isn’t running in the development hosting environment (as
you learned in chapter 11), it will switch to rendering links for the optimized files.

Listing 16.6 Using Environment Tag Helpers to conditionally render optimized files

Only render these links when running in
the Development environment.

The development
version of
Bootstrap

The development
version of your
styles

Only render these links when not
in Development, such as in
Staging or Production.

The minified
version of
Bootstrap

The bundled and
minified version of

your styles

https://tinypng.com

533Optimizing your client-side assets using BundlerMinifier
This gives you the best of both worlds: performance in production and ease of
development.

 The example in listing 16.6 also included a minified version of Bootstrap, even
though you didn’t configure this as part of the BundlerMinifier. It’s common for
CSS and JavaScript libraries like Bootstrap to include a pre-minified version of the
file for you to use in production. For those that do, it’s often better to exclude them
from your bundling process, as this allows you to potentially serve the file from a
public CDN.

16.5.4 Serving common files from a CDN

A public CDN is a website that hosts commonly used files, such as Bootstrap or jQuery,
which you can reference from your own apps. They have several advantages:

 They’re normally fast.
 They save your server from having to serve the file, saving bandwidth.
 Because the file is served from a different server, it doesn’t count toward the six

concurrent requests allowed to your server in HTTP/1.0 and HTTP/1.1.9

 Many different apps can reference the same file, so a user visiting your app may
have already cached the file by visiting a different website, and they may not
need to download it at all.

It’s easy to use a CDN in principle: reference the CDN file instead of the file on your
own server. Unfortunately, you need to cater for the fact that, like any server, CDNs
can sometimes fail. If you don’t have a fallback mechanism to load the file from a dif-
ferent location, such as your server, this can result in your app looking broken.

 Luckily, ASP.NET Core includes several Tag Helpers to make working with CDNs
and fallbacks easier. Listing 16.7 shows how you could update your CSS Environment
Tag Helper to serve Bootstrap from a CDN when running in production, and to
include a fallback. The fallback test creates a temporary HTML element and applies a
Bootstrap style to it. If the element has the expected CSS properties, the fallback test
passes, because Bootstrap must be loaded. If it doesn’t have the required properties,
Bootstrap will be loaded from the alternative, local link instead.

<environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/navigation.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</environment>
<environment exclude="Development">
 <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/

➥ bootstrap/4.3.1/css/bootstrap.min.css"

9 This limit is not fixed in stone, but modern browsers all use the same limit. See Push Technology’s “Browser
connection limitations” article: http://mng.bz/OEWw.

Listing 16.7 Serving Bootstrap CSS styles from a CDN with a local fallback

By default, Bootstrap
is loaded from a CDN.

http://mng.bz/OEWw

534 CHAPTER 16 Publishing and deploying your application
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position"
 asp-fallback-test-value="absolute"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css" />

 <link rel="stylesheet" href="~/css/site.min.css" />
</environment>

Optimizing your static files is an important step to consider before you put your app
into production, as it can have a significant impact on performance. Luckily, the
BuildBundlerMinifier package makes it easy to optimize your CSS and JavaScript files.
If you couple that with serving common files from a CDN, your app will be as speedy
as possible for users in production.

 That brings us to the end of this chapter on publishing your app. This last mile of
app development, deploying an application to a server where users can access it, is a
notoriously thorny issue. Publishing an ASP.NET Core application is easy enough, but
the multitude of hosting options available makes providing concise steps for every sit-
uation difficult.

 Whichever hosting option you choose, there’s one critical topic that is often over-
looked but is crucial for resolving issues quickly: logging. In the next chapter you’ll
learn about the logging abstractions in ASP.NET Core, and how you can use them to
keep tabs on your app once it’s in production.

Summary
 ASP.NET Core apps are console applications that self-host a web server. In pro-

duction, you typically use a reverse proxy, which handles the initial request
and passes it to your app. Reverse proxies can provide additional security,
operations, and performance benefits, but they can also add complexity to your
deployments.

 .NET has two parts: the .NET SDK (also known as the .NET CLI) and the .NET
Runtime. When you’re developing an application, you use the .NET CLI to
restore, build, and run your application. Visual Studio uses the same .NET CLI
commands from the IDE.

 When you want to deploy your app to production, you need to publish your
application, using dotnet publish. This creates a folder containing your appli-
cation as a DLL, along with all its dependencies.

 To run a published application, you don’t need the .NET CLI because you
won’t be building the app. You only need the .NET Runtime to run a pub-
lished app. You can run a published application using the dotnet app.dll
command, where app.dll is the application .dll created by the dotnet publish
command.

The fallback test applies the
sr-only class to an element …

… and checks that the element
has a CSS position of absolute. This
indicates Bootstrap was loaded.

If the fallback check fails, the CDN
must have failed, so Bootstrap is

loaded from the local link.

535Summary
 To host ASP.NET Core applications in IIS, you must install the ASP.NET Core
Module. This allows IIS to act as a reverse proxy for your ASP.NET Core app.
You must also install the .NET Runtime and the ASP.NET Core Runtime, which
are installed as part of the ASP.NET Core Windows Hosting Bundle.

 IIS can host ASP.NET Core applications using one of two modes: in-process and
out-of-process. The out-of-process mode runs your application as a separate
process, as is typical for most reverse proxies. The in-process mode runs your
application as part of the IIS process. This has performance benefits, as no
inter-process communication is required.

 To prepare your application for publishing to IIS with ASP.NET Core, ensure you
call UseIISIntegration() and UseIIS() on WebHostBuilder. The Configure-
WebHostDefaults static helper method does this automatically.

 When you publish your application using the .NET CLI, a web.config file will
be added to the output folder. It’s important that this file be deployed with
your application when publishing to IIS, as it defines how your application
should be run.

 The URL that your app will listen on is specified by default using the environ-
ment variable ASPNETCORE_URLS. Setting this value will change the URL for all
the apps on your machine. Alternatively, pass the --urls command-line argu-
ment when running your app; for example, dotnet app.dll --urls http://
localhost:80.

 It’s important to optimize your client-side assets to reduce the size and number
of files that must be downloaded by a client’s web browser when a page loads.
You can achieve this by bundling and minifying your assets.

 You can use the BuildBundlerMinifier package to combine multiple JavaScript
or CSS files together in a process called bundling. You can reduce the size of
the files in a process called minification, in which unnecessary whitespace is
removed and variables are renamed while preserving the function of the file.

 You can install a Visual Studio extension to control bundling and minification,
or you can install the BuildBundlerMinifier package to automatically perform
bundling and minification on each build of the project. Using the extension
allows you to minify on an ad hoc basis, but using the NuGet package allows you
to automate the process.

 The settings for bundling and minification are stored in the bundleconfig.json
file, where you can define the different output bundle files and choose which
files to include in the bundle. You can explicitly specify files, or you can use
globbing patterns to include multiple files using wildcard characters. Globbing
is typically easier and less error prone, but you will need to specify files explicitly
if they must be bundled in a specific order.

 Use the Environment Tag Helper to conditionally render your bundles in pro-
duction only. This lets you optimize for performance in production and read-
ability in development.

536 CHAPTER 16 Publishing and deploying your application
 For common files shared by multiple apps, such as jQuery or Bootstrap, you can
serve files from a CDN. These are websites that host the common files, so your
app doesn’t need to serve them itself.

 Use Link and Script Tag Helpers to check that the file has loaded correctly
from the CDN. These can test that a file has been downloaded by a client and
ensures that your server is used as a fallback should the CDN fail.

Part 3

Extending your
applications

We covered a huge amount of content in parts 1 and 2: we looked at all
the main functional components you’ll use to build both traditional server-ren-
dered Razor Pages apps as well as Web APIs. In part 3 we’ll look at six different
topics that build on what you’ve learned so far: logging, security, custom compo-
nents, interacting with third-party HTTP APIs, background services, and testing.

 Adding logging to your application is one of those activities that’s often left
until after you discover a problem in production. Adding sensible logging from
the get-go will help you quickly diagnose and fix errors as they arise. Chapter 17
introduces the logging framework built in to ASP.NET Core. You’ll see how you
can use it to write log messages to a wide variety of locations, whether it’s the
console, a file, or a third-party remote-logging service.

 Correctly securing your app is an important part of web development these
days. Even if you don’t feel you have any sensitive data in your application, you
have to make sure you protect your users from attacks by adhering to security
best practices. In chapter 18 I’ll describe some common vulnerabilities, how
attackers can exploit them, and what you can do to protect your applications.

 In part 1 you learned about the middleware pipeline, and you saw how it is
fundamental to all ASP.NET Core applications. In chapter 19 you’ll learn how to
create your own custom middleware, as well as simple endpoints, for when you
don’t need the full power of Razor Pages or a Web API controller. You’ll also
learn how to handle some complex chicken-and-egg configuration issues that

often arise in real-life applications. Finally, you’ll learn how to replace the built-in
dependency injection container with a third-party alternative.

 In chapter 20 you’ll learn how to create custom components for working with Razor
Pages and API controllers. You’ll learn how to create custom Tag Helpers and validation
attributes, and I’ll introduce a new component—view components—for encapsulating
logic with Razor view rendering. You’ll also learn how to replace the attribute-based vali-
dation framework used by default in ASP.NET Core with an alternative.

 Most apps you build aren’t designed to stand on their own. It’s very common for
your app to need to interact with third-party APIs, whether those are APIs for sending
emails, fetching exchange rates, or taking payments. In chapter 21 you’ll learn how to
interact with third-party APIs using the IHttpClientFactory abstraction to simplify
configuration, to add transient fault handling, and to avoid common pitfalls.

 This book deals primarily with serving HTTP traffic, both server-rendered web
pages using Razor Pages and Web APIs commonly used by mobile and single-page
applications. However, many apps require long-running background tasks that exe-
cute jobs on a schedule or that process items from a queue. In chapter 22 I’ll show
how you can create these long-running background tasks in your ASP.NET Core appli-
cations. I’ll also show how to create standalone services that only have background
tasks, without any HTTP handling, and how to install them as a Windows Service or as
a Linux systemd daemon.

 Chapter 23, the final chapter, covers testing your application. The exact role of
testing in application development can sometimes lead to philosophical arguments,
but in chapter 23 I’ll stick to the practicalities of testing your app with the xUnit test
framework. You’ll see how to create unit tests for your apps, how to test code that’s
dependent on EF Core using an in-memory database provider, and how to write inte-
gration tests that can test multiple aspects of your application at once.

Monitoring and
troubleshooting errors

with logging
Logging is one of those topics that seems unnecessary, right up until you desper-
ately need it! There’s nothing more frustrating than finding an issue that you can
only reproduce in production, and then discovering there are no logs to help you
debug it.

 Logging is the process of recording events or activities in an app, and it often
involves writing a record to a console, a file, the Windows Event Log, or some other
system. You can record anything in a log message, though there are generally two
different types of messages:

 Informational messages—A standard event occurred: a user logged in, a product
was placed in a shopping cart, or a new post was created on a blogging app.

 Warnings and errors—An error or unexpected condition occurred: a user had
a negative total in the shopping cart, or an exception occurred.

This chapter covers
 Understanding the components of a log message

 Writing logs to multiple output locations

 Controlling log verbosity in different environments
using filtering

 Using structured logging to make logs searchable
539

540 CHAPTER 17 Monitoring and troubleshooting errors with logging
Historically, a common problem with logging in larger applications was that each
library and framework would generate logs in a slightly different format, if at all.
When an error occurred in your app and you were trying to diagnose it, this inconsis-
tency made it harder to connect the dots in your app to get the full picture and under-
stand the problem.

 Luckily, ASP.NET Core includes a new, generic logging interface that you can plug
into. It’s used throughout the ASP.NET Core framework code itself, as well as by third-
party libraries, and you can easily use it to create logs in your own code. With the
ASP.NET Core logging framework, you can control the verbosity of logs coming from
each part of your code, including the framework and libraries, and you can write the
log output to any destination that plugs into the framework.

 In this chapter, I cover the ASP.NET Core logging framework in detail and
explain how you can use it to record events and diagnose errors in your own apps.
In section 17.1 I’ll describe the architecture of the logging framework. You’ll learn
how DI makes it easy for both libraries and apps to create log messages, as well as to
write those logs to multiple destinations.

 In section 17.2 you’ll learn how to write your own log messages in your apps with
the ILogger interface. We’ll break down the anatomy of a typical log record and look
at its properties, such as the log level, category, and message.

 Writing logs is only useful if you can read them, so in section 17.3 you’ll learn how
to add logging providers to your application. Logging providers control where your app
writes your log messages. This could be to the console, to a file, or even to an external
service. I’ll show you how to add a logging provider that writes logs to a file, and how
to configure a popular third-party logging provider called Serilog in your app.

 Logging is an important part of any application, but determining how much logging
is enough can be a tricky question. On the one hand, you want to provide sufficient
information to be able to diagnose any problems. On the other, you don’t want to fill
your logs with data that makes it hard to find the important information when you
need it. Even worse, what is sufficient in development might be far too much once
you’re running in production.

 In section 17.4 I’ll explain how you can filter log messages from various sections of
your app, such as the ASP.NET Core infrastructure libraries, so that your logging pro-
viders only write the important messages. This lets you keep that balance between
extensive logging in development and only writing important logs in production.

 In the final section of this chapter, I’ll touch on some of the benefits of structured
logging, an approach to logging that you can use with some providers for the ASP.NET
Core logging framework. Structured logging involves attaching data to log messages
as key-value pairs to make it easier to search and query logs. You might attach a
unique customer ID to every log message generated by your app, for example. Find-
ing all the log messages associated with a user is much simpler with this approach,
compared to recording the customer ID in an inconsistent manner as part of the log
message.

541Using logging effectively in a production app
 We’ll start this chapter by digging into what logging involves, and why your future
self will thank you for using logging effectively in your application. Then we’ll look at
the pieces of the ASP.NET Core logging framework you’ll use directly in your apps,
and how they fit together.

17.1 Using logging effectively in a production app
Imagine you’ve just deployed a new app to production, when a customer calls saying
that they’re getting an error message using your app. How would you identify what
caused the problem? You could ask the customer what steps they were taking, and
potentially try to recreate the error yourself, but if that doesn’t work, you’re left trawl-
ing through the code, trying to spot errors with nothing else to go on.

 Logging can provide the extra context you need to quickly diagnose a problem.
Arguably, the most important logs capture the details about the error itself, but the
events that led to the error can be just as useful in diagnosing the cause of an error.

 There are many reasons for adding logging to an application, but, typically, the
reasons fall into one of three categories:

 Logging for auditing or analytics reasons, to trace when events have occurred
 Logging errors
 Logging non-error events to provide a breadcrumb trail of events when an

error does occur

The first of these reasons is simple. You may be required to keep a record of every
time a user logs in, for example, or you may want to keep track of how many times a
particular API method is called. Logging is an easy way to record the behavior of your
app, by writing a message to the log every time an interesting event occurs.

 I find the second reason for logging to be the most common. When an app is work-
ing perfectly, logs often go completely untouched. It’s when there’s an issue and a cus-
tomer comes calling that logs become invaluable. A good set of logs can help you
understand the conditions in your app that caused an error, including the context of
the error itself, but also the context in previous requests.

TIP Even with extensive logging in place, you may not realize you have an
issue in your app unless you look through your logs regularly. For any medium
to large app, this becomes impractical, so monitoring services such as Raygun
(https://raygun.io) or Sentry (https://sentry.io) can be invaluable for notify-
ing you of issues quickly.

If this sounds like a lot of work, then you’re in luck. ASP.NET Core does a ton of the
“breadcrumb” logging for you so that you can focus on creating high-quality log mes-
sages that provide the most value when diagnosing problems.

https://raygun.io
https://sentry.io

542 CHAPTER 17 Monitoring and troubleshooting errors with logging
17.1.1 Highlighting problems using custom log messages

ASP.NET Core uses logging throughout its libraries. Depending on how you configure
your app, you’ll have access to the details of each request and EF Core query, even
without adding additional logging messages to your own code. In figure 17.1 you can
see the log messages created when you view a single recipe in the recipe application.

This gives you a lot of useful information. You can see which URL was requested, the
Razor Page and page handler that were invoked, the EF Core database command,
the action result invoked, and the response. This information can be invaluable when
trying to isolate a problem, whether a bug in a production app or a feature in develop-
ment when you’re working locally.

 This infrastructure logging can be useful, but log messages that you create yourself
can have even greater value. For example, you may be able to spot the cause of the
error from the log messages in figure 17.1—we’re attempting to view a recipe with an
unknown RecipeId of 5, but it’s far from obvious. If you explicitly add a log message
to your app when this happens, as in figure 17.2, the problem is much more apparent.

The ActionResult type and the
HTTP response code are logged.

A single request is made to the URL
/Recipe/View/2. Internal ASP.NET
Core framework libraries generate
logs for the Razor Pages endpoint.

EF Core logs the SQL requests
made to the database.

The OnGetAsync handler on the
Recipes/View.cshtml Razor Page
is executed.

Figure 17.1 The ASP.NET Core Framework libraries use logging throughout. A single request
generates multiple log messages that describe the flow of the request through your application.

You can write your own logs
from your app's classes, like
this log from the Razor Page
ViewModel. These are often
more useful for diagnosing
issues and tracing the behavior
of your app.

Figure 17.2 You can write your own logs. These are often more useful for identifying issues and
interesting events in your apps.

543Using logging effectively in a production app
This custom log message easily stands out and clearly states both the problem (the rec-
ipe with the requested ID doesn’t exist) and the parameters/variables that led to the
issue (the ID value of 5). Adding similar log messages to your own applications will
make it easier for you to diagnose problems, track important events, and generally
know what your app is doing.

 Hopefully you’re now motivated to add logging to your apps, so we’ll dig into the
details of what that involves. In section 17.1.2 you’ll see how to create a log message
and how to define where the log messages are written. We’ll look in detail at these two
aspects in sections 17.2 and 17.3; first, though, we’ll look at where they fit in terms of
the ASP.NET Core logging framework as a whole.

17.1.2 The ASP.NET Core logging abstractions

The ASP.NET Core logging framework consists of a number of logging abstractions
(interfaces, implementations, and helper classes), the most important of which are
shown in figure 17.3:

 ILogger—This is the interface you’ll interact with in your code. It has a Log()
method, which is used to write a log message.

 ILoggerProvider—This is used to create a custom instance of an ILogger,
depending on the provider. A “console” ILoggerProvider would create an
ILogger that writes to the console, whereas a “file” ILoggerProvider would cre-
ate an ILogger that writes to a file.

 ILoggerFactory—This is the glue between the ILoggerProvider instances and
the ILogger you use in your code. You register ILoggerProvider instances with
an ILoggerFactory and call CreateLogger() on the ILoggerFactory when you
need an ILogger. The factory creates an ILogger that wraps each of the provid-
ers, so when you call the Log() method, the log is written to every provider.

The design in figure 17.3 makes it easy to add or change where your application writes
the log messages, without having to change your application code. The following listing
shows all the code required to add an ILoggerProvider that writes logs to the console.

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args) =>
 new HostBuilder()
 .ConfigureLogging(builder =>builder.AddConsole())
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Listing 17.1 Adding a console log provider to IHost in Program.cs

Add new providers with
the ConfigureLogging
extension method on

HostBuilder.

544 CHAPTER 17 Monitoring and troubleshooting errors with logging
NOTE The console logger is added by default in the CreateDefaultBuilder
method, as you’ll see in section 17.3.

Other than this configuration on IHostBuilder, you don’t interact with ILogger-
Provider instances directly. Instead, you write logs using an instance of ILogger, as
you’ll see in the next section.

ILogger

ILoggerFactory

ConsoleLoggerProvider

EventLogLoggerProvider

ILoggerProviders are used to
create loggers that write to
a specific destination. The Console logger

provider creates a
logger that writes to
the console.

The EventLog logger
provider creates a
logger that writes to
the Windows Event Log.

AddConsole()

AddEventLog()

ILoggerProviders are
registered with the
ILoggerFactory using
extension methods.

Calling CreateLogger on the
ILoggerFactory calls CreateLogger
on each provider and creates an
ILogger that wraps each logger
implementation.CreateLogger()

ILogger

Calling Log() on the ILogger
writes the message to each of
the wrapped logger destinations.

Log() Log()

Log()

Console.Write()

EventLog.Log()

ConsoleLogger

EventLogLogger

ConsoleLogger

EventLogLogger

Figure 17.3 The components of the ASP.NET Core logging framework. You register logging providers with an
ILoggerFactory, which is used to create implementations of ILogger. You write logs to the ILogger,
which uses the ILogger implementations to output logs to the console or a file. This design allows you to
send logs to multiple locations without having to configure those locations when you create a log message.

545Adding log messages to your application

I

ILo

im
17.2 Adding log messages to your application
In this section we’ll look in detail at how to create log messages in your own applica-
tion. You’ll learn how to create an instance of ILogger, and how to use it to add log-
ging to an existing application. Finally, we’ll look at the properties that make up a
logging record, what they mean, and what you can use them for.

 Logging, like almost everything in ASP.NET Core, is available through DI. To add
logging to your own services, you only need to inject an instance of ILogger<T>,
where T is the type of your service.

NOTE When you inject ILogger<T>, the DI container indirectly calls ILogger-
Factory.CreateLogger<T>() to create the wrapped ILogger of figure 17.3.
In section 17.2.2 you’ll see how to work directly with ILoggerFactory if you
prefer. The ILogger<T> interface also implements the non-generic ILogger
interface but adds additional convenience methods.

You can use the injected ILogger instance to create log messages, which it writes to each
configured ILoggerProvider. The following listing shows how to inject an ILogger<>
instance into the PageModel of the Index.cshtml Razor Page for the recipe application
from previous chapters and how to write a log message indicating how many recipes
were found.

public class IndexModel : PageModel
{
 private readonly RecipeService _service;
 private readonly ILogger<IndexModel> _log;

 public ICollection<RecipeSummaryViewModel> Recipes { get; set; }

 public IndexModel(
 RecipeService service,
 ILogger<IndexModel> log)
 {
 _service = service;
 _log = log;
 }

 public void OnGet()
 {
 Recipes = _service.GetRecipes();
 _log.LogInformation(
 "Loaded {RecipeCount} recipes", Recipes.Count);
 }
}

In this example, you’re using one of the many extension methods on ILogger to create
the log message, LogInformation(). There are many extension methods on ILogger
that let you easily specify a LogLevel for the message.

Listing 17.2 Injecting ILogger into a class and writing a log message

njects the
generic

gger<T>
using DI,

which
plements

ILogger

This writes an
Information-level log.

The RecipeCount variable
is substituted in the

message.

546 CHAPTER 17 Monitoring and troubleshooting errors with logging
DEFINITION The log level of a log is how important it is and is defined by the
LogLevel enum. Every log message has a log level.

You can also see that the message you pass to the LogInformation method has a place-
holder indicated by braces, {RecipeCount}, and you pass an additional parameter,
Recipes.Count, to the logger. The logger will replace the placeholder with the param-
eter at runtime. Placeholders are matched with parameters by position, so if you
include two placeholders, for example, the second placeholder is matched with the
second parameter.

TIP You could have used normal string interpolation to create the log mes-
sage; for example, $"Loaded {Recipes.Count} recipes". But I recommend
always using placeholders, as they provide additional information for the log-
ger that can be used for structured logging, as you’ll see in section 17.5.

When the OnGet page handler in the IndexModel executes, ILogger writes a message
to any configured logging providers. The exact format of the log message will vary
from provider to provider, but figure 17.4 shows how the console provider would dis-
play the log message from listing 17.2.

The exact presentation of the message will vary depending on where the log is written,
but each log record includes up to six common elements:

 Log level—The log level of the log is how important it is and is defined by the
LogLevel enum.

 Event category—The category may be any string value, but it’s typically set to the
name of the class creating the log. For ILogger<T>, the full name of the type T
is the category.

 Message—This is the content of the log message. It can be a static string, or it
can contain placeholders for variables, as shown in listing 17.2. Placeholders are
indicated by braces, {}, and are substituted with the provided parameter values.

 Parameters—If the message contains placeholders, they’re associated with the pro-
vided parameters. For the example in listing 17.2, the value of Recipes.Count is

info: RecipeApplication.Pages.IndexModel[0]
Loaded 3 recipes

Log message

LogLevel Event category EventId

Figure 17.4 An example log message, as it’s written to the default
console provider. The log level category provides information about
how important the message is and where it was generated. The
EventId provides a way to identify similar log messages.

547Adding log messages to your application
assigned to the placeholder called RecipeCount. Some loggers can extract these
values and expose them in your logs, as you’ll see in section 17.5.

 Exception—If an exception occurs, you can pass the exception object to the log-
ging function along with the message and other parameters. The logger will log
the exception, in addition to the message itself.

 EventId—This is an optional integer identifier for the error, which can be used
to quickly find all similar logs in a series of log messages. You might use an
EventId of 1000 when a user attempts to load a non-existent recipe, and an
EventId of 1001 when a user attempts to access a recipe they don’t have permis-
sion to access. If you don’t provide an EventId, the value 0 will be used.

Not every log message will have all these elements—you won’t always have an Exception
or parameters, for example. There are various overloads to the logging methods that
take these elements as additional method parameters. Besides these optional ele-
ments, each message will have, at the very least, a level, category, and message. These
are the key features of the log, so we’ll look at each in turn.

17.2.1 Log level: How important is the log message?

Whenever you create a log using ILogger, you must specify the log level. This indicates
how serious or important the log message is, and it’s an important factor when it
comes to filtering which logs get written by a provider, as well as finding the important
log messages after the fact.

 You might create an Information level log when a user starts to edit a recipe. This
is useful for tracing the application’s flow and behavior, but it’s not important,
because everything is normal. But if an exception is thrown when the user attempts to
save the recipe, you might create a Warning or Error level log.

 The log level is typically set by using one of several extension methods on the
ILogger interface, as shown in listing 17.3. This example creates an Information level
log when the View method executes, and a Warning level error if the requested recipe
isn’t found.

private readonly ILogger _log;
public async IActionResult OnGet(int id)
{
 _log.LogInformation(
 "Loading recipe with id {RecipeId}", id);

 Recipe = _service.GetRecipeDetail(id);
 if (Recipe is null)
 {
 _log.LogWarning(
 "Could not find recipe with id {RecipeId}", id);
 return NotFound();
 }

Listing 17.3 Specifying the log level using extension methods on ILogger

An ILogger instance is injected into the
controller using constructor injection.

Writes an Information
level log message

Writes a Warning
level log message

548 CHAPTER 17 Monitoring and troubleshooting errors with logging
 return Page();
}

The LogInformation and LogWarning extension methods create log messages with a
log level of Information and Warning, respectively. There are six log levels to choose
from, ordered here from most to least serious:

 Critical—For disastrous failures that may leave the app unable to function
correctly, such as out-of-memory exceptions or if the hard drive is out of disk
space or the server is on fire.

 Error—For errors and exceptions that you can’t handle gracefully; for exam-
ple, exceptions thrown when saving an edited entity in EF Core. The operation
failed, but the app can continue to function for other requests and users.

 Warning—For when an unexpected or error condition arises that you can work
around. You might log a Warning for handled exceptions, or when an entity
isn’t found, as in listing 17.3.

 Information—For tracking normal application flow; for example, logging when
a user logs in, or when they view a specific page in your app. Typically these log
messages provide context when you need to understand the steps leading up to
an error message.

 Debug—For tracking detailed information that’s particularly useful during devel-
opment. Generally this only has short-term usefulness.

 Trace—For tracking very detailed information, which may contain sensitive
information like passwords or keys. It’s rarely used, and not used at all by the
framework libraries.

Think of these log levels in terms of a pyramid, as shown in figure 17.5. As you prog-
ress down the log levels, the importance of the messages goes down, but the frequency
goes up. Generally you’ll find many Debug level log messages in your application, but
(hopefully) few Critical or Error level messages.

 This pyramid shape will become more meaningful when we look at filtering in sec-
tion 17.4. When an app is in production, you typically don’t want to record all the
Debug level messages generated by your application. The sheer volume of messages
would be overwhelming to sort through and could end up filling your disk with mes-
sages that say, “Everything’s OK!” Additionally, Trace messages shouldn’t be enabled
in production, as they may leak sensitive data. By filtering out the lower log levels, you
can ensure that you generate a sane number of logs in production but have access to
all the log levels in development.

 In general, logs of a higher level are more important than lower-level logs, so a
Warning log is more important than an Information log, but there’s another aspect to
consider. Where the log came from, or who created the log, is a key piece of informa-
tion that’s recorded with each log message and is called the category.

549Adding log messages to your application
17.2.2 Log category: Which component created the log

As well as a log level, every log message also has a category. You set the log level inde-
pendently for every log message, but the category is set when you create the ILogger
instance. Like log levels, the category is particularly useful for filtering, as you’ll see in
section 17.4. It’s written to every log message, as shown in figure 17.6.

The category is a string, so you can set it to anything, but the convention is to set it to
the fully qualified name of the type that’s using ILogger. In section 17.2 I achieved

Disastrous errors that may
leave the app unable to function

Unhandled erors and exceptions
that don't affect other requests

Unexpected conditions that you can work
around, such as handled exceptions

For tracking normal application flow

For tracking detailed information,
especially during development

For very detailed, sensitive,
information; rarely used

Figure 17.5 The pyramid of log levels. Logs with a level near the base of the pyramid are used
more frequently but are less important. Logs with a level near the top should be rare but are
important.

Every log message has
an associated category.

The category is typically
set to the name of the
class creating the log
message.

Figure 17.6 Every log message has an associated category, which is typically the class name
of the component creating the log. The default console logging provider outputs the log category
for every log.

550 CHAPTER 17 Monitoring and troubleshooting errors with logging
this by injecting ILogger<T> into RecipeController; the generic parameter T is used
to set the category of the ILogger.

 Alternatively, you can inject ILoggerFactory into your methods and pass an
explicit category when creating an ILogger instance. This lets you change the cate-
gory to an arbitrary string.

public class RecipeService
{
 private readonly ILogger _log;
 public RecipeService(ILoggerFactory factory)
 {
 _log = factory.CreateLogger("RecipeApp.RecipeService");
 }
}

There is also an overload of CreateLogger() with a generic parameter that uses the
provided class to set the category. If the RecipeService in listing 17.4 was in the Recipe-
App namespace, the CreateLogger call could be written equivalently as

_log = factory.CreateLogger<RecipeService>();

Similarly, the final ILogger instance created by this call would be the same as if you’d
directly injected ILogger<RecipeService> instead of ILoggerFactory.

TIP Unless you’re using heavily customized categories for some reason, favor
injecting ILogger<T> into your methods over ILoggerFactory.

The final compulsory part of every log entry is fairly obvious: the log message. At the sim-
plest level, this can be any string, but it’s worth thinking carefully about what informa-
tion would be useful to record—anything that will help you diagnose issues later on.

17.2.3 Formatting messages and capturing parameter values

Whenever you create a log entry, you must provide a message. This can be any string
you like, but as you saw in listing 17.2, you can also include placeholders indicated by
braces, {}, in the message string:

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

Including a placeholder and a parameter value in your log message effectively creates
a key-value pair, which some logging providers can store as additional information
associated with the log. The previous log message would assign the value of Recipes
.Count to a key, RecipeCount, and the log message itself is generated by replacing the
placeholder with the parameter value, to give the following (where Recipes.Count=3):

"Loaded 3 recipes"

Listing 17.4 Injecting ILoggerFactory to use a custom category

Injects an ILoggerFactory
instead of an ILogger
directly

Passes a category as a string
when calling CreateLogger

551Adding log messages to your application
You can include multiple placeholders in a log message, and they’ll be associated with
the additional parameters passed to the log method. The order of the placeholders in
the format string must match the order of the parameters you provide.

WARNING You must pass at least as many parameters to the log method as
there are placeholders in the message. If you don’t pass enough parameters,
you’ll get an exception at runtime.

For example, the log message

_log.LogInformation("User {UserId} loaded recipe {RecipeId}", 123, 456)

would create the parameters UserId=123 and RecipeId=456. Structured logging provid-
ers could store these values, in addition to the formatted log message "User 123
loaded recipe 456". This makes it easier to search the logs for a particular UserId or
RecipeId.

DEFINITION Structured or semantic logging attaches additional structure to log
messages to make them more easily searchable and filterable. Rather than
storing only text, it stores additional contextual information, typically as key-
value pairs. JSON is a common format used for structured log messages, as it
has all of these properties.

Not all logging providers use semantic logging. The default console logging provider
doesn’t, for example—the message is formatted to replace the placeholders, but
there’s no way of searching the console by key-value.

 But even if you’re not using structured logging initially, I recommend writing your
log messages as though you are, with explicit placeholders and parameters. That way,
if you decide to add a structured logging provider later, you’ll immediately see the
benefits. Additionally, I find that thinking about the parameters that you can log in
this way prompts you to record more parameter values, instead of only a log message.
There’s nothing more frustrating than seeing a message like "Cannot insert record
due to duplicate key" but not having the key value logged!

TIP Generally speaking, I’m a fan of C# 6’s interpolated strings, but don’t
use them for your log messages when a placeholder and parameter would
also make sense. Using placeholders instead of interpolated strings will give
you the same output message but will also create key-value pairs that can be
searched later.

We’ve looked a lot at how you can create log messages in your app, but we haven’t
focused on where those logs are written. In the next section we’ll look at the built-in
ASP.NET Core logging providers, how they’re configured, and how you can replace
the defaults with a third-party provider.

552 CHAPTER 17 Monitoring and troubleshooting errors with logging
17.3 Controlling where logs are written using
logging providers
In this section you’ll learn how to control where your log messages are written by add-
ing additional ILoggerProviders to your application. As an example, you’ll see how
to add a simple file logger provider that writes your log messages to a file, in addition
to the existing console logger provider. In section 17.3.2 you’ll learn how to swap out
the default logging infrastructure entirely for an alternative implementation using the
open source Serilog library.

 Up to this point, we’ve been writing all our log messages to the console. If you’ve
run any ASP.NET Core sample apps locally, you’ll have probably already seen the log
messages written to the console window.

NOTE If you’re using Visual Studio and debugging using the IIS Express
option (the default), you won’t see the console window (though the log mes-
sages are written to the Debug Output window instead). For that reason, I
normally ensure I select the app name from the drop-down list in the debug
toolbar, instead of IIS Express.

Writing log messages to the console is great when you’re debugging, but it’s not much
use for production. No one’s going to be monitoring a console window on a server,
and the logs wouldn’t be saved anywhere or be searchable. Clearly, you’ll need to write
your production logs somewhere else.

 As you saw in section 17.1, logging providers control the destination of your log mes-
sages in ASP.NET Core. They take the messages you create using the ILogger inter-
face and write them to an output location, which varies depending on the provider.

NOTE This name always gets to me—the log provider effectively consumes the
log messages you create and outputs them to a destination. You can probably
see the origin of the name from figure 17.3, but I still find it somewhat coun-
terintuitive.

Microsoft has written several first-party log providers for ASP.NET Core that are avail-
able out-of-the-box in ASP.NET Core. These include

 Console provider—Writes messages to the console, as you’ve already seen.
 Debug provider—Writes messages to the debug window when you’re debugging

an app in Visual Studio or Visual Studio Code, for example.
 EventLog provider—Writes messages to the Windows Event Log. Only outputs log

messages when running on Windows, as it requires Windows-specific APIs.
 EventSource provider—Writes messages using Event Tracing for Windows (ETW)

or LTTng tracing on Linux.

There are also many third-party logging provider implementations, such as an Azure
App Service provider, an elmah.io provider, and an Elasticsearch provider. On top of
that, there are integrations with other pre-existing logging frameworks like NLog and

553Controlling where logs are written using logging providers
Serilog. It’s always worth looking to see whether your favorite .NET logging library or
service has a provider for ASP.NET Core, as most do.

 You configure the logging providers for your app in Program.cs using Host-
Builder. The CreateDefaultBuilder helper method configures the console and
debug providers for your application automatically, but it’s likely you’ll want to change
or add to these.

 You have two options when you need to customize logging for your app:

 Use your own HostBuilder instance, instead of Host.CreateDefaultBuilder,
and configure it explicitly.

 Add an additional ConfigureLogging call after CreateDefaultBuilder.

If you only need to customize logging, the latter approach is simpler. But if you find
you also want to customize the other aspects of the HostBuilder created by Create-
DefaultBuilder (such as your app configuration settings), it may be worth ditching
the CreateDefaultBuilder method and creating your own instance instead.

 In section 17.3.1 I’ll show how to add a simple third-party logging provider to your
application that writes log messages to a file, so that your logs are persisted. In section
17.3.2 I’ll show how to go one step further and replace the default ILoggerFactory in
ASP.NET Core with an alternative implementation using the popular open source Ser-
ilog library.

17.3.1 Adding a new logging provider to your application

In this section we’re going to add a logging provider that writes to a rolling file, so our
application writes logs to a new file each day. We’ll continue to log using the console
and debug providers as well, because they will be more useful than the file provider
when developing locally.

 To add a third-party logging provider in ASP.NET Core, follow these steps:

1 Add the logging provider NuGet package to the solution. I’m going to be using
a provider called NetEscapades.Extensions.Logging.RollingFile, which is avail-
able on NuGet and GitHub. You can add it to your solution using the NuGet
Package Manager in Visual Studio, or using the .NET CLI by running

dotnet add package NetEscapades.Extensions.Logging.RollingFile

from your application’s project folder.

NOTE This package is a simple file logging provider, available at https://
github.com/andrewlock/NetEscapades.Extensions.Logging. It’s based on
the Azure App Service logging provider. If you would like more control
over your logs, such as specifying the file format, consider using Serilog
instead, as described in section 17.3.2.

2 Add the logging provider using the IHostBuilder.ConfigureLogging() exten-
sion method. You can add the file provider by calling AddFile(), as shown in

https://github.com/andrewlock/NetEscapades.Extensions.Logging
https://github.com/andrewlock/NetEscapades.Extensions.Logging
https://github.com/andrewlock/NetEscapades.Extensions.Logging

554 CHAPTER 17 Monitoring and troubleshooting errors with logging

De

p

the next listing. AddFile() is an extension method provided by the logging pro-
vider package to simplify adding the provider to your app.

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(builder => builder.AddFile())
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

NOTE Adding a new provider doesn’t replace existing providers. Listing 17.5
uses the CreateDefaultBuilder helper method, so the console and debug
logging providers have already been added. To remove them, call builder
.ClearProviders() at the start of the ConfigureLogging method, or use a
custom HostBuilder.

With the file logging provider configured, you can run the application and generate
logs. Every time your application writes a log using an ILogger instance, ILogger
writes the message to all configured providers, as shown in figure 17.7. The console
messages are conveniently available, but you also have a persistent record of the logs
stored in a file.

TIP By default, the rolling file provider will write logs to a subdirectory of
your application. You can specify additional options such as filenames and file
size limits using overloads of AddFile(). For production, I recommend using
a more established logging provider, such as Serilog.

The key takeaway from listing 17.5 is that the provider system makes it easy to inte-
grate existing logging frameworks and providers with the ASP.NET Core logging
abstractions. Whichever logging provider you choose to use in your application, the
principles are the same: call ConfigureLogging on IHostBuilder and add a new log-
ging provider using extension methods like AddConsole(), or AddFile() in this case.

 Logging your application messages to a file can be useful in some scenarios, and
it’s certainly better than logging to a non-existent console window in production, but
it may still not be the best option.

 If you discovered a bug in production and you needed to quickly look at the logs to
see what happened, for example, you’d need to log on to the remote server, find the

Listing 17.5 Adding a third-party logging provider to IHostBuilder

The Create-
faultBuilder

method
configures

the console
and debug
roviders as

normal.

Adds the new
file logging
provider to the
logger factory

555Controlling where logs are written using logging providers
log files on disk, and trawl through them to find the problem. If you have multiple
web servers, you’d have a mammoth job to fetch all the logs before you could even
start to tackle the bug. Not fun. Add to that the possibility of file permission or drive
space issues, and file logging seems less attractive.

 Instead, it’s often better to send your logs to a centralized location, separate from
your application. Exactly where this location may be is up to you; the key is that each
instance of your app sends its logs to the same location, separate from the app itself.

 If you’re running your app on Azure, you get centralized logging for free because
you can collect logs using the Azure App Service provider. Alternatively, you could send
your logs to a third-party log aggregator service such as Loggr (http://loggr.net/),
elmah.io (https://elmah.io/), or Seq (https://getseq.net/). You can find ASP.NET
Core logging providers for each of these services on NuGet, so adding them is the
same process as adding the file provider you’ve seen already.

 Another popular option is to use the open source Serilog library to simultaneously
write to a variety of different locations. In the next section I’ll show how you can
replace the default ILoggerFactory implementation with Serilog in your application,
opening up a wide range of possible options for where your logs are written.

ILogger

Calling Log() on the ILogger
writes the message to each
of the configured logging
providers.

Log()

Log()

Log()

Console.Write()

Debug.Write()

ConsoleLogger

DebugLogger

FileLogger File.AppendText()

Log()

Figure 17.7 Logging a message with ILogger writes the log using all of the configured providers.
This lets you, for example, log a convenient message to the console while also persisting the logs
to a file.

http://loggr.net/
https://elmah.io/
https://getseq.net/

556 CHAPTER 17 Monitoring and troubleshooting errors with logging
17.3.2 Replacing the default ILoggerFactory with Serilog

In this section we’ll replace the default ILoggerFactory in the recipe app with an
implementation that uses Serilog. Serilog (https://serilog.net) is an open source proj-
ect that can write logs to many different locations, such as files, the console, an Elastic-
search cluster,1 or a database. This is similar to the functionality you get with the
default ILoggerFactory, but due to the maturity of Serilog, you may find you can
write to more places.

 Serilog predates ASP.NET Core, but thanks to the logging abstractions around
ILoggerFactory and ILoggerProvider, you can easily integrate with Serilog while still
using the ILogger abstractions in your application code.

 Serilog uses a similar design philosophy to the ASP.NET Core logging abstractions—
you write logs to a central logging object, and the log messages are written to multiple
locations, such as the console or a file. Serilog calls each of these locations a sink.2

 When you use Serilog with ASP.NET Core, you’ll typically replace the default
ILoggerFactory with a custom factory that contains a single logging provider,
SerilogLoggerProvider. This provider can write to multiple locations, as shown in
figure 17.8. This configuration is a bit of a departure from the standard ASP.NET
Core logging setup, but it prevents Serilog’s features from conflicting with equivalent
features of the default LoggerFactory, such as filtering (see section 17.4).

TIP If you’re familiar with Serilog, you can use the examples in this section
to easily integrate a working Serilog configuration with the ASP.NET Core
logging infrastructure.

In this section we’ll add a single sink to write the log messages to the console, but
using the Serilog logging provider instead of the built-in console provider. Once
you’ve set this up, adding additional sinks to write to other locations is trivial. Adding
the Serilog logging provider to an application involves three steps:

1 Add the required Serilog NuGet packages to the solution.
2 Create a Serilog logger and configure it with the required sinks.
3 Call UseSerilog() on IHostBuilder to replace the default ILoggerFactory

implementation with SerilogLoggerFactory. This configures the Serilog pro-
vider automatically and hooks up the already-configured Serilog logger.

To install Serilog into your ASP.NET Core app, you need to add the base NuGet
package and the NuGet packages for any sinks you need. You can do this through
the Visual Studio NuGet GUI, using the PMC, or using the .NET CLI. To add the

1 Elasticsearch is a REST-based search engine that’s often used for aggregating logs. You can find out more at
www.elastic.co/elasticsearch/.

2 For a full list of available sinks, see https://github.com/serilog/serilog/wiki/Provided-Sinks. There are 93 dif-
ferent sinks at the time of writing!

https://serilog.net
http://www.elastic.co/elasticsearch/
https://github.com/serilog/serilog/wiki/Provided-Sinks

557Controlling where logs are written using logging providers
Serilog ASP.NET Core package and a sink for writing to the console, run these
commands:

dotnet add package Serilog.AspNetCore
dotnet add package Serilog.Sinks.Console

This adds the necessary NuGet packages to your project file and restores them. Next,
create a Serilog logger and configure it to write to the console by adding the console
sink, as shown in listing 17.6. This is the most basic of Serilog configurations, but you
can add extra sinks and configuration here too.3 I’ve also added a try-catch-finally
block around our call to CreateHostBuilder, to ensure that logs are still written if

3 You can customize Serilog until the cows come home, so it’s worth consulting the documentation to see what’s
possible. The wiki is particularly useful: https://github.com/serilog/serilog/wiki/Configuration-Basics.

ILoggerFactory

FileLoggerProvider

EventLogLoggerProvider

ILoggerProvders are registered
with the ILoggerFactory, and each
provider writes to a single output.

ConsoleLoggerProvider

Serilog.Sinks.RollingFile

Serilog.Sinks.EventLog

The SerilogLoggerFactory replaces
the default ILoggerFactory. It uses a
single registered logging provider,
the SerilogLoggerProvider.

Serilog.Sinks.Console

SerilogLoggerProvider

ASP.NET Core by default

ASP.NET Core with Serilog
Sinks are added to Serilog
for each desired output.

Log messages are written to
the SerilogLoggerProvider,
which writes them to
each sink.

SerilogLoggerFactory:
ILoggerFactory

Figure 17.8 Configuration when using Serilog with ASP.NET Core compared to the default logging
configuration. You can achieve the same functionality with both approaches, but you may find Serilog
provides additional libraries for adding extra features.

https://github.com/serilog/serilog/wiki/Configuration-Basics

558 CHAPTER 17 Monitoring and troubleshooting errors with logging
there’s an error starting up the web host or there’s a fatal exception. Finally, the Ser-
ilog logger factory is configured by calling UseSerilog() on the IHostBuilder.

public class Program
{
 public static void Main(string[] args)
 {
 Log.Logger = new LoggerConfiguration()
 .WriteTo.Console()
 .CreateLogger();
 try
 {
 CreateHostBuilder(args).Build().Run();
 }
 catch (Exception ex)
 {
 Log.Fatal(ex, "Host terminated unexpectedly");
 }
 finally
 {
 Log.CloseAndFlush();
 }
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .UseSerilog()
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

With the Serilog logging provider configured, you can run the application and gener-
ate some logs. Every time the app generates a log, ILogger writes the message to the
Serilog provider, which writes it to every sink. In listing 17.6 you’ve only configured
the console sink, so the output will look something like figure 17.9. The Serilog con-
sole sink colorizes the logs more than the built-in console provider, so I find it’s some-
what easier to parse the logs visually.

TIP Serilog has many great features in addition to this. One of my favorites is
the ability to add enrichers. These automatically add information to all your log
messages, such as the process ID or environment variables, which can be use-
ful when diagnosing problems. For an in-depth look at the recommended way
to configure Serilog for ASP.NET Core apps, see the “Setting up Serilog in
ASP.NET Core 3” post by Nicholas Blumhardt, the creator of Serilog: http://
mng.bz/Yqvz.

Listing 17.6 Configuring a Serilog logging provider to use a console sink

Creates a
LoggerConfiguration for
configuring the Serilog logger

Serilog will
write logs to
the console.

This creates a Serilog logger instance
on the static Log.Logger property.

Registers the
SerilogLoggerFactory
and connects the
Log.Logger as the sole
logging provider

http://mng.bz/Yqvz
http://mng.bz/Yqvz
http://mng.bz/Yqvz

559Changing log verbosity with filtering
Serilog lets you easily plug in additional sinks to your application, in much the same
way as you do with the default ASP.NET Core abstractions. Whether you choose to use
Serilog or stick to other providers is up to you; the feature sets are quite similar,
though Serilog is more mature. Whichever you choose, once you start running your
apps in production, you’ll quickly discover a different issue: the sheer number of log
messages your app generates!4

17.4 Changing log verbosity with filtering
In this section you’ll see how to reduce the number of log messages written to the log-
ger providers. You’ll learn how to apply a base level filter, filter out messages from spe-
cific namespaces, and use logging provider-specific filters.

 If you’ve been playing around with the logging samples, you’ll probably have
noticed that you get a lot of log messages, even for a single request like the one in fig-
ure 17.2: messages from the Kestrel server, messages from EF Core, not to mention
your own custom messages. When you’re debugging locally, having access to all that
detailed information is extremely useful, but in production you’ll be so swamped by
noise that it’ll make picking out the important messages difficult.

 ASP.NET Core includes the ability to filter out log messages before they’re written,
based on a combination of three things:

 The log level of the message
 The category of the logger (who created the log)
 The logger provider (where the log will be written)

You can create multiple rules using these properties, and, for each log that’s created,
the most specific rule will be applied to determine whether the log should be written
to the output. You could create the following three rules:

4 If you wish to display the log category in the console sink, you can customize the outputTemplate and add
{SourceContext}. For details, see the README on GitHub: https://github.com/serilog/serilog-sinks-
console#output-templates.

In contrast to the
default console
provider, it doesn't
display the log
category.

Serilog colorizes the
various parameters
passed to the logger.

Figure 17.9 Example output using the Serilog provider and a console sink. The output has
more colorization than the built-in console provider, though by default it doesn’t display the log
category for each log.4

https://github.com/serilog/serilog-sinks-console#output-templates
https://github.com/serilog/serilog-sinks-console#output-templates

560 CHAPTER 17 Monitoring and troubleshooting errors with logging
 The default minimum log level is Information—If no other rules apply, only logs
with a log level of Information or above will be written to providers.

 For categories that start with Microsoft, the minimum log level is Warning—Any log-
ger created in a namespace that starts with Microsoft will only write logs that
have a log level of Warning or above. This would filter out the noisy framework
messages you saw in figure 17.6.

 For the console provider, the minimum log level is Error—Logs written to the console
provider must have a minimum log level of Error. Logs with a lower level won’t
be written to the console, though they might be written using other providers.

Typically, the goal with log filtering is to reduce the number of logs written to certain
providers, or from certain namespaces (based on the log category). Figure 17.10 shows
a possible set of filtering rules that apply to the console and file logging providers.

In this example, the console logger explicitly restricts logs written in the Microsoft
namespace to Warning or above, so the console logger ignores the log message shown.
Conversely, the file logger doesn’t have a rule that explicitly restricts the Microsoft

FileLogger ConsoleLogger

[Information] Microsoft.AspNetCore.Hosting
Request Starting

ILogger

Log()

Log() Log()

The application writes a log
message to the ILogger, with
a category, level, and message.

The ILogger writes the message
to each of the providers.

The log message is compared to the
filtering rules based on the provider,
category, and log level.

The provider matches rule 1

and the log level exceeds the
minimum log level, so the log
is written.

The provider and category
match rule 3, but the log
level is less than the
minimum log level, so the
log is discarded.

Figure 17.10 Applying filtering rules to a log message to determine whether a log should be written.
For each provider, the most specific rule is selected. If the log exceeds the rule’s required minimum
level, the provider writes the log; otherwise it discards it.

561Changing log verbosity with filtering

a

namespace, so it uses the configured minimum level of Information and writes the
log to the output.

TIP Only a single rule is chosen when deciding whether a log message
should be written; they aren’t combined. In figure 17.10, rule 1 is considered
more specific than rule 5, so the log is written to the file provider, even
though both could technically apply.

You typically define your app’s set of logging rules using the layered configuration
approach discussed in chapter 11, because this lets you easily have different rules when
running in development and production. You do this by calling AddConfiguration
when configuring logging in Program.cs, but CreateDefaultBuilder() also does this
for you automatically.

 This listing shows how you’d add configuration rules to your application when con-
figuring your own HostBuilder, instead of using the CreateDefaultBuilder helper
method.

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 new HostBuilder()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration(config =>
 config.AddJsonFile("appsettings.json"))
 .ConfigureLogging((ctx, builder) =>
 {
 builder.AddConfiguration(
 ctx.Configuration.GetSection("Logging"));
 builder.AddConsole();
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

In this example, I’ve loaded the configuration from a single file, appsettings.json,
which contains all of our app configuration. The logging configuration is specifically
contained in the "Logging" section of the IConfiguration object, which is available
when you call Configurelogging().

TIP As you saw in chapter 11, you can load configuration settings from multi-
ple sources, like JSON files and environment variables, and can load them

Listing 17.7 Loading logging configuration in ConfigureLogging

Loads
configuration
values from
appsettings.json

Loads the log filtering
configuration from the

Logging section and
dds to ILoggingBuilder

Adds a console
provider to the app

562 CHAPTER 17 Monitoring and troubleshooting errors with logging
conditionally based on the IHostingEnvironment. A common practice is to
include logging settings for your production environment in appsettings.json
and overrides for your local development environment in appsettings.Devel-
opment.json.

The logging section of your configuration should look similar to the following listing,
which shows how you could define the rules shown in figure 17.10.

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Warning",
 "Microsoft": "Warning"
 },
 "File": {
 "LogLevel": {
 "Default": "Information"
 }
 },
 "Console": {
 "LogLevel": {
 "Default": "Debug",
 "Microsoft": "Warning"
 }
 }
 }
}

When creating your logging rules, the important thing to bear in mind is that if you
have any provider-specific rules, these will take precedence over the category-based
rules defined in the "LogLevel" section. Therefore, for the configuration defined in
listing 17.8, if your app only uses the file or console logging providers, the rules in the
"LogLevel" section will effectively never apply.

 If you find this confusing, don’t worry, so do I. Whenever I’m setting up logging, I
check the algorithm used to determine which rule will apply for a given provider and
category, which is as follows:

1 Select all rules for the given provider. If no rules apply, select all rules that don’t
define a provider (the top "LogLevel" section from listing 17.8).

2 From the selected rules, select rules with the longest matching category prefix.
If no selected rules match the category prefix, select the "Default" if present.

3 If multiple rules are selected, use the last one.
4 If no rules are selected, use the global minimum level, "LogLevel:Default"

(which is Debug in listing 17.8).

Listing 17.8 The log filtering configuration section of appsettings.json

Rules to apply
if there are no
applicable rules
for a provider

Rules to apply to
the File provider

Rules to apply
to the Console
provider

563Changing log verbosity with filtering
Each of these steps (except the last) narrows down the applicable rules for a log mes-
sage, until you’re left with a single rule. You saw this in effect for a "Microsoft" cate-
gory log in figure 17.10. Figure 17.11 shows the process in more detail.

WARNING Log filtering rules aren’t merged together; a single rule is selected.
Including provider-specific rules will override global category-specific rules,
so I tend to stick to category-specific rules in my apps to make the overall set
of rules easier to understand.

With some effective filtering in place, your production logs should be much more
manageable, as shown in figure 17.12. Generally I find it’s best to limit the logs from
the ASP.NET Core infrastructure and referenced libraries to Warning or above,
while keeping logs that my app writes to Debug in development and Information in
production.

 This is close to the default configuration used in the ASP.NET Core templates. You
may find you need to add additional category-specific filters, depending on which

[Information] Microsoft.AspNetCore.Hosting
Request Starting

1. Only the rules specific to the provider
are kept. If no rules exist for the
provider, the provider-less rules
would be selected.

2. From the selected rules, the rule
that closest matches the log category
is selected. If no rule matched the
category, rule 4 would be selected.

ConsoleLogger

3. If no rules matched, the default
log level would be used (rule 6).
As rule 3 matches, the minimum
log level of Warning is used.

Figure 17.11 Selecting a rule to apply from the available set for the console provider and an
Information level log. Each step reduces the number of rules that apply until you’re left with
only one.

564 CHAPTER 17 Monitoring and troubleshooting errors with logging
NuGet libraries you use and the categories they write to. The best way to find out is
generally to run your app and see if you get flooded with uninteresting log messages.

 Even with your log verbosity under control, if you stick to the default logging pro-
viders like the file or console loggers, you’ll probably regret it in the long run. These
log providers work perfectly well, but when it comes to finding specific error mes-
sages, or analyzing your logs, you’ll have your work cut out for you. In the next section
you’ll see how structured logging can help tackle this problem.

17.5 Structured logging: Creating searchable, useful logs
In this section you’ll learn how structured logging makes working with log messages
easier. You’ll learn to attach key-value pairs to log messages and how to store and
query for key values using the structured logging provider, Seq. Finally, you’ll learn
how to use scopes to attach key-value pairs to all log messages within a block.

 Let’s imagine you’ve rolled out the recipe application we’ve been working on to
production. You’ve added logging to the app so that you can keep track of any errors
in your application, and you’re storing the logs in a file.

 One day, a customer calls and says they can’t view their recipe. Sure enough, when
you look through the log messages, you a see a warning:

warn: RecipeApplication.Controllers.RecipeController[12]
 Could not find recipe with id 3245

This piques your interest—why did this happen? Has it happened before for this cus-
tomer? Has it happened before for this recipe? Has it happened for other recipes? Does it
happen regularly?

 How would you go about answering these questions? Given that the logs are stored
in a text file, you might start doing basic text searches in your editor of choice, look-
ing for the phrase "Could not find recipe with id". Depending on your notepad-fu
skills, you could probably get a fair way in answering your questions, but it would likely
be a laborious, error-prone, and painful process.

Only logs of Warning level
or above are written by
classes in namespaces that
start Microsoft or System.

Logs of Information level
or above are written by
the app itself.

Figure 17.12 Using filtering to reduce the number of logs written. In this example, category filters
have been added to the Microsoft and System namespaces, so only logs of Warning and above are
recorded. That increases the proportion of logs that are directly relevant to your application.

565Structured logging: Creating searchable, useful logs
 The limiting factor is that the logs are stored as unstructured text, so text processing
is the only option available to you. A better approach is to store the logs in a structured
format, so that you can easily query the logs, filter them, and create analytics. Struc-
tured logs could be stored in any format, but these days they’re typically represented
as JSON. For example, a structured version of the same recipe warning log might look
something like this:

{
 "eventLevel": "Warning",
 "category": "RecipeApplication.Controllers.RecipeController",
 "eventId": "12",
 "messageTemplate": "Could not find recipe with {recipeId}",
 "message": "Could not find recipe with id 3245",
 "recipeId": "3245"
}

This structured log message contains all the same details as the unstructured version, but
in a format that would easily let you search for specific log entries. It makes it simple to fil-
ter logs by their EventLevel, or to only show those logs relating to a specific recipe ID.

NOTE This is only an example of what a structured log could look like. The
format used for the logs will vary depending on the logging provider used
and could be anything. The key point is that properties of the log are avail-
able as key-value pairs.

Adding structured logging to your app requires a logging provider that can create and
store structured logs. Elasticsearch is a popular general search and analytics engine
that can be used to store and query your logs. Serilog includes a sink for writing logs
to Elasticsearch that you can add to your app in the same way as you added the con-
sole sink in section 17.3.2.

TIP If you want to learn more about Elasticsearch, Relevant Search by Doug
Turnbull and John Berryman (Manning, 2016) is a great choice. It will show
how you can make the most of your structured logs.

Elasticsearch is a powerful production-scale engine for storing your logs, but setting it
up isn’t for the faint of heart. Even after you’ve got it up and running, there’s a some-
what steep learning curve associated with the query syntax. If you’re interested in
something more user-friendly for your structured logging needs, Seq (https://getseq
.net) is a great option. In the next section I’ll show you how adding Seq as a structured
logging provider makes analyzing your logs that much easier.

17.5.1 Adding a structured logging provider to your app

To demonstrate the advantages of structured logging, in this section you’ll configure
an app to write logs to Seq. You’ll see that the configuration is essentially identical to
unstructured providers, but that the possibilities afforded by structured logging make
considering it a no-brainer.

https://getseq.net
https://getseq.net
https://getseq.net

566 CHAPTER 17 Monitoring and troubleshooting errors with logging
 Seq is installed on a server or your local machine and collects structured log mes-
sages over HTTP, providing a web interface for you to view and analyze your logs. It is
currently available as a Windows app or a Linux Docker container. You can install a
free version for development, which will allow you to experiment with structured log-
ging in general.5

 From the point of view of your app, the process for adding the Seq provider should
be familiar:

1 Install the Seq logging provider using Visual Studio or the .NET CLI with

dotnet add package Seq.Extensions.Logging

2 Add the Seq logging provider in Program.cs inside the ConfigureLogging
method. To add the Seq provider in addition to the console and debug provid-
ers included as part of CreateDefaultBuilder, use

Host.CreateDefaultBuilder(args)
 .ConfigureLogging(builder => builder.AddSeq())
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

That’s all you need to add Seq to your app. This will send logs to the default local URL
when you have Seq installed in your local environment. The AddSeq() extension
method includes additional overloads to customize Seq when you move to produc-
tion, but this is all you need to start experimenting locally.

 If you haven’t already, install Seq on your development machine and navigate to
the Seq app at http:/ /localhost:5341. In a different tab, open up your app and start
browsing around and generating logs. Back in Seq, if you refresh the page, you’ll see a
list of logs, something like in figure 17.13. Clicking on a log expands it and shows you
the structured data recorded for the log.

 ASP.NET Core supports structured logging by treating each captured parameter
from your message format string as a key-value pair. If you create a log message using
the following format string,

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

the logging provider will create a RecipeCount parameter with a value of Recipes
.Count. These parameters are added as properties to each structured log, as you can
see in figure 17.13.

5 You can download the Windows installer for Seq from https://getseq.net/Download.

https://getseq.net/Download

567Structured logging: Creating searchable, useful logs
Structured logs are generally easier to read than your standard-issue console output,
but their real power comes when you need to answer a specific question. Consider the
problem from before, where you see this error:

Could not find recipe with id 3245

You want to get a feel for how widespread the problem is. The first step would be to
identify how many times this error has occurred and to see whether it’s happened
to any other recipes. Seq lets you filter your logs, but it also lets you craft SQL que-
ries to analyze your data, so finding the answer to the question takes a matter of sec-
onds, as shown in figure 17.14.

Warning level logs are highlighted in yellow.

Logs are listed in reverse chronological order.

Each log includes various
key-value pairs, as well
as the standard level and
message properties.

Clicking on a log reveals
the structured data.

Refresh the list of logs
or turn on auto-refresh.

Figure 17.13 The Seq UI. Logs are presented as a list. You can view the structured logging
details of individual logs, view analytics for logs in aggregate, and search by log properties.

View the results as
a table or as a graph.

You can search and
filter the logs using
simple properties
or SQL.

Results show that for logs with an EventId of 2,1

there were 3 occurences, all with RecipeId=3245.1

Figure 17.14 Querying logs in Seq. Structured logging makes log analysis like this example easy.

568 CHAPTER 17 Monitoring and troubleshooting errors with logging

mess
wr

outsid
scope b

don’t inc
the s

s

k,
NOTE You don’t need query languages like SQL for simple queries, but it
makes digging into the data easier. Other structured logging providers may
provide query languages other than SQL, but the principle is the same as in
this Seq example.

A quick search shows that you’ve recorded the log message with EventId.Id=12 (the
EventId of the warning we’re interested in) 13 times, and every time the offending
RecipeId was 3245. This suggests that there may be something wrong with that recipe
in particular, which points you in the right direction to find the problem.

 More often than not, figuring out errors in production involves logging detective
work like this to isolate where the problem occurred. Structured logging makes this
process significantly easier, so it’s well worth considering, whether you choose Seq,
Elasticsearch, or a different provider.

 I’ve already described how you can add structured properties to your log messages
using variables and parameters from the message, but as you can see in figure 17.13,
there are far more properties visible than exist in the message alone.

 Scopes provide a way to add arbitrary data to your log messages. They’re available in
some unstructured logging providers, but they shine when used with structured log-
ging providers. In the final section of this chapter, I’ll demonstrate how you can use
them to add additional data to your log messages.

17.5.2 Using scopes to add additional properties to your logs

You’ll often find in your apps that you have a group of operations that all use the same
data, which would be useful to attach to logs. For example, you might have a series of
database operations that all use the same transaction ID, or you might be performing
multiple operations with the same user ID or recipe ID. Logging scopes provide a way of
associating the same data to every log message in such a group.

DEFINITION Logging scopes are used to group multiple operations by adding
the same data to each log message.

Logging scopes in ASP.NET Core are created by calling ILogger.BeginScope<T>(T
state) and providing the state data to be logged. You create scopes inside a using
block; any log messages written inside the scope block will have the associated data,
whereas those outside won’t.

_logger.LogInformation("No, I don't have scope");

using(_logger.BeginScope("Scope value"))
using(_logger.BeginScope(new Dictionary<string, object>
 {{ "CustomValue1", 12345 } }))
{
 _logger.LogInformation("Yes, I have the scope!");
}

_logger.LogInformation("No, I lost it again");

Listing 17.9 Adding scope properties to log messages with BeginScope

Log
ages
itten
e the
lock
lude
cope
tate.

Calling BeginScope starts a scope bloc
with a scope state of “Scope value”.

You can pass
anything as the
state for a scope.

Log messages written
inside the scope block
include the scope state.

569Structured logging: Creating searchable, useful logs
The scope state can be any object at all: an int, a string, or a Dictionary, for exam-
ple. It’s up to each logging provider implementation to decide how to handle the state
you provide in the BeginScope call, but typically it will be serialized using ToString().

TIP The most common use for scopes I’ve found is to attach additional key-
value pairs to logs. To achieve this behavior in Seq and Serilog, you need to
pass Dictionary<string, object> as the state object.6

When the log messages inside the scope block are written, the scope state is captured
and written as part of the log, as shown in figure 17.15. The Dictionary<> of key-value
pairs is added directly to the log message (CustomValue1), and the remaining state
values are added to the Scope property. You will likely find the dictionary approach
the more useful of the two, as the added properties are more easily filtered on, as you
saw in figure 17.14.

That brings us to the end of this chapter on logging. Whether you use the built-in log-
ging providers or opt to use a third-party provider like Serilog or NLog, ASP.NET
Core makes it easy to get detailed logs not only for your app code, but for the libraries

6 Nicholas Blumhardt, the creator of Serilog and Seq, has examples and the reasoning for this on his blog in
the “The semantics of ILogger.BeginScope()” article: http://mng.bz/GxDD.

Logs written outside the
scope block do not have
the additional state.

Dictionary state is added
to the log as key-value
pairs. The CustomValue1
property is added in
this way.

Other state values are
added to the Scope
property as an array
of values.

Figure 17.15 Adding properties to logs using scopes. Scope state added using the
dictionary approach is added as structured logging properties, but other state is added
to the Scope property. Adding properties makes it easier to associate related logs with
one another.

http://mng.bz/GxDD

570 CHAPTER 17 Monitoring and troubleshooting errors with logging
that make up your app’s infrastructure, like Kestrel and EF Core. Whichever you
choose, I encourage you to add more logs than you think you’ll need—future-you will
thank me when it comes to tracking down a problem.

 In the next chapter, we’ll look in detail at a variety of web security problems that
you should consider when building your apps. ASP.NET Core takes care of some of
these issues for you automatically, but it’s important to understand where your app’s
vulnerabilities lie, so you can mitigate them as best you can.

Summary
 Logging is critical to quickly diagnosing errors in production apps. You should

always configure logging for your application so that logs are written to a dura-
ble location.

 You can add logging to your own services by injecting ILogger<T>, where T is
the name of the service. Alternatively, inject ILoggerFactory and call Create-
Logger().

 The log level of a message indicates how important it is and ranges from Trace
to Critical. Typically you’ll create many low-importance log messages and a
few high-importance log messages.

 You specify the log level of a log by using the appropriate extension method of
ILogger to create your log. To write an Information level log, use ILogger
.LogInformation(message).

 The log category indicates which component created the log. It is typically set
to the fully qualified name of the class creating the log, but you can set it to any
string if you wish. ILogger<T> will have a log category of T.

 You can format messages with placeholder values, similar to the string.Format
method, but with meaningful names for the parameters. Calling logger.Log-
Info("Loading Recipe with id {RecipeId}", 1234) would create a log reading
"Loading Recipe with id 1234", but it would also capture the value RecipeId
=1234. This structured logging makes analyzing log messages much easier.

 ASP.NET Core includes many logging providers out of the box. These include
the console, debug, EventLog, and EventSource providers. Alternatively, you
can add third-party logging providers.

 You can configure multiple ILoggerProvider instances in ASP.NET Core,
which define where logs are output. The CreateDefaultBuilder method adds
the console and debug providers, and you can add additional providers by call-
ing ConfigureLogging().

 Serilog is a mature logging framework that includes support for a large number
of output locations. You can add Serilog to your app with the Serilog.AspNet-
Core package. This replaces the default ILoggerFactory with a Serilog-specific
version.

 You can control logging output verbosity using configuration. The Create-
DefaultBuilder helper uses the "Logging" configuration section to control

571Summary
output verbosity. You typically will filter out more logs in production compared
to when developing your application.

 Only a single log filtering rule is selected for each logging provider when deter-
mining whether to output a log message. The most specific rule is selected
based on the logging provider and the category of the log message.

 Structured logging involves recording logs so that they can be easily queried
and filtered, instead of the default unstructured format that’s output to the
console. This makes analyzing logs, searching for issues, and identifying pat-
terns easier.

 You can add additional properties to a structured log by using scope blocks. A
scope block is created by calling ILogger.BeginScope<T>(state) in a using
block. The state can be any object and is added to all log messages inside the
scope block.

Improving your
application’s security
Web application security is a hot topic at the moment. Practically every week
another breach is reported, or confidential details are leaked. It may seem like the
situation is hopeless, but the reality is that the vast majority of breaches could have
been avoided with the smallest amount of effort.

 In this chapter we’ll look at a few different ways to protect your application and
your application’s users from attackers. Because security is an extremely broad
topic that covers lots of different avenues, this chapter is by no means an exhaustive
guide. It’s intended to make you aware of some of the most common threats to
your app and how to counteract them, and also to highlight areas where you can
inadvertently introduce vulnerabilities if you’re not careful.

This chapter covers
 Encrypting traffic using HTTPS and configuring

local SSL certificates

 Defending against cross-site scripting attacks

 Protecting from cross-site request forgery
attacks

 Allowing calls to your API from other apps
using CORS
572

573Adding HTTPS to an application
TIP I strongly advise exploring additional resources around security after
you’ve read this chapter. The Open Web Application Security Project (OWASP)
(www.owasp.org) is an excellent resource, though it can be a little dry. Alter-
natively, Troy Hunt has some excellent courses and workshops on security,
geared toward .NET developers (www.troyhunt.com/).

We’ll start by looking at how to add HTTPS encryption to your website so that users
can access your app without the risk of third parties spying on or modifying the con-
tent as it travels over the internet. This is effectively mandatory for production apps
these days, and it is heavily encouraged by the makers of modern browsers such as
Chrome and Firefox. You’ll see how to use the ASP.NET Core development certificate
to use HTTPS locally, how to configure an app for HTTPS in production, and how to
enforce HTTPS across your whole app.

 In sections 18.2 and 18.3 you’ll learn about two potential attacks that should be on
your radar: cross-site scripting (XSS) and cross-site request forgery (CSRF). We’ll
explore how the attacks work and how you can prevent them in your apps. ASP.NET
Core has built-in protection against both types of attack, but you have to remember to
use the protection correctly and resist the temptation to circumvent it, unless you’re
certain it’s safe to do so.

 Section 18.4 deals with a common scenario—you have an application that wants to
use JavaScript AJAX (Asynchronous JavaScript and XML) requests to retrieve data
from a second app. By default, web browsers block requests to other apps, so you need
to enable cross-origin resource sharing (CORS) in your API to achieve this. We’ll look
at how CORS works, how to create a CORS policy for your app, and how to apply it to
specific action methods.

 The final section of this chapter, section 18.5, covers a collection of common
threats to your application. Each one represents a potentially critical flaw that an
attacker could use to compromise your application. The solutions to each threat are
generally relatively simple; the important thing is to recognize where the flaws could
exist in your own apps so that you can ensure that you don’t leave yourself vulnerable.

 We’ll start by looking at HTTPS and why you should use it to encrypt the traffic
between your users’ browsers and your app. Without HTTPS, attackers could subvert
many of the safeguards you add to your app, so it’s an important first step to take.

18.1 Adding HTTPS to an application
In this section you’ll learn about HTTPS: what it is, and why you need to be aware of it
for all your production applications. You’ll see two approaches to adding HTTPS to
your application: supporting HTTPS directly in your application and using SSL/TLS-
offloading with a reverse proxy. You’ll then learn how to use the development certifi-
cate to work with HTTPS on your local machine, and how to add an HTTPS certificate
to your app in production. Finally, you’ll learn how to enforce HTTPS in your app
using best practices such as security headers and HTTP redirection.

https://www.owasp.org
https://www.troyhunt.com/

574 CHAPTER 18 Improving your application’s security
 So far in this book, I’ve shown how the user’s browser sends a request across the
internet to your app using the HTTP protocol. We haven’t looked too much into
the details of that protocol, other than to establish that it uses verbs to describe the
type of request (such as GET and POST), that it contains headers with metadata about
the request, and optionally includes a body payload of data.

 By default, HTTP requests are unencrypted; they’re plain text files being sent over
the internet. Anyone on the same network as a user (such as someone using the same
public Wi-Fi in a coffee shop) can read the requests and responses sent back and
forth. Attackers can even modify the requests or responses as they’re in transit.

 Using unencrypted web apps in this way presents both a privacy and a security risk
to your users. Attackers could read the data sent in forms and returned by your app,
inject malicious code into your responses to attack users, or steal authentication cook-
ies and impersonate the user on your app.

 To protect your users, your app should encrypt the traffic between the user’s
browser and your app as it travels over the network by using the HTTPS protocol. This
is similar to HTTP traffic, but it uses an SSL/TLS1 certificate to encrypt requests and
responses, so attackers cannot read or modify the contents. In browsers, you can tell
that a site is using HTTPS by the https:// prefix to URLs (notice the “s”), or some-
times, by a padlock, as shown in figure 18.1.

TIP For details on how the SSL/TLS protocols work, see chapter 9 of Real-
World Cryptography by David Wong (Manning, 2021), http://mng.bz/zxz1.

1 SSL is an older standard that facilitates HTTPS, but the SSL protocol has been superseded by Transport Layer
Security (TLS), so I’ll be using TLS preferentially throughout this chapter.

Browsers typically highlight
HTTPS sites with a lock symbol.

Browsers highlight HTTP sites as
insecure. These warnings will become
more prominent in the future.

Figure 18.1 Encrypted apps using HTTPS and unencrypted apps using
HTTP in Edge. Using HTTPS protects your application from being viewed or
tampered with by attackers.

http://mng.bz/zxz1

575Adding HTTPS to an application
The reality is that, these days, you should always serve your production websites over
HTTPS. The industry is pushing toward HTTPS by default, with most browsers mov-
ing to mark HTTP sites as explicitly “not secure.” Skipping HTTPS will hurt the per-
ception of your app in the long run, so even if you’re not interested in the security
benefits, it’s in your best interest to set up HTTPS.

 To enable HTTPS you need to obtain and configure a TLS certificate for your
server. Unfortunately, although that process is a lot easier than it used to be, and it’s
now essentially free thanks to Let’s Encrypt (https://letsencrypt.org/), it’s still far
from simple in many cases. If you’re setting up a production server, I recommend
carefully following the tutorials on the Let’s Encrypt site. It’s easy to get it wrong, so
take your time.

TIP If you’re hosting your app in the cloud, most providers will provide one-
click TLS certificates so that you don’t have to manage certificates yourself.
This is extremely useful, and I highly recommend it for everyone.2

As an ASP.NET Core application developer, you can often get away without directly sup-
porting HTTPS in your app by taking advantage of the reverse-proxy architecture, as
shown in figure 18.2, in a process called SSL/TLS offloading/termination. Instead of
your application handling requests using HTTPS directly, it continues to use HTTP.
The reverse proxy is responsible for encrypting and decrypting HTTPS traffic to the
browser. This often gives you the best of both worlds—data is encrypted between the
user’s browser and the server, but you don’t have to worry about configuring certifi-
cates in your application.3

 Depending on the specific infrastructure where you’re hosting your app, SSL/TLS
could be offloaded to a dedicated device on your network, a third-party service like
Cloudflare, or a reverse proxy (such as IIS, NGINX, or HAProxy) running on the same
or a different server.

 Nevertheless, in some situations, you may need to handle SSL/TLS directly in
your app:

 If you’re exposing Kestrel to the internet directly, without a reverse proxy. This became
more common with ASP.NET Core 3.0 due to hardening of the Kestrel server. It
is also often the case when you’re developing your app locally.

 If having HTTP between the reverse proxy and your app is not acceptable. While secur-
ing traffic inside your network is less critical compared to external traffic, it is
undoubtedly more secure to use HTTPS for internal traffic too.

 If you’re using technology that requires HTTPS. Some newer network protocols, such
as gRPC and HTTP/2 require an HTTPS connection.

2 You don’t even have to be hosting your application in the cloud to take advantage of this. Cloudflare
(www.cloudflare.com) provides a CDN service that you can add TLS to. You can even use it for free.

3 If you’re concerned that the traffic is unencrypted between the reverse proxy and your app, then I recom-
mend reading Troy Hunt’s “CloudFlare, SSL and unhealthy security absolutism” post: http://mng.bz/eHCi.
It discusses the pros and cons of the issue as it relates to using Cloudflare to provide HTTPS encryption.

https://letsencrypt.org/
http://www.cloudflare.com
http://mng.bz/eHCi

576 CHAPTER 18 Improving your application’s security
In each of these scenarios, you’ll need to configure a TLS certificate for your applica-
tion so Kestrel can receive HTTPS traffic. In section 18.1.1 you’ll see the easiest way to
get started with HTTPS when developing locally, and in section 18.1.2 you’ll see how
to configure your application for production.

18.1.1 Using the ASP.NET Core HTTPS development certificates

Working with HTTPS certificates is easier than it used to be, but unfortunately it can
still be a confusing topic, especially if you’re a newcomer to the web. The .NET SDK,
Visual Studio, and IIS Express try to improve this experience by handling a lot of the
grunt-work for you.

 The first time you run a dotnet command using the .NET SDK, the SDK installs
an HTTPS development certificate onto your machine. Any ASP.NET Core applica-
tion you create using the default templates (or for which you don’t explicitly config-
ure certificates) will use this development certificate to handle HTTPS traffic.
However, the development certificate is not trusted by default. That means you’ll get
a browser warning, as shown in figure 18.3 when accessing a site after first installing
the .NET SDK.

With SSL/TLS passthrough, each
request remains encrypted all
the way to your app.

With SSL/TLS offloading, the reverse
proxy decrypts the data. The reverse
proxy then forwards the request to
your app without HTTPS encryption.

The reverse proxy adds headers
to the request so that the app
can tell the original request
was over HTTPS.

X-Forwarded-Proto: https

Figure 18.2 You have two options when using HTTPS with a reverse proxy: SSL/TLS passthrough and
SSL/TLS offloading. In SSL/TLS passthrough, the data is encrypted all the way to your ASP.NET Core app.
For SSL/TLS offloading, the reverse proxy handles decrypting the data, so your app doesn’t have to.

577Adding HTTPS to an application
A brief primer on certificates and signing
HTTPS uses public key cryptography as part of the data-encryption process. This uses
two keys: a public key that anyone can see, and a private key that only your server
can see. Anything encrypted with the public key can only be decrypted with the private
key. That way, a browser can encrypt something with your server’s public key, and
only your server can decrypt it. A complete TLS certificate consists of both the public
and private parts.

When a browser connects to your app, the server sends the public key part of the TLS
certificate. But how does the browser know that it was definitely your server that sent
the certificate? To achieve this, your TLS certificate contains additional certificates,
including a certificate from a third party, a certificate authority (CA). This trusted cer-
tificate is called a root certificate.

CAs are special trusted entities, and browsers are hardcoded to trust certain root cer-
tificates. In order for the TLS certificate for your app to be trusted, it must contain (or
be signed by) a trusted root certificate.

When you use the ASP.NET Core development certificate, or if you create your own
self-signed certificate, your site’s HTTPS is missing that trusted root certificate. That
means browsers won’t trust your certificate and won’t connect to your server by
default. To get around this, you need to tell your development machine to explicitly
trust the certificate.

In production, you can’t use a development or self-signed certificate, as a user’s
browser won’t trust it. Instead, you need to obtain a signed HTTPS certificate from a
service like Let’s Encrypt, or from a cloud provider like AWS, Azure, or Cloudflare.
These certificates will already be signed by a trusted CA, so they will be automatically
trusted by browsers.

The error code indicates the
certificate authority is invalid.

The site is served over HTTPS,
but as the certificate is untrusted,
the browser marks it as insecure.

To access the site, you need
to click Advanced and force
access (not recommended).

Figure 18.3 The developer certificate is not trusted by default, so apps serving HTTPS traffic
using it will be marked as insecure by browsers. Although you can bypass the warnings if
necessary, you should instead update the certificate to be trusted.

578 CHAPTER 18 Improving your application’s security
To solve these browser warnings, you need to trust the certificate. Trusting a certificate
is a sensitive operation; it’s saying, “I know this certificate doesn’t look quite right, but
just ignore that,” so it’s hard to do automatically. If you’re running on Windows or
macOS, you can trust the development certificate by running

dotnet dev-certs https --trust

This command trusts the certificate by registering it in the operating system’s “certifi-
cate store.” After you run this command, you should be able to access your websites
without seeing any warnings or “not secure” labels, as shown in figure 18.4.

TIP You may need to close your browser after trusting the certificate to clear
the browser’s cache.

The developer certificate works smoothly on Windows and macOS. Unfortunately,
trusting the certificate in Linux is a little trickier and depends on the particular flavor
you’re using. On top of that, software on Linux often uses its own certificate store, so
you’ll probably need to add the certificate directly to your favorite browser. I suggest
looking at the documentation for your favorite browser to figure out the best approach.
For advice on other platforms, such as Docker, see Microsoft’s “How to set up a devel-
oper certificate for Docker” section in the “Enforce HTTPS in ASP.NET Core” docu-
mentation: http://mng.bz/0mBJ.

 If you’re using Windows, Visual Studio, and IIS Express for development, then you
may not find the need to trust the development certificate. IIS Express acts as a
reverse proxy when you’re developing locally, so it handles the SSL/TLS setup itself.
On top of that, Visual Studio should trust the IIS development certificate as part of
installation, so you may never see the browser warnings at all.

 The ASP.NET Core and IIS development certificates make it easy to use Kestrel
with HTTPS locally, but those certificates won’t help once you move to production.
In the next section I’ll show you how to configure Kestrel to use a production TLS
certificate.

Now the certificate is trusted,
so it has the lock symbol, is no
longer marked “not secure,”
and isn’t shown in red.

Figure 18.4 Once the development certificate is trusted, you will no longer see browser
warnings about the connection.

http://mng.bz/0mBJ

579Adding HTTPS to an application
18.1.2 Configuring Kestrel with a production HTTPS certificate

Creating a TLS certificate for production is often a laborious process, as it requires
proving to a third-party certificate authority (CA) that you own the domain you’re cre-
ating the certificate for. This an important step in the “trust” process and ensures that
attackers can’t impersonate your servers. The result of the process is one or more files,
which is the HTTPS certificate you need to configure for your app.

TIP The specifics of how to obtain a certificate vary by provider and by your
OS platform, so follow your provider’s documentation carefully. The vagaries
and complexities of this process are one of the reasons I strongly favor the
SSL/TLS-offloading or “one-click” approaches described previously. Those
approaches mean my apps don’t need to deal with certificates, and I don’t
need to use the approaches described in this section; I delegate that responsi-
bility to another piece of the network, or to the underlying platform.

Once you have a certificate, you need to configure Kestrel to use it to serve HTTPS
traffic. In chapter 16 you saw how to set the port your application listens on with the
ASPNETCORE_URLS environment variable or via the command line, and you saw that
you could provide an HTTPS URL. As you didn’t provide any certificate configura-
tion, Kestrel used the development certificate by default. In production you need to
tell Kestrel which certificate to use.

 Kestrel is very configurable, allowing you to configure your certificates in multiple
ways. You can use different certificates for different ports, you can load from a .pfx file
or from the OS certificate store, or you can have a different configuration for each
URL endpoint you expose. For full details, see the “Endpoint configuration” section
in Microsoft’s “Kestrel web server implementation in ASP.NET Core” documentation:
http://mng.bz/KMdX.

 The following listing shows one possible way to set a custom HTTPS certificate for
your production app, by configuring the default certificate Kestrel uses for HTTPS
connections. You can add the "Kestrel:Certificates:Default" section to your
appsettings.json file (or using any other configuration source, as described in chap-
ter 11) to define the .pfx file of the certificate to use. You must also provide the pass-
word for accessing the certificate.

{
 "Kestrel": {
 "Certificates": {
 "Default": {
 "Path": "localhost.pfx",
 "Password": "testpassword"
 }
 }
 }
}

Listing 18.1 Configuring the default HTTPS certificate for Kestrel using a .pfx file

Create a configuration section
at Kestrel:Certificates:Default.

The relative or absolute
path to the certificate

The password for
opening the certificate

http://mng.bz/KMdX

580 CHAPTER 18 Improving your application’s security
The preceding example is the simplest way to replace the HTTPS certificate, as it
doesn’t require changing any of Kestrel’s defaults. You can use a similar approach to
load the HTTPS certificate from the OS certificate store (on Windows or macOS), as
shown in the “Endpoint configuration” documentation mentioned previously (http://
mng.bz/KMdX).

WARNING Listing 18.1 has hardcoded the certificate filename and password
for simplicity, but you should either load these from a configuration store like
user-secrets, as you saw in chapter 11, or load the certificate from the local
store. Never put production passwords in your appsettings.json files.

All the default ASP.NET Core templates configure your application to serve both
HTTP and HTTPS traffic, and with the configuration you’ve seen so far, you can
ensure your application can handle both HTTP and HTTPS in development and in
production.

 However, whether you use HTTP or HTTPS may depend on the URL users click
when they first browse to your app. For example, if your app listens using the default
URLs, http:/ /localhost:5000 for HTTP traffic and https:/ /localhost:5001 for HTTPS
traffic, if a user navigates to the HTTP URL, their traffic will be unencrypted. Seeing
as you’ve gone to all the trouble to set up HTTPS, it’s probably best that you force
users to use it.

18.1.3 Enforcing HTTPS for your whole app

Enforcing HTTPS across your whole website is practically required these days. Brows-
ers are beginning to explicitly label HTTP pages as insecure; for security reasons you
must use TLS any time you’re transmitting sensitive data across the internet, and,
thanks to HTTP/2, adding TLS can improve your app’s performance.4

 There are multiple approaches to enforcing HTTPS for your application. If you’re
using a reverse proxy with SSL/TLS-offloading, it might be handled for you anyway,
without having to worry about it within your apps. Nevertheless, it doesn’t hurt to
enforce SSL/TLS in your applications too, regardless of what the reverse proxy may
be doing.

NOTE If you’re building a Web API, rather than a Razor Pages app, it’s com-
mon to just reject HTTP requests, without using the approaches described in
this section. These protections apply primarily when building apps to be con-
sumed in a browser. For more details, see Microsoft’s “Enforce HTTPS in
ASP.NET Core” documentation: http://mng.bz/j46a.

One approach to improving the security of your app is to use HTTP security headers.
These are HTTP headers sent as part of your HTTP response that tell the browser how

4 HTTP/2 offers many performance improvements over HTTP/1.x, and all modern browsers require HTTPS
to enable it. For a great introduction to HTTP/2, see Google’s “Introduction to HTTP/2”: http://mng
.bz/9M8j.

http://mng.bz/KMdX
http://mng.bz/KMdX
http://mng.bz/KMdX
http://mng.bz/9M8j
http://mng.bz/9M8j
http://mng.bz/9M8j
http://mng.bz/j46a

581Adding HTTPS to an application
it should behave. There are many different headers available, most of which restrict
the features your app can use in exchange for increased security.5 In the next chapter
you’ll see how to add your own custom headers to your HTTP responses by creating
custom middleware.

 One of these security headers, the HTTP Strict Transport Security (HSTS) header,
can help ensure browsers use HTTPS where it’s available, instead of defaulting to
HTTP.

ENFORCING HTTPS WITH HTTP STRICT TRANSPORT SECURITY HEADERS

It’s unfortunate, but by default, browsers always load apps over HTTP, unless other-
wise specified. That means your apps typically must support both HTTP and HTTPS,
even if you don’t want to serve any traffic over HTTP. One mitigation for this (and a
security best practice), is to add HTTP Strict Transport Security headers to your
responses.

DEFINITION HTTP Strict Transport Security (HSTS) is a header that instructs
the browser to use HTTPS for all subsequent requests to your application. The
browser will no longer send HTTP requests to your app and will only use
HTTPS instead. It can only be sent with responses to HTTPS requests. It is
only relevant for requests originating from a browser—it has no effect on
server-to-server communication.

HSTS headers are strongly recommended for production apps. You generally don’t
want to enable them for local development, as that would mean you could never run a
non-HTTPS app locally. In a similar fashion, you should only use HSTS on sites for
which you always intend to use HTTPS, as it’s hard (sometimes impossible) to turn-off
HTTPS once it’s enforced with HSTS.

 ASP.NET Core comes with built-in middleware for setting HSTS headers, which
is included in some of the default templates automatically. The following listing
shows how you can configure the HSTS headers for your application using the
HstsMiddleware in Startup.cs.

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 services.AddHsts(options =>
 {
 options.MaxAge = TimeSpan.FromHours(1);
 });
 }

5 Scott Helme has some great guidance on this and other security headers you can add to your site, such as the
Content Security Policy (CSP) header. See “Hardening your HTTP response headers” on his website:
https://scotthelme.co.uk/hardening-your-http-response-headers/.

Listing 18.2 Using HstsMiddleware to add HSTS headers to an application

Configure your HSTS
header settings. This
changes the MaxAge from
the default of 30 days.

https://scotthelme.co.uk/hardening-your-http-response-headers/

582 CHAPTER 18 Improving your application’s security
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsProduction())
 {
 app.UseHsts();
 }

 app.UseStaticFiles();
 app.UseRouting();
 app.UseAuthorization();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

TIP The preceding example shows how to change the MaxAge sent in the
HSTS header. It’s a good idea to start with a small value initially. Once you’re
sure your app’s HTTPS is functioning correctly, increase the age for greater
security. For more details on HSTS see Scott Helme’s article, “HSTS—The
missing link in Transport Layer Security”: https://scotthelme.co.uk/hsts-the-
missing-link-in-tls/.

HSTS is a great option for forcing users to use HTTPS on your website. But one prob-
lem with the header is that it can only be added to HTTPS requests. That means you
must have already made an HTTPS request before HSTS kicks in: if the initial request
is HTTP, no HSTS header is sent, and you stay on HTTP! That’s unfortunate, but you
can mitigate it by redirecting insecure requests to HTTPS immediately.

REDIRECTING FROM HTTP TO HTTPS WITH THE HTTPS REDIRECTION MIDDLEWARE

The HstsMiddleware should generally be used in conjunction with middleware that
redirects all HTTP requests to HTTPS.

TIP It’s possible to apply HTTPS redirection to only parts of your applica-
tion, such as to specific Razor Pages, but I don’t recommend that, as it’s too
easy to open up a security hole in your application.

ASP.NET Core comes with HttpsRedirectionMiddleware, which you can use to enforce
HTTPS across your whole app. You add it to the middleware pipeline in the Configure
section of Startup, and it ensures that any requests that pass through it are secure. If
an HTTP request reaches the HttpsRedirectionMiddleware, the middleware imme-
diately short-circuits the pipeline with a redirect to the HTTPS version of the request.
The browser will then repeat the request using HTTPS instead of HTTP.

NOTE The eagle-eyed among you will notice that even with the HSTS and
redirection middleware, there is still an inherent weakness. By default, brows-
ers will always make an initial, insecure, request over HTTP to your app. The
only way to avoid this is by HSTS-preloading, which tells browsers to always
use HTTPS. You can find a great guide to HSTS, including preloading, on the

You shouldn’t use HSTS
in local environments.

Adds the HstsMiddleware

The HstsMiddleware
should be very early in
the middleware pipeline.

https://scotthelme.co.uk/hsts-the-missing-link-in-tls/
https://scotthelme.co.uk/hsts-the-missing-link-in-tls/

583Adding HTTPS to an application
ForwardPMX site: “The Ultimate Guide to HSTS Protocol” by Chris Herbrand,
http://mng.bz/Wdmg.

The HttpsRedirectionMiddleware is added in the default ASP.NET Core templates.
It is typically placed after the error handling and HstsMiddleware, as shown in the fol-
lowing listing. By default, the middleware redirects all HTTP requests to the secure
endpoint, using an HTTP 307 Temporary Redirect status code.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseExceptionHandler("/Error");
 if (env.IsProduction())
 {
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseRouting();
 app.UseAuthorization();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

The HttpsRedirectionMiddleware will automatically redirect HTTP requests to the
first configured HTTPS endpoint for your application. If your application isn’t config-
ured for HTTPS, the middleware won’t redirect and instead will log a warning:

warn: Microsoft.AspNetCore.HttpsPolicy.HttpsRedirectionMiddleware[3]
 Failed to determine the https port for redirect.

If you want the middleware to redirect to a different port than Kestrel knows about,
you can configure that by setting the ASPNETCORE_HTTPS_PORT environment variable.
This is sometimes necessary if you’re using a reverse proxy, and it can be set in alterna-
tive ways, as described in Microsoft’s “Enforce HTTPS in ASP.NET Core” documenta-
tion: http://mng.bz/QmN4.

Listing 18.3 Using HttpsRedirectionMiddleware to enforce HTTPS for an
application

SSL/TLS offloading, header forwarding, and detecting secure requests
At the start of section 18.1, I encouraged you to consider terminating HTTPS requests
at a reverse proxy. That way, the user uses HTTPS to talk to the reverse proxy, and
the reverse proxy talks to your app using HTTP. With this setup, your users are pro-
tected but your app doesn’t have to deal with TLS certificates itself.

Adds the HttpsRedirectionMiddleware
to the pipeline. Redirects all HTTP
requests to HTTPS.

http://mng.bz/Wdmg
http://mng.bz/QmN4

584 CHAPTER 18 Improving your application’s security
HTTPS is one of the most basic requirements for adding security to your application
these days. It can be tricky to set up initially, but once you’re up and running, you
can largely forget about it, especially if you’re using SSL/TLS termination at a
reverse proxy.

 Unfortunately, most other security practices require rather more vigilance to
ensure you don’t accidentally introduce vulnerabilities into your app as it grows and
develops. Many attacks are conceptually simple and have been known about for
years, yet they’re still commonly found in new applications. In the next section we’ll
look at one such attack and see how to defend against it when building apps using
Razor Pages.

18.2 Defending against cross-site scripting (XSS) attacks
In this section I’ll describe cross-site scripting attacks and how attackers can use them
to compromise your users. I’ll show how the Razor Pages framework protects you from
these attacks, how to disable the protections when you need to, and what to look out
for. I’ll also discuss the difference between HTML encoding and JavaScript encoding,
and the impact of using the wrong encoder.

(continued)

In order for the HttpsRedirectionMiddleware to work correctly, Kestrel needs
some way of knowing whether the original request that the reverse proxy received was
over HTTP or HTTPS. The reverse proxy communicates to your app over HTTP, so Kes-
trel can’t figure that out without extra help.

The standard approach used by most reverse proxies (such as IIS, NGINX, and
HAProxy) is to add headers to the request before forwarding it to your app. Specifi-
cally, a header called X-Forwarded-Proto is added, indicating whether the original
request protocol was HTTP or HTTPS.

ASP.NET Core includes ForwardedHeadersMiddleware to look for this header (and
others) and update the request accordingly, so your app treats a request that was
originally secured by HTTPS as secure for all intents and purposes.

If you’re using IIS with the UseIisIntegration() extension, the header forwarding
is handled for you automatically. If you’re using a different reverse proxy, such as
NGINX or HAProxy, you can enable the middleware by setting the environment variable
ASPNETCORE_FORWARDEDHEADERS_ENABLED=true, as you saw in chapter 16. Alter-
natively, you can manually add the middleware to your application, as shown in sec-
tion 16.3.2.

When the reverse proxy forwards a request, ForwardedHeadersMiddleware will look
for the X-Forwarded-Proto header and will update the request details as appropri-
ate. For all subsequent middleware, the request is considered secure. When adding the
middleware manually, it’s important that you place ForwardedHeadersMiddleware
before the call to UseHsts() or UseHttpsRedirection(), so that the forwarded
headers are read and the request is marked secure, as appropriate.

585Defending against cross-site scripting (XSS) attacks
 Attackers can exploit a vulnerability in your app to create cross-site scripting (XSS)
attacks that execute code in another user’s browser.6 Commonly, attackers submit con-
tent using a legitimate approach, such as an input form, which is later rendered some-
where to the page. By carefully crafting malicious input, the attacker can execute
arbitrary JavaScript on a user’s browser and so can steal cookies, impersonate the user,
and generally do bad things.

 Figure 18.5 shows a basic example of an XSS attack. Legitimate users of your app
can send their name to your app by submitting a form. The app then adds the name
to an internal list and renders the whole list to the page. If the names are not ren-
dered safely, a malicious user can execute JavaScript in the browser of every other user
that views the list.

In figure 18.5 the user entered a snippet of HTML such as their name. When users
view the list of names, the Razor template renders the names using @Html.Raw(),
which writes the <script> tag directly to the document. The user’s input has become
part of the page’s HTML structure. As soon as the page is loaded in a user’s browser,

6 For a detailed discussion of XSS attacks, see the “Cross Site Scripting (XSS)” article on the OWASP site:
https://owasp.org/www-community/attacks/xss/.

POST /vulnerable HTTP/1.1

Name=%3Cscript%3Ealert%28%27Oh+no
%21+XSS%21%27%29%3C%2Fscript%3E

1. An attacker identifies a vulnerability
on your app. They submit carefully
crafted malicious input that is
displayed on your app.

3. Whenever a user visits your
app, the script is displayed
and automatically run by the
browser. This script could do
anything, such as steal their
cookies and send them to the
attacker.

2. The app renders the malicious
input to the page. By not encoding
the input before it’s rendered, the
app exposes an XSS vulnerability.

@Html.Raw(name)

Figure 18.5 How an XSS vulnerability is exploited. An attacker submits malicious content to your app, which
is displayed in the browsers of other users. If the app doesn’t encode the content when writing to the page,
the input becomes part of the HTML of the page and can run arbitrary JavaScript.

https://owasp.org/www-community/attacks/xss/

586 CHAPTER 18 Improving your application’s security
the <script> tag executes, and the user is compromised. Once an attacker can exe-
cute arbitrary JavaScript on a user’s browser, they can do pretty much anything.

 The vulnerability here is due to rendering the user input in an unsafe way. If the
data isn’t encoded to make it safe before it’s rendered, you could open your users to
attack. By default, Razor protects against XSS attacks by HTML-encoding any data written
using Tag Helpers, HTML Helpers, or the @ syntax. So, generally, you should be safe,
as you saw in chapter 7.

 Using @Html.Raw() is where the danger lies—if the HTML you’re rendering con-
tains user input (even indirectly), you could have an XSS vulnerability. By rendering
the user input with @ instead, the content is encoded before it’s written to the output,
as shown in figure 18.6.

This example demonstrates using HTML encoding to prevent elements being directly
added to the HTML DOM, but it’s not the only case you have to think about. If you’re
passing untrusted data to JavaScript, or using untrusted data in URL query values, you
must make sure you encode the data correctly.

 A common scenario is when you’re using jQuery or JavaScript with Razor pages,
and you want to pass a value from the server to the client. If you use the standard @
symbol to render the data to the page, the output will be HTML-encoded. Unfortu-
nately, if you HTML-encode a string and inject it directly into JavaScript, you probably
won’t get what you expect.

POST /vulnerable HTTP/1.1

Name=%3Cscript%3Ealert%28%27Oh+no
%21+XSS%21%27%29%3C%2Fscript%3E

@name

1. An attacker attempts to find
a vulnerability on your app
by crafting malicious input.

2. The app renders the malicious input,
but it HTML encodes it first, using @.
The malicious content is rendered safe,
and there’s no XSS vulnerability.

3. The input is encoded, so the
text renders as a safe string
instead of an HTML script
element. The attacker has failed.

Figure 18.6 Protecting against XSS attacks by HTML-encoding user input using @ in Razor templates. The
<script> tag is encoded so that it is no longer rendered as HTML and can’t be used to compromise your app.

587Defending against cross-site scripting (XSS) attacks
 For example, if you have a variable in your Razor file called name, and you want to
make it available in JavaScript, you might be tempted to use something like this:

<script>var name = '@name'</script>

If the name contains special characters, Razor will encode them using HTML encod-
ing, which probably isn’t what you want in this JavaScript context. For example, if name
was Arnold "Arnie" Schwarzenegger, then rendering it as you did previously would
give this:

<script>var name = 'Arnold "Arnie" Schwarzenegger';</script>

Note how the double quotation marks (") have been HTML-encoded to ". If
you use this value in JavaScript directly, expecting it to be a “safe” encoded value, it’s
going to look wrong, as shown in figure 18.7.

Instead, you should encode the variable using JavaScript encoding so that the double-
quote character rendered as a safe Unicode character, \u0022. You can achieve this by
injecting a JavaScriptEncoder into the view (as you saw in chapter 10) and calling
Encode() on the name variable:

@inject System.Text.Encodings.Web.JavaScriptEncoder encoder;
<script>var name = '@encoder.Encode(name)'</script>

To avoid having to remember to use JavaScript encoding, I recommend you don’t
write values into JavaScript like this. Instead, write the value to an HTML element’s
attributes, and then read that into the JavaScript variable later. That avoids the need
for the JavaScript encoder entirely.

<div id="data" data-name="@name"></div>
<script>
var ele = document.getElementById('data');

Listing 18.4 Passing values to JavaScript by writing them to HTML attributes

With HTML encoding, the quote
marks are displayed incorrectly
in JavaScript.

JavaScript encoding gives a
safe way to render the user
input in the expected format.

Figure 18.7 Comparison of alerts when using JavaScript encoding compared to HTML
encoding

Write the value you want
in JavaScript to a data-*
attribute. This will HTML-
encode the data.

Gets a reference to the HTML element

588 CHAPTER 18 Improving your application’s security
var name = ele.getAttribute('data-name');
</script>

XSS attacks are still common, and it’s easy to expose yourself to them whenever you
allow users to input data. Validation of the incoming data can sometimes help, but it’s
often a tricky problem. For example, a naive name validator might require that you
only use letters, which would prevent most attacks. Unfortunately, that doesn’t account
for users with hyphens or apostrophes in their name, let alone users with non-western
names. People get (understandably) upset when you tell them their name is invalid,
so be wary of this approach!

 Whether or not you use strict validation, you should always encode the data
when you render it to the page. Think carefully whenever you find yourself writing
@Html.Raw(). Is there any way for a user to get malicious data into that field? If so,
you’ll need to find another way to display the data.

 XSS vulnerabilities allow attackers to execute JavaScript on a user’s browser. The
next vulnerability we’re going to consider lets them make requests to your API as
though they’re a different logged-in user, even when the user isn’t using your app.
Scared? I hope so!

18.3 Protecting from cross-site request forgery (CSRF)
attacks
In this section you’ll learn about cross-site request forgery attacks, how attackers can use
them to impersonate a user on your site, and how to protect against them using anti-
forgery tokens. Razor Pages protects you from these attacks by default, but you can dis-
able these verifications, so it’s important to understand the implications of doing so.

 Cross-site request forgery (CSRF) attacks can be a problem for websites or APIs
that use cookies for authentication. A CSRF attack involves a malicious website mak-
ing an authenticated request to your API on behalf of the user, without the user initi-
ating the request. In this section we’ll explore how these attacks work and how you
can mitigate them with anti-forgery tokens.

 The canonical example of this attack is a bank transfer/withdrawal. Imagine you
have a banking application that stores authentication tokens in a cookie, as is com-
mon (especially in traditional server-side rendered applications). Browsers automati-
cally send the cookies associated with a domain with every request, so the app knows
whether a user is authenticated.

 Now imagine your application has a page that lets a user transfer funds from their
account to another account using a POST request to the Balance Razor Page. You have
to be logged in to access the form (you’ve protected the Razor Page with the [Autho-
rize] attribute), but otherwise you just post a form that says how much you want to
transfer, and where you want to transfer it.

 Suppose a user visits your site, logs in, and performs a transaction. They then visit a
second website that the attacker has control of. The attacker has embedded a form on

Reads the data-* attribute into
JavaScript, which will convert it
to JavaScript encoding

589Protecting from cross-site request forgery (CSRF) attacks
their website that performs a POST to your bank’s website, identical to the transfer
funds form on your banking website. This form does something malicious, such as
transfer all the user’s funds to the attacker, as shown in figure 18.8. Browsers automat-
ically send the cookies for the application when the page does a full form post, and
the banking app has no way of knowing that this is a malicious request. The unsus-
pecting user has given all their money to the attacker!

The vulnerability here revolves around the fact that browsers automatically send cook-
ies when a page is requested (using a GET request) or a form is POSTed. There’s no dif-
ference between a legitimate POST of the form in your banking app and the attacker’s
malicious POST. Unfortunately, this behavior is baked into the web; it’s what allows you
to navigate websites seamlessly after initially logging in.

 A common solution to the attack is the synchronizer token pattern, which uses user-
specific, unique, anti-forgery tokens to enforce a difference between a legitimate POST
and a forged POST from an attacker.7 One token is stored in a cookie and another is
added to the form you wish to protect. Your app generates the tokens at runtime

7 The “Cross-Site Request Forgery Prevention Cheat Sheet” article on the OWASP site gives a thorough discus-
sion of the CSRF vulnerability, including the synchronizer token pattern: http://mng.bz/5jRa.

1. A user browses your
app and logs in, which
sets an authentication
cookie.

<form>
<input name="value"/>
<input name="account"/>
</form>

3. The malicious website
forges a form post to
your website.

4. As the browser automatically
sends the cookies, your app
executes the form as though
the user sent it directly.

2. The user then visits a
malicious website (or
a compromised website).

Figure 18.8 A CSRF attack occurs when a logged-in user visits a malicious site. The malicious
site crafts a form that matches one on your app and POSTs it to your app. The browser sends the
authentication cookie automatically, so your app sees the request as a valid request from the user.

http://mng.bz/5jRa

590 CHAPTER 18 Improving your application’s security
based on the current logged-in user, so there’s no way for an attacker to create one for
their forged form.

 When the Balance Razor Page receives a form POST, it compares the value in the
form with the value in the cookie. If either value is missing, or they don’t match,
the request is rejected. If an attacker creates a POST, the browser will post the cookie
token as usual, but there won’t be a token in the form itself, or the token won’t be
valid. The Razor Page will reject the request, protecting from the CSRF attack, as in
figure 18.9.

The good news is that Razor Pages automatically protects you against CSRF attacks.
The Form Tag Helper automatically sets an anti-forgery token cookie and renders the
token to a hidden field called __RequestVerificationToken for every <form> ele-
ment in your app (unless you specifically disable them). For example, take this simple
Razor template that posts back to the same Razor Page:

<form method="post">
 <label>Amount</label>
 <input type="number" name="amount" />
 <button type="submit">Withdraw funds</button>
</form>

1. A user browses your
app and logs in, which
sets an authentication
cookie.

<form>
<input name=“value”/>
<input name=“account”/>
</form>

4. The malicious website forges
a form post to your website,
but it doesn't have an anti-
forgery token.

5. The browser automatically sends the
cookies, but as the form contains
no anti-forgery token, your app
rejects the request.

3. The user then visits a
malicious website (or
a compromised website).

2. Forms on your app
also generate an anti-
forgery token cookie.

Figure 18.9 Protecting against a CSRF attack using anti-forgery tokens. The browser automatically
forwards the cookie token, but the malicious site can’t read it, and so can’t include a token in the
form. The app rejects the malicious request because the tokens don’t match.

591Protecting from cross-site request forgery (CSRF) attacks
When rendered to HTML, the anti-forgery token is stored in the hidden field and is
posted back with a legitimate request:

<form method="post">
 <label>Amount</label>
 <input type="number" name="amount" />
 <button type="submit" >Withdraw funds</button>
 <input name="__RequestVerificationToken" type="hidden"
 value="CfDJ8Daz26qb0hBGsw7QCK"/>
</form>

ASP.NET Core automatically adds the anti-forgery tokens to every form, and Razor
Pages automatically validates them. The framework ensures the anti-forgery tokens
exist in both the cookie and the form data, ensures that they match, and will reject any
requests where they don’t.

 If you’re using MVC controllers with views instead of Razor Pages, ASP.NET Core
still adds the anti-forgery tokens to every form. Unfortunately, it doesn’t validate them
for you. Instead, you have to decorate your controllers and actions with [Validate-
AntiForgeryToken] attributes. This ensures that the anti-forgery tokens exist in both
the cookie and the form data, checks that they match, and rejects any requests where
they don’t.

WARNING ASP.NET Core doesn’t automatically validate anti-forgery tokens if
you’re using MVC controllers with Views. You must make sure you mark all
vulnerable methods with [ValidateAntiForgeryToken] attributes instead, as
described in the “Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in
ASP.NET Core” documentation: http://mng.bz/Xd6E. Note that if you’re
using Web API controllers and are not using cookies for authentication, you
are not vulnerable to CSRF attacks.

Generally, you only need to use anti-forgery tokens for POST, DELETE, and other dan-
gerous request types that are used for modifying state; GET requests shouldn’t be used
for this purpose, so the framework doesn’t require valid anti-forgery tokens to call
them. Razor Pages validates anti-forgery tokens for dangerous verbs like POST and
ignores safe verbs like GET. As long as you create your app following this pattern (and
you should!), the framework will do the right thing to keep you safe.

 If you need to explicitly ignore anti-forgery tokens on a Razor Page for some rea-
son, you can disable the validation by applying the [IgnoreAntiforgeryToken] attri-
bute to a Razor Page’s PageModel. This bypasses the framework protections for those
cases where you’re doing something that you know is safe and doesn’t need protect-
ing, but in most cases it’s better to play it safe and validate.

 CSRF attacks can be a tricky thing to get your head around from a technical point
of view, but for the most part everything should work without much effort on your part.
Razor will add anti-forgery tokens to your forms, and the Razor Pages framework will
take care of validation for you.

http://mng.bz/Xd6E

592 CHAPTER 18 Improving your application’s security
 Where things get trickier is if you’re making a lot of requests to an API using Java-
Script, and you’re posting JSON objects rather than form data. In these cases, you
won’t be able to send the verification token as part of a form (because you’re sending
JSON), so you’ll need to add it as a header in the request instead.8

TIP If you’re not using cookie authentication, and instead have an SPA that
sends authentication tokens in a header, then good news—you don’t have to
worry about CSRF at all! Malicious sites can only send cookies, not headers,
to your API, so they can’t make authenticated requests.

8 Exactly how you do this varies depending on the JavaScript framework you’re using. Microsoft’s documenta-
tion (“Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core”) contains examples using
JQuery and AngularJS, but you should be able to extend this to your JavaScript framework of choice:
http://mng.bz/54Sl.

Generating unique tokens with the data protection APIs
The anti-forgery tokens used to prevent CSRF attacks rely on the ability of the frame-
work to use strong symmetric encryption to encrypt and decrypt data. Encryption algo-
rithms typically rely on one or more keys, which are used to initialize the encryption
and to make the process reproducible. If you have the key, you can encrypt and
decrypt data; without it, the data is secure.

In ASP.NET Core, encryption is handled by the data protection APIs. They’re used to
create the anti-forgery tokens, to encrypt authentication cookies, and to generate
secure tokens in general. Crucially, they also control the management of the key files
that are used for encryption.

A key file is a small XML file that contains the random key value used for encryption
in ASP.NET Core apps. It’s critical that it’s stored securely—if an attacker got hold of
it, they could impersonate any user of your app and generally do bad things!

The data protection system stores the keys in a safe location, depending on how and
where you host your app. For example,

 Azure Web App—In a special synced folder, shared between regions
 IIS without user profile—Encrypted in the registry
 Account with user profile—In %LOCALAPPDATA%\ASP.NET\DataProtection-Keys

on Windows, or ~/.aspnet/DataProtection-Keys on Linux or macOS
 All other cases—In memory; when the app restarts, the keys will be lost

So why do you care? In order for your app to be able to read your users’ authentication
cookies, it must decrypt them using the same key that was used to encrypt them. If
you’re running in a web-farm scenario, then, by default, each server will have its own
key and won’t be able to read cookies encrypted by other servers.

http://mng.bz/54Sl

593Calling your web APIs from other domains using CORS
It’s worth clarifying that the CSRF vulnerability discussed in this section requires that a
malicious site does a full form POST to your app. The malicious site can’t make the
request to your API using client-side only JavaScript, as browsers will block JavaScript
requests to your API that are from a different origin.

 This is a safety feature, but it can often cause you problems. If you’re building a cli-
ent-side SPA, or even if you have a little JavaScript on an otherwise server-side ren-
dered app, you may find you need to make such cross-origin requests. In the next
section I’ll describe a common scenario you’re likely to run into and show how you
can modify your apps to work around it.

18.4 Calling your web APIs from other domains using CORS
In this section you’ll learn about cross-origin resource sharing (CORS), a protocol to
allow JavaScript to make requests from one domain to another. CORS is a frequent
area of confusion for many developers, so this section describes why it’s necessary and
how CORS headers work. You’ll then learn how to add CORS to both your whole
application and specific Web API actions, and how to configure multiple CORS poli-
cies for your application.

 As you’ve already seen, CSRF attacks can be powerful, but they would be even
more dangerous if it weren’t for browsers implementing the same-origin policy. This
policy blocks apps from using JavaScript to call a web API at a different location unless
the web API explicitly allows it.

DEFINITION Origins are deemed the same if they match the scheme (HTTP or
HTTPS), domain (example.com), and port (80 by default for HTTP, and 443
for HTTPS). If an app attempts to access a resource using JavaScript and the
origins aren’t identical, the browser blocks the request.

The same-origin policy is strict—the origins of the two URLs must be identical for the
request to be allowed. For example, the following origins are the same:

 http:/ /example.com/home
 http:/ /example.com/site.css

To get around this, you must configure your app to store its data protection keys in a
central location. This could be a shared folder on a hard drive, a Redis instance, or
an Azure blob storage instance, for example.

Microsoft’s documentation on the data protection APIs is extremely detailed, but it
can be overwhelming. I recommend reading the section on configuring data protec-
tion, (“Configure ASP.NET Core Data Protection,” http://mng.bz/d40i) and configur-
ing a key storage provider for use in a web-farm scenario (“Key storage providers in
ASP.NET Core,” http://mng.bz/5pW6).

http://mng.bz/d40i
http://mng.bz/5pW6

594 CHAPTER 18 Improving your application’s security
The paths are different for these two URLs (/home and /site.css), but the scheme,
domain, and port (80) are identical. So if you were on the home page of your app, you
could request the /site.css file using JavaScript without any issues.

 In contrast, the origins of the following sites are all different, so you couldn’t
request any of these URLs using JavaScript from the http:/ /example.com origin:

 https:/ /example.com—Different scheme (https)
 http:/ /www.example.com—Different domain (includes a subdomain)
 http:/ /example.com:5000—Different port (default HTTP port is 80)

For simple apps, where you have a single web app handling all of your functionality,
this limitation might not be a problem, but it’s extremely common for an app to make
requests to another domain.

 For example, you might have an e-commerce site hosted at http://shopping.com,
and you’re attempting to load data from http://api.shopping.com to display details
about the products available for sale. With this configuration, you’ll fall foul of the
same-origin policy. Any attempt to make a request using JavaScript to the API domain
will fail, with an error similar to figure 18.10.

The need to make cross-origin requests from JavaScript is increasingly common with
the rise of client-side SPAs and the move away from monolithic apps. Luckily, there’s a
web standard that lets you work around this in a safe way; this standard is called cross-
origin resource sharing (CORS). You can use CORS to control which apps can call
your API, so you can enable scenarios like the one just described.

18.4.1 Understanding CORS and how it works

CORS is a web standard that allows your Web API to make statements about who can
make cross-origin requests to it. For example, you could make statements such as these:

 Allow cross-origin requests from http://shopping.com and https://app.shopping
.com.

 Only allow GET cross-origin requests.

The browser won’t allow
cross-origin requests by
default and will block
your app from accessing
the response.

Figure 18.10 The console log for a failed cross-origin request. Chrome has blocked a cross-origin
request from the app http:/ /shopping.com:6333 to the API at http:/ /api.shopping.com:5111.

http://shopping.com
http://api.shopping.com
http://shopping.com
https://app.shopping.com
https://app.shopping.com
https://app.shopping.com

595Calling your web APIs from other domains using CORS
 Allow returning the Server header in responses to cross-origin requests.
 Allow credentials (such as authentication cookies or authorization headers) to

be sent with cross-origin requests.

You can combine these rules into a policy and apply different policies to different end-
points of your API. You could apply a policy to your entire application, or a different
policy to every API action.

 CORS works using HTTP headers. When your Web API application receives a
request, it sets special headers on the response to indicate whether cross-origin
requests are allowed, which origins they’re allowed from, and which HTTP verbs and
headers the request can use—pretty much everything about the request.

 In some cases, before sending a real request to your API, the browser sends a pre-
flight request. This is a request sent using the OPTIONS verb, which the browser uses to
check whether it’s allowed to make the real request. If the API sends back the correct
headers, the browser will send the true cross-origin request, as shown in figure 18.11.

1. The browser starts by
loading the main HTML
web page of the app from
http://shopping.com.

2. The client-side JavaScript makes a GET
request to the http://api.shopping.com
API.

3. Even if the API isn’t
configured for CORS,
it might return the
data.

GET

4. The browser checks
the response for CORS
headers. If none exist,
it blocks the JavaScript
from reading the
response.

5. For some HTTP verbs (such as PUT),
the browser sends a “preflight”
OPTIONS query. OPTIONS

6. If the API is configured
for CORS, it will add
special CORS headers
to the response.

Access-Control-Allow-Origin

7. If the OPTIONS
response doesn’t
include CORS headers,
the browser won't make
the “real” request.

PUT

8. In this case, the preflight response
included the CORS headers, so the
browser makes the request.9. The browser makes

the response available
to the JavaScript that
initiated the request.

Figure 18.11 Two cross-origin requests. The response to the first response doesn’t contain any CORS
headers, so the browser blocks the app from reading it. The second request requires a preflight OPTIONS
request, to check if CORS is enabled. As the response contains CORS headers, the real request can be made
and the response provided to the JavaScript app.

596 CHAPTER 18 Improving your application’s security
TIP For a more detailed discussion of CORS, see CORS in Action by Monsur
Hossain (Manning, 2014), available at http://mng.bz/aD41.

The CORS specification, like many technical documents, is pretty complicated, with a
variety of headers and processes to contend with.9 Thankfully, ASP.NET Core handles
the details of the specification for you, so your main concern is working out exactly
who needs to access your API, and under what circumstances.

18.4.2 Adding a global CORS policy to your whole app

Typically, you shouldn’t set up CORS for your APIs until you need it. Browsers block
cross-origin communication for a reason—it closes an avenue of attack—they’re not
being awkward. Wait until you have an API on a different domain than an app that
needs to access it.

 Adding CORS support to your application requires four things:

 Add the CORS services to your app.
 Configure at least one CORS policy.
 Add the CORS middleware to your middleware pipeline.
 Either set a default CORS policy for your entire app or decorate your Web API

actions with the [EnableCors] attribute to selectively enable CORS for specific
endpoints.

Adding the CORS services to your application involves calling AddCors() in your
Startup.ConfigureServices method:

services.AddCors();

The bulk of your effort in configuring CORS will go into policy configuration. A
CORS policy controls how your application will respond to cross-origin requests. It
defines which origins are allowed, which headers to return, which HTTP methods to
allow, and so on. You normally define your policies inline when you add the CORS ser-
vices to your application.

 For example, consider the previous e-commerce site example. You want your API
that is hosted at http://api.shopping.com to be available from the main app via client-
side JavaScript, hosted at http://shopping.com. You therefore need to configure the
API to allow cross-origin requests.

NOTE Remember, it’s the main app that will get errors when attempting to
make cross-origin requests, but it’s the API you’re accessing that you need to add
CORS to, not the app making the requests.

The following listing shows how to configure a policy called "AllowShoppingApp" to
enable cross-origin requests from http://shopping.com to the API. Additionally, we

9 If that’s the sort of thing that floats your boat, you can read the spec here: https://fetch.spec.whatwg.org/
#http-cors-protocol.

https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol
http://mng.bz/aD41
http://api.shopping.com
http://shopping.com
http://shopping.com

597Calling your web APIs from other domains using CORS
explicitly allow any HTTP verb type; without this call, only simple methods (GET, HEAD,
and POST) are allowed. The policies are built up using the familiar fluent builder style
you’ve seen throughout this book.

public void ConfigureServices(IServiceCollection services)
{
 services.AddCors(options => {
 options.AddPolicy("AllowShoppingApp", policy =>
 policy.WithOrigins("http://shopping.com")
 .AllowAnyMethod());
 });
 // other service configuration
}

WARNING When listing origins in WithOrigins(), ensure that they don’t have
a trailing "/"; otherwise the origin will never match and your cross-origin
requests will fail.

Once you’ve defined a CORS policy, you can apply it to your application. In the fol-
lowing listing, you apply the "AllowShoppingApp" policy to the whole application
using CorsMiddleware by calling UseCors() in the Configure method of Startup.cs.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

 app.UseCors("AllowShoppingApp");
 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

NOTE As with all middleware, the order of the CORS middleware is import-
ant. You must place the call to UseCors() after UseRouting() and before Use-
Endpoints(). The CORS middleware needs to intercept cross-origin requests
to your Web API actions so it can generate the correct responses to preflight
requests and add the necessary headers. It’s typical to place the CORS mid-
dleware before the call to UseAuthentication().

With the CORS middleware in place for the API, the shopping app can now make
cross-origin requests. You can call the API from the http://shopping.com site and the

Listing 18.5 Configuring a CORS policy to allow requests from a specific origin

Listing 18.6 Adding the CORS middleware and configuring a default CORS policy

The AddCors method exposes an Action<CorsOptions> overload.

Every policy
has a unique
name.

The WithOrigins method
specifies which origins
are allowed. Note that
the URL has no trailing /.

Allows all HTTP
verbs to call
the API

The CORS middleware must come
after the call to UseRouting().

Adds the CORS middleware
and uses AllowShoppingApp
as the default policy

Place the CORS
middleware before the
endpoint middleware.

http://shopping.com

598 CHAPTER 18 Improving your application’s security
browser lets the CORS request through, as shown in figure 18.12. If you make the
same request from a domain other than http://shopping.com, the request continues
to be blocked.

Applying a CORS policy globally to your application in this way may be overkill. If
there’s only a subset of actions in your API that need to be accessed from other ori-
gins, then it’s prudent to only enable CORS for those specific actions. This can be
achieved with the [EnableCors] attribute.

18.4.3 Adding CORS to specific Web API actions with EnableCorsAttribute

Browsers block cross-origin requests by default for good reason—they have the poten-
tial to be abused by malicious or compromised sites. Enabling CORS for your entire
app may not be worth the risk if you know that only a subset of actions will ever need
to be accessed cross-origin.

 If that’s the case, it’s best to only enable a CORS policy for those specific actions.
ASP.NET Core provides the [EnableCors] attribute, which lets you select a policy to
apply to a given controller or action method. This approach lets you apply different
CORS policies to different action methods. For example, you could allow GET requests
access to your entire API from the http://shopping.com domain, but only allow other
HTTP verbs for a specific controller, while allowing anyone to access your product list
action method.

The browser won't allow
cross-origin requests by
default and will block
your app from accessing
the response.

With CORS enabled, the API
sends CORS headers with
the response. The browser
sees these headers and
passes the response to
the JavaScript.

Without CORS

With CORS

Figure 18.12 With CORS enabled, as in the lower image, cross-origin requests can be made and
the browser will make the response available to the JavaScript. Compare this to the upper image,
in which the request was blocked.

http://shopping.com
http://shopping.com domain

599Calling your web APIs from other domains using CORS
 You define these policies in ConfigureServices using AddPolicy() and giving the
policy a name, as you saw in listing 18.5. However, instead of calling UseCors("Allow-
ShoppingApp") as you saw in listing 18.6, you add the middleware without a default
policy by calling UseCors() only.

 To apply a policy to a controller or an action method, apply the [EnableCors]
attribute, as shown in the following listing. An [EnableCors] attribute on an action
takes precedence over an attribute on a controller, or you can use the [DisableCors]
attribute to disable cross-origin access to the method entirely.

[EnableCors("AllowShoppingApp")]
public class ProductController: Controller
{
 [EnableCors("AllowAnyOrigin")
 public IActionResult GeteProducts() { /* Method */ }

 public IActionResult GeteProductPrice(int id) { /* Method */ }

 [DisableCors]
 public IActionResult DeleteProduct(int id) { /* Method */ }
}

If you want to apply a CORS policy to most of your actions but want to use a different
policy or disable CORS entirely for some actions, you can pass a default policy when
configuring the middleware using UseCors("AllowShoppingApp"), for example. Actions
decorated with [EnableCors("OtherPolicy")] will apply OtherPolicy preferentially,
and actions decorated with [DisableCors] will not have CORS enabled at all.

 Whether you choose to use a single, default CORS policy or multiple policies, you
need to configure the CORS policies for your application in ConfigureServices.
Many different options are available when configuring CORS. In the next section I’ll
provide an overview of the possibilities.

18.4.4 Configuring CORS policies

Browsers implement the cross-origin policy for security reasons, so you should care-
fully consider the implications of relaxing any of the restrictions they impose. Even if
you enable cross-origin requests, you can still control what data cross-origin requests
can send, and what your API will return. For example, you can configure

 The origins that may make a cross-origin request to your API
 The HTTP verbs (such as GET, POST, and DELETE) that can be used
 The headers the browser can send

Listing 18.7 Applying the EnableCors attribute to a controller and action

Applies the AllowShoppingApp CORS
policy to every action method

The AllowAnyOrigin policy is “closer” to
the action, so it takes precedence.

The AllowShoppingApp policy (from
the controller) will be applied.

The DisableCors attribute disables CORS
for the action method completely.

600 CHAPTER 18 Improving your application’s security
 The headers that the browser can read from your app’s response
 Whether the browser will send authentication credentials with the request

You define all of these options when creating a CORS policy in your call to AddCors()
using the CorsPolicyBuilder, as you saw in listing 18.5. A policy can set all or none of
these options, so you can customize the results to your heart’s content. Table 18.1
shows some of the options available, and their effects.

One of the first issues in setting up CORS is realizing you have a cross-origin prob-
lem at all. Several times I’ve been stumped trying to figure out why a request won’t
work, until I realize the request is going cross-domain, or from HTTP to HTTPS, for
example.

 Whenever possible, I recommend avoiding cross-origin requests completely. You
can end up with subtle differences in the way browsers handle them, which can cause
more headaches. In particular, avoid HTTP to HTTPS cross-domain issues by running
all of your applications behind HTTPS. As discussed in section 18.1, that’s a best prac-
tice anyway, and it’ll help avoid a whole class of CORS headaches.

 Once I’ve established I definitely need a CORS policy, I typically start with the
WithOrigins() method. I then expand or restrict the policy further, as need be, to

Table 18.1 The methods available for configuring a CORS policy, and their effect on the policy

CorsPolicyBuilder method example Result

WithOrigins("http://shopping.com") Allows cross-origin requests from
http:/ /shopping.com.

AllowAnyOrigin() Allows cross-origin requests from any origin. This
means any website can make JavaScript requests
to your API.

WithMethods()/AllowAnyMethod() Sets the allowed methods (such as GET, POST, and
DELETE) that can be made to your API.

WithHeaders()/AllowAnyHeader() Sets the headers that the browser may send to your
API. If you restrict the headers, you must include at
least "Accept", "Content-Type", and
"Origin" to allow valid requests.

WithExposedHeaders() Allows your API to send extra headers to the browser.
By default, only the Cache-Control, Content-
Language, Content-Type, Expires, Last-
Modified, and Pragma headers are sent in the
response.

AllowCredentials() By default, the browser won’t send authentication
details with cross-origin requests unless you explic-
itly allow it. You must also enable sending creden-
tials client-side in JavaScript when making the
request.

601Exploring other attack vectors
provide cross-origin lockdown of my API, while still allowing the required functionality.
CORS can be tricky to work around, but remember, the restrictions are there for
your safety.10

 Cross-origin requests are only one of many potential avenues attackers could use to
compromise your app. Many of these are trivial to defend against, but you need to be
aware of them, and know how to mitigate them. In the next section we’ll look at com-
mon threats and how to avoid them.

18.5 Exploring other attack vectors
So far in this chapter, I’ve described two potential ways attackers can compromise your
apps—XSS and CSRF attacks—and how to prevent them. Both of these vulnerabilities
regularly appear on the OWASP top ten list of most critical web app risks,11 so it’s
important to be aware of them and to avoid introducing them into your apps. In this
section I’ll provide an overview of some of the other most common vulnerabilities and
how to avoid them in your apps.

18.5.1 Detecting and avoiding open redirect attacks

A common OWASP vulnerability is due to open redirect attacks. An open redirect attack
is where a user clicks a link to an otherwise safe app and ends up being redirected to a
malicious website, such as one that serves malware. The safe app contains no direct
links to the malicious website, so how does this happen?

 Open redirect attacks occur where the next page is passed as a parameter to an
action method. The most common example is when you’re logging in to an app. Typi-
cally, apps remember the page a user is on before redirecting them to a login page by
passing the current page as a returnUrl query string parameter. After the user logs in,
the app redirects the user to the returnUrl to carry on where they left off.

 Imagine a user is browsing an e-commerce site. They click Buy on a product and
are redirected to the login page. The product page they were on is passed as the
returnUrl, so after they log in, they’re redirected to the product page instead of
being dumped back to the home screen.

 An open redirect attack takes advantage of this common pattern, as shown in fig-
ure 18.13. A malicious attacker creates a login URL where the returnUrl is set to the
website they want to send the user to and convinces the user to click the link to your
web app. After the user logs in, a vulnerable app will then redirect the user to the
malicious site.

 The simple solution to this attack is to always validate that the returnUrl is a local
URL that belongs to your app before redirecting users to it. The default Identity UI

10 You can find the OWASP top ten list here: https://owasp.org/www-project-top-ten/.
11 OWASP publishes the list online, with descriptions of each attack and how to prevent those attacks. There’s

a cheat sheet for staying safe here: https://cheatsheetseries.owasp.org/.

https://cheatsheetseries.owasp.org/
https://owasp.org/www-project-top-ten/

602 CHAPTER 18 Improving your application’s security
does this already, so you shouldn’t have to worry about the login page if you’re using
Identity, as described in chapter 14.

 If you have redirects in other parts of your app, ASP.NET Core provides a couple of
helper methods for staying safe, the most useful of which is Url.IsLocalUrl(). The
following listing shows how you could verify that a provided return URL is safe, and if
it isn’t, redirect to the app’s homepage. You can also use the LocalRedirect() helper
method on the ControllerBase and Razor Page PageModel classes, which throws an
exception if the provided URL isn’t local.

[HttpPost]
public async Task<IActionResult> Login(
 LoginViewModel model, string returnUrl = null)
{
 // Verify password, and sign user in

 if (Url.IsLocalUrl(returnUrl))
 {
 return Redirect(returnUrl);
 }

Listing 18.8 Detecting open redirect attacks by checking for local return URLs

http://shopping.com/Account/
login?returnUrl=http%3A%2F%2Fevil.com

1. The user clicks a link to the login page
of a trusted app, which looks safe.

2. The app shows the login page as
usual, served from the trusted app.

3. The user logs in
with their email,
password, and
the returnUrl.

4. After logging the user in,
the app sends a redirect
to the provided returnUrl.

HTTP/1.1 302 Found
Location: http://evil.com

5. The browser follows the
redirect, and the user ends
up on the malicious site.

Figure 18.13 An open redirect makes use of the common return URL pattern. This is typically
used for login pages but may be used in other areas of your app too. If your app doesn’t verify
that the URL is safe before redirecting the user, it could redirect users to malicious sites.

The return URL is
provided as an argument
to the action method.

Returns true if the return
URL starts with / or ~/

The URL is local, so it’s
safe to redirect to it.

603Exploring other attack vectors
 else
 {
 return RedirectToAction("Index", "Home");
 }
}

This simple pattern protects against open redirect attacks that could otherwise expose
your users to malicious content. Whenever you’re redirecting to a URL that comes
from a query string or other user input, you should use this pattern.

 Open redirect attacks present a risk to your users rather than to your app directly.
The next vulnerability represents a critical vulnerability in your app itself.

18.5.2 Avoiding SQL injection attacks with EF Core and parameterization

SQL injection attacks represent one of the most dangerous threats to your applica-
tion. Attackers craft simple malicious input, which they send to your application as tra-
ditional form-based input or by customizing URLs and query strings to execute
arbitrary code against your database. An SQL injection vulnerability could expose
your entire database to attackers, so it’s critical that you spot and remove any such vul-
nerabilities in your apps.

 Hopefully I’ve scared you a little with that introduction, so now for the good
news—if you’re using EF Core (or pretty much any other ORM) in a standard way, you
should be safe. EF Core has built-in protections against SQL injection, so as long as
you’re not doing anything funky, you should be fine.

 SQL injection vulnerabilities occur when you build SQL statements yourself and
include dynamic input that an attacker provides, even indirectly. EF Core provides the
ability to create raw SQL queries using the FromSqlRaw() method, so you must be
careful when using this method.

 Imagine your recipe app has a search form that lets you search for a recipe by
name. If you write the query using LINQ extension methods (as discussed in chapter
12), then you would have no risk of SQL injection attacks. However, if you decide to
write your SQL query by hand, you open yourself up to such a vulnerability.

public IList<User> FindRecipe(string search)
{
 return _context.Recipes
 .FromSqlRaw("SELECT * FROM Recipes" +
 "WHERE Name = '" + search + "'")
 .ToList();
}

Listing 18.9 An SQL injection vulnerability in EF Core due to string concatenation

The URL was not local and
could be an open redirect
attack, so redirect to the
homepage for safety.

The search parameter comes
from user input, so it’s unsafe.

The current EF Core DbContext
is held in the _context field.

You can write
queries by hand
using the FromSqlRaw
extension method.This introduces the

vulnerability—including
unsafe content directly

in an SQL string.

604 CHAPTER 18 Improving your application’s security
In this listing, the user input held in search is included directly in the SQL query. By
crafting malicious input, users can potentially perform any operation on your data-
base. Imagine an attacker searches your website using the text

'; DROP TABLE Recipes; --

Your app assigns this to the search parameter, and the SQL query executed against
your database becomes

SELECT * FROM Recipes WHERE Name = ''; DROP TABLE Recipes; --'

By simply entering text into the search form of your app, the attacker has deleted the
entire Recipes table from your app! That’s catastrophic, but an SQL injection vulnera-
bility provides more or less unfettered access to your database. Even if you’ve set up
database permissions correctly to prevent this sort of destructive action, attackers will
likely be able to read all the data from your database, including your users’ details.

 The simple way to avoid this happening is to avoid creating SQL queries by hand
like this. If you do need to write your own SQL queries, don’t use string concatena-
tion, as in listing 18.9. Instead, use parameterized queries, in which the (potentially
unsafe) input data is separate from the query itself, as shown here.

public IList<User> FindRecipe(string search)
{
 return _context.Recipes
 .FromSqlRaw("SELECT * FROM Recipes WHERE Name = '{0}'",
 search)
 .ToList();
}

Parameterized queries are not vulnerable to SQL injection attacks, so the attack pre-
sented earlier won’t work. If you use EF Core (or other ORMs) to access data using
standard LINQ queries, you won’t be vulnerable to injection attacks. EF Core will
automatically create all SQL queries using parameterized queries to protect you.

NOTE I’ve only talked about SQL injection attacks in terms of a relational
database, but this vulnerability can appear in NoSQL and document data-
bases too. Always use parameterized queries (or the equivalent), and don’t
craft queries by concatenating strings with user input.

Injection attacks have been the number one vulnerability on the web for over a decade,
so it’s crucial that you’re aware of them and how they arise. Whenever you need to
write raw SQL queries, make sure you always use parameterized queries.

 The next vulnerability is also related to attackers accessing data they shouldn’t be
able to. It’s a little subtler than a direct injection attack but is trivial to perform—the
only skill the attacker needs is the ability to count.

Listing 18.10 Avoiding SQL injection by using parameterization

The SQL query uses a placeholder
{0} for the parameter.

The dangerous input is passed as a
parameter, separate from the query.

605Exploring other attack vectors
18.5.3 Preventing insecure direct object references

Insecure direct object reference is a bit of a mouthful, but it means users accessing things
they shouldn’t by noticing patterns in URLs. Let’s revisit our old friend the recipe
app. As a reminder, the app shows you a list of recipes. You can view any of them, but
you can only edit recipes you created yourself. When you view someone else’s recipe,
there’s no Edit button visible.

 For example, a user clicks the Edit button on one of their recipes and notices the
URL is /Recipes/Edit/120. That “120” is a dead giveaway as the underlying database
ID of the entity you’re editing. A simple attack would be to change that ID to gain
access to a different entity, one that you wouldn’t normally have access to. The user
could try entering /Recipes/Edit/121. If that lets them edit or view a recipe that they
shouldn’t be able to, you have an insecure direct object reference vulnerability.

 The solution to this problem is simple—you should have resource-based authenti-
cation and authorization in your action methods. If a user attempts to access an entity
they’re not allowed to access, they should get a permission-denied error. They shouldn’t
be able to bypass your authorization by typing a URL directly into the search bar of
their browser.

 In ASP.NET Core apps, this vulnerability typically arises when you attempt to
restrict users by hiding elements from your UI, such as by hiding the Edit button.
Instead, you should use resource-based authorization, as discussed in chapter 15.

WARNING You must always use resource-based authorization to restrict which
entities a user can access. Hiding UI elements provides an improved user
experience, but it isn’t a security measure.

You can sidestep this vulnerability somewhat by avoiding integer IDs for your entities
in the URLs; for example, using a pseudorandom GUID (for instance, C2E296BA-
7EA8-4195-9CA7-C323304CCD12) instead. This makes the process of guessing other
entities harder, as you can’t just add one to an existing number, but it’s only masking
the problem rather than fixing it. Nevertheless, using GUIDs can be useful when you
want to have publicly accessible pages (that don’t require authentication), but you
don’t want their IDs to be easily discoverable.

 The final section in this chapter doesn’t deal with a single vulnerability. Instead, I’ll
discuss a separate, but related, issue: protecting your users’ data.

18.5.4 Protecting your users’ passwords and data

For many apps, the most sensitive data you’ll be storing is the personal data of your
users. This could include emails, passwords, address details, or payment information.
You should be careful when storing any of this data. As well as presenting an inviting
target for attackers, you may have legal obligations for how you handle it, such as data
protection laws and PCI compliance requirements.

 The easiest way to protect yourself is to not store data that you don’t need. If you
don’t need your user’s address, don’t ask for it. That way, you can’t lose it! Similarly, if

606 CHAPTER 18 Improving your application’s security
you use a third-party identity service to store user details, as described in chapter 14, you
won’t have to work as hard to protect your users’ personal information.

 If you store user details in your own app, or build your own identity provider,
then you need to make sure to follow best practices when handling user informa-
tion. The new project templates that use ASP.NET Core Identity follow most of these
practices by default, so I highly recommend you start from one of these. You need to
consider many different aspects—too many to go into detail here12—but they include
the following:

 Never store user passwords anywhere directly. You should only store crypto-
graphic hashes, computed using an expensive hashing algorithm, such as BCrypt
or PBKDF2.

 Don’t store more data than you need. You should never store credit card details.
 Allow users to use two-factor authentication (2FA) to sign in to your site.
 Prevent users from using passwords that are known to be weak or compromised.
 Mark authentication cookies as “http” (so they can’t be read using JavaScript)

and “secure” so they’ll only be sent over an HTTPS connection, never over
HTTP.

 Don’t expose whether a user is already registered with your app or not. Leaking
this information can expose you to enumeration attacks.13

These are all guidelines, but they represent the minimum you should be doing to pro-
tect your users. The most important thing is to be aware of potential security issues as
you’re building your app. Trying to bolt on security at the end is always harder than
thinking about it from the start, so it’s best to think about it earlier rather than later.

 This chapter has been a whistle-stop tour of things to look out for. We’ve touched
on most of the big names in security vulnerabilities, but I strongly encourage you to
check out the other resources mentioned in this chapter. They provide a more
exhaustive list of things to consider, complementing the defenses mentioned in this
chapter. On top of that, don’t forget about input validation and mass assignment/
over-posting, as discussed in chapter 6. ASP.NET Core includes basic protections
against some of the most common attacks, but you can still shoot yourself in the foot.
Make sure it’s not your app making headlines for being breached!

Summary
 HTTPS is used to encrypt your app’s data as it travels from the server to the

browser and back. This prevents third parties from seeing or modifying it.
 HTTPS is virtually mandatory for production apps, as modern browsers like

Chrome and Firefox mark non-HTTPS apps as explicitly “not secure.”

12 The NIST (National Institute of Standards and Technology) recently released their Digital Identity Guide-
lines on how to handle user details: http://mng.bz/6gRA.

13 You can learn more about website enumeration in this video tutorial from Troy Hunt: http://mng.bz/PAAA.

http://mng.bz/6gRA
http://mng.bz/PAAA

607Summary
 In production, you can avoid handling the TLS in your app by using SSL/TLS
offloading. This is where a reverse proxy uses HTTPS to talk to the browser, but
the traffic is unencrypted between your app and the reverse proxy. The reverse
proxy could be on the same or a different server, such as IIS or NGINX, or it
could be a third-party service, such as Cloudflare.

 You can use the ASP.NET Core developer certificate or the IIS express devel-
oper certificate to enable HTTPS during development. This can’t be used for
production, but it’s sufficient for testing locally. You must run dotnet dev-
certs https --trust when you first install the .NET SDK to trust the certificate.

 You can configure an HTTPS certificate for Kestrel in production using the
Kestrel:Certificates:Default configuration section. This does not require
any changes to your application—Kestrel will automatically load the certificate
when your app starts and use it to serve HTTPS requests.

 You can use the HstsMiddleware to set HTTP Strict Transport Security (HSTS)
headers for your application, to ensure the browser sends HTTPS requests to
your app instead of HTTP requests. This can only be enforced once an HTTPS
request is made to your app, so it’s best used in conjunction with HTTP to
HTTPS redirection.

 You can enforce HTTPS for your whole app using the HttpsRedirectionMid-
dleware. This will redirect HTTP requests to HTTPS endpoints.

 Cross-site scripting (XSS) attacks involve malicious users injecting content into
your app, typically to run malicious JavaScript when users browse your app. You
can avoid XSS injection attacks by always encoding unsafe input before writing
it to a page. Razor Pages do this automatically unless you use the @Html.Raw()
method, so use it sparingly and carefully.

 Cross-site request forgery (CSRF) attacks are a problem for apps that use
cookie-based authentication, such as ASP.NET Core Identity. It relies on the
fact that browsers automatically send cookies to a website. A malicious website
could create a form that POSTs to your site, and the browser will send the
authentication cookie with the request. This allows malicious websites to send
requests as though they’re the logged-in user.

 You can mitigate CSRF attacks using anti-forgery tokens. These involve writing a
hidden field in every form that contains a random string based on the current
user. A similar token is stored in a cookie. A legitimate request will have both
parts, but a forged request from a malicious website will only have the cookie
half; they cannot recreate the hidden field in the form. By validating these
tokens, your API can reject forged requests.

 The Razor Pages framework automatically adds anti-forgery tokens to any forms
you create using Razor and validates the tokens for inbound requests. You can
disable the validation check if necessary, using the [IgnoreAntiForgeryToken]
attribute.

608 CHAPTER 18 Improving your application’s security
 Browsers won’t allow websites to make JavaScript AJAX requests from one app
to others at different origins. To match the origin, the app must have the same
scheme, domain, and port. If you wish to make cross-origin requests like this,
you must enable cross-origin resource sharing (CORS) in your API.

 CORS uses HTTP headers to communicate with browsers and defines which
origins can call your API. In ASP.NET Core, you can define multiple policies,
which can be applied either globally to your whole app, or to specific control-
lers and actions.

 You can add the CORS middleware by calling UseCors() in Startup.Configure
and optionally providing the name of the default CORS policy to apply. You can
also apply CORS to a Web API action or controller by adding the [EnableCors]
attribute and providing the name of the policy to apply.

 Open redirect attacks use the common returnURL mechanism after logging in
to redirect users to malicious websites. You can prevent this attack by ensuring
you only redirect to local URLs—URLs that belong to your app.

 Insecure direct object references are a common problem where you expose the
ID of database entities in the URL. You should always verify that users have per-
mission to access or change the requested resource by using resource-based
authorization in your action methods.

 SQL injection attacks are a common attack vector when you build SQL requests
manually. Always use parameterized queries when building requests, or instead
use a framework like EF Core, which isn’t vulnerable to SQL injection.

 The most sensitive data in your app is often the data of your users. Mitigate this
risk by only storing data that you need. Ensure you only store passwords as a
hash, protect against weak or compromised passwords, and provide the option
for 2FA. ASP.NET Core Identity provides all of this out of the box, so it’s a great
choice if you need to create an identity provider.

Building custom
components
When you’re building apps with ASP.NET Core, most of your creativity and special-
ization goes into the services and models that make up your business logic and the
Razor Pages and controllers that expose them through views or APIs. Eventually,
however, you’re likely to find that you can’t quite achieve a desired feature using
the components that come out of the box. At that point, you may need to build a
custom component.

 This chapter shows how you can create some ASP.NET Core components that
you’re likely to need as your app grows. You probably won’t need to use all of them,
but each solves a specific problem you may run into.

 We’ll start by looking at the middleware pipeline. You saw how to build pipe-
lines by piecing together existing middleware in chapter 3, but in this chapter

This chapter covers
 Building custom middleware

 Creating simple endpoints that generate a
response using middleware

 Using configuration values to set up other
configuration providers

 Replacing the built-in DI container with a
third-party container
609

610 CHAPTER 19 Building custom components
you’ll create your own custom middleware. You’ll explore the basic middleware con-
structs of the Map, Use, and Run methods and learn how to create standalone middle-
ware classes. You’ll use these to build middleware components that can add headers to
all your responses as well as middleware that returns responses.

 In section 19.2, you’ll see how to use your custom middleware to create simple
endpoints using endpoint routing. By using endpoint routing, you can take advantage
of the power of the routing and authorization systems that you learned about in chap-
ters 5 and 15, without needing the additional complexity that comes from using Web
API controllers.

 Chapter 11 described the configuration provider system used by ASP.NET Core,
but in section 19.3 we’ll look at more complex scenarios. In particular, I’ll show you
how to handle the situation where a configuration provider itself needs some configu-
ration values. For example, a configuration provider that reads values from a database
might need a connection string. You’ll also see how to use DI when configuring
strongly typed IOptions objects—something not possible using the methods you’ve
seen so far.

 We’ll stick with DI in section 19.4, where I’ll show you how to replace the built-in
DI container with a third-party alternative. The built-in container is fine for most small
apps, but your ConfigureServices function can quickly get bloated as your app grows
and you register more services. I’ll show you how to integrate the third-party Lamar
library into an existing app, so you can make use of extra features such as automatic
service registration by convention.

 The components and techniques shown in this chapter are common across all
ASP.NET Core applications. For example, I use the subject of the first topic—custom
middleware—in almost every project I build. In chapter 20 we’ll look at some addi-
tional components that are specific to Razor Pages and Web API controllers.

19.1 Customizing your middleware pipeline
In this section you’ll learn how to create custom middleware. You’ll learn how to use
the Map, Run, and Use extension methods to create simple middleware using lambda
expressions. You’ll then see how to create equivalent middleware components using
dedicated classes. You’ll also learn how to split the middleware pipeline into branches,
and you’ll find out when this is useful.

 The middleware pipeline is one of the fundamental building blocks of ASP.NET
Core apps, so we covered it in depth in chapter 3. Every request passes through the
middleware pipeline, and each middleware component in turn gets an opportunity to
modify the request, or to handle it and return a response. ASP.NET Core includes
middleware out of the box for handling common scenarios. You’ll find middleware
for serving static files, for handling errors, for authentication, and many more.

 You’ll spend most of your time during development working with Razor Pages and
Web API controllers. These are exposed as the endpoints for most of your app’s busi-
ness logic, and they call methods on your app’s various business services and models.

611Customizing your middleware pipeline
Sometimes, however, you don’t need all the power (and associated complexity) that
comes with Razor Pages and Web API controllers. You might want to create a very sim-
ple app that, when called, returns the current time. Or you might want to add a
health-check URL to an existing app, where calling the URL doesn’t do any signifi-
cant processing but checks that the app is running. Although you could use Web API
controllers for these, you could also create small, dedicated middleware components
to handle these requirements.

 Other times, you might have requirements that lie outside the remit of Razor Pages
and Web API controllers. For example, you might want to ensure that all responses gen-
erated by your app include a specific header. This sort of cross-cutting concern is a per-
fect fit for custom middleware. You could add the custom middleware early in your
middleware pipeline to ensure that every response from your app includes the required
header, whether it comes from the static-file middleware, the error handling middle-
ware, or a Razor Page.

 In this section, I’ll show three ways to create custom middleware components, as well
as how to create branches in your middleware pipeline where a request can flow down
either one branch or another. By combining the methods demonstrated in this section,
you’ll be able to create custom solutions to handle your specific requirements.

 We’ll start by creating a middleware component that returns the current time as
plain text, whenever the app receives a request. From there we’ll look at branching
the pipeline, creating general-purpose middleware components, and finally, how to
encapsulate your middleware into standalone classes. In section 19.2 you’ll see an
alternative approach to exposing response-generating middleware using endpoint
routing.

19.1.1 Creating simple endpoints with the Run extension

As you’ve seen in previous chapters, you define the middleware pipeline for your app
in the Configure method of your Startup class. You add middleware to a provided
IApplicationBuilder object, typically using extension methods. For example,

public void Configure(IApplicationBuilder)
{
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
}

When your app receives a request, the request passes through each middleware, each
getting a chance to modify the request, or to handle it by generating a response. If a
middleware component generates a response, it effectively short-circuits the pipeline;
no subsequent middleware in the pipeline will see the request. The response passes
back through the earlier middleware components on its way back to the browser.

 You can use the Run extension method to build a simple middleware component
that always generates a response. This extension takes a single lambda function that
runs whenever a request reaches the component. The Run extension always generates

612 CHAPTER 19 Building custom components

t-
e
a response, so no middleware placed after it will ever execute. For that reason, you
should always place the Run middleware last in a middleware pipeline.

TIP Remember, middleware runs in the order you add them to the pipeline.
If a middleware component handles a request and generates a response, later
middleware will never see the request.

The Run extension method provides access to the request in the form of the Http-
Context object you saw in chapter 3. This contains all the details of the request in the
Request property, such as the URL path, the headers, and the body of the request. It
also contains a Response property you can use to return a response.

 The following listing shows how you could build a simple middleware component
that returns the current time. It uses the provided HttpContext context object and
the Response property to set the Content-Type header of the response (not strictly
necessary in this case, as text/plain is used if an alternative content type is not set)
and writes the body of the response using WriteAsync(text).

public void Configure(IApplicationBuilder app)
{
 app.Run(async (HttpContext context) =>
 {
 context.Response.ContentType = "text/plain";
 await context.Response.WriteAsync(
 DateTimeOffset.UtcNow.ToString());
 });

 app.UseStaticFiles();
}

The Run extension is useful for building simple middleware. You can use it to create
very basic endpoints that always generate a response. But as the component always
generates some sort of response, you must always place it at the end of the pipeline, as
no middleware placed after it will execute.

 A more common scenario is where you want your middleware component to only
respond to a specific URL path. In the next section, you’ll see how you can combine
Run with the Map extension method to create simple branching middleware pipelines.

19.1.2 Branching middleware pipelines with the Map extension

So far, when discussing the middleware pipeline, we’ve always considered it as a single
pipeline of sequential components. Each request passes through every middleware
component until one component generates a response, which passes back through
the previous middleware.

Listing 19.1 Creating simple middleware using the Run extension

Uses the Run extension to
create a simple middleware
that always returns a response

You should set the conten
type of the response you’r
generating—text/plain is
the default value.

Returns the time as a string in the
response. The 200 OK status code
is used if not explicitly set.

Any middleware added
after the Run extension
will never execute.

613Customizing your middleware pipeline
 The Map extension method lets you change that simple pipeline into a branching
structure. Each branch of the pipeline is independent; a request passes through one
branch or the other, but not both, as shown in figure 19.1. The Map extension method
looks at the path of the request’s URL. If the path matches the required pattern, the
request travels down the branch of the pipeline; otherwise it remains on the main
trunk. This lets you have completely different behavior in different branches of your
middleware pipeline.

NOTE The URL-matching used by Map is conceptually similar to the routing
you’ve seen since chapter 6, but it is much more basic, with many limitations.
For example, it uses a simple string-prefix match, and you can’t use route
parameters. Generally, you should favor creating endpoints instead of branch-
ing using Map, as you’ll see in section 19.2.

For example, imagine you want to add a simple health-check endpoint to your exist-
ing app. This endpoint is a simple URL you can call that indicates whether your app is
running correctly. You could easily create a health-check middleware using the Run
extension, as you saw in listing 19.1, but then that’s all your app can do. You only want
the health-check to respond to a specific URL, /ping. Your Razor Pages should handle
all other requests as normal.

TIP The health-check scenario is a simple example for demonstrating the
Map method, but ASP.NET Core includes built-in support for health-check
endpoints, which you should use instead of creating your own. You can learn
more about creating health checks in Microsoft’s “Health checks in ASP.NET
Core” documentation: http://mng.bz/nMA2.

Typically, middleware pipelines are
composed of sequential components.

Map("/ping")

Request

Each middleware can
return a response or
pass the request to the
next middleware.

The Map middleware can be used
to create branching pipelines.

If the request starts with/ping,
the Map passes the request to
the branch middleware.

Middleware on
the main trunk
are not executed
when the branch
runs.

Request

Figure 19.1 A sequential middleware pipeline compared to a branching pipeline created with the Map
extension. In branching middleware, requests only pass through one of the branches at most. Middleware on
the other branch never see the request and aren’t executed.

http://mng.bz/nMA2

614 CHAPTER 19 Building custom components

m
/

One solution would be to create a branch using the Map extension method and to
place the health-check middleware on that branch, as shown in figure 19.1. Only
those requests that match the Map pattern /ping will execute the branch; all other
requests will be handled by the standard routing middleware and Razor Pages on the
main trunk instead.

public void Configure(IApplicationBuilder app)
{
 app.UseDeveloperExceptionPage();

 app.Map("/ping", (IApplicationBuilder branch) =>
 {
 branch.UseExceptionHandler();

 branch.Run(async (HttpContext context) =>
 {
 context.Response.ContentType = "text/plain";
 await context.Response.WriteAsync("pong");
 });
 });

 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

The Map middleware creates a completely new IApplicationBuilder (called branch
in the listing), which you can customize as you would your main app pipeline. Middle-
ware added to the branch builder are only added to the branch pipeline, not the main
trunk pipeline.

 In this example, you add the Run middleware to the branch, so it will only execute
for requests that start with /ping, such as /ping, /ping/go, or /ping?id=123. Any
requests that don’t start with /ping are ignored by the Map extension. Those requests
stay on the main trunk pipeline and execute the next middleware in the pipeline after
Map (in this case, the StaticFilesMiddleware).

 If you need to, you can create sprawling branched pipelines using Map, where each
branch is independent of every other. You could also nest calls to Map, so you have
branches coming off branches.

 The Map extension can be useful, but if you try to get too elaborate, it can quickly
get confusing. Remember, you should use middleware for implementing cross-cutting
concerns or very simple endpoints. The endpoint routing mechanism of controllers
and Razor Pages is better suited to more complex routing requirements, so don’t be
afraid to use it.

Listing 19.2 Using the Map extension to create branching middleware pipelines

Every request will pass
though this middleware.

The Map extension
method will branch if a
request starts with /ping.This

middleware
will only run
for requests
atching the

ping branch.

The Run extension
always returns a
response, but only
on the /ping branch.

The rest of the middleware
pipeline will run for
requests that don’t match
the /ping branch.

615Customizing your middleware pipeline
TIP In section 19.2 you’ll see how to create endpoints that use the endpoint
routing system.

One situation where Map can be useful is when you want to have two “independent”
sub-applications but don’t want the hassle of multiple deployments. You can use Map
to keep these pipelines separate, with separate routing and endpoints inside each
branch of the pipeline. Just be aware that these branches will both share the same
configuration and DI container, so they’re only independent from the middleware
pipeline’s point of view.1

 The final point you should be aware of when using the Map extension is that it
modifies the effective Path seen by middleware on the branch. When it matches a
URL prefix, the Map extension cuts off the matched segment from the path, as shown
in figure 19.2. The removed segments are stored on a property of HttpContext called
PathBase, so they’re still accessible if you need them.

NOTE ASP.NET Core’s link generator (used in Razor, for example, as dis-
cussed in chapter 5) uses PathBase to ensure it generates URLs that include
the PathBase as a prefix.

You’ve seen the Run extension, which always returns a response, and the Map extension
which creates a branch in the pipeline. The next extension we’ll look at is the general-
purpose Use extension.

1 Achieving truly independent branches in the same application requires a lot more effort. See Filip W’s blog
post, “Running multiple independent ASP.NET Core pipelines side by side in the same application,” for guid-
ance: http://mng.bz/vzA4.

Map("/branch")

Endpoint
middleware

When a request takes a branch, the
Map middleware moves the matched
segment from the Path to the PathBase.

If a request stays on the
main middleware trunk,
the Path property will
match the URL and
PathBase will be empty.

Path: /recipes/index
PathBase: /

Path: /recipes/index
PathBase: /branch

Path: /branch/recipes/index
PathBase: /

The RoutingMiddleware only
uses the Path property for
routing, so the Index action
on the Recipe controller is
selected.

Routing
middleware

Endpoint
middleware

Routing
middleware

Figure 19.2 When the Map extension diverts a request to a branch, it removes the matched segment from
the Path property and adds it to the PathBase property.

http://mng.bz/vzA4

616 CHAPTER 19 Building custom components
19.1.3 Adding to the pipeline with the Use extension

You can use the Use extension method to add a general-purpose piece of middleware.
You can use it to view and modify requests as they arrive, to generate a response, or to
pass the request on to subsequent middleware in the pipeline.

 Similar to the Run extension, when you add the Use extension to your pipeline, you
specify a lambda function that runs when a request reaches the middleware. The app
passes two parameters to this function:

 The HttpContext representing the current request and response. You can use this to
inspect the request or generate a response, as you saw with the Run extension.

 A pointer to the rest of the pipeline as a Func<Task>. By executing this task, you can
execute the rest of the middleware pipeline.

By providing a pointer to the rest of the pipeline, you can use the Use extension to
control exactly how and when the rest of the pipeline executes, as shown in figure 19.3.
If you don’t call the provided Func<Task> at all, the rest of the pipeline doesn’t exe-
cute for the request, so you have complete control.

Exposing the rest of the pipeline as a Func<Task> makes it easy to conditionally short-
circuit the pipeline, which opens up many different scenarios. Instead of branching
the pipeline to implement the health-check middleware with Map and Run, as you did
in listing 19.2, you could use a single instance of the Use extension. This provides the
same required functionality as before but does so without branching the pipeline.

Request (context, next) =>
{
// logic
await next();

// logic
}

(context, next) =>
{

// logic
await next();

// logic
}

(context, next) =>
{

// logic
}

Response

Calling next() invokes the
rest of the middleware.

If a middleware does not
call next(), the pipeline
is short-circuited, and
no further middleware
will execute.

Figure 19.3 Three pieces of middleware, created with the Use extension. Invoking the provided
Func<Task> using next() invokes the rest of the pipeline. Each middleware can run code before and after
calling the rest of the pipeline, or it can choose to not call next() at all to short-circuit the pipeline.

617Customizing your middleware pipeline
public void Configure(IApplicationBuilder app)
{
 app.Use(async (HttpContext context, Func<Task> next) =>
 {
 if (context.Request.Path.StartsWithSegments("/ping"))
 {
 context.Response.ContentType = "text/plain";
 await context.Response.WriteAsync("pong");
 }
 else
 {
 await next();
 }
 });

 app.UseStaticFiles();
}

If the incoming request starts with the required path segment (/ping), the middle-
ware responds and doesn’t call the rest of the pipeline. If the incoming request
doesn’t start with /ping, the extension calls the next middleware in the pipeline, with
no branching necessary.

 With the Use extension, you have control over when, and if, you call the rest of the
middleware pipeline. But it’s important to note that you generally shouldn’t modify
the Response object after calling next(). Calling next() runs the rest of the middle-
ware pipeline, so a subsequent middleware may start streaming the response to the
browser. If you try to modify the response after executing the pipeline, you may end up
corrupting the response or sending invalid data.

WARNING Don’t modify the Response object after calling next(). Also, don’t call
next() if you’ve written to the Response.Body; writing to this Stream can trigger
Kestrel to start streaming the response to the browser, and you could cause
invalid data to be sent. You can generally read from the Response object safely;
for example, to inspect the final StatusCode or ContentType of the response.

Another common use for the Use extension method is to modify every request or
response that passes through it. For example, there are various HTTP headers that
you should send with all your applications for security reasons. These headers often
disable old, insecure, legacy behaviors by browsers, or restrict the features enabled by
the browser. You learned about the HSTS header in chapter 18, but there are other
headers you can add for additional security.2

Listing 19.3 Using the Use extension method to create a health-check middleware

2 You can test the security headers for your app using https://securityheaders.com/, which also provides infor-
mation about what headers you should add to your application and why.

The Use extension takes a lambda with HttpContext
(context) and Func<Task> (next) parameters.

The StartsWithSegments
method looks for the
provided segment in

the current path.

If the path
matches, generate
a response and
short-circuit the
pipeline.

If the path doesn’t
match, call the next
middleware in the
pipeline, in this case
UseStaticFiles().

https://securityheaders.com/

618 CHAPTER 19 Building custom components

w

h

 Imagine you’ve been tasked with adding one such header, X-Content-Type-
Options: nosniff (which provides added protection against XSS attacks), to every
response generated by your app. This sort of cross-cutting concern is perfect for mid-
dleware. You can use the Use extension method to intercept every request, set the
response header, and then execute the rest of the middleware pipeline. No matter
what response the pipeline generates, whether it’s a static file, an error, or a Razor
Page, the response will always have the security header.

 Listing 19.4 shows a robust way to achieve this. When the middleware receives a
request, it registers a callback that runs before Kestrel starts sending the response
back to the browser. It then calls next() to run the rest of the middleware pipeline.
When the pipeline generates a response, likely in some later middleware, Kestrel exe-
cutes the callback and adds the header. This approach ensures the header isn’t acci-
dentally removed by other middleware in the pipeline and also that you don’t try to
modify the headers after the response has started streaming to the browser.

public void Configure(IApplicationBuilder app)
{
 app.Use(async (HttpContext context, Func<Task> next) =>
 {
 context.Response.OnStarting(() =>
 {
 context.Response.Headers["X-Content-Type-Options"] =
 "nosniff";
 return Task.CompletedTask;
 });
 await next();
 }

 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

Simple cross-cutting middleware like the security header example are common, but
they can quickly clutter your Configure method and make it difficult to understand
the pipeline at a glance. Instead, it’s common to encapsulate your middleware into a
class that’s functionally equivalent to the Use extension, but which can be easily tested
and reused.

Listing 19.4 Adding headers to a response with the Use extension

Adds the
middleware at
the start of the
pipeline

Sets a function that should be called before
the response is sent to the browser

Adds the
header to

the response,
for added

protection
against XSS

attacks

The function
passed to

OnStarting must
return a Task.

Invokes the rest of the
middleware pipeline

No matter
hat response
is generated,

it’ll have
the security

eader added.

619Customizing your middleware pipeline
19.1.4 Building a custom middleware component

Creating middleware with the Use extension, as you did in listings 19.3 and 19.4, is
convenient, but it’s not easy to test, and you’re somewhat limited in what you can do.
For example, you can’t easily use DI to inject scoped services inside of these basic mid-
dleware components. Normally, rather than calling the Use extension directly, you’ll
encapsulate your middleware into a class that’s functionally equivalent.

 Custom middleware components don’t have to derive from a specific base class
or implement an interface, but they have a certain shape, as shown in listing 19.5.
ASP.NET Core uses reflection to execute the method at runtime. Middleware classes
should have a constructor that takes a RequestDelegate object, which represents the
rest of the middleware pipeline, and they should have an Invoke function with a sig-
nature similar to

public Task Invoke(HttpContext context);

The Invoke() function is equivalent to the lambda function from the Use extension,
and it is called when a request is received. Here’s how you could convert the headers
middleware from listing 19.4 into a standalone middleware class.3

public class HeadersMiddleware
{
 private readonly RequestDelegate _next;
 public HeadersMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public async Task Invoke(HttpContext context)
 {
 context.Response.OnStarting(() =>
 {
 context.Response.Headers["X-Content-Type-Options"] =
 "nosniff";
 return Task.CompletedTask;
 });

 await _next(context);
 }
}

Listing 19.5 Adding headers to a Response using a custom middleware component

3 Using this “shape” approach makes the middleware more flexible. In particular, it means you can easily use
DI to inject services into the Invoke method. This wouldn’t be possible if the Invoke method were an over-
ridden base class method or an interface. However, if you prefer, you can implement the IMiddleware inter-
face, which defines the basic Invoke method.

The RequestDelegate
represents the rest
of the middleware
pipeline.

The Invoke method is called
with HttpContext when a
request is received.

Adds the
header to

the response
as before

Invokes the rest of the middleware
pipeline. Note that you must pass
in the provided HttpContext.

620 CHAPTER 19 Building custom components

ices
tor.

This middleware is effectively identical to the example in listing 19.4, but it’s encapsu-
lated in a class called HeadersMiddleware. You can add this middleware to your app in
Startup.Configure by calling

app.UseMiddleware<HeadersMiddleware>();

A common pattern is to create helper extension methods to make it easy to consume
your extension method from Startup.Configure (so that IntelliSense reveals it as an
option on the IApplicationBuilder instance). Here’s how you could create a simple
extension method for HeadersMiddleware.

public static class MiddlewareExtensions
{
 public static IApplicationBuilder UseSecurityHeaders(
 this IApplicationBuilder app)
 {
 return app.UseMiddleware<HeadersMiddleware>();
 }
}

With this extension method, you can now add the headers middleware to your app
using

app.UseSecurityHeaders();

TIP There is a SecurityHeaders NuGet package available that makes it easy to
add security headers using middleware, without having to write your own. The
package provides a fluent interface for adding the recommended security head-
ers to your app. You can find instructions on how to install it on GitHub:
https://github.com/andrewlock/NetEscapades.AspNetCore.SecurityHeaders.

Listing 19.5 is a simple example, but you can create middleware for many different
purposes. In some cases you may need to use DI to inject services and use them to
handle a request. You can inject singleton services into the constructor of your mid-
dleware component, or you can inject services with any lifetime into the Invoke
method of your middleware, as demonstrated in the following listing.

public class ExampleMiddleware
{
 private readonly RequestDelegate _next;
 private readonly ServiceA _a;
 public HeadersMiddleware(RequestDelegate next, ServiceA a)
 {
 _next = next;
 _a = a;
 }

Listing 19.6 Creating an extension method to expose HeadersMiddleware

Listing 19.7 Using DI in middleware components

By convention, the
extension method
should return an
IApplicationBuilder
to allow chaining.

Adds the middleware to the pipeline

You can inject
additional serv
in the construc
These must be
singletons.

https://github.com/andrewlock/NetEscapades.AspNetCore.SecurityHeaders

621Creating custom endpoints with endpoint routing
 public async Task Invoke(
 HttpContext context, ServiceB b, ServiceC c)
 {
 // use services a, b, and c
 // and/or call _next.Invoke(context);
 }
}

WARNING ASP.NET Core creates the middleware only once for the lifetime
of your app, so any dependencies injected in the constructor must be single-
tons. If you need to use scoped or transient dependencies, inject them into
the Invoke method.

That covers pretty much everything you need to start building your own middleware
components. By encapsulating your middleware into custom classes, you can easily
test their behavior or distribute them in NuGet packages, so I strongly recommend
taking this approach. Apart from anything else, it will make your Startup.Configure()
method less cluttered and easier to understand.

19.2 Creating custom endpoints with endpoint routing
In this section you’ll learn how to create custom endpoints from your middleware
using endpoint routing. We’ll take the simple middleware branches used in section
19.1 and convert them to use endpoint routing, and I’ll demonstrate the additional
features this enables, such as routing and authorization.

 In section 19.1 I described creating a simple endpoint, using the Map and Run
extension methods, that returns a plain-text pong response whenever a /ping request
is received, by branching the middleware pipeline. This is fine because it’s so simple,
but what if you have more complex requirements?

 Consider a basic enhancement of the ping-pong example: how would you add
authorization to the request? The AuthorizationMiddleware added to your pipeline
by UseAuthorization() looks for metadata on endpoints like Razor Pages to see if
there’s an [Authorize] attribute, but it doesn’t know how to work with the ping-pong
Map extension.

 Similarly, what if you wanted to use more complex routing? Maybe you want to be
able to call /ping/3 and have your ping-pong middleware reply pong-pong-pong (no,
I can’t think why you would either!). You now have to try and parse that integer from
the URL, make sure it’s valid, and so on. That’s sounding like a lot more work!

 When your requirements start ramping up like this, one option is to move to using
Web API controllers or Razor Pages. These provide the greatest flexibility in your app
and have the most features, but they’re also comparatively heavyweight compared to
middleware. What if you want something in between?

 In ASP.NET Core 3.0, the routing system was rewritten to use endpoint routing to
provide exactly this balance. Endpoint routing allows you to create endpoints that can
use the same routing and authorization framework as you get with Web API control-
lers and Razor Pages, but with the simplicity of middleware.

You can inject services
into the Invoke
method. These may
have any lifetime.

622 CHAPTER 19 Building custom components
NOTE I discussed endpoint routing in detail in chapter 5.

In this section you’ll see how to convert the simple branch-based middleware from the
previous section to a custom endpoint. You’ll see how taking this approach makes it
easy to apply authorization to the endpoint, using the declarative approaches you’re
already familiar with from chapter 15.

19.2.1 Creating a custom endpoint routing component

As I described in chapter 5, endpoint routing splits the process of executing an end-
point into two steps implemented by two separate pieces of middleware:

 RoutingMiddleware—This middleware uses the incoming request to select an
endpoint to execute. It exposes the metadata about the selected endpoint on
HttpContext, such as authorization requirements applied using the [Authorize]
attribute.

 EndpointMiddleware—This middleware executes the selected endpoint to gener-
ate a response.

The advantage of using a two-step process is that you can place middleware between the
middleware that selects the endpoint and the middleware that executes it to generate
a response. For example, the AuthorizationMiddleware uses the selected endpoint
to determine whether to short-circuit the pipeline, before the endpoint is executed.

 Let’s imagine that you need to apply authorization to the simple ping-pong end-
point you created in section 19.1.2. This is much easier to achieve with endpoint routing
than using simple middleware branches like Map or Use. The first step is to create a mid-
dleware component for the functionality, using the approach you saw in section 19.1.4,
as shown in the following listing.

public class PingPongMiddleware
{
 public PingPongMiddleware(RequestDelegate next)
 {
 }

 public async Task Invoke(HttpContext context)
 {
 context.Response.ContentType = "text/plain";
 await context.Response.WriteAsync("pong");
 }
}

Note that this middleware always returns a "pong" response, regardless of the request
URL—we will configure the "/ping" path later. We can use this class to convert a mid-
dleware pipeline from the branching version shown in figure 19.1, to the endpoint
version shown in figure 19.4.

Listing 19.8 The PingPongMiddleware implemented as a middleware component

Even though it isn’t used
in this case, you must
inject a RequestDelegate
in the constructor.

Invoke is called
to execute the
middleware.

The middleware always
returns a “pong” response.

623Creating custom endpoints with endpoint routing
Converting the ping-pong middleware to an endpoint doesn’t require any changes to
the middleware itself. Instead, you need to create a mini middleware pipeline, con-
taining your ping-pong middleware only.

TIP Converting response-generating middleware to an endpoint essentially
requires converting it into its own mini-pipeline, so you can include addi-
tional middleware in the endpoint pipeline if you wish.

You must create your endpoint pipeline inside the UseEndpoints() lambda argument,
as shown in the following listing. Use CreateApplicationBuilder() to create a new
IApplicationBuilder, add your middleware that makes up your endpoint, and then
call Build() to create the pipeline.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

Listing 19.9 Mapping the ping-pong endpoint in UseEndpoints

/ping

Middleware placed after
the routing middleware
knows which endpoint
has been selected.

A request arrives for
the the /ping URL.

/ping
The routing middleware
selects the ping-pong
endpoint based on
the request URL.

The selected endpoint,
the ping-pong endpoint,
is executed by the
endpoint middleware.

Figure 19.4 Endpoint routing separates the selection of an endpoint from
the execution of an endpoint. The routing middleware selects an endpoint
based on the incoming request and exposes metadata about the endpoint.
Middleware placed before the endpoint middleware can act based on the
selected endpoint, such as short-circuiting unauthorized requests. If the
request is authorized, the endpoint middleware executes the selected
endpoint and generates a response.

624 CHAPTER 19 Building custom components

re

c

t
t

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 var endpoint = endpoints
 .CreateApplicationBuilder()
 .UseMiddleware<PingPongMiddleware>()
 .Build();

 endpoints.Map("/ping", endpoint);
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz");
 });
}}

Once you have a pipeline, you can associate it with a given route by calling Map() on
the IEndpointRouteBuilder instance and passing in a route template.

TIP Note that the Map() function on IEndpointRouteBuilder creates a new
endpoint (consisting of your mini-pipeline) with an associated route. Although
it has the same name, this is conceptually different from the Map function on
IApplicationBuilder from section 19.1.2, which is used to branch the mid-
dleware pipeline.

If you have many custom endpoints, the UseEndpoints() method can quickly get clut-
tered. I like to extract this functionality into an extension method to make the Use-
Endpoints() method cleaner and easier to read. The following listing extracts the
code to create an endpoint from listing 19.9 into a separate class, taking the route
template to use as a method parameter.

public static class EndpointRouteBuilderExtensions
{
 public static IEndpointConventionBuilder MapPingPong(
 this IEndpointRouteBuilder endpoints,
 string route)
 {
 var pipeline = endpoints.CreateApplicationBuilder()
 .UseMiddleware<PingPongMiddleware>()
 .Build();

 return endpoints
 .Map(route, pipeline)
 .WithDisplayName("Ping-pong");
 }
}

Listing 19.10 An extension method for using the PingPongMiddleware as an endpoint

Create a miniature, standalone
IApplicationBuilder to build
your endpoint.

Add the middleware and
build the final endpoint.
This is executed when the
endpoint is executed.

Add the new endpoint to the
endpoint collection associated
with the route template “/ping”.

Create an extension
method for registering
the PingPongMiddlewa
as an endpoint.

Allows the
aller to pass

in a route
emplate for
he endpoint

Create the
endpoint
pipeline.

Add the new endpoint to
the provided endpoint
collection, using the
provide route template.You can add additional metadata

here directly, or the caller can add
metadata themselves.

625Creating custom endpoints with endpoint routing
Now that you have an extension method, MapPingPong(), you can update your Use-
Endpoints() method in Startup.Configure() to be simpler and easier to understand:

app.UseEndpoints(endpoints =>
{
 endpoints.MapPingPong("/ping");
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz");
});

Congratulations, you’ve created your first custom endpoint! You haven’t added any
additional functionality yet, but by using the endpoint routing system it’s now much eas-
ier to satisfy the additional authorization requirements, as you’ll see in section 19.2.2.

TIP This example used a very basic route template, "/ping", but you can also
use templates that contain route parameters, such as "/ping/{count}", using
the same routing framework you learned in chapter 5. For examples of how
to access this data from your middleware, as well as best practice advice, see
my blog entry titled “Accessing route values in endpoint middleware in
ASP.NET Core 3.0”: http://mng.bz/4ZRj.

Converting existing middleware like PingPongMiddleware to work with endpoint
routing can be useful when you have already implemented that middleware, but it’s a
lot of boilerplate to write if you want to create a new simple endpoint. In ASP.NET
Core 5.0, this process is a lot easier.

19.2.2 Creating simple endpoints with MapGet and WriteJsonAsync

With ASP.NET Core 5.0 it’s easier than ever to create simple endpoints that use rout-
ing and return JSON. ASP.NET Core 5.0 builds on top of the endpoint routing primi-
tives introduced in ASP.NET Core 3.0 and adds helper methods for serializing and
deserializing JSON. In many cases, this is all you need to create simple endpoints,
when you don’t need the full power of Web API controllers.

 For example, instead of converting the PingPongMiddleware to an endpoint and
having to create a dedicated pipeline, as I showed in section 19.2.1, you could create
an equivalent endpoint directly. The following listing shows how to use the MapGet
extension method to write a lambda handler method inline, which is functionally
identical to the approach shown in section 19.2.1.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

Listing 19.11 Creating a custom endpoint directly using MapGet

http://mng.bz/4ZRj

626 CHAPTER 19 Building custom components

Use

bo
to

t.Json
 model
to the
.

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/ping", (HttpContext ctx)=>
 ctx.Response.WriteAsync("pong"));
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz");
 });
}}

This is equivalent to the example in section 19.2.1 but is clearly much simpler—there
are no additional classes or helper methods required! There are alternative extension
methods for other HTTP verbs, such as MapPost and MapPut, so you can create multi-
ple endpoints inline in this way.

TIP As in section 19.2.1, this example uses a very basic route template,
"/ping", but you can also use templates that contain route parameters, such
as "/ping/{count}". See the associated source code for a simple example.

It’s important to understand the difference between the MapGet endpoint extension
method shown here, and the Map application builder extension method discussed in sec-
tion 19.1:

 Use Map to create separate branches of the middleware pipeline. Use MapGet to register
an endpoint with the routing middleware that generates a response.

 Map uses simple URL segments to decide which branch to take; it does not use route
parameters. MapGet uses route templates, the same as Razor Pages and Web API
controllers, as discussed in chapter 5.

The MapGet and MapPost extension methods were available in ASP.NET Core 3.0 too,
but ASP.NET Core 5.0 introduced some extra extension methods that allow easy read-
ing and writing of JSON using the System.Text.Json serializer. The following listing
shows a simple “echo” endpoint that reads JSON from the request body and then
writes it to the response.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapPost("/echo", async (HttpContext ctx =>
 {
 MyCustomType model = await ctx.Request
 .ReadFromJsonAsync<MyCustomType>();
 await context.Response.WriteAsJsonAsync(model);
 });

Listing 19.12 Writing JSON from a custom endpoint using WriteAsJsonAsync

Configure a lambda to
execute when a GET
request is routed to
the /ping endpoint

Configure a lambda to
execute when a GET
request is routed to
the /ping endpoint.

 System.Text.Json
to deserialize the
dy of the request
 a MyCustomType

object.

Use System.Tex
to serialize the
object as JSON
response body

627Creating custom endpoints with endpoint routing
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz");
 });
}}

The ReadFromJsonAsync function allows you to deserialize the body of a request into a
POCO object—MyCustomType in this example. This is similar to the model binding
you saw in chapter 6, but it is much more rudimentary. There’s no built-in validation
or reading from route values here, and any errors in the data of the request will cause
an exception to be thrown.

 Similarly, WriteAsJsonAsync serializes any object passed to it to the response as
JSON. This is very efficient compared to the ActionResult approach used in Razor
Pages and Web API controllers, but it has far fewer features. There’s no filter pipeline,
no content-negotiation, and no error handling built in.

TIP If all you need is a quick, very simple API, the Map* extension methods
and JSON helpers are a great option. If you need more features like valida-
tion, model binding, supporting multiple formats, or OpenAPI integration,
stick to Web API controllers.

One of the advantages of endpoint routing, whether you use the Map* extension meth-
ods or the existing-middleware approach from section 19.2.1 is that you get the full
power of route templates. However, using simple Map branches can be faster than using
the routing infrastructure, so in some cases it may be best to avoid endpoint routing.

 A good example of this trade-off is the built-in StaticFileMiddleware. This mid-
dleware serves static files based on the request’s URL, but it doesn’t use endpoint rout-
ing due to the performance impact of adding many (potentially hundreds) of routes
for each static file in your application. The downside to that choice is that adding
authorization to static files is not easy to achieve; if endpoint routing were used, add-
ing authorization would be simple.

19.2.3 Applying authorization to endpoints

One of the main advantages of endpoint routing is the ability to easily apply authoriza-
tion to your endpoint. For Razor Pages and Web API controllers, this is achieved by
adding the [Authorize] attribute, as you saw in chapter 15.

 For other endpoints, such as the ping-pong endpoint you created in section 19.2.1,
you can apply authorization declaratively when you add the endpoint to your applica-
tion, by calling RequireAuthorization() on the IEndpointConventionBuilder, as
shown in the following listing.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

Listing 19.13 Applying authorization to an endpoint using RequireAuthorization()

628 CHAPTER 19 Building custom components
 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapPingPong("/ping")
 .RequireAuthorization();
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz")
 .RequireAuthorization("HealthCheckPolicy")
 });
}}

Listing 19.13 shows two examples of applying authorization to endpoints:

 RequireAuthorization()—If you don’t provide a method argument, this applies
the default authorization policy to the endpoint. It is equivalent to applying the
[Authorize] attribute to a Razor Page or Web API controller endpoint.

 RequireAuthorization(policy)—If you provide a policy name, the chosen
authorization policy will be used. The policy must be configured in Configure-
Services, as you saw in chapter 15. This is equivalent to applying [Authorize
("HealthCheckPolicy")] to a Razor Page or Web API controller endpoint.

If you are globally applying authorization to your application (as described in chap-
ter 15), you can punch a hole in the global policy with the complementary Allow-
Anonymous() method; for example,

endpoints.MapPingPong("/ping").AllowAnonymous();

This is equivalent to using the [AllowAnonymous] attribute on your Razor Pages and
actions.

NOTE The AllowAnonymous() method for endpoints is new in .NET 5.0.

Authorization is the canonical example of adding metadata to endpoints to add func-
tionality, but there are other options available too. Out of the box you can use the fol-
lowing methods:

 RequireAuthorization()—Applies authorization policies to the endpoint, as
you’ve already seen.

 AllowAnonymous()—Overrides a global authorization policy to allow anony-
mous access to an endpoint.

 RequireCors(policy)—Applies a CORS policy to the endpoint, as described in
chapter 18.

 RequireHost(hosts)—Only allows routing to the endpoint if the incoming
request matches one of the provided hostnames.

 WithDisplayName(name)—Sets the friendly name for the endpoint. Used pri-
marily in logging to describe the endpoint.

Require authorization.
This is equivalent to
applying the [Authorize]
attribute.

Require authorization
using a specific policy,
HealthCheckPolicy.

629Handling complex configuration requirements
 WithMetadata(items)—Adds arbitrary values as metadata to the endpoint. You
can access these values in middleware after an endpoint is selected by the rout-
ing middleware.

These features allow various functionality, such as CORS and authorization, to work
seamlessly across Razor Pages, Web API controllers, built-in endpoints like the health-
check endpoints, and custom endpoints like your ping-pong middleware. They should
allow you to satisfy most requirements you get around custom endpoints. And if you
find you need something more complex, like model-binding, you can always fall back
to using Web API controllers instead. The choice is yours!

 In the next section we’ll move away from the middleware pipeline and look at how
to handle complex configuration requirements. In particular, you’ll see how to set up
complex configuration providers that require their own configuration values, and
how to use DI services to build your strongly typed IOptions objects.

19.3 Handling complex configuration requirements
In this section I’ll describe how to handle two complex configuration requirements:
configuration providers that need configuring themselves, and using services to con-
figure IOptions objects. In the first scenario, you will see how to partially build your
configuration to allow building the provider. In the second scenario, you will see how
to use the IConfigureOptions interface to allow accessing services when configuring
your options objects.

 In chapter 11 we discussed the ASP.NET Core configuration system in depth. You
saw how an IConfiguration object is built from multiple layers, where subsequent lay-
ers can add to or replace configuration values from previous layers. Each layer is
added by a configuration provider, which can read values from a file, from environ-
ment variables, from User Secrets, or from any number of possible locations.

 You also saw how to bind configuration values to strongly typed POCO objects,
using the IOptions interface. You can inject these strongly typed objects into your
classes to provide easy access to your settings, instead of having to read configuration
using string keys.

 In this section, we’ll look at two scenarios that are slightly more complex. In the
first scenario, you’re trying to use a configuration provider that requires some config-
uration itself. As an example, imagine you want to store some configuration in a data-
base table. In order to load these values, you’d need some sort of connection string,
which would most likely also come from your IConfiguration. You’re stuck with a
chicken-and-egg situation: you need to build the IConfiguration object to add the
provider, but you can’t add the provider without building the IConfiguration object!

 In the second scenario, you want to configure a strongly typed IOptions object
with values returned from a service. But the service won’t be available until after
you’ve configured all of the IOptions objects. In section 19.3.2, you’ll see how to han-
dle this by implementing the IConfigureOptions interface.

630 CHAPTER 19 Building custom components
19.3.1 Partially building configuration to configure additional providers

ASP.NET Core includes many configuration providers, such as file and environment
variable providers, that don’t require anything more than basic details to set up. All
you need in order to read a JSON file, for example, is the path to that file.

 But the configuration system is highly extensible, and more complex configura-
tion providers may require some degree of configuration themselves. For example,
you may have a configuration provider that loads configuration values from a data-
base, a provider that loads values from a remote API, or a provider that loads secrets
from Azure Key Vault.4

 Each of these providers requires some sort of configuration themselves: a connec-
tion string for the database, a URL for the remote service, or a key to decrypt the data
from Key Vault. Unfortunately, this leaves you with a circular problem: you need to
add the provider to build your configuration object, but you need a configuration
object to add the provider!

 The solution is to use a two-stage process to build your final IConfiguration con-
figuration object, as shown in figure 19.5. In the first stage, you load the configuration
values that are available locally, such as JSON files and environment variables, and
build a temporary IConfiguration. You can use this object to configure the complex
providers, add them to your configuration builder, and build the final IConfiguration
for your app.

 You can use this two-phase process whenever you have configuration providers that
need configuration themselves. Building the configuration object twice means that
the values are loaded from each of the initial configuration providers twice, but I’ve
never found that to be a problem.

 As an example of this process, listing 19.14 shows how you can create a temporary
IConfiguration object, built using the contents of an XML file. This contains a con-
figuration property called "SettingsFile" with the filename of a JSON file.

 In the second phase of configuration, you add the JSON file provider (using the
filename from the partial IConfiguration) and the environment variable provider.
When you finally call Build() on the IHostBuilder, a new IConfiguration object
will be built, containing the configuration values from the XML file, the JSON file,
and the environment variables.

4 Azure Key Vault is a service that lets you securely store secrets in the cloud. Your app retrieves the secrets from
Azure Key Vault at runtime by calling an API and providing a client ID and a secret. The client ID and secret
must come from local configuration values so that you can retrieve the rest from Azure Key Vault. Read more,
including how to get started, in Microsoft’s “Azure Key Vault Configuration Provider in ASP.NET Core” doc-
umentation: http://mng.bz/Qm7v.

http://mng.bz/Qm7v

631Handling complex configuration requirements
public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((context, config) =>
 {
 config.Sources.Clear();
 config.AddXmlFile("baseconfig.xml");

 IConfiguration partialConfig = config.Build();
 string filename = partialConfig["SettingsFile"];

Listing 19.14 Using multiple IConfiguration objects to configure providers

1. You start by creating an instance
of the ConfigurationBuilder.

2. Add the configuration providers
available locally to the builder.

ConfigurationBuilder

IConfiguration

Build()

JsonConfigurationProvider

AzureKeyVaultProvider

EnvironmentVariablesProvider

AddJsonFile()

AddAzureKeyVault(clientId, secretId)

AddEnvironmentVariables()

5. Call Build() a
second time to
create the final
IConfiguration.

Build()

IConfiguration

clientId: config value
secretId: secret value

3. Call Build() to
build a temporary
IConfiguration
object.

4. Extract the configuration values
you need to set up the other
configuration providers, and add
the additional providers.

6. The final IConfiguration includes the
configuration from all the providers.

Figure 19.5 Adding a configuration provider that requires configuration. Start by adding configuration
providers that you have the details for, and build a temporary IConfiguration object. You can use this
configuration object to load the settings required by the complex provider, add the provider to your builder,
and build the final IConfiguration object using all the providers.

Remove
the default

configuration
sources.

Adds an XML file to the
configuration, which
contains configuration
for other providers

Builds the
IConfiguration

to read the
XML file

Extracts the configuration
required by other providers

632 CHAPTER 19 Building custom components

U
 config.AddJsonFile(filename)
 .AddEnvironmentVariables();
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

This is a somewhat contrived example—it’s unlikely that you’d need to load configu-
ration values to read a JSON file—but the principle is the same no matter which pro-
viders you use. A good example of this is the Azure Key Vault provider. To load
configuration values from Azure Key Vault, you need a URL, a client ID, and a secret.
These must be loaded from other configuration providers, so you have to use the
same two-phase process as shown in the previous listing.

 Once you’ve loaded the configuration for your app, it’s common to bind this con-
figuration to strongly typed objects using the IOptions pattern. In the next section
we’ll look at other ways to configure your IOptions objects and how to build them
using DI services.

19.3.2 Using services to configure IOptions with IConfigureOptions

A common and encouraged practice is to bind your configuration object to strongly
typed IOptions<T> objects, as you saw in chapter 11. Typically, you configure this
binding in Startup.ConfigureServices by calling services.Configure<T>() and
providing an IConfiguration object or section to bind.

 To bind a strongly typed object, called CurrencyOptions, to the "Currencies" sec-
tion of an IConfiguration object, you’d use the following:

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CurrencyOptions>(
 Configuration.GetSection("Currencies"));
}

This sets the properties of the CurrencyOptions object, based on the values in the
"Currencies" section of your IConfiguration object. Simple binding like this is
common, but sometimes you might want to customize the configuration of your
IOptions<T> objects, or you might not want to bind them to configuration at all. The
IOptions pattern only requires you to configure a strongly typed object before it’s
injected into a dependent service; it doesn’t mandate that you have to bind it to an
IConfiguration section.

TIP Technically, even if you don’t configure an IOptions<T> at all, you can
still inject it into your services. In that case, the T object will always be created
using the default constructor.

The services.Configure<T>() method has an overload that lets you provide a
lambda function that the framework uses to configure the CurrencyOptions object.

ses the extracted
configuration to
configure other

providers

Remember, values from
subsequent providers will
overwrite values from
previous providers.

633Handling complex configuration requirements
For example, in the following snippet we use a lambda function to set the Currencies
property on the configured CurrencyOptions object to a fixed array of strings:

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CurrencyOptions>(
 Configuration.GetSection("Currencies"));
 services.Configure<CurrencyOptions>(options =>
 options.Currencies = new string[] { "GBP", "USD"});
}

Each call to Configure<T>(), both the binding to IConfiguration and the lambda
function, adds another configuration step to the CurrencyOptions object. When the
DI container first requires an instance of IOptions<CurrencyOptions>, each of the
steps run in turn, as shown in figure 19.6.

In the previous code snippet, you set the Currencies property to a static array of
strings in a lambda function. But what if you don’t know the correct values ahead of
time? You might need to load the available currencies from a database, or from some
remote service, for example.

 Unfortunately, this situation, where you need a configured service to configure
your IOptions<T>, is hard to resolve. Remember, you declare your IOptions<T> con-
figuration inside ConfigureServices as part of the DI configuration. How can you get
a fully configured instance of a currency service if you haven’t registered it with the
container yet?

 The solution is to defer the configuration of your IOptions<T> object until the last
moment, just before the DI container needs to create it to handle an incoming request.

When an instance of IOptions<CurrencyOptions>
is required, the DI container creates an instance
of CurrencyOptions and configures it with
each of the registered Configure calls.

new CurrencyOptions()

Configure(config)

Configure(options=>)

IOptions<CurrencyOptions>

DefaultCurrency = "GBP"
Currencies = []

DefaultCurrency = "GBP"
Currencies = ["GBP", "USD"]

Each Configure()
step updates the
CurrencyOptions
instance.

The Configure calls
run sequentially to
build the final object.

Once fully configured,
IOptions<CurrencyOptions>
is injected as a dependency.

Figure 19.6 Configuring a CurrencyOptions object. When the DI container needs an
IOptions<> instance of a strongly typed object, the container creates the object and then uses
each of the registered Configure() methods to set the object’s properties.

634 CHAPTER 19 Building custom components

You ca
servi

a
after

com
con
At that point, the DI container will be completely configured and will know how to
create the currency service.

 ASP.NET Core provides this mechanism with the IConfigureOptions<T> inter-
face. You implement this interface in a configuration class and use it to configure the
IOptions<T> object in any way you need. This class can use DI, so you can easily use
any other required services.

public class ConfigureCurrencyOptions : IConfigureOptions<CurrencyOptions>
{
 private readonly ICurrencyProvider _currencyProvider;
 public ConfigureCurrencyOptions(ICurrencyProvider currencyProvider)
 {
 _currencyProvider = currencyProvider;
 }

 public void Configure(CurrencyOptions options)
 {
 options.Currencies = _currencyProvider.GetCurrencies();
 }
}

All that remains is to register this implementation in the DI container. As always,
order is important, so if you want ConfigureCurrencyOptions to run after binding to
configuration, you must add it after the first call to services.Configure<T>():

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CurrencyOptions>(
 Configuration.GetSection("Currencies"));
 services.AddSingleton
 <IConfigureOptions<CurrencyOptions>, ConfigureCurrencyOptions>();
}

WARNING The CurrencyConfigureOptions object is registered as a singleton,
so it will capture any injected services of scoped or transient lifetimes.5

With this configuration, when IOptions<CurrencyOptions> is injected into a control-
ler or service, the CurrencyOptions object will first be bound to the "Currencies"
section of your IConfiguration and will then be configured by the Configure-
CurrencyOptions class.

Listing 19.15 Implementing IConfigureOptions<T> to configure an options object

5 If you inject a scoped service into your configuration class (for example, a DbContext), you need to do a bit
more work to ensure it’s disposed of correctly. I describe how to achieve that in my blog article titled “Access
services inside ConfigureServices using IConfigureOptions in ASP.NET Core”: http://mng.bz/6m17.

n inject
ces that
are only
vailable

the DI is
pletely

figured.
Configure is called
when an instance of
IOptions<CurrencyOptions>
is required.

You can use the injected service to load the
values from a remote API, for example.

http://mng.bz/6m17

635Using a third-party dependency injection container
 One piece of configuration not yet shown is ICurrencyProvider, used by Configure-
CurrencyOptions. In the sample code for this chapter, I created a simple Currency-
Provider service and registered it with the DI container using

services.AddSingleton<ICurrencyProvider, CurrencyProvider>();

As your app grows and you add extra features and services, you’ll probably find your-
self writing more and more of these simple DI registrations, where you register a
Service that implements IService. The built-in ASP.NET Core DI container requires
you to explicitly register each of these services manually. If you find this requirement
frustrating, it may be time to look at third-party DI containers that can take care of
some of the boilerplate for you.

19.4 Using a third-party dependency injection container
In this section I’ll show you how to replace the default dependency injection container
with a third-party alternative, Lamar. Third-party containers often provide additional
features compared to the built-in container, such as assembly scanning, automatic
service registration, and property injection. Replacing the built-in container can
also be useful when porting an existing app that uses a third-party DI container to
ASP.NET Core.

 The .NET community had been using DI containers for years before ASP.NET
Core decided to include one that is built in. The ASP.NET Core team wanted a way to
use DI in their own framework libraries, and they wanted to create a common abstrac-
tion6 that allows you to replace the built-in container with your favorite third-party
alternative, such as,

 Autofac
 StructureMap/Lamar
 Ninject
 Simple Injector
 Unity

The built-in container is intentionally limited in the features it provides, and it won’t
be getting many more realistically. In contrast, third-party containers can provide a
host of extra features. These are some of the features available in Lamar (https://jas-
perfx.github.io/lamar/documentation/ioc/), the spiritual successor to StructureMap
(https://structuremap.github.io/):

 Assembly scanning for interface/implementation pairs based on conventions
 Automatic concrete class registration

6 Although the promotion of DI as a core practice has been applauded, this abstraction has seen some contro-
versy. This post, titled “What’s wrong with the ASP.NET Core DI abstraction?” from one of the maintainers of
the SimpleInjector DI library describes many of the arguments and concerns: http://mng.bz/yYAd. You
can also read more about the decisions on GitHub: https://github.com/aspnet/DependencyInjection/
issues/433.

http://mng.bz/yYAd
https://github.com/aspnet/DependencyInjection/issues/433
https://github.com/aspnet/DependencyInjection/issues/433
https://github.com/aspnet/DependencyInjection/issues/433
https://jasperfx.github.io/lamar/documentation/ioc/
https://jasperfx.github.io/lamar/documentation/ioc/
https://structuremap.github.io/

636 CHAPTER 19 Building custom components
 Property injection and constructor selection
 Automatic Lazy<T>/Func<T> resolution
 Debugging/testing tools for viewing inside your container

None of these features are a requirement for getting an application up and running, so
using the built-in container makes a lot of sense if you’re building a small app or you’re
new to DI containers in general. But if, at some undefined tipping point, the simplicity
of the built-in container becomes too much of a burden, it may be worth replacing.

TIP A middle-of-the-road approach is to use the Scrutor NuGet package,
which adds some features to the built-in DI container, without replacing it
entirely. For an introduction and examples, see my blog post, “Using Scrutor
to automatically register your services with the ASP.NET Core DI container”:
http://mng.bz/MX7B.

In this section, I’ll show how you can configure an ASP.NET Core app to use Lamar
for dependency resolution. It won’t be a complex example, or an in-depth discussion
of Lamar itself. Instead, I’ll cover the bare minimum to get you up and running.

 Whichever third-party container you choose to install into an existing app, the
overall process is pretty much the same:

1 Install the container NuGet package.
2 Register the third-party container with IHostBuilder in Program.cs.
3 Add a ConfigureContainer method in Startup.
4 Configure the third-party container in ConfigureContainer to register your

services.

Most of the major .NET DI containers have been ported to work on .NET Core and
include an adapter that lets you add them to ASP.NET Core apps. For details, it’s
worth consulting the specific guidance for the container you’re using. For Lamar, the
process looks like this:

1 Install the Lamar.Microsoft.DependencyInjection NuGet package using the
NuGet package manager, by running dotnet add package:

dotnet add package Lamar.Microsoft.DependencyInjection

Or by adding a <PackageReference> to your .csproj file:

<PackageReference
 Include="Lamar.Microsoft.DependencyInjection" Version="4.4.0" />

2 Call UseLamar() on your IHostBuilder in Program.cs:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .UseLamar()
 .ConfigureWebHostDefaults(webBuilder =>

http://mng.bz/MX7B

637Using a third-party dependency injection container

 in
tead

th
u

yo
 {
 webBuilder.UseStartup<Startup>();
 }

3 Add a ConfigureContainer method to your Startup class, with the following
signature:

public void ConfigureContainer(ServiceRegistry services) { }

4 Configure the Lamar ServiceRegistry in ConfigureContainer, as shown in
the following listing. This is a basic configuration, but you can see a more com-
plex example in the source code for this chapter.

public void ConfigureContainer(ServiceRegistry services)
{
 services.AddAuthorization();
 services.AddControllers()
 .AddControllersAsServices();

 services.Scan(_ => {
 _.AssemblyContainingType(typeof(Startup));
 _.WithDefaultConventions();
 });
}

In this example, I’ve used the default conventions to register services. This will auto-
matically register concrete classes and services that are named following expected
conventions (for example, Service implements IService). You can change these
conventions or add other registrations in the ConfigureContainer method.

 The ServiceRegistry passed into ConfigureContainer implements IService-
Collection, which means you can use all the built-in extension methods, such as
AddControllers() and AddAuthorization(), to add framework services to your con-
tainer.

WARNING If you’re using DI in your MVC controllers (almost certainly!) and
you register those dependencies with Lamar rather than the built-in con-
tainer, you may need to call AddControllersAsServices(), as shown in list-
ing 19.16. This is due to an implementation detail in the way your MVC
controllers are created by the framework. For details, see my blog entry titled
“Controller activation and dependency injection in ASP.NET Core MVC”:
http://mng.bz/aogm.

With this configuration in place, whenever your app needs to create a service, it will
request it from the Lamar container, which will create the dependency tree for the
class and create an instance. This example doesn’t show off the power of Lamar, so be
sure to check out the documentation (https://jasperfx.github.io/lamar/) and the

Listing 19.16 Configuring Lamar as a third-party DI container

Configure your services
ConfigureContainer ins
of ConfigureServices.

You can (and should) add
ASP.NET Core framework
services to the Service-
Registry, as usual.Required so

at Lamar is
sed to build
ur Web API
controllers

Lamar can automatically
scan your assemblies for
services to register.

http://mng.bz/aogm
https://jasperfx.github.io/lamar/

638 CHAPTER 19 Building custom components
associated source code for this chapter for more examples. Even in modestly sized
applications, Lamar can greatly simplify your service registration code, but its party
trick is showing all the services you have registered, and any associated issues.

 That brings us to the end of this chapter on custom components. In this chapter I
focused on some of the most common components you will build for the configura-
tion, dependency injection, and middleware systems of ASP.NET Core. In the next
chapter you’ll learn about more custom components, with a focus on Razor Pages and
Web API controllers.

Summary
 Use the Run extension method to create middleware components that always

return a response. You should always place the Run extension at the end of a mid-
dleware pipeline or branch, as middleware placed after it will never execute.

 You can create branches in the middleware pipeline with the Map extension. If
an incoming request matches the specified path prefix, the request will execute
the pipeline branch; otherwise it will execute the trunk.

 When the Map extension matches a request path segment, it removes the seg-
ment from the request’s HttpContext.Path and moves it to the PathBase prop-
erty. This ensures that routing in branches works correctly.

 You can use the Use extension method to create generalized middleware com-
ponents that can generate a response, modify the request, or pass the request
on to subsequent middleware in the pipeline. This is useful for cross-cutting
concerns, like adding a header to all responses.

 You can encapsulate middleware in a reusable class. The class should take a
RequestDelegate object in the constructor and should have a public Invoke()
method that takes an HttpContext and returns a Task. To call the next mid-
dleware in the pipeline, invoke the RequestDelegate with the provided Http-
Context.

 To create endpoints that generate a response, build a miniature pipeline con-
taining the response-generating middleware, and call endpoints.Map(route,
pipeline). Endpoint routing will be used to map incoming requests to your
endpoint.

 Alternatively, use the MapGet and other Map* extension methods to create end-
points inline. Endpoint routing will map incoming requests to these endpoints
in the same way as your other custom endpoints.

 You can read and write JSON inside a Map* endpoint using the ReadFromJson-
Async and WriteAsJsonAsync extension methods. These use the System.Text
.Json serializer to deserialize and serialize objects directly. These can be useful
for creating simple APIs. Be aware that this approach lacks most of the features
available with Web API controllers, such as validation, the filter pipeline, and
content negotiation.

639Summary
 You can attach metadata to endpoints, which is made available to any middle-
ware placed between the calls to UseRouting() and UseEndpoints(). This
metadata enables functionality such as authorization and CORS.

 To add authorization to an endpoint, call RequireAuthorization() after map-
ping the endpoint. This is equivalent to using the [Authorize] attribute on
Razor Pages and Web API controllers. You can optionally provide an authoriza-
tion policy name, instead of using the default policy.

 Some configuration providers require configuration values themselves. For
example, a configuration provider that loads settings from a database might
need a connection string. You can load these configuration providers by par-
tially building an IConfiguration object using the other providers and reading
the required configuration from it. You can then configure the database pro-
vider and add it to the ConfigurationBuilder before rebuilding to get the final
IConfiguration.

 If you need to use services from the DI container to configure an IOptions<T>
object, you should create a separate class that implements IConfigure-
Options<T>. This class can use DI in the constructor and is used to lazily build a
requested IOptions<T> object at runtime.

 You can replace the built-in DI container with a third-party container. Third-
party containers often provide additional features, such as convention-based
dependency registration, assembly scanning, or property injection.

 To use a third-party container such as Lamar, install the NuGet package, enable
the container on IHostBuilder, and implement ConfigureContainer() in
Startup. Configure the third-party container in this method by registering both
the required ASP.NET Core framework services and your app-specific services.

Building
custom MVC and

Razor Pages components
In the previous chapter, you learned how to customize and extend some of the core
systems in ASP.NET Core: configuration, dependency injection, and your middle-
ware pipeline. These components form the basis of all ASP.NET Core apps. In this
chapter we’re focusing on Razor Pages and MVC/API controllers. You’ll learn how
to build custom components that work with Razor views. You’ll also learn how to
build components that work with the validation framework used by both Razor
Pages and API controllers.

 We’ll start by looking at Tag Helpers. In section 20.1 I’ll show you how to create
two different Tag Helpers: one that generates HTML to describe the current
machine, and one that lets you write if statements in Razor templates without having

This chapter covers
 Creating custom Razor Tag Helpers

 Using view components to create complex
Razor views

 Creating a custom DataAnnotations validation
attribute

 Replacing the DataAnnotations validation
framework with an alternative
640

641Creating a custom Razor Tag Helper
to use C#. These will give you the details you need to create your own custom Tag
Helpers in your own apps if the need arises.

 In section 20.2 you’ll learn about a new Razor concept: view components. View
components are a bit like partial views, but they can contain business logic and data-
base access. For example, on an e-commerce site you might have a shopping cart, a
dynamically populated menu, and a login widget, all on one page. Each of those sec-
tions is independent of the main page content and has its own logic and data-access
needs. In an ASP.NET Core app using Razor Pages, you’d implement each of those as
a view component.

 In section 20.3 I’ll show you how to create a custom validation attribute. As you saw
in chapter 6, validation is a key responsibility of Razor Page handlers and action meth-
ods, and the DataAnnotations attributes provide a clean, declarative way of doing so.
We previously only looked at the built-in attributes, but you’ll often find you need to
add attributes tailored to your app’s domain. In section 20.3 you’ll see how to create a
simple validation attribute, and how to extend it to use services registered with the
DI container.

 Throughout this book I’ve mentioned that you can easily swap out core parts of
the ASP.NET Core framework if you wish. In section 20.4 you’ll do just that, by replac-
ing the built-in attribute-based validation framework with a popular alternative, Flu-
entValidation. This open source library allows you to separate your binding models
from the validation rules, which makes building certain validation logic easier. Many
people prefer this approach of separating concerns to the declarative approach of
DataAnnotations.

 When you’re building pages with Razor Pages, one of the best productivity features
is Tag Helpers, and in the next section you’ll see how you can create your own.

20.1 Creating a custom Razor Tag Helper
In this section you’ll learn how to create your own Tag Helpers, which allow you to
customize your HTML output. You’ll learn how to create Tag Helpers that add new
elements to your HTML markup, as well as Tag Helpers that can be used to remove or
customize existing markup. You’ll also see that your custom Tag Helpers integrate
with the tooling of your IDE to provide rich IntelliSense in the same way as the built-in
Tag Helpers.

 In my opinion, Tag Helpers are one of the best additions to the venerable Razor
template language in ASP.NET Core. They allow you to write Razor templates that are
easier to read, as they require less switching between C# and HTML, and they augment
your HTML tags, rather than replacing them (as opposed to the HTML Helpers used
extensively in the previous version of ASP.NET).

 ASP.NET Core comes with a wide variety of Tag Helpers (see chapter 8), which will
cover many of your day-to-day requirements, especially when it comes to building
forms. For example, you can use the Input Tag Helper by adding an asp-for attribute

642 CHAPTER 20 Building custom MVC and Razor Pages components
to an <input> tag and passing a reference to a property on your PageModel, in this
case Input.Email:

<input asp-for="Input.Email" />

The Tag Helper is activated by the presence of the attribute and gets a chance to aug-
ment the <input> tag when rendering to HTML. The Input Tag Helper uses the
name of the property to set the <input> tag’s name and id properties, the value of
the model to set the value property, and the presence of attributes such as [Required]
or [EmailAddress] to add attributes for validations:

<input type="email" id="Input_Email" name="Input.Email"
 value="test@example.com" data-val="true"
 data-val-email="The Email Address field is not a valid e-mail address."
 data-val-required="The Email Address field is required."
 />

Tag Helpers help reduce the duplication in your code, or they can simplify common
patterns. In this section I’ll show how you can create your own custom Tag Helpers.

 In section 20.1.1 you’ll create a system information Tag Helper, which prints
details about the name and operating system of the server your app is running on.
In section 20.1.2 you’ll create a Tag Helper that you can use to conditionally show or
hide an element based on a C# Boolean property. In section 20.1.3 you’ll create a
Tag Helper that reads the Razor content written inside the Tag Helper and trans-
forms it.

20.1.1 Printing environment information with a custom Tag Helper

A common problem you may run into when you start running your web applications
in production, especially if you’re using a server-farm setup, is working out which
machine rendered the page you’re currently looking at. Similarly, when deploying fre-
quently, it can be useful to know which version of the application is running. When I’m
developing and testing, I sometimes like to add a little “info dump” at the bottom of
my layouts so I can easily work out which server generated the current page, which
environment it’s running in, and so on.

 In this section, I’m going to show you how to build a custom Tag Helper to output
system information to your layout. You’ll be able to toggle the information it displays,
but by default it will display the machine name and operating system on which the
app is running, as shown in figure 20.1.

 You can call this Tag Helper from Razor by creating a <system-info> element in
your template:

<footer>
 <system-info></system-info>
</footer>

643Creating a custom Razor Tag Helper

Deri
from

TagHel
base cl

Re

<

TIP You probably don’t want to expose this sort of information in produc-
tion, so you could also wrap it in an <environment> Tag Helper, as you saw in
chapter 8.

The easiest way to create a custom Tag Helper is to derive from the TagHelper base
class and override the Process() or ProcessAsync() function that describes how the
class should render itself. The following listing shows your complete custom Tag
Helper, SystemInfoTagHelper, which renders the system information to a <div>. You
could easily extend this class if you wanted to display additional fields or add addi-
tional options.

public class SystemInfoTagHelper : TagHelper
{
 private readonly HtmlEncoder _htmlEncoder;
 public SystemInfoTagHelper(HtmlEncoder htmlEncoder)
 {
 _htmlEncoder = htmlEncoder;
 }

 [HtmlAttributeName("add-machine")]
 public bool IncludeMachine { get; set; } = true;

 [HtmlAttributeName("add-os")]
 public bool IncludeOS { get; set; } = true;

 public override void Process(
 TagHelperContext context, TagHelperOutput output)
 {
 output.TagName = "div";
 output.TagMode = TagMode.StartTagAndEndTag;
 var sb = new StringBuilder();

Listing 20.1 SystemInfoTagHelper to render system information to a view

The SystemInfoTagHelper
displays information about
the server on which the
app is executing.

Figure 20.1 The SystemInfoTagHelper displays the machine name and operating
system on which the application is running. It can be useful for identifying which instance
of your app handled the request when running in a web farm scenario.

ves
the
per
ass

An HtmlEncoder
is necessary when
writing HTML
content to the page.

Decorating properties with
HtmlAttributeName allows
you to set their values
from Razor markup.

The main function
called when an
element is rendered

Replaces the <system-
info> element with a
<div> element

nders both
the <div>
/div> start
and end tag

644 CHAPTER 20 Building custom MVC and Razor Pages components

a
and
 if (IncludeMachine)
 {
 sb.Append(" Machine ");
 sb.Append(_htmlEncoder.Encode(Environment.MachineName));
 }

 if (IncludeOS)
 {
 sb.Append(" OS ");
 sb.Append(
 _htmlEncoder.Encode(RuntimeInformation.OSDescription));
 }
 output.Content.SetHtmlContent(sb.ToString());
 }
}

There’s a lot of new code in this example, so we’ll work through it line by line. First,
the class name of the Tag Helper defines the name of the element you must create in
your Razor template, with the suffix removed and converted to kebab-case. As this Tag
Helper is called SystemInfoTagHelper, you must create a <system-info> element.

TIP If you want to customize the name of the element, for example to <env-
info>, but you want to keep the same class name, you can apply [HtmlTarget-
Element] with the desired name, such as [HtmlTargetElement("Env-Info")].
HTML tags are not case-sensitive, so you could use "Env-Info" or "env-info".

Inject an HtmlEncoder into your Tag Helper so you can HTML-encode any data you write
to the page. As you saw in chapter 18, you should always HTML-encode data you write to
the page to avoid XSS vulnerabilities (and to ensure the data is displayed correctly).

 You’ve defined two properties on your Tag Helper, IncludeMachine and IncludeOS,
which you’ll use to control which data is written to the page. These are decorated with
a corresponding [HtmlAttributeName], which enables setting the properties from the
Razor template. In Visual Studio, you’ll even get IntelliSense and type-checking for
these values, as shown in figure 20.2.

Finally, we come to the Process() method. The Razor engine calls this method to
execute the Tag Helper when it identifies the target element in a view template. The

If required, adds
 element
 the HTML-encoded

machine name

If required, adds a
 element

and the HTML-
encoded OS name

Sets the inner content of the <div> tag with the
HTML-encoded value stored in the string builder

Figure 20.2 In Visual Studio, Tag Helpers are shown in a purple font, and you get IntelliSense for properties
decorated with [HtmlAttributeName].

645Creating a custom Razor Tag Helper
Process() method defines the type of tag to render (<div>), whether it should ren-
der a start and end tag (or a self-closing tag—it depends on the type of tag you’re
rendering), and the HTML content of the <div>. You set the HTML content to be ren-
dered inside the tag by calling Content.SetHtmlContent() on the provided instance of
TagHelperOutput.

WARNING Always HTML-encode your output before writing to your tag with
SetHtmlContent(). Alternatively, pass unencoded input to SetContent(),
and the output will be automatically HTML-encoded for you.

Before you can use your new Tag Helper in a Razor template, you need to register it.
You can do this in the _ViewImports.cshtml file, using the @addTagHelper directive and
specifying the fully qualified name of the Tag Helper and the assembly. For example,

@addTagHelper CustomTagHelpers.SystemInfoTagHelper, CustomTagHelpers

Alternatively, you can add all the Tag Helpers from a given assembly by using the wild-
card syntax, *, and specifying the assembly name:

@addTagHelper *, CustomTagHelpers

With your custom Tag Helper created and registered, you’re now free to use it in any
of your Razor views, partial views, or layouts.

TIP If you’re not seeing IntelliSense for your Tag Helper in Visual Studio,
and the Tag Helper isn’t rendered in the bold font used by Visual Studio, then
you probably haven’t registered your Tag Helpers correctly in __ViewImports
.cshtml using @addTagHelper.

The SystemInfoTagHelper is an example of a Tag Helper that generates content, but
you can also use Tag Helpers to control how existing elements are rendered. In the
next section you’ll create a simple Tag Helper that can control whether or not an ele-
ment is rendered, based on an HTML attribute.

20.1.2 Creating a custom Tag Helper to conditionally hide elements

If you want to control whether an element is displayed in a Razor template based on
some C# variable, you’d typically wrap the element in a C# if statement:

@{
 var showContent = true;
}
@if(showContent)
{
 <p>The content to show</p>
}

Falling back to C# constructs like this can be useful, as it allows you to generate any
markup you like. Unfortunately, it can be mentally disruptive having to switch back

646 CHAPTER 20 Building custom MVC and Razor Pages components

valu
attrib
Rend

Re

fa
and forth between C# and HTML, and it makes it harder to use HTML editors that
don’t understand Razor syntax.

 In this section you’ll create a simple Tag Helper to avoid the cognitive dissonance
problem. You can apply this Tag Helper to existing elements to achieve the same
result as shown previously, but without having to fall back to C#:

@{
 var showContent = true;
}
<p if="showContent">
 The content to show
</p>

Instead of creating a new element, as you did for SystemInfoTagHelper (<system-
info>), you’ll create a Tag Helper that you apply as an attribute to existing HTML ele-
ments. This Tag Helper does one thing: it controls the visibility of the element it’s
attached to. If the value passed in the if attribute is true, the element and its content
is rendered as normal. If the value passed is false, the Tag Helper removes the ele-
ment and its content from the template. Here’s how you could achieve this.

[HtmlTargetElement(Attributes = "if")]
public class IfTagHelper : TagHelper
{
 [HtmlAttributeName("if")]
 public bool RenderContent { get; set; } = true;

 public override void Process(
 TagHelperContext context, TagHelperOutput output)
 {
 if(RenderContent == false)
 {
 output.TagName = null;
 output.SuppressOutput();
 }
 }

 public override int Order => int.MinValue;
}

Instead of a standalone <if> element, the Razor engine executes the IfTagHelper
whenever it finds an element with an if attribute. This can be applied to any HTML
element: <p>, <div>, <input>, whatever you need. You should define a Boolean prop-
erty specifying whether you should render the content, which is bound to the value in
the if attribute.

 The Process() function is much simpler here. If RenderContent is false, it sets
the TagHelperOutput.TagName to null, which removes the element from the page.

Listing 20.2 Creating an IfTagHelper to conditionally render elements

Setting the Attributes property
ensures the Tag Helper is
triggered by an if attribute.

Binds the
e of the if
ute to the
erContent
property

The Razor engine
calls Process() to
execute the Tag
Helper.

If the
nderContent

property
evaluates to
lse, removes
the element

Sets the element the Tag
Helper resides on to null,
removing it from the page

Doesn’t render or evaluate the
inner content of the element

Ensures this Tag Helper
runs before any others
attached to the element

647Creating a custom Razor Tag Helper
You also call SuppressOutput(), which prevents any content inside the attributed ele-
ment from being rendered. If RenderContent is true, you skip these steps and the
content is rendered as normal.

 One other point of note is the overridden Order property. This controls the order
in which Tag Helpers run when multiple Tag Helpers are applied to an element. By
setting Order to int.MinValue, you ensure that IfTagHelper will run first, removing
the element if required, before other Tag Helpers execute. There’s generally no
point running other Tag Helpers if the element is going to be removed from the
page anyway.

NOTE Remember to register your custom Tag Helpers in _ViewImports.cshtml
with the @addTagHelper directive.

With a simple HTML attribute, you can now conditionally render elements in Razor
templates without having to fall back to C#. This Tag Helper can show and hide con-
tent without needing to know what the content is. In the next section we’ll create a
Tag Helper that does need to know the content.

20.1.3 Creating a Tag Helper to convert Markdown to HTML

The two Tag Helpers shown so far are agnostic to the content written inside the Tag
Helper, but it can also be useful to create Tag Helpers that inspect, retrieve, and mod-
ify this content. In this section you’ll see an example of one such Tag Helper that con-
verts Markdown content written inside it into HTML.1

DEFINITION Markdown is a commonly used text-based markup language that
is easy to read but can also be converted into HTML. It is the common format
used by README files on GitHub, and I use it to write blog posts, for exam-
ple. For an introduction to Markdown, see the GitHub guide: https://guides
.github.com/features/mastering-markdown/.

We’ll use the popular Markdig library (https://github.com/xoofx/markdig) to create
the Markdown Tag Helper. This library converts a string containing Markdown into
an HTML string. You can install Markdig using Visual Studio by running dotnet add
package Markdig, or by adding a <PackageReference> to your .csproj file:

<PackageReference Include="Markdig" Version="0.22.0" />

The Markdown Tag Helper that we’ll create shortly can be used by adding <markdown>
elements to your Razor Page, as shown in the following listing.

1 The open source library WebAPIContrib.Core includes a similar tag helper, as well as other helpful utilities.
You can find it on NuGet and GitHub at https://github.com/WebApiContrib/WebAPIContrib.Core.

https://github.com/WebApiContrib/WebAPIContrib.Core
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://github.com/xoofx/markdig

648 CHAPTER 20 Building custom MVC and Razor Pages components

the
>
@page
@model IndexModel

<markdown>
This is a markdown title

This is a markdown list:

* Item 1
* Item 2

<div if="showContent">
 Content is shown when showContent is true
</div>
</markdown>

The Markdown Tag Helper renders content with these steps:

1 Render any Razor content inside the Tag Helper. This includes executing any
nested Tag Helpers and C# code inside the Tag Helper. Listing 20.3 uses the
IfTagHelper, for example.

2 Convert the resulting string to HTML using the Markdig library.
3 Replace the content with the rendered HTML and remove the Tag Helper

<markdown> element.

The following listing shows a simple approach to implementing a Markdown Tag
Helper using Markdig. Markdig supports many additional extensions and features
that you could enable, but the overall pattern of the Tag Helper would be the same.

public class MarkdownTagHelper: TagHelper
{
 public override async Task ProcessAsync(
 TagHelperContext context, TagHelperOutput output)
 {
 TagHelperContent markdownRazorContent = await
 output.GetChildContentAsync(NullHtmlEncoder.Default);
 string markdown =
 markdownRazorContent.GetContent(NullHtmlEncoder.Default);

 string html = Markdig.Markdown.ToHtml(markdown);

 output.Content.SetHtmlContent(html);
 output.TagName = null;
 }
}

Listing 20.3 Using a Markdown Tag Helper in a Razor Page

Listing 20.4 Implementing a Markdown Tag Helper using Markdig

The Markdown Tag
Helper is added using the
<markdown> element. Titles can be created in Markdown

using # to denote h1, ## to
denote h2, and so on.

Markdown converts
simple lists to HTML
 elements.

Razor content can be
nested inside other
Tag Helpers.

The Markdown Tag Helper
will use the <markdown>
element.

Retrieve the
contents of
<markdown
element.

Render
the Razor

contents to
a string.

Convert the
Markdown string to
HTML using Markdig.

Write the HTML
content to the output.Remove the <markdown>

element from the content.

649View components: Adding logic to partial views
When rendered to HTML, the Markdown content in listing 20.3 (when the showContent
variable is true) becomes:

<h2>This is a markdown title</h2>
<p>This is a markdown list:</p>

Item 1
Item 2

<div>
 Content is shown when showContent is true
</div>

NOTE In listing 20.4 we implemented ProcessAsync() instead of Process().
That is because we call the async method GetChildContentAsync(). You must
only call async methods from other async methods; otherwise you can get
issues such as thread starvation. For more details, see Microsoft’s “ASP.NET
Core Performance Best Practices”: http://mng.bz/KM7X.

The Tag Helpers in this section represent a small sample of possible avenues you
could explore, but they cover the two broad categories: Tag Helpers for rendering
new content, and Tag Helpers for controlling the rendering of other elements.2

 Tag Helpers can be useful for providing small pieces of isolated, reusable function-
ality like this, but they’re not designed to provide larger, application-specific sections
of an app or to make calls to business-logic services. Instead, you should use view com-
ponents, as you’ll see in the next section.

20.2 View components: Adding logic to partial views
In this section you’ll learn about view components. View components operate inde-
pendently of the main Razor Page and can be used to encapsulate complex business
logic. You can use view components to keep your main Razor Page focused on a single
task, rendering the main content, instead of also being responsible for other sections
of the page.

 If you think about a typical website, you’ll notice that they often have multiple
independent dynamic sections in addition to the main content. Consider Stack Over-
flow, shown in figure 20.3, for example. As well as the main body of the page showing
questions and answers, there’s a section showing the current logged-in user, a panel
for blog posts and related items, and a section for job suggestions.

 Each of these sections is effectively independent of the main content. Each section
contains business logic (deciding which posts or ads to show), database access (load-
ing the details of the posts), and rendering logic for how to display the data. In chap-
ter 7 you saw that you can use layouts and partial views to split up the rendering of a
view template into similar sections, but partial views aren’t a good fit for this example.

2 For further details and examples, see Microsoft’s “Author Tag Helpers in ASP.NET Core” documentation at
http://mng.bz/Idb0.

http://mng.bz/KM7X
http://mng.bz/Idb0

650 CHAPTER 20 Building custom MVC and Razor Pages components
Partial views let you encapsulate view rendering logic, but not business logic that’s inde-
pendent of the main page content.

 Instead, view components provide this functionality, encapsulating both the busi-
ness logic and rendering logic for displaying a small section of the page. You can use
DI to provide access to a database context, and you can test view components inde-
pendently of the view they generate, much like MVC and API controllers. Think of
them a bit like mini-MVC controllers, or mini-Razor Pages, but you invoke them
directly from a Razor view, instead of in response to an HTTP request.

TIP View components are comparable to child actions from the previous ver-
sion of ASP.NET, in that they provide similar functionality. Child actions
don’t exist in ASP.NET Core.

View components vs. Razor Components and Blazor
In this book I am focusing on server-side rendered applications using Razor Pages
and API applications using Web API controllers. .NET Core 3.0 introduced a com-
pletely new approach to building ASP.NET Core applications: Blazor. I don’t cover
Blazor in this book, so I recommend reading Blazor in Action by Chris Sainty (Man-
ning, 2021).

Blazor has two programming models, client-side and server-side, but both approaches
use Blazor components (confusingly, officially called Razor components). Blazor com-
ponents have a lot of parallels with view components, but they live in a fundamentally

Current user
details

Blog posts and
related items

Job suggestions

Main content

Figure 20.3 The Stack Overflow website has multiple sections that are independent of the
main content, but which contain business logic and complex rendering logic. Each of these
sections could be rendered as a view component in ASP.NET Core.

651View components: Adding logic to partial views
In this section, you’ll see how to create a custom view component for the recipe app
you built in previous chapters, as shown in figure 20.4. If the current user is logged in,
the view component displays a panel with a list of links to the user’s recently created
recipes. For unauthenticated users, the view component displays links to the login and
register actions.

different world. Blazor components can interact with each other easily, but you can’t
use them with Tag Helpers or view components, and it’s hard to combine them with
Razor Page form posts.

Nevertheless, if you need an “island” of rich client-side interactivity in a single Razor
Page, you can embed a Blazor component inside a Razor Page, as shown in the “Ren-
der components in a page or view with the Component Tag Helper” section of the
“Prerender and integrate ASP.NET Core Razor components” documentation: http://
mng.bz/PPen. You could also use Blazor components as a way to replace AJAX calls
in your Razor Pages, as I show in my blog entry, “Replacing AJAX calls in Razor Pages
with Razor Components and Blazor”: http://mng.bz/9MJj.

If you don’t need the client-side interactivity of Blazor, view components are still the
best option for isolated sections in Razor Pages. They interoperate cleanly with your
Razor Pages, have no additional operational overhead, and use familiar concepts like
layouts, partial views, and Tag Helpers. For more details on why you should continue
to use view components, see my “Don't replace your View Components with Razor
Components” blog entry: http://mng.bz/1rKq.

When the user is
logged in, the view
component displays a
list of recipes created
by the current user,
loaded from the
database.

When the user is not
logged in, the view
component displays
links to the Register
and Login pages.

Figure 20.4 The view component displays different content based on the currently
logged-in user. It includes both business logic (determining which recipes to load
from the database) and rendering logic (specifying how to display the data).

http://mng.bz/PPen
http://mng.bz/PPen
http://mng.bz/PPen
http://mng.bz/9MJj
http://mng.bz/1rKq

652 CHAPTER 20 Building custom MVC and Razor Pages components

e
uld

Yo
par

the c
from

p

c
,

This component is a great candidate for a view component as it contains database
access and business logic (choosing which recipes to display), as well as rendering
logic (deciding how the panel should be displayed).

TIP Use partial views when you want to encapsulate the rendering of a spe-
cific view model, or part of a view model. When you have rendering logic that
requires business logic or database access, or if the section is logically distinct
from the main page content, consider using a view component.

You invoke view components directly from Razor views and layouts using a Tag Helper-
style syntax with a vc: prefix:

<vc:my-recipes number-of-recipes="3">
</vc:my-recipes>

Custom view components typically derive from the ViewComponent base class and
implement an InvokeAsync() method, as shown in listing 20.5. Deriving from this
base class allows access to useful helper methods in much the same way that deriving
from the ControllerBase class does for API controllers. Unlike API controllers, the
parameters passed to InvokeAsync don’t come from model binding. Instead, you pass
the parameters to the view component using properties on the Tag Helper element in
your Razor view.

public class MyRecipesViewComponent : ViewComponent
{
 private readonly RecipeService _recipeService;
 private readonly UserManager<ApplicationUser> _userManager;
 public MyRecipesViewComponent(RecipeService recipeService,
 UserManager<ApplicationUser> userManager)
 {
 _recipeService = recipeService;
 _userManager = userManager;
 }

 public async Task<IViewComponentResult> InvokeAsync(
 int numberOfRecipes)
 {
 if(!User.Identity.IsAuthenticated)
 {
 return View("Unauthenticated");
 }

 var userId = _userManager.GetUserId(HttpContext.User);
 var recipes = await _recipeService.GetRecipesForUser(
 userId, numberOfRecipes);

Listing 20.5 A custom view component to display the current user’s recipes

Deriving from the ViewComponent base
class provides useful methods like View().

You can use
DI in a view
component.

InvokeAsync renders th
view component. It sho
return a Task<IView-
ComponentResult>.

u can pass
ameters to
omponent
 the view.

Calling View()
will render a
partial view

with the
rovided name.

You can use asyn
external services
allowing you to
encapsulate logic
in your business
domain.

653View components: Adding logic to partial views
 return View(recipes);
 }
}

This custom view component handles all the logic you need to render a list of recipes
when the user is logged in, or a different view if the user isn’t authenticated. The
name of the view component is derived from the class name, like Tag Helpers. Alter-
natively, you can apply the [ViewComponent] attribute to the class and set a different
name entirely.

 The InvokeAsync method must return a Task<IViewComponentResult>. This is
similar to the way you can return IActionResult from an action method or a page
handler, but it’s more restrictive; view components must render some sort of content,
so you can’t return status codes or redirects. You’ll typically use the View() helper
method to render a partial view template (as in the previous listing) though you can
also return a string directly using the Content() helper method, which will HTML-
encode the content and render it to the page directly.

 You can pass any number of parameters to the InvokeAsync method. The name of
the parameters (in this case, numberOfRecipes) is converted to kebab-case and
exposed as a property in the view component’s Tag Helper (<number-of-recipes>).
You can provide these parameters when you invoke the view component from a view,
and you’ll get IntelliSense support, as shown in figure 20.5.

View components have access to the current request and HttpContext. In listing 20.5
you can see that we’re checking whether the current request was from an authenti-
cated user. You can also see that we’ve used some conditional logic: if the user isn’t
authenticated, we render the “Unauthenticated” Razor template; if they’re authenti-
cated, we render the default Razor template and pass in the view models loaded from
the database.

NOTE If you don’t specify a specific Razor view template to use in the View()
function, view components use the template name “Default.cshtml”.

You can pass a view model to
the partial view. Default.cshtml
is used by default.

Figure 20.5 Visual Studio provides IntelliSense support for the method parameters of a view component’s
InvokeAsync method. The parameter name, in this case numberOfRecipes, is converted to kebab-case for
use as an attribute in the Tag Helper.

654 CHAPTER 20 Building custom MVC and Razor Pages components
The partial views for view components work similarly to other Razor partial views that
you learned about in chapter 7, but they’re stored separately from them. You must
create partial views for view components at one of these locations:

 Views/Shared/Components/ComponentName/TemplateName
 Pages/Shared/Components/ComponentName/TemplateName

Both locations work, so for Razor Pages apps I typically use the Pages/ folder. For the
view component in listing 20.5, for example, you’d create your view templates at

 Pages/Shared/Components/MyRecipes/Default.cshtml
 Pages/Shared/Components/MyRecipes/Unauthenticated.cshtml

This was a quick introduction to view components, but it should get you a long way.
View components are a simple way to embed pockets of isolated, complex logic in
your Razor layouts. Having said that, be mindful of these caveats:

 View component classes must be public, non-nested, and non-abstract classes.
 Although they’re similar to MVC controllers, you can’t use filters with view

components.
 You can use layouts in your view components’ views to extract rendering logic

common to a specific view component. This layout may contain @sections, as
you saw in chapter 7, but these sections are independent of the main Razor
view’s layout.

 View components are isolated from the Razor Page they’re rendered in, so you
can’t, for example, define a @section in a Razor Page layout and then add that
content from a view component; the contexts are completely separate.

 When using the <vc:my-recipes> Tag Helper syntax to invoke your view com-
ponent, you must import it as a custom Tag Helper, as you saw in section 20.1.

 Instead of using the Tag Helper syntax, you may invoke the view component
from a view directly by using IViewComponentHelper Component, though I don’t
recommend using this syntax. For example,

@await Component.InvokeAsync("MyRecipes", new { numberOfRecipes = 3 })

We’ve covered Tag Helpers and view components, which are both features of the
Razor engine in ASP.NET Core. In the next section you’ll learn about a different, but
related, topic: how to create a custom DataAnnotations attribute. If you’ve used previ-
ous versions of ASP.NET, this will be familiar, but ASP.NET Core has a couple of tricks
up its sleeve to help you out.

20.3 Building a custom validation attribute
In this section you’ll learn how to create a custom DataAnnotations validation attri-
bute that specifies specific values a string property may take. You’ll then learn how
you can expand the functionality to be more generic by delegating to a separate service

655Building a custom validation attribute

pr
are r
that is configured in your DI controller. This will allow you to create custom domain-
specific validations for your apps.

 We looked at model binding in chapter 6, where you saw how to use the built-in
DataAnnotations attributes in your binding models to validate user input. These pro-
vide several built-in validations, such as

 [Required]—The property isn’t optional and must be provided.
 [StringLength(min, max)]—The length of the string value must be between

min and max characters.
 [EmailAddress]—The value must have a valid email address format.

But what if these attributes don’t meet your requirements? Consider the following list-
ing, which shows a binding model from a currency converter application. The model
contains three properties: the currency to convert from, the currency to convert to,
and the quantity.

public class CurrencyConverterModel
{
 [Required]
 [StringLength(3, MinimumLength = 3)]
 public string CurrencyFrom { get; set; }

 [Required]
 [StringLength(3, MinimumLength = 3)]
 public string CurrencyTo { get; set; }

 [Required]
 [Range(1, 1000)]
 public decimal Quantity { get; set; }
}

There’s some basic validation on this model, but during testing you identify a prob-
lem: users can enter any three-letter string for the CurrencyFrom and CurrencyTo
properties. Users should only be able to choose a valid currency code, like "USD" or
"GBP", but someone attacking your application could easily send "XXX" or "£$%".

 Assuming you support a limited set of currencies, say GBP, USD, EUR, and CAD,
you could handle the validation in a few different ways. One way would be to validate
the CurrencyFrom and CurrencyTo values within the Razor Page handler method,
after model binding and attribute validation has already occurred.

 Another way would be to use a [RegularExpresssion] attribute to look for the
allowed strings. The approach I’m going to take here is to create a custom Validation-
Attribute. The goal is to have a custom validation attribute you can apply to the
CurrencyFrom and CurrencyTo attributes, to restrict the range of valid values. This will
look something like the following example.

Listing 20.6 Currency converter initial binding model

All the
operties
equired.

The strings
must be exactly
3 characters.

The quantity can be
between 1 and 1000.

656 CHAPTER 20 Building custom MVC and Razor Pages components

pr
str
is

cod
public class CurrencyConverterModel
{
 [Required]
 [StringLength(3, MinimumLength = 3)]
 [CurrencyCode("GBP", "USD", "CAD", "EUR")]
 public string CurrencyFrom { get; set; }

 [Required]
 [StringLength(3, MinimumLength = 3)]
 [CurrencyCode("GBP", "USD", "CAD", "EUR")]
 public string CurrencyTo { get; set; }

 [Required]
 [Range(1, 1000)]
 public decimal Quantity { get; set; }
}

Creating a custom validation attribute is simple; you can start with the Validation-
Attribute base class, and you only have to override a single method. The next listing
shows how you could implement CurrencyCodeAttribute to ensure that the currency
codes provided match the expected values.

public class CurrencyCodeAttribute : ValidationAttribute
{
 private readonly string[] _allowedCodes;
 public CurrencyCodeAttribute(params string[] allowedCodes)
 {
 _allowedCodes = allowedCodes;
 }

 protected override ValidationResult IsValid(
 object value, ValidationContext context)
 {
 var code = value as string;
 if(code == null || !_allowedCodes.Contains(code))
 {
 return new ValidationResult("Not a valid currency code");
 }
 return ValidationResult.Success;
 }
}

Validation occurs in the action filter pipeline after model binding, before the action
or Razor Page handler is executed. The validation framework calls IsValid() for
each instance of ValidationAttribute on the model property being validated.
The framework passes in value (the value of the property being validated) and the

Listing 20.7 Applying custom validation attributes to the binding model

Listing 20.8 Custom validation attribute for currency codes

CurrencyCodeAttribute
validates that the
property has one of
the provided values.

Derives from ValidationAttribute to ensure
your attribute is used during validation

The attribute
takes in an
array of allowed
currency codes.

The IsValid method is
passed the value to validate
and a context object.

If the value
ovided isn’t a
ing, is null, or
n’t an allowed
e, then return

an error.
Otherwise, return
a success result.

657Building a custom validation attribute
ValidationContext to each attribute in turn. The context object contains details that
you can use to validate the property.

 Of particular note is the ObjectInstance property. You can use this to access the
top-level model being validated when you validate a sub-property. For example, if
the CurrencyFrom property of the CurrencyConvertModel is being validated, you can
access the top-level object from the ValidationAttribute as follows:

var model = validationContext.ObjectInstance as CurrencyConverterModel;

This can be useful if the validity of a property depends on the value of another prop-
erty of the model. For example, you might want a validation rule that says that GBP is
a valid value for CurrencyTo, except when CurrencyFrom is also GBP. The Object-
Instance makes these sorts of comparison validations easy.

NOTE Although using ObjectInstance makes it easy to make model-level
comparisons like these, it reduces the portability of your validation attribute.
In this case, you would only be able to use the attribute in the application that
defines CurrencyConverterModel.

Within the IsValid method, you can cast the value provided to the required data
type (in this case, string) and check against the list of allowed codes. If the code isn’t
allowed, the attribute returns a ValidationResult with an error message indicating
that there was a problem. If the code is allowed, ValidationResult.Success is
returned, and the validation succeeds.

 Putting your attribute to the test in figure 20.6 shows that when CurrencyTo is an
invalid value (£$%), the validation for the property fails and an error is added to the
ModelState. You could do some tidying up of this attribute to let you set a custom
message, to allow nulls, or to display the name of the property that’s invalid, but the
important features are all there.

The user enters an invalid currency code.

The custom validation
attribute identitifies the
invalid value and adds an
error to the ModelState.

Figure 20.6 The Watch window of Visual Studio showing the result of validation using the
custom ValidationAttribute. The user has provided an invalid currencyTo value,
£$%. Consequently, ModelState isn’t valid and contains a single error with the message
“Not a valid currency code.”

658 CHAPTER 20 Building custom MVC and Razor Pages components
The main feature missing from this custom attribute is client-side validation. You’ve
seen that the attribute works well on the server side, but if the user entered an invalid
value, they wouldn’t be informed until after the invalid value had been sent to the
server. That’s safe, and it’s as much as you need to do for security and data-consistency
purposes, but client-side validation can improve the user experience by providing
immediate feedback.

 You can implement client-side validation in several ways, but it’s heavily dependent
on the JavaScript libraries you use to provide the functionality. Currently ASP.NET
Core Razor templates rely on jQuery for client-side validation. See the “Custom client-
side validation” section of Microsoft’s “Model validation in ASP.NET Core MVC and
Razor Pages” documentation for an example of creating a jQuery Validation adapter
for your attributes: http://mng.bz/Wd6g.

 Another improvement to your custom validation attribute would be to load the list
of currencies from a DI service, such as an ICurrencyProvider. Unfortunately, you
can’t use constructor DI in your CurrencyCodeAttribute as you can only pass constant
values to the constructor of an Attribute in .NET. In chapter 13 we worked around
this limitation for filters by using [TypeFilter] or [ServiceFilter], but there’s no
such solution for ValidationAttribute.

 Instead, for validation attributes, you must use the Service Locator pattern. As I
discussed in chapter 10, this antipattern is best avoided where possible, but unfortu-
nately it’s necessary in this case. Instead of declaring an explicit dependency via a con-
structor, you must ask the DI container directly for an instance of the required service.

 Listing 20.9 shows how you could rewrite listing 20.8 to load the allowed currencies
from an instance of ICurrencyProvider, instead of hardcoding the allowed values in
the attribute’s constructor. The attribute calls the GetService<T>() method on Vali-
dationContext to resolve an instance of ICurrencyProvider from the DI container.
Note that ICurrencyProvider is a hypothetical service that would need to be regis-
tered in your application’s ConfigureServices() method in Startup.cs.

public class CurrencyCodeAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(
 object value, ValidationContext context)
 {
 var provider = context.GetService<ICurrencyProvider>();
 var allowedCodes = provider.GetCurrencies();

 var code = value as string;
 if(code == null || !_allowedCodes.Contains(code))
 {
 return new ValidationResult("Not a valid currency code");
 }
 return ValidationResult.Success;
 }
}

Listing 20.9 Using the service-locator pattern to access services

Retrieves an instance
of ICurrencyProvider
directly from the DI

container

Fetches the
currency codes
using the
providerValidates the

property as
before

http://mng.bz/Wd6g

659Replacing the validation framework with FluentValidation
TIP The generic GetService<T> method is an extension method available in
the Microsoft.Extensions.DependencyInjection namespace. As an alterna-
tive, you can use the GetService(Type type) method.

The default DataAnnotations validation system can be convenient due to its declara-
tive nature, but this has trade-offs, as shown by the dependency injection problem
above. Luckily, you can completely replace the validation system your application uses,
as shown in the following section.

20.4 Replacing the validation framework with FluentValidation
In this section you’ll learn how to replace the DataAnnotations-based validation
framework that’s used by default in ASP.NET Core. You’ll see the arguments for why
you might want to do this and learn how to use a third-party alternative: FluentValidation.
This open source project allows you to define the validation requirements of your mod-
els separately from the models themselves. This separation can make some types of vali-
dation easier and ensures each class in your application has a single responsibility.

 Validation is an important part of the model-binding process in ASP.NET Core. Up
to now, we’ve been using DataAnnotations attributes applied to properties of your
binding model to define your requirements. In section 20.3 we even created a custom
validation attribute.

 By default, ASP.NET Core is configured to use these attributes to drive the valida-
tion portion of model binding. But the ASP.NET Core framework is very flexible and
allows you to replace whole chunks of the framework if you like. The validation system
is one such area that many people choose to replace.

 FluentValidation (https://fluentvalidation.net/) is a popular alternative validation
framework for ASP.NET Core. It is a mature library, with roots going back well before
ASP.NET Core was conceived of. With FluentValidation you write your validation code
separately from your binding model code. This gives several advantages:

 You’re not restricted to the limitations of Attributes, such as the dependency
injection problem we had to work around in listing 20.9.

 It’s much easier to create validation rules that apply to multiple properties, such
as to ensure an EndDate property contains a later value than a StartDate prop-
erty. Achieving this with DataAnnotations attributes is possible, but difficult.

 It’s generally easier to test FluentValidation validators than DataAnnotations
attributes.

 The validation is strongly typed, compared to DataAnnotations attributes where
it’s possible to apply attributes in ways that don’t make sense, such as applying
an [EmailAddress] attribute to an int property, for example.

 Separating your validation logic from the model itself arguably better conforms
to the single-responsibility-principle (SRP).3

3 The SRP is one of the SOLID design principles: https://en.wikipedia.org/wiki/SOLID.

https://fluentvalidation.net/
https://en.wikipedia.org/wiki/SOLID

660 CHAPTER 20 Building custom MVC and Razor Pages components

Yo
va

rule
va

cons

u
n

la

s

That final point is often given as a reason not to use FluentValidation: FluentValidation
separates a binding model from its validation rules. Some people are happy to accept
the limitations of DataAnnotations to keep the model and validation rules together.

 Before I show you how to add FluentValidation to your application, let’s see what
FluentValidation validators look like.

20.4.1 Comparing FluentValidation to DataAnnotations attributes

To better understand the difference between the DataAnnotations approach and
FluentValidation, we’ll convert the binding models from section 20.3 to use Fluent-
Validation. The following listing shows what the binding model from listing 20.7
would look like when used with FluentValidation. It is structurally identical but has no
validation attributes.

public class CurrencyConverterModel
{
 public string CurrencyFrom { get; set; }
 public string CurrencyTo { get; set; }
 public decimal Quantity { get; set; }
}

In FluentValidation you define your validation rules in a separate class, with a class per
model to be validated. Typically, these derive from the AbstractValidator<> base
class, which provides a set of extension methods for defining your validation rules.

 The following listing shows a validator for the CurrencyConverterModel, which
matches the validations added using attributes in listing 20.7. You create a set of vali-
dation rules for a property by calling RuleFor() and chaining method calls such as
NotEmpty() from it. This style of method chaining is called a “fluent” interface, hence
the name.

public class CurrencyConverterModelValidator
 : AbstractValidator<CurrencyConverterModel>
{
 private readonly string[] _allowedValues
 = new []{ "GBP", "USD", "CAD", "EUR" };

 public InputValidator()
 {
 RuleFor(x => x.CurrencyFrom)
 .NotEmpty()
 .Length(3)
 .Must(value => _allowedValues.Contains(value))
 .WithMessage("Not a valid currency code");

 RuleFor(x => x.CurrencyTo)
 .NotEmpty()

Listing 20.10 Currency converter initial binding model for use with FluentValidation

Listing 20.11 A FluentValidation validator for the currency converter binding model

The validator inherits
from AbstractValidator.

Defines the static list of currency
codes that are supported

u define
lidation
s in the

lidator’s
tructor.

RuleFor is
sed to add a

ew validation
rule. The

mbda syntax
allows for

trong typing.

There are equivalent
rules for common
DataAnnotations
validation attributes.

You can easily add
custom validation
rules without having
to create separate
classes.

661Replacing the validation framework with FluentValidation
 .Length(3)
 .Must(value => _allowedValues.Contains(value))
 .WithMessage("Not a valid currency code");

 RuleFor(x => x.Quantity)
 .NotNull()
 .InclusiveBetween(1, 1000);
 }
}

Your first impression of this code might be that it’s quite verbose compared to
listing 20.7 but remember that listing 20.7 used a custom validation attribute,
[CurrencyCode]. The validation in listing 20.11 doesn’t require anything else—the
logic implemented by the [CurrencyCode] attribute is right there in the validator,
making it easy to reason about. The Must() method can be used to perform arbitrarily
complex validations, without having the additional layers of indirection required by
custom DataAnnotations attributes.

 On top of that, you’ll notice that you can only define validation rules that make
sense for the property being validated. Previously, there was nothing to stop us apply-
ing the [CurrencyCode] attribute to the Quantity property; that’s just not possible
with FluentValidation.

 Of course, just because you can write the custom [CurrencyCode] logic in-line
doesn’t necessarily mean you have to. If a rule is used in multiple parts of your applica-
tion, it may make sense to extract it into a helper class. The following listing shows
how you could extract the currency code logic into an extension method, which can
be used in multiple validators.

public static class ValidationExtensions
{
 public static IRuleBuilderOptions<T, string>
 MustBeCurrencyCode<T>(
 this IRuleBuilder<T, string> ruleBuilder)
 {
 return ruleBuilder
 .Must(value => _allowedValues.Contains(value))
 .WithMessage("Not a valid currency code");
 }

 private static readonly string[] _allowedValues =
 new []{ "GBP", "USD", "CAD", "EUR" };
}

You can then update your CurrencyConverterModelValidator to use the new exten-
sion method, removing the duplication in your validator and ensuring consistency
across country-code fields:

Listing 20.12 An extension method for currency validation

Thanks to strong typing, the
rules available depend on the
property being validated.

Creates an extension
method that can be
chained from RuleFor()
for string properties

Applies the same
validation logic
as before

The currency code
values to allow

662 CHAPTER 20 Building custom MVC and Razor Pages components
RuleFor(x => x.CurrencyTo)
 .NotEmpty()
 .Length(3)
 .MustBeCurrencyCode();

Another advantage of the FluentValidation approach of using standalone validation
classes is that they are created using dependency injection, so you can inject services
into them. As an example, consider the [CurrencyCode] validation attribute from list-
ing 20.9, which used a service, ICurrencyProvider, from the DI container. This
requires using service location to obtain an instance of ICurrencyProvider using an
injected context object.

 With the FluentValidation library, you can just inject the ICurrencyProvider
directly into your validator, as shown in the following listing. This requires fewer gym-
nastics to get the desired functionality and makes your validator’s dependencies
explicit.

public class CurrencyConverterModelValidator
 : AbstractValidator<CurrencyConverterModel>
{
 public CurrencyConverterModelValidator(ICurrencyProvider provider)
 {
 RuleFor(x => x.CurrencyFrom)
 .NotEmpty()
 .Length(3)
 .Must(value => provider
 .GetCurrencies()
 .Contains(value))
 .WithMessage("Not a valid currency code");

 RuleFor(x => x.CurrencyTo)
 .NotEmpty()
 .Length(3)
 .MustBeCurrencyCode(provider.GetCurrencies());

 RuleFor(x => x.Quantity)
 .NotNull()
 .InclusiveBetween(1, 1000);
 }
}

The final feature I’ll show demonstrates how much easier it is to write validators that
span multiple properties with FluentValidation. For example, imagine we want to
validate that the value of CurrencyTo is different than CurrencyFrom. Using Fluent-
Validation you can implement this with an overload of Must(), which provides both
the model and the property being validated, as shown in the following listing.

Listing 20.13 Currency converter validator using dependency injection

Injecting the service using
standard constructor
dependency injection

Using the injected
service in a Must() rule

Using the
injected service
with an extension
method

663Replacing the validation framework with FluentValidation
RuleFor(x => x.CurrencyTo)
 .NotEmpty()
 .Length(3)
 .MustBeCurrencyCode()
 .Must((InputModel model, string currencyTo)
 => currencyTo != model.CurrencyFrom)
 .WithMessage("Cannot convert currency to itself");

Creating a validator like this is certainly possible with DataAnnotations attributes, but
it requires far more ceremony than the FluentValidation equivalent and is generally
harder to test. FluentValidation has many more features for making it easier to write
and test your validators too:

 Complex property validations—Validators can be applied to complex types, as well
as to the primitive types like string and int shown here in this section.

 Custom property validators—In addition to simple extension methods, you can
create your own property validators for complex validation scenarios.

 Collection rules—When types contain collections, such as List<T>, you can apply
validation to each item in the list, as well as to the overall collection.

 RuleSets—You can create multiple collections of rules that can be applied to an
object in different circumstances. These can be especially useful if you’re using
FluentValidation in additional areas of your application.

 Client-side validation—FluentValidation is a server-side framework, but it emits
the same attributes as DataAnnotations attributes to enable client-side valida-
tion using jQuery.

There are many more features in addition to these, so be sure to browse the documen-
tation at https://docs.fluentvalidation.net/ for details. In the next section you’ll see
how to add FluentValidation to your ASP.NET Core application.

20.4.2 Adding FluentValidation to your application

Replacing the whole validation system of ASP.NET Core sounds like a big step, but
the FluentValidation library makes it easy to add to your application. Simply follow
these steps:

1 Install the FluentValidation.AspNetCore NuGet package using Visual Studio’s
NuGet package manager via the CLI by running dotnet add package Fluent-
Validation.AspNetCore or by adding a <PackageReference> to your .csproj file:

<PackageReference Include="FluentValidation.AspNetCore" Version="9.3.0" />

2 Configure the FluentValidation library in the ConfigureServices method of
your Startup class by calling AddFluentValidation(). You can further config-
ure the library as shown in listing 20.15.

Listing 20.14 Using Must() to validate that two properties are different

The error message will
be associated with the
CurrencyTo property.

The Must function passes
the top-level model being
validated and the current
property.

Perform the
validation—the
currencies must
be different.Use the provided message as the error message.

https://docs.fluentvalidation.net/

664 CHAPTER 20 Building custom MVC and Razor Pages components
3 Register your validators (such as the CurrencyConverterModelValidator from
listing 20.13) with the DI container. These can be registered manually, using any
scope you choose:

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages()
 .AddFluentValidation();

 services.AddScoped<
 IValidator<CurrencyConverterModelValidator>,
 CurrencyConverterModelValidator>();
}

Alternatively, you can allow FluentValidation to automatically register all your
validators using the options shown in listing 20.15.

For such a mature library, FluentValidation has relatively few configuration options to
decipher. The following listing shows some of the options available; in particular, it
shows how to automatically register all the custom validators in your application and
how to disable DataAnnotations validation entirely.

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages()
 .AddFluentValidation(opts =>
 {
 opts.RegisterValidatorsFromAssemblyContaining<Startup>();
 opts.ImplicitlyValidateChildProperties = true;
 opts.LocalizationEnabled = false;
 opts.RunDefaultMvcValidationAfterFluentValidationExecutes
 = false;
 });
}

It’s important to understand that final point. If you don’t set RunDefaultMvcValidation-
AfterFluentValidationExecutes to false, ASP.NET Core will run validation with
both DataAnnotations and with FluentValidation. That may be useful if you’re in the
process of migrating from one system to the other, but otherwise I recommend dis-
abling it. Having your validation split between both places seems like it would be the
worst of both worlds!

 One final thing to consider is where to put your validators in your solution. There
are no technical requirements on this—if you’ve registered your validator with the DI
container, it will be used correctly—so the choice is up to you. Personally, I prefer to
place validators close to the models they’re validating.

Listing 20.15 Configuring FluentValidation in an ASP.NET Core application

Instead of manually registering
validators, FluentValidation can

auto-register them for you.

Ensure that complex (nested)
properties are validated, not
just top-level properties.

FluentValidation has full localization support,
but you can disable it if you don’t need it.

Setting to false disables DataAnnotations
validation completely for model binding.

665Summary
 For Razor Pages binding-model validators, I create the validator as a nested class of
the PageModel, in the same place as I create the InputModel, as I described in chapter
6. That gives a class hierarchy in the Razor Page similar to the following:

public class IndexPage : PageModel
{
 public class InputModel { }
 public class InputModelValidator: AbstractValidator<InputModel> { }
}

That’s just my preference of course. You’re free to adopt another approach if you prefer.
 That brings us to the end of this chapter on custom Razor Pages components.

When combined with the components in the previous chapter, you’ve got a great base
for extending your ASP.NET Core applications to meet your needs. It’s a testament to
ASP.NET Core’s design that you can swap out whole sections like the Validation frame-
work entirely. If you don’t like how some part of the framework works, see if someone
has written an alternative!

Summary
 With Tag Helpers, you can bind your data model to HTML elements, making

it easier to generate dynamic HTML. Tag Helpers can customize the ele-
ments they’re attached to, add additional attributes, and customize how
they’re rendered to HTML. This can greatly reduce the amount of markup
you need to write.

 The name of a Tag Helper class dictates the name of the element in the Razor
templates, so the SystemInfoTagHelper corresponds to the <system-info> ele-
ment. You can choose a different element name by adding the [HtmlTarget-
Element] attribute to your Tag Helper.

 You can set properties on your Tag Helper object from Razor syntax by decorat-
ing the property with an [HtmlAttributeName("name")] attribute and provid-
ing a name. You can set these properties from Razor using HTML attributes;
<system-info name="value">, for example.

 The TagHelperOutput parameter passed to the Process or ProcessAsync meth-
ods control the HTML that’s rendered to the page. You can set the element
type with the TagName property and set the inner content using Content.Set-
Content() or Content.SetHtmlContent().

 You can prevent inner Tag Helper content being processed by calling Supress-
Output(), and you can remove the element entirely by setting TagName=null.
This is useful if you only want to conditionally render elements to the response.

 You can retrieve the contents of a Tag Helper by calling GetChildContent-
Async() on the TagHelperOutput parameter. You can then render this content
to a string by calling GetContent(). This will render any Razor expressions
and Tag Helpers to HTML, allowing you to manipulate the contents.

666 CHAPTER 20 Building custom MVC and Razor Pages components
 View components are like partial views, but they allow you to use complex busi-
ness and rendering logic. You can use them for sections of a page, such as the
shopping cart, a dynamic navigation menu, or suggested articles.

 Create a view component by deriving from the ViewComponent base class and
implementing InvokeAsync(). You can pass parameters to this function from
the Razor view template using HTML attributes, in a similar way to Tag Helpers.

 View components can use DI, access the HttpContext, and render partial views.
The partial views should be stored in the Pages/Shared/Components/<Name>/
folder, where Name is the name of the view component. If not specified, view
components will look for a default view named Default.cshtml.

 You can create a custom DataAnnotations attribute by deriving from Validation-
Attribute and overriding the IsValid method. You can use this to decorate
your binding model properties and perform arbitrary validation.

 You can’t use constructor DI with custom validation attributes. If the validation
attribute needs access to services from the DI container, you must use the Ser-
vice Locator pattern to load them from the validation context, using the Get-
Service<T> method.

 FluentValidation is an alternative validation system that can replace the default
DataAnnotations validation system. It is not based on attributes, which makes it
easier to write custom validations for your validation rules and makes those
rules easier to test.

 To create a validator for a model, create a class derived from Abstract-
Validator<> and call RuleFor<>() in the constructor to add validation rules.
You can chain multiple requirements on RuleFor<>() in the same way that you
could add multiple DataAnnotations attributes to a model.

 If you need to create a custom validation rule, you can use the Must() method
to specify a predicate. If you wish to re-use the validation rule across multiple
models, encapsulate the rule as an extension method, to reduce duplication.

 To add FluentValidation to your application, install the FluentValidation.Asp-
NetCore NuGet package, call AddFluentValidation() after your call to Add-
RazorPages() or AddControllers(), and register your validators with the DI
container. This will add FluentValidation validations in addition to the built-in
DataAnnotations system.

 To remove the DataAnnotations validation system and use FluentValidation
only, set the RunDefaultMvcValidationAfterFluentValidationExecutes option
to false in your call to AddFluentValidation(). Favor this approach where
possible, to avoid running validation methods from two different systems.

 You can allow FluentValidation to automatically discover and register all the
validators in your application by calling RegisterValidatorsFromAssembly-
Containing<T>(), where T is a type in the assembly to scan. This means you
don’t have to register each validator in your application with the DI container
individually.

Calling remote APIs
with IHttpClientFactory
So far in this book we’ve focused on creating web pages and exposing APIs. Whether
that’s customers browsing a Razor Pages application or client-side SPAs and mobile
apps consuming your APIs, we’ve been writing the APIs for others to consume.

 However, it’s very common for your application to interact with third-party ser-
vices by consuming their APIs. For example, an e-commerce site needs to take pay-
ments, send email and SMS messages, and retrieve exchange rates from a third-party
service. The most common approach for interacting with services is using HTTP. So
far in this book we’ve looked at how you can expose HTTP services, using API con-
trollers, but we haven’t looked at how you can consume HTTP services.

 In section 21.1 you’ll learn the best way to interact with HTTP services using
HttpClient. If you have any experience with C#, it’s very likely you’ve used this

This chapter covers
 Problems caused by using HttpClient incorrectly

to call HTTP APIs

 Using IHttpClientFactory to manage
HttpClient lifetimes

 Encapsulating configuration and handling
transient errors with IHttpClientFactory
667

668 CHAPTER 21 Calling remote APIs with IHttpClientFactory
class to send HTTP requests, but there are two gotchas to think about; otherwise your
app could run into difficulties.

 IHttpClientFactory was introduced in .NET Core 2.1; it makes creating and man-
aging HttpClient instances easier and avoids the common pitfalls. In section 21.2
you’ll learn how IHttpClientFactory achieves this by managing the HttpClient
handler pipeline. You’ll learn how to create named clients to centralize the configura-
tion for calling remote APIs and how to use typed clients to encapsulate the remote
service’s behavior.

 Network glitches are a fact of life when you’re working with HTTP APIs, so it’s
important for you to handle them gracefully. In section 21.3 you’ll learn how to use
the open source resilience and fault-tolerance library Polly to handle common tran-
sient errors using simple retries, with the possibility for more complex policies.

 Finally, in section 21.4 you’ll see how you can create your own custom Http-
MessageHandler handler managed by IHttpClientFactory. You can use custom han-
dlers to implement cross-cutting concerns such as logging, metrics, or authentication,
where a function needs to execute every time you call an HTTP API. You’ll also see
how to create a handler that automatically adds an API key to all outgoing requests to
an API.

 To misquote John Donne, “no app is an island,” and the most common way of inter-
acting with other apps and services is over HTTP. In .NET, that means using HttpClient.

21.1 Calling HTTP APIs: The problem with HttpClient
In this section you’ll learn how to use HttpClient to call HTTP APIs. I’ll focus on two
common pitfalls in using HttpClient—socket exhaustion and DNS rotation prob-
lems—and show why they occur. In section 21.2 you’ll see how to avoid these issues by
using IHttpClientFactory.

 It’s very common for an application to interact with other services to fulfill its duty.
Take a typical e-commerce store, for example. In even the most basic version of the
application, you will likely need to send emails and take payments using credit cards
or other services. You could try to build that functionality yourself, but it probably
wouldn’t be worth the effort.

 Instead, it makes far more sense to delegate those responsibilities to third-party
services that specialize in that functionality. Whichever service you use, they will
almost certainly expose an HTTP API for interacting with the service. For many ser-
vices, that will be the only way.

RESTful HTTP vs. gRPC vs. GraphQL
There are many ways to interact with third-party services, but HTTP RESTful services
are still the king, decades after HTTP was first proposed. Every platform and program-
ming language you can think of includes support for making HTTP requests and han-
dling responses. That ubiquity makes it the go-to option for most services.

669Calling HTTP APIs: The problem with HttpClient
In .NET we use the HttpClient class for calling HTTP APIs. You can use it to make
HTTP calls to APIs, providing all the headers and body to send in a request, and read-
ing the response headers and data you get back. Unfortunately, it’s hard to use cor-
rectly, and even when you do, it has limitations.

 The source of the difficultly with HttpClient stems partly from the fact that it
implements the IDisposable interface. In general, when you use a class that imple-
ments IDisposable, you should wrap the class with a using statement whenever you
create a new instance. This ensures that unmanaged resources used by the type are
cleaned up when the class is removed.

using (var myInstance = new MyDisposableClass())
{
 // use myInstance
}

That might lead you to think that the correct way to create an HttpClient is shown in
the following listing. This shows a simple example where an API controller calls an
external API to fetch the latest currency exchange rates and returns them as the
response.

WARNING Do not use HttpClient as it’s shown in listing 21.1. Using it this
way could cause your application to become unstable, as you’ll see shortly.

Despite their ubiquity, RESTful services are not perfect. They are relatively verbose,
which means more data ends up being sent and received than with some other pro-
tocols. It can also be difficult to evolve RESTful APIs after you have deployed them.
These limitations have spurred interest in two alternative protocols in particular:
gRPC and GraphQL.

gRPC is intended to be an efficient mechanism for server-to-server communication. It
builds on top of HTTP/2 but typically provides much higher performance than tradi-
tional RESTful APIs. gRPC support was added in .NET Core 3.0 and is receiving many
performance and feature updates. For a comprehensive view of .NET support, see the
documentation at https://docs.microsoft.com/aspnet/core/grpc.

While gRPC is primarily intended for server-to-server communication, GraphQL is best
used to provide evolvable APIs to mobile and SPA apps. It has become very popular
among frontend developers, as it can reduce the friction involved in deploying and
using new APIs. For details, I recommend GraphQL in Action by Samer Buna (Man-
ning, 2021).

Despite the benefits and improvements gRPC and GraphQL can bring, RESTful HTTP
services are here to stay for the foreseeable future, so it’s worth making sure you
understand how to use them with HttpClient.

https://docs.microsoft.com/aspnet/core/grpc

670 CHAPTER 21 Calling remote APIs with IHttpClientFactory

he
not
[ApiController]
public class ValuesController : ControllerBase
{
 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 using (HttpClient client = new HttpClient())
 {
 client.BaseAddress
 = new Uri("https://api.exchangeratesapi.io");

 var response = await client.GetAsync("latest");

 response.EnsureSuccessStatusCode();
 return await response.Content.ReadAsStringAsync();
 }
 }
}

HttpClient is special, and you shouldn’t use it like this! The problem is primarily due
to the way the underlying protocol implementation works. Whenever your computer
needs to send a request to an HTTP server, you must create a connection between your
computer and the server. To create a connection, your computer opens a port, which
has a random number between 0 and 65,535, and connects to the HTTP server’s IP
address and port, as shown in figure 21.1. Your computer can then send HTTP requests
to the server.

DEFINITION The combination of IP address and port is called a socket.

Listing 21.1 The incorrect way to use HttpClient

Wrapping the HttpClient
in a using statement
means it is disposed of
at the end of the using
block.

Configure the base
URL used to make
requests using the
HttpClient.

Make a GET
request to

the exchange
rates API.

Throw an
exception if t
request was
successful.Read the result as a string and

return it from the action method.

Before an HttpClient
can send a request to
a remote server, it must
establish a connection.

The client selects a
random port to use for
the connection. The
combination of port
number and IP address
is called a socket. Once the connection is established,

requests can be sent to the server.

Figure 21.1 To create a connection, a client selects a random port and connects
to the HTTP server’s port and IP address. The client can then send HTTP requests to
the server.

671Calling HTTP APIs: The problem with HttpClient
The main problem with the using statement and HttpClient is that it can lead to a
problem called socket exhaustion, as illustrated in figure 21.2. This happens when all
the ports on your computer have been used up making other HTTP connections, so
your computer can’t make any more requests. At that point, your application will
hang, waiting for a socket to become free. A very bad experience!

Given that I said there are 65,536 different port numbers, you might think that’s an
unlikely situation. It’s true, you will likely only run into this problem on a server that is
making a lot of connections, but it’s not as rare as you might think.

1. The app creates a new
HttpClient instance and
initiates a request to the
remote server.

2. A random port is assigned, 629 ,1
and a connection is established
to the remote server.

3. Once a response is received,
the application disposes of
the HttpClient and starts
to close the connection. 4. The port stays in the

TIME_WAIT status for
240 seconds.

5. When the application
wants to send another
request, it creates a new
HttpClient. 6. Port 629 is still in use, so1

another port must be used,
port 4523 for example.

7. With sufficient numbers
of requests, the machine
running your app can run
out of ports as they’re all
stuck in TIME_WAIT, and
you can no longer send or
receive new requests.

Figure 21.2 Disposing of HttpClient can lead to socket exhaustion. Each new connection
requires the operating system to assign a new socket, and closing a socket doesn’t make it available
until the TIME_WAIT period of 240 seconds has elapsed. Eventually you can run out of sockets, at
which point you can’t make any outgoing HTTP requests.

672 CHAPTER 21 Calling remote APIs with IHttpClientFactory

ed
 The problem is that when you dispose of an HttpClient, it doesn’t close the socket
immediately. The design of the TCP/IP protocol used for HTTP requests means that
after trying to close a connection, the connection moves to a state called TIME_WAIT.
The connection then waits for a specific period (240 seconds on Windows) before
closing the socket completely.

 Until the TIME_WAIT period has elapsed, you can’t reuse the socket in another
HttpClient to make HTTP requests. If you’re making a lot of requests, that can
quickly lead to socket exhaustion, as shown in figure 21.2.

TIP You can view the state of active ports/sockets in Windows and Linux by
running the command netstat from the command line or a terminal win-
dow. Be sure to run netstat -n on Windows to skip DNS resolution.

Instead of disposing of HttpClient, the general advice (before IHttpClientFactory
was introduced in .NET Core 2.1) was to use a single instance of HttpClient, as shown
in the following listing.

[ApiController]
public class ValuesController : ControllerBase
{
 private static readonly HttpClient _client = new HttpClient
 {
 BaseAddress = new Uri("https://api.exchangeratesapi.io")
 };

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 var response = await _client.GetAsync("latest");

 response.EnsureSuccessStatusCode();
 return await response.Content.ReadAsStringAsync();
 }
}

This solves the problem of socket exhaustion. As you’re not disposing of the Http-
Client, the socket is not disposed of, so you can reuse the same port for multiple
requests. No matter how many times you call GetRates() in the preceding example,
you will only use a single socket. Problem solved!

 Unfortunately, this introduces a different problem, primarily around DNS. DNS is
how the friendly hostnames we use, such as manning.com, are converted into the IP
addresses that computers need. When a new connection is required, the HttpClient
first checks the DNS record for a host to find the IP address and then makes the con-
nection. For subsequent requests, the connection is already established, so it doesn’t
make another DNS call.

Listing 21.2 Using a singleton HttpClient to avoid socket exhaustion

A single instance
of HttpClient is
created and stor
as a static field.

Multiple requests
use the same
instance of
HttpClient.

673Calling HTTP APIs: The problem with HttpClient
 For singleton HttpClient instances, this can be a problem because the HttpClient
won’t detect DNS changes. DNS is often used in cloud environments for load balanc-
ing to do graceful rollouts of deployments.1 If the DNS record of a service you’re call-
ing changes during the lifetime of your application, a singleton HttpClient will keep
calling the old service, as shown in figure 21.3.

NOTE HttpClient won’t respect a DNS change while the original connec-
tion exists. If the original connection is closed (for example, if the original
server goes offline), it will respect the DNS change as it must establish a new
connection.

1 Azure Traffic Manager, for example, uses DNS to route requests. You can read more about how it works at
https://azure.microsoft.com/en-gb/services/traffic-manager/.

2. The HttpClient makes a DNS query
to find the IP address associated
with the domain manning.com.

3. The DNS server responds with
the IP address of the server.

4. The HttpClient sends
the request to the IP
address and receives
a response.

5. Shortly afterwards, manning.com
changes its DNS record to point
to a different server, 23. .2.3.1 1

6. As the HttpClient still has
a connection to the original
server, it won’t respect the
DNS change and will continue
to send HTTP requests to the
wrong server.

1. An HttpClient
makes a request to
https://manning.com.

Figure 21.3 HttpClient does a DNS lookup before establishing a connection, to determine
the IP address associated with a hostname. If the DNS record for a hostname changes, a singleton
HttpClient will not detect it and will continue sending requests to the original server it connected to.

https://azure.microsoft.com/en-gb/services/traffic-manager/

674 CHAPTER 21 Calling remote APIs with IHttpClientFactory
It seems like you’re damned if you, and you’re damned if you don’t! Luckily, IHttp-
ClientFactory can take care of all this for you.

21.2 Creating HttpClients with IHttpClientFactory
In this section you’ll learn how you can use IHttpClientFactory to avoid the common
pitfalls of HttpClient. I’ll show several patterns you can use to create HttpClients:

 Using CreateClient() as a drop-in replacement for HttpClient
 Using named clients to centralize the configuration of an HttpClient used to call

a specific third-party API
 Using typed clients to encapsulate the interaction with a third-party API for easier

consumption by your code

IHttpClientFactory was introduced in .NET Core 2.1. It makes it easier to create
HttpClient instances correctly, instead of relying on either of the faulty approaches I
discussed in section 21.1. It also makes it easier to configure multiple HttpClients
and allows you to create a middleware pipeline for outgoing requests.

 Before we look at how IHttpClientFactory achieves all that, we will look a little
closer at how HttpClient works under the hood.

21.2.1 Using IHttpClientFactory to manage HttpClientHandler lifetime

In this section we’ll look at the handler pipeline used by HttpClient. You’ll see how
IHttpClientFactory manages the lifetime of this pipeline and how this enables the
factory to avoid both socket exhaustion and DNS issues.

 The HttpClient class you typically use to make HTTP requests is responsible for
orchestrating requests, but it isn’t responsible for making the raw connection itself.
Instead, the HttpClient calls into a pipeline of HttpMessageHandler, at the end of
which is an HttpClientHandler, which makes the actual connection and sends the
HTTP request, as shown in figure 21.4.

 This configuration is very reminiscent of the middleware pipeline used by
ASP.NET Core applications, but this is an outbound pipeline. When an HttpClient
makes a request, each handler gets a chance to modify the request before the final
HttpClientHandler makes the real HTTP request. Each handler, in turn, then gets a
chance to view the response after it’s received.

TIP You’ll see an example of using this handler pipeline for cross-cutting
concerns in section 21.2.4 when we add a transient error handler.

The issues of socket exhaustion and DNS I described in section 21.1 are both related
to the disposal of the HttpClientHandler at the end of the handler pipeline. By
default, when you dispose of an HttpClient, you dispose of the handler pipeline too.
IHttpClientFactory separates the lifetime of the HttpClient from the underlying
HttpClientHandler.

675Creating HttpClients with IHttpClientFactory
Separating the lifetime of these two components enables the IHttpClientFactory
to solve the problems of socket exhaustion and DNS rotation. It achieves this in
two ways:

 By creating a pool of available handlers—Socket exhaustion occurs when you dis-
pose of an HttpClientHandler, due to the TIME_WAIT problem described previ-
ously. IHttpClientFactory solves this by creating a pool of handlers.

IHttpClientFactory maintains an active handler that is used to create all
HttpClients for two minutes. When the HttpClient is disposed of, the underly-
ing handler isn’t disposed of, so the connection isn’t closed. As a result, socket
exhaustion isn’t a problem.

 By periodically disposing of handlers—Sharing handler pipelines solves the socket
exhaustion problem, but it doesn’t solve the DNS issue. To work around this,
the IHttpClientFactory periodically (every two minutes) creates a new active
HttpClientHandler that is used for each HttpClient created subsequently. As
these HttpClients are using a new handler, they make a new TCP/IP connec-
tion, so DNS changes are respected.

IHttpClientFactory disposes of “expired” handlers periodically in the back-
ground once they are no longer used by an HttpClient. This ensures there

A request is made with the
HttpClient instance by
sending an HttpRequestMessage.

GET /index.html

User-Agent: TEST

GET /index.html

200 OK

200 OK

The request passes through a
pipeline of HttpMessageHandlers,
which can each modify the request.

The final handler in the chain is
the HttpClientHandler. This is the
primary handler that actually
makes the TCP/IP connection and
sends the HTTP request.

The response message
passes back through each
delegating handler, giving
them a chance to inspect
or change the response.

HttpClient

Figure 21.4 Each HttpClient contains a pipeline of HttpMessageHandlers. The final
handler is an HttpClientHandler, which makes the connection to the remote server and
sends the HTTP request. This configuration is similar to the ASP.NET Core middleware pipeline,
and it allows you to make cross-cutting adjustments to outgoing requests.

676 CHAPTER 21 Calling remote APIs with IHttpClientFactory

ce

are only ever a limited number of connections in use by your application’s
HttpClients.2

Rotating handlers with IHttpClientFactory solves both of the issues we’ve discussed.
Another bonus is that it’s easy to replace existing uses of HttpClient with IHttp-
ClientFactory.

 IHttpClientFactory is included by default in ASP.NET Core; you just need to add
it to your application’s services in the ConfigureServices() method of Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient()
}

This registers the IHttpClientFactory as a singleton in your application, so you can
inject it into any other service. For example, the following listing shows how you can
replace the HttpClient approach from listing 21.2 with a version that uses IHttp-
ClientFactory.

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHttpClientFactory _factory;
 public ValuesController(IHttpClientFactory factory)
 {
 _factory = factory;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 HttpClient client = _factory.CreateClient();

 client.BaseAddress =
 new Uri("https://api.exchangeratesapi.io");
 client.DefaultRequestHeaders.Add(
 HeaderNames.UserAgent, "ExchangeRateViewer");

 var response = await client.GetAsync("latest");

 response.EnsureSuccessStatusCode();
 return await response.Content.ReadAsStringAsync();
 }
}

2 I wrote a blog post that looks in depth at how IHttpClientFactory achieves this rotation. This is a detailed
post, but it may be of interest to those who like to know how things are implemented behind the scenes. See
“Exploring the code behind IHttpClientFactory in depth” at http://mng.bz/8NRK.

Listing 21.3 Using IHttpClientFactory to create an HttpClient

Inject the
IHttpClientFactory
using DI.

Create an HttpClient instan
with an HttpClientHandler
managed by the factory.

Configure the
HttpClient for calling
the API as before.

Use the HttpClient
in exactly the same
way as you would
otherwise.

http://mng.bz/8NRK

677Creating HttpClients with IHttpClientFactory
The immediate benefit of using IHttpClientFactory in this way is efficient socket
and DNS handling. Minimal changes should be required to take advantage of this pat-
tern, as the bulk of your code stays the same. This makes it a good option if you’re
refactoring an existing app.

Managing the socket issue is one big advantage of using IHttpClientFactory over
HttpClient, but it’s not the only benefit. You can also use IHttpClientFactory to
clean up the client configuration, as you’ll see in the next section.

21.2.2 Configuring named clients at registration time

In this section you’ll learn how to use the Named Client pattern with IHttpClient-
Factory. This pattern encapsulates the logic for calling a third-party API in a single
location, making it easier to use the HttpClient in your consuming code.

 Using IHttpClientFactory solves the technical issues I described in section 21.1,
but the code in listing 21.3 is still pretty messy in my eyes. That’s primarily because you
must configure the HttpClient to point to your service before you use it. If you need
to create an HttpClient to call the API in more than one place in your application,
you must configure it in more than one place too.

 IHttpClientFactory provides a convenient solution to this problem by allowing
you to centrally configure named clients. These clients have a string name and a con-
figuration function that runs whenever an instance of the named client is requested.
You can define multiple configuration functions that run in sequence to configure
your new HttpClient.

SocketsHttpHandler vs. IHttpClientFactory
The limitations of HttpClient described in section 21.1 apply specifically to the
HttpClientHandler at the end of the HttpClient handler pipeline. IHttpClient-
Factory provides a mechanism for managing the lifetime and reuse of HttpClient-
Handler instances.

In .NET Core 2.1, a replacement for the HttpClientHandler was introduced: Sockets-
HttpHandler. This handler has several advantages, most notably performance benefits
and consistency across platforms. The SocketsHttpHandler can also be configured to
use connection pooling and recycling, just like IHttpClientFactory.

So if HttpClient can already use connection pooling, is it worth using IHttpClient-
Factory? In most cases, I would say yes. You must manually configure connection
pooling with SocketsHttpHandler, and IHttpClientFactory has additional fea-
tures such as named clients and typed clients.

Nevertheless, if you’re working in a non-DI scenario, where you can’t use IHttpClient-
Factory, be sure to enable the SocketsHttpHandler connection pooling as described
in this post by Steve Gordon, titled “HttpClient connection pooling in .NET Core”:
http://mng.bz/E27q.

http://mng.bz/E27q

678 CHAPTER 21 Calling remote APIs with IHttpClientFactory

on.

d
"

).
 For example, the following listing shows how to register a named client called
"rates". This client is configured with the correct BaseAddress and sets default head-
ers that are to be sent with each outbound request.

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient("rates", (HttpClient client) =>
 {
 client.BaseAddress =
 new Uri("https://api.exchangeratesapi.io");
 client.DefaultRequestHeaders.Add(
 HeaderNames.UserAgent, "ExchangeRateViewer");
 })
 .ConfigureHttpClient((HttpClient client) => {})
 .ConfigureHttpClient(
 (IServiceProvider provider, HttpClient client) => {});
}

Once you have configured this named client, you can create it from an IHttpClient-
Factory instance using the name of the client, "rates". The following listing shows
how you could update listing 21.3 to use the named client configured in listing 21.4.

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHttpClientFactory _factory;
 public ValuesController(IHttpClientFactory factory)
 {
 _factory = factory;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 HttpClient client = _factory.CreateClient("rates");

 var response = await client.GetAsync("latest");

 response.EnsureSuccessStatusCode();
 return await response.Content.ReadAsStringAsync();
 }
}

Listing 21.4 Configuring a named client using IHttpClientFactory in Startup.cs

Listing 21.5 Using IHttpClientFactory to create a named HttpClient

Provide a name
for the client and a
configuration functi

The configuration
function runs every
time the named
HttpClient is requested.

You can add additional configuration
functions for the named client, which
run in sequence.

Additional overloads exist that allow
access to the DI container when

creating a named client.

Inject the
IHttpClientFactory
using DI.

Request the name
client called "rates
and configure
it as defined in
ConfigureServices(

Use the HttpClient
in the same way
as before.

679Creating HttpClients with IHttpClientFactory
NOTE You can still create unconfigured clients using CreateClient() without
a name. Be aware that if you pass an unconfigured name, such as CreateClient
("MyRates"), the client returned will be unconfigured. Take care—client
names are case-sensitive, so "rates" is a different client than "Rates".

Named clients allow you to centralize your HttpClient configuration in one place,
removing the responsibility of configuring the client from your consuming code. But
you’re still working with raw HTTP calls at this point—for example, providing the rel-
ative URL to call ("/latest") and parsing the response. IHttpClientFactory includes
a feature that makes it easier to clean up this code.

21.2.3 Using typed clients to encapsulate HTTP calls

A common pattern when you need to interact with an API is to encapsulate the
mechanics of that interaction into a separate service. You could easily do this with the
IHttpClientFactory features you’ve already seen by extracting the body of the Get-
Rates() function from listing 21.5 into a separate service. But IHttpClientFactory
has deeper support for this pattern too.

 IHttpClientFactory supports typed clients. A typed client is a class that accepts a
configured HttpClient in its constructor. It uses the HttpClient to interact with the
remote API and exposes a clean interface for consumers to call. All of the logic for
interacting with the remote API is encapsulated in the typed client, such as which
URL paths to call, which HTTP verbs to use, and the types of responses the API
returns. This encapsulation makes it easier to call the third-party API from multiple
places in your app by using the typed client.

 For example, the following listing shows an example typed client for the exchange
rates API shown in previous listings. It accepts an HttpClient in its constructor and
exposes a GetLatestRates() method that encapsulates the logic for interacting with
the third-party API.

public class ExchangeRatesClient
{
 private readonly HttpClient _client;
 public ExchangeRatesClient(HttpClient client)
 {
 _client = client;
 }

 public async Task<string> GetLatestRates()
 {
 var response = await _client.GetAsync("latest");
 response.EnsureSuccessStatusCode();

 return await response.Content.ReadAsString();
 }
}

Listing 21.6 Creating a typed client for the exchange rates API

Inject an HttpClient
using DI instead of an
IHttpClientFactory.

The GetLatestRates() logic
encapsulates the logic for
interacting with the API.

Use the HttpClient
the same way as
before.

680 CHAPTER 21 Calling remote APIs with IHttpClientFactory

We can then inject this ExchangeRatesClient into consuming services, and they don’t
need to know anything about how to make HTTP requests to the remote service; they
just need to interact with the typed client. We can update listing 21.3 to use the typed
client as shown in the following listing, at which point the GetRates() action method
becomes trivial.

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly ExchangeRatesClient _ratesClient;
 public ValuesController(ExchangeRatesClient ratesClient)
 {
 _ratesClient = ratesClient;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 return await _ratesClient.GetLatestRates();
 }
}

You may be a little confused at this point: I haven’t mentioned how IHttpClient-
Factory is involved yet!

 The ExchangeRatesClient takes an HttpClient in its constructor. IHttpClient-
Factory is responsible for creating the HttpClient, configuring it to call the remote
service and injecting it into a new instance of the typed client.

 You can register the ExchangeRatesClient as a typed client and configure the
HttpClient that is injected in ConfigureServices, as shown in the following listing.
This is very similar to configuring a named client, so you can register additional con-
figuration for the HttpClient that will be injected into the typed client.

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient<ExchangeRatesClient>
 (HttpClient client) =>
 {
 client.BaseAddress =
 new Uri("https://api.exchangeratesapi.io");
 client.DefaultRequestHeaders.Add(
 HeaderNames.UserAgent, "ExchangeRateViewer");
 })
 .ConfigureHttpClient((HttpClient client) => {});
}

Listing 21.7 Consuming a typed client to encapsulate calls to a remote HTTP server

Listing 21.8 Registering a typed client with HttpClientFactory in Startup.cs

Inject the typed
client in the
constructor.

Call the typed client’s
API. The typed client
handles making the
correct HTTP requests.

Register a typed
client using the generic
AddHttpClient method.

You can provide
an additional
configuration
function for the
HttpClient that
will be injected.

 As for named clients, you can provide
multiple configuration methods.

681Handling transient HTTP errors with Polly
TIP You can think of a typed client as a wrapper around a named client. I’m
a big fan of this approach as it encapsulates all the logic for interacting with a
remote service in one place. It also avoids the “magic strings” that you use
with named clients, removing the possibility of typos.

Another option when registering typed clients is to register an interface in addition to
the implementation. This is often a good practice, as it makes it much easier to test
consuming code. For example, if the typed client in listing 21.6 implemented the
interface IExchangeRatesClient, you could register the interface and typed client
implementation using

services.AddHttpClient<IExchangeRatesClient, ExchangeRatesClient>()

You could then inject this into consuming code using the interface type:

public ValuesController(IExchangeRatesClient ratesClient)

Another commonly used pattern is to not provide any configuration for the typed cli-
ent in ConfigureServices(). Instead, you could place that logic in the constructor of
your ExchangeRatesClient using the injected HttpClient:

public class ExchangeRatesClient
{
 private readonly HttpClient _client;
 public ExchangeRatesClient(HttpClient client)
 {
 _client = client;
 _client.BaseAddress = new Uri("https://api.exchangeratesapi.io");
 }
}

This is functionally equivalent to the approach shown in listing 21.8. It’s a matter of
taste where you’d rather put the configuration for your HttpClient. If you take this
approach, you don’t need to provide a configuration lambda in ConfigureServices:

services.AddHttpClient<ExchangeRatesClient>();

Named clients and typed clients are convenient for managing and encapsulating
HttpClient configuration, but IHttpClientFactory brings another advantage we
haven’t looked at yet: it’s easier to extend the HttpClient handler pipeline.

21.3 Handling transient HTTP errors with Polly
In this section you’ll learn how to handle a very common scenario: “transient” errors
when you make calls to a remote service, caused by an error in the remote server or
temporary network issues. You’ll see how to use IHttpClientFactory to handle cross-
cutting concerns like this by adding handlers to the HttpClient handler pipeline.

 In section 21.2.1 I described HttpClient as consisting of a “pipeline” of han-
dlers. The big advantage of this pipeline, much like the middleware pipeline of your

682 CHAPTER 21 Calling remote APIs with IHttpClientFactory

tha
application, is that it allows you to add cross-cutting concerns to all requests. For
example, IHttpClientFactory automatically adds a handler to each HttpClient that
logs the status code and duration of each outgoing request.

 As well as logging, another very common requirement is to handle transient errors
when calling an external API. Transient errors can happen when the network drops out,
or if a remote API goes offline temporarily. For transient errors, simply trying the request
again can often succeed, but having to manually write the code to do so is cumbersome.

 ASP.NET Core includes a library called Microsoft.Extensions.Http.Polly that
makes handling transient errors easier. It uses the popular open source library Polly
(https://github.com/App-vNext/Polly) to automatically retry requests that fail due to
transient network errors.

 Polly is a mature library for handling transient errors that includes a variety of dif-
ferent error-handling strategies, such as simple retries, exponential backoff, circuit
breaking, bulkhead isolation, and many more. Each strategy is explained in detail at
https://github.com/App-vNext/Polly, so be sure to read about the benefits and trade-
offs when selecting a strategy.

 To provide a taste of what’s available, we’ll add a simple retry policy to the
ExchangeRatesClient shown in section 21.2. If a request fails due to a network prob-
lem, such as a timeout or a server error, we’ll configure Polly to automatically retry the
request as part of the handler pipeline, as shown in figure 21.5.

 To add transient error handling to a named client or HttpClient, follow these steps:

1 Install the Microsoft.Extensions.Http.Polly NuGet package in your project by
running dotnet add package Microsoft.Extensions.Http.Polly, or by using
the NuGet explorer in Visual Studio, or by adding a <PackageReference> ele-
ment to your project file as follows:

<PackageReference Include="Microsoft.Extensions.Http.Polly"
 Version="5.0.0" />

2 Configure a named or typed client as shown in listings 21.5 and 21.7.
3 Configure a transient error-handling policy for your client as shown in listing 21.9.

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient<ExchangeRatesClient>()
 .AddTransientHttpErrorPolicy(policy =>
 policy.WaitAndRetryAsync(new[] {
 TimeSpan.FromMilliseconds(200),
 TimeSpan.FromMilliseconds(500),
 TimeSpan.FromSeconds(1)
 })
);
}

Listing 21.9 Configuring a transient error-handling policy for a typed client in Startup.cs

You can add transient
error handlers to named
or typed clients.

Use the extension methods
provided by the NuGet
package to add transient
error handlers.

Configure the retry policy used by
the handler. There are many types
of policies to choose from.

Configures a policy
t waits and retries three
times if an error occurs

https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly

683Handling transient HTTP errors with Polly
In the preceding listing we configure the error handler to catch transient errors and
retry three times, waiting an increasing amount of time between requests. If the
request fails on the third try, the handler will ignore the error and pass it back to
the client, just as if there was no error handler at all. By default, the handler will
retry any request that either

 Throws an HttpRequestException, indicating an error at the protocol level,
such as a closed connection

 Returns an HTTP 5xx status code, indicating a server error at the API
 Returns an HTTP 408 status code, indicating a timeout

ExchangeRatesClient

ValuesController

200 OK

PollyHttpMessageHandler

HttpClientHandler

1. The ValuesController makes
a request to the remote server
using the ExchangeRatesClient.

3. The remote server returns
an error code, indicating a
temporary error. This passes
back through the handler
pipeline and is intercepted by
the Polly handler.

2. The Polly handler passes
the request on to the
HttpClientHandler, which
sends the request to the
remote server.

ExchangeRatesClient

ValuesControllerPollyHttpMessageHandler

HttpClientHandler

5. This time, the server returns
a valid response. The response
passes back through the handler
pipeline, through the Polly
handler, and out to the original
caller.

4. The Polly handler immediately
(or after a small waiting period)
sends the same request back
down the handler pipeline and
out to the remote server.

200 OK

!

!

Figure 21.5 Using the PolicyHttpMessageHandler to handle transient errors. If an error occurs when
calling the remote API, the Polly handler will automatically retry the request. If the request then succeeds, the
result is passed back to the caller. The caller didn’t have to handle the error themselves, making it simpler to
use the HttpClient while remaining resilient to transient errors.

684 CHAPTER 21 Calling remote APIs with IHttpClientFactory
TIP If you want to handle more cases automatically, or to restrict the responses
that will be automatically retried, you can customize the selection logic as
described in the “Polly and HttpClientFactory” documentation on GitHub:
http://mng.bz/NY7E.

Using standard handlers like the transient error handler allows you to apply the same
logic across all requests made by a given HttpClient. The exact strategy you choose
will depend on the characteristics of both the service and the request, but a good retry
strategy is a must whenever you interact with potentially unreliable HTTP APIs.

 The Polly error handler is an example of an optional HttpMessageHandler that
you can plug in to your HttpClient, but you can also create your own custom handler.
In the next section you’ll see how to create a handler that adds a header to all outgo-
ing requests.

21.4 Creating a custom HttpMessageHandler
Most third-party APIs will require some form of authentication when you’re calling
them. For example, many services require you attach an API key to an outgoing
request, so that the request can be tied to your account. Instead of having to remem-
ber to manually add this header for every request to the API, you could configure a
custom HttpMessageHandler to automatically attach the header for you.

NOTE More complex APIs may use JSON Web Tokens (JWT) obtained from
an identity provider. If that’s the case, consider using the open source Identi-
tyModel library (https://identitymodel.readthedocs.io), which provides inte-
gration points for ASP.NET Core Identity and HttpClientFactory.

You can configure a named or typed client using IHttpClientFactory to use your
API-key handler as part of the HttpClient’s handler pipeline, as shown in figure 21.6.
When you use the HttpClient to send a message, the HttpRequestMesssage is passed
through each handler in turn. The API-key handler adds the extra header and passes
the request to the next handler in the pipeline. Eventually the HttpClientHandler
makes the network request to send the HTTP request. After the response is received,
each handler gets a chance to inspect (and potentially modify) the response.

 To create a custom HttpMessageHandler and add it to a typed or named client’s
pipeline, you can follow these steps:

1 Create a custom handler by deriving from the DelegatingHandler base class.
2 Override the SendAsync() method to provide your custom behavior. Call base

.SendAsync() to execute the remainder of the handler pipeline.
3 Register your handler with the DI container. If your handler does not require

state, you can register it as a singleton service; otherwise you should register it
as a transient service.

4 Add the handler to one or more of your named or typed clients by calling
AddHttpMessageHandler<T>() on an IHttpClientBuilder, where T is your

http://mng.bz/NY7E
https://identitymodel.readthedocs.io

685Creating a custom HttpMessageHandler

stro
con
va
de
handler type. The order in which you register handlers dictates the order in
which they will be added to the HttpClient handler pipeline. You can add the
same handler type more than once in a pipeline if you wish, and to multiple
typed or named clients.

The following listing shows an example of a custom HttpMessageHandler that adds a
header to every outgoing request. We’ll use the custom "X-API-KEY" header in this
example, but the header you need will vary depending on the third-party API you’re
calling. This example uses strongly typed configuration to inject the secret API key, as
you saw in chapter 10.

public class ApiKeyMessageHandler : DelegatingHandler
{
 private readonly ExchangeRateApiSettings _settings;
 public ApiKeyMessageHandler(
 IOptions<ExchangeRateApiSettings> settings)
 {
 _settings = settings.Value;
 }

Listing 21.10 Creating a custom HttpMessageHandler

A request is made with the
HttpClient instance by sending
an HttpRequestMessage.

GET /index.html

X-API-KEY: ABC

GET /index.html

200 OK

200 OK

The ApiKeyMessageHandler
modifies the request and
adds the API header.

The HttpClientHandler sends
the request, including the
additional header.

If there is an error, the
transient error handler
resends the request.

HttpClient

X-API-KEY

Figure 21.6 You can use a custom HttpMessageHandler to modify requests before they’re
sent to third-party APIs. Every request passes through the custom handler before the final
handler (the HttpClientHandler) sends the request to the HTTP API. After the response is
received, each handler gets a chance to inspect and modify the response.

Custom
HttpMessageHandlers
should derive from
DelegatingHandler.

Inject the
ngly typed
figuration
lues using
pendency
injection.

686 CHAPTER 21 Calling remote APIs with IHttpClientFactory

O

 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 request.Headers.Add("X-API-KEY", _settings.ApiKey);

 HttpResponseMessage response =
 await base.SendAsync(request, cancellationToken);

 return response;
 }
}

To use the handler, you must register it with the DI container and add it to a named or
typed client. In the following listing, we add it to the ExchangeRatesClient, along
with the transient error handler we registered in listing 21.8. This creates a pipeline
similar to that shown in figure 21.6.

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<ApiKeyMessageHandler>();

 services.AddHttpClient<ExchangeRatesClient>()
 .AddHttpMessageHandler<ApiKeyMessageHandler>()
 .AddTransientHttpErrorPolicy(policy =>
 policy.WaitAndRetryAsync(new[] {
 TimeSpan.FromMilliseconds(200),
 TimeSpan.FromMilliseconds(500),
 TimeSpan.FromSeconds(1)
 })
);
}

Whenever you make a request using the typed client ExchangeRatesClient, you can
be sure the API key will be added and that transient errors will be handled automati-
cally for you.

 That brings us to the end of this chapter on IHttpClientFactory. Given the diffi-
culties in using HttpClient correctly that I showed in section 21.1, you should always
favor IHttpClientFactory where possible. As a bonus, IHttpClientFactory allows
you to easily centralize your API configuration using named clients and to encapsulate
your API interactions using typed clients.

Summary
 Use the HttpClient class for calling HTTP APIs. You can use it to make HTTP

calls to APIs, providing all the headers and body to send in a request, and read-
ing the response headers and data you get back.

Listing 21.11 Registering a custom handler in Startup.ConfigureServices

verride the
SendAsync
method to
implement
the custom

behavior.

Add the extra
header to all
outgoing
requests.

Call the
remainder of
the pipeline
and receive
the response.You could inspect or

modify the response
before returning it.

Register the custom
handler with the DI
container.

Configure the typed
client to use the
custom handler.

Add the transient error
handler. The order in which
they are registered dictates
their order in the pipeline.

687Summary
 HttpClient uses a pipeline of handlers, consisting of multiple HttpMessage-
Handlers, connected in a similar way to the middleware pipeline used in
ASP.NET Core. The final handler is the HttpClientHandler, which is responsi-
ble for making the network connection and sending the request.

 HttpClient implements IDisposable, but you shouldn’t typically dispose of it.
When the HttpClientHandler that makes the TCP/IP connection is disposed
of, it keeps a connection open for the TIME_WAIT period. Disposing of many
HttpClients in a short period of time can lead to socket exhaustion, preventing
a machine from handling any more requests.

 Prior to .NET Core 2.1, the advice was to use a single HttpClient for the life-
time of your application. Unfortunately, a singleton HttpClient will not respect
DNS changes, which are commonly used for traffic management in cloud envi-
ronments.

 IHttpClientFactory solves both these problems by managing the lifetime of
the HttpMessageHandler pipeline. You can create a new HttpClient by calling
CreateClient(), and IHttpClientFactory takes care of disposing of the han-
dler pipeline when it is no longer in use.

 You can centralize the configuration of an HttpClient in ConfigureServices()
using named clients by calling AddHttpClient("test", c => {}). You can then
retrieve a configured instance of the client in your services by calling IHttp-
ClientFactory.CreateClient("test").

 You can create a typed client by injecting an HttpClient into a service, T, and
configuring the client using AddHttpClient<T>(c => {}). Typed clients are
great for abstracting the HTTP mechanics away from consumers of your client.

 You can use the Microsoft.Extensions.Http.Polly library to add transient HTTP
error handling to your HttpClients. Call AddTransientHttpErrorPolicy()
when configuring your IHttpClientFactory in ConfigureServices, and pro-
vide a Polly policy to control when errors should be automatically handled
and retried.

 It’s common to use a simple retry policy to try making a request multiple times
before giving up and returning an error. When designing a policy, be sure to
consider the impact of your policy; in some circumstances it may be better to
fail quickly instead of retrying a request that is never going to succeed. Polly
includes additional policies such as circuit-breakers to create more advanced
approaches.

 By default, the transient error-handling middleware will handle connection
errors, server errors that return a 5xx error code, and 408 (timeout) errors. You
can customize this if you want to handle additional error types, but ensure that
you only retry requests that are safe to do so.

 You can create a custom HttpMessageHandler to modify each request made
through a named or typed client. Custom handlers are good for implementing
cross-cutting concerns such as logging, metrics, and authentication.

688 CHAPTER 21 Calling remote APIs with IHttpClientFactory
 To create a custom HttpMessageHandler, derive from DelegatingHandler and
override the SendAsync() method. Call base.SendAsync() to send the request
to the next handler in the pipeline and finally to the HttpClientHandler,
which makes the HTTP request.

 Register your custom handler in the DI container as either a transient or a sin-
gleton. Add it to a named or typed client using AddHttpMessageHandler<T>().
The order in which you register the handler in the IHttpClientBuilder is the
order in which the handler will appear in the HttpClient handler pipeline.

Building background
tasks and services
We’ve covered a lot of ground in the book so far. You’ve learned how to create
page-based applications using Razor Pages and how to create APIs for mobile cli-
ents and services. You’ve seen how to add authentication and authorization to your
application, how to use EF Core for storing state in the database, and how to create
custom components to meet your requirements.

 As well as these UI-focused apps, you may find you need to build background or
batch-task services. These services aren’t meant to interact with users directly.
Rather, they stay running in the background, processing items from a queue or
periodically executing a long-running process.

 For example, you might want to have a background service that sends email
confirmations for e-commerce orders, or a batch job that calculates sales and losses

This chapter covers
 Creating tasks that run in the background for

your application

 Using the generic IHost to create Windows
Services and Linux daemons

 Using Quartz.NET to run tasks on a schedule
in a clustered environment
689

690 CHAPTER 22 Building background tasks and services
for retail stores after the shops close. ASP.NET Core includes support for these back-
ground tasks by providing abstractions for running a task in the background when
your application starts.

 In section 22.1 you’ll learn about the background task support provided in ASP.NET
Core by the IHostedService interface. You’ll learn how to use the BackgroundService
helper class to create tasks that run on a timer, and how to manage your DI lifetimes
correctly in a long-running task.

 In section 22.2 we’ll take the background service concept one step further to cre-
ate “headless” worker services using the generic IHost. Worker services don’t use
Razor Pages or API controllers; instead, they consist only of IHostedServices running
tasks in the background. You’ll also see how to configure and install a worker service
app as a Windows Service or as a Linux daemon.

 In section 22.3 I’ll introduce the open source library Quartz.NET, which provides
extensive scheduling capabilities for creating background services. You’ll learn how to
install Quartz.NET in your applications, how to create complex schedules for your
tasks, and how to add redundancy to your worker services by using clustering.

 Before we get to more complex scenarios, we’ll start by looking at the built-in sup-
port for running background tasks in your apps.

22.1 Running background tasks with IHostedService
In most applications it’s common to create tasks that happen in the background,
rather than in response to a request. This could be a task to process a queue of emails,
handling events published to some sort of a message bus, or running a batch process
to calculate daily profits. By moving this work to a background task, your user inter-
face can stay responsive. Instead of trying to send an email immediately, for example,
you could add the request to a queue and return a response to the user immediately.
The background task can consume that queue in the background at its leisure.

 In ASP.NET Core, you can use the IHostedService interface to run tasks in the
background. Classes that implement this interface are started when your application
starts, shortly after your application starts handling requests, and they are stopped
shortly before your application is stopped. This provides the hooks you need to per-
form most tasks.

NOTE Even the ASP.NET Core server, Kestrel, runs as an IHostedService. In
one sense, almost everything in an ASP.NET Core app is a “background” task.

In this section you’ll see how to use the IHostedService to create a background task
that runs continuously throughout the lifetime of your app. This could be used for
many different things, but in the next section you’ll see how to use it to populate a
simple cache. You’ll also learn how to use services with a scoped lifetime in your sin-
gleton background tasks by managing container scopes yourself.

691Running background tasks with IHostedService
22.1.1 Running background tasks on a timer

In this section you’ll learn how to create a background task that runs periodically on a
timer, throughout the lifetime of your app. Running background tasks can be useful
for many reasons, such as scheduling work to be performed later or performing work
in advance.

 For example, in chapter 21 we used IHttpClientFactory and a typed client to call
a third-party service to retrieve the current exchange rate between various currencies
and returned them in an API controller, as shown in the following listing.

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly ExchangeRatesClient _typedClient;
 public ValuesController(ExchangeRatesClient typedClient)
 {
 _typedClient = typedClient;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 return await _typedClient.GetLatestRatesAsync()
 }
}

 A simple optimization for this code might be to cache the exchange rate values for a
period. There are multiple ways you could implement that, but in this section we’ll
use a simple cache that preemptively fetches the exchange rates in the background, as
shown in figure 22.1. The API controller simply reads from the cache; it never has to
make HTTP calls itself, so it remains fast.

NOTE An alternative approach might add caching to your strongly typed cli-
ent, ExchangeRateClient. The downside is that when you need to update the
rates, you will have to perform the request immediately, making the overall
response slower. Using a background service keeps your API controller con-
sistently fast.

You can implement a background task using the IHostedService interface. This con-
sists of two methods:

public interface IHostedService
{
 Task StartAsync(CancellationToken cancellationToken);
 Task StopAsync(CancellationToken cancellationToken);
}

There are subtleties to implementing the interface correctly. In particular, the Start-
Async() method, although asynchronous, runs inline as part of your application

Listing 22.1 Using a typed client to return exchange rates from a third-party service

A typed client
created using
IHttpClientFactory
is injected in the
constructor.

The typed client is
used to retrieve
exchange rates from
the remote API and
returns them.

692 CHAPTER 22 Building background tasks and services
startup. Background tasks that are expected to run for the lifetime of your application
must return a Task immediately and schedule background work on a different thread.

WARNING Calling await in the IHostedService.StartAsync() method will
block your application from starting until the method completes. This can
be useful in some cases, but it’s often not the desired behavior for back-
ground tasks.

To make it easier to create background services using best-practice patterns, ASP.NET
Core provides the abstract base class BackgroundService, which implements IHosted-
Service and is designed to be used for long-running tasks. To create a background
task you must override a single method of this class, ExecuteAsync(). You’re free to
use async-await inside this method, and you can keep running the method for the
lifetime of your app.

 For example, the following listing shows a background service that fetches the
latest interest rates using a typed client and saves them in a cache, as you saw in fig-
ure 22.1. The ExecuteAsync() method keeps looping and updating the cache until

ValuesController

while(!cancellationRequested)
{

var rates = _client.GetRates()

_cache.SetRates(rates)

Task.Delay(5 minutes)
}

When the API controller
receives a request for the
latest exchange rates, it
can fetch the values
directly from the cache.

The rates are stored
in a global cache,
available throughout
the application.

The background
task periodically
fetches the latest
rates from the
third-party service.

The background task runs for the
lifetime of the app, looping until
the application shuts down.

200 OKGET /values

After fetching the latest exchange rates,
the background task sleeps for 5 minutes
before fetching the latest rates again.

Figure 22.1 You can use a background task to cache the results from a third-party API on a schedule.
The API controller can then read directly from the cache instead of calling the third-party API itself. This
reduces the latency of requests to your API controller, while ensuring the data remains fresh.

693Running background tasks with IHostedService

A
c
e

Ke

s

Cre
of
tha

Re
the
cli
b

ust
the CancellationToken passed as an argument indicates that the application is shut-
ting down.

public class ExchangeRatesHostedService : BackgroundService
{
 private readonly IServiceProvider _provider;
 private readonly ExchangeRatesCache _cache;
 public ExchangeRatesHostedService(
 IServiceProvider provider, ExchangeRatesCache cache)
 {
 _provider = provider;
 _cache = cache;
 }

 protected override async Task ExecuteAsync(
 CancellationToken stoppingToken)
 {
 while (!stoppingToken.IsCancellationRequested)
 {
 var client = _provider
 .GetRequiredService<ExchangeRatesClient>();

 string rates = await client.GetLatestRatesAsync();
 _cache.SetRates(rates);

 await Task.Delay(TimeSpan.FromMinutes(5), stoppingToken);
 }
 }
}

The ExchangeRateCache in listing 22.2 is a simple singleton that stores the latest rates.
It must be thread-safe, as it will be accessed concurrently by your API controllers. You
can see a simple implementation in the source code for this chapter.

 To register your background service with the DI container, use the AddHosted-
Service() extension method in the ConfigureServices() method of Startup.cs, as
shown in the following listing.

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient<ExchangeRatesClient>();
 services.AddSingleton<ExchangeRatesCache>();
 services.AddHostedService<ExchangeRatesHostedService>();
}

Listing 22.2 Implementing a BackgroundService that calls a remote HTTP API

Listing 22.3 Registering an IHostedService with the DI container

Derive from BackgroundService to create a task
that runs for the lifetime of your app.

Inject an IService-
Provider so you can
create instances of
the typed client.

 simple
ache for
xchange

rates

You must override
ExecuteAsync to set
the service’s behavior.

The CancellationToken
passed as an argument
is triggered when the
application shuts down.

ep looping
until the

application
huts down.

ate a new instance
the typed client so
t the HttpClient is

short-lived.

Fetch the latest
rates from the
remote API.

Store the rates
in the cache.

Wait for 5 minutes (or for the application to
shut down) before updating the cache.

gister
 typed
ent as
efore.

Add the cache object as a
singleton, because you m
share the same instance
throughout your app.

Register ExchangeRatesHostedService
as an IHostedService.

694 CHAPTER 22 Building background tasks and services
By using a background service to fetch the exchange rates, your API controller becomes
very simple. Instead of fetching the latest rates itself, it returns the value from the
cache, which is kept up to date by the background service:

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly ExchangeRatesCache _cache;
 public ValuesController(ExchangeRatesCache cache)
 {
 _cache = cache;
 }

 [HttpGet("values"]
 public string GetValues()
 {
 return _cache.GetLatestRates();
 }
}

One slightly messy aspect of listing 22.2 is that I’ve used the Service Locator pattern
to retrieve the typed client. This isn’t ideal, but you shouldn’t inject typed clients
into background services directly. Typed clients are designed to be short-lived, to
ensure you take advantage of the HttpClient handler rotation as described in chap-
ter 21. In contrast, background services are singletons that live for the lifetime of
your application.

TIP If you wish, you can avoid the Service Locator pattern in listing 22.2 by
using the factory pattern described in Steve Gordon’s post titled “IHttpClient-
Factory Patterns: Using Typed Clients from Singleton Services”: http://mng
.bz/opDZ.

The need for short-lived services leads to another common question—how can you
use scoped services in a background service?

22.1.2 Using scoped services in background tasks

Background services that implement IHostedService are created once when your
application starts. That means they are, by necessity, singletons, as there will only ever
be a single instance of the class.

 That leads to a problem if you need to use services registered with a scoped lifetime.
Any services you inject into the constructor of your singleton IHostedService must
themselves be registered as singletons. Does that mean there’s no way to use scoped
dependencies in a background service?

REMINDER As I discussed in chapter 10, the dependencies of a service must
always have a lifetime that’s the same or longer than that of the service itself,
to avoid captured dependencies.

http://mng.bz/opDZ
http://mng.bz/opDZ
http://mng.bz/opDZ

695Running background tasks with IHostedService

er

s
er

 to
For example, lets imagine a slight variation of the caching example from section 22.1.1.
Instead of storing the exchange rates in a singleton cache object, you want to save the
exchange rates to a database so you can look up the historic rates.

 Most database providers, including EF Core’s DbContext, register their services
with scoped lifetimes. That means you need to access the scoped DbContext, from inside
the singleton ExchangeRatesHostedService, which precludes injecting the DbContext
with constructor injection. The solution is to create a new container scope every time
you update the exchange rates.

 In typical ASP.NET Core applications, the framework creates a new container
scope every time a new request is received, just before the middleware pipeline exe-
cutes. All the services that are used in that request are fetched from the scoped con-
tainer. In a background service, however, there are no requests, so no container scopes
are created. The solution is to create your own.

 You can create a new container scope anywhere you have access to an IService-
Provider by calling IServiceProvider.CreateScope(). This creates a scoped con-
tainer, which you can use to retrieve scoped services.

WARNING Always make sure to dispose of the IServiceScope returned by
CreateScope() when you’re finished with it, typically with a using statement.
This disposes of any services that were created by the scoped container and
prevents memory leaks.

The following listing shows a version of the ExchangeRatesHostedService that stores
the latest exchange rates as an EF Core entity in the database. It creates a new scope
for each iteration of the while loop and retrieves the scoped AppDbContext from the
scoped container.

public class ExchangeRatesHostedService : BackgroundService
{
 private readonly IServiceProvider _provider;
 public ExchangeRatesHostedService(IServiceProvider provider)
 {
 _provider = provider;
 }

 protected override async Task ExecuteAsync(
 CancellationToken stoppingToken)
 {
 while (!stoppingToken.IsCancellationRequested)
 {
 using(IServiceScope scope = _provider.CreateScope())
 {
 var scopedProvider = scope.ServiceProvider;

Listing 22.4 Consuming scoped services from an IHostedService

Background-
Service is
registered as
a singleton.

The injected
IServiceProvid
can be used
to retrieve
singleton
services, or to
create scopes.

Create
a new scope

using the root
IServiceProvider.

The scope expose
an IServiceProvid
that can be used
retrieve scoped
components.

696 CHAPTER 22 Building background tasks and services
 var client = scope.ServiceProvider
 .GetRequiredService<ExchangeRatesClient>();

 var context = scope.ServiceProvider
 .GetRequiredService<AppDbContext>();

 var rates= await client.GetLatestRatesAsync();

 context.Add(rates);
 await context.SaveChanges(rates);
 }

 await Task.Delay(TimeSpan.FromMinutes(5), stoppingToken);
 }
 }
}

Creating scopes like this is a general solution whenever you find you need to access
scoped services and you’re not running in the context of a request. A prime example
is when you’re implementing IConfigureOptions, as you saw in chapter 19. You can
take the exact same approach—creating a new scope—as shown in my blog post titled
“Access services inside ConfigureServices using IConfigureOptions in ASP.NET Core”:
http://mng.bz/nMD5.

TIP Using service location in this way always feels a bit convoluted. I typically
try to extract the body of the task to a separate class and use service location
to retrieve that class only. You can see an example of this approach in the
“Consuming a scoped service in a background task” section of Microsoft’s
“Background tasks with hosted services in ASP.NET Core” documentation:
http://mng.bz/4ZER.

IHostedService is available in ASP.NET Core, so you can run background tasks in
your Razor Pages or API controller applications. However, sometimes all you want is
the background task and you don’t need any UI. For those cases, you can use the raw
IHost abstraction, without having to bother with HTTP handling at all.

22.2 Creating headless worker services using IHost
In this section you’ll learn about worker services, which are ASP.NET Core applica-
tions that do not handle HTTP traffic. You’ll learn how to create a new worker service
from a template and compare the generated code to a traditional ASP.NET Core
application. You’ll also learn how to install the worker service as a Windows Service or
as a systemd daemon on Linux.

 In section 22.1 we cached exchange rates based on the assumption that they’re
being consumed directly by the UI part of your application; by Razor Pages or API
controllers, for example. However, in the section 22.1.2 example we saved the rates to
the database instead of storing them in-process. That raises the possibility of other
applications with access to the database using the rates too. Taking that one step further,

Retrieve
the scoped
services from
the container.

Fetch the latest
rates, and save
using EF Core.

Dispose of the
scope with

the using
statement.

Wait for the next iteration. A new scope
is created on the next iteration.

http://mng.bz/nMD5
http://mng.bz/4ZER

697Creating headless worker services using IHost
could we create an application which is only responsible for caching these rates and
has no UI at all?

 Since .NET Core 3.0, ASP.NET Core has been built on top of a “generic” (as
opposed to a “web”) IHost implementation. It is the IHost implementation that pro-
vides features such as configuration, logging, and dependency injection. ASP.NET
Core adds the middleware pipeline for handling HTTP requests, as well as paradigms
such as Razor Pages or MVC on top of that, as shown in figure 22.2.

If your application doesn’t need to handle HTTP requests, there’s no real reason to use
ASP.NET Core. You can use the IHost implementation alone to create an application
that will have a lower memory footprint, faster startup, and less surface area to worry
about from a security perspective than a full ASP.NET Core application. .NET Core
applications that use this approach are commonly called worker services or workers.

DEFINITION A worker is a .NET Core application that uses the generic IHost
but doesn’t include the ASP.NET Core libraries for handling HTTP requests.
They are sometimes called “headless” services, as they don’t expose a UI for
you to interact with.

Workers are commonly used for running background tasks (IHostedService imple-
mentations) that don’t require a UI. These tasks could be for running batch jobs, for
running tasks repeatedly on a schedule, or for handling events using some sort of mes-
sage bus. In the next section we’ll create a worker for retrieving the latest exchange
rates from a remote API, instead of adding the background task to an ASP.NET Core
application.

The .NET Core generic
IHost abstraction
provides logging,
configuration, and
dependency injection
abstractions.

ASP.NET Core adds HTTP
handling using middleware,
and Startup.cs to separate
DI and middleware
configuration from host
configuration.

On top of the middleware
basics you can optionally
add programming models
like Razor Pages and
API controllers.

Figure 22.2 ASP.NET Core builds on the generic IHost implementation. IHost provides features
such as configuration, dependency injection, and configuration. ASP.NET Core adds HTTP handling on
top of that by way of the middleware pipeline, Razor Pages, and API controllers. If you don’t need HTTP
handling, you can use IHost without the additional ASP.NET Core libraries to create a smaller
application.

698 CHAPTER 22 Building background tasks and services

 in
vices,

ld
.

22.2.1 Creating a worker service from a template

In this section you’ll see how to create a basic worker service from a template. Visual
Studio includes a template for creating worker services: select File > New > Project >
Worker Service. You can create a similar template using the .NET CLI by running
dotnet new worker. The resulting template consists of two C# files:

 Worker.cs—This is a simple BackgroundService implementation that writes to
the log every second. You can replace this class with your own Background-
Service implementation, such as the example from listing 22.4.

 Program.cs—As in a typical ASP.NET Core application, this contains the entry
point for your application, and it’s where the IHost is built and run. In contrast
to a typical ASP.NET Core app, it’s also where you will configure the depen-
dency injection container for your application.

The most notable difference between the worker service template and an ASP.NET
Core template is that there is no Startup.cs file. In ASP.NET Core applications,
Startup.cs is where you usually configure your DI container and your middleware pipe-
line. The worker service doesn’t have a middleware pipeline (as it doesn’t handle
HTTP requests), but it does use DI, so where is that configured?

 In worker service templates you configure DI in Program.cs using the Configure-
Services() method, as shown in the following listing. This method is functionally
identical to the ConfigureServices() method in Startup.cs, so you can use exactly
the same syntax. The following listing shows how to configure EF Core, the exchange
rates typed client from chapter 21, and the background service that saves exchange
rates to the database, as you saw in section 22.1.2.

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHttpClient<ExchangeRatesClient>();
 services
 .AddHostedService<ExchangeRatesHostedService>();

 services.AddDbContext<AppDbContext>(options =>
 options.UseSqlite(
 hostContext.Configuration
 .GetConnectionString("SqlLiteConnection"))

Listing 22.5 Program.cs for a worker service that saves exchange rates using EF Core

A worker creates an
IHostBuilder, builds an
IHost, and runs it, the
same as an ASP.NET
Core app.

The same Host-
Builder code is
used, but there is
no call to Configure-
WebHostDefaults.

Add services
ConfigureSer
just as you
typically wou
in Startup.csIConfiguration can be

accessed from the
HostBuilderContext

parameter.

699Creating headless worker services using IHost

The
frame
the s
for A
Cor

If y
IHttpCli
you’ll n

this
work
);
 });
}

TIP You can use the IHostBuilder.ConfigureServices() methods in
ASP.NET Core apps too, but the general convention is to use Startup.cs
instead. The IHostBuilder methods are useful in some circumstances where
you need to control exactly when your background tasks start, as I describe in
a blog post titled “Controlling IHostedService execution order in ASP.NET
Core 3.x”: http://mng.bz/Qm66.

The changes in Program.cs, and the lack of a Startup.cs file, are the most obvious dif-
ferences between a worker service and an ASP.NET Core app, but there are some
important differences in the .csproj project file too. The following listing shows the
project file for a worker service that uses IHttpClientFactory and EF Core, and high-
lights some of the differences compared to a similar ASP.NET Core application.

<Project Sdk="Microsoft.NET.Sdk.Worker">

 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 <UserSecretsId>5088-4277-B226-DC0A790AB790</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Extensions.Hosting"
 Version="5.0.0" />
 <PackageReference Include="Microsoft.Extensions.Http"
 Version="5.0.0" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"
 Version="5.0.0" PrivateAssets="All" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="5.0.0" />
 </ItemGroup>
</Project>

Some parts of the project file are the same for both worker services and ASP.NET
Core apps:

 Both types of apps must specify a <TargetFramework>, such as netcoreapp3.1
for .NET Core 3.1, or net5.0 for .NET 5.0.

 Both types of apps use the configuration system, so you can use <UserSecretsId>
to manage secrets in development, as discussed in chapter 11.

 Both types of apps must explicitly add references to the EF Core NuGet pack-
ages to use EF Core in the app.

Listing 22.6 Project file for a worker service

Worker services use a different project
SDK type than ASP.NET Core apps.

 target
work is
ame as
SP.NET
e apps.

Worker services use
configuration, so they can

use UserSecrets, like
ASP.NET Core apps.

All worker services
must explicitly
add this package.
ASP.NET Core apps
add it implicitly.

ou’re using
entFactory,
eed to add
 package in
er services.

EF Core packages must be explicitly added,
the same as for ASP.NET Core apps.

http://mng.bz/Qm66

700 CHAPTER 22 Building background tasks and services
There are also several differences in the project template:

 The <Project> element’s Sdk for a worker service should be Microsoft.NET
.Sdk.Worker, while for an ASP.NET Core app it is Microsoft.NET.Sdk.Web.
The Web SDK includes implicit references to additional packages that are not
generally required in worker services.

 The worker service must include an explicit PackageReference for the Micro-
soft.Extensions.Hosting NuGet package. This package includes the generic
IHost implementation used by worker services.

 You may need to include additional packages to reference the same functionality,
when compared to an ASP.NET Core app. An example of this is the Microsoft
.Extensions.Http package (which provides IHttpClientFactory). This package
is referenced implicitly in ASP.NET Core apps but must be explicitly referenced
in worker services.

Running a worker service is the same as running an ASP.NET Core application: use
dotnet run from the command line or press F5 from Visual Studio. A worker service is
essentially just a console application (as are ASP.NET Core applications), so they both
run the same way.

 You can run worker services in most of the same places you would run an ASP.NET
Core application, though as a worker service doesn’t handle HTTP traffic, some options
make more sense than others. In the next section we’ll look at two supported ways of
running your application: as a Windows Service or as a Linux systemd daemon.

22.2.2 Running worker services in production

In this section you’ll learn how to run worker services in production. You’ll learn how
to install a worker service as a Windows Service so that the operating system monitors
and starts your worker service automatically. You’ll also see how to prepare your appli-
cation for installation as a systemd daemon on Linux.

 Worker services, like ASP.NET Core applications, are fundamentally just .NET
Core console applications. The difference is that they are typically intended to be
long-running applications. The common approach for running these types of applica-
tions on Windows is to use a Windows Service or to use a systemd daemon on Linux.

NOTE It’s also very common to run applications in the cloud using Docker
containers or dedicated platform services like Azure App Service. The process
for deploying a worker service to these managed services is typically identical
to deploying an ASP.NET Core application.

Adding support for Windows Services or systemd is easy, thanks to two optional NuGet
packages:

 Microsoft.Extensions.Hosting.Systemd—Adds support for running the application
as a systemd application. To enable systemd integration, call UseSystemd() on
your IHostBuilder in Program.cs.

701Creating headless worker services using IHost

C
w

 Microsoft.Extensions.Hosting.WindowsServices—Adds support for running the appli-
cation as a Windows Service. To enable the integration, call UseWindowsService()
on your IHostBuilder in Program.cs.

These packages each add a single extension method to IHostBuilder that enables the
appropriate integration when running as a systemd daemon or as a Windows Service.
For example, the following listing shows how to enable Windows Service support.

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHostedService<Worker>();
 })
 .UseWindowsService();
}

During development, or if you run your application as a console app, AddWindows-
Service() does nothing; your application runs exactly the same as it would without
the method call. However, your application can now be installed as a Windows Ser-
vice, as your app now has the required integration hooks to work with the Windows
Service system.

 The following basic steps show how to install a worker service app as a Windows
Service:

1 Add the Microsoft.Extensions.Hosting.WindowsServices NuGet package to your
application using Visual Studio by running dotnet add package Microsoft
.Extensions.Hosting.WindowsServices in the project folder, or by adding a
<PackageReference> to your .csproj file:

<PackageReference Include="Microsoft.Extensions.Hosting.WindowsServices"
Version="5.0.0" />

2 Add a call to UseWindowsService() on your IHostBuilder, as shown in list-
ing 22.7.

3 Publish your application, as described in chapter 16. From the command line
you could run dotnet publish -c Release from the project folder.

Listing 22.7 Adding Windows Service support to a worker service

onfigure your
orker service
as you would

normally. Add support
for running as a
Windows Service.

702 CHAPTER 22 Building background tasks and services
4 Open a command prompt as Administrator, and install the application using
the Windows sc utility. You need to provide the path to your published project’s
.exe file and a name to use for the service, such as My Test Service:

sc create "My Test Service" BinPath="C:\path\to\MyService.exe"

5 You can manage the service from the Services control panel in Windows, as
shown in figure 22.3. Alternatively, to start the service from the command line
run sc start "My Test Service", or to delete the service run sc delete "My
Test Service".

After following the preceding steps, your worker service will be running as a Windows
Service.

WARNING These steps are the bare minimum required to install a Windows
Service. When running in production, you must consider many security
aspects not covered here. For more details, see Microsoft’s “Host ASP.NET
Core in a Windows Service” documentation: http://mng.bz/Xdy9.

An interesting point of note is that installing as a Windows Service or systemd daemon
isn’t limited to worker services only—you can install an ASP.NET Core application in
the same way. Simply follow the preceding instructions, add the call to UseWindows-
Service(), and install your ASP.NET Core app. This is thanks to the fact that the
ASP.NET Core functionality is built directly on top of the generic Host functionality.

 You can follow a similar process to install a worker service as a systemd daemon by
installing the Microsoft.Extensions.Hosting.Systemd package and calling UseSystemd()
on your IHostBuilder. For more details on configuring systemd, see the “Monitor the
app” section in Microsoft’s “Host ASP.NET Core on Linux with Nginx” documenta-
tion: http://mng.bz/yYDp.

Figure 22.3 The Services control panel in Windows. After installing a worker service as a Windows Service using
the sc utility, you can manage your worker service from here. This allows you to control when the Windows Service
starts and stops, the user account the application runs under, and how to handle errors.

http://mng.bz/Xdy9
http://mng.bz/yYDp

703Coordinating background tasks using Quartz.NET
 So far in this chapter we’ve used IHostedService and the BackgroundService to
run tasks that repeat on an interval, and you’ve seen how to install worker services as
long-running applications by installing as a Windows Service.

 In the final section of this chapter, we’ll look at how you can create more advanced
schedules for your background tasks, as well as how to add resiliency to your applica-
tion by running multiple instances of your workers. To achieve that, we’ll use a mature
third-party library, Quartz.NET.

22.3 Coordinating background tasks using Quartz.NET
In this section you’ll learn how to use the open source scheduler library Quartz.NET.
You’ll learn how to install and configure the library, and how to add a background job to
run on a schedule. You’ll also learn how to enable clustering for your applications, so
that you can run multiple instances of your worker service and share jobs between them.

 All the background tasks you’ve seen so far in this chapter repeat a task on an
interval indefinitely, from the moment the application starts. However, sometimes
you want more control of this timing. Maybe you always want to run the application
at 15 minutes past each hour. Or maybe you only want to run a task on the second
Tuesday of the month at 3 a.m. Additionally, maybe you want to run multiple instances
of your application for redundancy, but ensure that only one of the services runs a
task at any one time.

 It would certainly be possible to build all this extra functionality into an applica-
tion yourself, but there are excellent libraries available that already provide all this
functionality for you. Two of the most well known in the .NET space are Hangfire
(www.hangfire.io) and Quartz.NET(www.quartz-scheduler.net).

 Hangfire is an open source library that also has a “Pro” subscription option. One
of its most popular features is a dashboard user interface that shows the state of all
your running jobs, each task’s history, and any errors that have occurred.

 Quartz.NET is completely open source and essentially offers a beefed-up version of
the BackgroundService functionality. It has extensive scheduling functionality, as well
as support for running in a clustered environment, where multiple instances of your
application coordinate to distribute the jobs amongst themselves.

NOTE Quartz.NET is based on a similar Java library called Quartz Scheduler.
When looking for information on Quartz.NET be sure you’re looking at the
correct Quartz!

Quartz.NET is based around four main concepts:

 Jobs—These are the background tasks that implement your logic.
 Triggers—These control when a job will run, based on a schedule, such as “every

five minutes” or “every second Tuesday.” A job can have multiple triggers.
 Job factory—The job factory is responsible for creating instances of your jobs.

Quartz.NET integrates with ASP.NET Core’s DI container, so you can use DI in
your job classes.

http://www.hangfire.io
http://www.quartz-scheduler.net

704 CHAPTER 22 Building background tasks and services
 Scheduler—The Quartz.NET scheduler keeps track of the triggers in your appli-
cation, creates jobs using the job factory, and runs your jobs. The scheduler typ-
ically runs as an IHostedService for the lifetime of your app.

In this section I’ll show you how to install Quartz.NET and configure a background
service to run on a schedule. I’ll then explain how to enable clustering, so that you
can run multiple instances of your application and distribute the jobs between them.

22.3.1 Installing Quartz.NET in an ASP.NET Core application

In this section I’ll show you how to install the Quartz.NET scheduler into an ASP.NET
Core application. Quartz.NET will run in the background in the same way as the
IHostedService implementations do. In fact, Quartz.NET uses the IHostedService
abstractions to schedule and run jobs.

DEFINITION A job in Quartz.NET is a task to be executed that implements the
IJob interface. It is where you define the logic that your tasks will execute.

Quartz.NET can be installed into any .NET Core application, so you’ll also see how to
install Quartz.NET into a worker service. You’ll install the necessary dependencies
and configure the Quartz.NET scheduler to run as a background service in a worker
service app. In section 22.3.2 we’ll convert the exchange-rate downloader task from
section 22.1 to a Quartz.NET IJob and configure triggers to run on a schedule.

NOTE The instructions in this section can be used to install Quartz.NET into
either a worker service or a full ASP.NET Core application. The only differ-
ence is whether you use the ConfigureServices() method in Program.cs or
Startup.cs.

Background services versus cron jobs
It’s common to use cron jobs to run tasks on a schedule on Linux, and Windows has
similar functionality through the use of Task Scheduler. These are used to periodically
run an application or script file, which is typically a short-lived task.

In contrast, .NET Core apps using background services are designed to be long-lived,
even if they are only used to run tasks on a schedule. This allows your application to
do things like adjust its schedule as required or perform optimizations. In addition,
being long-lived means your app doesn’t have to just run tasks on a schedule. It can
respond to ad hoc events, such as events in a message queue.

Of course, if you don’t need those capabilities and would rather not have a long-running
application, you can use .NET Core in combination with cron jobs. You could create
a simple .NET console app that runs your task and then shuts down, and you could
schedule it to execute periodically as a cron job. The choice is yours!

705Coordinating background tasks using Quartz.NET

Q
to

from
DI
To install Quartz.NET, follow these steps:

1 Install the Quartz.AspNetCore NuGet package in your project by running
dotnet add package Quartz.Extensions.Hosting, by using the NuGet explorer
in Visual Studio, or by adding a <PackageReference> element to your project
file as follows:

<PackageReference Include="Quartz.Extensions.Hosting" Version="3.2.3" />

2 Add the Quartz.NET IHostedService scheduler by calling AddQuartzHosted-
Service() on the IServiceCollection in ConfigureServices, as follows. Set
WaitForJobsToComplete=true so that your app will wait for any jobs in progress
to finish when shutting down.

services.AddQuartzHostedService(q => q.WaitForJobsToComplete = true);

3 Configure the required Quartz.NET services in ConfigureServices. The exam-
ple in the following listing configures the Quartz.NET job factory to retrieve job
implementations from a scoped DI container, and it adds a required service.

public void ConfigureServices(IService collection)
{
 services.AddQuartz(q =>
 {
 q.UseMicrosoftDependencyInjectionScopedJobFactory();
 });

 services.AddQuartzHostedService(
 q => q.WaitForJobsToComplete = true);
}

This configuration registers all Quartz.NET’s required components, so you can now
run your application using dotnet run or by pressing F5 in Visual Studio. When your
app starts, the Quartz.NET IHostedService starts its scheduler, as shown in figure 22.4.
We haven’t configured any jobs to run yet, so the scheduler doesn’t have anything
to schedule.

TIP Running your application before you’ve added any jobs is a good practice.
It lets you check that you have installed and configured Quartz.NET correctly
before you get to more advanced configuration.

A job scheduler without any jobs to schedule isn’t a lot of use, so in the next section
we’ll create a job and add a trigger for it to run on a timer.

Listing 22.8 Configuring Quartz.NET in ConfigureServices

Add Quartz.NET
in Startup.cs for
ASP.NET Core apps
or in Program.cs for
worker services.

Register Quartz.NET services
with the DI container.Configure

uartz.NET
 load jobs
 a scoped

container.
Add the Quartz.NET
IHostedService that runs
the Quartz.NET scheduler.

706 CHAPTER 22 Building background tasks and services

IJob

im

asyn
22.3.2 Configuring a job to run on a schedule with Quartz.NET

In section 22.1 we created an IHostedService that downloads exchange rates from
a remote service and saves the results to a database using EF Core. In this section
you’ll see how you can create a similar Quartz.NET IJob and configure it to run on
a schedule.

 The following listing shows an implementation of IJob that downloads the latest
exchange rates from a remote API using a typed client, ExchangeRatesClient. The
results are then saved using an EF Core DbContext, AppDbContext.

public class UpdateExchangeRatesJob : IJob
{
 private readonly ILogger<UpdateExchangeRatesJob> _logger;
 private readonly ExchangeRatesClient _typedClient;
 private readonly AppDbContext _dbContext;
 public UpdateExchangeRatesJob(
 ILogger<UpdateExchangeRatesJob> logger,
 ExchangeRatesClient typedClient,
 AppDbContext dbContext)
 {
 _logger = logger;
 _typedClient = typedClient;
 _dbContext = dbContext;
 }

 public async Task Execute(IJobExecutionContext context)
 {
 _logger.LogInformation("Fetching latest rates");

Listing 22.9 A Quartz.NET IJob for downloading and saving exchange rates

Quartz.NET uses an
in-memory store for
tracking jobs and
schedules by default.

Quartz.NET runs in
non-clustered mode
by default, so each
running instance of
your app is
independent.

No jobs or triggers
have been configured
for this application.

Figure 22.4 The Quartz.NET scheduler starts on app startup and logs its configuration. The
default configuration stores the list of jobs and their schedules in memory and runs in a non-
clustered state. In this example, you can see that no jobs or triggers have been registered,
so the scheduler has nothing to schedule yet.

Quartz.NET jobs must
implement the IJob interface.

You can use
standard
dependency
injection to
inject any
dependencies.

 requires
you to

plement
a single

chronous
method,
Execute.

707Coordinating background tasks using Quartz.NET
 var latestRates = await _typedClient.GetLatestRatesAsync();

 _dbContext.Add(latestRates);
 await _dbContext.SaveChangesAsync();

 _logger.LogInformation("Latest rates updated");
 }
}

Functionally, the IJob in the listing 22.9 is doing a similar task to the Background-
Service implementation in listing 22.4, with a few notable exceptions:

 The IJob only defines the task to execute; it doesn’t define timing information. In the
BackgroundService implementation, we also had to control how often the task
was executed.

 A new IJob instance is created every time the job is executed. In contrast, the
BackgroundService implementation is only created once, and its Execute method
is only invoked once.

 We can inject scoped dependencies directly into the IJob implementation. To use scoped
dependencies in the IHostedService implementation, we had to manually cre-
ate our own scope and use service location to load dependencies. Quartz.NET
takes care of that for us, allowing us to use pure constructor injection. Every
time the job is executed, a new scope is created and is used to create a new
instance of the IJob.

The IJob defines what to execute, but it doesn’t define when to execute it. For that,
Quartz.NET uses triggers. Triggers can be used to define arbitrarily complex blocks of
time during which a job should be executed. For example, you can specify start and
end times, how many times to repeat, and blocks of time when a job should or
shouldn’t run (such as only 9 a.m. to 5 p.m., Monday–Friday).

 In the following listing, we register the UpdateExchangeRatesJob with the DI con-
tainer using the AddJob<T>() method, and we provide a unique name to identify the
job. We also configure a trigger that fires immediately, and then every five minutes,
until the application shuts down.

public void ConfigureServices(IService collection)
{
 services.AddQuartz(q =>
 {
 q.UseMicrosoftDependencyInjectionScopedJobFactory();

 var jobKey = new JobKey("Update exchange rates");
 q.AddJob<UpdateExchangeRatesJob>(opts =>
 opts.WithIdentity(jobKey));

 q.AddTrigger(opts => opts
 .ForJob(jobKey)

Listing 22.10 Configuring a Quartz.NET IJob and trigger

Download
the rates
from the

remote API.
Save the rates to
the database.

Create a unique
key for the job,
used to associate
it with a trigger.Add the

IJob to the DI
container, and

associate it with
the job key. Register a trigger for

the IJob via the job key.

708 CHAPTER 22 Building background tasks and services

e

 .WithIdentity(jobKey.Name + " trigger")
 .StartNow()
 .WithSimpleSchedule(x => x
 .WithInterval(TimeSpan.FromMinutes(5))
 .RepeatForever())
);
 });

 services.AddQuartzHostedService(q => q.WaitForJobsToComplete = true);
}

Simple triggers like the schedule defined here are common, but you can also achieve
more complex configurations using other schedules. For example, the following con-
figuration would set a trigger to fire every week, on a Friday at 5:30 p.m.:

q.AddTrigger(opts => opts
 .ForJob(jobKey)
 .WithIdentity("Update exchange rates trigger")
 .WithSchedule(CronScheduleBuilder
 .WeeklyOnDayAndHourAndMinute(DayOfWeek.Friday, 17, 30))

You can configure a wide array of time- and calendar-based triggers with Quartz.NET.
You can also control how Quartz.NET handles missed triggers—that is, triggers that
should have fired, but your app wasn’t running at the time. For a detailed description
of the trigger configuration options and more examples, see the Quartz.NET docu-
mentation at www.quartz-scheduler.net/documentation/.

TIP A common problem people run into with long-running jobs is that
Quartz.NET will keep starting new instances of the job when a trigger fires,
even though it’s already running. To avoid that, tell Quartz.NET to not start
another instance by decorating your IJob implementation with the [Disallow-
ConcurrentExecution] attribute.

The ability to configure advanced schedules, the simple use of dependency injection
in background tasks, and the separation of jobs from triggers are reasons enough for
me to recommend Quartz.NET if you have anything more than the most basic back-
ground service needs. However, the real tipping point is when you need to scale your
application for redundancy or performance reasons—that’s when Quartz.NET’s clus-
tering capabilities make it shine.

22.3.3 Using clustering to add redundancy to your background tasks

In this section you’ll learn how to configure Quartz.NET to persist its configuration to
a database. This is a necessary step in enabling clustering, so that multiple instances of
your application can coordinate to run your Quartz.NET jobs.

 As your applications become more popular, you may find you need to run more
instances of your app to handle the traffic they receive. If you keep your ASP.NET
Core applications stateless, the process of scaling is relatively simple: the more applica-
tions you have, the more traffic you can handle, everything else being equal.

Provide a unique name
for the trigger for use in
logging and in clustered
scenarios.

Fire the trigger as soon as
the Quartz.NET scheduler
runs on app startup.

Fire the trigger
very five minutes

until the app
shuts down.

http://www.quartz-scheduler.net/documentation/

709Coordinating background tasks using Quartz.NET
 However, scaling applications that use IHostedService to run background tasks
might not be as simple. For example, imagine your application includes the Background-
Service that we created in section 22.1.2, which saves exchange rates to the database
every five minutes. When you’re running a single instance of your app, the task runs
every five minutes as expected.

 But what happens if you scale your application and run 10 instances of it? Every
one of those applications will be running the BackgroundService, and they’ll all be
updating every five minutes from the time each instance started!

 One option would be to move the BackgroundService to a separate worker service
app. You could then continue to scale your ASP.NET Core application to handle the
traffic as required, but deploy a single instance of the worker service. As only a single
instance of the BackgroundService would be running, the exchange rates would be
updated on the correct schedule again.

TIP Differing scaling requirements, as in this example, are one of the best rea-
sons for splitting up bigger apps into smaller microservices. Breaking up an app
like this has a maintenance overhead, however, so think about the trade-offs if
you take this route. For more on this trade-off, I recommend Microservices in
.NET Core, 2nd ed., by Christian Horsdal Gammelgaard (Manning, 2021).

However, if you take this route, you add a hard limitation that you can only ever have a
single instance of your worker service. If you need to run more instances of your
worker service to handle additional load, you’ll be stuck.

 An alternative option to enforcing a single service is to use clustering. Clustering
allows you to run multiple instances of your application, and tasks are distributed
between all the instances of your application. Quartz.NET achieves clustering by using
a database as a backing store. When a trigger indicates a job needs to execute, the
Quartz.NET schedulers in each app attempt to obtain a lock to execute the job, as
shown in figure 22.5. Only a single app can be successful, ensuring that a single app
handles the trigger for the IJob.

 Quartz.NET relies on a persistent database for its clustering functionality. Quartz
.NET stores descriptions of the jobs and triggers in the database, including when the
trigger last fired. It’s the locking features of the database that ensure only a single
application can execute a task at a time.

TIP You can enable persistence without enabling clustering. This allows the
Quartz.NET scheduler to catch up with missed triggers.

The following listing shows how to enable persistence for Quartz.NET, and, additionally,
how to enable clustering. This example stores data in an MS SQL Server (or LocalDB)
server, but Quartz.NET supports many other databases. This example uses the recom-
mended values for enabling clustering and persistence as outlined in the documentation.1

1 The Quartz.NET documentation discusses many configuration setting controls for persistence. See the doc-
umentation for “Job Stores”: http://mng.bz/PP0R.

http://mng.bz/PP0R

710 CHAPTER 22 Building background tasks and services

Obt
conn

string fo
databas
configu

pe
th
sch

En
b

public void ConfigureServices(IService collection)
{
 var connectionString = Configuration
 .GetConnectionString("DefaultConnection");

 services.AddQuartz(q =>
 {
 q.SchedulerId = "AUTO";

 q.UseMicrosoftDependencyInjectionScopedJobFactory();

 q.UsePersistentStore(s =>
 {
 s.UseSqlServer(connectionString);
 s.UseClustering();
 s.UseProperties = true;
 s.UseJsonSerializer();
 });

 var jobKey = new JobKey("Update exchange rates");
 q.AddJob<UpdateExchangeRatesJob>(opts =>
 opts.WithIdentity(jobKey));

 q.AddTrigger(opts => opts
 .ForJob(jobKey)
 .WithIdentity(jobKey.Name + " trigger")
 .StartNow()

Listing 22.11 Enabling persistence and clustering for Quartz.NET

1. The trigger schedule indicates
that a job is due to run.

3. Only a single
instance receives
the lock on the
job, instance 3.
Instance 3 can
execute the job.

2. All instances of the application
attempt to obtain a lock to run
the job.

Figure 22.5 Using clustering with Quartz.NET allows horizontal scaling. Quartz.NET uses a database as a
backing store, ensuring that only a single instance of the application handles a trigger at a time. This makes
it possible to run multiple instances of your application to meet scalability requirements.

Configuration is identical
for both ASP.NET Core apps
and worker services.ain the

ection
r your
e from
ration.

Each instance of your app must
have a unique SchedulerId. AUTO
takes care of this for you.

Enable
database

rsistence for
e Quartz.NET
eduler data.

Store the scheduler data in
a SQL Server (or LocalDb)
database.

ables clustering
etween multiple

instances of
your app

Adds the recommended
configuration for job persistence

711Summary
 .WithSimpleSchedule(x => x
 .WithInterval(TimeSpan.FromMinutes(5))
 .RepeatForever())
);
 });

 services.AddQuartzHostedService(q => q.WaitForJobsToComplete = true);
}

With this configuration, Quartz.NET stores a list of jobs and triggers in the database
and uses database locking to ensure only a single instance of your app handles a trig-
ger and runs the associated job.

NOTE SQLite doesn’t support the database locking primitives required for
clustering. You can use SQLite as a persistence store, but you won’t be able to
use clustering.

Quartz.NET stores data in your database, but it doesn’t attempt to create the tables it
uses itself. Instead, you must manually add the required tables. Quartz.NET provides
SQL scripts on GitHub for all of the supported database server types, including MS SQL
Server, SQLite, PostgreSQL, MySQL, and many more: http://mng.bz/JDeZ.

TIP If you’re using EF Core migrations to manage your database, I suggest
using them even for ad hoc scripts like these. In the code sample associated
with this chapter, you can see a migration that creates the required tables
using the Quartz.NET scripts.

Clustering is one of those advanced features that is only necessary as you start to scale
your application, but it’s an important tool to have in your belt. It gives you the ability
to safely scale your services as you add more jobs. There are some important things to
bear in mind, however, so I suggest reading through the warnings in the Quartz.NET
documentation: http://mng.bz/aozj.

 That brings us to the end of this chapter on background services. In the final chap-
ter of this book, I’ll describe an important aspect of web development that, sometimes
despite the best of intentions, is often left until last: testing. You’ll learn how to write
simple unit tests for your classes, how to design for testability, and how to build inte-
gration tests that test your whole app.

Summary
 You can use the IHostedService interface to run tasks in the background of

your ASP.NET Core apps. Call AddHostedService<T>() to add an implementa-
tion T to the DI container. IHostedService is useful for implementing long-
running tasks.

 Typically, you should derive from BackgroundService to create an IHosted-
Service, as this implements best practices required for long-running tasks.
You must override a single method, ExecuteAsync, which is called when your

http://mng.bz/JDeZ
http://mng.bz/aozj

712 CHAPTER 22 Building background tasks and services
app starts. You should run your tasks within this method until the provided
CancellationToken indicates the app is shutting down.

 You can manually create DI scopes using IServiceProvider.CreateScope().
This is useful for accessing scoped lifetime services from within a singleton life-
time component, such as from an IHostedService implementation.

 A worker service is a .NET Core application that uses the generic IHost but
doesn’t include the ASP.NET Core libraries for handling HTTP requests. They
generally have a smaller memory and disk footprint than the ASP.NET Core
equivalents.

 Worker services use the same logging, configuration, and dependency injection
systems as ASP.NET Core apps. However, they don’t use the Startup.cs file, so
you must configure your DI services in IHostBuilder.ConfigureServices().

 To run a worker service or ASP.NET Core app as a Windows Service, add the
Microsoft.Extensions.Hosting.WindowsServices NuGet package, and call Add-
WindowsService() on IHostBuilder. You can install and manage your app with
the Windows sc utility.

 To install a Linux systemd daemon, add the Microsoft.Extensions.Hosting
.Systemd NuGet package and call AddSystemd() on IHostBuilder. Both the
Systemd and Windows Service integration packages do nothing when running
the application as a console app, which is great for testing your app.

 Quartz.NET runs jobs based on triggers using advanced schedules. It builds on
the IHostedService implementation to add extra features and scalability. You
can install Quartz by adding the Quartz.AspNetCore NuGet package and call-
ing AddQuartz() and AddQuartzHostedService() in ConfigureServices().

 You can create a Quartz.NET job by implementing the IJob interface. This
requires implementing a single method, Execute. You can enable DI for the
job by calling UseMicrosoftDependencyInjectionScopedJobFactory in Add-
Quartz(). This allows you to directly inject scoped (or transient) services into
your job without having to create your own scopes.

 You must register your job, T, with DI by calling AddJob<T>() and providing a
JobKey name for the job. You can add an associated trigger by calling AddTrig-
ger() and providing the JobKey. Triggers have a wide variety of schedules avail-
able for controlling when a job should be executed.

 By default, triggers will continue to spawn new instances of a job as often as nec-
essary. For long-running jobs scheduled with a short interval, that will result in
many instances of your app running concurrently. If you only want a trigger to
execute a job when an instance is not already running, decorate your job with
the [DisallowConcurrentExecution] attribute.

 Quartz.NET supports database persistence for storing when triggers have exe-
cuted. To enable persistence, call UsePersistentStore() in your AddQuartz()
configuration method, and configure a database, using UseSqlServer() for

713Summary
example. With persistence, Quartz.NET can persist details about jobs and trig-
gers between application restarts.

 Enabling persistence also allows you to use clustering. Clustering enables multi-
ple apps using Quartz.NET to coordinate, so that jobs are spread across multi-
ple schedulers. To enable clustering, first enable database persistence and then
call UseClustering().

Testing your application
When I first started programming, I didn’t understand the benefits of automated
testing. It involved writing so much more code—wouldn’t it be more productive to
be working on new features instead? It was only when my projects started getting
bigger that I appreciated the advantages. Instead of having to manually run my app
and test each scenario, I could press Play on a suite of tests and have my code tested
for me automatically.

 Testing is universally accepted as good practice, but how it fits into your devel-
opment process can often turn into a religious debate. How many tests do you

This chapter covers
 Creating unit test projects with xUnit

 Writing unit tests for custom middleware and
API controllers

 Using the Test Host package to write
integration tests

 Testing your real application’s behavior
with WebApplicationFactory

 Testing code dependent on EF Core with
the in-memory database provider
714

715
need? Is anything less than 100% coverage of your code base adequate? Should you
write tests before, during, or after the main code?

 This chapter won’t address any of those questions. Instead, I’ll focus on the mechan-
ics of testing an ASP.NET Core application. I’ll show you how to use isolated unit tests
to verify the behavior of your services in isolation, how to test your API controllers and
custom middleware, and how to create integration tests that exercise multiple compo-
nents of your application at once. Finally, I’ll touch on the EF Core in-memory pro-
vider, a feature that lets you test components that depend on a DbContext without
having to connect to a database.

TIP For a broader discussion of testing, or if you’re brand new to unit test-
ing, see The Art of Unit Testing, 3rd ed., by Roy Osherove (Manning, 2021). If
you want to explore unit test best practices using C# examples, see Unit Test-
ing Principles, Practices, and Patterns by Vladimir Khorikov (Manning, 2020).
Alternatively, for an in-depth look at testing with xUnit in .NET Core, see
.NET Core in Action by Dustin Metzgar (Manning, 2018).

In section 23.1 I’ll introduce the .NET SDK testing framework and how you can use it
to create unit testing apps. I’ll describe the components involved, including the test-
ing SDK and the testing frameworks themselves, like xUnit and MSTest. Finally, I’ll
cover some of the terminology I’ll use throughout the chapter.

 In section 23.2 you’ll create your first test project. You’ll be testing a simple class at
this stage, but it’ll allow you to come to grips with the various testing concepts
involved. You’ll create several tests using the xUnit test framework, make assertions
about the behavior of your services, and execute the test project both from Visual Stu-
dio and the command line.

 In sections 23.3 and 23.4, we’ll look at how to test common features of your
ASP.NET Core apps: API controllers and custom middleware. I’ll show you how to
write isolated unit tests for both, much like you would any other service, and I’ll point
out the tripping points to watch for.

 To ensure components work correctly, it’s important to test them in isolation. But
you also need to test that they work correctly in a middleware pipeline. ASP.NET Core
provides a handy Test Host package that lets you easily write these integration tests for
your components. You can even go one step further with the WebApplicationFactory
helper class, and test that your app is working correctly. In section 23.5 you’ll see how
to use WebApplicationFactory to simulate requests to your application and to verify
that it generates the correct response.

 In the final section of this chapter, I’ll demonstrate how to use the SQLite data-
base provider for EF Core with an in-memory database. You can use this provider to
test services that depend on an EF Core DbContext, without having to use a real
database. That avoids the pain of having unknown database infrastructure, of reset-
ting the database between tests, and of different people having slightly different
database configurations.

716 CHAPTER 23 Testing your application
 Let’s start by looking at the overall testing landscape for ASP.NET Core, the
options available to you, and the components involved.

23.1 An introduction to testing in ASP.NET Core
In this section you’ll learn about the basics of testing in ASP.NET Core. You’ll learn about
the different types of tests you can write, such as unit tests and integration tests, and why
you should write both types. Finally, you’ll see how testing fits into ASP.NET Core.

 If you have experience building apps with the full .NET Framework or mobile apps
with Xamarin, then you might have some experience with unit testing frameworks. If
you were building apps in Visual Studio, the steps for creating a test project differed
between testing frameworks (xUnit, NUnit, MSTest), and running the tests in Visual
Studio often required installing a plugin. Similarly, running tests from the command
line varied between frameworks.

 With the .NET SDK, testing in ASP.NET Core and .NET Core is now a first-class citi-
zen, on a par with building, restoring packages, and running your application. Just as you
can run dotnet build to build a project, or dotnet run to execute it, you can use dotnet
test to execute the tests in a test project, regardless of the testing framework used.

 The dotnet test command uses the underlying .NET SDK to execute the tests for
a given project. This is exactly the same as when you run your tests using the Visual
Studio test runner, so whichever approach you prefer, the results are the same.

 Test projects are console apps that contain a number of tests. A test is typically a
method that evaluates whether a given class in your app behaves as expected. The test
project will typically have dependencies on at least three components:

 The .NET Test SDK
 A unit testing framework, such as xUnit, NUnit, Fixie, or MSTest
 A test-runner adapter for your chosen testing framework, so that you can exe-

cute your tests by calling dotnet test

These dependencies are normal NuGet packages that you can add to a project, but
they allow you to hook in to the dotnet test command and the Visual Studio test run-
ner. You’ll see an example .csproj file from a test app in the next section.

 Typically, a test consists of a method that runs a small piece of your app in isolation
and checks that it has the desired behavior. If you were testing a Calculator class, you
might have a test that checks that passing the values 1 and 2 to the Add() method
returns the expected result, 3.

 You can write lots of small, isolated tests like this for your app’s classes to verify that
each component is working correctly, independent of any other components. Small
isolated tests like these are called unit tests.

 Using the ASP.NET Core framework, you can build apps that you can easily unit
test; you can test some aspects of your controllers in isolation from your action filters
and model binding. This is because the framework

 Avoids static types
 Uses interfaces instead of concrete implementations

717Unit testing with xUnit
 Has a highly modular architecture; for example, you can test your controllers in
isolation from your action filters and model binding

But just because all your components work correctly independently doesn’t mean
they’ll work when you put them together. For that, you need integration tests, which test
the interaction between multiple components.

 The definition of an integration test is another somewhat contentious issue, but I
think of integration tests as any time you’re testing multiple components together, or
you’re testing large vertical slices of your app: testing a user manager class that can
save values to a database, for example, or testing that a request made to a health-check
endpoint returns the expected response. Integration tests don’t necessarily include
the entire app, but they definitely use more components than unit tests.

NOTE I don’t cover UI tests which, for example, interact with a browser to
provide true end-to-end automated testing. Selenium (www.seleniumhq.org)
and Cypress (www.cypress.io) are two of the best known tools for UI testing.

ASP.NET Core has a couple of tricks up its sleeve when it comes to integration testing.
You can use the Test Host package to run an in-process ASP.NET Core server, which
you can send requests to and inspect the responses. This saves you from the orchestra-
tion headache of trying to spin up a web server on a different process, making sure
ports are available, and so on, but still allows you to exercise your whole app.

 At the other end of the scale, the EF Core SQLite in-memory database provider
lets you isolate your tests from the database. Interacting with and configuring a data-
base is often one of the hardest aspects of automating tests, so this provider lets you
sidestep the issue entirely. You’ll see how to use it in section 23.6.

 The easiest way to get to grips with testing is to give it a try, so in the next section
you’ll create your first test project and use it to write unit tests for a simple custom
service.

23.2 Unit testing with xUnit
In this section you’ll learn how to create unit-test projects, how to reference classes in
other projects, and how to run tests with Visual Studio or the .NET CLI. You’ll create a
test project and use it to test the behavior of a basic currency-converter service. You’ll
write some simple unit tests that check that the service returns the expected results
and that it throws exceptions when you expect it to.

 As I described in section 23.1, to create a test project you need to use a testing
framework. You have many options, such as NUnit or MSTest, but the most commonly
used test framework with .NET Core is xUnit (https://xunit.net/). The ASP.NET Core
framework project itself uses xUnit as its testing framework, so it’s become somewhat
of a convention. If you’re familiar with a different testing framework, then feel free to
use that instead.

http://www.seleniumhq.org
http://www.cypress.io
https://xunit.net/

718 CHAPTER 23 Testing your application

23.2.1 Creating your first test project

Visual Studio includes a template to create a .NET Core xUnit test project, as shown in
figure 23.1. Choose File > New Project and choose xUnit Test Project (.NET Core)
from the New Project dialog box. Alternatively, you could choose Unit Test Project
(.NET Core) or NUnit Test Project (.NET Core) if you’re more comfortable with
those frameworks.

Alternatively, if you’re not using Visual Studio, you can create a similar template using
the .NET CLI with

dotnet new xunit

Whether you use Visual Studio or the .NET CLI, the template creates a console proj-
ect and adds the required testing NuGet packages to your .csproj file, as shown in the
following listing. If you chose to create an MSTest (or other framework) test project,
the xUnit and xUnit runner packages would be replaced with packages appropriate to
your testing framework of choice.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 <IsPackable>false</IsPackable>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference
 Include="Microsoft.NET.Test.Sdk" Version="16.8.0" />
 <PackageReference Include="xunit" Version="2.4.1" />

Listing 23.1 The .csproj file for an xUnit test project

Choose xUnit
Test Project
(.NET Core).

You can create
projects with
various .NET
test frameworks.

Be sure not to
select a .NET
Framework
project.

Figure 23.1 The New Project dialog box in Visual Studio. Choose xUnit Test Project to create
an xUnit project, or choose Unit Test Project to create an MSTest project.

The test project is a
standard .NET Core
project targeting .NET 5.0.

The .NET Test SDK, required
by all test projects

The xUnit test
framework

719Unit testing with xUnit

The x
adapte
.NET
 <PackageReference
 Include="xunit.runner.visualstudio" Version="2.4.3" />
 <PackageReference Include="coverlet.collector" Version="1.3.0" />
 </ItemGroup>
</Project>

In addition to the NuGet packages, the template includes a single example unit test.
This doesn’t do anything, but it’s a valid xUnit test all the same, as shown in the fol-
lowing listing. In xUnit, a test is a method on a public class, decorated with a [Fact]
attribute.

public class UnitTest1
{
 [Fact]
 public void Test1()
 {
 }
}

Even though this test doesn’t test anything, it highlights some characteristics of xUnit
[Fact] tests:

 Tests are denoted by the [Fact] attribute.
 The method should be public, with no method arguments.
 The method is void. It could also be an async method and return Task.
 The method resides inside a public, non-static class.

NOTE The [Fact] attribute, and these restrictions, are specific to the xUnit
testing framework. Other frameworks will use other ways to denote test classes
and have different restrictions on the classes and methods themselves.

It’s also worth noting that, although I said that test projects are console apps, there’s
no Program class or static void main method. Instead, the app looks more like a class
library. This is because the test SDK automatically injects a Program class at build time.
It’s not something you have to worry about in general, but you may have issues if you
try to add your own Program.cs file to your test project.1

 Before we go any further and create some useful tests, we’ll run the test project as
it is, using both Visual Studio and the .NET SDK tooling, to see the expected output.

Listing 23.2 An example xUnit unit test, created by the default template

1 This isn’t a common thing to do, but I’ve seen it used occasionally. I describe this issue in detail, and how to
fix it, in my blog post, “Fixing the error ‘Program has more than one entry point defined’ for console apps
containing xUnit tests,” at http://mng.bz/w9q5.

Unit test
r for the
Test SDK An optional package that collects metrics about

how much of your code base is covered by tests

xUnit tests must be
in public classes.

The [Fact] attribute
indicates the method
is a test method.

The Fact must be
public and have no

parameters.

http://mng.bz/w9q5

720 CHAPTER 23 Testing your application
23.2.2 Running tests with dotnet test

When you create a test app that uses the .NET Test SDK, you can run your tests either
with Visual Studio or using the .NET CLI. In Visual Studio, you run tests by choosing
Tests > Run > All Tests from the main menu, or by clicking Run All in the Test Explorer
window, as shown in figure 23.2.

The Test Explorer window lists all the tests found in your solution and the results of
each test. In xUnit, a test will pass if it doesn’t throw an exception, so Test1 passed
successfully.

 Alternatively, you can run your tests from the command line using the .NET CLI
by running

dotnet test

from the unit-test project’s folder, as shown in figure 23.3.

Click Run All to run all
tests in the solution.

Execution details of the
currently selected test

All tests in the solution and
their most recent status

Figure 23.2 The Test Explorer window in Visual Studio lists all tests found in the solution and
their most recent pass/fail status. Click a test in the left pane to see details about the most
recent test run in the right pane.

The .NET Test SDK
runs all of the tests
in the project.

dotnet test builds and
restores the project.

The final result is listed
along with the total
execution time.

Figure 23.3 You can run tests from the command line using dotnet test. This restores and builds
the test project before executing all the tests in the project.

721Unit testing with xUnit
NOTE You can also run dotnet test from the solution folder. This will run all
test projects referenced in the .sln solution file.

Calling dotnet test runs a restore and build of your test project and then runs the
tests, as you can see from the console output in figure 23.3. Under the hood, the .NET
CLI calls into the same underlying infrastructure as Visual Studio does (the .NET SDK),
so you can use whichever approach better suits your development style.

 You’ve seen a successful test run, so it’s time to replace that placeholder test with
something useful. First things first, though; you need something to test.

23.2.3 Referencing your app from your test project

In test-driven development (TDD), you typically write your unit tests before you write
the actual class you’re testing, but I’m going to take a more traditional route here and
create the class to test first. You’ll write the tests for it afterwards.

 Let’s assume you’ve created an app called ExchangeRates.Web, which is used to
convert between different currencies, and you want to add tests for it. You’ve added a
test project to your solution as described in section 23.2.1, so your solution looks like
figure 23.4.

In order for the ExchangeRates.Web.Tests project to be able to test the classes in the
ExchangeRates.Web project, you need to add a reference to the web project in your
test project. In Visual Studio, you can do this by right-clicking the Dependencies node
of your test project and choosing Add Reference, as shown in figure 23.5. You can
then select the web project from the Add Reference dialog box. After adding it to
your project, it shows up inside the Dependencies node, under Projects.

 Alternatively, you can edit the .csproj file directly and add a <ProjectReference>
element inside an <ItemGroup> element with the relative path to the referenced proj-
ect’s .csproj file.

<ItemGroup>
 <ProjectReference
 Include="..\..\src\ExchangeRates.Web\ExchangeRates.Web.csproj" />
</ItemGroup>

The app project to test

The xUnit test project
Figure 23.4 A basic solution
containing an ASP.NET Core
app called ExchangeRates.Web
and a test project called
ExchangeRates.Web.Tests.

722 CHAPTER 23 Testing your application
Note that the path is the relative path. A ".." in the path means the parent folder, so
the relative path shown correctly traverses the directory structure for the solution,
including both the src and test folders shown in Solution Explorer in figure 23.5.

TIP Remember, you can edit the .csproj file directly in Visual Studio by dou-
ble-clicking the project in Solution Explorer.

Common conventions for project layout
The layout and naming of projects within a solution is completely up to you, but
ASP.NET Core projects have generally settled on a couple of conventions that differ
slightly from the Visual Studio File > New defaults. These conventions are used by
the ASP.NET team on GitHub, as well as by many other open source C# projects.

The following figure shows an example of these layout conventions. In summary,
these are as follows:

 The .sln solution file is in the root directory.
 The main projects are placed in a src subdirectory.
 The test projects are placed in a test or tests subdirectory.
 Each main project has a test project equivalent, named the same as the

associated main project with a “.Test” or “.Tests” suffix.

1. Right-click Dependencies and
choose Add Project Reference. 2. Select ExchangeRates.Web

from the dialog box.

3. The referenced project is
listed in the Dependencies
node under Projects.

Figure 23.5 To test your app project, you need to add a reference to it from the test project.
Right-click the Dependencies node and choose Add Project Reference. The app project is
shown referenced inside the Dependencies node, under Projects.

723Unit testing with xUnit

p
 a

e
it.
Your test project is now referencing your web project, so you can write tests for classes
in the web project. You’re going to be testing a simple class used for converting
between currencies, as shown in the following listing.

public class CurrencyConverter
{
 public decimal ConvertToGbp(
 decimal value, decimal exchangeRate, int decimalPlaces)
 {
 if (exchangeRate <= 0)
 {
 throw new ArgumentException(
 "Exchange rate must be greater than zero",
 nameof(exchangeRate));
 }

 Other folders, such as samples, tools, or docs contain sample projects, tools
for building the project, or documentation.

Conventions around project structures have emerged in the ASP.NET Core framework libraries and
open source projects on GitHub. You don’t have to follow them for your own project, but it’s worth
being aware of them.

Whether or not you choose to follow these conventions is entirely up to you, but it’s
good to be aware of them at least, so you can easily navigate other projects on GitHub.

Listing 23.3 Example CurrencyConverter class to convert currencies to GBP

The main projects are placed
in a src subdirectory.

The test projects are placed in
a test subdirectory.

Test projects match their main
project equivalent and have
a “.Tests” suffix.

Other subdirectories contain
samples, tools, or documents,
for example.

The solution file is in the
root directory.

The ConvertToGb
method converts
value using the
provided exchang
rate and rounds

Guard clause, as only
positive exchange
rates are valid

724 CHAPTER 23 Testing your application

T

yo
 var valueInGbp = value / exchangeRate;
 return decimal.Round(valueInGbp, decimalPlaces);
 }
}

This class only has a single method, ConvertToGbp(), which converts a value from
one currency into GBP, given the provided exchangeRate. It then rounds the value to
the required number of decimal places and returns it.

WARNING This class is only a basic implementation. In practice, you’d need
to handle arithmetic overflow/underflow for large or negative values, as well
as considering other edge cases. This is only for demonstration purposes!

Imagine you want to convert 5.27 USD to GBP, and the exchange rate from GBP to
USD is 1.31. If you want to round to four decimal places, you’d make this call:

converter.ConvertToGbp(value: 5.27, exchangeRate: 1.31, decimalPlaces: 4);

You have your sample application, a class to test, and a test project, so it’s about time
you wrote some tests.

23.2.4 Adding Fact and Theory unit tests

When I write unit tests, I usually target one of three different paths through the
method under test:

 The happy path—Where typical arguments with expected values are provided
 The error path—Where the arguments passed are invalid and tested for
 Edge cases—Where the provided arguments are right on the edge of expected

values

I realize this is a broad classification, but it helps me think about the various scenarios
I need to consider.2 Let’s start with the happy path, by writing a unit test that verifies
that the ConvertToGbp() method is working as expected with typical input values.

[Fact]
public void ConvertToGbp_ConvertsCorrectly()
{
 var converter = new CurrencyConverter();
 decimal value = 3;
 decimal rate = 1.5m;
 int dp = 4;
 decimal expected = 2;

2 A whole other way to approach testing is property-based testing. This fascinating approach is common in func-
tional programming communities, like F#. You can find a great introduction by Scott Wlaschin in his blog
post, “An introduction to property-based testing”: http://mng.bz/e5j9. That post uses F#, but it is still highly
accessible even if you’re new to the language.

Listing 23.4 Unit test for ConvertToGbp using expected arguments

Converts
the value

Rounds the result and returns it

The [Fact] attribute
marks the method as
a test method.

You can call the test
anything you like.

The class to test, commonly called
the “system under test” (SUT)

The parameters of the
test that will be passed
to ConvertToGbphe result

u expect

http://mng.bz/e5j9

725Unit testing with xUnit
 var actual = converter.ConvertToGbp(value, rate, dp);

 Assert.Equal(expected, actual);
}

This is your first proper unit test, which has been configured using the Arrange, Act,
Assert (AAA) style:

 Arrange—Define all the parameters and create an instance of the system (class)
under test (SUT).

 Act—Execute the method being tested, and capture the result.
 Assert—Verify that the result of the Act stage had the expected value.

Most of the code in this test is standard C#, but if you’re new to testing, the Assert call
will be unfamiliar. This is a helper class provided by xUnit for making assertions about
your code. If the parameters provided to Assert.Equal() aren’t equal, the Equal()
call will throw an exception and fail the test. If you change the expected variable in
listing 23.4 to be 2.5 instead of 2, for example, and run the test, you can see that Test
Explorer shows a failure, as in figure 23.6.

TIP Alternative assertion libraries such as Fluent Assertions (https://fluent
assertions.com/) and Shouldly (https://github.com/shouldly/shouldly) allow
you to write your assertions in a more natural style, such as actual.Should()
.Be(expected). These libraries are entirely optional, but I find they make
tests more readable and error messages easier to understand.

In listing 23.4 you chose specific values for value, exchangeRate, and decimalPlaces
to test the happy path. But this is only one set of values in an infinite number of possi-
bilities, so you should probably test at least a few different combinations.

Executes the
method and
captures the
result

Verifies that the expected and actual values
match. If they don’t, this will throw an exception.

The details pane details
why the test failed.

Failed tests are marked
with a red cross.

Figure 23.6 When a test fails, it’s marked with a red cross in Test Explorer. Clicking the test in the
left pane shows the reason for the failure in the right pane. In this case, the expected value was 2.5,
but the actual value was 2.

https://fluentassertions.com/
https://fluentassertions.com/
https://fluentassertions.com/
https://github.com/shouldly/shouldly

726 CHAPTER 23 Testing your application
 One way to achieve this would be to copy and paste the test multiple times, tweak
the parameters, and change the test method name to make it unique. xUnit provides
an alternative way to achieve the same thing without requiring so much duplication.

NOTE The names of your test class and method are used throughout the test
framework to describe your test. You can customize how these are displayed
in Visual Studio and in the CLI by configuring an xunit.runner.json file, as
described here: https://xunit.net/docs/configuration-files.

Instead of creating a [Fact] test method, you can create a [Theory] test method. A
theory provides a way of parameterizing your test methods, effectively taking your test
method and running it multiple times with different arguments. Each set of argu-
ments is considered a different test.

 You could rewrite the [Fact] test in listing 23.4 to be a [Theory] test, as shown
next. Instead of specifying the variables in the method body, pass them as parameters
to the method, and then decorate the method with three [InlineData] attributes.
Each instance of the attribute provides the parameters for a single run of the test.

[Theory]
[InlineData(0, 3, 0)]
[InlineData(3, 1.5, 2)]
[InlineData(3.75, 2.5, 1.5)]
public void ConvertToGbp_ConvertsCorrectly (
 decimal value, decimal rate, decimal expected)
{
 var converter = new CurrencyConverter();
 int dps = 4;

 var actual = converter.ConvertToGbp(value, rate, dps);

 Assert.Equal(expected, actual);
}

If you run this [Theory] test using dotnet test or Visual Studio, it will show up as
three separate tests, one for each set of [InlineData], as shown in figure 23.7.

 [InlineData] isn’t the only way to provide the parameters for your theory tests, but
it’s one of the most commonly used. You can also use a static property on your test class
with the [MemberData] attribute, or a class itself using the [ClassData] attribute.3

 You now have some tests for the happy path of the ConvertToGbp() method, and I
even sneaked an edge case into listing 23.5 by testing the case where value = 0. The
final concept I’ll cover is testing error cases, where invalid values are passed to the
method under test.

Listing 23.5 Theory test for ConvertToGbp testing multiple sets of values

3 I describe how you can use the [ClassData] and [MemberData] attributes in a blog post, “Creating param-
eterised tests in xUnit with [InlineData], [ClassData], and [MemberData]”: http://mng.bz/8ayP.

Marks the method as a parameterized test

Each [InlineData] attribute provides all the
parameters for a single run of the test method.

The method takes
parameters, which
are provided by the
[InlineData] attributes.

Executes the
system under
testVerifies the

result

http://mng.bz/8ayP
https://xunit.net/docs/configuration-files

727Unit testing with xUnit
23.2.5 Testing failure conditions

A key part of unit testing is checking that the system under test handles edge cases and
errors correctly. For the CurrencyConverter, that would mean checking how the class
handles negative values, small or zero exchange rates, large values and rates, and so on.

 Some of these edge cases might be rare but valid cases, whereas other cases might
be technically invalid. Calling ConvertToGbp with a negative value is probably valid;
the converted result should be negative too. A negative exchange rate doesn’t make
sense conceptually, so it should be considered an invalid value.

 Depending on the design of the method, it’s common to throw exceptions when
invalid values are passed to a method. In listing 23.3 you saw that we throw an Argument-
Exception if the exchangeRate parameter is less than or equal to 0.

 xUnit includes a variety of helpers on the Assert class for testing whether a method
throws an exception of an expected type. You can then make further assertions on the
exception; for example, to test whether the exception had an expected message.

WARNING Take care not to tie your test methods too closely to the internal
implementation of a method. Doing so can make your tests brittle, where triv-
ial changes to a class break the unit tests.

The following listing shows a [Fact] test to check the behavior of the ConvertToGbp()
method when you pass it a 0 exchangeRate. The Assert.Throws method takes a
lambda function that describes the action to execute, which should throw an excep-
tion when run.

[Fact]
public void ThrowsExceptionIfRateIsZero()
{
 var converter = new CurrencyConverter();
 const decimal value = 1;
 const decimal rate = 0;

Listing 23.6 Using Assert.Throws<> to test whether a method throws an exception

Figure 23.7 Each set of parameters in an [InlineData] attribute for a [Theory] test creates a separate test
run. In this example, a single [Theory] has three [InlineData] attributes, so it creates three tests, named
according to the method name and the provided parameters.

An invalid value

728 CHAPTER 23 Testing your application

You
an Arg
Exce

be
 const int dp = 2;
 var ex = Assert.Throws<ArgumentException>(
 () => converter.ConvertToGbp(value, rate, dp));

 // Further assertions on the exception thrown, ex
}

The Assert.Throws method executes the lambda and catches the exception. If the
exception thrown matches the expected type, the test will pass. If no exception is
thrown or the exception thrown isn’t of the expected type, the Assert.Throws
method will throw an exception and fail the test.

 That brings us to the end of this introduction on unit testing with xUnit. The
examples in this section described how to use the new .NET Test SDK, but we didn’t
cover anything specific to ASP.NET Core. In the rest of this chapter we’ll focus on test-
ing ASP.NET Core projects specifically. We’ll start by unit testing middleware.

23.3 Unit testing custom middleware
In this section you’ll learn how to test custom middleware in isolation. You’ll see
how to test whether your middleware handled a request or whether it called the
next middleware in the pipeline. You’ll also see how to read the response stream for
your middleware.

 In chapter 19 you saw how to create custom middleware and how you could encap-
sulate middleware as a class with an Invoke function. In this section you’ll create unit
tests for a simple health-check middleware component, similar to the one in chapter 19.
This is a basic implementation, but it demonstrates the approach you can take for more
complex middleware components.

 The middleware you’ll be testing is shown in listing 23.7. When invoked, this mid-
dleware checks that the path starts with /ping and, if it does, returns a plain text
"pong" response. If the request doesn’t match, it calls the next middleware in the
pipeline (the provided RequestDelegate).

public class StatusMiddleware
{
 private readonly RequestDelegate _next;
 public StatusMiddleware(RequestDelegate next)
 {
 _next = next;
 }
 public async Task Invoke(HttpContext context)
 {
 if(context.Request.Path.StartsWithSegments("/ping"))
 {
 context.Response.ContentType = "text/plain";
 await context.Response.WriteAsync("pong");
 return;
 }

Listing 23.7 StatusMiddleware to be tested, which returns a "pong" response

 expect
ument-

ption to
thrown.

The method to
execute, which should
throw an exception

The RequestDelegate
representing the rest
of the middleware
pipeline

Called when the
middleware is executed

If the path starts
with "/ping", a
"pong" response
is returned.

729Unit testing custom middleware

whet
RequestD

was ex
 await _next(context);
 }
}

In this section, you’re only going to test two simple cases:

 When a request is made with a path of "/ping"
 When a request is made with a different path

WARNING Where possible, I recommend you don’t directly inspect paths in
your middleware like this. A better approach is to use endpoint routing
instead, as I discussed in chapter 19. The middleware in this section is for
demonstration purposes only.

Middleware is slightly complicated to unit test because the HttpContext object is con-
ceptually a big class. It contains all the details for the request and the response, which
can mean there’s a lot of surface area for your middleware to interact with. For that
reason, I find unit tests tend to be tightly coupled to the middleware implementation,
which is generally undesirable.

 For the first test, you’ll look at the case where the incoming request Path doesn’t
start with /ping. In this case, StatusMiddleware should leave the HttpContext
unchanged and should call the RequestDelegate provided in the constructor, which
represents the next middleware in the pipeline.

 You could test this behavior in several ways, but in listing 23.8 you test that the
RequestDelegate (essentially a one-parameter function) is executed by setting a local
variable to true. In the Assert at the end of the method, you verify that the variable was
set and therefore that the delegate was invoked. To invoke StatusMiddleware, create
and pass in a DefaultHttpContext,4 which is an implementation of HttpContext.

[Fact]
public async Task ForNonMatchingRequest_CallsNextDelegate()
{
 var context = new DefaultHttpContext();
 context.Request.Path = "/somethingelse";
 var wasExecuted = false;
 RequestDelegate next = (HttpContext ctx) =>
 {
 wasExecuted = true;
 return Task.CompletedTask;
 };
 var middleware = new StatusMiddleware(next);

Listing 23.8 Unit testing StatusMiddleware when a nonmatching path is provided

4 The DefaultHttpContext derives from HttpContext and is part of the base ASP.NET Core framework
abstractions. If you’re so inclined, you can explore the source code for it on GitHub at http://mng.bz/q9qx.

Otherwise, the next
middleware in the
pipeline is invoked.

Creates a DefaultHttp-
Context and sets the
path for the request

Tracks
her the
elegate
ecuted

The RequestDelegate
representing the next
middleware should be
invoked in this example.

Creates an instance of the
middleware, passing in
the next RequestDelegate

http://mng.bz/q9qx

730 CHAPTER 23 Testing your application

T
is se

require
for the

Midd

In
m

 await middleware.Invoke(context);

 Assert.True(wasExecuted);
}

When the middleware is invoked, it checks the provided Path and finds that it doesn’t
match the required value of /ping. The middleware therefore calls the next Request-
Delegate and returns.

 The other obvious case to test is when the request Path is "/ping"; the middleware
should generate an appropriate response. You could test several different characteris-
tics of the response:

 The response should have a 200 OK status code.
 The response should have a Content-Type of text/plain.
 The response body should contain the "pong" string.

Each of these characteristics represents a different requirement, so you’d typically
codify each as a separate unit test. This makes it easier to tell exactly which require-
ment hasn’t been met when a test fails. For simplicity, in listing 23.9 I show all these
assertions in the same test.

 The positive case unit test is made more complex by the need to read the response
body to confirm it contains "pong". DefaultHttpContext uses Stream.Null for the
Response.Body object, which means anything written to Body is lost. To capture the
response and read it out to verify the contents, you must replace the Body with a
MemoryStream. After the middleware executes, you can use a StreamReader to read
the contents of the MemoryStream into a string and verify it.

[Fact]
public async Task ReturnsPongBodyContent()
{
 var bodyStream = new MemoryStream();
 var context = new DefaultHttpContext();
 context.Response.Body = bodyStream;
 context.Request.Path = "/ping";
 RequestDelegate next = (ctx) => Task.CompletedTask;
 var middleware = new StatusMiddleware(next: next);

 await middleware.Invoke(context);

 string response;
 bodyStream.Seek(0, SeekOrigin.Begin);
 using (var stringReader = new StreamReader(bodyStream))
 {
 response = await stringReader.ReadToEndAsync();
 }

Listing 23.9 Unit testing StatusMiddleware when a matching Path is provided

Invokes the middleware
with the HttpContext; should
invoke the RequestDelegate

Verifies RequestDelegate
was invoked

Creates a DefaultHttpCon-
text and initializes the body
with a MemoryStream to
capture the responsehe path

t to the
d value
 Status-
leware.

Creates an instance
of the middleware
and passes in a sim-
ple RequestDelegate

vokes the
iddleware

Rewinds the
MemoryStream
and reads the
response body
into a string

731Unit testing API controllers

Ver
Conte

res
 Assert.Equal("pong", response);
 Assert.Equal("text/plain", context.Response.ContentType);
 Assert.Equal(200, context.Response.StatusCode);
}

As you can see, unit testing middleware requires a lot of setup to get it working. On
the positive side, it allows you to test your middleware in isolation, but in some cases,
especially for simple middleware without any dependencies on databases or other ser-
vices, integration testing can (somewhat surprisingly) be easier. In section 23.5 you’ll
create integration tests for this middleware to see the difference.

 Custom middleware is common in ASP.NET Core projects, but far more common
are Razor Pages and API controllers. In the next section you’ll see how you can unit
test them in isolation from other components.

23.4 Unit testing API controllers
In this section you’ll learn how to unit test API controllers. You’ll learn about the ben-
efits and difficulties of testing these components in isolation, and the situations when
it can be useful.

 Unit tests are all about isolating behavior; you want to test only the logic contained
in the component itself, separate from the behavior of any dependencies. The Razor
Pages and MVC/API frameworks use the filter pipeline, routing, and model-binding
systems, but these are all external to the controller or PageModels. The PageModels and
controllers themselves are responsible for only a limited number of things. Typically,

 For invalid requests (that have failed validation, for example), return an appro-
priate ActionResult (API controllers) or redisplay a form (Razor Pages).

 For valid requests, call the required business logic services and return an appro-
priate ActionResult (API controllers), or show or redirect to a success page
(Razor Pages).

 Optionally, apply resource-based authorization as required.

Controllers and Razor Pages generally shouldn’t contain business logic themselves;
instead, they should call out to other services. Think of them more as orchestrators,
serving as the intermediary between the HTTP interfaces your app exposes and your
business logic services.

 If you follow this separation, you’ll find it easier to write unit tests for your business
logic, and you’ll benefit from greater flexibility when you want to change your controllers
to meet your needs. With that in mind, there’s often a drive to make your controllers and
page handlers as thin as possible,5 to the point where there’s not much left to test!

5 One of my first introductions to this idea was a series of posts by Jimmy Bogard. The following link points to
the last post in the series, but it contains links to all the earlier posts too. Jimmy Bogard is also behind the
MediatR library (https://github.com/jbogard/MediatR), which makes creating thin controllers even easier.
See “Put your controllers on a diet: POSTs and commands”: http://mng.bz/7VNQ.

Verifies the
response has
the correct
value

ifies the
nt-Type
ponse is
correct

Verifies the Status Code
response is correct

https://github.com/jbogard/MediatR
http://mng.bz/7VNQ

732 CHAPTER 23 Testing your application

The

a
Res
 All that said, controllers and actions are classes and methods, so you can write unit
tests for them. The difficulty is deciding what you want to test. As an example, we’ll
consider the simple API controller in the following listing, which converts a value
using a provided exchange rate and returns a response.

[Route("api/[controller]")]
public class CurrencyController : ControllerBase
{
 private readonly CurrencyConverter _converter
 = new CurrencyConverter();

 [HttpPost]
 public ActionResult<decimal> Convert(InputModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 decimal result = _convert.ConvertToGbp(model)

 return result;
 }
}

Let’s first consider the happy path, when the controller receives a valid request. The
following listing shows that you can create an instance of the API controller, call an
action method, and you’ll receive an ActionResult<T> response.

public class CurrencyControllerTest
{
 [Fact]
 public void Convert_ReturnsValue()
 {
 var controller = new CurrencyController();
 var model = new ConvertInputModel
 {
 Value = 1,
 ExchangeRate = 3,
 DecimalPlaces = 2,
 };

 ActionResult<decimal> result = controller.Convert(model);
 Assert.NotNull(result);
 }
}

Listing 23.10 The API controller under test

Listing 23.11 A simple API controller unit test

The CurrencyConverter
would normally be injected
using DI. Created here for
simplicity

 Convert
method
returns

n Action-
ult<T>.

If the input is invalid,
returns a 400 Bad
Request result, including
the ModelState.

If the model is
valid, calculate
the result.Return the

result directly.

Creates an instance of the
ConvertController to test
and a model to send to
the API

Invokes the ConvertToGbp method and
captures the value returned

Asserts
that the

IActionResult
is a ViewResult

733Unit testing API controllers

An important point to note here is that you’re only testing the return value of the
action, the ActionResult<T>, not the response that’s sent back to the user. The pro-
cess of serializing the result to the response is handled by the MVC formatter infra-
structure, as you saw in chapter 9, not by the controller.

 When you unit test controllers, you’re testing them separately from the MVC infra-
structure, such as formatting, model-binding, routing, and authentication. This is
obviously by design, but as with testing middleware in section 23.3, it can make testing
some aspects of your controller somewhat complex.

 Consider model validation. As you saw in chapter 6, one of the key responsibilities
of action methods and Razor Page handlers is to check the ModelState.IsValid
property and act accordingly if a binding model is invalid. Testing that your control-
lers and PageModels correctly handle validation failures seems like a good candidate
for a unit test.

 Unfortunately, things aren’t simple here either. The Razor Page/MVC framework
automatically sets the ModelState property as part of the model-binding process. In
practice, when your action method or page handler is invoked in your running app,
you know that the ModelState will match the binding model values. But in a unit test,
there’s no model-binding, so you must set the ModelState yourself manually.

 Imagine you’re interested in testing the error path for the controller in listing 23.10,
where the model is invalid and the controller should return BadRequestObjectResult.
In a unit test, you can’t rely on the ModelState property being correct for the binding
model. Instead, you must manually add a model-binding error to the controller’s Model-
State before calling the action, as shown here.

[Fact]
public void Convert_ReturnsBadRequestWhenInvalid()
{
 var controller = new CurrencyController();
 var model = new ConvertInputModel
 {
 Value = 1,
 ExchangeRate = -2,
 DecimalPlaces = 2,
 };

 controller.ModelState.AddModelError(
 nameof(model.ExchangeRate),
 "Exchange rate must be greater than zero"
);

 ActionResult<decimal> result = controller.Convert(model);

 Assert.IsType<BadRequestObjectResult>(result.Result);
}

Listing 23.12 Testing handling of validation errors in MVC controllers

Creates an instance of
the Controller to test

Creates an invalid binding
model by using a negative
ExchangeRate

Manually adds a model
error to the Controller’s
ModelState. This sets
ModelState.IsValid to false.

Invokes the
action method,
passing in the
binding modelsVerifies the action method returned

a BadRequestObjectResult

734 CHAPTER 23 Testing your application
NOTE In listing 23.12, I passed in an invalid model, but I could just as easily
have passed in a valid model, or even null; the controller doesn’t use the
binding model if the ModelState isn’t valid, so the test would still pass. But if
you’re writing unit tests like this one, I recommend trying to keep your model
consistent with your ModelState; otherwise your unit tests aren’t testing a sit-
uation that occurs in practice.

Personally, I tend to shy away from unit testing API controllers directly in this way.6 As
you’ve seen with model binding, the controllers are somewhat dependent on earlier
stages of the MVC framework, which you often need to emulate. Similarly, if your con-
trollers access the HttpContext (available on the ControllerBase base classes), you
may need to perform additional setup.

NOTE I haven’t discussed Razor Pages much in this section, as they suffer
from many of the same problems, in that they are dependent on the support-
ing infrastructure of the framework. Nevertheless, if you do wish to test your
Razor Page PageModel, you can read about it in Microsoft’s “Razor Pages unit
tests in ASP.NET Core” documentation: http://mng.bz/GxmM.

Instead of using unit testing, I try to keep my controllers and Razor Pages as “thin” as
possible. I push as much of the behavior in these classes into business logic services
that can be easily unit tested, or into middleware and filters, which can be more easily
tested independently.

NOTE This is a personal preference. Some people like to get as close to 100%
test coverage for their code base as possible, but I find testing “orchestration”
classes is often more hassle than it’s worth.

Although I often forgo unit testing controllers and Razor Pages, I often write integra-
tion tests that test them in the context of a complete application. In the next section,
we’ll look at ways to write integration tests for your app, so you can test its various com-
ponents in the context of the ASP.NET Core framework as a whole.

23.5 Integration testing: Testing your whole app in-memory
In this section you’ll learn how to create integration tests that test component interac-
tions. You’ll learn to create a TestServer that sends HTTP requests in-memory to test
custom middleware components more easily. You’ll then learn how to run integration
tests for a real application, using your real app’s configuration, services, and middleware
pipeline. Finally, you’ll learn how to use WebApplicationFactory to replace services in
your app with test versions, to avoid depending on third-party APIs in your tests.

 If you search the internet for the different types of testing, you’ll find a host of dif-
ferent types to choose from. The differences between them are sometimes subtle, and

6 You can read more about why I generally don’t unit test my controllers in my blog article, “Should you unit-
test API/MVC controllers in ASP.NET Core?”: http://mng.bz/YqMo.

http://mng.bz/YqMo
http://mng.bz/GxmM

735Integration testing: Testing your whole app in-memory
people don’t universally agree upon the definitions. I chose not to dwell on it in this
book—I consider unit tests to be isolated tests of a component and integration tests to
be tests that exercise multiple components at once.

 In this section I’m going to show how you can write integration tests for the Status-
Middleware from section 23.3 and the API controller from section 23.4. Instead of iso-
lating the components from the surrounding framework and invoking them directly,
you’ll specifically test them in a context similar to how you use them in practice.

 Integration tests are an important part of confirming that your components func-
tion correctly, but they don’t remove the need for unit tests. Unit tests are excellent
for testing small pieces of logic contained in your components and are typically quick
to execute. Integration tests are normally significantly slower, as they require much
more configuration and may rely on external infrastructure, such as a database.

 Consequently, it’s normal to have far more unit tests for an app than integration
tests. As you saw in section 23.2, unit tests typically verify the behavior of a component,
using valid inputs, edge cases, and invalid inputs to ensure that the component behaves
correctly in all cases. Once you have an extensive suite of unit tests, you’ll likely only
need a few integration tests to be confident your application is working correctly.

 You could write many different types of integration tests for an application. You
could test that a service can write to a database correctly, that it can integrate with a
third-party service (for sending emails, for example), or that it can handle HTTP
requests made to it.

 In this section we’re going to focus on the last point, verifying that your app can
handle requests made to it, just as it would if you were accessing the app from a
browser. For this, we’re going to use a useful library provided by the ASP.NET Core
team called Microsoft.AspNetCore.TestHost.

23.5.1 Creating a TestServer using the Test Host package

Imagine you want to write some integration tests for the StatusMiddleware from
section 23.3. You’ve already written unit tests for it, but you want to have at least one
integration test that tests the middleware in the context of the ASP.NET Core infra-
structure.

 You could go about this in many ways. Perhaps the most complete approach would
be to create a separate project and configure StatusMiddleware as the only middle-
ware in the pipeline. You’d then need to run this project, wait for it to start up, send
requests to it, and inspect the responses.

 This would possibly make for a good test, but it would also require a lot of configu-
ration, and it would be fragile and error prone. What if the test app can’t start because
it tries to use an already-taken port? What if the test app doesn’t shut down correctly?
How long should the integration test wait for the app to start?

 The ASP.NET Core Test Host package lets you get close to this setup without hav-
ing the added complexity of spinning up a separate app. You add the Test Host to
your test project by adding the Microsoft.AspNetCore.TestHost NuGet package, either

736 CHAPTER 23 Testing your application
using the Visual Studio NuGet GUI, Package Manager Console, or .NET CLI. Alterna-
tively, add the <PackageReference> element directly to your test project’s .csproj file:

<PackageReference Include="Microsoft.AspNetCore.TestHost" Version="5.0.0"/>

In a typical ASP.NET Core app, you create a HostBuilder in your Program class, con-
figure a web server (Kestrel), and define your application’s configuration, services,
and middleware pipeline (using a Startup file). Finally, you call Build() on the Host-
Builder to create an instance of an IHost that can be run and that will listen for
requests on a given URL and port.

 The Test Host package uses the same HostBuilder to define your test application,
but instead of listening for requests at the network level, it creates an IHost that
uses in-memory request objects instead, as shown in figure 23.8. It even exposes an

HTTP requests are made
by a client across the
network.

Request Response

HttpConext

Kestrel converts the raw HTTP requests
into an HttpContext object and passes
it to the app’s middleware pipeline.

The xUnit test method creates
an in-memory request object
using the provided HttpClient.

HttpRequestMessage HttpResponseMessage

HttpConext

The TestServer receives the in-memory request
object from the HttpClient and creates an
HttpContext. To the app, the HttpContext is no
different from a normal request.

Figure 23.8 When your app runs normally, it uses the Kestrel server. This listens for HTTP requests and
converts the requests into an HttpContext, which is passed to the middleware pipeline. The TestServer
doesn’t listen for requests on the network. Instead, you use an HttpClient to make in-memory requests.
From the point of view of the middleware, there’s no difference.

737Integration testing: Testing your whole app in-memory

B

mem
whi
HttpClient that you can use to send requests to the test app. You can interact with
the HttpClient as though it were sending requests over the network, but in reality the
requests are kept entirely in memory.

 Listing 23.13 shows how to use the Test Host package to create a simple integration
test for the StatusMiddleware. First, create a HostBuilder and call ConfigureWeb-
Host() to define your application by adding middleware in the Configure method.
This is equivalent to the Startup.Configure() method you would typically use to con-
figure your application.

 Call the UseTestServer() extension method in ConfigureWebHost(), which replaces
the default Kestrel server with the TestServer from the Test Host package. The Test-
Server is the main component in the Test Host package, which makes all the magic
possible. After configuring the HostBuilder, call StartAsync() to build and start the
test application. You can then create an HttpClient using the extension method
GetTestClient(). This returns an HttpClient configured to make in-memory requests
to the TestServer.

public class StatusMiddlewareTests
{
 [Fact]
 public async Task StatusMiddlewareReturnsPong()
 {
 var hostBuilder = new HostBuilder()
 .ConfigureWebHost(webHost =>
 {
 webHost.Configure(app =>
 app.UseMiddleware<StatusMiddleware>());
 webHost.UseTestServer();
 });

 IHost host = await hostBuilder.StartAsync();
 HttpClient client = host.GetTestClient();

 var response = await client.GetAsync("/ping");

 response.EnsureSuccessStatusCode();
 var content = await response.Content.ReadAsStringAsync();
 Assert.Equal("pong", content);
 }
}

This test ensures that the test application defined by HostBuilder returns the
expected value when it receives a request to the /ping path. The request is entirely in-
memory, but from the point of view of StatusMiddleware, it’s the same as if the
request came from the network.

 The HostBuilder configuration in this example is simple. Even though I’ve called
this an integration test, you’re specifically testing the StatusMiddleware on its own,

Listing 23.13 Creating an integration test with TestServer

Configures a Host-
Builder to define
the in-memory
test appAdd the Status-

Middleware as the
only middleware in

the pipeline.
Configure the host to
use the TestServer
instead of Kestrel.

uild and start
the host.

Creates an HttpClient, or
you can interact directly
with the server object

Makes an in-
ory request,

ch is handled
by the app as

normal

Verifies the response was a
success (2xx) status code

Reads the body content and
verifies that it contained "pong"

738 CHAPTER 23 Testing your application

e
n-

s
rather than in the context of a “real” application. In many ways, I think this setup is
preferable for testing custom middleware compared to the “proper” unit tests I
showed in section 23.3.

 Regardless of what you call it, this test relies on very simple configuration for the
test app. You may also want to test the middleware in the context of your real applica-
tion, so that the result is representative of your app’s real configuration.

 If you want to run integration tests based on an existing app, then you won’t want
to have to configure the test HostBuilder manually like you did in listing 23.13.
Instead, you can use another helper package, Microsoft.AspNetCore.Mvc.Testing.

23.5.2 Testing your application with WebApplicationFactory

Building up a HostBuilder and using the Test Host package, as you did in section 23.5.1,
can be useful when you want to test isolated “infrastructure” components, such as mid-
dleware. It’s also very common to want to test your “real” app, with the full middle-
ware pipeline configured and all the required services added to DI. This gives you the
most confidence that your application is going to work in production.

 The TestServer that provides the in-memory server can be used for testing your
real app, but, in principle, there’s a lot more configuration required. Your real app
likely loads configuration files or static files, and it may use Razor Pages and views.
Prior to .NET Core 2.1, configuring all of these was cumbersome. Thankfully, the
introduction of the Microsoft.AspNetCore.Mvc.Testing package and WebApplication-
Factory largely solves these configuration issues for you.

 You can use the WebApplicationFactory class (provided by the Microsoft.AspNet-
Core.Mvc.Testing NuGet package) to run an in-memory version of your real application.
It uses the TestServer behind the scenes, but it uses your app’s real configuration, DI
service registration, and middleware pipeline. For example, the following listing
shows an example that tests that when your application receives a "/ping" request, it
responds with "pong".

public class IntegrationTests:
 IClassFixture<WebApplicationFactory<Startup>>
{
 private readonly WebApplicationFactory<Startup> _fixture;
 public IntegrationTests(
 WebApplicationFactory<Startup> fixture)
 {
 _fixture = fixture;
 }

 [Fact]
 public async Task PingRequest_ReturnsPong()
 {
 HttpClient client = _fixture.CreateClient();

Listing 23.14 Creating an integration test with WebApplicationFactory

 Your test must implement the
interface, though there are no
methods to implement.

Inject an instanc
of WebApplicatio
Factory<T>,
where T is a clas
in your app.

Create an HttpClient
that sends requests to
the in-memory TestServer.

739Integration testing: Testing your whole app in-memory

 var response = await client.GetAsync("/ping");

 response.EnsureSuccessStatusCode();
 var content = await response.Content.ReadAsStringAsync();
 Assert.Equal("pong", content);
 }
}

One of the advantages of using WebApplicationFactory as shown in listing 23.14 is
that it requires less manual configuration than using the TestServer directly, as shown
in listing 23.13, despite performing more configuration behind the scenes. The Web-
ApplicationFactory tests your app using the configuration defined in your Pro-
gram.cs and Startup.cs files.

 Listings 23.14 and 23.13 are conceptually quite different too. Listing 23.13 tests that
the StatusMiddleware behaves as expected in the context of a dummy ASP.NET Core
app; listing 23.14 tests that your app behaves as expected for a given input. It doesn’t say
anything specific about how that happens. Your app doesn’t have to use the Status-
Middleware for the test in listing 23.14 to pass; it just has to respond correctly to the
given request. That means the test knows less about the internal implementation
details of your app and is only concerned with its behavior.

DEFINITION Tests that fail whenever you change your app slightly are called
brittle or fragile. Try to avoid brittle tests by ensuring they aren’t dependent on
the implementation details of your app.

To create tests that use WebApplicationFactory:

1 Install the Microsoft.AspNetCore.Mvc.Testing NuGet package in your project by
running dotnet add package Microsoft.AspNetCore.Mvc.Testing, by using
the NuGet explorer in Visual Studio, or by adding a <PackageReference> ele-
ment to your project file as follows:

<PackageReference Include="Microsoft.AspNetCore.Mvc.Testing"
 Version="5.0.0" />

2 Update the <Project> element in your test project’s .csproj file to the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

This is required by WebApplicationFactory so that it can find your configura-
tion files and static files.

3 Implement IClassFixture<WebApplicationFactory<T>> in your xUnit test
class, where T is a class in your real application’s project. By convention, you typ-
ically use your application’s Startup class for T.
– WebApplicationFactory uses the T reference to find your application’s

Program.CreateHostBuilder() method to build an appropriate TestServer
for tests.

Make requests
and verify the
response as
before.

740 CHAPTER 23 Testing your application
– The IClassFixture<TFixture> is an xUnit marker interface that tells xUnit
to build an instance of TFixture before building the test class and to inject
the instance into the test class’s constructor. You can read more about fix-
tures at https://xunit.net/docs/shared-context.

4 Accept an instance of WebApplicationFactory<T> in your test class’s construc-
tor. You can use this fixture to create an HttpClient for sending in-memory
requests to the TestServer. Those requests emulate your application’s produc-
tion behavior, as your application’s real configuration, services, and middleware
are all used.

The big advantage of WebApplicationFactory is that you can easily test your real
app’s behavior. That power comes with responsibility—your app will behave just as it
would in real life, so it will write to a database and send to third-party APIs! Depending
on what you’re testing, you may want to replace some of your dependencies to avoid
this, as well as to make testing easier.

23.5.3 Replacing dependencies in WebApplicationFactory

When you use WebApplicationFactory to run integration tests on your app, your app
will be running in-memory, but other than that, it’s as though you’re running your
application using dotnet run. That means any connection strings, secrets, or API keys
that can be loaded locally will also be used to run your application.

TIP By default, WebApplicationFactory uses the "Development" hosting envi-
ronment, the same as when you run locally.

On the plus side, that means you have a genuine test that your application can start
correctly. For example, if you’ve forgotten to register a required DI dependency that is
detected on application startup, any tests that use WebApplicationFactory will fail.

 On the downside, that means all your tests will be using the same database connec-
tion and services as when you run your application locally. It’s common to want to
replace those with alternative “test” versions of your services.

 As a simple example, let’s imagine the CurrencyConverter that you’ve been test-
ing in this app uses IHttpClientFactory to call a third-party API to retrieve the latest
exchange rates. You don’t want to hit that API repeatedly in your integration tests, so
you want to replace the CurrencyConverter with your own StubCurrencyConverter.

 The first step is to ensure the service CurrencyConverter implements an interface,
ICurrencyConverter for example, and that your app uses this interface throughout,
not the implementation. For our simple example, the interface would probably look
like the following:

public interface ICurrencyConverter
{
 decimal ConvertToGbp(decimal value, decimal rate, int dps);
}

https://xunit.net/docs/shared-context

741Integration testing: Testing your whole app in-memory

d
 the
.

You would register the service in Startup.ConfigureServices() using

services.AddScoped<ICurrencyConverter, CurrencyConverter>();

Now that your application only indirectly depends on CurrencyConverter, you can
provide an alternative implementation in your tests.

TIP Using an interface decouples your application services from a specific
implementation, allowing you to substitute alternative implementations. This
is a key practice for making classes testable.

We’ll create a simple alternative implementation of ICurrencyConverter for our tests
that always returns the same value, 3. It’s obviously not very useful as an actual con-
verter, but that’s not the point: you have complete control! Create the following class
in your test project:

public class StubCurrencyConverter : ICurrencyConverter
{
 public decimal ConvertToGbp(decimal value, decimal rate, int dps)
 {
 return 3;
 }
}

You now have all the pieces you need to replace the implementation in your tests. To
achieve that, we’ll use a feature of WebApplicationFactory that lets you customize the
DI container before starting the test server.

TIP It’s important to remember you only want to replace the implementation
when running in the test project. I’ve seen some people try to configure their
real apps to replace live services for fake services when a specific value is set,
for example. That is generally unnecessary, bloats your apps with test services,
and generally adds confusion!

WebApplicationFactory exposes a method, WithWebHostBuilder, that allows you to
customize your application before the in-memory TestServer starts. The following
listing shows an integration test that uses this builder to replace the “default” ICurrency-
Converter implementation with our test stub.

public class IntegrationTests:
 IClassFixture<WebApplicationFactory<Startup>>
{
 private readonly WebApplicationFactory<Startup> _fixture;
 public IntegrationTests(WebApplicationFactory<Startup> fixture)
 {
 _fixture = fixture;
 }

Listing 23.15 Replacing a dependency in a test using WithWebHostBuilder

Implement
the required
interface, an
inject it into
constructor

742 CHAPTER 23 Testing your application

a

t
 [Fact]
 public async Task ConvertReturnsExpectedValue()
 {
 var customFactory = _fixture.WithWebHostBuilder(
 (IWebHostBuilder hostBuilder) =>
 {
 hostBuilder.ConfigureTestServices(services =>
 {
 services.RemoveAll<ICurrencyConverter>();
 services.AddSingleton
 <ICurrencyConverter, StubCurrencyConverter>();
 });
 });

 HttpClient client = customFactory.CreateClient();

 var response = await client.GetAsync("/api/currency");

 response.EnsureSuccessStatusCode();
 var content = await response.Content.ReadAsStringAsync();

 Assert.Equal("3", content);
 }
}

There are a couple of important points to note in this example:

 WithWebHostBuilder() returns a new WebApplicationFactory instance. The new
instance has your custom configuration, while the original injected _fixture
instance remains unchanged.

 ConfigureTestServices() is called after your real app’s ConfigureServices()
method. That means you can replace services that have been previously regis-
tered. You can also use this to override configuration values, as you’ll see in sec-
tion 23.6.

WithWebHostBuilder() is handy when you want to replace a service for a single test.
But what if you wanted to replace the ICurrencyConverter in every test. All that boil-
erplate would quickly become cumbersome. Instead, you can create a custom Web-
ApplicationFactory.

23.5.4 Reducing duplication by creating a custom
WebApplicationFactory

If you find yourself writing WithWebHostBuilder() a lot in your integration tests, it
might be worth creating a custom WebApplicationFactory instead. The following list-
ing shows how to centralize the test service we used in listing 23.15 into a custom
WebApplicationFactory.

Create a custom
factory with the
additional
configuration.Configure-

TestServices
executes after all
other DI services
re configured in

your real app.

Removes all
implementations

of ICurrency-
Converter from

the DI container

Adds the test
service as a

replacement

Calling CreateClien
bootstraps the
application and
starts the
TestServer.Invoke the

currency
converter
endpoint.

As the test converter
always returns 3, so
does the API endpoint.

743Integration testing: Testing your whole app in-memory

insta
fac
co
public class CustomWebApplicationFactory
 : WebApplicationFactory<Startup>
{
 protected override void ConfigureWebHost(
 IWebHostBuilder builder)
 {
 builder.ConfigureTestServices(services =>
 {
 services.RemoveAll<ICurrencyConverter>();
 services.AddSingleton
 <ICurrencyConverter, StubCurrencyConverter>();
 });
 }
}

In this example, we override ConfigureWebHost and configure the test services for the
factory.7 You can use your custom factory in any test by injecting it as an IClass-
Fixture, as you have before. For example, the following listing shows how you would
update listing 23.15 to use the custom factory defined in listing 23.16.

public class IntegrationTests:
 IClassFixture<CustomWebApplicationFactory>
{
 private readonly CustomWebApplicationFactory _fixture;
 public IntegrationTests(CustomWebApplicationFactory fixture)
 {
 _fixture = fixture;
 }

 [Fact]
 public async Task ConvertReturnsExpectedValue()
 {
 HttpClient client = _fixture.CreateClient();

 var response = await client.GetAsync("/api/currency");

 response.EnsureSuccessStatusCode();
 var content = await response.Content.ReadAsStringAsync();

 Assert.Equal("3", content);
 }
}

Listing 23.16 Creating a custom WebApplicationFactory to reduce duplication

7 WebApplicationFactory has many other methods you could override for other scenarios. For details, see
http://mng.bz/mgq8.

Listing 23.17 Using a custom WebApplicationFactory in an integration test

Derive from
WebApplicationFactory.

There are many functions available to override. This
is equivalent to calling WithWebHostBuilder.

Add custom
configuration
for your
application.

Implement the IClassFixture
interface for the custom factory.

Inject an
nce of the

tory in the
nstructor.

The client already
contains the test
service configuration.

The result confirms the
test service was used.

http://mng.bz/mgq8

744 CHAPTER 23 Testing your application
You can also combine your custom WebApplicationFactory, which substitutes services
that you always want to replace, with the WithWebHostBuilder() method to override
additional services on a per-test basis. That combination gives you the best of both
worlds: reduced duplication with the custom factory, and control with the per-test
configuration.

 Running integration tests using your real app’s configuration provides about the
closest you’ll get to a guarantee that your app is working correctly. The sticking point
in that guarantee is nearly always external dependencies, such as third-party APIs and
databases.

 In the final section of this chapter, we’ll look at how to use the SQLite provider for
EF Core with an in-memory database. You can use this approach to write tests for ser-
vices that use an EF Core database context, without needing access to a real database.

23.6 Isolating the database with an in-memory
EF Core provider
In this section you’ll learn how to write unit tests for code that relies on an EF Core
DbContext. You’ll learn how to create an in-memory database, and the difference
between the EF in-memory provider and the SQLite in-memory provider. Finally,
you’ll see how to use the in-memory SQLite provider to create fast, isolated tests for
code that relies on a DbContext.

 As you saw in chapter 12, EF Core is an ORM that is used primarily with relational
databases. In this section I’m going to discuss one way to test services that depend on
an EF Core DbContext without having to configure or interact with a real database.

NOTE To learn more about testing your EF Core code, see Entity Framework
Core in Action, 2nd ed., by Jon P. Smith (Manning, 2021), http://mng.bz/5j87.

The following listing shows a highly stripped-down version of the RecipeService you
created in chapter 12 for the recipe app. It shows a single method to fetch the details
of a recipe using an injected EF Core DbContext.

public class RecipeService
{
 readonly AppDbContext _context;
 public RecipeService(AppDbContext context)
 {
 _context = context;
 }
 public RecipeViewModel GetRecipe(int id)
 {
 return _context.Recipes
 .Where(x => x.RecipeId == id)
 .Select(x => new RecipeViewModel

Listing 23.18 RecipeService to test, which uses EF Core to store and load entities

An EF Core
DbContext is
injected in the
constructor.

Uses the DbSet<Recipes>
property to load recipes and
creates a RecipeViewModel

http://mng.bz/5j87

745Isolating the database with an in-memory EF Core provider
 {
 Id = x.RecipeId,
 Name = x.Name
 })
 .SingleOrDefault();
 }
}

Writing unit tests for this class is a bit of a problem. Unit tests should be fast, repeat-
able, and isolated from other dependencies, but you have a dependency on your app’s
DbContext. You probably don’t want to be writing to a real database in unit tests, as it
would make the tests slow, potentially unrepeatable, and highly dependent on the
configuration of the database: a fail on all three requirements!

NOTE Depending on your development environment, you may want to use a
real database for your integration tests, despite these drawbacks. Using a data-
base like the one you’ll use in production increases the likelihood you’ll
detect any problems in your tests. You can find an example of using Docker to
achieve this in Microsoft’s “Testing ASP.NET Core services and web apps”
documentation: http://mng.bz/zxDw.

Luckily, Microsoft ships two in-memory database providers for this scenario. Recall from
chapter 12 that when you configure your app’s DbContext in Startup.Configure-
Services(), you configure a specific database provider, such as SQL Server:

services.AddDbContext<AppDbContext>(options =>
 options.UseSqlServer(connectionString);

The in-memory database providers are alternative providers designed only for testing.
Microsoft includes two in-memory providers in ASP.NET Core:

 Microsoft.EntityFrameworkCore.InMemory—This provider doesn’t simulate a data-
base. Instead, it stores objects directly in memory. It isn’t a relational database
as such, so it doesn’t have all the features of a normal database. You can’t exe-
cute SQL against it directly, and it won’t enforce constraints, but it’s fast.

 Microsoft.EntityFrameworkCore.Sqlite—SQLite is a relational database. It’s very lim-
ited in features compared to a database like SQL Server, but it’s a true relational
database, unlike the in-memory database provider. Normally a SQLite database
is written to a file, but the provider includes an in-memory mode, in which the
database stays in memory. This makes it much faster and easier to create and
use for testing.

Instead of storing data in a database on disk, both of these providers store data in
memory, as shown in figure 23.9. This makes them fast and easy to create and tear
down, which allows you to create a new database for every test to ensure your tests stay
isolated from one another.

http://mng.bz/zxDw

746 CHAPTER 23 Testing your application
DbContext

_context.Recipes.First()

1. The app makes a LINQ
query against a DbSet
property on the DbContext.

2. The app passes the query
to the SQLite database
provider.

3. The database provider
converts the query to SQL
and queries the database,
which is stored in memory.

4. The database provider converts the
SQL data returned into objects and
returns them to the app.

DbContext

_context.Recipes.First()

1. The app makes a LINQ
query against a DbSet
property on the DbContext.

2. The app passes the query
to the in-memory database
provider.

3. The database provider
queries the in-memory
objects, transforms them,
and returns them to the app.

Recipe{id=1},
Recipe{id=2},
Recipe{id=3}

DbContext

_context.Recipes.First()

1. The app makes a LINQ
query against a DbSet
property on the DbContext.

2. The app passes the query
to the SQL Server database
provider.

3. The database provider
converts the query to SQL
and queries the database.

4. The database provider converts the
SQL data returned into objects, and
returns them to the app.

The database is persisted
to disk, may be on a
different server.

The database is
stored in memory.

Data isn’t stored in
a relational database,
just as objects in memory.

Figure 23.9 The in-memory database provider and SQLite provider (in-memory mode) compared to the SQL
Server database provider. The in-memory database provider doesn’t simulate a database as such. Instead, it
stores objects in memory and executes LINQ queries against them directly.

747Isolating the database with an in-memory EF Core provider

D
and

th

C

NOTE In this section, I describe how to use the SQLite provider as an in-
memory database, as it’s more full-featured than the in-memory provider. For
details on using the in-memory provider, see Microsoft’s “EF Core In-Memory
Database Provider” documentation: http://mng.bz/hdIq.

To use the SQLite provider in memory, add the Microsoft.EntityFrameworkCore.Sqlite
package to your test project’s .csproj file. This adds the UseSqlite() extension method,
which you’ll use to configure the database provider for your unit tests.

 Listing 23.19 shows how you could use the in-memory SQLite provider to test the
GetRecipe() method of RecipeService. Start by creating a SqliteConnection object
and using the "DataSource=:memory:" connection string. This tells the provider to
store the database in memory and then open the connection.

WARNING The in-memory database is destroyed when the connection is
closed. If you don’t open the connection yourself, EF Core will close the con-
nection to the in-memory database when you dispose of the DbContext. If you
want to share an in-memory database between DbContexts, you must explic-
itly open the connection yourself.

Next, pass the SqlLiteConnection instance into the DbContextOptionsBuilder<>
and call UseSqlite(). This configures the resulting DbContextOptions<> object with
the necessary services for the SQLite provider and provides the connection to the in-
memory database. By passing this options object into an instance of AppDbContext, all
calls to the DbContext result in calls to the in-memory database provider.

[Fact]
public void GetRecipeDetails_CanLoadFromContext()
{
 var connection = new SqliteConnection("DataSource=:memory:");
 connection.Open();

 var options = new DbContextOptionsBuilder<AppDbContext>()
 .UseSqlite(connection)
 .Options;

 using (var context = new AppDbContext(options))
 {
 context.Database.EnsureCreated();
 context.Recipes.AddRange(
 new Recipe { RecipeId = 1, Name = "Recipe1" },
 new Recipe { RecipeId = 2, Name = "Recipe2" },
 new Recipe { RecipeId = 3, Name = "Recipe3" });
 context.SaveChanges();
 }

Listing 23.19 Using the in-memory database provider to test an EF Core DbContext

Configures an in-memory
SQLite connection using the

special “in-memory”
connection string

Opens the connection so EF Core
won’t close it automatically

Creates an
instance
of DbContext-
Options<> and
configures it to
use the SQLite
connection

Creates a
bContext
passes in
e options

Ensures the
in-memory

database
matches EF
ore’s model

(similar to
running

migrations)

Adds some recipes
to the DbContext

Saves the changes
to the in-memory
database

http://mng.bz/hdIq

748 CHAPTER 23 Testing your application

co
the

in-m
 using (var context = new AppDbContext(options))
 {
 var service = new RecipeService(context);
 var recipe = service.GetRecipe (id: 2);
 Assert.NotNull(recipe);
 Assert.Equal(2, recipe.Id);
 Assert.Equal("Recipe2", recipe.Name);
 }
}

This example follows the standard format for any time you need to test a class that
depends on an EF Core DbContext:

1 Create a SqliteConnection with the "DataSource=:memory:" connection
string and open the connection.

2 Create a DbContextOptionsBuilder<> and call UseSqlite(), passing in the
open connection.

3 Retrieve the DbContextOptions object from the Options property.
4 Pass the options to an instance of your DbContext and ensure the database

matches EF Core’s model by calling context.Database.EnsureCreated(). This
is similar to running migrations on your database, but it should only be used on
test databases. Create and add any required test data to the in-memory database
and call SaveChanges() to persist the data.

5 Create a new instance of your DbContext and inject it into your test class. All
queries will be executed against the in-memory database.

By using two separate DbContexts, you can avoid bugs in your tests due to EF Core
caching data without writing it to the database. With this approach, you can be sure
that any data read in the second DbContext was persisted to the underlying in-memory
database provider.

 This was a very brief introduction to using the SQLite provider as an in-memory
database provider, and EF Core testing in general, but if you follow the setup shown in
listing 23.19, it should take you a long way. The source code for this chapter shows
how you can combine this code with a custom WebApplicationFactory to use an in-
memory database for your integration tests. For more details on testing EF Core,
including additional options and strategies, see Entity Framework Core in Action, 2nd ed.,
by Jon P. Smith (Manning, 2021).

Summary
 Unit test apps are console apps that have a dependency on the .NET Test SDK,

a test framework such as xUnit, MSTest, or NUnit, and a test runner adapter.
You can run the tests in a test project by calling dotnet test from the command
line in your test project or by using the Test Explorer in Visual Studio.

Creates a fresh
DbContext to test that
you can retrieve data
from the DbContext

Creates the Recipe-
Service to test and pass
in the fresh DbContext

Executes the GetRecipe function.
This executes the query against

the in-memory database.

Verifies that you
rrectly retrieved
 recipe from the
emory database

749Summary
 Many testing frameworks are compatible with the .NET Test SDK, but xUnit has
emerged as an almost de facto standard for ASP.NET Core projects. The
ASP.NET Core team themselves use it to test the framework.

 To create an xUnit test project, choose xUnit Test Project (.NET Core) in Visual
Studio or use the dotnet new xunit CLI command. This creates a test project
containing the Microsoft.NET.Test.Sdk, xunit, and xunit.runner.visualstudio
NuGet packages.

 xUnit includes two different attributes to identify test methods. [Fact] methods
should be public and parameterless. [Theory] methods can contain parame-
ters, so they can be used to run a similar test repeatedly with different param-
eters. You can provide the data for each [Theory] run using the [InlineData]
attribute.

 Use assertions in your test methods to verify that the system under test (SUT)
returned an expected value. Assertions exist for most common scenarios,
including verifying that a method call raised an exception of a specific type. If
your code raises an unhandled exception, the test will fail.

 Use the DefaultHttpContext class to unit test your custom middleware compo-
nents. If you need access to the response body, you must replace the default
Stream.Null with a MemoryStream instance and manually read the stream after
invoking the middleware.

 API controllers and Razor Page models can be unit tested just like other classes,
but they should generally contain little business logic, so it may not be worth
the effort. For example, the API controller is tested independently of routing,
model validation, and filters, so you can’t easily test logic that depends on any of
these aspects.

 Integration tests allow you to test multiple components of your app at once, typ-
ically within the context of the ASP.NET Core framework itself. The Micro-
soft.AspNetCore.TestHost package provides a TestServer object that you can
use to create a simple web host for testing. This creates an in-memory server
that you can make requests to and receive responses from. You can use the
TestServer directly when you wish to create integration tests for custom com-
ponents like middleware.

 For more extensive integration tests of a real application, you should use the
WebApplicationFactory class in the Microsoft.AspNetCore.Mvc.Testing pack-
age. Implement IClassFixture<WebApplicationFactory<Startup>> on your
test class and inject an instance of WebApplicationFactory<Startup> into the
constructor. This creates an in-memory version of your whole app, using the same
configuration, DI services, and middleware pipeline. You can send in-memory
requests to your app to get the best idea of how your application will behave in
production.

 To customize the WebApplicationFactory, call WithWebHostBuilder() and call
ConfigureTestServices(). This method is invoked after your app’s standard

750 CHAPTER 23 Testing your application
DI configuration. This enables you to add or remove the default services for
your app, such as to replace a class that contacts a third-party API with a stub
implementation.

 If you find you need to customize the services for every test, you can create a cus-
tom WebApplicationFactory by deriving from it and overriding the Configure-
WebHost method. You can place all your configuration in the custom factory
and implement IClassFixture<CustomWebApplicationFactory> in your test
classes, instead of calling WithWebHostBuilder() in every test method.

 You can use the EF Core SQLite provider as an in-memory database to test code
that depends on an EF Core database context. You configure the in-memory
provider by creating a SqliteConnection with a "DataSource=:memory:" con-
nection string. Create a DbContextOptionsBuilder<> object and call Use-
Sqlite(), passing in the connection. Finally, pass DbContextOptions<> into an
instance of your app’s DbContext and call context.Database.EnsureCreated()
to prepare the in-memory database for use with EF Core.

 The SQLite in-memory database is maintained as long as there’s an open
SqliteConnection. By opening the connection manually, the database can be
used with multiple DbContexts. If you don’t call Open() on the connection, EF
Core will close the connection (and delete the in-memory database) when the
DbContext is disposed of.

appendix A
Preparing your

development environment

For .NET developers in a Windows-centric world, Visual Studio was pretty much a
developer requirement in the past. But with .NET and ASP.NET Core going cross-
platform, that’s no longer the case.

 All of ASP.NET Core (creating new projects, building, testing, and publishing)
can be run from the command line for any supported operating system. All you
need is the .NET SDK, which provides the .NET Command Line Interface (CLI).
Alternatively, if you’re on Windows and not comfortable with the command line,
you can still use File > New Project in Visual Studio to dive straight in. With
ASP.NET Core, it’s all about choice!

 In a similar vein, you can now get a great editing experience outside of Visual
Studio thanks to the OmniSharp project.1 This is an open source set of libraries
and editor plugins that provide code suggestions and autocomplete (IntelliSense)

This appendix covers
■ Installing the .NET SDK
■ Choosing an editor or IDE

1 Information about the OmniSharp project can be found at www.omnisharp.net. Source code can be found
at https://github.com/omnisharp.
751

http://www.omnisharp.net
https://github.com/omnisharp

752 APPENDIX A Preparing your development environment
across a wide range of editors and operating systems. How you set up your environ-
ment will likely depend on which operating system you’re using and what you’re
used to.

 Remember that for .NET Core and .NET 5.0, the operating system you choose
for development has no bearing on the final systems you can run on—whether you
choose Windows, macOS, or Linux for development, you can deploy to any sup-
ported system.

 In this appendix I’ll show you how to install the .NET SDK so you can build, run,
and publish .NET apps. I’ll also discuss some of the integrated development environ-
ment (IDE) and editor options available for you to build applications.

NOTE In this book, I use Visual Studio for most of the examples, but you’ll be
able to follow along using any of the tools I discuss here. The book assumes
you’ve successfully installed .NET 5.0 and an editor on your computer.

A.1 Installing the .NET SDK
The most important thing you need for .NET Core and .NET 5.0 development is the
.NET SDK. In this section I’ll describe how to install the .NET SDK and how to check
which version you have installed.

 To start programming with .NET, you need to install the .NET SDK (previously
called the .NET Core SDK). This contains the base libraries, tooling, and compiler
you need to create .NET applications.

 You can install the .NET SDK from https://dotnet.microsoft.com/download. This
contains links to download the latest version of .NET for your operating system. If
you’re using Windows or macOS, this page contains installer download links; if you’re
using Linux, there are instructions for installing .NET using your distribution’s pack-
age manager, as a Snap package, or as a manual download.

WARNING Make sure you download the .NET SDK not the .NET Runtime. The
.NET runtime is used to execute .NET applications, but it can’t be used to
build them. The .NET SDK includes a copy of the runtime, so it can run your
applications, but it can also build, test, and publish them.

After installing the .NET SDK, you can run commands with the .NET CLI using the
dotnet command. Run dotnet --info to see information about the version of the .NET
SDK currently in use, as well as the .NET SDKs and .NET runtimes you have installed,
as shown in figure A.1.

 As you can see in figure A.1, I have multiple versions of the .NET SDK (previously,
the .NET Core SDK) installed. This is perfectly fine, but not necessary. Newer versions
of the .NET SDK can build applications that target older versions of .NET Core. For
example, the .NET 5.0 SDK can build .NET 5.0, .NET Core 3.x, .NET Core 2.x, and
.NET Core 1.x applications. In contrast, the .NET Core 3.1 SDK can’t build .NET 5.0
applications.

https://dotnet.microsoft.com/download

753Choosing an IDE or editor
TIP Some IDEs, such as Visual Studio, can automatically install .NET 5.0 as
part of their installation process. There is no problem installing multiple ver-
sions of .NET Core and .NET 5.0 side by side, so you can always install the
.NET SDK manually, whether your IDE installs a different version or not.

By default, when you run dotnet commands from the command line, you’ll be using
the latest version of the .NET SDK you have installed. You can control that and use an
older version of the SDK by adding a global.json file to the folder. For an introduction
to this file, how to use it, and understanding .NET’s versioning system, see my blog
entry, “Exploring the new rollForward and allowPrerelease settings in global.json”:
http://mng.bz/KMzP.

 Once you have the .NET SDK installed, it’s time to choose an IDE or editor. The
choices available will depend on which operating system you’re using and will largely
be driven by personal preference.

A.2 Choosing an IDE or editor
In this section I’ll describe a few of the most popular IDEs and editors for .NET devel-
opment and how to install them. Choosing an IDE is a very personal choice, so this
section only describes a few of the options. If your favorite IDE isn’t listed here, check
the documentation to see if .NET is supported.

A.2.1 Visual Studio (Windows)

For a long time, Windows has been the best system for building .NET applications,
and with the availability of Visual Studio that’s arguably still the case.

 Visual Studio (figure A.2) is a full-featured IDE that provides one of the best all-
around experiences for developing ASP.NET Core applications. Luckily, the Visual

Details about the hardware
and operating system

The current version of the
.NET SDK being used to
execute the command

All the versions of the
.NET SDK installed on
the system

All the versions of the
.NET runtime installed
on the system

Figure A.1 Use dotnet --info to check which version of the .NET SDK is currently used and
which versions are available. This screenshot shows I am currently using the release version of the
.NET 5 SDK, version 5.0.100.

http://mng.bz/KMzP

754 APPENDIX A Preparing your development environment
Studio Community edition is now free for open source, students, and small teams of
developers.

Visual Studio comes loaded with a whole host of templates for building new projects,
best-in-class debugging, and publishing, without you ever needing to touch a com-
mand prompt. It’s especially suited if you’re publishing to Azure, as it has many direct
hooks into Azure features to make development and deployment easier.

 You can install Visual Studio by visiting https://visualstudio.microsoft.com/vs/ and
clicking Download Visual Studio. Choose the Community Edition (unless you have a
license for the Professional or Enterprise version) and follow the prompts to install
Visual Studio.

 The Visual Studio installer is an application in and of itself, and it will ask you to
select workloads to install. You can select as many as you like, but for ASP.NET Core
development, ensure you select these at a minimum:

■ ASP.NET and web development
■ .NET Core cross-platform development

After selecting these workloads, click Download, and fetch a beverage of your choice.
Despite having been on a diet recently, Visual Studio still requires many GB to be

Figure A.2 Visual Studio provides one of the most complete ASP.NET Core development environments for
Windows users.

https://visualstudio.microsoft.com/vs/

755Choosing an IDE or editor
downloaded and installed. Once it’s finished, you’ll be ready to start building
ASP.NET Core applications.

A.2.2 JetBrains Rider (Windows, Linux, macOS)

Rider (figure A.3), from the company JetBrains, is a cross-platform IDE alternative to
Visual Studio. Released in 2017, Rider is another full-featured IDE, based on the ven-
erable ReSharper plugin. If you’re used to using Visual Studio with the ReSharper
plugin, and the multitude of refactorings that this plugin provides, then I strongly sug-
gest investigating Rider. Similarly, if you’re familiar with JetBrains’ IntelliJ products,
you will feel at home in Rider.

To install Rider visit https://www.jetbrains.com/rider/ and click Download. Rider
comes with a 30-day free trial, after which you will need to purchase a license. If you
already have a ReSharper license, you may already have a license for Rider. They also
offer discounts or free licenses for various users, such as students and startups, so it’s
worth looking into.

Figure A.3 Rider is a cross-platform .NET IDE from JetBrains. It is based on the ReSharper plugin for Visual
Studio, so it includes many of the same refactoring features, as well as a debugger, test runner, and all the other
integration features you would expect from a full-featured IDE.

https://www.jetbrains.com/rider/

756 APPENDIX A Preparing your development environment
A.2.3 Visual Studio for Mac (macOS)

Despite the branding, Visual Studio for Mac is a completely different product from
Visual Studio. Rebranded and extended from its Xamarin Studio precursor, you can
now use Visual Studio for Mac to build ASP.NET Core applications on macOS. Visual
Studio for Mac generally has fewer features than Visual Studio or Rider, but it offers a
native IDE and is under active development.

 To install Visual Studio for Mac, visit https://visualstudio.microsoft.com/vs/mac/,
click Download Visual Studio for Mac, and download and run the installer.

A.2.4 Visual Studio Code (Windows, Linux, macOS)

Sometimes you don’t want a full-fledged IDE. Maybe you want to quickly view or edit a
file, or you don’t like the sometimes-unpredictable performance of Visual Studio. In
those cases, a simple editor may be all you want or need, and Visual Studio Code is a
great choice. Visual Studio Code (figure A.4) is an open source, lightweight editor
that provides editing, IntelliSense, and debugging for a wide range of languages,
including C# and ASP.NET Core.

To install Visual Studio Code, visit https://code.visualstudio.com/, click Download,
and run the downloaded installer. The first time you open a folder containing a C#

Figure A.4 Visual Studio Code provides cross-platform IntelliSense and debugging.

https://visualstudio.microsoft.com/vs/mac/
https://code.visualstudio.com/

757Choosing an IDE or editor
project or solution file with Visual Studio Code, you’ll be prompted to install a C#
extension. This provides the IntelliSense and integration between Visual Studio Code
and the .NET SDK.

 The extension model of VS Code is one of its biggest assets, as you can add a huge
amount of additional functionality. Whether you’re working with Azure, AWS, or any
other technology, be sure to check the extension marketplace at https://market-
place.visualstudio.com/vscode to see what’s available. If you search for “.NET Core”,
you’ll also find a huge array of extensions that can bring VS Code closer to that full-
blown IDE experience, if you wish.

https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/vscode

appendix B
Understanding

the .NET ecosystem

The .NET ecosystem has changed a lot since .NET was first introduced, but the
development of .NET Core and .NET 5.0 has resulted in a particularly large degree
of churn and the introduction of many new concepts.

 This churn isn’t surprising given Microsoft’s newfound transparency regarding
the development process and building in the open on GitHub. Unfortunately, it
can be confusing for developers new to .NET, and even to seasoned veterans! In
this appendix, I’ll try to straighten out some of the terms that developers new to
.NET often find confusing, as well as provide some context for the changes.

 In this appendix I’ll discuss the history of the .NET ecosystem, how it has evolved,
and the issues Microsoft was attempting to solve. As part of this, I’ll discuss the simi-
larities and differences between .NET 5.0, .NET Core, and .NET Framework.

This appendix covers
■ The history of .NET, leading to the development

of .NET Core
■ The position of .NET 5.0 in the .NET ecosystem
■ Sharing code between projects with .NET Standard
■ The future of .NET Standard with .NET 5.0
758

759The evolution of .NET into .NET 5.0
 .NET Core wasn’t developed in isolation, and one of its primary design goals was to
improve the ability to share code between multiple frameworks. In section B.2 I’ll
describe how this was achieved in pre-.NET Core/.NET 5.0 days, using Portable Class
Libraries (PCLs) and the successor approach using .NET Standard. Finally, in sec-
tion B.3, I’ll discuss what .NET 5.0 means for .NET Standard.

B.1 The evolution of .NET into .NET 5.0
In this section I’ll discuss the history of .NET 5.0 and .NET Core and why they were
created. You’ll learn about the various .NET platforms that were around in the early
2010s and why their sharding prompted the development of .NET Core as a new cross-
platform runtime. Finally, you’ll learn how .NET 5.0 has grown out of .NET Core and
about the future of .NET.

B.1.1 Exploring the .NET platforms that prompted .NET Core

If you’re a .NET developer, chances are you’re already familiar with the .NET Frame-
work. The .NET Framework, version 4.8 at the time of writing, is a Windows-only
development platform that you can use for both desktop and web development. It’s
installed by default on Windows and was historically used for most desktop and server
.NET development.

 If you’re a mobile developer, you might also be familiar with the Xamarin frame-
work, which uses the cross-platform Mono implementation of the .NET Framework.
This is an alternative platform to the .NET Framework that you can use to build mobile
applications on Windows, Android, and iOS.

 Historically, these two platforms were completely separate, but they consisted of
many similar components and implemented similar APIs. Each platform contained
libraries and app models specific to their platform, but they used similar fundamental
libraries and types, as shown in figure B.1.

 At the bottom of each stack is the tooling that allows you to compile and run .NET
applications, such as the compiler and the common language runtime (CLR). At the
top of each stack, you have the app-specific libraries that you use to build applications
for your platform. For example, you could build a Windows Forms app on the .NET
Framework, but not using the Xamarin platform, and vice versa for an iOS app.

 In the middle of each stack you have the Base Class Libraries (BCLs). These are the
fundamental .NET types you use in your apps on a daily basis: the int and string types,
the file-reading APIs, the Task APIs, and so on. Although both .NET platforms have
many similar types, they’re fundamentally different, so you can’t guarantee a type will
exist on both platforms, or that it will expose the same methods and properties.

 I’ve only discussed two platforms so far, the .NET Framework and Xamarin, but .NET
has many different implementations, of which these are only two. Windows also has the
Windows 8/8.1 platform and the Universal Windows Platform (UWP). On phones, in
addition to Xamarin, there’s the Windows Phone 8.1 and Silverlight Phone platforms.
The list goes on and on (Unity, .NET Compact Framework (CF), .NET Micro . . .)!

760 APPENDIX B Understanding the .NET ecosystem
Each of these platforms uses a slightly different set of APIs (classes and methods) in
their BCLs. Platforms have a certain number of similar APIs between them in their
BCLs, but the intersection is patchy. On top of that, the libraries that make up the
BCLs of a platform are fundamentally not interoperable. Any source code written for
a given set of APIs must be specifically recompiled for each target platform.

 Several years ago, Microsoft realized this sharding of .NET was a problem. Devel-
opers had to know a slightly different set of APIs for each platform, and sharing code
so that it could be used on more than one platform was a pain.

 On top of that, the primary web development platform of the .NET Framework
was showing its age. The software industry was moving toward small, lightweight,
cloud-native frameworks that you could deploy in cross-platform environments. The
centrally installed Windows-only .NET Framework was not designed for these scenar-
ios. Microsoft set about developing a new framework, called “Project K” during devel-
opment, which ultimately became .NET Core.

The BCL contains basic types
and APIs for file manipulation,
streams, and serialization.

Different BCLs contain similar,
but slightly different, APIs.

The app models represent the different
types of apps that you can build with the
platform. They are typically very different
between platforms.

Figure B.1 The layers that make up the .NET Framework. Each builds on the capabilities of the layer
below, with the highest layer providing the app models that you’ll use to build your applications.

761The evolution of .NET into .NET 5.0
B.1.2 Introducing .NET Core

The .NET Core platform was Microsoft’s solution to the centrally installed, Windows-
only .NET Framework. .NET Core is highly modular, can be deployed side-by-side with
other .NET Core installations (or alternatively, distributed with the app), and is cross-
platform. The term .NET Core is somewhat overloaded, in that it was used through
development as a general umbrella term to describe a variety of changes. The .NET
Core platform consists of

■ A cross-platform BCL—The BCL libraries of the .NET Core platform, historically
called CoreFX. These contain all the primitive types and libraries for building
.NET Core applications.

■ A new cross-platform runtime—The runtime for .NET Core, called CoreCLR, which
executes .NET Core applications.

■ The .NET CLI tooling—The dotnet tool used for building and publishing apps.
■ The ASP.NET Core and EF Core libraries—The app-layer libraries, used to build

ASP.NET Core applications.

These components make up the .NET Core platform and find their analogs to the var-
ious components that make up the .NET Framework and Xamarin platforms you saw
in figure B.1. By creating a new platform, Microsoft was able to maintain backward
compatibility for apps that used the .NET Framework, while enabling new apps to be
developed using .NET Core to take advantage of its cross-platform base and isolated
deployment story.

NOTE You might be thinking, “Wait, they had too many .NET platforms, so
they created another one?” If so, you’re on the ball. But luckily, with .NET
Core came .NET Standard.

On its own, .NET Core would have meant yet another BCL of APIs for .NET developers
to learn. But as part of the development of .NET Core, Microsoft introduced .NET
Standard. .NET Standard, as the name suggests, ensured a standard set of APIs were
available on every .NET platform. You no longer had to learn the specific set of APIs
available for the flavor of .NET you were using; if you could use the .NET Standard
APIs, you knew you’d be fine on multiple platforms. I’ll talk more about .NET Stan-
dard in section B.2.

 .NET Standard was a good stop-gap solution for writing code that could work on
multiple platforms, but it didn’t address one fundamental issue: there were still multi-
ple platforms. Every platform had its own separate code that must be maintained by Mic-
rosoft, despite being almost identical in many places.

 Microsoft was innovating quickly in .NET Core, introducing new C# features such as
Async Enumerables and Span<T>, as well as providing many performance improvements.1

1 There is a post on the .NET blog detailing the vast low-level improvements made to .NET Core. These are
fascinating if you are into that sort of thing! You can find the “Performance Improvements in .NET 5” blog
post here: http://mng.bz/9MEx.

http://mng.bz/9MEx

762 APPENDIX B Understanding the .NET ecosystem
Unfortunately, none of the other platforms could take advantage of these without sig-
nificant work. Microsoft’s vision for tackling this head-on was One.NET.

B.1.3 .NET 5.0: The first step in the One .NET vision

In May 2019, Microsoft announced that the next major version of .NET Core after 3.0
would be .NET 5.0.2 This was the first step in their attempt to unify the .NET platform.

 Previously, as I discussed in section B.1.1, you had to use .NET Framework to build
Windows desktop apps, Xamarin to build iOS or Android apps, and .NET Core to
build cross-platform web apps. Each app model was tied to the underlying platform
and used a distinct BCL. The One .NET vision, which started with .NET 5.0, is to have
a single .NET platform, with a single BCL, that can be used with every app model: Win-
dows desktop apps, iOS or Android apps, as well as cross-platform web apps, as shown
in figure B.2.

Practically speaking, .NET 5.0 really is “just” the next version of .NET Core. There are
very few breaking changes in moving an ASP.NET Core 3.1 application to .NET 5.0,3

and for the most part the upgrade is very easy. .NET 5.0 adds additional features (such
as gRPC and Blazor), but fundamentally not much has changed for most ASP.NET
Core applications.

2 You can find the announcement blog post here: https://devblogs.microsoft.com/dotnet/introducing-net-5/.
This contains a lot of detail of future plans, so I strongly suggest reading it.

3 You can see the list of breaking changes in Microsoft’s “Breaking changes in .NET 5.0” documentation at
http://mng.bz/j4Dz.

With .NET 5.0
onwards, there
is a single .NET
platform, which
provides the BCL
across all app
models. All app
models are based
on the same
underlying BCL.

Figure B.2 .NET 5.0 started the vision to provide a single platform for running multiple app models.
Instead of each app model requiring a separate .NET platform, with a separate BCL, all app models will be
able to use the same underlying .NET platform and BCL.

https://devblogs.microsoft.com/dotnet/introducing-net-5/
http://mng.bz/j4Dz

763The evolution of .NET into .NET 5.0
NOTE A common point of confusion is the name: .NET 5.0. The “Core” mon-
iker was dropped to try and signify that “there is only one version of .NET
now.” Also, version 4 was skipped, to avoid confusion between the new version
and .NET Framework version 4. Hopefully this naming decision will pay off in
the long run, even if it’s confusing now.

Microsoft intended to perform the unification of both the BCL and the infrastructure
in .NET 5.0, but delays have meant that, so far, only the BCL has been unified; Xama-
rin apps still use the Mono-based build infrastructure and runtime in .NET 5.0. Micro-
soft plans to complete the unification efforts, merging the Mono and .NET 5.0 build
infrastructure and runtimes in the next release, .NET 6.0.

 .NET 5.0 represents the first step on the road to One .NET. The hope is that basing
all future development efforts on one platform will reduce duplication of effort and
provide both greater stability and progress for the platform. With that in mind, Micro-
soft has committed to a regular release cadence, so you can easily plan how to keep
your apps up to date as new versions of .NET are released.

B.1.4 The future: .NET 6.0 and beyond

As with many open source projects, developing in the open is often associated with a
faster release cycle than with the traditional .NET Framework. This was certainly the
case with .NET Core, with new releases (major and minor) coming regularly for the first
few years of development.

 While many developers like this faster cadence and the new features it brings, it
can lead to some uncertainty. Is it worth spending time upgrading to the latest version
now if a new version is going to be released next week?

 To counteract the potential churn and give users confidence in continued sup-
port, each .NET Core (and .NET 5.0+) release falls into one of two support tracks:

■ Long Term Support (LTS)—These releases are supported for three years from
their first release.

■ Current—These releases are supported until three months after the next LTS or
current release.

Having two supported tracks leaves you with a simple choice: if you want more fea-
tures, and are happy to commit to updating your app more frequently, choose Cur-
rent releases; if you want fewer updates but also fewer features, choose LTS.4

 The two-track approach went some way to alleviating uncertainty, but it still left
users unsure exactly when a new release would occur, and hence how long the current
version would be supported.

 With .NET 5.0, Microsoft committed to a well-defined release cycle consisting of
shipping a new major version of .NET every year, alternating between LTS releases

4 For more details on .NET support policies, see Microsoft’s “.NET Core and .NET 5 Support Policy”: https://
dotnet.microsoft.com/platform/support/policy/dotnet-core.

https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

764 APPENDIX B Understanding the .NET ecosystem
and Current releases, as shown in figure B.3. Minor updates are not intended to be
common but will occur in interstitial months if required.

With this timeline, you know how long a version of .NET will be supported. If you use
a Current track release (such as .NET 5.0) you know you will be supported until three
months after the release of .NET 6.0 in November 2021. As an LTS release, .NET 6.0
will be supported until November 2024.

 The unification of multiple .NET platforms starting in .NET 5.0 means that there
will be less need in future to share code between multiple platforms: that’s one of the
big selling points of One .NET. Nevertheless, you will no doubt need to share code
with existing legacy applications for many years, so code sharing is still a concern.

 As I described in section B.1.2, .NET Standard was introduced with .NET Core as a
way of sharing code between .NET Core applications and existing legacy applications.
Before I dig into the details of .NET Standard, I’ll briefly discuss its predecessor, Porta-
ble Class Libraries, and why they’re now obsolete thanks to .NET Standard.

B.2 Sharing code between projects
In this section I’ll discuss the history of sharing code between .NET platforms using
Portable Class Libraries. I’ll then introduce .NET Standard as an alternative solution
that was introduced with .NET Core.

 With so many different .NET implementations, the .NET ecosystem needed a way
to share code between libraries, long before .NET Core was envisaged. What if you
wanted to use the same classes in both your ASP.NET .NET Framework project and
your Silverlight project? You’d have to create a separate project for each platform,
copy and paste files between them, and recompile your code for each platform. The
result was two different libraries from the same code. Portable Class Libraries (PCLs)
were the initial solution to this problem.

B.2.1 Finding a common intersection with Portable Class Libraries

PCLs were introduced to make the process of compiling and sharing code between
multiple platforms simpler. When creating a library, developers could specify the plat-
forms they wanted to support, and the project would only have access to the set of
APIs common among all of them. Each additional platform supported would reduce

Releases will alternate between
Long Term Support (LTS) with
3 years of support and Current
with 5 months of support.1

There will be a
new .NET release
every year in
November.

Figure B.3 The timeline for releases of new .NET versions. A new .NET version will be released every year in
November. Releases will alternate between Long Term Support (LTS) versions and Current release versions.

765Sharing code between projects
the API surface to only those APIs available in all the selected platforms, as shown in
figure B.4.

To create a PCL library, you’d create a library that targeted a specific PCL “profile.”
This profile contained a precomputed list of APIs known to be available on the associ-
ated platforms. That way, you could create one library that you could share across your
selected platforms. You could have a single project and a single resulting package—no
copy and paste or duplicate projects required.

 This approach was a definite improvement over the previous option, but creating
PCLs was often tricky. There were inherent tooling complexities to contend with, and
understanding the APIs available for each different combination of platforms that
made up a PCL profile was difficult.5

 On top of these issues, every additional platform you targeted would reduce the
BCL API surface available for you to use in your library. For example, the .NET Frame-
work might contain APIs A, B, and C. But if Xamarin only has API A and Universal
Windows Platform (UWP) only has API C, your library can’t use any of them, as shown
in figure B.5.

5 See here for the full horrifying list: https://portablelibraryprofiles.stephencleary.com/.

APIs common to Xamarin
and .NET Framework

APIs common to UWP
and .NET Framework

APIs common to
Xamarin and UWP

APIs common to all
three frameworks

Figure B.4 Each additional framework that must be supported by a PCL reduces the APIs
available to your application. If you support multiple frameworks, you have vastly fewer APIs
available to you.

https://portablelibraryprofiles.stephencleary.com/

766 APPENDIX B Understanding the .NET ecosystem
One additional issue with PCL libraries was that they were inherently tied to the under-
lying platforms they targeted. In order to work with a new target platform, you’d have
to recompile the PCL, even if no source code changes were required.

 Say you’re using a PCL library that supports UWP 10.0 and .NET Framework 4.5. If
Microsoft were to release a new platform, let’s say .NET Fridge, which exposes the
same API as UWP 10.0, you wouldn’t be able to use the existing library with your new
.NET Fridge application. Instead, you’d have to wait for the library author to recom-
pile their PCL to support the new platform, and who knows when that would be!

 PCLs had their day, and they solved a definite problem, but for modern develop-
ment .NET Standard provides a much cleaner approach.

B.2.2 .NET Standard: A common interface for .NET

As part of the development of .NET Core, Microsoft announced .NET Standard as the
successor to PCL libraries. .NET Standard takes the PCL relationship between plat-
form support and APIs available, and flips it on its head:

■ PCLs—A PCL profile targets a specific set of platforms. The APIs available to a
PCL library are the common APIs shared by all the platforms in the profile.

■ .NET Standard—A .NET Standard version defines a specific set of APIs. These
APIs are always available in a .NET Standard library. Any platform that imple-
ments all these APIs supports that version of .NET Standard.

UWP only supports API C.
Xamarin only
supports API A.

.NET Framework supports
APIs A, B, and C.

Figure B.5 Each platform exposes slightly different APIs. When creating PCLs,
only those APIs that are available in all the targeted platforms are available. In this
case, none of the APIs, A, B, or C, is available in all targeted platforms, so none of
them can be used in the PCL.

767Sharing code between projects
.NET Standard isn’t something you download. Instead, it’s a list of APIs that a .NET
Standard-compatible platform must implement.6 You can create libraries that target
.NET Standard, and you can use that library in any app that targets a .NET Standard-
compatible platform.

 .NET Standard has multiple versions, each of which is a superset of the previous ver-
sions. For example, .NET Standard 1.2 includes all the APIs from .NET Standard 1.1,
which in turn includes all the APIs from .NET Standard 1.0, as shown in figure B.6.

When you create a .NET Standard library, you target a specific version of .NET Stan-
dard and can reference any library that targets that version or earlier. If you’re writing
a library that targets .NET Standard 1.2, you can reference packages that target .NET
Standard 1.2, 1.1, or 1.0. Your package can, in turn, be referenced by any library that
targets .NET Standard 1.2 or later, or any library that targets a platform that implements
.NET Standard 1.2 or later.

6 .NET Standard is, literally, a list of APIs. You can view the APIs included in each version of .NET Standard on
GitHub here: http://mng.bz/yYqe. For example, you can see the APIs included in .NET Standard 1.0 here:
http://mng.bz/MXY8.

APIs only available in
.NET Standard .21

APIs available in .NET
Standard . and .21 1 1

APIs available in .NET
Standard .0, . and .21 1 1 1

Figure B.6 Each version of .NET Standard includes all the APIs from
previous versions. The smaller the version of .NET Standard, the smaller
the number of APIs.

http://mng.bz/yYqe
http://mng.bz/MXY8

768 APPENDIX B Understanding the .NET ecosystem
 A platform implements a specific version of .NET Standard if it contains all the
APIs required by that version of .NET Standard. By extension, a platform that sup-
ports a specific version of .NET Standard also supports all previous versions of .NET
Standard. For example, UWP version 10 supports .NET Standard 1.4, which means it
also supports .NET Standard versions 1.0–1.3, as shown in figure B.7.

Each version of a platform supports a different version of .NET Standard. .NET Frame-
work 4.5 supports .NET Standard 1.1, but .NET Framework 4.7.1 supports .NET Stan-
dard 2.0. Table B.1 shows some of the versions supported by various .NET platforms. For
a more complete list, see Microsoft’s “.NET Standard” overview: https://docs.microsoft
.com/dotnet/standard/net-standard.

 A version of this table is often used to explain .NET Standard, but for me the rela-
tionship between .NET Standard and a .NET platform all made sense when I saw an
example that explained .NET Standard in terms of C# constructs.7

7 The example was originally provided by David Fowler from the ASP.NET team. You can view an updated ver-
sion of this metaphor here: http://mng.bz/aoqX.

UWP Version 10 includes all the APIs
for .NET Standard 1.4 and below.

It also includes platform-specific APIs
that are not part of a .NET Standard.

Figure B.7 The UWP Platform version 10 supports .NET Standard 1.4. That
means it contains all the APIs required by the .NET Standard specification
version 1.4, which means it also contains all the APIs in earlier versions of .NET
Standard. It also contains additional platform-specific APIs that aren’t part of
any version of .NET Standard.

https://docs.microsoft.com/dotnet/standard/net-standard
https://docs.microsoft.com/dotnet/standard/net-standard
https://docs.microsoft.com/dotnet/standard/net-standard
http://mng.bz/aoqX

769Sharing code between projects
You can think of each version of .NET Standard as a series of inherited interfaces, and
the .NET platforms as implementations of one of these interfaces. In the following
listing, I use the last two rows of table B.1 to illustrate this, considering .NET Standard
1.0–1.2 and looking at the Windows 8.0 platform and Windows Phone 8.1.

interface NETStandard1_0
{
 void SomeMethod();
}

interface NETStandard1_1 : NETStandard1_0
{
 void OtherMethod();
}

interface NETStandard1_2 : NETStandard1_1
{
 void YetAnotherMethod();
}

class Windows8 : NETStandard1_1
{
 void SomeMethod () { /* Method implementation */ }
 void OtherMethod() { /* Method implementation */ }

 void ADifferentMethod() { /* Method implementation */
}

Table B.1 Highest supported .NET Standard version for various .NET platform versions. A blank cell
means that version of .NET Standard isn’t supported on the platform.

.NET Standard
version

1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1

.NET Core
and .NET 5.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0

.NET
Framework

4.5 4.5 4.5.1 4.6 4.6.1 4.6.2 4.7.1

Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4 6.4

UWP 10.0 10.0 10.0 10.0 10.0 10.0.16299 10.0.16299 10.0.16299

Windows 8.0 8.0 8.1

Windows
Phone

8.1 8.1 8.1

Listing B.1 An interpretation of .NET Standard in C#

Defines the APIs
available in .NET
Standard 1.0 .NET Standard 1.1

inherits all the
APIs from .NET
Standard 1.0.

APIs available in .NET
Standard 1.1 but not in 1.0

.NET Standard 1.2 inherits all the
APIs from .NET Standard 1.1.

APIs available in .NET Standard
1.2 but not in 1.1 or 1.0

Windows 8.0 implements
.NET Standard 1.1.

Implementations
of the APIs
required by
.NET Standard
1.1 and 1.0

Additional APIs that aren’t part of
.NET Standard, but exist on the

Windows 8.0 platform

770 APPENDIX B Understanding the .NET ecosystem
class WindowsPhone81 : NETStandard1_2
{
 void SomeMethod () { /* Method implementation */ }
 void OtherMethod() { /* Method implementation */ }
 void YetAnotherMethod () { /* Method implementation */ }

 void ExtraMethod1() { /* Method implementation */ }
 void ExtraMethod2() { /* Method implementation */ }
}

In the same way that you write programs to use interfaces rather than specific imple-
mentations, you can target your libraries against a .NET Standard interface without
worrying about the individual implementation details of the platform. You can then
use your library with any platform that implements the required interface version.

 One of the advantages you gain by targeting .NET Standard is the ability to target
new platforms without having to recompile any of your libraries or wait for dependent
library authors to recompile theirs. It also makes reasoning about the exact APIs avail-
able far simpler—the higher the .NET Standard version you target, the more APIs will
be available to you.

WARNING Even if a platform implements a given version of .NET Standard,
the method implementation might throw a PlatformNotSupportedException.
For example, some reflection APIs might not be available on all platforms.
.NET 5.0 includes Roslyn Analyzer support to detect this situation and will
warn you of the issue at build time. See “Automatically find latent bugs in
your code with .NET 5” on the .NET Blog (http://mng.bz/WdX4) for more
details about analyzers introduced in .NET 5.0.

Unfortunately, things are never as simple as you want them to be. Although .NET
Standard 2.0 is a strict superset of .NET Standard 1.6, apps targeting .NET Framework
4.6.1 can reference .NET Standard 2.0 libraries, even though it technically only implements
.NET Standard 1.4, as shown in table B.1.8

WARNING Even though .NET Framework 4.6.1 technically only implements
.NET Standard 1.4, it can reference .NET Standard 2.0 libraries. This is a
special case and applies only to versions 4.6.1–4.7.0. .NET Framework 4.7.1
implements .NET Standard 2.0, so it can reference .NET Standard 2.0 librar-
ies natively.

The reasoning behind this move was to counteract a chicken-and-egg problem. One
of the early complaints about .NET Core 1.x was how few APIs were available, which
made porting projects to .NET Core tricky. Consequently, in .NET Core 2.0, Microsoft

8 The reasoning behind this move was laid out in the “Introducing .NET Standard” post on the .NET Blog,
which I highly recommend reading: https://devblogs.microsoft.com/dotnet/introducing-net-standard/.

Windows Phone 8.1 implements
.NET Standard 1.2.

Implementations
of the APIs
required by
.NET Standard
1.2, 1.1, and 1.0

Additional APIs that
aren’t part of .NET
Standard, but exist
on the Windows
Phone 8.1 platform

https://devblogs.microsoft.com/dotnet/introducing-net-standard/
http://mng.bz/WdX4

771Sharing code between projects
added thousands of APIs that were available in .NET Framework 4.6.1, the most
widely installed .NET Framework version, and added these APIs to .NET Standard
2.0. The intention was for .NET Standard 2.0 to provide the same APIs as .NET
Framework 4.6.1.

 Unfortunately, .NET Framework 4.6.1 doesn’t contain the APIs in .NET Standard
1.5 or 1.6. Given that .NET Standard 2.0 is a strict superset of .NET Standard 1.6,
.NET Framework 4.6.1 can’t support .NET Standard 2.0 directly.

 This left Microsoft with a problem. If the most popular version of the .NET Frame-
work didn’t support .NET Standard 2.0, no one would write .NET Standard 2.0 librar-
ies, which would hamstring .NET Core 2.0 as well. Consequently, Microsoft took the
decision to allow .NET Framework 4.6.1 to reference .NET Standard 2.0 libraries, as shown
in figure B.8.

All this leads to some fundamental technical difficulties. .NET Framework 4.6.1 can
reference .NET Standard 2.0 libraries, even though it technically doesn’t support
them, but you must have the .NET Core 2.0 SDK installed to ensure everything
works correctly.

 To blur things even further, libraries compiled against .NET Framework 4.6.1 can
be referenced by .NET Standard libraries through the use of a compatibility shim, as
I’ll describe in the next section.

.NET Framework 4.6. contains1

all the required APIs, so it
supports .NET Standard .4.1

However, in order to speed adoption,
and because it contains nearly all the
required APIs, .NET Framework 4.6.1
apps and libraries can reference
.NET Standard 2.0 libraries.

.NET Framework 4.6. is missing1

some of the APIs required by
.NET Standard 2.0, so it should
not be able to reference .NET
Standard 2.0 libraries.

Figure B.8 NET Framework 4.6.1 doesn’t contain the APIs required for .NET Standard 1.5,
1.6, or 2.0. But it contains nearly all the APIs required for .NET Standard 2.0. In order to
speed up adoption and to make it easier to start using .NET Standard 2.0 libraries, you can
reference .NET Standard 2.0 libraries for a .NET Framework 4.6.1 app.

772 APPENDIX B Understanding the .NET ecosystem
B.2.3 Fudging .NET Standard 2.0 support with the compatibility shim

Microsoft’s plan for .NET Standard 2.0 was to make it easier to build .NET Core apps.
If users built libraries targeting .NET Standard 2.0, they could still use them in
their .NET Framework 4.6.1 apps, but they could also use the libraries in their .NET
Core apps.

 The problem was that when .NET Standard 2.0 was first released, no libraries
(NuGet packages) would implement it yet. Given that .NET Standard libraries can
only reference other .NET Standard libraries, you’d have to wait for all your depen-
dencies to update to .NET Standard, which would have to wait for their dependencies
first, and so on.

 To speed things up, Microsoft created a compatibility shim. This shim allows a
.NET Standard 2.0 library to reference .NET Framework 4.6.1 libraries. Ordinarily, this sort
of reference wouldn’t be possible; .NET Standard libraries can only reference .NET
Standard libraries of an equal or lower version, as shown in figure B.9.9

By enabling this shim, suddenly .NET Core 2.0 apps could use any of the many .NET
Framework 4.6.1 (or lower) NuGet libraries available. As long as the referenced
library stuck to APIs that are part of .NET Standard 2.0, you’d be able to reference
.NET Framework libraries in your .NET Core 2+ apps or .NET Standard 2.0 libraries,
even if your app runs cross-platform on Linux or macOS.

9 The process by which this magic is achieved is complicated. This “.NET Standard 2” article on GitHub
describes the process of assembly unification in detail: http://mng.bz/8NEZ.

.NET Core 2.0 and .NET Framework
4.6.1 apps can reference .NET
Standard 2.0 libraries.

.NET Standard 2.0 libraries can reference .NET
Standard libraries of version 2.0 and below.

Normally, you can’t reference
.NET Framework libraries from
a .NET Standard library.

The compatibility shim allows .NET
Standard libraries to reference
.NET Framework libraries.

Figure B.9 By default, .NET Standard libraries can only reference other .NET Standard libraries,
targeting the same .NET Standard version or lower. With the compatibility shim, .NET Standard
libraries can also reference libraries compiled against .NET Framework 4.6.1.

http://mng.bz/8NEZ

773.NET 5.0 and the future of .NET Standard
WARNING If the library uses .NET Framework-specific APIs, you’ll get an
exception at runtime. There’s no easy way of knowing whether a library is safe
to use, short of examining the source code, so the .NET tooling will raise a
warning every time you build. Be sure to thoroughly test your app if you rely
on this shim.

If your head is spinning at this point, I don’t blame you. This was a particularly confus-
ing point in the evolution of .NET Standard, in which rules were being bent to fit the
current environment. This inevitably led to various caveats and hand-waving, followed
by bugs and fixes.10 Luckily, if your development is focused on .NET 5.0, .NET Stan-
dard is not something you will generally have to worry about.

B.3 .NET 5.0 and the future of .NET Standard
In this section I’ll discuss what .NET 5.0 means for the future of .NET Standard and
the approach you should take for new applications targeting .NET 5.0.

NOTE The advice in this section is based on the official guidance from Micro-
soft regarding the future of .NET Standard here: http://mng.bz/goqG.

.NET Standard was necessary when .NET Core was a young framework, to ensure you
still had access to the existing NuGet package ecosystem. .NET 5.0 is an evolution of
.NET Core, so you can take advantage of that same ecosystem in .NET 5.0.

 .NET 5.0 implements .NET Standard 2.1, the latest version of the standard, which is
also implemented by .NET Core 3.0. That means .NET 5.0 applications can reference

■ Any NuGet package or library that implements .NET Standard 1.0–2.1
■ Any NuGet package or library that implements .NET Core 1.x–3.x or .NET 5.0

.NET Standard was designed to handle code-sharing between multiple .NET plat-
forms. But the release of .NET 5.0, and the One .NET vision, specifically aims to have
only a single platform. Is .NET Standard still useful?

 Yes and no. From .NET 5.0 onwards, no more versions of .NET Standard are
planned, as subsequent versions of .NET (for example, .NET 7.0) will already be able to
reference libraries targeting earlier versions of .NET (such as .NET 5.0 and .NET 6.0).

 Unfortunately, the One .NET vision didn’t quite come to fruition in .NET 5.0—
Xamarin apps still use the Mono runtime and tooling (though they use the same BCL
as .NET 5.0). That means if you need to share code between .NET 5.0 applications
and Xamarin applications, you will need to use .NET Standard. In .NET 6.0, if all goes
to plan, .NET Standard will not be required for that scenario; you’ll be able to target
.NET 6.0 and share your code across ASP.NET Core applications and Xamarin apps.

10 You can find an example of one such issue here, but there were, unfortunately, many similar cases: https://
github.com/dotnet/runtime/issues/29314.

https://github.com/dotnet/runtime/issues/29314
https://github.com/dotnet/runtime/issues/29314
http://mng.bz/goqG

774 APPENDIX B Understanding the .NET ecosystem
 .NET Standard will also remain useful when you need to share code between .NET
5.0+ applications and legacy (.NET Core, .NET Framework, Xamarin) applications.
.NET Standard remains the mechanism for this cross-.NET platform code-sharing.

Summary
■ .NET has many different implementations, including the .NET Framework,

Mono, and Unity. Each of these is a separate platform with separate Base Class
Libraries (BCLs) and app models. .NET Core is another separate platform.

■ Each platform has a BCL that provides fundamental .NET types and classes,
such as strings, file manipulation, and streams. Each platform has a slightly dif-
ferent BCL.

■ .NET 5.0 is the first step in unifying these platforms, most notably Mono (and
hence Xamarin) and .NET Core, under the One .NET vision. App models cur-
rently associated with other platforms will be made available on the new .NET
5+ platform.

■ .NET 5.0 unifies the code bases for the Mono and .NET Core BCLs. In .NET
6.0, the runtime and tooling will also be unified, completing the One .NET
vision. This will allow you to build web, desktop, and mobile apps and more
with a single .NET platform, .NET 6.0.

■ .NET will see a new major release every year. These will alternate between Long
Term Support releases, which receive 3 years of support, and Current releases,
which receive 15 months of support.

■ Portable Class Libraries (PCLs) attempted to solve the problem of sharing code
between .NET platforms by allowing you to write code to the logical intersec-
tion of each platform’s BCL. Each additional platform you targeted meant
fewer BCL APIs in common.

■ .NET Standard defines a standard set of APIs that are available across all plat-
forms that support it. You can write libraries that target a specific version of
.NET Standard and they’ll be compatible with any platform that supports that
version of .NET Standard.

■ Each version of .NET Standard is a superset of the previous one. For example,
.NET Standard 1.2 includes all the APIs from .NET Standard 1.1, which in turn
includes all the APIs from .NET Standard 1.0.

■ Each version of a platform supports a specific version of .NET Standard. For
example, .NET Framework 4.5.1 supports .NET Standard 1.2 (and hence also
.NET Standard 1.1 and 1.0).

■ .NET Framework 4.6.1 technically only supports .NET Standard 1.4. Thanks to
a compatibility shim, you can reference .NET Standard 2.0 libraries from a
.NET Framework 4.6.1 app. Similarly, you can reference a .NET Framework
library from a .NET Standard 2.0 library, which wouldn’t be possible without
the shim.

775Summary
■ If you rely on the compatibility shim to reference a .NET Framework 4.6.1
library from a .NET Standard 2.0 library, and the referenced library uses .NET
Framework-specific APIs, you’ll get an exception at runtime.

■ An app must target a .NET platform implementation, such as .NET 5.0 or .NET
Core 3.1. It can’t target .NET Standard.

■ .NET 5.0 supports .NET Standard 2.1. It can reference any .NET Standard
library and any .NET Core library.

appendix C
Useful references

In this appendix I’ll provide a number of links and references that I’ve found use-
ful for learning about .NET Core/.NET 5.0, .NET Standard, and ASP.NET Core.

C.1 Relevant books
In this book, we touched on several topics and aspects of the .NET ecosystem that
are somewhat peripheral to building ASP.NET Core applications. For a deeper
understanding of those topics, I recommend the books in this section. They cover
areas that you’ll inevitably encounter when building ASP.NET Core applications:

■ Vladimir Khorikov, Unit Testing Principles, Patterns, and Practices (Manning,
2020), http://mng.bz/E2go. Learn to refine your unit tests using modern
best practices in this excellent book that contains examples in C#.

■ Dustin Metzgar, .NET Core in Action (Manning, 2018), http://mng.bz/NY9N.
ASP.NET Core apps are built using .NET Core and .NET 5.0. This book pro-
vides everything you need to know about running on the platform.

■ Roy Osherove, The Art of Unit Testing, second edition (Manning, 2013), http://
mng.bz/DRan. In ASP.NET Core in Action, I discuss the mechanics of unit test-
ing ASP.NET Core applications. For a deeper discussion of how to create
your tests, I recommend The Art of Unit Testing.

■ Chris Sainty, Blazor in Action (Manning, 2021), http://mng.bz/l1P6. Blazor is
an exciting new framework that uses the power of industry standard WebAs-
sembly to run .NET in the browser. With Blazor you can build single-page
applications, just as you would with a JavaScript framework like Angular or
React, but using the C# language and tooling that you already know.

■ Jon P. Smith, Entity Framework Core in Action, second edition (Manning,
2021), http://mng.bz/BRj0. If you’re using EF Core in your apps, I highly
776

http://mng.bz/E2go
http://mng.bz/NY9N
http://mng.bz/DRan
http://mng.bz/DRan
http://mng.bz/DRan
http://mng.bz/l1P6
http://mng.bz/BRj0

777Announcement blog posts
recommend Entity Framework Core in Action. It covers all the features and pitfalls
of EF Core, as well as how to tune your app for performance.

■ Steven Van Deursen and Mark Seemann, Dependency Injection Principles, Practices,
and Patterns (Manning, 2019), http://mng.bz/d4lN. Dependency injection is a
core aspect of ASP.NET Core, so Dependency Injection Principles, Practices, and Pat-
terns is especially relevant now. It introduces the patterns and antipatterns of
dependency injection in the context of .NET and the C# language.

C.2 Announcement blog posts
When Microsoft releases a new version of ASP.NET Core or .NET Core, they typically
write an announcement blog post. These posts provide a high-level overview of the
topic, with many examples of new features. They’re a great place to start if you want to
quickly get acquainted with a topic:

■ Richard Lander, “Announcing .NET 5.0,” .NET Blog (Microsoft, November 10,
2020), https://devblogs.microsoft.com/dotnet/announcing-net-5-0/. Announce-
ment blog post for .NET 5.0, describing some of the highlights introduced in
.NET 5.0.

■ Richard Lander, “Introducing .NET 5.0,” .NET Blog (Microsoft, May 6, 2019),
https://devblogs.microsoft.com/dotnet/introducing-net-5/. The original announ-
cement blog post for .NET 5.0, describing the vision for the platform.

■ Immo Landwerth, “The future of .NET Standard,” .NET Blog (Microsoft, Sep-
tember 15, 2020), https://devblogs.microsoft.com/dotnet/the-future-of-net-
standard/. A discussion of what .NET 5.0 means for the future of .NET Stan-
dard, including guidance for library authors.

■ Immo Landwerth, “.NET Standard—Demystifying .NET Core and .NET Stan-
dard,” Microsoft Developer Network (Microsoft, September 2017), https://msdn
.microsoft.com/en-us/magazine/mt842506.aspx. A long post introducing .NET
Core and explaining where .NET Standard fits in the .NET ecosystem.

■ Microsoft Docs, “.NET Core and .NET 5 Support Policy,” https://dotnet.microsoft
.com/platform/support/policy/dotnet-core. Microsoft’s official support policy
for .NET Core and .NET 5.0.

■ Daniel Roth, “Announcing ASP.NET Core in .NET 5,” ASP.NET Blog (Microsoft,
November 10, 2020), https://devblogs.microsoft.com/aspnet/announcing-asp-
net-core-in-net-5/. Announcement blog post for ASP.NET Core 5.0. Describes
how to upgrade a project from 3.1 to 5.0 and provides links to some of the fea-
tures specific to ASP.NET Core 5.0.

■ Mads Torgersen, “C# 9.0 on the record,” .NET Blog (Microsoft, November 10,
2020), https://devblogs.microsoft.com/dotnet/c-9-0-on-the-record/. Announce-
ment blog post for C# 9.0, released alongside .NET 5.0.

http://mng.bz/d4lN
https://devblogs.microsoft.com/dotnet/announcing-net-5-0/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/the-future-of-net-standard/
https://devblogs.microsoft.com/dotnet/the-future-of-net-standard/
https://msdn.microsoft.com/en-us/magazine/mt842506.aspx
https://msdn.microsoft.com/en-us/magazine/mt842506.aspx
https://msdn.microsoft.com/en-us/magazine/mt842506.aspx
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://devblogs.microsoft.com/aspnet/announcing-asp-net-core-in-net-5/
https://devblogs.microsoft.com/aspnet/announcing-asp-net-core-in-net-5/
https://devblogs.microsoft.com/dotnet/c-9-0-on-the-record/

778 APPENDIX C Useful references
C.3 Microsoft documentation
Historically, Microsoft documentation has been poor, but with ASP.NET Core there
has been a massive push to ensure the docs are useful and current. You can find walk-
throughs, targeted documentation for specific features, documentation for supported
APIs, and even an in-browser C# compiler:

■ Microsoft Docs, “.NET API Browser,” https://docs.microsoft.com/dotnet/api/.
This is an API browser that can be used to work out which .NET APIs are avail-
able on which .NET platforms.

■ Microsoft Docs, “ASP.NET documentation,” https://docs.microsoft.com/aspnet/
core/. This is the official documentation for ASP.NET Core.

■ Microsoft Docs, “Cross-platform targeting”, https://docs.microsoft.com/dot-
net/standard/library-guidance/cross-platform-targeting. The official guidance
on choosing a target framework for your libraries.

■ Rowan Miller, Brice Lambson, Maria Wenzel, Diego Vega, and Martin Milan,
“Entity Framework Core” (Microsoft, September 20, 2020), https://docs.micro-
soft.com/ef/core/. This is the official documentation for EF Core.

C.4 Security-related links
Security is an important aspect of modern web development. This section contains
some of the references I refer to regularly, which describe some best practices for web
development, as well as practices to avoid:

■ Brock Allen and Dominick Baier, “IdentityServer4 1.0.0 documentation,”
https://identityserver4.readthedocs.io/. Documentation for IdentityServer, the
OpenID Connect and OAuth 2.0 framework for ASP.NET Core.

■ Dominick Baier, Dominick Baier on Identity & Access Control (blog), https://least-
privilege.com/. The personal blog of Dominick Baier, co-author of Identity-
Server. A great resource when working with authentication and authorization in
ASP.NET Core.

■ Scott Helme, Scott Helme (blog), https://scotthelme.co.uk/. Scott Helme’s blog,
with advice on security standards, especially security headers you can add to
your application.

■ Scott Helme, “SecurityHeaders.io—Analyse your HTTP response headers,”
https://securityheaders.com/. Test your website’s security headers and get
advice on why and how you should add them to your app.

■ Troy Hunt, Troy Hunt (blog), https://www.troyhunt.com. Personal blog of
Troy Hunt with security-related advice for web developers, particularly .NET
developers.

■ Microsoft Docs, “Overview of ASP.NET Core Security” (Microsoft, October 24,
2018), https://docs.microsoft.com/aspnet/core/security/. The home page of
the official ASP.NET Core documentation for all things security related.

https://docs.microsoft.com/dotnet/api/
https://docs.microsoft.com/aspnet/core/
https://docs.microsoft.com/aspnet/core/
https://docs.microsoft.com/en-gb/dotnet/standard/library-guidance/cross-platform-targeting
https://docs.microsoft.com/en-gb/dotnet/standard/library-guidance/cross-platform-targeting
https://docs.microsoft.com/ef/core/
https://docs.microsoft.com/ef/core/
https://identityserver4.readthedocs.io/
https://leastprivilege.com/
https://leastprivilege.com/
https://scotthelme.co.uk/
https://securityheaders.com/
https://www.troyhunt.com
https://docs.microsoft.com/aspnet/core/security/

779ASP.NET Core blogs
C.5 ASP.NET Core GitHub repositories
ASP.NET Core is entirely open source and developed on GitHub. One of the best ways
I’ve found to learn about the framework is to browse the source code itself. This sec-
tion contains the main repositories for ASP.NET Core, .NET 5.0, and EF Core:

■ .NET Foundation, “ASP.NET Core,” https://github.com/dotnet/aspnetcore.
The framework libraries that make up ASP.NET Core.

■ .NET Foundation, “Entity Framework Core,” https://github.com/dotnet/efcore.
The EF Core library.

■ .NET Foundation, “.NET Runtime,” https://github.com/dotnet/runtime. The
.NET CoreCLR runtime and BCL libraries, as well as extension libraries.

■ .NET Foundation, “.NET SDK and CLI,” https://github.com/dotnet/sdk. The
.NET command-line interface (CLI), assets for building the .NET SDK, and
project templates.

C.6 Tooling and services
This section contains links to tools and services you can use to build ASP.NET Core
projects:

■ .NET SDK—https://dotnet.microsoft.com/download
■ Cloudflare, a global content delivery network you can use to add caching and

HTTPS to your applications for free—https://www.cloudflare.com/
■ JetBrains Rider—https://www.jetbrains.com/rider/
■ Let’s Encrypt, a free, automated, and open Certificate Authority. You can use it to

obtain free SSL certificates to secure your application—https://letsencrypt.org/
■ Muhammed Rehan Saeed’s .NET Boxed, a comprehensive collection of tem-

plates to get started with ASP.NET Core, preconfigured with many best prac-
tices—https://github.com/Dotnet-Boxed/Templates

■ Visual Studio, Visual Studio for Mac, and Visual Studio Code—https://www
.visualstudio.com/

C.7 ASP.NET Core blogs
This section contains blogs that focus on ASP.NET Core. Whether you’re trying to get
an overview of a general topic, or trying to solve a specific problem, it can be useful to
have multiple viewpoints on a topic:

■ Khalid Abuhakmeh, Abuhakmeh, https://khalidabuhakmeh.com/. A wide variety
of posts from Khalid, focused on .NET and software development in general.

■ Chris Alcock,The Morning Brew, http://blog.cwa.me.uk/. A collection of .NET-
related blog posts, curated daily.

■ Damien Boden, Software Engineering, https://damienbod.com/. An excellent
blog by Microsoft MVP Damien Boden on ASP.NET Core with lots of posts
about ASP.NET Core with Angular.

https://github.com/dotnet/aspnetcore
https://github.com/dotnet/efcore
https://github.com/dotnet/runtime
https://github.com/dotnet/sdk
https://dotnet.microsoft.com/download
https://www.cloudflare.com/
https://www.jetbrains.com/rider/
https://letsencrypt.org/
https://github.com/Dotnet-Boxed/Templates
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://khalidabuhakmeh.com/
http://blog.cwa.me.uk/
https://damienbod.com/

780 APPENDIX C Useful references
■ Mike Brind, Mikesdotnetting, https://www.mikesdotnetting.com/. Mike Brind
has many posts on ASP.NET Core, especially focused on ASP.NET Core Razor
Pages.

■ Steve Gordon, Steve Gordon—Code with Steve, https://www.stevejgordon.co.uk/.
Personal blog of Steve Gordon, focused on .NET. Often focused on writing
high-performance code with .NET.

■ Scott Hanselman, Scott Hanselman, https://www.hanselman.com/blog/. Renow-
ned speaker Scott Hanselman’s personal blog. A highly diverse blog focused
predominantly on .NET.

■ Andrew Lock, .NET Escapades, https://andrewlock.net. My personal blog focused
on ASP.NET Core.

■ Microsoft .NET Team, .NET Blog, https://blogs.msdn.microsoft.com/dotnet.
The .NET team’s blog, with lots of great links.

■ David Pine, IEvangelist, http://davidpine.net/. Personal blog of Microsoft MVP
David Pine, with lots of posts on ASP.NET Core.

■ Muhammed Rehan Saeed, Muhammed Rehan Saeed, https://rehansaeed.com.
Personal blog of Muhammad Rehan Saeed, Microsoft MVP and author of the
.NET Boxed project.

■ Rick Strahl, Rick Strahl’s Weblog, https://weblog.west-wind.com/. Excellent blog
by Rick Strahl covering a wide variety of ASP.NET Core topics.

■ Filip W., StrathWeb, https://www.strathweb.com. Lots of posts on ASP.NET Core
and ASP.NET from Filip, a Microsoft MVP and prolific open source contributor.

C.8 Video links
If you prefer video for learning a subject, I recommend checking out the links in this
section. In particular, the ASP.NET Core community standup provides great insight
into the changes you’ll see in future ASP.NET Core versions, straight from the team
building the framework.

■ Microsoft, “.NET Conf 2020,” YouTube video playlist (November 13, 2020),
http://mng.bz/ryRB. All the sessions from the .NET Conf 2020 online confer-
ence announcing .NET 5.0.

■ .NET Foundation, “.NET Community Standup,” https://dotnet.microsoft.com/
platform/community/standup. Weekly videos with the ASP.NET Core team dis-
cussing development of the framework. Also includes standups with the .NET
team, the Xamarin team, and the EF Core team.

■ Immo Landwerth, “.NET Standard—Introduction,” YouTube video (November
28, 2016), http://mng.bz/Vd0P. The first video in an excellent series on .NET
standard.

■ Microsoft, “Channel 9: Videos for developers from the people building Micro-
soft products and services,” https://channel9.msdn.com/. Microsoft’s official

https://www.mikesdotnetting.com/
https://www.stevejgordon.co.uk/
https://www.hanselman.com/blog/
https://andrewlock.net
https://blogs.msdn.microsoft.com/dotnet
http://davidpine.net/
https://rehansaeed.com
https://weblog.west-wind.com/
https://www.strathweb.com
http://mng.bz/ryRB
https://dotnet.microsoft.com/platform/community/standup
https://dotnet.microsoft.com/platform/community/standup
http://mng.bz/Vd0P
https://channel9.msdn.com/

781Video links
video channel. Contains a huge number of videos on .NET and ASP.NET Core,
among many others.

■ Shawn Wildermuth, “Building a Web App with ASP.NET Core, MVC, Entity
Framework Core, Bootstrap, and Angular,” Pluralsight course, 9:52 hours (Octo-
ber 7, 2019), http://mng.bz/xmRW. Shawn Wildermuth’s course on building
an ASP.NET Core application.

■ Steve Gordon, “Integration Testing ASP.NET Core Applications: Best Practices,”
Pluralsight course, 3:25 hours (July 15, 2020), http://mng.bz/A09z. One of sev-
eral courses from Steve Gordon providing guidance and advice on building
ASP.NET Core applications.

http://mng.bz/xmRW
http://mng.bz/A09z

index
Numerics

2FA (two-factor authentication) 445

A

<a> element 248–249
AbstractValidator<> class 660
Accept header 281, 284, 425
Action() method 145–147
[action] token 274
action attribute 231, 233–234
ActionFilterAttribute 420–421
action filters, customizing model binding and

action results with 419–423
action methods 97, 108

custom exception handling for 423–425
injecting services directly into 315–317
linking to URLs 270–276

combining route attributes 272–274
handling HTTP verbs 274–276
using token replacement to reduce

duplication 274
short-circuiting 416–418

ActionResults
generating URLs from route parameters

with 146–147
returning responses with 117–120

creating ActionResult classes 119–120
NotFoundResult 119
PageResult 118–119
RedirectToPageResult 118–119
StatusCodeResult 119

action results
customizing before they execute 425–427
customizing with action filters 419–423

Add() method 386, 716
Add*File() method 346
AddAppConfiguration() method 339–340, 346
AddAuthorization() method 482, 495, 637
AddConfiguration 561
AddConsole() method 554
AddControllers() method 262, 279, 283, 303, 310,

410, 637
AddControllersWithViews() method 303
AddCors() 596, 600
AddDbContext<T> method 377
AddDefaultIdentity() method 452, 456
AddEnvironmentVariables() method 343
AddFile() method 553–554
AddHostedService() method 693
AddHttpMessageHandler<T>() 684
AddJob<T>() method 707
AddJsonFile() method 339
AddMvc() method 303
AddMvcOptions() method 410
AddPolicy() method 482, 599
AddRazorPages() method 45, 107, 152, 262, 327
AddRazorPagesOptions() method 152
AddScoped() method 306, 322
AddSeq() method 566
AddSingleton<T>() method 308
@addTagHelper directive 214, 645
AddTransient() method 321
AddUserSecrets() method 345
AJAX (Asynchronous JavaScript and XML) 573
AllowAnonymous() method 628
[AllowAnonymous] attribute 477–478
ambient values 146
Anchor Tag Helper, generating links with 248–250
[ApiController] attribute 256, 263, 265, 276–280,

419, 424
783

INDEX784
APIs
authentication for 442–446
calling HTTP APIs 668–674
unit testing API controllers 731–734
Web APIs 255–287

AppDbContext class 376–378, 381, 385–386, 451,
453, 459, 464, 695, 706, 747

Append Version Tag Helper, cache-busting
with 250–251

application model 100–101, 159–160
application pool 512
ApplicationUser entity 466, 496
ApplicationUser type 460–461
<appsettings> element 331
{area} route parameter 451
areas 450
asp-action attribute 234
asp-append-version attribute 250
asp-area attribute 249, 451
asp- attribute 252
asp-controller attribute 234
asp-for attribute 235, 237, 240, 242–243
asp-format attribute 239
asp-host attribute 249
asp-items attribute 242–243
ASP.NET Core 3–24

authentication in 439–442
authenticating users for subsequent

requests 441–442
signing in to apps 440–441

authorization in 474–481
handling unauthorized requests 478–481
preventing anonymous users from accessing

apps 476–478
blogs 779–780
dependency injection in 300–303
GitHub repositories 779
hosting model 504–511

choosing deployment method 510–511
running vs. publishing 506–510

HTTPS development certificates
576–578

inner workings of 19–23
HTTP web requests 19–21
request processing 21–23

logging abstractions 543–544
overview 4–5, 7–9
routing in 126–134
testing apps in 716–717
web frameworks 5
when to choose 9–19

converting existing apps to ASP.NET
Core 18–19

.NET Framework developers creating new
apps 14–18

new to .NET development 12–14
type of apps that can be built 9–12

ASP.NET Core app configuration 330–363
configuration model 331–333
configuration objects 335–347

adding configuration provider in
Program.cs 338–340

reloading configuration values 346–347
storing configuration secrets safely

342–346
using multiple providers to override

configuration values 340–342
CreateDefaultBuilder 333–335
for multiple environments 354–361

identifying hosting environment 355–356
loading environment-specific configuration

files 356–358
setting hosting environment 358–361

strongly typed settings 347–354
binding without IOptions interface 353–354
designing options classes for automatic

binding 351–353
IOptions interface 349–350
reloading strongly typed options 350–351

ASPNETCORE_ENVIRONMENT variable 358,
522

ASPNETCORE_HTTPS_PORT variable 583
ASPNETCORE_URLS variable 522
ASP.NET Core web apps 25–57

building web host 39–42
configuring 42–50

adding and configuring services 44–45
defining how requests are handled with

middleware 45–50
creating 29–33

building apps 32–33
using templates 29–32

defining dependencies 37–39
generating responses 50–55

generating HTML 51–53
handling request logic 53–55

overview 26–29
project layout 35–37
running 34–35

asp-page attribute 233, 248–249
asp-page-handler attribute 234, 248–249
asp-protocol attribute 249
asp-route-* attribute 234, 248–249
asp-route attribute 234
asp-route-id value 234
asp-validation-for attribute 245
asp-validation-summary attribute 246
Assert class 727
Assert.Throws() method 728
async() method 719

INDEX 785
Asynchronous JavaScript and XML (AJAX) 573
attribute routing 130, 270–276

combining route attributes 272–274
convention-based routing vs. 130–132
handling HTTP verbs with 274–276
using token replacement to reduce duplication

in 274
authentication 436–469

for APIs and distributed apps 442–446
Identity

adding custom data to users 466–468
adding to existing projects 458–462
creating projects that use 448–458
customizing page in default UI 463–465
defined 446–448

in ASP.NET Core 439–442
authenticating users for subsequent

requests 441–442
signing in to ASP.NET Core apps 440–441

users and claims 438–439
AuthenticationMiddleware 441, 452, 459–460,

480
authorization 470–502

applying to endpoints 627–629
creating custom policies 484–491

custom requirements and handlers 486–491
requirements and handlers 484–486

hiding elements in Razor templates from unau-
thorized users 498–501

in ASP.NET Core 474–481
handling unauthorized requests 478–481
preventing anonymous users from accessing

app 476–478
overview 471–474
policies for claims-based 481–484
resource-based 492–498

creating resource-based
AuthorizationHandler 495–498

manually authorizing requests 493–495
authorization filters, protecting APIs with

415–416
AuthorizationHandlerContext 488
AuthorizationHandlers, creating resource-

based 495–498
AuthorizationHandler<T> class 496
AuthorizationMiddleware 50, 130, 474, 477–478,

621–622
AuthorizationOptions object 482
AuthorizationPolicyBuilder 482–483, 487
AuthorizationResult object 494
[Authorize] attribute 416, 474, 476–478, 481–482,

485, 487–488, 491–493, 498, 588, 621–622,
627–628

AuthorizeAsync 494, 496, 499–500
AuthorizeFilter 416

B

BackgroundService 692, 703, 707, 709
background tasks and services 689–713

coordinating using Quartz.NET 703–711
configuring job to run on schedule 706–708
installing Quartz.NET 704–705
using clustering to add redundancy to back-

ground tasks 708–711
creating headless worker services 696–703

creating from templates 698–700
running in production 700–703

running 690–696
on timer 691–694
using scoped services 694–696

BaseController class 274
BCLs (Base Class Libraries) 759
binding model 156–187

binding complex types 168–172
binding collections and dictionaries 169–170
binding file uploads 170–172
simplifying method parameters by binding to

complex objects 168–169
binding simple types 164–167
choosing binding source 172–174
generating 99–100
handling user input with model validation

174–184
need for validation 174–176
using DataAnnotations attributes 176–178
validating on client for user experience

182–184
validating on server for safety 178–182

models in Razor Pages and MVC 157–160
organizing binding models in Razor Pages

184–186
binding sources 162, 165, 172
[BindNever] attribute 173
[BindProperty] attribute 116, 159, 161, 163, 168,

171, 185, 195, 236, 264, 428
[BindRequired] attribute 173
blogs 779–780
builder.ClearProviders() method 554
BundlerMinifier 525–534

adding to apps 529–532
serving common files from CDNs 533–534
speeding up apps using bundling and

minification 527–529
using minified files in production with Environ-

ment Tag Helper 532–533

C

C#, using in Razor templates 200–201
CA (certificate authority) 577, 579

INDEX786
captured dependencies 324–327
CD (continuous delivery/deployment) 510
CDNs (content delivery networks), serving com-

mon files from 533–534
certificate authority (CA) 577, 579
CF (Compact Framework) 759
CI (continuous integration) 510
claims-based authorization

creating custom policies 484–491
policies for 481–484

ClaimsPrincipal 438, 441, 455, 466–467, 475,
480, 488, 496

class attribute 226, 232
[ClassData] attribute 726
CLI (Command Line Interface) 33, 751
CLR (common language runtime) 759
clustering, using to add redundancy to back-

ground tasks 708–711
code-behind (.cshtml.cs file) 194–195
collections, binding 169–170
Compact Framework (CF) 759
compatibility shim 772–773
conditionals, adding to Razor templates

201–204
ConfigurationBuilder 335, 339–340, 346,

356–357
ConfigurationManager 332
configuration objects 335–347

adding configuration provider in
Program.cs 338–340

reloading configuration values when they
change 346–347

storing configuration secrets safely 342–346
in environment variables in production

343–344
with User Secrets Manager in

development 344–346
using multiple providers to override configura-

tion values 340–342
configuration provider 332
configuration secrets, storing safely 342–346

in environment variables in production
343–344

with User Secrets Manager in
development 344–346

Configure() method 43, 45–46, 65, 67, 72, 75,
80, 105, 127, 132, 340, 353, 452, 460, 597,
618, 737

ConfigureApiBehaviorOptions() method 279
ConfigureAppConfiguration() method 335,

337–339, 345, 356
ConfigureContainer() method 636–637
ConfigureHostingConfiguration() method 334
ConfigureLogging() method 334, 554, 561,

566

ConfigureServices() method 43, 45, 67, 104, 107,
262, 302, 306, 310, 339–340, 377, 482, 487,
658, 663, 676, 693, 698, 742

ConfigureWebHost() method 737
ConfigureWebHostDefaults() method 41
conneg (content negotiation) 281
ConsumesAttribute 417
Content() method 653
content delivery networks (CDNs), serving com-

mon files from 533–534
content negotiation 284–285
ContentResult 117
ContentRootPath property 47
Content.SetHtmlContent() 645
Content-Type header 281, 612
context.ActionArgument 422
context.Database.Migrate() 381
context.Fail() method 490
context.Result property 418, 429
context.Succeed() 489
continuous delivery/deployment (CD) 510
continuous integration (CI) 510
[controller] token 274
ControllerBase class 263–264, 268, 422, 602,

652, 734
Controller base class 145, 217, 263
Controller component 95, 157
convention-based routing 130–132
CORS (cross-origin resource sharing) 573,

593–601
adding global policy to whole app

596–598
adding to specific Web API actions with

EnableCorsAttribute 598–599
configuring policies 599–601
overview 594–596

CorsMiddleware 597
CorsPolicyBuilder 600
coupling 298
CreateApplicationBuilder() 623
Create command 391
CreateDefaultBuilder() method 40–41, 333–335,

553–554, 561, 566
CreateHostBuilder 338, 557
CreateInstance() 433
CreateLogger() 543, 550
Critical log level 548
cross-origin resource sharing. See CORS
cross-site scripting (XSS) attacks 584–588
CRUD (create, read, update, and delete)

365
.cshtml.cs file (code-behind) 194–195
.csproj project file 37–39
CSRF (cross-site request forgery) attacks 234,

588–593

INDEX 787
custom components 609–639
complex configuration requirements 629–635

partially building configuration to configure
additional providers 630–632

using services to configure IOptions 632–635
endpoints 621–629

applying authorization 627–629
creating component 622–625
creating simple endpoints 625–627

middleware pipeline 610–621
adding to pipeline 616–618
branching middleware pipelines 612–615
building custom component 619–621
creating simple endpoints 611–612

third-party DI container 635–638

D

data-* attributes 231
DataAnnotations attributes 228–229, 237, 376,

395, 659
FluentValidation vs. 660–663
model validation 176–178

database context 371
database providers 369, 380
databases

building data model 375–377
choosing provider 373–375
mapping to app code 370–372
migrations 378–384

adding 382–384
creating 379–382

querying data from and saving data to 384–394
creating records 385–387
loading list of records 387–389
loading single record 389–390
updating model with changes 390–394

registering data context 377–378
DataContext 319–324
data-val-* attribute 238, 240, 245
DbContext 371–372, 376, 451, 453, 695, 706
DbContextOptionsBuilder 377
DbContextOptions object 748
DbContext.Remove(entity) command 393
Debug configuration 508
Debug log level 548
decimal type 167
DelegatingHandler class 684
delete() method 394
DELETE request 150, 276, 591
DELETE verb 150, 275
deploying apps 503–536

ASP.NET Core hosting model 504–511
choosing deployment method 510–511
running vs. publishing 506–510

configuring URLs 522–524
hosting on Linux 517–522

preparing apps for deployment 520–522
running apps behind reverse proxy on

Linux 517–519
optimizing client-side assets 525–534

adding BundlerMinifier to apps 529–532
serving common files from CDNs 533–534
speeding up apps using bundling and

minification 527–529
using minified files in production with Envi-

ronment Tag Helper 532–533
publishing to IIS 511–517

configuring IIS for ASP.NET Core 512–514
preparing and publishing 514–517

design patterns 44
DeveloperExceptionPage 78–80
DeveloperExceptionPageMiddleware 47, 59,

78, 84
development environment 751–757

IDEs and editors 753–757
JetBrains Rider 755
Visual Studio 753–755
Visual Studio Code 756–757
Visual Studio for Mac 756

installing .NET SDK 752–753
DI (dependency injection) 292–329

benefits of 293–298
creating loosely coupled code 298–300
dependency injection containers 44, 296,

302–318
adding ASP.NET Core framework services

to 302–303
injecting services into action methods, page

handlers, and views 315–318
registering service multiple times 311–315
registering services using objects and

lambdas 307–311
registering services with 304–307
third-party 635–638

in ASP.NET Core 300–302
lifetimes 318–327

captured dependencies 324–327
scoped 322–323
singleton 323–324
transient 321–322

overview 292–302
using with filter attributes 431–433

dictionaries, binding 169–170
Dictionary<string, object> 422
directives 194
[DisableCors] attribute 599
DisableFormValueModelBindingAttribute 417
[Display] attribute 235
distributed apps, authentication for 442–446

INDEX788
domain model 100
dotnet add package command 636
dotnet build command 33, 507
dotnet command 508, 576, 752
dotnet <dll> syntax 509
dotnet ef command 454
dotnet ef database update command 382
dotnet ef migrations add command 383
dotnet new command 507
dotnet new web command 104, 134
dotnet new worker command 698
dotnet publish command 507, 517
dotnet restore command 32–33, 374, 449, 459,

507
dotnet run command 33–34, 107, 504, 507, 700,

705, 740
dotnet test command 716
dotnet tool 761
dynamic web pages 5, 199–206

adding loops and conditionals to Razor
templates 201–204

rendering HTML with Raw 204–206
using C# in Razor templates 200–201

E

EF Core (Entity Framework Core) 364–397
adding to apps 372–378

building data model 375–377
choosing database provider and

installing 373–375
registering data context 377–378

avoiding SQL injection attacks 603–604
defined 366–367
mapping database to app code 370–372
migrations 378–384

adding 382–384
creating 379–382

object-relational mappers 367–368
overview 366, 372
querying data from and saving data to

database 384–394
creating records 385–387
loading list of records 387–389
loading single record 389–390
updating model with changes 390–394

updating data model to support Identity
460–461

using in production apps 394–396
when to use 369–370

[EmailAddress] attribute 237, 642, 655
[EnableCors] attribute 596, 598
EnableCorsAttribute 598–599
EndpointMiddleware 60, 91, 104, 128, 133,

149–150, 262, 268, 405, 478, 482, 622

endpoint routing 126–130, 621–629
applying authorization 627–629
creating component 622–625
creating custom endpoints 625–627

EndpointRoutingMiddleware 127
entities 371
Entity Framework Core. See EF Core
EnvironmentName property 47, 355
Environment Tag Helper

using conditional markup with 251–252
using minified files in production with

532–533
EnvironmentTagHelper 252
environment variables 343–344
error handling 77–89

handling exceptions in production 80–84
status codes 84–88
viewing exceptions in development 78–80
Web APIs and 89

Error log level 547–548, 560
ETW (Event Tracing for Windows) 552
event category 546
EventId 547
EventLevel 565
exception filters 402, 423–425
ExceptionHandlerMiddleware 48, 59, 80–84, 86,

357
exceptions 547
extension methods 67

F

[Fact] attribute 719
Fact unit tests 724–726
Fail() method 490
feature toggle 417
FileResult 117
filter pipelines 398–435

adding filters 408–410
changing log verbosity with filtering 559–564
creating custom filters 413–429

action filters 419–423
authorization filters 415–416
exception filters 423–425
page filters 427–429
resource filters 416–418
result filters 425–427

creating simple filters 406–408
dependency injection with filter attributes

431–433
middleware vs. filters 404–406
MVC filter pipeline 401–402
order of filter execution 411–413

default scope execution order 411–412
overriding default order 412–413

INDEX 789
filter pipelines (continued)
Razor Pages filter pipeline 403–404
short-circuiting 429–431

float type 167
FluentValidation 659–665

adding to apps 663–665
DataAnnotations attributes vs. 660–663

for attribute 235–236, 238
foreach loop 192, 202, 311
foreign key 375
for loop 195, 201
<form> element 230, 233, 590
FormatFilterAttribute 425
forms, creating using Tag Helpers 228–248

Form Tag Helper 233–235
Input Tag Helper 236–240
Label Tag Helper 235–236
Select Tag Helper 240–245
Textarea Tag Helper 236–240
Validation Message Tag Helper 245–248
Validation Summary Tag Helper 245–248

Form Tag Helper 233–235
FormTagHelper 233
form values 162
ForwardedHeadersMiddleware 520–521,

584
[FromBody] attribute 173, 277–278
[FromForm] attribute 173
[FromHeader] attribute 173
[FromQuery] attribute 173
[FromRoute] attribute 173
[FromServices] attribute 173

injecting services directly into action
methods 315–317

injecting services directly into page
handlers 315, 317

FromSqlRaw() method 603

G

GetCurrentDirectory 334
GetLatestRates() method 679
GetPathByAction() method 148
GetPathByPage() method 148
GET request 54, 115–116, 150, 161, 263, 589,

591, 598
GetSection(section) method 340
GetService() method 309
GetService<T> () method 658
GetTypedHeaders() method 426
GetUriByPage() method 148
GET verb 54, 189, 275
GitHub repositories 779
global query filters 394
globbing patterns 531

H

{handler} route parameter 149
{handler} route value 404
HandleRequirementAsync() method 488, 496
handlers 484
handler value 149–150
headers 21
HeadersMiddleware class 620
HEAD verb 151
helper methods, creating ActionResult classes

using 119–120
hooks 400
HostBuilder 325, 333–334, 337–339, 345, 514,

520, 553–554, 561, 736–737
Host.CreateDefaultBuilder() method 333, 520
hosting apps

ASP.NET Core hosting model 504–511
choosing deployment method 510–511
running vs. publishing 506–510

on Linux 517–522
preparing apps for deployment 520–522
running app behind reverse proxy 517–519

HostingEnvironment 334
hostname 19
href attribute 248
HSTS (HTTP Strict Transport Security) 581
HstsMiddleware 48, 581–582
HTML

building, using view model 101
creating Markdown Tag Helper to convert

content to 647–649
generating with Razor Pages 51–53
rendering using Razor views 188–222

creating dynamic web pages 199–206
creating Razor views 193–199
layouts, partial views, and _ViewStart

206–215
views 189–193

rendering with Raw 204–206
HtmlEncoder 644
HtmlHelper() method 206
HTTP

calling HTTP APIs 668–674
handling HTTP verbs with attribute routing

274–276
handling transient HTTP errors with Polly

681–684
using typed clients to encapsulate HTTP

calls 679–681
HttpClient 737

calling HTTP APIs 668–674
creating with IHttpClientFactory 674–681

configuring named clients at registration
time 677–679

INDEX790
HttpClient (continued)
managing HttpClientHandler lifetime

674–677
using typed clients to encapsulate HTTP

calls 679–681
HttpClientHandler 674–677
HttpContext 22, 28, 50, 63, 128, 197, 405, 407,

418, 421, 438, 520, 612, 615, 622, 653, 729
HttpContext.User 438, 440–441, 455, 467, 475
HttpMessageHandler 684–686
HttpRequestException 683
HttpRequestMesssage 684
HTTPS 573–584

ASP.NET Core HTTPS development
certificates 576–578

configuring Kestrel with production HTTPS
certificate 579–580

enforcing for whole app 580–584
HTTPS redirection middleware 582–584
with HTTP Strict Transport Security

headers 581–582
HttpsRedirectionMiddleware 48, 582–583
HTTP Strict Transport Security headers 581–582

I

IActionFilter 420, 422
IActionResult 54, 116–117, 119, 259, 402, 405,

407, 418, 424–426, 429, 653
IApplicationBuilder 46, 67, 72–73, 611, 614, 623
IAsyncActionFilter 422
IAuthorizationRequirement 486–487
IAuthorizationService 493–495
IClassFixture 743
IConfiguration 339–341, 346–351, 356, 561,

629–630, 632
IConfigureOptions 629, 632–635
ICurrencyProvider 635, 658, 662
id attribute 238
IDE (integrated development environment) 752
Identity (ASP.NET Core Identity)

adding custom data to users 466–468
adding to existing projects 458–462

configuring services and middleware
459–460

updating EF Core data model to support
Identity 460–461

updating Razor views to link to Identity
UI 461–462

creating projects that use 448–458
data model 453–455
exploring templates in Solution

Explorer 450–453
from templates 448–450
interacting with Identity 455–458

customizing page in default UI 463–465
defined 446–448

IdentityDbContext 453, 460
identity provider 443
IdentityUser entity 452–453, 455, 466
IDEs and editors 753–757

JetBrains Rider 755
Visual Studio 753–755
Visual Studio Code 756–757
Visual Studio for Mac 756

IDisposable 669
IEndpointConventionBuilder 627
IEndpointRouteBuilder 624
IEnumerable 242–243
<if> element 646
if attribute 646
IFilterFactory 432–433
if loop 201–202
IFormFile, binding file uploads with 170–172
if statement 55, 201–202, 251, 500
IfTagHelper 646
IHost 39–43, 696–703, 736

creating worker service from templates
698–700

running worker service in production 700–703
IHostBuilder 40–43, 45, 47, 335, 554, 556, 630,

636, 700, 702
IHostBuilder.ConfigureLogging() method 553
IHostBuilder.ConfigureWebHostDefaults()

method 514
IHostedService, running background tasks

with 690–696
on timer 691–694
using scoped services 694–696

IHostEnvironment 355–358
IHostEnvironment.EnvironmentName

property 355
IHttpClientFactory 667, 699–700, 740

calling HTTP APIs 668–674
creating custom HttpMessageHandler 684–686
creating HttpClients with 674–681

configuring named clients at registration
time 677–679

using IHttpClientFactory to manage
HttpClientHandler lifetime 674–677

using typed clients to encapsulate HTTP
calls 679–681

handling transient HTTP errors with Polly
681–684

IIS (Internet Information Services), publishing
apps to 511–517

configuring IIS for ASP.NET Core 512–514
preparing and publishing 514–517

IJob 704, 706–707
IL (Intermediate Language) 13

INDEX 791
ILogger 543, 545, 547, 549–550, 554, 556, 558
ILoggerFactory 543, 550, 553, 556–559
ILoggerProvider 543, 545, 552, 556
 element 250
imperative authorization 493
implementation type 306
IMvcBuilder object 279, 283
Index() method 218, 263, 271
[index] 170
IndexModel 107, 546
Index Razor Page 249
Information log level 547–548, 560
information resources

announcement blog posts 777
ASP.NET Core blogs 779–780
ASP.NET Core GitHub repositories 779
books 776–777
Microsoft documentation 778
security-related links 778
tooling and services 779
video links 780–781

@inject directive 197, 318
[InlineData] attributes 726
<input> element 226, 231–232, 236
<input> type 239
input element 237
InputFormatter 173
input formatters 268
InputModel class 185
Input property 116, 179, 229
Input Tag Helper 236–240
insecure direct object references 605
INSERT statement 387
integration testing 734–744

creating TestServer using Test Host
package 735–738

reducing duplication by creating custom
WebApplicationFactory 742–744

replacing dependencies in
WebApplicationFactory 740–742

testing apps with WebApplicationFactory
738–740

int parameter 166
int type 167, 759
Invoke() method 619–620
InvokeAsync() method 652–653
IOptions interface

binding without 353–354
overview 349–350
using services to configure with

IConfigureOptions 632–635
IOptionsSnapshot 350–351
IOrderedFilter 412–413
IOutputFormatter 282, 284
IPageFilter 428

IQueryable 387
IResourceFilter 406
IResultFilter 420
IsDeleted flag 394
IServiceCollection 45, 705
IServiceProvider 309, 695
IServiceProvider.CreateScope() method 695
IsValid() method 182, 656–657
IUrlHelper 144–148
IWebHostEnvironment 46–47, 358

J

JetBrains Rider 755
jobs, in Quartz.net 704
JWT (JSON Web Tokens) 684

K

Kestrel 579–580
key files 592

L

<label> element 235
Label Tag Helper 235–236
Language Integrated Query (LINQ) 13
Last-Modified header 426
layouts 53

overriding parent layouts using sections
209–211

using for shared markup 207–209
 element 196
lifetime of services 318–327

captured dependencies 324–327
scoped 322–323
singleton 323–324
transient 321–322

<link> element 250
LinkGenerator class 147–148
LINQ (Language Integrated Query) 13
Linux, hosting apps on 517–522

preparing apps for deployment 520–522
running app behind reverse proxy on

Linux 517–519
List<string> type 169
LocalRedirect() method 602
Log() method 543
logging 539–571

adding log messages to apps 545–551
formatting messages and capturing parameter

values 550–551
log category 549–550
log level 547–548

changing log verbosity with filtering 559–564

INDEX792
logging (continued)
logging providers 552–559

adding to apps 553–555
replacing default ILoggerFactory with

Serilog 556–559
structured logging 564–570

adding to apps 565–568
using scopes to add additional properties to

logs 568–570
using effectively in production apps 541–544

ASP.NET Core logging abstractions 543–544
custom log messages 542–543

LogInformation() method 546, 548
log level 546–547
LogWarning() method 548
loops, adding to Razor templates 201–204
loosely coupled code, creating 298–300
LTS (Long Term Support) 12, 17, 763

M

Main() method 40
Main entry point 39
managed app pool 512
Map() method 613, 621, 624, 626
MapControllers() 262
Map extension, branching middleware pipelines

with 612–615
MapGet() method 127, 625–627
Map middleware 614
MapPost() method 626
MapPut() method 626
MapRazorPages 50, 104, 107, 127, 132
<markdown> element 647–648
Markdown Tag Helper 647–649
[MemberData] attribute 726
metadata 176
method attribute 233
method parameters, simplifying by binding to

complex objects 168–169
Microsoft

announcement blog posts 777
documentation 778

middleware 58–90
combining in pipeline 64–76

holding pages 65–68
Razor Pages app 72–76
static files 68–71

custom pipeline components 610–621
adding to pipeline 616–618
branching middleware pipelines 612–615
building 619–621
creating simple endpoints 611–612

defined 60–64
defining how requests are handled with 45–50

error handling 77–89
handling exceptions in production 80–84
status codes 84–88
viewing exceptions in development 78–80
Web APIs and 89

filters vs. 404–406
HTTPS redirection 582–584
unit testing 728–731

migrations 378–384
adding 382–384
creating 379–382

minification
adding BundlerMinifier to apps 529–532
optimizing client-side assets using 525, 533–534
speeding up apps using 527–529
using minified files in production with Environ-

ment Tag Helper 532–533
[ModelBinder] attribute 174
ModelBinders 172
model binding 94, 115, 161
Model component 95, 157
@model directive 52, 194, 197–198, 219, 465
Model property 198, 219
ModelStateDictionary object 178
ModelState.IsValid property 733
ModelState property 116, 159, 178–179, 268, 733
model validation, handling user input with

174–184
need for validation 174–176
using DataAnnotations attributes 176–178
validating on client for user experience 182–184
validating on server for safety 178–182

Model-View-View Model (MVVM) 97
multiple method parameter 166
MultiValues 242
Must() method 661
MVC design pattern 94–97

applying to Razor Pages 97–104
building HTML using view model 101
complete request 102–104
directing requests to Razor Page and building

binding model 99–100
executing handler using app model 100–101

applying to Web API 266–270
compared to Razor Pages 107–113

MVC controllers 108–110, 112–113
Razor Pages 110–112

creating Web APIs using 255–287
applying MVC design pattern 266–270
attribute routing 270–276
creating projects 259–266
generating response from model 280–285
overview 256–259
using common conventions with

[ApiController] attribute 276–280

INDEX 793
MVC design pattern (continued)
generating URLs from route parameters for

MVC controller 145–146
models in 157–160
selecting views from MVC controllers 215–221

MVC filter pipeline 401–402
MVVM (Model-View-View Model) 97

N

nameof operator 146, 349, 422
.NET 5.0

as step in One .NET vision 762–763
evolution of .NET into 759–764

.NET 6.0 763–764

.NET Core
.NET platforms that prompted 759–760
overview 761–762

.NET ecosystem 758–775
evolution of .NET into .NET 5.0 759–764
future of .NET Standard 773–774
sharing code between projects 764–773

.NET Framework developers
experienced, creating new apps 14–18
new 12–14

.NET SDK 752–753

.NET Standard 766–771
future of 773–774
.NET Standard 2.0 support with compatibility

shim 772–773
No Managed Code pool 512
NotEmpty() method 660
NotFound() method 119
NotFoundResult 119, 266
NullReferenceException 77

O

ObjectInstance property 657
object-relational mappers (ORMs) 367–368
Ok() method 264
OkObjectResult 426
OkResult 266, 281
OnActionExecuted() method 420, 423
OnActionExecuting() method 421
OnActionExecuting ControllerBase()

method 423
OnConfiguring() method 378
One .NET vision 762–763
OnGet() handler 54–55, 94, 99, 107, 116, 140,

149–150, 165, 186, 275, 546
OnHead() handler 151
OnPageHandlerExecuting() method 428
OnPost() handler 116, 162, 179, 186, 275,

466

OnPostAsync() handler 149–150
OnPostCustomSearch() handler 149–150
OnResourceExecuted() method 406
OnResourceExecuting() method 406
OnResultExecuted() method 426
OpenReadStream() method 171
open redirect attacks 601–603
<optgroup> element 243–244
<option> element 242
Options object 280, 340
Options pattern, strongly typed configuration

with 347–354
binding without IOptions interface 353–354
designing options classes for automatic

binding 351–353
IOptions interface 349–350
reloading strongly typed options 350–351

OPTIONS verb 275, 595
Order property 412, 647
origins 593
ORMs (object-relational mappers) 367–368
output formatters 270, 283

P

PaaS (Platform as a Service) 506
PackageReference element 33, 374
Page() method 94, 119, 145–147
page-based websites 93
@page directive 51–53, 136–138, 142, 153, 166,

194, 198, 270
page filters 427–429
page handlers 189, 465

handling request logic with 53–55
injecting services directly into 315–317
Razor Pages and 113–120

accepting parameters to page handlers
115–117

returning responses with ActionResults
117–120

selecting to invoke 149–151
PageHandlerSelected() method 412
Page helper() method 179
PageModel 52–55, 93, 96, 98–99, 101, 108, 116,

119, 133, 144, 156, 159–161, 168, 178, 185,
188, 191, 194, 196, 198, 201, 212, 227, 229,
234–236, 241–242, 268–269, 317–318, 348,
409, 465, 481, 499–500, 602, 642, 665, 731,
733

page model 160
PageResponseCacheFilter 427
PageResult 114, 118–119, 179, 217
@page statement 136
parameterization 603–604
<partial /> Tag Helper 212

INDEX794
partial views
adding logic to 649–654
encapsulating markup with 211–213

password protection 605–606
path 19, 21
PathBase 615
Path property 615
PCLs (Portable Class Libraries) 759, 764–766
pipeline 12, 60
Platform as a Service (PaaS) 506
PMC (Package Manager Console) 379
policies, authorization

custom 484–491
overview 481–484
requirements and handlers 484–491

creating authorization handlers to satisfy
requirements 488–491

creating IAuthorizationRequirement to
represent requirement 486–487

creating policy with multiple
requirements 487–488

policyBuilder 482
Polly, handling transient HTTP errors with

681–684
Portable Class Libraries (PCLs) 759, 764–766
POST request 116, 150, 161–162, 184, 588, 591
POST verb 54, 189, 233, 275
primary key 375
ProblemDetails object 256, 265, 277–278, 424
Process() method 643–644, 646
ProcessAsync() method 643
ProducesAttribute 425
production apps

using EF Core in 394–396
using logging effectively in 541–544

ASP.NET Core logging abstractions
543–544

custom log messages 542–543
Program class 39–42, 719, 736
Program.CreateHostBuilder() method 739
Program.cs 338–340, 698
publish command 516
PUT request 161

Q

Quartz.NET, coordinating background tasks
using 703–711

configuring job to run on schedule
706–708

installing Quartz.NET 704–705
using clustering to add redundancy to back-

ground tasks 708–711
{query} route parameter 160
query string values 162

R

Raw, rendering HTML with 204–206
Razor Pages 50–121

adding filters to 408–410
adding to apps 104–107
customizing conventions with 151–153
customizing model binding with page

filters 427–429
generating HTML 51–53
generating URLs from route parameters

144–145
handling request logic with PageModels and

handlers 53–55
models in 157–160
MVC design pattern

applying to Razor Pages 97–104
compared to Razor Pages 107–113
overview 94, 97

organizing binding models in 184–186
overview 93–94
page handlers and 113–120

accepting parameters to page handlers
115–117

returning responses with ActionResults
117–120

route templates
adding additional constraints to

parameters 139–142
adding segments to template 136–137
customizing 134–138
matching arbitrary URLs with catch-all

parameter 142–143
optional and default values 138–139
replacing template completely 137–138
syntax 138–143

routing to 132–134
Razor Pages filter pipeline 403–404
Razor templates 195–196

adding loops and conditionals to 201–204
hiding elements from unauthorized users

498–501
using C# in 200–201

Razor views 188–222
creating 193–199

code-behind 194–195
passing data to views 197–199
Razor templates 195–196

creating dynamic web pages 199–206
adding loops and conditionals to Razor

templates 201–204
rendering HTML with Raw 204–206
using C# in Razor templates 200–201

encapsulating markup with partial views
211–213

INDEX 795
Razor views (continued)
importing common directives 213–214
layouts

overriding parent layouts using sections
209–211

using for shared markup 207–209
running code for every view 214–215
selecting views from MVC controllers

215–221
updating to link to Identity UI 461–462
views 189–193

RDD (runtime-dependent deployments) 509
ReadFromJsonAsync() method 627
RedirectResult 117
RedirectToAction 147
RedirectToPage() method 116, 119, 146–147,

179
RedirectToPageResult 118–119, 179
reflection 43
registration 300
[RegularExpresssion] attribute 655
Release configuration 508
@RenderBody() method 208–209
@RenderSection() method 210
Replace() method 314
Repository 319–322, 324
RequestDelegate 619, 729–730
Request.Scheme 520
RequestServices.GetService() 421
RequireAssertion() method 484
RequireAuthorization() method 627–628
RequireAuthorization(policy) 628
RequireClaim() method 483
RequireCors(policy) method 628
[Required] attribute 179, 642, 655
RequireHost(hosts) method 628
resource-based authorization 492–498

creating resource-based
AuthorizationHandler 495–498

manually authorizing requests with
IAuthorizationService 493–495

ResourceExecutedContext method 407
resource filters 416–418
Response.Body object 730
ResponseCacheFilter 419, 427
REST (representational state transfer) 10
ResultFilterAttribute class 426
result filters 425–427
Result property 421
return Page() 94
return statement 94
reverse proxy 23, 505, 520
[Route] attributes 130, 271–272, 275
RouteAttribute 271, 273
RouteOptions object 151

route parameter 135–136
route templates 128, 132
route values 136, 143, 162
routing 122–155

convention-based routing vs. attribute
routing 130–132

customizing conventions with Razor Pages
151–153

customizing Razor Page route templates
134–138

adding segments to template 136–137
replacing template completely 137–138

defined 123–126
endpoint routing 127–130
generating URLs from route parameters

143–149
for MVC controllers 145–146
for Razor Pages 144–145
from other parts of app 147–149
with ActionResults 146–147

in ASP.NET Core 126–134
selecting page handler to invoke 149–151
template syntax 138–143

adding additional constraints to
parameters 139–142

matching arbitrary URLs with catch-all
parameter 142–143

optional and default values 138–139
to Razor Pages 132–134

RoutingMiddleware 127–128, 133, 262, 268, 477,
622

RuleFor() method 660
Run() method 42
Run extension 611–612
Run method 611–612, 621
runtime-dependent deployments (RDD)

509

S

same-origin policy 593
SaveChanges() method 392
SaveChangesAsync() method 386, 392
scaffolding 463
SCD (self-contained deployments) 509
schema 378
scoped services 322–323, 694–696
scopes, using to add additional properties to

logs 568–570
<script> element 250, 585
Scripts section 210
Sdk attribute 38
search parameter 604
secrets 331
@section 209–210

INDEX796
security 572–608
cross-origin resource sharing 593–601

adding global policy to whole app 596–598
adding to specific Web API actions with

EnableCorsAttribute 598–599
configuring policies 599–601
overview 594–596

cross-site request forgery attacks 588–593
cross-site scripting attacks 584–588
HTTPS 573–584

ASP.NET Core HTTPS development
certificates 576–578

configuring Kestrel with production HTTPS
certificate 579–580

enforcing for whole app 580–584
insecure direct object references 605
open redirect attacks 601–603
protecting user passwords and data 605–606
security-related links 778
SQL injection attacks 603–604

security headers 580
seed data 396
Select() method 387
<select> element 242, 244
SelectListGroup 243
SelectListItem object 243
Select method 389
Select Tag Helper 240–245
SendAsync() method 684
Serilog 556–559
service configuration 302–318

adding ASP.NET Core framework services to
container 302–303

injecting services directly into action
methods 315–317

injecting services directly into page
handlers 315–317

injecting services into view templates 317–318
registering service multiple times 311–315

conditionally registering services 314–315
injecting multiple implementations of

interface 311–313
injecting single implementation when multi-

ple services are registered 313–314
registering services using objects and

lambdas 307–311
registering services with container 304–307

ServiceFilterAttribute 431, 433
service registration 42
ServiceRegistry 637
services.Configure<T>() method 632, 634
short-circuiting

action methods with resource filters
416–418

filter pipelines 429–431

Sidebar 209–210
SignInAsync 467
SignInManager service 440
single method parameter 166
SingleOrDefaultAsync() clause 389
single-page applications (SPAs) 10, 29, 92–93,

256
singleton services 323–324
Solution Explorer 450–453
 element 230–231, 245
SPAs (single-page applications) 10, 29, 92–93,

256
SQL injection attacks with Entity Framework

Core (EF Core) and parameterization
603–604

SqlLiteConnection 747
SRP (single responsibility principle) 44, 294, 659
StartAsync() method 691, 737
Startup class 42, 65, 67, 302, 339, 345, 349, 381,

637, 663, 739
adding and configuring services 44–45
defining how requests are handled with

middleware 45–50
Startup.Configure() method 620–621, 625, 737
Startup.ConfigureServices() method 596, 632,

741, 745
StaticFileMiddleware 49, 68, 70, 130, 627
static void main() method 39
static void Main function 504
static void main method 719
StatusCodePagesMiddleware 84–88
StatusCodeResult 119, 259, 266, 281, 424
StatusMiddleware 729, 735, 737, 739
StreamReader 730
string array 283
string columns 395
string keys 197, 340, 347, 353, 629
[StringLength(min, max)] attribute 655
string type 167, 657, 759
strongly typed configuration 347–354

binding without IOptions interface 353–354
designing options classes for automatic

binding 351–353
IOptions interface 349–350
reloading strongly typed options with

IOptionsSnapshot 350–351
structured logging 564–570

adding to apps 565–568
using scopes to add additional properties to

logs 568–570
Succeed() method 489–490, 496
support tracks 763
SuppressOutput() method 647
<system-info> element 642, 644
SystemInfoTagHelper 643

INDEX 797
T

TagHelper class 643
TagHelperOutput 645
Tag Helpers 189, 223–254

cache-busting with Append Version Tag
Helper 250–251

catering to editors with 225–228
creating forms using 228–248

Form Tag Helper 233–235
Input Tag Helper 236–240
Label Tag Helper 235–236
Select Tag Helper 240–245
Textarea Tag Helper 236–240
Validation Message Tag Helper 245–248
Validation Summary Tag Helper 245–248

custom Razor Tag Helpers 641–649
creating to conditionally hide elements

645–647
creating to convert Markdown to HTML

647–649
printing environment information 642–645

generating links with Anchor Tag Helper
248–250

using conditional markup with Environment
Tag Helper 251–252

using minified files in production with
Environment Tag Helper 532–533

TargetFramework element 38
Tasks 201–202, 692
task variable 204
Test Host package 735–738
testing apps 714–750

in ASP.NET Core 716–717
integration testing 734–744

creating TestServer using Test Host
package 735–738

reducing duplication by creating custom
WebappFactory 742–744

replacing dependencies in
WebappFactory 740–742

testing apps with WebappFactory 738–740
isolating database with in-memory EF Core

provider 744–748
unit testing API controllers 731–734
unit testing custom middleware 728–731
unit testing with xUnit 717–728

adding Fact and Theory unit tests 724–726
creating test projects 718–719
referencing app from test project 721–724
running tests with dotnet test 720–721
testing failure conditions 727–728

TestServer, creating using Test Host package
735–738

Textarea Tag Helper 236–240

Theory unit tests 724–726
Timestamp columns 395
ToListAsync() command 388
ToString() method 281, 569
Trace log level 548
transient services 321–322
TryAdd, conditionally registering services

using 314–315
TryAddScoped 314
try-catch block 424
try-catch-finally block 557
two-factor authentication (2FA) 445
TypeFilterAttribute 431–433

U

unit testing
API controllers 731–734
custom middleware 728–731
with xUnit 717–728

adding Fact and Theory unit tests 724–726
creating test projects 718–719
referencing app from test project 721, 724
running tests with dotnet test 720–721
testing failure conditions 727–728

UpdateExchangeRatesJob 707
Url helper 144–145
Url.IsLocalUrl() method 602
Url.Page() method 146
Url property 144, 146
URLs

configuring 522–524
generating from route parameters 143–149

for MVC controllers 145–146
for Razor Pages 144–145
from other parts of app 147–149
with ActionResults 146–147

linking action methods to 270–276
combining route attributes 272–274
handling HTTP verbs 274–276
using token replacement to reduce

duplication 274
matching arbitrary URLs with catch-all

parameter 142–143
--urls parameter 524
Use* method 378
UseAuthentication() 453, 476, 597
UseAuthorization() 452–453, 460, 476, 621
UseContentRoot 334
UseCors() 597, 599
UseEndpoints() method 75, 127, 262
UseEndpoints method 452, 476, 597, 623–625
Use extension, adding to middleware pipeline

with 67, 73, 616–618
UseHsts() method 584

INDEX798
UseHttpsRedirection() method 584
UseIIS() method 514, 521
UseIISIntegration() method 514, 520, 584
Use method 616–617, 619
user input, handling with model validation

174–184
need for validation 174–176
using DataAnnotations attributes 176, 178
validating on client for user experience

182–184
validating on server for safety 178–182

UserManager.AddClaimAsync() method 466
UseRouting() 452, 460, 476, 597
User property 438, 489
User Secrets Manager 344–346
UseSerilog() method 556
UseSqlite() method 747
UseSqlServer method 377
UseStartup<>() method 40
UseStatusCodePages 86
UseSystemd() method 700, 702
UseTestServer() method 737
UseWelcomePage() method 67
UseWindowsService() method 701–702
@using directive 214
UWP (Universal Windows Platform) 759, 765

V

[ValidateAntiForgeryToken] attributes 591
ValidateScopes option 325
ValidationAttribute 655–656
validation attributes 654–659
ValidationContext 657–658
validation framework, replacing with

FluentValidation 659–665
adding to apps 663–665
DataAnnotations attributes vs. 660–663

Validation Message Tag Helper 245–248
ValidationProblemDetails object 277–278
ValidationSummary enum value 246
Validation Summary Tag Helper 245–248
Value attribute 244
verbs 574
video links 780–781
View() method 653
View component 95, 157
[ViewComponent] attribute 653
ViewComponent class 652
ViewData 53, 197–199, 208
_ViewImports 213–214
View method 547
view model, building HTML using 101
view rendering 650
ViewResult 117, 216, 218–219, 259

views
overview 189–193
passing data to 197–199
selecting views from MVC controllers

215–221
_ViewStart 214–215
view templates, injecting services into 317–318
Visual Studio 753–755
Visual Studio Code 756–757
Visual Studio for Mac 756
void() method 94, 107

W

Warning log level 547–548, 560
WCF (Windows Communication Foundation) 18
Web APIs 255–287

applying MVC design pattern to 266–270
attribute routing 270–276

combining route attributes 272–274
handling HTTP verbs with 274–276
using token replacement to reduce duplica-

tion in 274
creating projects 259–266
error handling middleware and 89
generating response from model 280–285

adding XML support 282–284
choosing response format with content

negotiation 284–285
overview 256–259
using common conventions with

[ApiController] attribute 276–280
WebappFactory

reducing duplication by creating custom
742–744

replacing dependencies in 740–742
testing apps with 738–740

WebApplicationFactory 738–741
web frameworks 5
WebHostBuilder object 41
web requests

complete Razor Page request 102–104
defining how requests are handled with

middleware 45–50
directing to Razor Pages 99–100
generating responses 50–55

generating HTML 51–53
handling request logic 53–55

handling with middleware pipeline 58–90
combining in pipeline 64–76
defined 60–64
error handling 77–89

inner workings of 19–21
making useful through binding model 160–174
processing 21–23

INDEX 799
web requests (continued)
returning responses with ActionResults 117–120

creating ActionResult classes using helper
methods 119–120

NotFoundResult 119
PageResult 118–119
RedirectToPageResult 118–119
StatusCodeResult 119

WebRootPath property 47, 358
WelcomePageMiddleware 65, 75
Where() clause 387, 394
Windows Communication Foundation (WCF) 18
WithDisplayName(name) method 628
WithMetadata(items) method 629
WithOrigins() method 600
WithWebHostBuilder 741
WithWebHostBuilder() 742, 744
Worker.cs 698

worker services 696–703
creating from templates 698–700
running in production 700–703

workloads 754
WriteAsJsonAsync 627
WriteJsonAsync, creating simple endpoints

with 625–627

X

XML support 282–284
XSS (cross-site scripting) attacks 584–588
xUnit 717–728

adding Fact and Theory unit tests 724–726
creating test projects 718–719
referencing app from test project 721, 724
running tests with dotnet test 720–721
testing failure conditions 727–728

For ordering information go to www.manning.com

RELATED MANNING TITLES

Entity Framework Core in Action, 2nd Ed.
by Jon P Smith

ISBN 9781617298363
575 pages (estimated), $59.99
Summer 2021 (estimated)

Code like a Pro in C#
by Jort Rodenburg

ISBN 9781617298028
425 pages (estimated), $59.99
Summer 2021 (estimated)

Learn Docker in a Month of Lunches
by Elton Stoneman

ISBN 9781617297052
464 pages, $49.99
June 2020

Useful .NET CLI (dotnet) Commands. Use --help to see all the optional arguments

Command Run from Description

dotnet restore Solution folder Restores the NuGet packages for all the projects in the
solution.

dotnet build Solution folder Builds all the projects in the solution. To build in
Release mode, use the -c switch.

dotnet run Project folder Runs the project in the current folder. Use during devel-
opment to run your app.

dotnet publish -c
Release –o <Folder>

Project folder Publishes the project to the provided folder. This copies
all the required files to the provided output folder, so it
can be deployed.

dotnet test Solution folder Restores packages, builds, and executes any unit tests
found in the solution. Requires the .NET Test SDK and a
testing framework adapter (see chapter 28).

dotnet add package
<Name>

Project folder Install the NuGet package with the provided name into
the current project. Optionally specify a package ver-
sion, for example -v 2.1.0.

dotnet new --list Anywhere View all the installed templates for creating ASP.NET
Core apps, libraries, test projects, solution files, and
many more.

dotnet new --install
<PackageName>

Anywhere Installs a new template from the provided NuGet pack-
age name. For example, dotnet new --install
"NetEscapades.Templates::*".

dotnet new <Template>
–o <Folder> -n
<NewName>

Anywhere, empty folder
for new projects

Create a new item from the provided template, specify-
ing the folder in which to place the item, and the name
for the item.

dotnet –-info Anywhere Displays information about the .NET Core SDKs and run-
times installed on your machine.

dotnet ef add
migrations <Name>

Project folder Adds a new EF Core migration to the project with the
provided name. Requires the EF Core global tool (see
Chapter 12).

dotnet ef database
update

Project folder Apply pending EF Core migrations to a database. Warn-
ing – this will modify your database!

Andrew Lock

ISBN: 978-1-61729-830-1

B
uild full-stack web applications that run anywhere.
Developers love ASP.NET Core for its libraries and
pre-built components that maximize productivity.

Version 5.0 offers new features for server-side apps, as well
as background services for cross-platform development.

ASP.NET Core in Action, Second Edition is a comprehensive guide
to creating web applications with ASP.NET Core 5.0. Go from
basic HTTP concepts to advanced framework customization.
Illustrations and annotated code make learning visual and
easy. Master logins, dependency injection, security, and more.
This updated edition covers the latest features, including
Razor Pages and the new hosting paradigm.

What’s Inside
● Developing apps for Windows and non-Windows servers
● Confi guring applications
● Building custom components
● Logging, testing, and security

For intermediate C# developers.

Andrew Lock is a Microsoft MVP who has worked with
ASP.NET Core since before its fi rst release.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$69.99 / Can $92.99 [INCLUDING eBOOK]

ASP.NET Core IN ACTION Second Edition

WEB DEVELOPMENT/ASP.NET

M A N N I N G

“One of the greatest and
most complete books about

 ASP.NET Core!”—Delcoigne Vincent, Wavenet

“Fantastic book. The topics
are explained clearly and

thoroughly.”—Luis Moux, EMO

“A comprehensive reference
 for ASP.NET Core.”—Jean-François Morin

Laval University

“The most comprehensive
ASP.NET Core book on the
market. It covers just about

everything you need to
learn to quickly become
productive in the often

confusing and fast-changing
world of .NET Core.”—Filip Wojcieszyn

Sonova AG

See first page

	ASP.NET Core in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—Getting started with ASP.NET Core
	1 Getting started with ASP.NET Core
	1.1 An introduction to ASP.NET Core
	1.1.1 Using a web framework
	1.1.2 What is ASP.NET Core?

	1.2 When to choose ASP.NET Core
	1.2.1 What type of applications can you build?
	1.2.2 If you’re new to .NET development
	1.2.3 If you’re a .NET Framework developer creating a new application
	1.2.4 Converting an existing ASP.NET application to ASP.NET Core

	1.3 How does ASP.NET Core work?
	1.3.1 How does an HTTP web request work?
	1.3.2 How does ASP.NET Core process a request?

	1.4 What you will learn in this book
	Summary

	2 Your first application
	2.1 A brief overview of an ASP.NET Core application
	2.2 Creating your first ASP.NET Core application
	2.2.1 Using a template to get started
	2.2.2 Building the application

	2.3 Running the web application
	2.4 Understanding the project layout
	2.5 The .csproj project file: Defining your dependencies
	2.6 The Program class: Building a web host
	2.7 The Startup class: Configuring your application
	2.7.1 Adding and configuring services
	2.7.2 Defining how requests are handled with middleware

	2.8 Generating responses with Razor Pages
	2.8.1 Generating HTML with Razor Pages
	2.8.2 Handling request logic with PageModels and handlers

	Summary

	3 Handling requests with the middleware pipeline
	3.1 What is middleware?
	3.2 Combining middleware in a pipeline
	3.2.1 Simple pipeline scenario 1: A holding page
	3.2.2 Simple pipeline scenario 2: Handling static files
	3.2.3 Simple pipeline scenario 3: A Razor Pages application

	3.3 Handling errors using middleware
	3.3.1 Viewing exceptions in development: DeveloperExceptionPage
	3.3.2 Handling exceptions in production: ExceptionHandlerMiddleware
	3.3.3 Handling other errors: StatusCodePagesMiddleware
	3.3.4 Error handling middleware and Web APIs

	Summary

	4 Creating a website with Razor Pages
	4.1 An introduction to Razor Pages
	4.1.1 Exploring a typical Razor Page
	4.1.2 The MVC design pattern
	4.1.3 Applying the MVC design pattern to Razor Pages
	4.1.4 Adding Razor Pages to your application

	4.2 Razor Pages vs. MVC in ASP.NET Core
	4.2.1 MVC controllers in ASP.NET Core
	4.2.2 The benefits of Razor Pages
	4.2.3 When to choose MVC controllers over Razor Pages

	4.3 Razor Pages and page handlers
	4.3.1 Accepting parameters to page handlers
	4.3.2 Returning responses with ActionResults

	Summary

	5 Mapping URLs to Razor Pages using routing
	5.1 What is routing?
	5.2 Routing in ASP.NET Core
	5.2.1 Using endpoint routing in ASP.NET Core
	5.2.2 Convention-based routing vs. attribute routing
	5.2.3 Routing to Razor Pages

	5.3 Customizing Razor Page route templates
	5.3.1 Adding a segment to a Razor Page route template
	5.3.2 Replacing a Razor Page route template completely

	5.4 Exploring the route template syntax
	5.4.1 Using optional and default values
	5.4.2 Adding additional constraints to route parameters
	5.4.3 Matching arbitrary URLs with the catch-all parameter

	5.5 Generating URLs from route parameters
	5.5.1 Generating URLs for a Razor Page
	5.5.2 Generating URLs for an MVC controller
	5.5.3 Generating URLs with ActionResults
	5.5.4 Generating URLs from other parts of your application

	5.6 Selecting a page handler to invoke
	5.7 Customizing conventions with Razor Pages
	Summary

	6 The binding model: Retrieving and validating user input
	6.1 Understanding the models in Razor Pages and MVC
	6.2 From request to model: Making the request useful
	6.2.1 Binding simple types
	6.2.2 Binding complex types
	6.2.3 Choosing a binding source

	6.3 Handling user input with model validation
	6.3.1 The need for validation
	6.3.2 Using DataAnnotations attributes for validation
	6.3.3 Validating on the server for safety
	6.3.4 Validating on the client for user experience

	6.4 Organizing your binding models in Razor Pages
	Summary

	7 Rendering HTML using Razor views
	7.1 Views: Rendering the user interface
	7.2 Creating Razor views
	7.2.1 Razor views and code-behind
	7.2.2 Introducing Razor templates
	7.2.3 Passing data to views

	7.3 Creating dynamic web pages with Razor
	7.3.1 Using C# in Razor templates
	7.3.2 Adding loops and conditionals to Razor templates
	7.3.3 Rendering HTML with Raw

	7.4 Layouts, partial views, and _ViewStart
	7.4.1 Using layouts for shared markup
	7.4.2 Overriding parent layouts using sections
	7.4.3 Using partial views to encapsulate markup
	7.4.4 Running code on every view with _ViewStart and _ViewImports

	7.5 Selecting a view from an MVC controller
	Summary

	8 Building forms with Tag Helpers
	8.1 Catering to editors with Tag Helpers
	8.2 Creating forms using Tag Helpers
	8.2.1 The Form Tag Helper
	8.2.2 The Label Tag Helper
	8.2.3 The Input and Textarea Tag Helpers
	8.2.4 The Select Tag Helper
	8.2.5 The Validation Message and Validation Summary Tag Helpers

	8.3 Generating links with the Anchor Tag Helper
	8.4 Cache-busting with the Append Version Tag Helper
	8.5 Using conditional markup with the Environment Tag Helper
	Summary

	9 Creating a Web API for mobile and client applications using MVC
	9.1 What is a Web API and when should you use one?
	9.2 Creating your first Web API project
	9.3 Applying the MVC design pattern to a Web API
	9.4 Attribute routing: Linking action methods to URLs
	9.4.1 Combining route attributes to keep your route templates DRY
	9.4.2 Using token replacement to reduce duplication in attribute routing
	9.4.3 Handling HTTP verbs with attribute routing

	9.5 Using common conventions with the [ApiController] attribute
	9.6 Generating a response from a model
	9.6.1 Customizing the default formatters: Adding XML support
	9.6.2 Choosing a response format with content negotiation

	Summary

	Part 2—Building complete applications
	10 Service configuration with dependency injection
	10.1 Introduction to dependency injection
	10.1.1 Understanding the benefits of dependency injection
	10.1.2 Creating loosely coupled code
	10.1.3 Dependency injection in ASP.NET Core

	10.2 Using the dependency injection container
	10.2.1 Adding ASP.NET Core framework services to the container
	10.2.2 Registering your own services with the container
	10.2.3 Registering services using objects and lambdas
	10.2.4 Registering a service in the container multiple times
	10.2.5 Injecting services into action methods, page handlers, and views

	10.3 Understanding lifetimes: When are services created?
	10.3.1 Transient: Everyone is unique
	10.3.2 Scoped: Let’s stick together
	10.3.3 Singleton: There can be only one
	10.3.4 Keeping an eye out for captured dependencies

	Summary

	11 Configuring an ASP.NET Core application
	11.1 Introducing the ASP.NET Core configuration model
	11.2 Configuring your application with CreateDefaultBuilder
	11.3 Building a configuration object for your app
	11.3.1 Adding a configuration provider in Program.cs
	11.3.2 Using multiple providers to override configuration values
	11.3.3 Storing configuration secrets safely
	11.3.4 Reloading configuration values when they change

	11.4 Using strongly typed settings with the options pattern
	11.4.1 Introducing the IOptions interface
	11.4.2 Reloading strongly typed options with IOptionsSnapshot
	11.4.3 Designing your options classes for automatic binding
	11.4.4 Binding strongly typed settings without the IOptions interface

	11.5 Configuring an application for multiple environments
	11.5.1 Identifying the hosting environment
	11.5.2 Loading environment-specific configuration files
	11.5.3 Setting the hosting environment

	Summary

	12 Saving data with Entity Framework Core
	12.1 Introducing Entity Framework Core
	12.1.1 What is EF Core?
	12.1.2 Why use an object-relational mapper?
	12.1.3 When should you choose EF Core?
	12.1.4 Mapping a database to your application code

	12.2 Adding EF Core to an application
	12.2.1 Choosing a database provider and installing EF Core
	12.2.2 Building a data model
	12.2.3 Registering a data context

	12.3 Managing changes with migrations
	12.3.1 Creating your first migration
	12.3.2 Adding a second migration

	12.4 Querying data from and saving data to the database
	12.4.1 Creating a record
	12.4.2 Loading a list of records
	12.4.3 Loading a single record
	12.4.4 Updating a model with changes

	12.5 Using EF Core in production applications
	Summary

	13 The MVC and Razor Pages filter pipeline
	13.1 Understanding filters and when to use them
	13.1.1 The MVC filter pipeline
	13.1.2 The Razor Pages filter pipeline
	13.1.3 Filters or middleware: Which should you choose?
	13.1.4 Creating a simple filter
	13.1.5 Adding filters to your actions, controllers, Razor Pages, and globally
	13.1.6 Understanding the order of filter execution

	13.2 Creating custom filters for your application
	13.2.1 Authorization filters: Protecting your APIs
	13.2.2 Resource filters: Short-circuiting your action methods
	13.2.3 Action filters: Customizing model binding and action results
	13.2.4 Exception filters: Custom exception handling for your action methods
	13.2.5 Result filters: Customizing action results before they execute
	13.2.6 Page filters: Customizing model binding for Razor Pages

	13.3 Understanding pipeline short-circuiting
	13.4 Using dependency injection with filter attributes
	Summary

	14 Authentication: Adding users to your application with Identity
	14.1 Introducing authentication and authorization
	14.1.1 Understanding users and claims in ASP.NET Core
	14.1.2 Authentication in ASP.NET Core: Services and middleware
	14.1.3 Authentication for APIs and distributed applications

	14.2 What is ASP.NET Core Identity?
	14.3 Creating a project that uses ASP.NET Core Identity
	14.3.1 Creating the project from a template
	14.3.2 Exploring the template in Solution Explorer
	14.3.3 The ASP.NET Core Identity data model
	14.3.4 Interacting with ASP.NET Core Identity

	14.4 Adding ASP.NET Core Identity to an existing project
	14.4.1 Configuring the ASP.NET Core Identity services and middleware
	14.4.2 Updating the EF Core data model to support Identity
	14.4.3 Updating the Razor views to link to the Identity UI

	14.5 Customizing a page in ASP.NET Core Identity’s default UI
	14.6 Managing users: Adding custom data to users
	Summary

	15 Authorization: Securing your application
	15.1 Introduction to authorization
	15.2 Authorization in ASP.NET Core
	15.2.1 Preventing anonymous users from accessing your application
	15.2.2 Handling unauthorized requests

	15.3 Using policies for claims-based authorization
	15.4 Creating custom policies for authorization
	15.4.1 Requirements and handlers: The building blocks of a policy
	15.4.2 Creating a policy with a custom requirement and handler

	15.5 Controlling access with resource-based authorization
	15.5.1 Manually authorizing requests with IAuthorizationService
	15.5.2 Creating a resource-based AuthorizationHandler

	15.6 Hiding elements in Razor templates from unauthorized users
	Summary

	16 Publishing and deploying your application
	16.1 Understanding the ASP.NET Core hosting model
	16.1.1 Running vs. publishing an ASP.NET Core app
	16.1.2 Choosing a deployment method for your application

	16.2 Publishing your app to IIS
	16.2.1 Configuring IIS for ASP.NET Core
	16.2.2 Preparing and publishing your application to IIS

	16.3 Hosting an application on Linux
	16.3.1 Running an ASP.NET Core app behind a reverse proxy on Linux
	16.3.2 Preparing your app for deployment to Linux

	16.4 Configuring the URLs for your application
	16.5 Optimizing your client-side assets using BundlerMinifier
	16.5.1 Speeding up an app using bundling and minification
	16.5.2 Adding BundlerMinifier to your application
	16.5.3 Using minified files in production with the Environment Tag Helper
	16.5.4 Serving common files from a CDN

	Summary

	Part 3—Extending your applications
	17 Monitoring and troubleshooting errors with logging
	17.1 Using logging effectively in a production app
	17.1.1 Highlighting problems using custom log messages
	17.1.2 The ASP.NET Core logging abstractions

	17.2 Adding log messages to your application
	17.2.1 Log level: How important is the log message?
	17.2.2 Log category: Which component created the log
	17.2.3 Formatting messages and capturing parameter values

	17.3 Controlling where logs are written using logging providers
	17.3.1 Adding a new logging provider to your application
	17.3.2 Replacing the default ILoggerFactory with Serilog

	17.4 Changing log verbosity with filtering
	17.5 Structured logging: Creating searchable, useful logs
	17.5.1 Adding a structured logging provider to your app
	17.5.2 Using scopes to add additional properties to your logs

	Summary

	18 Improving your application’s security
	18.1 Adding HTTPS to an application
	18.1.1 Using the ASP.NET Core HTTPS development certificates
	18.1.2 Configuring Kestrel with a production HTTPS certificate
	18.1.3 Enforcing HTTPS for your whole app

	18.2 Defending against cross-site scripting (XSS) attacks
	18.3 Protecting from cross-site request forgery (CSRF) attacks
	18.4 Calling your web APIs from other domains using CORS
	18.4.1 Understanding CORS and how it works
	18.4.2 Adding a global CORS policy to your whole app
	18.4.3 Adding CORS to specific Web API actions with EnableCorsAttribute
	18.4.4 Configuring CORS policies

	18.5 Exploring other attack vectors
	18.5.1 Detecting and avoiding open redirect attacks
	18.5.2 Avoiding SQL injection attacks with EF Core and parameterization
	18.5.3 Preventing insecure direct object references
	18.5.4 Protecting your users’ passwords and data

	Summary

	19 Building custom components
	19.1 Customizing your middleware pipeline
	19.1.1 Creating simple endpoints with the Run extension
	19.1.2 Branching middleware pipelines with the Map extension
	19.1.3 Adding to the pipeline with the Use extension
	19.1.4 Building a custom middleware component

	19.2 Creating custom endpoints with endpoint routing
	19.2.1 Creating a custom endpoint routing component
	19.2.2 Creating simple endpoints with MapGet and WriteJsonAsync
	19.2.3 Applying authorization to endpoints

	19.3 Handling complex configuration requirements
	19.3.1 Partially building configuration to configure additional providers
	19.3.2 Using services to configure IOptions with IConfigureOptions

	19.4 Using a third-party dependency injection container
	Summary

	20 Building custom MVC and Razor Pages components
	20.1 Creating a custom Razor Tag Helper
	20.1.1 Printing environment information with a custom Tag Helper
	20.1.2 Creating a custom Tag Helper to conditionally hide elements
	20.1.3 Creating a Tag Helper to convert Markdown to HTML

	20.2 View components: Adding logic to partial views
	20.3 Building a custom validation attribute
	20.4 Replacing the validation framework with FluentValidation
	20.4.1 Comparing FluentValidation to DataAnnotations attributes
	20.4.2 Adding FluentValidation to your application

	Summary

	21 Calling remote APIs with IHttpClientFactory
	21.1 Calling HTTP APIs: The problem with HttpClient
	21.2 Creating HttpClients with IHttpClientFactory
	21.2.1 Using IHttpClientFactory to manage HttpClientHandler lifetime
	21.2.2 Configuring named clients at registration time
	21.2.3 Using typed clients to encapsulate HTTP calls

	21.3 Handling transient HTTP errors with Polly
	21.4 Creating a custom HttpMessageHandler
	Summary

	22 Building background tasks and services
	22.1 Running background tasks with IHostedService
	22.1.1 Running background tasks on a timer
	22.1.2 Using scoped services in background tasks

	22.2 Creating headless worker services using IHost
	22.2.1 Creating a worker service from a template
	22.2.2 Running worker services in production

	22.3 Coordinating background tasks using Quartz.NET
	22.3.1 Installing Quartz.NET in an ASP.NET Core application
	22.3.2 Configuring a job to run on a schedule with Quartz.NET
	22.3.3 Using clustering to add redundancy to your background tasks

	Summary

	23 Testing your application
	23.1 An introduction to testing in ASP.NET Core
	23.2 Unit testing with xUnit
	23.2.1 Creating your first test project
	23.2.2 Running tests with dotnet test
	23.2.3 Referencing your app from your test project
	23.2.4 Adding Fact and Theory unit tests
	23.2.5 Testing failure conditions

	23.3 Unit testing custom middleware
	23.4 Unit testing API controllers
	23.5 Integration testing: Testing your whole app in-memory
	23.5.1 Creating a TestServer using the Test Host package
	23.5.2 Testing your application with WebApplicationFactory
	23.5.3 Replacing dependencies in WebApplicationFactory
	23.5.4 Reducing duplication by creating a custom WebApplicationFactory

	23.6 Isolating the database with an in-memory EF Core provider
	Summary

	Appendix A—Preparing your development environment
	A.1 Installing the .NET SDK
	A.2 Choosing an IDE or editor
	A.2.1 Visual Studio (Windows)
	A.2.2 JetBrains Rider (Windows, Linux, macOS)
	A.2.3 Visual Studio for Mac (macOS)
	A.2.4 Visual Studio Code (Windows, Linux, macOS)

	Appendix B—Understanding the .NET ecosystem
	B.1 The evolution of .NET into .NET 5.0
	B.1.1 Exploring the .NET platforms that prompted .NET Core
	B.1.2 Introducing .NET Core
	B.1.3 .NET 5.0: The first step in the One .NET vision
	B.1.4 The future: .NET 6.0 and beyond

	B.2 Sharing code between projects
	B.2.1 Finding a common intersection with Portable Class Libraries
	B.2.2 .NET Standard: A common interface for .NET
	B.2.3 Fudging .NET Standard 2.0 support with the compatibility shim

	B.3 .NET 5.0 and the future of .NET Standard
	Summary

	Appendix C—Useful references
	C.1 Relevant books
	C.2 Announcement blog posts
	C.3 Microsoft documentation
	C.4 Security-related links
	C.5 ASP.NET Core GitHub repositories
	C.6 Tooling and services
	C.7 ASP.NET Core blogs
	C.8 Video links

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

