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Introduction

The mere thought of having to take a required calculus course is enough to make legions 
of students break out in a cold sweat. Others who have no intention of ever studying the 
subject have this notion that calculus is impossibly difficult unless you happen to be a 

direct descendant of Einstein.

Well, I’m here to tell you that you can master calculus. It’s not nearly as tough as its mystique 
would lead you to think. Much of calculus is really just very advanced algebra, geometry, and 
trig. It builds upon and is a logical extension of those subjects. If you can do algebra, geometry, 
and trig, you can do calculus.

But why should you bother — apart from being required to take a course? Why climb Mt. Ever-
est? Why listen to Beethoven’s Ninth Symphony? Why visit the Louvre to see the Mona Lisa? 
Why watch South Park? Like these endeavors, doing calculus can be its own reward. There are 
many who say that calculus is one of the crowning achievements in all of intellectual history. 
As such, it’s worth the effort. Read this jargon-free book, get a handle on calculus, and join the 
happy few who can proudly say, “Calculus? Oh, sure, I know calculus. It’s no big deal.”

About This Book
Calculus All-in-One For Dummies is intended for three groups of readers: students taking their 
first calculus course, students who need to brush up on their calculus to prepare for other stud-
ies, and adults of all ages who’d like a good introduction to the subject either to satisfy their 
own curiosity or perhaps to help someone else with calculus.

If you’re enrolled in a calculus course and you find your textbook less than crystal clear, this is 
the book for you. It covers the most important topics in the first year of calculus: differentia-
tion, integration, and infinite series.

If you’ve had elementary calculus, but it’s been a couple of years and you want to review the 
concepts to prepare for, say, some graduate program, Calculus All-in-One For Dummies will give 
you a thorough, no-nonsense refresher course.

Non-student readers will find the book’s exposition clear and accessible. Calculus All-in-One For 
Dummies takes calculus out of the ivory tower and brings it down to earth.

This is a user-friendly math book. Whenever possible, I explain the calculus concepts by show-
ing you connections between the calculus ideas and easier ideas from algebra and geometry.  
I then show you how the calculus concepts work using concrete examples. Only later do I give 
you the fancy calculus formulas. All explanations are in plain English, not math-speak.
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The following conventions keep the text consistent and oh-so-easy to follow:

 » Variables are in italics.

 » Calculus terms are italicized and defined when they first appear in the text.

 » In the step-by-step problem-solving methods, the general action you need to take is in bold, 
followed by the specifics of the particular problem.

It can be a great aid to true understanding of calculus  — or any math topic for that  
matter — to focus on the why in addition to the how-to. With this in mind, I’ve put a lot of effort 
into explaining the underlying logic of many of the ideas in this book. If you want to give your 
study of calculus a solid foundation, you should read these explanations. But if you’re really in 
a hurry, you can cut to the chase and read only the important introductory stuff, the example 
problems, the step-by-step solutions, and all the rules and definitions next to the icons. You 
can read the remaining exposition later only if you feel the need.

I find the sidebars interesting and entertaining. (What do you expect? I wrote them!) But you 
can skip them without missing any essential calculus. No, you won’t be tested on that stuff.

The most important thing is for you to work out the “Your Turn” example problems and the 
problems in the end-of-chapter quizzes (solutions are provided). You can’t learn calculus  
(or any type of math) without working out dozens or hundreds of problems. If you want even 
more practice problems, you can find more chapter quizzes online.

Foolish Assumptions
Call me crazy, but I assume

 » You know at least the basics of algebra, geometry, and trig.

If you’re rusty, Unit 2 (and the online Cheat Sheet) contains a good review of these pre-calculus 
topics. Actually, if you’re not currently taking a calculus course, and you’re reading this book just 
to satisfy a general curiosity about calculus, you can get a good conceptual picture of the subject 
without the nitty-gritty details of algebra, geometry, and trig. But you won’t, in that case, be able 
to follow all the problem solutions. In short, without the pre-calculus stuff, you can see the cal-
culus forest, but not the trees. If you’re enrolled in a calculus course, you’ve got no choice — 
you’ve got to know the trees as well as the forest.

 » You’re willing to do some w_ _ _.

No, not the dreaded w-word! Yes, that’s w-o-r-k, work. I’ve tried to make this material as 
accessible as possible, but it is calculus after all. You can’t learn calculus by just listening  
to a tape in your car or taking a pill — not yet anyway.

Is that too much to ask?
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Icons Used in This Book
Keep your eyes on the icons:

Next to this icon are calculus rules, definitions, and formulas.

These are things you need to know from algebra, geometry, or trig, or things you should recall 
from earlier in the book.

The lightbulb icon appears next to things that will make your life easier. Take note.

This icon highlights common calculus mistakes. Take heed.

Each example is a calculus problem that illustrates the topic just discussed, followed by a  
step-by-step solution. Studying these example problems and their solutions will help you solve 
the “Your Turn” practice problems and the problems in the end-of-chapter quizzes.

This icon means it’s time to put on your thinking cap. It appears next to practice problems for 
you to work out. Some of these problems will be quite similar to the example problems from 
the same section. Others will challenge you by going a bit beyond the garden-variety examples. 
Solutions are provided.

Beyond the Book
There’s some great supplementary calculus material online that you might want to check out.

To view this book’s online Cheat Sheet, simply go to www.dummies.com and type Calculus All in 
One For Dummies Cheat Sheet in the Search box. You’ll find a nice list of important formulas, 
theorems, definitions, and so on from algebra, geometry, trigonometry, and calculus. This is a 
great place to go if you forget a formula.

You’ll also have access to additional online quizzes for each chapter of the book, starting with 
Unit 2. To access the quizzes, follow these steps:

1. Register your book or ebook at Dummies.com to get your PIN. Go to www.dummies.
com/go/getaccess.

2. Select your product from the drop-down list on that page.

3. Follow the prompts to validate your product, and then check your email for a confir-
mation message that includes your PIN and instructions for logging in.

http://www.dummies.com/
http://www.dummies.com/go/getaccess#_blank
http://www.dummies.com/go/getaccess#_blank
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If you do not receive this email within two hours, please check your spam folder before con-
tacting us through our Technical Support website at http://support.wiley.com or by phone 
at 877-762-2974.

Where to Go from Here
Why, Chapter 1, of course, if you want to start at the beginning. If you already have some back-
ground in calculus or just need a refresher course in one area or another, then feel free to skip 
around. Use the table of contents and index to find what you’re looking for. If all goes well, in 
a half a year or so, you’ll be able to check calculus off your list:

 ❑ Run a marathon

 ❑ Go skydiving

 ❑ Write a book

 ; Learn calculus

 ❑ Swim the English Channel

 ❑ Cure cancer

 ❑ Write a symphony

 ❑ Pull an unnatural double cork 1260° at the X Games

For the rest of your list, you’re on your own.

http://support.wiley.com/#_blank
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What Is Calculus?
“My best day in Calc 101 at Southern Cal was the day I had to cut class to get a root canal.”

— MARY JOHNSON

“I keep having this recurring dream where my calculus professor is coming after me  
with an axe.”

— TOM FRANKLIN, COLORADO COLLEGE SOPHOMORE

“Calculus is fun, and it’s so easy. I don’t get what all the fuss is about.”

— SAM EINSTEIN, ALBERT’S GREAT-GRANDSON

In this chapter, I answer the question, “What is calculus?” in plain English, and I give you 
real-world examples of how calculus is used. After reading this and the following two short 
chapters, you will understand what calculus is all about. But here’s a twist: Why don’t you 

start out on the wrong foot by briefly checking out what calculus is not?

What Calculus Is Not
No sense delaying the inevitable. Ready for your first calculus test? Circle True or False.

True or False: Unless you actually enjoy wearing a pocket protector, you’ve got no business 
taking calculus.

True or False: Studying calculus is hazardous to your health.

True or False: Calculus is totally irrelevant.

Chapter 1

IN THIS CHAPTER

 » You’re only in Chapter 1 and you’re 
already going to get your first  
calc test

 » Calculus — it’s just souped-up 
regular math

 » Zooming in is the key

 » The world before and after 
calculus
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False, false, false! There’s this mystique about calculus that it’s this ridiculously difficult, incred-
ibly arcane subject that no one in their right mind would sign up for unless it was a required 
course.

Don’t buy into this misconception. Sure, calculus is difficult — I’m not going to lie to you — 
but it’s manageable, doable. You made it through algebra, geometry, and trigonometry. Well, 
calculus just picks up where they leave off — it’s simply the next step in a logical progression.

Calculus is relevant. Calculus is not a dead language like Latin, spoken only by academics.  
It’s the language of engineers, scientists, and economists. Okay, so it’s a couple steps removed 
from your everyday life and unlikely to come up at a cocktail party. But the work of those 
engineers, scientists, and economists has a huge impact on your day-to-day life  — from 
your microwave oven, cellphone, TV, and car to the medicines you take, the workings of the  
economy, and our national defense. At this very moment, something within your reach or 
within your view has been impacted by calculus.

So What Is Calculus, Already?
Calculus is basically just very advanced algebra and geometry. In one sense, it’s not even a new 
subject — it takes the ordinary rules of algebra and geometry and tweaks them so that they can 
be used on more complicated problems. (The rub, of course, is that darn other sense in which it 
is a new and more difficult subject.)

Look at Figure 1-1. On the left is a man pushing a crate up a straight incline. On the right, the 
man is pushing the same crate up a curving incline. The problem, in both cases, is to determine 
the amount of energy required to push the crate to the top. You can do the problem on the left 
with regular math. For the one on the right, you need calculus (assuming you don’t know the 
physics shortcuts).

For the straight incline, the man pushes with an unchanging force, and the crate goes up the 
incline at an unchanging speed. With some simple physics formulas and regular math (includ-
ing algebra and trig), you can compute how many calories of energy are required to push the 
crate up the incline. Note that the amount of energy expended each second remains the same.

FIGURE 1-1:  
The difference 

between 
regular math 

and calculus: In 
a word, it’s the 

curve.
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For the curving incline, on the other hand, things are constantly changing. The steepness of the 
incline is changing — and not just in increments like it’s one steepness for the first 3 feet then 
a different steepness for the next 3 feet. It’s constantly changing. And the man pushes with a 
constantly changing force — the steeper the incline, the harder the push. As a result, the amount 
of energy expended is also changing, not every second or every thousandth of a second, but 
constantly changing from one moment to the next. That’s what makes it a calculus problem.

Calculus is the mathematics of change. By this time, it should come as no surprise to you that 
calculus is described as “the mathematics of change.” Calculus takes the regular rules of math 
and applies them to fluid, evolving problems.

For the curving incline problem, the physics formulas remain the same, and the algebra and 
trig you use stay the same. The difference is that — in contrast to the straight incline problem, 
which you can sort of do in a single shot — you’ve got to break up the curving incline problem 
into small chunks and do each chunk separately. Figure 1-2 shows a small portion of the curv-
ing incline blown up to several times its size.

When you zoom in far enough, the small length of the curving incline becomes practically 
straight. Then, because it’s straight, you can solve that small chunk just like the straight incline 
problem. Each small chunk can be solved the same way, and then you just add up all the chunks.

That’s calculus in a nutshell. It takes a problem that can’t be done with regular math because 
things are constantly changing — the changing quantities show up on a graph as curves — it 
zooms in on the curve till it becomes straight, and then it finishes off the problem with regular 
math.

What makes the invention of calculus such a fantastic achievement is that it does what seems 
impossible: It zooms in infinitely. As a matter of fact, everything in calculus involves infinity in 
one way or another, because if something is constantly changing, it’s changing infinitely often 
from each infinitesimal moment to the next.

Real-World Examples of Calculus
So, with regular math you can do the straight incline problem; with calculus you can do the 
curving incline problem. Here are some more examples.

FIGURE 1-2:  
Zooming in on 

the curve — 
voilà, it’s 
straight 

(almost).
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With regular math you can determine the length of a buried cable that runs diagonally from 
one corner of a park to the other (remember the Pythagorean Theorem?). With calculus you 
can determine the length of a cable hung between two towers that has the shape of a catenary 
(which is different, by the way, from a simple circular arc or a parabola). Knowing the exact 
length is of obvious importance to a power company planning hundreds of miles of new electric 
cable. See Figure 1-3.

You can calculate the area of the flat roof of a home with ordinary geometry. With calculus 
you can compute the area of complicated, nonspherical shapes like the shapes of some sports 
arena domes. Architects designing such a building need to know the dome’s area to determine 
the cost of materials and to figure the weight of the dome (with and without snow on it). The 
weight, of course, is needed for planning the strength of the supporting structure. Check out 
Figure 1-4.

With regular math and some simple physics, you can calculate how much a quarterback must 
lead his receiver to complete a pass. (I’m assuming here that the receiver runs in a straight line 
and at a constant speed.) But when NASA, in 1975, calculated the necessary “lead” for aiming 
the Viking I at Mars, it needed calculus because both the Earth and Mars travel on elliptical 
orbits (of different shapes) and the speeds of both are constantly changing — not to mention the 
fact that on its way to Mars, the spacecraft is affected by the different and constantly changing 
gravitational pulls of the Earth, the Moon, Mars, and the Sun. See Figure 1-5.

FIGURE 1-3:  
Without and 

with calculus.

FIGURE 1-4:  
Sans and avec 

calculus.
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You see many real-world applications of calculus throughout this book. The differentiation 
problems in Unit 4 all involve the steepness of a curve — like the steepness of the curving 
incline in Figure  1-1. In Unit 5, you do integration problems like the cable-length problem 
shown back in Figure 1-3. These problems involve breaking up something into little sections, 
calculating each section, and then adding up the sections to get the total. More about that in 
Chapter 2.

FIGURE 1-5:  
B.C.E. (Before 

the Calculus 
Era) and C.E. 
(the Calculus 

Era).
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The Two Big Ideas of 
Calculus: Differentiation 
and Integration — Plus 
Infinite Series

This book covers the two main topics in calculus — differentiation and integration — as 
well as a third topic, infinite series. All three topics touch the earth and the heavens 
because all are built upon the rules of ordinary algebra and geometry, and all involve the 

idea of infinity.

Defining Differentiation
Differentiation is the process of finding the derivative of a curve. And the word “derivative” is 
just the fancy calculus term for the curve’s slope or steepness. And because the slope of a curve 
is equivalent to a simple rate (like miles per hour or profit per item), the derivative is a rate as 
well as a slope.

Chapter 2

IN THIS CHAPTER

 » Delving into the derivative: It’s a 
rate and a slope

 » Investigating the integral — 
addition for experts

 » Infinite series: Achilles versus the 
tortoise — place your bets
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The derivative is a slope
In algebra, you learned about the slope of a line — it’s equal to the ratio of the rise to the run. 

In other words, Slope
rise
run

. See Figure 2-1. Let me guess: A sudden rush of algebra nostalgia 

is flooding over you.

In Figure 2-1, the rise is half as long as the run, so the line has a slope of 1
2

.

On a curve, the slope is constantly changing, so you need calculus to determine its slope. See 
Figure 2-2.

Just like the line in Figure 2-1, the straight line between A and B in Figure 2-2 has a slope  

of 1
2

. And the slope of this line is the same at every point between A and B. But you can see that, 

unlike the line, the steepness of the curve is changing between A and B. At A, the curve is less 
steep than the line, and at B, the curve is steeper than the line. What do you do if you want the 
exact slope at, say, point C? Can you guess? Time’s up. Answer: You zoom in. See Figure 2-3.

When you zoom in far enough — really far, actually infinitely far — the little piece of the curve 
becomes straight, and you can figure the slope the old-fashioned way. That’s how differenti-
ation works.

FIGURE 2-1:  
The slope  

of a line equals 
the rise over 

the run.

FIGURE 2-2:  
The slope of a 
curve isn’t so 

simple.

FIGURE 2-3:  
Zooming in on 

the curve.
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The derivative is a rate
Because the derivative of a curve is the slope — which equals rise

run
 or rise per run — the deriva-

tive is also a rate, a this per that like miles per hour or gallons per minute (the name of the particu-
lar rate simply depends on the units used on the x- and y-axes). The two graphs in Figure 2-4 
show a relationship between distance and time — they could represent a trip in your car.

A regular algebra problem is shown on the left in Figure  2-4. If you know the x- and  

y-coordinates of points A and B, you can use the slope formula Slope
rise
run

y y
x x

2 1

2 1
 to cal-

culate the slope between A and B, and, in this problem, that slope gives you the average rate in 
miles per hour for the interval from A to B.

For the problem on the right, on the other hand, you need calculus. (You can’t use the slope 
formula because you’ve only got one point.) Using the derivative of the curve, you can deter-
mine the exact slope or steepness at point C. Just to the left of C on the curve, the slope is slightly 
lower, and just to the right of C on the curve, the slope is slightly higher. But precisely at C, for a 
single infinitesimal moment, you get a slope that’s different from the neighboring slopes. The 
slope for this single infinitesimal point on the curve gives you the instantaneous rate in miles 
per hour at point C.

Investigating Integration
Integration is the second big idea in calculus, and it’s basically just fancy addition. Integration 
is the process of cutting up an area into tiny sections, figuring the areas of the small sections, 
and then adding up the little bits of area to get the whole area. Figure 2-5 shows two area  
problems — one that you can do with geometry and one where you need calculus.

FIGURE 2-4:  
Average rate 
and instanta-

neous rate.
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The shaded area on the left is a simple rectangle, so its area, of course, equals length times 
width. But you can’t figure the area on the right with regular geometry because there’s no area 
formula for this funny shape. So what do you do? Why, zoom in, of course. Figure 2-6 shows 
the top portion of a narrow strip of the weird shape blown up to several times its size.

When you zoom in as shown in Figure 2-6, the curve becomes practically straight, and the 
further you zoom in, the straighter it gets. After zooming in, you get the shape on the right in 
Figure 2-6, which is practically an ordinary trapezoid (its top is still slightly curved). Well, with 
the magic of integration, you zoom in infinitely close (sort of — you can’t really get infinitely 
close, right?). At that point, the shape is exactly an ordinary trapezoid — or, if you want to get 
really basic, it’s a triangle sitting on top of a rectangle. Because you can compute the areas of 
rectangles, triangles, and trapezoids with ordinary geometry, you can get the area of this and 
all the other thin strips and then add up all these areas to get the total area. That’s integration.

Figure 2-7 has two graphs of a city’s electrical energy consumption on a typical summer day. 
The horizontal axes show the number of hours after midnight, and the vertical axes show the 
amount of power (in kilowatts) used by the city at different times during the day.

The crooked line on the left and the curve on the right show how the number of kilowatts of 
power depends on the time of day. In both cases, the shaded area gives the number of kilowatt-
hours of energy consumed during a typical 24-hour period. The shaded area in the oversimpli-
fied and unrealistic problem on the left can be calculated with regular geometry. But the true 
relationship between the amount of power used and the time of day is more complicated than a 
crooked straight line. In a realistic energy-consumption problem, you’d get something like the 
graph on the right. Because of its weird curve, you need calculus to determine the shaded area. 
In the real world, the relationship between different variables is rarely as simple as a straight-
line graph. That’s what makes calculus so useful.

FIGURE 2-5:  
If you can’t 

determine the 
area on the 

left, hang up 
your calculator.

FIGURE 2-6:  
For the 

umpteenth 
time, when you 

zoom in, the 
curve becomes 

straight.
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Sorting Out Infinite Series
Infinite series deal with the adding up of an infinite number of numbers. Don’t try this on your 
calculator unless you’ve got a lot of extra time on your hands. Here’s a simple example. The 
following sequence of numbers is generated by a simple doubling process — each term is twice 
the one before it:

1 2 4 8 16 32 64 128, , , , , , , ,        

The infinite series associated with this sequence of numbers is just the sum of the numbers:

1 2 4 8 16 32 64 128                

Divergent series
The preceding series of doubling numbers is divergent because if you continue the addition 
indefinitely, the sum will grow bigger and bigger without limit. And if you could add up “all” 
the numbers in this series — that’s all infinitely many of them — the sum would be infinity. 
Divergent usually means — there are exceptions — that the series adds up to infinity.

Divergent series are rather uninteresting because they do what you expect. You keep adding 
more numbers, so the sum keeps growing, and if you continue this forever, the sum grows to 
infinity. Big surprise.

Convergent series
Convergent series are much more interesting. With a convergent series, you also keep adding 
more numbers, the sum keeps growing, but even though you add numbers forever and the 
sum grows forever, the sum of all the infinitely many terms is a finite number. This surprising 
result brings me to Zeno’s famous paradox of Achilles and the tortoise. (That’s Zeno of Elea, of 
course, from the 5th century B.C.)

FIGURE 2-7:  
Total  

kilowatt-hours 
of energy used 
by a city during 

a single day.
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Achilles is racing a tortoise — some gutsy warrior, eh? Our generous hero gives the tortoise 
a 100-yard head start. Achilles runs at 20 mph; the tortoise “runs” at 2 mph. Zeno used the 
following argument to “prove” that Achilles will never catch or pass the tortoise. If you’re per-
suaded by this “proof,” by the way, you’ve really got to get out more.

Imagine that you’re a journalist covering the race for Spartan Sports Weekly, and you’re taking 
a series of photos for your article. Figure 2-8 shows the situation at the start of the race and 
your first two photos.

You take your first photo the instant Achilles reaches the point where the tortoise started. By 
the time Achilles gets there, the tortoise has “raced” forward and is now 10 yards ahead of 
Achilles. (The tortoise moves a tenth as fast as Achilles, so in the time it takes Achilles to travel 
100 yards, the tortoise covers a tenth as much ground, or 10 yards.) If you do the math, you find 
that it took Achilles about 10 seconds to run the 100 yards. (For the sake of argument, let’s call 
it exactly 10 seconds.)

FIGURE 2-8:  
Achilles versus 
the tortoise — 

it’s a photo 
finish.
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You have a cool app that allows you to look at your first photo and note precisely where the 
tortoise is as Achilles crosses the tortoise’s starting point. The tortoise’s position is shown as 
point A in the middle image in Figure 2-8. Then you take your second photo when Achilles 
reaches point A, which takes him about one more second. In that second, the tortoise has moved 
ahead 1 yard to point B. You take your third photo (not shown) when Achilles reaches point B 
and the tortoise has moved ahead to point C.

Every time Achilles reaches the point where the tortoise was, you take another photo. There is 
no end to this series of photographs. Assuming you and your camera can work infinitely fast, 
you will take an infinite number of photos. And every single time Achilles reaches the point 
where the tortoise was, the tortoise has covered more ground — even if only a millimeter or 
a millionth of a millimeter. This process never ends, right? Thus, the argument goes, because 
you can never get to the end of your infinite series of photos, Achilles can never catch or pass 
the tortoise.

Well, as everyone knows, Achilles does in fact reach and pass the tortoise — thus the paradox. 
The mathematics of infinite series explains how this infinite series of time intervals sums to a 
finite amount of time — the precise time when Achilles passes the tortoise. Here’s the sum for 
those who are curious:

                  10 1 0 1 0 01 0 001sec. sec. . sec. . sec. . sec. ....

. ... sec.,11 111 111
9

  or  seconds.

Achilles passes the tortoise after 111
9

 seconds at the 1111
9

-yard mark.

Infinite series problems are rich with bizarre, counterintuitive paradoxes. You see more of them 
in Unit 5.





CHAPTER 3  Why Calculus Works      21

Why Calculus Works

In Chapters 1 and 2, I talk a lot about the process of zooming in on a curve till it looks straight. 
The mathematics of calculus works because of this basic nature of curves — that they’re 
locally straight — in other words, curves are straight at the microscopic level. The earth is 

round, but to us it looks flat because we’re sort of at the microscopic level when compared to 
the size of the earth. Calculus works because after you zoom in and curves look straight, you 
can use regular algebra and geometry with them. The zooming-in process is achieved through 
the mathematics of limits.

The Limit Concept: A Mathematical 
Microscope

The mathematics of limits is the microscope that zooms in on a curve. Here’s how a limit 
works. Say you want the exact slope or steepness of the parabola y x 2 at the point 1 1, . See 
Figure 3-1.

With the slope formula from algebra, you can figure the slope of the line between 1 1,  and 

2, 4 . From 1 1,  to 2, 4 , you go over 1 and up 3, so the slope is 3
1

, or just 3. But you can see 

in Figure 3-1 that this line is steeper than the tangent line at 1 1,  that shows the parabola’s 
steepness at that specific point. The limit process sort of lets you slide the point that starts 
at 2, 4  down toward 1 1,  till it’s a thousandth of an inch away, then a millionth, then a  
billionth, and so on down to the microscopic level. If you do the math, the slopes between 1 1,  
and your moving point would look something like 2.8, then 2.6, then 2.4, and so on, and then, 

Chapter 3
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base times height

 » The Pythagorean Theorem: 
a b c2 2 2
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once you get to a thousandth of an inch away, 2.001, 2.000001, 2.000000001, and so on. And 
with the almost magical mathematics of limits, you can conclude that the slope at 1 1,  is pre-
cisely 2, even though the sliding point never reaches 1 1, . (If it did, you’d only have one point 
left and to use the slope formula, you need two separate points.) The mathematics of limits is 
all based on this zooming-in process, and it works, again, because the further you zoom in, the 
straighter the curve gets.

What Happens When You Zoom In
Figure 3-2 shows three diagrams of one curve and three things you might like to know about 
the curve: 1) the exact slope or steepness at point C, 2) the area under the curve between A and B, 
and 3) the exact length of the curve from A to B. You can’t answer these questions with regular 
algebra or geometry formulas because the regular formulas for slope, area, and length work for 
straight lines (and simple curves like circles), but not for weird curves like this one.

The first row of Figure 3-3 shows a magnified detail from the three diagrams of the curve in 
Figure 3-2. The second row shows further magnification, and the third row yet another mag-
nification. For each little window that gets blown up (like from the first to the second row of 
Figure 3-3), I’ve drawn in a new dotted diagonal line to help you see how with each magnifica-
tion, the blown-up pieces of the curves get straighter and straighter. This process is continued 
indefinitely.

Finally, Figure 3-4 shows the result after an “infinite” number of magnifications — sort of. 
After zooming in forever, an infinitely small piece of the original curve and the straight diag-
onal line are now one and the same. You can think of the lengths 3 and 4 in Figure 3-4 (no  
pun intended) as 3 and 4 millionths of an inch; no, make that 3 and 4 billionths of an inch; no, 
trillionths; no, gazillionths. . . .

FIGURE 3-1:  
The parabola 
y x 2 with a 
tangent line  

at 1 1,  .

FIGURE 3-2:  
One curve — 

three 
questions.
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Now that you’ve zoomed in “forever,” the curve is perfectly straight and you can use regular 
algebra and geometry formulas to answer the three questions about the curve in Figure 3-2.

For the diagram on the left in Figure 3-4, you can now use the regular slope formula from 

algebra to find the slope at point C. It’s exactly 3
4

 — that’s the answer to the first question in 
Figure 3-2. This is how differentiation works.

For the diagram in the middle of Figure 3-4, the regular triangle formula from geometry gives 
you an area of 6. Then you can get the shaded area inside the strip shown in Figure 3-2 by 
adding this 6 to the area of the thin rectangle under the triangle (the dark-shaded rectangle 

FIGURE 3-3:  
Zooming  
in to the 

 microscopic 
level.

FIGURE 3-4:  
Your final 

destination — 
the sub, sub, 

sub subatomic 
level.
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in Figure 3-2). Then you repeat this process for all the other narrow strips (not shown), and 
finally just add up all the little areas. This is how integration works.

And for the diagram on the right of Figure 3-4, the Pythagorean Theorem from geometry gives 
you a length of 5. Then, to find the total length of the curve from A to B in Figure 3-2, you do 
the same thing for the other minute sections of the curve and then add up all the little lengths. 
This is how you calculate arc length (another integration problem).

Well, there you have it. Calculus uses the limit process to zoom in on a curve till it’s straight. 
After it’s straight, the rules of regular-old algebra and geometry apply. Calculus thus gives 
ordinary algebra and geometry the power to handle complicated problems involving changing 
quantities (which on a graph show up as curves). This explains why calculus has so many prac-
tical uses, because if there’s something you can count on — in addition to death and taxes — 
it’s that things are always changing.

Two Caveats; or, Precision, Preschmidgen
Not everything in this chapter (or this book for that matter) will satisfy the high standards of 
the Grand Poobah of Precision in Mathematical Writing.

I may lose my license to practice mathematics
With regard to the middle diagrams in Figures 3-2 through 3-4, I’m playing a bit fast and loose 
with the mathematics. The process of integration — finding the area under a curve — doesn’t 
exactly work the way I explained. My explanation isn’t really wrong, it’s just a bit sideways. 
But — I don’t care what anybody says — that’s my story and I’m stickin’ to it. Actually, it’s 
not a bad way to think about how integration works, and, anyhow, this is only an introductory 
chapter.

What the heck does “infinity” really mean?
The second caveat is that whenever I talk about infinity — like in the last section where I dis-
cussed zooming in an infinite number of times — I do something like put the word “infinity” in 
quotes or say something like “you sort of zoom in forever.” I do this to cover my butt. Whenever 
you talk about infinity, you’re always on shaky ground. What would it mean to zoom in forever 
or an infinite number of times? You can’t do it; you’d never get there. You can imagine — sort 
of — what it’s like to zoom in forever, but there’s something a bit fishy about the idea — and 
thus the qualifications.
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Pre-Algebra, Algebra, 
and Geometry Review

Algebra is the language of calculus. You can’t do calculus without knowing algebra  
any more than you can write Chinese poetry without knowing Chinese. So, if your pre-
algebra and algebra are a bit rusty — you know, all those rules for algebraic  expressions, 

equations, fractions, powers, roots, logs, factoring, quadratics, and so on — make sure you 
review the following algebra basics.

And you’ve got to review your basic geometry as well. Many calculus problems involve two- 
and three-dimensional shapes (triangles, rectangles, trapezoids, circles, boxes, cylinders, 
cones, spheres, and so on) and geometry concepts like length, area, and volume. The two big 
ideas of calculus are differentiation and integration. Differentiation involves finding the slope 
of a curve, and slope is a coordinate geometry concept. Integration involves finding the area 
under a curve. You can’t do calculus without a good grasp of basic geometry. Let’s get started.

Chapter 4
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Fine-Tuning Your Fractions
Many, many math students hate fractions. I’m not sure why, because there’s nothing especially 
difficult about them. Perhaps for some students, fraction concepts didn’t completely click when 
they first studied them, and then fractions became a nagging frustration whenever they came 
up in subsequent math courses. Whatever the cause, if you don’t like fractions, try to get over 
it, because you’ll have to deal with fractions in every math course you take.

You can’t do calculus without a good grasp of fractions. Open a calculus book to any random 
page, and you’ll likely see a fraction. The very definition of the derivative is based on a fraction 

called the difference quotient. And, on top of that, the symbol for the derivative, dy
dx

, is a fraction. 

So, if you’re a bit rusty with fractions, get up to speed with the following problems — or else!

Some quick rules
First is a rule that’s simple but very important because it comes up time and time again in the 
study of calculus:

You can’t divide by zero! The denominator of a fraction can never equal zero.

0
5

 equals zero, but 5
0

 is undefined.

It’s easy to see why 5
0

 is undefined when you consider how division works:

8
2

4

This tells you, of course, that 2 goes into 8 four times; in other words, 2 2 2 2 8. Well, 
how many zeros would you need to add up to make 5? You can’t do it, and so you can’t divide 5  
(or any other number) by zero.

Here’s another quick rule.

Definition of reciprocal: The reciprocal of a number or expression is its multiplicative inverse — 
which is a fancy way of saying that the product of something and its reciprocal is 1. To get the 

reciprocal of a fraction, flip it upside down. Thus, the reciprocal of 3
4

 is 4
3

, the reciprocal of 6, 

which equals 6
1

, is 1
6

, and the reciprocal of x 2 is 1
2x

.

Multiplying fractions
Adding is usually easier than multiplying, but with fractions, the reverse is true — so I want to 
deal with multiplication first.
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Multiplying fractions is a snap — just multiply straight across the top and straight across the 
bottom:

2
5

3
4

6
20

3
10

  and   a
b

c
d

ac
bd

Dividing fractions
Dividing fractions has one additional step: You flip the second fraction and then multiply — 
like this:

3
10

4
5

3
10

5
4

15
40

(Now cancel a 5 from the numerator and deenominator.)

3
8

Note that you could have canceled before multiplying. Because 5 goes into 5 one time, and 5 
goes into 10 two times, you can cancel a 5:

3
10

5
4

3
82

1

Also note that the original problem could have been written as 

3
10
4
5

.

Adding fractions
You know that

2
7

3
7

2 3
7

5
7

You can add up these fractions like this because you already have a common denominator. It 
works the same with variables:

a
c

b
c

a b
c

Notice that wherever you have a 2 in the top equation, an a is in the bottom equation; wherever 
a 3 is in the top equation, a b is in the bottom equation; and ditto for 7 and c. This illustrates a 
powerful principle:

Variables always behave exactly like numbers.
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If you’re wondering what to do with variables in a problem, ask yourself how you would do the 
problem if there were numbers in it instead of variables. Then do the problem with the vari-
ables the same way, like this:

a
b

c
d

You can’t add these fractions like you did in the previous example because this problem has no 
common denominator. Now, assuming you’re stumped, do the problem with numbers instead 

of variables. Remember how to add 2
5

3
8

? I’m not going to simplify each line of the solution. 
You’ll see why in a minute.

1. Find the least common denominator (actually, any common denominator will work 
when adding fractions), and convert the fractions.

The least common denominator is 5 times 8, or 40, so convert each fraction into 40ths:

2
5

3
8

2
5

8
8

3
8

5
5

2 8
5 8

3 5
5 8

8 5 5 8( equals so you can reveerse the order. These

fractions are ths but I want to lea40 , vve the in the

denominators for now.

5 8

)

2. Add the numerators and keep the common denominator unchanged:

2 8 3 5
5 8

16 15
40

31
40

You can see this equals or, .

Now you’re ready to do the original problem, a
b

c
d

. In this problem, you have an a instead  

of a 2, a b instead of a 5, a c instead of a 3, and a d instead of an 8. Just carry out the exact same 

steps as you do when adding 2
5

3
8

. You can think of each of the numbers in the solution as 

stamped on one side of a coin with the corresponding variable stamped on the other side. For 
instance, there’s a coin with a 2 on one side and an a on the opposite side; another coin has an 
8 on one side and a d on the other side, and so on. Now, take each step of the previous solution, 
flip each coin over, and voilà, you’ve got the solution to the original problem. Here’s the final 
answer:

ad cb
bd

Subtracting fractions
Subtracting fractions works like adding fractions except instead of adding, you subtract. 
Insights like this are the reason they pay me the big bucks.
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Canceling in fractions
Finishing calculus problems — after you’ve done all the calculus steps — sometimes requires 
some pretty messy algebra, including canceling. Make sure you know how to cancel and when 
you can and can’t do it.

In the fraction x y
x z

5 2

3 , three x’s can be canceled from the numerator and denominator, resulting 

in the simplified fraction, x y
z

2 2

. If you write out the x’s instead of using exponents, you can 

more clearly see how this works:

x y
x z

x x x x x y y
x x x z

5 2

3

Now cancel three x’s from the numerator and denominator:

x x x x x y y
x x x z

That leaves you with x x y y
z

, or x y
z

2 2

.

Express yourself
An algebraic expression or just expression is something like xyz or a p q2 3 6, basically anything 
without an equal sign (if it has an equal sign, it’s an equation). Canceling works the same way 
with expressions as it does for single variables. By the way, that’s a tip not just for canceling, 
but for all algebra topics.

Expressions behave exactly like variables.

So, if each x in the preceding problem is replaced with xyz q , you’ve got

xyz q y

xyz q z

5 2

3 ,

and three instances of the expression xyz q  cancel from the numerator and denominator, 
just as the three x’s canceled. The simplified result is

xyz q y
z

2 2

.

The multiplication rule for canceling
Now you know how to cancel. You also need to know when you can cancel.

The multiplication rule: You can cancel in a fraction only when it has an unbroken chain of mul-
tiplication through the entire numerator and the entire denominator.
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Canceling is allowed in a fraction like this:

a b xy pq c d

ab z xy pq

2 3

3

5

7
.

Think of multiplication as something that conducts electricity. Electrical current can flow from 
one end of the numerator to the other, from the a2 to the c d , because all the variables and 
expressions are connected with multiplication. (Note that an addition or subtraction sign inside 
parentheses — the “ ” in c d  for instance — doesn’t break the flow of current.) Because the 
denominator also has an unbroken chain of multiplication, canceling is allowed. You can cancel 
one a, three b’s, and three of the expression xy pq . Here’s the result:

a xy pq c d
b z

2

4

When you can’t cancel: Adding an innocuous-looking 1 to the numerator (or denominator) of 
the original fraction changes everything:

a b xy pq c d

ab z xy pq

2 3

3

5

7

1

The addition sign in front of the 1 breaks the flow of current, and no canceling is allowed any-
where in the fraction.

I should point out a situation that appears to violate the multiplication rule for canceling. You 
can cancel in a fraction like the following:

15 25 35
5 10

xy a b
p q

You can cancel a 5 out of all five terms, resulting in

3 5 7
2

xy a b
p q

This type of canceling is allowed only when you can cancel the same thing out of every term in 
the numerator and denominator. This problem appears to violate the multiplication rule, but it 
really doesn’t, because if you first factor the numerator and denominator like this —

5 3 5 7
5 2
xy a b

p q
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— you arrive at a fraction that does satisfy the multiplication rule, and you can then cancel  
the 5’s, producing the same answer.

Q. Solve: a b
dd

a bc2 3

?

A. 
a c
d

5 2

2

b
. To multiply fractions, you just multiply straight across. You do not cross- 

multiply in a diagonal direction! And you do not use a common denominator!

Q. Solve: 5 35 3a
cdbc
a ?

A. 
5 5 5

35 7
35

35

3

3 3 2

a
bc cd

a
bc

cd acd
a bc

d
a b

a
a

. To divide fractions, you flip the second one, 

and then multiply.

1 Solve: 12
0

?

2 Solve: 0
10

?

3 Does 3
3
a b
a c

 equal a b
a c

? Why or why not?

4 Does 3
3
a b
a c

 equal b
c

? Why or why not?

5 Does 4
4
ab
ac

 equal ab
ac

? Why or why not?
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6 Does 4
4
ab
ac

 equal b
c

? Why or why not?

Miscellaneous Algebra
If I could have thought of a nice, mathematical term for the group of topics that follow, I would 
have used it. But I couldn’t. Hence, the oh-so-descriptive miscellaneous.

Absolute value — absolutely easy
Absolute value just turns a negative number into a positive and does nothing to a positive num-
ber or zero. For example,

6 6 3 3 0 0, ,  and 

It’s a bit trickier when dealing with variables. If x is zero or positive, then the absolute value 
bars do nothing, and thus,

x x

But if x is negative, the absolute value of x is positive, and you write

x x

For example, if x 5 5 5 5, 

x  can be a positive number. When x is a negative number, x  (read as “negative x,” or “the 
opposite of x”) is a positive.

Empowering your powers
You are powerless in calculus if you don’t know the power rules:

 » x 0 1

This is the rule regardless of what x equals — a fraction, a negative, anything — except for 
zero (zero raised to the zero power is undefined). Let’s call it the kitchen sink rule (where  
the kitchen sink represents zero):

everything but the kitchen sink 0 1
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 » x
x

x
x

a
a

3
3

1 1  and  

For example, 4 1
4

1
16

2
2 . This is huge! Don’t forget it! Note that the power is negative, but 

the answer of 1
16

 is not negative.

 » x x x x xx a b b a ab2 3 2 233/ /  and  

You can use this handy rule backwards to convert a root problem into an easier power 
problem.

 » x x x x x xa b a b2 3 5   and  

You add the powers here. (By the way, you can’t do anything to x 2 plus x 3. You can’t add x 2 
to x 3 because they’re not like terms. You can only add or subtract terms when the variable 
part of each term is the same, for instance, 3 4 72 2 2xy z xy z xy z. This works for exactly 
the same reason — I’m not kidding — that 3 chairs plus 4 chairs is 7 chairs; and you can’t 
add unlike terms, just like you can’t add 5 chairs plus 2 cars.)

 » x
x

x
x
x

x
x
x

x
a

b
a b

5

3
2

2

6
4  and    and  

Here you subtract the powers.

 » x x x xa b ab2 3 6   and  

You multiply the powers here.

 » xyz x y z xyz x y za a a a3 3 3 3   and  

Here you distribute the power to each variable.

 » x
y

x
y

x
y

x
y

a a

a

4 4

4   and  

Here you also distribute the power to each variable.

 » x y x y2 2 2. NOT!

Do not distribute the power in this case. Instead, multiply it out the long way:
x y x y x y x xy xy y x xy y2 2 2 2 22 . Watch what happens  

if you erroneously use the preceding “law” with numbers: 3 5 2 equals 82, or 64, not 
3 52 2, which equals 9 25, or 34.

Rooting for roots
Roots, especially square roots, come up all the time in calculus. So, knowing how they work 
and understanding the fundamental connection between roots and powers is essential. And, of 
course, that’s what I’m about to tell you.

Roots rule — make that, root rules
Any root can be converted into a power, for example, x x

3 1 3/ , x x1 2/ , and x x34 3 4/ . So, 
if you get a problem with roots in it, you can just convert each root into a power and use the 
power rules instead to solve the problem (this is a very useful technique). Because you have this 
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option, the following root rules are less important than the power rules, but you really should 
know them anyway:

 » 0 0 1 1  and  

But you knew that, right?

No negatives under even roots. You can’t have a negative number under a square root or 
under any other even number root — at least not in basic calculus.

 » a b a b a b ab a b ab
n n n, ,   and  3 3 3

 » a
b

a
b

a

b

a
b

a

b

a
b

n

n
n,

3

3
3 ,  and  

 » a a a a
nm mn43 12   and  

You multiply the root indexes.

 » a a a a a a2 44 66    ,   ,,   and  so on.

If you have an even number root, you need the absolute value bars on the answer, because 
whether a is positive or negative, the answer is positive. If it’s an odd number root, you don’t 
need the absolute value bars. Thus,

 » a a a a33 55
, , .  and  so on

 » a b a b2 2 . NOT!

Make this mistake and go directly to jail. Try solving it with numbers: 2 3 132 2 , which 
does not equal 2 3.

Simplifying roots
Here are two last things on roots. First, you need to know the two methods for simplifying roots 
like 300 or 504 .

The quick method works for 300 because it’s easy to see a large perfect square, 100, that  
goes into 300. Because 300 equals 100 times 3, the 100 comes out as its square root, 10, leaving 
the 3 inside the square root. The answer is thus 10 3 .

For 504 , it’s not as easy to find a large perfect square that goes into 504, so you’ve got to use 
the longer method:

1. Break 504 down into a product of all of its prime factors.

504 2 2 2 3 3 7

2. Circle each pair of numbers.

3. For each circled pair, take one number out.

2 3 2 7
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4. Simplify.

6 14

The last thing about roots is that, by convention, you don’t leave a root in the denominator of a 
fraction — it’s a silly, anachronistic convention, but it’s still being taught, so here it is. If your 

answer is, say, 2
3

, you multiply it by 3
3

:

2
3

3
3

2 3
3

Logarithms — this is not an event  
at a lumberjack competition
A logarithm is just a different way of expressing an exponential relationship between numbers. 
For instance,

2 83 , , so

log28 3   (read as “log base 2 of 8 equals 3”).

These two equations say precisely the same thing. You could think of 2 83  as the way you 
write it in English and log28 3 as the way you would write it in Latin. And because it’s easier 
to think and do math in English, make sure — when you see something like log381 x  — that 
you can instantly “translate” it into 3 81x . The base of a logarithm can be any number greater 
than zero other than 1, and by convention, if the base is 10, you don’t write it. For example, 
log1000 3 means log101000 3. Also, log base e (e 2 72. ) is written ln instead of log e.

You should know the following logarithm properties:

 » log c 1 0

 » log c c 1

 » log log logc c cab a b

 » log log logc c c
a
b

a b

 » log logc
b

ca b a

 » log log
loga

c

c
b

b
a

With this property, you can compute something like log3 20 on a calculator that only has log 

buttons for base 10 (the “log” button) and base e (the “ln” button) by entering log
log

20
3

, using 

base 10 for c. On many newer-model calculators, you can compute log3 20 directly.

 » loga
ba b

 » a ba blog
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Factoring schmactoring — when  
am I ever going to need it?
When are you ever going to need it? For calculus, that’s when.

Factoring means “unmultiplying,” like rewriting 12 as 2 2 3. You won’t run across problems 
like that in calculus, however. For calculus, you need to be able to factor algebraic expressions, 
like factoring 5 10xy yz  as 5 2y x z . Algebraic factoring always involves rewriting a sum (or 
difference) of terms as a product. What follows is a quick refresher course.

Pulling out the greatest common factor
The first step in factoring any type of expression is to pull out — in other words, factor out — 
the greatest thing that all of the terms have in common — that’s the greatest common factor 
or GCF. For example, each of the three terms of 8 12 203 4 2 5 4 3x y x y x y z  contains the factor 
4 2 3x y , so it can be pulled out like this: 4 2 3 52 3 2 2x y xy y x z . Make sure you always look for 
a GCF to pull out before trying other factoring techniques.

Looking for a pattern
After pulling out the GCF if there is one, the next thing to do is to look for one of the following 
three patterns. The first pattern is huge; the next two are much less important.

DIFFERENCE OF SQUARES

Knowing how to factor the difference of squares is critical:

a b a b a b2 2

If you can rewrite something like 9 254x  so that it looks like this that2 2 , then you can use 
this factoring pattern. Here’s how:

9 25 3 54 2 2 2x x

Now, because this that this that this that2 2 , you can factor the problem:

3 5 3 35 52 2 2 2 2x x x

A difference of squares, a b2 2, can be factored, but a sum of squares, a b2 2, cannot be  
factored. In other words, a b2 2, like the numbers 7 and 13, is prime — you can’t break it up.

SUM AND DIFFERENCE OF CUBES

You might also want to memorize the factor rules for the sum and difference of cubes:

a b a b a ab b

a b a b a ab b

3 3 2 2

3 3 2 2
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Trying some trinomial factoring
Remember regular old trinomial factoring from your algebra days?

Several definitions: A trinomial is a polynomial with three terms. A polynomial is an expression 
like 4 6 5 25 3 2x x x x  where, except for the constant (the 2 in this example), all the terms 
have a variable raised to a positive integral power. In other words, no fraction powers or nega-

tive powers allowed (so, 1
x

 is not a polynomial because it equals x 1). And no radicals, no logs, 

no sines or cosines, or anything else — just terms with a coefficient, like the 4 in 4 5x , multiplied 
by a variable raised to a positive integral power. The degree of a polynomial is the polynomial’s 
highest power of x. The polynomial at the beginning of this paragraph, for instance, has a 
degree of 5.

It wouldn’t be a bad idea to get back up to speed with problems like

6 13 5 2 5 3 12x x x x

where you have to factor the trinomial on the left into the product of the two binomials on 
the right. A few standard techniques for factoring a trinomial like this are floating around the 
mathematical ether — you probably learned one or more of them in your algebra class. If you 
remember one of the techniques, great. You won’t have to do a lot of trinomial factoring in 
calculus, but it does come in handy now and then, so, if your skills are a bit rusty, check out 
Algebra II For Dummies, by Mary Jane Sterling (Wiley).

Solving quadratic equations
A quadratic equation is any second-degree polynomial equation  — that’s when the highest 
power of x, or whatever other variable is used, is 2.

You can solve quadratic equations by one of three basic methods.

Method 1: Factoring
Solve 2 5 122x x .

1. Bring all terms to one side of the equation, leaving a zero on the other side.

2 5 12 02x x

2. Factor.

2 3 4 0x x

You can check that these factors are correct by multiplying them. Does FOIL (First, 
Outer, Inner, Last) ring a bell?
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3. Set each factor equal to zero and solve (using the zero product property).

2 3 0 4 0

2 3 4

3
2

x x

x x

x

   or

So, this equation has two solutions: x 3
2

 and x 4.

The discriminant tells you whether a quadratic is factorable. Method 1 works only if the qua-
dratic is factorable. The quick test for that is a snap. A quadratic is factorable if the discrimi-
nant, b ac2 4 , is a perfect square number like 0, 1, 4, 9, 16, 25, and so on. (The discriminant 
is the stuff under the square root symbol in the quadratic formula — see Method 2 in the next 
section.) In the quadratic equation from Step 1, 2 5 12 02x x , for example, a 2, b 5, and 
c 12; b ac2 4  equals, therefore, 5 4 2 122 , which equals 121. Because 121 is a perfect 
square 112 , the quadratic is factorable. Because trinomial factoring is often so quick and easy, 
you may choose to just dive into the problem and try to factor it without bothering to check the 
value of the discriminant. But if you get stuck, it’s not a bad idea to check the discriminant so 
you don’t waste more time trying to factor an unfactorable quadratic trinomial. (But whether or 
not the quadratic is factorable, you can always solve it with the quadratic formula.)

Method 2: The quadratic formula
The solution or solutions of a quadratic equation, ax bx c2 0, are given by the quadratic 
formula:

x
b b ac

a

2 4
2

Now solve the same equation from Method 1 with the quadratic formula:

1. Bring all terms to one side of the equation, leaving a zero on the other side.

2 5 12 02x x

2. Plug the coefficients into the formula.

In this example, a equals 2, b is 5, and c is 12, so

x
5 5 4 2 12

2 2
5 25 96

4
5 121

4
5 11

4
16
4

2

 or  

 or 

6
4

4 3
2

x
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This agrees with the solutions obtained previously — the solutions better be the same 
because you’re solving the same equation.

Method 3: Completing the square
The third method of solving quadratic equations is called completing the square because it 
involves creating a perfect square trinomial that you can solve by taking its square root.

Solve 3 24 272x x .

1. Put the x 2 and the x terms on one side and the constant on the other.

3 24 272x x

2. Divide both sides by the coefficient of x 2 (unless, of course, it’s 1).

x x2 8 9

3. Take half of the coefficient of x, square it, then add that to both sides.

Half of 8 is 4 and 4 2 is 16, so add 16 to both sides:

x x2 8 16 9 16

4. Factor the left side into a binomial squared. Notice that the factor always contains the 
same number you found in Step 3 (–4 in this example).

x 4 252

5. Take the square root of both sides, remembering to put a  sign on the right side.

x

x

4 25

4 5

2

6. Solve.

x

x

4 5

9 1 or 

Q. Factor 9 4 6x y .

A. 9 3 34 6 2 3 2 3x y x y x y . This is an example of the single most important 

factor pattern: a b a b a b2 2 . Make sure you know it! In this problem, 3 2x  is 

your a and y 3 is your b. That’s all there is to it.

Q. Rewrite x 2 5 without a fraction power.

A. x 25  or x5 2
. Don’t forget how fraction powers work!
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7 Rewrite x 3 without a negative power. 8 Does abc 4 equal a b c4 4 4? Why or  
why not?

9 Does a b c 4  equal a b c4 4 4?  
Why or why not?

10 Rewrite x43  with a single radical sign.

11 Does a b2 2  equal a b? Why or  
why not?

12 Rewrite loga b c  as an exponential 
equation.

13 Rewrite log logc ca b with a single log. 14 Rewrite log log5 200 with a single log 
and then solve.
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15 If 5 3 82x x , solve for x with the  
quadratic formula.

16 Solve: 3 2 14x .

17 Solve: 3 0 1 1 02 0 0 1x ? 18 Simplify p q6 153 .

19 Simplify 8
27

4 3/

. 20 Factor x10 16 over the set of 
integers.

Geometry Refresher
You can use calculus to solve many real-world problems that involve two- or three- 
dimensional shapes and various curves, surfaces, and volumes — such as calculating the rate 
at which the water level is falling in a cone-shaped tank or determining the dimensions that 
maximize the volume of a cylindrical soup can. So the geometry formulas for perimeter, area, 
volume, surface area, and so on will come in handy. You should also know things like the 
Pythagorean Theorem, proportional shapes, and basic coordinate geometry, like the mid-
point and distance formulas. Finally, make sure you know your 45 45 90  and 30 60 90  
triangles.
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Handy-dandy geometry formulas
The following formulas might come in handy in your calculus studies.

Formulas for two-dimensional shapes

 » Pythagorean Theorem for right triangles: a b c2 2 2

 » Area base heightTriangle
1
2

 » Area base heightParalle ramlog    (Works for rhombuses, rectangles, and squares.)

 » Area diagonal diagonalKite
1
2 1 2   (Works for rhombuses and squares.)

 » Area
base base

heightTrapezoid
1 2

2

Formulas for three-dimensional shapes

 » Volume length width heightBox

 » Volume area heightCylinder base

 » Volume area heightCone base
1
3

 » Volume area heightPyramid base
1
3

 » Volume rSphere
4
3

3

 » Surface AreaBox  just add up the areas of all the faces

 » Surface Area area circumference heightCylinder base  2

 » Surface Area area circumference slant heightCone base   1
2

 » Surface AreaPyramid  just add up the areas of all the facess

 » Surface Area rSphere 4 2

Coordinate geometry formulas

 » Slope
rise
run

y y
x x

2 1

2 1

 » Midpo
x x y y

int 1 2 1 2

2 2
,    (This is simply the average of the x’s and the average of  

the y’s.)

 » Dis ce x x y ytan 2 1
2

2 1
2    (This is mathematically equivalent to the Pythagorean 

Theorem.)
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Two special right triangles
Because so many garden-variety calculus problems involve 30-, 45-, and 60-degree angles, 
it’s a good idea to memorize the two right triangles in Figure 4-1.

The 45° − 45° − 90° triangle
Every 45 45 90  triangle is the shape of a square cut in half along its diagonal. The 
45 45 90  triangle in Figure 4-1 is half of a 1-by-1 square. The Pythagorean Theorem gives 
you the length of its hypotenuse, 2 , or about 1.41.

The 30° − 60° − 90° triangle
Every 30 60 90  triangle is half of an equilateral triangle cut straight down the middle along 
its altitude.

The 30 60 90  triangle in Figure 4-1 is half of a 2-by-2-by-2 equilateral triangle. It has legs 
of lengths 1 and 3  (about 1.73), and a 2-unit-long hypotenuse.

Don’t make the common error of switching the 2 with the 3 in a 30 60 90  triangle. 
Remember that 2 is more than 3  ( 4  equals 2, so 3  be must be less than 2) and that the 
hypotenuse is always the longest side of a right triangle.

When you sketch a 30 60 90  triangle, exaggerate the fact that it’s wider than it is tall (or 
taller than wide if you tip it up). This makes it obvious that the shortest side (length of 1) is 
opposite the smallest angle (30 ).

Q. What’s the area of the triangle in the following figure?

FIGURE 4-1:  
The  

45° − 45° − 90° 
triangle  
and the 

30° − 60° − 90° 
triangle.
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A. 
39
2

Area base heightTriangle
1
2
1
2

13 3

39
2

Q. How long is the hypotenuse of the triangle in the previous example?

A. x 4.

a b c

x a b

x

x

x

x

2 2 2

2 2 2

2 2 2

2

2

13 3

13 3

16

4

21 Fill in the two missing lengths for the sides of the triangle in the following figure.
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22 What are the lengths of the two missing sides of the triangle in the following figure?

23 Fill in the missing lengths for the sides of the triangle in the following figure.

24 (a) What’s the total area of the pentagon in the following figure (the shape on the left is 
a square)?

(b) What’s the perimeter?
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25 Compute the area of the parallelogram in the following figure.

26 What’s the slope of PQ?

27 How far is it from P to Q in the figure from Problem 26?
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28 What are the coordinates of the midpoint of PQ in the figure from Problem 26?

29 What’s the length of altitude of triangle ABC in the following figure?

30 What’s the perimeter of triangle ABD in the figure for Problem 29?
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31 What’s the area of quadrilateral PQRS in the following figure?

32 What’s the perimeter of triangle BCD in the following figure?
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33 What’s the ratio of the area of triangle BCD to the area of triangle ACE in the figure for 
Problem 32?

34 In the following figure, what’s the area of parallelogram PQRS in terms of x and y?
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Practice Questions Answers and Explanations
1 12

0
 is undefined! Don’t mix this up with something like 0

8
, which equals zero.

Here’s a great way to think about this problem and fractions in general. Consider the follow-

ing simple division or fraction problem: 8
2

4. Note the multiplication problem implicit here:  

2 times 4 is 8. This multiplication idea is a great way to think about how fractions work. So in 

the current problem, you can consider 12
0

____, and use the multiplication idea: 0 times 

____ equals 12. What works in the blank? Nothing, obviously, because 0 times anything is 0. 
The answer, therefore, is undefined.

Note that if you think about these two fractions as examples of slope rise
run

, 12
0

 has a rise of  

12 and a run of 0, which gives you a vertical line that has sort of an infinite steepness or slope 
(that’s why it’s undefined). Or just remember that it’s impossible to drive up a vertical road, 

so it’s impossible to come up with a slope for a vertical line. The fraction 0
8

, on the other 

hand, has a rise of 0 and a run of 8, which gives you a horizontal line that has no steepness at 
all and thus has the perfectly ordinary slope of zero. Of course, it’s also perfectly ordinary to 
drive on a horizontal road.

2 0
10

0. (See the solution to Problem 1 for more information.)

3 No. You can’t cancel the 3’s.

You can’t cancel in a fraction unless there’s an unbroken chain of multiplication running 

across the entire numerator and the entire denominator.

4 No, they’re not equal. You can’t cancel the 3a’s. (See the warning in Problem 3.) You can also 

just test this problem with numbers: Does 3 4 5
3 4 6

5
6

? No, they’re not equal.

5 Yes, they’re equal. You can cancel the 4’s because the entire numerator and the entire 
denominator are connected with multiplication.

6 Yes, they’re equal. You can cancel the 4a’s.

7 1
3x

.

8 Yes. Exponents do distribute over multiplication.

9 No! Exponents do not distribute over addition (or subtraction).

Use numbers instead of variables! When you’re working a problem and can’t remember the 
algebra rule, try the problem with numbers instead of variables. Just replace the variables 
with simple, round numbers and work out the numerical problem. (Don’t use 0, 1, or 2 
because they have special properties that can mess up your test.) Whatever works for the 
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numbers will work with variables, and whatever doesn’t work with numbers won’t work with 
variables. Watch what happens if you try this problem with numbers:

3 4 6 3 4 6

13 81 256 1296

28 561 1633

4 4 4 4

4

?

?

,       

10 x12 .

11 No! The explanation is basically the same as for Problem 9. Consider this: If you turn the root 

into a power, you get a b a b2 2 2 2 1 2/
. But because you can’t distribute the power over 

addition, a b a b2 2 1 2 2 1 2 2 1 2/ / /
, or a b , and thus a b a b2 2 .

12 a bc .

13 log c
a
b

.

14 log log log log5 200 5 200 1000 3.

When you see “log” without a base number, the base is 10.

15 x
8
5

1or .

Start by rearranging 5 3 82x x  into 5 3 8 02x x  because when solving a quadratic equa-
tion, you want just a zero on one side of the equation.

The quadratic formula tells you that x b b ac
a

2 4
2

. Plugging 5 into a, –3 into b, and  

–8 into c gives you x
3 3 4 5 8

2 5
3 9 160

10
3 13

10
16
10

2

 or 10
10

,  

so x 8
5

 or –1.

16 x x or x x
16
3

4
16
3

4, ,       .

1. Turn the inequality into an equation:

3 2 14x

2. Solve the absolute value equation.

3 2 14

3 12

4

x

x

x

           or

3 2 14

3 16

16
3

x

x

x

3. Place both solutions on a number line (see the following figure).

(You use hollow dots for > and <; if the problem had involved  or , you would use 
solid dots.)
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4. Test a number from each of the three regions on the line (left of the left dot, between 
the dots, and right of the right dot) in the original inequality.

For this problem, you can use –10, 0, and 10.

3 10 2 14

28 14

28 14

?

?

?

True, so you shade the left-most region.

3 0 2 14

2 14

?

?

False, so you don’t shade the middle region.

3 10 2 14

32 14

32 14

?

?

?

True, so you shade the region on the right. The following figure shows the result. x can 
be any number where the line is shaded. That’s your final answer.

5. You may also want to express the answer symbolically.

Because x can equal a number in the left region or a number in the right region, this is 
an or solution, which means union (∪). When you want to include everything from both 
regions on the number line, you want the union of the two regions. So, the symbolic 
answer is

x x
16
3

4

(You can write this using the word “or” instead of the union symbol.) If only the 
middle region were shaded, you’d have an and or intersection problem (∩). Using the 
number line points in this example, you would write the middle-region solution  
like this:

x x
16
3

4

(You can use the word “and” instead of the intersection symbol.) Note that in this 
solution (whether you use “and” or the intersection symbol), the two inequalities 
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overlap or intersect in the middle region. You can avoid the intersection issue by  
simply writing the solution as

16
3

4x

You say “to-may-to,” I say “to-mah-to.”

17 The answer is –12.

Funny-looking problem, eh? It’s just meant to help you review a few basics. Take a look at 
the six terms:

Don’t forget, 3 92 . If you want to square a negative number, you have to put it in paren-
theses: 3 92 . Next, anything to the zero power (including a variable) equals 1. That takes 
care of the second and fifth chunks of the problem. The square root of zero is just zero, of 
course, because zero squared equals zero. And you know that the absolute value of –1 is 1; 
you just have to be careful not to goof up with all those negative signs and subtraction signs. 
Finally, zero to any positive power equals zero. That does it:

3 0 1 1 0

9 1 0 1 1 0

12

2 0 0 1x

18 The answer is p q2 5.

Most people prefer working with power rules to working with root rules, so that’s the  

way I solve the problem here. First, rewrite the root as a power: p q p q6 153 6 15 1 3/
. Now,  

just distribute the power to the p6 and the q 6, and then use the power-to-a-power rule: 

p q

p q

p q

p q

6 15 1 3

6 1 3 15 1 3

6 1 3 15 1 3

2 5

/

/ /

/ /

19 The answer is 
81
16

.

I’ll give you the longer version of the solution and then show you a shortcut. First, use the 

definition of a negative exponent to rewrite the problem as 1
8
27

4 3/ . Next, change the power 

to a root: 1

8
27

3
4  (instead, you could first distribute the fraction power to the numerator  

and denominator). The rest shouldn’t be too bad: 1

8
27

1

8
27

1
2
3

1
16
81

81
16

3
4 3

3

4 4 .

The shortcut is to use the fact that when you have a fraction raised to a negative power, you 

can flip the fraction and make the power positive, like this 8
27

27
8

4 3 4 3/ /

. Then proceed 

as follows: 27
8

27
8

27

8

3
2

81
16

4 3 4 3

4 3

3 4

3 4

4

4

/ /

/ .
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20 4 45 5x x .

To factor x10 16, you use the oh-so-important a b2 2 rule. a b2 2 factors into a b a b . 
Make sure you know this factoring rule (and the corresponding FOILing rule, which is the fac-
toring rule in reverse). Whenever you see a binomial with a subtraction sign (in the current 
problem, you have to switch the two terms to see the subtraction sign), ask yourself whether 
you can rewrite the binomial as 2 2, in other words, as something squared minus 
something else squared. If you can, then the first blank is your a, and the second blank is your b.

The binomial in this problem can be rewritten as 4 2 5 2
x . Now just plug the 4 into the a 

and the x 5 into the b in a b a b , and you’re done.

21 a 5 and b 5 3 .

This is a 30 60 90  triangle.

22 Another 30 60 90  triangle. 
a

b

8
3

8 3
3

16
3

16 3
3

 or 

 or 

23 a 6 and b 6 2 .

Make sure you know your 45 45 90  triangle.

24 a. The total area of the pentagon is 50
25 3

2
.

The square is 10
2

 by 10
2

 (because half a square is a 45 45 90  triangle), so the area 

is 10
2

10
2

100
2

50. The equilateral triangle has a base of 10
2

, or 5 2 , so its height is 

5 6
2

 (because half of an equilateral triangle is a 30 60 90  triangle). So, the area of 

the triangle is 1
2

5 2 5 6
2

25 12
4

50 3
4

25 3
2

. The total area is thus 50 25 3
2

.

b. The perimeter is 25 2.

The sides of the square are 10
2

, or 5 2 , as are the sides of the equilateral triangle.

The pentagon has five sides, so the perimeter is 5 5 2 , or 25 2 .

25 The answer is 20 2 .

The height of the parallelogram is 4
2

, or 2 2, because its height is one of the legs of a 

45 45 90  triangle. The parallelogram’s base is 10. So, because the area of a parallelogram 
equals base times height, the area is 10 2 2 , or 20 2 .

26 d b
c a

. Remember that slope
rise
run

y y
x x

2 1

2 1
.

27 c a d b2 2 . Remember that distance x x y y2 1
2

2 1
2 .

28 a c b d
2 2

,  . The midpoint of a segment is given by the average of the two x-coordinates 

and the average of the two y-coordinates.
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29 2 3 .

There are a few ways to solve this problem, all of which use your knowledge of 30 60 90  
triangles. Here’s a quick and easy way. Triangle ABC is a 30 60 90  triangle, and the short 
leg of a 30 60 90  triangle is half as long as its hypotenuse, so BC  is 4. Triangle BCD is 
another 30 60 90  triangle, so its short leg is half as long as its hypotenuse. That gives DC  
a length of 2. Then, because BD  is the long leg of 30 60 90  triangle BCD, it’s 3  times its 
short leg. That gives you the answer of 2 3 , for altitude BD .

30 6 + 6 3.

Triangle ABD is yet another 30 60 90  triangle, so its hypotenuse is twice as long as its 
short leg, BD . That gives you a length of 4 3  for AB . Next, AD is 8 2, or 6. The perimeter  
of triangle ABD is therefore 6 2 3 4 3 , or 6 6 3 .

31 27 + 9 3 .

Piece o’ cake. Begin with triangle QRS, which you can see is a 45 45 90  triangle. The legs 
of a 45 45 90  triangle are equal, so QR is 6, and the hypotenuse of a 45 45 90  trian-
gle is 2  times either leg, so QS  is 6 2 .

Now you see that the hypotenuse of triangle TQS is twice as long as its short leg, QT , which 
tells you that triangle TQS is a 30 60 90  triangle. That makes TQS  60 , and you also get 
the length of TS, which, because it’s the long leg of 30 60 90  triangle TQS, has to be 3  
times as long as its short leg, QT . So TS  is 3 6 .

Next, because PQR is 150 , and angles TQS and SQR are 60  and 45 , respectively, you sub-
tract to get 45  for PQT . That makes triangle PQT a 45 45 90  triangle, and thus PT , like 
QT , is 3 2 .

Now you have everything you need to figure the area of the quadrilateral. The area of a right 
triangle equals half the product of its legs, so here’s the final math:

Area area area areaQuad PQRS PQT TQS QRS

1
2

3 2 3 2 1
2

3 6 3 22 1
2

6 6

9 1
2

9 12 18

9 9 3 18

27 9 3

Make sure you know your 30 60 90  and 45 45 90  triangles!

32 10
1
3

.

To do this problem and the next one, you first have to establish that the two triangles are 
similar (the same shape). Because segments BD  and AE  are parallel, angles BDC and AED are 
corresponding angles and are therefore congruent. And the two triangles share angle C. Thus, 
by the AA (angle-angle) theorem, triangles BCD and ACE are similar.

To get the length of BC , you could use similar triangle proportions, but it’s a little bit quicker 

to use the side-splitter theorem, which tells you that BC
AB

4
8

. Because the ratio equals 4
8

, you 

can set BC  equal to 4x and AB  equal to 8x. They add up to 13, so you have 4 8 13x x , or 

x
13
12

. Plugging that into 4x gives you 13
3

 for the length of BC .
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Now all you need to finish is the length of BD . Did you fall for the nasty trap in this problem? 
When you see the 4 and the 8 along the right side of triangle ACE, it’s easy to make the mis-
take of thinking that BD  and AE  will be in the same 4-to-8 or 1-to-2 ratio and conclude that 
BD  therefore equals 3. But BD  and AE  are not in a 1-to-2 ratio. To get BD, you have to use a 
similar triangle proportion like the following:

right side of 
right side of 

base of 
base of 

BCD
ACE

BCD
AACE

CD
CE

BD
AE

BD4
12 6

Cross multiplication gives you a length of 2 for BD .

Adding up the three sides (4, 13
3

, and 2) gives you the perimeter.

33 1
9

or 1 : 9.  

If you know the appropriate theorem for this problem, it’s a snap. If you don’t know the  
theorem, the problem’s very hard. You could also get tripped up if you thought you needed 
the areas of the two triangles (you don’t), and you could be thrown off by the trap referred to 
in Problem 32.

All you need is the theorem that tells you that the ratio of the areas of similar figures is equal 
to the square of the ratio of any of their corresponding sides. For this problem, the theorem 

tells you that Area
Area

CD
CE

BCD

ACE

2 2 24
12

1
3

1
9

.

(Note that you did not need to know the altitudes of the triangles or their areas in order to 
compute the ratio of their areas.)

In plain English, the idea is simply that if you take any 2-D shape and blow it up to, say,  
4 times its height, its area will grow 42, or 16 times. By the way, if you blow up a 3-D shape, 
say, 4 times its height, its volume will grow 43, or 64 times.

34 3
2
xy.

When you see a 60  angle in a problem, one of the first things you should consider is the 
30 60 90  triangle. Sure enough, that’s the key to this problem.

All you need to do is to drop an altitude from Q straight down to base PS , making a right 
angle with PS . Call the point where the altitude meets the base point T. Triangle PQT contains 
a 60  angle and a 90  angle, so it has to be a 30 60 90  triangle. The short leg of a 

30 60 90  triangle is half as long as its hypotenuse, so PT  is half of PQ, or 1
2

y . Then, 

because the long leg of a 30 60 90  triangle is 3  times as long as its short leg, altitude 

QT  is 3 1
2

3
2

y y .

Now that you have the altitude and the base of the parallelogram, you just plug them into the 

parallelogram area formula to get your answer: Area base height x yparallelogram PQRS
3
2

.

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 4 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 Simplify: x
x
y

z
y2 2

2 Simplify: 5
a

xyz

3 Simplify: 8 8
8 2

p q r
p

4 Add the fractions: x
y

z
x y2

5 Subtract the fractions: a b
a b

a b
a b

6 Simplify: x
x x x

4

3 2
16

2 4 8

7 Simplify: 

p
q

x y
z

x y
z

0 2

2 2

2

8 Solve: x 3 8 8

9 Solve: x 3 4 4

10 Simplify: x x x
x x

1 2 1 3 1 4

1 6 5 12

2

 (Assume x is positive.)

11 Solve: x x3 5

12 Simplify/calculate (no calculator allowed): ln log log log log1 1 2 8 102 8 2
3

e

13 Solve: x x1 2 1 45 6 0

14 Solve: 1 1 1
2 3x x x

15 On the coordinate plane, point A is at 4 2,  and point B is at 12, 8 .

(a) What’s the slope of AB?

(b) What’s the length of AB?

(c) What’s the midpoint of AB?

16 Sketch a coordinate plane, and draw AB  from Problem 15. Then add the vertical line, x 8, 
that will pass through the midpoint of AB . Any point on the line x 8 (let’s call it point C) 
will have coordinates 8, y . What value or values of y will make ABC  a right triangle?
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17 A right circular cone has a radius and altitude of 4. What’s the surface area of a sphere that 
has the same volume as the cone?

18 Determine the area of the triangle shown in the following figure.
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Answers to Chapter 4 Quiz
1 x z

y

2

24
.

x
x
y

z
y

x z
y2 2 4

2

2

Note that the 2y in the two denominators is not a common denominator (which would remain 
unchanged if this were a fraction addition or subtraction problem). A common denominator 
has no significance in a fraction multiplication problem like this (or a fraction division 
problem).

2 5xyz
a

.

5 5
1

5
a

xyz
a

xyz xyz
a

3 You cannot simplify this fraction.

Tricked you. No cancellation is allowed! If you thought you could cancel one p from the 

numerator and denominator, giving you an answer of 8 8
8

q r
p

, or that you could cancel 

the 8’s, giving you an answer of p q r
p2 , make up numbers for the p, q, and r, plug your 

numbers into the original expression and into your answer, use your calculator to compute 
the results, and you’ll see that your two numerical results are not equal.

4 x xy y z
y x y

2 2

2 3 .

First, you need a common denominator. That’s y x y2 . Now, convert the original fractions 
to fractions that contain the common denominator, and continue from there:

x x y
y x y

y z
y x y

x x y y z
y x y

x xy y z
y x y2

2

2

2

2

2 2

2 3

5 4
2 2

ab
a b

.

First, rewrite the fractions with the common denominator a b a b . That gives you 

a b a b
a b a b

a b a b
a b a b

. Now, simplify: 
a ab b a ab b

a b a b
ab

a b

2 2 2 2

2 2

2 2 4

6 x 2.

First, factor the numerator, using the difference of squares factor pattern twice, and  
factor the denominator using the grouping technique. Then cancel for your final answer: 

x x

x x x

x x x

x x
x

2 2

2

2

2

4 4

2 4 2

4 2 2

4 2
2
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7 x y
x y

.

First, you know, of course, that anything to the zero power equals 1. Next, distribute the 

power of 2 to the numerator and denominator of the fraction in the numerator: 

x y
z

x y
z

2

2

2 2

2

. 

Flip and multiply: 
x y

z
z

x y

2

2

2

2 2 . Factor the difference of squares, and then cancel for 

your final answer: 
x y

z
z

x y x y
x y
x y

2

2

2

8 No solution.

STOP! The absolute value of anything can never equal a negative number. No solution.

9 2 0x .

The best way to solve an absolute value inequality is to solve the related equation and then 
test the regions on the number line created by the solutions to the equation.

x 3 4 4

x

x

x

3

3

4 4

0

0

      

       

         or         

x

x

x

3

3

4 4

8

2

The solutions of –2 and 0 create three regions on the number line: one to the left of –2, one 
between –2 and 0, and one to the right of 0. Take one number (any number) from each of the 
three regions and test them one at a time in the original inequality. Only the middle region 
produces a true result, so your answer is 2 0x .

10 1
x

.

First, flip the fraction and make the –2 power positive: x x
x x x

1 6 5 12

1 2 1 3 1 4

2

. Multiply out the 

numerator and denominator by adding the powers: x x
x x x

x
x

2 12 5 12

6 12 4 12 3 12

2 7 12

13 12

2

. Subtract 

the powers in the numerator and denominator: x x x
x

6 12 2 1 2 2 1 1

11 x x x0 1 1or or .

The first step is optional, but many people find it easier to work with powers than with roots, 
so you can rewrite the equations using powers: x x1 3 1 5. Now, to get rid of those pesky 
fractions, raise both sides of the equation to the 15th power (because 15 is the least common 
multiple of 3 and 5):

x x

x x

x x

x x

x x x

1 3 15 1 5 15

5 3

5 3

3 2

3

0

1 0

1 1 0,  and sso on
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12 1.

First, rewrite without fractions or roots: ln log log log loge 2
8 2

1 31 2 8 10 . The first and 
last of these terms should be automatic if you know the definition of a logarithm. The other 

terms aren’t much harder given that 0 1, 8 21 3 , and 2 83 . You’ve got 2 0 1
3

3 1
3

1.

13 x x16 81or .

This is a disguised quadratic. Keep your eyes peeled for such problems when you see a trino-
mial like this. Whenever the first term (ignoring any coefficient) is the square of the middle 
term (ignoring any coefficient) — as here, where x x1 2 1 4 2

 — you’ve got a disguised qua-
dratic. If you set u x1 4, then u x2 1 2. Now just rewrite the original equation in terms of u, 
factor, and solve for u:

u u

u u

2 5 6 0

2 3 0

Thus, u 2 or u 3. But don’t forget: you want x, not u, so you’ve got to switch back to x and 
then solve for x.

x

x

1 4 2

16
or

x

x

1 4 3

81

14 x x
1 5

2
1 5

2
or .

Multiply both sides of the equation by the least common denominator, namely, x 3, then set 
the resulting quadratic equation equal to zero:

x
x x x

x

x x

x x

3
2 3

3

2

2

1 1 1

1

1 0

You can’t factor this because the discriminant (b ac2 4 ) equals 5, which is not a perfect 
square. So, solve with the quadratic formula:

x

x x

1 1 4
2

1 5
2

1 5
2

2

   or   

15 Slope  Distance  Midpoint  
3
4

10 8 5, , , .

(a) Slope
y y
x x

2 1

2 1

8 2
12 4

3
4

(b) Dis ce x x y ytan 2 1
2

2 1
2 2 212 4 8 2 64 36 10

Congrats if you noticed the shortcut: You’ve got a Pythagorean Triple triangle, a 6-8-10 
triangle.

(c) Midpo
x x y y

int 1 2 1 2

2 2
4 12

2
2 8

2
8 5, , ,   
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16 The values of y are 
40
3

10
3

0 10, , , and .

How many solutions did you find? If you found two, not too bad. Congrats if you found  
all four.

Let’s first find the highest and lowest points. The highest point C on the line will make B a 
right angle. A right angle means that you’ve got perpendicular lines, and perpendicular lines 
have opposite reciprocal slopes. Thus, the slope of CB will have to equal the opposite recipro-

cal of the slope of AB, which equals 3
4

. The opposite reciprocal of that is 4
3

, so set the slope 

of CB equal to 4
3

 and solve:

y 8
8 12

4
3

, . etc y
40
3

The solution for the lowest point C works the same way except that this time, the right angle 

will be A. When you do the math, you get y 10
3

.

For the final two solutions (which I’m guessing were a bit harder to find), it’s C  that will be 

the right angle. Thus, the slope of CA, 
y 2
8 4 , will have to equal the opposite reciprocal of the 

slope of CB, 
y 8
8 12 :

y
y

y y

y y

y y

y y

2
8 4

8 12
8

2 8 16

10 16 16

10 0

10

2

2

00

Your final two solutions for y are 0 and 10.

17 16 43 .

First, calculate the volume of the cone using — hang onto your hat — the formula for the 

volume of a cone: Volume area heightCone base
1
3

1
3

4 4 4
3

2
3

.

Next, set the volume of the sphere equal to that answer, and solve for r:

4
3

4
3

4 16

16

3
3

3 2

3

r

r

r

Finally, use that value of r to determine the surface area of the sphere:

Surface Area rSphere 4 4 16 4 16 4 4 16 42 3 2 23 43 3
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18 6 5 3 6. .

Note that XBA and XYZ  are 30 60 90  triangles. XAB is thus a 60  angle, and, there-
fore, BAC  is 45 , and ABC  is thus a 45 45 90  triangle. It’s then easy to see that BCY  
is another 45 45 90  triangle. Next, XB is the long leg of a 30 60 90  triangle, so it’s 

3  times the length of the short leg, which is 2 3 . XB is therefore 3 2 3 , or 6.

The next thing you need is BY  so you can add that to XB to get base XY . Because AB  is the 
hypotenuse of a 45 45 90  triangle, you divide its length by 2  to get the length of BC . 
But then you have to divide that answer by 2  to get BY . Dividing by 2  twice is the same 
thing as dividing by 2, so that means that BY  is half of AB . BY  is thus 3 , and therefore XY  
is 6 3 . We’re almost done. Phew.

So, XYZ  (a 30 60 90  triangle) has a long leg of 6 3 . You divide that by 3  to get the 

length of the short leg, YZ . That short leg, which is the height of XYZ , is thus 6 3
3

, which 

simplifies to 2 3 1. Finally, you finish with the formula for the area of a triangle. The area 

of XYZ  equals 1
2

base height, or 1
2

6 3 2 3 1 1
2

12 3 6 6 3 1
2

13 3 12

6 5 3 6. . Was that fun or what?
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Funky Functions and 
Their Groovy Graphs

In Chapter 5, you continue your pre-calc warm-up that you began in Chapter 4. If algebra is 
the language calculus is written in, you might think of functions as the “sentences” of cal-
culus. And they’re as important to calculus as sentences are to writing. Virtually everything 

you do in calculus concerns functions and their graphs in one way or another. Differential cal-
culus involves finding the slope or steepness of various functions, and integral calculus involves 
computing the area underneath functions. And not only is the concept of a function critical for 
calculus, but it’s also one of the most fundamental ideas in all of mathematics.

What Is a Function?
Basically, a function is a relationship between two things in which the numerical value of one 
thing in some way depends on the value of the other. Examples are all around us: The average 
daily temperature for your city depends on, and is a function of, the time of year; the distance 
an object has fallen is a function of how much time has elapsed since you dropped it; the area 
of a circle is a function of its radius; and the pressure of an enclosed gas is a function of its 
temperature.

Chapter 5

IN THIS CHAPTER

 » Figuring out functions and 
relations

 » Learning about lines

 » Getting particular about parabolas

 » Grappling with graphs

 » Transforming functions and 
investigating inverse functions
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The defining characteristic of a function
A function has only one output for each input.

Consider Figure 5-1.

The soda machine is a function because after plugging in the inputs (your choice and your 
money), you know exactly what the output is. With the slot machine, on the other hand, the 
output is a mystery, so it’s not a function. Look at Figure 5-2.

The squaring function, f, is a function because it has exactly one output assigned to each input. 
It doesn’t matter that both 2 and −2 produce the same output of 4 because given an input,  
say −2, there’s no mystery about the output. When you input 3 into g, however, you don’t know 
whether the output is 1 or 2. (For now, don’t worry about how the g rule turns its inputs into its 
outputs.) Because no output mysteries are allowed in functions, g is not a function.

Good functions, unlike good literature, have predictable endings.

Definitions of domain and range: The set of all inputs of a function is called the domain of the 
function; the set of all outputs is the range of the function.

FIGURE 5-1:  
The soda 

machine is a 
function. The 
slot machine  

is not.

FIGURE 5-2:  
f is a function;  

g is not.
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Some people like to think of a function as a machine. Consider again the squaring function, f, 
from Figure 5-2. Figure 5-3 shows two of the inputs and their respective outputs.

You pop a 1 into the function machine, and out pops a 1; you put in a −2 and a 4 comes out.  
A function machine takes an input, operates on it in some way, and then spits out the output.

Independent and dependent variables
Definitions of dependent variable and independent variable: In a function, the thing that depends 
on the other thing is called the dependent variable; the other thing is the independent variable. 
Because you plug numbers into the independent variable, it’s also called the input variable. After 
plugging in a number, you then calculate the output or answer for the dependent variable, so 
the dependent variable is also called the output variable. When you graph a function, the inde-
pendent variable goes on the x-axis, and the dependent variable goes on the y-axis.

Sometimes the dependence between the two things is one of cause and effect — for example, 
raising the temperature of a gas causes an increase in the pressure. In this case, temperature is 
the independent variable and pressure the dependent variable because the pressure depends on 
the temperature.

Often, however, the dependence is not one of cause and effect, but just some sort of associa-
tion between the two things. Usually, though, the independent variable is the thing you already 
know or can easily ascertain, and the dependent variable is the thing you want to figure out. 
For instance, you wouldn’t say that time causes an object to fall (gravity is the cause), but if you 
know how much time has passed since you dropped an object, you can figure out how far it has 
fallen. So, time is the independent variable, and distance fallen is the dependent variable; and 
you would say that distance is a function of time.

Whatever the type of correspondence between the two variables, the dependent variable (the 
y-variable) is the thing you’re usually more interested in. Generally, you want to know what 
happens to the dependent or y-variable as the independent or x-variable goes to the right: Is 
the y-variable (the height of the graph) rising or falling and, if so, how steeply, or is the graph 
level, neither going up nor down?

Function notation
A common way of writing the function y x x5 2 33 2  is to replace the “y” with “f x ” and 
write f x x x5 2 33 2 . It’s just a different notation for the same thing. These two equations 
are, in every respect, mathematically identical. Students are often puzzled by function nota-
tion when they see it for the first time. They wonder what the “f” is and whether f x  means 
f times x. It does not. If function notation bugs you, my advice is to think of f x  as simply the 
way y is written in some foreign language. Don’t consider the f and the x separately; just think 
of f x  as a single symbol for y.

FIGURE 5-3:  
A function 

machine: Meat 
goes in, 
sausage  

comes out.



70      UNIT 2  Warming Up with Calculus Prerequisites

You can also think of f x  (read as “f of x”) as short for “a function of x.” You can write 
y f x x3 2, which is translated as “y is a function of x and that function is 3 2x .” However, 
sometimes other letters are used instead of f — such as g x  or p x   — often just to dif-
ferentiate between functions. The function letter doesn’t necessarily stand for anything, but 
sometimes the initial letter of a word is used (in which case you use an uppercase letter). For 
instance, you know that the area of a square is determined by squaring the length of its side: 
Area side2 or A s2. The area of a square depends on, and is a function of, the length of its side. 
With function notation, you can write A s s2. (Quick quiz: How does f x x 2 differ from the 
area of a square function,  A s s2

 ? Answer: For f x x 2, x can equal any number, but with 
A s s2, s must be positive, because the length of a side of a square cannot be negative or zero. 
The two functions thus have different domains.)

Consider, again, the squaring function y x 2 or f x x 2. When you input 3 for x, the output is 
9. Function notation is convenient because you can concisely express the input and the output 
by writing f 3 9 (read as “f of 3 equals 9”). Remember that f 3 9 means that when x is 3, 
f 3  is 9; or, equivalently, it tells you that when x is 3, y is 9.

Composite functions
A composite function is the combination of two functions. For example, the cost of the electrical 
energy needed to air-condition your place depends on how much electricity you use, and usage 
depends on the outdoor temperature. Because cost depends on usage and usage depends on 
temperature, cost depends on temperature. In function language, cost is a function of usage, 
usage is a function of temperature, and thus cost is a function of temperature. This last func-
tion, a combination of the first two, is a composite function.

Let f x x 2 and g x x5 8. Input 3 into g x g:  3 5 3 8, which equals 7. Now take  

that output, 7, and plug it into f x f:  7 7 492 . The machine metaphor shows what I did 
here. Look at Figure 5-4. The g machine turns the 3 into a 7, and then the f machine turns the 
7 into a 49.

You can express the net result of the two functions in one step with the following composite 
function:

f g 3 49

You always calculate the inside function of a composite function first: g 3 7. Then you take 
the output, 7, and calculate f 7 , which equals 49.

FIGURE 5-4:  
Two function 

machines.
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To determine the general composite function, f g x , plug g x , which equals 5 8x , into 
f x . In other words, you want to determine f x5 8 . The f function or f machine takes an 
input and squares it. Thus,

f x x

x x

x x x

x x

5 8 5 8

5 8 5 8

25 40 40 64

25 80 64

2

2

2

Thus, f g x x x25 80 642 .

With composite functions, the order matters. As a general rule, f g x g f x .

What Does a Function Look Like?
I’m no math historian, but everyone seems to agree that René Descartes (1596–1650) came up 
with the x-y coordinate system shown in Figure 5-5.

Isaac Newton (1642–1727) and Gottfried Leibniz (1646–1716) are credited with inventing  
calculus, but it’s hard to imagine that they could have done it without Descartes’s contribu-
tion several decades earlier. Think of the coordinate system (or the screen on your graphing  
calculator) as your window into the world of calculus. Virtually everything in your calculus 
textbook and in this book involves (directly or indirectly) the graphs of lines or curves  —  
usually functions — in the x-y coordinate system.

Consider the four graphs in Figure 5-6.

These four curves are functions because they satisfy the vertical line test. (Note: I’m using the 
term curve here to refer to any shape, whether it’s curved or straight.)

The vertical line test: A curve is a function if a vertical line drawn through the curve  —  
regardless of where it’s drawn — touches the curve only once. This guarantees that each input 
within the function’s domain has exactly one output.

FIGURE 5-5:  
The Cartesian 
(for Descartes)  

or x-y 
coordinate 

system.
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No matter where you draw a vertical line on any of the four graphs in Figure 5-6, the line will 
touch the curve at only one point. Try it.

If, however, a vertical line can be drawn so that it touches a curve two or more times, then the 
curve is not a function. The two curves in Figure 5-7, for example, are not functions.

FIGURE 5-6:  
Four functions.

FIGURE 5-7:  
These two 

curves are not 
functions 

because they 
fail the vertical 
line test. They 
are, however, 

relations.



CHAPTER 5  Funky Functions and Their Groovy Graphs      73

So, the four curves in Figure 5-6 are functions, and the two in Figure 5-7 are not, but all six of 
the curves are relations.

Definition of relation: A relation is any collection of points on the x-y coordinate system.

You spend a little time studying some non-function relations in calculus  — circles, for 
instance — but the vast majority of calculus problems involve functions.

Q. If f x x x3 4 82 , what does f a b  equal?

A. 3 + 6 + 3 4 42 2a ab b a b 8.

      

              

f x x x

f a b a b a b

3 4 8

3 4 8

3

2

2

aa ab b a b

a ab b a b

2 2

2 2

2 4 4 8

3 6 3 4 4 8              

1 

2 What’s the domain of f x
x x

1
5

?

(a) What’s the domain of g x x4 ?

(b) What’s the range of g?
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Common Functions and Their Graphs
You’re going to see hundreds of functions in your study of calculus, so it wouldn’t be a bad 
idea to familiarize yourself with the basic ones in this section: the line, the parabola, the abso-
lute value function, the cubing and cube root functions, and the exponential and logarithmic 
functions.

Lines in the plane in plain English
A line is the simplest function you can graph on the coordinate plane. (Lines are important in 
calculus because you often study lines that are tangent to curves and because when you zoom 
in far enough on a curve, it looks and behaves like a line.) Figure 5-8 shows an example of a 
line: y x3 5.

3 For the function f x x 2, what’s f a b f a b ?

FIGURE 5-8:  
The graph of 

the line 
y x3 5.



CHAPTER 5  Funky Functions and Their Groovy Graphs      75

Hitting the slopes
The most important thing about the line in Figure 5-8 — at least for your study of calculus — 
is its slope or steepness. Notice that whenever x goes 1 to the right, y goes up by 3. A good way 
to visualize slope is to draw a stairway under the line (see Figure 5-9). The vertical part of the 
step is called the rise, the horizontal part is called the run, and the slope is defined as the ratio 
of the rise to the run:

Slope
rise
run

3
1

3

You don’t have to make the run equal to 1. The ratio of rise to run, and thus the slope, always 
comes out the same, regardless of what size you make the steps. If you make the run equal to 
1, however, the slope is the same as the rise because a number divided by 1 equals itself. This 
is a good way to think about slope — the slope is the amount that a line goes up (or down) as 
it goes 1 to the right.

Definitions of positive, negative, zero, and undefined slopes: Lines that go up to the right have 
a positive slope; lines that go down to the right have a negative slope. Horizontal lines have a 
slope of zero, and vertical lines do not have a slope — you say that the slope of a vertical line 
is undefined.

Here’s the formula for slope:

Slope
y y
x x

2 1

2 1

FIGURE 5-9:  
The line 

y x3 5 has a 
slope of 3.
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Pick any two points on the line in Figure 5-9, say 1 8,  and 3 14, , and plug them into the 
formula to calculate the slope:

Slope
14 8
3 1

6
2

3

This computation involves, in a sense, a stairway step that goes over 2 and up 6. The answer of 
3 agrees with the slope you can see in Figure 5-9.

Any line parallel to this one has the same slope, and any line perpendicular to this one has a 

slope of 1
3

, which is the opposite reciprocal of 3.

Parallel lines have the same slope. Perpendicular lines have opposite reciprocal slopes.

Graphing lines
If you have the equation of the line, y x3 5, but not its graph, you can graph the line the 
old-fashioned way or with your graphing calculator. The old-fashioned way is to create a table 
of values by plugging numbers into x and calculating y. If you plug 0 into x, y equals 5; plug 1 
into x, and y equals 8; plug 2 into x, and y is 11, and so on. Table 5-1 shows the results.

Table 5-1 Points on the Line y = 3x + 5

Plot the points, connect the dots, and put arrows on both ends — there’s your line. This is a 
snap with a graphing calculator. Just enter y x3 5 and your calculator graphs the line and 
produces a table like Table 5-1.

Slope-intercept and point-slope forms
You can see that the line in Figure 5-9 crosses the y-axis at 5 — this point is the y-intercept of 
the line. Because both the slope of 3 and the y-intercept of 5 appear in the equation y x3 5, 
this equation is said to be in slope-intercept form. Here’s the form written in the general way.

Slope-intercept form:

y mx b

(Where m is the slope and b is the y-intercept.)

(If that doesn’t ring a bell — even a distant, faint bell — go directly to the registrar and drop 
calculus, but do not under any circumstances return this book.)

Using the slope-intercept form of the equation of a line is another way to graph the line. For 
example, to graph the line discussed here, y x3 5, just start at 0 5, , the y-intercept, and 
then use the slope of 3 to go over 1 and up 3 from 0 5,  to get to 1, 8 . Those two points give 
you your line.
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All lines, except for vertical lines, can be written in slope-intercept form. Vertical lines are 
written like x 6, for example. The number tells you where the vertical line crosses the x-axis.

The equation of a horizontal line also looks different, y 10 for example. But it technically fits 
the form y mx b — it’s just that because the slope of a horizontal line is zero, and because 
zero times x is zero, there is no x-term in the equation. (But, if you felt like it, you could write 
y 10 as y x0 10.)

Definition of a constant function: A line is the simplest type of function, and a horizontal line 
(called a constant function) is the simplest type of line. It’s nonetheless fairly important in 
calculus, so make sure you know that a horizontal line has an equation like y 10 and that its 
slope is zero.

If m 1 and b 0, you get the function y x. This line goes through the origin 0, 0  and makes 
a 45  angle with both coordinate axes. It’s called the identity function because its outputs are 
the same as its inputs.

Point-slope form: In addition to the slope-intercept form for the equation of a line, you should 
also know the point-slope form:

y y m x x1 1

To use this form, you need to know — you guessed it — a point on a line and the line’s slope. You 
can use any point on the line. Consider the line in Figure 5-9 again. Pick any point, say 2 11, , 
and then plug the x- and y-coordinates of the point into x1 and y1, and plug the slope, 3, into m:

y x11 3 2

With a little algebra, you can convert this equation into the one you already know, y x3 5. 
Try it.

Parabolic and absolute value  
functions — even-steven
You should be familiar with the two functions shown in Figure 5-10: the parabola, f x x 2, 
and the absolute value function, g x x .

FIGURE 5-10:  
The graphs of 
f x x 2 and 

g x x .
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Notice that both functions are symmetric with respect to the y-axis. In other words, the left 
and right sides of each graph are mirror images of each other. This makes them even functions. 
A polynomial function like y x x9 4 34 2 , where all powers of x are even, is one type of even 
function. (Such an even polynomial function can contain — but need not contain — a constant 
term like the 3 in the preceding function. This makes sense because 3 is the same as 3 0x  and 
zero is an even number.) Another even function is y xcos  (see Chapter 6).

A couple of oddball functions
Graph f x x 3 and g x x

3  on your graphing calculator. These two functions illustrate odd 
symmetry. Odd functions are symmetric with respect to the origin, which means that if you 
were to rotate them 180  about the origin, they would land on themselves. A polynomial func-
tion like y x x x4 25 3 , where all powers of x are odd, is one type of odd function. (Unlike 
an even polynomial function, an odd polynomial function cannot contain a constant term.) 
Another odd function is y xsin  (see Chapter 6).

Many functions are neither even nor odd, for example y x x3 52 . My high school English 
teacher said a paragraph should never have just one sentence, so voilà, now it’s got two.

Exponential functions
An exponential function is one with a power that contains a variable, such as f x x2  or 
g x x10 . Figure 5-11 shows the graphs of both these functions on the same x-y coordinate 
system.

Both functions go through the point 0 1, ,  as do all exponential functions of the form f x b x . 
When b is greater than 1, you have exponential growth. All such functions get higher and higher 
without limit as they go to the right toward positive infinity. As they go to the left toward nega-
tive infinity, they crawl along the x-axis, always getting closer to the axis, but never touch-
ing it. You use these and related functions for figuring things like investments, inflation, and 
growing population.

FIGURE 5-11:  
The graphs of 
f x x2  and 

g x x10 .
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When b is between 0 and 1, you have an exponential decay function. The graphs of such func-
tions are like exponential growth functions in reverse. Exponential decay functions also cross 
the y-axis at 0 1, ,  but they go up to the left forever, and crawl along the x-axis to the right. 
These functions model things that shrink over time, such as the radioactive decay of uranium.

Logarithmic functions
A logarithmic function is simply an exponential function with the x- and y-axes switched. In 
other words, the up-and-down direction on an exponential graph corresponds to the right- 
and-left direction on a logarithmic graph, and the right-and-left direction on an exponen-
tial graph corresponds to the up-and-down direction on a logarithmic graph. (If you want a 
refresher on logs, see Chapter 4.) You can see this relationship in Figure 5-12, in which both 
f x x2  and g x xlog2  are graphed on the same set of axes.

Both exponential and logarithmic functions are monotonic. A monotonic function either goes 
up over its entire domain (called an increasing function) or goes down over its entire domain 
(a decreasing function). (I’m assuming here — as is almost always the case — that the motion 
along the function is from left to right.)

Notice the symmetry of the two functions in Figure 5-12 about the line y x. This makes them 
inverses of each other, which brings me to the next topic.

FIGURE 5-12:  
The graphs of 
f x x2  and 
g x xlog2 .
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Q. For the line g x x5 4 , what’s the slope and what’s the y-intercept?

A. The slope is –4 and the y-intercept is 5. All you need to answer this question is 
y mx b.

4 If the slope of line l is 3,

a. What’s the slope of a line parallel to l?

b. What’s the slope of a line perpendicular to l?

5 Sketch a graph of f x e x.

6 Sketch a graph of g x xln .
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Inverse Functions
The function f x x x2 0(for ) and the function f x x1  (read as “f inverse of x”) are 
inverse functions because each undoes what the other does. In other words, f x x 2 takes an 
input of, say, 3 and produces an output of 9 (because 3 92 ); f x x1  takes the 9 and turns 
it back into the 3 (because 9 3). Notice that f 3 9 and f 1 9 3. You can write all of this 
in one step as f f1 3 3. It works the same way if you start with f x1 : f

1 16 4 (because 
16 4), and f 4 16 (because 4 162 ). If you write this in one step, you get f f 1 16 16. 

(Note that while only f x1  is read as f inverse of x, both functions are inverses of each other.)

The inverse function rule: The fancy way of summing up all of this is to say that f x  and 
f x1  are inverse functions if and only if f f x x1  and f f x x1 .

Don’t confuse the superscript 1 in f x1  with the exponent 1. The exponent 1 gives you the 

reciprocal of something, for example x
x

1 1 . But f x1  is the inverse of f x . It does not equal 
1

f x
, which is the reciprocal of f x . So why is the exact same symbol used for two different 

things? Beats me.

When you graph inverse functions, each is the mirror image of the other, reflected over the 
line y x. Look at Figure  5-13, which graphs the inverse functions f x x x2 0(for ) and 
f x x1 .

If you rotate the graph in Figure 5-13 counterclockwise so that the line y x is vertical, you can 
easily see that f x  and f x1  are mirror images of each other. One consequence of this sym-
metry is that if a point like 2, 4  is on one of the functions, the point 4, 2  will be on the other. 
Also, the domain of f is the range of f 1, and the range of f is the domain of f 1.

FIGURE 5-13:  
The graphs of 

f x x 2 
( ),x 0  and 

f x x1 .
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Q. If the inverse of f is g, and f p q, what do g p  and g q  equal?

A. g q p; nothing can be said about g p .

g q  must equal p, because since f sends p to q, f’s inverse must send q to p. With regard 
to g p , the inverse relationship between f and g tells you nothing about the output of 
g p .

7 The following figure shows the graph of f x . Sketch the inverse of f, f x1 .

8 What’s the inverse of f x x4 5?
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Shifts, Reflections, Stretches, and Shrinks
Any function can be transformed into a related function by shifting it horizontally or vertically, 
flipping it over horizontally or vertically, or stretching or shrinking it horizontally or vertically. 
I do the horizontal transformations first. Consider the exponential function y x2 , shown in 
Figure 5-14.

Horizontal transformations
Horizontal changes are made by adding a number to or subtracting a number from the input 
variable x or by multiplying x by some number. All horizontal transformations, except reflec-
tion, work the opposite way you’d expect: Adding to x makes the function go left, subtracting 
from x makes the function go right, multiplying x by a number greater than 1 shrinks the func-
tion, and multiplying x by a number less than 1 expands the function. For example, the graph of 
y x2 3 has the same shape and orientation as the graph in Figure 5-14; it’s just shifted three 
units to the left. Instead of passing through 0 1,  and 1, 2 , the shifted function goes through 

3 1,  and 2, 2 . And the graph of y x2 3 is three units to the right of y x2 . The original 
function and both transformations are shown in Figure 5-15.

FIGURE 5-14:  
The graph of 

y x2 .
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If you multiply the x in y x2  by 2, the function shrinks horizontally by a factor of 2. So, every 
point on the new function is half of its original distance from the y-axis. The y-coordinate of 
every point stays the same; the x-coordinate is cut in half. For example, y x2  goes through 

1, 2 , so y x22  goes through 1
2

, 2 ; y x2  goes through 4 1
16

, , so y x22  goes through 

2 1
16

, .  Multiplying x by a number less than 1 has the opposite effect. When y x2  is trans-

formed into y x2 1 4( / ) , every point on y x2  is pulled away from the y-axis to a distance 4 times 
what it was. To visualize the graph of y x2 1 4( / ) , imagine you’ve got the graph of y x2  on an 
elastic coordinate system. Grab the coordinate system on the left and right and stretch it by a 
factor of 4, pulling everything away from the y-axis, but keeping the y-axis in the center. Now 
you’ve got the graph of y x2 1 4( / ) . Check these transformations out on your graphing calculator.

The last horizontal transformation is a reflection over the y-axis. Multiplying the x in y x2   
by 1 reflects it over or flips it over the y-axis. For instance, the point 1, 2  becomes 1, 2  and 

2 1
4

,  becomes 2 1
4

, . See Figure 5-16.

FIGURE 5-16:  
The graphs of 

y x2  and 
y x2 .

FIGURE 5-15:  
The graphs of 

y x2 , y x2 3, 
and y x2 3.
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Vertical transformations
To transform a function vertically, you add a number to or subtract a number from the entire 
function or multiply the whole function by a number. To do something to an entire function, say  
y x10 , imagine that the entire right side of the equation is inside parentheses, like y x10 . 
Now, all vertical transformations are made by placing a number somewhere on the right side 
of the equation outside the parentheses. (Often, you don’t actually need the parentheses, but 
sometimes you do.) Unlike horizontal transformations, vertical transformations work the way 
you expect: Adding makes the function go up, subtracting makes it go down, multiplying by a 
number greater than 1 stretches the function, and multiplying by a number less than 1 shrinks 
the function. For example, consider the following transformations of the function y x10 :

y x10 6  shifts the original function up 6 units.

y x10 2  shifts the original function down 2 units.

y x5 10   stretches the original function vertically by a factor of 5.

y x1
3

10   shrinks the original function vertically by a factor of 3.

Multiplying the function by 1 reflects it over the x-axis, or, in other words, flips it upside 
down. Look at these transformations on your graphing calculator.

As you saw in the previous section, horizontal transformations change only the x-coordinates 
of points, leaving the y-coordinates unchanged. Conversely, vertical transformations change 
only the y-coordinates of points, leaving the x-coordinates unchanged.

Q. Consider the simple parabola f x x 2. How does g x x5 4 10 32   
compare to f?

A. g makes two horizontal changes to f: It 1) slides it 10 to the left and 2) compresses it 
horizontally by a factor of 4. g also makes two vertical changes to f: It 1) stretches it 
vertically by a factor of 5, and 2) slides it up 3.

Note a few things. First, I gave the horizontal changes before the vertical changes,  
but, when you transform a function, it doesn’t matter whether you tackle the horizontal 
or the vertical transformations first. However, if you have more than one horizontal 
change, you must do those in the right order. And ditto if you have more than one  
vertical change. For horizontal transformations, not only do they work in the opposite 
way you’d expect, but you must do the PEMDAS order backwards. For this problem, the 
horizontal changes are multiplying by 4 and adding 10. PEMDAS tells you to do the 
multiplication before the addition, so you need to reverse that. That’s why you first 
must slide f 10 to the left and second compress f by 4. Everything about vertical  
transformations works the way you’d expect, including PEMDAS.
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9 The figure shows the graph of p x x2 . Sketch the following transformation of  
p: q x x2 53 .

10 Consider the parabola f x x 2 again. The transformation g x x3 2 compresses f 
horizontally by a factor of 3. What vertical transformation of f would achieve the same 
result as that horizontal transformation?
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Practice Questions Answers and Explanations
1 (a) x 4.

You can’t take the square root of a negative (not for basic calculus, anyway, which deals 
with real numbers), so

4 0

4

x

x

That’s all there is to it. Don’t forget, there’s nothing wrong with the square root of zero, 
which equals zero. So, 4 is in the domain of g.

(b) g x 0.

Range questions are usually a bit harder than domain questions. With domain questions, 
you just have to figure out what x cannot be, and the domain is everything else. With 
range questions, there’s no method quite that straightforward.

To tackle a range question, you can experiment with different input values and see what 
happens with the output. And, of course, you can graph the function to actually see  
the range, though that won’t always give you the precise answer. Sometimes, like with 
the function in Problem 2, you can’t get the precise answer without doing some calculus.

You can solve the current problem easily by just looking at the graph of the function.  
But it’ll also come in handy to familiarize yourself with the following approach.

Consider what the graph of y x  looks like. If you don’t remember the graph, you 
should graph it now on your calculator. You see the top half of a sideways parabola that 
begins at 0, 0  and goes up and to the right forever. Because it begins at a height of zero 
and goes up forever, the range is y 0.

The current function, g x x4 , is a transformation of the parent function,  
y x . There are two transformations: the 4 and the minus sign, which is the same  
as multiplying x by –1. Because both transformations occur “inside” the function  
and change the input of the function, they are both horizontal transformations. (To  
transform the parent function, y x , into g x x4 , you first slide it 4 to the left 
and then flip it over the y-axis.) Horizontal transformations change the domain but have 
no impact on the range, so the range of g x x4  is the same as the range of y x , 
namely, y 0.
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2 5, 0 0, 0     or 5x x( ).

Just ask yourself what x is not allowed to be. x can’t equal zero because that would make  
the denominator zero. And x can’t equal –5 because that would give you the square root of 
zero, which is zero, so, again, the denominator would equal zero. That takes care of the zero 
denominator issue. Then there’s the issue of no negatives under the square root. So, x can’t 
be less than –5. That does it. The domain is everything else — everything except what I just 
excluded.

3 4ab.

f a b  tells you to plug a + b into the f function, x 2. Thus,

f a b a b a b a b a ab b2 2 22

(If you thought a b 2 was a b2 2, go directly to jail and do not collect $200!)

And f a b a b a b a b a ab b2 2 22 . Finally,

f a b f a b a ab b a ab b

a ab b a ab b

2 2 2 2

2 2 2 2

2 2

2 2

44ab

4 (a) The slope of a line parallel to l is 3.

(b) The slope of a line perpendicular to l is 
1
3

, the opposite reciprocal of 3.

5 See the following figure.
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6 See the following figure.

7 You obtain f x1  by reflecting f x  over the line y x. See the following figure.

8 f x
x

x1
2 5
4

0( ).

First, replace f x  with y and then switch the x and y:

y x

x y

4 5

4 5

Now just solve for y:

x y

x y

x y

x
y

4 5

4 5

5 4

5
4

2

2

2

That’s it for the math, but one issue remains. The domain of a function equals the range of 
its inverse, and the range of a function equals the domain of its inverse. The range of f is 
0, , so that must become the domain of its inverse. So, you have to restrict the domain  

of f 1 to [ , )0  . That does it.
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9 You obtain q x  from p x  by taking p x  and sliding it 3 to the left and 5 up. See the follow-
ing figure. Note that q x  contains “x plus 3,” but the horizontal transformation is 3 to the 
left — the opposite of what you’d expect. The “+5” in q x  tells you to go up 5.

Horizontal transformations always work opposite the way you’d expect; and PEMDAS works 
backwards. Vertical transformations, on the other hand, go the normal way — up for plus 
and down for minus; and PEMDAS works the normal way.

10 A vertical stretch by a factor of 9.

g x x x3 92 2. The multiplication by 9 you see here occurs “outside” the x 2, and is thus 
a vertical transformation. It’s a vertical stretch by a factor of 9. (By the way, it is only with 
some simple functions like f that you can achieve the same transformed function by either a 
horizontal or a vertical transformation.)

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 5 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 For this question and the next, use the function f x x x3 2.

What does f x  equal, and what’s its domain and range?

2 What does f x x 1  equal?

3 Determine whether the following functions are even, odd, or neither:

(a) f x x x6 42

(b) f x x x9 5 33

(c) f x x 4 7

(d) f x x x3 4

4 Determine whether the following functions are even, odd, or neither:

(a) g x xsin

(b) g x xcos

(c) g x xsin 2

(d) g x x xcos

5 What’s the equation of the line that passes through the point 0 5 0 5. , .  and that’s perpen-
dicular to the line f x x0 5 0 5. . ?

6 (a) What’s the product of the slopes of the perpendicular lines from Problem 5?

(b) Give an example of two lines that are perpendicular to each other but where the product of 
their slopes is different from your answer to Part (a). (You should give the equations of your 
two example lines.)

7 Use the following functions for this and the next problem. Given f x x , what is f x1 ?

8 Where do f x  and f x1  intersect?
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Answers to Chapter 5 Quiz
1 x x3 2. The domain is ,  ; the range is ,  . You can avoid a bit of messiness by 

first determining f x . Then your answer will just be the opposite of that:

f x x x

x x

3 2

3 2

The answer is the opposite of that, namely, x x3 2. (Note that you cannot distribute the sub-
traction sign in the first line of this equation.)

The domain of f x x x3 2 is ,   — or all real numbers — because there are no 
restrictions on what you can plug into x. The range is also ,   because this continuous 
polynomial function goes down to negative infinity and up to infinity.

2 f x x x x x x1 1 3 1 2
.

Now you can do the squaring and cubing of those binomials by using the squaring and cubing 
patterns:

a b a ab b

a b a a b ab b

2 2 2

3 3 2 2 3

2

3 3

Thus,

x x x x

x x x x x x

1 2 2 2

1 3 3 1 3

2

3 3

Putting it all together gives you

f x x x x x x x x

x x x x x x

1 3 1 3 2 2

3 1 3 2 2

3 3 2

3 3 2

x x x x x x3 2 1 2 33 2 3

How about the nice symmetry in that final answer?

3 (a) Neither even nor odd.

For polynomial functions, all you need to check is whether the powers are even or odd 
(and since a constant, say 6, is the same as 6 0x , and since zero is an even number, con-
stants count as even terms). The coefficients are irrelevant. If all the powers are even, you 
have an even function; if all the powers are odd, you’ve got an odd function; if there’s a 
mix, the function is neither even nor odd.

f x  has a power two term and a power one term (or, to speak more mathematically, it 
has a quadratic term and a linear term), so this function is neither even nor odd.
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(b) Neither even nor odd.

The powers in this function are 3, 1, and 0, so this function is neither even nor odd.

(c) Even.

The powers here are 4 and 0, so this function is even.

(d) Odd.

The powers here are 3 and 1, so this function is odd.

It wouldn’t be a bad idea for you to graph these four functions to confirm the answers 
visually.

Even functions are symmetric with respect to the y-axis (a left-right symmetry).  
Odd functions are symmetric with respect to the origin (that’s a rotational type of  
symmetry — if you took the function and rotated it 180  about the origin, it would  
land on itself).

4 (a) Odd.

If you graph the sine function, you see that it’s an odd function.

(b) Even.

As you can see from its graph, the cosine function is even.

(c) Even.

The ordinary sine function is odd, but this function is even. The formal way of showing 
that a function is even is to show that f x f x . Let’s check this for g x :

g x xsin 2 , which equals sin x 2 , and that equals g x  so, yes, it checks.

(d) Odd.

The ordinary cosine function is even, but this function is odd. The formal way of showing 
that a function is odd is to show that f x f x . Let’s check this for g x :

g x x xcos , which equals x xcos  from the basic trig identity, cos cosx x . 
x xcos  equals g x  so, yes, it checks.

5 y x2 0 5. .

First, note that the slope of the given line is –0.5 or 1
2

. Perpendicular lines have opposite 

reciprocal slopes, and the opposite reciprocal of 1
2

 is 2, so that’s the slope of the line you’re 

looking for. Finish with the point-slope form for the equation of a line: y y m x x1 1 :

y x

y x

y x

0 5 2 0 5

0 5 2 1

2 0 5

. .

.

.

6 (a) –1.

Is that a softball question or what? The slopes are 1
2

 and 2, so their product is –1. The 

product of opposite reciprocals is always –1.
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(b) Two examples are y 15 and x 6.

While it’s true that the product of opposite reciprocals is always –1, if one of the lines is 
horizontal (slope of zero), and the other is vertical (undefined slope), the product of their 
slopes is undefined. Your answer should be any horizontal line like y 15 and any verti-
cal line like x 6.

7 f x x x1 2 0,  .

You’ve got the function y x . Switch the x and y then solve for y:

x y

y x 2

Thus, f x x1 2 — well, almost. Don’t forget: You’ve got to check your answer’s domain 
and range. The range of a function’s inverse must be the same as the domain of the original 
function, and the domain of a function’s inverse must be the same as the range of the origi-
nal function. The range of f x x1 2 matches the domain of f x x , but the domain of 
f x x1 2, namely, all real numbers, is larger than the range of f x x , which is all non-
negative numbers. So, you’ve got to restrict the domain of the inverse. Your final answer is 
f x x x1 2 0,  .

8 The functions intersect at 0 0,   and 1 1,  .

Set the two functions equal to each other and solve:

x x

x x

x x

x x

x x

2

2 2 2

4

4

3

0

1 0

Let’s pause here for a minute to observe two things. First, note that you should not cancel an 
x in line three — which would give you 1 3x . That’s generally not a good idea. That cancel-
ling will often — as it does here — cause you to miss the solution of zero. Second, if you 
stopped here, and sort of relied on common sense to conclude that x equals 0 or 1, you’d be 
correct. But if you want to make your math teacher or professor happy, you’ll finish like so.

x x

x x x x

3

2

1 0

1 1 0   (using the difference of cubes  factor pattern)

The zero product property gives you the obvious answers of 0 and 1, and then you’d also have 
x x2 1 0. But since the discriminant of that quadratic is negative, its zeros are both imag-
inary. The function and its inverse thus intersect at x 0 and x 1. Plug those x-values into 
either function to get the y-values. The functions intersect at 0 0,  and 1, 1 . That’s a wrap.
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The Trig Tango

Believe it or not, trigonometry is a very practical, real-world branch of mathemat-
ics, because it involves the measurement of lengths and angles. Surveyors use it when 
surveying property, making topographical maps, and so on. The Ancient Greeks and 

Alexandrians, among others, knew not only simple SohCahToa stuff, but a lot of sophisticated 
trig as well. They used it for building, navigation, and astronomy. Trigonometry comes up a lot 
in the study of calculus, so if you snoozed through high school trig, WAKE UP! and review the 
following trig basics.

Starting off with SohCahToa
The study of trig begins with the right triangle. The three main trig functions (sine, cosine, and 
tangent) and their reciprocals (cosecant, secant, and cotangent) all tell you something about 
the lengths of the sides of a right triangle that contains a given acute angle — like angle x in 
Figure 6-1. The longest side of this right triangle (or any right triangle), the diagonal side, 
is called the hypotenuse. The side that’s 3 units long in this right triangle is referred to as the 
opposite side because it’s on the opposite side of the triangle from angle x, and the side of length 
4 is called the adjacent side because it’s adjacent to, or touching, angle x.

SohCahToa is a meaningless mnemonic device that helps you remember the definitions of the 
sine, cosine, and tangent functions. SohCahToa uses the initial letters of sine, cosine, and tangent, 
and the initial letters of hypotenuse, opposite, and adjacent to help you remember the following 
definitions. (To remember how to spell SohCahToa, note its pronunciation and the fact that it 
contains three groups of three letters each.) For any angle ,

Chapter 6

IN THIS CHAPTER

 » Socking it to ’em with SohCahToa

 » Everybody’s got an angle: 30 ,  
45 , 60

 » Circumnavigating the unit circle

 » Graphing trig functions

 » Investigating inverse trig functions
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Soh Cah Toa

s
O
H

in c A
H

os t O
A

an

For the triangle in Figure 6-1,

sin x
O
H

3
5

cos x
A
H

4
5

tan x
O
A

3
4

The other three trig functions are reciprocals of these: Cosecant (csc) is the reciprocal of sine, 
secant (sec) is the reciprocal of cosine, and cotangent (cot) is the reciprocal of tangent.

csc
sin

1 1
O
H

H
O

sec
cos

1 1
A
H

H
A

cot
tan

1 1
O
A

A
O

So, for the triangle in Figure 6-1,

csc x
H
O

5
3

sec x
H
A

5
4

cot x
A
O

4
3

Two Important Trig Triangles
I discussed the two special right triangles shown in Figure  6-2 in the geometry section of 
Chapter 4. But I’m showing them to you again so you can see how SohCahToa works with them.

When you apply the SohCahToa trig functions and their reciprocals to the 45  angle in the 
45 45 90- -  triangle, you get the following trig values:

sin .45 1
2

2
2

0 71O
H

csc .45 2
1

2 1 41H
O

cos .45 1
2

2
2

0 71A
H

sec .45 2
1

2 1 41H
A

tan45 1
1

1O
A

cot45 1
1

1A
O

FIGURE 6-1:   
You’re studying 

calculus, so 
maybe you 

thought right 
triangles were 

behind you. 
Guess again.
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And here’s how SahCahToa works with the 30  angle in the 30 60 90- -  triangle:

sin30 1
2

O
H

csc30 2
1

2H
O

cos .30 3
2

0 87A
H

sec .30 2
3

2 3
3

1 15H
A

tan .30 1
3

3
3

0 58O
A

cot .30 3
1

3 1 73A
O

The 30 60 90- -  triangle kills two birds with one stone because it also gives you the trig values 
for a 60  angle. Look at Figure 6-2 again. For the 60  angle, the 3  side of the triangle is now the 
opposite side for purposes of SohCahToa because it’s on the opposite side of the triangle from the 
60  angle. The 1-unit side becomes the adjacent side for the 60  angle, and the 2-unit side is still, 
of course, the hypotenuse. Now use SohCahToa again to find the trig values for the 60  angle:

sin .60 3
2

0 87O
H

csc .60 2
3

2 3
3

1 15H
O

cos60 1
2

A
H

sec60 2
1

2H
A

tan .60 3
1

3 1 73O
A

cot .60 1
3

3
3

0 58A
O

The mnemonic device SohCahToa, along with the two oh-so-easy-to-remember right triangles 
in Figure 6-2, gives you the answers to 18 trig problems!

Circling the Enemy with the Unit Circle
SohCahToa only works with right triangles, and so it can only handle acute angles — angles less 
than 90 . (The angles in a triangle must add up to 180 ; because a right triangle has a 90  angle, 
the other two angles must each be less than 90 .) With the unit circle, however, you can find trig 
values for any size angle. The unit circle has a radius of one unit and is set in an x-y coordinate 
system with its center at the origin. See Figure 6-3.

Figure 6-3 has quite a lot of information, but don’t panic; it will all make perfect sense in a 
minute.

FIGURE 6-2:  
The ubiquitous 
45 45 90- -  and 

30 60 90- -  
triangles.
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Angles in the unit circle
Measuring angles: To measure an angle in the unit circle, start at the positive x-axis and go 
counterclockwise to the terminal side of the angle.

For example, the 150  angle in Figure 6-3 begins at the positive x-axis and ends at the segment 

that hits the unit circle at 3
2

1
2

, . If you go clockwise instead, you get an angle with a nega-

tive measure (like the 70  angle in the figure).

Measuring angles with radians
You know all about degrees. You know what 45  and 90  angles look like; you know that about 
face means a turn of 180  and that turning all the way around till you’re back to where you 
started is a 360  turn.

But degrees aren’t the only way to measure angles. You can also use radians. Degrees and radi-
ans are just two different ways to measure angles, like inches and centimeters are two ways to 
measure length.

Definition of radian: The radian measure of an angle is the length of the arc along the circum-
ference of the unit circle cut off by the angle.

Look at the 30  angle in quadrant I of Figure 6-3. Do you see the bolded section of the circle’s 
circumference that is cut off by that angle? Because a whole circle is 360 , that 30  angle is one-
twelfth of the circle. So, the length of the bold arc is one-twelfth of the circle’s circumference. 
Circumference is given by the formula C r2 . This circle has a radius of 1, so its circumfer-

ence equals 2 . Because the bold arc is one-twelfth of that, its length is 
6

, which is the radian 
measure of the 30  angle.

FIGURE 6-3:  
The so-called 

unit circle.
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360  equals 2  radians. The unit circle’s circumference of 2  makes it easy to remember that 
360  equals 2  radians. Half the circumference has a length of , so 180  equals  radians.

If you focus on the fact that 180  equals  radians, other angles are easy:

 » 90  is half of 180 , so 90  equals half of , or 
2

 radians.

 » 60  is a third of 180 , so 60  equals a third of , or 
3

 radians.

 » 45  is a fourth of 180 , so 45  equals a fourth of , or 
4

 radians.

 » 30  is a sixth of 180 , so 30  equals a sixth of , or 
6

 radians.

Formulas for converting from degrees to radians and vice versa:

 » To convert from degrees to radians, multiply the angle’s measure by 
180

.

 » To convert from radians to degrees, multiply the angle’s measure by 180 .

By the way, the word radian comes from radius. Look at Figure 6-3 again. An angle measuring  
1 radian (about 57 ) cuts off an arc along the circumference of this circle that’s the same length 
as the circle’s radius. This is true not only of unit circles, but of circles of any size. In other 
words, take the radius of any circle, lay it along the circle’s circumference, and that arc creates 
an angle of 1 radian.

Radians are preferred over degrees. In this or any other calculus book, some problems use 
degrees and others use radians, but radians are the preferred unit. If a problem doesn’t specify 
the unit, do the problem in radians.

Honey, I shrunk the hypotenuse
Look at the unit circle in Figure 6-3 again. See the 30 60 90- -  triangle in quadrant I? It’s the 
same shape but half the size of the one in Figure 6-2. Each of its sides is half as long. Because 

its hypotenuse now has a length of 1, and because when H is 1, O
H

 equals O, the sine of the 30  

angle, which equals O
H

, ends up equaling the length of the opposite side. The opposite side  

is 1
2

, so that’s the sine of 30 . Note that the length of the opposite side is the same as the 

y-coordinate of the point 3
2

1
2

, . If you figure the cosine of 30° in this triangle, it ends up 

equaling the length of the adjacent side, which is the same as the x-coordinate of 3
2

1
2

, . 

Notice that these values for sin30  and cos30  are the same as the ones given by the 30 60 90- -  
triangle in Figure  6-2. This shows you, by the way, that shrinking a right triangle down  
(or blowing it up) has no effect on the trigonometric values for the angles in the triangle.

Now look at the 30 60 90- -  triangle in quadrant II in Figure 6-3. Because it’s the same size as 

the 30 60 90- -  triangle in quadrant I, which hits the circle at 3
2

1
2

, , the triangle in quad-

rant II hits the circle at a point that’s straight across from and symmetric to 3
2

1
2

, . The 
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coordinates of the point in quadrant II are 3
2

1
2

, . But remember that angles on the unit 

circle are all measured from the positive x-axis, so the hypotenuse of this triangle indicates a 

150  angle; and that’s the angle, not 30 , associated with the point 3
2

1
2

, . The cosine of 150  

is given by the x-coordinate of this point, 3
2

, and the sine of 150  equals the y-coordinate, 1
2

.

Coordinates on the unit circle tell you an angle’s cosine and sine. The terminal side of an angle 
in the unit circle hits the circle at a point whose x-coordinate is the angle’s cosine and whose 
y-coordinate is the angle’s sine. Here’s a mnemonic: x and y are in alphabetical order as are 
cosine and sine.

Putting it all together
Look at Figure 6-4. Now that you know all about the 45 45 90- -  triangle, you can easily work 
out — or take my word for it — that a 45 45 90- -  triangle in quadrant I hits the unit circle 

at 2
2

2
2

, . And if you take the 30 60 90- -  triangle in quadrant I that hits the unit circle at 

3
2

1
2

,  and flip it on its side, you get another 30 60 90- -  triangle with a 60  angle that hits 

the circle at 1
2

3
2

, . As you can see, this point has the same coordinates as those for the 30  

angle, but reversed.

How to draw a right triangle in the unit circle: Whenever you draw a right triangle in the unit 
circle, put the acute angle you care about at the origin — that’s 0, 0  — and then put the right 
angle on the x-axis — never on the y-axis.

FIGURE 6-4:  
Quadrant I of 
the unit circle 

with three 
angles and 

their  
coordinates.
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3
2

 is greater than 1
2

. To keep from mixing up the numbers 1
2

 and 3
2

 when dealing with a 30  or 

a  60  angle, note that because 3  is more than 1, 3
2

 must be greater than 1
2

  1
2

0 5 3
2

0 87. ; . .  

Thus, because a 30  angle hits the circle further out to the right than up, the x-coordinate must 

be greater than the y-coordinate. So, the point must be 3
2

1
2

, , not the other way around. 
It’s vice versa for a 60  angle.

Now for the whole enchilada. Because of the symmetry in the four quadrants, the three points 
in quadrant I in Figure  6-4 have counterparts in the other three quadrants, giving you 12 
known points. Add to these the four points on the axes, 1, 0 , 0 1, , 1, 0 , and 0 1, , and 
you have 16 total points, each with an associated angle, as shown in Figure 6-5.

These 16 pairs of coordinates automatically give you the cosine and sine of the 16 angles. And 

because tan sin
cos

, you can obtain the tangent of these 16 angles by dividing an angle’s 

y-coordinate by its x-coordinate. (Note that when the cosine of an angle equals zero, the tan-
gent is undefined because you can’t divide by zero.) Finally, you can find the cosecant, secant, 
and cotangent of the 16 angles because these trig functions are just the reciprocals of sine, 
cosine, and tangent. (Same caution: whenever sine, cosine, or tangent equals zero, the recip-
rocal function is undefined.) You’ve now got, at your fingertips — okay, maybe that’s a bit of a 
stretch — the answers to 96 trig questions.

Learn the unit circle. Knowing the trig values from the unit circle is quite useful in calculus. So 
quiz yourself. Start by memorizing the 45 45 90- -  and the 30 60 90- -  triangles. Then picture 
how these triangles fit into the four quadrants of the unit circle. Use the symmetry of the quad-
rants as an aid. With some practice, you can get pretty quick at figuring out the values for the 
six trig functions of all 16 angles. (Try to do this without looking at something like Figure 6-5.) 

FIGURE 6-5:  
The unit circle 
with 16 angles 

and their 
coordinates.
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And quiz yourself with radians as well as with degrees. That would bring your total to 192 trig 

facts! Quick — what’s the secant of 210 , and what’s the cosine of 2
3

? Here are the answers  

(no peeking): 2 3
3

1
2

 and .

All Students Take Calculus. Here’s a final tip to help you with the unit circle and the values of 
all the trig functions. Take any old unit circle (like the one in Figure 6-5) and write the initial 
letters of All Students Take Calculus in the four quadrants: Put an A in quadrant I, an S in quadrant 
II, a T in quadrant III, and a C in quadrant IV. These letters now tell you whether the various 
trig functions have positive or negative values in the different quadrants. The A in quadrant  
I tells you that All six trig functions have positive values in quadrant I. The S in quadrant II tells 
you that Sine (and its reciprocal, cosecant) are positive in quadrant II and that all other trig 
functions are negative there. The T in quadrant III tells you that Tangent (and its reciprocal, 
cotangent) are positive in quadrant III and that the other functions are negative there. Finally, 
the C in quadrant IV tells you that Cosine (and its reciprocal, secant) are positive there and that 
the other functions are negative. That’s a wrap.

Q. Use the unit circle in Figure 6-5 to determine the following:

tan ______?

cot ______?

sec ______?

csc ____

210

3
4

300

2
3

___?

A. tan , cot , sec , csc210
3
3

3
4

1 300 2
2
3

2 3
3

      .

 For tan210 , go to 210 degrees on the unit circle, where you see the coordinates 
3
2

1
2

, . The tangent of a unit circle angle equals the y-coordinate divided by the 

x-coordinate (and for tangent (or cotangent) problems like this, you can ignore the 

denominators). So that gives you 1
3

3
3

 (note that the negatives cancel).

 For cot 3
4

, note the coordinates at 3
4

 radians or 135 degrees, namely, 2
2

2
2

, .  

The cotangent of a unit circle angle equals the x-coordinate divided by the y-coordinate. 
That gives you –1.

 For the third problem, note that the coordinates at 300 degrees are 1
2

3
2

, , and  

that secant equals the reciprocal of cosine — which is given by the x-coordinate.  

The reciprocal of 1
2

 is, of course, 2.

 Finally, at 2
3

 radians or –120 degrees, the coordinates are 1
2

3
2

, .  

Cosecant is the reciprocal of sine, which is given by the y-coordinate. The  

reciprocal of 3
2

 is 2 3
3

.
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1 Use the right triangle to complete the table. No peaking a few pages back!

2 Use the triangle from Problem 1 to complete the following table.

3 Use the following triangle to complete the table.
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4 Using your results from Problems 1, 2, and 3, fill in the coordinates for the points on the 
unit circle.

5 Complete the following table using your results from Problem 4.

6 Convert the following angle measures from degrees to radians or vice versa.
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7 What’s sec 11
6

? 8 What’s csc 4
3

?

9 What’s tan cot3 3 ? 10 What’s sin cos tan30 45 60 ? Try to 
get the answers to the three pieces in 
your head — then finish the multipli-
cation on paper.

11 Express sec x
xtan2  in terms of sines and 

cosines.
12 Solve cos sinx x2 0 in the interval 

0 2, .
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Graphing Sine, Cosine, and Tangent
Figure 6-6 shows the graphs of sine, cosine, and tangent, which you can, of course, produce 
on a graphing calculator.

Definitions of periodic and period: Sine, cosine, and tangent — and their reciprocals, cosecant, 
secant, and cotangent — are periodic functions, which means that their graphs contain a basic 
shape that repeats over and over indefinitely to the left and the right. The period of such a func-
tion is the horizontal span of one of its cycles.

If you know the unit circle, you can easily reproduce these three graphs by hand. First, note 
that the sine and cosine graphs are the same shape — cosine is the same as sine, just slid 90  
to the left. Also, notice that their simple wave shape goes as high as 1 and as low as 1 and goes 
on forever to the left and right, with the same shape repeating every 360 . That’s the period of 
both functions, 360 . (It’s no coincidence, by the way, that 360  is also once around the unit 
circle.) The unit circle tells you that sin0 0, sin90 1, sin180 0, sin270 1, and sin360 0.  
If you start with these five points, you can sketch one cycle. The cycle then repeats to the left 
and right. You can use the unit circle in the same manner to sketch the cosine function (you do 
this in practice problem 13).

Notice in Figure 6-6 that the period of the tangent function is 180 . If you remember that and 
the basic pattern of repeating backward S-shapes, then sketching it isn’t difficult. Because 

tan
y
x

, you can use the unit circle to determine that tan ,45 1  tan0 0, and tan45 1.  

That gives you the points 45 1, , 0, 0 , and 45 1, . Since tan 90  and tan90  are both 

undefined (because y
x

 at these points gives you a zero in the denominator), you draw vertical 

asymptotes at 90  and 90 .

FIGURE 6-6:  
The graphs of 

the sine, 
cosine, and 

tangent 
functions.
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Definition of vertical asymptote: A vertical asymptote is an imaginary line that a curve gets 
closer and closer to (but never touches) as the curve goes up toward infinity or down toward 
negative infinity. (In Chapters 7 and 8, you see more vertical asymptotes and also some hori-
zontal asymptotes.)

The two asymptotes at 90  and 90  and the three points at 45 1, , 0, 0 , and 45 1,   
show you where to sketch one backward S. The S-shapes then repeat every 180° to the left and 
the right.

Inverse Trig Functions
An inverse trig function, like any inverse function, reverses what the original function does. For 

example, sin30 1
2

, so the inverse sine function — written as sin 1 — reverses the input and 

output. Thus, sin 1 1
2

30 . It works the same for the other trig functions.

The negative 1 superscript in the sine inverse function is not a negative 1 power, despite the 
fact that it looks just like it. Raising something to the negative 1 power gives you its reciprocal, 
so you might think that sin 1 x is the reciprocal of sin ,x  but the reciprocal of sine is cosecant, not 
sine inverse. Pretty weird that the same symbol is used to mean two different things. Go figure.

The only trick with inverse trig functions is memorizing their ranges — that’s the interval of 

their outputs. Consider sine inverse, for example. Because both sin30 1
2

 and sin150 1
2

, you 

wouldn’t know whether sin 1 1
2

 equals 30  or 150  unless you know how the interval of sine 

inverse outputs is defined. And remember, in order for something to be a function, there can’t 
be any mystery about the output for a given input. If you reflect the sine function over the line 
y x to create its inverse, you get a vertical wave that isn’t a function because it doesn’t pass 
the vertical line test. (See the definition of the vertical line test in Chapter 5.) To make sine 
inverse a function, you have to take a small piece of the vertical wave that does pass the vertical 
line test. The same thing goes for the other inverse trig functions. Here are their ranges:

The range of sin 1 x is 
2 2

, , or 90 90, .

The range of cos 1 x  is 0, , or 0 180, .

The range of tan 1 x is 
2 2

, , or 90 90, .

The range of cot 1 x is 0, , or 0 180, .

Note the pattern: The range of sin 1 x is basically the same as tan 1 x, and the range of cos 1 x  
is basically the same as cot 1 x .

Believe it or not, calculus authors don’t agree on the ranges for the secant inverse and cosecant 
inverse functions. You’d think they could agree on this like they do with just about everything 
else in mathematics. Humph. Use the ranges given in your particular textbook. If you don’t 
have a textbook, use the sin 1 x range for its cousin csc 1 x , and use the cos 1 x  range for sec 1 x . 
(By the way, I don’t refer to csc 1 x  as the reciprocal of sin 1 x because it’s not its reciprocal — 
even though csc x is the reciprocal of sin x. Ditto for cos 1 x  and sec 1 x .)
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Identifying with Trig Identities
Remember trig identities like sin cos2 2 1x x  and sin sin cos2 2x x x? Tell the truth now — 
most people remember trig identities about as well as they remember nineteenth-century vice 
presidents. They come in handy in calculus, though, so a list of other useful identities is in the 
online Cheat Sheet. Go to www.dummies.com and type Calculus All in One For Dummies Cheat 
Sheet in the Search box.

Q. Graph y xsin 1 .

A. Check out the following figure. It shows the relationship between y xsin  and 
y xsin 1 . (The dashed sine curve is just like the sine graph in Figure 6-6 except that 
the angles on the x-axis are in radians instead of degrees.) The inverse sine graph is 
created by flipping the solid portion of the sine wave over the line y = x. The endpoints 

of y xsin 1  are at 1
2

,  and 1
2

, .

13 Using the unit circle in Figure 6-5, but 
not peaking at Figure 6-6, sketch 
y xcos .

14 Using your answers from Problem 4 
and your knowledge of the ranges of 
the inverse trig functions, complete the 
following table.

http://www.dummies.com
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Practice Questions Answers and Explanations

1 sin csc

cos sec

tan cot

30
1
2

30 2

30
3
2

30
2 3

3

30
3
3

30 3

2 sin csc

cos sec

tan cot

60
3
2

60
2 3

3

60
1
2

60 2

60 3 60
3
3

3 sin csc

cos sec

tan cot

45
2
2

45 2

45
2
2

45 2

45 1 45 1

4 See the figure.

5 tan csc

csc cot

cot se

120 3 180

150 2 300
3
3

270 0

undefined

cc225 2
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6 150
6 3

240

225
4 4

315

300
3

5 4

5 7

5

radians

radians

radiaans

radians

5

7
2

450

60
3 6

210

   (coterminal with 90 )

   (coterminal with 150 )

7 2 3
3

.

Of course, you can just look at the unit circle to get your answer. Secant is the reciprocal of 

cosine. The unit circle tells you that cos11
6

 (or 330 ) is 3
2

. Flip that upside down for your 

answer: 2
3

, or 2 3
3

.

But if you’re ambitious and want to try this one in your head, you first notice that 330   
doesn’t end in a 5, so you have a 30 60 90- -  triangle, not a 45 45 90- -  triangle. Then you just 
picture where 330  is — it’s in quadrant IV close to 360  (the x-axis). So, your 30 60 90- -  tri-

angle has to be wide and short, which has a big x-coordinate, 3
2

, and a small y-coordinate, 
1
2

. Because secant is the reciprocal of cosine, you care about the x-coordinate, 3
2

. Flip it 

upside down for your answer.

8 2 3
3

.

The unit circle gives you your answer. Cosecant is the reciprocal of sine. The unit circle tells 

you that sin 4
3

 (or 240 ) is 3
2

. Flip that upside down for your answer: 2
3

, or 2 3
3

.

To do this one in your head, you first notice that 240  doesn’t end in a 5, so you have a 
30 60 90- -  triangle, not a 45 45 90- -  triangle. Then you just picture where 240  is — it’s in 

quadrant III close to 270  (the y-axis). So your 30 60 90- -  triangle has to be narrow and tall, 

which has a small x-coordinate, 1
2

, and a big y-coordinate, 3
2

 (note that in this context, 

when I talk about a big or small coordinate, I’m ignoring the positive/negative issue). 

Because cosecant is the reciprocal of sine, you care about the y-coordinate, 3
2

. Flip it 
upside down for your answer.

9 Undefined.

This problem is a bit tricky because there’s a catch (actually two catches). But other than 
that, it’s actually short and simple. An angle of 3  radians is the same as  radians, so you 

just use the coordinates from the unit circle at  radians or 180 degrees — namely, 1, 0 . 

Tangent equals sin
cos

, or y
x

, so tan 3 0
1

0. Cotangent is the reciprocal of tangent, so 

cot 3 1
0

, which is undefined. (Don’t forget, you can’t divide by zero!) Thus, your answer 

for tan cot3 3  is zero times undefined, which is undefined.
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Here are the two catches: First, you might think that zero times undefined is zero because 
zero times anything is zero. But it doesn’t work that way. If any piece of a problem is unde-
fined, the answer is undefined. The second catch is that you could mistakenly conclude that 
since tangent and cotangent are reciprocals, their product would be 1. That is generally true 
of reciprocals, but not here because, again, one of them is undefined. The two values you get 
here, zero and undefined, are sort of, but not technically, reciprocals. So, you can’t multiply 
them to get 1. No matter how you look at it, the answer is undefined.

10 6
4

.

You should be able to picture in your head that the coordinates on the unit circle at 30 , 45 , 

and 60  are 3
2

1
2

, , 2
2

2
2

, , and 1
2

3
2

, , respectively. So, sin30 1
2

 and cos45 2
2

.

For the tangent piece of the problem, here’s a tip. Tangent equals y
x

, but when doing  

tangent problems on the unit circle, you don’t have to bother dividing the y-fraction by the  
x-fraction. The denominators of these fractions always cancel, so you only have to put the 

y-numerator over the x-numerator, thus: tan60 3
1

.

Multiply these three parts for your final answer: sin cos tan30 45 60 1
2

2
2

3
1

6
4

11 cos
sin

x
x2 .

sec cos
sin
cos

cos
cos
sin

cos
cos sin

x
x

x
x
x

x
x
x

x
x xtan2 2

2

2

2

2

2

1
1 . Now, just cancel one of the cosines, and you’re 

done.

12 
2 6 2 6

7 3 11
, , ,    and .

It’s generally difficult to deal with a trig equation with two different arguments  
(the x and the 2x), so you should try to do something to get rid of the 2x. The trig  
identity, sin 2 2x x xsin cos , is the ticket. Make the substitution:

cos sin

cos sin cos

x x

x x x

2 0

2 0

Now factor by pulling out the GCF; then use the zero product property:

cos sinx x1 2 0

cos x 0     or     1 2 0

2 1

1
2

sin

sin

sin

x

x

x

If you know the unit circle well (you should!), you know that cosine equals zero at 
2

 and 3
2

 

and that sine equals 1
2

 at 7
6

 and 11
6

. That’s a wrap.
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13 The x-coordinates of points on the unit circle tell you that cos0 1, cos90 0, cos180 1, 
cos270 0, and cos360 1. Starting with these five points, you can sketch one cycle of the 
sinusoidal shape of the cosine function. The cycle then repeats to the left and right. You 
should end up with a graph similar to the one in Figure 6-6.

14 sin tan

sin sin

1 1

1 1

1
2

30 3
3

1
2

30 1
2

radians

radiians

radianscos cos

tan cos

1 1

1 1

1
2

120 1 0

1 45 00
2

radians
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Whaddya Know? Chapter 6 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 For this problem and the next, study the unit circle for a few minutes, and try to commit it to 
memory. Then try to answer the questions without looking at it. If that’s too difficult, you 
can use the unit circle as a “cheat sheet,” but if any of your answers needs simplification, try 
to do that in your head.

What are the values of the six trig functions for 300 ?

2 What are the values of the six trig functions for 7
6

 radians?

3 (a) Express cos sin cos sin  three different ways as trig functions raised to the 
second power.

(b) Now use your knowledge of trig identities to express cos sin cos sin  as a 
single trig function raised to the first power (in other words, no squaring, cubing, etc. is 
allowed).

4 (a) sin sin ?1 2
3

(b) cos cos ?1 2
3

5 (a) cos cos ?1 435

(b) cos cos ?1 190

6 (a) cot sin ?1 1
2

(b) sin tan ?1 225

7 How do the amplitude and period of f x x3 2sin  compare with the amplitude and period 
of the ordinary sine function?

8 Solve for : 2 12sin sin  within the span 0 2, .
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Answers to Chapter 6 Quiz
1 cos

sin

tan

300
1
2

300
3

2
300 3      (the -numerator over y tthe -numerator)

          (the reciprocal of cos

x

sec 300 2 iine)

  (flip the sine answer then rationalize csc 300
2 3
3

tthe denominator)

    (flip the tangent answer tcot 300
3

3
hhen rationalize the denominator)

Can you picture where 300  is on the unit circle? The radius of the unit circle to the 300  point 
makes a 60  angle with the x-axis, so you’ve got a tall, narrow 30 60 90- -  triangle in quad-
rant IV. That can help you remember the coordinates at that point, because you know that the 
y-coordinate is “greater” than the x-coordinate (except that it’s negative). The coordinates 

at the 300  point are 1
2

3
2

, . Those coordinates give you the six answers you need.

2 cos

sin

tan

7
6

3
2

7
6

1
2

7
6

3
3

       (the -numerator over y tthe -numerator, then rationalize)

   (the reci

x

sec
7
6

2 3
3

pprocal of cosine)

         (the reciprocal of sincsc
7
6

2 ee)

        (flip the tangent answer then rationalicot
7
6

3 zze)

At the 7
6

 point, you’ve got a wide, short 30 60 90- -  triangle in quadrant III that makes a 30  

angle with the x-axis. The coordinates at that point are 3
2

1
2

, . That’s all you need.

3 (a) cos sin , cos , sin .2 2 2 22 1 1 2  and 

You know the difference of squares pattern, right? You better! a b a b a b2 2.  
Thus, cos sin cos sin cos sin2 2 . That’s your first answer. Next, use the 
Pythagorean Identity, sin cos2 2 1, and its two other forms, sin cos2 21  and 
cos sin2 21 , to make substitutions in your first answer.

(b) cos 2 .

The three answers to Part (a) are the three forms of the trig identity for cos 2 .
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(a) 75 .

Okay. So here’s a problem with the inverse function on the outside where the angle is not 
in the range of the inverse cosine function. What to do? First, consider where 435  is. You 
should be able to see that a 435  angle is in the proper location for the inverse cosine 
function (because it’s in quadrant I). It’s coterminal with a 75  angle, because 
75 360 435 . Because 75  is in the range of the inverse cosine function, that’s your 
answer.

(b) 170 .

And here’s the third type of problem with the inverse function on the outside. This time, 
the angle, 190 , is not in the proper location for the inverse cosine function because it’s in 
quadrant III. For this situation, you need to find an angle that is in the proper span for 
inverse cosine and that has the same cosine answer as the cosine of 190 . Consider the 
unit circle. The cosine of an angle in the unit circle is the x-coordinate of the point on the 
unit circle where the angle meets the circle. Imagine where the 190  point is on the unit 
circle. It’s just below the x-axis in quadrant III. All you need to do is to reflect that point 
over the x-axis. That brings you to 170 , and that’s your answer.

Another way to do this is to simply take the negative of the angle, 190 , which is in the 
proper location, because it’s in quadrant II. Then just add 360  to 190  (170 ) to produce 
a coterminal angle that’s in the correct span.

6 

4 (a) 
2
3

.

When you have one of these problems with a trig function and the inverse of the same 
trig function — with the inverse function in the inside — the answer is right there. It’s 
automatic.

(b) 
2
3

.

When the inverse function is on the outside like here, you’ve got to be careful. The 
answer to this particular problem, like with Part (a), is automatic. But this problem is 

automatic only because the given angle, namely 2
3

, is in the range of the inverse cosine 

function, 0, . When that’s not the case, you’ve got a little work to do.

5 

(a) 3 .

From the unit circle, you can see that angles of 30  and 210  have a sine equal to 1
2

. The 

range of inverse sine is 90 90, , so sin 1 1
2

30 . Then the unit circle coordinates 

at 30 , namely 3
2

1
2

, , give you the cotangent answer of 3 .

(b) 90 .

From the unit circle, tan225 1, and also from the unit circle, sin 11 90 . That’s it.
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7 f x x3 2sin  has an amplitude 3 times the amplitude of the ordinary sine function and a 
period that’s half of the ordinary period. (That gives f x x3 2sin  an amplitude of 3 and 
a period of .)

From your knowledge of the transformation of functions, you should know that the 3 is a 
vertical stretch and that the 2 is a horizontal shrink.

8 3
2 6

5
6

, ,  .

This is a quadratic equation in sin . So, like with most quadratic equations, you should set 
this equal to zero: 2 1 02sin sin . Now factor: 2 1 1 0sin sin . The zero product 

property then gives you the two answers of sin 1
2

 or sin 1. You can then find your final 

answers on the unit circle: you might notice that sine equals –1 at 
2

, but that’s not in the 

given span, so you’ve got to be sure to give your answer as 3
2

. Sine equals 1
2

 at 
6

, so that’s 

another answer. And don’t forget about the third answer of 5
6

.
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Limits and Continuity

As discussed in Chapter 3, you can use ordinary algebra and geometry when the things in 
a math or science problem aren’t changing (sort of) and when the graph of the function 
in question is a straight line. But you need calculus when things are changing — these 

changing things show up on graphs as curves. Calculus can handle such things by zooming in on 
the curves till they become straight (zooming in infinitely far, sort of). At that point, ordinary 
algebra and geometry can be used. Limits are the seemingly magical trick or tool that does this 
zooming-in process. It’s the mathematics of limits that makes calculus work.

Limits are fundamental for both differential and integral calculus. The formal definition of  
a derivative involves a limit, as does the definition of a definite integral. (If you’re a real 
go-getter and can’t wait to read the actual definitions, check out Chapters 9 and 14.) Now, it 
turns out that after you learn the shortcuts for calculating derivatives and integrals, you won’t 
need to use the longer limit methods anymore. But understanding the mathematics of limits 
is nonetheless important because it forms the foundation upon which the vast architecture of 
calculus is built (okay, so I got a bit carried away there). In this chapter, I lay the groundwork 
for differentiation and integration by exploring limits and the closely related topic, continuity.

Take It to the Limit — NOT
Limits can be tricky. Don’t worry if you don’t grasp the concept right away.

Informal definition of limit (the formal definition is in a few pages): The limit of a function (if it 
exists) for some x-value c is the height the function gets closer and closer to as x gets closer and closer 
to c from the left and the right. (Note: This definition does not apply to limits where x approaches 
infinity or negative infinity. More about those limits later in this chapter and in Chapter 8.)

Chapter 7

IN THIS CHAPTER

 » Taking a look at limits

 » Evaluating functions with holes — 
break out the mothballs

 » Exploring continuity and 
discontinuity
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Got it? You’re kidding! Let me say it another way. A function has a limit for a given x-value c 
if the function zeros in on some height as x gets closer and closer to the given value c from the 
left and the right. Did that help? I didn’t think so. It’s much easier to understand limits through 
examples than through this sort of mumbo jumbo, so let’s take a look at some.

Using three functions to illustrate the same limit
Consider the function f x x3 1, shown on the left in Figure 7-1. When we say that the limit 
of f x  as x approaches 2 is 7, written as lim

x
f x

2
7, we mean that as x gets closer and closer 

to 2 from the left and the right, f x  gets closer and closer to a height of 7. By the way, as far as  
I know, the number 2 in this example doesn’t have a formal name, but I call it the arrow-number. 
The arrow-number gives you a horizontal location in the x direction. Don’t confuse it with the 
answer to the limit problem, called the limit, which refers to a y-value or height of the function 
(7 in this example). Now, look at Table 7-1.

Table 7-1 shows that y is approaching 7 as x approaches 2 from both the left and the right, 
and thus the limit is 7. If you’re wondering what all the fuss is about — why not just plug the  
number 2 into x in f x x3 1 and obtain the answer of 7 — I’m sure you’ve got a lot of com-
pany. In fact, if all functions were continuous (without gaps) like f, you could just plug in the 
arrow-number to get the answer, and this type of limit problem would basically be pointless. 
You need to use limits in calculus because of discontinuous functions like g and h that have holes.

FIGURE 7-1:   
The graphs of 
the functions 
of f, g, and h.

Table 7-1 Input and Output Values of f x x3 1 as  
 x Approaches 2
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Function g in the middle of Figure 7-1 is identical to f except for the hole at 2, 7  and the point 
at 2, 5 . Actually, this function, g x , would never come up in an ordinary calculus problem — 
I only use it to illustrate how limits work. (Keep reading. I have a bit more groundwork to lay 
before you see why I include it.)

The important functions for calculus are the functions like h on the right in Figure 7-1, which 
come up frequently in the study of derivatives. This third function is identical to f x  except 
that the point 2, 7  has been plucked out, leaving a hole at 2, 7  and no other point where x 
equals 2.

Imagine what the table of input and output values would look like for g x  and h x . Can you 
see that the values would be identical to the values in Table 7-1 for f x ? For both g and h, as x 
gets closer and closer to 2 from the left and the right, y gets closer and closer to a height of 7. 
For all three functions, the limit as x approaches 2 is 7.

This brings me to a critical point: When determining the limit of a function as x approaches, 
say, 2, the value of f 2  — or even whether f 2  exists at all — is totally irrelevant. Take a look 
at all three functions again where x f2 2:   equals 7, g 2  is 5, and h 2  doesn’t exist (or, as 
mathematicians say, it’s undefined). But, again, those three different results don’t affect the 
answers to the three limit problems — which all have the same answer.

You never get to the arrow-number. In a limit problem, x gets closer and closer to the arrow-
number c, but technically never gets there, and what happens to the function when x equals the 
arrow-number c has no effect on the answer to the limit problem (though for continuous func-
tions like f x , the function value is the same as the limit answer).

Sidling up to one-sided limits
One-sided limits work like regular, two-sided limits except that x approaches the arrow- 
number c from just the left or just the right. The most important purpose for such limits is that 
they’re used in the formal definition of a regular limit (see the next section on the formal def-
inition of a limit).

To indicate a one-sided limit, you put a little superscript subtraction sign on the arrow- 
number when x approaches the arrow-number from the left, or a superscript addition sign 
when x approaches the arrow-number from the right. It looks like this:

lim
x

f x
5

   or   lim
x

g x
0

Look at Figure 7-2. As x approaches 3 from the left, p x  zeros in on a height of 6, and when x 
approaches 3 from the right, p x  zeros in on a height of 2. As with regular limits, the value of 
p 3  has no effect on the answer to either of these one-sided limit problems. Thus,

lim
x

p x
3

6   and   lim
x

p x
3

2

The answer to the regular, two-sided limit problem, lim
x

p x
3

, is that the limit does not exist 

because p x  is zeroing in on different heights as x approaches 3 from the left and from the 
right.
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A function like p x  in Figure 7-2 is called a piecewise function because it’s got separate pieces. 
Each part of a piecewise function has its own equation  — like, for example, the following 
three-piece function:

y

x x

x x

x x

2 1

3 2 1 10

5 10

for

for

for

Sometimes a chunk of a piecewise function connects with its neighboring chunk, in which case 
the function is continuous there. And sometimes, like with p x , a piece does not connect with 
the adjacent piece; this results in a discontinuity.

The formal definition of a limit — just  
what you’ve been waiting for
Now that you know about one-sided limits, I can give you the formal mathematical definition 
of a limit. Here goes:

Formal definition of limit: Let f be a function and let c be a real number.

lim
x c

f x  exists if and only if

1. lim
x c

f x  exists,

2. lim
x c

f x  exists, and

3. lim lim .
x c x c

f x f x

Calculus books always present this as a three-part test for the existence of a limit, but condi-
tion 3 is the only one you need to worry about because 1 and 2 are built into 3. You just have 
to remember that you can’t satisfy condition 3 if the left and right sides of the equation are 
both undefined or nonexistent; in other words, it is not true that undefined = undefined or that 
nonexistent = nonexistent. (I think this is why calc texts use the three-part definition.) As long as 
you’ve got that straight, condition 3 is all you need to check.

When we say a limit exists, it means that the limit equals a finite number. Some limits equal 
infinity or negative infinity, but you nevertheless say that they do not exist. That may seem 
strange, but take my word for it. (More about infinite limits in the next section.)

FIGURE 7-2:  
p x : An 

illustration of 
two one-sided 

limits.
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Limits and vertical asymptotes
A rational function like f x

x x
x x

2 5
3 1

 has vertical asymptotes at x 3 and x 1.  

Remember asymptotes? They’re imaginary lines that the graph of a function gets closer and 
closer to as it goes up, down, left, or right toward infinity or negative infinity. The function 
f x  is shown in Figure 7-3.

Consider the limit of the function in Figure 7-3 as x approaches 3. As x approaches 3 from the 
left, f x  goes up to infinity, and as x approaches 3 from the right, f x  goes down to negative 
infinity. Sometimes it’s informative to indicate this by writing the following:

lim
x

f x
3

   and   lim
x

f x
3

But it’s also correct to say that both of these limits do not exist because infinity is not a real 
number. If you’re asked to determine the regular, two-sided limit, lim

x
f x

3
, you have no choice 

but to say that it does not exist because the limits from the left and from the right are not equal.

Limits and horizontal asymptotes
Up till now, I’ve been looking at limits where x approaches a regular, finite number. But x can 
also approach infinity or negative infinity. Limits at infinity exist when a function has a hori-
zontal asymptote. For example, the function in Figure 7-3 has a horizontal asymptote at y 1, 
which the function gets closer and closer to as it goes toward infinity to the right and negative 
infinity to the left. (Going left, the function crosses and goes above the horizontal asymptote at 
x 7 (not shown in Figure 7-3) and then gradually comes down toward the asymptote. Going 
right, the function stays below the asymptote and gradually rises up toward it.) The limits equal 
the height of the horizontal asymptote and are written as

lim
x

f x 1   and   lim
x

f x 1

You see more limits at infinity in Chapter 8.

FIGURE 7-3:  
A typical 
rational 

function.
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Use Figure 7-4 for the example problems and for Problems 1 through 6.

Q. lim
x

f x
0

?

A. lim
x

f x
0

2. Because f 0 2 and because f is continuous there, the limit must equal 

the function value. Whenever a function passes through a point and there’s no disconti-
nuity at that point, the limit equals the function value.

Q. lim
x

f x
13

?

A. lim
x

f x
13

2. There’s a hole at 13 2, , and the limit at a hole is the height of the hole.

1 lim
x

f x
7

?

3 lim
x

f x
5

? 4 lim
x

f x
18

?

2 (a) f 5 ?

(b) f 18 ?

FIGURE 7-4:  
Not exactly 

your everyday 
graph.
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5 lim
x

f x
5

? 6 lim
x

f x
5

?

7 lim
x x

1 ? See the following graph of y
x
1 .

Sketch by hand the function f x
x
x

; then refer to your sketch for Problems 8, 9,  
and 10.

8 lim
x 0

f x ?
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Calculating instantaneous speed with limits
If you’ve been dozing up to now, WAKE UP! The following problem, which eventually turns out 
to be a limit problem, brings you to the threshold of real calculus. Say you and your calculus-
loving cat are hanging out one day and you decide to drop a ball out of your second-story 
window. Here’s the formula that tells you how far the ball has dropped after a given number of 
seconds (ignoring air resistance):

h t t16 2

(where h is the height the ball has fallen, in feet, and t is the amount of time since the ball was 
dropped, in seconds)

If you plug 1 into t, h is 16; so, the ball falls 16 feet during the first second. During the first  
2 seconds, it falls a total of 16 22, or 64 feet, and so on. Now, what if you wanted to determine 
the ball’s speed exactly 1 second after you dropped it? You can start by whipping out this trusty 
ol’ formula:

Dis ce rate timetan    so   Rate dis ce
time
tan .

Using the rate (or speed) formula, you can easily figure out the ball’s average speed during 
the 2nd second of its fall. Because it dropped 16 feet after 1 second and a total of 64 feet after  
2 seconds, it fell 64 16, or 48 feet from t 1 second to t 2 seconds. The following formula 
gives you the average speed:

Average speed
total distance

total time

64 16
2 1

48 feet per seecond

9 lim
x

f x
0

? 10 lim
x

f x
0

?
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But this isn’t the answer you want because the ball falls faster and faster as it drops, and you 
want to know its speed exactly 1 second after you drop it. The ball speeds up between 1 and  
2 seconds, so this average speed of 48 feet per second during the 2nd second is certain to be faster 
than the ball’s instantaneous speed at the end of the 1st second. For a better approximation, 
calculate the average speed between t 1 second and t 1 5.  seconds. After 1.5 seconds, the ball 
has fallen 16 1 52. , or 36 feet, so from t 1 to t 1 5. , it falls 36 16, or 20 feet. Its average speed 
is thus

Average speed
36 16
1 5 1
40

.
 feet per second

If you continue this process for elapsed times of a quarter of a second, a tenth of a second, then 
a hundredth, a thousandth, and a ten-thousandth of a second, you arrive at the list of average 
speeds shown in Table 7-2.

As t gets closer and closer to 1 second, the average speeds appear to get closer and closer to  
32 feet per second.

Here’s the formula I used to generate the numbers in Table 7-2. It gives you the average speed 
between 1 second and t seconds:

Average speed
t

t

t
t

t t
t

t

16 16 1
1

16 1
1

16 1 1
1

16

2 2

2

16 1(where t )

(In the last line of the solution, recall that t cannot equal 1 because that would result in a zero 
in the denominator of the original equation. This restriction remains in effect even after you 
cancel the t 1.)

Figure 7-5 shows the graph of this function.

This graph is identical to the graph of the line y t16 16 except for the hole at 1, 32 . There’s 
a hole there because if you plug 1 into t in the average speed function, you get

Average speed
16 1 1

1 1
0
0

2

Table 7-2 Average Speeds from 1 Second to t Seconds
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which is undefined. And why do you get 0
0

? Because you’re trying to determine an average 

speed — which equals total distance divided by elapsed time — from t 1 to t 1. But from t 1 to 
t 1 is, of course, no time, and “during” this point in time, the ball doesn’t travel any distance, 

so you get zero feet
zero seconds

 as the average speed from t 1 to t 1.

Obviously, there’s a problem here. Hold on to your hat, you’ve arrived at one of the big “Ah ha!” 
moments in the development of differential calculus.

Definition of instantaneous speed: Instantaneous speed is defined as the limit of the average 
speed as the elapsed time approaches zero.

For the falling-ball problem, you’d have

Instantaneous speed
t
t

t
t t

t

at second1 1

2

1

16 1
1

16

lim

lim
11 1

1

16 16

32
1

t
t

t
t
lim

feet per second

The fact that the elapsed time never gets to zero doesn’t affect the precision of the answer 
to this limit problem — the answer is exactly 32 feet per second, the height of the hole in 
Figure 7-4. What’s remarkable about limits is that they enable you to calculate the precise, 
instantaneous speed at a single point in time by taking the limit of a function that’s based on an 
elapsed time, a period between two points of time.

FIGURE 7-5:  
The function 

f t  gives you 
the average 

speed between 
1 second and  

t seconds.
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Linking Limits and Continuity
Before I expand on the material on limits from the earlier sections of this chapter, I want to 
introduce a related idea — continuity. This is such a simple concept. A continuous function is 
simply a function with no gaps — a function that you can draw without taking your pencil off 
the paper. Consider the four functions shown in Figure 7-6.

Whether or not a function is continuous is almost always obvious. The first two functions in 
Figure 7-6, f x  and g x , have no gaps, so they’re continuous. The next two, p x  and q x ,  
have gaps at x 3, so they’re not continuous. That’s all there is to it. Well, not quite. The 
two functions with gaps are not continuous everywhere, but because you can draw sections of 
them without taking your pencil off the paper, you can say that parts of those functions are 
continuous. And sometimes a function is continuous everywhere it’s defined. Such a function 
is described as being continuous over its entire domain, which means that its gap or gaps occur 
at x-values where the function is undefined. The function p x  is continuous over its entire 
domain; q x , on the other hand, is not continuous over its entire domain because it’s not 
continuous at x 3, which is in the function’s domain. Often, the important issue is whether a 
function is continuous at a particular x-value. It is unless there’s a gap there.

Continuity of polynomial functions: All polynomial functions are continuous everywhere.

Continuity of rational functions: All rational functions (a rational function is the quotient of 
two polynomial functions) are continuous over their entire domains. They are discontinuous at 
x-values not in their domains — that is, x-values where the denominator is zero.

FIGURE 7-6:  
The graphs of 

the functions f, 
g, p, and q.
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Continuity and limits usually go hand in hand
Look at the four functions in Figure 7-6 where x 3. Consider whether each function is con-
tinuous there and whether a limit exists at that x-value. The first two, f and g, have no gaps at 
x 3, so they’re continuous there. Both functions also have limits at x 3, and in both cases, 
the limit equals the height of the function at x 3, because as x gets closer and closer to 3 from 
the left and the right, y gets closer and closer to f 3  and g 3 , respectively.

Functions p and q, on the other hand, are not continuous at x 3 (or you can say that they’re 
discontinuous there), and neither has a regular, two-sided limit at x 3. For both functions, the 
gaps at x 3 not only break the continuity, but they also cause no limits to be there because, as 
you move toward x 3 from the left and the right, you do not zero in on some single y-value.

So there you have it. If a function is continuous at an x-value, there must be a regular, two-
sided limit for that x-value. And if there’s a discontinuity at an x-value, there’s no two-sided 
limit there . . . well, almost. Keep reading for the exception.

The hole exception tells the whole story
The hole exception is the only exception to the rule that continuity and limits go hand in hand, 
but it’s a huge exception. And, I have to admit, it’s a bit odd for me to say that continuity and 
limits usually go hand in hand and to talk about this exception because the exception is the whole 
point. When you come right down to it, the exception is more important than the rule. Consider 
the two functions shown in Figure 7-7.

These functions have gaps at x 2 and are obviously not continuous there, but they do have 
limits as x approaches 2. In each case, the limit equals the height of the hole.

The hole exception: The only way a function can have a regular, two-sided limit where it is not 
continuous is where the discontinuity is an infinitesimal hole in the function.

So, both functions in Figure 7-7 have the same limit as x approaches 2; the limit is 4, and the 
facts that r 2 1 and that s 2  is undefined are irrelevant. For both functions, as x zeros in on 
2 from either side, the height of the function zeros in on the height of the hole — that’s the 
limit. This bears repeating:

The limit at a hole: The limit at a hole is the height of the hole.

FIGURE 7-7:  
The graphs of 

the functions r 
and s.
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“That’s great,” you may be thinking. “But why should I care?” Well, stick with me for just a 
minute. In the falling ball example in the section, “Calculating instantaneous speed with lim-
its,” earlier in this chapter, I tried to calculate the average speed during zero elapsed time. This 

gave me zero distance
zero time

.

Because 0
0

 is undefined, the result was a hole in the function. Function holes often come about 

from the impossibility of dividing zero by zero. It’s these functions where the limit process is 
critical, and such functions are at the heart of the meaning of a derivative, and derivatives are 
at the heart of differential calculus.

The derivative-hole connection: A derivative always involves the undefined fraction 0
0

 and  

always involves the limit of a function with a hole. (If you’re curious, all the limits in  
Chapter 9 — where the derivative is formally defined — are limits of functions with holes.)

Sorting out the mathematical mumbo  
jumbo of continuity
All you need to know to fully understand the idea of continuity is that a function is continuous at 
some particular x-value if there is no gap there. However, because you might be tested on the 
following formal definition, I suppose you’ll want to know it.

Definition of continuity: A function f x  is continuous at a point x a if the following three 
conditions are satisfied:

1. f a  is defined,

2. lim
x a

f x  exists, and

3. f a f x
x a
lim .

Just like with the formal definition of a limit, the definition of continuity is always presented as 
a three-part test, but condition 3 is the only one you really need to worry about because con-
ditions 1 and 2 are built into 3. You must remember, however, that condition 3 is not satisfied 
when the left and right sides of the equation are both undefined or nonexistent.

The 33333 Limit Mnemonic
Here’s a great memory device that pulls a lot of information together in one fell swoop. It may 
seem contrived or silly, but with mnemonic devices, contrived and silly work. The 33333 limit 
mnemonic helps you remember five groups of three things: two groups involving limits, two 
involving continuity, and one about derivatives. (I realize I haven’t gotten to derivatives yet, 
but this is the best place to present this mnemonic. Take my word for it — nothing’s perfect.)

First, note that the word limit has five letters and that there are five 3’s in this mnemonic. Next, 
write limit with a lowercase “l” and uncross the “t” so it becomes another “l” — like this:

l i m i l
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Now, the two “l”s are for limits, the two “i”s are for continuity (notice that the letter “i” has a 
gap in it, thus it’s not continuous), and the “m” is for slope (remember y mx b?), which is 
what derivatives are all about (you’ll see that in Chapter 9 in just a few pages).

Each of the five letters helps you remember three things — like this:

l i m i l

3 3 3 3 3

 » 3 parts to the definition of a limit:

Look back to the definition of a limit in the section, “The formal definition of a limit — just 
what you’ve been waiting for.” Remembering that it has three parts helps you remember 
the parts — trust me.

 » 3 cases where a limit fails to exist:

• At a vertical asymptote — called an infinite discontinuity — like at x 3 on function p in 
Figure 7-6.

• At a jump discontinuity, like where x 3 on function q in Figure 7-6.

• With a limit at infinity of an oscillating function like sin x , which goes up and down forever, 
never zeroing in on a single height.

 » 3 parts to the definition of continuity:

Just as with the definition of a limit, remembering that the definition of continuity has  
3 parts helps you remember the 3 parts (see the section, “Sorting out the mathematical 
mumbo jumbo of continuity”).

 » 3 types of discontinuity:

• A removable discontinuity — that’s a fancy term for a hole — like the holes in functions r 
and s in Figure 7-7.

• An infinite discontinuity like at x 3 on function p in Figure 7-6.

• A jump discontinuity like at x 3 on function q in Figure 7-6.

Note that the three types of discontinuity (hole, infinite, and jump) begin with three consec-
utive letters of the alphabet. Since they’re consecutive, there are no gaps between h, i, and j, 
so they’re “continuous” letters. Hey, was this book worth the price or what?

 » 3 cases where a derivative fails to exist (I explain this in Chapter 9):

• At any type of discontinuity.

• At a sharp point on a function, namely, at a cusp or a corner.

• At a vertical tangent (because the slope is undefined there).

Well, there you have it. Did you notice that another way this mnemonic works is that it gives 
you 3 cases where a limit fails to exist, 3 cases where continuity fails to exist, and 3 cases where 
a derivative fails to exist? Holy triple trio of nonexistence, Batman, that’s yet another 3 — the 3 topics 
of the mnemonic: limits, continuity, and derivatives!
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Use Figure 7-8 for the example problem and for Problems 11 through 15.

Q. List the x-coordinates of all discontinuities of the function, state whether the disconti-
nuities are removable or nonremovable, and give the type of discontinuity — hole, 
jump, or infinite.

A. At x 2 and x 5, the vertical asymptotes are nonremovable, infinite discontinuities.

 At x 2, x 6, and x 11, there are nonremovable, jump discontinuities.

 At x 8 and x 10, there are holes; holes are removable discontinuities. Though  
infinitely small, these are nevertheless discontinuities. They’re “removable”  
discontinuities because you can “fix” the function by plugging the holes.

FIGURE 7-8:  
Graphus 

interruptus:  
A function  
with many 

discontinuities.

11 At which of the following x-values 
are all three requirements for the 
existence of a limit satisfied, and 
what is the limit at those x-values? 
x 2 0 2 4 5 6 8 10 11, , , , , , , ,        and .

12 For the x-values at which all three 
limit requirements are not met, state 
which of the three requirements are 
not satisfied. If one or both one-sided 
limits exist at any of these x-values, 
give the value of the one-sided limit.
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13 At which of the x-values are all three 
requirements for continuity satisfied?

14 For the rest of the x-values, state 
which of the three continuity  
requirements are not satisfied.

15 lim
x

xsin ? See the following graph.
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(a) f 5 4, the height of the solid dot at x 5.

(b) f 18  is undefined because f has no y-value corresponding to the x-value of 18.

After reviewing the following solutions to Problems 3 through 6, reflect on how the answers 
to those problems compare to the answers to Problem 2.

3 lim
x

f x
5

 does not exist. The limit does not exist because the limit from the left does not 

equal the limit from the right. Or, you could say that the limit DNE because there’s a jump 
discontinuity at x 5.

4 lim
x

f x
18

5. Like the second example problem, the limit at a hole is the height of the hole. 

The fact that f 18  is undefined is irrelevant to this limit question.

5 lim
x

f x
5

4. The limit is 4 because f 5 4  and f is continuous from the left at 5 4, .

6 lim
x

f x
5

6. This question is just like Problem 5, except that there’s a hollow dot — instead 

of a solid one — when you arrive at the gap. But the hollow dot at 5 6,  is irrelevant to the 
limit question — just as in Problem 4, where the hole was irrelevant.

7 lim
x x

1
0. As you go out farther and farther to the right, the function gets closer and closer 

to zero, so that’s the limit.

8 lim
x

f x
0

1.

Of course, you can graph f with your graphing calculator, but it’s a good idea to graph func-
tions by hand now and then. It helps you understand why the function looks the way it does. 
All you need to do to sketch this one by hand is to plug a few negative and positive numbers 
into x. You’ll soon see that whenever the input is negative, the output is –1, and whenever 
the input is positive, the output is 1. And you need the hollow dots on the y-axis at –1 and 1 
because f 0  is undefined. Your sketch should look something like the following figure.

Practice Questions Answers and Explanations
1 lim

x
f x

7
 does not exist (DNE) because there’s a vertical asymptote at –7. Or, because f x  

approaches negative infinity both from the left and from the right, you could say the limit 
equals negative infinity.

2 
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For the one-sided limit, lim
x

f x
0

, nothing to the right of zero is relevant. And, as with all 

limit problems, what actually happens to the function (namely, whether it exists and, if it 
exists, what it equals) when x gets to the limit number doesn’t affect the limit answer. All that 
matters is what’s happening to the function as x gets closer and closer to the limit number. As 
x gets closer and closer to zero from the left, y is staying precisely at –1, so that’s the limit.

9 lim
x

f x
0

1. See the solution to Problem 8. The limit in this problem works exactly the  

same way.

10 lim
x

f x
0

 does not exist. As you see in the solutions to Problems 8 and 9, lim lim
x x

f x f x
0 0

,  

and, therefore, the ordinary, two-sided limit does not exist.

11 At 0, the limit is 2; at 4, the limit is 5; at 8, the limit is 3; at 10, the limit is 5.

A limit exists at a particular x-value of a curve when the curve is heading toward some  
particular y-value and keeps heading toward that y-value as you continue to zoom in on  
the curve at the x-value. The curve must head toward that y-value (that height) as you  
move along the curve both from the right and from the left (unless the limit is one where x 
approaches infinity). I emphasize heading toward because what happens precisely at the given 
x-value isn’t relevant to this limit inquiry. That’s why there is a limit at a hole like the ones 
at x 8 and x 10.

12 At –2 and 5, all three conditions fail.

At 2, 6, and 11, only the third requirement is not satisfied.

At 2, the limit from the left equals 5 and the limit from the right equals 3.

At 6, the limit from the left is 2 and the limit from the right is 3.

Finally, at 11, the limit from the left equals 3 and the limit from the right equals 5.

13 The function in Figure 7-8 is continuous at 0 and 4. The common-sense way of thinking 
about continuity is that a curve is continuous wherever you can draw the curve without 
taking your pen off the paper. It should be obvious that that’s true at 0 and 4, but not at  
any of the other listed x-values.

14 All listed x-values other than 0 and 4 are points of discontinuity. A discontinuity is just a 
highfalutin calculus way of saying a gap. If you have to take your pen off the paper at  
some point when drawing a curve, then the curve has a discontinuity there.

At 5 and 11, all three conditions fail.

At –2, 2, and 6, continuity requirements 2 and 3 are not satisfied.

At 10, requirements 1 and 3 are not satisfied.

At 8, requirement 3 is not satisfied.

15 lim sin
x

x  does not exist. There’s no limit as x approaches infinity because the curve  

oscillates — it never settles down to one precise y-value. (The three-part definition of  
a limit does not apply to limits at infinity.)

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 7 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

Use the following figure for the questions in this quiz.

1 Use the graph of f to determine the following function values:

f

f

f

f

3

2

1

0

?

?

?

?

f

f

f

1

2

3

?

?

?

2 Use the graph of f to determine the following limits:

lim ?

lim ?

lim ?

lim ?

x

x

x

x

f x

f x

f x

f x

3

2

1

0

lim ?

lim ?

lim ?

x

x

x

f x

f x

f x

1

2

3

3 Use the graph of f to determine the following left-sided limits:

lim ?

lim ?

lim ?

lim ?

x

x

x

x

f x

f x

f x

f x

3

2

1

0

lim ?

lim ?

lim ?

x

x

x

f x

f x

f x

1

2

3
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4 Use the graph of f to determine the following right-sided limits:

lim ?

lim ?

lim ?

lim ?

x

x

x

x

f x

f x

f x

f x

3

2

1

0

lim ?

lim ?

lim ?

x

x

x

f x

f x

f x

1

2

3

5 Use the graph of f to determine the following limits:

lim ?

lim ?
x

x

f x

f x

6 At what x-values is f not continuous?

7 For each of your answers to Question 6, identify the type of discontinuity (hole, jump, or 
infinite) and whether the discontinuity is removable or nonremovable.

8 For each of your answers to Question 6, state which of the three continuity requirements are 
not satisfied (from the three-part definition of continuity).
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Answers to Chapter 7 Quiz
1 Thought I’d start you off with a softball question:

f

f

f

f

3 1

2

1 1

0

is undefined

 is undefined

f

f

f

1 1

2 0

3  is undefined

2 lim
x

f x
3

1. f 3  is –1 and the graph is continuous there, so that’s the limit.

lim
x

f x
2

1. The limit at a hole is the height of the hole.

lim
x

f x
1

0. Ditto.

lim .
x

f x
0

 is undefined  The one-sided limits are unequal, so this two-sided limit is 

undefined.

lim
x

f x
1

 is undefined. Ditto.

lim
x

f x
2

0. f 2  equals zero and the graph is continuous there, so that’s the limit.

lim .
x

f x
3

 is undefined  The left-sided limit is negative infinity, and the right-sided limit is 

positive infinity, so this two-sided limit is undefined.

3 You would often want to consider the one-sided limits (like the ones in this problem and 
Problem 4) before doing the two-sided limits (like the ones in Problem 2), but I wanted to 
see if you could correctly do Questions 4, 5, and 7 in Problem 2 without the hints that the 
related questions in Problems 3 and 4 would provide.

lim

lim

lim

lim

x

x

x

x

f x

f x

f x

f x

3

2

1

0

1

1

0

1

lim

lim

lim

x

x

x

f x

f x

f x

1

2

3

0

0

4 lim

lim

lim

lim

x

x

x

x

f x

f x

f x

f x

3

2

1

0

1

1

0

1
 

lim

lim

lim

x

x

x

f x

f x

f x

1

2

3

1

0

5 lim
x

f x 1

lim
x

f x 0. The limit at infinity is the height of the horizontal asymptote.
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6 –2, –1, 0, 1, and 3.

7 At –2 and –1, there are holes, which are removable discontinuities.

At 0 and 1, there are jump discontinuities, which are nonremovable.

At 3, there’s a nonremovable infinite discontinuity.

8 At –2, conditions 1 and 3 fail.

At –1, only condition 3 fails.

At 0, all three conditions fail.

At 1, conditions 2 and 3 fail.

At 3, all three conditions fail.
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Evaluating Limits

Chapter 7 introduces the concept of a limit and goes over the theoretical limit stuff. This 
chapter gets down to the nitty-gritty techniques for calculating the answers to limit 
problems. Here you practice two main methods for solving limit problems: using your 

calculator and using algebra.

The calculator techniques are useful for a few reasons: 1) You can solve some limit problems 
on your calculator that are either impossible or just very difficult to do with algebra, 2) You can 
check your algebraic answers with your calculator, and 3) Limit problems can be solved with a 
calculator when you’re not required to show your work — like maybe on a multiple-choice test. 
(Of course, depending on your teacher and depending on the situation, you may not be allowed 
to use your calculator.)

Learning the algebraic techniques is valuable for a couple reasons: The first, incredibly impor-
tant reason is that the mathematics involved in the algebraic methods is beautiful, pure, and 
rigorous; and, second — something so trivial that perhaps I shouldn’t mention it — you’ll be 
tested on it. Do I have my priorities straight or what?

Easy Does It — Easy Limits
Before getting to the algebraic and calculator techniques, let’s dispense with some really easy 
limit problems.

A few limit problems are very easy. They’re so easy that I don’t have to waste your time with 
unnecessary introductory remarks and unneeded words that take up space and do nothing to 

Chapter 8

IN THIS CHAPTER

 » Algebra, schmalgebra

 » Calculators — taking the easy  
way out

 » Making limit sandwiches

 » Infinity — “Are we there yet?”

 » Conjugate multiplication — 
sounds R rated, but it’s strictly PG



142      UNIT 3  Limits

further your knowledge of the subject — instead, I can just cut to the chase and give you only 
the critical facts and get to the point and get down to business and . . . Okay, so are you ready?

Limits to memorize
You should memorize the following limits. If you fail to memorize the limits in the last four 
bullets, you could waste a lot of time trying to figure them out.

 » lim
x a

c c

(y c is a horizontal line, so the limit — which is the function height — must equal c  
regardless of the arrow-number.)

 » lim
x x0

1

 » lim
x x0

1

 » lim
x x

1 0

 » lim
x x

1 0

 » lim sin lim
sinx x

x
x

x
x0 0

1

 » lim cos
x

x
x0

1 0

 » lim .
x

x

x
e1 1 2 718

 » lim .
x

x

x e
1 1 1 0 368

Plugging and chugging
Plug-and-chug problems make up the second category of easy limits. Just plug the arrow-
number into the limit function, and if the computation results in a number, that’s your answer 
(but see the following warning). For example,

lim
x

x
3

2 10 1

(Don’t forget that for this method to work, the result you get after plugging in must be an ordi-
nary number, not infinity or negative infinity or something that’s undefined.)

If you’re dealing with a function that’s continuous everywhere (like the one in this example) 
or a function that’s continuous over its entire domain, this method will always work. These are 
well-duh limit problems, and, to be perfectly frank, there’s really no point to them. The limit 
is simply the function value. If you’re dealing with any other type of function, this method will 
only work sometimes — read on.
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Beware of discontinuities. The plug-and-chug method works for any type of function, includ-
ing piecewise functions, unless there’s a discontinuity at the arrow-number you plug in. In 
that case, if you get a number after plugging in, that number is not the limit; the limit might 
equal some other number or it might not exist. (See Chapter 7 for a description of piecewise 
functions.)

What happens when plugging in gives you a non-zero number over zero? If you plug the 

arrow-number into a limit like lim
x x5

10
5

 and you get any number (other than zero) divided by 

zero — like 10
0

 — then you know that the limit does not exist; in other words, the limit does 

not equal a finite number. (The answer might be infinity or negative infinity or just a plain old 
“does not exist.”)

The “Real Deal” Limit Problems
When you tackle any limit problem, you should always begin by plugging the arrow-number 
into the limit expression. Sometimes (not often), your answer will be an ordinary number or 
a non-zero number over zero, and you’ll be done  — as explained in the preceding section 
(though make sure you heed the warning). But if you plug in the arrow-number and the result 
is undefined (excluding the case covered in the previous tip), you’ve got a “for real” limit  
problem  — and a bit of work to do. This is the main focus of this chapter. These are the 
interesting limit problems, the ones that likely have infinitesimal holes, and the ones that are 
important for differential calculus — you see more of them in Chapter 9.

With these real-deal limit problems (where plugging in often gives you 0
0

), you can try four 
things: your calculator, general algebraic techniques, making a limit sandwich (a special alge-
braic technique), and L’Hôpital’s rule (which is covered in Chapter 18).

Figuring a limit with your calculator
Your calculator is a great tool for understanding limits. It can often give you a better feel for 
how a limit works than the algebraic techniques can. A limit problem asks you to determine 
what the y-value of a function is zeroing in on as the x-value approaches a particular number. 
With your calculator, you can actually witness the process and the result. Say you want to eval-

uate the following limit: lim
x

x
x5

2 25
5

. The plug-and-chug method doesn’t work because plug-

ging 5 into x produces the undefined result of 0
0

. Let’s solve this limit problem with a calculator. 
I’ll go over two basic methods.

A note about calculators and other technology: With every passing year, there are more and 
more powerful calculators and more and more resources on the Internet that can do calculus 
for you. One thing that allows these technologies to do calculus is that they can handle algebra 
(using CAS, a Computer Algebra System). Say you input x x3 2 5 . These technologies can 
FOIL that expression and give you the algebraic answer of 2 152x x . A calculator like the  
TI-Nspire, or any other calculator with CAS, or websites like Wolfram Alpha (www.wolfram 
alpha.com), can actually do the above limit problem, and all sorts of more difficult calculus 
problems, and give you the exact numerical or algebraic answer.

http://www.wolframalpha.com
http://www.wolframalpha.com
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Older calculator models can’t do algebra or calculus in the real, precise, algebraic way. They 
can, however, give you approximate answers to calc problems — which will often suffice.

Different calculus teachers have different policies on what technology they allow in their 
classes. Many do not allow the use of CAS calculators and comparable technologies because 
they basically do all the calculus work for you. So, the following discussion (and the rest of this 
book) assumes you’re using a more basic calculator (like the TI-84) without CAS capability.

Method one
The first calculator method is to test the limit function with two numbers: one slightly less than 
the arrow-number and one slightly more than it. So, here’s what you do for the earlier prob-

lem, lim
x

x
x5

2 25
5

. If you have a calculator like a Texas Instruments TI-84, enter the first num-

ber, say 4.9999, on the home screen, and press the Sto (store) button, then the x button, and 

then the Enter button (this stores the number into x). Then enter the function, x
x

2 25
5

, and hit 

Enter. The result, 9.9999, is extremely close to a round number, 10, so 10 is likely your answer. 
Now take a number a little higher than the arrow-number, like 5.0001, and repeat the process. 
Since the result, 10.0001, is also very close to 10, that clinches it. The answer is 10 (almost cer-
tainly). (By the way, if you’re using a different calculator model, you can likely achieve the 
same result with the same technique or something very close to it.) This method can be effec-
tive, but it often doesn’t give you a good feel for how the y-values zero in on the result. To get 
a better picture of this process, you can store three or four numbers into x (one after another), 
each a bit closer to the arrow-number, and look at the sequence of results.

Method two
The second calculator method is to set y equal to the limit expression and enter it in your calcu-
lator’s graphing mode. You can then investigate the limit problem on your calculator by 1) look-

ing at the table of values and 2) viewing the graph of the function. Let’s do it. Enter y x
x

2 25
5

  

in graphing mode on your calculator. Then go to Table Setup and enter the arrow-number, 5, as 
the TblStart number; then, enter a small number, say 0.001, for Tbl — that’s the size of the 
x-increments in the table. Hit the Table button to produce the table. Now scroll up until you 
can see a couple of numbers less than 5, and you should see a table of values similar to the one 
in Table 8-1.

Table 8-1 TI-84 Table for  y
x
x

2 25
5   after Scrolling Up to 4.998

x y
4.998 9.998

4.999 9.999

5 error

5.001 10.001

5.002 10.002

5.003 10.003
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Because y gets very close to 10 as x zeros in on 5 from above and below, 10 is the limit (almost 
certainly . . . you can’t be absolutely positive with these calculator methods, but they almost 
always work).

Next, take a look at the graph of this function. Go into the window and tweak the Xmin, Xmax, 
Ymin, and Ymax settings, if necessary, so that the part of the function corresponding to the arrow-
number is within the viewing window. Now, use the trace feature to trace along the function until 
you get close to the arrow-number. You can’t trace exactly onto the arrow-number because there’s 
a little hole in the function there, the height of which, by the way, is your answer. When you trace 
close to the arrow-number, the y-value will get close to the limit answer. Use the ZoomBox fea-
ture to draw a little box around the part of the graph containing the arrow-number, and zoom in 
until you see that the y-values are getting very close to a round number — that’s your answer.

These calculator techniques are useful for a number of reasons. Your calculator can give you the 
answers to limit problems that are impossible to do algebraically. And it can solve limit prob-
lems that you could do with paper and pencil except that you’re stumped. Also, for problems 
that you do solve on paper, you can use your calculator to check your answers. And even when 
you choose to solve a limit algebraically — or are required to do so — it’s a good idea to cre-
ate a table like Table 8-1 not just to confirm your answer, but to see how the function behaves 
near the arrow-number. This gives you a numerical grasp on the problem, which enhances your 
algebraic understanding of it. If you then look at the graph of the function on your calculator, 
you have a third, graphical or visual way of thinking about the problem.

Many calculus problems can be done algebraically, graphically, and numerically. When possible, 
use two or three of the approaches. Each approach gives you a different perspective on a prob-
lem and enhances your grasp of the relevant concepts.

Use the calculator methods to supplement algebraic methods, but don’t rely too much on them. 
First of all, the non-CAS-calculator techniques won’t allow you to deduce an exact answer 
unless the numbers your calculator gives you are getting close to a number you recognize. If 
your calculator gives you 9.999, for example, you can be pretty sure the exact answer is 10, and 

you can be quite confident that the exact answer is 
1
3

 if your calculator says 0.333332. And per-

haps you recognize that 1.414211 is very close to 2 . But if the exact answer to a limit problem is 

something like 1
2 3

, you probably won’t recognize it. The number 1
2 3

 is approximately equal 

to 0.288675. When you see numbers on your calculator close to that decimal, you won’t rec-

ognize 1
2 3

 as the limit — unless you’re an Archimedes, a Gauss, or a Ramanujan (members 

of the mathematics hall of fame). However, even when you don’t recognize the exact answer in 
such cases, you can still learn an approximate answer, in decimal form, to the limit question, 
and that can be helpful.

Gnarly functions may stump your calculator. Another calculator limitation is that it won’t 

work at all with some peculiar functions. Consider, for example, lim sin
x

x
x5

25 5 1
5

 . This 

limit equals zero, but you can’t get that result with your calculator.

By the way, even when the non-CAS-calculator methods work, these calculators can do some 
quirky things from time to time. For example, if you’re solving a limit problem where x approaches 
3, and you put numbers in your calculator that are too close to 3 (like 3.0000000001), you can get 
too close to the calculator’s maximum decimal length. This can result in answers that get further 
from the limit answer, even as you input numbers closer and closer to the arrow-number.
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The moral of the story is that you should think of your calculator as one of several tools at your 
disposal for solving limits — not as a foolproof substitute for algebraic techniques.

Q. Evaluate lim
x

x x
x6

2 5 6
6sin

.

A. The answer is 7.

Method One:

1. Use the Sto button to store 5.99 into x.

2. Enter 
x x

x

2 5 6
6sin

 on the home screen and hit Enter. (Note: You must be in radian 

mode.)

This gives you a result of ~ . ,6 99  suggesting that the answer is 7.

3. Repeat Steps 1 and 2 with 5.999 stored into x.

This gives you a result of ~ .6 999 (even closer to 7).

4. Repeat Steps 1 and 2 with 6.01 stored into x.

This gives you a result of ~ .7 01 (close to 7 again).

5. Repeat Steps 1 and 2 with 6.001.

This gives you a result of ~ .7 001 (even closer).

Because the results are obviously homing in on the round number of 7, that’s your 
answer.

Method Two:

1. Enter 
x x

x

2 5 6
6sin

 in graphing or “y =” mode.

2. Go to Table Setup and set TblStart to the arrow-number, 6, and ΔTbl to 0.01.

3. Go to the Table, and you’ll see the y-values getting closer and closer to 7 as you 
scroll toward x 6 from above and below 6.

So 7 is your answer.

4. Graph the function. For expressions containing trig functions, ZoomStd, ZoomFit, 
and ZoomTrig are good windows to try for your first viewing.

For this funny function, none of these three window options works very well, but 
ZoomStd is the best.

5. Trace close to x 6 and you’ll see that y is near 7. Use ZoomBox to draw a little box 
around the point 6 7,  ; then hit Enter.

6. Trace near x 6 on this zoomed-in graph until you get very near to x 6.

7. Repeat the Zoombox process maybe two more times and you should be able to trace 
extremely close to x 6.

(When I did this, I could trace to x 6 0000022. , y 7 0000023. .)

The answer is 7.
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1 Use your calculator to evaluate lim
x

x x
x3

2 5 24
3 . Try both methods.

2 Use your calculator to determine lim
tanx

x
x0 1

sin . Use both methods.

Solving limit problems with algebra
Don’t forget to plug in! You can solve limit problems with several algebraic techniques (dis-
cussed next). But before you try any algebra, your first step should always be to plug the arrow-
number into the limit expression. If the function is continuous at the arrow-number and if 

plugging in results in an ordinary number, then that’s the answer. You’re done. For example, to 

evaluate lim
x

x
x5

2 10, just plug in the arrow-number. You get 5 10
5

3
2

. That’s all there is to it.

You’re also done if plugging in the arrow-number gives you a number or infinity or negative 

infinity over zero, like 3
0

, or 
0

; in these cases the limit does not exist (DNE).

When plugging in fails because it gives you 0
0

, you’ve got a nontrivial limit problem and a bit of 

work to do. You have to convert the fraction into some expression where plugging in does work 
(it works because the algebra you do plugs an infinitesimal hole in the function where x equals 
the arrow-number). Here are some algebraic methods you can try:

 » FOILing

 » Factoring

 » Finding the least common denominator

 » Canceling

 » Simplification

 » Conjugate multiplication
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A couple of these methods are illustrated in the following examples. You’ll practice all the 
methods in the practice problems.

Here’s a factoring example.

Q. Evaluate lim
x

x
x5

2 25
5

, the same problem you did with a calculator in the preceding 
section.

A. The limit is 10.

1. Try plugging 5 into x — you should always try substitution first.

You get 0
0

 — no good, on to plan B.

2. x 2 25 can be factored, so do it.

lim lim
x x

x
x

x x
x5

2

5

25
5

5 5
5

3. Cancel the x 5  from the numerator and denominator.

lim
x

x
5

5

4. Now substitution will work.

5 5 10

So, lim
x

x
x5

2 25
5

10, confirming the calculator answer.

By the way, the function you got after canceling the x 5 , namely y x 5 , is 

identical to the original function, y x
x

2 25
5

, except that the hole in the original 

function at 5 10,  has been plugged. And note that the limit as x approaches  
5 is 10, which is the height of the hole at 5 10, .

Try conjugate multiplication for fraction functions that contain square roots. Conjugate multi-
plication rationalizes the numerator or denominator of a fraction, which means getting rid of 
square roots.

Q. Evaluate lim
x

x
x4

2
4

.

A. The limit is 
1
4

.

1. Try substitution.

Plug in 4: That gives you 0
0

 — time for plan B.
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2. Multiply the numerator and denominator by the conjugate of x 2, which is x 2.

Definition of conjugate: The conjugate of a two-term expression is just the same 
expression with subtraction switched to addition or vice versa. The product of con-
jugates always equals the first term squared minus the second term squared.

Now do the rationalizing.

 lim

lim

lim

x

x

x

x
x

x
x

x
x

x
x x

4

4

4

2 2

2
4

2
4

2
2

2
4 22

4
4 24

lim
x

x
x x

3. Cancel the x 4  from the numerator and denominator.

lim
x x4

1
2

4. Now substitution works.

1
4 2

1
4

So, lim
x

x
x4

2
4

1
4

.

As with the factoring example, this rationalizing process plugged the hole in the 

original function. In this example, 4 is the arrow-number, 1
4

 is the limit answer, and 

the function x
x

2
4

 has a hole at 4 1
4

, .

When factoring and conjugate multiplication don’t work, try some other basic algebra, like 
adding or subtracting fractions, multiplying or dividing fractions, canceling, or some other 
form of simplification. Here’s an example:

Q. Evaluate lim
x

x
x0

1
4

1
4 .

A. The limit is  
1

16
.

1. Try substitution.

Plug in 0: That gives you 0
0

 — no good.
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2. Simplify the complex fraction (that’s a big fraction that contains little fractions) by 
multiplying the numerator and denominator by the least common denominator of 
the little fractions, namely 4 x 4 .

Note: You can also simplify a complex fraction by adding or subtracting the little 
fractions in the numerator and/or denominator, but the method described here is  
a bit quicker.

 lim

lim

lim

x

x

x

x
x

x
x

x
x

0

0

1
4

1
4

1
4

1
4 4 4

4 4

0

0

0

4 4
4 4

4 4

1
4 4

x
x x

x
x x

x

x

x

lim

lim

3. Now substitution works.
1

4 0 4
1

16
. That’s the limit.

3 lim
x

x
x3

2 9
3

4 lim
x

x
x x1 2

1
2

5 lim
x

x
x2 3

2
8

6 lim
x

x
x x2

2

2
4

4 5 6
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7 lim
x

x
x9

9
3

8 lim
x

x
x10

5 5
10

9 lim
x

x
x0

1cos
10 lim

x

x
x2

1 1
2
2

11 lim
x

x

x
0 1

6
1

6

12 lim
x

x
x0

sin
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13 lim
x

x
x0 3sin 14 lim

x

x
x0 tan

15 lim
x

x
x6

6
6

16 lim
x 5

8

17 lim
x

k
0

 (k is a constant) 18 lim
x

x
x4 3

4
4
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Take a break and make yourself a limit sandwich
The sandwich or squeeze method is a special algebraic technique you can try when you can’t 
solve a limit problem with ordinary algebra. The basic idea is to find one function that’s always 
less than or equal to the limit function (at least near the arrow-number) and another function 
that’s always greater than or equal to the limit function. Both of your new functions must have 
the same limit as x approaches the arrow-number. Then, because the limit function is “sand-
wiched” between the other two, like salami between slices of bread, it must have that same 
limit as well. Consider Figure 8-1. Function f is sandwiched between B (for bottom) and T (for 
top). Because near the arrow-number of 2, f is always higher than or the same height as B and 
always lower than or the same height as T, and because lim lim

x x
B x T x

2 2
, f x  must have the 

same limit as x approaches 2 because f is squeezed between B and T. The limit of both B and T as 
x approaches 2 is 3. So, 3 has to be the limit of f as well. It’s got nowhere else to go.

Q. Evaluate lim sin
x

x
x0

1 .

A. The limit is zero.

1. Try substitution.

Plug 0 into x. That gives you 0 1
0

sin  — no good; this is undefined. On to plan B.

2. Try the ordinary algebraic methods from the last section.

Knock yourself out. You can’t do it. Plan C.

3. Try your calculator.

It’s always a good idea to see what your calculator tells you even if this is a “show 
your work” problem. To graph this function, set your graphing calculator’s mode 
to radian and the window to

Xmin

Xmax

Ymin

Ymax

0 4

0 4

0 3

0 3

.

.

.

.

FIGURE 8-1:  
A limit 

sandwich — 
functions B 

and T are the 
bread and f is 

the salami.
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Figure 8-2 shows what the graph looks like.

It definitely looks like the limit of f is zero as x approaches zero from the left and 
the right. Now, check the table of values on your calculator (set TblStart to zero 
and Tbl to 0.001). Table 8-2 gives some of the values from the calculator table.

These numbers sort of look like they’re getting closer and closer to zero as x gets 
close to zero, but they’re not convincing. This type of table doesn’t work so great 
for oscillating functions like sine or cosine. (Some function values on the table, for 
example 0 000969.  for x 0 006. , are closer to zero than other values higher on the 
table where x is smaller. That’s the opposite of what you want to see. And you’ll 
run into the same problem if you look at small negative values of x.)

Table 8-2 Table of Values for f x x
x

sin
1

x f x

0 Error

0.001 0.0008269

0.002 −0.000936

0.003 0.0009565

0.004 −0.003882

0.005 −0.004366

0.006 −0.000969

0.007 −0.006975

0.008 −0.004928

0.009 −0.008234

FIGURE 8-2:  
The graph of 

f x x
x

sin
1 .
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A better way of seeing that the limit of f is zero as x approaches zero is to use 
the first calculator method I discuss in the section “Figuring a limit with your  
calculator.” Enter the function on the home screen and successively plug in the 
x-values listed in Table 8-3 to obtain the corresponding function values. (Note: 
Don’t be confused. Table 8-3 is called a “table,” but the values in that table were 
not generated by a calculator’s table function. Get it?)

Now you can definitely see that f is headed toward zero. (You should also look at 
the values of f x  as x approaches zero from the negative side. These values will 
confirm that g is headed to zero.)

4. Now you should prove the limit mathematically even though you’ve already solved it 
on your calculator. One way to do this is to make a limit sandwich.

For some sandwich method problems, it can be a challenge to come up with the 
“bread” functions B and T. For such challenging sandwich problems, you’ve got  
to think about and/or look at the shape of the salami function f, and then use your 
knowledge of functions and your imagination to come up with some good pros-
pects for the bread functions.

However, the above sandwich problem is a snap. It’s an example of a common type 
of sandwich problem of the form f x x n sin  or f x x n cos  — basically, x 
to a positive integer power times the sine or cosine of just about anything. For  
this class of functions, there are two cases: If n is even, you can use B x x n  
and T x x n for the bread functions; if n is odd, you can use B x x n  and 
T x x n  for the bread functions. Piece o’ cake.

Following this rule for the current problem, you can use x  for the bottom  
function and x  for the top function. You should graph B x x  and T x x   
along with f x x

x
sin 1  to confirm that B and T make adequate bread functions  

for f. Figure 8-3 shows that they do. We’ve shown — though perhaps not to a  
mathematician’s satisfaction, egad! — that B x f x T x . And because 
lim lim
x x

B x T x
0 0

0, it follows that f x  must have the same limit: voilà — 

lim
x

f x
0

0.

Table 8-3 Another Table of Values for f x x
x

sin
1

x f x

0.1 −0.054

0.01 −0.0051

0.001 0.00083

0.0001 −0.000031

0.00001 0.00000036
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5. Taking the easy way out.

I hope you won’t be too upset with me when I only now show you the easy way to 
solve this limit problem. (I needed to show you the important ideas in Steps 3 and 
4 because you really should learn the theory of the sandwich theorem and also how 
to squeeze a function between two others. And on top of that, I’ve heard that some 
teachers and professors may not like the following approach. I’m not sure why 
because it’s perfectly valid.)

All you need to do to solve the current limit problem is to observe 1) that sin 1
x

 

never gets below –1 or above 1 (in other words, it’s bounded by –1 and 1), and 2) 

that lim
x

x
0

0. Thus, basically, for lim sin
x

x
x0

1 , you’ve got zero times bounded, 

which equals zero. That’s all there is to it.

19 Evaluate lim
x

x
x0 2
1sin . 20 Evaluate lim cos

x
x

x0

2 1 .

FIGURE 8-3:  
A graph of 

B x x , 
T x x , and 

f x x
x

sin
1 . 

It’s a bow tie!
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Evaluating Limits at ±Infinity
In the previous sections, I look at limits as x approaches a finite number, but you can also have 

limits where x approaches infinity or negative infinity. Consider the function f x
x
1  and 

check out its graph in Figure 8-4.

THE LONG AND WINDING ROAD
Consider the function f x x

x
sin ,1  shown in Figures 8-2 and 8-3 and discussed in the sec-

tion about making a limit sandwich. It’s defined everywhere except at zero. If you now alter it 
slightly — by renaming it g x  and then defining g 0  to be 0 — you create a new function with 
bizarre properties. The function is now continuous everywhere; in other words, it has no gaps. But 
at 0, , 0  it seems to contradict the basic idea of continuity that says you can trace the function 
without taking your pencil off the paper.

Imagine starting anywhere on g x  — which looks exactly like f x  in Figures 8-2 and 8-3 — to 
the left of the y-axis and driving along the winding road toward the origin, 0, 0 . Get this: You can 
start your drive as close to the origin as you like — how about the width of a proton away from 
0, 0  — and the length of road between you and 0, 0  is infinitely long! That’s right. It winds up 

and down with such increasing frequency as you get closer and closer to 0, 0  that the length 
of your drive is actually infinite, despite the fact that each “straightaway” is getting shorter and 
shorter. On this long and winding road, you’ll never get to their door.

This altered function is clearly continuous at every point — with the possible exception of 0, 0  — 

because it’s a smooth, connected, winding road. And because lim sin
x

x
x0

1 0 (see the limit 

sandwich section for proof), and because g 0  is defined to be 0, the three-part test for continuity 
at 0 is satisfied. The function is thus continuous everywhere.

But tell me, how can the curve ever reach 0, 0  or connect to 0, 0  from the left (or the right)? 
Assuming you can traverse an infinite distance by driving infinitely fast, when you finally drive 
through the origin, are you on one of the up legs of the road or one of the down legs? Neither 
seems possible because no matter how close you are to the origin, you have an infinite number 
of legs and an infinite number of turns ahead of you. There is no last turn before you reach 0, 0 . 
So, it seems that the function can’t connect to the origin and that, therefore, it can’t be continuous 
there — despite the fact that the math tells you that it is.

Here’s another way of looking at it. Imagine a vertical line drawn on top of the function at x 0 2. . 
Now, keeping the line vertical, slowly slide the line to the right over the function until you pass over 
0, 0 . There are no gaps in the function, so at every instance, the vertical line crosses the function 

somewhere. Think about the point where the line intersects with the function. As you drag the line 
to the right, that point travels along the function, winding up and down along the road, and, as you 
drag the line over the origin, the point reaches and then passes 0, 0 . Now tell me this: When the 
point hits 0, 0 , is it on its way up or down? How can you reconcile all this? I wish I knew.

Stuff like this really messes with your mind.
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You can see on the graph (in the first quadrant) that as x gets bigger and bigger — in other 
words, as x approaches infinity — the height of the function gets lower and lower but never 
gets to zero. This is confirmed by considering what happens when you plug bigger and bigger 

numbers into 1
x

: The outputs get smaller and smaller and approach zero. This graph thus has 

a horizontal asymptote of y 0 (the x-axis), and you say that lim
x x

1 0. The fact that x never 

actually reaches infinity and that f never gets to zero has no relevance. When we say that lim
x x

1 0,  

we mean that as x gets bigger and bigger without end, f is closing in on a height of zero (or f is 
ultimately getting infinitely close to a height of zero). If you look at the third quadrant, you can 
see that the function f also approaches zero as x approaches negative infinity, which is written 

as lim
x x

1 0.

Like with limits where x approaches a finite number, to solve limit problems where x approaches 
infinity or negative infinity, you can use your calculator or algebra. But before I go through 
those techniques, let’s first take care of a special class of limits at infinity where no calculus 
is needed: rational function limits.

Limits of rational functions at ±infinity
This section deals with the horizontal asymptotes of rational functions. A rational function is a 
fraction function with polynomials in the numerator and denominator. (You probably stud-
ied rational functions and their asymptotes, both vertical and horizontal, in an algebra and/or 
a precalculus class.) Determining the limit of a function as x approaches infinity or negative 
infinity is the same as finding the height of its horizontal asymptote.

Say you’ve got a rational function like f x
x x
x x4 8

5 10 1

2

3 . First, note the degree of the numer-

ator, namely, the highest power of x in the numerator (2 in this function) and the degree of the 
denominator (3 in this function). There are three cases:

 » If the degree of the numerator is greater than the degree of the denominator, for example, 

f x
x x

x
6 7

2 8

3 2

2 , then there’s no horizontal asymptote, and the limit of the function as x 

approaches infinity (or negative infinity) does not exist (the limit will be positive or negative 
infinity).

FIGURE 8-4:  
The graph of 

f x
x
1 .
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 » If the degree of the denominator is greater than the degree of the numerator, for exam-

ple, g x
x

x
4 9

12

2

4 , then the x-axis (that’s the line y 0) is the horizontal asymptote, and 

lim lim
x x

g x g x 0.

 » If the degrees of the numerator and denominator are equal, take the coefficient of the high-
est power of x in the numerator and divide it by the coefficient of the highest power of x in 
the denominator. That quotient gives you the answer to the limit problem and the height of  

the asymptote — for example, if h x
x x
x x x

4 10 1
5 2

3

3 2 ,  lim lim
x x

h x h x
4
5

, and h has 

a horizontal asymptote at y 4
5

.

Talk like a professor. To impress your friends, point your index finger upward, raise one eye-
brow, and say in a professorial tone, “In a rational function where the numerator and denomi-
nator are of equal degrees, the limit of the function as x approaches infinity or negative infinity 
equals the quotient of the coefficients of the leading terms. A horizontal asymptote occurs at 
this same value.”

 does not equal 1. Substitution doesn’t work for the problems in this section. If you try plug-

ging infinity into x in any of the rational functions in this section, you get  but that does not 

necessarily equal 1 (  sometimes equals 1, but it often does not). A result of  tells you noth-

ing about the answer to a limit problem.

Examples? EXAMPLES?! We don’t need no stinking examples. (My apologies to the late, great 
director John Huston). See the bullet points earlier in this section and then try the following 
practice problems.

21 What’s lim
x

x x
x x

5 10
2 3

3 2

4 ? Explain 

your answer.

22 What’s lim
x

x x
x

3 100 4
8 1

4 3

4 ? Explain 

your answer.
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Solving limits at infinity with a calculator
In many situations in calculus (and math in general), your calculator can be a great tool. Some-
times you can use it to solve problems you can’t solve the pure, algebraic way. It can also give 
you ideas that you can use to solve a problem the “right” way. And you can use it to check your 
answers. Your calculator is a good thing to try with some limits at plus or minus infinity.

Here’s a limit problem that can’t be done by the method in the previous section because it 

doesn’t involve a rational function: lim
x

x x x2 . But it’s a snap with a calculator. Enter 

the function in graphing mode, then go to Table Setup and set TblStart to 100,000 and Tbl to 
100,000. Table 8-4 shows the results.

You can see that y is getting extremely close to 0.5 as x gets larger and larger. So, 0.5 is the 
limit of the function as x approaches infinity. (The function is not a rational function, but it has 
a horizontal asymptote at y 0 5. . All functions, rational or not, that have a finite limit answer 
as x approaches infinity or negative infinity have a horizontal asymptote at the limit answer 
height.) If you have any doubts that the limit equals 0.5, go back to Table Setup and put in a 
humongous TblStart and Tbl, say 1,000,000,000, and check the table results again. All you see 
is a column of 0.5’s. That’s the limit.

By the way, unlike with the rational functions in the previous section, the limit of this 
function as x approaches negative infinity doesn’t equal the limit as x approaches posi-

tive infinity. For this function, here’s what happens when x approaches negative infinity:  

lim lim .
x x

x x x x x x2 1  Now plug in: 1

. One more thing: Just as with regular limits, using a non-CAS (Computer 
Algebra System) calculator for infinite limits won’t allow you to deduce the exact answer unless 
the numbers in the table are getting close to a number you recognize, like 0.5. If the exact limit 

answer is something like 3
5

, on the other hand, you won’t recognize that exact answer from 

its decimal approximation.

Table 8-4 Table of Values for x x x2

x y
100,000 0.4999988

200,000 0.4999994

300,000 0.4999996

400,000 0.4999997

500,000 0.4999998

600,000 0.4999998

700,000 0.4999998

800,000 0.4999998

900,000 0.4999999
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 does not equal zero. Substitution does not work for the problem, lim
x

x x x2 . If you 

plug  into x, you get , which does not necessarily equal zero (  sometimes equals 
zero, but it often does not). A result of  tells you nothing about the answer to a limit 
problem.

You’ll get some practice using your calculator in some of the Your Turn problems in the next 
section.

Solving limits at ±infinity with algebra
In general, to find a limit at infinity ( lim

x
 or lim

x
) with algebra, you can use the same techniques 

from the bulleted list in the section, “Solving limit problems with algebra,” earlier in this 
chapter. And, if you’re dealing with a fraction function that’s not a rational function, a good 
algebraic technique is to divide the numerator and denominator of the fraction by the highest 
power of x that appears anywhere in the fraction. Also, for some limits at positive infinity, the 
following tip may come in handy.

Evaluating infinity/infinity. Consider the following four types of expressions: x10, 5 x, x !, and x x.  
If a limit at positive infinity involves a fraction with one of them over another, you can apply 
this handy little tip. These four expressions are listed from “smallest” to “largest.” The limit 
will equal zero if you have a “smaller” expression over a “larger” one, and the limit will equal 
infinity if you have a “larger” expression over a “smaller” one. (This isn’t a true ordering; it’s 
only for problems of this type.) And note the following things:

1. Coefficients don’t change the order — for example, 1000 12 5 30010x xx, , !,   and 0 065. x x.

2. For the first expression (x10), the power can be any number, while for the second 
expression (5 x), the number must be greater than one.

3. Replacing x with a multiple of x (like 5 10x  or 6 10x ) doesn’t change the order — with 
one important exception: with the factorial expression, replacing the x with kx (if k  1 
like with 4x ! or 1 8. !x ) makes the expression the largest of the four; if 0 1k , the 
order doesn’t change.

Q. Find lim
x x

x 3

1 01.
.

A. The limit is zero.

This is an example of a “smaller” expression over a “larger” one, so the answer is 0. 
Perhaps this result surprises you. You may think that this fraction will keep getting 
bigger and bigger because it seems that no matter what power 1.01 is raised to, it will 
never grow very large. And, in fact, if you plug 1000 into x, the quotient is big — over 

47,000. But if you enter x
x

3

1 01.
 in graphing mode and then set both TblStart and ΔTbl to 

1000, the table values show quite convincingly that the limit is 0. By the time x 3000, 
the answer is about 0.00293, and when x 10 000, , the answer is roughly 6 10 32.
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Q. Find lim
x

x
x x

100
5

2

3 2cos
.

A. The limit is zero.

1. Divide the numerator and denominator by the highest power of x appearing in the 
fraction — that’s x 3.

lim lim
x x

x
x

x
x

x

x

x
x

x

100

5

100

5

2

3

3

3

2

3

2

3

cos cos

2. Now you can plug in.

100

5

0
5 0

0
cos

Here’s the justification for 
cos

0: Values of the cosine function are always 
between –1 and 1 inclusive. You say that the cosine function is bounded by –1 and 1, 
or, symbolically, that 1 1cos x  for all x. For problems like this one, you can use 

the rule that bounded 0. For other limit problems, a related rule may come in 

handy: zero bounded = zero.

Note: While the rational function rule discussed earlier in this chapter will give you 
the correct answer for this problem, you should not use the rule here because this 
function is not a rational function.

Q. Find lim
x

x x x2  with algebra. You got the answer earlier in this chapter with a 

calculator, but all things being equal, it’s better to solve the problem algebraically 
because then you have a mathematically airtight answer. The calculator answer for this 
limit is very convincing, but it’s not mathematically rigorous, so if you stop there, the 
math police might get you.

A. The limit is 
1
2

.

1. Try substitution — always a good idea.

No good. You get , which tells you nothing — see the Warning in the previous 
section. On to plan B.

Because x x x2  contains a square root, the conjugate multiplication method 

would be a natural choice, except that that method is used for fraction functions. 

Well, just put x x x2  over the number 1 and, voilà, you’ve got a fraction: 

x x x2

1
. Now do the conjugate multiplication.
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2. Multiply the numerator and denominator by the conjugate of x x x2  and 
simplify.

lim

lim

lim

x

x

x

x x x

x x x x x x

x x x

x

2

2 2

2

2

1

1

xx x

x x x

x
2

2

2(First, cancel the s in the numerator.

Then facttor out of the denominator.

Yes, you heard that right.)

x

limm

lim

x

x

x

x
x

x

x
1 1 1

1

1 1 1

(Now, cancel the .)s’

3. Now substitution works.

1

1 1 1

1
1 0 1

1 0( limRecall that from the section, Li
x x

“ mmits to memorize.”)

1
1 1

1
2

Thus, lim
x

x x x2 1
2

, which confirms the calculator answer.

23 Use your calculator to figure lim
x

xx
x !

. 24 Determine lim
x

x

x

5 2

4 12
.
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25 Evaluate lim
x

x x x4 16 32 . 26 Evaluate lim
x

x
x

x
x

3
1

3
1

2 2

.

27 lim
x

xcos 2 28 lim
x

x
x

sin

29 lim
x

x

x
1 1 30 lim

x

x

x
1 1

3
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Practice Questions Answers and Explanations
1 lim

x

x x
x3

2 5 24
3

11

You want the limit as x approaches –3, so pick a number really close to –3, like –3.0001, plug 

that into x in your function x x
x

2 5 24
3

, and enter that into your calculator. (If you’ve got a 

calculator like a Texas Instruments TI-84, a good way to do this is to use the Sto button to 

store –3.0001 into x, then enter x x
x

2 5 24
3

 into the home screen and hit Enter.)

The calculator’s answer is –11.0001. Because this is near the round number –11, your answer 
is –11. By the way, you can do this problem easily with algebra as well.

2 lim
sin

tanx

x
x0 1 1

Enter the function in graphing mode like this: sin x
xtan 1 . Then go to Table Setup and enter a 

small increment into ΔTbl (try 0.01 for this problem), and enter the arrow-number, 0, into 
tblStart. When you scroll through the table near x 0, you’ll see the y-values getting closer 
and closer to the round number 1. That’s your answer. This problem, unlike Problem 1, is not 
easy to do with algebra — until, that is, you learn L’Hôpital’s rule in Chapter 18.

3 lim
x

x
x3

2 9
3

6

Factor, cancel, and plug in.

lim

lim

x

x

x x
x

x

3

3

3 3
3

3 6

4 lim
x

x
xx1 2

1
2

1
3

Factor, cancel, and plug in.

lim

lim

x

x

x
x x

x

1

1

1
1 2

1
2

1
3

5 lim
x

x
x2 3

2
8

1
12

Factor, cancel, and plug in.

lim

lim

x

x

x
x x x

x x

2 2

2 2

2

2
2 2 4

1
2 4

1
2 2 2 4

1
12

6 lim
x

x
x x2

2

2

4
4 5 6

0
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Did you waste your time factoring the numerator and denominator? Gotcha! Always plug in 

first! When you plug 2 into the limit expression, you get 0
20

, which equals zero — that’s your 
answer.

7 lim
x

x
x9

9
3

6

1. Multiply the numerator and denominator by the conjugate of the denominator — 
namely, 3 x .

lim
x

x
x

x
x9

9
3

3
3

2. Multiply out the part of the fraction containing the conjugate pair (the denominator in 
this problem).

lim
x

x
x

x
9

9 3
9

3. Cancel.

lim
x

x
9

1 3

Any fraction of the form 
a b
b a

 equals –1.

4. Plug in.

1 3 9 6

8 lim
x

x
x10

5 5
10

5
10

Multiply the numerator and denominator by the conjugate, FOIL, cancel, and plug in.

lim

lim

x

x

x
x

x
x

x
x x

10

10

5 5
10

5 5
5 5

5 5
10 5 5

10
10 5 5

1
5 5

1
10 5 5

1
2 5

10

10

lim

lim

x

x

x
x x

x
5

10

9 lim
cos

x

x
x0

1
0

Did you try multiplying the numerator and denominator by the conjugate of cos x 1? Gotcha 
again! That method doesn’t work here. The answer to this limit is zero, something you just 
have to memorize.

10 lim
x

x
x2

1 1
2
2

1
4
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1. Multiply the numerator and denominator by the least common denominator of the little 
fractions inside the big fraction — namely, 2x.

lim
x

x
x

x
x2

1 1
2
2

2
2

2. Multiply out the numerator.

lim
x

x
x x2

2
2 2

3. Cancel.

lim
x x2

1
2

4. Plug in.

1
2 2

1
4

11 lim
x

x

x
0 1

6
1

6

36

Multiply by the least common denominator, multiply out, cancel, and plug in.

lim

lim

x

x

x

x

x
x

x x
x

0

0

1
6

1
6

6 6
6 6

6 6
6 66

6 6

6 6 36
0

0

lim

lim
x

x

x x
x

x

12 lim
sin

x

x
x0

1

No work required — except for the memorization, that is.

13 lim
sinx

x
x0 3

1
3

Did you get it? If not, try the following hint before you read the solution: This fraction sort of 
resembles the one in Problem 12. Still stuck? Okay, here you go:

1. Multiply the numerator and denominator by 3.

You have a 3x in the denominator, so you need 3x in the numerator as well (to make the 
fraction look more like the one in Problem 12).

lim

lim

sin

sin

x

x

x
x

x
x

0

0

3
3
3

3
3 3
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2. Pull the 
1
3

 through the lim symbol (the 3 in the denominator is really a 
1
3

, right?).

1
3

3
30

lim
sinx

x
x

Now, if your calc teacher lets you, you can just stop here (since it’s “obvious” that 

lim
sinx

x
x0

3
3

1) and put down your final answer of 1
3

1, or 1
3

. But if your teacher’s a stick-

ler for showing work, you’ll have to do a couple more steps.

3. Set u x3 .
4. Substitute u for 3x in the numerator and denominator. And, as x approaches 0 in u x3 , u 

also approaches 0, so you can substitute u for x under the lim symbol.

1
3
1
3

1 1
3

0
lim

sinu

u
u

Because lim
sin

x

x
x0

1, the limit of the reciprocal of 
sin x
x

, namely 
x
xsin

, must equal the 

reciprocal of 1 — which is, of course, 1.

14 lim
tanx

x
x0

1

1. Use the fact that lim
sin

x

x
x0

1 and replace tan x with 
sin
cos

x
x

.

lim
sin
cos

x

x
x
x

0

2. Multiply the numerator and denominator by cos x.

lim
sin
cos

cos
cos

lim cos
sin

x

x

x
x
x

x
x

x x
x

0

0

3. Rewrite the expression as the product of two functions.

lim
sin

cos
x

x
x

x
0 1

4. Break this into two limits, using the fact that lim lim lim
x c x c x c

f x g x f x g x   
(provided that both limits on the right exist).

lim
sin

limcos
x x

x
x

x
0 0

1 1 1

15 lim
x

x
x6

6
6

2 6

Plugging in 6 produces 0
0

. Check. Your work begins.
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Multiply the numerator and denominator by the conjugate of the denominator, simplify, and 
cancel:

lim lim

lim

x x

x

x
x

x
x

x
x

x x

6 6

6 2

6
6

6
6

6
6

6 6

6 xx
x x

x
x

x

x

x

x

2

6

6

6

6 6
6

1 6

6 6 6

lim

lim

lim 2 6

16 lim
x 5

8 8

This probably seems like an odd problem, because there’s no x in the limit expression for  
you to plug the 5 into. Think of it this way. The 8 represents the function y 8, which is a 
horizontal line at a height of 8. The limit problem asks you to determine what y is getting 
closer and closer to along the function as x gets closer and closer to 5. But, since the  
function is a horizontal line, y is always equal to 8 regardless of the value of x. Thus, 
lim lim lim lim lim
x x x x x5 3 2023

8 8 8 8 8 8.

17 lim
x

k k
0

  (k is a constant)

Don’t forget that for all calculus problems, constants behave like ordinary numbers. In 
Problem 16, the 8 represented the horizontal line y 8, so in this problem, the k represents 
the horizontal line y k. So, y is always at a height of k regardless of the value of x. Thus, the 
limit equals k.

18 lim
x

x
x4 3

4
4

0

Plug in the arrow-number: You get 0
0

, so keep going and try some basic algebra.

lim

lim

lim

/

/

x

x

x

x
x

x

x

x

4 3

4

1

1 3

4

2 3

4
4

4
4

4

Now you can plug in:

4 4 0 02 3 2 3/ /

19 lim sin
x

x
x0 2

1
0

There are three ways to do this. The easiest method is to note that lim
x

x
0

0 and that sin 1
2x
 

never gets greater than 1 or less than –1 (it’s bounded by –1 and 1). Then, because 
zero bounded zero, the limit is zero. Warning: There’s a chance that your calc teacher may 
not like this logic.

Second, you can use your calculator: Store something small like 0.1 into x and then input 

x
x

sin 1
2  into your home screen and hit Enter. You should get a result of ~ .0 05. Now store 

0.01 into x and use the Entry button to get back to x
x

sin 1
2  and hit Enter again. The result is 
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~ .0 003. Now try 0.001, then 0.0001 (giving you ~ .0 00035 and ~ .0 00009), and so on. It’s pretty 
clear — though probably not to the satisfaction of your professor — that the limit is 0.

The third way will definitely satisfy a persnickety professor. You’ve got to sandwich (or 

squeeze) your salami function, x
x

sin 1
2 , between two bread functions that have identical limits 

as x approaches the same arrow-number that it approaches in the salami function, namely 
the arrow-number of zero. Use the rule explained in the example problem. The current func-

tion, x
x

sin 1
2 , is the same thing as x

x
1

2
1sin . Because the power on the first x is 1, an odd 

number, you’ve got the second case where you can use x  for the bottom function and x  

for the top function. Graph B x x , f x x
x

sin 1
2 , and T x x  at the same time on 

your graphing calculator, and you can see that x
x

sin 1
2  is always greater than or equal to x  

and always less than or equal to x . Because lim
x

x
0

0 and lim
x

x
0

0, and because x
x

sin 1
2  

is sandwiched between them, lim
x

x
x0 2
1sin  must also be zero.

20 lim cos
x

x
x0

2 1
0

For lim
x

x
x0

2 1cos , the power on x is an even number (namely 2), so you’ve got the first case 

explained in the text where you can use B x x 2 and T x x 2 for the bread functions. 

The cosine of anything is always between –1 and 1, so x
x

2 1cos  is sandwiched between those 

two bread functions. (You should confirm this by looking at their graphs. Use the following 
window on your graphing calculator: radian mode, Xmin = –0.15625, Xmax = 0.15625, Xscl = 

0.05, Ymin = –0.0125, Ymax = 0.0125, Yscl = 0.005.) Because lim
x

x
0

2 0 and lim
x

x
0

2 0, 

lim cos
x

x
x0

2 1  must also be zero.

21 lim
x

x x
x x

5 10
2 3

0
3 2

4

Because the degree of the numerator is less than the degree of the denominator, this is a  
Case I problem. So, the limit as x approaches infinity is zero.

22 lim
x

x x
x

3 100 4
8 1

3
8

4 3

4

lim
x

x x
x

3 100 4
8 1

4 3

4  is a Case II example because the degrees of the numerator and denomi-

nator are both 4. The limit is thus the quotient of the coefficients of the leading terms in the 

numerator and denominator, namely, 3
8

.

23 lim
!x

xx
x

According to the “larger” over “smaller” tip, this answer must be infinity. Or you can get 
this result with your calculator. If you set the table (don’t forget: fork on the left, spoon on 
the right) with something like TblStart = 100 and ΔTbl = 100, and then look at the table, you 
may see “undef” for some or all of the y-values, depending on your calculator model. You 
have to be careful when trying to interpret what “undef” (for “undefined”) means on  
your calculator. It often means infinity, but not always, so don’t just jump to that conclusion. 
Instead, make TblStart and ΔTbl smaller, say, 10. Sure enough, the y-values grow huge very 
fast, and you can safely conclude that the limit is infinity.
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24 lim
x

x

x

5 2

4 1

5
22

1. Divide the numerator and denominator by the highest power of x appearing in the  
fraction — that’s x or x1. (The x 2 isn’t a higher power of x because the x 2 gets square 

rooted. Square rooting something is the same as raising it to the 1
2

 power, so, you’ve basi-

cally got x x2 1 2 1.)

lim
x

x

x
x

x

5 2

4 12

2. Put the x into the square root (it becomes x 2).

lim
x

x
x

x
x

5 2

4 12

2

3. Distribute the division in the numerator and denominator.

lim
x

x

x

5 2

4 1
2

4. Plug in and simplify.

5 2

4 1
5 0
4 0

5
2

2

Here’s a calculator solution. Plug 100 then 1000 then 10,000 then 100,000 into x. The results 
are 2.51, 2.501, 2.5001, and 2.50001. Since these numbers are getting closer and closer to the 
round number 2.5, that’s the limit. It’s great when you can do a problem two completely dif-
ferent ways and obtain the same result. That should give you a great deal of confidence that 
your answer is correct.

25 lim
x

x x x4 16 3
3
8

2

1. Put the entire expression over 1 so you can use the conjugate trick.

lim
x

x x x x x x

x x x

4 16 3
1

4 16 3

4 16 3

2 2

2

2. FOIL the numerator.

lim
x

x x x

x x x

16 16 3

4 16 3

2 2

2
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3. Simplify the numerator and factor out 16 2x  inside the radicand.

lim
x

x

x x
x

3

4 16 1 3
16

2

4. Pull the 16 2x  out of the square root; it becomes –4x.

You have to pull a positive out of the radicand (as always), so you pull out negative 4x because 
when x is negative (which it is as it approaches negative infinity), –4x is positive. Got it?

lim

lim

x

x

x

x x
x

x

x
x

3

4 4 1 3
16

3

4 1 1 3
16

5. Cancel, then plug in.

lim
x

x

3

4 1 1 3
16

3

4 1 1 3
16

3
4 1 1 0

Piece o’ c .3
8

ake

Here’s a calculator solution: plug –100 then –1000 then –10,000 then –100,000 into x in the 
limit expression. Here’s what you get: 0.374824, 0.374982, 0.374998, 0.375. Bingo. Do you 
recognize 0.375?

26 lim
x

x
x

x
x

3
1

3
1

6
2 2

1. Subtract the fractions using the LCD of x x x– –1 1 12 .

lim
x

x x x x
x

3 1 3 1
1

2 2

2

2. Simplify.

lim

lim

x

x

x x x x
x

x
x

3 3 3 3
1

6
1

3 2 3 2

2

2

2

3. Your answer is the quotient of the coefficients of x 2 in the numerator and the denominator. 
See Case 3 in the section, “Limits of rational functions at infinity.”

6
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Note that had you plugged infinity into the original problem, you would have

  3
1

3
1

0

2 2

?

It may seem strange, but infinity minus infinity does not equal zero.

Here’s a calculator confirmation of your algebraic solution. Plug 100 then 1000 then 10,000 
into x in the limit expression. That gives you 6.0006, 6.000006, 6.00000006. That’s clearly 
homing in on 6.

27 lim cos
x

x 2  does not exist (DNE)

The best approach to this limit problem is to simply sketch or picture the graph of the cosine 
function (or graph it on your graphing calculator). As x moves left toward negative infinity, 
the cosine curve oscillates between heights of –1 and 1. The curve never approaches a single 
height; the oscillation goes on forever. This tells you that lim

x
xcos  does not exist (and, by 

the same reasoning, lim
x

xcos  DNE). The function in this problem, lim
x

xcos 2 , has a differ-

ent shape than cos x, but it oscillates forever in the same way between heights of –1 and 1 (it 
oscillates faster and faster the further out you go toward infinity or negative infinity). Thus, 
cos x 2  does not exist (DNE).

28 lim
sin

x

x
x

0

Like lim
x

xcos , lim
x

xsin  DNE because the sine function oscillates forever between heights of 

–1 and 1 as x gets larger and larger. But it doesn’t follow that the answer to the current prob-

lem is also DNE. The function, sin x
x

, does oscillate forever as x gets larger and larger, but the 

amplitude of the oscillation gets damped more and more as x gets larger. Near x 100, for 

example, the amplitude of the oscillation gets divided by about 100, so sin x
x

 oscillates 

between heights of about –0.01 and 0.01. Near x 1000, sin x
x

 oscillates between about  

–0.001 and 0.001, and so on. The crests and troughs of the oscillating wave get smaller and 
smaller and closer and closer to a height of zero. That’s the limit: zero.

29 lim .
x

x

x
e1

1
2 718

No work required here. This is one of the handful of limits you should just memorize.

Since the number e came up here, I can’t resist mentioning what some say is the most ele-
gant equation in mathematics — one short, simple equation that contains the five most 
important numbers in mathematics: 0, 1, , e, and i (the square root of –1). Here it is: 
ei 1 0.
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30 lim
x

x

x
e1

1
3

3

For this problem, keep in mind the solution to Problem 29: lim
x

x

x
e1 1 . The idea for the 

current problem is to manipulate the limit with the 3x in it until you get something that 
resembles the solution from Problem 29. Here’s what you do:

First, set the limit in question equal to y; then cube both sides:

lim

lim

x

x

x

x

x
y

x
y

1 1
3

1 1
3

3
3

On the left, you can pull the lim symbol to the outside of the parentheses (just take my word 
for it):

lim
x

x

x
y1 1

3

3
3

Now, use the power-to-a-power rule:

lim
x

x

x
y1 1

3

3
3

See how this limit resembles the limit from Problem 29? You’re almost there. The next step 
is to set u equal to 3x so you can replace each 3x with a u. And, because u x3 , as x approaches 
infinity, so does u; thus, you can replace the x below the lim symbol with a u:

lim
u

u

u
y1 1 3

Finally, this limit is mathematically identical to the one from Problem 29, which equals e. 
Therefore,

e y 3

But you need y, not y 3, because you set the limit you want equal to y. So, solve for y, and 
you’re done:

y e3 , thus lim
x

x

x
e1 1

3
3

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.



CHAPTER 8  Evaluating Limits      175

Whaddya Know? Chapter 8 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 lim ?
x

x
x x0

2

3 2

2 lim ?
x

x
x1

3

6
1
1

3 lim ?
x

x
x1

6

4
1
1

4 lim ?
x

x
x1

3 1
1

5 lim ?
x

x
x1

3

6
1
1

6 lim ?
x 1

7 lim ?
x

x x
x x0

2 1 1
2

8 lim ?
x

x x
x x0

2 1 1
2

9 lim ?
x

x x
x x0

2 1 1
2

10 lim cos
sin

?
x

x
x

2

2
2

11 lim
sec cos

sin
?

x

x x
x

1 2

2

12 lim sin
cos

?
x

x
x

821
1

2

Bonus trivia: What’s the significance of the answer in the history of mathematics?

13 lim ?
x

k x x
x x

3 2
3 2 1

2

2   (  is a constant)k

14 lim cos cos ?
x x x

1 1

15 lim sin ?
x

k   (  is a constant)k

16 lim ?
x

x x3

17 lim
!

?
x

x

x
1492
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Answers to Chapter 8 Quiz
1 lim

x

x
x x0

2

3 2
0

Plugging in gives you zero over zero, so you’ve got some work to do. Multiply the top and 
bottom by the conjugate of the denominator (always a good thing to try):

lim

lim

l

x

x

x
x x

x x
x x

x x x

x x

0

2

0

2

2 2

3 2
3 2
3 2

3 2

3 2

iim
x

x x x
x0

2 3 2

Now, cancel and then plug in:

lim
x

x x x
0

3 2 0

That’s it. And don’t forget: while 0
0

 will sometimes equal zero (like here), it very often  
does not.

2 lim
x

x
x1

3

6

1
1

1
2

The first thing you see (and read) when you see this fraction is x cubed. That might make you 
think of factoring the numerator and denominator using the difference of cubes pattern. Your 
first step would look like this:

lim
x

x x x

x x x1

2

2 4 2

1 1

1 1

You could keep going from there, and you’d get the correct answer. However, you can save 
some effort if you notice that you can factor the denominator using the difference of squares 
pattern instead (nothing needs to be done to the numerator):

lim

lim

x

x

x
x x

x

1

3

3 3

1 3

1
1 1

1
1

1
2

3 lim
x

x
x1

6

4

1
1

3
2



CHAPTER 8  Evaluating Limits      177

You can factor the top with the difference of squares pattern or the difference of cubes pat-
tern. The difference of squares is the only option for the denominator, so you might think 
that’d be the way to go for the entire fraction. You can get the correct answer that way, but, 
here, the quickest solution is to use the difference of cubes pattern on the top and the differ-
ence of squares pattern on the bottom, because then you can immediately cancel:

lim

lim

x

x

x x x

x x

x x

x

1

2 4 2

2 2

1

4 2

2

1 1

1 1

1

1

Plug in and you’re done: 3
2

. (I hope it goes without saying that no cancelling can be done in 

the original fraction until you factor! Ditto for the original fraction in Problem 2.)

4 lim
x

x
x1

3 1
1

3

Here’s a quickie. It’s another difference of cubes problem:

lim

lim

x

x

x x x
x

x x

1

2

1

2

2

1 1
1

1

1 1 1 3

5 lim
x

x
x1

3

6

1
1

1

Did you begin by using the difference of cubes pattern on the top and either the difference of 
cubes or difference of squares pattern on the bottom? Tricked you! All you do is plug in for 

your answer: 1 1
1 1

1. Don’t forget: Always plug in first!

6 lim
x 1

This question concerns a limit of the function f x  or y . But that function is a hori-
zontal line with a constant height of 3 14159. .... The arrow-number is irrelevant. For any 
arrow-number, the answer is .

7 lim
x

x x
x x0

2 1 1
2

1

Absolute value bars can make it difficult to do ordinary algebra, so you should always con-
sider whether there’s some way to get rid of them. Here’s how you do that in this problem. 
For the first absolute value expression 2 1x , when x is near zero (whether x is approaching 
zero from the left or the right), 2 1x  will be close to 1, and, therefore, the absolute value bars 
are doing nothing and can be removed. For x  and 2x , since x is approaching zero from the 
right, x and 2x will always be positive, and, again, the bars are doing nothing and can be 
removed. So now you’ve got the following:

lim
x

x x
x x0

2 1 1
2
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Simplify and you’re done:

lim

lim
x

x

x
x0

0
1 1

8 lim
x

x x
x x0

2 1 1
2

3

The first absolute expression works the same, of course, as in Problem 7, so just get rid of the 
bars. But in this problem, since x is approaching zero from the left, x  and 2x  will always be 
negative, so you can’t just eliminate the bars. Absolute value bars turn a negative into a posi-
tive, and you can achieve that by multiplying by –1. Thus, you can get rid of the absolute 
value bars around the x and the 2x by multiplying by –1 instead. Like so.

lim
x

x x
x x0

2 1 1 1
1 2 1

Simplify and you’re done:

lim

lim

lim

x

x

x

x x
x x

x
x

0

0

0

2 1 1
2

3

3 3

9 lim
x

x x
x x0

2 1 1
2

undefined

The limit from the left does not equal the limit from the right, so this two-sided limit is 
undefined.

10 lim
cos

sinx

x
x

2

2
2

For trig limit problems, always be ready to use your trusty trig identities. Just use the identity 
for sin 2x , then cancel and plug in. Piece o’ cake:

lim cos
sin cos

lim
sin

x

x

x
x x

x

2

2

2
2

1

11 lim
sec cos

sinx

x x
x

1 1
2

2

2

If you noticed that cos
sin

cot
2

2
2x

x
x, and that, therefore, you could rewrite the original problem 

like lim sec cot
x

x x1 2 , that’s a good thing to notice. Unfortunately, however, that  

doesn’t help much in this particular problem. You could finish the problem from there, but, 
actually, the original version is a bit better, because you want to be dealing with a fraction. 
The key is to multiply the top and bottom by the conjugate of sec x 1, namely, sec x 1.  
Like so.
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lim
sec sec cos

sec sin

lim
sec

x

x

x x x
x x

x

1 1
1

1

2

2

2 cos

sec sin

2

21

x

x x

Next, you use the Pythagorean Identity for tangent and secant, tan sec2 2 1x x :

lim tan cos
sec sinx

x x
x x

2 2

21

And then use the fact that tan sin
cos

2
2

2x
x
x

:

lim

sin
cos

cos

sec sinx

x
x

x

x x

2

2
2

21

Cancel everything, plug in, and you’re done:

lim
secx x

1
1

1
1 1

1
2

12 lim
sin

cosx

x
x

821
1

1642
2

Multiply the top and bottom by the conjugate of cos x 1:

lim
sin cos

cos cos

lim
sin

x

x

x x
x x

x

821 1
1 1

821

2

2 cos

cos

x

x

1

12

Now you can use the Pythagorean Identity to replace cos2 1x  with sin2 x:

lim
sin cos

sinx

x x

x

821 12

2

Finally, cancel and plug in for your answer:

lim cos

cos
x

x821 1

821 1 821 1 1 1642

Bonus trivia: What’s the significance of the answer in the history of mathematics?

Isaac Newton was born in 1642. He and Gottfried Leibniz were the co-inventors of calculus 
(or at least, that’s the one-sentence story). For a fuller account, check out the Wikipedia  
article, “History of calculus.”
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13 lim
x

k x x
x x

3 2
3 2 1

1
3

2

2

Don’t forget: Constants behave exactly like ordinary numbers. So, you could ask yourself how the 

problem would work if the k were, say, a 5 instead of a k. Then you’d have lim
x

x x
x x

15 2
3 2 1

2

2 . 

This is a straightforward horizontal asymptote problem. It’s the third case discussed in the 
text where the polynomial in the numerator is of the same degree as the polynomial in the 
denominator. The horizontal asymptote in that case is given by the quotient of the coeffi-
cients of the highest-power terms in the numerator and denominator. The answer is thus  

1
3

 or 1
3

.

14 lim cos cos
x x x

1 1
2

Just plug in infinity. Both 1  and 1 “equal” zero. (This is not a precise mathematical equal-

ity, but don’t sweat it.) That leaves you with cos cos0 0, or 2.

15 lim sin sin
x

k k

This is a tricky little problem. First, don’t forget, again, that constants behave exactly like 
ordinary numbers. So, you might ask yourself how the problem would work if the k were, say, 
a 10. Then you’d have lim sin

x
10. Since sin10 is just a number, lim sin

x
10 would be asking for 

the height of the horizontal line y sin10 as you go out toward infinity. But that height is the 
same everywhere, so the answer would be sin10. Since constants behave exactly like num-
bers, lim sin sin

x
k k. The other tricky thing is that even if you got this far, you might be 

tempted to say that the limit is undefined because you don’t know what k is. But imagine that 
I asked you to determine the product k k1 2 . That product is k k2 3 2, and that would 
be your answer. You wouldn’t say that the product was undefined. It works the same in the 
current problem.

16 lim
x

x x3

Don’t forget: You cannot plug in infinity, which would give you , and conclude that the 
answer is zero. Infinity minus infinity does not equal zero.

First, turn the limit expression into a fraction (a good strategy to keep in mind for limit 

problems). So, you’ve got lim
x

x x3

1
. Now, divide the numerator and denominator  

by the highest power of x appearing in the fraction, namely x1. That gives you 

lim lim
x x

x
x

x
x

x

x

x

3

2 3

1

1 1

1
. Now you can plug in infinity: 

1 1

1
1 0

0
1
0

.

17 lim
!x

x

x
1492

0

You can solve this with the tip earlier in this chapter (under the section “Solving limits at 
infinity with algebra”) involving the four types of expressions: x10, 5 x, x !, and x x (these are 
ordered from small to big). The current problem has a smaller expression type over a larger 
one, so the answer is a zero. The large number 1492 has no impact on the result.
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Differentiation 
Orientation

Differential calculus is the mathematics of change and the mathematics of infinitesimals. 
You might say that it’s the mathematics of infinitesimal changes — changes that occur 
every gazillionth of a second.

Without differential calculus  — if you’ve got only algebra, geometry, and trigonometry  — 
you’re limited to the mathematics of things that either don’t change or that change or move at 
an unchanging rate. Remember those problems from algebra? “One train leaves the station at  
3 p.m. going west at 80 mph. Two hours later, another train leaves going east at 50 mph . . .” 
You can handle such a problem with algebra because the speeds or rates are unchanging. Our 
world, however, isn’t one of unchanging rates — rates are in constant flux.

Think about putting an astronaut on the moon. Apollo 11 took off from a moving launch pad (the 
earth is both rotating on its axis and revolving around the sun). As the rocket flew higher and 
higher, the friction caused by the atmosphere and the effect of the earth’s gravity were chang-
ing not just every second, not just every millionth of a second, but every infinitesimal fraction 
of a second. The spacecraft’s weight was also constantly changing as it burned fuel. All of these 
things influenced the rocket’s changing speed. On top of all that, the rocket had to hit a moving 
target, the moon. All of these things were changing, and their rates of change were changing. 
Say the rocket was going 1000 mph one second and 1020 mph a second later — during that 

Chapter 9
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 » Discovering the simple algebra 
behind calculus
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Hardy
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one second, the rocket’s speed literally passed through the infinite number of different speeds 
between 1000 and 1020 mph. How can you do the math for these ephemeral things that change 
every infinitesimal part of a second? You can’t do it without differential calculus.

Differential calculus is used for all sorts of terrestrial things as well. Much of modern economic 
theory, for example, relies on differentiation. In economics, everything is in constant flux. 
Prices go up and down, supply and demand fluctuate, and inflation is constantly changing. 
Because these things are constantly changing, the ways they affect each other are constantly 
changing. You need calculus for this.

Differential calculus is one of the most practical and powerful inventions in the history of 
mathematics. So let’s get started already.

Differentiating: It’s Just Finding the Slope
Differentiation is the first of the two major ideas in calculus (the other is integration, which  
I cover in Unit  5). Differentiation is the process of finding the derivative of a function like  
y x 2. The derivative is just a fancy calculus term for a simple idea you know from algebra: 
slope. Slope, as you know, is the fancy algebra term for steepness. And steepness is the fancy 
word for . . . No! Steepness is the ordinary word you’ve known since you were a kid, as in, “Hey, 
this road sure is steep.” Everything you study in differential calculus all relates back to the 
simple idea of steepness.

In differential calculus, you study differentiation, which is the process of deriving — that’s  
finding — derivatives. These are big words for a simple idea: finding the steepness or slope of a 
line or curve. Throw some of these terms around to impress your friends. By the way, the root 
of the words differential and differentiation is difference — I explain the connection at the end of 
this chapter in the section on the difference quotient.

Consider Figure 9-1. A steepness of 1
2

 means that as the stick man walks one foot to the right, 

he goes up 1
2

 foot; where the steepness is 3, he goes up 3 feet as he walks 1 foot to the right. 

Where the steepness is zero, he’s at the top, going neither up nor down; and where the steep-
ness is negative, he’s going down. A steepness of 2, for example, means he goes down 2 feet 
for every foot he goes to the right. This is shown more precisely in Figure 9-2.

Negative slope: To remember that going down to the right (or up to the left) is a negative slope, 
picture an uppercase N, as shown in Figure 9-3.

Don’t be among the legions of students who mix up the slopes of vertical and horizontal lines. 
How steep is a flat, horizontal road? Not steep at all, of course. Zero steepness. So, a horizontal 
line has a slope of zero. (Like where the stick man is at the top of the hill in Figure 9-1.) What’s 
it like to drive up a vertical road? You can’t do it. And you can’t get the slope of a vertical line — 
it doesn’t exist, or, as mathematicians say, it’s undefined.
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FIGURE 9-1:  
Differentiating 

just means 
finding the 

steepness or 
slope.

FIGURE 9-2:  
The derivative  

= slope  
= steepness.

FIGURE 9-3:  
This N line has 

a Negative 
slope.
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The slope of a line
Keep going with the slope idea — by now, you should know that slope is what differentiation is 
all about. Take a look at the graph of the line, y x2 3, in Figure 9-4.

VARIETY IS THE SPICE OF LIFE
Everyone knows that 3 92 . Now, wouldn’t it be weird if the next time you read this math fact, it 

was written as 23 9 or 23 9? How does 3 9
2

 grab you? Or 3 9
2

? Variety is not the spice of math-
ematics. When mathematicians decide on a way of expressing an idea, they stick to it — except, 
that is, with calculus. Are you ready? Hold on to your hat. All of the following are different symbols 

for the derivative — they all mean exactly the same thing: dy
dx

 or df
dx

 or 
df x

dx
 or D yx  or d

dx
f x  

or f x  or y  or f  or y or D fx  or Df  or D f xx . There are more. Now, you’ve got two alternatives: 
1) Beat your head against the wall trying to figure out things like why some author uses one sym-
bol one time and a different symbol another time, and what exactly does the d or f mean anyway, 
and so on and so on, or 2) Don’t try to figure it out; just treat these different symbols like words in 
different languages for the same idea — in other words, don’t sweat it. I strongly recommend the 
second option.

FIGURE 9-4:  
The graph of 

y x2 3.
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You remember from algebra — I’m totally confident of this — that you can find points on this 
line by plugging numbers into x and calculating y: plug 1 into x and y equals 5, which gives you 
the point located at 1 5, ; plug 4 into x and y equals 11, giving you the point 4 11, , and so on.

I’m sure you also remember how to calculate the slope of this line. I realize that no calculation 
is necessary here — you go up 2 as you go over 1, so the slope is automatically 2. You can also 
simply note that y x2 3 is in slope-intercept form ( )y mx b  and that, since m 2, the 
slope is 2. (See Chapter 5 if you want to review y mx b.) But bear with me because you need 
to know what follows. First, recall that

Slope
rise
run

y y
x x

2 1

2 1

The rise is the distance you go up (the vertical part of a stair step), and the run is the distance 
you go across (the horizontal part of a stair step). Now, take any two points on the line, say, 
1 5,  and 6 15, , and figure the rise and the run. You rise up 10 from 1 5,  to 6 15,  because 5 

plus 10 is 15 (or you could say that 15 minus 5 is 10). And you run across 5 from 1 5,  to 6 15,  
because 1 plus 5 is 6 (or in other words, 6 minus 1 is 5). Next, you divide to get the slope:

Slope
rise
run

10
5

2

Here’s how you do the same problem using the slope formula:

Slope
y y
x x

2 1

2 1

Plug in the points 1 5,  and 6 15, :

Slope
15 5
6 1

10
5

2

Okay, let’s summarize what you know about this line. Table 9-1 shows six points on the line 
and the unchanging slope of 2.

Table 9-1 Points on the Line y = 2x + 3 and the  
 Slope at Those Points
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The derivative of a line
The preceding section showed you the algebra of slope. Now, here’s the calculus. The derivative 
(the slope) of the line in Figure 9-4 is always 2, so you write

dy
dx

dee y dee x equals2 2( .)Read      

Another common way of writing the same thing is

y y prime equals2 2( .)Read  

And you say,

The derivative of the function, y x2 3, is 2.

(Read The derivative of the function, y x2 3, is 2. That was a joke.)

The Derivative: It’s Just a Rate
Here’s another way to understand the idea of a derivative that’s even more fundamental than 
the concept of slope: A derivative is a rate. So why did I start the chapter with slope? Because 
slope is in some respects the easier of the two concepts, and slope is the idea you return to again 
and again in this book and any other calculus textbook as you look at the graphs of dozens and 
dozens of functions. But before you’ve got a slope, you’ve got a rate. A slope is, in a sense, a 
picture of a rate; the rate comes first, the picture of it comes second. Just like you can have a 
function before you see its graph, you can have a rate before you see it as a slope.

Calculus on the playground
Imagine Laurel and Hardy on a teeter-totter — check out Figure 9-5. (You don’t remember 
Laurel and Hardy? Shocking! They were the internationally famous comedy duo from the late 
1920s till the mid-1950s. Many movies were made about them; most recently was the 2018 
film, Stan & Ollie. Check it out.)

FIGURE 9-5:  
Laurel and 

Hardy — 
blithely 

unaware of the 
calculus 

implications.
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Assuming Hardy weighs twice as much as Laurel, Hardy has to sit twice as close to the center as 
Laurel for them to balance. And for every inch that Hardy goes down, Laurel goes up two inches. 
So Laurel moves twice as much as Hardy. Voilà, you’ve got a derivative!

A derivative is a rate. A derivative is simply a measure of how much one thing changes com-
pared to another — and that’s a rate.

Laurel moves twice as much as Hardy, so with calculus symbols, you write

dL dH2

Loosely speaking, dL can be thought of as the change in Laurel’s position and dH as the change 
in Hardy’s position. You can see that if Hardy goes down 10 inches, then dH is 10, and because 
dL equals 2 times dH, dL is 20 — so Laurel goes up 20 inches. Dividing both sides of this equa-
tion by dH gives you

dL
dH

2

And that’s the derivative of Laurel with respect to Hardy. (It’s read as, “dee L, dee H,” or as, 

“the derivative of L with respect to H.”) The fact that dL
dH

2 simply means that Laurel is 

moving 2 times as much as Hardy. Laurel’s rate of movement is 2 inches per inch of Hardy’s 
movement.

Now let’s look at it from Hardy’s point of view. Hardy moves half as much as Laurel, so you 
can also write

dH dL
1
2

Dividing by dL gives you

dH
dL

1
2

This is the derivative of Hardy with respect to Laurel, and it means that Hardy moves 1
2

 inch 

for every inch that Laurel moves. Thus, Hardy’s rate is 1
2

 inch per inch of Laurel’s movement. 

By the way, you can also get this derivative by taking dL
dH

2, which is the same as dL
dH

2
1

, and 

flipping it upside down to get dH
dL

1
2

.

These rates of 2 inches per inch and 1
2

 inch per inch may seem a bit odd because we often think of 

rates as referring to something per unit of time, like miles per hour. But a rate can be anything 

per anything. So, whenever you’ve got a this per that, you’ve got a rate; and if you’ve got a rate, 
you’ve got a derivative.
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Speed — the most familiar rate
Speaking of miles per hour, say you’re driving at a constant speed of 60 miles per hour. That’s 
your car’s rate, and 60 miles per hour is the derivative of your car’s position, p, with respect to 
time, t. With calculus symbols, you write

dp
dt

60 miles
hour

This tells you that your car’s position changes 60 miles for each hour that the time changes. Or 
you can say that your car’s position (in miles) changes 60 times as much as the time changes 
(in hours). Again, a derivative just tells you how much one thing changes compared to another.

And just like the Laurel and Hardy example, this derivative, like all derivatives, can be flipped 
upside down:

dt
dp

1
60

hours
mile

This hours-per-mile rate is certainly much less familiar than the ordinary miles-per-hour rate, 
but it’s nevertheless a perfectly legitimate rate. It tells you that for each mile you go, the time 

changes 1
60

 of an hour. And it tells you that the time (in hours) changes 1
60

 as much as the car’s 

position (in miles).

There’s no end to the different rates you might see. You just saw miles per hour and hours per 
mile. Then there’s miles per gallon (for gas mileage), gallons per minute (for water draining out 
of a pool), output per employee (for a factory’s productivity), and so on. Rates can be constant or 
changing. In either case, every rate is a derivative, and every derivative is a rate.

The rate-slope connection
Rates and slopes have a simple connection. All of the previous rate examples can be graphed on 
an x-y coordinate system, where each rate appears as a slope. Consider the Laurel and Hardy 
example again. Laurel moves twice as much as Hardy. This can be represented by the following 
equation:

L H2

Figure 9-6 shows the graph of this function.

The inches on the H-axis indicate how far Hardy has moved up or down from the teeter-totter’s 
starting position; the inches on the L-axis show how far Laurel has moved up or down. The line 

goes up 2 inches for each inch it goes to the right, and its slope is thus 2
1

, or 2. This is the visual 

depiction of dL
dH

2, showing that Laurel’s position changes 2 times as much as Hardy’s.
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One last comment. You know that slope
rise
run

. Well, you can think of dL as the rise and dH as 

the run. That ties everything together quite nicely.

slope rate
rise
run

dL
dH

A derivative is just a slope, and a derivative is also just a rate.

The Derivative of a Curve
The sections so far in this chapter have involved linear functions — straight lines with unchang-
ing slopes. But if all functions and graphs were lines with unchanging slopes, there’d be no 
need for calculus. The derivative of the Laurel and Hardy function graphed previously is 2, but 
you don’t need calculus to determine the slope of a line. Calculus is the mathematics of change, 
so now is a good time to move on to parabolas: curves with changing slopes. Figure 9-7 is the 

graph of the parabola, y x
1
4

2.

Notice how the parabola gets steeper and steeper as you go to the right. You can see from the 
graph that at the point 2 1, , the slope is 1; at 4, 4 , the slope is 2; at 6, 9 , the slope is 3, 
and so on. Unlike the unchanging slope of a line, the slope of a parabola depends on where you 
are; it depends on the x-coordinate of wherever you are on the parabola. So, the derivative (or 

slope) of the function y x
1
4

2 is itself a function of x — namely, 1
2

x (I’ll show you how I got 

that in a minute). To find the slope of the curve at any point, you just plug the x-coordinate of 

the point into the derivative, 1
2

x, and you’ve got the slope. For instance, if you want the slope 

at the point 3, 2.25 , plug 3 into the x, and the slope is 1
2

 times 3, or 1.5. Table 9-2 shows some 

points on the parabola and the steepness at those points.

FIGURE 9-6:  
The graph of 

L H2 .
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Here’s the calculus. You write

dy
dx

x y x
1
2

1
2

    or

And you say,

The derivative of the function y x
1
4

2  is  1
2

x.

Or you can say,

The derivative  of  1
4

2x   is  1
2

x.

I promised to tell you how to derive this derivative of y x
1
4

2, so here you go:

Table 9-2 Points on the Parabola y x
1
4

2 and the  
 Slopes at Those Points

FIGURE 9-7:  
The graph of 

y x
1
4

2.
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1. Beginning with the original function, 1
4

2x , take the power and put it in front of the 
coefficient.

2. Multiply.

2 times 1
4

 is 1
2

, so that gives you 1
2

2x .

3. Reduce the power by 1.

In this example, the 2 becomes a 1. So, the derivative is

1
2

1x  or just 1
2

x.

This and many other differentiation techniques are discussed in Chapter 10.

The following problems emphasize the fact that a derivative is basically just a rate or a slope. 
So to solve these problems, all you have to do is answer the questions as if they had asked you 
to determine a rate or a slope instead of a derivative.

Q. What’s the derivative of y x5 4 ?

A. The answer is –4. y x5 4  is the same as y x4 5. And you know, of course, that 
the slope of y x4 5 is –4, right? No? Egad! Any line of the form y mx b has a 
slope equal to m. The derivative of a line or curve is the same thing as its slope, so the 
derivative of this line is –4.

 Remember: You can think of the derivative dy
dx

 as basically rise
run

.

1 If you leave your home at time 0, and 

speed away in your car at 60 miles
hour

, 

what’s dp
dt

, the derivative of your  

position with respect to time?

2 Using the information from Problem 1, 
write a function that gives your posi-
tion as a function of time.



194      UNIT 4  Differentiation

3 What’s the slope of the parabola y x x
1
3

23
3

85
3

2  at the point 7 9, ? See the follow-
ing figure.

4 What’s the derivative of the parabola y x 2 5 at the point 0 5, ? Hint: Graph the 
parabola.

5 With your graphing calculator, graph both the line y x4 9 and the parabola y x5 2.  
You’ll see that they’re tangent at the point 2 1, .

(a) What is the derivative of y x5 2 when x 2?

(b) On the parabola, how fast is y changing compared to x when x 2?
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The Difference Quotient
Sound the trumpets! You come now to what is perhaps the cornerstone of differential calculus: 
the difference quotient, the bridge between limits and the derivative. (But you’re going to have 
to be patient here, because it’s going to take me a few pages to explain the logic behind the dif-
ference quotient before I can show you what it is.) Okay, so here goes. I keep repeating — have 
you noticed? — the important fact that a derivative is just a slope. You learned how to find the 
slope of a line in algebra. In Figure 9-7, I gave you the slope of the parabola at several points, 
and then I showed you the short-cut method for finding the derivative — but I left out the 
important math in the middle. That math involves limits, and it takes you to the threshold of 
calculus. Hold on to your hat.

Slope is defined as 
rise
run

, and slope
y y
x x

2 1

2 1
.

To compute a slope, you need two points to plug into this formula. For a line, this is easy. You 
just pick any two points on the line and plug them in. But it’s not so simple if you want, say, 
the slope of the parabola f x x 2 at the point 2, 4 . Check out Figure 9-8.

You can see the line drawn tangent to the curve at 2, 4 . Because the slope of the tangent line 
is the same as the slope of the parabola at 2, 4 , all you need is the slope of the tangent line 
to give you the slope of the parabola. But you don’t know the equation of the tangent line, so 
you can’t get the second point — in addition to 2, 4  — that you need for the slope formula.

Here’s how the inventors of calculus got around this roadblock. Figure 9-9 shows the tangent 
line again and a secant line intersecting the parabola at 2, 4  and at 10 100, .

Definition of secant line: A secant line is a line that intersects a curve at two points. This is a bit 
oversimplified, but it’ll do.

FIGURE 9-8:  
The graph of 
f x x 2 or 
y x 2 with a 
tangent line  

at 2,  4 .
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The slope of this secant line is given by the slope formula:

Slope
rise
run

y y
x x

2 1

2 1

100 4
10 2

96
8

12

You can see that this secant line is steeper than the tangent line, and thus the slope of the 
secant, 12, is higher than the slope you’re looking for.

Now add one more point at 6, 36  and draw another secant using that point and 2, 4  again. 
See Figure 9-10.

Calculate the slope of this second secant:

Slope
36 4
6 2

32
4

8

FIGURE 9-9:  
The graph of 

f x x 2 with 
a tangent  
line and a 

secant line.

FIGURE 9-10:  
The graph of 

f x x 2 with 
a tangent line 

and two secant 
lines.
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You can see that this secant line is a better approximation of the tangent line than the first 
secant.

Now, imagine what would happen if you grabbed the point at 6, 36  and slid it down the 
parabola toward 2, 4 , dragging the secant line along with it. Can you see that as the point gets 
closer and closer to 2, 4 , the secant line gets closer and closer to the tangent line, and that the 
slope of this secant thus gets closer and closer to the slope of the tangent?

So, you can get the slope of the tangent if you take the limit of the slopes of this moving secant. 
Let’s give the moving point the coordinates x y2 2,  . As this point x y2 2,   slides closer and 
closer to x y1 1,  , namely 2, 4 , the run, which equals x x2 1, gets closer and closer to zero. So, 
here’s the limit you need:

Slope sof tangent as point slides
toward

lim (
( , )  

            
2 4

llope

rise
run
y y
x x

of moving secant

run

x x

)

lim

lim

li

0

2 1

2 12 1

mm
x

y
x2 2

2

2

4
2

Watch what happens to this limit when you plug in four more points on the parabola that are 
closer and closer to 2, 4 :

When the point x y2 2,   slides to 3, 9 , the slope is 9 4
3 2

, or 5.

When the point slides to 2 1 4 41. , . , the slope is 4 41 4
2 1 2
.
.

, or 4.1.

When the point slides to 2 01 4 0401. , . , the slope is 4.01.

When the point slides to 2 001 4 004001. , . , the slope is 4.001.

Sure looks like the slope is headed toward 4. (By the way, the fact that the slope at 2, 4  — 
which you’ll see in a minute does turn out to be 4 — is the same as the y-coordinate of the point 
is a meaningless coincidence, as is the pattern you may have noticed in these numbers between 
the y-coordinates and the slopes.)

As with all limit problems, the variable in this problem, x2, approaches but never actually gets to 
the arrow-number (2 in this case). If it got to 2 — which would happen if you slid the point you 

grabbed along the parabola until it was actually on top of 2, 4  — you’d get 4 4
2 2

0
0

, which is 

undefined. But, of course, the slope at 2, 4  is precisely the slope you want: the slope of the line 
when the point does land on top of 2, 4 . Herein lies the beauty of the limit process. With this 

limit, you get the exact slope of the tangent line at 2, 4  even though the limit function, y
x

2

2

4
2

,  
generates slopes of secant lines.

Here again is the equation for the slope of the tangent line:

Slope
y
xx

lim
2 2

2

2

4
2
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And the slope of the tangent line is — you guessed it — the derivative.

Meaning of the derivative: The derivative of a function f x  at some number x c, written as 
f c , is the slope of the tangent line to f drawn at c.

The slope fraction y
x

2

2

4
2

 is expressed with algebra terminology. Now let’s rewrite it to give it 

that highfalutin calculus look. But first (finally!), the definition you’ve been waiting for.

Definition of the difference quotient: There’s a fancy calculus term for the general slope frac-

tion, rise
run

 or y y
x x

2 1

2 1
, when you write it in the fancy calculus way. A fraction is a quotient, right?  

And both y y2 1 and x x2 1 are differences, right? So, voilà, it’s called the difference quotient. 
Here it is:

f x h f x
h

(This is the most common way of writing the difference quotient. You may run across other, 

equivalent ways.) In the following pages, I show you how y y
x x

2 1

2 1
 morphs into the difference 

quotient.

Okay, let’s lay out this morphing process. First, the run, x x2 1 (in this example, x2 2), is 
called — don’t ask me why — h. Next, because x1 2 and the run equals h, x2 equals 2 h. You 
then write y1 as f 2  and y2 as f h2 . Making all the substitutions gives you the derivative of 
x 2 at x 2:

f
rise
run
y
x

f h f
h

run

x

h

2

4
2

2 2
2

0

2

2

2

0

2

lim

lim

lim
2

2 2
0

lim
h

f h f
h

lim
h

f h f
h0

2 2
2 2

 is simply the shrinking 
rise
run

 stair-step that you can see in Figure 9-10 as 

the point slides down the parabola toward 2, 4 .

Figure 9-11 is basically the same as Figure 9-10 except that, instead of exact points like 6, 36  
and 10 100, , the sliding point has the general coordinates of 2 2h f h,  , and the rise and the 

run are expressed in terms of h. Figure 9-11 is the ultimate figure for f
f h f

hh
2

2 2
0

lim .

Have I confused you with these two figures? Don’t sweat it. They both show the same thing. 

Both figures are visual representations of f
f h f

hh
2

2 2
0

lim . I just thought it’d be a good 

idea to show you a figure with exact coordinates before showing you Figure 9-11 with all that 
strange-looking f and h stuff in it.



CHAPTER 9  Differentiation Orientation      199

Doing the math gives you, at last, the slope of the tangent line at 2, 4 :

f
f h f

h

h
h

h

h

2
2 2

2 2

0

0

2 2

lim

lim
(The function iss       

so right?)

f x x

f h h

h h
hh

2

2

0

2

2 2

4 4 4

,

,

lim

lim

lim

lim

h

h

h

h h
h

h h
h

h

0

2

0

0

4

4

4

4 0 4

So, the slope at the point 2, 4  is 4.

Main definition of the derivative: If you replace the point 2 2, f  — in Figure 9-11 and the 
limit math that follows it — with the general point x f x,  , you get the general definition of 
the derivative as a function of x:

f x
f x h f x

hh
lim

0

So, at last you see that the derivative is defined as the limit of the difference quotient.

FIGURE 9-11:  
Graph of 
f x x 2 

showing how a 
limit produces 

the slope of 
the tangent 

line at 2,  4 .
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Figure  9-12 shows this general definition graphically. Note that Figure  9-12 is virtually  
identical to Figure  9-11, except that x’s replace the 2’s in Figure  9-11 and that the moving  
point in Figure 9-12 slides down toward any old point x f x,   instead of toward the specific 
point 2 2, f .

Now work out this limit and get the derivative for the parabola f x x 2:

f x
f x h f x

h

x h x
h

h

h

lim

lim

0

0

2 2       (The functiion is

       so,  .)

f x

f x h

x

x h

x xh h
h

2

2

0

2 22

,

lim
x

h

xh h
h

h x h
h

x h

x x

h

h

h

2

0

2

0

0

2

2

2

2 0 2

lim

lim

lim

Thus, for this parabola, the derivative (which is the slope of the tangent line at each value x) 
equals 2x. Plug any number into x, and you get the slope of the parabola at that x-value. Try it.

To close this section, let’s look at one final figure. Figure 9-13 sort of summarizes (in a simpli-
fied way) all the difficult preceding ideas about the difference quotient. Like Figures 9-10, 9-11, 
and 9-12, Figure 9-13 contains a basic slope stair-step, a secant line, and a tangent line. The 

slope of the secant line is rise
run

, or y
x

. The slope of the tangent line is dy
dx

. You can think of dy
dx

 

FIGURE 9-12:  
Graph of 
f x x 2 

showing how a 
limit produces 

the slope of 
the tangent 

line at the 
general point 

x f x, .



CHAPTER 9  Differentiation Orientation      201

as 
a little ultimately infinitesimal bit of y
a little ultimately in

( )
( ffinitesimal bit of x)

, and you can see why this is one of the symbols used 

for the derivative. As the secant line stair-step shrinks down to nothing, or, in other words, in 
the limit as x  and y go to zero,

dy
dx

y
x

(the slope of the tangent line) (the slope of the ssecant line).

Average Rate and Instantaneous Rate
Returning once again to the connection between slopes and rates, a slope is just the visual 

depiction of a rate: The slope, rise
run

, just tells you the rate at which y changes compared to x. If, 

for example, the y-coordinate tells you distance traveled (in miles), and the x-coordinate tells 
you elapsed time (in hours), you get the familiar rate of miles per hour.

Each secant line in Figures 9-9 and 9-10 has a slope given by the formula y y
x x

2 1

2 1
. That slope 

is the average rate over the interval from x x1 2to . If y is in miles and x is in hours, you get the 
average speed in miles per hour during the time interval from x x1 2to .

When you take the limit using the difference quotient and get the slope of the tangent line, you 
get the instantaneous rate at the point x y1 1,  . Again, if y is in miles and x is in hours, you get 
the instantaneous speed at the single point in time, x1. Because the slope of the tangent line is 
the derivative, this gives you another definition of the derivative.

Another definition of the derivative: The derivative of a function f x  at some x-value is the 
instantaneous rate of change of f with respect to x at that value.

FIGURE 9-13:  
In the limit, 

dy
dx

y
x

.
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To Be or Not to Be? Three Cases Where  
the Derivative Does Not Exist

To close this chapter, I want to discuss the three situations where a derivative fails to exist 
(see the section “33333 Limit Mnemonic,” in Chapter 7). By now, you certainly know that the 
derivative of a function at a given point is the slope of the tangent line at that point. So, if you 
can’t draw a tangent line, there’s no derivative — that happens in the first two cases discussed 
here. In the third case, there’s a tangent line, but its slope and the derivative are undefined.

 » Case I: There’s no tangent line and thus no derivative at any type of discontinuity: removable, 
infinite, or jump. (These types of discontinuity are discussed and illustrated in Chapter 7.) 
Continuity is, therefore, a necessary condition for differentiability. It’s not, however, a suf-
ficient condition, as the next two cases show. Dig that logician-speak.

 » Case II: There’s no tangent line and thus no derivative at a sharp corner on a function (or at 
a cusp, a really pointy, sharp turn). See function f in Figure 9-14.

 » Case III: Where a function has a vertical tangent line (which occurs at a vertical inflec-
tion point), the slope is undefined, and thus the derivative fails to exist. See function g in 
Figure 9-14. (Inflection points are explained in Chapter 11.)

Q. What’s the slope of the parabola f x x10 2 at x 3?

A. The slope is –6.

 Here’s the definition of the derivative again:

f x
f x h f x

hh
lim

0

FIGURE 9-14:  
Cases II and III 
where there’s 
no derivative.
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1. Because f x x10 2,  f x h x h10 2,  so the derivative is 

f x
x h x

hh
lim

0

2 210 10

2. Simplify.

lim

lim

lim

h

h

x xh h x
h

x xh h x
h

0

2 2 2

0

2 2 2

10 2 10

10 2 10

hh

xh h
h0

22

3. Factor out h.

lim
h

h x h
h0

2

4. Cancel.

lim
h

x h
0

2

5. Plug the arrow-number into h.

2 0

2

x

f x x

6. You want the slope or derivative at x 3, so plug in 3.

f 3 2 3

6

6 Use the difference quotient to deter-
mine the derivative of the line 
y x4 3.

7 Use the difference quotient to find the 
derivative of the parabola f x x3 2.
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8 Use the difference quotient to find the derivative of the parabola from Problem 4, 
y x 2 5.

9 (a) Determine the derivative of g x x4 5  using the difference quotient.

(b) What’s the slope or derivative of g at x 5?

10 Use the parabola from Problem 7, but make it a position function, s t t3 2, where t is 
in hours and s t  is in miles.

(a) What’s the average velocity from t 4 to t 5?

(b) What’s the average velocity from t 4 to t 4 1. ?

(c) What’s the average velocity from t 4 to t 4 01. ?

11 For the position function in Problem 10, what’s the instantaneous velocity at t 4? Hint: 
Use the derivative.
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(a) –4

The derivative of a curve tells you its slope or steepness. Because the line and the 
parabola are equally steep at 2 1, , and because you know the slope of the line is –4, 
the slope of the parabola at 2 1,  is also –4 and so is its derivative.

(b) It’s decreasing 4 times as fast as x increases.

A derivative is a rate as well as a slope. Because the derivative of the parabola is –4 at 
2 1, , that tells you that y is changing 4 times as fast as x, but because the 4 is nega-

tive, y decreases 4 times as fast as x increases. This is the rate of y compared to x only 
for the one instant at 2 1,  — and thus it’s called an instantaneous rate. A split second 
later — say at x 2 000001.  — y will be decreasing a bit faster.

Practice Questions Answers and Explanations
1 dp

dt
60

A derivative is always a rate, and a rate is always a derivative. So, if your speed, or rate, is 

60 miles
hour

, the derivative, dp
dt

, is also 60.

2 The function is p t t60   or  p t60 , where t is in hours and p is in miles.

If you plug 1 into t, your position is 60 miles; plug 2 into t and your position is 120 miles. The 
function p t60  is a line, of course, in the form y mx b (where b 0 because you started 
your trip at your home where your position is zero). So, the slope is 60 and the derivative is 
thus 60. And, again, you see that a derivative is a slope and a rate.

3 The slope is 3.

You can see that the line, y x3 12, is tangent to the parabola, y x x
1
3

23
3

85
3

2 , at the 

point 7, 9 . You know from y mx b that the slope of y x3 12 is 3. At the point 7, 9 , the 
parabola is exactly as steep as the line, so the derivative (that’s the slope) of the parabola at 
7, 9  is also 3.

The slope of the parabloa is different at every point. The slope of the line stays constant, but 
the slope of the parabola changes as you climb up from 7, 9 , getting less and less steep. 
Even if you go to the right just 0.001 to x 7 001. , the slope will no longer be exactly 3.

4 Zero

The point 0, 5  is the very top of the parabola, y x 2 5. At the top, the parabola is going 
neither up nor down — just like you’re going neither up nor down at the moment when you 
walk across the crest of a hill. The top of the parabola is flat or level in this sense, and thus 
the slope and derivative both equal zero.

The fact that the derivative is zero at the top of a hill (and at the bottom of a valley) is a  
critically important point that you’ll return to time and time again.

5 
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6 y 4

y
x h x

h
x h x

h
h
h

h

h

h

lim

lim

lim

0

0

0

4 3 4 3

4 4 3 4 3

4

llim
h

y
0
4

4

You can also figure this out because the slope of y x4 3 is 4.

7 f x x6

f x
x h x

h
x xh h x

h
x

h

h

h

lim

lim

lim

0

2 2

0

2 2 2

0

2

3 3

3 2 3

3 6 3 3

6 3

2 2

0

2

xh h x
h

xh h
h

h
h
lim ( .)

l

       Now, factor out the

iim ( .)

lim( )
h

h

h x h
h

h

x h
0

0

6 3

6 3

     Cancel the 

          (( .)Now plug 0 into h

x

f x x

6 3 0

6

8 y x2

y
x h x

h
x xh h x

h

h

lim

lim

0

2 2

0

2 2 2

5 5

2 5 5
h

x xh h x
h

xh h
h

h

h

lim

lim (

0

2 2 2

0

2

2 5 5

2         Now facctor.

      And cancel.

)

lim ( )

lim( )
h

h

h x h
h

x h

y

0

0

2

2

2x

In Problem 4, you see that the top of this parabola (y x 2 5) is at the point 0, 5  and that 
the derivative is zero there because the parabola is going neither up nor down at its peak. 
That explanation was based on common sense. But now, with the result given by the differ-
ence quotient, namely y x2 , you have a rigorous confirmation of the derivative’s value at 
0, 5 . Just plug 0 in for x in y x2 , and you get y 0.
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(a) g x
x
2

4 5

If you got this one, give yourself a pat on the back. It’s a bit tricky.

g x x

g x
x h x

h
x h x

h

h

h

4 5

4 5 4 5

4 4 5 4 5

0

0

lim

lim

limm (
h

x h x
h

x h x

x h x0

4 4 5 4 5 4 4 5 4 5

4 4 5 4 5
    Conjuugate multiplication)

lim
h

x h x
h x h x0

4 4 5 4 5
4 4 5 4 5

     Because( )a b a b a b2 2

lim

lim

h

h

h
h x h x

x h x

0

0

4
4 4 5 4 5

4
4 4 5 4 5

     (Now you ccan plug in.)

4
4 4 0 5 4 5

4
2 4 5

2
4 5

x x

x

g x
x

(b) g 5
2
5

g 5 2
4 5 5

2
5

10 Use this formula: Average velocity
total displacement

total time
  

 
.

(a) 27 miles/hour

Average velocity
s s

 

miles
hour

to4 5

2 2

5 4
5 4

3 5 3 4
1

27

(b) 24.3 miles/hour

Average velocity
s s

to 4 4 1

2 2

4 1 4
4 1 4

3 4 1 3 4
0 1

2

.
.
.

.
.

44 3. miles
hour

9 
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(c) 24.03 miles/hour

Average velocity
s s

 to4 4 01

2 2

4 01 4
4 01 4

3 4 01 3 4
0 0

.
.
.

.
. 11

24 03. miles
hour

11 24 miles/hour

Problem 7 gives you the derivative of this parabola, f x x6 . The position function in this 
problem is the same except for different variables, so its derivative is s t t6 .

Plug in 4 for t, and you get s 4 24 miles
hour

. Notice how the average velocities in Problem 10 

get closer and closer to 24 miles
hour

 as the total travel time gets less and less and the ending time 

homes in on t 4. That’s precisely how the difference quotient works as h shrinks to zero.

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 9 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 For Problems 1 and 2, refer to the following figure. The figure shows a graph of f x x 3 and 
a line tangent to f at 1 1,  that crosses f at 2, 8 .

(a) What’s the derivative of f at x 0?

(b) What’s the derivative of f at x 1?

2 What’s the derivative of f at x 1 and why?
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3 For this problem, refer to the following figure. The figure shows a graph of f x x3  and a 
line tangent to f at 1 1,  that crosses f at 8 2, .

(a) What’s the derivative of f at x 1?

(b) What’s the derivative of f at x 1?

(c) What’s the derivative of f at x 0?

4 What’s the derivative of g x 1  at  1 1, ?

For Problems 5 through 8, use the definition of the derivative, f x
f x h f x

hh
lim

0
, to 

determine the derivative of the given function.

5 f x 8. (You should know the derivative here without using this definition, but you should 
use the definition for practice.)

6 g x x. (You should be able to get this derivative in your head without using the difference 
quotient, but, again, it’s a good idea to practice using the difference quotient to learn how to 
apply it to all sorts of functions.)

7 f x x 3

8 g x x10
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(a) The derivative is zero.

A derivative is a slope, so to determine the derivative of f x x 3 at x 0, you need 
merely to notice that f is horizontal for one infinitesimal point as it crosses the origin. 
The slope of a horizontal line is zero, so the derivative of f x x 3 at x 0 is zero.

(b) The derivative at x 1 equals 3.

A derivative tells you the slope or steepness of a curve at a given point, and that’s the 
same thing as the slope of a tangent line drawn at that point. So, all you need is the 
slope of the line tangent to f at 1 1, . That line crosses f at 2, 8 . The slope formula 

gives you its slope: slope
y y
x x

2 1

2 1

1 8
1 2

9
3

3.

2 The derivative at x 1 (like the derivative at x 1) equals 3.

The key to this problem is to note that f is an odd function (see Chapter 5 for a discussion of 
even and odd functions). Odd functions are symmetrical about the origin. One thing this 
means is that if you take an odd function like f and rotate it 180  about the origin, it lands on 
itself. You can see this by turning the figure for Question 2 upside down. You see the very 
same shape except that the tangent line now touches the curve at 1, 1  and crosses the 
curve at 2, 8 . That tangent line (on the upside-down graph) has the same slope as the orig-
inal tangent line.

By the way, a feature of all odd functions is that if you know the derivative of the function at 
any x-value, the derivative at the opposite x-value will be the same. (And a feature of all even 
functions is that if you know the derivative of the function at any x-value, the derivative at 
the opposite x-value will be the opposite of the original derivative.)

3 

Answers to Chapter 9 Quiz
1 

(a) The derivative at x 1 is 1
3

.

The line tangent to f at 1 1,  crosses f at 8 2, . The slope formula gives you a  

slope of 1
3

.

(b) The derivative at x 1 (like the derivative at x 1) is 1
3

.

This problem works just like Problem 2. Refer back to that solution. The function 
f x x3 , like f x x 3, is an odd function, and thus the derivative of x3  at x 1 is 
the same as it is at x 1.

(c) The derivative at x 0 is undefined.

As f x x3  crosses the origin, it’s vertical for one infinitesimal point. In other words, 
a tangent line drawn to f at the origin would be vertical. The slope of a vertical line is 
undefined, and thus the derivative of f at x 0 is undefined.
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4 The derivative is zero.

The function g x 1 is a horizontal line, so its slope is zero. And, thus, the derivative of g 
at 1 1,  (or at any other point on g) equals zero. End of story.

5 The derivative is zero.

Of course, like with Problem 4, this function, f x 8, is a horizontal line, so its slope and 
derivative equal zero.

Here’s how you do it with the limit of the difference quotient: f x
f x h f x

hh
lim

0
.  

For f x 8, f of anything equals –8, so f x h 8. Plug in and finish: 

f x
h hh h h

lim lim lim
0 0 0

8 8
0 00 .

6 The derivative equals –1.

The function g x x is a line (in y mx b form, g would be written as y x1 0).  
So, its slope and derivative equal –1.

Now let’s get the derivative with the limit of the difference quotient. To compute 

g x
g x h g x

hh
lim

0
, you need g x h ; that equals x h . Now you can plug  

in and finish: g x
x h x

h h
h

h
x h x

h h h h
lim lim lim lim

0 0 0 0
1 1.

7 The derivative equals 3 2x .

You need f x h , so you can plug that into f x
f x h f x

hh
lim

0
. The function is 

f x x 3, so f x h  equals x h 3. Expanding that gives you x x h xh h3 2 2 33 3 . 
Plug in and finish:

f x
x x h xh h x

h
x x h xh

h

h

lim

lim

0

3 2 2 3 3

0

3 2 2

3 3

3 3 hh x
h

x h xh h
h

h x xh h
h

h

h

h

3 3

0

2 2 3

0

2 2

0

3 3

3 3

lim

lim

lim 33 3

3

2 2

2

x xh h

x
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8 The derivative equals 
1

2 x
.

You are given that g x x10 , so g x h x h10 . Plugging those expressions into 

the definition of the derivative gives you g x
h

x h x
h
lim

0

10 10
. Now cancel the 

10’s, then reverse the order of the two radicals in the numerator to make the numerator more 
ordinary-looking. Then multiply the numerator and denominator by the conjugate of the 
numerator, and finish:

g x
h

h

h

x h x

x x h

x x h x x h
x x h

h

h

h

lim

lim

lim

0

0

0

lim

lim

lim

h

h

h

x x h
x x h

h
x x h

x x h

h

h

0

0

0

1

1
2 x
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Differentiation Rules — 
Yeah, Man, It Rules

Chapter 9 gives you the basic idea of what a derivative is — it’s just a rate like speed and 
it’s simply the slope of a function. It’s important that you have a solid, intuitive grasp of 
these fundamental ideas.

You also now know the mathematical foundation of the derivative and its technical definition 
involving the limit of the difference quotient. Now, I’m going to be forever banned from the 
Royal Order of Pythagoras for saying this, but, to be perfectly candid, you can basically forget 
that limit stuff — except that you need to know it for your final — because in this chapter I 
give you shortcut techniques for finding derivatives that avoid the difficulties of limits and the 
difference quotient.

Some of this material is unavoidably dry. If you have trouble staying awake while slogging 
through these rules, look back to the last chapter and take a peek at the next three chapters 
to see why you should care about mastering these differentiation rules. Countless problems 
in business, economics, medicine, engineering, and physics, as well as other disciplines, deal 
with how fast a function is rising or falling, and that’s what a derivative tells you. And it’s often 
important to know where a function is rising or falling the fastest (the largest and smallest 
slopes) and where its peaks and valleys are (where the slope is zero). Before you can do these 
interesting problems, you’ve got to learn how to find derivatives. If Chapters 11, 12, and 13 are 
like playing the piano, then this chapter is like learning your scales — it’s dull, but you’ve got 
to do it. You may want to order up a latte with an extra shot.

Chapter 10

IN THIS CHAPTER

 » Learning the rules whether you 
like it or not — sorry, buddy, but 
those are the rules

 » Mastering the basic differentiation 
rules and graduating to expert 
rules

 » Figuring out implicit 
differentiation

 » Using logarithms in differentiation

 » Differentiating inverse functions
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Basic Differentiation Rules
Calculus can be difficult, but you’d never know it judging by this section alone. Learning these 
first half dozen or so rules is a snap. If you get tired of this easy stuff, however, I promise plenty 
of challenges in the next section.

The constant rule
This is simple: f x 5 is a horizontal line with a slope of zero, and thus its derivative is also 

zero. So, for any number c, if f x c, then f x 0. Or you can write d
dx

c 0. End of story.

The power rule
Say f x x 5. To find its derivative, take the power, 5, bring it in front of the x, and then reduce 
the power by 1 (in this example, the power becomes a 4). That gives you f x x5 4. To repeat, 
bring the power in front, then reduce the power by 1. That’s all there is to it.

In Chapter 9, I differentiated y x 2 with the difference quotient:

y x

y
x h x

h
x xh h x

h
xh h

h

h

h

h

2

0

2 2

0

2 2 2

0

2

2

2

lim

lim

lim

llim
h

x h

x
0

2

2

That takes some doing. Instead of all that, just use the power rule: Bring the 2 in front, and 
reduce the power by 1; this leaves you with a power of 1 that you can drop (because a power  
of 1 does nothing). Thus,

y x

y x

2

2

Because this is so simple, you may be wondering why I didn’t skip the complicated difference 
quotient stuff and just go straight to the shortcut method. Well, admittedly, that would have 
saved some time, especially considering the fact that once you know this and other shortcut 
methods, you’ll never need the difference quotient again — except for your final exam. But the 
difference quotient is included in every calculus book and course because it gives you a fuller, 
richer understanding of calculus and its foundations — think of it as a mathematical character 
builder. Or because math teachers are sadists. You be the judge.
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The power rule works for any power — a positive, a negative, or a fraction:

If then 

If then

If

f x x f x x

g x x g x x

xh

2 3

2 3 1 3

2

2
3

/ /

x xhthen 1

The derivative of x is 1. Make sure you remember how to do the derivative of the last function 
in this list. It’s the simplest of these functions, yet the easiest one to miss.

The best way to understand this derivative is to realize that h x x  is a line that fits the form 
y mx b, because h x x  is the same as h x x1 0 (or y x1 0). The slope (m) of this line 
is 1, so the derivative equals 1. Or you can just memorize that the derivative of x is 1. But if you 
forget both of these ideas, you can always use the power rule. Rewrite h x x  as h x x1, 
then apply the rule: Bring the 1 in front and reduce the power by 1 to zero, giving you h x x1 0.  
Because x 0 equals 1, you’ve got h x 1.

Rewrite functions so you can use the power rule. You can differentiate radical functions  

by rewriting them as power functions and then using the power rule. For example, if f x x 23
,  

rewrite it as f x x 2 3/  and use the power rule. You can also use the power rule to differentiate 

functions like f x
x
1

3 . Rewrite this as f x x 3, then use the power rule.

The constant multiple rule
What if the function you’re differentiating begins with a coefficient? Makes no difference. A 
coefficient has no effect on the process of differentiation. You just ignore it and differentiate 
according to the appropriate rule. The coefficient stays where it is until the final step, when you 
simplify your answer by multiplying by the coefficient. Here’s how it works.

Differentiate y x4 3.

Solution: You know by the power rule that the derivative of x 3 is 3 2x , so the derivative of 4 3x  
is 4 3 2x . The 4 just sits there doing nothing. Then, as a final step, you simplify: 4 3 2x  equals 

12 2x . So y x12 2. (By the way, most people just bring the 3 to the front, like this: y x3 4 2, 
which gives you the same result.)

Differentiate y x5 .

Solution: This is a line of the form y mx b with m 5, so the slope is 5, and thus the deriva-
tive is 5: y 5. (It’s important to think graphically like this from time to time.) But you can also 

solve the problem with the power rule: d
dx

x x1 01 1; so d
dx

x5 5 1 51 .

One final example: Differentiate y x5
4

1 3/

.

Solution: The coefficient here is 5
4

. So, because d
dx

x x1 3 2 31
3

/ /  (by the power rule), 
d
dx

x x x
5
4

5
4

1
3

5
12

1 3 2 3 2 3/ / / .
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Pi, e, c, k, and so on, are not variables! Don’t forget that  (which equals, of course, about 3.14) 
and e (which equals about 2.72) are numbers, not variables, so they behave like ordinary num-
bers. Constants in problems, like c and k, also behave like ordinary numbers. (By the way, the 
number e, named for the great mathematician Leonhard Euler, is perhaps the most important 
number in all of mathematics, but I don’t get into that here.)

Thus, if y x, y  — this works exactly like differentiating y x5 . And because 3 is just 
a number, if y 3 then y 0 — this works exactly like differentiating y 10. You’ll also see 
problems containing constants like c and k. Be sure to treat them like regular numbers. For 
example, the derivative of y x k5 2 3 (where k is a constant) is 5, not 5 6 2k .

The sum rule — hey, that’s some rule  
you got there
When you want the derivative of a sum of terms, take the derivative of each term separately.

What’s f x  if  f x x x x x6 3 2 10?

Solution: Just use the power rule for each of the first four terms and the constant rule for the 
final term. Thus, f x x x x6 3 2 15 2 .

The difference rule — it makes no difference
If you’ve got a difference (that’s subtraction) instead of a sum, it makes no difference. 
You still differentiate each term separately. Thus, if y x x x x x3 2 6 55 4 3 2 , then 
y x x x x15 4 6 12 54 3 2 . The addition and subtraction signs are unaffected by the 
differentiation.

Q. What’s the derivative of 5 3x ?

A. 15 2x

1. Bring the power in front, multiplying it by the coefficient.

This first step gives you 15 3x . (Note that this does not equal the original function 
or its derivative, so you should not put an equal sign in front of it. In fact, there’s 
no reason to write this interim step down at all. I do it simply to make the process 
clear.)

2. Reduce the power by one.

This gives you the final answer of 15 2x .
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1 What’s the derivative of f x 8? 2 What’s the derivative of g x 3?

3 What’s the derivative of 
g x ksin cos

2
2 ,  

where k is a constant?

4 For f x x5 4, f x ?

5 For g x
x 3

10 , what’s g x ? 6 Find y  if y x x5 0    ( ).

7 What’s the derivative of 
s t t t7 106 ?

8 Find the derivative for y x 3 2
6 .
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Differentiating trig functions
Ladies and gentlemen, I have the high honor and distinct privilege of introducing you to the 
derivatives of the six trig functions:

d
dx

x x
d
dx

x x

d
dx

x x
d
dx

x x

d
dx

sin cos cos sin

tan sec cot csc

sec

2 2

xx x x
d
dx

x x xsec tan csc csc cot

Make sure you memorize the derivatives of sine and cosine. They’re a snap, and I’ve never 
known anyone to forget them. If you’re good at rote memorization, memorize the other four as 
well. Or, if you’re not wild about memorization or are afraid that this knowledge will crowd out 
the date of the Battle of Hastings (1066) — which is much more likely to come up in a board 
game than trig derivatives — you can figure out the last four derivatives from scratch by using 
the quotient rule (see the section, “The quotient rule,” later in this chapter). A third option is 
to use the following mnemonic trick.

Psst, what’s the derivative of cosecant? Imagine you’re taking a test and can’t remember those 
four last trig derivatives. You lean over to the guy next to you and whisper, “Psst, what’s the 
derivative of csc x?” Now, the last three letters of psst (sst) are the initial letters of sec, sec, tan. 
Write these three down, and below them, write their cofunctions: csc, csc, cot. Put a negative 
sign on the csc in the middle. Finally, add arrows like in the following diagram:

sec sec tan

csc csc cot

(This may seem complicated, but take my word for it, you’ll remember the word psst, and after 
that, the diagram is very easy to remember.)

Look at the top row. The sec on the left has an arrow pointing to sec tan — so the derivative 
of sec x is sec tanx x . The tan on the right has an arrow pointing to sec sec, so the derivative of 
tan x  is sec2 x . The bottom row works the same way, except that both derivatives are negative.

Differentiating exponential and  
logarithmic functions
Caution: Memorization ahead.

Exponential functions
If you can’t memorize the next rule, hang up your calculator.

d
dx

e ex x

That’s right — break out the smelling salts — the derivative of e x is itself! This is a special 
function: e x and its multiples, like 5e x , are the only functions that are their own derivatives. 
Think about what this means. Look at the graph of y e x  in Figure 10-1.



CHAPTER 10  Differentiation Rules — Yeah, Man, It Rules      221

Pick any point on this function, say 2, ~7.4 , and the height of the function at that point, 7 4. , 
is the same as the slope at that point.

If the base is a number other than e, you have to tweak the derivative by multiplying it by the 
natural log of the base:

If then 

If then

y y

y y

x x

x x

2 2 2

10 10 10

ln

ln

Logarithmic functions
And now — what you’ve all been waiting for — the derivatives of logarithmic functions. (See 
Chapter 4 if you want to brush up on logs.) Here’s the derivative of the natural log — that’s the 
log with base e:

d
dx

x
x

ln 1

If the log base is a number other than e, you tweak this derivative — like with exponential 
functions — except that you divide by the natural log of the base instead of multiplying. Thus,

d
dx

x x
x

log
ln ln

,2

1

2
1

2
  and

d
dx

x
x

x xlog
ln

log log1
10 10(Recall that means , so the base is    10.)

Good news: You get to practice finding derivatives of trig, exponential, and log functions in the 
next section.

FIGURE 10-1:  
The graph of 

y e x .



222      UNIT 4  Differentiation

Differentiation Rules for Experts —  
Oh, Yeah, I’m a Calculus Wonk

Now that you’ve totally mastered all the basic rules, take a breather and rest on your laurels for 
a minute. . . . Okay, ready for a challenge? The following rules, especially the chain rule, can be 
tough. But you know what they say: “No pain, no gain,” “No guts, no glory,” yada, yada, yada.

The product rule
You use this rule for — hold on to your hat — the product of two functions like

y x x3 sin

The product rule:

If 

then 

y this that

y this that this that

,

So, for y x x3 sin ,

y x x x x

x x x x

3 3

2 33

sin sin

sin cos

The quotient rule
I have a feeling that you can guess what this rule is for — the quotient of two functions like

y
x

x
sin

4

The quotient rule:

If 

then 

y
top

bottom

y
top bottom top bottom

bottom

,

2

Many calculus books give the quotient rule in a slightly different form that’s harder to remem-
ber. And some books give a “mnemonic” involving the words lodeehi and hideelo or hodeehi and 
hideeho, which is very easy to get mixed up — great, thanks a lot.

Here’s a good way to remember the quotient rule. When you read a product, you read from left 
to right, and when you read a quotient, you read from top to bottom. So just remember that 
the quotient rule, like the product rule, works in the natural order in which you read. Both rules 
begin with the derivative of the first function you read. Also note that the numerator of the quotient 
rule works just like the product rule, except for the minus sign (which no one forgets). Another 
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thing you won’t forget is the denominator of the quotient rule — take my word for it. Focus on 
these points and you’ll remember the quotient rule ten years from now — oh, sure.

So, here’s the derivative of y x
x

sin
4 :

y
x x x x

x

x x x x
x

x x x

sin sin

cos sin

cos si

4 4

4 2

4 3

8

3

4

4 nn

cos sin

x
x

x x x
x

8

5
4

In the section “Differentiating trig functions,” I promised to show you how to find the deriva-
tives of four trig functions — tangent, cotangent, secant, and cosecant — with the quotient rule. 
I’m a man of my word, so here goes. All four of these functions can be written in terms of sine 

and cosine, right? (See Chapter 6.) For instance, tan sin
cos

x
x
x

. Now, if you want the derivative of 
tan x , you can use the quotient rule:

tan sin
cos

tan
sin cos sin cos

cos
cos c

x
x
x

x
x x x x

x
x

2

oos sin sin
cos

cos sin
cos

cos

x x x
x

x x
x

x

2

2 2

2

2
1      (The Pytthagorean Identity tells

you that  cos sin .)

sec

2 2

2

1x x

x

Granted, this is quite a bit of work compared to just memorizing the answer or using the mne-
monic device presented several pages back, but it’s nice to know that you can get the answer 
this way as a last resort. The other three functions are no harder. Give them a try.

Q. d
dx

x x2 sin ?

A. 
d
dx

x x x x

x x x

x x

x

2 2 2

22

sin sin

cos

sin

sin
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Q. d
dx

x
x

2

sin
?

A. 
d
dx

x x x

x x

x
x x

x

x x

2 2 2

2

22

sin
sin sin

sin

sin cos
sinn2 x

(I purposely designed this example to resemble the product rule example, so you can see 
the similarity between the quotient rule numerator and the product rule.)

9 d
dx

x x3 cos ? 10 d
dx

x xsin tan ?

11 d
dx

x x5 3 ln ? 12 d
dx

x e xx2 ln ?
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13 d
dx

x
x

3

cos
? 14 d

dx e
x

x
cos ?

15 d
dx x

x
x

sin
ln

?3

Linking up with the chain rule
The chain rule is by far the trickiest derivative rule, but it’s not really that bad if you carefully 

focus on a few important points. Let’s begin by differentiating y x4 53 . You use the chain 

rule here because you’ve got a composite function, that’s one function 4 53x  inside another 
function (the square root function).

How to spot a composite function: y x  is not a composite function because the argument of 
the square root function — that’s the thing you take the square root of — is simply x. Whenever 
the argument of a function is anything other than a plain old x, you’ve got a composite function. 
Be careful to distinguish a composite function from something like y x xsin , which is the 
product of two functions, x  and sin x , each of which does have just a plain old x as its argument.
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Okay, so you’ve got this composite function, y x4 53 . Here’s how to differentiate it with 
the chain rule:

1. You start with the outside function, , and differentiate that, IGNORING what’s 
inside. To make sure you ignore the inside, temporarily replace the inside function 
with the word stuff.

So, you’ve got y stuff . Okay, now differentiate y stuff  the same way you’d 
differentiate y x . Because y x  is the same as y x1 2/ , the power rule gives you 

y x
1
2

1 2/ . So, for this problem, you begin with 1
2

1 2stuff / .

2. Multiply the result from Step 1 by the derivative of the inside function, stuff .

y stuff stuff
1
2

1 2/

Take a good look at this. All chain rule problems follow this basic idea. You do the 
derivative rule for the outside function, ignoring the inside stuff, then multiply that by 
the derivative of the stuff.

3. Differentiate the inside stuff.

The inside stuff in this problem is 4 53x  and its derivative is 12 2x  by the power rule.

4. Now put the real stuff and its derivative back where they belong.

y x x
1
2

4 5 123 1 2 2/

5. Simplify.

y x x6 4 52 3 1 2/

Or, if you’ve got something against negative powers, y x

x

6

4 5

2

3 1 2/ .

Or, if you’ve got something against fraction powers, y x

x

6

4 5

2

3
.

Try differentiating another composite function, y xsin 2 :

1. The outside function is the sine function, so you start there, taking the derivative  
of sine and ignoring the inside stuff, x 2. The derivative of sin x is cos x, so for this 
problem, you begin with

cos stuff

2. Multiply the derivative of the outside function by the derivative of the stuff.

y stuff stuffcos

3. The stuff in this problem is x 2, so stuff  is 2x. When you plug these terms back in,  
you get

y x x

x x

cos

cos

2

2

2

2
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Sometimes figuring out which function is inside which can be a bit tricky — especially when a 
function is inside another and then both of them are inside a third function (you can have four 
or more nested functions, but three is probably the most you’ll see). Here’s a tip.

Parentheses are your friend. For chain rule problems, rewrite a composite function with a 
set of parentheses around each inside function, and rewrite trig functions like sin2 x with the 
power outside a set of parentheses: sin x 2.

Let’s try a problem — this is a tough one, gird your loins: differentiate y x xsin3 25 4 . First, 

rewrite the cubed sine function: y x xsin 5 42 3
. Now it’s easy to see the order in which 

the functions are nested. The innermost function is inside the innermost parentheses — that’s 
5 42x x . Next, the sine function is inside the next set of parentheses — that’s sin stuff . Last, 
the cubing function is on the outside of everything — that’s stuff 3. (Because I’m a math teacher, 
I’m honor-bound to point out that the stuff in stuff 3 is different from the stuff in sin stuff . It’s 
quite unmathematical of me to use the same term to refer to different things, but don’t sweat 
it. I’m just using the term stuff to refer to whatever is inside any function.) Okay, now that you 
know the order of the functions, you can differentiate from outside in:

1. The outermost function is stuff 3 and its derivative is given by the power rule.

3 2stuff

2. As with all chain rule problems, you multiply that by stuff .

3 2stuff stuff

3. Now put the stuff, sin 5 42x x , back where it belongs.

3 5 4 5 42 2 2sin sinx x x x

4. Use the chain rule again.

You can’t finish this problem quickly by just taking a simple derivative because you 

have to differentiate another composite function, sin 5 42x x . Just treat sin 5 42x x  

as if it were the original problem and take its derivative. The derivative of sin x  is cos x, 
so the derivative of sin stuff  begins with cos stuff . Multiply that by stuff . Thus, the 
derivative of sin stuff  is

cos stuff stuff

5. The stuff for this step is  5 42x x  and its derivative is  10 4x . Plug those things back in.

cos 5 4 10 42x x x

6. Now that you’ve got the derivative of  sin 5 42x x , plug this result into the result 
from Step 3, giving you the whole enchilada.

3 5 4 5 4 10 42 2 2sin cosx x x x x

7. This can be simplified a bit.

30 12 5 4 5 42 2 2x x x x xsin cos
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I told you it was a tough one.

It may have occurred to you that you can save some time by not switching to the word stuff and 
then switching back. That’s true, but some people like to use the technique because it forces 
them to leave the stuff alone during each step of a problem. That’s the critical point.

Make sure you . . . DON’T TOUCH THE STUFF.

As long as you remember this, you don’t need to actually use the word stuff when doing a chain 
rule problem. You’ve just got to be sure you don’t change the inside function while differen-
tiating the outside function. Say you want to differentiate f x xln 3 . The argument of this 
natural logarithm function is x 3. Don’t touch it during the first step of the solution, which is 

to use the natural log rule: d
dx

x
x

ln 1 . This rule tells you to put the argument of the function 

in the denominator under the number 1. So, after the first step in differentiating ln x 3 , you’ve 

got 1
3x
. You then finish the problem by multiplying that by the derivative of x 3, which is 3 2x . 

Final answer: 3
x

.

With the chain rule, don’t use two derivative rules at the same time. Another way to make sure 
you’ve got the chain rule straight is to remember that you never use more than one derivative 
rule at a time.

In the preceding example, ln x 3 , you first use the natural log rule, then, as a separate step, you 
use the power rule to differentiate x 3. At no point in any chain rule problem do you use both 

rules at the same time. For example, with ln x 3 , you do not use the natural log rule and the 

power rule at the same time to come up with 1
3 2x

.

Here’s the chain rule mumbo jumbo.

The chain rule (for differentiating a composite function):

If 

then

y f g x

y f g x g x

,

Or, equivalently,

If and 

then Notice how the

 y f u u g x

dy
dx

dy
du

du
dx

du

,

( ’ss cancel.)

See the sidebar, “Why the chain rule works,” for a plain-English explanation of this mumbo 
jumbo.

One final example and one last tip. Differentiate 4 2 3x xsin . This problem has a new twist — it 
involves the chain rule and the product rule. How should you begin?

Where do I begin? If you’re not sure where to begin differentiating a complex expression, 
imagine plugging a number into x and then evaluating the expression on your calculator one 
step at a time. Your last computation tells you the first thing to do.
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Say you plug the number 5 into the x’s in 4 2 3x xsin . You evaluate 4 52 — that’s 100; then, 
after getting 5 1253 , you do sin 125 , which is about –0.616. Finally, you multiply 100  
by –0.616. Because your last computation is multiplication, your first step in differentiating is 
to use the product rule. (Had your last computation been instead something like sin 125 , then 
you’d begin with the chain rule.) Okay, so for this problem, you begin with the product rule.

The product rule:

If theny this that y this that this that, .

So, for f x x x4 2 3sin ,

f x x x x x4 42 3 2 3sin sin

You finish the problem by taking the derivative of 4 2x  with the power rule and the derivative of 
sin x 3  with the chain rule:

f x x x x x x8 4 33 2 3 2sin cos

And now simplify:

f x x x x x8 123 4 3sin cos

WHY THE CHAIN RULE WORKS
You wouldn’t know it from the difficult math in this section or the fancy chain rule mumbo jumbo, 
but the chain rule is based on a very simple idea. Say one person is walking, another jogging, and a 
third is riding a bike. If the biker goes four times as fast as the jogger, and the jogger goes twice as 
fast as the walker, then the biker goes 4 times 2, or 8 times as fast as the walker, right? That’s the 
chain rule in a nutshell — you just multiply the relative rates.

Flip back to Chapter 9 and take a look at Figure 9-5 showing Laurel and Hardy on a teeter-totter. 
For every inch Hardy goes down, Laurel goes up 2 inches. So, Laurel’s rate of movement is twice 

Hardy’s rate, and therefore dL
dH

2. Now imagine that Laurel has one of those party favors in his 

mouth (the kind that unrolls as you blow into it) and that for every inch he goes up, he blows the 
noisemaker out 3 inches. The rate of movement of the noisemaker (N) is thus 3 times Laurel’s rate 

of movement. In calculus symbols, dN
dL

3. So, how fast is the noisemaker moving compared to 

Hardy? This is just common sense. The noisemaker is moving 3 times as fast as Laurel, and Laurel 
is moving 2 times as fast as Hardy, so the noisemaker is moving 3 times 2, or 6 times as fast as 
Hardy. Here it is in symbols (note that this is the same as the formal definition of the chain rule 
next to the Mumbo Jumbo icon):

dN
dH

dN
dL

dL
dH

3 2 6

Mere child’s play.
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16 
f x x

f x

cos

?

4

17 
g x x

g x

sin3

?

18 
s t

s t

ttan

?

ln
19 y e

y

x4 3

?

20 f x x x

f x

4 3sin

?
21 g x

x
g x

xln

?

2

5 4

22 y x

y

cos3 24

?
23 

d
dx

e xtan3 2
?



CHAPTER 10  Differentiation Rules — Yeah, Man, It Rules      231

Differentiating Implicitly
All the differentiation problems presented in previous sections of this chapter are functions 
like y x x2 5  or y xsin . In such cases, y is written explicitly as a function of x. This means 
that the equation is solved for y; in other words, y is by itself on one side of the equation.  
(Note that y was sometimes written as f x  as in f x x x3 24 , but remember that that’s the 
same thing as y x x3 24 .)

Sometimes, however, you are asked to differentiate an equation that’s not solved for y, like 
y x x y5 23 sin cos . This equation defines y implicitly as a function of x, and you can’t write 
it as an explicit function because it can’t be solved for y. For such a problem, you need implicit 
differentiation. (If you can solve for y, implicit differentiation will still work, but it’s not neces-
sary.) When differentiating implicitly, all the derivative rules work the same, with one excep-
tion: When you differentiate a term with a y in it, you use the chain rule with a little twist.

24 p

p

xcos

?
25 p

dp
dq

q
1

ln

?

26 f x
x

ln 1 . What’s f x  at the point 

5 5, ln ?

27 y x x

y

cos

?

1
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Remember using the chain rule to differentiate something like sin x 3  with the stuff technique? 

The derivative of sine is cosine, so the derivative of sin stuff  is cos stuff stuff . You finish the 
problem by finding the derivative of the stuff, x 3, which is 3 2x , and then making the substitu-
tions to give you cos x x3 23 . With implicit differentiation, a y works like the word stuff. Thus, 
because

sin cos ,

sin cos

stuff stuff stuff

y y y

The twist is that while the word stuff is temporarily taking the place of some known function of 
x (x 3 in this example), y is some unknown function of x (you don’t know what the y equals in 
terms of x). And because you don’t know what y equals, the y and the y  — unlike the stuff and 
the stuff  — must remain in the final answer. But the concept is exactly the same, and you treat 
y just like the stuff. You just can’t make the switch back to x’s at the end of the problem like you 
can with a regular chain rule problem.

I suppose you’re wondering whether I’m ever going to get around to actually doing the prob-
lem. Here goes:

Q. Differentiate y x x y5 23 sin cos .

A. y
x x

y y
cos

sin
6

5 4

1. Differentiate each term on both sides of the equation.

For the first and fourth terms, you use the power rule and the cosine rule respec-
tively, and, because these terms contain y’s, you also use the chain rule. For the 
second term, you use the regular power rule. And for the third term, you use the 
regular sine rule.

5 64y y x x y y

x y y

cos sin

cos sin

2. Collect all terms containing a y  on the left side of the equation and all other terms 
on the right side.

5 64y y y y x xsin cos

3. Factor out y .

y y x xy5 64 sin cos

4. Divide for the final answer.

y
x x

y y
cos

sin
6

5 4
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Note that this derivative, unlike the others you’ve done so far, is expressed in 
terms of x and y instead of just x. So, if you want to evaluate the derivative to get 
the slope at a particular point, you need to have values for both x and y to plug into 
the derivative.

Also note that in many textbooks, the symbol dy
dx

 is used instead of y  in every step 

of solutions like the one shown here. I find y  easier and less cumbersome to work 

with. But dy
dx

 does have the advantage of reminding you that you’re finding the 

derivative of y with respect to x. Either way is fine. Take your pick.

28 If y x x y3 2 , find dy
dx

 by implicit 
differentiation.

29 If 3 4y y e xln , find y .

30 For x y y x y x2 3 5 , find dy
dx

 by 
implicit differentiation.

31 If y y xcos2 3 25sin , find the 

slope of the curve at 
10

0, .



234      UNIT 4  Differentiation

32 If 8 5 2y x ytan , find 
dy
dx . 33 Find the slope of the line tangent to the 

circle x y2 2 5 at the point 2 1, .

34 If 3 54 3 3y x x y , find dy
dx

. 35 Find the slope of the normal line to the 
ellipse 3 192 2x y  at the point 1 4, .

Differentiating Inverse Functions
There’s a difficult-looking formula involving the derivatives of inverse functions, but before 
we get to it, look at Figure 10-2, which nicely sums up the whole idea.

Figure  10-2 shows a pair of inverse functions, f and g. Recall that inverse functions are  
symmetric with respect to the line, y x. As with any pair of inverse functions, if the point 
10 4,  is on one function, 4 10,  is on its inverse. And, because of the symmetry of the graphs, 

you can see that the slopes at those points are reciprocals: At 10 4,  the slope is 1
3

, and at 

4 10,  the slope is 
3
1

. That’s how the idea works graphically, and if you’re with me so far, 

you’ve got it down at least visually.
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The algebraic explanation is a bit trickier, however. The point 10 4,  on f can be written as 
10 10, f  and the slope at this point — and thus the derivative — can be expressed as f 10 . 

The point 4 10,  on g can be written as 4 4, g . Then, because f 10 4, you can replace the 
4’s in 4 4, g  with f s10  giving you f g f10 10, . The slope and derivative at this point 
can be expressed as g f 10 . These two slopes are reciprocals, so that gives you the equation

f
fg

10
1
10

This difficult equation expresses nothing more and nothing less than the two triangles on the 
two functions in Figure 10-2.

Using x instead of 10 gives you the general formula:

The derivative of an inverse function: If f and g are inverse functions, then

f x
g f x

1

In words, this formula says that the derivative of a function, f, with respect to x, is the reciprocal 
of the derivative of its inverse function with respect to f.

Okay, so maybe it was a lot trickier.

FIGURE 10-2:  
The graphs  

of inverse 
 functions, f x  

and g x .
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While I’m on the topic of differentiating inverse functions, let me give you the derivatives of 
the inverse trig functions. Here they are:

Derivatives of inverse trig functions.

d
dx

x
x

x

d
dx

x
x x

x

d
dx

arcsin ,

arcsec , ,

arcta

1

1
1

1

1
0 1

2

2

  

   

nn x
x

1
1 2

d
dx

x
x

x

d
dx

x
x x

x

d
dx

arccos ,

arccsc , ,

arc

1

1
1

1

1
0 1

2

2

  

   

ccot x
x
1

1 2

Memory aid for the derivatives of the inverse trig functions. To remember the derivatives of 
the inverse trig functions, notice that the derivative of each co-function (arccosine, arccose-
cant, and arccotangent) is the negative of its corresponding function. So, you really only need 
to memorize the derivatives of arcsine, arcsecant, and arctangent. These three have a 1 in the 
numerator. The two that contain the letter “S,” arcsin and arcsec, contain a Square root in the 
denominator and also a Subtraction sign. Arctan has no “S,” so no square root and no subtrac-
tion sign (it has an addition sign instead).

Q. Use the rule for the derivative of an inverse function to compute arcsin 1
2

, then con-
firm your answer using the derivative rule for arcsine.

A. 2
3

2 3
3

or

For inverse functions f and g,

f x
g f x

1 , so

arcsin
sin arcsin

sin

cos

1
2

1
1
2

1

6
1

6
1
3
2
2
3

2 3
3

  or  

Use the derivative rule for arcsine to confirm this answer.

arcsin 1
2

1

1 1
2

1
3
4

4
3

2
32

It checks.



CHAPTER 10  Differentiation Rules — Yeah, Man, It Rules      237

36 Use the formula for the derivative of an inverse function to compute the derivative of 
the arctangent function at x 1, then confirm your answer using the rule for the deriva-
tive of arctangent.

37 Given that f and g are inverse functions, that f 2 5, and that the line tangent to f at 
2 5,  has a slope of 4, find the equation of the line tangent to g at x 5.

Scaling the Heights of Higher-Order 
Derivatives

Finding a second, third, fourth, or higher derivative is incredibly simple. The second derivative 
of a function is just the derivative of its first derivative. The third derivative is the derivative of 
the second derivative, the fourth derivative is the derivative of the third, and so on. For exam-
ple, here’s a function and its first, second, third, and subsequent derivatives. In this problem, 
all the derivatives are obtained by the power rule:

f x x x x

f x x x

f x x

f x x

4 2

3

2

5 12 3

4 10 12

12 10

24

ff x

f x

f x

( )

( )

( )

.

.

4

5

6

24

0

0

0

0

etc

etc
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All polynomial functions like this one eventually go to zero when you differentiate repeatedly. 

Rational functions like f x
x
x

2 5
8

, on the other hand, get messier and messier as you take 

higher and higher derivatives. And, as shown in the following problem, the higher derivatives 

of sine and cosine are cyclical.

y x

y x

y x

y x

y x

sin

cos

sin

cos

sin( )4

The cycle repeats indefinitely with every multiple of four.

In Chapters 11 and 12, I show you several uses of higher derivatives — mainly second deriva-
tives. (Here’s a sneak preview: The first derivative of position is velocity, and the second deriv-
ative of position is acceleration.) But for now, let me give you just one of the main ideas in a 
nutshell. A first derivative, as you know, tells you how fast a function is changing — how fast 
it’s going up or down — that’s its slope. A second derivative tells you how fast the first deriva-
tive is changing — or, in other words, how fast the slope is changing. A third derivative tells 
you how fast the second derivative is changing, which tells you how fast the rate of change of 
the slope is changing. If you’re getting a bit lost here, don’t worry about it — I’m getting lost 
myself. It gets increasingly difficult to get a handle on what higher derivatives tell you as you 
go past the second derivative, because you start getting into a rate of change of a rate of change 
of a rate of change, and so on.

38 For y x 5, what’s the 1000th 

derivative?

39 For y x x3 3, find the first through 
fifth derivatives.
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40 For y x xsin cos , find the first 
through sixth derivatives.

41 For y xcos 2 , find the first, second, 
and third derivatives.

42 For y
x8
8 3ln

, find the sixth 

derivative.

43 For y xtan , find the fourth derivative.
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Practice Questions Answers and Explanations
1 f x 0

The derivative of any constant is zero.

2 g x 0

Because  is just a number, 3 is also just a number. Therefore, g x 3 is a horizontal line 
with a slope and a derivative of zero.

3 g x 0

If you feel bored because the first few problems were so easy, just enjoy it; it won’t last.

4 f x x20 3

Bring the 4 in front and multiply it by the 5; at the same time reduce the power by 1,  
from 4 to 3.

5 g x x
x3

10
3
10

2
2

or

You can just write down the derivative without showing any work (bring the 3 in front of  

the x, reduce the power 3 to a 2, and the 10 sits there doing nothing): g x
x3

10

2

.

But if you want to do it more methodically, it works like this:

1. Rewrite 
x 3

10
 so you can see an ordinary coefficient: 

1
10

3x .

2. Bring the 3 in front, multiply, and reduce the power by 1.

g x x
3

10
2. This is the same, of course, as 3

10

2x .

6 y x
5
2

7 2/

Rewrite with an exponent x x5 5 2/  and finish like Problem 5: Bring the power in front 

and reduce the power by one: 5
2

7 2x / .

To write your answer without a negative power, you write y
x
5

2 7 2/   or  y
x

5
2 7 2/ . Or you 

can write your answer without a fraction power, to wit: y
x

5

2 7
  or  5

2 7x
  or  5

2
7

x
 or 

5

2
7

x
. You say “po-tay-to,” I say “po-tah-to.”

7 s t t42 15

Note that the derivative of plain old t or plain old x (or any other variable) is simply 1. This is 
one of the simplest of all derivative rules, yet for some reason, many people get it wrong.
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8 y x x6 365 2

FOIL and then take the derivative.

y x x

x x

y x x

3 3

6 3

5 2

6 6

12 36

6 36

9 3 2 3x x x xcos sin

d
dx

x x x x x x

x x x x

x

3 3 3

2 3

2

3

3

cos cos

cos

c

cos

sin

oos sinx x x3

10 sin sec tanx x x

d
dx

x x x x x x

x x x x

(sin tan ) sin tan sin tan

cos tan sin sec

s

2

iin sec tanx x x

11 5 3 12x xln

When doing this derivative, you can deal with the “5” in two ways. First, you can ignore it 
temporarily, do the differentiating, then multiply your answer by 5. (If you do it this way, 
don’t forget that the “5” multiplies the entire derivative, not just the first term.) The second 
way is probably easier and better: Just make the “5” part of the first function. To wit:

d
dx

x x x x x x

x x x
x

x x x

5 5 5

15 5 1

15 5

3 3 3

2 3

2 2

ln ln ln

ln

ln lnor    5 3 12x x

12 e x x x xex xln 2 2

This is a challenging problem because, as you’ve probably noticed, there are three functions 
in this product instead of two. But it’s a piece o’ cake. Just make it two functions: either 
x e xx2 ln  or x e xx2 ln . Take your pick.

1. Rewrite this “triple function” as the product of two functions.

d
dx

x e xx2 ln

2. Apply the product rule.

d
dx

x e x x e x x e xx x x2 2 2ln ln ln

3. Apply the product rule to the first chunk in the Step 2 answer: x ex2 .

x e x e x e

xe x e

x x x

x x

2 2 2

22
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4. Plug that answer where it belongs in the Step 2 equation, do the derivative of ln ,x  and 
then simplify.

  x e x x e x

xe x e x x e
x

xe

x x

x x x

2 2

2 22 1

2

ln ln

ln

xx x x

x x x

x

x x e x xe

x e x xe x xe

xe x x

ln ln

ln ln

ln l

2

2 2

2

   or

   or

nn

ln

x

e x x x xex x

1

22

     or

You say “pa-jam-ahs,” I say “pa-jah-mas.”

13 3 2 3

2

x x x x
x

cos sin
cos

d
dx

x
x

x x x x

x

x x x x

3 3 3

2

2 3

2

3

cos
cos cos

cos

cos sin
cos xx

x x x x
x

3 2 3

2
cos sin

cos

14 sin cosx x
ex

d
dx

x
e

x e x e

e

e x e x
e

x

x

x x

x

x x

x

cos cos cos

sin cos

sin

2

2

cos x
e x

15 x x x x x x
x x

cos ln sin ln sin
ln

3
4 2

d
dx

x
x x

x x x x x x

x x

x x x

sin
ln

sin ln sin ln

ln

cos ln

3

3 3

3 2

3 ssin ln ln

ln

cos ln sin ln

x x x x x

x x

x x x x x x x
x

3 3

6 2

3 2 33 1

x x
x x x x x x x x

x x
x x x x

6 2

3 2 2

6 2
3

3

ln
cos ln sin ln sin

ln
cos ln sin lln sin

ln
x x

x x4 2
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16 f x x x4 3 4sin

Because the argument of the cosine function is something other than a plain old x, this is a 
chain rule problem.

1. Temporarily think of the argument, x 4, as a glob.

So, you’ve got f x globcos .

2. Use the regular derivative rule.

f x globcos ,  so

f x globsin

(This is only a provisional answer, so the “=” sign is false — egad! The math police are 
going to pull me over.)

3. Multiply this by the derivative of the argument.

f x glob globsin

4. Get rid of the glob.

The glob equals x 4, so glob  equals 4 3x .

f x x x

x x

sin

sin

4

4

3

3

4

4

17 g x x x3 2sin cos

Rewrite sin3 x as sin x 3 so that it’s clear that the outermost function is the cubing function. 
By the chain rule, the derivative of stuff 3 is 3 2stuff stuff . The stuff here is sin x  and thus stuff  
is cos x. So your final answer is 3 2sin cosx x, or 3 2sin cosx x .

18 s t t
t

sec ln2 1

The derivative of tan x  is sec2 x , so the derivative of tan lump  is sec2 lump lump . You 

better know by now that the derivative of ln t  is 1
t
, so your final result is sec ln2 1

t
t
.

19 y x e x12 2 4 3

The derivative of e x is e x, so by the chain rule, the derivative of e glob is e globglob . So, 
y e xx4 23

12  or 12 2 4 3
x e x .

20 f x x x x x x4 33 3 4 2sin sin cos

f x x x

f x x x x x

4 3

4 3 4 3

sin

sin sin
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Use the chain rule to solve sin3 x , then go back and finish the problem. sin3 x means 

sin x 3 and that’s stuff 3. The derivative of stuff 3 is 3 2stuff stuff , so the derivative of sin x 3 
is 3 2sin cosx x. Plug that in where it belongs, and then finish.

f x x x x x x

x x x x x

4 3 4 2

3 3 4 2

3

4 3

sin sin cos

sin sin cos

21 g x
x

x x
x

x
2
5 4

5
5 4

2

2

ln ln

Here you have the chain rule inside the quotient rule. Start with the quotient rule:

g x
x x x x

x

ln ln2 2

2

5 4 5 4

5 4

Next, take care of the chain rule solution for ln x 2 . You want the derivative of glob2 — 

that’s 2glob glob . So, the derivative of ln x 2 is 2 1ln x
x

. Now you can finish:

g x
x

x
x x x

x

x x
x

2 1 5 4 5 4

5 4

10 8 1

2

2

ln ln

ln 5

5 4

10 8 5
5 4

2
5 4

2

2

2

2

ln

ln ln

ln

x

x

x x x x

x x

x
x x

5
5 4

2

2

ln x

x

22 y x x x24 4 42 2 2cos sin

Triply nested!

y xcos 4 2 3

The derivative of stuff 3 is 3 2stuff stuff , so you have

y x x3 4 42 2 2cos cos

Now you do the derivative of cos glob , which is sin glob glob . Two down, one to go:

y x x x

x x x

3 4 4 4

3 4 4 8

2 2 2 2

2 2 2

cos sin

cos sin

24 4 42 2 2x x xcos sin
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23 d
dx

e xe e ex x x xtan tan sec3 2 22 2 2 2
6

Holy quadrupely nested quadruple nestedness, Batman! This is one for the Riddler.

  

    

d
dx

e

d
dx

e

e e

x

x

x x

tan

tan

tan tan

3

3

2

2

2

2 2
3    because( )

tan sec

d
dx

stuff stuff stuff

e e ex x

3 2

2 2

3

3
2 2 xx d

dx
glob glob glob

e

2 2

23

       because( tan sec )

tan xx x x lump lumpe e x
d
dx

e e lump
2 2 22 2sec ( )     because

3 2

6

2 2

2 2

2 2 2

2 2 2

tan sec

tan sec

e e e x

xe e e

x x x

x x x

24 p
x
x

sin
cos2

First, rewrite the original function with a power: p x xcos cos /1 2.

This works like stuff 1 2/ , so you use the power rule and then finish, as with all chain rule prob-
lems, by multiplying by stuff .

p stuff

p stuff stuff

1 2

1 21
2

The stuff is cos x, and the derivative of the stuff is thus sin x . Just plug those in for your 
final answer and then simplify:

p x x

x
x

x
x

1
2

2 2

1 2

1 2

cos sin

sin
cos

sin
cos

/

     or    
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25 dp
dq q q

1
2ln

You could use the quotient rule for this problem, but you were asked to use the chain rule. To 
do that, rewrite the original function as a power: p qln 1.

This works like stuff 1, so you use the power rule and then finish by multiplying by stuff :

p stuff

dp
dq

stuff stuff

1

21

The stuff is lnq, and, thus, stuff
q
1 . Plug those in and you’re done:

dp
dq

q
q

q q

1 1

1

2

2

ln

ln

26 On f x
x

ln
1

 
 at  5 5, ln ,   f x

1
5

This function can be modeled by ln blob , so you use the natural log rule and then finish by 
multiplying by blob .

f x blob

f x
blob

blob

ln

1

The blob is 1
x

, or x 1, so blob x 2. Now just plug in and simplify:

f x

x

x
x

1
1

12

Thus, f 5 1
5

.

27 y x1 1sin

The derivative of cos stuff  is sin stuff stuff , so you have

y x x

y x

x

cos

sin

sin

1

1 1 1

1 1

This equals 1 1sin x , by the way, which is just slightly easier on the eyes. Do you see why 
they’re equivalent?

28 y
x
y

2 1
3 12

1. Take the derivative of all four terms, using the chain rule (sort of) for all terms  
containing a y.

3 2 12y y x y
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2. Move all terms containing y  to the left, move all other terms to the right, and factor  
out y .

3 1 2

3 1 1 2

2

2

y y y x

y y x

3. Divide and voilà!

y
x
y

2 1
3 12

29 y
ye
y

x4
3 1

Follow the steps for Problem 28.

3 1 4

3 1 4

4

3 1
4
3 1

y
y

y e

y
y

e

y
e

y

ye
y

x

x

x x

30 y
y xy
y x x

3

2 2

2 1
3 5

This time, you have two products to deal with, so use the product rule for the two products 
and the regular rules for the other two terms.

x y x y y x y x y

xy x y y y x y y

x y

2 2 3 3

2 2 3

2

5 1

2 3 5 1

33 5 1 2

3 5 1 2

2 1
3

2 3

2 2 3

3

2

y y x y y xy

y x y x y xy

y
y xy
y x x 2 5

31 The slope is zero.

You need a slope, so you need the derivative.

y y y y
Implicit

Differentiation Chain

  � 2 3 3 3cos sin

  Rule
(twice nested)

Chain Rule
� ������ ������ �

cos 5 102x x
���� ���

y y y y y x x

y y y

2 3 10 5

1 6

3 3 2 2

2 3

cos sin cos

cos sin yy x x

y
x x

y y y

3 2

2

2 3 3

10 5

10 5

1 6

cos

cos

cos sin
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You need the slope at x 10 , y 0, so plug those numbers into the derivative. Actually, you 

can save yourself some work if you notice that the numerator will equal zero (because 

cos 5
10

0
2

) and the denominator will equal 1 (because y 0). Thus, the slope of the 

curve at this point is zero. (A tangent line with a zero slope is horizontal, and because this 
tangent line touches the curve where y 0, the tangent line is the x-axis.)

32 dy
dx

x
y

10
82sec

8 5

8 10

8 10

8 1

2

2

2

2

y x y

y x y y

y y y x

y y

tan

sec

sec

sec 00

10
8

10
82 2

x

y
x

y
x
ysec sec

33 The slope is –2.

For the slope of the tangent line, you need the derivative, of course, so take the derivative 
with implicit differentiation:

x y

x yy

yy x

y
x
y

x
y

2 2 5

2 2 0

2 2

2
2

To finish, just plug the x- and y-coordinates of the point into this derivative:

y 2 1
2
1

2, 

That’s a wrap. By the way, if you know that x y2 2 5 is the equation of a circle with center 
at 0, 0 , you can solve this problem with high school geometry. Do you see how?

34 dy
dx

x
y y
3 5

12 3

2

3 4

3 5

12 5 3 3

12 3 3 5

12

4 3 3

3 2 4

3 4 2

3

y x x y

y y x y

y y y y x

y y

y

33 3 5

3 5
12 3

4 2

2

3 4

y x

y
x

y y

35 The slope is 
4
3

.

When you see “normal line,” think “tangent line,” and when you see “tangent line” and/or 
“slope,” think “derivative”!
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So, get the derivative with implicit differentiation:

3 19

6 2 0

2 6

6
2

3

2 2x y

x yy

yy x

y
x
y

x
y

Plug in the point to get the slope of the tangent line:

y 1 4
3 1

4
3
4, 

Finally, the slope of the normal line is the opposite reciprocal of that, namely, 4
3

.

36 1
2

arctan
tan arctan

tan

sec

cos

1
1

1

1

4
1

4

4

2
2

1

2

2

2

22

Confirm this answer with the derivative of arctan:

arctan , arctanx
x

1
1

1 1
1 1

1
22 2  so, . It checks.

37 y x
1
4

3
4

You’re given that f and g are inverses and that f 2 5, so g 5 2. Thus, the problem is 
asking for the equation of the line tangent to g at the point 5, 2 . All you need, then, is the 
slope of g at that point, namely, g 5 , and you’ll be able to write the equation of the tangent 
line using the point-slope form of the equation of a line: y y m x x1 1 .

The line tangent to f at 2 5,  has a slope of 4, so that tells you that f 2 4. Now you can use 
the formula for the derivative of an inverse function to get g 5 :

g
f g

f

5
1

5

1
2

1
4
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Finally, plug everything into point-slope form:

y x

y x

2 1
4

5

1
4

3
4

38 The answer is zero.

y x

y x

y x

y x

y

y

y

5

20

60

180

180

0

0

4

3

2

4

5

6

7

And so on.

39 y x x

y x x

y x x

y x

y x

y

3

2 4

5

6

4 7

5

3

3 3

6 12

6 60

360

2520 8x

40 y x x

y x x

y x x

y x x

y

cos sin

sin cos

cos sin

sin cos4

5 cos sin

sin cos

x x

y x x6

Notice that the fourth derivative equals the original function, the fifth derivative equals the 
first, and so on. This cycle of four functions repeats ad infinitum.

41 y x x

y x x x

y x x x

2

2 4

8 12

2

2 2 2

3 2

sin

sin cos

sin coss x 2

y x

y x x

y x x

cos

sin

sin

2

2

2

2

2

      (chain rule)

2

2 2 2

2

2 2

x x

x x x x

sin ( )

sin cos

product rule

     (cchain rule)

2 42 2 2sin cosx x x
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y x x x x x x

x x

2 2 4 4

4

2 2 2 2 2

2

cos cos cos

cos 88 4 2

4 8 8

2 2 2

2 2 3 2

x x x x x

x x x x x x

cos sin

cos cos sin

8 123 2 2x x x xsin cos

42 ln 8 83 x

y
x

x8
8

1
8

83 3ln ln

I’ve rewritten the function this way simply to emphasize that while the 1
8 3ln

 may look a bit 

advanced, it’s just a number and just a coefficient. As such, it just sits there and has no effect 
on how you differentiate. The derivative of 8 x is 8 8x ln , so

y

y

y

x

x x

x

1
8

8

1
8

8 8 1
8

8

1
8

8 8 1
8

8

3

3 2

2

ln

ln
ln

ln

ln
ln

ln
xx

x x

x x

x

y

y

y

1
8

8 8 8

8 8 8 8

8 8 8 8

4

5

ln
ln

ln ln

ln ln ln 22

6 2 3

8

8 8 8 8 8

x

x xy ln ln ln

Is that a thing of beauty or what? (To best see the pattern of this series of derivatives, look at 
the far right of each line.)

43 8 162 3 4sec tan sec tanx x x x

y xtan

The first derivative is a memorized rule:

y xsec2

For the second derivative, you use the chain rule:

y x x x x x2 2 2sec sec tan sec tan
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The third derivative is a product rule problem where you use the chain rule for one of the 
product rule derivatives:

y x x

y x x x x x x

2

2 2

4

2

2 2

sec tan

sec sec tan tan sec sec

sec22 2 42x x xtan sec

Finally, for the fourth derivative, you have a product rule piece with two chain rules inside of 
it plus another chain rule piece!

y x x x

y x x x x x

4 2

4 2 2

2 2 4

4 2 2

sec tan sec

sec sec tan tan sec taan sec sec sec tan

sec tan sec tan sec

x x x x x

x x x x x

2 3

2 3 4 4

8

8 8 8 ttan

sec tan sec tan

x

x x x x8 162 3 4

Wasn’t that fun?

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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1 y xln sin

2 y ln sin
4

3 y xcos ln

4 y x xcos sin

5 y x xcos tan

6 y x xtan sec2 2

7 y xtan tan2

8 y
x
x

sin
sin

3

1

9 y x

10 xe yey x

11 y k e x    (k is a constant)

12 y
x

e x
ln

13 y e xln

14 x y ysin cos2 2

15 y e x xcos

16 Find the second derivative of y x
xln

.

17 Find the third derivative of y xsin2 .

Whaddya Know? Chapter 10 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

For problems 1 through 15, find dy
dx

.
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Answers to Chapter 10 Quiz
1 dy

dx
xcot

This is a chain rule problem, because the input of the function is something other than a 

plain old x. You begin with the ln rule (so the derivative of ln stuff  begins with 1
stuff

), then 

you finish (as with all chain rule problems) by multiplying that by the derivative of the stuff. 

The stuff here is sin x , and its derivative is cos x. So, that gives you 1
sin

cos
x

x, which simpli-

fies to cot x . (Note that this function, y xln sin , is defined only for angles in the first and 
second quadrants. Its derivative has the same restrictions. For the rest of the problems, I will 
skip mentioning any restrictions to the domain of the function or its derivative.)

2 dy
dx

0

sin
4

2
2

 and ln 2
2

 is just a number. So this function is a horizontal line with a slope and 

derivative of zero.

3 dy
dx

x
x

sin ln

Another chain rule problem. Use the cosine rule, then multiply by the derivative of the natu-
ral log.

y x

dy
dx

x
x

x
x

cos ln

sin ln
sin ln1

4 dy
dx

x xsin cos2 2

This is a straightforward product rule problem.

dy
dx

x x x x

x x x x

cos sin cos sin

sin sin cos cos

sin cos2 2x x

5 dy
dx

xcos

Did you use the product rule for this one like with Problem 4? Tricked you! cos tan sinx x x,  
so the derivative is simply cos x. Don’t forget to always be on the lookout for ways to simplify a  
problem using pre-algebra, algebra I and II, geometry, and trig. It’s easy to forget this when your 
mind is in calculus mode.

6 dy
dx

0

Did you use the derivative rules for tangent and secant for this problem? Tricked you again! 
One of the trig Pythagorean Identities is 1 2 2tan secx x . You can use this to simplify the 
given function: y x x x xtan sec tan tan2 2 2 21 1. This, of course, is a horizontal 
line, so its derivative is zero.
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7 dy
dx

x x x2 2 2tan tan sec tan sec

This is a twice-nested chain rule problem. Begin by rewriting the given function so that the 
trig power is on the outside (always a good idea): y xtan tan 2. You tackle this nested 
chain rule problem from outside to inside. So, you first use the power rule (for the power  
of 2), then you use the tangent rule (the derivative of tan stuff  begins with sec2 stuff ). 
Then, as always, you finish by multiplying by the derivative of the stuff.

y x

dy
dx

x x

x

tan tan

tan tan tan tan

tan tan s

2

12

2 eec tan sec2 2x x

8 dy
dx

x x x

x

sin cos sin

sin

2

2

3 2

1

This is a quotient rule problem where you need to use the chain rule when doing the deriva-
tive of the numerator.

y
x
x

dy
dx

x x x x

x

sin
sin

sin sin sin sin

sin

3

3 3

1

1 1

1 2

2 3

2

3 1

1

sin cos sin sin cos

sin

x x x x x

x

That’s the calculus. The rest of the solution is just simplification. One way to write your final 
answer is given above in bold.

9 dy
dx

x2 1

Don’t be thrown by the pi symbol. Pi is just a number, so doing the derivative of y x  
works exactly like doing the derivative of something like y x5 5. That derivative is 
5 252 5 1 4x x  (or ).

10 dy
dx

y e e
x e e

y e e
y e e

x y

y x

x y

x x   or   

You need to use implicit differentiation for this one. You begin by using the product rule.

xe ye

x e x e y e y e

y x

y y x x

Now, do the individual derivatives, remembering that you treat a y just like you treat the stuff 
in a chain rule problem.

1 e x e y y e y ey y x x

.
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Finally, collect all terms containing a y  on the left, factor out the y , and then divide.

x e y y e y e e

y x e e y e e

y
y e e
x e e

y x x y

y x x y

x y

y x     or   
y e e
y e e

x y

x x

That’s two ways to write your final answer. There are others.

11 dy
dx

ke

Don’t forget that a constant behaves exactly like an ordinary number, and e 2 72.  is just a 
number. So, the current problem works exactly like finding the derivative of something like 
y x3  whose derivative is the coefficient 3 . The current problem is no different.

12 dy
dx

x x
xex

1 ln

This is a straightforward quotient rule problem.

dy
dx

x e x e

e

x
e x e

e
e x x e

x

x x

x

x x

x

x x

ln ln

ln

ln

2

2

1

ee
x x

xe

x

x

2

1 ln

13 dy
dx

1

This is another problem where you’ve got to be on your toes looking for a possible simplifi-
cation before diving into the calculus. ln e x  equals x. You knew that, right? The derivative  
of x is 1.

14 dy
dx y y y

1
4

1
2 2sin cos sin

   or   

Be careful here. Had you been asked to find x  or dx
dy

, you could have done the derivative the 

ordinary way. But to find dy
dx

, you need to use implicit differentiation.

x y y

y y y y y y

y y y

sin cos

sin cos cos sin

sin cos

2 2

1 2 2

1 2 22

1 4

1
4

1
2 2

sin cos

sin cos

sin cos sin

y y

y y y

y
y y y

   or   
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15 dy
dx

e x x xx xcos cos sin

This is a chain rule problem (because the input of the exponential function is not just an x). 
The basic idea here is that the derivative of estuff  is e stuffstuff . The stuff is x xcos , which is a 
product, so to find stuff , you need to use, naturally, the product rule:

x x x x x x

x x x

cos cos cos

cos sin

Plug everything in where it belongs, and you’re done:

dy
dx

e stuff

e x x x

stuff

x xcos cos sin

16 y
x

x x
2

3

ln
ln

y
x
x

y
x x x x

x

x
x

y
x x x

ln

ln ln
ln

ln
ln

ln ln ln

2

2

2

1

1 1

1 1 2 1

1

2

2 2

2

4

2

ln

ln

ln ln ln

ln
ln ln

x

x

x
x x x

x
x

x x 2

2 1

2

4

3

3

ln
ln

ln ln
ln

ln
ln

x
x x

x x
x x
x

x x

17 y x x x4 2 8sin sin cosor

The first derivative is a chain rule problem:

y x

y x x

sin

sin cos

2

2
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From here, you could get the second derivative with the product rule, and then go on and get 
the third derivative. But there’s a shortcut: 2 2sin cos sinx x x , right? Thus,

y x x

x

2

2

sin cos

sin

Now the second and third derivatives are a snap. They’re both very simple chain rule 
derivatives.

y x

y x x x

2 2

4 2 8

cos

sin sin cos   or   
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Differentiation and 
the Shape of Curves

If you’ve read Chapters  9 and  10, you’re probably an expert at finding derivatives. This  
is a good thing, because in this chapter you use derivatives to understand the shape of  
functions — where they rise and where they fall, where they max out and bottom out, how 

they curve, and so on. Then in Chapter 12, you use your knowledge about the shape of functions 
to solve real-world problems.

Taking a Calculus Road Trip
Consider the graph of f x  in Figure 11-1.

Imagine that you’re driving along this function from left to right. Along your drive, there are 
several points of interest between a and l. All of them, except for the start and finish points, 
relate to the steepness of the road — in other words, its slope or derivative.

Chapter 11

IN THIS CHAPTER

 » Weathering the ups and downs of 
moody functions

 » Locating extrema

 » Using the first and second 
derivative tests

 » Interpreting concavity and points 
of inflection

 » Comparing the graphs of functions 
and derivatives

 » Muzzling the Mean Value 
Theorem — GRRRRR
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Now, prepare yourself — I’m going to throw lots of new terms and definitions at you all at once 
here. You shouldn’t, however, have much trouble with these ideas because they mostly involve 
commonsense notions like driving up or down an incline, or going over the crest of a hill.

Climb every mountain, ford every stream:  
Positive and negative slopes
First, notice that as you begin your trip at a, you’re climbing up. Thus, the function is increasing 
and its slope and derivative are therefore positive. You climb the hill till you reach the top at b 
where the road levels out. The road is level there, so the slope and derivative equal zero.

Because the derivative is zero at b, point b is called a stationary point of the function. Point b is 
also a local maximum or relative maximum of f because it’s the top of a hill. To be a local max, 
b just has to be the highest point in its immediate neighborhood. It doesn’t matter that the 
nearby hill at g is even higher.

After reaching the crest of the hill at b, you start going down — duh. So, after b, the slope and 
derivative are negative and the function is decreasing. To the left of every local max, the slope is 
positive; to the right of a max, the slope is negative.

I can’t think of a travel metaphor for this section: 
Concavity and inflection points
The next point of interest is c. Can you see that as you go down from b to c, the road gets steeper 
and steeper, but that after c, although you’re still going down, the road is gradually starting to 
curve up again and get less steep? The little down arrow between b and c in Figure 11-1 indicates 
that this section of the road is curving down — the function is said to be concave down there. As 
you can see, the road is also concave down between a and b.

Concavity poetry: Down looks like a frown, up looks like a cup. A portion of a function that’s 
concave down looks like a frown. Where it’s concave up, like between c and e, it looks like a cup.

FIGURE 11-1:  
The graph of 

f x  with 
several points 

of interest.
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Wherever a function is concave down, its derivative (and slope) are decreasing; wherever a func-
tion is concave up, its derivative (and slope) are increasing.

Okay, so the road is concave down until c where it switches to concave up. Because the concavity 
switches at c, it’s a point of inflection. The point c is also the steepest point on this stretch of the 
road. Inflection points are always at the steepest — or least steep — points in their immediate 
neighborhoods.

Be careful with function sections that have a negative slope. Point c is the steepest point in its 
neighborhood because it has a bigger negative slope than any other nearby point. But remem-
ber, a big negative number is actually a small number, so the slope and derivative at c are actu-
ally the smallest of all the points in the neighborhood. From b to c, the derivative of the function 
is decreasing (because it’s becoming a bigger negative). From c to d, the derivative is increasing 
(because it’s becoming a smaller negative). Got it?

This vale of tears: A local minimum
Let’s get back to your drive. After point c, you keep going down till you reach d, the bottom of 
a valley. Point d is another stationary point because the road is level there and the derivative 
is zero. Point d is also a local or relative minimum because it’s the lowest point in its immediate 
neighborhood.

A scenic overlook: The absolute maximum
After d, you travel up, passing e, which is another inflection point. It’s the steepest point 
between d and g and the point where the derivative is greatest. You stop at the scenic overlook 
at g, another stationary point and another local max. Point g is also the absolute maximum on the 
interval from a to l because it’s the very highest point on the road from a to l.

Car trouble: Teetering on the corner
Going down from g, you pass another inflection point, h, another local min, i, then you go up to 
j, where you foolishly try to drive over the peak. Your front wheels make it over, but your car’s 
chassis gets stuck on the precipice, leaving you teetering up and down with your wheels spin-
ning. Your car teeters at j because you can’t draw a tangent line there. No tangent line means 
no slope, and no slope means no derivative — or you can say that the derivative at j is undefined. 
A sharp turning point like j is called a corner. (By the way, be careful with the expressions “no 
slope” and “no derivative.” In this context, “no” means nonexistent, NOT zero.)

It’s all downhill from here
After dislodging your car, you head down, with the road getting less and less steep until it flat-
tens out for an instant at k. (Again, note that because the slope and the derivative are becoming 
smaller and smaller negative numbers on the way to k, they are actually increasing.) Point k is 
another stationary point because its derivative is zero. It’s also another inflection point because 
the concavity switches from up to down at k. After passing k, you go down to l, your final desti-
nation. Because l is the endpoint of the interval, it’s not a local min — endpoints never qualify 
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as local mins or maxes — but it is the absolute minimum on the interval because it’s the very 
lowest point from a to l.

Hope you enjoyed your trip.

Your travel diary
I want to review your trip and some of the previous terms and definitions, and introduce yet a 
few more terms:

 » The function f in Figure 11-1 has a derivative of zero at stationary points (level points) b, d, 
g, i, and k. At j, the derivative is undefined. These points where the derivative is either zero 
or undefined are the critical points of the function. The x-values of these critical points are 
called the critical numbers of the function. (Note that critical numbers must be within a func-
tion’s domain.)

 » All local maxes and mins — the peaks and valleys — must occur at critical points. However, 
not all critical points are necessarily local maxes or mins. Point k, for instance, is a critical 
point, but neither a max nor a min. Local maximums and minimums — or maxima and 
minima — are called, collectively, local extrema of the function. (Use a lot of these fancy 
plurals if you want to sound like a professor.) A single local max or min is a local extremum. 
The absolute max is the highest point on the road from a to l. The absolute min is the lowest 
point.

 » The function is increasing whenever you’re going up, where the derivative is positive; it’s 
decreasing whenever you’re going down, where the derivative is negative. The function is 
also decreasing at point k, a horizontal inflection point, even though the slope and derivative 
are zero there. I realize that seems a bit odd, but that’s the way it works — take my word 
for it. At all horizontal inflection points, a function is either increasing or decreasing. At local 
extrema b, d, g, i, and j, the function is neither increasing nor decreasing.

 » The function is concave up wherever it looks like a cup or a smile (some say where it “holds 
water”) and concave down wherever it looks like a frown (or “spills water”). Inflection points 
c, e, h, and k are where the concavity switches from up to down or vice versa. Inflection 
points are also the steepest or least steep points in their immediate neighborhoods.

Finding Local Extrema — My Ma,  
She’s Like, Totally Extreme

Now that you have the preceding section under your belt and know what local extrema are, 
you need to know how to do the math to find them. You saw in the last section that all local 
extrema occur at critical points of a function — that’s where the derivative is zero or undefined 
(but don’t forget that critical points aren’t always local extrema). So, the first step in finding 
a function’s local extrema is to find its critical numbers (the x-values of the critical points).
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Cranking out the critical numbers
Find the critical numbers of f x x x3 205 3. See Figure 11-2.

Here’s what you do:

1. Find the first derivative of f using the power rule.

f x x x

f x x x

3 20

15 60

5 3

4 2

2. Set the derivative equal to zero and solve for x.

15 60 0

15 4 0

15 2 2 0

4 2

2 2

2

x x

x x

x x x

15 0 2 0 2 0

0 2 2

2x x x

x x x

or or

or or

These three x-values are critical numbers of f. Additional critical numbers could exist if the first 
derivative were undefined at some x-values, but because the derivative, 15 604 2x x , is defined 
for all input values, the above solution set, 0 2 2, , , and   is the complete list of critical numbers. 
Because the derivative of f equals zero at these three critical numbers, the curve has horizontal 
tangents at these numbers. In Figure 11-2, you can see the little horizontal tangent lines drawn 
where x 2 and x 2. The third horizontal tangent line where x 0 is the x-axis.

FIGURE 11-2: 
The graph of 

f x

x x3 205 3.
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A curve has a horizontal tangent line wherever its derivative is zero, namely, at its station-
ary points. A curve will have horizontal tangent lines at all of its local mins and maxes (except 
where the derivative is undefined like, for example, at sharp corners like point j in Figure 11-1) 
and at all of its horizontal inflection points.

Now that you’ve got the list of critical numbers, you need to determine whether peaks or valleys 
or inflection points occur at those x-values. You can do this with either the first derivative test 
or the second derivative test. I suppose you may be wondering why you have to test the criti-
cal numbers when you can see where the peaks and valleys are by just looking at the graph in  
Figure 11-2 — which you can, of course, reproduce on your graphing calculator. Good point. 
Okay, so this problem  — not to mention countless other problems you’ve done in math 
courses — is somewhat contrived and impractical. So what else is new?

The first derivative test
The first derivative test is based on the Nobel-Prize-caliber ideas that as you go over the top of 
a hill, first you go up and then you go down, and that when you drive into and out of a valley, 
you go down and then up. This calculus stuff is pretty amazing, isn’t it?

Here’s how you use the test. Take a number line and put down the critical numbers you found 
above: 0 2 2, , and . See Figure 11-3.

This number line is now divided into four regions: to the left of 2, from 2 to 0, from 0 to 2, 
and to the right of 2. Pick a value from each region, plug it into the first derivative, and note 
whether your result is positive or negative. Let’s use the numbers –3, –1, 1, and 3 to test the 
regions:

f x x x

f

f

15 60

3 15 3 60 3 15 81 60 9 675

1

4 2

4 2

15 1 60 1 15 60 45

15 1 60 1 15 60 451

4 2

4 2f

f 33 15 3 60 3 15 81 60 9 6754 2

By the way, if you had noticed that this first derivative is an even function, you’d have known, 
without doing the computation, that f f1 1  and that f f3 3 . (Chapter 5 discusses 
even functions. A polynomial function with all even powers, like f x  shown here, is one type 
of even function.)

FIGURE 11-3: 
The critical 

numbers of 
f x

x x3 205 3.
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These four results are, respectively, positive, negative, negative, and positive. Now, take your 
number line, mark each region with the appropriate positive or negative sign, and indicate 
where the function is increasing (where the derivative is positive) and decreasing (where the 
derivative is negative). The result is a so-called sign graph. See Figure 11-4. (The four right-
pointing arrows at the top of the figure simply indicate that “increasing” and “decreasing” tell 
you what’s happening as you move along the function from left to right.)

Figure 11-4 simply tells you what you already know if you’ve looked at the graph of f — that the 
function goes up until 2, down from 2 to 0, further down from 0 to 2, and up again from 2 on.

Now here’s the rocket science. The function switches from increasing to decreasing at 2; in 
other words, you go up to 2 and then down. So, at 2 you have the top of a hill or a local maxi-
mum. Conversely, because the function switches from decreasing to increasing at 2, you have 
the bottom of a valley there or a local minimum. And because the sign of the first derivative 
doesn’t switch (from positive to negative or vice versa) at zero, there’s neither a min nor a max 
at that x-value (you usually — like here — get a horizontal inflection point when this happens).

The last step is to obtain the function values, in other words the heights, of the two local 
extrema by plugging the x-values into the original function:

f x x x

f

f

3 20

2 3 2 20 2 64

2 3 2 20 2 64

5 3

5 3

5 3

Thus, the local max is located at ( , )2 64  and the local min is at ( , )2 64 . You’re done.

To use the first derivative test to check for a local extremum at a particular critical number, 
the function must be continuous at that x-value.

FIGURE 11-4: 
The sign  

graph for 
f x

x x3 205 3.
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Q. Use the first derivative test to determine the location of the local extrema of 
g x x x15 3 5. Refer to the following figure.

A. The local min is at 3 162, , and the local max is at 3 162,  .

1. Find the first derivative of g using the power rule.

g x x x

g x x x

15

45 5

3 5

2 4

2. Set the derivative equal to zero and solve for x to get the critical numbers of g. 

45 5 0

5 9 0

5 3 3 0

2 4

2 2

2

x x

x x

x x x

5 0

0

3 0

3

3 0

3

2x

x

x

x

x

x    
or

     
or

        

If the first derivative was undefined for some x-values in the domain of g, there  
could be more critical numbers, but because g x x x45 52 4 is defined for all real 
numbers, 0, 3, –3 is the complete list of critical numbers of g.
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3. Plot the three critical numbers on a number line, noting that they create four 
regions (see the figure in Step 5).

4. Plug a number from each of the four regions into the derivative, noting whether the 
results are positive or negative.

If you’ve already factored the derivative (see Step 2), it’s usually best to use the fac-
tored form of the derivative in this step. And all you need to do is note whether the 
results are positive or negative. There’s no need to compute the exact results. To wit:

g x x x x

g Pos Pos Neg Neg

g Po

5 3 3

4

1

2

. . . .

ss Pos Pos Pos

g Pos Pos Pos Pos

g P

. . . .

. . . .1

4 oos Neg Pos Neg. . . .

(A slight shortcut here is to notice that since g x  is an even function, g 1  must 
equal g 1 , and g 4  must equal g 4 ).

5. Draw a “sign graph.” Take your number line and label each region — based on your 
results from Step 4 — positive (increasing) or negative (decreasing). Refer to the 
following figure.

This sign graph tells you where the function is increasing (rising as you go from left 
to right) and where it is decreasing (falling as you go from left to right).

6. Use the sign graph to determine whether there’s a local minimum, local maximum, 
or neither at each critical number.

Because g goes down on its way to x 3 and up after x 3, it must bottom out at 
x 3, so there’s a local min there. Conversely, g peaks at x 3 because it rises until 
x 3, and then falls. There is thus a local max at x 3. And because g climbs on its 
way to x 0 and then climbs further, there is neither a min nor a max at x 0.

7. Determine the y-values of the local extrema by plugging the x-values into the origi-
nal function.

g

g

3 15 3 3

162

3 15 3 3

162

3 5

3 5

So, the local min is at – , –3 162 , and the local max is at 3 162, .
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1 Use the first derivative to find the local 
extrema of f x x x6 4 12 3/ .

2 Find the local extrema of 

h x
x

x
2

2
2

cos  in the interval 

0 2,  with the first derivative test.

3 Locate the local extrema of y x 2 2 3
8

/
 

with the first derivative test.
4 Using the first derivative test, deter-

mine the local extrema of s t
t

4

2
4

2
.

The second derivative test — no, no,  
anything but another test!
The second derivative test is based on two more prize-winning ideas: first, that at the crest of a 
hill, a road has a hump shape — in other words, it’s curving down or concave down; and second, 
that at the bottom of a valley, a road is cup-shaped, so it’s curving up or concave up.
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The concavity of a function at a point is given by its second derivative: a positive second deriva-
tive means the function is concave up, a negative second derivative means the function is con-
cave down, and a second derivative of zero is inconclusive (the function could be concave up, 
concave down, or there could be an inflection point there).

When the second derivative test fails. If the second derivative equals zero (or is undefined) at a 
particular critical number, the second derivative test fails and you learn nothing about whether 
there’s a local extremum there. When this happens, you have to use the first derivative test to 
determine whether or not you have a local extremum.

Let’s return to the function f x x3 205 3 that I analyzed in the previous section with the first 
derivative test. To use the second derivative test for f, all you have to do is find its second 
derivative and then plug in its critical numbers, which you found before (–2, 0, and 2), and note 
whether your results are positive, negative, or zero. To wit —

f x x x

f x x x

x xf

3 20

15 60

60 120

5 3

4 2

3

   (power rule)

xx

f

f

   (power rule)

2 60 2 120 2 240

0 60 0

3

3 120 0 0

2 60 2 120 2 2403f

At x 2, the second derivative is negative (–240). This tells you that f is concave down where x 
equals –2, and therefore that there’s a local max there. The second derivative is positive (240) 
where x is 2, so f is concave up and thus there’s a local min at x 2. Because the second deriva-
tive equals zero at x 0, the second derivative test fails for that critical number — it tells you 
nothing about the concavity at x 0 or whether there’s a local min or max there. When this 
happens, you have to use the first derivative test.

After you find a function’s critical numbers, you have to decide whether to use the first or the 
second derivative test to find the extrema. For some functions, the second derivative test is the 
easier of the two because 1) the second derivative is usually easy to get, 2) you can often plug 
the critical numbers into the second derivative and do a quick computation, and 3) you will 
often get non-zero results and thus get your answers without having to do a sign graph and 
test regions. (Points 1, 2, and 3 all apply to what you just saw with f 2  and f 2 .) On the 
other hand, testing regions on a sign graph (the first derivative test) is also fairly quick and 
easy, and if the second derivative test fails (see the warning), you’ll have to do that anyway. 
(You just saw this with f 0 .) As you do practice problems, you’ll get a feel for when to use 
each test.

Now go through the first and second derivative tests one more time with the following example.
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Q. Find the local extrema of g x x x2 3 42 3/ . See the following figure.

A. There’s a local min at 1,  3 , and a local max at 0,  4 .

1. Find the first derivative of g.

g x x x

g x x

2 3 4

2 2

2 3

1 3

/

/ (power rule)

2. Set the derivative equal to zero and solve.

2 2 0

2 2

1

1

1

1 3

1 3

1 3

1 3 3 3

x

x

x

x

x

/

/

/

/

Thus 1 is a critical number.

3. Determine whether the first derivative is undefined for any x-values.

The derivative, 2 2 1 3x / , which equals 2 2
3 x

, is undefined at x 0. Thus, zero is 

another critical number. From Steps 2 and 3, you’ve got the complete list of critical 
numbers of g: 0 and 1.

4. Plot the critical numbers on a number line, and then use the first derivative test to 
figure out the sign of each region.

You can use –1, 0.5, and 2 as test numbers:

g x x

g

g

g

2 2

1 4

0 5 0 52

2 0 41

1 3/

. .

.

 (pos.)

(neg.)

    (pos.)
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The following figure shows the sign graph.

Because the first derivative of g switches from positive to negative at zero, there’s a 
local max there. And because the first derivative switches from negative to positive  
at 1, there’s a local min at x 1.

5. Plug the critical numbers into g to obtain the function values (the heights) of these 
two local extrema.

g x x x

g

g

2 3 4

0 4

1 3

2 3/

So, there’s a local max at 0 4,  and a local min at 1, 3 . You’re done.

You could have used the second derivative test instead of the first derivative test in Step 4. First, 
you need the second derivative of g, which is, as you know, the derivative of its first derivative:

g x x

g x x

2 2

2
3

1 3

4 3

/

/

Evaluate the second derivative at x 1 (the critical number from Step 2):

g 1 2
3

Because g 1  is positive, you know that g is concave up at x 1 and, therefore, that there’s a 
local min there.

At the other critical number, x 0 (from Step 3), the first derivative is undefined. The second 
derivative test is no help where the first derivative is undefined, so you’ve got to use the first 
derivative test for that critical number.
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5 Use the second derivative test to analyze the critical numbers of the function from 

Problem 2, h x
x

x
2

2
2

cos .

6 Find the local extrema of  f x x x2 6 13 2   with the second derivative test.

7 Find the local extrema of  y x x2 1
3

4 6  with the second derivative test.

8 Consider the function from Problem 3, y x 2 2 3
8

/
, and the function s t t8 21

4
7
4

3

. 

Which of the two functions is easier to analyze with the second derivative test, and 
why? For the function you pick, use the second derivative test to find its local extrema.
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Finding Absolute Extrema on a Closed Interval
The basic idea in this section is quite simple. Instead of finding all local extrema as in the pre-
vious sections (all the peaks and all the valleys), you just want to determine the single highest 
point and single lowest point along a continuous function in some closed interval. These absolute 
extrema can occur at a peak or valley or at an edge(s) of the interval. (Note: You could have, say, 
two peaks at the same height so there’d be a tie for the absolute max; but there would still be 
exactly one y-value that’s the absolute maximum value on the interval.)

A closed interval like 2 5,  includes the endpoints 2 and 5. An open interval like ( , )2 5  excludes 
the endpoints.

Before you practice with some problems, look at Figure  11-5 to see two standard absolute 
extrema problems (continuous functions on a closed interval), and at Figure 11-6 for four strange 
functions that don’t have the standard single absolute max and single absolute min.

Finding the absolute max and min is a snap. All you do is compute the critical numbers of the 
function in the given interval, determine the height of the function at each critical number, 
and then figure the height of the function at the two endpoints of the interval. The greatest of 
this set of heights is the absolute max; and the least, of course, is the absolute min. Here’s an 
example:

Find the absolute max and min of h x x xcos sin2 2  in the closed interval 
2

2, .

FIGURE 11-5: 
Two standard 

absolute 
extrema 

functions.
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1. Find the critical numbers of h in the open interval 
2

2,  .

(See Chapter 6 if you’re a little rusty on trig functions.)

h x x x

h x x x

cos sin

sin cos

2 2

2 2 2 (by the chain rule))

(now divide both sides by0 2 2 2 2

0 2

sin cos )

sin c

x x

x oos

sin cos cos c

x

x x x

 (now use a trig identity)

(factor out0 2 oos )

cos sin

x

x x0 2 1

cos sin

sin

,

x x

x x

x

0 2 1 0

3
2

1
2

7
6

11
6

 or 

FIGURE 11-6: 
Four  

nonstandard 
absolute 
extrema 

functions.
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Thus, the zeros of h  are 7
6

, 3
2

, and 11
6

, and because h  is defined for all input 

numbers, this is the complete list of critical numbers.

2. Compute the function values (the heights) at each critical number.

h x x x

h

cos sin

cos sin

. .

2 2

7
6

2 7
6

2 7
6

0 5 2 0 5 1 5

3
2

2 3
2

2 3
2

1 2 1 1

11
6

2 1

.

cos sin

cos

h

h
11
6

2 11
6

0 5 2 0 5 1 5

sin

. . .

3. Determine the function values at the endpoints of the interval.

h

h

2
2

2
2

2
1 2 1 3

2 2 2 2 2

cos sin

cos sin

1 2 0 1

So, from Steps 2 and 3, you’ve found five heights: 1.5, 1, 1.5, 3, and 1. The largest 
number in this list, 1.5, is the absolute max; the smallest, 3, is the absolute min.

The absolute max occurs at two points: 7
6

1 5, .  and 11
6

1 5, . . The absolute min occurs at one 

of the endpoints, 
2

3, , and is thus called an endpoint extremum.

Table 11-1 shows the values of h x x xcos sin2 2  at the three critical numbers in the inter-
val from 

2
 to 2  and at the interval’s endpoints; Figure 11-7 shows the graph of h.

A couple of observations. First, as you can see in Figure 11-7, the points 7
6

1 5, .  and 11
6

1 5, .  

are both local maxima of h, and the point 3
2

1,  is a local minimum of h. However, if you want 

only to find the absolute extrema on a closed interval, you don’t have to pay any attention to 

Table 11-1 Values of  h x x xcos sin2 2   at the Critical  

   Numbers and Endpoints for the Interval  2
2,  

h x( ) 3 1.5 1 1.5 1

x
2

7
6

3
2

11
6

2
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whether critical points are local maxes, mins, or neither. And, thus, you don’t have to bother to 
use the first or second derivative tests. All you have to do is determine the heights at the critical 
numbers and at the endpoints and then pick the largest and smallest numbers from this list. 
Second, the absolute max and min in the given interval tell you nothing about how the func-
tion behaves outside the interval. Function h, for instance, might rise higher than 1.5 outside  

the interval from 
2

 to 2  (although it doesn’t), and it might go lower than –3 (although it 
never does).

Q. Determine the absolute min and absolute max of f x x x in the interval 1 1
2

, .

A. The absolute max is 2 and the absolute min is zero.

1. Get all the critical numbers.

The first step is to determine the derivative, set it equal to zero, and solve, but before 
you can get the derivative, you have to split the function in two to get rid of the abso-
lute value bars:

I. When and, thus,

        

,x x x

f x x x

f x
x

x

0

1
2

1

0 1
2

1

2 xx

x

1

1
4

II. When and, thus,

        

x x x

f x x x

f x
x

0

1
2

1

0 1

,

22
1

2 1
x

x

No solution

Now, determine whether the derivative is undefined anywhere.

The derivative is undefined at x 0 because the denominator of the derivative can’t 
equal zero. (If you graph this function [always a good idea], you’ll also see the sharp 

FIGURE 11-7: 
The graph of 

h x x

x

cos

sin .

2

2
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9 Find the absolute extrema of 
f x x xsin cos  on the  
interval 0 2, .

10 Find the absolute extrema of 
g x x x2 3 53 2  on the  
interval 0 5 0 5. , . .

11 Find the absolute extrema of 
p x x x1 0 54 5/ .  on the  
interval 2 31, .

12 Find the absolute extrema of 
q x x x2 2 4cos sin  on the  

interval 
2

5
4

, .

corner at x 0 and thus know immediately that the derivative is undefined there.) 

The critical numbers are therefore 0 and 1
4

.

2. Compute the function values (the heights) at all the critical numbers. 

f f
1
4

1
4

0 0

It’s just a coincidence, by the way, that in both cases the input equals the output.

3. Compute the function values at the two edges of the interval. 

f f1 2 1
2

2
2

1
2

0 207.

4. The highest of all the function values from Steps 2 and 3 is the absolute max; the 
lowest of all the values from Steps 2 and 3 is the absolute min.

Thus, 2 is the absolute max and zero is the absolute min.

(This particular problem was more involved than usual because of that extra twist in 
Step 1 involving the absolute value bars.)
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Finding Absolute Extrema over a  
Function’s Entire Domain

A function’s absolute max and absolute min over its entire domain are the highest and lowest val-
ues (heights) of the function anywhere it’s defined. Unlike in the previous section where you 
saw that a continuous function must have both an absolute max and min on a closed interval, 
when you consider a function’s entire domain, a function can have an absolute max or min, or 
both, or neither. For example, the parabola y x 2 has an absolute min at the point 0, 0  — the 
bottom of its cup shape — but no absolute max because it goes up forever to the left and the 
right. You might think that its absolute max would be infinity, but infinity is not a number and 
thus it doesn’t qualify as a maximum (ditto for using negative infinity as an absolute min).

On the one hand, the idea of a function’s very highest point and very lowest point seems pretty 
simple, doesn’t it? But there’s a wrench in the works. The wrench is the category of things that 
don’t qualify as maxes or mins.

I already mentioned that infinity and negative infinity don’t qualify. Then there are empty 
“endpoints” like 3, 4  on f x  in Figure 11-8. The function f x  doesn’t have an absolute max. 
Its max isn’t 4 because it never gets to 4, and its max can’t be anything less than 4, like 3.999, 
because it gets higher than that, say 3.9999. Similarly, an infinitesimal hole in a function can’t 
qualify as a max or min. For example, consider the absolute value function, y x , you know, 
the V-shaped function with the sharp corner at the origin. The function y x  has no absolute 
max because it goes up to infinity. Its absolute min is zero (at 0, 0  of course). But now, say 
you alter the function slightly by plucking out the point at 0, 0  and leaving an infinitesimal 
hole there. Now the function has no absolute minimum.

Now consider g x  in Figure 11-8. It shows another type of situation that doesn’t qualify as a 
min (or max). The function g x  has no absolute min. Going left, g crawls along the horizontal 
asymptote at y 0, always getting lower and lower, but never getting as low as zero. Since it 
never gets to zero, zero can’t be the absolute min, and there can’t be any other absolute min 
(like, say, 0.0001) because at some point way to the left, g will get below any small number you 
can name.

Keeping this in mind, here’s an approach for locating a function’s absolute maximum and 
minimum (if there are any):

1. Find the height of the function at each of its critical numbers; in other words, find the 
function’s critical points.

(Recall that a function’s critical numbers are the x-values within the function’s domain 
where the derivative is zero or undefined; critical points are the points on the function 
corresponding to the critical numbers.) If a function has an absolute max and/or min, each 
must occur at a critical point, so, once you have all of a function’s critical points, you have all of 
the candidates for an absolute max and an absolute min.

You just did something similar in Step 1 of both examples in the previous section, but 
this time you consider all the critical points, not just those in a given interval. The 
highest of these points will be the function’s absolute max unless the function goes 
higher than that point, in which case the function won’t have an absolute max. The 
lowest of those points will be the function’s absolute min unless the function goes 
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lower than that point, in which case it won’t have an absolute min. If you apply Step 1 
to g x  in Figure 11-8, you’ll find that it has no critical points. When this happens, 
you’re done. The function has neither an absolute max nor an absolute min.

2. Graph the function to see how high and low it goes.

Look at the graph of the function. If you see that the function gets higher than the 
highest of its critical points, it has no absolute max; if it goes lower than the lowest of 
its critical points, it has no absolute min. Applying Steps 1 and 2 to f x  in Figure 11-8, 
Step 1 would reveal two critical points: the endpoint at 3 1,  (where the first derivative 
is undefined) and the local max at roughly 4 1 1 3. , .  (where the first derivative equals 
zero). Those two critical points are the only candidates for an absolute min or max. But 
then in Step 2, you’d see that f goes higher than the higher of the critical points, 
4 1 1 3. , . , and that it, therefore, has no absolute max; and you’d see that f goes lower 

than the lower of the critical points, 3 1, , and, thus, that it has no absolute min.

3. Use the first derivative test and a sign graph to analyze the shape of the function.

You may have your final answer after finishing Step 2 (as in this example), but if any 
candidates for an absolute max or min remain after finishing Step 2, you may want to 
use a sign graph to analyze the shape of the function — especially its end behavior 
(what happens to a function way to the left and way to the right) — before you can 
positively conclude whether there is an absolute max and/or min.

Q. Find the absolute maximum and absolute minimum of f x x xln  over its entire 
domain.

A. The absolute maximum is 1 1,  and f has no absolute minimum.

1. Find all of the function’s critical points.

To find the critical points of f, first set the derivative of f equal to zero and solve:

f x x x

f x
x

x
x

ln

1 1

0 1 1

1

FIGURE 11-8: 
Two functions 

with no 
absolute 
extrema.
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So, 1 is a critical number. And don’t forget that you always have to also check for any 

x-values where the derivative is undefined. The derivative, 1 1
x

, is undefined at x 0, 

but 0 is not in f’s domain, so 0 is not a critical number. Thus, 1 is the only critical 
number.

Plugging 1 into f gives you f’s only critical point.

f 1 1 1

1

ln

Thus, f’s critical point is at 1 1, . This is the only candidate for an absolute  
max or min.

2. Looking at the graph of f, you can see f curving down from 1 1,  to the left and to 
the right.

Since 1 1,  is the only candidate for an absolute max or a min, you can conclude  
that f has no absolute min. And it certainly appears from the graph that 1 1,  is  
the absolute max, but you should confirm that in Step 3.

3. The only critical number is x 1, so that’s the only number on your sign graph.

Testing any number between 0 and 1 in the derivative produces a positive result 
(x-values less than or equal to 0 are not in f’s domain), and testing any number 
greater than 1 produces a negative result. That tells you that f is increasing every-
where between 0 and 1 and decreasing everywhere from 1 to infinity. Thus, 1 1,  is 
the absolute maximum.

13 Find the absolute maximum and absolute minimum of f x x x4 22  over its entire 
domain.
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14 Find the absolute maximum and absolute minimum of functions A, B, C, and D shown 
in the following figure.

Locating Concavity and Inflection Points
Look back at the function f x x x3 205 3 in Figure 11-2. You used the three 
critical numbers of f, –2, 0, and 2, to find the function’s local extrema: 2, 64  
and 2 64, . This section investigates what happens elsewhere on this  
function — specifically, where it’s concave up or down and where the concavity 
switches (the inflection points).
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The process for finding concavity and inflection points is analogous to using the first derivative 
test and the sign graph to find local extrema, except that now you use the second derivative. 
(See the section “Finding Local Extrema — My Ma, She’s Like, Totally Extreme.”) Here’s what 
you do to find the intervals of concavity and the inflection points of f x x x3 205 3:

1. Find the second derivative of f.

f x x x

f x x

f x x

3 20

15 60

60 120

5 3

4 2

3

(the power rule)

(the  power rule)

2. Set the second derivative equal to zero and solve.

60 120 0

60 2 0

3

2

x x

x x

60 0 2 0

0 2

2

2

2

x x

x x

x

or

3. Determine whether the second derivative is undefined for any x-values.

f x x60 1203  is defined for all real numbers, so there are no other x-values to add to 
the list from Step 2. Thus, the complete list is 2, 0, and 2 .

Steps 2 and 3 give you what you could call “second derivative critical numbers” of f 
because they’re analogous to the critical numbers of f that you find using the first 
derivative. But, as far as I’m aware, this set of numbers has no special name. The 
important thing to know is that this list is made up of the zeros of f  plus any x-values 
where f  is undefined.

4. Plot these numbers on a number line and test the regions with the second derivative.

Use  2, 1, 1, and 2 as test numbers.

f x x

f

f

f

x 60 120

240

60

2

1

1

3

(neg.)

(pos.) 

60

2402

   

  

(neg.)

(pos.)f

Figure 11-9 shows the sign graph.

FIGURE 11-9: 
A second 

derivative sign 
graph for 

f x

x x3 205 3.
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A positive sign on this sign graph tells you that the function is concave up in that 
interval; negative means concave down. The function has an inflection point (usually) 
at any x-value where the signs switch from positive to negative or vice versa.

Because the signs switch at 2, 0, and 2 , and because these three numbers are zeros 
of f , inflection points occur at these x-values. If, however, you have a problem where 
the signs switch at a number where f  is undefined, you have to check one additional 
thing before concluding that there’s an inflection point there. An inflection point exists 
at a given x-value only if you can draw a tangent line to the function at that number. 
This is the case if the first derivative exists at that number or if the tangent line is 
vertical there; both of these situations are covered by a simple rule: If the concavity 
switches at a point where the curve is smooth, you have an inflection point there.

All inflection points have a second derivative of zero (if the second derivative exists), 
but not all points with a second derivative of zero are inflection points. This is no 
different from “all ships are boats but not all boats are ships.” (For example, y x 4, 
which resembles a parabola, has a second derivative equal to zero at the point 0 0, , 
but that point is not an inflection point — it’s a local minimum.)

5. Plug these three x-values into f to obtain the function values of the three inflection 
points.

f x x x

f

f

f

3 20

2 39 6

0 0

2 39 6

5 3

.

.

The square root of 2 equals about 1.4, so there are inflection points at about 1 4 39 6. , . , 
0, 0 , and about 1 4 39 6. , . . You’re done.

Figure 11-10 shows f’s inflection points as well as its local extrema and its intervals of concavity.

15 Find the intervals of concavity  
and the inflection points of 
f x x x x2 6 10 53 2 .

16 Find the intervals of concavity and the 
inflection points of g x x x4 212 .
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17 Find the intervals of concavity and the 

inflection points of p x
x

x 2 9
.

18 Find the intervals of concavity and the 
inflection points of q x x x5 3 . 
You’ll want to use your calculator for 
this one.

FIGURE 11-10: 
A graph of 

f x

x x3 205 3 
showing its 

local extrema, 
its inflection 

points, and its 
intervals of 

concavity.



CHAPTER 11  Differentiation and the Shape of Curves      285

Looking at Graphs of Derivatives  
Till They Derive You Crazy

You can learn a lot about functions and their derivatives by looking at their graphs side by 
side and comparing their important features. Let’s keep going with the same function, 
f x x x3 205 3; you’re going to travel along f from left to right (see Figure 11-11), pausing to 
note its points of interest and also observing what’s happening to the graph of f x x15 604 2 
at the same points. But first, check out the following (long) warning.

This is NOT the function! As you look at the graph of f  in Figure 11-11, or the graph of any 
other derivative, you may need to slap yourself in the face every minute or so to remind yourself 
that “This is the derivative I’m looking at, not the function!” You’ve looked at hundreds and 
hundreds of graphs of functions over the years, so when you start looking at graphs of deriva-
tives, you can easily lapse into thinking of them as regular functions. You might, for instance, 
look at an interval that’s going up on the graph of a derivative and mistakenly conclude that 
the original function must also be going up in the same interval — an understandable mis-
take. You know the first derivative is the same thing as slope. So, when you see the graph of 
the first derivative going up, you may think, “Oh, the first derivative (the slope) is going up, 

FIGURE 11-11: 
f x x3 205 3   

and its first 
derivative, 

f x x15 604 2.
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and when the slope goes up that’s like going up a hill, so the original function must be rising.” 
This sounds reasonable because, loosely speaking, you can describe the front side of a hill as 
a slope that’s going up, increasing. But mathematically speaking, the front side of a hill has a 
positive slope, not necessarily an increasing slope. So, where a function is increasing, the graph 
of its derivative will be positive, but that derivative graph might be going up or down. Say you’re 
going up a hill. As you approach the top of the hill, you’re still going up, but, in general, the  
slope (the steepness) is going down. It might be 3, then 2, then 1, and then, at the top of  
the hill, the slope is zero. So, the slope is getting smaller or decreasing, even as you’re climbing 
the hill or increasing. In such an interval, the graph of the function is increasing, but the graph 
of its derivative is decreasing. Got that?

Okay, let’s get back to the f and its derivative in Figure 11-11. Beginning on the left and travel-
ing toward the right, f increases until the local max at 2, 64 . It’s going up, so its slope is 
positive, but f is getting less and less steep, so its slope is decreasing — the slope decreases until 
it becomes zero at the peak. This corresponds to the graph of f  (the slope), which is positive 
(because it’s above the x-axis) but decreasing as it goes down to the point 2, 0 . Let’s sum-
marize your entire trip along f and f  with the following list of rules.

Rules are rules:

 » An increasing interval on a function corresponds to an interval on the graph of its 
derivative that’s positive (or zero for a single point if the function has a horizontal inflec-
tion point). In other words, a function’s increasing interval corresponds to a part of the 
derivative graph that’s above the x-axis (or that touches the axis for a single point in the case 
of a horizontal inflection point). See intervals A and F in Figure 11-11.

 » A local max on the graph of a function (like 2,  64 ) corresponds to a zero — an 
x-intercept — on an interval of the graph of its derivative that crosses the x-axis  
going down (like at 2,  0 ).

 » On a derivative graph, you’ve got an m-axis. When you’re looking at various points on 
the derivative graph, don’t forget that the y-coordinate of a point, like 2, 0 , on a graph of 
a first derivative tells you the slope of the original function, not its height. Think of the y-axis 
on the first derivative graph as the slope-axis or the m-axis; you could think of general points 
on the first derivative graph as having coordinates x m,  .

 » A decreasing interval on a function corresponds to a negative interval on the graph of 
the derivative (or zero for a single point if the function has a horizontal inflection point). 
The negative interval on the derivative graph is below the x-axis (or in the case of a horizon-
tal inflection point, the derivative graph touches the x-axis at a single point). See intervals 
B, C, D, and E in Figure 11-11 (but consider them as a single section), where f goes down all 
the way from the local max at 2, 64  to the local min at 2 64,  and where f  is negative 
between 2, 0  and 2, 0  except for at the point 0, 0  on f  which corresponds to the 
horizontal inflection point on f.

 » A local min on the graph of a function corresponds to a zero (an x-intercept) on an 
interval of the graph of its derivative that crosses the x-axis going up (like at 2,  0 ).
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Now let’s take a second trip along f to consider its intervals of concavity and its inflection 
points. First, consider intervals A and B in Figure  11-11. The graph of f is concave down — 
which means the same thing as a decreasing slope — until it gets to the inflection point at about 

1 4 39 6. , . .

So, the graph of f  decreases until it bottoms out at about 1 4. , 60 . These coordinates tell you 
that the inflection point at 1 4.  on f has a slope of 60. Note that the inflection point on f at 

1 4 39 6. , .  is the steepest point on that stretch of the function, but it has the smallest slope 
because its slope is a larger negative than the slope at any other nearby point.

Between 1 4 39 6. , .  and the next inflection point at 0, 0 , f is concave up, which means the 
same thing as an increasing slope. So, the graph of f  increases from about 1 4.  to where it hits 
a local max at 0, 0 . See interval C in Figure 11-11. Let’s take a break from our trip for some 
more rules.

More rules:

 » A concave down interval on the graph of a function corresponds to a decreasing inter-
val on the graph of its derivative (intervals A, B, and D in Figure 11-11). And a concave up 
interval on the function corresponds to an increasing interval on the derivative (intervals C, 
E, and F).

 » An inflection point on a function (except for a vertical inflection point where the deriv-
ative is undefined) corresponds to a local extremum on the graph of its derivative. An 
inflection point of minimum slope (in its neighborhood) corresponds to a local min on the 
derivative graph; an inflection point of maximum slope (in its neighborhood) corresponds to 
a local max on the derivative graph.

Resuming our trip, after 0, 0 , f is concave down till the inflection point at about 1 4 39 6. , .  — 
this corresponds to the decreasing section of f  from 0, 0  to its min at 1 4. , 60  (interval D in 
Figure 11-11). Finally, f is concave up the rest of the way, which corresponds to the increasing 
section of f  beginning at 1 4. , 60  (intervals E and F in the figure).

Well, that pretty much brings you to the end of the road. Going back and forth between the 
graphs of a function and its derivative can be very trying at first. If your head starts to spin, take 
a break and come back to this stuff later.

If I haven’t already succeeded in deriving you crazy — aren’t these calculus puns fantastic? —  
perhaps this final point will do the trick. Look again at the graph of the derivative, f , in  
Figure 11-11 and also at the sign graph for f  in Figure 11-9. That sign graph, because it’s a 
second derivative sign graph, bears exactly (well, almost exactly) the same relationship to the 
graph of f  as a first derivative sign graph bears to the graph of a regular function. In other 
words, negative intervals on the sign graph in Figure 11-9 (to the left of 2  and between zero  
and 2 ) show you where the graph of f  is decreasing; positive intervals on the sign graph 
(between 2  and zero and to the right of 2 ) show you where f  is increasing. And points where 
the signs switch from positive to negative or vice versa (at 2 , zero, and 2 ) show you where 
f  has local extrema. Clear as mud, right?
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19 Given the graph of the derivative of f shown in the following figure, and the fact that f 
contains the points 2, 0 , 0, 2 , and 2, 0 , sketch a graph of f showing its local 
extrema, its inflection points, and where it’s concave up and concave down.

20 Given the graph of the derivative of g shown in the following figure, and the fact that g 
contains the point 0, 1 , sketch a graph of g and identify the location of its 
x-intercepts.
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The Mean Value Theorem —  
Go Ahead, Make My Day

You won’t use the Mean Value Theorem a lot, but it’s a famous theorem — one of the two or 
three most important in all of calculus — so you really should learn it. It’s very simple and has 
a nice connection to the Mean Value Theorem for integrals, which I show you in Chapter 17. 
Look at Figure 11-12.

Here’s the formal definition of the theorem.

The Mean Value Theorem: If f is continuous on the closed interval a b,   and differentiable on 
the open interval a b,  , then there exists at least one number c in a b,   such that

f c
f b f a

b a

Now for the plain-English version. First, you need to take care of the fine print. The require-
ments in the theorem that the function be continuous and differentiable guarantee that the 
function is a regular, smooth function without things like gaps or corners. Most (but not all) 
ordinary functions will satisfy these requirements, but don’t neglect to check that they are in 
fact satisfied. (Keep your eyes peeled on quizzes and tests for functions that don’t satisfy these 
requirements.)

Here’s what the theorem means. The secant line connecting points a f a,   and b f b,   in 
Figure 11-12 has a slope given by the slope formula:

Slope
y y
x x

f b f a
b a

2 1

2 1

FIGURE 11-12: 
An illustration 

of the Mean 
Value 

Theorem.
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Note that this is the same as the right side of the equation in the Mean Value Theorem. The 
derivative at a point is the same thing as the slope of the tangent line at that point, so the 
theorem just says that there must be at least one point between a and b where the slope of  
the tangent is the same as the slope of the secant line from a to b. The result is parallel lines, 
like in Figure 11-12.

Why must this be so? Here’s a visual argument. Imagine that you grab the secant line con-
necting a f a,   and b f b,  , and then you slide it up, keeping it parallel to the original 
secant line. Can you see that the two points of intersection between this sliding line and the 
function — the two points that begin at a f a,   and b f b,   — will gradually get closer and 
closer to each other until they come together at c f c,  ? If you raise the line any further, you 
break away from the function entirely. At this last point of intersection, c f c,  , the sliding 
line touches the function at a single point and is thus tangent to the function there, and it has 
the same slope as the original secant line. Well, that does it. This explanation is a bit oversim-
plified, but it’ll do.

Here’s a completely different sort of argument that should appeal to your common sense. If 
the function in Figure  11-12 gives your car’s odometer reading as a function of time, then 
the slope of the secant line from a to b gives your average speed during that interval of time, 
because dividing the distance traveled, f b f a , by the elapsed time, b a, gives you the 
average speed. The point c f c,  , guaranteed by the Mean Value Theorem, is a point where 
your instantaneous speed — given by the derivative f c  — equals your average speed.

Now, imagine that you take a drive and you average 50 miles per hour. The Mean Value Theo-
rem says that there must be at least one point during your trip when your speed was exactly 
50 mph. But you don’t need a fancy-pants calculus theorem to tell you that. It’s just common 
sense. Think about it. Your average speed can’t be 50 mph if you go slower than 50 the whole 
way or if you go faster than 50 the whole way. To average 50 mph, either you go exactly 50 for 
the whole drive, or you have to go slower than 50 for part of the drive and faster than 50 at 
other times. In the former case, the theorem is obviously satisfied because you’re driving at 
exactly 50 at every point in time. And in the latter case, the theorem is also satisfied because 
when you speed up or slow down from going slower than 50 to going faster than 50 (or vice 
versa), you have to hit exactly 50 mph at some point. You can’t jump over 50 — like going 49 
one moment then 51 the next — because speeds go up by sliding up the scale, not jumping. At 
some point, your speedometer slides past 50, and for at least one instant, you’re going exactly 
50 mph. That’s all the Mean Value Theorem says.

With the Mean Value Theorem, you figure an average rate or slope over an interval and then 
use the first derivative to find one or more points in the interval where the instantaneous rate 
or slope equals the average rate or slope. Here’s an example:

Q. Given f x x x x3 24 5 , find all numbers c in the open interval 2 4,  where the 
instantaneous rate equals the average rate over the interval.

A. The only answer is 
4 2 7

3
.

Basically, you’re finding the points along the curve in the interval where the slope is  
the same as the slope from 2 2, f  to 4 4, f . Mathematically speaking, you find all 

numbers c where f c
f f4 2

4 2
.
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1. Get the first derivative.

f x x x x

f x x x

3 2

2

4 5

3 8 5

2. Using the slope formula, m
y y
x x

2 1

2 1
, figure the slope from 2 2,  f  to 4 4,  f .

f

f

4 4 4 4 5 4

20

2 2 4 2 5 2

18

3 2

3 2

m
f f4 2

4 2
20 18

2
1

3. Set the derivative equal to this slope and solve.

3 8 5 1

3 8 4 0

8 8 4 3 4
6

8 4 7
6

4 2 7
3

2

2

2

x x

x x

x

  or     

           or     

4 2 7
3

3 10 0 43. .

Because –0.43 is outside the interval 2 4, , your only answer is 4 2 7
3

.

21 For g x x x x3 2 , find all the 
values c in the interval 2 1,  that  
satisfy the Mean Value Theorem.

22 For s t t t4 3 1 33/ / , find all the values 
of c in the interval 0 3,  that satisfy 
the Mean Value Theorem.
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Practice Questions Answers and Explanations
1 Local min at 0 1,  ; local max at 1 3,  .

1. Find the first derivative using the power rule.

f x x x

f x x

6 4 1

4 4

2 3

1 3

/

/

2. Find the critical numbers of f.

a. Set the derivative equal to zero and solve.

4 4 0

1

1

1 3

1 3

x

x

x

/

/

b. Determine the x-values where the derivative is undefined.

f x x
x

4 4 4 41 3
3

/

Because the denominator is not allowed to equal zero, f x  is undefined at x 0. Thus 
the critical numbers of f are 0 and 1.

3. Plot the critical numbers on a number line.

I’m skipping the figure this time because I assume you can imagine a number line with 
dots at 0 and 1. Don’t disappoint me!

4. Plug a number from each of the three regions into the derivative. 

f

f

1 4 1 4 4 4 8

1
2

4 1
2

4 4 2 4

1 3

1 3
1 3

/

/
/ posiitive

f 8 4 8 4 2 4 21 3/

Make your life easy. Note how the numbers I picked for the first and third computa-
tions made the math easy. With the second computation, you can save a little time and 
skip the final calculation because all you care about is whether the result is positive or 
negative (this assumes that you know that the cube root of 2 is more than 1 — you’d 
better!).

5. Draw your sign graph.

6. Determine whether there’s a local min or max or neither at each critical number.

f goes down to where x 0 and then up, so there’s a local min at x 0, and f goes up to 
where x 1 and then down, so there’s a local max at x 1.
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7. Figure the y-value of the two local extrema.

f

f

0 6 0 4 0 1 1

1 6 1 4 1 1 3

2 3

2 3

/

/

Thus, there’s a local min at 0 1,  and a local max at 1 3, . Check this answer by 
looking at a graph of f on your graphing calculator.

2 Local max at 
4

2
8

,  ; local min at 
3
4

3 2
8

2,  .

1. Find the first derivative.

h x
x

x

h x x

2
2
2

1
2

cos

sin

2. Find the critical numbers of h.

a. Set the derivative equal to zero and solve:

1
2

0

2
2

sin

sin

x

x

x
4

3
4

(or These are the solutions in the given intervall.)

b. Determine the x-values where the derivative is undefined.

The derivative isn’t undefined anywhere, so the critical numbers of h are 
4

 and 3
4

.

3. Test numbers from each region on your number line. 

h h
6

1
2 6

2
2

1
2

2
1
2 2

2
2

1

sin sin

positive negativee positive

h
1
2
2
2

0

sin

4. Draw a sign graph.

5. Decide whether there’s a local min, max, or neither at each of the two critical 
numbers.

Going from left to right along the function, you go up until x
4

 and then down, so 

there’s a local max at x
4

. It’s vice versa for x 3
4

, so there’s a local min there.
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6. Compute the y-values of these two extrema. 

h h
4

4
2 4

2
2

4 2
2
2

2
2

2
8

3
4

3
4
2

3
4

2cos cos

      

22

3 2
8

2
2

2
2

3 2
8

2

So, you have a max at 
4

2
8

,  and a min at 3
4

3 2
8

2, .

3 Local mins at 2 2 0,   and 2 2 0,  ; a local max at 0 4,  .

Same basic steps as in Problems 1 and 2, but abbreviated a bit.

1. Find the derivative.

y x

y x x
x

x

2 2 3

2 1 3

23

8

2
3

8 2 4

3 8

/

/

2. Find the critical numbers.

a. 
4

3 8
0

0

23

x

x
x

b. The first derivative will be undefined when the denominator is zero, so

3 8 0

8 0

8 0

2 2

23

23

2

x

x

x

x

Thus, the critical numbers are 2 2 , 0, and 2 2.

3. Test a number from each of the four regions. 

y 10 2
3

10 8 2 10

2
3

2 1 3

1 3

/

/positive negativee

positive negative

negative

2
3

1 2
3

1 8 2 12 1 3
y

/

2
3
2
3

1 3negative negative

negative negative

posit

/

iive

negative positivey y1 10
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4. Make a sign graph.

5. Find the y-values at the critical numbers.

y 2 2 8 0
2 2 3/

. There’s a local min at 2 2 0, .

y 0 8 8 42 2 3 2 3/ / . There’s a local max at 0, 4 .

y 2 2 8 0
2 2 3/

. There’s another local min at 2 2 0, .

Check out this interesting curve on your graphing calculator.

4 Local maxes at 2 2,  and 2 2, ; no local minima.

1. Do the differentiation thing.

s
t

t

s
t t t t

t

t t

4

2

4 2 4 2

2 2

3 2

4
2

4 2 4 2

2

4 2 t t

t
t
t

4

4

4

3

4 4

4
4

2. Find the critical numbers.

t
t

t

t t

t t t

4

3

4

2 2

2

4 0

4 0

2 2 0

2 2 2 0

t 2 2 or 

So 2  and 2  are two critical numbers of s.

Numbers to include on your sign graph. Remember that t 0 is a third important number 
because t 0 makes the derivative’s denominator equal zero, so you need to include zero 
on your sign graph in order to define test regions. Note, however, that t 0 is not a critical 
number of s because s is undefined at t 0. And because there is no point on s at t 0, 
there can’t be a local extremum at t 0.

3. Test a number from each of the four regions: You’re on your own.
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4. Make a sign graph.

She loves me; she loves me not; she loves me; she loves me not.

5. Find the y-values.

s 2
2 4

2 2

4 4
4

2
4

2 . You climb up the hill to 2 2, , then down, so 

there’s a local max there.

s 0 0 4
2 0

4

2 undefined (which you already knew). Therefore, there’s no local 

extremum at t 0. Remember that if a problem asks you to identify only the x-values 
and not the y-values of the local extrema, and you only consider the sign graph, you 
will incorrectly conclude — using the current problem as an example — that there’s a 
local min at t 0. So you should always check where your function is undefined.

s 2 2 4

2 2
2

4

2 . Up, then down again, so there’s another local max at 2 2, .

As always, you should check out this function on your graphing calculator.

5 Local max at x
4

; local min at x
3
4

.

1. Find the second derivative.

h x
x

x

h x x

h x x

2
2
2

1
2

cos

sin

cos

2. Plug in the critical numbers (from Problem 2).

h h
4 4

2
2

3
4

3
4

2
2

cos cos

You’re done. You determine that h is concave down at x
4

, so there’s a local  

max there, and h is concave up at x 3
4

, so there’s a local min at that x-value.  

(In Problem 2, you already determined the y-values for these extrema.)

Note that h is an example of a function where the second derivative test is quick  
and easy.
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6 Local min at 0 1, ; local max at 2 9, .

1. Find the critical numbers.

f x x x

f x x x

x x

x x

x

2 6 1

6 12

0 6 12

0 6 2

0 2

3 2

2

2

,  

2. Find the second derivative.

f x x x

f x x

6 12

12 12

2

3. Plug in the critical numbers. 

f f0 12 0 12 2 12 2 12

12 12 (concave up: min)  ((concave down: max)

4. Determine the y-coordinates for the extrema. 

f f0 2 0 6 0 1

1

2 2 2 6 2 1

9

3 2 3 2

So, there’s a min at 0 1,  and a max at 2 9, .

Note that f is another function where the second derivative test works like a charm.

7 You find local maxes at x 2 and x 2 with the second derivative test; you find a local min 
at x 0 with street smarts.

1. Find the critical numbers.

y x x

y x x

x x

x x

x x x

2 1
3

8 2

8 2 0

2 4 0

2 2 2 0

4 6

3 5

3 5

3 2

3

Thus  , , , .x 0 2 2

2. Get the second derivative.

y x x

y x x

8 2

24 10

3 5

2 4
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3. Plug in.

y
y

2 24 2 10 2

96 160
0 24

2 4

negative, thus a max.

00 10 0

0

2 24 2 10 2
2 4

2 4

, .thus inconclusive
same a

y

ss  

negative, thus a max

y 2

.

The second derivative test fails at x 0, so you have to use the first derivative test for 
that critical number.

When the first derivative test may be preferable. If — as in the function for this 
problem — one of the critical numbers is x 0, and you can quickly see that the second 
derivative will equal zero at x 0 (because, for example, all the terms of the second 
derivative will be simple powers of x), then the second derivative test will fail for x 0, 
and you might want to use the first derivative test instead.

However, because this problem involves a continuous function and because there’s 
only one critical number between the two maxes you found, the only possibility is that 
there’s a min at x 0. (Try this streetwise logic out on your teacher and let me know if 
it works.)

8 Your pick should be s
t t

8
21
4

7
4

3

; local min at 1 4 5, .  and local max at 1 11 5, . .

The second derivative test fails where the second derivative is undefined (in addition to fail-
ing where the second derivative equals zero).

To pick, look at the first derivative of each function:

y x s
t t

y x

2 2 3 3

8 8 21
4

7
4

2
3

/
                            

22 1 3 2

2 1 3

8 2 21
4

21
4

4

3 8

/

/

x s t

x

x

               

Do you see the trouble you’re going to run into with y x ? The first derivative is undefined at 
x 2 2 . And the second derivative will also be undefined at those x-values, because when 
you take the second derivative with the quotient rule, squaring the bottom, the denominator 
will contain that same factor, x 2 8 . The second derivative test will thus fail at 2 2 , and 
you’ll have to use the first derivative test. In contrast to y x , the second derivative test 
works great with s t :

1. Get the critical numbers.

s t

t

t

t

21
4

21
4

0 21
4

21
4

21
4

21
4
1

2

2

2

s  is not undefined anywhere, so –1 and 1 are the only critical numbers.
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2. Do the second derivative.

s t

s t

21
4

21
4

21
2

2

3. Plug in the critical numbers.

s

s

1 21
2

1 21
2

       concave up: min

      concave doown: max

4. Get the heights of the extrema.

s

s

1 8
21 1

4
7 1

4
4 5

1 8
21 1

4
7 1

4
11 5

3

3

.

.

You’re done; s has a local min at 1 4 5, .  and a local max at 1 11 5, . .

9 Absolute max at 
4

2, ; absolute min at 
5
4

2, .

1. Find critical numbers.

f x x x

f x x x

x x

x x

sin cos

cos sin

cos sin

sin cos

0

                  divide both sides by

            

( cos )

tan

,

x

x

x

1

4
5
4

  the solutions in the given interval( )

The derivative is never undefined, so these are the only critical numbers.

If you divide both sides of an equation by something that can equal zero at one or 
more x-values (like you did here when dividing both sides by cos x), you may miss 
one or more solutions. You have to check whether any of those x-values is a solution. 

In this problem, cos x 0 at 
2

 and 3
2

, and it’s easy to check (in Line 4 of Step 1) that 

sin x  does not equal cos x at either of those values, so there’s no problem here. But if 
sin x  did equal cos x at either of those values, you’d have one or two more solutions and 
one or two more critical numbers. (Note that you have to check any such values in the 
line of the solution immediately above the line where you do the dividing — the way 
you just used Line 4; you couldn’t use Line 5 for the check.)
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2. Evaluate the function at the critical numbers. 

f f
4 4 4

2
2

2
2

2

5
4

5
4

5
4

2
2

sin cos sin cos

        22
2

2

3. Evaluate the function at the endpoints of the interval.

f

f

0 0 0 1

2 2 2 1

sin cos

sin cos

4. The largest of the four answers from Steps 2 and 3 is the absolute max; the smallest is 
the absolute min.

The absolute max is at 
4

2, . The absolute min is at 5
4

2, .

10 Absolute min at – . , –0 5 6 ; absolute max at 0 5, .

1. Find critical numbers.

g x x x

g x x x

x x

x x

x

2 3 5

6 6

0 6 6

0 6 1

0 1

3 2

2

2

,  

The solution x 1 is rejected because it’s outside the given interval; x 0 is your only 
critical number.

2. Evaluate the function at x 0.

g 0 2 0 3 0 5 53 2

3. Do the endpoint thing.

g

g

0 5 2 0 5 3 0 5 5

2 0 125 3 0 25 5

6

0 5 2

3 2. . .

. .

. 00 5 3 0 5 5

2 0 125 3 0 25 5

5 5

3 2. .

. .

.

4. Pick the smallest and largest answers from Steps 2 and 3.

The absolute min is at the left endpoint, – . , –0 5 6 . The absolute max is smack dab in 
the middle, 0 5, .
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11 Absolute max at 2 2, ; absolute mins at 1 0 5, .  and 31 0 5, . .

I think you know the steps by now.

p x x x

p x x

x

1 0 5

4
5

1 0 5

4
5 1

0 5

0 4
5

4 5

1 5

1 5

/

/

/

.

.

.

xx

x

1
0 5

0 5 4
5 1

1 5

1 5

/

/

.

.

2 5 1 4

1 8
5

1 8
5

9 48576

1 5

1 5

5

.

.

/

/

x

x

x

x

That’s one critical number, but x 1 is also one because it produces an undefined derivative.

p 1 1 1 0 5 1

0 5

4 5/ . ( )

.

p 9 48576 9 48576 1 0 5 9 48576

1 81072

4 5. . . .

.

/

Left endpoint: p 2 2 1 0 5 2 24 5/ .

Right endpoint: p 31 31 1 0 5 31 16 15 5 0 54 5/ . . .

Your absolute max is at the left endpoint: – ,2 2 . There’s a tie for the absolute min: at the 
cusp – , .1 0 5  and at the right endpoint 31 0 5, . .

12 Absolute min at 
2

6, ; absolute maxes at 
6

3,  and 
5
6

3, .

q x x x

q x x x

x

2 2 4

2 2 2 4

0 4 2 4

cos sin

sin cos

sin cos xx

x x

x x

0 2 4

0 2

sin cos ( )

sin cos co

              dividing by

ss ( )

cos sin

x

x x

         trig identity

0 2 1

0 2 1 0

2 2
1
2

6
5
6

cos sin

, sin

,

x x

x x

x

         or
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Technically, x
2

 is not one of the critical numbers; being at an endpoint of an interval, 

it is refused membership in the critical number club. It’s a moot point, though, because you 
have to evaluate the endpoints anyway.

q

q

6
2 2

6
4

6

2 1
2

4 1
2

3

2
2 2

2
4

2

cos sin

cos sin

2 4 2

5
6

2 2 5
6

4 5
6

2 1
2

4 1
2

3

q cos sin

Left endpoint: q
2

2 2
2

4
2

2 4 1 6cos sin

Right endpoint: q 5
4

2 2 5
4

4 5
4

2 0 4 2
2

2 828cos .sin

Pick your winners: absolute min at left endpoint 
2

6, , and a tie for absolute  

max at 
6

3,  and 5
6

3, .

13 The function’s absolute min of –1 occurs at two points, 1 1,  and 1 1, ; f has no  
absolute max.

Find the height of the function at each of its critical numbers; in other words, find the func-
tion’s critical points.

f x x x

f x x x

x x

x x x

4 2

3

2

2

4 4

4 1

4 1 1

So, x 0, x 1, and x 1 are the critical numbers, and, since f 0 0 2 0 04 2 , 

f 1 1 2 1 14 2 , and f 1 1 2 1 14 2 , the critical points of f are 1 1, , 
0, , 0  and 1 1, . That’s the complete list of candidates for the absolute extrema of f.

When you look at a graph of f, you’ll see that its absolute min of –1 occurs at two points, 
1 1,  and 1 1, . And, because f obviously rises higher than the highest of the critical 

points, 0, 0 , f has no absolute max.

A graph of f makes this solution obvious, but, if you want to be thorough, you should confirm 
that the absolute min is –1 with the first derivative test. That will show that f decreases from 
negative infinity to –1, then increases from –1 to 0, then decreases from 0 to 1, and, finally, 
increases from 1 to infinity. That confirms that fact that f never gets below –1.
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14 (a) Function A has neither an absolute max nor an absolute min.

As I’m sure you know, when you see an arrow like the one on the left on function A, you 
have to assume that that line (actually a ray with an open endpoint) continues in the 
direction shown indefinitely. Duh. Okay, so function A goes up forever to the left. And, 
thus — since infinity does not qualify as a max — function A has no absolute max.

Nor does it have an absolute min. You can see that the function goes down to the hollow 
dot at –1. If that dot were solid, the absolute min would be –1. But because it’s hollow, 
there is no absolute min. Is the min –0.99999? No, function A goes below that: say,  
to –0.999999999. No matter what number you pick above –1 as a candidate for the  
absolute minimum, I can always give you another number below your candidate number 
and above –1. So, no number can qualify as the absolute minimum.

(b) Function B has no absolute max. Its absolute min is –1.

(c) Function C has no absolute max. Its absolute min is –1.

(d) The absolute maximum of Function D is 1. This maximum height occurs at 0 1,  and 
at all x-values in the interval ,  2  along the line y 1. Function D has no absolute 
minimum.

15 The function f is concave up from negative infinity to the inflection point at 1 1, , then 
concave down from there to positive infinity.

1. Get the second derivative.

f x x x x

f x x x

f x x

2 6 10 5

6 12 10

12 12

3 2

2

2. Set equal to 0 and solve.

12 12 0

1

x

x

3. Check for x-values where the second derivative is undefined. There are none.

4. Test your two regions — to the left and to the right of x 1 — and make your sign 
graph.

f x x

f

f

12 12

0 12

2 12

Because the concavity switches at x 1 and because f  equals zero there, there’s an inflec-
tion point at x 1.
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5. Find the height of the inflection point.

f x x x x

f

2 6 10 5

1 1

3 2

Thus, f is concave up from negative infinity to the inflection point at 1 1, , and then 
concave down from there to infinity. As always, you should check your result on your 
graphing calculator. Hint: To get a good feel for the look of this function, you need a 
fairly odd graphing window — try something like Xmin = –2, Xmax = 4, Ymin = –20, 
Ymax = 20.

16 The function g is concave up from negative infinity to the inflection point at 2 20, , 
then concave down to an inflection point at 2 20, , then concave up again to infinity.

1. Find the second derivative.

g x x x

g x x x

g x x

4 2

3

2

12

4 24

12 24

2. Set to 0 and solve.

12 24 0

2

2

2

2

x

x

x

3. Is the second derivative undefined anywhere? No.

4. Test the three regions and make a sign graph. See the following figure.

g x x

g

g

g

12 24

2 24

0 24

2 24

2

Because the concavity switched signs at the two zeros of g , there are inflection points at 
these two x-values.

5. Find the heights of the inflection points.

g x x x

g

g

4 212

2 20

2 20
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The function g is concave up from negative infinity to the inflection point at 2 20, , 
concave down from there to another inflection point at 2 20, , and then concave up 
again from there to infinity.

17 Concave down from negative infinity to an inflection point at 3 3
3

12
, , then concave 

up till the inflection point at 0 0, , then concave down again till the third inflection point at 

3 3 3
12

, , and, finally, concave up to infinity.

1. Get the second derivative.

p x
x x x x

x

x x

x

x

x

2 2

2 2

2 2

2 2

2

2 2

9 9

9

9 2

9

9

9

p
x x x x

x

x x x

9 9 9

9

2 9 9

92 2 2 2 2 2

2 4

2 2 2 2 9 2

9

9 2 9 4 9

9

2

2

2 4

2 2 2

2 4

x x

x

x x x x x

x

xx x x x

x

x x

x

3 3

2 3

2

2 3

18 36 4

9

2 27

9

2. Set equal to zero and solve.

2 27

9
0

2 27 0

2

2 3

2

x x

x

x x( )

2 0 27 0

0 3 3

2x x

x x

         
                     or

3. Check for undefined points of the second derivative; there are none.

4. Test four regions with the second derivative. You can skip the sign graph.

Doing mental math builds math muscles. You might be able to do all of this in your 
head (try it!) because all that matters is whether the answers are positive or negative.

p
x x

x

2 27

9

2

2 3
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     p

N P
P

N
P
N

10
2 10 10 27

10 9

2

2

2 3

3

p

N N
P

P
P
P

p

1
2 1 1 27

1 9

2

1
2 1

2

2 3

3

1 27

1 9

2

10
2 10 10 27

10 9

2

2 3

3

2

2

P N
P

N
P
N

p 3

3

2 P P
P

P
P
P

The concavity goes negative, positive, negative, positive, so there’s an inflection point at 
each of the three zeros of p .

5. Find the heights of the inflection points.

p x
x

x 2 9

p 3 3 3 3

3 3 9

3 3
27 9

3
12

2
p 0 0 p 3 3 3 3

3 3 9

3
12

2

Taking a drive on highway p, you’ll be turning right from negative infinity to 

3 3 3
12

, , then you’ll be turning left till 0 0, , then right again till 3 3 3
12

, , 

and on your final leg to infinity, you round a very long bend to the left. (At each of the 
three inflection points, you’d be going straight for an infinitesimal moment.)

18 Concave down from negative infinity till an inflection point at about – . , – .0 085 0 171 , then 
concave up till a vertical inflection point at 0 0, , then concave down till a third inflection 
point at about 0 085 0 171. , . , then concave up out to infinity.

You know the routine.

q x x x

q x x x

q x x x

5 3

4 5 2 3

9 5 5 3

1
5

1
3

4
25

2
9

0

/ /

/ /

44
25

2
99 5 5 3x x/ /
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Whoops, I guess this algebra’s kind of messy. Better get the zeros on your calculator: Just 
graph and find the x-intercepts. There are two: x 0 085.  and x 0 085. . So you have two 
“critical numbers,” right? Wrong! Don’t forget to check for undefined points of the second 

derivative. Because q x
x x
4

25
2

99 5 5 3/ / , q  is undefined at x 0. Since q x  is defined at 

x 0, zero is another “critical number.” So, you have three “critical numbers” and four regions. 
You can test them with –1, –0.01, 0.01, and 1:

q x x x
4

25
2
9

9 5 5 3/ /

q q q q1 14
225

0 01 158 0 01 158 1 14
225

. .

Thus the concavity goes down, up, down, up. Because the second derivative is zero at –0.085 
and 0.085, and because the concavity switches there, you can conclude that there are inflec-
tion points at those two x-values. But because both the first and second derivatives are unde-
fined at x 0, you have to check whether there’s a vertical tangent there. You can see that 
there is by just looking at the graph, but if you want to be rigorous about it, you figure the 
limit of the first derivative as x approaches zero. Since that equals infinity, you have a vertical 
tangent at x 0, and thus there’s an inflection point there.

Now plug –0.085, 0, and 0.085 into q to get the y-values, and you’re done.

19 Absolute precision is not the point of this exercise, but your graph should look close to the 
graph of f shown here.

Note the following features of the graph of f. Your graph should show local mins at 2 0,  
and 2 0,  and a local max at 0, 2 . And your graph should show inflection points at roughly 

1, 1  and 1, 1 . Finally, your graph should show that f is concave up everywhere to the left 
of 1, 1  and everywhere to the right of 1, 1 . In between those points, f should be concave 
down.
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20 Unlike with Problem 19, your graph of g for this problem should be precisely what is  
shown here.

You were given that g contains the point 0, 1 , and the graph of g  shows that the derivative of 
g (its slope) is zero between –1 and 1. These facts tell you that there’s a section of g that’s a hor-
izontal line between 1, 1  and 1, 1 . To the left of –1, the graph of g  shows that the derivative 
(the slope) equals 1. Thus, going left from 1, 1 , g must go down one, left one, crossing the  
x-axis at –2. The logic is very similar going right from 1, 1  to the x-intercept at 2.

21 The values of c are 
1 7

3
 and 

1 7
3

.

1. Find the first derivative.

g x x x x

g x x x

3 2

23 2 1

2. Figure the slope between the endpoints of the interval.

g g2 2 2 2 1 1

2

3 2                   

m
g g2 1

2 1
2 1
2 1

1

3. Set the derivative equal to this slope and solve.

3 2 1 1

3 2 2 0

2

2

x x

x x

x
2 4 24

6

2 2 7
6

1 7
3

1 7
3

  or  

Both are inside the given interval, so you have two answers.
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22 The value of c is 
3
4

.

1. Find the first derivative.

s t t t

s t t t

4 3 1 3

1 3 2 3

3

4
3

/ /

/ /

2. Figure the slope between the endpoints of the interval.

s

s

0 0

3 3 3 3 04 3 1 3

m
s s3 0

3 0
0 0

3
0

3. Set the derivative equal to the result from Step 2 and solve.

4
3

0

4
3

1 0

1 3 2 3

2 3 1

t t

t t

/ /

/

t 2 3 0   or     

4
3

1 0

3
4

1t

t

Graph s to confirm that its slope at t 3
4

 is zero.

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 11 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 Use the first derivative test to find any local extrema of f x e xx .

2 Use the first derivative test to find any local extrema of g x x x2 ln .

3 Use the second derivative test to find any local extrema of f from Problem 1.

4 Use the second derivative test to find any local extrema of g from Problem 2.

5 Find the absolute max and min of f x e ex x on the interval ln ,2 2 .

6 Find the absolute max and min of g x e xln
2

 on the interval 1, 1 .

7 Find the absolute max and min of f x x x3 2 over its entire domain.

8 Find the absolute max and min of g x x 24  over its entire domain.

9 Find the intervals of concavity and the inflection points of f x x xcos 1
2

2.

10 Find the intervals of concavity and the inflection points of g x x x2 56 4.

11 a. For f x
x

1
1
, find all values c in the interval 0 2,  that satisfy the Mean Value Theorem.

b. For g x x3 , find all values c in the interval 1, 1  that satisfy the Mean Value Theorem.

12 For g x x3 , find all values c in the interval 0, 8  that satisfy the Mean Value Theorem.
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Answers to Chapter 11 Quiz
1 There’s a local min at 0 1, . That’s the only local extremum.

1. Find the first derivative of f using the e x  rule and the power rule.

f x e x

f x e

x

x 1

2. Set the derivative equal to zero and solve for x to get the critical numbers of f.

e

e

x

x

x

1 0

1

0

If the first derivative were undefined for some x-value(s) in the domain of f, there could 
be more critical numbers, but because f x e x 1 is defined for all real numbers, 0 is 
the only critical number of f.

3. Plot the single critical number on a number line, noting that it creates two regions.

I’m going to skip the figure for this problem, because it’s so simple. You should have an 
ordinary number line with a single point marked at x 0.

4. Plug a number from each of the two regions into the derivative, noting whether the 
results are positive or negative.

f x e

f

f

x 1

any negative number negative

any positive nuumber positive

5. Draw a sign graph. Take your number line and label each region, based on your 
results from Step 4 — positive (increasing) or negative (decreasing).

Let’s skip this simple figure as well. Your sign graph should be a number line with a 
minus sign over the negative side of the line and a plus sign over the positive side of the 
line.

This sign graph tells you that f is decreasing from negative infinity to zero and increasing 
from zero to positive infinity.

6. Use the sign graph to determine whether there’s a local minimum, local maximum, 
or neither at each critical number.

Because f goes down on its way from negative infinity to x 0 and up after x 0, it must 
bottom out at x 0, so there’s a local min there.

7. Determine the y-value of the local min by plugging the x-value into the original 
function.

f e0 0 10

So, the local min is at 0 1, . That’s the only local extremum.
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2 There’s a local min at 
2
2

1
2

1
2

2, ln . That’s the only local extremum.

1. Find the first derivative of g using the power rule and the natural log rule.

g x x x

g x x
x

2

2 1

ln

2. Set the derivative equal to zero and solve for x to get the critical numbers of g.

2 1 0

2 1

1
2

2
2

2

x
x

x
x

x

x

You can disregard 2
2

 because that’s outside g’s domain. You can also disregard the fact 

that g  is undefined at x 0 because zero is also outside the domain. Thus, 2
2

 is the only 
critical number of g.

3. Plot the critical number, 2
2

, on a number line, and also put a hollow dot at x 0 to 

show that that’s the end of g’s domain, namely, the interval 0,  .

4. Plug a number from each of the two regions into the derivative, noting whether the 
results are positive or negative.

g x x
x

g

g

2 1

1
2

2 1
2

1
1
2

1

1 2 1 1
1

1

5. Draw a sign graph. Take your number line and label each region, based on your 
results from Step 4 — positive (increasing) or negative (decreasing).

See the following sign graph.
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6. Use the sign graph to determine whether there’s a local minimum, local maximum, 
or neither at each critical number.

Because g goes down from zero to 2
2

 and up from there, it must bottom out at x 2
2

, so 
there’s a local min there.

7. Determine the y-value of the local min by plugging the x-value into the original 
function.

g x x x

g

2

2
2
2

2
2

2
2

1
2

1
2

2

ln

ln

ln

(Did you follow that simplification I did with the ln 2
2

? See if you can work it out.)

So, the local min is at 2
2

1
2

1
2

2, ln , or roughly 0 707. ,  0.847 . That’s the only local 
extremum.

3 There’s a local min at x 0.

1. Find the critical numbers.

You have the single critical number from Problem 1: x 0.

2. Get the second derivative.

f x e x

f x e

f x e

x

x

x

1

3. Plug the critical number into the second derivative.

f e0 10

This positive result tells you that f is concave up at x 0, and, therefore, that there’s a local 
min there. This confirms your result from Problem 1.

4 There’s a local min at x
2
2

.

1. Find the critical numbers.

You have the critical number from Problem 2. The only critical number of g is x 2
2

.

2. Get the second derivative.

g x x x

g x x
x

g x
x

2

2

2 1

2 1

ln
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3. Plug the critical number into the second derivative.

g
2
2

2 1

2
2

2 2 42

This positive result tells you that g is concave up at x 2
2

, and, therefore, that there’s a 

local min there. This confirms your result from Problem 2.

5 The absolute max occurs at 2
12

2,  e
e

. The absolute min occurs at 0 2,  .

1. Find the critical numbers of f in the open interval ln ,2 2 .

f x e e

f x e e

e e

e e

x

x x

x x

x x

x x

0

0

Thus, x 0 is the only zero of f  (in the given interval or anywhere else, for that matter), 
and because f  is defined for all input numbers, zero is the only critical number.

2. Compute the function value (the height) at the critical number.

f x e e

f e e

x x

0 20 0

3. Determine the function values at the endpoints of the interval.

f x e e

f e e

f e e

e
e

x x

ln

.

ln ln2

1
2

2 2 5

2

1

2 2

2 2

2
2

So, from Steps 2 and 3, you’ve found three heights: 2, 2.5, and e
e

2
2

1 . The largest 

number in this list, e
e

2
2

1 , is the absolute max; the smallest, 2, is the absolute min.

The absolute max occurs at 2 12
2,  e

e
, an endpoint extremum. The absolute min occurs 

at 0, 2 .
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6 The absolute max occurs at both 1 1,   and 1 1,  . The absolute min occurs at 0 0,  .

1. Find the critical numbers of f in the open interval 1 1,  .

g x e

g x
e

e x

x

x

x

x

x

x

ln
2

2

21 2

2

0 2

0

Just like in Problem 5, x 0 is the only zero of g  (in the given interval or anywhere else), 
and because g  is defined for all input numbers, zero is the only critical number.

2. Compute the function value (the height) at the critical number.

g x e

g e

xln

ln

ln

2

2
0

1 0

0

3. Determine the function values at the endpoints of the interval.

g x e

g e

e

g

xln

ln

ln

2

2

1

1

1 1

1

So, from Steps 2 and 3, you’ve found three heights (two different heights): 0, 1, and 1 
again. The largest number in this list, 1, is the absolute max; the smallest, 0, is the abso-
lute min.

The absolute max occurs at both 1, 1  and 1, 1 . The absolute min occurs at 0, 0 .

This was a trick problem of sorts. I went through the hard-way solution here, thinking that 

many might not have seen the following easy way. Congrats if you saw that ln e xx 2 2, 

and, thus, that g x x 2, the simple parabola you know well. And the absolute max and 

min of g x x 2 on the interval 1 1,  should be obvious without doing any calculus.
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7 f x x x3 2 has an absolute max at 0 341 0 582. , . . It has no absolute min.

1. Find the height of the function at each of its critical numbers; in other words, find the 
function’s critical points.

f x x x

f x x x

x x

x x

x

x

3 2

2 3

2 3

2 3

5 3

3 5

1
3

2

2 1
3

6

1
6

1
6

So, 1
6

0 341
3 5

.  is a critical number. Zero is another critical number, because f  is unde-

fined at x 0. The heights at those critical numbers are 5
6

1
6

0 582
1 5

.  and zero, respec-

tively. Those are your only candidates for an absolute max and an absolute min.

2. Graph the function to see how high and low it goes.

You can see from the graph of f that it never goes above 0.341, 0.582  , so that’s the 
absolute max. And f obviously goes below the other critical point at 0 0, , so f has no 
absolute min.

3. Use the first derivative test and a sign graph to analyze the shape of the function.

You should confirm your absolute max result from Step 2, by using the first derivative 
test. That will show that f is rising from negative infinity until 0.341, 0.582   and  
falling from there to infinity. That clinches it.

8 g x x 24  has no absolute max. Its absolute min is at 0 0,  .

1. Find the height of the function at each of its critical numbers; in other words, find the 
function’s critical points.

g x x

x

g x x x

x

x

x

x x

24

2 1 4

2 3 4

64 24

1
4

2

2 2
   or   

The derivative g  is undefined at x 0, so that’s a critical number of g; g  has no zeros, so 
x 0 is the only critical number. Plugging zero into g gives you 0 0,  for the only critical 
point on g and your only candidate for an absolute max or min.

(By the way, as you may have noticed, g x x 24  is a peculiar function. When you graph 
it, you’ll see that it’s the same as the ordinary square root function, f x x , in the first 
quadrant with another branch symmetric to that in the second quadrant. You’ve got to be 
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very careful when doing the derivative of g. There are a few ways to go awry. For example, 
you’ll get the wrong derivative if you simplify the second line to x1 2.)

2. Graph the function to see how high and low it goes.

You can see from the graph of g that it never goes below 0 0, , so that’s the absolute min. 
And g obviously goes above 0 0, , so g has no absolute max.

9 f x x xcos
1
2

2 is concave up everywhere. It has no inflection points.

Find the second derivative, set it equal to zero, and solve:

f x x x

f x x x

f x x

x

x

x

cos

sin

cos

cos

cos

1
2

1

0 1

1

2

22k k     (  is any integer)

Don’t forget to also check for any x-values where the second derivative is undefined. There 
are none. So, the zeros of f  are the only numbers you need to consider for this concavity- 
and-inflection-point inquiry.

Notice that f x xcos 1 will be positive for all input values, except when x equals a mul-
tiple of 2 . At those multiples, the second derivative equals zero.

Consider one of those zeros, say, x 2 . To the left of x 2 , f is concave up (because f  is 
positive). And to the right of x 2 , f is also concave up. And that means that f is concave up 
at x 2  as well. This applies to all the zeros of f , and, thus, f is concave up everywhere.

I find this a fascinating function. Graph it and take a look at it. Close in, it looks sort of like a 
parabola, but with a very flat bottom. Then, as you zoom out, it more closely resembles the 

simple parabola y x
1
2

2. But at every multiple of 2  along the function, where f  equals zero, 

the curve sort of straightens out for an infinitesimal moment (these straighter stretches are 
very difficult to see, but if you look very carefully using the right scale, you can make them 
out). Interesting!

10 g x x x2 56 4 is concave up on two intervals: , 1  and 1,  . The function g is con-
cave down on the interval 1 1,  ; g has inflection points at 1 3,  and 1 3, .

Find the second derivative, set it equal to zero, and solve:

g x x x

g x x x

g x x x

x x

2 5

12 20

60 60

0 60 60

0 60

6 4

5 3

4 2

4 2

xx x

x x x

2 2

2

1

0 60 1 1

x 0 1 1, ,  and 

Check for any x-values where the second derivative is undefined. There are none, so –1, 0, 
and 1 are your “second derivative critical numbers.” They divide the number line into four 
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intervals: , 1 , 1, 0 , 0 1, , and 1, . Test any number from each interval in the 
second derivative:

g x x x x

g

g

60 1 1

2

0 5

2

pos neg neg pos

. ppos neg pos neg

pos neg pos neg

pos

g

g

0 5

2

.

pos pos pos

These results tell you that g is concave up from negative infinity to –1, concave down  
from –1 to 1, and concave up again from 1 to infinity. Because the concavity switches signs  
at –1 and 1, there are inflection points at those x-values.

11 (a) The MVT does not apply.

Hope you didn’t fall for this trap. The MVT does not apply here, because f x
x

1
1
 is not 

continuous over the interval 0 2, .

(b) The MVT does not apply.

Another trap problem (with a twist). The MVT does not apply here, because g x x3   
is not everywhere differentiable on the open interval 1, 1 . The first derivative, 

g x
x

1

3 23
, is undefined at x 0.

The twist here is that if you go ahead and do the MVT math, you’ll correctly find two 

values for c, namely, 3
9

, where the derivative (the slope of the tangent line) does in fact 

equal the slope of the secant line from 1, 1  to 1, 1  (the points on the function at  

the endpoints of the given interval). So, the MVT did work correctly. My hunch is that 
the MVT will work for a larger class of functions than are technically allowed by the  
theorem — namely, all continuous and smooth functions without any corners or cusps. 
Bottom line: Never mind this! Go by the book. That’s what your professor will expect.

12 For g x x3  in the interval 0 8,  , c
8 3

9
 satisfies the MVT.

Unlike in Problem 11b, g x x3  does satisfy the MVT fine print over the interval 0 8, . Note 
that the MVT requires that the function be continuous on the closed interval 0 8, , which 

g x x3  is. But g x x3  needs to be differentiable only over the open interval 0, 8  — 

which it is. The fact that g x x3  is not differentiable at x 0 — which was the hitch in 
Problem 11b — is irrelevant here.
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By the MVT, g c
g b g a

b a
. You’ve got a 0 and b 8; determine the three other things 

you need here, so you can plug them in.

g x
x

1

3 23
  so  g c

c

1

3 23
.

g

g

0 0 0

8 8 2

3

3

Plug everything into the MVT formula and finish:

1

3

2 0
8 0

1

3

1
4

8 3
9

23

23

c

c

c

,   etc.

You can reject the negative answer, because it’s outside the given interval.
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Your Problems Are 
Solved: Differentiation 
to the Rescue!

In Chapter 1, I argue that calculus has changed the world in countless ways, that its impact 
is not limited to Ivory Tower mathematics, but is all around us in down-to-earth things like 
microwave ovens, cellphones, and cars. Well, it’s now Chapter 12, and I’m finally ready to 

show you how to use calculus to solve some practical problems.

Getting the Most (or Least) Out of Life: 
Optimization Problems

One of the most practical uses of differentiation is finding the maximum or minimum value of 
a real-world function: the maximum output of a factory, the maximum strength of a beam, the 
minimum cost of running some business, the maximum range of a missile, and so on. Let’s see 
how this works by walking through some problems.

Chapter 12

IN THIS CHAPTER

 » Getting the most bang for your 
buck — optimization problems

 » Getting up to speed with position, 
velocity, and acceleration

 » Related rates — brace yourself
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The maximum volume of a box
A box with no top is to be manufactured from a 30-inch-by-30-inch piece of cardboard by cut-
ting and folding it, as shown in Figure 12-1.

What dimensions will produce a box with the maximum volume? Mathematics often seems 
abstract and impractical, but here’s an honest-to-goodness practical problem (well . . . almost). 
If a manufacturer can sell bigger boxes for more and is making 100,000 boxes, you’d better 
believe they want the exact answer to this question. Here’s how you do it:

1. Express the thing you want maximized, the volume, as a function of the unknown, 
the height of the box (which is the same as the length of the cut).

V l w h

V h h h h30 2 30 2
(You can see in Figure 12-1 thaat both

  the and equallength width h

h h h

30 2

900 120 4

4

2

.)

hh h h3 2120 900

2. Determine the domain of your function.

The height can’t be negative, and because the length (and width) of the box equals 
30 2h, which can’t be negative, h can’t be greater than 15. Thus, sensible values for h 
are 0 15h . You now want to find the maximum value of V h  in this interval. You 
use the method from the section, “Finding Absolute Extrema on a Closed Interval,” in 
Chapter 11.

3. Find the critical numbers of V h  in the open interval 0 15,   by setting its derivative 
equal to zero and solving. And don’t forget to check for numbers where the derivative 
is undefined.

FIGURE 12-1:  
The box is 

made from a 
30”-by-30” 

piece of 
cardboard by 

cutting off the 
corners and 

folding up  
the sides.
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V h h h h

V h h

h

h

4 120 900

12 240 900

0 12 2

3 2

2

2

( )power rule

440 900

0 20 75

15 5

2

h

h h

h h h

 (dividing both sides by 12)

(ordinary trinomial factoring)

or  h 15 5

Because 15 is not in the open interval 0 15, , it doesn’t qualify as a critical number 
(though this is a moot point because you end up testing it in Step 4 anyway). And 
because this derivative is defined for all input values and is, thus, never undefined, 
there are no additional critical numbers. So, 5 is the only critical number.

4. Evaluate the function at the critical number, 5, and at the endpoints of the interval, 0 
and 15, to locate the function’s max.

V h h h h

V

V

V

4 120 900

0 0

5 2 000

15 0

3 2

,

Test the endpoints. The extremum (dig that fancy word for maximum or minimum) you’re look-
ing for doesn’t often occur at an endpoint, but it can — so don’t fail to evaluate the function at 
the interval’s two endpoints.

So, a height of 5 inches produces the box with maximum volume (2000 cubic inches). Because 
the length and width equal 30 2h, a height of 5 gives a length and width of 30 2 5, or 20, and 
thus the dimensions of the desired box are 5 20 20 . That’s it.

The maximum area of a corral — yeehaw!
A rancher can afford 300 feet of fencing to build a corral that’s divided into two equal rect-
angles. See Figure 12-2.

What dimensions will maximize the corral’s area? This is another practical problem. The 
rancher wants to give his animals as much room as possible given the length of fencing he can 
afford. Like all businesspeople, he wants the most bang for his buck.

FIGURE 12-2: 
Calculus for 
cowboys — 

maximizing a 
corral.
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1. a.  Express the thing you want maximized (area) as a function of the two unknowns  
(x and y).

A l w

x y2

In the above cardboard box example, you can easily write the volume as a function of 
one variable — which is always what you need. But here, the area is a function of two 
variables (x and y), so Step 1 has the following two extra sub-steps that will eliminate 
one of the variables.

1. b. Use the given information to relate the two variables to each other.

The 300 feet of fencing is used for seven sections, thus

300

300 4 3

x x x x y y y

x y

1. c.  Solve this equation for y and plug the result in for y in the equation from Step 1a. This 
gives you what you need — a function of one variable.

4 3 300

3 300 4

300 4
3

100 4
3

x y

y x

y
x

y x   Now do the substitu( ttion.)

A x y

A x x x

A x x x

2

2 100 4
3

200 8
3

2

2.  Determine the domain of the function.

You can’t have a negative length of fence, so x can’t be negative, and the most x can be 
is 300 divided by 4, or 75. Thus, 0 75x .

3.  Find the critical numbers of A x  in the open interval 0 75,   by setting its derivative 
equal to zero and solving (and check whether the derivative is undefined anywhere in 
the interval).

A x x x

A x x

x

200 8
3

200 16
3

0 200 16
3

16

2

      (power rule)

33
200

37 5

x

.

Because A  is defined for all x-values, 37.5 is the only critical number.
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4.  Evaluate the function at the critical number, 37.5, and at the endpoints of the interval, 
0 and 75.

A x x x

A

A

A

200 8
3

0 0

37 5 3750

75 0

2

.

Note: Evaluating a function at the endpoints of a closed interval is a standard step in 
finding an absolute extremum on the interval. However, you could have skipped this 
step here had you noticed that A x  is an upside-down parabola and that, therefore, 
its peak at 37 5 3750. ,   must be higher than either endpoint.

The maximum value in the interval is 3750, and thus, an x-value of 37.5 feet maximizes the 

corral’s area. The length is 2x, or 75 feet. The width is y, which equals 100 4
3

x . Plugging in 37.5 

gives you 100 4
3

37 5. , or 50 feet. So, the rancher will build a 75’-by-50’ corral with an area 

of 3750 square feet.

1 What are the dimensions of the soup can of greatest volume that can be made with  
50 square inches of tin? (The entire can, including the top and bottom, is made of tin.) 
And what’s its volume?

2 A Norman window is in the shape of a semicircle above a rectangle. If the straight edges 
of the frame cost $20 per linear foot and the circular frame costs $25 per linear foot, 
and you want a window with an area of 20 square feet, what dimensions will minimize 
the cost of the frame?
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3 A right triangle is placed in the first quadrant with its legs on the x- and y-axes. Given 
that its hypotenuse must pass through the point 2 5, , what are the dimensions and 
area of the smallest such triangle?

4 You’re designing an open-top cardboard box for a purveyor of nuts. The top will be 
made of clear plastic, but the plastic-box-top designer is handling that. The box must 
have a square base and two cardboard pieces that divide the box into four sections for 
the almonds, cashews, pecans, and walnuts. See the following figure. Given that you 
want a box with a volume of 72 cubic inches, what dimensions will minimize the total 
cardboard area and thus minimize the cost of the cardboard? What’s the total area of 
cardboard?

Yo-Yo a Go-Go: Position, Velocity,  
and Acceleration

Every time you get in your car, you witness differentiation. Your speed is the first derivative  
of your position. And when you step on the accelerator or the brake  — accelerating or  
decelerating — you experience a second derivative.
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The derivative of position is velocity, and the derivative of velocity is acceleration. If a function 
gives the position of something as a function of time, you differentiate the position function 
to get the velocity function, and you differentiate the velocity function to get the acceleration 
function. Stated a different but equivalent way, the first derivative of position is velocity, and 
the second derivative of position is acceleration.

Here’s a problem. A yo-yo moves straight up and down. Its height above the ground, as a  
function of time, is given by the function H t t t t3 26 5 30, where t is in seconds and H t  
is in inches. At t 0, it’s 30 inches above the ground, and after 4 seconds, it’s at a height of  
18 inches. See Figure 12-3.

Velocity, V t , is the derivative of position (height, in this problem), and acceleration, A t , is 
the derivative of velocity. Thus:

H t t t t

V t H t t

A t V

t

3 2

2

6 5 30

3 12 5   (power rule)

tt tH t6 12 (power rule)

Take a look at the graphs of these three functions in Figure 12-4.

Using the three functions and their graphs, I want to discuss several things about the yo-yo’s 
motion:

 » Maximum and minimum height

 » Maximum, minimum, and average velocity

 » Total displacement

 » Maximum, minimum, and average speed

 » Total distance traveled

 » Positive and negative acceleration

 » Speeding up and slowing down

FIGURE 12-3: 
The yo-yo’s 

height, from 0 
to 4 seconds.
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Because this is a lot to cover, I’ll cut some corners — like not always checking endpoints when 
looking for extrema if it’s obvious that they don’t occur at the endpoints. Do you mind? I didn’t  
think so. (Position, velocity, and acceleration problems make use of several ideas from  
Chapter 11 — local extrema, concavity, inflection points — so you may want to take a look back 
at those definitions if you’re a little hazy.) But before tackling the bulleted topics, let’s go over 
a few things about velocity, speed, and, acceleration.

Velocity, speed, and acceleration
None of your friends will complain — or even notice — if you use the words “velocity” and 
“speed” interchangeably, but your friendly mathematician will complain. Here’s the difference. 

FIGURE 12-4: 
The graphs of 

the yo-yo’s 
height,  

velocity, and 
 acceleration 

functions from 
0 to 4 seconds.
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For the velocity function in Figure 12-4, upward motion by the yo-yo is defined as a positive 
velocity, and downward motion is a negative velocity. This is the standard way velocity is treated 
in most calculus and physics problems. (Or, if the motion is horizontal, going right is a positive 
velocity and going left is a negative velocity.)

Speed, on the other hand, is always positive (or zero). If a car goes by at 50 mph, for instance, 
you say its speed is 50, and you mean positive 50, regardless of whether it’s going to the right 
or the left. For velocity, the direction matters; for speed, it does not. In everyday life, speed is 
a simpler idea than velocity because it’s always positive and because it agrees with our com-
monsense notion about how fast something is moving. But in calculus, speed is actually the 
trickier idea because it doesn’t fit nicely into the three-function scheme shown in Figure 12-4.

You’ve got to keep the velocity-speed distinction in mind when analyzing velocity and accel-
eration. The way we talk about velocity, speed, and acceleration — in calculus class, as opposed 
to in everyday life — can get pretty weird. For example, if an object is going down (or to the 
left) faster and faster, its speed is increasing, but its velocity is decreasing because its velocity is 
becoming a bigger and bigger negative (and bigger negatives are smaller numbers). This seems 
weird, but that’s the way it works. And here’s another strange thing: Acceleration is defined 
as the rate of change of velocity, not speed. So, if an object is slowing down while going in the 
downward direction and thus has an increasing velocity — because the velocity is becoming 
a smaller and smaller negative — the object has a positive acceleration. In everyday English, 
you’d say that the object is decelerating (slowing down), but in calculus class, though you could 
still say the object is slowing down, you’d say that the object has a negative velocity and a posi-
tive acceleration. (By the way, deceleration isn’t exactly a technical term, so you should probably 
avoid it in calculus class. It’s best to use the following vocabulary: positive acceleration, negative 
acceleration, positive velocity, negative velocity, speeding up, and slowing down.) I could go on with 
this stuff, but I bet you’ve had enough.

Maximum and minimum height
The maximum and minimum height of the yo-yo, in other words, the max and min of H t , 
occur at the local extrema you can see in Figure 12-4. To locate them, set the derivative of H t  
(that’s V t ) equal to zero and solve:

H V t t t

t t

t

t 3 12 5

0 3 12 5

12 12 4 3 5
2 3

2

2

2

(qquadratic formula)

or

12 84
6

12 2 21
6

6 21
3

0 47 3 53. .
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These two numbers are the zeros of H t  (which is V t ) and the t-coordinates, that’s time-
coordinates, of the max and min of H t , which you can see in Figure 12-4. In other words, 
these are the times when the yo-yo reaches its maximum and minimum heights. Plug these 
numbers into H t  to obtain the heights:

H

H

0 47 31 1

3 53 16 9

. .

. .

So, the yo-yo gets as high as about 31.1 inches above the ground at t 0 47.  seconds and as low 
as about 16.9 inches at t 3 53.  seconds. (By the way, do you see why the max and min of the 
yo-yo’s height would occur when the yo-yo’s velocity is zero?)

Velocity and displacement
As I explain in the section “Velocity, speed, and acceleration,” velocity is basically like speed, 
except that while speed is always positive (or zero), velocity can be positive (when going up or 
to the right) or negative (when going down or to the left). The connection between displacement 
and distance traveled is similar: Distance traveled is always positive (or zero), but going down 
(or left) counts as negative displacement. In everyday speech, speed and distance traveled are 
the more user-friendly ideas, but when it comes to calculus and physics, velocity and displace-
ment are the more fundamental ideas.

Total displacement
Let’s get back to my yo-yo analysis. Total displacement is defined as final position minus ini-
tial position.

Total displacement final position initial position  

So, because the yo-yo starts at a height of 30 and ends at a height of 18,

Total displacement 18 30 12 inches

This is negative because the net movement is downward.

Average velocity
Average velocity is given by total displacement divided by elapsed time:

Average velocity
total

elapsed time
 displacement

 

I just calculated the total displacement ( 12 inches), and time runs from 0 seconds to  
4 seconds, so the elapsed time is 4 seconds. Thus,

Average velocity
12

4
3

inches
seconds

inches per second

This answer of negative 3 tells you that the yo-yo is, on average, going down 3 inches per second.
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Maximum and minimum velocity
To determine the yo-yo’s maximum and minimum velocity during the interval from 0 to 4 
seconds, set the derivative of V t  — that’s A t  — equal to zero and solve:

V A t tt 6 12

6 12 0

2

t

t

(Look again at Figure 12-4. At t 2, you get the zero of A t , the local min of V t , and the 
inflection point of H t . But you already knew that, right? If not, check out Chapter 11.)

Now, evaluate V t  at the critical number, 2, and at the interval’s endpoints, 0 and 4:

V t t t

V

V

V

3 12 5

0 5

2 7

4 5

2

So, the yo-yo has a maximum velocity of 5 inches per second twice — at both the beginning and 
the end of the interval. It reaches a minimum velocity of 7 inches per second at t 2 seconds.

Speed and distance traveled
As mentioned in the previous section, velocity and displacement are the more technical concepts, 
while speed and distance traveled are the more commonsense ideas. Speed, of course, is the thing 
you read on your speedometer, and you can read distance traveled on your odometer or your 
“tripometer” after setting it to zero.

Total distance traveled
To determine total distance, add up the distances traveled on each leg of the yo-yo’s trip: the 
up leg, the down leg, and the second up leg.

First, the yo-yo goes up from a height of 30 inches to about 31.1 inches (where the first turn-
around point is). That’s a distance of about 1.1 inches. Next, it goes down from about 31.1 to 
about 16.9 (the height of the second turn-around point). That’s a distance of 31.1 minus 16.9, 
or about 14.2 inches. Finally, the yo-yo goes up again from about 16.9 inches to its final height 
of 18 inches. That’s another 1.1 inches. Add these three distances to obtain the total distance 
traveled: 1 1 14 2 1 1 16 4. . . . inches. (Note: Compare this answer to the total displacement 
of 12. The displacement is negative because the net movement is downward. And the positive 
amount of the displacement, namely 12, is less than the distance traveled of 16.4 because with 
displacement, the up legs of the yo-yo’s trip cancel out part of the down leg distance. Check out 
the math: 1 1 14 2 1 1 12. . . . Get it?) In a nutshell, the total distance traveled is how far you 
go along the path you’re on — like the way your car’s odometer works or, if you’re walking, 
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a pedometer. Total displacement, on the other hand, is a net distance, or you could say the  
crow-fly distance from start to finish (remembering, though, that this can be a negative num-
ber for going down or to the left).

Average speed
The yo-yo’s average speed is given by the total distance traveled divided by the elapsed time.

Average speed
total
elapsed time

 distance
 

Thus,

Average speed
16 4

4
4 1. . inches per second

Maximum and minimum speed
You previously determined the yo-yo’s maximum velocity (5 inches per second) and its mini-
mum velocity ( 7 inches per second). A velocity of 7 is a speed of 7, so that’s the yo-yo’s maxi-
mum speed. Its minimum speed of zero occurs at the two turnaround points.

When you switch directions, your velocity is zero (for an infinitesimal moment).

A good way to analyze maximum and minimum speed is to consider the speed function and 
its graph. (Or, if you’re a glutton for punishment, check out the following mumbo jumbo.) 

Speed equals the absolute value of velocity. So, for the yo-yo problem, the speed function, 
S t , equals V t t t3 12 52 . Check out the graph of S t  in Figure 12-5. Looking at this 
graph, it’s easy to see that the yo-yo’s maximum speed occurs at t 2 (the maximum speed is 
S 2 3 2 12 2 5 72 ), and that the minimum speed is zero at the two x-intercepts.

Minimum and maximum speed. For a continuous velocity function, the minimum speed is zero 
whenever the maximum and minimum velocities are of opposite signs or when one of them 
is zero. When the maximum and minimum velocities are both positive or both negative, the  
minimum speed is the lesser of the absolute values of the maximum and minimum velocities. In 
all cases, the maximum speed is the greater of the absolute values of the maximum and mini-
mum velocities. Is that a mouthful or what?

FIGURE 12-5: 
The yo-yo’s 

speed function, 
S t V t .
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Burning some rubber with acceleration
Let’s go over acceleration: Put your pedal to the metal.

Positive and negative acceleration
The graph of the acceleration function at the bottom of Figure 12-4 is a simple line, A t t6 12. 

It’s easy to see that the acceleration of the yo-yo goes from a minimum of 12 inches per second
second

 

at t 0 seconds to a maximum of 12 inches per second
second

 at t 4 seconds, and that the acceleration 

is zero at t 2 when the yo-yo reaches its minimum velocity (and maximum speed). When the 
acceleration is negative — on the interval 0 2,  — the velocity is decreasing. When the accelera-
tion is positive — on the interval 2 4,  — the velocity is increasing.

Speeding up and slowing down
Figuring out when the yo-yo is speeding up and slowing down is probably more interesting and 
descriptive of its motion than the info in the preceding section. An object is speeding up (what 
we call “acceleration” in everyday speech) whenever the velocity and the calculus acceleration 
are both positive or both negative. And an object is slowing down (“deceleration” in everyday 
speech) when the velocity and the calculus acceleration are of opposite signs.

Look at all three graphs in Figure 12-4 again. From t 0 to about t 0 47. , the velocity is posi-
tive and the acceleration is negative, so the yo-yo is slowing down while moving upward (till 
its velocity becomes zero and it reaches its maximum height). In plain English, the yo-yo is 
decelerating from 0 to about 0.47 seconds. The greatest deceleration occurs at t 0, when the 

deceleration is 12 inches per second
second

 (the graph shows negative 12, but I’m calling it positive 12 

because I’m calling it a deceleration, get it?).

From about t 0 47.  to t 2, both velocity and acceleration are negative, so the yo-yo is speed-
ing up while moving downward. From t 2 to about t 3 53. , velocity is negative and accelera-
tion is positive, so the yo-yo is slowing down again as it continues downward (till it bottoms 
out at its lowest height). Finally, from about t 3 53.  to t 4, both velocity and acceleration 
are positive, so the yo-yo is speeding up again. The yo-yo reaches its greatest acceleration of 

12 inches per second
second

 at t 4 seconds.

Tying it all together
Note the following connections among the three graphs in Figure 12-4. The negative section 
on the graph of A t  — from t 0 to t 2 — corresponds to a decreasing section of the graph 
of V t  and a concave down section of the graph of H t . The positive interval on the graph of 
A t  — from t 2 to t 4 — corresponds to an increasing interval on the graph of V t  and a 
concave up interval on the graph of H t . When t 2 seconds, A t  has a zero, V t  has a local 
minimum, and H t  has an inflection point.
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For Problems 5, 6, and 7, a duck-billed platypus is swimming back and forth along the side of 
your boat, blithely unaware that he’s the subject for calculus problems in rectilinear motion. The 
back of your boat is at the zero position, and the front of your boat is in the positive direction 
(see the following figure). Note that s t  gives the platypus’s position (in feet) as a function of 
time (seconds). Find his a) position, b) velocity, c) speed, and d) acceleration, at t 2 seconds.

WHAT THE HECK IS A SECOND SQUARED?
Note that I use the unit inches per second

second
 for acceleration instead of the equivalent but 

weird-looking unit, inches
second2 . You often see acceleration given in terms of a unit of distance over 

second2, or you might see something like inches per second2. But what the heck is a second2?  
It’s meaningless, and something like inches/second2 is a bad way to think about acceleration. 
The best way to understand acceleration is as a change in speed per unit of time. If a car can go 
from 0 to 60 mph in 6 seconds, that’s an increase in speed of 60 mph in 6 seconds, or, on average, 

10 mph each second — that’s an acceleration of 10 mph
second

. It’s slightly more confusing when the 

speed has a unit like feet/second and the unit of time for the acceleration is also a second, because 
then the word second appears twice. But it still works like the car example. Say an object starts at 
rest and speeds up to 10 feet/second after 1 second, then up to 20 feet/second after 2 seconds, to 
30 feet/second after 3 seconds, and so on. Its speed is increasing 10 feet/second each second, and 

that’s an acceleration of 10 feet per second
second

 or 10 feet/second
second

. (By the way, it’s helpful to write 

the acceleration unit in either of these ways (using a vertical fraction) as a speed over the unit of 
time — instead of horizontally like 10 feet per second per second or 10 feet/second/second — to 
emphasize that acceleration is a change in speed per unit of time.) Think of acceleration this way, 
not in terms of that weird second2 thing.

5 s t t5 42
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6 s t t t t3 5 64 3

7 s t
t t
1 8 33

For Problems 8, 9, and 10, a three-toed sloth is hanging onto a tree branch and moving right 
and left along the branch. (The tree trunk is at zero and the positive direction goes out from the 
trunk.) Note that s t  gives its position (in feet) as a function of time (seconds). Between t 0 
and t 5, for each problem, find a) the intervals when the sloth is moving away from the trunk, 
the intervals when it is moving toward the trunk, and when and where it turns around; b) its 
total distance moved and its average speed; and c) its total displacement and average velocity.

8 s t t t t2 8 53 2
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9 s t t t t4 2

10 s t
t

t
1
42

Related Rates — They Rate, Relatively
Say you’re filling up your swimming pool and you know how fast water is coming out of your 
hose, and you want to calculate how fast the water level in the pool is rising. You know one rate 
(how fast the water is being poured in), and you want to determine another rate (how fast the 
water level is rising). These rates are called related rates because one depends on the other — 
the rate that the water level is rising will depend on the rate that the water is being poured in. 
In a related rates problem, you’re given one or more rates that are either constant or changing, 
and you have to figure out a related rate that is usually changing. You have to determine this 
related rate at one particular point in time. (If this isn’t crystal clear, you’ll see what I mean in 
a minute when you work through the following problems.)

Related rates problems are the Waterloo for many a calculus student. But they’re not that bad 
after you get the basic technique down. The best way to get the hang of them is by working 
through lots of examples, so let’s get started.

Blowing up a balloon
You’re blowing up a balloon at a rate of 300 cubic inches per minute. When the balloon’s radius 
is 3 inches, how fast is the radius increasing?
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1. Draw a diagram, labeling it with any unchanging measurements (there aren’t any in 
this unusually simple problem) and making sure to assign a variable to anything in 
the problem that’s changing (unless it’s irrelevant to the problem). See Figure 12-6.

Notice that the radius in Figure 12-6 is labeled with the variable r. The radius needs a 
variable because as the balloon is being blown up, the radius is changing. I put the 3 in 
parentheses to emphasize that the number 3 is not an unchanging measurement. The 
problem asks you to determine something when the radius is 3 inches, but remember, 
the radius is constantly changing.

Changing or unchanging? In related rates problems, it’s important to distinguish 
between what is changing and what is not changing.

The volume of the balloon is also changing, so you need a variable for volume, V. You 
could put a V on your diagram to indicate the changing volume, but there’s really no 
easy way to mark part of the balloon with a V like you can show the radius with an r.

2. List the given rate and the rate you’re asked to determine as derivatives with respect 
to time.

You’re pumping up the balloon at 300 cubic inches per minute. That’s a rate — a 
change in volume (cubic inches) per change in time (minutes). So,

dV
dt

300 cubic inches per minute

You have to figure out a related rate, namely, how fast the radius is changing, so

dr
dt

?

3. Write down the formula that connects the variables in the problem, V and r.

Here’s the formula for the volume of a sphere:

V r
4
3

3

FIGURE 12-6: 
Blowing up a 

balloon — time 
to party!
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4. Differentiate your formula with respect to time, t.

When you differentiate in a related rates problem, all variables are treated like the y’s 
are treated in a typical implicit differentiation problem.

dV
dt

r
dr
dt

r
dr
dt

4
3

3

4

2

2

·

You need to add the dr
dt

 just like you would add on a y  or a dy
dx

 with implicit  
differentiation.

5. Substitute known values for the rate and variables in the equation from Step 4, and 
then solve for the thing you’re asked to determine.

It’s given that dV
dt

300, and you’re asked to figure out dr
dt

 when r 3, so plug in these 

numbers and solve for dr
dt

.

Differentiate before you plug in. Be sure to differentiate (Step 4) before you plug the 
given information into the unknowns (Step 5).

dV
dt

r
dr
dt

dr
dt

dr
dt

dr
dt

dr
dt

4

300 4 3

300 36

300
36

25
3

2

2·

22 65. inches per minute

So, the radius is increasing at a rate of about 2.65 inches per minute when the radius measures 
3 inches. Think of all the balloons you’ve blown up since your childhood. Now you finally have 
the answer to the question that’s been bugging you all these years.

By the way, if you plug 5 into r instead of 3, you get an answer of about 0.95 inches per minute. 
This should agree with your balloon-blowing-up experience: The bigger the balloon gets, the 
slower it grows. It’s a good idea to check things like this every so often to see that the math 
agrees with common sense.

After finishing a math problem, ask yourself whether your answer makes sense. Asking this 
question can help you increase your success in math (and science). I’m not referring here to 
the things you can do to confirm an answer — things like plugging an answer into a variable, 
or solving backwards — confirming your answers like that is another great strategy for success. 
What I’m talking about here is asking yourself whether your answer to a problem is within 
the ballpark of what’s reasonable (as opposed to something that’s ridiculous or impossible). 
And while it’s not always possible to decide whether a math answer is reasonable, you should 
always keep this important question in mind.
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Filling up a trough
Here’s another related rates problem. A trough is being filled up with swill. The trough is 10 feet 
long, and its cross-section is an isosceles triangle with a base of 2 feet and a height of 2 feet 
6 inches (with the vertex at the bottom, of course). Swill’s being poured in at a rate of 5 cubic 
feet per minute. When the depth of the swill is 1 foot 3 inches, how fast is the swill level rising?

1. Draw a diagram, labeling it with any unchanging measurements and assigning  
variables to any changing things. See Figure 12-7.

Note that Figure 12-7 shows the unchanging dimensions of the trough (2 feet, 2 feet 6 
inches, and 10 feet), and that these dimensions do not have variable names like l for 
length or h for height. And note that the changing things — the height (or depth) of  
the swill and the width of the surface of the swill (which gets wider as the swill gets 
deeper) — have variable names, h for height and b for base (I say base instead of width 
because it’s the base of the upside-down triangle shape made by the swill). The volume 
of the swill is also changing, so you can call that V.

2. List the given rate and the rate you’re asked to figure out as derivatives with respect  
to time.

dV
dt
dh
dt

5 cubic feet per minute

?

3. a. Write down the formula that connects the variables in the problem: V, h, and b.

I’m absolutely positive that you remember the formula for the volume of a right prism (the 
shape of the swill in the trough):

V area of base height

Note that this “base” is the base of the prism (the whole triangle at the end of the 
trough), not the base of the triangle that is labeled b in Figure 12-7. Also, this “height” is 
the height of the prism (the length of the trough), not the height labeled h in Figure 12-7. 
Sorry about the confusion. Deal with it.

FIGURE 12-7: 
Filling a trough 

with swill — 
lunch time.
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The area of the triangular base equals 1
2

bh, and the “height” of the prism is 10 feet, so 
the formula becomes

V bh

V bh

1
2

10

5

·

Now, unlike the formula in the balloon example, this formula contains a variable, b, 
that you don’t see in your list of derivatives in Step 2. So, Step 3 has a second part — 
getting rid of this extra variable.

3. b. Find an equation that relates the unwanted variable, b, to some other variable in the 
problem so you can make a substitution that leaves you with only V and h.

The triangular face of the swill in the trough is similar to the triangular face of the 
trough itself, so the base and height of these triangles are proportional. (Recall from 
geometry that similar triangles are triangles of the same shape; their sides are propor-
tional.) Thus,

b h
not

b
h

b h

2 2 5
2 6

2
2 5
0 8

.
.

.
.

       (Be careful: 2 6 is feet.)

Be on the lookout for similar triangles. Similar triangles come up a lot in related rates 
problems. Look for them whenever the problem involves a triangle, a triangular prism, 
or a cone shape.

Now substitute 0.8h for b in your formula from Step 3a.

V bh

V h h

V h

5

5 0 8

4 2

.

4. Differentiate this equation with respect to t.

dV
dt

h
dh
dt

8   the power rule with the implicit differentia( ttion dh
dt

)

5. Substitute known values for the rate and variable in the equation from Step 4 and 
then solve.

You know that dV
dt

5 cubic feet per minute, and you want to determine dh
dt

 when h 

equals 1 foot 3 inches, or 1.25 feet, so plug in 5 and 1.25 and solve for dh
dt

:

dV
dt

h
dh
dt

dh
dt

dh
dt

8

5 8 1 25

1
2

· . ·

That’s it. The swill’s level is rising at a rate of 1
2

 foot per minute when the swill is 1 foot 3 inches 
deep. Dig in.
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Fasten your seat belt: You’re approaching  
a calculus crossroads
Ready for another common related rates problem? One car leaves an intersection traveling 
north at 50 mph, and another is driving west toward the intersection at 40 mph. At one point, 
the north-bound car is three-tenths of a mile north of the intersection, and the west-bound 
car is four-tenths of a mile east of it. At this point, how fast is the distance between the cars 
changing?

1. Do the diagram thing. See Figure 12-8.

Variable or fixed? Before going on with this problem, I want to mention the problem 
you’ll do next. It involves a ladder leaning against and sliding down a wall. Check out 
the figure that goes with the next problem, but note that when you draw your own 
diagram for a ladder-against-a-wall problem like this, you won’t draw a house like  
I did. Your diagram would be very similar to Figure 12-8, except that the y-axis would 
represent the wall, the x-axis would be the ground, and the diagonal line would be the 
ladder. The ladder problem and the car problem are quite similar, but there’s an 
important difference. The distance between the cars is changing, so the diagonal line in 
Figure 12-8 is labeled with a variable, s. A ladder, on the other hand, has a fixed length, 
so the diagonal line in your diagram for a ladder problem would be labeled with a 
number, not a variable.

2. List all given rates and the unknown rate.

As Car A travels north, the distance y is growing at 50 miles per hour. That’s a rate, a 
change in distance per change in time. So,

change in distance in y direction
change in time

dy
dt

50 mph

FIGURE 12-8: 
Calculus — it’s 

a drive in the 
country.
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As Car B travels west, the distance x is shrinking at 40 miles per hour. That’s a negative 
rate:

change in distance in x direction
change in time

dx
dt

40 mph

You have to figure out how fast s is changing, so,

change in distance in s direction
change in time

ds
dt

?

3. Write the formula that relates the variables in the problem: x, y, and s.

The Pythagorean Theorem, a b c2 2 2, will do the trick for this right triangle problem. 
In this problem, x and y are the legs of the right triangle, and s is the hypotenuse, so 
x y s2 2 2.

The Pythagorean Theorem is used a lot in related rates problems. If there’s a right 
triangle in your problem, it’s quite likely that a b c2 2 2 is the formula you’ll need.

Because this formula contains the variables x, y, and s, which all appear in your list of 
derivatives in Step 2, you don’t have to tweak this formula like you did in the trough 
problem.

4. Differentiate with respect to t.

s x y

s
ds
dt

x
dx
dt

y
dy
dt

2 2 2

2 2 2
  (implicit differentiation

withh the power rule)

(Remember, in a related rates problem, all variables are treated like the y’s in an 
implicit differentiation problem.)

5. Substitute and solve for ds
dt

.

x y
dx
dt

dy
dt

s0 4 0 3 40 50. , . , , , ...        and  

“Holy devoid distance lacking length, Batman. How can we solve for ds
dt

 unless we have 

values for the rest of the unknowns in the equation?” “Take a chill pill, Robin — just 
use the Pythagorean Theorem again.”

s x y

s

s

s

s

2 2 2

2 2 2

2

2

0 4 0 3

0 16 0 09

0 25

0 5

. .

. .

.

. (square rootinng both sides)

You can reject the negative answer because s obviously has a positive length. So s 0 5. .
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Now plug everything into your equation:

2 2 2

2 0 5 2 0 4 40 2 0 3 50

1

s
ds
dt

x
dx
dt

y
dy
dt

ds
dt
ds
dt

· . · · . · · . ·

· 32 30

2ds
dt

This negative answer means that the distance, s, is decreasing.

Thus, when Car A is 3 blocks north of the intersection and Car B is 4 blocks east of it, the dis-
tance between them is decreasing at a rate of 2 mph.

Try this at your own risk
One final related rates problem. A homeowner decides to paint his home. He picks up a home 
improvement book, which recommends that a ladder should be placed against a wall such that 
the distance from the foot of the ladder to the bottom of the wall is one-third the length of the 
ladder. Not being the sharpest tool in the shed, the homeowner gets mixed up and thinks that 
it’s the distance from the top of the ladder to the base of the wall that should be a third of the 
ladder’s length. He sets up his 18-foot ladder accordingly, and — despite this unstable ladder 
placement — he manages to climb the ladder and start painting. (Perhaps the foot of the lad-
der is caught on a tree root or something.) His luck doesn’t last long, and the ladder begins to 
slide rapidly down the wall. One foot before the top of the ladder hits the ground, it’s falling at 
a rate of 20 feet/second. At this moment, how fast is the foot of the ladder moving away from 
the wall?

1. Draw a diagram, labeling it with any unchanging measurements and assigning  
variables to any changing things.

See the following figure.

You don’t have to draw the house — the basic triangle is enough. But I’ve sketched a 
fuller picture of this scenario to make clear what a knucklehead this guy is.
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2. List all given rates and the rate you’re asked to figure out. Write these rates as deriva-
tives with respect to time.

Note that h is the distance from the top of the ladder to the bottom of the wall; b is the 
distance from the base of the ladder to the wall.

You’re told that the ladder is falling at a rate of 20 feet/second. Going down is negative, so

dh
dt

h
db
dt

20 1   (when ) ?

3. Write down the formula that connects the variables in the problem, h and b.

That’s the Pythagorean Theorem, of course: a b c2 2 2, thus h b2 2 218 .

4. Differentiate with respect to time.

h b

h
dh
dt

b
db
dt

2 2 218

2 2 0

5. Substitute known values for the rates and variables in the equation from Step 4, and 
then solve for the thing you’re asked to determine.

You’re trying to determine db
dt

, so you have to plug numbers into everything else. But, 

as often happens, you don’t have a number for b, so you need to use a formula to get 
the number you need. This will often be the same formula you already used.

h b

b

b

2 2 2

2 2 2

18

1 18

323

17 97. feet

(Obviously, you can reject the negative answer.)

Now you have what you need to finish the problem.

2 2 0

2 1 20 2 17 97 0

40
35 94
1 11

h
dh
dt

b
db
dt
db
dt
db
dt

.

.
. feeet/second

6. Ask yourself whether your answer is reasonable. (This optional step is always a good 
idea when feasible.)

Yes, it does make sense. It makes sense that the bottom of the ladder is moving out 
much more slowly than the top of the ladder is moving down. Hold a yardstick against 
a wall so the bottom of it is on the floor and the top of it is on the wall about 4 or 5 
inches from the floor. Then push the top of the yardstick 4 or 5 inches down to the 
floor. You’ll see that the bottom barely moves farther out from the wall. Right triangles 
with a fixed hypotenuse always work like that. If one leg is much shorter than the 
other, the short leg can change a lot while the long leg barely changes. It’s a byproduct 
of the Pythagorean Theorem.



CHAPTER 12  Your Problems Are Solved: Differentiation to the Rescue!      345

11 This problem involves the same trough as the one in the example problem (it’s 10 feet 
long and its cross section is an isosceles triangle with a base of 2 feet and a height of  
2 feet 6 inches). But this time, the farmer is pouring swill into the trough at a rate of  
1 cubic foot per minute, and just as the swill reaches the brim, three hogs start violently 

sucking down the swill at a rate of 1
2

 cubic foot per minute for each hog. They’re going 

at it so vigorously that another 1
2

 cubic foot of swill is being splashed out of the trough 

each minute. The farmer keeps pouring in swill, but she’s no match for her hogs. When 
the depth of the swill falls to 1 foot 8 inches, how fast is the swill level falling?

12 A pitcher delivers a fastball, which the batter pops up — it goes straight up above home 
plate. When it reaches a height of 60 feet, it’s moving up at a rate of 50 feet per second. 
At this point, how fast is the distance from the ball to second base growing? Note: The 
distance between the bases of a baseball diamond is 90 feet (home to first, first to sec-
ond, and so on).

13 A 6-foot-tall man looking over his shoulder sees his shadow that’s cast by a 15-foot- 
tall lamppost in front of him. The shadow frightens him, so he starts running away 
from it — toward the lamppost. Unfortunately, this only makes matters worse, as it 
causes the frightening head of the shadow to gain on him. He starts to panic and run 
even faster. Five feet before he crashes into the lamppost, he’s running at a speed of  
15 miles per hour. At this point, how fast is the tip of the shadow moving?

14 Salt is being unloaded onto a conical pile at a rate of 200 cubic feet per minute. If the 
height of the cone-shaped pile is always equal to the radius of the cone’s base, how fast 
is the height of the pile increasing when it’s 18 feet tall?
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Practice Questions Answers and Explanations
1 The dimensions are 3.25 inches wide and 3.25 inches tall. The volume is about 27.14 cubic 

inches.

1. Draw your diagram (see the following figure).

2. a. Write a formula for the thing you want to maximize, the volume:

V r h2

2. b. Use the given information to relate r and h.

Surface Area r rh

r

   

top and bottom lateral area

2 2

50 2

2




22

2

2

25

rh

r rh

2. c. Solve for h and substitute to create a function of one variable.

25 25 252
2

r rh h
r

r r
r,   so   

V r h

V r r
r

r

r r

2

2

3

25

25

3. Figure the domain.

r

h

0

0

is obvious

is also obvious

And because 25 2r rh (from Step 2b), when h 0, r 25 ; so to make h 0, r must be 

less than 25 , or about 2.82 inches.
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4. Find the critical numbers of V r .

V r r r

V r r

r

r

r

25

25 3

0 25 3

25
3

25
3

1 63

3

2

2

2

. inchess (You can reject the negative answer because it s outside’   the domain.)

5. Evaluate the volume at the critical number.

V 1 63 25 1 63 1 63

27 14

3. . .

. cubic inches

The can will be 2 1 63.  or about 3.25 inches wide and 25
1 63

1 63
.

.  or about 3.25 inches tall. 

Isn’t that nice? The largest can has the same width and height and would thus fit per-
fectly into a cube. Geometric optimization problems frequently have results where the 
dimensions have some nice, simple mathematical relationship to each other.

By the way, did you notice that I skipped evaluating the volume at the endpoints of the 
domain? Can you guess why I did that? Hint: What’s the volume for the smallest and  
largest value of the radius?

2 The dimensions of the window need to be about 4 3  wide and about 5 1  high. The minimum 
cost is roughly $373.

1. Draw a diagram with variables (see the following figure).

2. a. Express the thing you want to minimize, the cost. 
Cost length of curved frame cost per linear foot

le

( ) ( )

(

      

  nngth of straight frame cost per linear foot

x

      ) ( )

25 2xx y

x x y

2 20

25 40 40
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2. b. Relate the two variables to each other.

Area Semicircle Rectangle

x
xy20

2
2

2

2. c. Solve for y and substitute.

2 20
2

20
2 4
10

4

2

2

xy
x

y
x

x
x

x
x

Cost x x y

C x x x
x

x

x x
x

25 40 40

25 40 40 10
4

25 40 400 100

15 40 400

x

x x
x

3. Find the domain.

x 0 is obvious. And when x gets large enough, the entire window of 20 square feet in area 
will be one big semicircle, so

20
2

40

40

40 3 57

2

2

2

x

x

x

x .

Thus, x must be less than or equal to 3.57.

4. Find the critical numbers of C x .

C x x x
x

C x x

x

15 40 400

15 40 400

0 15 40 400

400

2

2

xx

x

x

x

2

2

15 40

400
15 40

400
15 40

2 143.

Omit –2.143 because it’s outside the domain. So, 2.143 is the only critical number.
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5. Evaluate the cost at the critical number and at the endpoints.

C x x x
x

C undefined

C

C

15 40 400

0

2 143 373

3 57 423

. $

. $

You know C 2 143 373. $  is a min (not a max) because the cost goes up to $423 as x 
increases from 2.143, and as x decreases to zero, the cost also goes up (imagine plugging 
some tiny number like x = 0.001 into C x ; you would get an enormous cost).

So, the least expensive frame for a 20-square-foot window will cost about $373 and will be 

2 2 143. , or about 4.286 feet or 4 3  wide at the base. Because y
x

x10
4

, the height of the 

rectangular lower part of the window will be 2.98, or about 3  tall. The total height will thus 
be 2.98 plus 2.14, or about 5 11 .

3 The hypotenuse meets the y-axis at 0 10,   and the x-axis at 4 0,  ; the triangle’s area is 20.

1. Draw a diagram (see the following figure).

2. a. Write a formula for the thing you want to minimize, the area:

A bh
1
2

2. b. Use the given constraints to relate b and h.

This is a bit tricky — Hint: Consider similar triangles. If you draw a horizontal line from 
0 5,  to 2 5, , you create a little triangle in the upper-left corner that’s similar to the 

whole triangle. (You can prove their similarity with AA — remember your geometry? —  
as both triangles have a right angle and both share the top angle.)
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Because the triangles are similar, their sides are proportional:

height
base

height
bas

big triangle

big triangle

small triangle 

 

 

ee

h
b

h
small triangle 

5
2

2. c. Solve for one variable in terms of the other — take your pick — and substitute into your 
formula to create a function of a single variable. (I realized after doing the math below 
that it would have been a bit quicker to solve for b instead of h. My bad. But the rest of the 
problem works the same and is just as easy either way.)

2 5

2 5

2 5

5
2

h b h

h bh b

h b b

h
b

b

A bh

A b b
b

b

b
b

1
2
1
2

5
2

5
2 4

2

3. Find the domain.

Here, b must be greater than 2 — do you see why? And there’s no maximum value for b.

4. Find the critical numbers.

A b
b

b

A b
b b b b

b

b b

5
2 4

5 2 4 5 2 4

2 4

10 2 4

2

2 2

2

10
2 4

10 40
2 4

2

2

2

2

b

b

b b
b

10 40
2 4

0

10 40 0

10 4 0

0 4

2

2

2

b b
b

b b

b b

b

 

 

  or

Zero is outside the domain, so 4 is the only critical number. The smallest triangle must 
occur at b 4 because near the endpoints of the domain, you get triangles with astronomi-
cal areas.

5. Finish.

b h
b

b
h4 5

2
5 4
4 2

10   and   , so,

And the triangle’s area is thus 20.
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4 The minimizing dimensions are 6-by-6-by-2, made with 108 square inches of cardboard.

1. Draw a diagram and label with variables (see the following figure).

2. a. Express the thing you want to minimize, the cardboard area, as a function of the 
variables.

Cardboard area x xy xy

square base four sides two divide

 

   
2 4 2




rrs

A x xy



2 6

2. b. Use the given constraint to relate x to y.

Vol l w h

x x y72

2. c. Solve for y and substitute in the equation from Step 2a to create a function of one 
variable.

y
x
72

2
A x xy

A x x x
x

x
x

2

2
2

2

6

6 72

432

3. Find the domain.

x

y

0

0

is obvious

is also obvious

And if you made y small enough, say the height of a proton — great box, eh? — x would 
have to be astronomically big to make the volume 72 cubic inches. So, technically, there is 
no maximum value for x.
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4. Find the critical numbers.

A x x
x

A x x x

x
x

x
x

x

2

2

2

2

3

432

2 432

0 2 432

432 2

216 6

You know this number has to be a minimum because near the endpoints, say when 
x 0 0001.  or y 0 0001. , you get absurd boxes — either thin and tall like a mile-high 
toothpick or short and flat like a square piece of cardboard as big as a city block with a 
microscopic lip. Both of these would have an enormous area and would be of interest only 
to calculus professors. (Whoops; another slight math omission. Do you see it?)

5. Finish.

x 6, so the total area is

A 6 6 432
6

36 72 108

2 and y
x
72

72
6

2

2

2

That’s it — a 6-by-6-by-2 box made with 108 square inches of cardboard.

5 (a) At t 2, the platypus’s position is s 2 24 feet from the back of your boat.

(b) v t s t t10 , so at t 2, the platypus’s velocity is s 2 20 feet/second (20 is  
positive so that’s toward the front of the boat).

(c) Speed is the absolute value of velocity, so the speed is also 20 feet/second.

(d) Acceleration, a t , equals v t s t 10. That’s a constant, so the platypus’s accelera-

tion is 10
feet second

second
 at all times.

6 (a) s 2  gives the platypus’s position at t 2; that’s 3 2 5 2 2 64 3 , or 4 feet, from the 
back of the boat.

(b) v t s t t t12 15 13 2 . At t 2, the velocity is thus 37 feet per second.

(c) Speed is also 37 feet per second.

(d) a t v t s t t t36 302 . a 2  equals 84
feet second

second
.
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(a) At t 2, s t  equals 1
2

1 3, or 1 5.  feet. This means that the platypus is 1 5.  feet behind 
the back of the boat.

(b) 1
3
4

feet/second

v t s t t t2 424

v s2 2 2 24 2

1
4

24
16

1 3
4

2 4

feet/second

A negative velocity means that the platypus is swimming “backward”; in other words, 
he’s swimming toward the left, moving away from the back of the boat.

(c) Speed velocity , so the platypus’s speed is 1
3
4

 feet/second.

(d) a t v t s t t t2 963 5, or 2 96
3 5t t

. Therefore, a 2  is 2
8

96
32

, or 3
1
4

second
second

feet
.

Give yourself a pat on the back if you figured out that this positive acceleration with a 
negative velocity means the platypus is actually slowing down.

8 

7 

(a) The sloth never turns around; it moves away from the trunk for the entire interval from  
0 to 5 seconds.

Find the zeros of the velocity:

v t s t t t

t t

6 2 8

6 2 8

2

2                 0

                  0

No solutions.

3 42t t

A quadratic has no solutions when the discriminant (b ac2 4 ) is negative.

The fact that the velocity is never zero means that the sloth never turns around. At t 0, 

v t 8 feet
second

 which is positive, so the sloth moves away from the trunk for the entire 

interval.

(b and c) Both total distance and total displacement are 265 feet; both average speed and 
average velocity are 53 feet/second.

Displacement s s5 0 260 5 265

Because there are no turnaround points and because the motion is in the positive direc-
tion, the total distance and total displacement are the same: 265 feet.

Average velocity
total displacement

total time
s s

  
 

5 0
5 0

265
5

53 feet
second

Whenever the total distance equals the total displacement, average speed also equals 
average velocity: 53 feet/second.
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9 (a) The sloth is going left from 0 seconds to 0.385 seconds, and right from 0.385 to 5 seconds. 
The sloth turns around at 0.385 seconds when it is at s 0 385 0 385 0 385 0 3854 2. . . . , 
or 0 215.  feet. That’s 0.215 feet to the left of the trunk.

Find the zeros of v t : v t s t t t4 2 13

You’ll need your calculator for this:
Graph y t t4 2 13  and locate the x-intercepts. There’s just one: x 0 385. . That’s the 
only zero of s t v t .

Don’t forget that a zero of a derivative can be a horizontal inflection as well as a local 
extremum. You get turnaround points only at the local extrema of the position function.
Because v 0 1 (a leftward velocity) and v 1 5 (a rightward velocity), s 0 385.  must 
be a turnaround point (and it’s also a local min on the position graph). Does the first 
derivative test ring a bell?

Thus, the sloth is going left from 0 to 0.385 seconds and right from 0.385 to 5 seconds. The 
sloth turns around, obviously, at 0.385 seconds when it is at s 0 385 0 385 0 385 0 3854 2. . . . , 
or –0.215 feet. (I presume you figured out that there must be another branch on the tree on 
the other side of the trunk to allow the sloth to go left to a negative position.)

(b) The sloth moved a total distance of 645.43 feet at an average speed of 129.1 feet/second.

There are two legs of the sloth’s trip. It goes left from t 0 till t 0 385. , then right from 
t 0 385.  till t 5. Just add up the positive lengths of the two legs.

length s s

length s

leg

leg

feet

1

2

0 385 0

0 215 0

0 215

5

.

.

.

s 0 385

5 5 5 0 215

645 215

4 2

.

.

. feet

The total distance is thus 0 215 645 215. . , or 645.43 feet. That’s one big tree! The branch 
is longer than two football fields.

The sloth’s average speed is 645 43 5. / , or about 129.1 feet/second. That’s one fast sloth! 
About 88 per hour!

(c) The sloth’s total displacement is 645 feet and its average velocity is 129 feet/second.

Total displacement is s s5 0 ; that’s 645 0 645 feet. Lastly, the sloth’s average  
velocity is simply total displacement divided by total time — that’s 645 5/ , or 129 feet  
per second.

10 (a) The sloth goes right from t 0 till t 1 236.  seconds; then turns around at s 1 236. , or 
about 0.405 feet to the right of the trunk; and then goes left till t 5.

Find the zeros of v t :
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v t s t
t t t t

t

1 4 1 4

4

2 2

2 2

                    

                   

t t t

t

t t

t

2 2

2 2

2

2

4 2 2

4

2 4

4
2

Set this equal to zero and solve:

t t

t

t t

t

2

2 2

2

2 4

4
0

2 4 0

2 4 16
2

3 236 1 236. .or

Reject the negative solution because it’s outside the interval of interest: t 0 to t 5.  
So, the only zero velocity occurs at t 1 236.  seconds.

Because v 0 0 25.  feet per second and v 5 0 037. , the first derivative test tells you that 

s 1 236.  must be a local max and therefore a turnaround point.

The sloth thus goes right from 0 to 1.236 seconds; then turns around at s 1 236. , which  
is about 0.405 feet to the right of the trunk; and then it goes left till t 5.

(b) The total distance moved equals 0.353 feet; the average speed is 0.071 feet per second.

The sloth’s total distance is the sum of the lengths of the two legs:

going right

going left

s s

s

1 236 0

0 405 0 25

0 155

5

.

. .

.

ss 1 236

0 198

.

.

Total distance is therefore about 0 155 0 198 0 353. . .  feet. The sloth’s average speed is thus 
about 0.353∕5, or 0.071 feet per second. That’s roughly 4.26 feet/minute — much more like 
it for a sloth.

(c) The total displacement is about –0.043 feet; the average velocity is –0.0086 feet per 
second.

Total displacement is defined as final position minus initial position, so that’s 

s s5 0 6
29

1
4

0 043. feet

And thus the sloth’s average velocity is about −0.043/5, or −0.0086 feet per second.

11 It’s falling at a rate of 0 9.  inches per minute.

1. Draw a diagram, labeling the diagram with any unchanging measurements and  
assigning variables to any changing things.
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See the following figure.

Note that the height of 1 foot 8 inches — which is the height only at one particular 
point in time — is in parentheses to distinguish it from the other unchanging  
dimensions.

2. List all given rates and the rate you’re asked to figure out.

Express these rates as derivatives with respect to time. Give yourself a high-five if you 
realized that the thing that matters about the changing volume of swill is the net rate of 
change of volume.

Swill is coming in at 1 cubic foot per minute. It’s going out at 3 1
2

 cubic foot per minute 

(for the three hogs) plus another 1
2

 cubic foot per minute (the splashing) — that’s a 

total of 2 cubic feet per minute going out. So, the net is 1 cubic foot per minute  
going out — that’s a negative rate of change. In calculus language, you write: 
dV
dt

1 cubic foot per minute.

You’re asked to determine how fast the height is changing, so write: dh
dt

?

3. Steps 3a and 3b here are the same as in the example trough problem. So, just like in that 
problem, you’ve got the following formula:

V h4 2

4. Differentiate with respect to t.

dV
dt

h
dh
dt

8
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5. Substitute all known quantities into this equation and solve for 
dh
dt

.

You were given that h 1 8  (you must convert this to feet — that’s 5
3

 feet), and you  

figured out in Step 2 that dV
dt

1, so

1 8 5
3

1
40
3
3

40
9

10

dh
dt

dh
dt

 feet minute

 inches minute

/

/

Thus, when the swill level drops to a depth of 1 foot 8 inches, it’s falling at a rate of  
0.9 inches per minute. Mmm, mmm, good!

6. Ask whether this answer makes sense.

It’s not easy to come up with a common-sense explanation of why this answer is or is 
not reasonable. But there’s another type of check that works here and in many other 
related rates problems.

Take a very small increment of time — something much less than the time unit of the 
rates used in the problem. This problem involves rates per minute, so use 1 second for 
your time increment. Now ask yourself what happens in this problem in 1 second. The 

swill is leaving the trough at 1 cubic foot/minute; so, in 1 second, 1
60

 cubic feet will leave 

the trough. What does that do to the swill height? Because of similar triangles, when 

the swill falls to a depth of 1 foot 8 inches, which is 2
3

 of the height of the trough, the 

width of the surface of the swill must be 2
3

 of the width of the trough — and that comes 

to 1 1
3

 feet. So, the surface area of the swill is 1 1
3

10 feet.

Assuming the trough walls are straight (this type of simplification always works in this 
type of checking process), the swill that leaves the trough will form the shape of a very, 
very short box (“box” sounds funny because this shape is so thin; maybe “thin piece of 
plywood” is a better image).

The volume of a box equals length width height , thus

1
60

10 1 1
3

0 00125

height

height .
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This tells you that in 1 second, the height should fall 0.00125 feet or something very 
close to it. (This process sometimes produces an exact answer and sometimes an 
answer with a very small error.) Now, finally, see whether this number agrees with the 
answer. Your answer was –0.9 inches/minute. Convert this to feet/second:

9
10

12 60 0 00125.

It checks.

12 The distance is growing at about 21.3 feet per second.

1. Draw your diagram and label it. See the following figure.

2. List all given rates and the rate you’re asked to figure out.

dh
dt

h
dd
dt

50 60ft
sec

   (when )           ?

3. Write a formula that involves the variables:

h d2 2 290 2

4. Differentiate with respect to time:

2 2h
dh
dt

d
dd
dt
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5. Substitute known values and solve for 
dd
dt

:

You’re missing a needed value, d. So, use the Pythagorean Theorem to get it:

  

feet You can reject the neg

h d

d

d

2 2 2

2 2 2

90 2

60 90 2

140 7. ( aative answer.)

Now do the substitutions:

2 2

2 60 50 2 140 7

2 60 50
2 140 7

21 3

h
dh
dt

d
dd
dt

dd
dt

dd
dt

.

.
. feeet/second

6. Check whether this answer makes sense.

For this one, you’re on your own. Hint: Use the Pythagorean Theorem to calculate  

d 1
50

 of a second after the critical moment. Do you see why I picked this time increment?

13 It’s moving at 25 miles per hour.

1. The diagram thing: See the figure.

2. List the known and unknown rates.

dc
dt

c c15 5miles
hour

   (when ).    This is negative because iss shrinking.

db
dt

?



360      UNIT 4  Differentiation

3. Write a formula that connects the variables.

This is another similar triangle situation. For your two similar triangles, use the 
triangles in the initial position diagram.

height
height

base
ba

big triangle

little triangle

big triangle 

 

 

sse

b
b c

b c b

b c

b c

little triangle 

15
6

15 15 6

9 15

3 5

4. Differentiate with respect to t.

3 5db
dt

dc
dt

5. Substitute known values.

3 5 15

25

db
dt
db
dt

miles/hour

Thus, the top of the shadow is moving toward the lamppost at 25 miles per hour (and is 
thus gaining on the man at a rate of 25 – 15 = 10 miles/hour).

A somewhat unusual twist in this problem is that you never had to plug in the given 
distance of 5 feet. This is because the speed of the shadow is independent of the man’s 
position.

14 It’s increasing at 2
1
3

 inches per minute.

1. Draw your diagram: See the following figure.

2. List the rates: 
dV
dt

dh
dt

200 ?cubic feet per minute,  
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3. a. The formula thing:

V r hcone
1
3

2

3. b. Write an equation relating r and h so that you can get rid of r:

r h

What could be simpler? Now get rid of r:

V h h h
1
3

1
3

2 3

4. Differentiate:

dV
dt

h
dh
dt

2

5. Substitute and solve for 
dh
dt

:

200 18

0 196

2 1
3

2 dh
dt

dh
dt

. feet/minute

inches/minute

6. Check whether this answer makes sense.

Calculate the increase in the height of the cone from the critical moment h 18  to 1
200

 

minute after the critical moment. When h 18, V 1
3

18 3, or about 6107.256 cubic feet. 
1

200
 minute later, the volume (which grows at a rate of 200 cubic feet per minute) will 

increase by 1 cubic foot to about 6108.256 cubic feet. Now solve for h:

6108 256 1
3

6108 256
1
3

18 000982

3

3

.

.

.

h

h

Thus, in 1
200

 minute, the height would grow from 18 feet to 18.000982 feet. That’s  

a change of 0.000982 feet. Multiply that by 200 to get the change in 1 minute: 

0 000982 200 0 196. . .
It checks.

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 12 Quiz
For Problems 1 through 4, you’ve got a corral problem similar to the one in the section, “The 
maximum area of a corral — yeehaw!” in this chapter. Your corral for Problems 1 through 
4 is similar to the one in Figure 12-2, except that this time the rancher wants to have three 
equal rectangles side by side instead of two. And this time, the rancher wants to build a corral  
with 7200 square feet of area. He wants to construct the corral using as little fencing as pos-
sible. (You should sketch a diagram similar to Figure 12-2 with 4 y’s instead of 3 and 6 x’s 
instead of 4.)

1 Express the thing you want to minimize or maximize as a function of x.

2 Find the derivative of your function, set it equal to zero, and solve.

3 What’s the domain of your function (mathematically, not practically, speaking), and what are 
its critical numbers?

4 What dimensions of the corral minimize the total length of fencing? And how much fencing is 
needed?

For Problems 5, 6, and 7, you’ve got a particle moving right and/or left along an ordinary num-
ber line. The function s t t t t3 24 4 8 gives the particle’s position on the line (in meters) 
as a function of time (in seconds).

5 (a) What’s the velocity function, and what’s the acceleration function?

(b) What is s t , and explain what it means, what it tells you.

6 Does this particle ever reverse direction? If so, when? And, if so, does the particle switch from 
going left to going right or vice versa?

7 (a) What’s the particle’s total displacement from t 0 to t 4?

(b) What’s the particle’s total distance traveled from t 0 to t 4?

For Problems 8 through 10, you’ve got a right triangle with legs of lengths x and y. The x leg 
is growing at a rate of 3 inches/minute and the y leg is shrinking at a rate of 5 inches/minute.

8 Express the two given rates with calculus notation.

9 At a certain point in time, the area of the triangle is 50 square inches and the two legs are 
equal. At this point, how fast is the area changing?

10 One minute later, how fast is the area changing?
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Answers to Chapter 12 Quiz
1 L x x

x
6

9600

There are 6 x-lengths of fencing and 4 y-lengths, so the total length of fencing is 
L x x y6 4 .

You need a function of x, so express the given area in terms of x and y, solve for y, then make 
a substitution.

7200 3

2400

x y

y
x

L x x
x

x
x

6 4
2400

6 9600

2 x 40

L x x x

L x x

x

x
x

6 9600

6 9600

6 9600

0 6 9600

1

2

2

2 ,   etc.

40

You can reject –40, of course.

3 The domain of the length function is 0,  . It has one critical number: 40.

x can’t be zero or negative; it can be any positive number. In interval notation, the domain of 
the length function is 0, .

A critical number of a function is a number in the function’s domain where the derivative 
equals zero or is undefined. L x  is defined for all x-values in the domain. And you found its 
zeros in Problem 2, namely, 40; only positive 40 is in the domain. That’s the only critical 
number.

4 A 120-foot-by-60-foot corral will minimize the total fencing needed; 480 feet of fencing is 
needed to build the corral.

L x  is negative for x-values less than 40 and positive for x-values greater than 40. Thus, 
L x  is decreasing until 40 and increasing after 40, and, therefore L x  hits a minimum at 
x 40. An x-value of 40 gives you a 120-by-60-foot corral with 480 total feet of fencing.

5 (a) v t t t

a t t

3 8 4

6 8

2

s t t t t

v t s t t t

a t v t s t t

3 2

2

4 4 8

3 8 4

6 8

(b) s t 6. This tells you the rate of change of the acceleration.
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s t 6. The third derivative of s is the first derivative of a, the acceleration. Thus s t  
tells you the rate of change of the acceleration. Acceleration for the particle in this prob-

lem would be given in terms of meters per second
second

. The constant rate of change of the 

acceleration, namely 6, means that the acceleration of the particle is increasing 6 
meters per second

second
 each second. If it’s a bit difficult to wrap your mind around that, no 

worries, you’re not alone.

6 Yes it does. From t 0 seconds till t
2
3

 seconds, the particle is moving to the right. At 
2
3

 seconds, it reverses direction, and moves to the left till t 2 seconds . It then reverses 

direction again and moves to the right indefinitely.

Set the velocity equal to zero and solve:

v t t t

t t

t t t t

3 8 4

0 3 8 4

0 3 2 2 2
3

2

2

            or   2

If there are any turnaround points, they must occur when the velocity is zero. But a zero 
velocity does not guarantee that you’ve got a turnaround point. You must also check that the 
particle changes direction. You can easily check (in your head) that if you plug a positive 

number less than 2
3

, say 1
2

, into t in the factored form of v t , you’ll get a negative times a 

negative. That’s a positive, so from zero seconds till 2
3

 second, the particle is moving to the 

right. Plugging 1 into t gives you positive times negative, or a negative answer, so from 2
3

 

second till 2 seconds, the particle is moving to the left. Finally, plugging 3 into t gives you 
positive times positive, or a positive answer, so the particle is moving right after 2 seconds.

7 (a) Total displacement is 16.

Total displacement equals final position minus initial position, that’s s 4  minus s 0 :

s t t t t

s

s

3 2

3 2

4 4 8

4 4 4 4 4 4 8

64 64 16 8

8

0 8

s s4 0 8 8 16

(b) Total distance traveled is 18
10
27

.

To get the total distance traveled, you need to add the lengths of the three legs of the trip. 

The moving-right leg from zero seconds till 2
3

 seconds, the moving-left leg from 2
3

  

seconds till 2 seconds, and the moving-right leg from 2 seconds till 4 seconds.
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s t t t t

s

s

s

s

3 24 4 8

0 8

2
3

184
27

2 8

4 8

The particle moves 32
27

 to the right, then 32
27

 to the left, then 16 to the right for a total  

distance of 18 10
27

.

8 dx
dt

3 and 
dy
dt

5.

Note that since you were told that the y leg is shrinking, dy
dt

 must be negative.

9 –10 square inches per minute.

The area of a right triangle equals one-half the product of the legs, and it’s given that the 
legs are equal when the area is 50:

A xy

xy

xy

1
2

50 1
2

100

So, x and y are, obviously, both equal to 10. But, don’t forget, do not plug in these values till 
after you differentiate the area function.

A xy

dA
dt

dx
dt

y
dy
dt

x

1
2
1
2
1
2

3 10 5 10 10

10 –25 square inches per minute.

At the critical moment in Problem 9, both x and y equal 10; x is growing at 3 inches/minute, 
and y is shrinking at 5 inches/minute. Thus, one minute after that critical moment, x will 
equal 13 and y will equal 5. Just plug in and finish.

dA
dt

dx
dt

y
dy
dt

x
1
2
1
2

3 5 5 13 25
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More Differentiation 
Problems: Going Off 
on a Tangent

In this chapter, you see three more applications of differentiation: tangent and normal line 
problems, linear approximation problems, and economics problems. The common thread 
tying these problems together is the idea of a line tangent to a curve — which should come 

as no surprise since the meaning of the derivative of a curve is the slope of the tangent line. The 
problems in this chapter are all “practical” applications of differentiation in a sense, but some 
of them are — to be honest — much more likely to be found in a math book than in the real 
world. But at the other end of the spectrum, you encounter problems here like the economics 
problem of finding maximum profit. What could be more practical than that?

Chapter 13

IN THIS CHAPTER

 » Tangling with tangents

 » Negotiating normals

 » Lining up for linear 
approximations

 » Profiting from business and 
economics problems

 » Doing 37  in your head
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Tangents and Normals: Joined at the Hip
In everyday life, it’s perfectly normal to go off on a tangent now and then. In calculus, on the 
other hand, there is nothing at all normal about a tangent. You need only note a couple of points 
before you’re ready to try some problems:

 » At its point of tangency, a tangent line has the same slope as the curve it’s tangent to.  
In calculus, whenever a problem involves slope, you should immediately think derivative. 
The derivative is the key to all tangent line problems.

 » At its point of intersection to a curve, a normal line is perpendicular to the tangent line drawn 
at that same point. Perpendicular lines have slopes that are opposite reciprocals. So, for 
a normal line problem you just use the derivative to get the slope of the tangent line, and 
then the opposite reciprocal of that gives you the slope of the normal line.

Ready to try a few problems? Say, that reminds me. I once had this problem with my carburetor. 
I took my car into the shop, and the mechanic told me the problem would be easy to fix, but 
when I went back to pick up my car . . . Hey, wait a minute. Where was I? I guess I sort of went 
off on a tangent. Ha Ha Ha Ha. I really crack myself up.

The tangent line problem
I bet there have been several times, just in the last month, when you’ve wanted to determine 
the location of a line through a given point that’s tangent to a given curve. Let’s walk through 
a problem to see how you do it.

Determine the points of tangency of the lines through the point 1 1,  that are tangent to the 
parabola y x 2.

Here’s what you do. If you graph the parabola and plot the point, you can see that there are 
two ways to draw a tangent line from 1 1, : up to the right and up to the left. See Figure 13-1.

FIGURE 13-1: 
The parabola 

y x 2 and two 
tangent lines 

through  
1 1, .
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The key to this problem is in the meaning of the derivative. Don’t forget: The derivative of a 
function at a given point is the slope of the tangent line at that point. So, all you have to do is set the 
derivative of the parabola equal to the slope of the tangent line and solve:

1. Because the equation of the parabola is y x 2, you can take a general point on the 
parabola, x y,  , and substitute x 2 for y.

So, label the two points of tangency x x,  2 .

2. Take the derivative of the parabola.

y x

y x

2

2

3. Using the slope formula, y y
x x

2 1

2 1
, set the slope of each tangent line from 1 1,  to 

x x,  2  equal to the derivative at x x,  2 , which is 2x, and solve for x.

(By the way, the math you do in this step may make more sense to you if you think of 
it as applying to just one of the tangent lines — say, the one going up to the right — 
but the math actually applies to both tangent lines simultaneously.)

y y
x x

2 1

2 1
 (the slope of the tangent line) = y  (the derivative)

x
x

x

x x x

x x x

x x

2

2

2 2

2

1
1

2

1 2 1

1 2 2

0 2 1

x
2 2 4 1 1

2 1
2 8

2
2 2 2

2
1 2

2

(quadratic formula)

So, the x-coordinates of the points of tangency are 1 2  and 1 2 .

4. Plug each of these x-coordinates into y x 2 to obtain the y-coordinates.

y 1 2

1 2 2 2

3 2 2

2
y 1 2

1 2 2 2

3 2 2

2

Thus, the two points of tangency are 1 2 3 2 2,  and 1 2 3 2 2, , or about 
2 4 5 8. , .  and 0 4 0 2. , . .
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The normal line problem
Here’s the companion problem to the tangent line problem in the previous section. Find the 

points of perpendicularity for all normal lines to the parabola, y x
1

16
2, that pass through the 

point 3 15, .

Graph the parabola and plot the point 3 15, . Now, before you do the math, try to estimate 
the locations of all normal lines. How many can you see? It’s fairly easy to see that, starting at 
3 15, , one normal line goes down and to the right and another goes down to the left. But did 

you see that there’s actually a second normal line that goes down to the left? No worries if you 
didn’t see it, because when you do the math, you get all three solutions.

Making common-sense estimates enhances mathematical understanding. When doing  
calculus, or any math for that matter, come up with a common-sense, ballpark estimate of 
the solution to a problem before doing the math (when possible and time permitting). This 
deepens your understanding of the concepts involved and provides a check to the mathematical 
solution. (This is a powerful math strategy — take my word for it — despite the fact that in 
this particular problem, most people will find, at most, two of the three normal lines using an 
eyeball estimate.)

Figure 13-2 shows the parabola and the three normal lines.

Looking at the figure, you can appreciate how practical this problem is. It’ll really come in 
handy if you happen to find yourself standing inside the curve of a parabolic wall, and you want 
to know the precise location of the three points on the wall where you could throw a ball and 
have it bounce straight back to you.

The solution is very similar to the solution of the tangent line problem, except that in this 
problem you use the rule for the slopes of perpendicular lines.

FIGURE 13-2: 
The parabola 

y x
1

16
2 and 

three normal 
lines through 

3 15,  .
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Each normal line in Figure 13-2 is perpendicular to the tangent line drawn at the point where 
the normal meets the curve. So, the slope of each normal line is the opposite reciprocal of  
the slope of the corresponding tangent line — which, of course, is given by the derivative.  
So here goes:

1. Take a general point, x y,  , on the parabola y x
1

16
2, and substitute 1

16
2x  for y.

So, label each point of perpendicularity x x,  1
16

2 .

2. Take the derivative of the parabola.

y x

y x

1
16
1
8

2

3. Using the slope formula, y y
x x

2 1

2 1
, set the slope of each normal line from 3 15,   to 

x x,  
1

16
2  equal to the opposite reciprocal of the derivative at x x,  

1
16

2 , and 

solve for x.

1
16

15

3
8

1
16

15 8 24

112 384 0

2

3

3

x

x x

x x x

x x

(The derivative is  or and

its opposite reciprocal is

 1
8 8

x
x

  thus 

by cross-multiplication and distribution)

aft

8
x

.)

(

( eer bringing all terms to one side

and multiplying both sidees by 16)

Now, there’s no easy way to get exact solutions to this cubic (3rd-degree) equation like 
the way the quadratic formula gives you the exact solutions to a 2nd-degree equation. 
Instead, you can graph y x x3 112 384, and the x-intercepts give you the solutions, 
but with this method, there’s no guarantee you’ll get exact solutions. (If you don’t, the 
decimal approximations you get will be good enough.) Here, however, you luck out — 
actually, I had something to do with it — and get the exact solutions of 8, 4, and 12. 
(You should graph the cubic function so you see how this works.)

4. Plug each of these x-coordinates into y x
1

16
2 to obtain the y-coordinates.

y y y
1

16
8 1

16
4 1

16
12

4 1 9

2 2 2

Thus, the three points of normalcy are 8 4, , 4 1, , and 12 9,  — play ball!
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1 Two lines through the point 1 3,  are tangent to the parabola y x 2. Determine the 
points of tangency.

2 The Earth has a radius of 4000 miles. Say you’re standing on the shore and your eyes 
are 5 3 36 .  above the surface of the water. How far out can you see to the horizon before 
the Earth’s curvature makes the water dip below the horizon? See the following figure.
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3 Find the points of normalcy for all lines through 0 1,  normal to the curve y x 4. The 
results might surprise you. Before you begin solving this problem, graph y x 4 and put 
the cursor at 0 1, . Now guess where normal lines will be and whether they represent 
the shortest paths or longest paths from 0 1,  to y x 4. Note: Do ZoomSqr to get the 
distances on the graph to appear properly proportional to each other.

4 An ill-prepared adventurer has run out of water on a hot, sunny day in the desert. 
He’s 30 miles due north and 7 miles due east of his camp. His map shows a winding 
river — that by some odd coincidence happens to flow according to the function 

y
x x

x10
10

10
5

sin cos  (where the camp lies at the origin; see the following figure). 

What point along the river is closest to him? He figures that he and his camel can just 
barely make it another 15 miles or so. (Hint: The closest point must occur at a point of 
normalcy.)
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Straight Shooting with Linear Approximations
Because ordinary functions are locally linear (that’s straight) — and the further you zoom in 
on them, the straighter they look — a line tangent to a function is a good approximation of the 
function near the point of tangency. Figure 13-3 shows the graph of f x x( )  and a line tan-
gent to the function at the point 9 3, . You can see that near 9 3, , the curve and the tangent 
line are virtually indistinguishable.

Determining the equation of this tangent line is a breeze. You’ve got a point, 9 3, , and the 
slope is given by the derivative of f at 9:

f x x x

f x x
x

f

1 2

1 21
2

1
2

9 1
2 9

1
6

/

/ (power rule)

Now just take this slope (this derivative) of 1
6

 and the point 9 3, , and plug them into point-
slope form:

y y m x x

y x

y x

1 1

3 1
6

9

3 1
6

9

That’s the equation of the line tangent to f x x  at 9 3, . I suppose you might be wondering 

why I wrote the equation as y x3 1
6

9 . It might seem more natural to put the 3 to the right 

of 1
6

9x , which, of course, would also be correct. And I could have simplified the equation 

further, writing it in y mx b form. I explain later in this section why I wrote it the way I did.

(If you have your graphing calculator handy, graph f x x  and the tangent line. Zoom in on 
the point 9 3,  a couple times. You’ll see that — as you zoom in — the curve gets straighter 
and straighter and the curve and tangent line get closer and closer to each other.)

FIGURE 13-3: 
The graph of 

f x x( )  and 
a line tangent 

to the curve  
at 9 3,  .
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Now, say you want to approximate the square root of 10. Because 10 is pretty close to 9, and 
because you can see from Figure 13-3 that f x  and its tangent line are close to each other at 
x 10, the y-coordinate of the line at x 10 is a good approximation of the function value at 
x 10, namely 10 .

Just plug 10 into the line equation for your approximation:

y x3 1
6

9

3 1
6

10 9

3 1
6

3 1
6

Thus, the square root of 10 is about 3 1
6

. This is only about 0.004 more than the exact answer  
of 3.1623. . . . The error is roughly a tenth of one percent.

Now I can explain why I wrote the equation for the tangent line the way I did. This form makes 
it easier to do the computation and easier to understand what’s going on when you compute an 
approximation. Here’s why. You know that the line goes through the point 9 3, , right? And 

you know the slope of the line is 1
6

. So, you can start at 9 3,  and go to the right (or left) along 

the line in a stair-step fashion, as shown in Figure 13-4: over 1, up 1
6

; over 1, up 1
6

; and so on. 

(Note that since slope
rise
run

, when the run is 1 [as shown in Figure 13-4], the rise equals the 
slope.)

So, when you’re doing an approximation, you start at a y-value of 3 and go up 1
6

 for each 1 you 

go to the right. Or if you go to the left, you go down 1
6

 for each 1 you go to the left. When the 

line equation is written like y x3 1
6

9 , the computation of an approximation parallels this 
stair-step scheme.

Figure 13-4 shows the approximate values for the square roots of 7, 8, 10, 11, and 12. Here’s how 
you come up with these values. To get to 8, for example, from 9 3, , you go 1 to the left, so you 

go down 1
6

 to 2 5
6

; or to get to 11 from 9 3, , you go two to the right, so you go up two-sixths 

to 3 2
6

3 1
3

 or . (If you go to the right one-half to 9 1
2

, you go up half of a sixth, that’s a twelfth,  

to 3 1
12

, the approximate square root of 9 1
2

.)

FIGURE 13-4: 
The linear 

approximation 
line and 

several of its 
points.
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The following list shows the size of the errors for the approximations shown in Figure 13-4. 
Note that the errors grow as you get further from the point of tangency 9 3, . Also, the errors 
grow faster when going down from 9 to 8 then 7, and so on, than going up from 9 to 10 then 11, 
and so on; errors often grow faster in one direction than the other with linear approximations 
because of the shape of the curve.

7 0 8

8 0 2

10 0 1

11 0 5

12 1 0

: . %

: . %

: . %

: . %

: . %

error

error

error

error

error

Linear approximation equation: Here’s the general form for the equation of the tangent line 
that you use for a linear approximation. The values of a function f x  can be approximated by 
the values of the tangent line l x  near the point of tangency, x f x0 0,  , where

l x f x f x x x0 0 0

This is less complicated than it looks. It’s just the gussied-up calculus version of the point-
slope equation of a line you’ve known since Algebra I, y y m x x1 1 , with the y1 moved to 
the right side:

y y m x x1 1

This equation and the equation for l x  differ only in the symbols used; the meaning of both 
equations — term for term — is identical. And notice how they both resemble the equation of 
the tangent line in Figure 13-4.

Look for algebra-calculus and geometry-calculus connections. Whenever possible, try to see 
the basic algebra or geometry concepts at the heart of fancy-looking calculus concepts.

Once you get the hang of linear approximation, you can impress your friends by approximating 

things like 703  in your head — like this: Bingo! 4 1
8

. How did I do it? Here you go.

Q. Use linear approximation to estimate 703 .

A. 4
1
8

1. Find a perfect cube root near 703 .

You notice that 703  is near a no-brainer, 643 , which, of course, is 4. That gives you 
the point 64 4,  on the graph of y x3 .

2. Find the slope of y x3  (which is the slope of the tangent line) at x 64.

y x
1
3

2 3/ , so the slope at 64 is 1
48

.
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This tells you that — to approximate cube roots near 64 — you add (or subtract) 1
48

 

to 4 for each increase (or decrease) of one from 64. For example, the cube root  

of 65 is about 4 1
48

; the cube root of 66 is about 4 2
48

, or 4 1
24

; the cube root of 67 is 

about 4 3
48

, or 4 1
16

; and the cube root of 63 is about 3 47
48

. Since 70 is 6 more than 64, 

the answer to the question is that 703  is about 4 6
48

, or 4 1
8

. You’re done, but let’s keep 

going and obtain the linear approximation equation. You can use this equation to 
approximate cube roots of numbers near 64 (integers and non-integers).

3. Use the point-slope form to write the equation of the tangent line at 64 4, .

y y m x x

y x

y x

1 1

4 1
48

64

4 1
48

64

4. Plug 70 into x for your approximation:

y 4 1
48

70 64

4 6
48

4 1
8

You didn’t need this equation to answer the current question, but you should know 
how to come up with a linear approximation equation and how to use it.

For Problems 5 through 8, make the indicated estimates, and, whether you need it or not, deter-
mine the applicable linear approximation equation. (Some students may prefer to always use 
the linear approximation equation; others might like to use the shortcut that I just explained.)

5 Estimate the 4th root of 17. 6 Approximate 3 015. .
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7 Estimate sin
180

  (
180

 is one degree, of 
course).

8 Approximate ln e10 5 .

Business and Economics Problems
Believe it or not, calculus is actually used in the real world of business and economics — learn 
calculus and increase your profits! Tell me: When you’re driving around an upscale part of town 
and you pass by a huge home, what’s the first thing that comes to your mind? I bet it’s “Just 
look at that home! That guy (or gal) must know calculus.”

Managing marginals in economics
Look again at Figures 13-3 and 13-4 in the previous section. Recall that the derivative and thus 

the slope of y x  at 9, 3  is 1
6

, and that the tangent line at this point can be used to approxi-

mate the function near the point of tangency. So, as you go over 1 from 9 to 10 along the func-

tion itself, you go up about 1
6

. And, thus, 10  is about 1
6

 more than 9 . In economics, that little 

bit (like the 1
6

) is called a marginal.

Marginal cost, marginal revenue, and marginal profit work a lot like linear approximation. 
Marginal cost, marginal revenue, and marginal profit all involve how much a function goes up  
(or down) as you go over 1 to the right — just like with linear approximation.

Say you’ve got a cost function that gives you the total cost, C x , of producing x items. See 
Figure 13-5.

Look at the blown-up square on the right in the figure. The derivative of C x  at the point of 
tangency gives you the slope of the tangent line and thus the amount you go up as you go 1 to 
the right along the tangent line. (This amount is labeled in the figure as marginal cost.) Going  
1 to the right along the cost function itself shows you the increase in cost of producing one 
more item. (This is labeled as the extra cost.) Because the tangent line is a good approximation 
of the cost function, the derivative of C — called the marginal cost — is the approximate increase 
in cost of producing one more item. Marginal revenue and marginal profit work the same way.
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Definitions of marginal cost, marginal revenue, and marginal profit:

Marginal cost equals the derivative of the cost function.

Marginal revenue equals the derivative of the revenue function.

Marginal profit equals the derivative of the profit function.

(Marginal cost and marginal revenue are almost always positive; marginal profit can be posi-
tive or negative.)

Before doing a problem involving marginals, there’s one more piece of business to take care  
of. A demand function tells you how many items will be purchased (what the demand will be) 
given the price. The lower the price, of course, the higher the demand; and the higher the price, 
the lower the demand. You’d think that the number purchased should be a function of the 
price — input a price and find out how many items people will buy at that price — but tradi-
tionally, a demand function is written the other way around. The price is expressed as a func-
tion of the number demanded. I know that seems a bit odd, but don’t sweat it — the function 
works either way. Think of it like this: If a retailer wants to sell a given number of items, the 
demand function tells the retailer what they should set the selling price at.

Okay, so here’s the problem. A widget manufacturer determines that the demand function for 
their widgets is

p
x

1000

where p is the price of a widget and x is the number of widgets demanded. (Note that a demand 
function like this can also be called a price function.) The cost of producing x widgets is given by 
the following cost function:

C x x x10 100 10 000,

FIGURE 13-5: 
The graph of a 

cost function 
C x .
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Determine the marginal cost, marginal revenue, and marginal profit at x 100 widgets. Also, 
how many widgets should be manufactured, what should they be sold for to produce the maxi-
mum profit, and what is that maximum profit?

Marginal cost
Marginal cost is the derivative of the cost function, so take the derivative and evaluate  
it at x 100:

C x x x

C x
x

C

10 100 10 000

10 50

100 10

,

    (power rule)

50
100

10 50
10

15

Thus, the marginal cost at x 100 is $15 — this is the approximate cost of producing the 101st 
widget.

Marginal revenue
Revenue, R x , equals the number of items sold, x, times the price, p:

R x x p

x
x
x

x

1000

1000

(using the  demand function)earlier

x
x

x x
x

x

(rationalizing the denominator)

1000

1000

Marginal revenue is the derivative of the revenue function, so take the derivative of R x  and 
evaluate it at x 100:

R x x

R x
x

R

1000

500

100 500
100

50

     (power rule)

Thus, the approximate revenue from selling the 101st widget is $50.
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Marginal profit
Profit, P x , equals revenue minus cost. So,

P x R x C x

x x x

x x

1000 10 100 10 000

10 900 10 000

,

,

Marginal profit is the derivative of the profit function, so take the derivative of P x , and eval-
uate it at x 100:

P x x x

P x
x

P

10 900 10 000

10 450

100 10 450
100

10

,

445 35

Selling the 101st widget brings in an approximate profit of $35.

Marginal profit shortcuts: Did you notice either of the two shortcuts you could have taken 
here? First, you can use the fact that

P x R x C x

to determine P x  directly, without first determining P x . Then, after getting P x , you just 
plug 100 into x for your answer.

And, if all you want to know is P 100 , you can use the following really short shortcut:

P R C100 100 100

50 15

35

This is common sense. If it costs you about $15 to produce the 101st widget and you sell it for 
about $50, then your profit is about $35.

I did it the long way because you need both the profit function, P x , and the marginal profit 
function, P x , for the following problems. (You will often need to do it the long way.)
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Maximum profit
To determine maximum profit, set the derivative of profit — that’s marginal profit — equal to 
zero, solve for x, and then plug the result into the profit function:

P x
x

x

x
x

x

x

10 450

0 10 450

10 450

10 450

45

2025

So, maximum profit occurs when 2025 widgets are sold. Plug this into P x :

P x x x

P

10 900 10 000

2025 10 2025 900 2025 10 000

20 2

,

,

, 550 900 45 10 000

10 250

,

,

Thus, the maximum profit is $10,250. (Extra credit: Did you see where I got a bit lazy here? 
The derivative of the profit function is zero at x 2025, but that doesn’t guarantee that there’s 
a max at that x-value. There could instead be a min or an inflection point there. You could use 
either the first or second derivative test [see Chapter 11] to show that it’s actually a max. But I 
just peeked at a graph of the profit function and saw that it’s sort of an upside-down cup shape, 
so I knew that there was a max at the top of the cup at x 2025.)

Finally, plug the number sold into the demand function to determine the profit-maximizing 
price:

p
x

p

1000

1000
2025

22 22.

So, the maximum profit of $10,250 occurs when the price is set at $22.22. At this price, 2025 
widgets will be sold. Figure 13-6 sums up these results. Note that because profit equals rev-
enue minus cost, the vertical distance or gap between the revenue and cost functions at a given 
x-value gives the profit at that x-value. Maximum profit occurs where the gap is greatest.
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And here’s another thing. Because maximum profit occurs where P x 0, and because 
P x R x C x , it follows that the profit will be greatest where 0 R x C x  — in 
other words, where R x C x . And when R x C x , the slopes of the functions’ tangent 
lines are equal. So, if you were to draw tangent lines to R x  and C x  where the gap between 
the two is greatest, these tangents would be parallel. Right about now, you’re probably thinking 
something like, “Such symmetry, such simple elegance, such beauty! Verily, the mathemat-
ics muse seduces the heart as much as the mind.” Yeah, it’s nice all right, but let’s not get  
carried away.

For Problems 9 through 12, use the following demand (or price) and cost functions for the pro-
duction and sale of some widgets.

p x x

C x x x

400 0 0002

50 000 100 0 0001

1 5

3

.

, .

.

9 

FIGURE 13-6: 
The revenue 

and cost 
functions. The 

vertical 
distance 

between them, 
at a given 

x-value, 
represents the 

profit. 

(a) What’s the marginal cost at x 100?

(b) What’s the cost of producing the 201st widget?

(Note that although the scale of this  
graph makes C x x x10 100 10 000,  
look like a straight line, its middle term of 
100 x  means that it is not exactly straight.)
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10 (a) What’s the marginal revenue function?

(b) What additional revenue is generated for the firm by the 101st, 401st, and 901st 
widgets?

11 What’s the profit generated by the 401st, 901st, and 1601st widgets?

12 (a) How many widgets should be manufactured and sold to maximize the firm’s profit?

(b) What is that maximum profit?

(c) What price should the widgets be sold for to achieve this maximum profit?
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Practice Questions Answers and Explanations
1 The points of tangency are 1 1,   and 3 9, .

1. Express a point on the parabola in terms of x.

The equation of the parabola is y x 2, so you can take a general point on the parabola 
x y,   and substitute x 2 for y. So your point is x x,  2 .

2. Take the derivative of the parabola.

y x

y x

2

2

3. Using the slope formula, m y y
x x

2 1

2 1
, set the slope of the tangent line from 1 3,  to 

x x,  2  equal to the derivative. Then solve for x.

x
x

x

x x x

x x

x x

2

2 2

2

3
1

2

3 2 2

2 3 0

1 3 0

x 1 3or

4. Plug these x-coordinates into y x 2 to get the y-coordinates.

y y1 1 3 92 2      and      

So, there’s one line through 1 3,  that’s tangent to the parabola at 1 1, , and 
another through 1 3,  that’s tangent at 3 9, . You may want to confirm these 
answers by graphing the parabola and your two tangent lines:

y x y x2 1 1 6 3 9      and       

2 The horizon is about 2.83 miles away.

1. Write the equation of the Earth’s circumference as a function of y (see the figure in 
the problem).

x y

y x

2 2 2

2 2

4000

4000

You can disregard the negative half of this circle because your line of sight will obvi-
ously be tangent to the upper half of the Earth.

2. Express a point on the circle in terms of x: x x,  40002 2
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3. Take the derivative of the circle.

y x

y x x

x

4000

1
2

4000 2

4000

2 2

2 2 1 2/
(     chain rule)

22 2x

4. Using the slope formula, set the slope of the tangent line from your eyes to 

x x,  40002 2  equal to the derivative, and then solve for x.

Your eyes are 5 3 36 .  above the top of the Earth at the point 0 4000,  on the circle. 
Convert your height to miles; that’s exactly 0.001 miles (what an amazing coincidence!). 
So, the coordinates of your eyes are 0 4000 001, . .

y y
x x

m

x
x

x

x

x x

2 1

2 1

2 2

2 2

2 2 2

4000 4000 001
0 4000

4000

.

44000 001 4000

4000 4000 001

2 2

2

.

.

x    (cross-multiplication)

44000

3

2 2x                           (Use your calculator.)

9999 999 40002 2. x                                             (Now square both sides.)

mi

15 999 992 4000

8

2 2 2 83

2 2

2

, ,

.

x

x

x lles

Many people are surprised that the horizon is so close. What do you think?

By the way, you can solve this problem much more quickly with some basic high school 
geometry; no calculus is needed. Can you do it?

3 The points of normalcy are 0 915 0 702. , . , 0 519 0 073. , . , 0 0,  , 0 519 0 073. , . , and 
0 915 0 702. , . .

1. Express a point on the curve in terms of x: A general point is x x,  4 .

2. Take the derivative.

y x

y x

4

34

3. Set the slope from 0 1,   to x x,  4  equal to the opposite reciprocal of the derivative 
and solve.

x
x x

x x x

x x x

4

3

7 3

6 2

1
0

1
4

4 4 0

4 4 1 0

x x x0 4 4 1 06 2or
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Unless you have a special gift for solving 6th-degree equations, you better use your 
calculator — just graph y x x4 4 16 2  and find all the x-intercepts. There are 
x-intercepts at about –0.915, –0.519, 0.519, and 0.915. Dig those palindromic numbers!

4. Plug these four solutions into y x 4 to get the y-coordinates (there’s also the x 0 
no-brainer).

0 519 0 519 0 073

0 915 0 915 0 702

4 4

4 4

. . ~ .

. . ~ .

 

 

You’re done. Five normal lines can be drawn. The points of normalcy are 0 915 0 702. , . , 
0 519 0 073. , . , 0 0, , 0 519 0 073. , . , and 0 915 0 702. , . .

I find this result interesting, first, because there are so many normal lines, and second, 
because the normal lines from 0 1,  to 0 915 0 702. , . , 0 0, , and 0 915 0 702. , .  are all 
the shortest paths (compared to other points in their respective vicinities). The other 
two normal lines are the longest paths. This is curious: When a curve is concave away 
from a point, a normal to the curve can only be a local shortest path, so you might 
think that in the current problem, where y x 4 is everywhere concave toward 0 1, , 
you could get only locally longest paths. But it turns out that when a curve is concave 
toward a point, you can get either a local shortest or a local longest path.

Don’t report me! I played slightly fast and loose with the math for the x 0 solu-

tion. Did you notice that x 0 doesn’t work if you plug it back into the equation 
x
x x

4

3
1

0
1

4
 because both denominators become zero? However — promise not  

to leak this to your calculus teacher — this is okay here because both sides of the 

equation become 
non zero number

zero
. (Actually, they’re both 1

0
, but something  

like 5
0

2
0

 would also work.) Non-zero over zero means a vertical line with unde-

fined slope. So, the 1
0

1
0

 tells you that you have a vertical normal line at x 0.

4 The closest point is 6 11 15 26. , . , which is 14.77 miles away.

1. Express a point on the curve in terms of x:

x
x x

x, sin cos 10
10

10
5

2. Take the derivative.

y
x x

x

y
x x

x

10
10

10
5

10
10

1
10

10 1
5

1

1

5

sin cos

cos sin

cos
00

2
5

1sin x

3. Set the slope from 7 30,  to the general point equal to the opposite reciprocal of the 
derivative, and solve.

30 10
10

10
5

7
1

10
2

5
1

sin cos

cos sin

x x x

x x x
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Unless you wear a pocket protector, don’t even think about solving this equation 
without a calculator.

Solve on your calculator by graphing the following equation and finding the  

x intercepts: y

x x x

x x x

30 10
10

10
5

7
1

10
2

5
1

sin cos

cos sin

Your calculator’s window settings. It’s a bit tricky to find the x-intercepts for this 
gnarly function. You have to play around with your calculator’s window settings a bit. 
And don’t forget that your calculator will draw vertical asymptotes that look like zeros 
of the function, but are not. Now, it turns out that this function has an infinite number 
of x-intercepts (I think). There’s one between x 18 and –19 and there are more at 
bigger negatives. And there’s one between x 97 and 98 and there are more at bigger 
positives. But these zeros represent points on the river so far away that they need not 
be considered. Only three zeros are plausible candidates for the closest trip to the river. 
To see the first candidate zero, set Xmin 1, Xmax 10, Xscl 1, Ymin 5, Ymax 25, 
and Yscl 5. To see the other two, set Xmin 10, Xmax 30, Xscl 1, Ymin 2, 
Ymax 10, and Yscl 1. These zeros are at roughly 6.11, 13.75, and 20.58.

4. Plug the zeros into the original function to obtain the y-coordinates.

You get the following points of normalcy: 6 11 15 26. , . , 13 75 14 32. , . , and 20 58 23 80. , . .

5. Use the distance formula, D x x y y2 1
2

2 1
2 , to find the distance from our 

parched adventurer to the three points of normalcy.

The distances are 14.77 miles to 6 11 15 26. , . , 17.07 miles to 13 75 14 32. , . , and  
14.93 miles to 20 58 23 80. , . . Using his trusty compass, he heads mostly south and a 
little west to 6 11 15 26. , . . An added benefit of this route is that it’s in the direction  
of his camp.

5 The approximation is 2
1
32

 or 2.03125.

1. Find a “round” number near 17 where the 4th root is very easy to get: that’s 16.

16 24 . So, the point 16 2,  is on f x x4 .

2. Determine the slope of the tangent line to f at 16 2, .

f x x

f x x

f

x

4

3 4

4 3

1
4

16 1
32

1

4

/

Because 17 is 1 more than 16, you should have your answer. Do you see it? Whether you 
do or not, keep going to finish with the standard classroom approach.

3. Use the point-slope form of a line to write the equation of the tangent line at 16 2, .

y x2 1
32

16
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4. Plug your number into the tangent line to get your approximation (which you probably 
already know).

y 2 1
32

17 16

2 1
32

2 03125.or

The exact answer is about 2.03054. Your estimate is only 3
100

 of 1 percent too big! Not 

too shabby. Extra-credit question: No matter what 4th root you estimate with the 
linear approximation technique, your answer will be too big. Do you see why?

6 The approximation is 247.05.

1. Find your round number.

That’s 3, duh. Since 3 2435 , the point 3 243,  is on g x x 5.

2. Find the slope at your point.

g x x

g x x

g

5

45

3 405

3. Write the tangent line equation.

y y m x x

y x
1 1

243 405 3

4. Get your approximation.

y 243 405 3 01 3 247 05. .

Only 1
100

 of 1 percent off.

7 The approximation is 
180

.

You know the routine (the angle size near 1 degree whose sine you can easily compute 
is zero degrees):

f x x

f

f x x

f

sin

,

cos

,

0 0

0 1

so 0, 0 is your point

so 1 is tthe slope at 0, 0

y y m x x

y x

y x

1 1

0 1 0

 is the tangent line

Your number is x
180

, so, since y x, you get y
180

.

This shows that for very small angles, the sine of the angle and the angle itself  
(in radians) are approximately equal. (The same is true of the tangent of an angle,  

by the way.) The approximation of 
180

 is only 1
200

 of 1 percent too big.
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8 The approximation is 10
5
10e

.

Just imagine all the situations where such an approximation will come in handy!

q x x

q e e

q x
x

q e

ln

, ,10 10

10

10 10

1

so   is your point

1 1 1010 10
10

e e
e, ,so is the slope at  

y y m x x

y
e

x e

y
e

x e

1 1

10
10

10
10

10 1

10 1  is the tangennt line

Now you can plug in your number, x e10 5:

y
e

e e

y
e

10 1 5

10 5

10
10 10

10

Hold on to your hat. This approximation is a mere 0.00000026% too big!

9 (a) $103.00

C x x x

C x x

C

50 000 100 0 0001

100 0 0003

100 100 0 0

3

2

, .

.

. 0003 100

100 3 103

2

(b) $112.00

C 200 100 0 0003 200

100 12 112

2.

10 (a) R x x400 0 0005 1 5. .

1. Find the revenue function.

Revenue of items sold price per item

R x x x

#

.

    

400 0 0002 1..

..

5

2 5400 0 0002

          (using the price function)

x x
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2. Take its derivative.

R x x400 0 0005 1 5. .

(b) $399.50, $396.00, and $386.50, respectively.

R

R

100 400 0 0005 100 399 50

400 400 0 0005 400

1 5

1

. .

.

.

.55

1 5

396 00

900 400 0 0005 900 386 50

.

. ..R

11 $248.00, $43.50, and –$500.00, respectively.

Marginal profit marginal revenue marginal cost

P x R x

   

C x

x x

x

400 0 0005 100 0 0003

300 0 0005 0 00

1 5 2

1 5

. .

. .

.

. 003 2x

P

P

400 300 0 0005 400 0 0003 400 248

900 300 0 0

1 5 2. .

.

.

0005 900 0 0003 900 43 5

1600 300 0 0005 1600

1 5 2

1 5

.

.

. .

.P 0 0003 1600 5002.

This negative profit for the 1601st widget tells you that the firm would lose money if it 
were to produce and sell that widget. Therefore, it will obviously want to produce and 
sell fewer widgets than that. See the solution to the next problem.

12 (a) 974 widgets

Like with any maximization problem, to find the maximum profit, you set the first 
derivative equal to zero and solve for x.

P x x x

x x

x

300 0 0005 0 0003

0 300 0 0005 0 0003

97

1 5 2

1 5 2

. .

. .

.

.

44 33.

(You have to use your calculator to find that solution.)

Thus, the firm should produce and sell 974 widgets to maximize profits. (It’s kind of 
obvious in this problem that the profit function hits a maximum at this x-value; but, if 
you want to be more rigorous, you should show that this x-value is indeed where a 
maximum occurs, as opposed to a minimum or a horizontal inflection point.) I did this 
problem like any maximization problem, without mentioning marginals. But, as you 
know, the first derivative of the profit is the marginal profit. So, the preceding math 
shows that the marginal profit is zero when 974 widgets are sold. Do you see why the 
maximum profit should occur where the marginal profit equals zero?
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(b) $143,877.52

Determine the profit function and evaluate it at x 974. (This is a very unusual calculus 
problem, by the way, where you determined the derivative, P x , before you had the 
function itself, P x .)

P x R x C x

x x x x400 0 0002 50 000 100 0 0001

50

2 5 3. , .

,

.

0000 300 0 0002 0 0001

974 143 877 52

2 5 3x x x

P

. .

, .

.

(c) $393.92

Just plug 974 into the price function.

p x x

p

400 0 0002

974 400 0 0002 974

400 6 08

393

1 5

1 5

.

.

.

.

.

.

992

If you’re ready to test your skills a bit more, take the following chapter quiz that 
incorporates all the chapter topics.
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Whaddya Know? Chapter 13 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 Determine the equation of the line(s) tangent to f x e x that pass through 0, 0 , and give 
the point(s) of tangency.

2 Determine the equation of the line(s) normal to f x xln  that pass through 0, 1 , and 
give the point(s) of normalcy.

3 Determine the equation of the line(s) normal to f x xsin  that pass through 
2 2

, , 
and give the point(s) of normalcy.

4 Use the linear approximation method to estimate 4 994. .

5 Use the linear approximation method to estimate ln .10 1.

6 Use the linear approximation method to estimate 335 , 345 , and 355 .

7 Use the linear approximation method to estimate e0 99. .

For Problems 8 to 10, use the following demand (or price) and cost functions for the pro-
duction and sale of some thingamajobs.

p
x

C x x x

900

20 150 1000

3

23

8 (a) What’s the marginal cost function?

(b) What’s the approximate cost of producing the 1001st thingamajob?

9 (a) What’s the revenue function and what’s the marginal revenue function?

(b) What’s the approximate revenue from the sale of the 1001st thingamajob?

10 (a) What’s the marginal profit function?

(b) What’s the approximate profit earned from the sale of the 1001st thingamajob?



394      UNIT 4  Differentiation

Answers to Chapter 13 Quiz
1 y ex, which passes through 0 0,  , is tangent to f x e x at 1,  e .

2 y x 1, which passes through 0 1,  , is normal to f x xln  at 1 0,  .

3 There are three normal lines to f x xsin  that pass through 
2 2

, :

The vertical line x
2

 is normal to f at 
2

1,  ,

y x  is normal to f at the origin, and

y x  is normal to f at ,  0 .

4 620

5 ln .10 0 01

6 2
1
80

2
2
80

2
3
80

, ,  and 

7 0 99. e

8 (a) C x
x

20
100
3

C x x x

x x

C x x

20 150 1000

20 150 1000

20 150 2
3

20

23

2 3

1 3

100
3 x

(b) The approximate cost of producing the 1001st thingamajob is $30.

C x
x

C

20 100

1000 20 100
1000

30

3

3

9 (a) R x x R x
x

900
60023
3and

R x x p

x
x

x

R x x

x

900

900

900 2
3

600

3

23

1 3

3
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(b) The approximate revenue from the sale of the 1001st thingamajob is $60.

R x
x

R

600

1000 600
1000

60

3

3

10 (a) P x
x

500
203

P x R x C x

x x

x

600 20 100

500 20

3 3

3

(b) The approximate profit earned from the sale of the 1001st thingamajob is $30.

P x
x

P

500 20

1000 500
1000

20 30

3

3

Or, even better, you could simply subtract C 1000  from R 1000  to obtain P 1000 .
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Intro to Integration and 
Approximating Area

Since you’re still reading this book, I presume that means you survived differentiation 
(Chapters 9 through 13). Now you begin the second major topic in calculus: integration. 
Just as two simple ideas lie at the heart of differentiation — rate (like miles per hour) and 

the steepness or slope of a curve — integration can also be understood in terms of two simple 
ideas: adding up small pieces of something and the area under a curve. In this chapter, I intro-
duce you to these two fundamental concepts.

By the way, much of the material in this chapter and the first section of Chapter 15 is both 
more difficult and less useful than what follows it. If ever there was a time for the perennial  
complaint — “What is the point of learning this stuff?” — this is it. Now, some calculus teach-
ers would give you all sorts of fancy arguments and pedagogical justifications for why this 
material is taught, but, let’s be honest, the sole purpose of teaching these topics is to inflict 
maximum pain on calculus students. Well, you’re stuck with it, so deal with it. The good news 
is that this material will make much of what comes later seem easy by comparison.

Chapter 14

IN THIS CHAPTER

 » Integrating — adding it all up

 » Approximating areas and sizing up 
sigma sums

 » Using the definite integral to get 
exact areas

 » Reconnoitering rectangles

 » Totaling up trapezoids

 » Applying Simpson’s rule: Calculus 
for Bart and Homer
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Integration: Just Fancy Addition
Consider the lamp on the left in Figure  14-1. Say you want to determine the volume of the 
lamp’s base. Why would you want to do that? Beats me. Anyway, a formula for the volume of 
such a weird shape doesn’t exist, so you can’t calculate the volume directly. (Archimedes had 
his “Eureka!” moment when he calculated the volume of another weird shape. Remember his 
method? Hint: If you try his method on a lamp, make sure you unplug it first!)

Okay, so there’s no formula for the volume of the lamp base. However, with integration, you 
can calculate the volume. Imagine that the base is cut up into thin, horizontal slices as shown 
on the right in Figure 14-1.

Can you see that each slice is shaped like a thin pancake? Now, because there is a formula for 
the volume of a pancake (a pancake is just a very short cylinder), you can determine the total 
volume of the base by simply calculating the volume of each pancake-shaped slice and then 
adding up the volumes. That’s integration in a nutshell.

But, of course, if that’s all there was to integration, there wouldn’t be such a fuss about it — 
certainly not enough to vault Newton, Leibnitz, and other calculus all-stars into the mathe-
matics hall of fame. What makes integration one of the great achievements in the history of 
mathematics is that — to continue with the lamp example — it gives you the exact volume of 
the lamp’s base by sort of cutting it into an infinite number of infinitely thin slices. Now that is 
something. If you cut the lamp into fewer than an infinite number of slices, you can get only a 
very good approximation of the total volume — not the exact answer — because each pancake-
shaped slice would have a weird, curved edge, which would cause a small error when computing 
the volume of the slice with the cylinder formula.

Integration has an elegant symbol: . You’ve probably seen it before — maybe in one of those 
cartoons with some Einstein guy in front of a blackboard filled with indecipherable gobble-
dygook. Soon, this will be you. That’s right: You’ll be filling up pages in your notebook with  
equations containing the integration symbol. Onlookers will be amazed and envious.

You can think of the integration symbol as just an elongated S for “sum up.” So, for our lamp 
problem, you can write

bottom

top

dB B

FIGURE 14-1: 
A lamp with a 

curvy base and 
the base cut 

into thin 
horizontal 

slices.
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where dB means a little bit of the base — actually an infinitely small piece. So the equation just 
means that if you sum up all the little pieces of the base from the bottom to the top, the result 
is B, the volume of the whole base.

This is a bit oversimplified — I can hear the siren of the math police now — but it’s a good way 
to think about integration. By the way, thinking of dB as a little or infinitesimal piece of B is 

an idea you saw before with differentiation (see Chapter 9), where the derivative or slope, dy
dx

,  

is equal to the ratio of a little bit of y to a little bit of x, as you shrink the rise
run

 stair step down 

to an infinitesimal size (see Figure 9-13). Thus, both differentiation and integration involve 
infinitesimals.

So, whenever you see something like

a

b

little piece of mumbo jumbo

it just means that you add up all the little (infinitesimal) pieces of the mumbo jumbo from a to 
b to get the total of all of the mumbo jumbo from a to b. Or you might see something like

t

t

little piece of distance
0

20

sec.

sec.

which means to add up the little pieces of distance traveled between 0 and 20 seconds to get the 
total distance traveled during that time span.

To sum up — that’s a pun! — the mathematical expression to the right of the integration  
symbol stands for a little bit of something, and integrating such an expression means to add up 
all the little pieces between some starting point and some ending point to determine the total 
between the two points.

Finding the Area Under a Curve
As I discuss in Chapter 9, the most fundamental meaning of a derivative is that it’s a rate, a this 
per that like miles per hour, and that when you graph the this as a function of the that (like miles 
as a function of hours), the derivative becomes the slope of the function. In other words, the 
derivative is a rate, which on a graph appears as a slope.

It works in a similar way with integration. The most fundamental meaning of integration is 
to add up (you might be adding up distances or volumes, for example). And when you depict 
integration on a graph, you can see the adding-up process as a summing up of little bits of area 
to arrive at the total area under a curve. Consider Figure 14-2.
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The shaded area in Figure 14-2 can be calculated with the following integral:

a

b

f x dx

Look at the thin rectangle in Figure 14-2. It has a height of f x  and a width of dx (a little bit 
of x), so its area (length times width, of course) is given by f x dx . The above integral tells you 
to add up the areas of all the narrow rectangular strips between a and b under the curve f x . 
As the strips get narrower and narrower, you get a better and better estimate of the area. The 
power of integration lies in the fact that it gives you the exact area by sort of adding up an infi-
nite number of infinitely thin rectangles.

If you’re doing a problem where both the x and y axes are labeled in a unit of length, say, feet, 
then each thin rectangle measures so many feet by so many feet, and its area — length times 
width — is some number of square feet. In this case, when you integrate to get the total area 
under the curve between a and b, your final answer will be an amount of — what else? — area. 
But you can use this adding-up-areas-of-rectangles scheme to add up tiny bits of anything — 
distance, volume, or energy, for example. In other words, the area under the curve doesn’t have 
to stand for an actual area.

If, for example, the units on the x-axis are hours and the y-axis is labeled in miles per hour, then, 

because rate times time equals distance (and because miles
hour

hours miles), the area of each rect-

angle represents an amount of distance (in miles), and the total area gives you the total dis-
tance traveled during the given time interval. Or if the x-axis is labeled in hours and the y-axis 
in kilowatts of electrical power — in which case the curve gives power usage as a function of 
time — then the area of each rectangular strip (kilowatts times hours) represents a number of 
kilowatt-hours of energy. In that case, the total area under the curve gives you the total number 
of kilowatt-hours of energy consumption between two points in time.

Figure 14-3 shows how you would do the lamp volume problem, from earlier in this chapter, by 
adding up areas. In this graph, the function A h  gives the cross-sectional area of a thin pan-
cake slice of the lamp as a function of its height measured from the bottom of the lamp. So, this 
time, the h-axis is labeled in inches (that’s h as in height from the bottom of the lamp), and the 
y-axis is labeled in square inches, and thus each thin rectangle has a width measured in inches 

FIGURE 14-2: 
Integrating 

f x  from x a 
to x b  means 

finding the 
area under the 
curve between 

a and b.
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and a height measured in square inches. The area of each rectangle, therefore, represents inches 
times square inches, or cubic inches of volume.

The area of the thin rectangle in Figure 14-3 represents the volume of the thin pancake slice of 
the lamp 5 inches up from the bottom of the base. The total shaded area and thus the volume 
of the lamp’s base is given by the following integral:

This integral tells you to add up the volumes of all the thin pancake slices from 0 to 15 inches 
(that is, from the bottom to the top of the lamp’s base), each slice having a volume given by 
A h  (its cross-sectional area) times dh (its height or thickness). (By the way, Figure  14-3 
resembles the left half of the lamp’s base [tilted on its side], but it’s not that. It has a similar 
shape because where the lamp base is wide, the corresponding circular slice has a large cross-
sectional area.)

Okay, enough of this introductory stuff. In the next section, you actually calculate some areas.

Approximating Area
Before explaining how to calculate exact areas, I want to show you how to approximate areas. 
The approximation method is useful not only because it lays the groundwork for the exact 
method  — integration  — but because for some curves, integration is impossible, and an 
approximation of area is the best you can do.

The material in this section — using rectangles to approximate the area of strange shapes — is 
part of every calculus course because integration rests on this foundation. But, in a sense, this 
material doesn’t involve calculus at all. You could do everything in this section without calcu-
lus, and if calculus had never been invented, you could still approximate area with the methods 
described here.

FIGURE 14-3: 
This shaded 

area gives you 
the volume  
of the base  

of the lamp in 
Figure 14-1. 

(Note: The 
shape of A(h) is 

close to what  
it should be, 

but it’s not 
precise.)
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Approximating area with left sums
Say you want the exact area under the curve f x x 2 1 between x 0 and x 3. See the shaded 
area on the graph on the left in Figure 14-4.

You can get a rough estimate of the total area by drawing three rectangles under the curve, as 
shown on the right in Figure 14-4, and then adding up their areas.

The rectangles in Figure 14-4 represent a so-called left sum because the height of each rec-
tangle is determined by where the upper left corner of each rectangle touches the curve. 
Each rectangle has a width of 1 and the height of each is given by the height of the function 
at the rectangle’s left edge. So, rectangle number 1 has a height of f 0 0 1 12 ; its area 
( )length width height widthor  is thus 1 1 or 1. Rectangle 2 has a height of f 1 1 1 22 , so its 
area is 2 1, or 2. And rectangle 3 has a height of f 2 2 1 52 , so its area is 5 1, or 5. Adding 
these three areas gives you a total of 1 2 5, or 8. You can see that this is an underestimate of 
the total area under the curve because of the three gaps between the rectangles and the curve 
shown in Figure 14-4.

For a better estimate, double the number of rectangles to six. Figure  14-5 shows six “left” 
rectangles under the curve and also how the six rectangles begin to fill up the three gaps you 
see in Figure 14-4.

FIGURE 14-4: 
The exact area 

under 
f x x 2 1 

between x 0 
and x 3 

(shown on the 
left) is 

approximated 
by the area of 

three 
rectangles 

(shown on the 
right).

FIGURE 14-5: 
Six “left” 

rectangles 
approximate 

the area under 
f x x 2 1 
from 0 to 3.
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See the three small shaded rectangles in the graph on the right in Figure 14-5? They sit on 
top of the three rectangles from Figure 14-4 and represent how much the area estimate has 
improved by using six rectangles instead of three.

Now total up the areas of the six rectangles. Each has a width of 0.5 and the heights 
are f f f f0 0 5 1 1 5, . , , . , and so on. I’ll spare you the arithmetic. Here’s the total: 
0 5 0 625 1 1 625 2 5 3 625 9 875. . . . . . . This is a better estimate, but it’s still an underestimate 
because of the six small gaps you can see on the left graph in Figure 14-5.

Table 14-1 shows the area estimates given by 3, 6, 12, 24, 48, 96, 192, and 384 rectangles. You 
don’t have to double the number of rectangles each time like I’ve done here. You can use any 
number of rectangles of equal width that you want. I just like the doubling scheme because, 
with each doubling, the gaps are plugged up more and more in the way shown in Figure 14-5. 
Any guesses as to where the estimates in Table 14-1 are headed? Looks like 12 to me.

Here’s the fancy-pants formula for a left-rectangle sum.

The left rectangle rule: You can approximate the exact area under a curve between a and b, 

a

b

f x dx , with a sum of left rectangles of equal width given by the following formula. In gen-

eral, the more rectangles, the better the estimate.

L
b a

n
f x f x f x f xn n0 1 2 1...

where n is the number of rectangles, b a
n

 is the width of each rectangle, x0 through xn 1 are 

the x-coordinates of the left edges of the n rectangles, and the function values are the heights 
of the rectangles.

I’d better explain this formula a bit. Look back to the six rectangles shown in Figure 14-5. The 
width of each rectangle equals the length of the total span from 0 to 3 (which, of course, is 3 0,  

or 3) divided by the number of rectangles, 6. That’s what the b a
n

 does in the formula.

Table 14-1  Estimates of the Area Under  f x x 2 1  from 0  
to 3 Given by Increasing Numbers of “Left” Rectangles

Number of Rectangles Area Estimate

3

6

12

24

48

96

192

384

8

9 875

10 906

11 445

11 721

11 860

11 930

11 965

.

.

.

.

.

.

.
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Now, what about those x’s with the subscripts? The x-coordinate of the left edge of rectangle 
1 in Figure 14-5 is called x0, the right edge of rectangle 1 (which is the same as the left edge of 
rectangle 2) is at x1, the right edge of rectangle 2 is at x2, the right edge of rectangle 3 is at x3, 
and so on all the way up to the right edge of rectangle 6, which is at x6. For the six rectangles 
in Figure 14-5, x0 is 0, x1 is 0.5, x2 is 1, x3 is 1.5, x4 is 2, x5 is 2.5, and x6 is 3. The heights of the 
six left rectangles in Figure 14-5 occur at their left edges, which are at x0 through x5. You don’t 
use the right edge of the last rectangle, x6, in a left sum. That’s why the list of function values 
in the formula stops at xn 1. This all becomes clearer — cross your fingers — when you look at 
the formula for right rectangles in the next section.

Here’s how to use the formula for the six rectangles in Figure 14-5:

L f x f x f x f x f x f x

f f

6 0 1 2 3 4 5
3 0

6
1
2

0 0 5. f f f f1 1 5 2 2 5

1
2

1 1 25 2 3 25 5 7 25

1
2

19

. .

. . .

.775 9 875.

Note that had I distributed the width of 1
2

 to each of the heights after the third line in the solu-

tion, you’d have seen the sum of the areas of the six rectangles — which you saw in the par-
agraph where I totaled up the area of the six rectangles. The formula just uses the shortcut of 
first adding up the heights and then multiplying by the width.

Approximating area with right sums
Now estimate the same area under f x x 2 1 from 0 to 3 with right rectangles. This method 
works like the left sum method, except each rectangle is drawn so that its right upper corner 
touches the curve. See Figure 14-6.

The heights of the three rectangles in Figure 14-6 are given by the function values at their 
right edges: f f f1 2 2 5 3 10,  , and   .  Each rectangle has a width of 1, so the areas are 
2, 5, and 10, which total 17. You don’t have to be a rocket scientist to see that this time you get 
an overestimate of the actual area under the curve, as opposed to the underestimate that you 

FIGURE 14-6: 
Three right 
rectangles 

used to 
approximate 

the area under  
f x x 2 1 
from 0 to 3.
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get with the left-rectangle method I detail in the previous section (more on that in a minute). 
Table 14-2 shows the improving estimates you get with more and more right rectangles.

Looks like these estimates are also headed toward 12. Here’s the formula for a right rectangle 
sum.

The right rectangle rule: You can approximate the exact area under a curve between a and b, 

a

b

f x dx , with a sum of right rectangles given by the following formula. In general, the more 

rectangles, the better the estimate.

R
b a

n
f x f x f x f xn n1 2 3 ..... ,

where n is the number of rectangles, b a
n

 is the width of each rectangle, x1 through xn are the 

x-coordinates of the right edges of the n rectangles, and the function values are the heights of 
the rectangles.

If you compare this formula to the one for a left rectangle sum, you get the complete picture 
about those subscripts. The two formulas are the same except for one thing. Look at the sums of 
the function values in both formulas. The right sum formula has one value, f xn , that the left 
sum formula doesn’t have, and the left sum formula has one value, f x0 , that the right sum 
formula doesn’t have. All the function values between those two appear in both formulas. You 
can get a better handle on this by comparing the three left rectangles from Figure 14-4 to the 
three right rectangles from Figure 14-6. Their areas and totals, which I earlier calculated, are

Three left rectangles: 

Three right rectangles: 

1 2 5 8

2 5 110 17

Table 14-2  Estimates of the Area Under  f x x 2 1  from 0  
to 3 Given by Increasing Numbers of “Right” Rectangles

Number of Rectangles Area Estimate
3

6

12

24

48

96

192

384

17

14 375

13 156

12 570

12 283

12 141

12 070

12 035

.

.

.

.

.

.

.
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The values used in the sums of the areas are the same except for the left-most left rectangle value 
and the right-most right rectangle value. Both sums include rectangles with areas 2 and 5. If you 
look at how the rectangles are constructed, you can see that the second and third rectangles in 
Figure 14-4 are the same as the first and second rectangles in Figure 14-6.

Approximating area with midpoint sums
A third way to approximate areas with rectangles is to make each rectangle cross the curve 
at the midpoint of its top side. A midpoint sum is usually a much better estimate of area than 
either a left or a right sum. Figure 14-7 shows why.

You can see in Figure 14-7 that the part of each rectangle that’s above the curve looks about 
the same size as the gap between the rectangle and the curve. A midpoint sum produces such a 
good estimate because these two errors roughly cancel out each other.

For the three rectangles in Figure  14-7, the widths are 1 and the heights are f 0 5 1 25. . , 
f 1 5 3 25. . , and f 2 5 7 25. . . The total area comes to 11.75. Table 14-3 lists the midpoint sums 
for the same number of rectangles used in Tables 14-1 and 14-2.

Table 14-3  Estimates of the Area Under  f x x 2 1  from 0  
to 3 Given by Increasing Numbers of “Midpoint” 
Rectangles

Number of Rectangles Area Estimate

3

6

12

24

48

96

192

384

11 75

11 9375

11 9844

11 9961

11 9990

11 9998

11 9999

11 99

.

.

.

.

.

.

.

. 9998

FIGURE 14-7: 
Three midpoint 
rectangles give 

you a much 
better estimate 

of the area 
under 

f x x 2 1.
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If you had any doubts that the left and right sums in Tables 14-1 and 14-2 were heading to 12, 
Table 14-3 should dispel them. Spoiler alert: Yes, in fact, the exact area is 12. (I show you how to 
calculate that in several pages in the section “Finding Exact Area with the Definite Integral.”) 
And to see how much faster the midpoint approximations approach the exact answer of 12 than 
the left or right approximations, compare the three tables. The error with 6 midpoint rect-
angles is about the same as the error with 192 left or right rectangles! Here’s the mumbo jumbo.

The midpoint rule: You can approximate the exact area under a curve between a and b, 
a

b

f x dx,  

with a sum of midpoint rectangles given by the following formula. In general, the more rect-
angles, the better the estimate.

M
b a

n
f

x x
f

x x
f

x x
f

x x
n

n n0 1 1 2 2 3 1

2 2 2 2
..... ,

where n is the number of rectangles, b a
n

 is the width of each rectangle, x0 through xn are the 

n 1 evenly spaced points from a to b, and the function values are the heights of the rectangles.

Definition of Riemann sum: All three sums — left, right, and midpoint — are called Riemann 
sums, after the great German mathematician Bernhard Riemann (1826–1866). Basically, any 
approximating sum made up of rectangles is a Riemann sum, including weird sums consisting 
of rectangles of unequal width. Luckily, you won’t have to deal with those in this book or your 
calculus course.

The left, right, and midpoint sums in Tables 14-1, 14-2, and 14-3 are all heading toward 12,  
and if you could slice up the area into an infinite number of rectangles, you’d get the exact area 
of 12. But I’m getting ahead of myself.

Q. Using 10 right rectangles, estimate the area under f x xln  from 1 to 6.

A. The approximate area is 6.181.

1. Sketch  f x xln   and divide the interval from 1 to 6 into ten equal increments.

Each increment has a length of 1
2

, of course. See the figure in Step 2.

2. Draw a right rectangle for each of the ten increments.

You’re doing right rectangles, so put your pen on the right end of the base of the first 
rectangle (that’s at x 1 5. ), draw straight up till you hit the curve, and then straight 
left till you’re directly above the left end of the base (x 1). Finally, going straight 
down, draw the left side of the first rectangle. See the following figure. I’ve indicated 
with arrows how you draw the first rectangle. Draw the rest the same way.
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3. Use your calculator to calculate the height of each rectangle.

The heights are given by f 1 5. , f 2 , f 2 5. , and so on, which are ln .1 5, ln2, and  
so on.

4. Here’s the final computation:

  1
2

1 5 2 2 5 3 3 5 4 4 5 5 5 5 6

1
2

ln . ln ln . ln ln . ln ln . ln ln . ln

00 405 0 693 0 916 1 099 1 253 1 386 1 504 1 609 1 705 1 7. . . . . . . . . . 992

1
2

12 362 6 181. .

1 (a) Estimate the area under f x xln  from 1 to 6 (as in the example), but this time 
with 10 left rectangles.

(b) How is this approximation related to the area obtained with 10 right rectangles? 
(Hint: Compare individual rectangles from both estimates.)

2 Approximate the same area again with 10 midpoint rectangles.
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3 Rank the approximations from the 
example and Problems 1 and 2 from 
best to worst and defend your rank-
ing. Obviously, you’re not allowed to 
cheat by first finding the exact area 
with your calculator.

4 Use 8 left, right, and midpoint rect-
angles to approximate the area under 
sin x  from 0 to .

Getting Fancy with Summation Notation
Before I get to the formal definition of the definite integral — that’s the incredible calculus tool 
that sort of cuts up an area into an infinite number of rectangles and thereby gives you the exact 
area — there’s one more thing to take care of: summation notation.

Summing up the basics
For adding up long series of numbers like the rectangle areas in a left, right, or midpoint sum, 
summation or sigma notation comes in handy. Sigma notation may look fancy and difficult, but 
it’s really just a shorthand way of writing a long sum. Here’s how it works. Say you wanted to 
add up the first 100 multiples of 5 — that’s from 5 to 500. You could write out the sum like this:

5 10 15 20 25 490 495 500.....

But with sigma notation (sigma, , is the 18th letter of the Greek alphabet), the sum is much 
more condensed and efficient, and, let’s be honest, it looks pretty cool:

i
i

1

100

5

This notation just tells you to plug 1 in for the i in 5i, then plug 2 into the i in 5i, then 3, then 4, 
and so on, up to 100. Then you add up the results. So that’s 5 1 plus 5 2 plus 5 3, and so on, up 
to 5 100. This produces the same thing as writing out the sum the long way.
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The letter i in this example is called the index of summation. The particular letter you use has no 
significance, though i and k are customary.

Here’s one more. If you want to add up 10 11 12 29 302 2 2 2 2..... , you can write the sum 
with sigma notation as follows:

k
k

10

30
2

There’s really nothing to it.

Let’s walk through a couple examples step by step. But, first, a piece of business.

Pulling stuff out. In a sigma sum problem, you can pull anything through the sigma symbol to 
the outside except for a function of the index of summation.

Q. Evaluate 
i

i
4

12
25 .

A. The sum is 3180.

1. Pull the 5 through the sigma symbol: 5
4

12
2

i
i

2. Plug 4 into i, then 5, then 6, and so on up to 12, adding up all the terms.

5 4 5 6 7 8 9 10 11 122 2 2 2 2 2 2 2 2

3. Finish on your calculator.

5 636 3180

Q. Express 50 60 70 80 1503 3 3 3 3 with sigma notation.

A. 1000 4
1

11
3

i
i

1. Create the argument (that’s the input) of the sigma function.

The jump amount between terms in a long sum will become the coefficient of the 
index of summation in a sigma sum, so you know that 10i is the basic term of your 
argument. You want to cube each term, so that gives you the following:

10 3i

2. Set the range of the sum.

Ask yourself what i must be to make the first term equal 503: That’s 5, of course.  
And ask the same question about the last term of 1503: i must be 15. Put the 5 and  
the 15 on the sigma symbol, like this:

i
i

5

15
310

Check that plugging 5, then 6, then 7, and so on up to 15 into i produces the original 
sum. It works. (It’s not a bad idea to do a check like this if you’re new to sigma 
notation.)
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3. Simplify.

i

i

i

i

i

i

5

15
3 3

5

15
3

5

15
3

10

1000

1000

4. (Optional) Set the i to begin at zero or one.

It’s often desirable to have i begin at 0 or 1. To turn the 5 into a 1, you subtract 4. 
Then subtract 4 from the 15 as well. To compensate for this subtraction, you add 4 to 
the i in the argument:

1000 4
1

11
3

i
i

If you want i to start at zero, you have

1000 5
0

10
3

i
i

5 Evaluate 
i 1

10

4. 6 Evaluate 
i

i i
0

9
21 1 .

7 Evaluate 
i

i i
1

50
23 2 . 8 Express the following sum  

with sigma notation: 
30 35 40 45 50 55 60
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9 Express the following sum with sigma 
notation: 8 27 64 125 216

10 Use sigma notation to express the  
following:

 
2 4 8 16 32 64

128 256 512 1024

Writing Riemann sums with sigma notation
Let’s use sigma notation to write out the right-rectangle sum for the curve y x 2 1 that you 
looked at in the section “Approximating Area.” This can get pretty gnarly. Brace yourself.

Recall the formula for a right sum from the earlier section “Approximating area with right 
sums”:

R
b a

n
f x f x f x f xn n1 2 3 ...

Here’s the same formula written with sigma notation:

R f x
b a

nn
i

n

i
1

(Note that I could have written this instead as R
b a

n
f xn

i

n

i
1

, which would have more 

nicely mirrored the formula where the b a
n

 is on the outside. Either way is fine — they’re  

equivalent — but I chose to keep the b a
n

 on the inside so that the  sum is actually a sum 

of rectangles. In other words, with the b a
n

 on the inside, the expression after the  symbol, 

f x
b a

ni , which the  symbol tells you to add up, is the area of each rectangle, namely 

height times base.)
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Now work this out for the six right rectangles in Figure 14-8.

You’re figuring the area under x 2 1 between x 0 and x 3 with six rectangles, so the width of 

each, b a
n

, is 3 0
6

 or 3
6

 or 1
2

. So now you’ve got

R f x
i

i6
1

6 1
2

Next, because the width of each rectangle is 1
2

, the right edges of the six rectangles fall on the 

first six multiples of 1
2

: 0.5, 1, 1.5, 2, 2.5, and 3. These numbers are the x-coordinates of the six 

points x1 through x6; they can be generated by the expression 1
2

i, where i equals 1 through 6. 

You can check that this works by plugging 1 in for i in 1
2

i, then 2, then 3, up to 6. So now you 

can replace the xi  in the formula with 1
2

i, giving you

R f i
i

6
1

6 1
2

1
2

Your function, f x , is x 2 1 so f i i
1
2

1
2

1
2

, and so now you can write

R i
i

6
1

6 21
2

1 1
2

If you plug 1 into i, then 2, then 3, and so on up to 6 and do the math, you get the sum of the 
areas of the rectangles in Figure 14-8. This sigma notation is just a fancy way of writing the 
sum of the six rectangles.

Are we having fun? Hold on, it gets worse — sorry. Now you’re going to write out the general 
sum for an unknown number, n, of right rectangles. The total span of the area in question is 3, 
right? You divide this span by the number of rectangles to get the width of each rectangle. With 

FIGURE 14-8: 
Six right 

rectangles 
approximate 

the area under 
f x x 2 1 

between 0  
and 3.
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6 rectangles, the width of each is 3
6

; with n rectangles, the width of each is 3
n

. And the right 

edges of the n rectangles are generated by 3
n

i , for i equals 1 through n. That gives you

R f
n

i
nn

i

n

1

3 3

Or, because f x x 2 1,

R
n

i
n

i
n n

n
i

n

i

n

1

2

1

2

2

3 1 3

9 1 3

i

n

i

n

i

n

i
n n

i
n n

1

2

3

1

2

3
1

27 3

27 3 (Take my word foor it.)

27 3 13
1

2

1n
i

ni

n

i

n

For this last step, you pull the 27
3n

 and the 3
n

 through the summation symbols — recall that 

you’re allowed to pull out anything except for a function of i.

You’ve now arrived at a critical step. With a sleight of hand, you’re going to turn the Riemann 
sum here into a formula in terms of n. (This formula is what you use in the next section to 
obtain the exact area under the curve.)

Now, as almost no one knows, the sum of the first n square numbers, 1 2 32 2 2 2... n , equals 
n n n1 2 1

6
. (By the way, this 6 has nothing to do with the fact that you used 6 rectangles 

a couple pages back.) So, you can substitute that expression for the 
i

n

i
1

2 in the last line of the 

sigma notation solution, and at the same time substitute n for 
i

n

1
1 (because that just tells you 

to add up n 1’s):

R
n

i
n

n
n n n

n
n

n
n

n
i

n

i

n27 3 1

27 1 2 1
6

3

27 2 3

3
1

2

1

3

3

3 nn n

n
n n n

n n

n n

2

3

3 2

2

6
3

27
3 2 6

3

9 27
2

9
2

3

12 27
2

9
2 22
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The end. Finally! This is the formula for the area of n right rectangles between x 0 and x 3 
under the function f x x 2 1. You can use this formula to produce the approximate areas 
given in Table 14-2. But once you’ve got such a formula, it’d be kind of pointless to produce a 
table of approximate areas, because you can use the formula to determine the exact area. And 
it’s a snap. I get to that in a minute in the next section.

But first, here are the formulas for n left rectangles and n midpoint rectangles between x 0 
and x 3 under the same function, x 2 1. These formulas generate the area approximations in 
Tables 14-1 and 14-3. The algebra for deriving these formulas is even worse than what we just 
did for the right rectangle formula, so I decided to skip it. Do you mind? I didn’t think so.

L
n n

M
n

n

n

12 27
2

9
2

12 9
4

2

2

11 Use sigma notation to express a 
20-right-rectangle approximation of 
the area under g x x x2 3  from 0  
to 5. Then compute the approximation.

12 Using your result from Problem 11, 
write a formula for approximating the 
area under g from 0 to 5 with n 
rectangles.

And now, what you’ve all been waiting for . . .

Finding Exact Area with the Definite Integral
Having laid all the necessary groundwork, we’re finally ready to move on to determining exact 
areas — which is the whole point of integration. You don’t need calculus to do all the approx-
imation stuff we just did.
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As you saw with the left, right, and midpoint rectangles in the section “Approximating Area,” 
the more rectangles you use, the better the approximation. So, “all” you’d have to do to get the 
exact area under a curve is to use an infinite number of rectangles. Now, you can’t really do 
that, but with the fantastic invention of limits, this is sort of what happens. Here’s the defini-
tion of the definite integral that’s used to compute exact areas.

The definite integral (“simple” definition): The exact area under a curve between x a and 
x b is given by the definite integral, which is defined as the limit of a Riemann sum:

a

b

n i

n

if x dx f x
b a

n
lim

1

Is that a thing of beauty or what? This summation (everything to the right of “lim”) is identical 
to the formula for n right rectangles, Rn, that I give a few pages back. The only difference here 
is that you take the limit of that formula as the number of rectangles approaches infinity ( ).

This definition of the definite integral is the simple version based on the right rectangle for-
mula. I give you the real-McCoy definition later, but because all Riemann sums for a specific 
problem have the same limit — in other words, it doesn’t matter what type of rectangles you 
use — you might as well use the right-rectangle definition. It’s the least complicated and it’ll 
always suffice.

Let’s have a drum roll. Here, finally, is the exact area under our old friend f x x 2 1 between 
x 0 and x 3:

0

3
2

1

2

1

12 27
2

9
2

x dx f x
b a

n

n n

n i

n

i

n

lim

lim   

(This is what we got in the section

Writing Reimann s“ uums with sigma

notation,  after all those steps.)”

12 27
2

9
2

12 27 9

12 0 0

2

          (Remember, in a limit probblem, any number 

        divided by infinity equals zero.))

12

Big surprise.

This result is pretty amazing if you think about it. Using the limit process, you get an exact 
answer of 12 — sort of like 12.00000000 . . . to an infinite number of decimal places — for the 
area under the smooth, curving function f x x 2 1, based on the areas of flat-topped rect-
angles that run along the curve in a jagged, sawtooth fashion. Remarkable!

Finding the exact area of 12 by using the limit of a Riemann sum is a lot of work (remember, 
we first had to determine the formula for n right rectangles). This complicated method of inte-
gration is comparable to determining a derivative the hard way by using the formal definition 
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that’s based on the difference quotient (see Chapter 9). And just as you stopped using the for-
mal definition of the derivative after you learned the differentiation shortcuts, you won’t have 
to use the formal definition of the definite integral based on a Riemann sum after you learn the 
shortcut methods in Chapters 15 and 16 — except, that is, on your final exam.

Because the limit of all Riemann sums is the same, the limits at infinity of n left rectangles and 
n midpoint rectangles (for f x x( ) 2 1 between x 0 and x 3) should give us the same result 
as the limit at infinity of n right rectangles. The expressions after the following limit symbols 
are the formulas for n left rectangles and n midpoint rectangles that appear at the end of the 
section “Writing Riemann sums with sigma notation,” earlier in the chapter. Here’s the left 
rectangle limit:

0

3
2

2

2

1 12 27
2

9
2

12 27
2

9
2

1

x dx L
n nn

lim

   

   22 27 9

12 0 0 12   

And here’s the midpoint rectangle limit:

0

3
2

2

2

1 12 9
4

12 9
4

12 9

12 0 1

x dx M
nn

lim

  

  

  22

If you’re somewhat incredulous that these limits actually give you the exact area under 
f x x 2 1 between 0 and 3, you’re not alone. After all, in these limits, as in all limit prob-
lems, the arrow-number (  in this example) is only approached; it’s never actually reached. 
And on top of that, what would it mean to reach infinity? You can’t do it. And regardless of 
how many rectangles you have, you always have that jagged, sawtooth edge. So how can such 
a method give you the exact area?

Look at it this way. You can tell from Figures 14-4 and 14-5 that the sum of the areas of left 
rectangles, regardless of their number, will always be an underestimate (this is the case for 
functions that are increasing over the span in question). And from Figure 14-6, you can see that 
the sum of the areas of right rectangles, regardless of how many you have, will always be an 
overestimate (for increasing functions). So, because the limits at infinity of the underestimate 
and the overestimate are both equal to 12, that must be the exact area. (A similar argument 
works for decreasing functions.)

All Riemann sums for a given problem have the same limit. Not only are the limits at infin-
ity of left, right, and midpoint rectangles the same for a given problem, but the limit of any 
Riemann sum also gives you the same answer. You can have a series of rectangles with unequal 
widths; you can have a mix of left, right, and midpoint rectangles; or you can construct the 
rectangles so they touch the curve somewhere other than at their left or right upper corners or 
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at the midpoints of their top sides. The only thing that matters is that, in the limit, the width 
of all the rectangles tends to zero (and from this, it follows that the number of rectangles 
approaches infinity). This brings us to the following totally extreme, down-and-dirty integra-
tion mumbo jumbo that takes all these possibilities into account.

The definite integral (real-McCoy definition): The definite integral from x a to x b, 
a

b

f x dx ,  

is the number to which all Riemann sums tend as the width of all rectangles tends to zero and 
as the number of rectangles approaches infinity:

a

b

x i

n

i if x dx f c x
i

lim ,
max 0 1

where xi is the width of the ith rectangle and ci is the x-coordinate of the point where the ith 
rectangle touches f x . (That “max xi 0” simply guarantees that the width of all the rect-
angles approaches zero and that the number of rectangles approaches infinity.)

13 In Problem 11, you estimate the area 
under g x x x2 3  from 0 to 5 with 
20 right rectangles. The result is about 
84.2 square units. Then in Problem 12, 
you write a formula for the area under 
g for n rectangles. Use your result from 
Problem 12 to approximate the area 
under g from 0 to 5 with 50, 100, 1000, 
and 10,000 right rectangles.

14 Use your result from Problem 12 and 
the definition of the definite integral 
to determine the exact area under 
g x x x2 3  from 0 to 5.
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Approximating Area with the Trapezoid  
Rule and Simpson’s Rule

This section covers two more ways to estimate the area under a function. You can use them if 
for some reason you only want an estimate and not an exact answer — maybe because you’re 
asked for that on an exam. But these approximation methods and the others you’ve gone over 
are useful for another reason. There are certain types of functions for which the exact area 
method doesn’t work. (It’s beyond the scope of this book to explain why this is the case or 
exactly what these functions are like, so just take my word for it.) So, using an approximation 
method may be your only choice if you happen to get one of these uncooperative functions.

The trapezoid rule
With the trapezoid rule, instead of approximating area with rectangles, you do it with — can 
you guess? — trapezoids. See Figure 14-9.

Because of the way trapezoids hug the curve, they give you a much better area estimate than 
either left or right rectangles. And it turns out that a trapezoid approximation is the average 
of the left rectangle and right rectangle approximations. Can you see why? (Hint: The area of a 
trapezoid — say trapezoid 2 in Figure 14-9 — is the average of the areas of the two correspond-
ing rectangles in the left and right sums, namely, rectangle 2 in Figure 14-4 and rectangle 2 in 
Figure 14-6.)

Table  14-4 lists the trapezoid approximations for the area under f x x 2 1 between x 0  
and x 3.

From the look of Figure 14-9, you might expect a trapezoid approximation to be better than a 
midpoint estimate, but in fact, as a general rule, midpoint estimates are about twice as good 
as trapezoid estimates. You can confirm this by comparing Tables 14-3 and 14-4. For instance, 
Table 14-3 lists an area estimate of 11.9990 for 48 midpoint rectangles. This differs from the 
exact area of 12 by 0.001. The area estimate with 48 trapezoids given in Table 14-4, namely 
12.002, differs from 12 by twice as much.

FIGURE 14-9: 
Three 

trapezoids 
approximate 

the area under 
f x x 2 1 

between 0  
and 3.
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A trapezoid approximation is the average of the corresponding left-rectangle approxima-
tion and the right-rectangle approximation. If you’ve already worked out the left- and right- 
rectangle approximations for a particular function and a certain number of rectangles, you can 
just average them to get the corresponding trapezoid estimate. If not, here’s the formula.

The trapezoid rule: You can approximate the exact area under a curve between x a and x b, 

a

b

f x dx , with a sum of trapezoids given by the following formula. In general, the more trap-

ezoids, the better the estimate.

T
b a

n
f x f x f x f x f x f xn n n2

2 2 2 20 1 2 3 1..... ,

where n is the number of trapezoids, b a
n2

 is half the “height” of each sideways trapezoid, and 

x0 through xn are the n 1 evenly spaced points from x a to x b. (By the way, using that  
half-the-height expression is completely unintuitive considering that the formula for the area 
of a trapezoid uses its height, not half its height. For extra credit, see if you can figure out why 
that b − a is divided by 2n instead of just n.)

Even though the formal definition of the definite integral is based on the sum of an infinite 
number of rectangles, I prefer to think of integration as the limit of the trapezoid rule at infin-
ity. The further you zoom in on a curve, the straighter it gets. When you use a greater and 
greater number of trapezoids and then zoom in on where the trapezoids touch the curve, the 
tops of the trapezoids get closer and closer to the curve. If you zoom in “infinitely,” the tops 
of the “infinitely many” trapezoids become the curve and, thus, the sum of their areas gives 
you the exact area under the curve. This is a good way to think about why integration produces  
the exact area — and it makes sense conceptually — but it’s not actually done this way.

Table 14-4  Estimates of the Area Under  f x x 2 1  between 
x 0 and x 3 Given by Increasing Numbers of 
Trapezoids

Number of Trapezoids Area Estimate

3

6

12

24

48

96

192

384

12 5

12 125

12 031

12 008

12 002

12 0005

12 0001

12 00003

.

.

.

.

.

.

.

.
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Simpson’s rule — that’s Thomas (1710–1761),  
not Homer (1987–)
Now I really get fancy and draw shapes that are sort of like trapezoids except that instead of 
having slanting tops, they have curved, parabolic tops. See Figure 14-10.

Note that with Simpson’s rule, each “trapezoid” spans two intervals instead of one; in other 
words, “trapezoid” 1 goes from x0 to x2, “trapezoid” 2 goes from x2 to x4, and so on. Because 
of this, the total span must always be divided into an even number of intervals.

Simpson’s rule is by far the most accurate approximation method discussed in this chapter. 
In fact, it gives the exact area for any polynomial function of degree three or less. In general, 
Simpson’s rule gives a much better estimate than either the midpoint rule or the trapezoid rule.

You can use a midpoint sum with a trapezoid sum to calculate a Simpson sum. A Simpson’s 
rule sum is sort of an average of a midpoint sum and a trapezoid sum, except that you use the 
midpoint sum twice in the average. So, if you already have the midpoint sum and the trapezoid 
sum for some number of rectangles/trapezoids, you can obtain the Simpson’s rule approxima-
tion with the following simple average:

S
M M T

n
n n n

2 3

Note the subscript of 2n. This means that if you use, say, M 3 and T3, you get a result for S6. But 
S6, which has six intervals, has only three curvy “trapezoids” because each of them spans two 
intervals. Thus, this formula always involves the same number of rectangles, trapezoids, and 
Simpson’s rule “trapezoids.”

If you don’t have the midpoint and trapezoid sums for this shortcut, you can use the following 
formula for Simpson’s rule.

FIGURE 14-10: 
Three 

curvy-topped 
“trapezoids” 

approximate 
the area  

under g x  
between 1  

and 4.
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Simpson’s rule: You can approximate the exact area under a curve between x a and x b,  

a

b

f x dx , with a sum of parabola-topped “trapezoids” given by the following formula. In gen-

eral, the more “trapezoids,” the better the estimate.

S
b a

n
f x f x f x f x f x f x fn n3

4 2 4 2 40 1 2 3 4 1..... xxn ,

where n is twice the number of “trapezoids” and x0 through xn are the n 1 evenly spaced 
points from x a to x b.

Q. Estimate the area under f x xln  from 1 to 6 with 10 trapezoids. Then compute the 
percent error.

A. The approximate area is 5.733. The percent error is about 0.31%.

1. Sketch the function and the 10 trapezoids.

You’re on your own for this sketch.

2. List the values for a, b, and n, and determine the 11 x-values, x0 through x10 (the left 
edge of the first trapezoid plus the 10 right edges of the 10 trapezoids).

Note that in this and all similar problems, a equals x0 and b equals xn (x10 here).

a b n

x x x x x

1 6 10

1 1 5 2 2 50 1 2 3 10

, ,

, . , , . , ,

    

       ..    66

3. Plug these values into the trapezoid rule formula and solve.

T10
6 1
2 10

1 2 1 5 2 2 2 2 5 2 3 2 3 5 2 4 2 4 5ln ln . ln ln . ln ln . ln ln . 22 5 2 5 5 6

5
20

0 0 811 1 386 1 833 2 197 2 506 2 77

ln ln . ln

. . . . . . 33 3 008 3 219 3 409 1 792

5 733

. . . .

.

4. Compute the percent error.

My calculator tells me that the exact area is 5.7505568153635. For this problem, 
round that off to 5.751. The relative error is given by the error divided by the exact 
area. Multiplying that by 100% gives you the percent error. So that gives you:

relative error 5 751 5 733
5 751

0 0031 0 31. .
.

. . %

Compare this to the 10-midpoint-rectangle error you compute in the solution to 
Problem 2: a 0.14% error. As mentioned earlier, the error with a trapezoid estimate is 
roughly twice the corresponding midpoint-rectangle error.
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Q. Estimate the area under f x xln  from 1 to 6 with 10 Simpson’s rule “trapezoids.” 
Then compute the percent error.

A. The approximate area is 5.751. The percent error is a mere 0.00069%.

1. List the values for a, b, and n, and determine the 21 x-values, x0 through x20 (the 11 
edges and the 10 base midpoints of the 10 curvy-topped “trapezoids”).

a b n
x x x x

1 6 20
1 1 25 1 5 1 750 1 2 3

, ,
, . , . , . , ,
    
       ..    xx20 6

2. Plug these values into the formula.

S20
6 1
3 20

1 4 1 25 2 1 5 4 1 75 2 2 4 5 75 6ln ln . ln . ln . ln ln . ln

5
60

69 006202893232

5 7505169

.

.

3. Figure the percent error.

The exact answer, again, is 5.7505568153635. Round that off to 5.7505568.

relative error 5 7505568 5 7505169
5 7505568

0 0000069

0 00

. .
.

.

. 0069%

This is way better than either the midpoint or trapezoid estimate. Impressed?

15 Continuing with Problem 4, estimate 
the area under y xsin  from 0 to  
with 8 trapezoids, and compute the 
percent error.

16 Estimate the same area as Problem 15 
with 16 and 24 trapezoids, and com-
pute the percent errors.
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17 Approximate the same area as  
Problem 15 with 8 Simpson’s rule 
“trapezoids” and compute the  
percent error.

18 Use the Simpson’s rule shortcut to 
figure S20 for the area under ln x from 1 
to 6. (Use the results from Problem 2 
and the first example in this section.)

To close this chapter, here’s a warning about functions that go below the x-axis. I didn’t include 
any such functions in this chapter, because I thought you already had enough to deal with. You 
see the full explanation and an example in Chapter 17.

Areas below the x-axis count as negative areas. Whether approximating areas with right-, left-, 
or midpoint rectangles or with the trapezoid rule or Simpson’s rule, or computing exact areas 
with the definite integral, areas below the x-axis and above the curve count as negative areas.
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Practice Questions Answers and Explanations
1 (a) The area is 5.285.

1. Sketch a graph and divide the intervals into 10 subintervals.

2. a. Draw the “first” left rectangle by putting your pen at the left end of the first base 
(that’s at x 1) and going straight up till you hit the function.

Whoops. You’re already on the function at x 1, right? So, guess what? For this particu-
lar problem, there is no first rectangle — or you could say it’s a rectangle with a height 
of zero and an area of zero.

2. b. Draw the “second” rectangle by putting your pen at x 1 5.  and going straight up till 
you hit f x xln ; then go right till you’re directly above x 2; and then go down to 
the x-axis.

See the following figure.

3. Draw the rest of the rectangles.

See the following figure.
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4. Compute your approximation.

Area10
1
2

1 1 5 2 2 5 3 3 5 4 4 5 5ln ln . ln ln . ln ln . ln ln . ln lLRs nn .

. . . . . . . .

5 5

1
2

0 0 405 0 693 0 916 1 099 1 253 1 386 1 504 1 6099 1 705

1
2

10 57 5 285

.

. .

(b) The only difference is that the sum for left rectangles has a 0 at the left end and the sum 
for right rectangles has a 1.792 at the right end. The other 9 numbers in both sums are 
the same. Look at the second line in the computation in Step 4. Note that the sum of 
the 10 numbers inside the parentheses includes the first 9 numbers in the computation 
for right rectangles, which you see in Step 4 of the answer to the first example in this 
chapter. The only difference in the two sums is the left-most number in the left- 
rectangle sum and the right-most number in the right-rectangle sum.

If you look at the figure in Step 2 of the example and at the figure in Step 3 of the solution 
to 1a, you can see why this works out this way. The first rectangle in the example figure is 
identical to the second rectangle in the solution 1a figure; the second rectangle in the 
example figure is identical to the third rectangle in the solution 1a figure, and so on. The 
only difference is that the solution 1a figure contains the left-most “rectangle” (the one 
with a height of zero) and the example figure contains the tall, right-most rectangle.

You gotta know your right from your left. A left-rectangle sum and a right-rectangle 
sum will always differ by an amount equal to the difference in area of the left-most left 
rectangle and the right-most right rectangle. (Memorize this sentence and recite it in 
class — with your right index finger pointed upward for effect. You’ll instantly become  
a babe [dude] magnet.)

2 The approximate area is 5.759.

1. Sketch your curve and the 10 subintervals again.

2. Compute the midpoints of the bases of all rectangles.

This should be a no-brainer: 1.25, 1.75, 2.25, , 5.75.

3. Draw the first rectangle.

Start on the point on f x xln  directly above x 1 25. , then go left till you’re above x 1 
and right till you’re above x 1 5. , and then go down from both these points to make the 
two sides.

4. Draw the other nine rectangles.

See the following figure.
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5. Compute your estimate.

Area10
1
2

1 25 1 75 2 25 2 75 3 25 3 75 4ln . ln . ln . ln . ln . ln . lnMRs .. ln . ln . ln .

. . . . .

25 4 75 5 25 5 75

1
2

0 223 0 560 0 811 1 012 1 1799 1 322 1 447 1 558 1 658 1 749

5 759

. . . . .

.

3 The midpoint rectangles give the best estimate because each rectangle goes above the curve 
(in this sense, the estimate’s too big) and also leaves an uncounted gap below the curve (in 
this sense, the estimate’s too small). These two errors cancel each other out to some extent. 
By the way, the exact area is about 5.751. The approximate area with 10 midpoint rectangles, 
5.759, is only about 0.14% off.

It’s harder to rank the left versus the right rectangle estimates. Kudos if you noticed that 
because of the shape of f x xln , right rectangles give a slightly better estimate (techni-
cally, it’s because ln x is concave down and increasing). It turns out that the right-rectangle 
approximation is off by 7.48%, and the left-rectangle estimate is off by 8.10%. If you missed 
this question, don’t sweat it. It’s basically an extra-credit type question.

4 The approximations are, respectively, 1.974, 1.974, and 2.013.

Let’s cut to the chase. Here are the computations for 8 left rectangles, 8 right rectangles, and 
8 midpoint rectangles:

Area8 8
0

8
2
8

3
8

4
8

5
8

6
8

sin sin sin sin sin sin sin sLR iin

. . . . . .

( .

7
8

8
0 0 383 0 707 0 924 1 0 924 0 707 0 383

8
5 0027 1 974) .

Area8 8 8
2
8

3
8

4
8

5
8

6
8

7
8

sin sin sin sin sin sin sinRR sin

. . . . . .

.

8
0 383 0 707 0 924 1 0 924 0 707 0 383 0

8
5 0227 1 974.
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Area8 8 16
3
16

5
16

7
16

9
16

11
16

sin sin sin sin sin sinMR sin sin

. . . . . .

13
16

15
16

8
0 195 0 556 0 831 0 981 0 981 0 8311 0 556 0 195

8
5 126 2 013

. .

. .

The exact area under sin x  from 0 to  has the wonderfully simple answer of 2. The error of 
the midpoint rectangle estimate is 0.65%, and the other two have an error of 1.3%. The left 
and right rectangle estimates are the same, by the way, because of the symmetry of the  
sine wave.

5 40

As often happens with many types of problems in mathematics, this very simple version of a 
sigma sum problem is tricky. Here, there’s no place to plug in the i values, so all the i does is 
work as a counter:

i 1

10

4 4 4 4 4 4 4 4 4 4 4 10 4 40

6 –55

1 0 1 1 1 1 1 2 1

1 2 3 4 5 6 7

0 2 1 2 2 2

2 2 2 2 2 2 22 2 2 28 9 10

55

7 131,325

i i i i
i i i i

1

50
2

1

50

1

50
2

1

50

3 2 3 2

3
50 50 1 2 50 1

6
2

50 50 1
2

131 325,

8 
k

k
6

12

5   or  
k

k
1

7

5 5   or  
k

k
1

7

5 25

9 
k
k

2

6
3  or  

k
k

1

5
31

Did you recognize this pattern of consecutive cubes?

10 
i

i i

1

10

1 2   or  
i

i

1

10

2

To make the terms in a sigma sum alternate between positive and negative, use a (-1) raised 
to a power (as you can see in the answer to problem 10). The power is usually i or i 1.
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11 The notation and approximation are 
1

84 2
64

3
161

2

1

20 20

i i
i i . .

1. Begin with the formula for a right sum of n rectangles using sigma notation:

R g x
b a

nn
i

i

n

1

2. Determine the width of each rectangle, b a
n

:

b a
n

5 0
20

1
4

3. Determine an expression for xi:

The width of each rectangle is 1
4

, so the right edges of the 20 rectangles fall on the first 

20 multiples of 1
4

. These numbers are the x-coordinates of the 20 points x1 through x20. 

They can be generated by the expression 1
4

i, where i equals 1 through 20.

4. Switch out the n, the xi, and the b a
n

 in your formula, then pull the 1
4

 out to the left:

R g i

g i

i

i

20
1

1

20

20

1
4

1
4

1
4

1
4

5. Determine g i
1
4

, then rewrite your formula:

g x x x

g i i i

2

2

3

1
4

1
4

3 1
4

R i i
i

20
1

20 21
4

1
4

3 1
4

6. Simplify, and pull everything to the outside except functions of i:

1
4

1
4

1
4

3 1
4

1
4

1
16

1
4

3
4

1

1

20 2

1

20

1

20
2

1

20

i i

i i

i i

i i

664
3

161

20
2

1

20

i i
i i

7. Compute the area, using the following rules for summing consecutive integers and 
consecutive squares of integers.

The sum of the first n integers equals 
n n 1

2
, and the sum of the squares of the first n 

integers equals 
n n n1 2 1

6
.
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So, finally, you’ve got the area:

  1
64

3
16

1
64

20 20 1 2 20 1
6

3
16

20 2
1

20
2

1

20

i i
i i

00 1
2

1
64

20 21 41
6

3
16

10 21

17 220
384

630
16

84, .22

12 The formula is R
n n

n
475

6
100 125

6 2 .

1. Express the sum of n rectangles instead of 20 rectangles.

Look back at Step 5 from Problem 11. The 1
4

 outside and the two 1
4

s inside come from the 

width of the rectangles that you got by dividing 5 (the span) by 20. So, the width of each 

rectangle could have been written as 5
20

. To add n rectangles instead of 20, just replace 

the 20 with an n — that’s 5
n

. So, the three 1
4

s become 5
n

. At the same time, replace the  

20 on top of the  with an n: R
n n

i
n

in
i

n5 5 3 5

1

2

2. Simplify as in Step 6 of Problem 11.

5 5 5 3 5

5 25 5 15

125

1

2

1

1
2

2

1

n n
i

n n
i

n n
i

n n
i

i

n

i

n

i

n

i

n

nn
i

n
i

i

n

i

n

3
1

2
2

1

75

3. Now replace the sigma sums with the expressions for the sums of integers and 
squares of integers, like you did in Step 7 of Problem 11.

125 1 2 1
6

75 1
2

250 375 125

3 2

2

n
n n n

n
n n

n n
66

75 75
2

475 600 125
6

475
6

100 125
6

2

2

2

2

2

2

n
n n

n
n n

n

n n

That’s the formula for approximating the area under g x x x2 3  from 0 to 5 with n 
rectangles — the more you use, the better your estimate.
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Check this result by plugging 20 into n to see whether you get the same answer as you did 
in Problem 11:

475
6

100
20

125
6 20

84 22 .

It checks.

13 The approximations are, respectively, 81.175, 80.169, 79.267, 79.177.

Area
n n

Area

n rect

 rect

475
6

100 125
6

475
6

100
50

125
6 50

2

50 2 81 175

80 169

79 267
100

1000

10 000

.

.

.

,

Area

Area

Area

 rect

 rect

 rrect 79 177.

These estimates are getting better and better; they appear to be headed toward something 
near 79. Now for the magic of calculus — actually (sort of) adding up an infinite number of 
rectangles.

14 The area is 79 16 79
1
6

.   or  .

a

b

n i

n

i

n

g x dx g x
b a

n

x x dx

lim

lim

1

0

5
2 3 4755

6
100 125

6

475
6

0 0

475
6

79 16 79 1
6

2n n

. or

15 The approximate area is 1.974 and the error is 1.3%.

1. List the values for a, b, and n, and determine the x-values x0 through x8.

a b n

x x x x x x

0 8

0
8

2
8

3
8

4
8

8
80 1 2 3 4 8

, ,

, , , , , ,

  

     

2. Plug these values into the formula.

T8
0

2 8
0 2

8
2 2

8
2 3

8
2 7

8

16
0

sin sin sin sin sin sin

0 765 1 414 1 848 0 765 0 1 974. . . . .

The exact area of 2 is given in Problem 4, and thus the relative error is 
2 1 974

2
.

, which 
gives you a percent error of 1.3%.



434      UNIT 5  Integration and Infinite Series

16 The approximate area for 16 trapezoids is 1.994 and the percent error is about 0.3%.  
The approximate area for 24 trapezoids is 1.997 and the percent error is about 0.15%.

T16
0

2 16
0 2

16
2 2

16
2 3

16
2 15

16
sin sin sin sin sin sin

32
0 0 390 0 765 0 765 0 1 994. . . .

T24
0

2 24
0 2

24
2 2

24
2 3

24
2 23

24
sin sin sin sin sin sin

48
0 0 261 0 518 0 1 997. . .

17 The area for eight Simpson’s “trapezoids” is 2.00001659 (an error of 0.00001659).  
The percent error for eight “trapezoids” is about 0.000830%.

For eight Simpson’s “trapezoids”:

1. List the values for a, b, and n, and determine the x values x0 through x16, the nine 
edges and the eight base midpoints of the eight curvy-topped “trapezoids.”

a b n

x x x x x x

0 16

0
16

2
16

3
16

4
160 1 2 3 4 1

, ,

, , , , , ,

 

     66
16
16

2. Plug these values into the formula.

S16
0

3 16
0 4

16
2 2

16
4 3

16
2 4

16
4 1sin sin sin sin sin sin 55

16
2

48
0 0 7804 0 7654 2 2223 1 4142 0 7804 0

sin

. . . . . 2 00001659.

18 S20 5 750.

Using the shortcut and the results from Problem 2 and the example problem, you get:

S
M M T

S
M M T

n
n n n

2

20
10 10 10

3

3
5 759 5 759 5 733

3
5 750. . . .

This agrees (except for a small round-off error) with the result obtained the hard way in the 
Simpson’s rule example problem.

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 14 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 Write the following sum using sigma notation: 1 6 11 16 21 101...

2 Write the following sum using sigma notation: 5 6 7 8 9 10 99 100...

3 Rewrite the sum i i
i

3 2

1

10

5  where i begins at zero instead of 1. Simplify your result so that 

the argument of the sigma sum is a polynomial.

4 For the following, replace the ? with the correct number and supply the proper expression 

inside the parentheses: i i
i i i

4

1

20
4

1

12
4

1
   

?

For Problems 5 through 9, use the function f x x 4.

5 Use the left rectangle rule formula to approximate the area under f from zero to 4 with 8 left 
rectangles.

6 Use the right rectangle rule formula to approximate the area under f from zero to 4 with  
8 right rectangles.

7 Use the midpoint rectangle rule formula to approximate the area under f from zero to 4 with  
8 midpoint rectangles.

8 Use the trapezoid rule formula to approximate the area under f from zero to 4 with 8 trape-
zoids. (Actually, if you know the shortcut, you can compute this approximation without using 
the trapezoid formula.)

9 Use the Simpson’s rule formula to approximate the area under f from zero to 4 with 8 curvy-
topped “trapezoids.” (If you know the shortcut, you can do this computation without the 
formula.)

10 Use the definition of the definite integral (using a limit and sigma notation) to write the exact 
area under f from zero to 4. Simplify the sigma sum by pulling out as much as permitted to 
the outside of the sigma sum. Do not evaluate your final answer.
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Answers to Chapter 14 Quiz
1 5 1

0

20

i
i

2 i i

i
1 1

5

100

3 i i i i i
i i

1 5 1 8 13 63 2

0

9
3 2

0

9

4 i i i i
i i i i

4

1

20
4

1

12
4

13

20
4

1

8

12

5 146.125

L8

4 4 4 4 4 4 4 44
8

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

0 5 0 0 5 1 1 5 2 2 5 3 3 5

0 5 292 25 146 125

4 4 4 4 4 4 4 4. . . . .

. . .

6 274.125

R8

4 4 4 4 4 4 4 44
8

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

0 5 0 5 1 1 5 2 2 5 3 3 5 4

0 5 548 25 274 125

4 4 4 4 4 4 4 4. . . . .

. . .

7 ~202.141

M 8

4 4 4 4 4 4 4 44
8

1
4

3
4

5
4

7
4

9
4

11
4

13
4

15
4

0 5 0 25 0 75 1 25 1 75 2 25 2 75 3 25 3 754 4 4 4 4 4 4 4. . . . . . . . .

00 5 404 28125 202 140625. . .

8 210.125

Use the shortcut! (Nothing wrong with using the trapezoid formula, however. It’s good 
practice.)

T
L R

8
8 8

2
146 125 274 125

2
210 125. . .

9 ~204.802

Use the shortcut.

S
M M T

16
8 8 8

3
2 202 140625 210 125

3
204 802. . .

This Simpson’s rule answer is extremely close, by the way. The exact area under f from zero  
to 4 is 204.8. You learn how to compute that in Chapter 15.
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Integration: 
It’s Backwards 
Differentiation

Chapter 14 shows you the hard way to calculate the area under a function using the formal 
definition of integration — the limit of a Riemann sum. In this chapter, I calculate areas 
the easy way, taking advantage of one of the most important and amazing discoveries in 

mathematics — that integration (finding areas) is just differentiation in reverse. That reverse 
process was a great discovery, and it’s based on some difficult ideas, but before we get to that, 
let’s talk about a related, straightforward reverse process, namely . . .

Antidifferentiation
The derivative of sin x  is cos x, so the antiderivative of cos x is sin x ; the derivative of x 3 is 3 2x , 
so the antiderivative of 3 2x  is x 3 — you just go backwards. There’s a bit more to it, but that’s 
the basic idea. Later in this chapter, I show you how to find areas by using antiderivatives. This 
is much easier than finding areas with the Riemann sum technique.

Chapter 15

IN THIS CHAPTER

 » Using the area function

 » Getting familiar with the 
Fundamental Theorem of Calculus

 » Finding antiderivatives

 » Figuring exact areas the easy way
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Now consider x 3 and its derivative 3 2x  again. The derivative of x 3 10 is also 3 2x , as is the 
derivative of x 3 5. Any function of the form x C3 , where C is any number, has a derivative of 
3 2x . So, every such function is an antiderivative of 3 2x .

Definition of the indefinite integral: The indefinite integral of a function f x , written as f x dx, 
is the family of all antiderivatives of the function. For example, because the derivative of x 3 is 
3 2x , the indefinite integral of 3 2x  is x C3 , and you write

3 2 3x dx x C

You probably recognize this integration symbol, , from the discussion of the definite integral in 

Chapter 14. The definite integral symbol, however, contains two little numbers like 
4

10

 that tell 

you to compute the area under a function between those two numbers, called the limits of inte-
gration. The naked version of the symbol, , indicates an indefinite integral or an antiderivative. 
This chapter is all about the intimate connection between these two symbols, these two ideas.

Figure 15-1 shows the family of antiderivatives of 3 2x , namely x C3 . Note that this family of 
curves has an infinite number of curves. They go up and down forever and are infinitely dense. 
The vertical gap of 2 units between each curve in Figure 15-1 is just a visual aid.

Consider a few things about Figure 15-1. The top curve on the graph is y x 3 6; the one below 
it is y x 3 4; the bottom one is y x 3 6. By the power rule, these three functions, as well as 
all the others in this family of functions, have a derivative of 3 2x . Now, consider the slope of 
each of the curves where x equals 1 (see the tangent lines drawn on the curves). The derivative 
of each function is 3 2x , so when x equals 1, the slope of each curve is 3 12, or 3. Thus, all these 
little tangent lines are parallel. Next, notice that all the functions in Figure 15-1 are identical 
except for being slid up or down (remember vertical shifts from Chapter 5?). Because they differ 
only by a vertical shift, the steepness at any x-value, like at x 1, is the same for all the curves. 

FIGURE 15-1: 
The family of 
curves x C3 . 

All these 
functions 
have the 

same 
derivative, 

3 2x .
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This is the visual way to understand why each of these curves has the same derivative, and, 
thus, why each curve is an antiderivative of the same function.

Vocabulary, Voshmabulary: What Difference 
Does It Make?

In general, definitions and vocabulary are very important in mathematics, and it’s a good idea 
to use them correctly. But with the current topic, I’m going to be a bit lazy about precise ter-
minology, and I hereby give you permission to do so as well.

If you’re a stickler, you should say that the indefinite integral of 3 2x  is x C3  and that x C3  is 
the family or set of all antiderivatives of 3 2x  (you don’t say that x C3  is the antiderivative), and 
you say that x 3 10, for instance, is an antiderivative of 3 2x . And on a test, you should definitely 

write 3 2 3x dx x C . If you leave the C off, you’ll likely lose some points.

But, when discussing these matters, no one will care or be confused if you get tired of saying 
“+ C” after every indefinite integral and just say, for example, that the indefinite integral of 3 2x  
is x 3, and you can skip the indefinite and just say that the integral of 3 2x  is x 3. And instead of 
always talking about that family-of-functions business, you can just say that the antiderivative 
of 3 2x  is x C3  or that the antiderivative of 3 2x  is x 3. Everyone will know what you mean. It 
may cost me my membership in the National Council of Teachers of Mathematics, but at least 
occasionally, I use this loose approach.

The Annoying Area Function
This is a tough one — gird your loins. Say you’ve got any old function, f t . Imagine that at 
some t-value, call it s, you draw a fixed vertical line. See Figure 15-2.

Then you take a moveable vertical line, starting at the same point, s (“s” is for starting point), 
and drag it to the right. As you drag the line, you sweep out a larger and larger area under the 
curve. This area is a function of x, the position of the moving line. In symbols, you write

A x f t dtf
s

x

FIGURE 15-2: 
The area 

under f 
between s 

and x is swept 
out by the 

moving  
line at x.
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Note that t is the input variable in f t  instead of x because x is already taken — it’s the input 
variable in A xf . The subscript f in Af  indicates that A xf  is the area function for the par-
ticular curve f or f t . The dt is a little increment along the t-axis — actually an infinitesimally 
small increment.

Here’s a simple example to make sure you’ve got a handle on how an area function works. By 
the way, don’t feel bad if you find this extremely hard to grasp — you’ve got lots of company. 
Say you’ve got the simple function, f t 10, that’s a horizontal line at y 10. If you sweep out 
area beginning at s 3, you get the following area function:

A x dtf

x

3

10

You can see that the area swept out from 3 to 4 is 10 because, in dragging the line from 3 to 4, 
you sweep out a rectangle with a width of 1 and a height of 10, which has an area of 1 times 10, 
or 10. See Figure 15-3.

So, Af 4 , the area swept out as you hit 4, equals 10. Af 5  equals 20 because when you drag the 
line to 5, you’ve swept out a rectangle with a width of 2 and a height of 10, which has an area 
of 2 times 10, or 20. Af 6  equals 30, and so on.

Now, imagine that you drag the line across at a rate of one unit per second. You start at x 3,  
and you hit 4 at 1 second, 5 at 2 seconds, 6 at 3 seconds, and so on. How much area are you 
sweeping out per second? Ten square units per second, because each second, you sweep out 
another 1-by-10 rectangle. Notice — this is huge — that because the width of each rectangle 
you sweep out is 1, the area of each rectangle, which is given by height times width, is the same 
as its height because anything times 1 equals itself. You see why this is huge in a minute. (By 
the way, the real rate you care about here is not area swept out per second, but, rather, area 
swept out per unit change on the x-axis. I explain it in terms of per second because it’s easier 
to think about a sweeping-out-area rate this way. And since you’re dragging the line across at 
one x-axis unit per one second, both rates are the same. Take your pick.)

FIGURE 15-3: 
The area 

under f t 10 
between 3 

and x is swept 
out by the 

moving 
vertical  

line at x.
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The derivative of an area function equals the rate of area being swept out. Okay, are you sitting 
down? You’ve reached another one of the big Ah ha! moments in the history of mathematics. 
Recall that a derivative is a rate. So, because the rate at which the previous area function grows is 
10 square units per second, you can say its derivative equals 10. Thus, you can write

d
dx

A xf 10

Again, this just tells you that with each 1-unit increase in x, Af  (the area function) goes up 10. 
Now here’s the critical thing: Notice that this rate or derivative of 10 is the same as the height of 
the original function f t 10, because as you go across 1 unit, you sweep out a rectangle that’s 
1 by 10, which has an area of 10, the height of the function.

And the rate works out to 10 regardless of the width of the rectangle. Imagine that you drag the 
vertical line from x 4 to x 4 001. . At a rate of one unit per second, that’ll take you 1/1000th 
of a second, and you’ll sweep out a skinny rectangle with a width of 1/1000, a height of 10, and 
thus an area of 10 times 1/1000, or 1/100 square units. The rate of area being swept out would 

therefore be 
1 100

1 1000
/

/
square units

second
, which equals 10 square units per second. So, you see that with 

every small increment along the x-axis, the rate of area being swept out equals the function’s 
height.

This works for any function, not just horizontal lines. Look at Figure 15-4 which shows the 
function g t  and its area function A xg  that sweeps out area beginning at s 2.

Between x 3 6.  and x 3 7. , A xg  grows by the area of that skinny, dark-shaded “rectangle” 
with a width of 0.1 and a height of about 15. (As you can see, it’s not really a rectangle; it’s closer 
to a trapezoid, but it’s not that either, because its tiny top is curving slightly. But, in the limit, 
as the width gets smaller and smaller, the skinny “rectangle” behaves precisely like a real 
rectangle.) So, to repeat, A xg  grows by the area of that dark “rectangle,” which has an area 
extremely close to 0.1 times 15, or 1.5. That area is swept out in 0.1 second, so the rate of area 

being swept out is 
1 5

0 1
.

.
square units

second
, or 15 square units per second, the height of the function. 

This idea is so important that it deserves an icon.

FIGURE 15-4: 
The area 

under g t  
between 2 

and x is swept 
out by the 

moving 
vertical  

line at x.
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The sweeping-out area rate equals the height. The rate of area being swept out under a curve 
by an area function at a given x-value is equal to the height of the curve at that x-value.

Q. Consider f t , shown in the following figure. Given the area function A x f t dtf

x

2

, 

approximate Af 4 , Af 5 , Af 2 , and Af 0 . Also, is Af  increasing or decreasing 

between x 5 and x 6? Between x 8 and x 9?

Remember: When using an area function (or a definite integral — stay tuned), area 
below the horizontal axis counts as negative area.

A. Af 4  is the area under f t  between 2 and 4. That’s roughly a rectangle with a base of 2 
and a height of 3, so the area is about 6. (See the shaded area in the figure.)

Af 5  adds a bit to Af 4  — the added shape is roughly a trapezoid with “height” of 1 
and “bases” of 2 and 3 (along the dotted lines at x 4 and x 5) that thus has an area 
of about 2.5 — so Af 5  is roughly 6 plus 2.5, or 8.5.

Af 2  is the area between 2 and 2, which is zero.

Af 0  is another area roughly in the shape of a trapezoid. Its height is 2 and its bases 
are 2 and 3, so its area is about 5. But because you go backward from 2 to zero, Af 0  
equals about –5.

Between x 5 and x 6, Af  is increasing. Be careful here: f t  is decreasing between 5 
and 6, but as you go from 5 to 6, Af  sweeps out more and more area so it’s increasing.

Between x 8 and x 9, while f t  is increasing, Af  is decreasing. Area below the 
t-axis counts as negative area, so in moving from 8 to 9, Af  sweeps out more and more 
negative area, and it thus grows more and more negative. Af  is therefore decreasing.

For Problems 1 through 4, use the area function A x g t dtg

x

1 2/

 and the following figure. Most 

answers will be approximations.
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1 Where (from x 0 to x 8) does Ag equal zero?

2 Where (from x 0 to x 8) does Ag reach

(a) its maximum value?

(b) its minimum value?

3 In what intervals between 0 and 8 is Ag

(a) increasing?

(b) decreasing?

4 Approximate Ag 1 , Ag 3 , and Ag 5 .
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The Power and the Glory of the Fundamental 
Theorem of Calculus

Sound the trumpets! Now that you’ve seen the connection between the rate of growth of an  
area function and the height of the given curve, you’re ready for the Fundamental Theorem  
of Calculus  — what some say is one of the most important theorems in the history of 
mathematics.

The Fundamental Theorem of Calculus: Given an area function Af  that sweeps out area under

f t , namely, A x f t dtf
s

x

, the rate at which area is being swept out is equal to the height of 

the original function. So, because the rate is the derivative, the derivative of the area function 

equals the original function:

d
dx

A x f xf

Because A x f t dtf
s

x

, you can also write this equation as follows:

d
dx

f t dt f x
s

x

Break out the smelling salts.

Now, because the derivative of A xf  is f x , A xf  is by definition an antiderivative of f x . Check 
out how this works by returning to the simple function from the previous section, f t 10, and 

its area function, A x dtf
s

x

10 .

According to the Fundamental Theorem of Calculus, d
dx

A xf 10. Thus, Af  must be an antide-

rivative of 10; in other words, Af  is a function whose derivative is 10. Because any function of the 
form 10x C , where C is a number, has a derivative of 10, the antiderivative of 10 is 10x C . The 
particular number C depends on your choice of s, the point where you start sweeping out area. 
For a particular choice of s, the area function will be the one function (out of all the functions in 
the family of curves 10x C ) that crosses the x-axis at s. To figure out C, set the antiderivative 
equal to zero, plug the value of s into x, and solve for C.

For this function with an antiderivative of 10x C , if you start sweeping out area at, say, s 0, 

then 10 0 0C , so C 0, and thus, A x dt xf

x

0

10 10 0, or just 10x. (Note that C does not 

necessarily equal s. In fact, it usually doesn’t [especially when s 0]. When s 0, C often also 
equals zero, but not for all functions.)

Figure 15-5 shows why A x xf 10  is the correct area function if you start sweeping out area at 
zero. In the top graph in the figure, the area under the curve from 0 to 3 is 30, and that’s given 
by Af 3 10 3 30. And you can see that the area from 0 to 5 is 50, which agrees with the fact 
that Af 5 10 5 50.
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If instead you start sweeping out area at s 2 and define a new area function, B x dtf

x

2

10 , 

then 10 2 0C , so C equals 20 and B xf  is thus 10 20x . This area function is 20 more 

than A xf , which starts at s 0, because if you start at s 2, you’ve already swept out an area 
of 20 by the time you get to zero. Figure 15-5 shows why Bf 3  is 20 more than Af 3 .

And if you start sweeping out area at s 3, 10 3 0C , so C 30 and the area function is 

C x dt xf

x

3

10 10 30. This function is 30 less than A xf  because with C xf , you lose the 

3-by-10 rectangle between 0 and 3 that A xf  has (see the bottom graph in Figure 15-5).

An area function is an antiderivative. The area swept out under the horizontal line f t 10, 
from some number s to x, is given by an antiderivative of 10, namely 10x C , where the value of 
C depends on where you start sweeping out area.

FIGURE 15-5: 
Three area 

functions for 
f t 10.
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Now let’s look at graphs of A xf , B xf , and C xf . (Note that Figure  15-5 doesn’t show  
the graphs of A xf , B xf , or C xf . You see three graphs of the horizontal line function, 
f t 10; and you see the areas swept out under f t  by A x B xf f, ,  and C xf , but you don’t 
actually see the graphs of these three area functions.) Check out Figure 15-6.

Figure 15-6 shows the graphs of the equations of A xf , B xf , and C xf , which I worked out 
before: A x xf 10 , B x xf 10 20, and C x xf 10 30. (As you can see, all three are simple, 
y mx b lines.) The y-values of these three functions give you the areas swept out under 
f t 10 that you see in Figure 15-5. Note that the three x-intercepts you see in Figure 15-6 are 
the three x-values in Figure 15-5 where the sweeping out of area begins.

We worked out that Af 3 30 and that Af 5 50. You can see those areas of 30 and 50 in the 
top graph of Figure 15-5. In Figure 15-6, you see these results on Af  at the points 3 30,  and 
5 50, . You can also see in Figure 15-5 that Bf 3  is 20 more than Af 3 ; you see that result in 

Figure 15-6 where 3 50,  on Bf  is 20 higher than 3 30,  on Af . Finally, you see in Figure 15-5 
that C xf  is 30 less than A xf . Figure 15-6 shows that in a different way: At any x-value, the 
C f  line is 30 units below the Af  line.

A few observations. You already know from the Fundamental Theorem of Calculus that 
d
dx

A x f xf 10 (and the same for B xf  and C xf ). That was explained a minute ago 

in terms of rates: For Af , Bf , and C f , the rate of area being swept out under f t 10 equals 10. 

Figure 15-6 also shows that d
dx

A xf 10 (and the same for Bf  and C f ), but here you see the 

derivative as a slope. The slopes, of course, of all three lines equal 10. Finally, note that — like 
you see in Figure 15-1 — the three lines in Figure 15-6 differ from each other only by a verti-
cal translation. These three lines (and the infinity of all other vertically translated lines) are all 
members of the class of functions, 10x C , the family of antiderivatives of f x 10.

For the next example, look again at the parabola y x 2 1, our friend from Chapter 14 which 
we analyzed in terms of the sum of the areas of rectangles (Riemann sums). Flip back to  
Figure 14-4, and check out the shaded region under y x 2 1. Now you can finally compute the 
exact area of the shaded region the easy way.

FIGURE 15-6: 
The actual 
graphs of 

A xf , B xf , 
and C xf .
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The area function for sweeping out area under x 2 1 is A x t dtf
s

x
2 1 . By the Fundamental 

Theorem of Calculus, d
dx

A x xf
2 1, and so Af  is an antiderivative of x 2 1. Any function  

of the form 1
3

3x x C  has a derivative of x 2 1 (try it), so that’s the antiderivative. For  

Figure 14-4, you want to sweep out area beginning at zero, so s 0. Set the antiderivative equal 

to zero, plug the value of s into x, and solve for C: 1
3

0 0 03 C , so C 0, and thus

A x t dt x xf

x

0

2 31 1
3

0

The area swept out from 0 to 3 — which we do the hard way in Chapter 14 by computing the 
limit of a Riemann sum — is simply Af 3 :

A x x x

A

f

f

1
3

3 1
3

3 3 9 3 12

3

3

Piece o’ cake. That was much less work than doing it the hard way.

And after you know that the area function that starts at zero, 
0

2 1
x

t dt , equals 1
3

3x x, it’s 

a snap to figure the area of other sections under the parabola that don’t start at zero. Say, for 
example, you want the area under the parabola between 2 and 3. You can compute that area by 
subtracting the area between 0 and 2 from the area between 0 and 3. We just figured the area 

between 0 and 3 — that’s 12. And the area between 0 and 2 is Af 2 1
3

2 2 4 2
3

3 . So, the area 

between 2 and 3 is 12 4 2
3

, or 7 1
3

. This subtraction method brings us to the next topic — the 

second version of the Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus:  
Take Two

Now you finally arrive at the super-duper shortcut integration theorem that you’ll use for the 
rest of your natural born days — or at least till the end of your stint with calculus.

The Fundamental Theorem of Calculus (second version or shortcut version): Let F be any anti-
derivative of the function f; then

a

b

f x dx F b F a

This theorem gives you the super shortcut for computing a definite integral like 
2

3
2 1x dx ,  

the area under the parabola y x 2 1 between 2 and 3. As I show in the previous section, you 
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can get this area by subtracting the area between 0 and 2 from the area between 0 and 3, but 
to do that, you need to know that the particular area function sweeping out area beginning at 

zero, 
0

2 1
x

t dt , is 1
3

3x x; and to get that, you need to calculate that the value of C is zero.

The beauty of the shortcut theorem is that you don’t have to even use an area function like 

A x t dtf

x

0

2 1 . You just find any antiderivative, F x , of your function, and do the subtrac-

tion, F b F a . The simplest antiderivative to use is the one where C 0. So, here’s how you 
use the theorem to find the area under our parabola from 2 to 3. You begin with the simplest 

antiderivative of x 2 1; that’s F x x x
1
3

3 . Then the theorem gives you:

2

3
2 1 3 2x dx F F

F F x x3 2 1
3

3

2

3

can be written as  and thus,,

2

3
2 3

2

3

3 3

1 1
3

1
3

3 3 1
3

2 2

12 4 2
3

7 1
3

x dx x x

Granted, this is the same computation I did in the previous section using the area function with 
s 0, but that’s only because for the y x 2 1 function, when s is zero, C is also zero. It’s sort 
of a coincidence, and it’s not true for all functions. But regardless of the function, the shortcut 
works, and you don’t have to worry about area functions or s or C. All you do is F b F a .

Here’s another problem: What’s the area under f x e x between x 3 and x 5? The deriva-
tive of e x is e x, so e x is an antiderivative of e x, and thus

3

5

3

5

5 3

148 4 20 1 128 3

e dx e

e e

x x

. . .

What could be simpler?

Areas above the curve and below the x-axis count as negative areas. Before going on, I’d be 
remiss if I didn’t touch on negative areas (this is virtually the same caution made at the very 
end of Chapter 14). Note that with the two examples, the parabola, y x 2 1, and the expo-
nential function, y e x , the areas you’re computing are under the curves and above the x-axis. 
These areas count as ordinary, positive areas. But, if a function goes below the x-axis, areas 
above the curve and below the x-axis count as negative areas. This is the case whether you’re 
using an area function, the first version of the Fundamental Theorem of Calculus, or the short-
cut version. Don’t worry about this for now. You see how this works in Chapter 17.
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Okay, so now you’ve got the super shortcut for computing the area under a curve. And if one big 
shortcut wasn’t enough to make your day, Table 15-1 lists some rules about definite integrals 
that can make your life much easier.

Table 15-1 Five Easy Rules for Definite Integrals

1) 0 (Well, duh — there’s no area “between” and .)

2)

3)

4) ( is a constant; you can pull

a constant out of the integral.)

5)

a

a

a b

b a

b c b

a a c

b b

a a

b b b

a a a

f x dx a a

f x dx f x dx

f x dx f x dx f x dx

kf x dx k f x dx k

f x g x dx f x dx g x dx

Q. (a) For the area function, A x t t dtf

x

10

2 5 , what’s d
dx

A xf ?

(b) For the area function, B x t dtf

x

sin
4

3 2

, what’s d
dx

B xf ?

A. (a) No work needed here. The answer is simply x x2 5  by the Fundamental Theorem of 
Calculus.

(b) sin6 3 2x x .

The argument of an area function is the expression at the top of the integral symbol — 
not the integrand. Because the argument of this area function, 3 2x , is something other 
than a plain old x, this is a chain rule problem. Thus,

d
dx

B x x xf sin 3 62 , or 6 3 2x xsin

Q. What’s the area under 2 52x  from 0 to 4? Note: this is the same question that you work 
on in Chapter 10 with the difficult sigma-sum-rectangle method.

A. 188
3
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Using the second version of the Fundamental Theorem of Calculus, 

0

4
22 5 4 0x dx F F , where F is any antiderivative of 2 52x . Anything  

of the form 2
3

53x x C  is an antiderivative of 2 52x . You should use the simplest 

antiderivative where C 0, namely, 2
3

53x x . Thus,

0

4
2 3

0

4

3 3

2 5 2
3

5

2
3

4 5 4 2
3

0 5 0

188
3

x dx x x

You get the same answer with much less work than adding up all those rectangles!

5 

6 Given that A x t dtf

x

sin
/

cos

4

, find d
dx

A xf .

(a) If A x t dtf

x

sin
0

, what’s d
dx

A xf ?

(b) If A x t dtg

x

sin
/4

, what’s d
dx

A xg ?
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7 For A xf  from Problem 5a, where does d
dx

Af  

equal zero?

8 For A xf  from Problem 6, evaluate Af 4
.

9 What’s the area under y xsin  from 0 to ? 10 Evaluate sin x dx
0

2

.

11 Evaluate 
2

3
3 24 5 10x x x dx . 12 Evaluate 

1

2

e dxx .
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Now that you know how to use the shortcut version of the Fundamental Theorem of Calculus 
(as you just did for Problems 9 to 12), you won’t have to compute the area under a curve the 
hard way (with an area function or a Riemann sum). But that doesn’t mean you’re off the hook. 
Following are three different ways to understand why the shortcut version of the theorem 
works. This is difficult stuff — brace yourself.

Alternatively, you can skip these explanations if all you want to know is how to compute an 
area: Forget about C and just subtract F a  from F b . I include these explanations because I 
suspect you’re dying to learn extra math just for the love of learning — right? Other books just 
give you the rules; I explain why they work and the underlying principles — that’s why they 
pay me the big bucks.

Actually, in all seriousness, you should read at least some of this material. The Fundamental 
Theorem of Calculus is one of the most important theorems in all of mathematics, so you ought 
to spend some time trying hard to understand what it’s all about. It’s worth the effort. Of the 
three explanations, the first is the easiest. But if you only want to read one or two of the three, 
I’d read just the third, or the second and the third. Or, you could begin with the figures accom-
panying the three explanations, because the figures really show you what’s going on. Finally, if 
you can’t digest all of this in one sitting — no worries — you can revisit it later.

Why the theorem works: Area functions explained
One way to understand the shortcut version of the Fundamental Theorem of Calculus is by 
looking at area functions. As you can see in Figure 15-7, the dark-shaded area between a and 
b can be figured by starting with the area between s and b, then cutting away (subtracting) the 
area between s and a. And it doesn’t matter whether you use 0 as the left edge of the areas or 
any other value of s. Do you see that you’d get the same result whether you use the graph on 
the left or the graph on the right?

Take a look at f t 10 (see Figure 15-8). Say you want the area between 5 and 8 under the 
horizontal line f t 10, and you are forced to use calculus.

FIGURE 15-7: 
Figuring the 

area between 
a and b with 

two different 
area 

 functions.
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Look back at two of the area functions for f t 10 in Figure  15-5: A xf  starting at zero  
(in which C 0) and B xf  starting at 2 20 where( )C :

A x dt x

B x dt x

f

x

f

x

0

2

10 10

10 10 20

If you use A xf  to compute the area between 5 and 8 in Figure 15-8, you get the following:

5

8

10 8 5

10 8 10 5

80 50

dx A Af f

(80 is the area of the rrectangle from 0 to 8;

50 is the area of the rectangle fromm 0 to 5.)

30

If, on the other hand, you use B xf  to compute the same area, you get the same result:

5

8

10 8 5

10 8 20 10 5 20

80 20 50 20

dx B Af f

(This iss 100 of course;

100 is the area of the rectangle from

70,

22 to 8;

70 is the area of the rectangle from 2 to 5.)

30

Notice that the two 20’s in the second line from the bottom cancel. Recall that all antiderivatives 
of f t 10 are of the form 10x C . Regardless of the value of C, it cancels out as in this example. 
Thus, you can use any antiderivative with any value of C. For convenience, everyone just uses 
the antiderivative with C 0, so that you don’t mess with C at all. And the choice of s (the point 
where the area function begins) is irrelevant. So, when you’re using the shortcut version of the 
Fundamental Theorem of Calculus, and computing an area with F b F a , you’re sort of 
using a mystery area function with a C value of zero and an unknown starting point, s (recall 
that when C is zero, s might or might not be zero.). Get it?

FIGURE 15-8: 
The shaded 
area equals 

30 — well, 
duh, it’s a 

3-by-10 
rectangle.
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Why the theorem works: The integration- 
differentiation connection
The next explanation of the shortcut version of the Fundamental Theorem of Calculus involves 
the yin/yang relationship between differentiation and integration. Check out Figure 15-9.

The figure shows a function, f x x x2 , and its derivative, f x x2 1. Look carefully at 
the numbers 4, 6, and 8 on both graphs. The connection between 4, 6, and 8 on the graph of 
f — which are the amounts of rise between consecutive points on the curve — and 4, 6, and 
8 on the graph of f  — which are the areas of the trapezoids under f  — shows the intimate 
relationship between integration and differentiation. Figure 15-9 is a picture worth a thousand 
symbols and equations, encapsulating the essence of integration in a single snapshot. It shows 
how the shortcut version of the Fundamental Theorem of Calculus works because it shows that 
the area under f x  between 1 and 4 equals the total rise on f x  between 1 2,  and 4 20, , in 
other words that

1

4

4 1f x f f

Note that I’ve called the two functions in Figure 15-9 and in this equation f and f  to emphasize 
that 2 1x  is the derivative of x x2 . I could have instead referred to x x2  as F and referred 
to 2 1x  as f, which would emphasize that x x2  is an antiderivative of 2 1x . In that case, you 
would write this area equation in the standard way,

1

4

4 1f x dx F F

Either way, the meaning’s the same. I use the derivative version to point out how finding area is 
differentiation in reverse. Going from left to right in Figure 15-9 is differentiation: The slopes 
of f correspond to heights on f . Going from right to left is integration: Areas under f  corre-
spond to the change in height between two points on f.

FIGURE 15-9: 
The  

essence of 
differentiation 

and 
 integration in 

a single figure! 
It’s a yin/yang 

thing.
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Okay, here’s how it works. Imagine you’re going up along f from 1 2,  to 2 6, . Every point 
along the way has a certain steepness, a slope. This slope is plotted as the y-coordinate, or 
height, on the graph of f . The fact that f  goes up from 1 3,  to 2 5,  tells you that the slope 
of f goes up from 3 to 5 as you travel between 1 2,  and 2 6, . This all follows from basic 
differentiation.

Now, as you go along f from 1 2,  to 2 6, , the slope is constantly changing. But it turns out 
that because you go up a total rise of 4 as you run across 1, the average of all the slopes on f 

between 1 2,  and 2 6,  is 4
1

, or 4. Because each of these slopes is plotted as a y-coordinate 

or height on f , it follows that the average height of f  between 1 3,  and 2 5,  is also 4. Thus, 
between two given points, average slope on f equals average height on f .

Hold on, you’re almost there. Slope equals rise
run

, so when the run is 1, the slope equals the rise. 

For example, from 1 2,  to 2 6,  on f, the curve rises up 4 and the average slope between those 
points is also 4. Thus, between any two points on f whose x-coordinates differ by 1, the average 
slope is the rise.

The area of a trapezoid like the ones on the right in Figure 15-9 equals its width times its aver-
age height. (This is true of any other similar shape that has a bottom like a rectangle; the top 
can be any crooked line or funky curve you like.) So, because the width of each trapezoid is 1, 
and because anything times 1 is itself, the average height of each trapezoid under f  is its area; 
for instance, the area of that first trapezoid is 4 and its average height is also 4.

Are you ready for the grand finale? Here’s the whole argument in a nutshell. On f, 
rise average slope; going from f to f , average slope average height; on f , average height area. 
So that gives you rise slope height area, and thus, finally, rise area. And that’s what the 
second version of the Fundamental Theorem of Calculus says:

f b f a f x dx

rise area
a

b

These ideas are unavoidably difficult. You might have to read it two or three times for it to really 
sink in.

Notice that it makes no difference to the relationship between slope and area if you use any 
other function of the form x x C2  instead of x x2 . Any parabola like x x2 10 or x x2 5 
is exactly the same shape as x x2 ; it’s just been slid up or down vertically. Any such parabola 
rises up between x 1 and x 4 in precisely the same way as the parabola in Figure 15-9. From 
1 to 2 these parabolas go over 1, up 4. From 2 to 3 they go over 1, up 6, and so on. This is why 
any antiderivative can be used to find area. The total area under f  between 1 to 4, namely 18, 
corresponds to the total rise on any of these parabolas from 1 to 4, namely 4 6 8, or 18.

At the risk of beating a dead horse, I’ve got a third explanation of the Fundamental Theorem of 
Calculus for you. You might prefer it to the first two because it’s less abstract — it’s connected 
to simple, commonsense ideas encountered in our day-to-day world. This explanation has a lot 
in common with the previous one, but the ideas are presented from a different angle.
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Why the theorem works: A connection to —  
egad! — statistics
Don’t let the title of this section put you off. I realize that many readers of this calculus book 
may not have studied statistics. No worries; the statistics connection I explain here involves a 
very simple thing covered in statistics courses, but you don’t need to know any statistics at all 
to understand this idea. The simple idea is the relationship between a frequency distribution 
graph and a cumulative frequency distribution graph (you might have run across such graphs 
in a newspaper or magazine). Consider Figure 15-10.

The upper graph in the figure shows a frequency distribution histogram of the annual profits 
of Widgets-R-Us from January 1, 2001 through December 31, 2013. The rectangle marked ’07, 
for example, shows that the company’s profit for 2007 was $2,000,000 (their best year during 
the period 2001–2013).

The lower graph in the figure is a cumulative frequency distribution histogram for the same 
data used for the upper graph. The difference is simply that in the cumulative graph, the height 
of each column shows the total profits earned since 1/1/2001. Look at the ’02 column in the 
lower graph and the ’01 and ’02 rectangles in the upper graph, for example. You can see that 
the ’02 column shows the ’02 rectangle sitting on top of the ’01 rectangle, which gives that ’02 
column a height equal to the total of the profits from ’01 and ’02. Got it? As you go to the right 
on the cumulative graph, the height of each successive column simply grows by the amount of 
profits earned in the corresponding single year shown in the upper graph.

Okay. So, here’s the calculus connection. (Bear with me; it takes a while to walk through all 
this.) Look at the top rectangle of the ’08 column on the cumulative graph (let’s call that graph 
C for short). At that point on C, you run across 1 year and rise up $1,250,000, the ’08 profit you 
see on the frequency distribution graph (F for short). Slope rise run/ , so, since the run equals 
1, the slope equals 1,250,000/1, or just 1,250,000, which is, of course, the same as the rise. Thus, 
the slope on C (at ’08 or any other year) can be read as a height on F for the corresponding year. 
(Make sure you see how this works.) Since the heights (or function values) on F are the slopes of 
C, F is the derivative of C. In short, F, the derivative, tells you about the slope of C.

The next idea is that since F is the derivative of C, C, by definition, is the antiderivative of F (for 
example, C might equal 5 3x  and F would equal 15 2x ). Now, what does C, the antiderivative of F, 
tell you about F ? Imagine dragging a vertical line from left to right over F. As you sweep over 
the rectangles on F — year by year — the total profit you’re sweeping over is shown climbing 
up along C.

Look at the ’01 through ’08 rectangles on F. You can see those same rectangles climbing up 
stair-step fashion along C (see the rectangles labeled A, B, C, and so on, on both graphs). The 
heights of the rectangles from F keep adding up on C as you climb up the stair-step shape. And 
I’ve shown how the same ’01 through ’08 rectangles that lie along the stair-step top of C can 
also be seen in a vertical stack at year ’08 on C. I’ve drawn the cumulative graph this way so 
it’s even more obvious how the heights of the rectangles add up. (Note: Most cumulative histo-
grams are not drawn this way.)
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Each rectangle on F has a base of 1 year, so, since area base height , the area of each rectan-
gle equals its height. So, as you stack up rectangles on C, you’re adding up the areas of those 
rectangles from F. For example, the height of the ’01 through ’08 stack of rectangles on C  
($8.5 million) equals the total area of the ’01 through ’08 rectangles on F. And, therefore, the 
heights or function values of C — which is the antiderivative of F — give you the area under the 
top edge of F. That’s how integration works.

Okay, we’re just about done. Now let’s go through how these two graphs explain the shortcut 
version of the Fundamental Theorem of Calculus and the relationship between differentiation 
and integration. Look at the ’06 through ’12 rectangles on F (with the bold border). You can see 

FIGURE 15-10: 
A frequency 
distribution 

histogram 
(above) and a 

cumulative 
frequency 

distribution 
histogram 

(below) for 
the annual 

profits of 
Widgets-R-Us 

show the 
connection 

between 
differentiation 

and 
 integration.



460      UNIT 5  Integration and Infinite Series

those same rectangles in the bold portion of the ’12 column of C. The height of that bold stack, 
which shows the total profits made during those 7 years, $7.75 million, equals the total area of 
the 7 rectangles in F. And to get the height of that stack on C, you simply subtract the height of 
the stack’s bottom edge from the height of its upper edge. That’s really all the shortcut version 
of the Fundamental Theorem of Calculus says: The area under any portion of a function (like F) 
is given by the change in height on the function’s antiderivative (like C).

In a nutshell (keep looking at those rectangles with the bold border in both graphs), the slopes 
of the rectangles on C appear as heights on F. That’s differentiation. Reversing direction, you see 
integration: The change in heights on C shows the area under F. Voilà: Differentiation and inte-
gration are two sides of the same coin.

(Note: Mathematical purists may object to this explanation of the Fundamental Theorem of 
Calculus because it involves discrete graphs [for example, the fact that the cumulative distri-
bution histogram in Figure  15-10 goes up at one-year increments], whereas calculus is the 
study of smooth, continuously changing graphs [the calculus version of the cumulative dis-
tribution histogram would be a smooth curve that would show the total profits growing every 
millisecond — actually, in theory, every infinitesimal fraction of a second]. Okay — objection 
noted — but the fact is that the explanation here does accurately show how integration and 
differentiation are related and does correctly show how the shortcut version of the Fundamen-
tal Theorem of Calculus works. All that’s needed to turn Figure 15-10 and the accompanying 
explanation into standard calculus is to take everything to the limit, making the profit interval 
shorter and shorter and shorter: from a year to a month to a day, and so on. In the limit, the 
discrete graphs in Figure 15-10 would meld into the type of smooth graphs used in calculus. But 
the ideas wouldn’t change. The ideas would be exactly as explained here. This is very similar to 
what you see in Chapter 14 where you first approximate the area under a curve by adding up 
the areas of rectangles and then are able to compute the exact area by using the limit process to 
narrow the widths of the rectangles till their widths become infinitesimal.)

Well, there you have it — actual explanations of why the shortcut version of the Fundamental 
Theorem of Calculus works and why finding area is differentiation in reverse. If you under-
stand only half of what I’ve just written, you’re way ahead of most students of calculus. The 
good news is that you probably won’t be tested on this theoretical stuff. Now let’s come back 
down to earth.

Finding Antiderivatives: Three Basic 
Techniques

I’ve been talking a lot about antiderivatives, but just how do you find them? In this section, I 
give you three easy techniques. Then, in Chapter 16, I give you four advanced techniques. By the 
way, you will be tested on this stuff.

Reverse rules for antiderivatives
The easiest antiderivative rules are the ones that are the reverse of derivative rules you already 
know. (You can brush up on derivative rules in Chapter 10 if you need to.) These are automatic, 
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one-step antiderivatives with the exception of the reverse power rule, which is only slightly 
harder.

No-brainer reverse rules
You know that the derivative of sin x is cos x, so reversing that tells you that an antiderivative of 
cos x is sin x. What could be simpler? But don’t forget that all functions of the form sin x C  are 
antiderivatives of cos x. In symbols, you write

d
dx

x x

xdx x C

sin cos ,

cos sin

 and therefore

Table 15-2 lists the reverse rules for antiderivatives.

Table 15-2 Basic Antiderivative Formulas

1 1 1

2

) ( ) ( )

)

 or just because the derivative of is

 

dx dx x C x

xx dx
x
n

C n
dx
x

x C n

e

n
n

x

1

1
1 3 1

4

   rule 2 for

 

) ln ( )

) ddx e C a dx
a

a C

xdx x C xdx x

x x x5 1

6 7

)
ln

) sin cos ) cos sin

 

  C

xdx x C xdx x C

x xdx

8 9

10

2 2) sec tan ) csc cot

) sec tan sec

  

xx C x xdx x C

dx

a x

x
a

C
dx

a x

11

12 13
2 2 2

) csc cot csc

) arcsin ) 22

2 2

1

14 1

a
x
a

C

dx

x x a a
x
a

C

arctan

) arcsec

The slightly more difficult reverse power rule
By the power rule for differentiation, you know that

d
dx

x x

x dx x C

3 2

2 3

3

3

, and therefore

Here’s the simple method for reversing the power rule. Use y x5 4 for your function. Recall 
that the power rule says to do the following:

1. Bring the power in front where it will multiply the rest of the derivative.

5 4 54 4x x
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2. Reduce the power by one and simplify.

4 5 4 5 204 3 3x x x

Thus, y x20 3.

To reverse this process, you reverse the order of the two steps and reverse the math within each 
step. Here’s how that works for the same problem:

1. Increase the power by one.

The 3 becomes a 4.

20 203 4x x

2. Divide by the new power and simplify.

20 20
4

54 4 4x x x

And thus, you write 20 53 4x dx x C .

The reverse power rule does not work for a power of negative one. The reverse power rule 
works for all powers (including negative and decimal powers) except for a power of negative 
one. Instead of using the reverse power rule, you should just memorize that the antiderivative 
of x 1 is ln x C  (rule 3 in Table 15-2).

Test your antiderivatives by differentiating them. Especially when you’re new to antidifferen-
tiation, it’s a good idea to test your antiderivatives by differentiating them — you can ignore 
the C. If you get back to your original function, you know your antiderivative is correct.

With the antiderivative you just found and the shortcut version of the Fundamental Theorem of 
Calculus, you can determine the area under 20 3x  between, say, 1 and 2:

20 5

20 5

5 2 5 1

80 5 75

3 4

1

2
3 4

1

2

4 4

x dx x C

x dx x

, thus

13 What’s 
dx

x16 2
? 14 What’s 5 0xdx x   ( )?
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Guessing and checking
The guess-and-check method works when the integrand (that’s the expression after the inte-
gral symbol not counting the dx, and it’s the thing you want to antidifferentiate) is close to 
a function that you know the reverse rule for. For example, say you want the antiderivative 
of cos 2x . Well, you know that the derivative of sine is cosine. Reversing that tells you that  
the antiderivative of cosine is sine. So you might think that the antiderivative of cos 2x  is 
sin 2x . That’s your guess. Now check it by differentiating it to see if you get the original func-
tion, cos 2x :

d
dx

x

x

x

 sin

(sine rule and chain rule) 

2

2 2

2 2

cos

cos

This result is very close to the original function, except for that extra coefficient of 2. In other 
words, the answer is 2 times as much as what you want. Because you want a result that’s half 

of this, just try an antiderivative that’s half of your first guess: So, your new guess is 1
2

2sin x . 

Check this second guess by differentiating it, and you get the desired result.

Here’s another problem. What’s the antiderivative of  3 2 4x ?

1. Guess the antiderivative.

This looks sort of like a power rule problem, so try the reverse power rule. The antide-

rivative of x 4 is 1
5

5x  by the reverse power rule, so your guess is 1
5

3 2 5x .

2. Check your guess by differentiating it.

d
dx

x

x

1
5

3 2

5 1
5

3 2 3

5

4  (power rule and chain rulee)

3 3 2 4x

3. Tweak your first guess.

Your result, 3 3 2 4x , is three times too much, so make your second guess a third of 

your first guess — that’s 1
3

1
5

3 2 5x , or 1
15

3 2 5x .

4. Check your second guess by differentiating it.

d
dx

x

x

1
15

3 2

5 1
15

3 2 3

5

4 (power rule and chain rulle)

3 2 4x

This checks. You’re done. The antiderivative of 3 2 4x  is 1
15

3 2 5x C .
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The two previous problems show that guess and check works well when the function you want to 
antidifferentiate has an argument like 3x or 3 2x  (where x is raised to the first power) instead 
of a plain old x. (Recall that in a function like 5x , the 5x is called the argument.) In this case, 
all you have to do is tweak your guess by the reciprocal of the coefficient of x: for example, the 
3 in 3 2x  (the 2 in 3 2x  has no effect on your answer). In fact, for these easy problems, you 
don’t really have to do any guessing and checking. You can immediately see how to tweak your 
guess. It becomes sort of a one-step process. If the function’s argument is more complicated 
than 3 2x  — like the x 2 in cos x 2  — you have to try the next method, substitution.

15 Determine 4 1 3x dx. 16 What’s sec2 6x dx?

17 Determine cos x
dx

1
2

. 18 What’s 3
2 5

dt
t

?

19 Compute the definite integral, 

0

5 5 5sec tant t dt.

20 Find 4 5
1 9 2

.
x

dx.
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The substitution method
If you look back at the examples of the guess-and-check method in the previous section, you 
can see why the first guess in each case didn’t work. When you differentiate the guess, the 
chain rule produces an extra constant: 2 in the first example, 3 in the second. You then tweak 

the guesses with 1
2

 and 1
3

 to compensate for the extra constant.

Now say you want the antiderivative of cos x 2  and you guess that it is sin x 2 . Watch what 

happens when you differentiate sin x 2  to check it:

d
dx

x

x x

x x

 

(sine rule and chain rule) 

sin

cos

cos

2

2 2

2 22

Here the chain rule produces an extra 2x — because the derivative of x 2 is 2x — but if you try to 

compensate for this by attaching a 1
2x

 to your guess, it won’t work. Try it.

So, guessing and checking doesn’t work for antidifferentiating cos x 2  — actually, no method 
works for this simple-looking integrand (not all functions have antiderivatives) — but your 
admirable attempt at differentiation here reveals a new class of functions that you can anti-
differentiate. Because the derivative of sin x 2  is 2 2x xcos , the antiderivative of 2 2x xcos  

must be sin x 2 . This function, 2 2x xcos , is the type of function you can antidifferentiate 
with the substitution method.

Keep your eyes peeled for the derivative of the function’s argument. The substitution method 
works when the integrand contains a function and the derivative of the function’s argument — in 
other words, when it contains that extra thing produced by the chain rule — or something just 
like it except for a constant. And the integrand must not contain any other extra stuff.

The derivative of e x 3
 is e xx 3

3 2 by the e x rule and the chain rule. So, the antiderivative of 
e xx 3

3 2 is e x 3
. And if you were asked to find the antiderivative of e xx 3

3 2, you would know that 
the substitution method would work because this expression contains 3 2x , which is the deriva-
tive of the argument of e x 3

, namely x 3.

By now, you’re probably wondering why this is called the substitution method. I show you why 
in the following step-by-step method. But first, I want to point out that you don’t always have 
to use the step-by-step method. Assuming you understand why the antiderivative of e xx 3

3 2  
is e x 3

, you may encounter problems where you can just see the antiderivative without doing any 
work. But whether or not you can just see the answers to problems like that one, the substitu-
tion method is a good technique to learn because, for one thing, it has many uses in calculus 
and other areas of mathematics, and for another, your teacher may require that you know it 
and use it.
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Okay, so here’s how to find 2 2x x dxcos  with substitution:

1. Set u equal to the argument of the main function.

The argument of cos x 2  is x 2, so you set u equal to x 2.

2. Take the derivative of u with respect to x.

u x
du
dx

x2 2 so  

3. Solve for dx.

du
dx

x

du xdx

du
x

dx

2
1

2

2

 

 

(cross multiplication)

(dividing botth sides by 2x)

4. Make the substitutions.

In 2 2x x dxcos , u takes the place of x 2 and du
x2

 takes the place of dx. So now you’ve 

got 2
2

x u
du
x

cos  . The two 2x’s cancel, giving you cosu du.

5. Antidifferentiate using the simple reverse rule.

cos sinu du u C

6. Substitute x 2 back in for u, coming full circle.

u equals x 2, so x 2 goes in for the u:

cos sinu du x C2

That’s it. So 2 2 2x x dx x Ccos sin .

If the original problem had been 5 2x x dxcos  instead of 2 2x x dxcos , you would follow  
the same steps except that in Step 4, after making the substitution, you would arrive at 

5
2

x u
du
x

cos  . The x’s would still cancel — that’s the important thing — but after canceling, 

you would get 5
2

cos  u du, which has that extra 5
2

 in it. No worries. You would just pull the 5
2

 

through the symbol, giving you 5
2

cos  u du. Now you would finish this problem just as you did 

in Steps 5 and 6, except for the extra 5
2

:

5
2

5
2
5
2

5
2

5
2

5
2

2

cos sin

sin

sin

u du u C

u C

x C

Because C  is any old constant, 5
2

C  is still any old constant, so you can get rid of the 5
2

 in front 

of the C . That may seem somewhat (grossly?) unmathematical, but it’s right. Thus, your final 

answer is 5
2

2sin x C . You should check this by differentiating it.
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Here are a few examples of antiderivatives you can do with the substitution method so you can 
learn how to spot them:

 » 4 2 3x x dxcos

The derivative of x 3 is 3 2x , but you don’t have to pay any attention to the 3 in 3 2x  or the  
4 in the integrand. Because the integrand contains x 2 and no other extra stuff, substitution 
works. Try it.

 » 10 2sec tanx e dxx

The integrand contains a function, e xtan , and the derivative of its argument (tan )x  — which 
is sec2 x . Because the integrand doesn’t contain any other extra stuff (except for the 10, 
which doesn’t matter), substitution works. Do it.

 » 2
3

cos sinx x dx

Because the integrand contains the derivative of sin ,x  namely cos ,x  and no other stuff 

except for the 2
3

, substitution works. Go for it.

You can do the three problems just listed with a method that combines substitution and guess- 
and-check (as long as your teacher doesn’t insist that you show the six-step substitution solu-
tion). Try using this combo method to antidifferentiate the first example, 4 2 3x x dxcos . First, 
you confirm that the integral fits the pattern for substitution — it does, as pointed out in the 
first item on the checklist. This confirmation is the only part substitution plays in the combo 
method. Now you finish the problem with the guess-and-check method:

Q. Find 4 2 3x x dxcos .

A. 4
3

3sin x

1. Make your guess.

The antiderivative of cosine is sine, so a good guess for the antiderivative of 
4 2 3x xcos   is  sin x 3 .

2. Check your guess by differentiating it.

d
dx

x x x

x x

sin cos

cos

3 3 2

2 3

3

3

 (sine rule and chain rule)

3. Tweak your guess.

Your result from Step 2, 3 2 3x xcos , is 3
4

 of what you want, 4 2 3x xcos , so make 

your guess 4
3

 bigger (note that 4
3

 is the reciprocal of 3
4

). Your second guess is thus 

4
3

3sin x .

4. Check this second guess by differentiating it.

Oh, heck, skip this — your answer’s got to work.
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21 Find the antiderivative, sin
cos

x
x

dx, 

with the substitution method.

22 Find the antiderivative, x x dx4 53 2 6 , 

with the substitution method.

23 Use substitution to determine 
5 3 4

x e dxx .
24 Use substitution to determine 

sec2 x
x

dx.
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Finding Area with Substitution Problems
You can use the shortcut version of the Fundamental Theorem of Calculus to calculate the area 
under a function that you integrate with the substitution method. You can do this in two ways. 
In the previous section, I use substitution, setting u equal to x 2, to find the antiderivative of 
2 2x xcos :

2 2 2x x dx x Ccos sin

If you want the area under this curve from, say, 0.5 to 1, the Fundamental Theorem of Calculus 
does the trick:

0 5

1
2 2

0 5

1

2 2

2

1 0 5

1

.
.

cos sin

sin sin .

sin si

x x dx x

nn .

. .

.

0 25

0 841 0 247

0 594

Another method, which amounts to the same thing, is to change the limits of integration and do 
the whole problem in terms of u. Refer back to the six-step solution in the section “The substi-
tution method.” What follows is very similar, except that this time you’re doing definite inte-

gration rather than indefinite integration. Again, you want the area given by 
0 5

1
22

.

cosx x dx:

1. Set u equal to x 2.

2. Take the derivative of u with respect to x.

du
dx

x2

3. Solve for du.

du x dx2  

(I’m solving for du and not going on to solve for dx. It’s a slight shortcut that’s explained 
in the tip inside the solution to Problem 21. Check it out if you haven’t done so already.)

4. Determine the new limits of integration.

u x x u

x u

2 1
2

1
4

1 1

, ,

,

 so when 

and when  

 

5. Make the substitutions, including the new limits of integration.

(In this problem, only one of the limits is new because when x u1 1,  ).

0 5

1
2

0 25

1

2
. .

cos cosx x dx u du
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6. Use the antiderivative and the Fundamental Theorem of Calculus to get the desired 
area without making the switch back to x 2.

0 25

1

0 25
1

1 0 25

0 594

.
.cos sin

sin sin .

.

u du u

It’s a case of six of one, half a dozen of another with the two methods; they require about the 
same amount of work. So, you can take your pick — however, most teachers and textbooks 
emphasize the second method, so you probably should learn it.

25 Evaluate 
0

2

2 4
5

t dt

t
. Change the indices 

of integration.

26 Evaluate 
1

8 2 3 3

3

5s

s
ds

/

 without chang-

ing the indices of integration.
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Practice Questions Answers and Explanations
1 At about x 2 or 2

1
2

 and about x 6.

Ag equals zero twice between x 0 and x 8. First, somewhere between x 2 and x 2 1
2

, 

where the negative area beginning at x 1 cancels out the positive area between x 1
2

 and 

x 1. The second zero of Ag is somewhere between x 5 1
2

 and x 6. After the first zero at 

about x 2 1
4

, negative area is added between 2 1
4

 and 4. The positive area from 4 to, say, 5 3
4

 

roughly cancels that out, so Ag returns to zero at about x 5 3
4

.

2 (a) Ag  reaches its max at about x 8. After the zero at about x 5 3
4

, Ag grows by roughly 3 1
4

 
square units by the time x gets to 8.

(b) The minimum value of Ag  is at x 4, where it equals something like 1
1
2

. Note that this 

minimum occurs at the point where all the negative area has been added (minimums 

often occur at points like that), and that when you move to the right past x 4, the area 
crosses above the t-axis and the area begins to increase.

3 (a) Ag  is increasing from 0 to 1 and from 4 to 8.

(b) Ag  is decreasing from 1 to 4.

4 Ag 1  is slightly more than 1; Ag 3  is about 1; Ag (5) is also about 1.

Ag 1  is a bit bigger than the right triangle with base from x 1
2

 to x 1 on the t-axis and 

with vertex maybe at 1
2

4, , which has an area of 1. So the area in question is slightly more 
than 1.

There’s a zero at about 2 1
4

. Between there and x 3, the area is very roughly –1, so Ag 3  is 
about –1.

In Problem 2b, you estimate Ag 4  to be about 11
2

. Between 4 and 5, there’s sort of a trian-

gular shape with a rough area of 1
2

. Thus Ag 5  equals about 11
2

1
2

 or roughly –1.

5 (a) 
d
dx

A x xf sin

(b) 
d
dx

A x xg sin

6 The answer is  sin sin cosx x .

This is a chain rule problem. Because the derivative of sin
/

t dt
x

4

 is sin x , the derivative of 

sin
/

t dt
stuff

4

 is sin stuff stuff . Thus, the derivative of sin
/

cos

t dt
x

4

 is sin cos cosx x

sin sin cosx x .

7 d
dx

A x
d
dx

Af fsin , so  is zero at all the zeros of sin x, namely at all multiples of , which 

as you probably know is written as k  (for any integer, k).
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8 Approximately –0.459.

In Problem 6, you find that A x x xf sin sin cos , so

Af 4 4 4
2
2

2
2

0 459sin sin cos sin .

9 The area is 2. The derivative of cos x is sin x , so cos x is an antiderivative of sin x . Thus, by 

the Fundamental Theorem of Calculus, sin cosx dx x
0

0 1 1 2 2.

10 sin cosxdx x
0

2

0
2 1 1 0. Do you see why the answer is zero?

11 
2

3
3 24 5 10 6 58x x x dx .

  
2

3
3 2

4 3 2

2

3

4 5 10

1
4

4
3

5
2

10

1
4

81 4
3

x x x dx

x x x x

227 5
2

9 30 1
4

16 4
3

8 5
2

4 20

6 58.

12 
1

2

7 02e dxx .

e ex x, so e x is its own antiderivative as well as its own derivative. Thus,

1

2

1

2 2 1 7 02e dx e e ex x .

13 dx

x

x
C

16 42
arcsin  by rule 12 of Table 15-2.

14 5
10
3

10
3

03 2
3

xdx x C
x

C x or   ( ). This is a reverse power rule problem.

15 4 1
1

16
4 13 4x dx x C

1. Guess your answer: 1
4

4 1 4x

2. Differentiate: 4 1 43x  (by the chain rule)
It’s 4 times too much.

3. Tweak guess: 1
16

4 1 4x

4. Differentiate to check: 1
4

4 1 4 4 13 3x x

Bingo.

16 sec tan2 6
1
6

6x dx x C

Your guess at the antiderivative, tan 6x , gives you tan 6 6 62x xsec . Tweak the guess 

to 1
6

6tan x . Check: 1
6

6 1
6

6 6 62 2tan x x xsec sec

17 cos sin
x

dx
x

C
1

2
2

1
2
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Your guess is sin x 1
2

. Differentiating that gives you cos x 1
2

1
2

.

The tweaked guess is 2 1
2

sin x . That’s it.

18 3
2 5

3
2

2 5
dt
t

t Cln

ln 2 5t  is your guess. Differentiating gives you 1
2 5

2
t

.

You wanted a 3, but you got a 2, so tweak your guess by 3 over 2. (I’m a poet!)

This “poem” always works. Try it for the other problems. Often what you want is a 1. For 

example, for Problem 15, you’d have, “You wanted a 1 but you got 1
2

, so tweak your guess by 1 

over 1
2

.” That’s 2, of course. It works!

Back to Problem 18. Your tweaked guess is 3
2

2 5ln t . That’s it.

19 
0

5
5 5

2
sec tant t dt

Don’t let all those 5’s and ’s distract you — they’re just a smoke screen.

Guess: sec 5t . Diff: sec tan5 5 5t t .

Tweak: 1 5sec t . Diff: 1 5 5 5sec tant t . Bingo. So now, 1 5 0sec t

1 4 2sec sec .

20 4 5
1 9

3
2

32
1.

x
dx x Ctan

I bet you’ve got the method down by now: Guess, diff, tweak, diff.

Guess: tan 1 3x . Diff: 1
1 3

32x

Tweak: 3
2

31tan x . Diff: 3
2

1
1 3

32x
. That’s it.

21 sin
cos

cos
x
x
dx x C2

1. It’s not plain oldx , so substitute  u xcos .
2. Differentiate and solve for du.

du
dx

x

du x dx

sin

sin  

Shortcut for the u-substitution integration method. You can save a little time in all  
substitution problems by just solving for du — as I did here — and not bothering to solve 
for dx. You then tweak the expression inside the integral so that it contains the thing du 
equals and compensate for that tweaking by adding something outside the integral. In the 
current problem, du equals sin xdx. The integral contains a sin xdx, so you multiply it  
by 1 to turn it into sin xdx and then compensate for that 1 by multiplying the whole 
integral by 1. This is a wash because 1 times 1 equals 1. This may not sound like much 
of a shortcut, but it’s a good time-saver once you get used to it. (Solving for dx is the book 
and classroom method, and that’s why I went through that method in the text. But I like 
to use this tip. Either way is fine. Take your pick.)
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3. Tweak inside and outside of the integral with negative signs: sin
cos

x
x

dx

4. Pull the switch: du
u

5. Antidifferentiate with the reverse power rule: u du u C1 2 1 22/ /

6. Get rid of u: 2 21 2cos cos/x C x C

22 x x dx
x x

C4 53
5 53

2 6
3 3 2 6

20

1. It’s not plainoldx , so substitute u x2 65 .
2. Differentiate and solve for du.

du
dx

x

du x dx

10

10

4

4

3. Tweak inside and outside: 1
10

10 2 64 53x x dx

4. Pull the switcheroo: 1
10

3 u du

5. Apply the power rule in reverse: 1
10

3
4

3
40

4 3
3

u C
u u

C/

6. Switch back: 
3 2 6 2 6

40
3 3 2 6

20

5 53 5 53x x
C

x x
C

23 5
5
4

3 4 4
x e dx e Cx x

1. It’s not e xplain old , so u x 4.

2. You know the drill: du x dx4 3

3. Tweak: 5
4

4 3 4
x e dxx

4. Switch: 5
4

e duu

5. Antidifferentiate: 5
4

e Cu

6. Switch back: 5
4

4
e Cx

24 sec
tan

2

2
x

x
dx x C

1. It’s not sec2 plain old x , so u x .

2. Differentiate: du x dx
x

dx
1
2

1
2

1 2/

3. Tweak: 2
2

2sec x
x

dx

4. Switch: 2 2sec udu

5. Antidifferentiate: 2tanu C

6. Switch back: 2tan x C
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25 
0

2

2 4
5

0 0011
t dt

t

 
.

1. Do the U-and-Diff (it’s sweeping the nation!), and find the u indices of integration.

u t t u

du t dt t u

2 5 0 5

2 2 9

when  

when   

,

,

2. The tweak: 1
2

2

50

2

2 4
t dt

t

 

3. The switch: 1
2

5

9

4
du
u

4. Antidifferentiate and evaluate: 1
2

1
3

1
6

9 5 0 00113

5

9
3 3u .

26 
1

8 2 3 3

3

5
1 974 375

s

s
ds

/

, .

You know the drill: u s2 3 5/ ; du s ds
s

ds
2
3

2
3

1 3
3

/

1

8 2 3 3

3
1

8 2 3 3

3

1

8
3

5 3
2

2 5

3

3
2

s

s
ds

s

s
ds

u du

/ /

  

You’ll get a math ticket if you put an equal sign in front of the last line because it is not equal 
to the line before it. When you don’t change the limits of integration, you get this mixed-up 
integral with an integrand in terms of u, but with limits of integration in terms of x (s in this 
problem). This may be one reason why the preferred book method includes switching the 
limits of integration — it’s mathematically cleaner.

Now just antidifferentiate, switch back, and evaluate:

3
2

1
4

3
2

1
4

5 3
8

9 6 1974 375

4

2 3 4

1

8
4 4

u

s / .

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
the chapter topics.
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Whaddya Know? Chapter 15 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

For Problems 1a and 1b, use “Your Turn” Problem 1 from this chapter (with its accompanying 

figure), except that now, let A x g t dtg

x

4

.

1 (a) Approximate Ag 6 .

(b) Approximate Ag 1 . (Hint: You’ll need to use one of the rules from Table 15-1.)

2 Given that A x t dtf
e

ex

2 , find d
dx

A xf .

3 Evaluate csc2

4

3 4

x dx.

4 What’s sin x dx?

5 What’s 2
35 x

dx?

6 What’s 5 5 8 4x dx?

7 What’s e dxx ?

8 Find the antiderivative, e
x

dx
x1

2 , with the substitution method.

9 Find the antiderivative, cos x

x
dx

3

23
, with the substitution method.

10 Evaluate 
cos ln x

x
dx

e

1

. Change the indices of integration.
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Answers to Chapter 15 Quiz
1 (a) About 2.

Ag 6  equals the area under g from 4 to 6. That shape looks sort of like a right triangle 

with a curvy “hypotenuse.” If it were exactly a right triangle (with a base of 2 and a 
height that looks very close to 1.5), its area would be 1.5. Add a bit because of the curvy 
hypotenuse.

(b) About 2.5.

Ag 1  concerns the area above g and below the x-axis between 1 and 4. That sort-of semi-
circle looks like it has an area of about 2.5. Since that area is below the x-axis, it counts as 
negative area, and so, your answer would be about –2.5 if you were asked for the area  
from 1 to 4. However, Ag 1  asks for the area from 4 to 1 (which is going backwards).  
Rule 2 from Table 15-1 tells you that the area from 4 to 1 is the opposite of the area from  
1 to 4. Thus, your answer is the opposite of roughly –2.5, or, of course, roughly 2.5.

2 e x3

The input of any area function is the upper index of integration. So, for A x t dtf
e

ex

2 , the 

input is e x. Because the input of this function is not just a simple x, determining the deriva-

tive d
dx

A xf  is a chain rule problem. If the upper index had been just x, the derivative would 

equal x 2 by the fundamental theorem. So, because this is a chain rule problem, you replace 
the x with e x, then multiply by the derivative of e x (which is e x). So, that gives you 

e e e e ex x x x x2 2 3 .

3 2

csc cot

cot cot

2

4

3 4

4
3 4

3
4 4

1 1 2

xdx x

4 cos x C

Be careful about negative signs when differentiating or integrating sines and cosines, and 
don’t forget the C!

5 5 2 5 25x C x C   or   5

Rewrite 2
35 x

dx  with a power rather than a radical, then use the reverse power rule:

2 2

2
2
5

5

35
3 5

2 5 2 5

x
dx x dx

x C x C

6 1
5

5 8 5x C

Guess-and-check is a good method for this one.
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7 e Cx

This is another problem where guess-and-check works well.

8 e Cx1

e
x

dx
x1

2

let  u
x

du
x

dx

1

1
2

Now rewrite the integrand in terms of u, solve, and switch back to x:

e
x

dx
e
x

dx e du e C e C
x x

u u x
1

2

1

2
1

9 3 3sin x C

cos x

x
dx

3

23

let  u x

du x dx

x
dx

3

2 3

23

1
3

1

3

Rewrite the integrand in terms of u, solve, and switch back to x:

cos cos cos sin sinx

x
dx

x

x
dx udu u C x C

3

23

3

23
33

3
3 3 3

10 sin .1 0 84147

cos ln x
x

dx
e

1

let  u x

du
x

dx

ln

1

when    

when    

x u

x e u

1 0

1

,

,

cos ln
cos sin sin sin sin

x
x

dx udu u
e

1 0

1

0
1 1 0 1
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Integration Techniques 
for Experts

I figure it wouldn’t hurt to give you a break from the kind of theoretical groundwork stuff 
that I lay on pretty thick in Chapter  15, so this chapter cuts to the chase and shows you 
just the nuts and bolts of several integration techniques. In Chapter 15, you saw three basic  

integration methods: the reverse rules, the guess-and-check method, and substitution.  
Now you graduate to four advanced techniques: integration by parts, trigonometric integrals, 
trigonometric substitution, and partial fractions. Ready?

Integration by Parts: Divide and Conquer
Integrating by parts is the integration version of the product rule for differentiation. Just take 
my word for it. The basic idea of integration by parts is to transform an integral you can’t do 
into a simple product minus an integral you can do. Here’s the formula:

Integration-by-parts formula: udv uv vdu

And here’s a memory aid for it: In the first two chunks, udv and uv, the u and v are in alpha-
betical order. If you remember that, you can remember that the integral on the right is just like 
the one on the left, except the u and v are reversed.

Chapter 16

IN THIS CHAPTER

 » Breaking down integrals into parts 
and finding trigonometric 
integrals

 » Returning to your roots with 
SohCahToa

 » Understanding the As, Bs, and Cs 
of partial fractions

 » Looking at LIATE
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Don’t try to understand the formula yet. You’ll see how it works in a minute. And don’t worry 
about understanding the first example coming up until you get to the end of it. The integra-
tion-by-parts process may seem pretty convoluted your first time through it, so you’ve got to 
be patient. After you work through a couple examples, you’ll see it’s really not that bad at all.

The integration-by-parts box: The integration-by-parts formula contains four things: u, v, 
du, and dv. To help keep everything straight, organize your problems with a box like the one in 
Figure 16-1.

Let’s do x x dxln  to see how this method works. The integration-by-parts formula converts 
this integral, which you can’t do directly, into a simple product minus an integral you know 
how to do. First, you’ve got to split up the integrand into two chunks — one chunk becomes 
the u and the other the dv that you see on the left side of the formula. For this problem, the ln x 
becomes your u chunk. Then everything else is the dv chunk, namely xdx . ( In the next section, 
I show you how to decide what goes into the u chunk; then, whatever is left over is automati-
cally the dv chunk.) After rewriting the integrand, you’ve got the following for the left side of 
the formula:

Now it’s time to do the box thing. For each new problem, you should draw an empty four-

square box, then put your u (ln x in this problem) in the upper-left square and your dv ( xdx  in 
this problem) in the lower-right square. See Figure 16-2.

Next, you differentiate u to get your du, and you integrate dv to get your v. The arrows in  
Figure 16-2 remind you to differentiate on the left and to integrate on the right. Think of dif-
ferentiation — the easier thing — as going down (like going downhill), and integration — the 
harder thing — as going up (like going uphill).

FIGURE 16-1: 
The  

integration- 
by-parts box.

FIGURE 16-2: 
Filling in  
the box.
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Now complete the box:

u x

du
dx x

du
x

dx

ln

1

1

dv xdx

dv xdx

v x
2
3

3 2/ (reverse power rule; note

  that you ddrop the C )

Figure 16-3 shows the completed box.

You can also use the four-square box to help you remember the right side of the integration-
by-parts formula: Start in the upper-left square and draw (or just picture) a number 7 going 
straight across to the right, then down diagonally to the left. See Figure 16-4.

Remembering how you “draw” the 7, look back to Figure 16-3. The right side of the integration- 

by-parts formula tells you to do the top part of the 7, namely ln /x x
2
3

3 2, minus the integral 

of the diagonal part of the 7, 2
3

13 2x
x

dx/ . By the way, all of this is much easier to do than to 

explain. Try it. You’ll see how this four-square-box scheme helps you learn the formula and 
organize these problems.

FIGURE 16-3: 
The 

 completed 
box for 
x x dxln .

FIGURE 16-4: 
A box with a 
7 in it. Who 

says calculus 
is rocket 
science?
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Ready to finish? Plug everything into the formula:

udv uv vdu

x x x
x

dx

x x x

x x dxln ln

ln

/ /

/

2
3

2
3

1

2
3

2
3

3 2 3 2

3 2 11 2

3 2 3 2

3 2

2
3

2
3

2
3

2
3

/

/ /

/

ln

ln

dx

x x x C

x

(reverse power rule)

xx x C

x x x C

x x x C

4
9

2
3

2
3

4
9

2
3

4
9

3 2

3 2 3 2

3 3

/

/ /ln ,

ln

  or

In the last step, you replace the 2
3

C  with C  because 2
3

 times any old number is still just any 
old number.

Picking your u
Here’s a great mnemonic device for how to choose your u chunk (again, once you’ve selected 
your u, everything else is automatically the dv chunk).

The LIATE mnemonic: Herbert E. Kasube came up with the acronym LIATE to help you choose 
your u (calculus nerds can check out Herb’s article in the American Mathematical Monthly 90, 
1983 issue):

L Logarithmic like  log x

I Inverse trigonometric like  arctan x

A Algebraic like  5 32x

T Trigonometric like  cos x

E Exponential like  10 x

To pick your u chunk, go down this list in order; the first type of function on this list that 
appears in the integrand is the u.

Here are some helpful hints on how to remember the acronym LIATE. How about Let’s Integrate 
Another Tantalizing Example. Or maybe you prefer Lilliputians In Africa Tackle Elephants, or Lulu’s 
Indigo And Turquoise Earrings. The last one’s not so good because it could also be Lulu’s Turquoise 
And Indigo Earrings — whoops: Now you’ll never remember it!

Here’s a problem. Integrate arctan x dx. (Note: Integration by parts sometimes works for inte-

grands like this one that contain a single function.)



CHAPTER 16  Integration Techniques for Experts      483

1. Go down the LIATE list and pick the u.

You see that there are no logarithmic functions in arctan x dx, but there is an inverse 
trigonometric function, arctan x. So that’s your u. Everything else is your dv, namely, 
plain old dx.

2. Do the box thing.

See Figure 16-5 (and see Table 15-2 for the derivative of arctan x).

3. Plug everything into the integration-by-parts formula (draw or imagine a 7 in the 
box on the right in Figure 16-5).

udv uv vdu

x x x
x

dxx dxarctan arctan 1
1 2

Now you can finish this problem by integrating x
x

dx
1

1 2  with the substitution 

method, setting u x1 2. Try it (see Chapter 15 for more on the substitution method). 
Note that the u in u x1 2 has nothing to do with the integration-by-parts u. Your 

final answer should be arctan arctan lnx dx x x x C
1
2

1 2 .

Here’s another one. Integrate x x dxsin 3 :

1. Go down the LIATE list and pick the u.

Going down the LIATE list, the first type of function you find in x x dxsin 3  is a very 
simple algebraic one, namely x, so that’s your u. Everything else is your dv.

2. Do the box thing.

See Figure 16-6.

FIGURE 16-6: 
Yet more 

boxes.

FIGURE 16-5: 
The box 

thing.
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3. Plug everything into the integration-by-parts formula (draw or imagine a 7 over the 
box on the right in Figure 16-6).

udv uv vdu

x x dx x x x

x

dxsin cos cos

cos

3 1
3

3 1
3

3

1
3

3xx x dx
1
3

3cos

You can easily integrate cos 3x dx with substitution or the guess-and-check method. 

Go for it. Your final answer: 1
3

3 1
9

3x x x Ccos sin .

Integration by parts: Second time,  
same as the first
Sometimes you have to use the integration-by-parts method more than once because the first 
run through the method takes you only partway to the answer. Let’s walk through a problem. 
Find x e dxx2 :

1. Go down the LIATE list and pick the u.

You can see that x e dxx2  contains an algebraic function, x 2, and an exponential func-
tion, e x. (It’s an exponential function because there’s an x in the exponent.) The first 
on the LIATE list is x 2, so that’s your u.

2. Do the box thing.

See Figure 16-7.

3. Use the integration-by-parts formula — or the “7” mnemonic.

x e dx x e e xdx

x e xe dx

x x x

x x

2 2

2

2

2

You end up with another integral, xe dxx , that can’t be done by any of the simple 

methods — reverse rules, guess and check, and substitution. But note that the  
power of x has been reduced from 2 to 1, so you’ve made some progress. When you  
use integration by parts again for xe dxx , the x disappears entirely and you’re done. 
Here goes:

FIGURE 16-7: 
The boxes 

for x e dxx2 .
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4. Integrate by parts again.

I’ll let you do most of this one on your own. Here’s the final step:

xe dx xe e dx

xe e C

x x x

x x

5. Take the result from Step 4 and substitute it for the xe dxx  in the answer from Step 3 
to produce the whole enchilada.

x e dx x e xe e C

x e xe e C

x e xe e C

x x x x

x x x

x x x

2 2

2

2

2

2 2 2

2 2

1 What’s x x dxcos 5 2 ? 2 Evaluate x x dxarctan .

3 Evaluate 
1

1

10x dxx . 4 What’s x e dxx2 ?

5 Integrate e x dxx sin . Tip: Sometimes you circle back to where you started from — 
that’s a good thing!
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Tricky Trig Integrals
Don’t you just love trig? I’ll bet you didn’t realize that studying calculus was going to give you 
the opportunity to do so much more trig. Remember this next Thanksgiving when everyone 
around the dinner table is invited to mention something that they’re thankful for.

In this section, you integrate powers of the six trigonometric functions, like sin3 x dx and 

sec4 x dx, and products or quotients of different trig functions, like sin cos2 3x x dx and 

csc
cot

2 x
x

dx . This is pretty tedious — time to order up a double espresso.

To use the following techniques, you must have either an integrand that contains just one of 
the six trig functions, like csc3 x dx , or a certain pairing of trig functions, like sin cos2 x x dx .  
If the integrand has two trig functions, the two must be one of these three pairs: sine with 
cosine, secant with tangent, or cosecant with cotangent. If you have an integrand containing 
something other than one of these three pairs, you can easily convert the problem into one of 

these pairs by using trig identities like sin
csc

x
x

1  and tan sin
cos

x
x
x

. For instance,

 sin sec tan

sin
cos

sin
cos

sin
cos

2

2

3

2

1

x

x

x
x

x x dx

x
x
x

dx

dx

After doing any needed conversions, you want to get one of the following three cases:

sin cos

sec tan

csc cot ,

m n

m n

m n

x x dx

x x dx

x x dx

 

 

 

where either m or n (or both) is a positive integer.

The basic idea with most of the following trig integrals is to organize the integrand so that you 
can make a handy u-substitution and then integrate with the reverse power rule. You’ll see 
what I mean in a minute.

Integrals containing sines and cosines
This section covers integrals with — can you guess? — sines and cosines.

Case 1: The power of sine is odd and positive
If the power of sine is odd and positive, lop off one sine factor and put it to the right of the rest 
of the expression, convert the remaining sine factors to cosines with the Pythagorean Identity, 
and then integrate with the substitution method where u xcos .
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The Pythagorean Identity: The Pythagorean Identity tells you that, for any angle x, 
sin cos2 2 1x x . And thus sin cos2 21x x  and cos sin2 21x x .

Now integrate sin cos3 4x x dx:

1. Lop off one sine factor and move it to the right.

sin cos sin cos sin3 4 2 4x x dx x x x dx

2. Convert the remaining sines to cosines using the Pythagorean Identity and simplify.

 sin cos sin

cos cos in

cos cos sin

s

2 4

2 4

4 6

1

x x

x x

x x

x dx

x dx

x ddx

3. Integrate with the substitution method, where u xcos .

u x

du
dx

x

du x dx

cos

sin

sin  

Tweak your integral so that it contains what du equals:

cos cos sin

cos cos sin

4 6

4 6

x x

x x

x dx

x dx

 

 

Now substitute and solve by the reverse power rule:

u u du

u u C

Cx x x

4 6

5 7

5 7 7

1
5

1
7

1
5

1
7

1
7

1
5

cos cos cos or ccos5 x C

Case 2: The power of cosine is odd and positive
This problem works exactly like Case 1, except that the roles of sine and cosine are reversed. 

Find cos
sin

3 x
x

dx.

1. Lop off one cosine factor and move it to the right.

cos
sin

cos sin

cos sin cos

/

/

3
3 1 2

2 1 2

x
x x

x x

x
dx dx

x dx
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2. Convert the remaining cosines to sines with the Pythagorean Identity and simplify.

cos sin cos

sin sin cos

sin

/

/

/

2 1 2

2 1 2

1 2

1

x x

x x

x

x dx

x dx

sin cos/3 2 x x dx

3. Integrate with substitution, where u xsin .

u x

du
dx

x

du x dx

sin

cos

cos  

Now substitute:

u u du1 2 3 2/ /

And finish integrating as in Case 1.

Case 3: The powers of both sine and cosine  
are even and nonnegative
Here you convert the integrand into odd powers of cosines by using the following trig identities.

Two handy trig identities:

sin
cos

cos
cos2 21 2

2
1 2

2
x x

x x
  and 

Then you finish the problem as in Case 2. Let’s go through a problem:

sin cos

sin cos

cos cos

4 2

2 2 2

21 2
2

1 2

x x dx

x x dx

x x
22

1
8

1 2 2 22 3

dx

x x x dxcos cos cos (It s just al’ ggebra!)

1
8

1 1
8

2 1
8

2 1
8

22 3dx x dx x dx x dxcos cos cos

The first in this string of integrals is a no-brainer; the second is a simple reverse rule with a lit-
tle tweak for the 2; you do the third integral by using the cos2 x  identity a second time; and the 
fourth integral is handled by following the steps in Case 2. Do it. Your final answer should be

1
16

1
64

4 1
48

23x x x Csin sin

A veritable cake walk.
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Don’t forget your trig identities. If you get a sine-cosine problem that doesn’t fit any  
of the three cases discussed here, try using a trig identity like sin cos2 2 1x x  or 

cos
cos2 1 2

2
x

x
 to convert the integral into one you can handle.

For example, sin
cos

4

2
x
x

dx doesn’t fit any of the three sine-cosine cases (because when you 

rewrite the integrand as sin cos4 2x x dx , both powers are not non-negative), but you can use 

the Pythagorean Identity to convert it to 
1 2 2

2

cos

cos

x

x
dx

1 2 2 4

2
cos cos

cos
x x

x
dx . This splits 

up into sec cos2 22x dx x dxdx , and the rest is easy. Try it. See whether you can differen-
tiate your result and arrive back at the original problem.

6 Find sin cosx x dx3 3 . 7 Evaluate cos sin
/

4 2
6

0

t t dt .

Integrals containing secants and tangents  
(or cosecants and cotangents)
The method for solving integrals containing the secant-tangent pairing or the cosecant-cotan-
gent pairing is similar to the method used for the sine-cosine problems. In this section, you’ll 
look at two secant-tangent examples (cosecant-cotangent problems work the same way). 
You’ll need to use the following Pythagorean Identities.

The other Pythagorean Identities: For any angle x, tan sec2 21x x  and cot csc .2 21x x
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Case 1: The power of tangent (or cotangent) is odd

Q. Integrate sec tan3 3x x dx.

A. 1
5

1
3

5 3sec secx x C

1. Split off sec tanx x: 

sec tan sec tan2 2x x x x dx

2. Use the Pythagorean Identity to convert the even number of tangents into secants:

sec sec sec tan

sec sec tan sec sec tan

2 2

4 2

1x x x x dx

x x x dx x x x ddx

3. Integrate with u-substitution using u xsec :

1
5

1
3

5 3sec secx x C

Case 2: The power of secant (or cosecant) is even

Q. Evaluate tan sec
/

/
2 4

4

3

d .

A. 14 3
5

8
15

1. Split off a sec2 .

tan sec sec
/

/
2 2 2

4

3

d

2. Use the Pythagorean Identity to convert the even number of secants into tangents:

tan tan sec tan sec tan sec
/

/

/

/
2 22 2

4

3
4 2

4

3

1 d d 22

4

3

d
/

/

3. Do u-substitution with u tan .

1
5

1

1
5

3 1
5

1 1
3

3 1

3
5

4

3

4

3

5 5 3

3tan tan
/

/

/

/

33
1

14 3
5

8
15

3
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8 Find tan secx x dx6 . 9 Determine csc cot3 3x x dx .

Your Worst Nightmare: Trigonometric 
Substitution

With the trigonometric substitution method, you can do integrals containing radicals of the 

following forms: u a a u2 2 2 2,  , and u a2 2  (as well as powers of those roots), where a is 

a constant and u is an expression containing x. For instance, 32 2x  is of the form a u2 2 .

You’re going to love this technique . . . about as much as sticking a hot poker in your eye.

Desperate times call for desperate measures. Consider pulling the fire alarm on the day your 
teacher is presenting this topic. With any luck, your teacher will decide that they can’t afford to 
get behind schedule and they’ll just omit this topic from your final exam.

Before I show you how trigonometric substitution works, I’ve got some silly mnemonic tricks 
to help you keep the three cases of this method straight. (Remember, with mnemonic devices, 
silly [and vulgar] works.) First, the three cases involve three trig functions, tangent, sine, and 
secant. Their initial letters, t, s, and s, are the same letters as the initial letters of the name of 
this technique, trigonometric substitution. Pretty nice, eh?

Table 16-1 shows how these three trig functions pair up with the radical forms listed in the 
opening paragraph.
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Table 16-1 A Totally Radical Table

tan

sin

sec

u a

a u

u a

2 2

2 2

2 2

To keep these pairings straight, note that the plus sign in u a2 2  looks like a little t for tan-
gent, and that the other two forms, a u2 2  and u a2 2 , contain a subtraction sign — s is for 

sine and secant. To memorize what sine and secant pair up with, note that a u2 2  begins with 
the letter a, and it’s a sin to call someone an ass. Okay, I admit this is pretty weak. If you can 
come up with a better mnemonic, use it!

Ready to do some problems? I’ve stalled long enough.

Case 1: Tangents
Find dx

x9 42
. First, note that this can be rewritten as dx

x( )3 22 2
, so it fits the form u a2 2 , 

where u x3  and a 2; you can see that this pairs up with tangent in Table 16-1.

1. Draw a right triangle — basically a SohCahToa triangle — where tan  equals u
a

,  

which is 3
2
x .

Because you know that tan O
A

 (from SohCahToa — see Chapter 6), your triangle 

should have 3x as O, the side opposite the angle , and 2 as A, the adjacent side. Then, 

your radical, ( )3 22 2x , or 9 42x , will automatically be the correct length for the 

hypotenuse. It’s not a bad idea to confirm this with the Pythagorean Theorem, 
a b c2 2 2. See Figure 16-8.

FIGURE 16-8: 
A SohCahToa 

triangle for 
the u a2 2  
case. What 

sinister mind 
dreamt up 

this 
 technique?
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2. Solve tan
3
2
x  for x, differentiate, and solve for dx.

3
2
3 2

2
3
2
3
2
3

2

2

x

x

x

dx
d

dx d

tan

tan

tan

sec

sec  

3. Find which trig function is represented by the radical over the a, and then solve for 
the radical.

Look at the triangle in Figure 16-8. The radical is the hypotenuse and a is 2, the adjacent 

side, so 9 4
2

2x  is H
A

, which equals secant. So sec 9 4
2

2x , and thus 

9 4 22x sec .

4. Use the results from Steps 2 and 3 to make substitutions in the original problem and 
then integrate.

From Steps 2 and 3, you have dx d
2
3

2sec   and 9 4 22x sec . Now you can 
finally do the integration.

dx

x

d

d

C

9 4

2
3

2

1
3
1
3

2

2sec

sec

sec

ln|sec tan |

 

 

(an iintegral you should

memorize or just look up)

5. Substitute the x expressions from Steps 1 and 3 back in for sec  and tan . You can 
also get the expressions from the triangle in Figure 16-8.

1
3

9 4
2

3
2

1
3

9 4 3
2

1
3

9 4 3 1
3

2

2

2

2

ln

ln

ln

x x
C

x x
C

x x Cln (by tthe log of a quotient rule, of

course, and distributing thee

(because ln

is just a constant)

1
3

1
3

9 4 3 21
3

2

)

ln x x C C
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Now tell me, when was the last time you had so much fun? Before tackling Case 2, here are a 
couple tips.

Step 1 is 
u
a

. For all three cases in trigonometric substitution, Step 1 always involves drawing a 

triangle in which the trig function in question equals u
a

:

Case 1 is 

Case 2 is sin

Case 3 is sec

tan .

.

.

u
a
u
a
u
a

The fact that the u goes in the numerator of this u
a

 fraction should be easy to remember because 

u is an expression in x and something like 3
2
x  is somewhat simpler and more natural to see than 

2
3x

. Just remember, the x goes on top.

Step 3 is 
a

. For all three cases, Step 3 always involves putting the radical over the a. The 

three cases are given here, but you don’t need to memorize the trig functions in this list  
because you’ll know which one you’ve got by just looking at the triangle — assuming you know 
SohCahToa and the reciprocal trig functions (flip back to Chapter 6 if you don’t know them). I’ve 
left out what goes under the radicals because by the time you’re doing Step 3, you’ve already 
got the right radical expression.

Case is 

Case is 

Case is 

1

2

3

sec .

cos .

tan .

a

a

a

In a nutshell, just remember u
a

 for Step 1 and 
a

 for Step 3. How about U Are Radically 
Awesome?

Case 2: Sines
Integrate dx

x x2 216
, rewriting it first as dx

x x2 2 24
  so that it fits the form a u2 2 , where 

a 4 and u x .

1. Draw a right triangle where sin
u
a

, which is x
4

.

Sine equals O
H

, so the opposite side is x and the hypotenuse is 4. The length of the 

adjacent side is then automatically equal to your radical, 16 2x . (Confirm this with 
the Pythagorean Theorem.) See Figure 16-9.
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2. Solve sin
x
4

 for x, differentiate, and solve for dx.

x

x

dx
d
dx d

4
4

4

4

sin

sin

cos

cos  

3. Find which trig function equals the radical over the a, and then solve for the radical.

Look at the triangle in Figure 16-9. The radical, 16 2x , over the a, 4, is A
H

, which you 
know from SohCahToa equals cosine. That gives you

cos

cos

16
4

16 4

2

2

x

x

4. Use the results from Steps 2 and 3 to make substitutions in the original problem and 
then integrate.

Note that you have to make three substitutions here, not just two like in the first 
example. From Steps 2 and 3, you’ve got

x dx d x4 4 16 42sin , cos , cos ,  and  so

dx

x x

d

d

d

2 2 2

2

2

16

4

4 4

16
1

16
1

cos

sin cos

sin

csc

116
cot C

5. The triangle shows that cot
16 2x
x

. Substitute back for your final answer.

1
16

16

16
16

2

2

x
x

C

x
x

C

It’s a walk in the park.

FIGURE 16-9: 
A SohCahToa 

triangle for 
the a u2 2  

case.
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Case 3: Secants
In the interest of space — and sanity — I’m going to skip going through this case in detail. 
But you won’t have any trouble with it because all the steps are basically the same as in Cases 
1 and 2.

Try this one. Integrate x
x

dx
2 9 . I’ll get you started. In Step 1, you draw a triangle, where 

sec u
a

, that’s x
3

. Now take it from there. Here’s the answer (no peeking if you haven’t done 

it yet): x
x

C2
2

9 3 9
3

arctan , or x
x

C2 9 3
3

arcsec , or x
x

C2 9 3 3arccos .

10 Integrate 
dx

x x9 4 9 42 2 . 11 What’s dx
x25 2 ? Hint: This is a 

a u2 2  problem where u
a

sin .

12 Integrate 
dx

x625 1212 . Hint: This is a 

u a2 2  problem where u
a

sec .

13 Last one: 4 12x
x

dx. Same hint as in 

Problem 12.
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The A’s, B’s, and Cx ’s of Partial Fractions
Just when you thought it couldn’t get any worse than trigonometric substitution, I give you the 
partial fractions technique.

You use the partial fractions method to integrate rational functions like 6 3 2
2

2

3 2
x x
x x

. The basic 

idea involves “unadding” a fraction: Adding works like this: 1
2

1
3

5
6

. So, you can “unadd” 5
6

 

by splitting it up into 1
2

 plus 1
3

. This is what you do with the partial fraction technique, except 

that you do it with complicated rational functions instead of ordinary fractions.

Before using the partial fractions technique, you have to check that your integrand is a “proper” 
fraction — that’s one where the degree of the numerator is less than the degree of the denomi-

nator. If the integrand is “improper,” like 2 10
3 2

3 2

3
x x
x x

dx , you first have to do long polyno-

mial division to transform the improper fraction into a sum of a polynomial (which sometimes 
will be just a number) and a proper fraction. Here’s the division for this improper fraction. 
Basically, it works like regular long division:

3 3 2

3

2

3 2 2 0 10

2

2

6 4
6 6

x x x x x

x x
x x

With regular division, if you divide, say, 23 (the dividend) by 4 (the divisor), you get a quotient 

of 5 and a remainder of 3, which tells you that 23
4

 equals 5 3
4

, or 5 3
4

. The four pieces in this 

polynomial division (the dividend, the divisor, the quotient, and the remainder) work the same 

way. The quotient is 2 and the remainder is x x2 6 6, thus 2 10
3 2

3 2

3
x x
x x

 equals 2 6 6
3 2

2

3
x x
x x

.  

The original problem, 2 10
3 2

3 2

3
x x
x x

dx , therefore becomes 2 6 6
3 2

2

3dx
x x
x x

dx. The first 

integral is just 2x C . You would then do the second integral with the partial fractions method. 
Let’s walk through a basic problem and then a more advanced one.

Case 1: The denominator contains  
only linear factors
Integrate 5

62x x
dx. This is a Case 1 problem because the factored denominator (see Step 1) 

contains only linear factors — in other words, first-degree polynomials. (Also note that each 
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factor is raised to the 1st power. If one or more factors is raised to a power greater than 1, you 
have a Case 3 problem.)

1. Factor the denominator.

5
6

5
2 32x x x x

2. Break up the fraction on the right into a sum of fractions, where each factor of the 
denominator in Step 1 becomes the denominator of a separate fraction. Then put 
capital-letter unknowns in the numerator of each fraction.

5
2 3 2 3x x

A
x

B
x

3. Multiply both sides of this equation by the left side’s denominator.

This is basic algebra, so you can’t possibly want to see the steps, right?

5 3 2A x B x

4. Take the roots of the linear factors and plug them — one at a time — into x in the 
equation from Step 3, and solve for the capital-letter unknowns.

If x

A B

A

A

2

5 2 3 2 2

5 5

1

, If x

B

B

B

3

5 3 3 3 2

5 5

1

,

5. Plug these results into the A and B in the equation from Step 2.

5
2 3

1
2

1
3x x x x

6. Split up the original integral into the partial fractions from Step 5 and you’re  
home free.

5
6

1
2

1
3

2 3

2
3

2x x
dx

x
dx

x
dx

x x C

x
x

ln| | ln| |

ln C (the log of a quotient rule)

Case 2: The denominator contains  
irreducible quadratic factors
Sometimes you can’t factor a denominator all the way down to linear factors because some 
quadratics are irreducible — like prime numbers, they can’t be factored.
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Check the discriminant. You can easily check whether a quadratic ax bx c2  is reducible or 
not by checking its discriminant, b ac2 4 . If the discriminant is negative, the quadratic is irre-
ducible. If the discriminant is a perfect square like 0, 1, 4, 9, 16, 25, and so on, the quadratic 
can be factored into factors you’re used to seeing, like 2 5 5x x . This is what happens 
in a Case 1 problem. The last possibility is that the discriminant equals a non-square positive 
number, as with the quadratic x x2 10 1, for example, that has a discriminant of 96. In that 
case, the quadratic can be factored, but you get ugly factors involving square roots. You almost 
certainly will not get a problem like that.

Using the partial fractions technique with irreducible quadratics is a bit different. Here’s a 

problem: Integrate 5 9 4
1 4

3

2
x x

x x x
dx .

1. Factor the denominator.

I did this step for you — a random act of kindness. Note that x 2 4 is irreducible 
because its discriminant is negative. (Like with the Case 1 example, note that the three 
factors in this denominator are all raised to the 1st power. If any of the powers had 
been greater than 1, this would be a Case 3 problem.)

2. Break up the fraction into a sum of “partial fractions.”

If you have an irreducible quadratic factor (like the x 2 4), the numerator for that 
partial fraction needs two capital-letter unknowns instead of just one. You write them 
in the form of Px Q.

5 9 4
1 4 1 4

3

2 2
x x

x x x
A
x

B
x

Cx D
x

3. Multiply both sides of this equation by the left-side denominator.

5 9 4 1 4 4 13 2 2x x A x x B x x Cx D x x

4. Take the roots of the linear factors and plug them — one at a time — into x in the 
equation from Step 3, and then solve.

If

  

x

A

A

0

4 4

1

, If

  

x

B

B

1

10 5

2

,

Unlike in the Case 1 example, you can’t solve for all the unknowns by plugging in the 
roots of the linear factors, so you have more work to do.

5. Plug into the Step 3 equation the known values of A and B and any two values for x  
not used in Step 4 (low numbers make the arithmetic easier) to get a system of two 
equations in C and D.

A B1 2  and so,

If x

C D

C D

C D

1

18 10 10 2 2

2 2 2

1

, If

  

 

x

C D

C D

C D

2

54 8 32 4 2

14 4 2

7 2

,
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6. Solve the system:  1 C D  and  7 2C D.

You should get C 2 and D 3.

7. Split up the original integral and integrate.

Using the values obtained in Steps 4 and 6, A 1, B 2, C 2, and D 3, and the 
equation from Step 2, you can split up the original integral into three pieces:

5 9 4
1 4

1 2
1

2 3
4

3

2 2
x x

x x x
dx

x
dx

x
dx

x
x

dx

And with simple algebra, you can split up the third integral on the right  
into two pieces, resulting in the final partial fraction decomposition: 

5 9 4
1 4

1 2
1

2
4

3
4

3

2 2 2
x x

x x x
dx

x
dx

x
dx

x
x

dx
x

dx

The first two integrals are easy. For the third, you use substitution with u x 2 4 and 

du xdx2 . The fourth is done with the arctangent rule, which you should memorize: 
dx

a x a
x
a

C2 2
1 arctan .

5 9 4
1 4

2 1 4 3
2 2

3

2
2x x

x x x
dx x x x

x
Cln ln ln arctan

lnn arctanx x x
x

C1 4 3
2 2

2 2

Bonus: Equating coefficients of like terms
Here’s another method for finding the capital-letter unknowns that you should have in your 
bag of tricks. Say you get the following for your Step 3 equation (this comes from a problem 
with two irreducible quadratic factors):

2 5 4 1 2 23 2 2 2x x x Ax B x Cx D x x

This equation has no linear factors, so you can’t plug in the roots to get the unknowns. Instead, 
expand the right side of the equation:

2 5 4 2 2 2 23 2 3 2 3 2 2x x x Ax Ax Bx B Cx Cx Cx Dx Dx D

And collect like terms:

2 5 4 2 2 2 23 2 3 2x x x A C x B C D x A C D x B D
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Then equate the coefficients of like terms from the left and right sides of the equation:

2

1 2

5 2 2

4 2

A C

B C D

A C D

B D

You then solve this system of simultaneous equations to get A, B, C, and D.

How about a shortcut? You can finish the Case 2 example by using a shortcut version of the 
equating-of-coefficients method. Once you have the values for A and B from Step 4, you can 
look back at the equation in Step 3, and equate the coefficients of the x 3 term on the left and 
right sides of the equation. Can you see, without actually doing the expansion, that on the right 
you get  A B C x 3? So, 5 3 3x A B C x , which means that 5 A B C , and because 
A 1 and B 2 (from Step 4), C must equal 2. Then, using these values for A, B, and C, and any 
value of x (other than 0 or 1), you can get D. How about that for a simple shortcut?

Practice makes perfect. In a nutshell, you have three ways to find your capital-letter unknowns: 
1) Plugging in the roots of the linear factors of the denominator if there are any, 2) Plugging 
in other values of x and solving the resulting system of equations, and 3) Equating the coef-
ficients of like terms. With practice, you’ll get good at combining these methods to find your 
unknowns quickly.

Case 3: The denominator contains one or more  
factors raised to a power greater than 1
Say you want to integrate 2 1

13 2 2
x

x x
dx  with the partial fraction technique. This is a Case 3 

problem because, unlike in Cases 1 and 2, there are factors in the denominator (in this case, 
both factors) raised to a power greater than 1. For a problem like this, your Step 2 sum of partial 
fractions will look like this:

2 1

1 1 13 2 2 2 3 2 2 2
x

x x

A
x

B
x

C
x

Dx E
x

Fx G

x

As you can see, you need a partial fraction for each different power (up to the power on the  
factor) of any factor that’s raised to a power greater than 1.

The rest of a Case 3 solution works the same as in Cases 1 and 2. The remaining steps of the 
solution for this particular problem are a bit long and messy, because you’ve got six partial 
fractions. I’ll spare you the gory details, but if you feel like slogging through it, here’s the final 
solution:

2 1

1

1 3 2 1
2 1

1
2

2
3 2 2

2

2 2 2
x

x x
dx

x
x

x
x
x x x

Cln arctan
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14 Integrate 5
2 7 42

dx
x x

. 15 Integrate 2 3
3 1 4 5

x
x x x

dx.

16 What’s x x
x x x

dx
2

3 2
1

3 3 1
? 17 Integrate dx

x x4 26 5
.

18 Integrate 4 3 2 1
1

3 2

4
x x x

x
dx . 19 What’s x x

x x x
dx

2

2 21 1 2
?
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Practice Questions Answers and Explanations
1 x x dx x x x Ccos sin cos5 2

1
5

5 2
1

25
5 2

1. Pick x as your u, because the algebraic function x is the first on the LIATE list.

2. Fill in your box.

3. Use the “7” rule.

x x dx x x x dxcos sin sin5 2 1
5

5 2 1
5

5 2

4. Finish by integrating.

1
5

5 2 1
25

5 2x x x Csin cos

2 x x dx x x x x Carctan arctan arctan 
1
2

1
2

1
2

2

1. Pick arctan x  as your u.

2. Do the box.
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3. Apply the “7” rule.

x x dx x x
x dx

x

x x
x

arctan arctan

arctan

1
2

1
2 1

1
2

1
2

1 1
1

2
2

2

2
2

x
dx

x x dx
dx

x

x x x

2

2
2

2

1
2

1
2

1
2 1

1
2

1
2

1
2

arctan

arctan arctann arctanx C
x

x
x

Cor
2 1
2 2

3 
1

1

210
101 10 99

10 10
x dxx ln

(ln )

1. Pick the algebraic x as your u.

2. Box it.

3. Do the “7.”

1

1

1

1

1

1

10 10
10

1
10

10

10
10

1
10 10

x dx
x

dxx
x

x

ln ln

ln ln
1
10

10
10

10
10

1
10 10

1
10

10
10

1
10 10

1

1

ln ln

ln ln ln ln ln

x

10
10

1
10 10

10
10

1
10 10

101 10 99
10 10

2 2ln ln ln ln

ln
ln 22
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4 x e dx e x x Cx x2 2 2 2

1. Pick x 2 as your u.

2. Box it.

3. “7” it.

x e dx x e xe dxx x x2 2 2

In the second integral, the power of x is reduced by 1, so you’re making progress.

4. Repeat the process for the second integral: Pick it and box it.

5. Apply the “7” rule for the second integral.

xe dx xe e dx xe e Cx x x x x

6. Take this result and plug it into the second integral from Step 3.

x e dx x e xe e C

x e xe e C

e x

x x x x

x x x

x

2 2

2

2

2

2 2

22 2x C
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5 e x dx
e x e x

Cx
x x

sin
sin cos
2 2

1. Pick sin x as your u — it’s a T from LIATE.

2. Box it.

3. “7” it.

e x dx e x e x dxx x xsin sin cos

Doesn’t look like progress, but it is. Repeat this process for e x dxx cos .

4. Pick cos x as your u and box it.

5. “7” it.

e x dx e x e x dxx x xcos cos sin

6. Plug this result into the second integral from Step 3.

e x dx e x e x e x dxx x x xsin sin cos sin

7. You want to solve for e x dxx sin , so bring them both to the left side and solve.

2

2 2

e x dx e x e x C

e x dx
e x e x

C

x x x

x
x x

sin sin cos

sin sin cos
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6 sin cos sin sin/ /x x dx x x C3 3 4 3 10 33
4

3
10

1. Split off one cos x.

sin cos cosx x x dx3 2

2. Convert the even number of cosines into sines with the Pythagorean Identity.

sin sin cos sin cos sin cos/ /x x x dx x x dx x x dx3 2 1 3 7 31

3. Integrate with u-substitution using u xsin .

3
4

3
10

4 3 10 3sin sin/ /x x C

7 cos sin
/

4 2

0

6

96
t tdt

1. Convert to odd powers of cosine with trig identities cos
cos2 1 2

2
x

x
 and 

sin
cos2 1 2

2
x

x
.

0

6 21 2
2

1 2
2

/ cos cost t
dt

2. Simplify and FOIL.

1
8

1 2 1 2
1
8

1
1
8

2
0

6
2

0

6

0

6/ / /

cos cos cost t dt dt t dt t dt t dt
1
8

2
1
8

2
0

6
2

0

6
3

/ /

cos cos

3. Integrate.

The first and second are simple; for the third, you use the same trig identity again; the 
fourth is handled like you handled Problem 6. Here’s what you should get:

1
8

1
1
8

2
1

16
1

1
16

4
0

6

0

6

0

6

0

6/ / / /

cos cosdt t dt dt t dt
1
8

2
1
8

2 2

1
16

1
16

0

6

0

6
2

0

6

/ /

/

cos sin cost dt t t dt

dt
00

6

0

6
2

0

6

4
1
8

2 2

1
16

1
6

/ /

/

cos sin cost dt t t dt

t
44

4
1

48
2

96
3

128
3

128

9

0

6
3

0

6

sin sin
/ /

t t

66

8 tan sec tan tan tan6 11 2 7 2 3 22
11

4
7

2
3

d C

1. Split off a sec2 .

tan sec sec1 2 4 2 d
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2. Convert to tangents.

tan tan sec

tan tan tan sec

t

1 2

1 2 4

2 2 2

2 2

1

2 1

d

d

aan sec tan sec tan sec9 2 2 5 2 2 1 2 22d d d

3. Do u-substitution with u tan .

2
11

4
7

2
3

11 2 7 2 3 2tan tan tan C

9 csc cot csc csc/ /3 3 7 2 3 22
5

2
3

x x dx x x C

1. Split off csc cotx x.

csc cot csc cot/1 2 2x x x x dx

2. Convert the even number of cotangents to cosecants with the Pythagorean Identity.

csc csc csc cot/1 2 2 1x x x x dx

3. Finish with a u-substitution.

csc csc cot csc csc cot/ /

/ /

5 2 1 2

5 2 1 2

x x x dx x x x dx

u du u du

2 2
3

2 2
3

7

7

7 2 3 2

7 2 3 2

u u C

x x C

/ /

/ /csc csc

10 dx

x x

x

x
C

9 4 9 4 4 9 42 2 2

1. Rewrite as 
dx

x3 22 2
3 .

2. Draw your triangle, remembering that tan
u
a

.

See the following figure.
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3. Solve tan
3
2
x

 for x, differentiate, and solve for dx.

3 2 2
3

2
3

2x x dx dtan tan sec  

4. Do the 
a

 thing.

9 4
2

9 4 2
2

2x
xsec sec

5. Substitute.

 
dx

x

d d
d

9 4
2
3

2
1

12
1

12

2 3

2

3

sec

sec sec
cos

6. Integrate to get 
1

12
sin C .

7. Switch back to x (use the triangle).

1
12

3

9 4 4 9 42 2

x

x
C

x

x
C

11 dx
x

x

x
C

25
1
5

5

25
2 2

ln

1. Rewrite as 
dx
x52 2 .

2. Draw your triangle.

For this problem, sin u
a

. Check out the figure.

3. Solve sin
x
5

 for x, and then get dx.

x dx d5 5sin cos
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4. Do the 
a

 thing.

25
5

25 5
2

2x
xcos cos

5. Substitute.

  

 

dx
x

d

d

25
5
5

1
5

2

2
cos
cos

sec

6. Integrate (you may want to just look up this antiderivative in a table):

You should get 1
5

ln sec tan C .

7. Switch back to x (use your triangle).

1
5

5

25 25

1
5

5

252 2 2
ln ln

x

x

x
C

x

x
C

12 dx

x
x x x C

625 121

1
25

25 625 121
2

2ln

1. Rewrite as 
dx

x25 112 2
.

2. Do the triangle thing.

For this problem, sec u
a

.

3. Solve sec
25
11
x

 for x and find dx.

x dx d
11
25

11
25

sec sec tan  

4. Do the 
a

 thing.

625 121
11

625 121 11
2

2x
xtan tan
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5. Substitute.

dx

x

d
d

625 121

11
25

11
1
252

sec tan

tan
sec

 

6. Integrate.

1
25

ln sec tan C

7. Switch back to x (see Steps 3 and 4).

1
25

25
11

625 121
11

1
25

25 625 121 1
25

11

1
25

2

2

ln

ln ln

x x
C

x x C

lln 25 625 1212x x C

13 4 1
4 1 4 1

2
2 2x

x
dx x x Carctan

1. Rewrite as 
2 12 2x

x
dx.

2. Draw your triangle.

3. Solve sec
2
1
x

 for x; get dx.

x dx d
1
2

1
2

sec sec tan  

4. Do the 
a

 thing.

4 12x tan

5. Substitute.

4 1

1
2

1
2

2

2

x
x

dx

d d
tan

sec
sec tan tan 
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6. Integrate.

sec tan2 1 d C

7. Switch back to x (see Step 4).

4 1 4 1

4 1 2

2 2

2

x x C

x x C

arctan

arcsec

or

14 5
2 7 4

5
9

2 1
42

dx
x x

x
x

Cln

1. Factor the denominator.

5
2 1 4

dx
x x

2. Break up the fraction into a sum of partial fractions.

5
2 1 4 2 1 4x x

A
x

B
x

3. Multiply both sides by the least common denominator.

5 4 2 1A x B x

4. Plug the roots of the factors into x one at a time.

 gives you gives you

    

x x

B

B

A

A

4 1
2

5 9

5
9

5 9
2
10
9

5. Split up your integral and integrate.

5
2 7 4

10
9 2 1

5
9 4

10
9

2 1 5
9

4 5
92

dx
x x

dx
x

dx
x

x x Cln ln lnn 2 1
4

x
x

C

15 2 3
3 1 4 5

7
208

3 1
11
13

4
13
16

5
x

x x x
dx x x x Cln ln ln

1. The denominator is already factored, so go ahead and write your sum of partial fractions.

2 3
3 1 4 5 3 1 4 5

x
x x x

A
x

B
x

C
x

2. Multiply both sides by the LCD.

2 3 4 5 3 1 5 3 1 4x A x x B x x C x x
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3. Plug the roots of the factors into x one at a time.

x A A

x B

1
3

7
3

208
9

21
208

4 11 13

: ;

: ;

 gives you

 gives you BB

x C C

11
13

5 13 16 13
16

 gives you : ;

4. Split up and integrate.

2 3
3 1 4 5

21
208 3 1

11
13 4

13
16

x
x x x

dx
dx
x

dx
x

dx
x 5

7
208

3 1 11
13

4 13
16

5ln| | ln| | ln| |x x x C

16 x x
x x x

dx x
x

x
C

2

3 2 2

1
3 3 1

1
3 2 1

2 1
ln

1. Factor the denominator.

x x
x

dx
2

3
1

1

2. Write the partial fractions.

x x
x

A
x

B
x

C
x

2

3 2 3
1

1 1 1 1

3. Multiply by the LCD.

x x A x B x C2 21 1 1

4. Plug in the single root, which is 1, giving you C 3.

5. Equate coefficients of like terms.

Without multiplying out the entire right side in Step 3, you can see that the x 2 term on 
the right will be Ax 2. Because the coefficient of x 2 on the left is 1, A must equal 1.

6. Plug in 0 for x in the Step 3 equation, giving you 1 A B C .

Because you know A is 1 and C is 3, B must be 3.

Note: You can solve for A, B, and C in many ways, but the way I did it is probably the 
quickest.

7. Split up and integrate.

x x
x x x

dx
dx

x
dx

x
dx

x
x

x

2

3 2 2 3
1

3 3 1 1
3

1
3

1
1 3ln

1
3

2 1 2x
C
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17 dx
x x

x
x

C4 26 5
1
4

5
20

5
5

arctan arctan

1. Factor.

dx
x x2 25 1

2. Write the partial fractions.

1
5 1 5 12 2 2 2x x

Ax B
x

Cx D
x

3. Multiply by the LCD.

1 1 52 2Ax B x Cx D x

4. Plug in the easiest numbers to work with, 0 and 1, to effortlessly get two equations.

x B D

x A B C D

0 1 5

1 1 2 2 6 6

:

:

5. After FOILing out the equation in Step 3, equate coefficients of like terms to come up 
with two more equations.

The x 2 term gives you 0 B D.

This equation plus the first one in Step 4 give you B 1
4

, D 1
4

.

The x 3 term gives you 0 A C .

Now, this equation plus the second one in Step 4 plus the known values of B and D give 
you A 0 and C 0.

6. Split up and integrate.

dx
x x

dx

x

dx

x
dx

x
dx

x

4 2 2 2

2 2

6 5

1
4

5

1
4

1
1
4 5

1
4 1

1
4 5

aarctan arctanx
x C

5
1
4

18 4 3 2 1
1

1
2

1 1 1
3 2

4
2 5x x x

x
dx x x x x Cln arctan

1. Factor.

4 3 2 1
1 1 1

3 2

2
x x x

x x x
dx

2. Write the partial fractions.

4 3 2 1
1 1 1 1 1 1

3 2

2 2
x x x

x x x
A

x
B

x
Cx D
x
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3. Multiply by the LCD.

4 3 2 1 1 1 1 1 1 13 2 2 2x x x A x x B x x Cx D x x

4. Plug in roots.

x A A

x B B

1 10 4 2 5

1 2 4 0 5

: ; .

: ; .

5. Equating the coefficients of the x 3 term gives you C.

4

2 5 0 5 1

A B C

A B C. , . ,  so

6. Plugging in zero and the known values of A, B, and C gets you D.

1 2 5 0 5

1

. . D

D

7. Integrate.

4 3 2 1
1

2 5
1

0 5
1

1
1

2 5

3 2

4 2
x x x

x
dx

dx
x

dx
x

x
x

dx

x

. .

. ln 11 0 5 1 0 5 1

1
2

1 1 1

2

2 5

. ln . ln arctan

ln arct

x x x C

x x x aan x C

19 x x
x x x

dx
x
x

x
x2

2 2

2

21 1 2
1
6

1
2

2 2
3

ln arctan arctan
22

2
C

1. Break the already-factored function into partial fractions.

x x
x x x

A
x

Bx C
x

Dx E
x

2

2 2 2 21 1 2 1 1 2

2. Multiply by the LCD.

x x A x x Bx C x x Dx E x x2 2 2 2 21 2 1 2 1 1

3. Plug in the single root (–1).

2 6 1
3

A A

4. Plug 0, 1, and –2 into x and 
1
3

 into A.

x C E

x B C D E

x B C D E

0 0 2
3

2

1 0 2 6 6 4 4

2 6 10 12 6 10 5

:

:

:

5. Equate coefficients of the x 4 terms (with A
1
3

).

0 1
3

B D
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6. Solve the system of four equations from Steps 4 and 5. You get the following:

B C D E0 1 1
3

4
3

If you find an easier way to solve for A through E, go to my website and send me an email.

7. Integrate.

x x
x x x

dx
dx

x
dx

x
x
x

dx
2

2 2 2 21 1 2
1
3 1 1

1
3

4
2

1
3

lnn arctan ln arctan

ln arc

x x x
x

C

x
x

1 1
6

2 2 2
3

2
2

1
6

1
2

2

2

2 ttan arctanx
x

C
2 2

3
2

2

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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1 Integrate x x dxsec2 .

2 Integrate cos ln sinx x dx.

3 Integrate x x dx3 3ln .

For the trig integrals in Problems 4 to 6, simply identify the part of the integrand that you 
should split off and move to the right.

4 Integrate cos sin3 4x x dx.

5 Integrate csc cot4 4x x dx.

6 Integrate sec tan5 3x x dx .

For trigonometric substitution Problems 7 to 9, you should do two preliminary things. First, 

determine the u and the a, then set sin , tan , sec or  or  equal to u
a

. This is part of Step 1 in 

the solutions to the example problems in the text. (Your answer to this first part of the prob-

lem should look something like sin 3
2
x .) Second, find which trig function is represented by 

the radical over the a. This is part of Step 3 in the example solutions. (Your answer to this 

second part of the problem should look something like sec 9 4
2

2x .)

7 Integrate x

x
dx

2

29 4
.

8 Integrate x
x

dx
2 4 .

Whaddya Know? Chapter 16 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

For this 12-question integration quiz, I’m going to cut you some slack and ask you to provide 
only a couple preliminary steps for each problem. You do not need to complete the integration. 
(I’ll supply the final answers for those who feel like finishing the problems.)

For integration-by-parts Problems 1 to 3, identify/determine the u, du, v, and dv.
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9 Integrate x

x
dx

3

21 25
.

For partial-fraction Problems 10 to 12, do two things. First, write the partial fraction decom-
position (Step 2 in the solutions to the example problems in the text). Second, solve for the 
capital-letter unknowns (this is Step 4 in the solutions in the text).

10 Integrate 2

1

2

2 2
x

x
dx.

11 Integrate 4
2 42

x
x x

dx.

12 Integrate 60
1 2 3 4x x x x

dx.
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Answers to Chapter 16 Quiz
1 u x du dx v x dv x dx, , tan , sec    

2

(The final answer for go-getters is x x x Ctan ln cos .)

2 u x du
x
x
dx v x dv x dxln sin ,

cos
sin

, sin , cos    

(The final answer is sin ln sinx x C1 .)

3 u x du
x
dx v

x
dv x dxln , , ,3

4
33

4
   

(The final answer is 
x

x C
4

3

16
4 3ln .)

4 Split off cos x.

(The final answer is 
1
7

1
5

7 5sin sinx x C .)

5 Split off csc2 x.

(The final answer is 
1
7

1
5

7 5cot cotx x C .)

6 Split off sec tanx x .

(The final answer is 
1
7

1
5

7 5sec secx x C .)

7 sin cos
2
3

9 4
3

2x x
; 

(The final answer is 
9

16
2
3

1
8

9 41 2sin
x

x x C .)

8 sec tan
x x
2

4
2

2

; 

(The final answer is x
x

C2 1
2

4 2
4

2
tan .)

9 tan sec5 1 25 2x x; 

(The final answer is 
1

75
1 25

2
1875

1 252 2 2x x x C .)

10 2

1 1 1
0 2 0 2

2

2 2 2 2 2

x

x

Ax B
x

Cx D

x
A B C D;    , , ,

(The final answer is tan 1
2 1

x
x

x
C .)

11 4
2 4 2 4

1 1 22 2

x
x x

A
x

Bx C
x

A B C;   , ,

(The final answer is ln ln tanx x
x

C2
1
2

4
2

2 1 .)

12 60
1 2 3 4 1 2 3 4x x x x

A
x

B
x

C
x

D
x

; A B C D3 2 3 2, , ,   

(The final answer is 3 1 2 2 3 3 2 4ln ln ln lnx x x x C.)
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Who Needs Freud? 
Using the Integral to 
Solve Your Problems

As I say in Chapter 14, integration is basically just adding up small pieces of something to 
get the total for the whole thing — really small pieces, actually, infinitely small pieces. 
Thus, the integral

5

20

sec

sec

little piece of distance
.

.

tells you to add up all the little pieces of distance traveled during the 15-second interval from  
5 to 20 seconds to get the total distance traveled during that interval.

Chapter 17

IN THIS CHAPTER

 » One mean theorem: “The Golden 
Rule!? Don’t make me laugh.”

 » Adding up the area between 
curves

 » Figuring out volumes of odd 
shapes with the deli meat method

 » Mastering the disk and washer 
methods

 » Finding arc length and surface 
area

 » Other stuff you’ll never need
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In all problems, the little piece after the integration symbol is always an expression in x  
(or some other variable). For the above integral, for example, the little piece of distance might 
be given by, say, x dx2 , Then the definite integral

5

20
2x dx

would give you the total distance traveled during the time interval. Because you’re now an 
expert at computing integrals like this one, that’s no longer the issue; your main challenge in 
this chapter is simply to come up with the algebraic expression for the little pieces you’re add-
ing up. But before I begin the adding-up problems, I want to cover another integration topic: 
The Mean Value Theorem and a function’s average value.

The Mean Value Theorem for Integrals  
and Average Value

The best way to understand the Mean Value Theorem for integrals is with a diagram — look at 
Figure 17-1.

The graph on the left in Figure 17-1 shows a rectangle whose area is clearly less than the area 
under the curve between 2 and 5. This rectangle has a height equal to the lowest point on the 
curve in the interval from 2 to 5. The middle graph shows a rectangle whose height equals 
the highest point on the curve. Its area is clearly greater than the area under the curve. By now 
you’re thinking, “Isn’t there a rectangle taller than the short one and shorter than the tall one 
whose area is the same as the area under the curve?” Of course. And this rectangle obviously 
crosses the curve somewhere in the interval. This so-called “mean value rectangle,” shown 
on the right, basically sums up the Mean Value Theorem for integrals. It’s really just common 
sense. But here’s the mumbo jumbo.

The Mean Value Theorem for integrals: If f x  is a continuous function on the closed interval 
a b, , then there exists a number c in the closed interval such that

a

b

f x dx f c b a

FIGURE 17-1: 
A visual “proof” 

of the Mean 
Value Theorem 

for integrals.
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The theorem basically just guarantees the existence of the mean value rectangle. (Note that 
there can only be one mean value rectangle, but its top will sometimes cross the function  
more than once. Thus, there can be more than one c value that satisfies the theorem.)

The area of the mean value rectangle — which is the same as the area under the curve — equals 

length times width, or base times height, right? So, if you divide its area, 
a

b

f x dx, by its base, 

b a , you get its height, f c . This height is the average value of the function over the interval 
in question.

Average value: The average value of a function f x  over a closed interval a b,  is

1
b a

f x dx
a

b

which is the height of the mean value rectangle.

Q. What’s the average speed of a car between t 9 seconds and t 16 seconds whose speed 
in feet per second is given by the function f t t30 ?

A. Approximately 105.7 feet per second.

The definition of average value gives you the answer in one step: The average speed is 

1
16 9

30
9

16

t dt. Evaluate that integral and you’re done. (That’s all there is to it, so the 

following two-step process is somewhat superfluous. However, it shows the logic 
underlying the average value idea.)

1. Determine the area under the curve between 9 and 16.

9

16

3 2

9

16

30

30 2
3

t dt

t /

 30 128
3

54
3

740

This area, by the way, is the total distance traveled during the period from 9 to 16 
seconds, namely 740 feet. Do you see why? Consider the mean value rectangle for this 
problem. Its height is a speed (because the function values, or heights, are speeds) 
and its base is an amount of time, so its area is speed times time, which equals distance. 
Alternatively, recall that the derivative of position is velocity (see Chapter 12). So, the 
antiderivative of velocity — what I just did in this step — is position, and the change 
of position from 9 to 16 seconds gives the total distance traveled.

2. Divide this area, total distance, by the time interval from 9 to 16, namely 7.

Average speed
total distance

total time
 

 
 

feet
seconds
740

7
105..7 feet per second
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The definition of average value tells you to multiply the total area by 1
b a

, which in 

this problem is 1
16 9

1
7

, or . But because dividing by 7 is the same as multiplying by 1
7

, 

you can divide like I do in this step. It makes more sense to think about these prob-

lems in terms of division: Area equals base times height, so the height of the mean 
value rectangle equals its area divided by its base.

THE MVT FOR INTEGRALS AND FOR DERIVATIVES: 
TWO PEAS IN A POD
Remember the Mean Value Theorem for derivatives from Chapter 11? The graph on the left in the 
figure shows how it works for the function f x x 3. The basic idea is that there’s a point on the 
curve between 0 and 2 where the slope is the same as the slope of the secant line from 0 0,  to 

2 8,  — that’s a slope of 4. When you do the math, you get x 2 3
3

 for this point. Well, it turns 

out that the point guaranteed by the Mean Value Theorem for integrals — the point where the 
mean value rectangle crosses the derivative of this curve (shown on the right in the figure) — has 
the very same x-value. Pretty nice, eh?

If you really want to understand the intimate relationship between differentiation and integration, 
think long and hard about the many connections between the two graphs in the accompanying 
figure. This figure is a real gem, if I do say so myself. (For more on the differentiation/integration 
connection, check out my other favorites, Figures 15-9 and 15-10.)
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The Area between Two Curves —  
Double the Fun

This is the first of several topics in this chapter where your task is to come up with an expression 
for a little bit of something, then add up the bits by integrating. For this first problem type, the 
little bit is a narrow rectangle that sits on one curve and goes up to another. Let’s walk through 

an example: Find the area between y x2 2 and y x
1
2

 from x 0 to x 1. See Figure 17-2.

1 What’s the average value of 

f x
x

x 2 3
1

 from 1 to 3?

2 A car’s speed in feet per second is given 
by f t t t1 7 6 80. . What’s its aver-
age speed from t 5 seconds to t 15 
seconds? What’s that in miles per hour?

FIGURE 17-2: 
The area 
between 

y x2 2 and 

y x
1
2

 from 

x 0 to x 1.
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To get the height of the representative rectangle in Figure 17-2, subtract the y-coordinate of its 

bottom from the y-coordinate of its top — that’s 2 1
2

2x x . Its base is the infinitesimal dx. 

So, because area equals height times base,

Area of representative rectangle x x dx2 1
2

2

Now you just add up the areas of all the rectangles from 0 to 1 by integrating:

0

1
2

3 2

0

1

2 1
2

2 1
3

1
4

x x dx

x x x (power rule for all 33 pieces)

 square units2 1
3

1
4

0 0 0 17
12

Now to make things a little more twisted, in the next problem the curves cross (see Figure 17-3).  
When this happens, you have to split the total shaded area into two separate regions before  
integrating. Try this one: Find the area between x3  and x 3 from x 0 to x 2.

1. Determine where the curves cross.

They cross at 1 1, , so you’ve got two separate regions: one from 0 to 1 and another 
from 1 to 2.

2. Figure the area of the region on the left.

For this region, x3  is above x 3. So, the height of a representative rectangle is x x3 3, 

its area is height times base, or x x dx3 3 , and the area of the region is, therefore,

FIGURE 17-3: 
Who’s on top?
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0

1
3 3

4 3 4

0

13
4

1
4

3
4

1
4

0 0 1
2

x x dx

x x/

3. Figure the area of the region on the right.

In the right-side region, x 3 is above x3 , so the height of a rectangle is x x3 3  and thus 
you’ve got

 
1

2
3 3

4 4 3

1

2

3

1
4

3
4

4 3
2

1
4

3
4

4 5 1 5

2

x x dx

x x /

. . 22 2 613 .

4. Add up the areas of the two regions to get the total area.

0 5 2 61 3 11. . . square units

Height equals top minus bottom. Note that the height of a representative rectangle is always 
its top minus its bottom, regardless of whether these numbers are positive or negative. For 
instance, a rectangle that goes from 20 up to 30 has a height of 30 20, or 10; a rectangle that 
goes from 3 up to 8 has a height of 8 3 , or 11; and a rectangle that goes from 15 up to 10 
has a height of 10 15 , or 5.

If you think about this top-minus-bottom method for figuring the height of a rectangle,  
you can now see — assuming you didn’t already see it — why the definite integral of a function 
counts area below the x-axis as negative. (I mention this in Chapters 14 and 15.) For example, 
consider Figure 17-4.

FIGURE 17-4: 
What’s the 

shaded area? 
Hint: It’s not 

sin
/

x dx
0

3 2

.
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If you want the total area of the shaded region shown in Figure 17-4, you have to divide the 
shaded region into two separate pieces like you did in the last problem. One piece goes from 0 

to , and the other from  to 3
2

.

For the first piece, from 0 to , a representative rectangle has a height equal to the function 
itself, y xsin , because its top is on the function and its bottom is at zero — and of course, 
anything minus zero is itself. So, the area of this first piece is given by the ordinary definite 

integral sin x dx
0

.

But for the second piece from  to 3
2

, the top of a representative rectangle is at zero — recall 

that the x-axis is the line y 0 — and its bottom is on y xsin , so its height is 0 sin x, or just 
sin x . So, to get the area of this second piece, you figure the definite integral of the negative of 

the function, sin
/

x dx
3 2

, which is the same as   sin
/

x dx
3 2

.

Because this negative integral gives you the ordinary, positive area of the piece below the x-axis, 

the positive definite integral sin
/

x dx
3 2

 gives a negative area.

That’s why if you figure the definite integral sin
/

x dx
0

3 2

 over the entire span, the piece below 

the x-axis counts as a negative area, and the answer gives you the net of the area above the 
x-axis minus the area below the axis — rather than the total shaded area.

3 What’s the area enclosed by f x x 2 
and g x x ?

4 What’s the total area enclosed by 
f t t 3 and g t t 5?
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5 The lines y x, y x2 5, and 
y x2 3 form a triangle in the first 
and fourth quadrants. What’s the area 
of this triangle?

6 What’s the area of the triangular shape 
in the first quadrant enclosed by sin x , 

cos x, and the line y 1
2

? (I’m referring 

to the triangular shape that begins at 
about x 0 5.  and ends at about x 1.)

Volumes of Weird Solids: No, You’re  
Never Going to Need This

In geometry, you learned how to figure the volumes of simple solids like boxes, cylinders, and 
spheres. Integration enables you to calculate the volumes of an endless variety of much more 
complicated shapes. This section shows you the meat-slicer method, the disk method, and the 
washer method.

The meat-slicer method
This metaphor is actually quite accurate. Picture a hunk of meat being cut into very thin slices 
on one of those deli meat slicers. That’s the basic idea here. You slice up a three-dimensional 
shape, then add up the volumes of the slices to determine the total volume.

Here’s a problem: What’s the volume of the solid whose length runs along the x-axis from 0 to 
 and whose cross sections perpendicular to the x-axis are equilateral triangles such that the 

midpoints of their bases lie on the x-axis and their top vertices are on the curve y xsin ? Is 
that a mouthful or what? This problem is almost harder to describe and to picture than it is to 
do. Take a look at this thing in Figure 17-5.



530      UNIT 5  Integration and Infinite Series

So, what’s the volume?

1. Determine the area of any old cross section.

Each cross section is an equilateral triangle with a height of sin x . (The height of the 
second triangle from the left is shown in Figure 17-5 with the vertical dotted segment.) 

If you do the geometry, you’ll see that the base of each triangle is 2 3
3

 times its height, 

or 2 3
3

sin x. (Hint: Half of an equilateral triangle is a 30 60 90  triangle.) So, the 

triangle’s area, given by A bh
1
2

 is 1
2

2 3
3

sin sinx x, or 3
3

2sin x .

2. Find the volume of a representative slice.

The volume of a slice is just its cross-sectional area times its infinitesimal thickness, 
dx. So, you’ve got the volume of a slice:

Volume of representative slice x dx
3
3

2sin

3. Add up the volumes of the slices from 0 to  by integrating.

If the following seems a bit difficult, well, heck, you better get used to it. This is 
calculus after all. (Actually, it’s not really that bad if you go through it patiently,  
step by step.)

 

(trig integral

3
3

3
3

3
3

1 2
2

2

0

2

0

0

sin

sin

cos

x dx

x dx

x
dx

ss with sines and cosines,

Case 3, from Chapter 16)

3
6

1
0

dxx x dx
0

2cos

FIGURE 17-5: 
One weird 

hunk of 
pastrami.
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 3
6

2
2

3
6

0
2

2
0

2

0
0

x
xsin

sin sin

3
6

0 0 0

3
6

0 91. cubic units

It’s a piece o’ cake slice o’ meat.

Q. What’s the volume of the shape shown in the following figure? Its base is formed by the 
functions f x x  and g x x . Its cross sections are isosceles triangles whose 
heights grow linearly from zero at the origin to 1 when x 1.

A. The volume is 
2
5

 cubic units.

1. Always try to sketch the figure first (of course, I’ve done it for you here).

2. Indicate on your sketch a representative thin slice of the volume in question.

This slice should always be perpendicular to the axis or direction along which you are 
integrating. In other words, if your integrand contains, say, a dx, your slice should be 
perpendicular to the x-axis. Also, the slice should not be at either end of the three- 
dimensional figure or at any other special place. Rather, it should be at some arbi-
trary, nondescript location within the shape.

3. Express the volume of this slice.

It’s easy to show — trust me — that the height of each triangle is the same  
as its x-coordinate. Its base goes from x  up to x  and is thus 2 x . And its  
thickness is dx.

Therefore, Volume x x dx x xdxslice
1
2

2 .
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4. Add up the slices from 0 to 1 by integrating.

0

1

0

1
3 2 5 2

0

12
5

2
5

x xdx x dx x/ / cubic units

The disk method
The disk method is sort of a special case of the meat slicer method that you use when the cross-
section slices are all circles. So, the two methods are related, but your approach with the disk 
method is quite different. Here’s how it works. Find the volume of the solid — between x 2 
and x 3 — generated by rotating the curve y e x  about the x-axis. See Figure 17-6.

1. Determine the area of any old cross section.

Each cross section is a circle with radius e x. So, its area is given by the formula for the 
area of a circle, A r 2. Plugging e x into r gives you

A e ex x2 2

2. Tack on dx to get the volume of an infinitely thin representative disk.

Volume of disk e dxx

area thickness
2

��� ��� ��

FIGURE 17-6: 
A sideways 

stack of disks.
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3. Add up the volumes of the disks from 2 to 3 by integrating.

Total volume e dx

e dx

e dx

x

x

x

2

3
2

2

3
2

2

3
2

2
2

    (The two neww 2 s are to tweak the integral for

the -substitution     

’

u ;; see next line of equation.)

         (by subst
2

4

6

e duu iitution with and

          when  when

u x du dx

x u x

2 2

2 4 3

;

, ; ,  

cubic units

u

e

e e

u

6

2

2
548

4

6

6 4

)

A representative disk is located at no particular place. Note that Step 1 refers to “any 
old” cross section. I call it that because when you consider a representative disk like 
the one shown in Figure 17-6, you should focus on a disk that’s in no particular place. 
The one shown in Figure 17-6 is located at an unknown position on the x-axis, and its 
radius goes from the x-axis up to the curve y e x. Thus, its radius is the unknown 
length of e x. If, instead, you use some special disk like the left-most disk at x 2, 
you’re more likely to make the mistake of thinking that a representative disk has some 
known radius like e2. (This tip also applies to the meat-slicer method in the previous 
section and the washer method in the next section.)

The washer method
I could have put the washer method and the disk method in one section and called the section 
“The disk/washer method,” because the two methods are based on the very same idea. The only 
difference with the washer method is that each slice has a hole in its middle that you have to 
subtract. There’s nothing to it.

Here you go. Take the area bounded by y x 2 and y x , and generate a solid by revolving that 
area about the x-axis. See Figure 17-7.

Just think: All the forces of the evolving universe and all the twists and turns of your life have 
brought you to this moment when you are finally able to calculate the volume of this weird 
solid — something for your diary. So, what’s the volume of this bowl-like shape?

1. Determine where the two curves intersect.

It should take very little trial and error to see that y x 2 and y x  intersect at x 0 
and x 1 — how nice is that? So, the solid in question spans the interval on the x-axis 
from 0 to 1.
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2. Figure the cross-sectional area of a thin representative washer.

Each slice has the shape of a washer — see Figure 17-8 — so its cross-sectional area 
equals the area of the entire circle minus the area of the hole.

The area of the circle minus the hole is R r2 2, where R is the outer radius (the big 
radius) and r is the hole’s radius (the little radius). For this problem, the outer radius is 

x  and the hole’s radius is x 2, giving you

Area x x

x x

2 2 2

4

3. Multiply this area by the thickness, dx, to get the volume of a representative washer.

Volume x x dx4

FIGURE 17-8: 
The shaded 
area equals 

R r2 2.  
The whole 
minus the 

hole — get it?

FIGURE 17-7: 
A sideways 

stack of 
washers — just 

add up the 
volumes of all 

the washers.



CHAPTER 17  Who Needs Freud? Using the Integral to Solve Your Problems      535

4. Add up the volumes of the even-thinner-than-paper-thin washers from 0 to 1 by 
integrating.

Volume x x dx

x x dx

x x

0

1
4

0

1
4

2 5

0

11
2

1
5

1
2

1
55

0 0

3
10

0 94. cubic units

Area equals big circle minus little circle. Focus on the simple fact that the area of a washer is 
the area of the entire disk, R 2, minus the area of the hole, r 2: Thus, Area R r2 2. When 

you integrate, you get 
a

b

R r dx2 2 . If you factor out the pi, and bring it to the outside of the 

integral, you get 
a

b

R r dx2 2  which is the formula given in most books. But if you just learn 

that formula by rote, you might forget it. You’re more likely to remember the formula and how 

to do these problems if you understand the simple big-circle-minus-little-circle idea.

7 Use the meat-slicer method to determine the volume of the following solid. The solid’s 
base is on the x-y coordinate plane; it’s the area surrounded by y x 2, y x 2, and the 
line x = 1. Cross sections of the solid are squares perpendicular to the x-axis that rise up 
from the x-y plane. The base of each square runs from y x 2 to y x 2.
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8 Use the meat-slicer method to derive the formula for the volume of a pyramid with a 
square base (see the following figure). Hint: Integrate from 0 to h along the positive side 
of the upside-down y-axis. (I set the problem up this way because it simplifies it. You 
can draw the y-axis the regular way if you like, but then you get an upside-down pyra-
mid.) Your formula should be in terms of s and h.

9 Use the washer method to find the volume of the solid that results when the area 
enclosed by f x x  and g x x  is revolved around the x-axis.
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10 Same as Problem 9, but with f x x 2 and g x x4 .

11 Use the disk method to derive the formula for the volume of a cone. Hint: What’s your 
function? See the following figure. Your formula should be in terms of r and h.

Analyzing Arc Length
So far in this chapter, you’ve added up the areas of thin rectangles to get total area and the 
volumes of thin slices to get total volume. Now, you’re going to add up minute lengths along a 
curve to get the whole length.

I could just give you the formula for arc length (the length along a curve), but I’d rather show 
you why it works and how to derive it. Lucky you. The idea is to divide a length of curve into tiny 
sections, figure the length of each section, and then add up all the lengths. Figure 17-9 shows 
how each section of a curve can be approximated by the hypotenuse of a tiny right triangle.
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You can imagine that as you zoom in further and further, dividing the curve into more and 
more sections, the minute sections of the curve get straighter and straighter, and thus the 
perfectly straight hypotenuses become better and better approximations of the curve. That’s 
why — when this process of adding up smaller and smaller sections is taken to the limit — you 
get the precise length of the curve.

So, all you have to do is add up all the hypotenuses along the curve between your start and 
finish points. The lengths of the legs of each infinitesimal triangle are dx and dy, and thus the 
length of the hypotenuse — given by the Pythagorean Theorem — is

dx dy2 2

To add up all the hypotenuses from a to b along the curve, you just integrate:

a

b

dx dy2 2

A little tweaking and you have the formula for arc length. First, factor out a dx 2 under the 
square root and simplify:

a

b

a

b

dx
dy

dx
dx

dy
dx

2
2

2
2

2

1 1

Now you can take the square root of dx 2 — that’s dx, of course — and bring it outside the 
radical, and, voilà, you’ve got the formula.

Arc length formula: The arc length along a curve, y f x , from a to b, is given by the following 
integral:

Arc length
dy
dx

dx
a

b

 1
2

The expression inside this integral is simply the length of a representative hypotenuse.

FIGURE 17-9: 
The Pythago-

rean Theorem, 
a b c2 2 2 , is 
the key to the 

arc length 
formula.
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Try this one: What’s the length along y x 1 3 2/  from x 1 to x 5?

1. Take the derivative of your function.

y x

dy
dx

x

1

3
2

1

3 2

1 2

/

/

2. Plug this into the formula and integrate.

 

a

b dy
dx

dx

x dx

x dx

x

1

1 3
2

1

1 9
4

1

9
4

2

1

5
1 2

2

1

5

1

5

/

5
4

4
9

2
3

9
4

5
4

1 2

3 2

1

5

dx

x

(See how I got that? It’s the guess-and-check integration technique with the reverse 

power rule. The 4
9

 is the tweak amount you need because of the coefficient 9
4

.)

1
27

9 5 3 2

1

5

x / (Algebra questions are strictly prohibbited!)

units

1
27

40 1
27

4

8
27

10 1 9 07

3 3

3
.

Now if you ever find yourself on a road with the shape of y x 1 3 2/  and your odometer is 
broken, you can figure the exact length of your drive. Your friends will be very impressed — or 
very concerned.

12 Find the distance from 2 1,  to 5 10,  
with the arc length formula.

13 Confirm your answer to Problem 12 
with the distance formula.
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Surfaces of Revolution — Pass the Bottle 
’Round

A surface of revolution is a three-dimensional surface with circular cross sections, like a vase 
or a bell or a wine bottle. For these problems, you divide the surface into narrow circular bands, 
figure the surface area of a representative band, and then just add up the areas of all the bands 
to get the total surface area. Figure 17-10 shows such a shape with a representative band.

What’s the surface area of a representative band? Well, if you cut the band and unroll it, you 
get sort of a long, narrow rectangle whose area, of course, is length times width. The rectangle 
wraps around the whole circular surface, so its length is the circumference of the circular cross 
section, or 2 r , where r is the height of the function (for garden-variety problems anyway). The 
width of the rectangle or band is the same as the length of the infinitesimal hypotenuse you 

used in the section on arc length, namely 1
2dy

dx
dx . Thus, the surface area of a representa-

tive band, from length times width, is 2 1
2

r
dy
dx

dx , which brings you to the formula.

Surface of revolution formula: A surface generated by revolving a function, y f x , about an 
axis has a surface area — between a and b — given by the following integral.

Surface area r
dy
dx

dx r
dy
dx

dx
a

b

a

b

 2 1 2 1
2 2

If the axis of revolution is the x-axis, r will equal f x  — as shown in Figure 17-10. If the axis 
of revolution is some other line, like y 5, it’s a bit more complicated — something to look 
forward to.

FIGURE 17-10: 
The wine bottle 

problem. If 
you’re sick of 
calculus, chill 

out and take a 
look at Wine 

For Dummies.
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Now try one: What’s the surface area — between x 1 and x 2 — of the surface generated by 
revolving y x 3 about the x-axis? See Figure 17-11.

1. Take the derivative of your function.

y x

dy
dx

x

3

23

Now you can finish the problem by just plugging everything into the formula, but I’ll 
do it step by step to reinforce the idea that whenever you integrate, you write down a 
representative little bit of something — that’s the integrand — then you add up all the 
little bits by integrating.

2. Figure the surface area of a representative narrow band.

The radius of the band is x 3, so its circumference is 2 3x  — that’s the band’s “length.” 

Its width, a tiny hypotenuse, is 1 1 3
2

2 2dy
dx

dx x dx. And, thus, its area — 

length times width — is 2 1 33 2 2
x x dx.

FIGURE 17-11: 
A surface of 

revolution — 
this one’s 

shaped sort of 
like the end of 

a trumpet.
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3. Add up the areas of all the bands from 1 to 2 by integrating.

 

The 3

1

2
3 2 2

1

2
3 4

1

2
3 4

2 1 3

2 1 9

2
36

36 1 9

x x dx

x x dx

x x dx
( 66 is the tweak amount for the

-substitution; see next linu ee of equation.)

substitution with
18

1 9

10

145
1 2

4

u du
u x/ ( ,   

   when when

du x dx

x u x u

u

36

1 10 2 145

18
2
3

3

3 2

;

, ; , )

/

110

145

3 2 3 2

18
2
3

145 2
3

10

199 5

/ /

. square units

That’s a wrap.

14 What’s the surface area generated by revolving f x x
3
4

 from x 0 to x 4 about  
the x-axis?
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15 Confirm your answer to Problem 14 
with the formula for the lateral area of 
a cone, LA r, where  is the slant 
height of the cone.

16 What’s the surface area generated by 
revolving f x x  from x 0 to x 9 
about the x-axis?
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Practice Questions Answers and Explanations
1 The average value is 0.03.

Average value
total area

base

x

x
dx

  
2 3

1

3

1
3 1

Do this with a u-substitution.

    when  

    when  

  u x x u

du xdx x u

2 1 1 2

2 3 10

,

,

1
2

2

1
2

1
4

1
8
1
8

10 2

2 3
1

3

2

10

3

2
2

10

2 2

x

x
dx

du
u

u

00 03.

2 Its average speed is about 72.62 feet per second or 49.51 miles per hour.

Average speed
total

total time

t t dt

  
 

distance

1 7

5

15

6 80

1

.

55 5

1
2 7

3 80

10
554 73 675 1200 28 57 75

2 7 2

5

15

.

. .

.t t t

4400
10

72 62 49 51. .feet per second miles per hour

3 The area is 
1
3

.

1. Graph the functions.

You’re on your own with this graph.

2. Find the points of intersection.

They’re nice and simple: 0 0,  and 1 1, .

3. Find the area.

The rectangular slices have a height given by top minus bottom.

Area x x dx x x
0

1
2 3 2 3

0

12
3

1
3

2
3

1
3

1
3

/
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4 The area is 
1
6

.

1. Graph the functions.

You should see three points of intersection.

2. Find the points.

The points are 1 1, , 0 0, , and 1 1, .

3. Find the area on the left.

t 5 is above t 3, so Area t t dt t t
1

0
5 3 6 4

1

01
6

1
4

0 1
6

1
4

1
12

4. Find the area on the right.

t 3 is on top for this chunk; find the area, then add it to the left-side area. 

Area t t dt t t
0

1
3 5 4 6

0

11
4

1
6

1
4

1
6

1
12

Therefore, the total area is 1
12

1
12

, or 1
6

.

Note that had you observed that both t 3 and t 5 are odd functions, you could have reasoned 
that the two areas are the same, and then calculated just one of them and doubled the 
result.

5 The area is 6.

1. Graph the three lines.

2. Find the three points of intersection.

a. y x  intersects  y x2 5  at  x x2 5; x 5 and, thus, y 5.

b. y x  intersects  y x2 3  at  x x2 3; x 1 and, thus, y 1.

c. y x2 5  intersects  y x2 3  at  2 5 2 3x x ; x 2 and, thus, y 1.

3. Integrate to find the area from x 1 to x 2.

y x is on the top and y x2 3 is on the bottom, so

Area x x dx

x dx

x x

1

2

1

3

2

1

2

2 3

3 1

3 1
2

3 2 2 1
22

1 3
2
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4. Integrate to find the area from x 2 to x 5.

y x is on the top again, but, for this chunk, y x2 5 is on the bottom, thus

Area x x dx

x dx

x x

2

5

2

5

2

2

5

2 5

5

1
2

5

25
2

25 2 10 9
2

The grand total from Steps 3 and 4 equals 6.

Note that you didn’t need the y-coordinates of the three points of intersection of the three 
lines, but it’s nice to know them, because then you can see exactly where the triangle is.

Granted, using calculus for this problem is loads of fun, but it’s totally unnecessary. If you 
cut the triangle into two triangles — corresponding to Steps 3 and 4 — you can get the 
total area with simple coordinate geometry.

6 The area is 3 2
12

.

1. Do the graph and find the intersections.

a. From the example problem, you know that sin x  and cos x intersect at x
4

.

b. y
1
2

 intersects sin x  at sin x
1
2

, so x
6

.

c. y
1
2

 intersects cos x at cos x
1
2

, so x
3

.

2. Integrate to find the area from 
6

 to 
4

 and from 
4

 to 
3

.

Area x dx x dx

x x

/

/

/

/

sin cos

cos

6

4

4

31
2

1
2

1
2 /

/

/

/

sin
6

4

4

31
2

2
2 8

3
2 12

3
2 6

2
2

x x

8

3 2
12

 Cool answer, eh?

7 The area is 
4
5

.

You have to add up the square cross sections of this funny shape from 0 to 1. Each square has 
a base of x x2 2 , or 2 2x . The area of a square is the square of its base, of course, so each 
square cross section has an area of 4 4x . Finish by integrating:

   4

4
5

4
5

4

0

1

5

0

1

x dx

x
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8 The volume formula is 
1
3

2s h.

Using similar triangles, you can establish the following proportion: y
h

l
s

.

You want to express the side of your representative slice as a function of y (and the con-

stants, s and h), so that’s l ys
h

.

The volume of your representative square slice equals its cross-sectional area times its thick-
ness, dy, so now you have

Volume
ys
h

dyslice

2

Don’t forget that when integrating, constants behave just like ordinary numbers.

Volume
ys
h

dy
s
h

y dy
s
h

y
sh h h

pyramid
0

2 2

2
0

2
2

2
3

0

21
3 hh

h s h2
3 21

3
1
3

That’s the old familiar pyramid volume formula: 1
3

base height  — the hard way.

9 The volume is 
6

.

1. Sketch the solid, including a representative slice.

See the following figure.

2. Express the volume of your representative slice.

Volume R r dx x x dx x x dxwasher
2 2 2 2 2

3. Add up the infinite number of infinitely thin washers from 0 to 1 by integrating.

Total volume x x dx x x 
0

1
2 2 3

0

11
2

1
3

1
2

1
3 6
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10 The volume is 
2048

15
 cubic units.

1. Sketch the solid and a representative slice.

See the following figure.

2. Determine where the functions intersect.

The functions intersect at where f x g x , so

x x

x x

x x

2

2

4

4 0

4 0

Thus, x 0 and x 4, and the functions intersect at 0 0,  and 4 16, .

3. Express the volume of a representative washer.

Volume R r dx x x dx x x dxwasher
2 2 2 2 2 2 44 16

4. Add up the washers from 0 to 4 by integrating.

Total volume x x dx x x 
0

4
2 4 3 5

0

4

16 16
3

1
5

1024
3

10224
5

2048
15

11 The formula is Volume r h
1
3

2 .

1. Find the function that revolves about the x-axis to generate the cone.

The function is the line that goes through 0 0,  and h r,  . Its slope is thus r
h

, and its 

equation is therefore f x
r
h

x .

2. Express the volume of a representative disk.

The radius of your representative disk is f x  and its thickness is dx. Thus, its volume 
is given by

Volume f x dx
r
h

x dxdisk
2

2
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3. Add up the disks from x 0 to x h by integrating.

Don’t forget that r and h are constants that behave like ordinary numbers.

Volume
r
h

x dx
r

h
x dx

r
h

x
rh h h

cone
0

2 2

2
0

2
2

2
3

0

21
3 hh

h r h2
3 21

3
1
3

12 The distance is 3 10 .

1. Find a function for the “arc.”

It’s really a line, of course — that connects the two points. I’m sure you remember the 
point-slope formula from your algebra days:

y y m x x

y x

y x

1 1

1 3 2

3 5

2. Find y .

I hope you don’t have to look very far: y 3.

3. Plug into the formula.

Arc length dx x 
2

5
2

2

5
1 3 10 3 10

13 You should get the following:

Distance x x y y2 1
2

2 1
2 2 25 2 10 1 3 10

14 The surface area is 15 .

1. Sketch the function and the surface.

2. Plug the function and its derivative into the formula.

Surface area x dx x dx x 2 3
4

1 3
4

3
2

25
16

15
8

1
2

0

4 2

0

4
2

0

4

15

15 

1. Determine the radius and slant height of the cone.

From your sketch and the function, you can easily determine that the function goes 
through 4 3, ,  and that, therefore, the radius is 3 and the slant height is 5 (it’s the 
hypotenuse of a 3-4-5 triangle).

2. Plug into the formula.

Lateral rea r a  15

It checks.



550      UNIT 5  Integration and Infinite Series

16 The surface area is 
6

37 37 1 .

1. Plug the function and its derivative into the formula.

  f x x

f x
x

Surface area x
x

dx x
x

d

1
2

2 1 1
2

2 1 1
4

0

9 2

0

9

xx x dx2 1
4

0

9

2. Integrate.

2 2
3

1
4

4
3

37
4

1
4 6

37 37 1
3 2

0

9 3 2 3 2

x
/ / /

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 17 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

For Problems 1 and 2, use the function f x x x4 2 2.

1 Find the average value of the function over the interval 0 2, .

2 Find all points on f in the interval 0 2,  that have a height equal to f’s average value over that 
interval.

3 Find the area enclosed by f x xtan  and g x xsin 2 . (I’m only interested in the total 
area of the two enclosed areas that meet at the origin.)

4 Find the area enclosed by f x xln  and g x
e

e

x e1 1 1
1

 (Is that a cool function or 

what?) Hint 1: You can find the two points where f and g intersect by trial and error. Try plug-
ging in the two values of x that produce very simple values for g. Hint 2: e – 1 is just a number. 
Congrats to anyone who can get through the messiness of this problem to arrive at the beau-
tifully simple answer.

5 Use the meat-slicer method to determine the volume of the following solid. The solid’s base 
is on the x-y coordinate plane; it’s the area in the 1st and 4th quadrants surrounded by 
f x x 2, g x x, and x 2. Cross sections of the solid are rectangles perpendicular to the 
x-axis that rise up from the x-y plane. The base of each rectangle runs from g x x up to 
f x x 2; the height of each rectangle equals the square of its base.

6 Consider the area in the 1st quadrant enclosed by f x x 3 and g x x3 . What’s the volume 
of the solid generated by revolving that area about the x-axis?

7 Consider the area in the 1st quadrant enclosed by f x x 2 and g x x . What’s the volume 
of the solid generated by revolving that area about the line y 1?

8 Use the arc length formula to determine the distance from 1 0,  to 1 0,  in the x-y coordi-
nate plane. The answer is 2, duh! So, why in the world would you calculate this with the arc 
length formula? Just because.

9 Use the arc length formula to derive the formula for the circumference of a circle: C r2 . 
Hint: Use a circle centered at the origin, and determine the arc length of the semicircle in the 
1st and 2nd quadrants.

10 Use the surface of revolution formula to derive the formula for the lateral surface area of a 
right circular cylinder with a radius of r and a height of h: LSA rh2 .
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Answers to Chapter 17 Quiz
1 The average value over the interval 0 2,   is 

4
3

.

Piece o’ cake. Just use the average value formula:

Average alue
b a

f x dx

x x dx

x x

a

b

 v 1

1
2 0

4 2

1
2

2 2
3

2

0

2

2 3

0

2

1
2

8 16
3

0 0 4
3

2 In the interval 0 2,  , f reaches its average value at two points: 1
3
3

4
3

,   and 

1
3
3

4
3

,  .

Set f equal to the average value, and solve.

4 2 4
3

2 4 4
3

0

6 12 4 0

3 6 2 0

2

2

2

2

x x

x x

x x

x x

Finish with the quadratic formula:

x
6 36 4 3 2

6
6 12

6
1 3

3

You must check that these two x-values are within the given interval of 0 2, . Check. Done.

3 The total area is 1 2ln .

Set the functions equal to each other and solve to find out where they intersect:

tan sin

sin
cos

sin cos

sin cos sin

sin cos

x x

x
x

x x

x x x

x x

2

2

2 0

2

2

2 11 0
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Finish with the zero product property:

sin x 0     or     

2 1 0

1
2

2
2

2

2

cos

cos

cos

x

x

x

The first equation gives you x 0; the second gives you x x
4 4

 and  . (Well, each of 

those two equations actually has an infinite number of solutions, but the three solutions just 

mentioned are the only ones you need for the two enclosed areas that meet at the origin.) So, 

you’ve got an enclosed area in the 3rd quadrant from x
4

 to x 0 where tan x  is on top, 

and another enclosed area in the 1st quadrant from x 0 to x
4

 where sin 2x  is on top. 
You’re all set to finish:

Total area x x dx x x dx tan sin sin tan

ln se

2 2
4

0

0

4

cc cos cos ln sec

l

x x x x
1
2

2 1
2

2

0 1
2

4

0

0

4

nn ln

ln ln

2 0 0 2 1
2

0

1 2 2 1 2

4 The area is 3 – e.

f g1 1 and   both equal zero; and f e g e and   both equal 1. So, f and g intersect at 1 0,  

and e,  1 . Between x 1 and x e, ln x is above e
e

x e1 1 1
1

, so the area enclosed by f and g 

is given by

   ln

ln

x
e

e
dx

x dx
e

x ee

e x e

1 1

1

1

1 1

1
1

1
1

1
1

1

1

1

1 1

1

1

e
dx

x dx
e

e dx

x x x

e

e
x e

e

ln

ln ee x e e

e
e e x

e e
e

e e e

1
1

1

0 1 1
1

1

1 1
1

e

e
e e e

e e

1 1

1 1
1

1 2 2

1 2 3
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5 The volume is 73
17
35

.

You just have to add up the rectangular cross sections of this odd shape from 0 to 2. Each 
rectangle has a base of x x2 , or x x2 . The height of each rectangle is the square of its 

base, so each rectangle’s height is given by x x2 2
, or x x x4 3 22 . Area equals base times 

height, of course, so each rectangular cross section has an area of x x x x x2 4 3 22 , or 

x x x x6 5 4 33 3 . Finish by integrating:

   x x x x dx

x x x x

6 5 4 3

0

2

7 6 5 4

0

2

3 3

1
7

1
2

3
5

1
4

128
7

322 96
5

4 73 17
35

6 The volume is 
16
35

.

f x x 3 and g x x3  intersect at 0 1 1, , 0   and . The washer method gives you the 
volume:

Volume R r dx

x x dx

x x dx

x

a

b
2 2

3 2 3 2

0

1

2 3 6

0

1

3
5

55 3 7

0

11
7

3
5

1
7

16
35

x

7 The volume is 
29
30

.

Another washer method problem, but because you’re revolving the area about the line y 1 
instead of the x-axis, both R and r will have a length 1 greater than they would have had.

Volume R r dx

x x dx

x x x x

a

b
2 2

2 2 2

0

1

4 2

1 1

2 1 2 1

2 2

1
5

2
3

1
2

4
3

0

1

4 2 1 2

0

1

5 3 2 3 2

dx

x x x x dx

x x x x
0

1

1
5

2
3

1
2

4
3

29
30
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8 The length is 2.

You need the function which gives you the x-axis. That’s f x 0. Its derivative is f x 0. 
Now, just plug everything into the arc length formula:

Arc ength
dy
dx

dx dx dx x l 1 1 0 1 1
2

1

1

1

1

1

1

1
1 22

Big surprise.

9 C r2

The equation of a circle with radius r centered at the origin is x y r2 2 2. Solve for y to 
obtain a function of x: y r x2 2 . That’s the equation of the top half of the circle. You  
need its derivative for the arc length formula:

y r x

y r x x

x

r x

2 2 1 2

2 2 1 2

2 2

1
2

2

Plug this into the arc length formula, and integrate from –r to r to get the length of the top 
half of the circle (you’ll need to do some not-so-simple algebra):

Arc length
x

r x
dx

x
r x

dx

r x
r

r

r

r

r

 1

1

2 2

2

2

2 2

2 2

2 xx
x

r x
dx

r
r x

dx

r
r x

dx

r
r x

dx

r

r

r

r

r

r

r

r

2

2

2 2

2

2 2

2 2

2 2

1

1

r
x
r

r r

r

r

arcsin

2 2

That’s the arc length of your semicircle, so that gives you 2 r  for the circle’s circumference.
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10 See the following explanation.

To create a right circular cylinder with radius r, just take the line y r  and revolve it about 
the x-axis. You need the derivative of this horizontal line for the surface of revolution for-
mula. The slope and derivative of any horizontal line is, of course, zero. The cylinder has a 
height of h, so you need to integrate from 0 to h. Now you’ve got everything you need for the 
surface of revolution formula:

Surface area r
dy
dx

dx

r dx

r dx

r x

a

b

h

h

 2 1

2 1 0

2

2

2

2

0

0

0 2h rh
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Taming the Infinite with 
Improper Integrals

The main topic of this chapter is really amazing when you stop and think about it: cal-
culating the area (or volume) of shapes that are infinitely long. The word infinity comes 
up in mathematics so often that perhaps we become jaded about the concept and forget 

how truly incredible it is. It’s about 93 million miles from the Earth to the Sun. That distance 
is so great that it’s nearly impossible to wrap our minds around it, but it’s nothing compared 
to the distance to Alpha Centauri A (the nearest star), which is 4.24 light-years away — about 
268,000 times as far as the distance to the Sun. Our Milky Way Galaxy is about 100,000 light-
years across, and it’s about 4.5 million light-years to our nearest spiral galaxy neighbor, the 
Andromeda Galaxy. Go out about 10,000 times that far and you reach the “edge” of the observ-
able universe at about 46 or 47 billion light-years away. That’s definitely quite a ways out 
there, but it’s nothing compared to infinity.

The shapes you deal with in this chapter are not just bigger than the entire universe; they’re 
so big that they make the universe seem like a speck of dust by comparison. And, yet, using 
the powerful tools of calculus (including L’Hôpital’s rule), you’re able to compute the area of 
these gargantuan shapes. And some of them turn out to have nice, manageable areas like, say, 
10 square inches! It’s time to get started. Next stop: the twilight zone.

Chapter 18

IN THIS CHAPTER

 » The hospital rule — in case 
studying calculus makes you ill

 » Meeting integrals without 
manners

 » The paradox of Gabriel’s horn
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L’Hôpital’s Rule: Calculus for the Sick
L’Hôpital’s rule is a great shortcut for doing limit problems. Remember limits — from way 

back in Chapters 7 and 8 — like lim
x

x
x3

2 9
3

? By the way, if you’re wondering why I’m showing 

you this limit shortcut now, it’s because (a) you may need it to solve some improper integral 
problems (the topic of the next section in this chapter), and (b) you’ll need it for some of the 
infinite series problems in Chapter 19.

As with most limit problems — not counting no-brainer problems — you can’t do lim
x

x
x3

2 9
3

 

with direct substitution: Plugging 3 into x gives you 0
0

, which is undefined. In Chapter 8, you 

learn to do this problem by factoring the numerator into x x3 3  and then canceling the 
x 3 . That leaves you with lim

x
x

3
3 , which equals 6.

Now watch how easy it is to do this limit with L’Hôpital’s rule. Simply take the derivative of 
the numerator and the derivative of the denominator. Don’t use the quotient rule; just take  
the derivatives of the numerator and denominator separately. The derivative of x 2 9 is 2x  
and the derivative of x 3 is 1. L’Hôpital’s rule lets you replace the numerator and denominator 
by their derivatives like this:

lim lim
x x

x
x

x
3

2

3

9
3

2
1

The new limit is a no-brainer: lim
x

x
3

2
1

2 3
1

6

That’s all there is to it. L’Hôpital’s rule transforms a limit you can’t do with direct substitution 
into one you can do with substitution. That’s what makes it such a great shortcut.

Here’s the mumbo jumbo.

L’Hôpital’s rule: Let f and g be differentiable functions. If the limit of 
f x
g x

 as x approaches c 

produces 0
0

 or  when you substitute the value of c into x, then

lim lim
x c x c

f x
g x

f x
g x

Note that c can be a number or . And note that in the  over  case, both infinities can be 
of the same sign or one can be positive and the other negative.

Here’s a problem involving : What’s lim ln
x

x
x

? Direct substitution gives you , so you can use 

L’Hôpital’s rule. The derivative of ln x is 1
x

, and the derivative of x is 1, so

lim ln lim
x x

x
x

x
1

1

1

1
0
1

0
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Here’s another one: Evaluate lim
x

xe
x0

3 1. Substitution gives you 0
0

 so L’Hôpital’s rule applies. 

The derivative of e x3 1 is 3 3e x and the derivative of x is 1, thus

lim lim
x

x

x

xe
x

e
0

3

0

31 3
1

3 1
1

3

You must have zero over zero or infinity over infinity. The mumbo jumbo says that to  

use L’Hôpital’s rule, substitution must produce either 0
0

 or . You must get one of these 

acceptable “indeterminate” forms in order to apply the shortcut. Don’t forget to check this.

Getting unacceptable forms into shape
If substitution produces one of the unacceptable forms, 0 or , you first have to tweak 
the problem to get an acceptable form before using L’Hôpital’s rule.

For instance, find lim
x

xe x . Substituting infinity into x gives you 0  so you’ve got to  
tweak it:

lim lim
x

x

x xe x
x

e

Now you’ve got the  case, so you’re all set to use L’Hôpital’s rule. The derivative of x  is 1
2 x

,  

and the derivative of e x is e x, so

lim lim
x x x x

x
e

x
e e

1
2

1
2

1
0 0

Here’s another problem: What’s lim
cosx x x0

1
1

1 ? (Recall from Chapter 7 that lim
x 0

 means 

that x approaches 0 from the right only; this is a one-sided limit.) First, substitute zero into x 
(actually, since x is approaching zero from the right, you must imagine plugging a tiny positive 
number into x, or you can sort of think of it as plugging a “positive” zero into x). Substitution 

gives you 1
1 0 999999

1
0. ...

, which results in , one of the unacceptable forms. So, tweak 

the limit expression with some algebra:

  lim
cos

lim
cos

cos
cos

x

x

x x

x
x x

x
x x

0

0

1
1

1

1
1
1

lim cos
cosx

x x
x x0

1
1
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Now substitution gives you 0
0

, so you can finish with L’Hôpital’s rule:

  lim cos
cos

lim sin
cos s

x

x

x x
x x

x
x x

0

0

1
1

1
1 1 iin x

1 0
1 0 0 0
1

0
 

That’s it.

Looking at three more unacceptable forms
When substitution of the arrow-number into the limit expression produces one of the  
unacceptable forms 1 00, , or 0, you use the following logarithm trick to turn it into an 
acceptable form.

Q. Find lim sin
x

xx
0

.

A. The limit equals 1. 

Substitution gives you sin0 0, which equals 00, so you do the following:

1. Set the limit equal to y.

y x
x

xlim sin
0

2. Take the log of both sides.

ln ln lim sin

lim ln sin (

y x

x

x

x

x

x

0

0
  Take my word  for it

Better review the log rules 

.)

lim ln sin (
x

x x
0

iin

Chapter 4 if you don t get this ’ .)

3. This limit is a 0 ( ) case, so tweak it.

lim
ln sin

x

x

x
0 1
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4. Now you’ve got a 
 

 case, so you can use L’Hôpital’s rule.

The derivative of ln sin x  is 1
sin

cos
x

x, or cot x , and the derivative of 1
x

 is 1
2x
, so

 lim
ln sin

lim cot

lim

x

x

x

x

x

x

0

0
2

1

1

xx

x
x0

2

tan

5. This is a 
0
0

 case, so use L’Hôpital’s rule again.

lim
secx

x
x0

2
2 0

1
0

Hold your horses! This is not the answer.

6. Solve for y.

Do you see that the answer of 0 in Step 5 is the answer to the equation from way  

back in Step 2: ln ln lim siny x
x

x

0
? So, the 0 in Step 5 tells you that ln y 0.  

Now solve for y:

ln y

y

0

1

Because you set your limit equal to y in Step 1, this, finally, is your answer:

lim sin
x

xx
0

1

Ordinary math doesn’t work with infinity (or zero to the zero power). Don’t make the mistake 
of thinking that you can use ordinary arithmetic or the laws of exponents when dealing with 
any of the acceptable or unacceptable indeterminate forms. It might look like  should 

equal zero, for example, but it doesn’t. By the same token, 0 0, 0
0

1, 1, 0 10 , 0 1, 
and 1 1.
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1 What’s lim
x

x

x
/

cos
2

2

? 2 lim
x

x
x0 2

1 cos ?

3 Evaluate lim
x

x x
/

tan sec
4

1 6 . 4 What’s lim
x x x0

1 1
sin

?

5 Evaluate lim
x

x x
0

csc log . 6 What’s lim
x

xx
0

11 / ?
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Improper Integrals: Just Look at the Way  
That Integral Is Holding Its Fork!

Definite integrals are improper when they go infinitely far up, down, right, or left. They go up or 

down infinitely far in problems like 
2

4 1
3x

dx  that have one or more vertical asymptotes. They 

go infinitely far to the right or left in problems like 
5

2
1
x

dx or 1
14x

dx , where one or both of 

the limits of integration are infinite. (There are a couple other weird types of improper inte-
grals, but they’re rare — don’t worry about them.) It would seem to make sense to just use the 
term infinite instead of improper to describe these integrals, except for the remarkable fact that 
many of these “infinite” integrals give you a finite area. More about this in a minute.

You solve both types of improper integrals by turning them into limit problems. Take a look at 
how it works.

Improper integrals with vertical asymptotes
There are two cases to consider here: problems where there’s a vertical asymptote at one of the 
edges of the area in question and problems where there’s a vertical asymptote somewhere in 
the middle of the area.

A vertical asymptote at one of the limits of integration
What’s the area under y

x
1

2  from 0 to 1? This function is undefined at x 0, and it has a  

vertical asymptote there. So, you’ve got to turn the definite integral into a limit where c 
approaches the x-value of the asymptote:

0

1

2
0

1

2
1 1
x

dx
x

dx
c c

lim (The area in question is to the rigght of zero,

so approaches zero from the rightc

c

.)

lim
0

1
xx

c

c

c

1

0
1 1

1

(reverse power rule)

 

lim

1

This area is infinite, which probably doesn’t surprise you because the curve goes up to infinity. 
But hold on to your hat — the next function also goes up to infinity at x 0, but its area is finite!
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Find the area under y
x
1

3  from 0 to 1. This function is also undefined at x 0, so the process 

is the same as in the previous problem:

0

1

3
0

1

3

0

2 3
1

1 1

3
2

x
dx

x
dx

x

c c

c c

lim

lim /   (reverse poower rule)

lim /

c
c

0

2 33
2

3
2

3
2

0 3
2

Convergence and divergence: You say that an improper integral converges if the limit exists — 
that is, if the limit equals a finite number like in the second problem. Otherwise, an improper 
integral is said to diverge — like in the first problem. When an improper integral diverges, the 
area in question (or part of it) usually (but not always) equals infinity or negative infinity.

A vertical asymptote between the limits of integration
If the undefined point of the integrand is somewhere in between the limits of integration, you 
split the integral in two — at the undefined point — then turn each integral into a limit and go 

from there. Evaluate 
1

8

3
1
x

dx . This integrand is undefined at x 0.

1. Split the integral in two at the undefined point.

1

8

3
1

0

3
0

8

3
1 1 1
x

dx
x

dx
x

dx

2. Turn each integral into a limit and evaluate.

For the 
1

0

 integral, the area is to the left of zero, so c approaches zero from the left. For 

the 
0

8

 integral, the area is to the right of zero, so c approaches zero from the right.

lim lim

lim l/

c

c

c c

c

c

x
dx

x
dx

x

0 1
3

0

8

3

0

2 3

1

1 1

3
2

iim

lim lim

/

/ /

c c

c c

x

c c

0

2 3
8

0

2 3

0

2 3

3
2

3
2

3
2

6 3
2

3
2

6 4 5.

Keep your eyes peeled for x-values where an integrand is undefined. If you fail to notice that 
an integrand is undefined at an x-value between the limits of integration, and you integrate the 

ordinary way, you may get the wrong answer. The above problem, 
1

8

3
1
x

dx  (undefined at x 0), 

happens to work out correctly if you do it the ordinary way. However, if you do 
1

1

2
1
x

dx  (also 
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undefined at x 0) the ordinary way, not only do you get the wrong answer, but you get the 
totally absurd answer of negative 2, despite the fact that the area in question is above the x-axis 
and is therefore a positive area. The moral: Don’t risk it.

If a part diverges, the whole diverges. If either part of the split-up integral diverges, the origi-
nal integral diverges. You can’t get, say,  for one part and  for the other part and add them 
up to get zero.

Improper integrals with one or two  
infinite limits of integration
You do these improper integrals by turning them into limits where c approaches infinity or 
negative infinity.

Integrals with one infinite limit of integration

Let’s look at two somewhat-similar problems: 
1

2
1
x

dx  and 
1

1
x

dx.

1
2

1
2

1

1 1

1

1 1
1

x
dx

x
dx

x

c

c

c

c

c

c

lim

lim

lim

0 1 1

So, this improper integral converges.

In the next improper integral, the denominator is smaller, x instead of x 2, and thus the fraction 

is bigger, so you’d expect 
1

1
x

dx  to be bigger than 
1

2
1
x

dx, which it is. But it’s not just bigger, 

it’s way bigger:

1 1

1

1 1

1

0

x
dx

x
dx

x

c

c

c

c

c

c

lim

lim ln

lim ln ln

This improper integral diverges.

Figure 18-1 shows these two functions. The area under 1
2x
 from 1 to  is exactly the same as the 

area of the 1-by-1 square to its left: 1 square unit. The area under 1
x

 from 1 to  is much, much 

bigger — actually, it’s infinitely bigger than a square large enough to enclose the Milky Way 
Galaxy. Their shapes are quite similar, but their areas couldn’t be more different.
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By the way, these two functions make another appearance in Chapter 19, which covers infinite 
series. Deciding whether an infinite series converges or diverges — a distinction quite similar 
to the difference between these two functions — is one of the main topics in Chapter 19.

Integrals with two infinite limits of integration
When both of the limits of integration are infinite, you split the integral in two and turn each 
part into a limit. Splitting up the integral at x 0 is convenient because zero’s an easy number 
to deal with, but you can split it up anywhere you like. Zero may also seem like a good choice 
because it looks like it’s in the middle between   and . But that’s an illusion because there 
is no middle between   and , or you could say that any point on the x-axis is the middle.

Same warning as the one in the section, “A vertical asymptote between the limits of integra-
tion.” If either “half” of the split-up integral diverges, the whole, original integral diverges.

Q. Evaluate 1
12x

dx.

A. The area equals .

1. Split the integral in two.

1
1

1
1

1
12

0

2
0

2x
dx

x
dx

x
dx

2. Turn each part into a limit.

lim lim
c

c
c

c

x
dx

x
dx

0

2
0

2
1

1
1

1

3. Evaluate each part and add up the results.

lim tan lim tan

lim tan tan
c c c

c

c

x x1 0 1
0

10 11 1 10

0
2 2

0

c c
c
lim tan tan

Why don’t you do this problem again, splitting up the integral somewhere other than 
at x 0, to confirm that you get the same result.

FIGURE 18-1: 
The area under 
1

2x
 from 1 to  

and the area 

under 1
x

  

from 1 to .
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7 Evaluate 
32

1

5
dx
x

. 8 Compute x x dxln
0

6

.

9 
1

2 1

dx

x x
? Hint: Split up at x 2. 10 What’s 

1
3

dx

x
?

11 
1

1
x

xdxarctan ? Hint: Use the  

example problem from a couple  

pages back, 
1

1
x

dx .

12 1
x

dx ? Hint: Break into four parts.
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Blowing Gabriel’s horn
This horn problem may blow your mind.

Gabriel’s horn is the solid generated by revolving about the x-axis the unbounded region 

between y
x
1  and the x-axis (for x 1). See Figure 18-2. Playing this instrument poses several 

not-insignificant challenges: 1) It has no end for you to put in your mouth; 2) Even if it did, it 
would take you till the end of time to reach the end; 3) Even if you could reach the end and put it 
in your mouth, you couldn’t force any air through it because the hole is infinitely small; 4) Even 
if you could blow the horn, it’d be kind of pointless because it would take an infinite amount 
of time for the sound to come out the other end. There are additional difficulties — infinite 
weight, doesn’t fit in universe, and so on — but I suspect you get the picture.

Believe it or not, Gabriel’s horn has a finite volume, but an infinite surface area! You use the disk 
method to figure its volume (see Chapter 17). Recall that the volume of each representative disk 

is r dx2 . For this problem, the radius is 1
x

, so the little bit of volume is 1 2

x
dx . You find the 

total volume by adding up the little bits from 1 to infinity:

Volume
x

dx
x

dx
1

2

1
2

1 1

In the section on improper integrals, we calculated that 
1

2
1 1
x

dx , so the volume is 1, or  
just .

To determine the surface area, you first need the function’s derivative (the method for calcu-
lating surface area is covered in Chapter 17):

y
x

dy
dx x

1

1
2

FIGURE 18-2: 
Gabriel’s horn.
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Now plug everything into the surface area formula:

Surface rea
x x

dx

x x

a

dx

 2 1 1 1

2 1 1 1

1
2

2

1
4

In the previous section, we determined that 
1

1
x

dx , and because 1 1 1
4x x

 is always greater 

than 1
x

 in the interval [ , )1  , 
1

4
1 1 1
x x

dx  must also equal . Finally, 2  times  is still , of 

course, so the surface area is infinite.

Bonus question for those with a philosophical bent: Assuming Gabriel is omnipotent, could he 
overcome the above-mentioned difficulties and blow this horn? Hint: All the calculus in the 
world won’t help you with this one.
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Practice Questions Answers and Explanations
1 lim

cos
/x

x

x
2

2

1

1. Plug in: 
0
0

 — onward!

2. Replace the numerator and denominator with their derivatives: lim
sin

/x

x
2 1

.

3. Plug in again: 
sin

2
1

1

2 lim
cos

x

x
x0 2

1 1
2

1. Plug in: 
0
0

; no worries.

2. Replace with derivatives: lim
sin

x

x
x0 2

3. Plug in: 
0
0

 again, so repeat.

4. Replace with derivatives again: lim
cos

x

x
0 2

5. Finish: 
cos 0

2
1
2

3 lim tan sec
/x

x x
4

1 6
1
3

1. Plugging in gives you 0 , so on to Step 2.

2. Rewrite: lim
tan
cos/x

x
x4

1
6

0
0

. Copasetic.

3. Replace with derivatives: lim
sec
sin/x

x
x4

2

6 6

4. Plug in to finish: 
sec

sin

2

4

6 3
2

2
6

1
3

4 lim
sinx x x0

1 1
0

1. Plugging in gives you , so you have to tweak it.

2. Rewrite by adding the fractions: lim
sin
sin

x

x x
x x0

That’s a good bingo: 0
0

3. Replace with derivatives: lim
cos

sin cosx

x
x x x0

1

That’s 0
0

 again, so use L’Hôpital’s rule a second time.

4. Replace with derivatives: lim
sin

cos cos sinx

x
x x x x0

5. Plug in to finish: 
0

2 0
0
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5 lim csc log
x

x x
0

This limit equals , which equals . You’re done! L’Hôpital’s rule isn’t 
needed. You gotta be on your toes.

6 lim /

x

xx e
0

11

1. This is a 1  case.

2. Set your limit equal to y and take the natural log of both sides.

y x

y x

x

x

x

x

lim
0

1

0

1

1

1

/

/ln ln lim

3. I give you permission to pull the limit to the outside.

ln lim ln /y x
x

x

0

11

4. Use the log of a power rule.

ln lim lny
x

x
x 0

1 1

5. Plugging in gives you a 0 case, so rewrite.

ln
ln

y
x

xx
lim

0

1

6. Now you’ve got a 
0
0

 case — I’m down with it.

7. Replace with derivatives.

ln y x
x
lim

0

1
1

1
1

8. Your original limit equals y, so you have to solve for y.

ln y

y e

1

7 
32

1

5 18 75
dx
x

.

1. The integrand is undefined at x 0, so break in two.

32

1

5
32

0

5
0

1

5
dx
x

dx
x

dx
x

2. Turn into one-sided limits.

lim lim
a

a

b b

dx
x

dx
x0 32

5
0

1

5
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3. Integrate.

lim lim
a

a

b b
x x

0

4 5

32 0

4 5
15

4
5
4

0 5
4

16 5
4

/ / 00 18 75.

8 
0

6

18 6 9x x dxln ln

1. The integral is improper because it’s undefined at x 0, so turn it into a limit.

lim
c c

x x dx
0

6

ln

2. Integrate by parts.

Hint: ln x is L from LIATE. You should obtain:

lim

lim

c c

c

x x x

c c

0

2 2
6

0

2

1
2

1
4

1
2

36 6 9 1
2

1
4

ln

ln ln cc

c c
c

2

0

218 6 9 1
2

ln lnlim

3. Time to practice L’Hôpital’s rule.

This is a 0  limit, so turn it into a  one:

18 6 9 1
2 10

2

ln lnlim
c

c

c

4. Replace the numerator and denominator with derivatives and finish.

18 6 9 1
2

1

2
18 6 9 1

2 2
18 6

0
3

0

2

ln ln lnlim lim
c c

c

c

c 9

9 
1

2 1 2
dx

x x

This is a doubly improper integral because it goes up to infinity and right to infinity. You 
have to split it up and tackle each infinite integral separately.

1. It doesn’t matter where you split it up; how about splitting it at 2, a nice, easy-to- 
deal-with number.

1

2

2
2

21 1

dx

x x

dx

x x

2. Turn each integral into a limit.

lim lim
a a

b

bdx

x x

dx

x x1

2

2
2

21 1
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3. Integrate.

lim lim

lim
a

a b

b

a

x x
1

2
2

1
2

arcsec arcsec

arcsec arcsecc arcsec arcsec

arcsec arcsec

a b
b
lim 2

2 0
2

2
2

10 
1

3
2

dx

x

1. Turn into a limit: = lim lim
c

c

c

c

x
dx x dx

1 1

3 2
3

1

2. Integrate and finish: lim lim
c

c

c
x c2 2 2 21 2 1 2

1

11 1

1
x

xdxarctan

No work is required for this one, “just” logic. You know from Problem 10 that 
1

1
x

dx . 

Now, compare 1

1
x

xdxarctan  to 
1

1
x

dx . But first note that because 
1

1
x

dx  equals infinity, so 

will 
10

1
x

dx, 
100

1
x

dx, or 1

1 000 000
x

dx
, ,

, because the area under 1
x

 from 1 to any other number must 

be finite.

From 3  to , arctan x 1; therefore, arctan x 1, and thus 1 1
x

x
x

arctan . Because 

3

1
x

dx  and because between 3  and , 1
x

xarctan  is always greater than 1
x

, 

3

1
x

xdxarctan  must also equal . Finally, because 1

3
x

xdxarctan  equals , 

1

1
x

xdxarctan  must as well.

Aren’t you glad no work was required for this problem?

12 1
x
dx  is undefined.

Quadruply improper!

1. Split into four parts.

1 1 1 1 11

1

0

0

1

1
x

dx
x

dx
x

dx
x

dx
x

dx
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2. Turn into limits.

lim lim lim lim
a

a b

b

c c
d

d

x
dx

x
dx

x
dx

1

0 1 0

1

1

1 1 1 1
xx

dx

3. Integrate.

lim lim lim lim
a a

b

b

c
c d

x x x xln ln ln ln1

0
1

0

1
1

0 0
1 1 1

d

a b c
a b clim ln lim ln lim ln liln ln ln mm ln

d
dln 1

4. Finish: 

Therefore, the limit doesn’t exist, and the definite integral is thus undefined.

Looks can be deceiving. If you look at the graph of y
x
1 , its perfect symmetry may make 

you think that 1
x

dx would equal zero. But — strange as it seems — it doesn’t work that 

way. And, to repeat the warning from earlier in this chapter, you can’t simplify Step 4 to 
 and sum that up to zero.

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 18 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

1 Find lim
x

x

x
e

10
.

2 Evaluate lim tan tan
x

x x x
2 2

.

3 What’s lim ln
x e

x
x e

1
2 2 ?

4 Evaluate lim
sin

x

x x

x1

3

2

1 1

1
.

5 Evaluate the following improper integrals.

(a) 3 2
0

3
x e dxx

(b) 4 3
0

4
x e dxx

(c) 5 4
0

5
x e dxx

6 Evaluate ln x dx
e

0

.

7 Find ln x dx
1

.

8 dx
x xln

?
0

1

9 Evaluate sec2

4

3 4

x dx.

10 Evaluate dx
x 23

1

10

.
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Answers to Chapter 18 Quiz
1 lim

x

x

x
e

10
0

Plugging infinity into x gives you , so you’re good to go for L’Hôpital’s rule. Replacing the 

numerator and denominator with their derivatives gives you lim
lnx

x

x
e

10 10
, which, again, 

results in . No problem; from time to time, you have to use L’Hôpital’s rule more than 

once. With this problem, however, repeated use of L’Hôpital’s rule gets you nowhere. Try it.

Tricked you! L’Hôpital’s rule is not needed here. Algebra I is all you need: lim lim .
x x

x

x

xe e
10 10

 

Any number, like e
10

, that’s between –1 and 1 gets smaller and smaller as you raise it to 

higher and higher powers, so the limit as x approaches infinity is zero.

When doing calculus (or any other type of math), don’t forget to try low-level ideas from 
pre-algebra, algebra I and II, geometry, trig, and so on.

2 lim tan tan
x

x x x
2 2

1

If you plug 
2

 in for x, you’ll have something minus itself, so you might think the answer 

should be zero. But it doesn’t work that way. Be careful: tan x  as x approaches 
2

 from the left 
equals infinity. And, don’t forget: 0!

You’ve got to do a little work so you’ll be able to apply L’Hôpital’s rule. First, factor the limit 

expression: lim tan
x

x x
2 2

. Now you’ve got an 0 case, which is usually quite easy to 

turn into one of the acceptable forms: 0
0

 or , to wit: lim
cotx

x

x2

2  is a 0
0

 case. Now you’re all 

set to finish with L’Hôpital’s rule:

lim lim
cot cscx x

x

x x2 2
2

2 1 1

3 lim
ln

x e

x
x e e

1 1
22 2 2

Plugging e into x gives you 0
0

, so you’re all set to use L’Hôpital’s rule:

lim lim limln
x e x e x e

x
x e

x
x x e

1
1

2
1

2
1

22 2 2 2
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(a) 3 12
0

3
x e dxx

3 3 12
0

2
0 03 3 3

x e dx x e dx ex x

c

x

cc c c
lim lim lim eec3

1 0 1

(b) 4 3
0

4
x e dxx  diverges.

4 4 13
0

3
0 04 4 4

x e dx x e dx ex x

c

x

cc c c
lim lim lim eec4

1

(c) 5 14
0

5
x e dxx

5 5 14
0

4
0 05 5 5

x e dx x e dx ex x

c

x

cc c c
lim lim lim eec5

1 0 1

6 ln x dx
e

0

0

ln ln ln llim lim limx dx x dx x x x e e c
e

c

e

c
e

c c c0 0 0 0
1 nnc c

In the final limit expression, everything equals zero or cancels, leaving only  lim ln
c

c c
0

. 

Plugging in gives you 0  for the limit expression, so you’ve got to rewrite the limit  

as  lim ln
c

c

c
0 1

, which is a  case that you can finish with L’Hôpital’s rule:

lim lim limln
c c c

c

c

c

c

c
0 0 0

2
1

1

1
0

4 lim
sin

x

x x

x1

3

2

1 1

1
2

This is another 0
0

 case, so replace the numerator and denominator with their derivatives, and 
then finish:

lim lim
sin cos

x x

x x

x

x x
x1 1

3

2

3 21 1

1

1 1 3
2

4
2

2

5 
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7 ln xdx
1

 diverges.

ln ln ln lnlim lim limxdx xdx x x x c c c
c c c

c
c

1 1
1 0 1

Plugging infinity into c in c c cln  gives you , so this looks like it might be a L’Hôpital’s 
rule problem. But all you need is a little algebra:

lim limln ln
c c

c c c c c0 1 1 1 1

By the way, if you look at the graph of y xln , it should be obvious that the area under the 
curve from 1 to infinity is infinite. The natural logarithm function rises from 1 0, , going to 
the right toward infinity and going infinitely high. The area, of course, is infinite. (Caution: 
While this argument is correct, your professor may not buy it.)

8 dx
x xln

0

1

 diverges.

dx
x x

dx
x x

dx
x x

dx
x x

d
c cc

ln ln ln

ln
lim lim

0

1

0

1 2

1 2

1

1 2

0 1

xx
x x

x x

c

c
c

c c

c

ln

ln ln ln ln

ln ln

lim lim

lim

1 2

1 2
1 2

0 1

0

11
2

1
2

1
2

1
2

1
ln ln ln ln ln ln

ln ln ln ln

limc c
c

9 sec2

4

3 4

x dx diverges.

The function y xsec2  has a vertical asymptote at x
2

 so you have to split the integral in 
two there. To wit —

sec sec seclim lim

lim

2

4

3 4

2

2

4 2

2
3 4

x d x xdx x dx
c c

c

c

cc c

c c

c
cx x

c
2

4
2

3 4

2
1

tan tan

tan

lim

lim lim
22

1

1 1

tanc
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Note that if you fail to notice that there’s a vertical asymptote between the limits of integra-
tion, and you do the definite integral the ordinary way, you’ll get the absurd answer of nega-
tive 2 despite the fact that the function is everywhere above the x-axis, which means that the 
area in question would have to be positive.

10 dx
x 23

1

10

This problem is quite similar to Problem 9; there’s a vertical asymptote between the limits of 
integration. So, split the integral in two at the asymptote:

dx
x

dx
x

dx
x

x

c c

c

c

c2 2 2

3
2

2

3
1

10

3
1

3

10

2 2

2

lim lim

lim 2 3

1

2 3
10

2 3

2

2

3
2

2

3
2

2 3

c

cc

c

x

c

lim

lim
22

6 3
2

2

3
2

6 4 5

2

2 3lim

.

c
c

Unlike with Problem 9, if you fail to notice the asymptote here and you do the definite inte-
gral the regular way, you’ll luck out and still get the correct answer. (But — unless your pro-
fessor is the world’s most lenient grader — you will certainly lose some points.)
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Infinite Series: Welcome 
to the Outer Limits

As with just about every topic in calculus, the subject of this chapter involves the idea of 
infinity — specifically, series that continue to infinity. An infinite series is the sum of 

an endless list of numbers like 1
2

1
3

1
4

1
5

. . . . Because the list is unending, it’s not 

surprising that such a sum can be infinite. What’s remarkable is that some infinite series add 
up to a finite number. This chapter covers ten tests for deciding whether the sum of a series is 
finite or infinite.

What you do in this chapter is quite fantastic when you think about it. Consider the series 
0 1 0 01 0 001 0 0001. . . . . . . . If you go out far enough, you’ll find a number that has so many 
zeros to the right of the decimal point that even if each zero were as small as a proton, there 
wouldn’t be enough room in the entire universe just to write it down! As vast as our universe 
is, anything in it — say, the number of elementary particles — is a proverbial drop in the 
bucket next to the things you look at in this chapter. Actually, not even a drop in the bucket, 
because next to infinity, any finite thing amounts to nothing. Maybe you’ve heard about the late  
astronomer, Carl Sagan, getting emotional about the “billions and billions” of stars in our  
galaxy. “Billions and billions” — pffffftt.

Chapter 19

IN THIS CHAPTER

 » Segueing from sequences into 
series

 » An infinite series — the rain delays 
just wouldn’t end

 » Getting musical with the harmonic 
series

 » Taking a close look at telescoping 
series

 » Rooting for the root test

 » Testing for convergence

 » Analyzing alternating series
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Sequences and Series: What They’re All About
Here’s a sequence: 1

2
1
4

1
8

1
16

, , , , . . .   . Change the commas to addition signs and you’ve got a 

series: 1
2

1
4

1
8

1
16

. . . . Pretty simple, eh? Investigating series is what this chapter is all 

about, but I need to briefly discuss sequences to lay the groundwork for series.

Stringing sequences
A sequence is simply a list of numbers. An infinite sequence is an unending list of numbers. That’s 
the only kind we’re interested in here, and whenever the term sequence (or series) is used alone 
in this chapter, it means an infinite sequence (or infinite series).

Here’s the general form for an infinite sequence:

a a a a an1 2 3 4, , , , . . . , , . . .   

where n runs from 1 (usually) to infinity (sometimes n starts at zero or another number).  
The fourth term of this sequence, for example, is a4 (read “a sub 4”); the nth term is an (read  
“a sub n”). The thing we care about is what happens to a sequence infinitely far out to the right, 
or as mathematicians say, “in the limit.” A shorthand notation for this sequence is an .

A few paragraphs back, I mentioned the following sequence. It’s defined by the formula an n
1

2
:

1
2

1
4

1
8

1
16

1
2

, , , , . . . , , . . .   n

What happens to this sequence as n approaches infinity should be pretty easy to see. Each term 
gets smaller and smaller, right? And if you go out far enough, you can find a term as close to 
zero as you want, right? So,

lim lim
n n n na

1
2

1
2

1 0

Recall from Chapters 7 and 8 how to interpret this limit: As n approaches infinity (but never 
gets there), an gets closer and closer to zero (but never gets there).

Convergence and divergence of sequences
Because the limit of the previous sequence is a finite number, you say that the sequence converges.

Convergence and divergence: For any sequence an , if lim
n na L, where L is a real number 

(which does not include infinity or negative infinity), then the sequence converges to L. Other-
wise, the sequence is said to diverge. (Note: These definitions are very similar to the definitions 
of these two terms that you saw in Chapter 18.)

Sequences that converge sort of settle down to some particular number — plus or minus some 
miniscule amount — after you go out to the right far enough. Sequences that diverge never 
settle down. Instead, diverging sequences might . . .
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 » Increase forever, in which case lim
n na . Such a sequence is said to “blow up.” A sequence 

can also have a limit of negative infinity.

 » Oscillate (go up and down) like the sequence  1 1 1 1 1 1 1 1, , , , , , , . . .      

 » Exhibit no pattern at all — this is rare.

Sequences and functions go hand in hand
The sequence 1

2
1
2

1
4

1
8

1
16

1
2n n, , , , . . . , , . . .    can be thought of as an infinite set of discrete 

points (discrete is a fancy math word for separate) along the continuous function f x x
1

2
. 

Figure 19-1 shows the curve f x x
1

2
 and the points on the curve that make up the sequence.

The sequence is made up of the outputs (the y-values) of the function where the inputs (the 
x-values) are the positive integers (1, 2, 3, 4, . . .).

A sequence and the related function go hand in hand. If the limit of the function as x approaches 
infinity is some finite number, L, then the limit of the sequence is also L, and thus, the sequence 
converges to L. Also, the graph of such a convergent function/sequence pair has a horizontal 
asymptote at y L; the graph in Figure 19-1 has an asymptote with the equation y 0.

Determining limits with L’Hôpital’s rule
Remember L’Hôpital’s rule from Chapter  18? You’re going to use it now to find limits of 

sequences. Does the sequence a n
n n

2

2
 converge or diverge? By plugging in 1, then 2, then 3, and 

so on into nn

2

2
, you generate the first few terms of the sequence:

1
2

1 9
8

1 25
32

36
64

49
128

64
256

, , , , , , , ,       

FIGURE 19-1: 
The points 

on the curve 
f x

x

1
2

 

make up the 
sequence 

1
2n

.
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What do you think? After going up for a couple terms, the sequence goes down and it appears 
that it’ll keep going down — looks like it will converge to zero. L’Hôpital’s rule proves it. You 

use the rule to determine the limit of the function f x
x

x

2

2
, which goes hand in hand with the 

sequence nn

2

2
.

Take two separate derivatives. To use L’Hôpital’s rule, take the derivative of the numerator and 
the derivative of the denominator separately; you do not use the quotient rule.

For this problem, you have to use L’Hôpital’s rule twice:

lim lim
ln

lim
ln lnx x x x x x

x x2

2
2

2 2
2

2 2 2
2 0

Because the limit of the function is zero, so is the limit of the sequence, and thus the sequence 
n

n

2

2
 converges to zero.

Summing series
An infinite series (or just series for short) is simply the adding up of the infinite number of terms 

of a sequence. Here’s the sequence from the previous section again, an n
1

2
:

1
2

1
4

1
8

1
16

, , , ,   

And here’s the series associated with this sequence:

1
2

1
4

1
8

1
16



You can use fancy summation notation to write this sum in a more compact form:

n
n

1

1
2

The summation symbol tells you to plug 1 in for n, then 2, then 3, and so on, and then to add up 
all the terms (more on summation notation in Chapter 14). Nitpickers may point out that you 
can’t actually add up an infinite number of terms. Okay, so here’s the fine print for the nitpick-
ers. An infinite sum is technically a limit. In other words,

n
n b n

b

n
1 1

1
2

1
2

lim

To find an infinite sum, you take a limit — just like you do for improper (infinite) integrals 

(see Chapter 18). From here on, though, I just write infinite sums like 
n

n
1

1
2

 and dispense with 
the limit mumbo jumbo.
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Partial sums
Continuing with the same series, take a look at how the sum grows by listing the “sum” of one 
term (kind of like the sound of one hand clapping), the sum of two terms, three terms, four, 
and so on:

S

S

S

S

Sn

1

2

3

4

1
2
1
2

1
4

3
4

1
2

1
4

1
8

7
8

1
2

1
4

1
8

1
16

15
16

1
2

.

.

.

1
4

1
8

1
16

1
32

1
64

1
2

2 1
2

... n

n

n

Each of these sums is called a partial sum of the series.

Definition of partial sum: The nth partial sum, Sn, of an infinite series is the sum of the first n 
terms of the series.

The convergence or divergence of a  
series — the main event
If you now list the preceding partial sums, you have the following sequence of partial sums:

1
2

3
4

7
8

15
16

, , , , . . .   

The main point of this chapter is figuring out whether such a sequence of partial sums con-
verges — homes in on a finite number — or diverges. If the sequence of partial sums converges, 
you say that the series converges; otherwise, the sequence of partial sums diverges and you 
say that the series diverges. The rest of this chapter is devoted to the many techniques used in 
making this determination.

By the way, if you’re getting a bit confused by the terms sequence and series and the connection 
between them, you’re not alone. Keeping these terms straight can be tricky. For starters, note 

that there are two sequences associated with every series. With the series 1
2

1
4

1
8

1
16

. . . ,  

for example, you have the underlying sequence, 1
2

1
4

1
8

1
16

, , , , . . .   , and also the sequence of 

partial sums, 1
2

3
4

7
8

15
16

, , , , . . .   . It’s not a bad idea to try to keep these things straight, but all 

you really need to worry about is whether the series adds up to some finite number or not. If it 
does, it converges; if not, it diverges. The reason for getting into the somewhat confusing notion 
of a sequence of partial sums is that the definitions of convergence and divergence are based 
on the behavior of sequences, not series. Now — don’t get me wrong — in mathematics, ter-
minology is important, but it’s the ideas that really matter, and, again, the important idea you 
need to focus on is whether or not a series sums up to a finite number.
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What about the previous series? Does it converge or diverge? It shouldn’t take too much imag-
ination to see the following pattern:

S

S

S

S

Sn n

1

2

3

4

1
2

1 1
2

3
4

1 1
4

7
8

1 1
8

15
16

1 1
16

1 1
2

.

.

.

Finding the limit of this sequence of partial sums is a no-brainer:

lim lim
n n n nS 1 1

2
1 1 1 0 1

So, this series converges to 1. In symbols,

n
n

1

1
2

1
2

1
4

1
8

1
16

1...

By the way, this may remind you of that paradox about walking toward a wall, where your first 
step is halfway to the wall, your second step is half of the remaining distance, your third step is 
half the remaining distance, and so on. Will you ever get to the wall? Answer: It depends. More 
about that later.

Convergence or Divergence?  
That Is the Question

This section contains nine ways of determining whether a series converges or diverges. (Then, 
in the next section on alternating series, you look at a final tenth test for convergence/diver-
gence.) Note that all of the series you investigate in this section are made up of positive terms.

A no-brainer divergence test: The nth term test
If the individual terms of a series (in other words, the terms of the series’ underlying sequence) 
do not converge to zero, then the series must diverge. This is the nth term test for divergence.



CHAPTER 19  Infinite Series: Welcome to the Outer Limits      587

The nth term test: If lim
n na 0, then an diverges. (I presume you figured out that with this 

naked summation symbol, n runs from 1 to infinity.)

(Note: The nth term test not only works for ordinary positive series like the ones in this section, 
but it also works for series with positive and negative terms. More about this at the end of this 
chapter in the section, “Alternating Series.”)

If you think about it, the nth term test is just common sense. When a series converges, the 
sum is homing in on a certain number. The only way this can happen is when the numbers 
being added are getting infinitesimally small  — like in the series I’ve been talking about: 
1
2

1
4

1
8

1
16

. . . . Imagine, instead, that the terms of a series are converging, say, to 1, like in 

the series 1
2

2
3

3
4

4
5

5
6

. . . , generated by the formula a n
nn 1

. In that case, when you add 

up the terms, you are adding numbers extremely close to 1 over and over and over forever — 
and this must add up to infinity. So, in order for a series to converge, the terms of the series 
must converge to zero. But make sure you understand what this nth term test does not say.

When the terms of a series converge to zero, that does not guarantee that the series converges. 
In hifalutin logicianese — the fact that the terms of a series converge to zero is a necessary but 
not sufficient condition for concluding that the series converges to a finite sum.

Because this test is often very easy to apply, it should be one of the first things you check when 
trying to determine whether a series converges or diverges.

If you’re asked to determine whether 
n

n

n1
1 1  converges or diverges, note that every term of 

this series is a number greater than 1 being raised to a positive power. This always results in a 
number greater than 1, and thus, the terms of this series do not converge to zero, and the series 
must therefore diverge.

Q. Does 
n

n
n1

1 1  converge or diverge?

A. The series diverges. You can answer this question with common sense if your calc 

teacher allows such a thing. As n gets larger and larger, 1 1
n

 increases and gets closer 

and closer to one. And when you take any root of a number like 0.9, the root is larger 

than the original number — and the higher the root index, the larger the answer is. So 

1 1
n

n  has to get larger as n increases, and thus lim
n

n
n

1 1  cannot possibly equal zero. 

The series, therefore, diverges by the nth term test.

If your teacher doesn’t like that approach, you can do the following: Plugging  into the 

limit produces 1 1 1/

, which is 10, and that equals 1 — you’re done. (Note that 10 is 

not one of the forms that give you a L’Hôpital’s rule problem — see Chapter 18.) 

Because lim
n

n
n

1 1  equals 1, 
n

n
n1

1 1  diverges by the nth term test. (If your teacher is a 

real stickler for rigor, they might not like this approach either because, technically, 
you’re not supposed to plug  into n even though it works just fine. Oh, well.)
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1 Does 
n

n n
n n1

2

2
2 9 8

5 20 12
 converge or 

diverge?

2 By the nth term test, does 
n n1

1   
converge or diverge?

Three basic series and their convergence/ 
divergence tests
In this subsection, you look at geometric series, p-series, and telescoping series. Geometric 
series and p-series are relatively simple but important series that, in addition to being interest-
ing in their own right, can be used as benchmarks when determining the convergence or diver-
gence of more complicated series. Telescoping series don’t come up much, but many calculus 
texts describe them, so who am I to buck tradition?

Geometric series
A geometric series is a series of the form

a ar ar ar ar ar
n

n2 3 4

0
...

The first term, a, is called the leading term. Each term after the first equals the preceding term 
multiplied by r, which is called the ratio.

For example, if a is 5 and r is 3, you get

5 5 3 5 3 5 3 5 15 45 1352 3 . . . . . .  

You just multiply each term by 3 to get the next term. By the way, the 3 in this example is called 
the ratio because the ratio of any term divided by its preceding term equals 3, but I think it 
makes a lot more sense to think of the 3 as your multiplier.
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If a is 100 and r is 0.1, you get

100 100 0 1 100 0 1 100 0 1 100 0 1

100 10 1 0 1 0

2 3 4. . . . ...

. .001 ...

If that rings a bell, you’ve got a good memory. It’s the series for the “Achilles versus the  
tortoise” paradox (go way back to Chapter 2).

And if a is 1
2

 and r is also 1
2

, you get the series I’ve been talking so much about:

1
2

1
4

1
8

1
16

...

The convergence/divergence rule for geometric series is a snap.

Geometric series rule: If 0 1r , the geometric series 
n

nar
0

 converges to a
r1

. If r 1, the 

series diverges. (Note that this rule works when 1 0r , in which case you get an alternating 
series; more about that at the end of this chapter.)

In the first example (a half a page back), a 5 and r 3, so the series diverges. In the second 

example, a is 100 and r is 0.1, so the series converges to 100
1 0 1

100
0 9

1111
9. .

. That’s the answer 

to the “Achilles versus the tortoise” problem: Achilles passes the tortoise after running 1111
9

 

meters. And in the third example, a 1
2

 and r 1
2

, so the series converges to 

1
2

1 1
2

1. This is 

how far you walk if you start 1 yard from the wall, then step halfway to the wall, then half of 
the remaining distance, and so on and so on. You take an infinite number of steps, but travel a 
mere yard. And how long will it take you to get to the wall? Well, if you keep up a constant speed 
and don’t pause between steps (which, of course, is impossible), you’ll get there in the same 
amount of time it would take you to walk any old yard. If you do pause between each step, even 
for a billionth of a second, you’ll never get to the wall.

p-series
A p-series is of the form

n
p p p p pn1

1 1
1

1
2

1
3

1
4

. . .

(where p is a positive power). The p-series for p 1 is called the harmonic series. Here it is:

1
1

1
2

1
3

1
4

1
5

1
6

...

Although this grows very slowly  — after 10,000 terms, the sum is only about 9.79!  — the  
harmonic series in fact diverges to infinity.

By the way, this is called a harmonic series because the numbers in the series have something 
to do with the way a musical string like a guitar string vibrates — don’t ask. For history buffs, 
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in the sixth century B.C., Pythagoras investigated the harmonic series and its connection to the 
notes of the lyre.

Here’s the convergence/divergence rule for p-series.

The p-series rule: The p-series 
n

pn1

1  converges if p 1 and diverges if p 1.

As you can see from this rule, the harmonic series forms the convergence/divergence border-
line for p-series. Any p-series with terms larger than the terms of the harmonic series diverges, 
and any p-series with terms smaller than the terms of the harmonic series converges.

The p-series for p 2 is another common series:

1 1
2

1
3

1
4

1
5

1
6

1
4

1
9

1
16

1
25

1
36

1

2 2 2 2 2 ...

...

The p-series rule tells you that this series converges. Note, however, that the p-series rule 
can’t tell you what number this series converges to. (Contrast that to the geometric series rule, 
which can answer both questions.) By other means — beyond the scope of this book — it can 

be shown that this sum converges to 
2

6
.

Multiplying by a constant doesn’t matter. When analyzing the series in this section and the 
rest of the chapter, remember that multiplying a series by any non-zero constant, big or small 

and positive or negative, never affects whether it converges or diverges. For example, if 
n

nu
1

 

converges, then so will 1000
1n

nu .

Telescoping series
You don’t see many telescoping series (and there aren’t any in the practice problems), but the 
telescoping series rule is a good one to keep in your bag of tricks — you never know when it 
might come in handy. Consider the following series:

n n n1

1
1

1
2

1
6

1
12

1
20

1
30

. . .

To see that this is a telescoping series, you have to use the partial fractions technique  

from Chapter 16 — sorry to have to bring that up again — to rewrite 1
1n n

 as 1 1
1n n

. Now 
you’ve got

n n n n n1

1 1
1

1 1
2

1
2

1
3

1
3

1
4

1
4

1
5

1 1
1

...

Do you see how all these terms will now collapse, or telescope? The 1
2

s cancel, the 1
3

s cancel, 

the 1
4

s cancel, and so on. All that’s left is the first term, 1 (actually, it’s only half a term), and 

the “last” half-term, 1
1n

. So, the sum of the first n terms is simply 1 1
1n
. In the limit, as n 

approaches infinity, 1
1n

 converges to zero, and thus the sum converges to 1 0, or 1.



CHAPTER 19  Infinite Series: Welcome to the Outer Limits      591

Each term in a telescoping series can be written as the difference of two half-terms — call 
them h-terms. The telescoping series can then be written as

h h h h h h h h h hn n1 2 2 3 3 4 4 5 1... ...

I bet you’re dying for another rule, so here’s the next one.

Telescoping series rule: A telescoping series of the form immediately above converges if hn 1 
converges to a finite number. In that case, the series converges to h h

n n1 1lim . If hn 1 diverges, 
the series diverges.

Note that this rule, like the rule for geometric series, lets you determine what number a con-
vergent telescoping series converges to. These are the only two rules I cover where you can do 
this. The other eight rules for determining convergence or divergence don’t allow you to deter-
mine what a convergent series converges to. But hey, you know what they say, “two out of ten 
ain’t bad.”

3 Does 0 008 0 006 0 0045 0 003375 0 00253125. . . . .  converge or diverge? If it converges, 
what’s the sum?

4 Does 
n n1

1
10

 converge or diverge?

5 Does 1 2
2

3
3

4
4

4 4 4 4 n
n

 converge or diverge?

6 Does 1
2

1
4

1
8

1
12

1
16

1
20

 converge or diverge?
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Three comparison tests for convergence/ 
divergence
Say you’re trying to figure out whether a series converges or diverges, but it doesn’t fit any 
of the tests you know. No worries. You find a benchmark series that you know converges or 
diverges and then compare your new series to the known benchmark. For the next three tests, 
if the benchmark converges, your series converges; and if the benchmark diverges, your series 
diverges.

The direct comparison test
This is a simple, common-sense rule. If you’ve got a series with terms that are less than or equal 
to the terms of a convergent benchmark series, then your series must also converge. And if your 
series has terms that are greater than or equal to the terms of a divergent benchmark series, then 
your series must also diverge. Here’s the mumbo jumbo.

Direct comparison test: Let 0 a bn n for all n.

If 
n

nb
1

 converges, then 
n

na
1

 converges.

If 
n

na
1

 diverges, then 
n

nb
1

 diverges.

Let’s walk though a couple problems. Determine whether 
n

n
1

1
5 3

 converges or diverges.  

Piece o’ cake. This series resembles 
n

n
1

1
3

, which is a geometric series with r equal to 1
3

.  

(Note that you can rewrite this in the standard geometric series form as 
n

n

0

1
3

1
3

.) Because 

0 1r , this series converges. And because 1
5 3n  is less than 1

3n  for all values of n, 
n

n
1

1
5 3

 

must also converge.

Here’s another one: Does 
n

n
n1

ln  converge or diverge? This series resembles 
n n1

1 , the harmonic 

p-series that is known to diverge. Because lnn
n

 is greater than 1
n

 for all values of n 3, lnn
nn 1

 

must also diverge. By the way, if you’re wondering why I’m allowed to consider only the terms 
where n 3, here’s why:

Feel free to ignore initial terms. For any of the convergence/divergence tests, you can disregard 
any number of terms at the beginning of a series. And if you’re comparing two series, you can 
ignore any number of terms from the beginning of either or both of the series — and you can 
ignore a different number of terms in each of the two series.

This utter disregard of innocent beginning terms is allowed because the first, say, 10 or 1000 
or 1,000,000 terms of a series always sum to a finite number and thus never have any effect on 
whether the series converges or diverges. Note, however, that disregarding a number of terms 
would affect the total that a convergent series converges to.
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(Are you wondering why this disregard of beginning terms doesn’t violate the direct compari-
son test’s requirement that 0 a bn n for all n? Everything’s copacetic because you can lop off 
any number of terms at the beginning of each series and let the counter, n, start at 1 anywhere 
in each series. Thus the “first” terms a1 and b1 can actually be located anywhere along each 
series. See what I mean?)

Fore! (That was a joke.) The direct comparison test tells you nothing if the series you’re inves-
tigating is greater than a known convergent series or less than a known divergent series.

For example, say you want to determine whether 1
101 nn

 converges. This series resembles 
1

1 nn
, which is a p-series with p equal to 1

2
. The p-series test says that this series diverges, but 

that doesn’t help you because the terms of your series are less than the terms of this known 
divergent benchmark.

Instead, you should compare your series to the divergent harmonic series, 
n n1

1 . Your series, 
1

10 n
, is greater than 1

n
 for all n 14 (it takes a little work to show this; give it a try). Because 

your series is greater than the divergent harmonic series, your series must also diverge.

The limit comparison test
The idea behind this test is related to the tip just before the subsection “Telescoping series.”  
If you take a known convergent series and multiply each of its terms by any non-zero number, 
big or small, then that new series also converges. The same thing goes for a divergent series 
multiplied by any non-zero number. That new series also diverges. This is an oversimplified 
explanation — with the limit comparison test, it’s only in the limit that one series is sort of a 
multiple of the other — but it conveys the basic principle.

You can discover whether such a connection exists between two series by looking at the ratio of 
the nth terms of the two series as n approaches infinity. Here’s the test.

Limit comparison test: For two series, an and bn, if a bn n0 0, ,  and lim
n

n

n

a
b

L, where L 
is finite and positive, then either both series converge or both diverge.

Use this test when your series goes the wrong way. This is a good test to use when you can’t 
use the direct comparison test for your series because it goes the wrong way — in other words, 
your series is larger than a known convergent series or smaller than a known divergent series.

Q. Does 
n n n2

2
1
ln

 converge or diverge? 

A. The series converges.

This series resembles the convergent p-series, 1
2n
, so that’s your benchmark. But you 

can’t use the direct comparison test because the terms of your series are greater than 
1

2n
. 

Instead, you use the limit comparison test.
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Take the limit of the ratio of the nth terms of the two series. It doesn’t matter which series you 
put in the numerator and which in the denominator, but putting the known, benchmark series 
in the denominator makes it a little easier to do these problems and grasp the results.

lim ln

lim
ln

lim (

n

n

n

n n

n
n

n n
n

n
n

1

1

2

2 1

2

2

2

2  

 L H pital’ ô ’ss

L H pital s

rule

 rule again

)

( )lim
n

n

2

2 1

2

2 1
2

2 0
1

2

’ ô ’

Because the limit is finite and positive and because the benchmark series converges, your series 

must also converge. Thus, 
n n n2

2
1
ln

 converges.

Use this test for rational functions. The limit comparison test is a good one for series where 
the general term is a rational function — in other words, where the general term is a quotient 
of two polynomials.

Q. Determine the convergence or divergence of 
n

n n
n n1

2

3
5 1

4 3
.

A. The series diverges.

1. Determine the benchmark series.

Take the highest power of n in the numerator and the denominator — ignoring any 
coefficients and all other terms — then simplify. Like this:

That’s the benchmark series, 1
n

, the divergent harmonic series.
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2. Take the limit of the ratio of the nth terms of the two series.

lim

lim

lim

n

n

n

n n
n n

n
n n n
n n

n n

5 1
4 3
1

5
4 3

5 1 1

2

3

3 2

3

22

2 3

3

1 4 3

5 1
n n

n( )dividing numerator and denominator by

11

1 4 3
5 0 0
1 0 0

5

3. Because the limit from Step 2 is finite and positive and because the benchmark 
series diverges, your series must also diverge.

Thus, 
n

n n
n n1

2

3
5 1

4 3
 diverges.

Okay, so I’m a rebel. The limit comparison test is always stated as it appears at the beginning 
of this section, but I want to point out — recklessly ignoring the noble tradition of calculus 
textbook authors — that in a sense it’s incomplete. The limit, L, doesn’t have to be finite and 
positive for the test to work. First, if the benchmark series is convergent, and you put it in the 
denominator of the limit, and the limit is zero, then your series must also converge. Note that if 
the limit is infinity, you can’t conclude anything. And second, if the benchmark series is diver-
gent, and you put it in the denominator, and the limit is infinity, then your series must also 
diverge. If the limit is zero, you can’t conclude anything.

The integral comparison test
The third benchmark test involves comparing the series you’re investigating to its companion 
improper integral (see Chapter 18 for more on improper integrals). If the integral converges, 
your series converges; and if the integral diverges, so does your series. By the way, to the best 
of my knowledge, no one else calls this the integral comparison test — but they should because 
that’s the way it works.

Q. Determine the convergence or divergence of 
n n n2

1
ln

.

A. The series diverges.

The direct comparison test doesn’t work because the terms of this series are less than 

the terms of the divergent harmonic series, 1
n

. Trying the limit comparison test is the 

next natural choice, but it doesn’t work either — try it. But if you notice that the series 
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is an expression you know how to integrate, you’re home free (you did notice that, 
right?). Just compute the companion improper integral with the same limits of integra-
tion as the index numbers of the summation — like this:

2

2

2

1

1

1

x x
dx

x x
dx

u
du

b

b

b

b

ln

lim
ln

lim
ln

ln (substitution  with and

when and  when  

u x du
x

dx

x u x b u b

ln ;

, ln , , ln )

1

2 2

llim ln

lim ln ln ln ln

ln ln ln ln

ln
ln

b

b

b

u

b

2

2

2 

ln ln 2

Because the integral diverges, your series diverges.

After you’ve determined the convergence or divergence of a series with the integral comparison 
test, you can then use that series as a benchmark for investigating other series with the direct 
comparison or limit comparison tests.

For instance, the integral test just told you that 
n n n2

1
ln

 diverges. Now you can use this series 

to investigate 
n n n n3

1
ln

 with the direct comparison test. Do you see how? Or you can inves-

tigate, say, 
n n n n1

1
ln

 with the limit comparison test. Try it.

Don’t forget the integral test. The integral comparison test is fairly easy to use, so don’t neglect 
to ask yourself whether you can integrate the series expression or something close to it. If you 
can, it’s a BINGO.

By the way, in Chapter 18, you saw the following two improper integrals: 
1

1
x

dx , which diverges, 

and 
1

2
1
x

dx, which converges. Look back at Figure 18-1. Now that you know the integral com-

parison test, you can appreciate the connection between those integrals and their companion 

p-series: the divergent harmonic series, 
n n1

1 , and the convergent p-series, 
n n1

2
1 .

Here’s the mumbo jumbo for the integral comparison test. Note the fine print.

Integral comparison test: If f x  is positive, continuous, and decreasing for all x 1 and if 

a f nn , then 
n

na
1

 and 
1

f x dx  either both converge or both diverge.
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7 For Problems 7 through 14, determine 
whether the series converges or 

diverges.
n

n

n1

10 0 9.

8 
n

n

n1

1 1
10
.

9 1
1001

1
2001

1
3001

1
4001

10 
n n n n1

1
ln

11 
n n n1

3 3
1
ln

12 
n n n n2

1
ln sin
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13 
n

n

n

e1

2

3
14 

n

n
n1

3

!
 (Given that 1

n!
 converges.)

The two “R” tests: Ratios and roots
Unlike the three benchmark tests from the previous section, the ratio and root tests don’t com-
pare a new series to a known benchmark. They work by looking only at the nature of the series 
you’re trying to figure out. They form a cohesive pair because the results of both tests tell you 
the same thing. If the result is less than 1, the series converges; if it’s more than 1, the series 
diverges; and if it’s exactly 1, you learn nothing and must try a different test. (As presented 
here, the ratio and root tests are used for series of positive terms. In other books, you may see 
a different version of each test that uses the absolute value of the terms. These absolute value 
versions can be used for series made up of both positive and negative terms. Don’t sweat this; 
the different versions amount to the same thing.)

The ratio test: Given a series un, consider the limit of the ratio of a term to the previous term, 

lim
n

n

n

u
u

1 . If this limit is less than 1, the series converges. If it’s greater than 1 (this includes ), 

the series diverges. And if it equals 1, the ratio test tells you nothing.

When to use the ratio test. The ratio test works especially well with series involving factorials 
like n! or where n is in the power, like 3n.

Definition of the factorial symbol. The factorial symbol ( ! ), tells you to multiply like this: 
6 6 5 4 3 2 1! . And notice how things cancel when you have factorials in the numerator and 

denominator of a fraction: 6
5

6 5 4 3 2 1
5 4 3 2 1

6!
!

 and 5
6

5 4 3 2 1
6 5 4 3 2 1

1
6

!
!

. In both cases, 

everything cancels but the 6. In the same way, ( )!
!

n
n

n
1

1 and n
n n

!
( )!1

1
1

; everything 

cancels but the ( )n 1 . Lastly, it seems weird, but 0 1!  — just take my word for it.
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Q. Does 
n

n

n0

3
!
 converge or diverge?

A. The series converges.

Here’s what you do. You look at the limit of the ratio of the n 1 st term to the nth term:

lim
!

!

lim !
!

lim

n

n

n

n

n

n

n

n

n
n

n

n

3
1

3

3
1 3

3
1

3

1

1

11
0

Because this limit is less than 1, 
n

n

n0

3
!
 converges.

Q. Here’s another series: 
n

nn
n1 !

. What’s your guess — does it converge or diverge? 

A. The series diverges.

Look at the limit of the n 1 st term over the nth term:

lim
!

!

lim
!

!

lim

n

n

n

n

n

n

n

n
n
n
n

n n
n n

1
1

1
1

1

1

nn
n n

n

n

1
1

1

lim

lim

lim

( lim

n

n

n

n

n

n

n

n

n
n

n
n

n

e n

1

1

1 1

1 1 nn

e  is one of the limits you

should memorize, as discussed  in Chapter 8.)

.2 718

Because the limit is greater than 1, 
n

nn
n1 !

 diverges.
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The root test: Note its similarity to the ratio test. Given a series un, consider the limit of the 

nth root of the nth term, lim
n n

n u . If this limit is less than 1, the series converges. If it’s greater 

than one (including ), the series diverges. And if it equals 1, the root test says nothing.

When to use the root test. The root test (like the ratio test) is a good one to try if the series 
involves nth powers. (If you’ve got an nth power problem, and you’re not sure which of the two 
tests to try first, start with the ratio test — it’s often the easier one to use.)

Q. Does 
n

n

n
e
n1

2

 converge or diverge? 

A. The series converges.

Here’s what you do:

lim

lim

lim

/

/

n

n

n
n

n

n n

n n

n

e
n

e
n
e
n

e

2

2

2

2

0

Because the limit is less than 1, the series converges. (By the way, you can also do this series 
with the ratio test, but it’s harder — an exception to the rule of thumb in the previous tip.)

Making a good guess about convergence/divergence: Sometimes it’s useful to make an edu-
cated guess about the convergence or divergence of a series before you launch into one or more 
of the convergence/divergence tests. Here’s a tip that helps you make a good guess with some 
series. (Much of this tip is virtually identical to the tip in Chapter 8 about evaluating limits at 
infinity.) The following expressions are listed from “smallest” to “largest”: n10, 5n, n!, and nn.  

A series with a “smaller” expression over a “larger” one converges, for example, 
n

n
n1

50

!
 or 

n
n

n
n1

! ;  

and a series with a “larger” expression over a “smaller” one diverges, for instance, 
n

n

n
n

1 100
 or 

n

n

n1
100

25 . Note a few things:

 » Coefficients don’t change the order — for example, 1000 12 5 300 0 06510n n nn n, , !, .   and .

 » For the first expression (n10), the power can be any number; for the second expression (5n), 
the number must be greater than one.

 » Replacing n with a multiple of n (like 510n or 6 6n n) doesn’t change the order — with one 
important exception: With the factorial expression, replacing the n with kn (if k  1 like with 
4n ! or 1 8. !n ) makes the expression the largest of the four; if 0 < k < 1, the order doesn’t 

change.
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15 For Problems 15 through 20, determine 
whether the series converges or 

diverges.  
n

n n1

1
2ln

16 
n

n

n
n

n1

17 
n

n
n
n1

! 18 
n

n

n
1

3
4

19 
n

nn
n1 !

20 
n

n
n

1 4
!
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Alternating Series
In the previous sections, you’ve been looking at series of positive terms. Now you look at alter-
nating series — series where the terms alternate between positive and negative — like this:

1 1
2

1
4

1
8

1
16

1
32

1
64

...

Finding absolute versus conditional convergence
Many divergent series of positive terms converge if you change the signs of their terms so 
they alternate between positive and negative. For example, you know that the harmonic series 
diverges:

1 1
2

1
3

1
4

1
5

1
6

...

But, if you change every other sign to negative, you obtain the alternating harmonic series, which 
converges:

1 1
2

1
3

1
4

1
5

1
6

...

By the way, although I’m not going to show you how to compute it, this series converges to ln2, 
which equals about 0.6931.

Definition of conditional convergence: An alternating series is said to be conditionally conver-
gent if it’s convergent as it is but would become divergent if all its terms were made positive.

Definition of absolute convergence: An alternating series is said to be absolutely convergent if it 
would be convergent even if all its terms were made positive. And any such absolutely conver-
gent alternating series is also automatically convergent as it is.

Q. Determine the convergence or divergence of the following alternating series:

1 1
2

1 1
2

1
4

1
8

1
160

n
n

n

A. The series converges. If all these terms were positive, you’d have the familiar geometric 
series,

1
2

1 1
2

1
4

1
8

1
160

n
n

which, by the geometric series rule, converges to 2. Because the positive series con-
verges, the alternating series must also converge (though to a different result — see the 
following) and you say that the alternating series is absolutely convergent.
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The fact that absolute convergence implies ordinary convergence is just common sense 
if you think about it. The previous geometric series of positive terms converges to 2. If 
you made all the terms negative, it would sum to –2, right? So, if some of the terms are 
positive and some negative, the series must converge to something between –2 and 2.

Did you notice that the alternating series is a geometric series as it is with r 1
2

? 

(Recall that the geometric series rule works for alternating series as well as for positive 

series.) The geometric series rule gives its sum: a
r1

1

1 1
2

2
3

.

The alternating series test
Alternating series test: An alternating series converges if two conditions are met:

1. Its nth term converges to zero.

2. Its terms are non-increasing — in other words, each term is less than or equal to its 
predecessor (ignoring the minus signs).

(Note that you are free to ignore any number of initial terms when checking whether 
condition 2 is satisfied.)

Using this simple test, you can easily show many alternating series to be convergent. The terms 
just have to converge to zero and get smaller and smaller (they rarely stay the same). The alter-
nating harmonic series converges by this test:

n

n

n1

11 1 1 1
2

1
3

1
4

1
5

1
6

...

So does the alternating geometric series I discussed at the end of the previous section. And so 
do the following two series:

n

n

n

n

n

n

1

1

1

1
2

1 1 1 1
2

1
3

1
4

1
5

1
6

1 1 1 1

...

22 3 4 5 6
1 1 1 1

2 2 2 2 2 ...

The alternating series test can’t tell you whether a series is absolutely or conditionally  
convergent. The alternating series test can only tell you whether an alternating series itself 
converges. The test says nothing about the corresponding positive-term series. In other words, 
the test cannot tell you whether a series is absolutely convergent or conditionally convergent. 
To answer that, you must investigate the positive series with a different test.
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Q. Determine the convergence or divergence of the following alternating series. If conver-
gent, determine whether the convergence is conditional or absolute.

n

n n
n3

11
ln

A. The series is conditionally convergent.

1. Check that the nth term converges to zero.

  

by L’H pital’s rule

lim ln

lim ( )

n

n

n
n

n
1

1
0

ô

Consider the nth term. Always check the nth term first because if it doesn’t converge to zero, 
you’re done — the alternating series and the positive series will both diverge. Note that the 
nth term test of divergence (see the section on the nth term test) applies to alternating series 
as well as positive series.

2. Check that the terms decrease or stay the same (ignoring the minus signs).

To show that lnn
n

 decreases, take the derivative of the function f x
x

x
ln . Remember 

differentiation? I know it’s been a while.

f x x
x x

x
x

x

1

1

2

2

ln

ln

(quotient rule)

This is negative for all x 3 (because the natural log of anything 3 or greater is more 
than 1, and x x2 3 for   is always positive), so the derivative and thus the slope of the 
function are negative, and therefore the function is decreasing. Finally, because the 
function is decreasing, the terms of the series are also decreasing (when n 3). That 

does it: 
n

n n
n3

11 ln  converges by the alternating series test.

3. Determine the type of convergence.

You can see that for n 3 the positive series, lnn
n

, is greater than the divergent har-

monic series, 1
n

, so the positive series diverges by the direct comparison test. Thus, 

the alternating series is conditionally convergent.

I can’t think of a good title for this warning. If the alternating series fails to satisfy the second 
requirement of the alternating series test, it does not follow that your series diverges, only that 
this test fails to show convergence.

You’re getting so good at this, so how about another problem?
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Q. Test the convergence of 
n

n n
n4

31 ln .

You might want to consider the positive series first. If you think you can show that the 
positive series converges or diverges, you may want to try that before using the alter-
nating series test, because . . .

You may have to do this later anyway to determine the type of convergence, and

If you can show that the positive series converges, you’re done in one step, and you’ve 
shown that the alternating series is absolutely convergent.

A. The alternating series converges absolutely.

Because the positive series lnn
n3

 resembles the convergent p-series, 1
3n

, you guess that it 

converges. So, try to show the convergence of the positive series 
n

n
n4

3
ln . The limit com-

parison test seems appropriate here, and 
n n4

3
1  is the natural choice for the benchmark 

series, but with that benchmark, the test fails — try it. When this happens, you can 
sometimes get home by trying a larger convergent series. So, try the limit comparison 

test with the convergent p-series, 
n n4

2
1 :

lim

ln

lim ln

(

n

n

n
n

n

n
n

3

2
1

0 I did this in the previous problem witth L’H pital’s rule.ô )

Because this limit is zero, the positive series 
n

n
n4

3
ln  converges (see the section, “The 

limit comparison test”); and because the positive series converges, so does the given 

alternating series. Thus, 
n

n n
n4

31 ln  converges absolutely.

Q. One last problem and I’ll let you go. Test the convergence of 
n

n n
n1

11
1

1
2

2
3

3
4

4
5

5
6

. . .. This is an easy one.

A. The series diverges. The nth term of this series (ignoring the minus signs) converges to 
1 (it’s a L’Hôpital’s rule no-brainer), so you’re done. Because the nth term does not 
converge to zero, the series diverges by the nth term test.

For Problems 21 and 22, determine whether the series converges or diverges.  
If the series converges, determine whether the convergence is absolute or conditional.



606      UNIT 5  Integration and Infinite Series

21 
n

n n
n1

11 1
3 1

22 
n

n n
n3

21 1
2

Keeping All the Tests Straight
You now probably feel like you know — have a vague recollection of? — a gazillion conver-
gence/divergence tests and are wondering how to keep track of all of them. Actually, I’ve given 
you only ten tests in all — that’s a nice, easy-to-remember round number. Here’s how you can 
keep the tests straight.

First are the three series with names: the geometric series, p-series, and telescoping series.  
A geometric series converges if 0 1r . A p-series converges if p 1. A telescoping series con-
verges if the second “half-term” converges to a finite number.

Next are the three comparison tests: the direct comparison, limit comparison, and integral 
comparison tests. All three compare a new series to a known benchmark series. If the bench-
mark series converges, so does the series you’re investigating; if the benchmark diverges, so 
does your new series.

And then you have the two “R” tests: the ratio test and the root test. Both analyze just the series 
in question instead of comparing it to a benchmark series. Both involve taking a limit, and the 
results of both are interpreted the same way. If the limit is less than 1, the series converges; if 
the limit is greater than 1, the series diverges; and if the limit equals 1, the test is inconclusive.

Finally, you have two tests that form bookends for the other eight — the nth term test of diver-
gence and the alternating series test. These two form a coherent pair. You can remember them 
as the nth term test of divergence and the nth term test of convergence. The alternating series 
test involves more than just testing the nth term, but this is a good memory aid.

Well, there you have it: Calculus, schmalculus.
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Practice Questions Answers and Explanations
1 

n

n n
n n1

2

2

2 9 8
5 20 12

 diverges. You know (vaguely remember?) from Chapter 8 on limits that 

lim
x

x x
x x
2 9 8

5 20 12
2
5

2

2  by the horizontal asymptote rule. Because this limit doesn’t converge to 

zero, neither does the underlying sequence of the series. And, therefore, the nth term test 
tells you that the series must diverge.

2 
n n1

1
 converges . . . . NOT. It should be obvious that lim

n n
1 0. If you conclude that the  

series, 
n n1

1 , must therefore converge by the nth term test, I’ve got some good news and some 

bad news for you. The bad news is that you’re wrong — you have to use the p-series test to 
find out whether this converges or not (check out the solution to Problem 4). The good news 
is that you made this mistake here instead of on a test.

Don’t forget that the nth term test is no help in determining the convergence or divergence 
of a series when the underlying sequence converges to zero.

3 0.008 0.006 0.0045 0.003375 0.00253125  converges to 4
875

.

1. Determine the ratio of the second term to the first term.

0 006
0 008

3
4

.
.

2. Check to see whether all the other ratios of the other pairs of consecutive terms equal 3
4

.

0 0045
0 006

3
4

0 003375
0 0045

3
4

0 002.
.

? . .
.

? . .Check Check 553125
0 003375

3
4.

? .Check

Voilà! A geometric series with r 3
4

.

3. Apply the geometric series rule.

Because 1 1r , the series converges to

a
r1

0 008

1 3
4

4
875

.

4 
n n1

1
10

 diverges.

There are a couple ways to solve this one. Probably the easiest way is to, first, simply pull  

the 10 (actually it’s 
1

10) to the outside of the sigma symbol (you learn in Chapter 14 that this 

is allowed). That gives you: 
1

10
1

1 nn
 . And that’s 

1
10 times the divergent harmonic series (it’s 

divergent because it’s a p-series with p 1). That does it. The tip just above the “Telescoping 
series” subsection says that multiplication by a constant doesn’t affect the convergence or 

divergence of a series, so, since 1

1 nn
 is known to diverge, 1

10
1

10
1

1 1n nn n
 must diverge as well.
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5 1
2
2

3
3

4
4

4 4 4 4 n
n

  diverges.

This may not look like a p-series, but you can’t always judge a book by its cover.

1. Rewrite the terms with exponents instead of roots.

1 2
2

3
3

4
4

1 4 1 4 1 4 1 4/ / / /n
n

2. Use ordinary laws of exponents to simplify.

1 1
2

1
3

1
3

1
3 4 3 4 3 4 3 4/ / / /n

3. Apply the p-series rule.

You’ve got a p-series with p 3
4

, so this series diverges.

6 1
2

1
4

1
8

1
12

1
16

1
20

 diverges.

This looks like it might be a geometric series, so:

1. Find the first ratio.

1
4
1
2

1
2

2. Test the other pairs.

1
8
1
4

1
2

1
12
1
8

1
2

? . ? .Check No

Thus, this is not a geometric series, and therefore the geometric series rule does not apply.

3. Try something else.

The key to this problem is to notice the simple pattern in the denominators (ignoring the 
first term): namely, 4, 8, 12, 16, . . . . They’re the multiples of 4, of course. Thus, you can 

write the sum (again, ignoring the first term) as 1
41 nn

. And that equals 1
4

1

1 nn
. This is a 

constant times the divergent harmonic series, and (just like you saw in the solution to 

Problem 4) this multiplication doesn’t affect divergence. Therefore, 1
4

1

1 nn
 diverges. 

Finally, if all the terms beginning with 1
4

 sum to infinity, adding back the 1
2

 still gives you 
infinity.

7 
n

n

n1

10 0 9.
 converges.

1. Look in the summation expression for a series you recognize that can be used for your 
benchmark series.

You should recognize 0 9. n as a convergent geometric series, because r, namely 0.9, is 
between 0 and 1.
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2. Use the direct comparison test to compare 
n

n

n1

10 0 9.
 to 

n

n

1
0 9. .

First, you can pull the 10 out and ignore it because multiplying a series by a constant has 

no effect on its convergence or divergence. That gives you 
n

n

n1

0 9. .

Now, because each term of 
n

n

n1

0 9.  is less than or equal to the corresponding term of the 

convergent series 
n

n

1
0 9. , 

n

n

n1

0 9.  has to converge as well. Finally, because 
n

n

n1

0 9.   

converges, so does 
n

n

n1

10 0 9.
.

8 
n

n

n1

1 1
10
.

 diverges.

1. Find an appropriate benchmark series.

Like in Problem 7, there is a geometric series in the numerator, 
n

n

1
1 1. . By the geometric 

series rule, it diverges. But unlike Problem 7, this doesn’t help you, because the given 
series is less than that divergent geometric series. Use the series in the denominator 
instead:

n

n

n

n

n n1 1

1 1
10

1
10

1 1. .

The denominator of 
n

n

n1

1 1.  is the divergent p-series 
n n1

1 .

2. Apply the direct comparison test.

Because each term of 
n

n

n1

1 1.  is greater than the corresponding term of the divergent series 

n n1

1 ,  
n

n

n1

1 1.  diverges as well — and therefore so does 
n

n

n1

1 1
10
. .

9 1
1001

1
2001

1
3001

1
4001

 diverges.

1. Ask yourself what this series resembles.

It’s sort of like the divergent harmonic series, 1
1

1
2

1
3

1
4

, right?

2. Multiply the given series by 1001 so that you can compare it to the harmonic series.

1001 1
1001

1
2001

1
3001

1
4001

1001
1001

1001
2001

1001
3001

1001
4001

3. Use the direct comparison test.

It’s easy to show that the terms of the series in Step 2 are greater than or equal to the 
terms of the divergent p-series, so it, and thus your given series, diverges as well.
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10 
n n n n1

1
ln

 diverges.

Try the limit comparison test: Use the divergent harmonic series 
n n1

1  as your benchmark. 

lim

lim

lim by L H pita

n

n

n

n n n

n
n

n n n

n n

1

1

1

1 1
2

1

ln

ln

( ’ ô ll s rule)’

1

Because the limit is finite and positive, the limit comparison test tells you that 
n n n n1

1
ln

 

diverges along with the benchmark series. By the way, you could do this problem with the 
direct comparison test as well. Do you see how? Hint: You can use the harmonic series as your 
benchmark, but you have to tweak it first.

11 
n n n1

3 3

1
ln

 converges.

1. Do a quick check to see whether the direct comparison test will give you an immediate 
answer.

It doesn’t because 
n n n1

3 3
1
ln

 is greater than the known convergent p-series 
n n1

3
1 .

2. Try the limit comparison test with 
n n1

3

1
 as your benchmark.

   lim

lim

lim

lim

n

n

n

n

n n

n
n

n n

n
n

1

1

1

1

3 3

3

3

3 3

3

3

ln

ln

ln

1

1
3lnn

n
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1

1

1

1

3

3

lim
Just take my word for it

lim
J

n

n

n
n

n
n

ln
.)

ln

(

( uust take my word for it

lim

L H pital   

.)

(1

1

1

1

3

n
n

’ ô ’’s rule)

1

Because this is finite and positive, the limit comparison test tells you that since the bench-

mark series converges, 
n n n1

3 3
1
ln

 must converge as well.

12 
n n n n2

1
ln sin

 diverges.

1. You know you can integrate 
1

x x
dx

ln
 with a simple u-substitution, so do it, and then 

you’ll be able to use the integral comparison test.

   

  when  
2

2

2 2

dx
x x

dx
x x

u x x u
c

c

c

ln

lim
ln

ln , ln

lim
ln22

2

ln

ln
ln

, ln

lim ln

lim ln

c

c

c

c

du
u

du
dx
x

x c u c

u

  when  

lln ln lnc 2

By the integral comparison test, 
n n n2

1
ln

 diverges along with its companion improper 

integral, 
2

dx
x xln

.

2. Try the direct comparison test.

It won’t work yet because 1
n n nln sin

 is sometimes less than the divergent series 1
n nln

.

3. Try multiplication by a constant (always easy to do and always a good thing to try).

n n n2

1
ln

 diverges; thus, so does 1
2

1 1
22 2n nn n n nln ln

.

4. Now try the direct comparison test again.

It’s easy to show that 1
n n nln sin

 is always greater than 1
2

2
n n

n
ln

 for , and thus the 

direct comparison test tells you that 
n n n n2

1
ln sin

 must diverge along with 
n n n2

1
2 ln

.
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13 
n

n

n

e1

2

3  converges.

This is tailor-made for the integral test: 

1

2

1

2

1
3 3

3

1
3

1
3

x

e
dx

x

e
dx

du
e

e
x c

c

x c

c

u c

ulim lim lim
1

3

3

1
3

1 1 1
3

c

c ce e e
lim

Because the integral converges, so does the series.

14 
n

n
n1

3

!
 converges.

1. Try the limit comparison test with the convergent series, 
n n1

1
!
, as the benchmark.

lim lim
n n

n
n

n

n n
n

3

3

1
!

!

!
!

. No good. This result tells you nothing.

2. Try the following nifty trick.

Ignore the first three terms of 
n

n
n1

3

!
, which doesn’t affect the convergence or divergence 

of the series. (You ignore three terms because the power on n is 3; that’s what makes this 

trick work.) The series is now 4
4

5
5

6
6

3 3 3

! ! !
, which can be written as 

n

n
n1

33
3 !

.

3. Try the limit comparison test again.

lim

lim

lim

n

n

n

n
n

n

n n
n

n
n

3
3

1

3
3

3
3

3

3

3

!

!

!
!

n n

n n
n nn

2 1

1

3

3lim
lesser powers of
lesser powers of

        (by the horizontal asymptote rule)

Thus, 
n

n
n1

33
3 !

 converges by the limit comparison test. And because 
n

n
n1

3

!
 is the same 

series except for its first three terms, it converges as well.

15 
n

n n1

1
2ln

 converges.

Try the root test:

   lim

lim

n n

n

n

n

n

1
2

1
2

0

1

ln

ln

/

This is less than 1, so the series converges.
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16 
n

n

n
n

n1
 converges.

Try the root test again:

lim lim lim lim
n

n

n

n

n n n

n n

n n

n

n

n
n n n

1

1 2 1 2 1 2 1

1 1
nn

0

Thus the series converges.

17 
n

n
n
n1

!
 converges.

There’s a factorial, so try the ratio test:

 lim

!

!

lim
!

!

lim

n

n

n

n

n

n

n

n
n

n
n

n n

n n

n

1
1

1
1

1

1

1
1

1

1

1
1

1

1

n

n

n
n

n
n

n

n

n

n

n

n

n

n

n

lim

lim

lim
n

This is extremely close to one of the limits you should memorize (from the beginning of 
Chapter 8). It needs just a little work: Set u n 1 then substitute:

lim lim lim lim
n

n

u u u

u u

n u u u
1

1
1 1 11 1 1 11 1 1 1 1

e e

Because this is less than one, the series converges.

18 
n

n

n
1

3
4

 converges.

Rewrite this so it’s one big nth power: 
n

n
n

n
1

1 3
4

/ . Now look at the limit of the nth root. 

  lim

lim

lim a    

n

n
n n

n

n

n

n

n

n

n

3
4

3
4

3
4

1
1

1

1

/
/

/

/ ( nn unacceptable L H pital s rule case:’ ô ’ 0 )
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Now, set the limit equal to y, and take the log of both sides:

y n

y n

n

n

n

n

n

n

n

3
4

3
4

3
4
3

1

1

1

lim

ln ln lim

ln ln lim

ln

/

/

/

44
3
4

3
4

1

1

1lim ln

ln lim ln

ln lim (

/

n

n

n

n

n

n
n

n     L H p’ ô iital s rule’ )

ln lny

y

3
4

3
4

Thus, the limit of the nth root is 3
4

, and therefore the series converges.

19 
n

nn
n1 !

 converges.

Try the ratio test: lim lim lim
n

n

n n

n

n n

n
n

n
n

n n

n n

n
1

1 1

1

1

1!

!

!

!

11

1

1
0

1 1 1n

n n

n

nn n

n

n
lim

(Okay, I admit it, I used my calculator to get that last limit.)

By the ratio test, the series converges.

20 
n

n
n

1 4
!
 diverges.

Try the ratio test: lim lim lim
n

n

n

n

n

n n

n

n
n
n

n
1

4

4

1 4
4

1
4

1

1

!

!
!

!

Thus the series diverges.

21 
n

n n
n1

11
1

3 1
 diverges.

This one is a no-brainer, because lim
n

n
n

1
3 1

1
3

, the first condition of the alternating series 

test, is not satisfied, which means that both the alternating series and the series of positive 
terms are divergent.
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22 
n

n n
n3

21
1
2

 converges conditionally.

Check the two conditions of the alternating series test:

1. Does the limit equal zero?

lim

lim ( )

n

n

n
n

n

1
2

1
2

0

2

  L H pital s rule

Check.

’ ô ’

2. Are the terms non-increasing?

n
n

n

n

n
n

n
n n

n n n

1
2

1 1
1 2

1
2

2
2 1

1 2 1

2 2

2 2

2

?

?

??

?

?

n n

n n n n n n n n

n n n n

2 2

2 2 1 2 2 4

3 1 2

2

3 2 2 3 2

3 2 3 nn n

n n

2

2

2 4

3 3 0 Check.

(Extra credit question: Do you see why the above inequality math is a bit loose? It is valid, 
however.) Thus, the series is at least conditionally convergent. And it is easy to show that it 
is only conditionally convergent and not absolutely convergent by the direct comparison test. 

Each term of the given series, 
n

n
n3

2
1
2

, is greater than the corresponding term of the series 

n

n
n3

2 , because each term of 
n

n
n3

2
1
2

 has a larger numerator and a smaller denominator. 

Since 
n

n
n3

2  is the same as the divergent harmonic series, 
n n3

1 , it follows that 
n

n
n3

2
1
2

 is 

divergent as well.

If you’re ready to test your skills a bit more, take the following chapter quiz that incorporates 
all the chapter topics.
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Whaddya Know? Chapter 19 Quiz
Quiz time! Complete each problem to test your knowledge on the various topics covered in this 
chapter. You can then find the solutions and explanations in the next section.

For the problems in this quiz, determine 1) whether the given series converges or diverges, 2) 
(only for convergent geometric or telescoping series) what number the series converges to,  
and 3) (when appropriate) whether the convergence is conditional or absolute.

1 n n
nn

2
1

2 2
8 92

1

n
n nn

3 n n
nn

n

3

1

!

4 1
2

1 n nn sin

5 1
2

1

ln
ln

n
n nn

6 1
2

1

e
n e

n

n
n

7 1

2 n nn ln

8 1

2

n

n nlog

9 logn
nn 1

10 log
ln

n
nn 2

11 
log3 3

3
1

n

nn

12 
en

n
1

1
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Answers to Chapter 19 Quiz
1 n n

nn
2

1
 diverges to infinity.

Use some simple algebra to rewrite the fraction (always consider taking a fraction apart  
like this):

n n
n

n
n

n
nn n

2
1

2 2
1

n
n

n
n

n n

n n

n n

2
1

2
1

1
3 2

1

1 1

The first series is the harmonic series, which diverges to infinity; the second is a p-series 

with p 3
2

, so it converges. Thus, the original series diverges.

2 2
8 92

1

n
n nn

 diverges to infinity.

Always ask yourself whether you can easily integrate the series expression, because if you 
can, the integral comparison test is a snap. The derivative of the denominator is 2 8n .  
If that were in the numerator, you’d be all set for a simple u-substitution. Like with Problem 1, 
some simple algebra does the trick — just add and subtract the same thing from the numer-
ator (a handy trick to remember):

2
8 9

2 8 8
8 9

2 8
8 9

8
8 92

1
2

1
2 2

n
n n

n
n n

n
n n n nn n n 11

2
1

2
1

2 8
8 9

8
8 9

n
n n n nn n

For the first series, compare it to the improper integral 2 8
8 92

1

x
x x

dx, which you can solve 
with a u-substitution (u x x2 8 9):

   

(If you remember 

2 8
8 92

1

18

18

x
x x

dx

du
u

du
uc

c

lim
tthis improper integral from

Ch. 18, you can stop here; you  know it diverges.)

lim

lim

ln

ln ln
c

c

cu

c

18

18

Because 2 8
8 92

1

x
x x

dx diverges to infinity, so does 2 8
8 92

1

n
n nn

.

For the second series, pull the 8 to the outside: 8
8 9

8 1
8 92

1
2

1n n n nn n
. Now you’ve got 

a series where each term is less than the convergent p-series (with p 2), so your series con-
verges as well, and 8 times that series still converges.
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Infinity plus a finite number equals infinity, so the original series diverges.

I wanted to show you the above algebra trick, so I did the problem with the integral compari-
son test. But you can do the problem more quickly with the limit comparison test. Give it a try.

3 n n
nn

n

3

1

!
 converges.

Use the ratio test:

   lim

!

!

lim
!

n

n

n

n

n

n n
n

n n
n

n n n

n

1 1
1

1 1

3

1

3

3

11

1 1
1

1

1 3

3 3

1

4 3

n

n

n

n

n

n

n n

n n n

n

n n

!

lim

lim
nn

n
n

n
n

n

n

n

n

n

n

n

n

1

1

1

1 1
1

1

3

3

3

lim

lim

lim
n

n

n

nn n

3

1 4

1 1
1

1 1
1

lim lim

The first limit is from the list of limits to memorize (Chapter 8).

1 1 1
e e

Because the limit of the ratio is less than 1, the series converges.

4 1
2

1 n nn sin
 diverges to infinity.

Use the direct comparison test:

sin2 n is always greater than or equal to zero and less than or equal to 1. Thus, each term of 
the given series is greater than or equal to each term of the divergent harmonic series, and, 
therefore, it also diverges.

Congrats if you noticed the potential problem that the denominator might equal zero, which 
would throw a wrench into the works (always be on the lookout for this). No worries: sin2 x is 
only zero at multiples of pi, and no positive integer value of n can ever be equal to a multiple 
of pi. (Multiples of pi, of course, are always irrational numbers which, when written in deci-
mal form, never end.)
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5 1
2

1

ln
ln
n

n nn
 converges.

This resembles a series, 1
2n
, that you should know converges, so you might guess that it con-

verges as well. But the direct comparison test fails because the given series is greater than the 

convergent 1
2n
 series. The ratio test also fails, because the limit equals 1. Next, you might try 

the limit comparison test with 1
2n
 as your benchmark series. The limit equals infinity. Strike 

three — but you’re not out! Try the limit comparison test again, but with a larger convergent 

series as your benchmark series, 1
3 2n

. (Using a larger convergent series in this situation can 
make your life easier.)

   lim

ln
ln

lim
ln

ln

lim

n

n

n

n
n n

n
n n

n n
n

1

1

1

2

3 2

3 2

2

3 2 nn n
n n

n n n n

n
n

n

3 2

2

1 2 1 2 1 23
2

3
2

2 1

ln
ln

lim
ln

     (by L H pi’ ô ttal s rule)’

lim
ln

lim

n

n

n n n

n
n

n n

5
2

3
2

2 1

5
4

3
4

1 2 1 2

1 2 1 2 llnn n

n

3
2

2 1

1 2

2

     (by  rule again)L H pital s’ ô ’

I’ll spare you the rest of the gory details, but you can show that the limit of the middle term 
in the numerator equals zero (also by using L’Hôpital’s rule), so the limit of the whole enchi-

lada ends up equaling 0 0 0
2

0.

Finally, the fact that this limit is zero means that the given series is infinitely smaller than 
the convergent benchmark series, so the given series must converge as well. (I had to use the 
“Okay, so I’m a rebel” tip at the end of the subsection, “The limit comparison test.” This 
common-sense tip is perfectly sound, but your calc prof might not buy it.)

6 1
2

1

e
n e

n

n
n

 diverges to infinity.

Don’t forget to use the nth term test!

It’s easy to show that lim
n

n

n
e

n e
1 12  (use L’Hôpital’s rule three times). Because the nth term 

does not converge to zero, the series diverges.
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7 1

2 n nn ln
 diverges to infinity.

Use the limit comparison test (sort of) with the harmonic series as your benchmark series:

   

     

lim ln

lim
ln

lim
ln

lim

n

n

n

n

n n

n
n

n n
n
n

n

n

1

1

1
2

1
((by  rule)L H pital s’ ô ’

lim
n

n
2

The given series is, thus, infinitely greater than the divergent harmonic series, so it must 
diverge as well. The reason I wrote “sort of” is that to get this result, I had to use the “Okay, 
so I’m a rebel” tip again.

8 1

2

n

n nlog
 converges conditionally.

This series meets the requirements of the alternating series test, so it converges. Next, you 

have to consider the ordinary, positive series: 1

2 lognn
. That series diverges by the direct 

comparison test — using the harmonic series as your benchmark series. (As you have proba-
bly noticed, the harmonic series is one of the most useful — perhaps the most useful — 
benchmark series.) Because the series of positive terms diverges, the given alternating series 
converges conditionally.

9 logn
nn 1

 diverges to infinity.

This is a snap with the direct comparison test.

Each term of the given series is greater than or equal to the corresponding term of the diver-
gent harmonic series (for all n 10), so this series diverges as well. Don’t forget: You are 
always free to disregard any number of initial terms.

10 log
ln

n
nn 2

 diverges to infinity.

Don’t forget to use pre-calc!

log
ln

log .n
n

e 0 434 for all values of n by the change of base rule. Thus, the series sums to 

infinity times that value, which, of course, is infinity. The series also diverges by the nth 
term test.

11 
log3 3

3
1

n

nn
 converges.

Use the very same approach as with Problem 5:
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You can use the limit comparison test with the known benchmark series, 1
2n
. (The test will 

fail if you use the smaller benchmark series, 1
3n

.)

    lim

log

lim
log

lim
log

n

n

n

n

n

n
n

n

n
n

3 3

3

2

3 3

2 3
3

1

3 1 33

1

2n
     (by  rule; the derivative is a nestedL H pital s’ ô ’   chain rule problem)

lim
log

lim
log

n

n

n
n

n
n

9

18 1 3

2 3

3
3 nn

n
nn

n

2

3

1
54

5

     (  rule again)L H pital s’ ô ’

lim
log

lim
44 1 3

1
162 0

3
2

n
n

nn

     (  rule yet again)L H pital s’ ô ’

lim

Just like with Problem 5, this zero result tells you that the given series converges. And the 
same caveat as you see at the end of the Problem 5 solution applies here.

12 
enn

1
1

 converges to 
e
e 1

4 97. .

Congrats if you saw that this one is a geometric series in disguise.

You can rewrite this in standard geometric series format, ar n

n 0
:

e en
n n

n

1
1 0

1

0 1 1
e

, so, by the geometric series rule, this series converges to 
1 1 1

4 97

e

e
e

. .
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Index
Symbols and Numerics
± infinity

limits of rational functions at, 158–159
solving limits at, with calculators,  

160–161
30°-60°-90° triangles, 45, 97
45°-45°-90° triangles, 45, 96–97

A
absolute convergence, 602–603
absolute extrema

finding on closed intervals, 273–277
finding over function’s entire domain,  

278–281
absolute maximum, 261
acceleration

about, 326–328
negative, 333
positive, 333
second squared, 334
slowing down, 333
speed, velocity and, 328–329
speeding up, 333

acceleration function, 327
adding

fractions, 29–30
series, 584–586

algebra
about, 27
absolute value, 34
example questions, 33, 41
factoring, 38–39
fractions, 28–34
logarithms, 37
power rules, 34–35
practice questions, 33–34, 42–43

practice questions answers and explanations, 
52–56

quiz question answers, 61–65
quiz questions, 59–60
roots, 35–37
solving

limit problems with, 147–152
limits at infinity with, 161–163
quadratic equations, 39–41

Algebra II For Dummies (Sterling), 39
algebraic expression, 31
alternating series

about, 602
alternating series test, 603–606
finding absolute versus conditional convergence, 

602–603
alternating series test, 603–606
American Mathematical Monthly 90, 1983 issue, 

482
analyzing arc length, 537–539
angles

measuring with radians, 98–99
in unit circles, 98

answers
practice questions

algebra, 52–56
differentiation, 205–208, 292–309, 346–361, 

385–392
differentiation rules, 240–252
functions, 87–90
geometry, 56–58
improper integrals, 570–574
infinite series, 607–615
integrals, 544–550
integration, 427–434, 471–475, 503–516
limits, 135–136, 165–174
transformations, 90
trigonometry, 109–112
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answers (continued)
quiz questions

algebra, 61–65
differentiation, 211–213, 311–319, 363–365, 

394–395
differentiation rules, 254–258
functions, 92–94
geometry, 61–65
improper integrals, 576–579
infinite series, 617–621
integrals, 552–556
integration, 436–437, 477–478, 519
limits, 139–140, 176–180
transformations, 92–94
trigonometry, 114–116

antiderivatives
finding, 460–468
reverse rules for, 460–462

antidifferentiation, 439–441
approximations

of area
about, 403–411
with Simpson’s rule, 421, 423–425
with trapezoid rule, 421–422

linear, 374–378
arc length, analyzing, 537–539
area

approximating
about, 403–411
with Simpson’s rule, 421, 423–425
with trapezoid rule, 421–422

finding
under a curve, 401–403
with definite integrals, 417–420
with substitution problems, 469–470

formulas for, 44
negative, 426, 450
between two curves, 525–529

area functions, 441–445, 454–455
arrow-number, 120

asymptotes
horizontal, 123–124
vertical, 107, 123, 563–565

average rate, 201
average speed, 126–127, 332
average value, Mean Value Theorem for, 522–525
average velocity, 330

B
boxes, maximum volume of, 322–323
business problems, 378–384

C
calculating

angles with radians, 98–99
instantaneous speed with limits, 126–128
related rates, 343–344

calculators
about, 143–146
solving limits at ± infinity with, 160–161

calculus. See also specific topics
about, 7–9, 21
differentiation, 13–15
infinite series, 17–19
integration, 15–17
limit concept, 21–22
precision, 24
real-world examples of, 9–11
zooming, 22–24

canceling, in fractions, 31–33
chain rule, 225–231
Cheat Sheet (website), 3
closed intervals, finding absolute extrema on, 

273–277
coefficients, equating of like terms, 500–501
comparison tests, for convergence/divergence, 

592–596, 606
completing the square, for solving quadratic 

equations, 41
composite functions, 225–227
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concave down interval, 287
concavity points

about, 260–261
finding, 281–284

conditional convergence, 602–603
constant multiple rule, 217–218
constant rule, 216
constants, multiplying by, 590
continuity. See also limits

definition of, 131
linking limits and, 129–131

continuous function, 129
convergence

about, 564
absolute, 602–603
comparison tests for, 592–596, 606
conditional, 602–603
guessing about, 600
nth term test, 586–588
of sequences, 582–583
of series, 585–586
tests for, 588–591

convergent series, 17–19
coordinate geometry formulas, 44
corrals, maximum area of, 323–325
cosecants

about, 220
integrals containing, 489–491

cosines
graphing, 106–107
integrals containing, 486–489

cost, marginal, 378–380
cotangents, integrals containing, 489–491
critical numbers, 263–264
cubes, difference/sum of, 38
curves

area between two, 525–529
derivative of, 191–194
differentiation and, 259–319
finding area under, 401–403

curving incline problem, 8–9

D
decreasing intervals, 286
definite integrals, finding area with, 417–420
degrees, radians compared with, 99
demand function, 379
denominators

containing irreducible quadratic factors, 
498–500

containing linear factors, 497–498
containing one or more factors raised to a 

power greater than 1, 501–502
derivative-hole connection, 131
derivatives

about, 188
of area function, 443
of a curve, 191–194
defined, 13, 184
first derivative test, 264–268
of the function’s argument, 465
graphs of, 285–288
higher-order, 237–239
of inverse functions, 235–236
of a line, 188
Mean Value Theorem for, 524
meaning of, 198
non-existence of, 202–203
of position, 327
as a rate, 15, 188–191
second derivative test, 268–272
as a slope, 14
of velocity, 327

determining limits, with L’Hôpital’s rule,  
583–584

difference of cubes, 38
difference of squares, 38
difference quotient, 28, 195–201
difference rule, 218
differentiation

about, 13, 183–184, 259–260, 262, 321, 367
absolute maximum, 261
acceleration problems, 326–336
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differentiation (continued)
answers to quiz questions, 211–213, 311–319, 

363–365, 394–395
antidifferentiation, 439–441
average rate, 201
business problems, 378–384
concavity, 260–261
critical numbers, 263–264
curve shapes and, 259–319
derivative

of a curve, 191–194
of a line, 188
as a rate, 15, 188–191
as a slope, 14

difference quotient, 195–201
displacement and velocity, 330–331
downhill, 261–262
economics problems, 378–384
example questions, 193, 202–203, 266–267, 

270–271, 276–277, 279–280, 290–291, 
376–377

finding
absolute extrema on closed intervals, 273–277
absolute extrema over function’s entire 

domain, 278–281
concavity points, 281–284
inflection points, 281–284
local extrema, 262–272

first derivative test, 264–268
graphs of derivatives, 285–288
inflection points, 260–261
instantaneous rate, 201
linear approximations, 374–377
local minimum, 261
marginals, 378–381
maximum area of corrals, 323–325
maximum height, 329–330
maximum profit, 382–383
maximum volume of boxes, 322–323
Mean Value Theorem, 289–291
minimum height, 329–330
negative slopes, 260

non-existence of derivatives, 202–204
normal line problem, 368, 370–371
optimization problems, 321–326
position problems, 326–336
positive slopes, 260
practice questions, 193–194, 203–204, 268, 272, 

277, 280–281, 283–284, 288, 291, 325–326, 
334–336, 345, 372–373, 377–378, 383–384

practice questions answers and explanations, 
205–208, 292–309, 346–361, 385–392

quiz questions, 209–210, 310, 362, 393
rate-slope connection, 190–191
related rates, 336–345
second derivative test, 268–272
second squared, 334
slope and, 184–188
slope of a line, 186–187
speed, 190
speed and distance traveled, 331–332
tangent line problem, 368–369
teetering on corners, 261
velocity problems, 326–336

differentiation rules
about, 215–216
answers to quiz questions, 254–258
chain rule, 225–229
constant multiple rule, 217–218
constant rule, 216
difference rule, 218
differentiating

exponential functions, 220–221
implicitly, 231–233
inverse functions, 234–237
logarithmic functions, 221
trig functions, 220

example questions, 218, 223–224, 232–233, 236
higher-order derivatives, 237–239
power rule, 216–217
practice questions, 219, 224–225, 230–231, 

233–234, 237, 238–239
practice questions answers and explanations, 

240–252
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product rule, 222
quiz questions, 253
quotient rule, 222–223
sum rule, 218

direct comparison test, 592–593
discriminant, 40, 499
disk method, 532–533
displacement, velocity and, 330–331
distance

formula for, 44, 126
speed and distance traveled, 331–332

distributing powers, 35
divergence

about, 564
comparison tests for, 592–596, 606
guessing about, 600
nth term test, 586–588
of sequences, 582–583
of series, 585–586
tests for, 588–591

divergent series, 17
dividing fractions, 29
domain, finding absolute extrema over function’s 

entire, 278–281

E
economics problems, 378–384
endpoints, testing, 323
entire domain, finding absolute extrema over 

function’s, 278–281
equations, 31
evaluating

limits, 141–180
limits at infinity, 156–164

Example icon, 3
example questions

algebra, 33, 41
differentiation, 193, 202–203, 266–267, 270–271, 

276–277, 279–280, 290–291, 376–377
differentiation rules, 218, 223–224,  

232–233, 236

functions, 73, 80, 82
geometry, 45–46
improper integrals, 560–561, 566
infinite series, 587, 592, 593–596, 599, 600, 

602–603, 604, 605
integrals, 523–524, 531–532
integration, 409–410, 412–413, 424–425, 444, 

451–452, 467, 490
limits, 124, 133, 146, 148–150, 155, 161–163
transformations, 85
trigonometry, 102, 108

exponential functions, differentiating, 220–221
expressions, 31
extra cost, 378

F
factorial symbol, 598
factoring

about, 38–39
for solving quadratic equations, 39–40
trinomial, 39

finding
absolute extrema

on closed intervals, 273–277
over function’s entire domain, 278–281

absolute versus conditional convergence, 
602–603

antiderivatives, 460–468
area

under a curve, 401–403
with definite integrals, 417–420
with substitution problems, 469–470

concavity points, 281–284
inflection points, 281–284
local extrema, 262–272

finite number, 122
first derivative test, 264–268
first-degree polynomials, 497–498
formulas

for arc length, 538
for average speed, 126–127
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formulas (continued)
coordinate geometry, 44
for distance, 44, 126
for geometry, 44
for instantaneous speed, 128
midpoint, 44
quadratic, 40–41
for surface area, 44
for surface of revolution, 540
for three-dimensional shapes, 44
for two-dimensional shapes, 44
for volumes, 44

45°-45°-90° triangles, 45, 96–97
fractions

about, 28
adding, 29–30
canceling in, 31–33
dividing, 29
multiplying, 28–29
partial, 497–502
rules for, 28
subtracting, 30

functions
about, 67, 71–73
absolute value, 77–78
acceleration, 327
answers to quiz questions, 92–94
area, 441–445, 454–455
characteristics of, 68–69
composite, 70–71, 225–227
continuous, 129
demand, 379
dependent variables, 69
example questions, 73, 80, 82
exponential, 78–79, 220–221
graphs of, 74–80
horizonal transformations, 83–84
illustrating limits using, 120–121
independent variables, 69
inverse, 81–82, 234–237
inverse trig, 107
linear, 191

lines, 74–77
logarithmic, 79, 221–222
notation for, 69–70
oddball, 78
parabolic, 77–78
piecewise, 122
polynomial, 129
practice questions, 73–74, 80, 82
practice questions answers and explanations, 

87–90
quiz questions, 91
rational, 123, 129, 158–159
sequences and, 583
transformations, 83–86
trigonometry, 220
vertical transformations, 85

Fundamental Theorem of Calculus
about, 446–454
area functions, 454–455
integration-differentiation connection, 456–457
statistics, 458–460

G
Gabriel’s horn, 567–568
geometric series, tests for, 588–589
geometric series rule, 589
geometry

about, 27, 43
example questions, 45–46
formulas for, 44
practice questions, 46–51
practice questions answers and explanations, 

56–58
quiz question answers, 61–65
quiz questions, 59–60
right triangles, 45–46

graphs
cosine, 106–107
of derivatives, 285–288
of functions, 74–80
sine, 106–107
tangent, 106–107
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greatest common factor (GCF), 38
guess-and-check method, 463–464
guessing, about convergence/divergence, 600

H
harmonic series, 589–590
height, maximum and minimum, 329–330
higher-order derivatives, 237–239
hole exception, 130–131
horizontal asymptotes, 123–124
horizontal transformations, 83–84
hours-per-mile rate, 190
hypotenuse, unit circles and, 99–100

I
icons, explained, 3
identities, trigonometry, 108
implicit differentiation, 231–234
improper integrals

about, 557
answers to quiz questions, 576–579
example questions, 560–561, 566
Gabriel’s horn, 567–568
L’Hôpital’s rule, 558–562
with one or two infinite limits of integration, 

565–566
practice questions, 562, 567
practice questions answers and explanations, 

570–574
quiz questions, 575
with vertical asymptotes, 563–565

increasing intervals, 286
indefinite integral, 440
index of summation, 412
infinite discontinuity, 132
infinite series

about, 17, 581
alternating series, 602–606
alternating series test, 603–606
answers to quiz questions, 617–621
comparison tests for convergence/divergence, 

592–596, 606

convergence, 586–601
convergent series, 17–19
direct comparison test, 592–593
divergence, 586–601
divergent series, 17
example questions, 587, 592, 593–596, 599, 600, 

602–603, 604, 605
finding absolute versus conditional convergence, 

602–603
geometric series, 588–589
integral comparison test, 595–596
limit comparison test, 593–595
nth term test, 586–588
practice questions, 588, 591, 597–598, 601, 

605–606
practice questions answers and explanations, 

607–615
p-series, 589–590
quiz questions, 616
ratio test, 596–600
root test, 596–600
stringing sequences, 582–584
summing series, 584–586
telescoping series, 590–591

infinity
about, 24
evaluating limits at, 156–164
solving limits at, with algebra, 161–163

inflection points
about, 260–261
finding, 281–284
on functions, 287

instantaneous rate/speed
calculating with limits, 126–128
defined, 201

integral comparison test, 595–596
integrals

about, 521–522
analyzing arc length, 537–539
answers to quiz questions, 552–556
area between two curves, 525–529
average value for, 522–525
containing
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integrals (continued)
cosecants, 489–491
cotangents, 489–491
secants, 489–491
sines and cosines, 486–489
tangents, 489–491

example questions, 523–524, 531–532
finding area with definite, 417–420
improper

about, 557
answers to quiz questions, 576–579
example questions, 560–561, 566
Gabriel’s horn, 567–568
L’Hôpital’s rule, 558–562
with one or two infinite limits of integration, 

565–566
practice questions, 562, 567
practice questions answers and explanations, 

570–574
quiz questions, 575
with vertical asymptotes, 563–565

Mean Value Theorem for, 522–525
practice questions, 525, 528–529, 535–537, 539, 

542–543
practice questions answers and explanations, 

544–550
quiz questions, 551
surfaces of revolution, 540–543
trigonometry, 486–491
volumes of weird solids, 529–537

integration
about, 15–17, 399–401, 439, 479
answers to quiz questions, 436–437, 477–478, 

519
antidifferentiation, 439–441
approximating area

about, 403–411
with Simpson’s rule, 421, 423–426
with trapezoid rule, 421–422

area functions, 441–445, 454–455
example questions, 409–410, 412–413, 424–425, 

444, 451–452, 467, 490
finding

antiderivatives, 460–468
area under a curve, 401–403

area with definite integral, 417–420
area with substitution problems, 469–470

Fundamental Theorem of Calculus, 446–460
guess-and-check method, 463–464
improper integrals with one or two infinite 

limits of, 565–566
integrals

with one infinite limit of, 565–566
with two infinite limits of, 566

integration-differentiation connection,  
456–457

partial fractions, 497–502
by parts, 479–485
practice questions, 410–411, 413–414, 417, 420, 

425–426, 444–445, 452–453, 462, 464, 468, 
470, 485, 489, 491, 496, 502

practice questions answers and explanations, 
427–434, 471–475, 503–516

quiz questions, 435, 476, 517–518
reverse rules for antiderivatives,  

460–462
statistics, 458–460
substitution method, 465–468
summation notation, 411–417
trigonometric substitution, 491–496
trigonometry integrals, 486–491
vertical asymptotes

between limits of, 564–565
at one of limits of, 563–564

vocabulary, 441
writing Riemann sums with sigma notation, 

414–417
integration-by-parts, 479–485
integration-differentiation connection,  

456–457
Internet resources

Cheat Sheet, 3
Technical Support, 4
Wolfram Alpha, 143

intersections problems, 340–343
inverse functions

about, 81–82
differentiating, 234–237

inverse trig functions, 107
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J
jump discontinuity, 132

K
Kasube, Herbert E., 482

L
left rectangle rule, 405
left sums, approximating area with, 404–406
L’Hôpital’s rule

about, 558–562
determining limits with, 583–584

LIATE mnemonic, 482–485
like terms

about, 35
equating coefficients of, 500–501

limit comparison test, 593–595
limit concept, 21–22
limits

about, 119–120, 141
answers to quiz questions, 139–140, 176–180
calculating instantaneous speed with, 126–128
calculating with calculators, 143–146
continuity and linking, 129–131
defined, 119
determining with L’Hôpital’s rule, 583–584
easy, 141–143
evaluating

about, 141–180
at infinity, 156–164

example questions, 124, 133, 146, 148–150, 155, 
161–163

formal definition of, 122
horizontal asymptotes and, 123–124
one-sided, 121–122
plug-and-chug problems, 142–143
practice questions, 124–126, 133–134, 147, 

150–152, 155, 156, 163–164
practice questions answers and explanations, 

135–136, 165–174

quiz questions, 137–138, 175
of rational functions at ± infinity, 158–159
real-deal problems, 143–157
sandwich (squeeze) method, 153–156
solving

at ± infinity with calculators, 160–161
at infinity with algebra, 161–163
problems with algebra, 147–152

3333 limit mnemonic, 131–133
using functions to illustrate, 120–121
vertical asymptotes and, 123

line
derivative of a, 188
slope of a, 186–187

linear approximations, 374–378
linear factors, denominators containing,  

497–498
linear functions, 191
local extrema, finding, 262–272
local maximum, 260, 262, 286
local minimum, 261, 262, 286
logarithmic functions, differentiating, 221–222
logarithms, 37

M
managing marginals, 378–381
marginal cost, 378–380
marginal profit, 378–380, 381
marginal revenue, 378–380
marginals, managing, 378–381
Math Rules icon, 3
maximum area, of corrals, 323–325
maximum height, 329–330
maximum profit, 382–383
maximum speed, 332
maximum velocity, 331
maximum volume, of boxes, 322–323
Mean Value Theorem

about, 289–291
for integrals and average value, 522–525
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measuring
angles with radians, 98–99
instantaneous speed with limits, 126–128
related rates, 343–344

meat-slicer method, 529–532
midpoint formula, 44
midpoint rule, 409
midpoint sums, approximating area with, 

408–410
miles-per-hour rate, 190
minimum height, 329–330
minimum speed, 332
minimum velocity, 331
multiplication rule, for canceling, 31–33
multiplying

by constants, 590
fractions, 28–29

N
natural log, 221
negative acceleration, 333
negative areas, 426, 450
negative numbers, 34
negative slopes, 184, 260
normal line problem, 368, 370–371
nth term test, 586–588

O
one-sided limits, 121–122
optimization problems, 321–326

P
parentheses, 227
partial fractions, 497–502
partial sums, 585
parts, integration by, 479–485
patterns, looking for, 38–39
period, 106
periodic, 106
piecewise function, 122

plug-and-chug problems, 142–143
polynomial functions, continuity of, 129
polynomials

defined, 39
first-degree, 497–498

position
about, 326–328
derivative of, 327

positive acceleration, 333
positive numbers, 34
positive slopes, 260
power rules

about, 34–35, 216–217
reverse, 461–462

practice questions
algebra, 33–34, 42–43
differentiation, 193–194, 203–204, 268, 272, 

277, 280–281, 283–284, 288, 291, 325–326, 
334–336, 345, 372–373, 377–378, 383–384

differentiation rules, 219, 224–225, 230–231, 
233–234, 237, 238–239

functions, 73–74, 80, 82
geometry, 46–51
improper integrals, 562, 567
infinite series, 588, 591, 597–598, 601, 605–606
integrals, 525, 528–529, 535–537, 539, 542–543
integration, 410–411, 413–414, 417, 420, 

425–426, 444–445, 452–453, 462, 464, 468, 
470, 485, 489, 491, 496, 502

limits, 124–126, 133–134, 147, 150–152, 155, 
156, 163–164

transformations, 86
trigonometry, 103–105, 108

practice questions answers and explanations
algebra, 52–56
differentiation, 205–208, 292–309, 346–361, 

385–392
differentiation rules, 240–252
functions, 87–90
geometry, 56–58
improper integrals, 570–574
infinite series, 607–615
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integrals, 544–550
integration, 427–434, 471–475, 503–516
limits, 135–136, 165–174
transformations, 90
trigonometry, 109–112

pre-algebra, 27. See also algebra
precision, 24
price function, 379
product rule, 222, 229
profit

marginal, 381
maximum, 382–383

p-series, tests for, 589–590
p-series rule, 590
Pythagorean Identities, 489
Pythagorean Theorem, 44

Q
quadratic equations, solving, 39–41
quadratic factors, denominators containing 

irreducible, 498–500
quadratic formula, for solving quadratic 

equations, 40–41
questions

example
algebra, 33, 41
differentiation, 193, 202–203, 266–267, 270–

271, 276–277, 279–280, 290–291, 376–377
differentiation rules, 218, 223–224, 232–233, 

236
functions, 73, 80, 82
geometry, 45–46
improper integrals, 560–561, 566
infinite series, 587, 592, 593–596, 599, 600, 

602–603, 604, 605
integrals, 523–524, 531–532
integration, 409–410, 412–413, 424–425, 444, 

451–452, 467, 490
limits, 124, 133, 146, 148–150, 155, 161–163
transformations, 85
trigonometry, 102, 108

practice
algebra, 33–34, 42–43
differentiation, 193–194, 203–204, 268, 272, 

277, 280–281, 283–284, 288, 291, 325–326, 
334–336, 345, 372–373, 377–378, 383–384

differentiation rules, 219, 224–225, 230–231, 
233–234, 237, 238–239

functions, 73–74, 80, 82
geometry, 46–51
improper integrals, 562, 567
infinite series, 588, 591, 597–598, 601, 605–606
integrals, 525, 528–529, 535–537, 539, 542–543
integration, 410–411, 413–414, 417, 420, 

425–426, 444–445, 452–453, 462, 464, 468, 
470, 485, 489, 491, 496, 502

limits, 124–126, 133–134, 147, 150–152, 155, 
156, 163–164

transformations, 86
trigonometry, 103–105, 108

quiz
algebra, 59–60
differentiation, 209–210, 310, 362, 393
differentiation rules, 253
functions, 91
geometry, 59–60
improper integrals, 575
infinite series, 616
integrals, 551
integration, 435, 476, 517–518
limits, 137–138, 175
transformations, 91
trigonometry, 113

quiz question answers
algebra, 61–65
differentiation, 211–213, 311–319, 363–365, 

394–395
differentiation rules, 254–258
functions, 92–94
geometry, 61–65
improper integrals, 576–579
infinite series, 617–621
integrals, 552–556
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quiz question answers (continued)
integration, 436–437, 477–478, 519
limits, 139–140, 176–180
transformations, 92–94
trigonometry, 114–116

quiz questions
algebra, 59–60
differentiation, 209–210, 310, 362, 393
differentiation rules, 253
functions, 91
geometry, 59–60
improper integrals, 575
infinite series, 616
integrals, 551
integration, 435, 476, 517–518
limits, 137–138, 175
transformations, 91
trigonometry, 113

quotient rule, 222–223

R
radians

degrees compared with, 99
measuring angles with, 98–99

rate, derivative as a, 15, 188–191
rate-slope connection, 190–191
ratio test, 598–600
rational functions

about, 123
continuity of, 129
limits of, at ± infinity, 158–159

real-deal limit problems, 143–157
reciprocal, 28
related rates

about, 336
blowing up balloons, 336–338
calculating, 343–344
filling up troughs, 339–340
intersections problem, 340–343

relative maximum, 260
Remember icon, 3
removable discontinuity, 132

resources, Internet
Cheat Sheet, 3
Technical Support, 4
Wolfram Alpha, 143

revenue, marginal, 378–380
reverse power rule, 461–462
reverse rules, for antiderivatives, 460–462
revolution, surfaces of, 540–542
Riemann sums

about, 409
writing with sigma notation, 414–417

right rectangle rule, 407
right sums, approximating area with, 406–408
right triangles, 45–46
rise, 187
rise per run, 15
root test, 598–600
roots

about, 35–36
simplifying, 36–37

S
sandwich (squeeze) method, 153–156
secant line, 195–197
secants

about, 496
integrals containing, 489–491

second derivative test, 268–272
second squared, 334
sequences

convergence and divergence of, 582–583
functions and, 583
stringing, 582–584

series, infinite
about, 17, 581
alternating series, 602–606
alternating series test, 603–606
answers to quiz questions, 617–621
comparison tests for convergence/divergence, 

592–596, 606
convergence, 586–601
convergent series, 17–19
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direct comparison test, 592–593
divergence, 586–601
divergent series, 17
example questions, 587, 592, 593–596, 599, 600, 

602–603, 604, 605
finding absolute versus conditional convergence, 

602–603
geometric series, 588–589
integral comparison test, 595–596
limit comparison test, 593–595
nth term test, 586–588
practice questions, 588, 591, 597–598, 601, 

605–606
practice questions answers and explanations, 

607–615
p-series, 589–590
quiz questions, 616
ratio test, 596–600
root test, 596–600
stringing sequences, 582–584
summing series, 584–586
telescoping series, 590–591

sigma notation, writing Riemann sums with, 
414–417

simplifying roots, 36–37
Simpson’s rule, approximating area with, 421, 

423–425
sines

about, 494–495
graphing, 106–107
integrals containing, 486–489

slope of a line, 186–187
slopes

defined, 195
derivative as a, 14
formula for, 44
negative, 184, 260
positive, 260

slowing down, 333
SohCahToa mnemonic, 95–96
solids, volumes of weird, 529–537

solving
limit problems with algebra, 147–152
limits at infinity with algebra, 161–163
limits at ± infinity with calculators, 160–161
quadratic equations, 39–41

speed
about, 190
average, 332
distance traveled and, 331–332
maximum, 332
minimum, 332
velocity, acceleration and, 328–329

speeding up, 333
squares

completing the, for solving quadratic equations, 
41

difference of, 38
squeeze (sandwich) method, 153–156
stationary point, 260, 262
statistics, 458–460
Sterling, Mary Jane (author)

Algebra II For Dummies, 39
straight inline problem, 8–9
stringing sequences, 582–584
stuff technique, 232
substitution, trigonometric, 491–496
substitution method, 465–468
substitution problems, finding area with, 469–470
subtracting fractions, 30
sum of cubes, 38
sum rule, 218
summation notation, 411–417
summing

fractions, 29–30
series, 584–586

sums
approximating area with left, 404–406
approximating area with midpoint, 408–410
approximating area with right, 406–408

surface area, formulas for, 44
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surfaces of revolution, 540–542
sweeping-out area rate, 444

T
tangent line problem, 368–369
tangents

about, 492–494
graphing, 106–107
integrals containing, 489–491

Technical Support (website), 4
teetering on corners, 261
telescoping series, tests for, 590–591
telescoping series rule, 591
tests

alternating series, 603–606
comparison, 592–596, 606
direct comparison, 592–593
for endpoints, 323
first derivative, 264–268
for geometric series, 588–589
integral comparison, 595–596
limit comparison, 593–595
nth term, 586–588
for p-series, 589–590
ratio, 598–600
root, 598–600
second derivative, 268–272
for telescoping series, 590–591

30°-60°-90° triangles, 45, 97
3333 limit mnemonic, 131–133
three-dimensional shapes, formulas for, 44
Tip icon, 3
top-minus-bottom method, 527
total displacement, 330
total distance traveled, 331–332
transformations

about, 83
answers to quiz questions, 92–94

example questions, 85
horizontal, 83–84
practice questions, 86
practice questions answers and explanations, 

90
quiz questions, 91
vertical, 85

trapezoid rule, approximating area with, 421–422
triangles

right, 45–46
trigonometry, 96–97

trigonometric substitution, 491–496
trigonometry

about, 95
answers to quiz questions, 114–116
differentiating trig functions, 220
example questions, 102, 108
graphing sine, cosine, and tangent, 106–107
identities, 108
integrals, 486–491
inverse functions, 107
practice questions, 103–105, 108
practice questions answers and explanations, 

109–112
quiz questions, 113
SohCahToa mnemonic, 95–96
triangles, 96–97
unit circle, 97–102

trinomial factoring, 39
two-dimensional shapes, formulas for, 44

U
unacceptable forms, 559–561
unit circles

about, 97–98, 100–102
angles in, 98
hypotenuse, 99–100
measuring angles with radians, 98–99
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V
variety, 186
velocity

about, 326–328
derivative of, 327
displacement and, 330–331
maximum, 331
minimum, 331
speed, acceleration and, 328–329

vertical asymptotes
defined, 107
improper integrals with, 563–565
limits and, 123

vertical tangent, 132
vertical transformations, 85
vocabulary, 441
volumes

formulas for, 44
of weird solids, 529–537

W
Warning icon, 3
washer method, 533–535
websites

Cheat Sheet, 3
Technical Support, 4
Wolfram Alpha, 143

Wolfram Alpha, 143
writing Riemann sums, with sigma notation, 

414–417

Y
Your Turn icon, 3

Z
zooming, 22–24
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