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Preface

Data pipelines are the foundation for success in data analytics
and machine learning. Moving data from numerous, diverse
sources and processing it to provide context is the difference
between having data and getting value from it.

I’ve worked as a data analyst, data engineer, and leader in the
data analytics field for more than 10 years. In that time, I’ve
seen rapid change and growth in the field. The emergence of
cloud infrastructure, and cloud data warehouses in particular,
has created an opportunity to rethink the way data pipelines
are designed and implemented.

This book describes what I believe are the foundations and best
practices of building data pipelines in the modern era. I base
my opinions and observations on my own experience as well as
those of industry leaders who I know and follow.

My goal is for this book to serve as a blueprint as well as a ref‐
erence. While your needs are specific to your organization and
the problems you’ve set out to solve, I’ve found success with
variations of these foundations many times over. I hope you
find it a valuable resource in your journey to building and
maintaining data pipelines that power your data organization.
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Who This Book Is For
This book’s primary audience is current and aspiring data engi‐
neers as well as analytics team members who want to under‐
stand what data pipelines are and how they are implemented.
Their job titles include data engineers, technical leads, data
warehouse engineers, analytics engineers, business intelligence
engineers, and director/VP-level analytics leaders.

I assume that you have a basic understanding of data ware‐
housing concepts. To implement the examples discussed, you
should be comfortable with SQL databases, REST APIs, and
JSON. You should be proficient in a scripting language, such as
Python. Basic knowledge of the Linux command line and at
least one cloud computing platform is ideal as well.

All code samples are written in Python and SQL and make use
of many open source libraries. I use Amazon Web Services
(AWS) to demonstrate the techniques described in the book,
and AWS services are used in many of the code samples. When
possible, I note similar services on other major cloud providers
such as Microsoft Azure and Google Cloud Platform (GCP).
All code samples can be modified for the cloud provider of
your choice, as well as for on-premises use.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.
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Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is avail‐
able for download at https://oreil.ly/datapipelinescode.

If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission. Incor‐
porating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Data Pipelines Pocket Reference by James
Densmore (O’Reilly). Copyright 2021 James Densmore,
978-1-492-08783-0.”

If you feel your use of code examples falls outside fair use or
the permission given above, please feel free to contact us:
permissions@oreilly.com.
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CHAPTER 1

Introduction to Data Pipelines

Behind every glossy dashboard, machine learning model, and
business-changing insight is data. Not just raw data, but data
collected from numerous sources that must be cleaned, pro‐
cessed, and combined to deliver value. The famous phrase
“data is the new oil” has proven true. Just like oil, the value of
data is in its potential after it’s refined and delivered to the con‐
sumer. Also like oil, it takes efficient pipelines to deliver data
through each stage of its value chain.

This Pocket Reference discusses what these data pipelines are
and shows how they fit into a modern data ecosystem. It covers
common considerations and key decision points when imple‐
menting pipelines, such as batch versus streaming data inges‐
tion, building versus buying tooling, and more. Though it is
not exclusive to a single language or platform, it addresses the
most common decisions made by data professionals while dis‐
cussing foundational concepts that apply to homegrown solu‐
tions, open source frameworks, and commercial products.

What Are Data Pipelines?
Data pipelines are sets of processes that move and transform
data from various sources to a destination where new value can
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be derived. They are the foundation of analytics, reporting, and
machine learning capabilities.

The complexity of a data pipeline depends on the size, state,
and structure of the source data as well as the needs of the ana‐
lytics project. In their simplest form, pipelines may extract only
data from one source such as a REST API and load to a desti‐
nation such as a SQL table in a data warehouse. In practice,
however, pipelines typically consist of multiple steps including
data extraction, data preprocessing, data validation, and at
times training or running a machine learning model before
delivering data to its final destination. Pipelines often contain
tasks from multiple systems and programming languages.
What’s more, data teams typically own and maintain numerous
data pipelines that share dependencies and must be coordina‐
ted. Figure 1-1 illustrates a simple pipeline.

Figure 1-1. A simple pipeline that loads server log data into an S3
Bucket, does some basic processing and structuring, and loads the
results into an Amazon Redshift database.

Who Builds Data Pipelines?
With the popularization of cloud computing and software as a
service (SaaS), the number of data sources organizations need
to make sense of has exploded. At the same time, the demand
for data to feed machine learning models, data science
research, and time-sensitive insights is higher than ever. To
keep up, data engineering has emerged as a key role on analytics
teams. Data engineers specialize in building and maintaining
the data pipelines that underpin the analytics ecosystem.

A data engineer’s purpose isn’t simply to load data into a data
warehouse. Data engineers work closely with data scientists

2 | Chapter 1: Introduction to Data Pipelines



and analysts to understand what will be done with the data and
help bring their needs into a scalable production state.

Data engineers take pride in ensuring the validity and timeli‐
ness of the data they deliver. That means testing, alerting, and
creating contingency plans for when something goes wrong.
And yes, something will eventually go wrong!

The specific skills of a data engineer depend somewhat on the
tech stack their organization uses. However, there are some
common skills that all good data engineers possess.

SQL and Data Warehousing Fundamentals
Data engineers need to know how to query databases, and SQL
is the universal language to do so. Experienced data engineers
know how to write high-performance SQL and understand the
fundamentals of data warehousing and data modeling. Even if a
data team includes data warehousing specialists, a data engi‐
neer with warehousing fundamentals is a better partner and
can fill more complex technical gaps that arise.

Python and/or Java
The language in which a data engineer is proficient will depend
on the tech stack of their team, but either way a data engineer
isn’t going to get the job done with “no code” tools even if they
have some good ones in their arsenal. Python and Java cur‐
rently dominate in data engineering, but newcomers like Go
are emerging.

Distributed Computing
Solving a problem that involves high data volume and a desire
to process data quickly has led data engineers to work with dis‐
tributed computing platforms. Distributed computing combines
the power of multiple systems to efficiently store, process, and
analyze high volumes of data.
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One popular example of distributed computing in analytics is
the Hadoop ecosystem, which includes distributed file storage
via Hadoop Distributed File System (HDFS), processing via
MapReduce, data analysis via Pig, and more. Apache Spark is
another popular distributed processing framework, which is
quickly surpassing Hadoop in popularity.

Though not all data pipelines require the use of distributed
computing, data engineers need to know how and when to uti‐
lize such a framework.

Basic System Administration
A data engineer is expected to be proficient on the Linux com‐
mand line and be able to perform tasks such as analyze applica‐
tion logs, schedule cron jobs, and troubleshoot firewall and
other security settings. Even when working fully on a cloud
provider such as AWS, Azure, or Google Cloud, they’ll end up
using those skills to get cloud services working together and
data pipelines deployed.

A Goal-Oriented Mentality
A good data engineer doesn’t just possess technical skills. They
may not interface with stakeholders on a regular basis, but the
analysts and data scientists on the team certainly will. The data
engineer will make better architectural decisions if they’re
aware of the reason they’re building a pipeline in the first place.

Why Build Data Pipelines?
In the same way that the tip of the iceberg is all that can be seen
by a passing ship, the end product of the analytics workflow is
all that the majority of an organization sees. Executives see
dashboards and pristine charts. Marketing shares cleanly pack‐
aged insights on social media. Customer support optimizes the
call center staffing based on the output of a predictive demand
model.
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What most people outside of analytics often fail to appreciate is
that to generate what is seen, there’s a complex machinery that
is unseen. For every dashboard and insight that a data analyst
generates and for each predictive model developed by a data
scientist, there are data pipelines working behind the scenes. It’s
not uncommon for a single dashboard, or even a single metric,
to be derived from data originating in multiple source systems.
In addition, data pipelines do more than just extract data from
sources and load them into simple database tables or flat files
for analysts to use. Raw data is refined along the way to clean,
structure, normalize, combine, aggregate, and at times ano‐
nymize or otherwise secure it. In other words, there’s a lot more
going on below the water line.

Supplying Data to Analysts and Data Scientists
Don’t rely on data analysts and data scientists hunting for and
procuring data on their own for each project that comes their
way. The risks of acting on stale data, multiple sources of truth,
and bogging down analytics talent in data acquisition are too
great. Data pipelines ensure that the proper data is delivered so
the rest of the analytics organization can focus their time on
what they do best: delivering insights.

How Are Pipelines Built?
Along with data engineers, numerous tools to build and sup‐
port data pipelines have emerged in recent years. Some are
open source, some commercial, and some are homegrown.
Some pipelines are written in Python, some in Java, some in
another language, and some with no code at all.

Throughout this Pocket Reference I explore some of the most
popular products and frameworks for building pipelines, as
well as discuss how to determine which to use based on your
organization’s needs and constraints.
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Though I do not cover all such products in depth, I do provide
examples and sample code for some. All code in this book is
written in Python and SQL. These are the most common, and
in my opinion, the most accessible, languages for building data
pipelines.

In addition, pipelines are not just built—they are monitored,
maintained, and extended. Data engineers are tasked with not
just delivering data once, but building pipelines and supporting
infrastructure that deliver and process it reliably, securely, and
on time. It’s no small feat, but when it’s done well, the value of
an organization’s data can truly be unlocked.
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CHAPTER 2

A Modern Data Infrastructure

Before deciding on products and design for building pipelines,
it’s worth understanding what makes up a modern data stack.
As with most things in technology, there’s no single right way
to design your analytics ecosystem or choose products and
vendors. Regardless, there are some key needs and concepts
that have become industry standard and set the stage for best
practices in implementing pipelines.

Let’s take a look at the key components of such an infrastruc‐
ture as displayed in Figure 2-1. Future chapters explore how
each component factors into the design and implementation of
data pipelines.

Diversity of Data Sources
The majority of organizations have dozens, if not hundreds, of
data sources that feed their analytics endeavors. Data sources
vary across many dimensions covered in this section.
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Figure 2-1. The key components of a modern data infrastructure.

Source System Ownership
It’s typical for an analytics team to ingest data from source sys‐
tems that are built and owned by the organization as well as
from third-party tools and vendors. For example, an ecom‐
merce company might store data from their shopping cart in a
PostgreSQL (also known as Postgres) database behind their
web app. They may also use a third-party web analytics tool
such as Google Analytics to track usage on their website. The
combination of the two data sources (illustrated in Figure 2-2)
is required to get a full understanding of customer behavior
leading up to a purchase. Thus, a data pipeline that ends with
an analysis of such behavior starts with the ingestion of data
from both sources.
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Figure 2-2. A simple pipeline with data from multiple sources loaded
into an S3 bucket and then a Redshift database.

NOTE

The term data ingestion refers to extracting data from one
source and loading it into another.

Understanding the ownership of source systems is important
for several reasons. First, for third-party data sources you’re
likely limited as to what data you can access and how you can
access it. Most vendors make a REST API available, but few will
give you direct access to your data in the form of a SQL data‐
base. Even fewer will give you much in the way of customiza‐
tion of what data you can access and at what level of
granularity.

Internally built systems present the analytics team with more
opportunities to customize the data available as well as the
method of access. However, they present other challenges as
well. Were the systems built with consideration of data inges‐
tion? Often the answer is no, which has implications ranging
from the ingestion putting unintended load on the system to
the inability to load data incrementally. If you’re lucky, the
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engineering team that owns the source system will have the
time and willingness to work with you, but in the reality of
resource constraints, you may find it’s not dissimilar to work‐
ing with an external vendor.

Ingestion Interface and Data Structure
Regardless of who owns the source data, how you get it and in
what form is the first thing a data engineer will examine when
building a new data ingestion. First, what is the interface to the
data? Some of the most common include the following:

• A database behind an application, such as a Postgres or
MySQL database

• A layer of abstraction on top of a system such as a REST
API

• A stream processing platform such as Apache Kafka
• A shared network file system or cloud storage bucket con‐

taining logs, comma-separated value (CSV) files, and
other flat files

• A data warehouse or data lake
• Data in HDFS or HBase database

In addition to the interface, the structure of the data will vary.
Here are some common examples:

• JSON from a REST API
• Well-structured data from a MySQL database
• JSON within columns of a MySQL database table
• Semistructured log data
• CSV, fixed-width format (FWF), and other flat file formats
• JSON in flat files
• Stream output from Kafka
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Each interface and data structure presents its own challenges
and opportunities. Well-structured data is often easiest to work
with, but it’s usually structured in the interest of an application
or website. Beyond the ingestion of the data, further steps in
the pipeline will likely be necessary to clean and transform into
a structure better suited for an analytics project.

Semistructured data such as JSON is increasingly common and
has the advantage of the structure of attribute-value pairs and
nesting of objects. However, unlike a relational database, there
is no guarantee that each object in the same dataset will have
the same structure. As you’ll see later in this book, how one
deals with missing or incomplete data in a pipeline is context
dependent and increasingly necessary as the rigidity of the
structure in data is reduced.

Unstructured data is common for some analytics endeavors.
For example, Natural Language Processing (NLP) models
require vast amounts of free text data to train and validate.
Computer Vision (CV) projects require images and video con‐
tent. Even less daunting projects such as scraping data from
web pages have a need for free text data from the web in addi‐
tion to the semistructured HTML markup of a web page.

Data Volume
Though data engineers and hiring managers alike enjoy brag‐
ging about petabyte-scale datasets, the reality is that most
organizations value small datasets as much as large ones. In
addition, it’s common to ingest and model small and large
datasets in tandem. Though the design decisions at each step in
a pipeline must take data volume into consideration, high vol‐
ume does not mean high value.

All that said, most organizations have at least one dataset that is
key to both analytical needs as well as high volume. What’s high
volume? There’s no easy definition, but as it pertains to pipe‐
lines, it’s best to think in terms of a spectrum rather than a
binary definition of high- and low- volume datasets.
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NOTE

As you’ll see throughout this book, there’s as much danger
in oversimplifying data ingestion and processing—with the
result being long and inefficient runs—as there is in over‐
engineering pipeline tasks when the volume of data or
complexity of the task is low.

Data Cleanliness and Validity
Just as there is great diversity in data sources, the quality of
source data varies greatly. As the old saying goes, “garbage in,
garbage out.” It’s important to understand the limitations and
deficiencies of source data and address them in the appropriate
sections of your pipelines.

There are many common characteristics of “messy data,”
including, but not limited to, the following:

• Duplicate or ambiguous records
• Orphaned records
• Incomplete or missing records
• Text encoding errors
• Inconsistent formats (for example, phone numbers with or

without dashes)
• Mislabeled or unlabeled data

Of course, there are numerous others, as well as data validity
issues specific to the context of the source system.

There’s no magic bullet for ensuring data cleanliness and valid‐
ity, but in a modern data ecosystem, there are key characteris‐
tics and approaches that we’ll see throughout this book:

Assume the worst, expect the best
Pristine datasets only exist in academic literature. Assume
your input datasets will contain numerous validity and
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consistency issues, but build pipelines that identify and
cleanse data in the interest of clean output.

Clean and validate data in the system best suited to do so
There are times when it’s better to wait to clean data until
later in a pipeline. For example, modern pipelines tend to
follow an extract-load-transform (ELT) rather than
extract-transform-load (ETL) approach for data ware‐
housing (more in Chapter 3). It’s sometimes optimal to
load data into a data lake in a fairly raw form and to worry
about structuring and cleaning later in the pipeline. In
other words, use the right tool for the right job rather than
rushing the cleaning and validation processes.

Validate often
Even if you don’t clean up data early in a pipeline, don’t
wait until the end of the pipeline to validate it. You’ll have
a much harder time determining where things went
wrong. Conversely, don’t validate once early in a pipeline
and assume all will go well in subsequent steps. Chapter 8
digs deeper into validation.

Latency and Bandwidth of the Source System
The need to frequently extract high volumes of data from
source systems is a common use case in a modern data stack.
Doing so presents challenges, however. Data extraction steps in
pipelines must contend with API rate limits, connection time-
outs, slow downloads, and source system owners who are
unhappy due to strain placed on their systems.

NOTE

As I’ll discuss in Chapters 4 and 5 in more detail, data
ingestion is the first step in most data pipelines. Under‐
standing the characteristics of source systems and their
data is thus the first step in designing pipelines and making
decisions regarding infrastructure further downstream.
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Cloud Data Warehouses and Data Lakes
Three things transformed the landscape of analytics and data
warehousing over the last 10 years, and they’re all related to the
emergence of the major public cloud providers (Amazon, Goo‐
gle, and Microsoft):

• The ease of building and deploying data pipelines, data
lakes, warehouses, and analytics processing in the cloud.
No more waiting on IT departments and budget approval
for large up-front costs. Managed services—databases in
particular—have become mainstream.

• Continued drop-in storage costs in the cloud.
• The emergence of highly scalable, columnar databases,

such as Amazon Redshift, Snowflake, and Google Big
Query.

These changes breathed new life into data warehouses and
introduced the concept of a data lake. Though Chapter 5 covers
data warehouses and data lakes in more detail, it’s worth briefly
defining both now, in order to clarify their place in a modern
data ecosystem.

A data warehouse is a database where data from different sys‐
tems is stored and modeled to support analysis and other activ‐
ities related to answering questions with it. Data in a data ware‐
house is structured and optimized for reporting and analysis
queries.

A data lake is where data is stored, but without the structure or
query optimization of a data warehouse. It will likely contain a
high volume of data as well as a variety of data types. For exam‐
ple, a single data lake might contain a collection of blog posts
stored as text files, flat file extracts from a relational database,
and JSON objects containing events generated by sensors in an
industrial system. It can even store structured data like a stan‐
dard database, though it’s not optimized for querying such data
in the interest of reporting and analysis.
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There is a place for both data warehouses and data lakes in the
same data ecosystem, and data pipelines often move data
between both.

Data Ingestion Tools
The need to ingest data from one system to another is common
to nearly all data pipelines. As previously discussed in this
chapter, data teams must contend with a diversity of data sour‐
ces from which to ingest data from. Thankfully, a number of
commercial and open source tools are available in a modern
data infrastructure.

In this Pocket Reference, I discuss some of the most common
of these tools and frameworks, including:

• Singer
• Stitch
• Fivetran

Despite the prevalence of these tools, some teams decide to
build custom code to ingest data. Some even develop their own
frameworks. The reasons vary by organization but are often
related to cost, a culture of building over buying, and concerns
about the legal and security risks of trusting an external vendor.
In Chapter 5, I discuss the build versus buy trade-offs that are
unique to data ingestion tools. Of particular interest is whether
the value of a commercial solution is to make it easier for data
engineers to build data ingestions into their pipelines or to
enable nondata engineers (such as data analysts) to build inges‐
tions themselves.

As Chapters 4 and 5 discuss, data ingestion is traditionally both
the extract and load steps of an ETL or ELT process. Some tools
focus on just these steps, while others provide the user with
some transform capabilities as well. In practice, I find most data
teams choose to limit the number of transformations they
make during data ingestion and thus stick to ingestion tools
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that are good at two things: extracting data from a source and
loading it into a destination.

Data Transformation and Modeling Tools
Though the bulk of this chapter has focused on moving data
between sources and destinations (data ingestion), there is
much more to data pipelines and the movement of data. Pipe‐
lines are also made up of tasks that transform and model data
for new purposes, such as machine learning, analysis, and
reporting.

The terms data modeling and data transformation are often
used interchangeably; however, for the purposes of this text, I
will differentiate between them:

Data transformation
Transforming data is a broad term that is signified by the
T in an ETL or ELT process. A transformation can be
something as simple as converting a timestamp stored in a
table from one time zone to another. It can also be a more
complex operation that creates a new metric from multiple
source columns that are aggregated and filtered through
some business logic.

Data modeling
Data modeling is a more specific type of data transforma‐
tion. A data model structures and defines data in a format
that is understood and optimized for data analysis. A data
model is usually represented as one or more tables in a
data warehouse. The process of creating data models is
discussed in more detail in Chapter 6.

Like data ingestion, there are a number of methodologies and
tools that are present in a modern data infrastructure. As previ‐
ously noted, some data ingestion tools provide some level of
data transformation capabilities, but these are often quite sim‐
ple. For example, for the sake of protecting personally identifia‐
ble information (PII) it may be desirable to turn an email
address into a hashed value that is stored in the final
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destination. Such a transformation is usually performed during
the ingestion process.

For more complex data transformations and data modeling, I
find it desirable to seek out tools and frameworks specifically
designed for the task, such as dbt (see Chapter 9). In addition,
data transformation is often context-specific and can be written
in a language familiar to data engineers and data analysts, such
as SQL or Python.

Data models that will be used for analysis and reporting are
typically defined and written in SQL or via point-and-click user
interfaces. Just like build-versus-buy trade-offs, there are con‐
siderations in choosing to build models using SQL versus a no-
code tool. SQL is a highly accessible language that is common
to both data engineers and analysts. It empowers the analyst to
work directly with the data and optimize the design of models
for their needs. It’s also used in nearly every organization, thus
providing a familiar entry point for new hires to a team. In
most cases, choosing a transformation framework that sup‐
ports building data models in SQL rather than via a point-and-
click user interface is desirable. You’ll get far more customiza‐
bility and own your development process from end to end.

Chapter 6 discusses transforming and modeling data at length.

Workflow Orchestration Platforms
As the complexity and number of data pipelines in an organi‐
zation grows, it’s important to introduce a workflow orchestra‐
tion platform to your data infrastructure. These platforms man‐
age the scheduling and flow of tasks in a pipeline. Imagine a
pipeline with a dozen tasks ranging from data ingestions writ‐
ten in Python to data transformations written in SQL that must
run in a particular sequence throughout the day. It’s not a sim‐
ple challenge to schedule and manage dependencies between
each task. Every data team faces this challenge, but thankfully
there are numerous workflow orchestration platforms available
to alleviate the pain.
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NOTE

Workflow orchestration platforms are also referred to as
workflow management systems (WMSs), orchestration plat‐
forms, or orchestration frameworks. I use these terms inter‐
changeably in this text.

Some platforms, such as Apache Airflow, Luigi, and AWS Glue,
are designed for more general use cases and are thus used for a
wide variety of data pipelines. Others, such as Kubeflow Pipe‐
lines, are designed for more specific use cases and platforms
(machine learning workflows built on Docker containers in the
case of Kubeflow Pipelines).

Directed Acyclic Graphs
Nearly all modern orchestration frameworks represent the flow
and dependencies of tasks in a pipeline as a graph. However,
pipeline graphs have some specific constraints.

Pipeline steps are always directed, meaning they start with a
general task or multiple tasks and end with a specific task or
tasks. This is required to guarantee a path of execution. In
other words, it ensures that tasks do not run before all their
dependent tasks are completed successfully.

Pipeline graphs must also be acyclic, meaning that a task cannot
point back to a previously completed task. In other words, it
cannot cycle back. If it could, then a pipeline could run
endlessly!

With these two constraints in mind, orchestration pipelines
produce graphs called directed acyclic graphs (DaGs).
Figure 2-3 illustrates a simple DAG. In this example, Task A
must complete before Tasks B and C can start. Once they are
both completed, then Task D can start. Once Task D is com‐
plete, the pipeline is completed as well.

18 | Chapter 2: A Modern Data Infrastructure



Figure 2-3. A DAG with four tasks. After Task A completes, Task B and
Task C run. When they both complete, Task D runs.

DAGs are a representation of a set of tasks and not where the
logic of the tasks is defined. An orchestration platform is capa‐
ble of running tasks of all sorts.

For example, consider a data pipeline with three tasks. It is rep‐
resented as a DAG in Figure 2-4.

• The first executes a SQL script that queries data from a
relational database and stores the result in a CSV file.

• The second runs a Python script that loads the CSV file,
cleans, and then reshapes the data before saving a new ver‐
sion of the file.

• Finally, a third task, which runs the COPY command in
SQL, loads the CSV created by the second task into a
Snowflake data warehouse.

Figure 2-4. A DAG with three tasks that run in sequence to extract
data from a SQL database, clean and reshape the data using a Python
script, and then load the resulting data into a data warehouse.

The orchestration platform executes each task, but the logic of
the tasks exists as SQL and Python code, which runs on differ‐
ent systems across the data infrastructure.
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Chapter 7 discusses workflow orchestration platforms in more
detail and provides hands-on examples of orchestrating a pipe‐
line in Apache Airflow.

Customizing Your Data Infrastructure
It’s rare to find two organizations with exactly the same data
infrastructure. Most pick and choose tools and vendors that
meet their specific needs and build the rest on their own.
Though I talk in detail about some of the most popular tools
and products throughout this book, many more come to mar‐
ket each year.

As previously noted, depending on the culture and resources in
your organization, you may be encouraged to build most of
your data infrastructure on your own, or to rely on SaaS ven‐
dors instead. Regardless of which way you lean on the build-
versus-buy scale, you can build the high-quality data infra‐
structure necessary to build high-quality data pipelines.

What’s important is understanding your constraints (dollars,
engineering resources, security, and legal risk tolerance) and
the resulting trade-offs. I speak to these throughout the text
and call out key decision points in selecting a product or tool.
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CHAPTER 3

Common Data Pipeline Patterns

Even for seasoned data engineers, designing a new data pipe‐
line is a new journey each time. As discussed in Chapter 2, dif‐
fering data sources and infrastructure present both challenges
and opportunities. In addition, pipelines are built with differ‐
ent goals and constraints. Must the data be processed in near
real time? Can it be updated daily? Will it be modeled for use in
a dashboard or as input to a machine learning model?

Thankfully, there are some common patterns in data pipelines
that have proven successful and are extensible to many use
cases. In this chapter, I will define these patterns. Subsequent
chapters implement pipelines built on them.

ETL and ELT
There is perhaps no pattern more well known than ETL and its
more modern sibling, ELT. Both are patterns widely used in
data warehousing and business intelligence. In more recent
years, they’ve inspired pipeline patterns for data science and
machine learning models running in production. They are so
well known that many people use these terms synonymously
with data pipelines rather than patterns that many pipelines
follow.
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Given their roots in data warehousing, it’s easiest to describe
them in that context, which is what this section does. Later sec‐
tions in this chapter describe how they are used for particular
use cases.

Both patterns are approaches to data processing used to feed
data into a data warehouse and make it useful to analysts and
reporting tools. The difference between the two is the order of
their final two steps (transform and load), but the design impli‐
cations in choosing between them are substantial, as I’ll explain
throughout this chapter. First, let’s explore the steps of ETL and
ELT.

The extract step gathers data from various sources in prepara‐
tion for loading and transforming. Chapter 2 discussed the
diversity of these sources and methods of extraction.

The load step brings either the raw data (in the case of ELT) or
the fully transformed data (in the case of ETL) into the final
destination. Either way, the end result is loading data into the
data warehouse, data lake, or other destination.

The transform step is where the raw data from each source sys‐
tem is combined and formatted in a such a way that it’s useful
to analysts, visualization tools, or whatever use case your pipe‐
line is serving. There’s a lot to this step, regardless of whether
you design your process as ETL or ELT, all of which is explored
in detail in Chapter 6.

Separation of Extract and Load
The combination of the extraction and loading steps is often
referred to as data ingestion. Especially in ELT and the EtLT
subpattern (note the lowercase t), which is defined later in this
chapter, extraction and loading capabilities are often tightly
coupled and packaged together in software frameworks. When
designing pipelines, however, it is still best to consider the two
steps as separate due to the complexity of coordinating extracts
and loads across different systems and infrastructure.
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Chapters 4 and 5 describe data ingestion techniques in more
detail and provide implementation examples using common
frameworks.

The Emergence of ELT over ETL
ETL was the gold standard of data pipeline patterns for deca‐
des. Though it’s still used, more recently ELT has emerged as
the pattern of choice. Why? Prior to the modern breed of data
warehouses, primarily in the cloud (see Chapter 2), data teams
didn’t have access to data warehouses with the storage or com‐
pute necessary to handle loading vast amounts of raw data and
transforming it into usable data models all in the same place. In
addition, data warehouses at the time were row-based data‐
bases that worked well for transactional use cases, but not for
the high-volume, bulk queries that are commonplace in analyt‐
ics. Thus, data was first extracted from source systems and then
transformed on a separate system before being loaded into a
warehouse for any final data modeling and querying by ana‐
lysts and visualization tools.

The majority of today’s data warehouses are built on highly
scalable, columnar databases that can both store and run bulk
transforms on large datasets in a cost-effective manner. Thanks
to the I/O efficiency of a columnar database, data compression,
and the ability to distribute data and queries across many
nodes that can work together to process data, things have
changed. It’s now better to focus on extracting data and loading
it into a data warehouse where you can then perform the neces‐
sary transformations to complete the pipeline.

The impact of the difference between row-based and column-
based data warehouses cannot be overstated. Figure 3-1 illus‐
trates an example of how records are stored on disk in a row-
based database, such as MySQL or Postgres. Each row of the
database is stored together on disk, in one or more blocks
depending on the size of each record. If a record is smaller than
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a single block or not cleanly divisible by the block size, it leaves
some disk space unused.

Figure 3-1. A table stored in a row-based storage database. Each block
contains a record (row) from the table.

Consider an online transaction processing (OLTP) database
use case such as an e-commerce web application that leverages
a MySQL database for storage. The web app requests reads and
writes from and to the MySQL database, often involving multi‐
ple values from each record, such as the details of an order on
an order confirmation page. It’s also likely to query or update
only one order at a time. Therefore, row-based storage is opti‐
mal since the data the application needs is stored in close prox‐
imity on disk, and the amount of data queried at one time is
small.

The inefficient use of disk space due to records leaving empty
space in blocks is a reasonable trade-off in this case, as the
speed to reading and writing single records frequently is what’s
most important. However, in analytics the situation is reversed.
Instead of the need to read and write small amounts of data fre‐
quently, we often read and write a large amount of data infre‐
quently. In addition, it’s less likely that an analytical query
requires many, or all, of the columns in a table but rather a sin‐
gle column of a table with many columns.

24 | Chapter 3: Common Data Pipeline Patterns



For example, consider the order table in our fictional
e-commerce application. Among other things, it contains the
dollar amount of the order as well as the country it’s shipping
to. Unlike the web application, which works with orders one at
a time, an analyst using the data warehouse will want to analyze
orders in bulk. In addition, the table containing order data in
the data warehouse has additional columns that contain values
from multiple tables in our MySQL database. For example, it
might contain the information about the customer who placed
the order. Perhaps the analyst wants to sum up all orders placed
by customers with currently active accounts. Such a query
might involve millions of records, but only read from two col‐
umns, OrderTotal and CustomerActive. After all, analytics is
not about creating or changing data (like in OLTP) but rather
the derivation of metrics and the understanding of data.

As illustrated in Figure 3-2, a columnar database, such as
Snowflake or Amazon Redshift, stores data in disk blocks by
column rather than row. In our use case, the query written by
the analyst only needs to access blocks that store OrderTotal
and CustomerActive values rather than blocks that store the
row-based records such as the MySQL database. Thus, there’s
less disk I/O as well as less data to load into memory to per‐
form the filtering and summing required by the analyst’s query.
A final benefit is reduction in storage, thanks to the fact that
blocks can be fully utilized and optimally compressed since the
same data type is stored in each block rather than multiple
types that tend to occur in a single row-based record.

All in all, the emergence of columnar databases means that
storing, transforming, and querying large datasets is efficient
within a data warehouse. Data engineers can use that to their
advantage by building pipeline steps that specialize in extract‐
ing and loading data into warehouses where it can be trans‐
formed, modeled, and queried by analysts and data scientists
who are more comfortable within the confines of a database. As
such, ELT has taken over as the ideal pattern for data
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warehouse pipelines as well as other use cases in machine
learning and data product development.

Figure 3-2. A table stored in a column-based storage database. Each
disk block contains data from the same column. The two columns
involved in our example query are highlighted. Only these blocks must
be accessed to run the query. Each block contains data of the same
type, making compression optimal.

EtLT Subpattern
When ELT emerged as the dominant pattern, it became clear
that doing some transformation after extraction, but before
loading, was still beneficial. However, instead of transformation
involving business logic or data modeling, this type of transfor‐
mation is more limited in scope. I refer to this as lowercase t
transformation, or EtLT.

Some examples of the type of transformation that fits into the
EtLT subpattern include the following:

• Deduplicate records in a table
• Parse URL parameters into individual components
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• Mask or otherwise obfuscate sensitive data

These types of transforms are either fully disconnected from
business logic or, in the case of something like masking sensi‐
tive data, at times required as early in a pipeline as possible for
legal or security reasons. In addition, there is value in using the
right tool for the right job. As Chapters 4 and 5 illustrate in
greater detail, most modern data warehouses load data most
efficiently if it’s prepared well. In pipelines moving a high vol‐
ume of data, or where latency is key, performing some basic
transforms between the extract and load steps is worth the
effort.

You can assume that the remaining ELT-related patterns are
designed to include the EtLT subpattern as well.

ELT for Data Analysis
ELT has become the most common and, in my opinion, most
optimal pattern for pipelines built for data analysis. As already
discussed, columnar databases are well suited to handling high
volumes of data. They are also designed to handle wide tables,
meaning tables with many columns, thanks to the fact that only
data in columns used in a given query are scanned on disk and
loaded into memory.

Beyond technical considerations, data analysts are typically flu‐
ent in SQL. With ELT, data engineers can focus on the extract
and load steps in a pipeline (data ingestion), while analysts can
utilize SQL to transform the data that’s been ingested as needed
for reporting and analysis. Such a clean separation is not possi‐
ble with an ETL pattern, as data engineers are needed across
the entire pipeline. As shown in Figure 3-3, ELT allows data
team members to focus on their strengths with less interdepen‐
dencies and coordination.

In addition, the ELT pattern reduces the need to predict exactly
what analysts will do with the data at the time of building
extract and load processes. Though understanding the general

ELT for Data Analysis | 27



use case is required to extract and load the proper data, saving
the transform step for later gives analysts more options and
flexibility.

Figure 3-3. The ELT pattern allows for a clean split of responsibilities
between data engineers and data analysts (or data scientists). Each
role can work autonomously with the tools and languages they are
comfortable in.

NOTE

With the emergence of ELT, data analysts have become
more autonomous and empowered to deliver value from
data without being “blocked” by data engineers. Data engi‐
neers can focus on data ingestion and supporting infra‐
structure that enables analysts to write and deploy their
own transform code written as SQL. With that empower‐
ment have come new job titles such as the analytics engi‐
neer. Chapter 6 discusses how these data analysts and ana‐
lytics engineers transform data to build data models.

ELT for Data Science
Data pipelines built for data science teams are similar to those
built for data analysis in a data warehouse. Like the analysis use
case, data engineers are focused on ingesting data into a data
warehouse or data lake. However, data scientists have different
needs from the data than data analysts do.
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Though data science is a broad field, in general, data scientists
will need access to more granular—and at times raw—data
than data analysts do. While data analysts build data models
that produce metrics and power dashboards, data scientists
spend their days exploring data and building predictive models.
While the details of the role of a data scientist are out of the
scope of this book, this high-level distinction matters to the
design of pipelines serving data scientists.

If you’re building pipelines to support data scientists, you’ll
find that the extract and load steps of the ELT pattern will
remain pretty much the same as they will for supporting ana‐
lytics. Chapters 4 and 5 outline those steps in technical detail.
Data scientists might also benefit from working with some of
the data models built for analysts in the transform step of an
ELT pipeline (Chapter 6), but they’ll likely branch off and use
much of the data acquired during extract-load.

ELT for Data Products and Machine Learning
Data is used for more than analysis, reporting, and predictive
models. It’s also used for powering data products. Some com‐
mon examples of data products include the following:

• A content recommendation engine that powers a video
streaming home screen

• A personalized search engine on an e-commerce website
• An application that performs sentiment analysis on user-

generated restaurant reviews

Each of those data products is likely powered by one or more
machine learning (ML) models, which are hungry for training
and validation data. Such data may come from a variety of
source systems and undergo some level of transformation to
prepare it for use in the model. An ELT-like pattern is well
suited for such needs, though there are a number of specific
challenges in all steps of a pipeline that’s designed for a data
product.
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Steps in a Machine Learning Pipeline
Like pipelines built for analysis, which this book is primarily
focused on, pipelines built for ML follow a pattern similar to
ELT—at least in the beginning of the pipeline. The difference is
that instead of the transform step focusing on transforming
data into data models, once data is extracted and loaded into a
warehouse or data lake, there a several steps involved in build‐
ing and updating the ML model.

If you’re familiar with ML development, these steps may look
familiar as well:

Data ingestion
This step follows the same process that I outline in Chap‐
ters 4 and 5. Though the data you ingest may differ, the
logic remains primarily the same for pipelines built for
analytics as well as ML, but with one additional considera‐
tion for ML pipelines. That is, ensuring that the data you
ingest is versioned in a way that ML models can later refer
to as a specific dataset for training or validation. There are
a number of tools and approaches for versioning datasets.
I suggest referring to “Further Reading on ML Pipelines”
on page 32 to learn more.

Data preprocessing
The data that’s ingested is unlikely to be ready to use in
ML development. Preprocessing is where data is cleaned
and otherwise prepared for models. For example, this is
the step in a pipeline where text is tokenized, features are
converted to numerical values, and input values are
normalized.

Model training
After new data is ingested and preprocessed, ML models
need to be retrained.

Model deployment
Deploying models to production can be the most chal‐
lenging part of going from research-oriented machine
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learning to a true data product. Here, not only is version‐
ing of datasets necessary, but versioning of trained models
is also needed. Often, a REST API is used to allow for
querying of a deployed model, and API endpoints for var‐
ious versions of a model will be used. It’s a lot to keep
track of and takes coordination between data scientists,
machine learning engineers, and data engineers to get to a
production state. A well-designed pipeline is key to gluing
it together.

Validating Ingested Data
As Chapter 8 discusses, validating data in a pipeline is essential
and has a place throughout pipelines. In pipelines built for data
analysts, validation often happens after data ingestion (extract-
load) as well as after data modeling (transform). In ML pipe‐
lines, validation of the data that’s ingested is also important.
Don’t confuse this critical step with validation of the ML model
itself, which is of course a standard part of ML development.

Incorporate Feedback in the Pipeline
Any good ML pipeline will also include gathering feedback for
improving the model. Take the example of a content recom‐
mendation model for a video streaming service. To measure
and improve the model in the future, you’ll need to keep track
of what it recommends to users, what recommendations they
click, and what recommended content they enjoy after they
click it. To do so, you’ll need to work with the development
team leveraging the model on the streaming services home
screen. They’ll need to implement some type of event collection
that keeps track of each recommendation made to each user;
the version of the model that recommended it; and when it’s
clicked; and then carry that click-through to the data they’re
likely already collecting related to a user’s content
consumption.
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All that information can then be ingested back into the data
warehouse and incorporated into future versions of the model,
either as training data or to be analyzed and considered by a
human (a data scientist perhaps) for inclusion in a future
model or experiment.

In addition, the data collected can be ingested, transformed,
and analyzed by data analysts in the ELT pattern described
throughout this book. Analysts will often be tasked with meas‐
uring the effectiveness of models and building dashboards to
display key metrics of the model to the organization. Stake‐
holders can use such dashboards to make sense of how effective
various models are to the business and to their customers.

Further Reading on ML Pipelines
Building pipelines for machine learning models is a robust
topic. Depending on your infrastructure choices and the com‐
plexity of your ML environment, there are several books I rec‐
ommend for further learning:

Building Machine Learning Pipelines by Hannes Hapke and
Catherine Nelson (O’Reilly, 2020)
Machine Learning with Scikit-Learn, Keras, and Tensor‐
Flow, 2nd edition, by Aurélien Géron (O’Reilly, 2019)

In addition, the following book is a highly accessible introduc‐
tion to machine learning:

Introduction to Machine Learning with Python by Andreas
C. Müller and Sarah Guido (O’Reilly, 2016)
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CHAPTER 4

Data Ingestion: Extracting Data

As discussed in Chapter 3, the ELT pattern is the ideal design
for data pipelines built for data analysis, data science, and data
products. The first two steps in the ELT pattern, extract and
load, are collectively referred to as data ingestion. This chapter
discusses getting your development environment and infra‐
structure set up for both, and it goes through the specifics of
extracting data from various source systems. Chapter 5 dis‐
cusses loading the resulting datasets into a data warehouse.

NOTE

The extract and load code samples in this chapter are fully
decoupled from each other. Coordinating the two steps to
complete a data ingestion is a topic that’s discussed in
Chapter 7.

As discussed in Chapter 2, there are numerous types of source
systems to extract from, as well as numerous destinations to
load into. In addition, data comes in many forms, all of which
present different challenges for ingesting it.
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This chapter and the next include code samples for exporting
and ingesting data from and to common systems. The code is
highly simplified and contains only minimal error handing.
Each example is intended as an easy-to-understand starting
point for data ingestions, but is fully functional and extendable
to more scalable solutions.

NOTE

The code samples in this chapter write extracted data to
CSV files to be loaded into the destination data warehouse.
There are times when it makes more sense to store extrac‐
ted data in another format, such as JSON, prior to loading. 
Where applicable, I note where you might want to consider
making such an adjustment.

Chapter 5 also discusses some open source frameworks you can
build off of, and commercial alternatives that give data engi‐
neers and analysts “low code” options for ingesting data.

Setting Up Your Python Environment
All code samples that follow are written in Python and SQL
and use open source frameworks that are common in the data
engineering field today. For simplicity, the number of sources
and destinations is limited. However, where applicable, I pro‐
vide notes on how to modify for similar systems.

To run the sample code, you’ll need a physical or virtual
machine running Python 3.x. You’ll also need to install and
import a few libraries.

If you don’t have Python installed on your machine, you can
get the distribution and installer for your OS directly from
them.
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NOTE

The following commands are written for a Linux or Mac‐
intosh command line. On Windows, you may need to add
the Python 3 executable to your PATH.

Before you install the libraries used in this chapter, it’s best to
create a virtual environment to install them into. To do so, you
can use a tool called virtualenv. virtualenv is helpful in man‐
aging Python libraries for different projects and applications. It
allows you to install Python libraries within a scope specific to
your project rather than globally. First, create a virtual environ‐
ment named env.

$ python -m venv env

Now that your virtual environment is created, activate it with
the following command:

$ source env/bin/activate

You can verify that your virtual environment is activated in two
ways. First, you’ll notice that your command prompt is now
prefixed by the environment name:

(env) $

You can also use the which python command to verify where
Python is looking for libraries. You should see something like
this, which shows the path of the virtual environment
directory:

(env) $ which python
env/bin/python

Now it’s safe to install the libraries you need for the code sam‐
ples that follow.
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NOTE

On some operating systems (OS), you must use python3
instead of python to run the Python 3.x executable. Older
OS versions may default to Python 2.x. You can find out
which version of Python your OS uses by typing python
--version.

Throughout this chapter, you’ll use pip to install the libraries
used in the code samples. pip is a tool that ships with most
Python distributions.

The first library you’ll install using pip is configparser, which
will be used to read configuration information you’ll add to a
file later.

(env) $ pip install configparser

Next, create a file named pipeline.conf in the same directory as
the Python scripts you’ll create in the following sections. Leave
the file empty for now. The code samples in this chapter will
call for adding to it. In Linux and Mac operating systems, you
can create the empty file on the command line with the follow‐
ing command:

(env) $ touch pipeline.conf

Don’t Add Your Config Files to a Git Repo!
Because you’ll be storing credentials and connection informa‐
tion in the configuration file, make sure you don’t add it to your
Git repo. This information should only be stored locally and on
systems that are secure and authorized to access your S3 bucket,
source systems, and data warehouse. The safest way to ensure
exclusion in the repo is to give your config files an extension
like .conf and add a line to your .gitignore file with *.conf.

36 | Chapter 4: Data Ingestion: Extracting Data

https://pypi.org/project/pip


Setting Up Cloud File Storage
For each example in this chapter, you’ll be using an Amazon
Simple Storage Service (Amazon S3 or simply S3) bucket for
file storage. S3 is hosted on AWS, and as the name implies, S3 is
a simple way to store and access files. It’s also very cost effec‐
tive. As of this writing, AWS offers 5 GB of free S3 storage for
12 months with a new AWS account and charges less than 3
cents USD per month per gigabyte for the standard S3 class of
storage after that. Given the simplicity of the samples in this
chapter, you’ll be able to store the necessary data in S3 for free
if you are still in the first 12 months of creating an AWS
account, or for less than a $1 a month after that.

To run the samples in this chapter, you’ll need an S3 bucket.
Thankfully, creating an S3 bucket is simple, and the latest
instructions can be found in the AWS documentation. Setting
up the proper access control to the S3 bucket is dependent
upon which data warehouse you are using. In general, it’s best
to use AWS Identity and Access Management (IAM) roles for
access management policies. Detailed instructions for setting
up such access for both an Amazon Redshift and Snowflake
data warehouse are in the sections that follow, but for now, fol‐
low the instruction to create a new bucket. Name it whatever
you’d like; I suggest using the default settings, including keep‐
ing the bucket private.

Each extraction example extracts data from the given source
system and stores the output in the S3 bucket. Each loading
example in Chapter 5 loads that data from the S3 bucket into
the destination. This is a common pattern in data pipelines. 
Every major public cloud provider has a service similar to S3.
Equivalents on other public clouds are Azure Storage in Micro‐
soft Azure and Google Cloud Storage (GCS) in GCP.

It’s also possible to modify each example to use local or on-
premises storage. However, there is additional work required to
load data into your data warehouse from storage outside of its
specific cloud provider. Regardless, the patterns described in
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this chapter are valid no matter which cloud provider you use,
or if you choose to host your data infrastructure on-premises.

Before I move on to each example, there’s one more Python
library that you’ll need to install so that your scripts for extract‐
ing and loading can interact with your S3 bucket. Boto3 is the
AWS SDK for Python. Make sure the virtual environment you
set up in the previous section is active and use pip to install it:

(env) $ pip install boto3

In the examples that follow, you’ll be asked to import boto3
into your Python scripts like this:

import boto3

Because you’ll be using the boto3 Python library to interact
with your S3 bucket, you’ll also need to create an IAM user,
generate access keys for that user, and store the keys in a con‐
figuration file that your Python scripts can read from. This is
all necessary so that your scripts have permissions to read and
write files in your S3 bucket.

First, create the IAM user:

1. Under the Services menu in the AWS console (or top nav
bar), navigate to IAM.

2. In the navigation pane, click Users and then click “Add
user.” Type the username for the new user. In this example,
name the user data_pipeline_readwrite.

3. Click the type of access for this IAM user. Click “program‐
matic access” since this user won’t need to log into the
AWS Console, but rather access AWS resources program‐
matically via Python scripts.

4. Click Next: Permissions.
5. On the “Set permissions” page, click the “Attach existing

policies to user directly” option. Add the AmazonS3Full‐
Access policy.
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6. Click Next: Tags. It’s a best practice in AWS to add tags to
various objects and services so you can find them later.
This is optional, however.

7. Click Next: Review to verify your settings. If everything
looks good, click “Create user.”

8. You’ll want to save the access key ID and secret access key
for the new IAM user. To do so, click Download.csv and
then save the file to a safe location so you can use it in just
a moment.

Finally, add a section to the pipeline.conf file called
[aws_boto_credentials] to store the credentials for the IAM
user and the S3 bucket information. You can find your AWS
account ID by clicking your account name at the top right of
any page when logged into the AWS site. Use the name of the
S3 bucket you created earlier for the bucket_name value. The
new section in pipline.conf will look like this:

[aws_boto_credentials]
access_key = ijfiojr54rg8er8erg8erg8
secret_key = 5r4f84er4ghrg484eg84re84ger84
bucket_name = pipeline-bucket
account_id = 4515465518

Extracting Data from a MySQL Database
Extracting data from a MySQL database can be done in two
ways:

• Full or incremental extraction using SQL
• Binary Log (binlog) replication

Full or incremental extraction using SQL is far simpler to
implement, but also less scalable for large datasets with fre‐
quent changes. There are also trade-offs between full and incre‐
mental extractions that I discuss in the following section.
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Binary Log replication, though more complex to implement, is
better suited to cases where the data volume of changes in
source tables is high, or there is a need for more frequent data
ingestions from the MySQL source.

NOTE

Binlog replication is also a path to creating a streaming
data ingestion. See the “Batch Versus Stream Ingestion”
section of this chapter for more on the distinction between
the two approaches as well as implementation patterns.

This section is relevant to those readers who have a MySQL
data source they need to extract data from. However, if you’d
like to set up a simple database so you can try the code samples,
you have two options. First, you can install MySQL on your
local machine or virtual machine for free. You can find an
installer for your OS on the MySQL downloads page.

Alternatively, you can create a fully managed Amazon RDS for
MySQL instance in AWS. I find this method more straightfor‐
ward, and it’s nice not to create unnecessary clutter on my local
machine!

WARNING

When you follow the linked instructions to set up an
MySQL RDS database instance, you’ll be prompted to set
your database as publicly accessible. That’s just fine for
learning and working with sample data. In fact, it makes it
much easier to connect from whatever machine you’re
running the samples in this section. However, for more
robust security in a production setting, I suggest following
the Amazon RDS security best practices.
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Note that just like the S3 pricing noted earlier, if you are no
longer eligible for the free tier of AWS, there is a cost associated
with doing so. Otherwise, it’s free to set up and run! Just
remember to delete your RDS instance when you’re done so
you don’t forget and incur charges when your free tier expires.

The code samples in this section are quite simple and refer to a
table named Orders in a MySQL database. Once you have a
MySQL instance to work with, you can create the table and
insert some sample rows by running the following SQL
commands:

CREATE TABLE Orders (
  OrderId int,
  OrderStatus varchar(30),
  LastUpdated timestamp
);

INSERT INTO Orders
  VALUES(1,'Backordered', '2020-06-01 12:00:00');
INSERT INTO Orders
  VALUES(1,'Shipped', '2020-06-09 12:00:25');
INSERT INTO Orders
  VALUES(2,'Shipped', '2020-07-11 3:05:00');
INSERT INTO Orders
  VALUES(1,'Shipped', '2020-06-09 11:50:00');
INSERT INTO Orders
  VALUES(3,'Shipped', '2020-07-12 12:00:00');

Full or Incremental MySQL Table Extraction
When you need to ingest either all or a subset of columns from
a MySQL table into a data warehouse or data lake, you can do
so using either full extraction or incremental extraction.

In a full extraction, every record in the table is extracted on
each run of the extraction job. This is the least complex
approach, but for high-volume tables it can take a long time to
run. For example, if you want to run a full extraction on a table
called Orders, the SQL executed on the source MySQL database
will look like this:
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SELECT *
FROM Orders;

In an incremental extraction, only records from the source table
that have changed or been added since the last run of the job
are extracted. The timestamp of the last extraction can either be
stored in an extraction job log table in the data warehouse or
retrieved by querying the maximum timestamp in a LastUpda
ted column in the destination table in the warehouse. Using the
fictional Orders table as an example, the SQL query executed
on the source MySQL database will look like this:

SELECT *
FROM Orders
WHERE LastUpdated > {{ last_extraction_run} };

NOTE

For tables containing immutable data (meaning records
can be inserted, but not updated), you can make use of the
timestamp for when the record was created instead of a
LastUpdated column.

The {{ last_extraction_run }} variable is a timestamp repre‐
senting the most recent run of the extraction job. Most com‐
monly it’s queried from the destination table in the data ware‐
house. In that case, the following SQL would be executed in the
data warehouse, with the resulting value used for
{{ last_extraction_run }}:

SELECT MAX(LastUpdated)
FROM warehouse.Orders;
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Caching Last Updated Dates
If the Orders table is quite large, you may store the value of the
last updated record in a log table that can be quickly queried by
the next run of the extraction job. Be sure to store the MAX(Las
tUpdated) value from the destination table in the data ware‐
house and not the time the extraction job started or finished.
Even a small lag in the time logged for job execution could
mean missed or duplicated records from the source table in the
next run.

Though incremental extraction is ideal for optimal perfor‐
mance, there are some downsides and reasons why it may not
be possible for a given table.

First, with this method deleted, rows are not captured. If a row
is deleted from the source MySQL table, you won’t know, and it
will remain in the destination table as if nothing changed.

Second, the source table must have a reliable timestamp for
when it was last updated (the LastUpdated column in the previ‐
ous example). It’s not uncommon for source system tables to be
missing such a column or have one that is not updated reliably.
There’s nothing stopping developers from updating records in
the source table and forgetting to update the LastUpdated
timestamp.

However, incremental extraction does make it easier to capture
updated rows. In the upcoming code samples, if a particular
row in the Orders table is updated, both the full and incremen‐
tal extractions will bring back the latest version of the row. In
the full extract, that’s true for all rows in the table as the extrac‐
tion retrieves a full copy of the table. In the incremental extrac‐
tion, only rows that have changed are retrieved.

When it comes time for the load step, full extracts are usually
loaded by first truncating the destination table and loading in
the newly extracted data. In that case, you’re left with only the
latest version of the row in the data warehouse.
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When loading data from an incremental extraction, the result‐
ing data is appended to the data in the destination table. In that
case, you have both the original record as well as the updated
version. Having both can be valuable when it comes time to
transform and analyze data, as I discuss in Chapter 6.

For example, Table 4-1 shows the original record for OrderId 1
in the MySQL database. When the order was placed by the cus‐
tomer, it was on back order. Table 4-2 shows the updated
record in the MySQL database. As you can see, the order was
updated because it shipped on 2020-06-09.

Table 4-1. Original state of OrderId 1

OrderId OrderStatus LastUpdated

1 Backordered 2020-06-01 12:00:00

Table 4-2. Updated state of OrderId 1

OrderId OrderStatus LastUpdated

1 Shipped 2020-06-09 12:00:25

When a full extraction is run, the destination table in the data
warehouse is first truncated and then loaded with the output of
the extraction. The result for OrderId 1 is the single record
shown in Table 4-2. In an incremental extraction, however, the
output of the extract is simply appended to the destination
table in the data warehouse. The result is both the original and
updated records for OrderId 1 being in the data warehouse, as
illustrated in Table 4-3.

Table 4-3. All versions of OrderId 1 in
the data warehouse

OrderId OrderStatus LastUpdated

1 Backordered 2020-06-01 12:00:00

1 Shipped 2020-06-09 12:00:25
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You can learn more about loading full and incremental extrac‐
tions in sections of Chapter 5 including “Loading Data into a
Redshift Warehouse” on page 86.

WARNING

Never assume a LastUpdated column in a source system is
reliably updated. Check with the owner of the source sys‐
tem and confirm before relying on it for an incremental
extraction.

Both full and incremental extractions from a MySQL database
can be implemented using SQL queries executed on the data‐
base but triggered by Python scripts. In addition to the Python
libraries installed in previous sections, you’ll need to install the
PyMySQL library using pip:

(env) $ pip install pymysql

You’ll also need to add a new section to the pipeline.conf file to
store the connection information for the MySQL database:

[mysql_config]
hostname = my_host.com
port = 3306
username = my_user_name
password = my_password
database = db_name

Now create a new Python script named extract_mysql_full.py.
You’ll need to import several libraries, such as pymysql, which
connects to the MySQL database, and the csv library so that
you can structure and write out the extracted data in a flat file
that’s easy to import into a data warehouse in the load step of
ingestion. Also, import boto3 so that you can upload the result‐
ing CSV file to your S3 bucket for later loading into the data
warehouse:
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import pymysql
import csv
import boto3
import configparser

Now you can initialize a connection to the MySQL database:

parser = configparser.ConfigParser()
parser.read("pipeline.conf")
hostname = parser.get("mysql_config", "hostname")
port = parser.get("mysql_config", "port")
username = parser.get("mysql_config", "username")
dbname = parser.get("mysql_config", "database")
password = parser.get("mysql_config", "password")

conn = pymysql.connect(host=hostname,
        user=username,
        password=password,
        db=dbname,
        port=int(port))

if conn is None:
  print("Error connecting to the MySQL database")
else:
  print("MySQL connection established!")

Run a full extraction of the Orders table from the earlier exam‐
ple. The following code will extract the entire contents of the
table and write it to a pipe-delimited CSV file. To perform the
extraction, it uses a cursor object from the pymysql library to
execute the SELECT query:

m_query = "SELECT * FROM Orders;"
local_filename = "order_extract.csv"

m_cursor = conn.cursor()
m_cursor.execute(m_query)
results = m_cursor.fetchall()

with open(local_filename, 'w') as fp:
  csv_w = csv.writer(fp, delimiter='|')
  csv_w.writerows(results)
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fp.close()
m_cursor.close()
conn.close()

Now that the CSV file is written locally, it needs to be uploaded
to the S3 bucket for later loading into the data warehouse or
other destination. Recall from “Setting Up Cloud File Storage”
on page 37 that you set up an IAM user for the Boto3 library to
use for authentication to the S3 bucket. You also stored the cre‐
dentials in the aws_boto_credentials section of the pipe‐
line.conf file. Here is the code to upload the CSV file to your S3
bucket:

# load the aws_boto_credentials values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
access_key = parser.get("aws_boto_credentials", 
"access_key")
secret_key = parser.get("aws_boto_credentials", 
"secret_key")
bucket_name = parser.get("aws_boto_credentials", 
"bucket_name")

s3 = boto3.client('s3', 
aws_access_key_id=access_key, 
aws_secret_access_key=secret_key)

s3_file = local_filename

s3.upload_file(local_filename, bucket_name, 
s3_file)

You can execute the script as follows:

(env) $ python extract_mysql_full.py

When the script is executed, the entire contents of the Orders
table is now contained in a CSV file sitting in the S3 bucket
waiting to be loaded into the data warehouse or other data
store. See Chapter 5 for more on loading into the data store of
your choice.

Extracting Data from a MySQL Database | 47



If you want to extract data incrementally, you’ll need to make a
few changes to the script. I suggest creating a copy of
extract_mysql_full.py named extract_mysql_incremental.py as a
starting point.

First, find the timestamp of the last record that was extracted
from the source Orders table. To do that, query the MAX(LastUp
dated) value from the Orders table in the data warehouse. In
this example, I’ll use a Redshift data warehouse (see “Configur‐
ing an Amazon Redshift Warehouse as a Destination” on page
83), but you can use the same logic with the warehouse of your
choice.

To interact with your Redshift cluster, install the psycopg2
library, if you haven’t already.

(env) $ pip install psycopg2

Here is the code to connect to and query the Redshift cluster to
get the MAX(LastUpdated) value from the Orders table:

import psycopg2

# get db Redshift connection info
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("aws_creds", "database")
user = parser.get("aws_creds", "username")
password = parser.get("aws_creds", "password")
host = parser.get("aws_creds", "host")
port = parser.get("aws_creds", "port")

# connect to the redshift cluster
rs_conn = psycopg2.connect(
    "dbname=" + dbname
    + " user=" + user
    + " password=" + password
    + " host=" + host
    + " port=" + port)

rs_sql = """SELECT COALESCE(MAX(LastUpdated),
        '1900-01-01')
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        FROM Orders;"""
rs_cursor = rs_conn.cursor()
rs_cursor.execute(rs_sql)
result = rs_cursor.fetchone()

# there's only one row and column returned
last_updated_warehouse = result[0]

rs_cursor.close()
rs_conn.commit()

Using the value stored in last_updated_warehouse, modify the
extraction query run on the MySQL database to pull only those
records from the Orders table that have been updated since the
prior run of the extraction job. The new query contains a place‐
holder, represented by %s for the last_updated_warehouse

value. The value is then passed into the cursor’s .execute()
function as a tuple (a data type used to store collections of
data). This is the proper and secure way to add parameters to a
SQL query to avoid possible SQL injection. Here is the updated
code block for running the SQL query on the MySQL database:

m_query = """SELECT *
    FROM Orders
    WHERE LastUpdated > %s;"""
local_filename = "order_extract.csv"

m_cursor = conn.cursor()
m_cursor.execute(m_query, (last_updated_ware
house,))

The entire extract_mysql_incremental.py script for the incre‐
mental extraction (using a Redshift cluster for the last_upda
ted value) looks like this:

import pymysql
import csv
import boto3
import configparser
import psycopg2
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# get db Redshift connection info
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("aws_creds", "database")
user = parser.get("aws_creds", "username")
password = parser.get("aws_creds", "password")
host = parser.get("aws_creds", "host")
port = parser.get("aws_creds", "port")

# connect to the redshift cluster
rs_conn = psycopg2.connect(
    "dbname=" + dbname
    + " user=" + user
    + " password=" + password
    + " host=" + host
    + " port=" + port)

rs_sql = """SELECT COALESCE(MAX(LastUpdated),
        '1900-01-01')
        FROM Orders;"""
rs_cursor = rs_conn.cursor()
rs_cursor.execute(rs_sql)
result = rs_cursor.fetchone()

# there's only one row and column returned
last_updated_warehouse = result[0]

rs_cursor.close()
rs_conn.commit()

# get the MySQL connection info and connect
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
hostname = parser.get("mysql_config", "hostname")
port = parser.get("mysql_config", "port")
username = parser.get("mysql_config", "username")
dbname = parser.get("mysql_config", "database")
password = parser.get("mysql_config", "password")

conn = pymysql.connect(host=hostname,
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        user=username,
        password=password,
        db=dbname,
        port=int(port))

if conn is None:
  print("Error connecting to the MySQL database")
else:
  print("MySQL connection established!")

m_query = """SELECT *
      FROM Orders
      WHERE LastUpdated > %s;"""
local_filename = "order_extract.csv"

m_cursor = conn.cursor()
m_cursor.execute(m_query, (last_updated_ware
house,))
results = m_cursor.fetchall()

with open(local_filename, 'w') as fp:
  csv_w = csv.writer(fp, delimiter='|')
  csv_w.writerows(results)

fp.close()
m_cursor.close()
conn.close()

# load the aws_boto_credentials values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
access_key = parser.get(
    "aws_boto_credentials",
    "access_key")
secret_key = parser.get(
    "aws_boto_credentials",
    "secret_key")
bucket_name = parser.get(
    "aws_boto_credentials",
    "bucket_name")
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s3 = boto3.client(
    's3',
    aws_access_key_id=access_key,
    aws_secret_access_key=secret_key)

s3_file = local_filename

s3.upload_file(
    local_filename,
    bucket_name,
    s3_file)

WARNING

Beware of large extraction jobs—whether full or incremen‐
tal—putting strain on the source MySQL database, and
even blocking production queries from executing. Consult
with the owner of the database and consider setting up a
replica to extract from, rather than extracting from the pri‐
mary source database.

Binary Log Replication of MySQL Data
Though more complex to implement, ingesting data from a
MySQL database using the contents of the MySQL binlog to
replicate changes is efficient in cases of high-volume ingestion
needs.

NOTE

Binlog replication is a form of change data capture (CDC).
Many source data stores have some form of CDC that you
can use.
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The MySQL binlog is a log that keeps a record of every opera‐
tion performed in the database. For example, depending on
how it’s configured, it will log the specifics of every table
creation or modification, as well as every INSERT, UPDATE, and
DELETE operation. Though originally intended to replicate data
to other MySQL instances, it’s not hard to see why the contents
of the binlog are so appealing to data engineers who want to
ingest data into a data warehouse.

Consider Using a Prebuilt Framework
Due to the complexity of binlog replication, I highly suggest
considering an open source framework or commercial product
if you want to ingest data in this way. I discuss one such option
in “Streaming Data Ingestions with Kafka and Debezium” on
page 79. Some of commercial tools noted later in this chapter
support binlog ingestion as well.

Because your data warehouse is likely not a MySQL database,
it’s not possible to simply use the built-in MySQL replication
features. To make use of the binlog for data ingestion to a non-
MySQL source, there are a number of steps to take:

1. Enable and configure the binlog on the MySQL server.
2. Run an initial full table extraction and load.
3. Extract from the binlog on a continuous basis.
4. Translate and load binlog extracts into the data warehouse.
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NOTE

Step 3 is not discussed in detail, but to use the binlog for
ingestion, you must first populate the tables in the data
warehouse with the current state of the MySQL database
and then use the binlog to ingest subsequent changes.
Doing so often involves putting a LOCK on the tables you
want to extract, running a mysqldump of those tables, and
then loading the result of the mysqldump into the ware‐
house before turning on the binlog ingestion.

Though it’s best to refer to the latest MySQL binlog documen‐
tation for instructions in enabling and configuring binary log‐
ging, I will walk through the key configuration values.

Consult with Source System Owners
Access to modify the configuration of binlogs on a MySQL
source system is often reserved to system administrators. Data
engineers who want to ingest the data should always work with
the database owner before attempting to change binlog configu‐
ration as changes may impact other systems as well as the
MySQL server itself.

There are two key settings to ensure on the MySQL database in
regard to binlog configuration.

First, ensure that binary logging is enabled. Typically it is
enabled by default, but you can check by running the following
SQL query on the database (exact syntax may vary by MySQL
distribution):

SELECT variable_value as bin_log_status
FROM performance_schema.global_variables
WHERE variable_name='log_bin';
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If the binary logging is enabled, you’ll see the following. If the
status returned is OFF, then you’ll need to consult the MySQL
documentation for the relevant version to enable it.

+ — — — — — — — — — — — — — — — — — — -+
| bin_log_status :: |
+ — — — — — — — — — — — — — — — — — — -+
| ON |
+ — — — — — — — — — — — — — — — — — — -+
1 row in set (0.00 sec)

Next, ensure that the binary logging format is set appropriately.
There are three formats supported in the recent version of
MySQL:

• STATEMENT

• ROW

• MIXED

The STATEMENT format logs every SQL statement that inserts or
modifies a row in the binlog. If you wanted to replicate data
from one MySQL database to another, this format is useful. To
replicate the data, you could just run all statements to repro‐
duce the state of the database. However, because the extracted
data is likely bound for a data warehouse running on a different
platform, the SQL statements produced in the MySQL database
may not be compatible with your data warehouse.

With the ROW format, every change to a row in a table is repre‐
sented on a line of the binlog not as a SQL statement but rather
the data in the row itself. This is the preferred format to use.

The MIXED format logs both STATEMENT- and ROW-formatted
records in the binlog. Though it’s possible to sift out just the
ROW data later, unless the binlog is being used for another pur‐
pose, it’s not necessary to enable MIXED, given the additional
disk space that it takes up.

You can verify the current binlog format by running the follow‐
ing SQL query:
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SELECT variable_value as bin_log_format
FROM performance_schema.global_variables
WHERE variable_name='binlog_format';

The statement will return the format that’s currently active:

+ — — — — — — — — — — — — — — — — — — — -+
| bin_log_format :: |
+ — — — — — — — — — — — — — — — — — — — -+
| ROW |
+ — — — — — — — — — — — — — — — — — — — -+
1 row in set (0.00 sec)

The binlog format as well as other configuration settings are
typically set in the my.cnf file specific to the MySQL database
instance. If you open the file, you’ll see a row like the following
included:

[mysqld]
binlog_format=row
........

Again, it’s best to consult with the owner of the MySQL data‐
base or the latest MySQL documentation before modifying any
configurations.

Now that binary logging is enabled in a ROW format, you can
build a process to extract the relevant information from it and
store it in a file to be loaded into your data warehouse.

There are three different types of ROW-formatted events that
you’ll want to pull from the binlog. For the sake of this inges‐
tion example, you can ignore other events you find in the log,
but in more advanced replication strategies, extracting events
that modify the structure of a table is also of value. The events
that you’ll work with are as follows:

• WRITE_ROWS_EVENT

• UPDATE_ROWS_EVENT

• DELETE_ROWS_EVENT
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Next, it’s time to get the events from the binlog. Thankfully,
there are some open source Python libraries available to get
you started. One of the most popular is the python-mysql-
replication project, which can be found on GitHub. To get
started, install it using pip:

(env) $ pip install mysql-replication

To get an idea of what the output from the binlog looks like,
you can connect to the database and read from the binlog. In
this example, I’ll use the MySQL connection information added
to the pipeline.conf file for the full and incremental ingestion
example earlier in this section.

NOTE

The following example reads from the MySQL server’s
default binlog file. The default binlog filename and path are
set in the log_bin variable, which is stored in the my.cnf
file for the MySQL database. In some cases, binlogs are
rotated over time (perhaps daily or hourly). If so, you will
need to determine the file path based on the method of log
rotation and file naming scheme chosen by the MySQL
administrator and pass it as a value to the log_file
parameter when creating the BinLogStreamReader

instance. See the documentation for the BinLogStream
Reader class for more.

from pymysqlreplication import BinLogStreamReader
from pymysqlreplication import row_event
import configparser
import pymysqlreplication

# get the MySQL connection info
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
hostname = parser.get("mysql_config", "hostname")
port = parser.get("mysql_config", "port")
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username = parser.get("mysql_config", "username")
password = parser.get("mysql_config", "password")

mysql_settings = {
    "host": hostname,
    "port": int(port),
    "user": username,
    "passwd": password
}

b_stream = BinLogStreamReader(
            connection_settings = mysql_settings,
            server_id=100,
            only_events=[row_event.DeleteRowsEvent,
                        row_event.WriteRowsEvent,
                        row_event.UpdateRowsEvent]
            )

for event in b_stream:
    event.dump()

b_stream.close()

There are a few things to note about the BinLogStreamReader
object that’s instantiated in the code sample. First, it connects
to the MySQL database specified in the pipeline.conf file and
reads from a specific binlog file. Next, the combination of the
resume_stream=True setting and the log_pos value tells it to
start reading the binlog at a specified point. In this case, that’s
position 1400. Finally, I tell BinLogStreamReader to only read
the DeleteRowsEvent, WriteRowsEvent, and UpdateRowsEvent,
events using the only_events parameter.

Next, the script iterates through all of the events and prints
them in a human-readable format. For your database with the
Orders table in it, you’ll see something like this as output:
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=== WriteRowsEvent ===
Date: 2020-06-01 12:00:00
Log position: 1400
Event size: 30
Read bytes: 20
Table: orders
Affected columns: 3
Changed rows: 1
Values:
--
* OrderId : 1
* OrderStatus : Backordered
* LastUpdated : 2020-06-01 12:00:00

=== UpdateRowsEvent ===
Date: 2020-06-09 12:00:25
Log position: 1401
Event size: 56
Read bytes: 15
Table: orders
Affected columns: 3
Changed rows: 1
Affected columns: 3
Values:
--
* OrderId : 1 => 1
* OrderStatus : Backordered => Shipped
* LastUpdated : 2020-06-01 12:00:00 => 2020-06-09 
12:00:25

As you can see, there are two events that represent the INSERT
and UPDATE of OrderId 1, which was shown in Table 4-3. In this
fictional example, the two sequential binlog events are days
apart, but in reality there would be numerous events between
them, representing all changes made in the database.
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NOTE

The value of log_pos, which tells BinLogStreamReader
where to start, is a value that you’ll need to store some‐
where in a table of your own to keep track of where to pick
up when the next extract runs. I find it best to store the
value in a log table in the data warehouse from which it can
be read when the extraction starts and to which it can be
written, with the position value of the final event when it
finishes.

Though the code sample shows what the events look like in a
human-readable format, to make the output easy to load into
the data warehouse, it’s necessary to do a couple more things:

• Parse and write the data in a different format. To simplify
loading, the next code sample will write each event to a
row in a CSV file.

• Write one file per table that you want to extract and load.
Though the example binlog only contains events related to
the Orders table, it’s highly likely that in a real binlog,
events related to other tables are included as well.

To address the first change, instead of using the .dump() func‐
tion I will instead parse out the event attributes and write them
to a CSV file. For the second, instead of writing a file for each
table, for simplicity I will only write events related to the Orders
table to a file called orders_extract.csv. In a fully implemented
extraction, modify this code sample to group events by table
and write multiple files, one for each table you want to ingest
changes for. The last step in the final code sample uploads the
CSV file to the S3 bucket so it can be loaded into the data ware‐
house, as described in detail in Chapter 5:

from pymysqlreplication import BinLogStreamReader
from pymysqlreplication import row_event
import configparser
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import pymysqlreplication
import csv
import boto3

# get the MySQL connection info
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
hostname = parser.get("mysql_config", "hostname")
port = parser.get("mysql_config", "port")
username = parser.get("mysql_config", "username")
password = parser.get("mysql_config", "password")

mysql_settings = {
    "host": hostname,
    "port": int(port),
    "user": username,
    "passwd": password
}

b_stream = BinLogStreamReader(
            connection_settings = mysql_settings,
            server_id=100,
            only_events=[row_event.DeleteRowsEvent,
                        row_event.WriteRowsEvent,
                        row_event.UpdateRowsEvent]
            )

order_events = []

for binlogevent in b_stream:
  for row in binlogevent.rows:
    if binlogevent.table == 'orders':
      event = {}
      if isinstance(
            binlogevent,row_event.DeleteRowsEvent
        ):
        event["action"] = "delete"
        event.update(row["values"].items())
      elif isinstance(
            binlogevent,row_event.UpdateRowsEvent
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        ):
        event["action"] = "update"
        event.update(row["after_values"].items())
      elif isinstance(
            binlogevent,row_event.WriteRowsEvent
        ):
        event["action"] = "insert"
        event.update(row["values"].items())

      order_events.append(event)

b_stream.close()

keys = order_events[0].keys()
local_filename = 'orders_extract.csv'
with open(
        local_filename,
        'w',
        newline='') as output_file:
    dict_writer = csv.DictWriter(
                output_file, keys,delimiter='|')
    dict_writer.writerows(order_events)

# load the aws_boto_credentials values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
access_key = parser.get(
                "aws_boto_credentials",
                "access_key")
secret_key = parser.get(
                "aws_boto_credentials",
                "secret_key")
bucket_name = parser.get(
                "aws_boto_credentials",
                "bucket_name")

s3 = boto3.client(
    's3',
    aws_access_key_id=access_key,
    aws_secret_access_key=secret_key)
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s3_file = local_filename

s3.upload_file(
    local_filename,
    bucket_name,
    s3_file)

After execution, orders_extract.csv will look like this:

insert|1|Backordered|2020-06-01 12:00:00
update|1|Shipped|2020-06-09 12:00:25

As I discuss in Chapter 5, the format of the resulting CSV file is
optimized for fast loading. Making sense of the data that’s been
extracted is a job for the transform step in a pipeline, reviewed
in detail in Chapter 6.

Extracting Data from a PostgreSQL Database
Just like MySQL, ingesting data from a PostgreSQL (commonly
known as Postgres) database can be done in one of two ways:
either with full or incremental extractions using SQL or by lev‐
eraging features of the database meant to support replication to
other nodes. In the case of Postgres, there are a few ways to do
this, but this chapter will focus on one method: turning the
Postgres write-ahead log (WAL) into a data stream.

Like the previous section, this one is intended for those who
need to ingest data from an existing Postgres database. How‐
ever, if you’d like to just try the code samples, you can set up
Postgres either by installing on your local machine, or in AWS
by using an a RDS instance, which I recommend. See the previ‐
ous section for notes on pricing and security-related best prac‐
tices for RDS MySQL, as they apply to RDS Postgres as well.

The code samples in this section are quite simple and refer to a
table named Orders in a Postgres database. Once you have a
Postgres instance to work with, you can create the table and
insert some sample rows by running the following SQL
commands:
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CREATE TABLE Orders (
  OrderId int,
  OrderStatus varchar(30),
  LastUpdated timestamp
);

INSERT INTO Orders
  VALUES(1,'Backordered', '2020-06-01 12:00:00');
INSERT INTO Orders
  VALUES(1,'Shipped', '2020-06-09 12:00:25');
INSERT INTO Orders
  VALUES(2,'Shipped', '2020-07-11 3:05:00');
INSERT INTO Orders
  VALUES(1,'Shipped', '2020-06-09 11:50:00');
INSERT INTO Orders
  VALUES(3,'Shipped', '2020-07-12 12:00:00');

Full or Incremental Postgres Table Extraction
This method is similar to full and incremental and full extrac‐
tions demonstrated in “Extracting Data from a MySQL Data‐
base” on page 39. It’s so similar that I won’t go into detail here
beyond one difference in the code. Like the example in that sec‐
tion, this one will extract data from a table called Orders in a
source database, write it to a CSV file, and then upload it to an
S3 bucket.

The only difference in this section is the Python library I’ll use
to extract the data. Instead of PyMySQL, I’ll be using pyscopg2 to
connect to a Postgres database. If you have not already installed
it, you can do so using pip:

(env) $ pip install pyscopg2

You’ll also need to add a new section to the pipeline.conf file
with the connection information for the Postgres database:

[postgres_config]
host = myhost.com
port = 5432
username = my_username
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password = my_password
database = db_name

The code to run the full extraction of the Orders table is nearly
identical to the sample from the MySQL section, but as you can
see, it uses pyscopg2 to connect to the source database and to
run the query. Here it is in its entirety:

import psycopg2
import csv
import boto3
import configparser

parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("postgres_config", "database")
user = parser.get("postgres_config", "username")
password = parser.get("postgres_config",
    "password")
host = parser.get("postgres_config", "host")
port = parser.get("postgres_config", "port")

conn = psycopg2.connect(
        "dbname=" + dbname
        + " user=" + user
        + " password=" + password
        + " host=" + host,
        port = port)

m_query = "SELECT * FROM Orders;"
local_filename = "order_extract.csv"

m_cursor = conn.cursor()
m_cursor.execute(m_query)
results = m_cursor.fetchall()

with open(local_filename, 'w') as fp:
  csv_w = csv.writer(fp, delimiter='|')
  csv_w.writerows(results)

fp.close()
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m_cursor.close()
conn.close()

# load the aws_boto_credentials values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
access_key = parser.get(
                "aws_boto_credentials",
                "access_key")
secret_key = parser.get(
                "aws_boto_credentials",
                "secret_key")
bucket_name = parser.get(
                "aws_boto_credentials",
                "bucket_name")

s3 = boto3.client(
      's3',
      aws_access_key_id = access_key,
      aws_secret_access_key = secret_key)

s3_file = local_filename

s3.upload_file(
    local_filename,
    bucket_name,
    s3_file)

Modifying the incremental version shown in the MySQL sec‐
tion is just as simple. All you need to do is make use of psy
copg2 instead of PyMySQL.

Replicating Data Using the Write-Ahead Log
Like the MySQL binlog (as discussed in the previous section),
the Postgres WAL can be used as a method of CDC for extrac‐
tion. Also like the MySQL binlog, using the WAL for data
ingestion in a pipeline is quite complex.

Though you can take a similar, simplified approach to the one
used as an example with the MySQL binlog, I suggest using an
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open source distributed platform called Debezium to stream
the contents of the Postgres WAL to an S3 bucket or data
warehouse.

Though the specifics of configuring and running Debezium
services are a topic worth dedicating an entire book to, I give
an overview of Debezium and how it can be used for data
ingestions in “Streaming Data Ingestions with Kafka
and Debezium” on page 79. You can learn more about how it
can be used for Postgres CDC there.

Extracting Data from MongoDB
This example illustrates how to extract a subset of MongoDB
documents from a collection. In this sample MongoDB collec‐
tion, documents represent events logged from some system
such as a web server. Each document has a timestamp of when
it was created, as well as a number of properties that the sample
code extracts a subset of. After the extraction is complete, the
data is written to a CSV file and stored in an S3 bucket so that
it can be loaded into a data warehouse in a future step (see
Chapter 5).

To connect to the MongoDB database, you’ll need to first
install the PyMongo library. As with other Python libraries, you
can install it using pip:

(env) $ pip install pymongo

You can of course modify the following sample code to connect
to your own MongoDB instance and extract data from your
documents. However, if you’d like to run the sample as is, you
can do so by creating a MongoDB cluster for free with Mon‐
goDB Atlas. Atlas is a fully managed MongoDB service and
includes a free-for-life tier with plenty of storage and comput‐
ing power for learning and running samples like the one I pro‐
vide. You can upgrade to a paid plan for production
deployments.

Extracting Data from MongoDB | 67



You can learn how to create a free MongoDB cluster in Atlas,
create a database, and configure it so that you can connect via a
Python script running on your local machine by following
these instructions.

You’ll need to install one more Python library named dnspy
thon to support pymongo in connecting to your cluster hosted in
MongoDB Atlas. You can install it using pip:

(env) $ pip install dnspython

Next, add a new section to the pipeline.conf file with connection
information for the MongoDB instance you’ll be extracting
data from. Fill in each line with your own connection details. If
you’re using MongoDB Atlas and can’t recall these values from
when you set up your cluster, you can learn how to find them
by reading the Atlas docs.

[mongo_config]
hostname = my_host.com
username = mongo_user
password = mongo_password
database = my_database
collection = my_collection

Before creating and running the extraction script, you can
insert some sample data to work with. Create a file called sam‐
ple_mongodb.py with the following code:

from pymongo import MongoClient
import datetime
import configparser

# load the mongo_config values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
hostname = parser.get("mongo_config", "hostname")
username = parser.get("mongo_config", "username")
password = parser.get("mongo_config", "password")
database_name = parser.get("mongo_config",
                    "database")
collection_name = parser.get("mongo_config",
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                    "collection")

mongo_client = MongoClient(
                "mongodb+srv://" + username
                + ":" + password
                + "@" + hostname
                + "/" + database_name
                + "?retryWrites=true&"
                + "w=majority&ssl=true&"
                + "ssl_cert_reqs=CERT_NONE")

# connect to the db where the collection resides
mongo_db = mongo_client[database_name]

# choose the collection to query documents from
mongo_collection = mongo_db[collection_name]

event_1 = {
  "event_id": 1,
  "event_timestamp": datetime.datetime.today(),
  "event_name": "signup"
}

event_2 = {
  "event_id": 2,
  "event_timestamp": datetime.datetime.today(),
  "event_name": "pageview"
}

event_3 = {
  "event_id": 3,
  "event_timestamp": datetime.datetime.today(),
  "event_name": "login"
}

# insert the 3 documents
mongo_collection.insert_one(event_1)
mongo_collection.insert_one(event_2)
mongo_collection.insert_one(event_3)
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When you execute it, the three documents will be inserted into
your MongoDB collection:

(env) $ python sample_mongodb.py

Now create a new Python script called mongo_extract.py so you
can add the following code blocks to it.

First, import PyMongo and Boto3 so that you can extract data
from the MongoDB database and store the results in an S3
bucket. Also import the csv library so that you can structure
and write out the extracted data in a flat file that’s easy to
import into a data warehouse in the load step of ingestion.
Finally, you’ll need some datetime functions for this example
so that you can iterate through the sample event data in the
MongoDB collection:

from pymongo import MongoClient
import csv
import boto3
import datetime
from datetime import timedelta
import configparser

Next, connect to the MongoDB instance specified in the pipe
lines.conf file, and create a collection object where the docu‐
ments you want to extract are stored:

# load the mongo_config values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
hostname = parser.get("mongo_config", "hostname")
username = parser.get("mongo_config", "username")
password = parser.get("mongo_config", "password")
database_name = parser.get("mongo_config",
                    "database")
collection_name = parser.get("mongo_config",
                    "collection")

mongo_client = MongoClient(
                "mongodb+srv://" + username
                + ":" + password
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                + "@" + hostname
                + "/" + database_name
                + "?retryWrites=true&"
                + "w=majority&ssl=true&"
                + "ssl_cert_reqs=CERT_NONE")

# connect to the db where the collection resides
mongo_db = mongo_client[database_name]

# choose the collection to query documents from
mongo_collection = mongo_db[collection_name]

Now it’s time to query the documents to extract. You can do
this by calling the .find() function on mongo_collection to
query the documents you’re looking for. In the following exam‐
ple, you’ll grab all documents with a event_timestamp field
value between two dates defined in the script.

NOTE

Extracting immutable data such as log records or generic
“event” records from a data store by date range is a com‐
mon use case. Although the sample code uses a datetime
range defined in the script, it’s more likely you’ll pass in a
datetime range to the script, or have the script query your
data warehouse to get the datetime of the last event loaded,
and extract subsequent records from the source data store.
See “Extracting Data from a MySQL Database” on page 39
for an example of doing so.

start_date = datetime.datetime.today() + time
delta(days = -1)
end_date = start_date + timedelta(days = 1 )

mongo_query = { "$and":[{"event_timestamp" : 
{ "$gte": start_date }}, {"event_timestamp" : 
{ "$lt": end_date }}] }
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event_docs = mongo_collection.find(mongo_query, 
batch_size=3000)

NOTE

The batch_size parameter in this example is set to 3000.
PyMongo makes a round-trip to the MongoDB host for
each batch. For example, if the result_docs Cursor has
6,000 results, it will take two trips to the MongoDB host to
pull all the documents down to the machine where your
Python script is running. What you set as the batch size
value is up to you and will depend on the trade-off of stor‐
ing more documents in memory on the system running the
extract versus making lots of round trips to the MongoDB
instance.

The result of the preceding code is a Cursor named event_docs
that I’ll use to iterate through the resulting documents. Recall
that in this simplified example, each document represents an
event that was generated from a system such as a web server.
An event might represent something like a user logging in,
viewing a page, or submitting a feedback form. Though the
documents might have dozens of fields to represent things like
the browser the user logged in with, I take just a few fields for
this example:

# create a blank list to store the results
all_events = []

# iterate through the cursor
for doc in event_docs:
    # Include default values
    event_id = str(doc.get("event_id", -1))
    event_timestamp = doc.get(
                        "event_timestamp", None)
    event_name = doc.get("event_name", None)

    # add all the event properties into a list
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    current_event = []
    current_event.append(event_id)
    current_event.append(event_timestamp)
    current_event.append(event_name)

    # add the event to the final list of events
    all_events.append(current_event)

I’m including a default value in the doc.get() function call (–1
or None). Why? The nature of unstructured document data
means that it’s possible for fields to go missing from a docu‐
ment altogether. In other words, you can’t assume that each of
the documents you’re iterating through has an “event_name” or
any other field. In those cases, tell doc.get() to return a None
value instead of throwing an error.

After iterating through all the events in event_docs, the
all_events list is ready to be written to a CSV file. To do so,
you’ll make use of the csv module, which is included in the
standard Python distribution and was imported earlier in this
example:

export_file = "export_file.csv"

with open(export_file, 'w') as fp:
 csvw = csv.writer(fp, delimiter='|')
 csvw.writerows(all_events)

fp.close()

Now, upload the CSV file to the S3 bucket that you configured
in “Setting Up Cloud File Storage” on page 37. To do so, use the
Boto3 library:

# load the aws_boto_credentials values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
access_key = parser.get("aws_boto_credentials",
                "access_key")
secret_key = parser.get("aws_boto_credentials",
                "secret_key")
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bucket_name = parser.get("aws_boto_credentials",
                "bucket_name")

s3 = boto3.client('s3',
        aws_access_key_id=access_key,
        aws_secret_access_key=secret_key)

s3_file = export_file

s3.upload_file(export_file, bucket_name, s3_file)

That’s it! The data you extracted from the MongoDB collection
is now sitting in the S3 bucket waiting to be loaded into the
data warehouse or other data store. If you used the sample data
provided, the contents of export_file.csv will look something
like this:

1|2020-12-13 11:01:37.942000|signup
2|2020-12-13 11:01:37.942000|pageview
3|2020-12-13 11:01:37.942000|login

See Chapter 5 for more on loading the data into the data store
of your choice.

Extracting Data from a REST API
REST APIs are a common source to extract data from. You may
need to ingest data from an API that your organization created
and maintains, or from an API from an external service or ven‐
dor that your organization uses, such as Salesforce, HubSpot,
or Twitter. No matter the API, there’s a common pattern for
data extraction that I’ll use in the simple example that follows:

1. Send an HTTP GET request to the API endpoint.
2. Accept the response, which is most likely formatted in

JSON.
3. Parse the response and “flatten” it into a CSV file that you

can later load into the data warehouse.
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NOTE

Though I am parsing the JSON response and storing it in a
flat file (CSV), you can also save the data in JSON format
for loading into your data warehouse. For the sake of sim‐
plicity, I’m sticking to the pattern of this chapter and using
CSV files. Please consult Chapter 5 or your data warehouse
documentation for more on loading data in a format other
than CSV.

In this example, I’ll connect to an API called Open Notify. The
API has several endpoints, each returning data from NASA
about things happening in space. I’ll query the endpoint that
returns the next five times that the International Space Station
(ISS) will pass over the given location on Earth.

Python Libraries for Specific APIs
It’s possible to query any REST API using the Python code sam‐
ple in this section. However, you can save yourself some time
and effort if there is a Python library built specifically for the
API you’d like to query. For example, the tweepy library makes
it easy for a Python developer to access the Twitter API and
handle common Twitter data structures such as tweets and
users.

Before I share the Python code for querying the endpoint, you
can see what the output of a simple query looks like by typing
the following URL into your browser:

http://api.open-notify.org/iss-pass.json?
lat=42.36&lon=71.05

The resulting JSON looks like this:

{
  "message": "success",
  "request": {
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    "altitude": 100,
    "datetime": 1596384217,
    "latitude": 42.36,
    "longitude": 71.05,
    "passes": 5
  },
  "response": [
    {
      "duration": 623,
      "risetime": 1596384449
    },
    {
      "duration": 169,
      "risetime": 1596390428
    },
    {
      "duration": 482,
      "risetime": 1596438949
    },
    {
      "duration": 652,
      "risetime": 1596444637
    },
    {
      "duration": 624,
      "risetime": 1596450474
    }
  ]
}

The goal of this extraction is to retrieve the data in the response
and format it in a CSV file with one line for each time and
duration of each pass that the ISS will make over the lat/long
pair. For example, the first two lines of the CSV file will be as
follows:

42.36,|71.05|623|1596384449
42.36,|71.05|169|1596390428

To query the API and handle the response in Python, you’ll
need to install the requests library. requests makes HTTP
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requests and responses easy to work with in Python. You can
install it with pip:

(env) $ pip install requests

Now, you can use requests to query the API endpoint, get back
the response, and print out the resulting JSON, which will look
like what you saw in your browser:

import requests

lat = 42.36
lon = 71.05
lat_log_params = {"lat": lat, "lon": lon}

api_response = requests.get(
    "http://api.open-notify.org/iss-pass.json", par
ams=lat_log_params)

print(api_response.content)

Instead of printing out the JSON, I’ll iterate through the
response, parse out the values for duration and risetime, write
the results to a CSV file, and upload the file to the S3 bucket.

To parse the JSON response, I’ll import the Python json
library. There’s no need to install it as it comes with the stan‐
dard Python installation. Next, I’ll import the csv library,
which is also included in the standard Python distribution for
writing the CSV file. Finally, I’ll use the configparser library to
get the credentials required by the Boto3 library to upload the
CSV file to the S3 bucket:

import requests
import json
import configparser
import csv
import boto3

Next, query the API just as you did before:

lat = 42.36
lon = 71.05
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lat_log_params = {"lat": lat, "lon": lon}

api_response = requests.get(
    "http://api.open-notify.org/iss-pass.json", par
ams=lat_log_params)

Now, it’s time to iterate through the response, store the results
in a Python list called all_passes, and save the results to a
CSV file. Note that I also store the lat and long from the request
even though they are not included in the response. They are
needed on each line of the CSV file so that the pass times are
associated with the correct lat and long when loaded into the
data warehouse:

# create a json object from the response content
response_json = json.loads(api_response.content)

all_passes = []
for response in response_json['response']:
    current_pass = []

    #store the lat/log from the request
    current_pass.append(lat)
    current_pass.append(lon)

    # store the duration and risetime of the pass
    current_pass.append(response['duration'])
    current_pass.append(response['risetime'])

    all_passes.append(current_pass)

export_file = "export_file.csv"

with open(export_file, 'w') as fp:
 csvw = csv.writer(fp, delimiter='|')
 csvw.writerows(all_passes)

fp.close()

Finally, upload the CSV file to the S3 bucket using the Boto3
library:
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# load the aws_boto_credentials values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
access_key = parser.get("aws_boto_credentials",
                "access_key")
secret_key = parser.get("aws_boto_credentials",
                "secret_key")
bucket_name = parser.get("aws_boto_credentials",
                "bucket_name")

s3 = boto3.client(
    's3',
    aws_access_key_id=access_key,
    aws_secret_access_key=secret_key)

s3.upload_file(
    export_file,
    bucket_name,
    export_file)

Streaming Data Ingestions with Kafka
and Debezium
When it comes to ingesting data from a CDC system such as
MySQL binlogs or Postgres WALs, there’s no simple solution
without some help from a great framework.

Debezium is a distributed system made up of several open
source services that capture row-level changes from common
CDC systems and then streams them as events that are con‐
sumable by other systems. There are three primary compo‐
nents of a Debezium installation:

• Apache Zookeeper manages the distributed environment
and handles configuration across each service.

• Apache Kafka is a distributed streaming platform that is
commonly used to build highly scalable data pipelines.
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• Apache Kafka Connect is a tool to connect Kafka with
other systems so that the data can be easily streamed via
Kafka. Connectors are built for systems like MySQL and
Postgres and turn data from their CDC systems (binlogs
and WAL) into Kakfa topics.

Kafka exchanges messages that are organized by topic. One sys‐
tem might publish to a topic, while one or more might con‐
sume, or subscribe to, the topic.

Debezium ties these systems together and includes connectors
for common CDC implementations. For example, I discussed
the challenges for CDC in “Extracting Data from a MySQL
Database” on page 39 and “Extracting Data from a PostgreSQL
Database” on page 63. Thankfully, there are connectors already
built to “listen” to the MySQL binlog and Postgres WAL. The
data is then routed through Kakfa as records in a topic and
consumed into a destination such as an S3 bucket, Snowflake,
or Redshift data warehouse using another connector.
Figure 4-1 illustrates an example of using Debezium, and its
individual components, to send the events created by a MySQL
binlog into a Snowflake data warehouse.

Figure 4-1. Using components of Debezium for CDC from MySQL to
Snowflake.

As of this writing, there are a number of Debezium connectors
already built for source systems that you may find yourself
needing to ingest from:

• MongoDB
• MySQL
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• PostgreSQL
• Microsoft SQL Server
• Oracle
• Db2
• Cassandra

There are also Kafka Connect connectors for the most com‐
mon data warehouses and storage systems, such as S3 and
Snowflake.

Though Debezium, and Kafka itself, is a subject that justifies its
own book, I do want to point out its value if you decide that
CDC is a method you want to use for data ingestion. The sim‐
ple example I used in the MySQL extraction section of this
chapter is functional; however, if you want to use CDC at scale,
I highly suggest using something like Debezium rather than
building an existing platform like Debezium on your own!

TIP

The Debezium documentation is excellent and a great
starting point for learning about the system.
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CHAPTER 5

Data Ingestion: Loading Data

In Chapter 4, you extracted data from your desired source sys‐
tem. Now it’s time to complete the data ingestion by loading the
data into your Redshift data warehouse. How you load depends
on what the output of your data extraction looks like. In this
section I will describe how to load data extracted into CSV files
with the values corresponding to each column in a table, as
well as extraction output containing CDC-formatted data.

Configuring an Amazon Redshift Warehouse
as a Destination
If you’re using Amazon Redshift for your data warehouse, inte‐
gration with S3 for loading data after it has been extracted is
quite simple. The first step is to create an IAM role for loading
data if you don’t already have one.
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NOTE

For instructions on setting up an Amazon Redshift cluster,
check the latest documentation and pricing, including free
trials.

Don’t Confuse IAM Roles and IAM Users
In “Setting Up Cloud File Storage” on page 37, you created an
IAM user that has read and write access set on the S3 bucket
that you’ll use throughout this section. In this section you’re
creating an IAM role, which you’ll assign permissions specific to
reading from S3 directly to your Redshift cluster.

To create the role, follow these instructions or check the AWS
documentation for the latest details:

1. Under the Services menu in the AWS console (or top navi‐
gation bar), navigate to IAM.

2. On the left navigation menu, select Roles, and then click
the “Create role” button.

3. You’ll be presented with a list of AWS services to select
from. Find and select Redshift.

4. Under “Select your use case,” choose Redshift – Customiz‐
able.

5. On the next page (Attach permission policies), search for
and select AmazonS3ReadOnlyAccess, and click Next.

6. Give your role a name (for example, “RedshiftLoadRole”)
and click “Create role.”

7. Click the name of the new role, and copy the role Amazon
resource name (ARN) so you can use it in later in this
chapter. You can find this later in the IAM console under
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the role properties as well. The ARN looks like this:
arn:aws:iam::<aws-account-id>:role/<role-name>.

Now you can associate the IAM role you just created with your
Redshift cluster. To do so, follow these steps or check the Red‐
shift documentation for more details.

NOTE

Your cluster will take a minute or two to apply the changes,
but it will still be accessible during this time.

1. Go back to the AWS Services menu and go to Amazon
Redshift.

2. In the navigation menu, select Clusters and select the clus‐
ter you want to load data into.

3. Under Actions, click “Manage IAM roles.”
4. On the “Manage IAM roles” page that loads, you will be

able to select your role in the “Available roles” drop-down.
Then click “Add IAM role.”

5. Click Done.

Finally, add another section to the pipeline.conf file that you
created in “Setting Up Cloud File Storage” on page 37 with your
Redshift credentials and the name of the IAM role you just cre‐
ated. You can find your Redshift cluster connection informa‐
tion on the AWS Redshift Console page:

[aws_creds]
database = my_warehouse
username = pipeline_user
password = weifj4tji4j
host = my_example.4754875843.us-
east-1.redshift.amazonaws.com
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port = 5439
iam_role = RedshiftLoadRole

Redshift Credential Best Practices
For the sake of simplicity, this example uses a database user‐
name and password to connect to the cluster from Python. In a
production environment, please consider more robust security
strategies including using IAM authentication to generate tem‐
porary database credentials. You can learn more here. You may
also want to consider more secure storage of database creden‐
tials and other secrets than the local pipline.conf file used in this
book. Vault is one popular option.

Loading Data into a Redshift Warehouse
Loading data into Redshift that’s been extracted and stored as
values corresponding to each column in a table in your S3
bucket as a CSV file is relatively straightforward. Data in this
format is most common and is the result of extracting data
from a source such as a MySQL or MongoDB database. Each
row in the CSV file to be loaded corresponds to a record to be
loaded into the destination Redshift table, and each column in
the CSV corresponds to the column in the destination table. If
you extracted events from a MySQL binlog or other CDC log,
see the following section for instructions on loading.

The most efficient way to load data from S3 into Redshift is to
use the COPY command. COPY can be executed as a SQL state‐
ment in whatever SQL client you use to query your Redshift
cluster or in a Python script using the Boto3 library. COPY
appends the data you’re loading to the existing rows in the des‐
tination table.
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Using the Redshift Query Editor
The easiest way to query your Redshift cluster is to use the
query editor that’s built into the AWS console web application.
While its features are limited, you can edit, save, and execute
SQL queries against your cluster right in your browser. To
access it, log into the Redshift console and click EDITOR in the
navigation window.

The COPY command’s syntax is as follows. All bracketed ([])
items are optional:

COPY table_name
[ column_list ]
FROM source_file
authorization
[ [ FORMAT ] [ AS ] data_format ]
[ parameter [ argument ] [, .. ] ]

NOTE

You can learn more about additional options, and the
COPY command in general, in the AWS documentation.

In its simplest form, using IAM role authorization as specified
in Chapter 4 and a file in your S3 bucket looks something like
this when run from a SQL client:

COPY my_schema.my_table
FROM 's3://bucket-name/file.csv’
iam_role ‘<my-arn>’;

As you’ll recall from “Configuring an Amazon Redshift Ware‐
house as a Destination” on page 83, the ARN is formatted like
this:

arn:aws:iam::<aws-account-id>:role/<role-name>
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If you named the role RedshiftLoadRole, then the COPY com‐
mand syntax looks like the following. Note that the numeric
value in the ARN is specific to your AWS account:

COPY my_schema.my_table
FROM 's3://bucket-name/file.csv’
iam_role 'arn:aws:iam::222:role/RedshiftLoadRole’;

When executed, the contents of file.csv are appended to a table
called my_table in the my_schema schema of your Redshift
cluster.

By default, the COPY command inserts data into the columns of
the destination table in the same order as the fields in the input
file. In other words, unless you specify otherwise, the order of
the fields in the CSV you’re loading in this example should
match the order of the columns in the destination table in Red‐
shift. If you’d like to specify the column order, you can do so by
adding the names of the destination columns in an order that
matches your input file, as shown here:

COPY my_schema.my_table (column_1, column_2, ....)
FROM 's3://bucket-name/file.csv'
iam_role 'arn:aws:iam::222:role/RedshiftLoadRole';

It’s also possible to use the Boto3 library to implement the COPY
command in a Python script. In fact, following the template of
the data extraction examples in Chapter 4, loading data via
Python makes for a more standardized data pipeline.

To interact with the Redshift cluster you configured earlier in
this chapter, you’ll need to install the psycopg2 library:

(env) $ pip install psycopg2

Now you can start writing your Python script. Create a new file
called copy_to_redshift.py and add the following three code
blocks.

The first step is to import boto3 to interact with the S3 bucket,
psycopg2 to run the COPY command on the Redshift cluster, and
the configparser library to read the pipeline.conf file:
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import boto3
import configparser
import psycopg2

Next, connect to the Redshift cluster using the psycopg2.con
nect function and credentials stored in the pipeline.conf file:

parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("aws_creds", "database")
user = parser.get("aws_creds", "username")
password = parser.get("aws_creds", "password")
host = parser.get("aws_creds", "host")
port = parser.get("aws_creds", "port")

# connect to the redshift cluster
rs_conn = psycopg2.connect(
    "dbname=" + dbname
    + " user=" + user
    + " password=" + password
    + " host=" + host
    + " port=" + port)

Now you can execute the COPY command using a psycopg2 Cur
sor object. Run the same COPY command that you ran manually
earlier in the section, but instead of hard-coding the AWS
account ID and IAM role name, load those values from the
pipeline.conf file:

# load the account_id and iam_role from the
# conf files
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
account_id = parser.get("aws_boto_credentials",
              "account_id")
iam_role = parser.get("aws_creds", "iam_role")
bucket_name = parser.get("aws_boto_credentials",
              "bucket_name")

# run the COPY command to load the file into Red
shift
file_path = ("s3://"
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    + bucket_name
    + "/order_extract.csv")
role_string = ("arn:aws:iam::"
    + account_id
    + ":role/" + iam_role)

sql = "COPY public.Orders"
sql = sql + " from %s "
sql = sql + " iam_role %s;"

# create a cursor object and execute the COPY
cur = rs_conn.cursor()
cur.execute(sql,(file_path, role_string))

# close the cursor and commit the transaction
cur.close()
rs_conn.commit()

# close the connection
rs_conn.close()

Before you can run the script, you’ll need to create the destina‐
tion table if it does not already exist. In this example, I’m load‐
ing data that was extracted into the order_extract.csv file in
“Full or Incremental MySQL Table Extraction” on page 41. You
can of course load whatever data you’d like. Just make sure the
destination table has the structure to match. To create the desti‐
nation table on your cluster, run the following SQL via the Red‐
shift Query Editor or other application connected to your
cluster:

CREATE TABLE public.Orders (
  OrderId int,
  OrderStatus varchar(30),
  LastUpdated timestamp
);

Finally, run the script as follows:

(env) $ python copy_to_redshift.py
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Incremental Versus Full Loads
In the previous code sample, the COPY command loaded the
data from the extracted CSV file directly into a table in the
Redshift cluster. If the data in the CSV file came from an incre‐
mental extract of an immutable source (as is the case with
something like immutable event data or other “insert-only”
dataset), then there’s nothing more to do. However, if the data
in the CSV file contains updated records as well as inserts or
the entire contents of the source table, then you have a bit more
work to do, or at least considerations to take into account.

Take the case of the Orders table from “Full or Incremental
MySQL Table Extraction” on page 41. That means the data
you’re loading from the CSV file was extracted either in full or
incrementally from the source MySQL table.

If the data was extracted in full, then you have one small addi‐
tion to make to the loading script. Truncate the destination
table in Redshift (using TRUNCATE) before you run the COPY
operation. The updated code snippet looks like this:

import boto3
import configparser
import psycopg2

parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("aws_creds", "database")
user = parser.get("aws_creds", "username")
password = parser.get("aws_creds", "password")
host = parser.get("aws_creds", "host")
port = parser.get("aws_creds", "port")

# connect to the redshift cluster
rs_conn = psycopg2.connect(
    "dbname=" + dbname
    + " user=" + user
    + " password=" + password
    + " host=" + host
    + " port=" + port)
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parser = configparser.ConfigParser()
parser.read("pipeline.conf")
account_id = parser.get("aws_boto_credentials",
                  "account_id")
iam_role = parser.get("aws_creds", "iam_role")
bucket_name = parser.get("aws_boto_credentials",
                  "bucket_name")

# truncate the destination table
sql = "TRUNCATE public.Orders;"
cur = rs_conn.cursor()
cur.execute(sql)

cur.close()
rs_conn.commit()

# run the COPY command to load the file into Red
shift
file_path = ("s3://"
    + bucket_name
    + "/order_extract.csv")
role_string = ("arn:aws:iam::"
    + account_id
    + ":role/" + iam_role)

sql = "COPY public.Orders"
sql = sql + " from %s "
sql = sql + " iam_role %s;"

# create a cursor object and execute the COPY com
mand
cur = rs_conn.cursor()
cur.execute(sql,(file_path, role_string))

# close the cursor and commit the transaction
cur.close()
rs_conn.commit()
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# close the connection
rs_conn.close()

If the data was incrementally extracted, you don’t want to trun‐
cate the destination table. If you did, all you’d have left are the
updated records from the last run of the extraction job. There
are a few ways you can handle data extracted in this way, but
the best is to keep things simple.

In this case, you can simply load the data using the COPY com‐
mand (no TRUNCATE!) and rely on the timestamp stating when
the record was last updated to later identify which record is the
latest or to look back at an historical record. For example, let’s
say that a record in the source table was modified and thus
present in the CSV file being loaded. After loading, you’d see
something like Table 5-1 in the Redshift destination table.

Table 5-1. The Orders table in Redshift

OrderId OrderStatus LastUpdated

1 Backordered 2020-06-01 12:00:00

1 Shipped 2020-06-09 12:00:25

As you can see in Table 5-1, the order with an ID value of 1 is
in the table twice. The first record existed prior to the latest
load, and the second was just loaded from the CSV file. The
first record came in due to an update to the record on
2020-06-01, when the order was in a Backordered state. It was
updated again on 2020-06-09, when it Shipped and included in
the last CSV file you loaded.

From the standpoint of historical record keeping, it’s ideal to
have both of these records in the destination table. Later in the
transform phase of the pipeline, an analyst can choose to use
either or both of the records, depending on the needs of a par‐
ticular analysis. Perhaps they want to know how long the order
was in a backordered state. They need both records to do that.
If they want to know the current status of the order, they have
that as well.
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Though it may feel uncomfortable to have multiple records for
the same OrderId in the destination table, in this case it’s the
right thing to do! The goal of data ingestion is to focus on
extracting and loading data. What to do with the data is a job
for the transform phase of a pipeline, explored in Chapter 6.

Loading Data Extracted from a CDC Log
If your data was extracted via a CDC method, then there is one
other consideration. Though it’s a similar process to loading
data that was extracted incrementally, you’ll have access to not
only inserted and updated records, but also deleted records.

Take the example of the MySQL binary log extraction from
Chapter 4. Recall that the output of the code sample was a CSV
file named orders_extract.csv that was uploaded to the S3
bucket. Its contents looked like the following:

insert|1|Backordered|2020-06-01 12:00:00
update|1|Shipped|2020-06-09 12:00:25

Just like the incremental load example earlier in this section,
there are two records for OrderId 1. When loaded into the data
warehouse, the data looks like it did back in Table 5-1. How‐
ever, unlike the previous example, orders_extract.csv contains a
column for the event responsible for the record in the file. In
this example, that’s either insert or update. If those were the
only two event types, you could ignore the event field and end
up with a table in Redshift that looks like Table 5-1. From
there, analysts would have access to both records when they
build data models later in the pipeline. However, consider
another version of orders_extract.csv with one more line
included:

insert|1|Backordered|2020-06-01 12:00:00
update|1|Shipped|2020-06-09 12:00:25
delete|1|Shipped|2020-06-10 9:05:12

The third line shows that the order record was deleted the day
after it was updated. In a full extraction, the record would have
disappeared completely, and an incremental extraction would
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not have picked up the delete (see “Extracting Data from a
MySQL Database” on page 39 for a more detailed explanation).
With CDC, however, the delete event was picked up and
included in the CSV file.

To accommodate deleted records, it’s necessary to add a col‐
umn to the destination table in the Redshift warehouse to store
the event type. Table 5-2 shows what the extended version of
the Orders looks like.

Table 5-2. The Orders table with EventType in
Redshift

EventType OrderId OrderStatus LastUpdated

insert 1 Backordered 2020-06-01 12:00:00

update 1 Shipped 2020-06-09 12:00:25

delete 1 Shipped 2020-06-10 9:05:12

Once again, the goal of data ingestion in a data pipeline is to
efficiently extract data from a source and load it into a destina‐
tion. The transform step in a pipeline is where the logic to
model the data for a specific use case resides. Chapter 6 dis‐
cusses how to model data loaded via a CDC ingestion, such as
this example.

Configuring a Snowflake Warehouse
as a Destination
If you’re using Snowflake as your data warehouse, you have
three options for configuring access to the S3 bucket from your
Snowflake instance:

• Configure a Snowflake storage integration
• Configure an AWS IAM role
• Configure an AWS IAM user
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Of the three, the first is recommended because of how seamless
using a Snowflake storage integration is when later interacting
with the S3 bucket from Snowflake. Because the specifics of the
configuration include a number of steps, it’s best to refer to the
latest Snowflake documentation on the topic.

In the final step of the configuration you’ll create an external
stage. An external stage is an object that points to an external
storage location so Snowflake can access it. The S3 bucket you
created earlier will serve as that location.

Before you create the stage, it’s handy to define a FILE FORMAT
in Snowflake that you can both refer to for the stage and later
use for similar file formats. Because the examples in this chap‐
ter create pipe-delimited CSV files, create the following FILE
FORMAT:

CREATE or REPLACE FILE FORMAT pipe_csv_format
TYPE = 'csv'
FIELD_DELIMITER = '|';

When you create the stage for the bucket per the final step of
the Snowflake documentation, the syntax will look something
like this:

USE SCHEMA my_db.my_schema;

CREATE STAGE my_s3_stage
  storage_integration = s3_int
  url = 's3://pipeline-bucket/'
  file_format = pipe_csv_format;

In “Loading Data into a Snowflake Data Warehouse” on page
97, you’ll be using the stage to load data that’s been extracted
and stored in the S3 bucket into Snowflake.

Finally, you’ll need to add a section to the pipeline.conf file with
Snowflake login credentials. Note that the user you specify
must have USAGE permission on the stage you just created. Also,
the account_name value must be formatted based on your cloud
provider and the region where the account is located. For
example, if your account is named snowflake_acct1 and hosted
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in the US East (Ohio) region of AWS, the account_name value
will be snowflake_acct1.us-east-2.aws. Because this value will
be used to connect to Snowflake via Python using the
snowflake-connector-python library, you can refer to the
library documentation for help determining the proper value
for your account_name.

Here is the section to add to pipeline.conf:

[snowflake_creds]
username = snowflake_user
password = snowflake_password
account_name = snowflake_acct1.us-east-2.aws

Loading Data into a Snowflake Data
Warehouse
Loading data into Snowflake follows a nearly identical pattern
to the previous sections on loading data into Redshift. As such,
I will not discuss the specifics of handing full, incremental, or
CDC data extracts. Rather, I will describe the syntax of loading
data from a file that has been extracted.

The mechanism for loading data into Snowflake is the COPY
INTO command. COPY INTO loads the contents of a file or multi‐
ple files into a table in the Snowflake warehouse. You can read
more about the advanced usage and options of the command
in the Snowflake documentation.

NOTE

Snowflake also has a data integration service called Snow‐
pipe that enables loading data from files as soon as they’re
available in a Snowflake stage like the one used in the
example in this section. You can use Snowpipe to continu‐
ously load data rather than scheduling a bulk load via the
COPY INTO command.
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Each extraction example in Chapter 4 wrote a CSV file to an S3
bucket. In “Configuring a Snowflake Warehouse
as a Destination” on page 95, you created a Snowflake stage
called my_s3_stage that is linked to that bucket. Now, using the
COPY INTO command, you can load the file into a Snowflake
table as follows:

COPY INTO destination_table
  FROM @my_s3_stage/extract_file.csv;

It’s also possible to load multiple files into the table at once. In
some cases, data is extracted into more than one file due to vol‐
ume or as a result of multiple extraction job runs since the last
load. If the files have a consistent naming pattern (and they
should!), you can load them all using the pattern parameter:

COPY INTO destination_table
  FROM @my_s3_stage
  pattern='.*extract.*.csv';

NOTE

The format of the file to be loaded was set when you cre‐
ated the Snowflake stage (a pipe-delimited CSV); thus, you
do not need to state it in the COPY INTO command syntax.

Now that you know how the COPY INTO command works, it’s
time to write a short Python script that can be scheduled and
executed to automate the load in a pipeline. See Chapter 7 for
more details on this and other pipeline orchestration
techniques.

First, you’ll need to install a Python library to connect to your
Snowflake instance. You can do so using pip:

(env) $ pip install snowflake-connector-python
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Now, you can write a simple Python script to connect to your
Snowflake instance and use COPY INTO to load the contents of
the CSV file into a destination table:

import snowflake.connector
import configparser

parser = configparser.ConfigParser()
parser.read("pipeline.conf")
username = parser.get("snowflake_creds",
            "username")
password =  parser.get("snowflake_creds",
            "password")
account_name = parser.get("snowflake_creds",
            "account_name")

snow_conn = snowflake.connector.connect(
    user = username,
    password = password,
    account = account_name
    )

sql = """COPY INTO destination_table
  FROM @my_s3_stage
  pattern='.*extract.*.csv';"""

cur = snow_conn.cursor()
cur.execute(sql)
cur.close()

Using Your File Storage as a Data Lake
There are times when it makes sense to extract data from an S3
bucket (or other cloud storage) and not load into a data ware‐
house. Data stored in a structured or semistructured form in
this way is often referred to as a data lake.

Unlike a data warehouse, a data lake stores data in many for‐
mats in a raw and sometimes unstructured form. It’s cheaper to
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store, but is not optimized for querying in the same way that
structured data in a warehouse is.

However, in recent years, tools have come along to make
querying data in a data lake far more accessible and often
transparent to a user comfortable with SQL. For example,
Amazon Athena is an AWS service that allows a user to query
data stored in S3 using SQL. Amazon Redshift Spectrum is a
service that allows Redshift to access data in S3 as an external
table and reference it in queries alongside tables in the Redshift
warehouse. Other cloud providers and products have similar
functionality.

When should you consider using such an approach rather than
structuring and loading the data into your warehouse? There
are a few situations that stand out.

Storing large amounts of data in a cloud storage–based data
lake is less expensive than storing it in a warehouse (this is not
true for Snowflake data lakes that use the same storage as
Snowflake data warehouses). In addition, because it’s unstruc‐
tured or semistructured data (no predefined schema), making
changes to the types or properties of data stored is far easier
than modifying a warehouse schema. JSON documents are an
example of the type of semistructured data that you might
encounter in a data lake. If a data structure is frequently chang‐
ing, you may consider storing it in a data lake, at least for the
time being.

During the exploration phase of a data science or machine
learning project, the data scientist or machine learning
engineer might not know yet exactly what “shape” they need
their data in. By granting them access to data in a lake in its raw
form, they can explore the data and determine what attributes
of the data they need to make use of. Once they know, you can
determine whether it makes sense to load the data into a table
in the warehouse and gain the query optimization that comes
with doing so.
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In reality, many organization have both data lakes and data
warehouses in their data infrastructure. Over time, the two
have become complementary, rather than competing, solutions.

Open Source Frameworks
As you’ve noticed by now, there are repetitive steps in each data
ingestion (both in the extract and load steps). As such, numer‐
ous frameworks that provide the core functionally and connec‐
tions to common data sources and destinations have sprung up
in recent years. Some are open source, as discussed in this sec‐
tion, while the next section provides an overview of some pop‐
ular commercial products for data ingestions.

One popular open source framework is called Singer. Written
in Python, Singer uses taps to extract data from a source and
streams it in JSON to a target. For example, if you want to
extract data from a MySQL database and load it into a Google
BigQuery data warehouse, you’d use the MySQL tap and the
BigQuery target.

As with the code samples in this chapter, with Singer you’ll still
need to use a separate orchestration framework to schedule and
coordinate data ingestions (see Chapter 7 for more). However,
whether you use Singer or another framework, you have a lot
to gain from a well-built foundation to get you up and running
quickly.

Being an open source project, there are a wide number of taps
and targets available (see some of the most popular in
Table 5-3), and you can contribute your own back to the
project as well. Singer is well documented and has active Slack
and GitHub communities.
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Table 5-3. Popular singer taps
and targets

Taps Targets

Google Analytics CSV

Jira Google BigQuery

MySQL PostgreSQL

PostgreSQL Amazon Redshift

Salesforce Snowflake

Commercial Alternatives
There are several commercial cloud-hosted products that make
many common data ingestions possible without writing a sin‐
gle line of code. They also have built-in scheduling and job
orchestration. Of course, this all comes at a cost.

Two of the most popular commercial tools for data ingestion
are Stitch and Fivetran. Both are fully web-based and accessible
to data engineers as well as other data professionals on a data
team. They provide hundreds of prebuilt “connectors” to com‐
mon data sources, such as Salesforce, HubSpot, Google Analyt‐
ics, GitHub, and more. You can also ingest data from MySQL,
Postgres, and other databases. Support for Amazon Redshift,
Snowflake, and other data warehouses is built in as well.

If you ingest data from sources that are supported, you’ll save a
great deal of time in building a new data ingestion. In addition,
as Chapter 7 outlines in detail, scheduling and orchestrating
data ingestions aren’t trivial tasks. With Stitch and Fivetran,
you’ll be able to build, schedule, and alert on broken ingestion
pipelines right in your browser.

Selected connectors on both platforms also support things like
job execution timeouts, duplicate data handling, source system
schema changes, and more. If you’re building ingestions on
your own, you’ll need to take all that into account yourself.
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Of course, there are some trade-offs:

Cost
Both Stitch and Fivetran have volume-based pricing mod‐
els. Though they differ in how they measure volume and
what other features they include in each pricing tier, at the
end of the day what you pay is based on how much data
you ingest. If you have a number of high-volume data
sources to ingest from, it will cost you.

Vendor lock-in
Once you invest in a vendor, you’ll be facing a nontrivial
amount of work to migrate to another tool or product,
should you decide to move on in the future.

Customization requires coding
If the source system you want to ingest from doesn’t have
a prebuilt connector, you’ll have to write a little code on
your own. For Stitch, that means writing a custom Singer
tap (see the previous section), and with Fivetran, you’ll
need to write cloud functions using AWS Lambda, Azure
Function, or Google Cloud Functions. If you have many
custom data sources, such as custom-built REST APIs,
you’ll end up having to write custom code and then pay
for Stitch or Fivetran to run it.

Security and privacy
Though both products serve as passthroughs for your data
and don’t store it for long periods of time, they still techni‐
cally have access to both your source systems as well as
destinations (usually data warehouses or data lakes). Both
Fivetran and Stitch meet high standards for security; how‐
ever, some organizations are reluctant to utilize them due
to risk tolerance, regulatory requirements, potential
liability, and the overhead of reviewing and approving a
new data processor.

The choice to build or buy is complex and unique to each orga‐
nization and use case. It’s also worth keeping in mind that some
organizations use a mix of custom code and a product like
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Fivetran or Stitch for data ingestions. For example, it might be
most cost effective to write custom code to handle some high-
volume ingestions that would be costly to run in a commercial
platform but also worth the cost of using Stitch or Fivetran for
ingestions with prebuilt, vendor-supported connectors.

If you do choose a mix of custom and commercial tools, keep
in mind you’ll need to consider how you standardize things
such as logging, alerting, and dependency management. Later
chapters of this book discuss those subjects and touch on the
challenges of managing pipelines that span multiple platforms.
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CHAPTER 6

Transforming Data

In the ELT pattern defined in Chapter 3, once data has been
ingested into a data lake or data warehouse (Chapter 4), the
next step in a pipeline is data transformation. Data transforma‐
tion can include both noncontextual manipulation of data and
modeling of data with business context and logic in mind.

If the purpose of the pipeline is to produce business insight or
analysis, then in addition to any noncontextual transforma‐
tions, data is further transformed into data models. Recall from
Chapter 2 that a data model structures and defines data in a
format that is understood and optimized for data analysis. A
data model is represented as one or more tables in a data
warehouse.

Though data engineers at times build noncontextual transfor‐
mation in a pipeline, it’s become typical for data analysts and
analytics engineers to handle the vast majority of data transfor‐
mations. People in these roles are more empowered than ever
thanks to the emergence of the ELT pattern (they have the data
they need right in the warehouse!) and supporting tools and
frameworks designed with SQL as their primary language.

This chapter explores both noncontextual transformations that
are common to nearly every data pipeline as well as data
models that power dashboards, reports, and one-time analysis
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of a business problem. Because SQL is the language of the data
analyst and analytics engineer, most transformation code sam‐
ples are written in SQL. I include a few samples written in
Python to illustrate when it makes sense to tightly couple non‐
contextual transformations to a data ingestion using powerful
Python libraries.

As with the data ingestions in Chapters 4 and 5, the code sam‐
ples are highly simplified and meant as a starting point to more
complex transformations. To learn how to run and manage
dependencies between transformations and other steps in a
pipeline, see Chapter 8.

SQL Compatibility
The SQL queries in this chapter are designed to run on most
dialects of SQL. They make use of limited vendor-specific syn‐
tax and should run on any modern database that supports SQL
with little or no modification.

Noncontextual Transformations
In Chapter 3, I briefly noted the existence of the EtLT sub-
pattern, where the lowercase t represents some noncontextual
data transformations, such as the following:

• Deduplicate records in a table
• Parse URL parameters into individual components

Though there are countless examples, by providing code sam‐
ples for these transformations I hope to cover some common
patterns of noncontextual transformations. The next section
talks about when it makes sense to perform these transforma‐
tions as part of data ingestion (EtLT) versus post-ingestion
(ELT).
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Deduplicating Records in a Table
Though not ideal, it is possible for duplicate records to exist in
a table of data that has been ingested into a data warehouse.
There are a number of reasons it happens:

• An incremental data ingestion mistakenly overlaps a pre‐
vious ingestion time window and picks up some records
that were already ingested in a previous run.

• Duplicate records were inadvertently created in a source
system.

• Data that was backfilled overlapped with subsequent data
loaded into the table during ingestion.

Whatever the reason, checking for and removing duplicate
records is best performed using SQL queries. Each of the fol‐
lowing SQL queries refers to the Orders table in a database
shown in Table 6-1. The table contains five records, two of
which are duplicates. Though there are three records for
OrderId 1, the second and fourth rows are exactly the same.
The goal of this example is to identify this duplication and
resolve it. Though this example has two records that are exactly
the same, the logic in the following code samples is valid if
there are three, four or even more copies of the same record in
the table.

Table 6-1. Orders table with
duplicates

OrderId OrderStatus LastUpdated

1 Backordered 2020-06-01

1 Shipped 2020-06-09

2 Shipped 2020-07-11

1 Shipped 2020-06-09

3 Shipped 2020-07-12
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If you’d like to create a populate such an Orders table for use in
Examples 6-1 and 6-2, here is the SQL to do so:

CREATE TABLE Orders (
  OrderId int,
  OrderStatus varchar(30),
  LastUpdated timestamp
);

INSERT INTO Orders
  VALUES(1,'Backordered', '2020-06-01');
INSERT INTO Orders
  VALUES(1,'Shipped', '2020-06-09');
INSERT INTO Orders
  VALUES(2,'Shipped', '2020-07-11');
INSERT INTO Orders
  VALUES(1,'Shipped', '2020-06-09');
INSERT INTO Orders
  VALUES(3,'Shipped', '2020-07-12');

Identifying duplicate records in a table is simple. You can use
the GROUP BY and HAVING statements in SQL. The following
query returns any duplicate records along with a count of how
many there are:

SELECT OrderId,
  OrderStatus,
  LastUpdated,
  COUNT(*) AS dup_count
FROM Orders
GROUP BY OrderId, OrderStatus, LastUpdated
HAVING COUNT(*) > 1;

When executed, the query returns the following:

OrderId | OrderStatus | LastUpdated | dup_count
1       | Shipped     | 2020-06-09  | 2

Now that you know that at least one duplicate exists, you can
remove the duplicate records. I’m going to cover two ways to
do so. The method you choose depends on many factors related
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to the optimization of your database as well as your preference
in SQL syntax. I suggest trying both and comparing runtimes.

The first method is to use a sequence of queries. The first query
creates a copy of the table from the original using the DISTINCT
statement. The result of the first query is a result set with only
four rows, since the two duplicate rows are turned into one
thanks to DISTINCT. Next, the original table is truncated.
Finally, the deduplicated version of the dataset is inserted into
the original table, as shown in Example 6-1.

Example 6-1. distinct_orders_1.sql

CREATE TABLE distinct_orders AS
SELECT DISTINCT OrderId,
  OrderStatus,
  LastUpdated
FROM ORDERS;

TRUNCATE TABLE Orders;

INSERT INTO Orders
SELECT * FROM distinct_orders;

DROP TABLE distinct_orders;

WARNING

After the TRUNCATE operation on the Orders table, the
table will be empty until the following INSERT operation is
complete. During that time, the Orders table is empty and
essentially not accessible by any user or process that quer‐
ies it. While the INSERT operation may not take long, for
very large tables you may consider dropping the Orders
table and then renaming distinct_orders to Orders
instead.
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Another approach is to use a window function to group dupli‐
cate rows and assign them row numbers to identify which ones
to delete and which one to keep. I’ll use the ROW_NUMBER func‐
tion to rank the records, and the PARTITION BY statement to
group the records by each column. By doing this, any group of
records with more than one match (our duplicates) will get
assigned a ROW_NUMBER greater than 1.

If you executed Example 6-1, please make sure to refresh the
Orders table using the INSERT statements from earlier in this
section so that it again contains what is shown in Table 6-1.
You’ll want to have a duplicate row to work with for the follow‐
ing sample!

Here is what happens when such a query is run on the Orders
table:

SELECT OrderId,
  OrderStatus,
  LastUpdated,
  ROW_NUMBER() OVER(PARTITION BY OrderId,
                    OrderStatus,
                    LastUpdated)
    AS dup_count
FROM Orders;

The result of the query is as follows:

orderid | orderstatus | lastupdated  |  dup_count
---------+-------------+-------------------+-----
      1 | Backordered | 2020-06-01   |     1
      1 | Shipped     | 2020-06-09   |     1
      1 | Shipped     | 2020-06-09   |     2
      2 | Shipped     | 2020-07-11   |     1
      3 | Shipped     | 2020-07-12   |     1

As you can see, the third row in the result set has a dup_count
value of 2, as it is a duplicate of the record right above it. Now,
just like the first approach, you can create a table with the
deduplicated records, truncate the Orders table, and finally
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insert the cleaned dataset into Orders. Example 6-2 shows the
full source.

Example 6-2. distinct_orders_2.sql

CREATE TABLE all_orders AS
SELECT
  OrderId,
  OrderStatus,
  LastUpdated,
  ROW_NUMBER() OVER(PARTITION BY OrderId,
                    OrderStatus,
                    LastUpdated)
    AS dup_count
FROM Orders;

TRUNCATE TABLE Orders;

-- only insert non-duplicated records
INSERT INTO Orders
  (OrderId, OrderStatus, LastUpdated)
SELECT
  OrderId,
  OrderStatus,
  LastUpdated
FROM all_orders
WHERE
  dup_count = 1;

DROP TABLE all_orders;

Regardless of which approach you take, the result is a dedupli‐
cated version of the Orders table, as shown in Table 6-2.
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Table 6-2. Orders table without
duplicates

OrderId OrderStatus LastUpdated

1 Backordered 2020-06-01

1 Shipped 2020-06-09

2 Shipped 2020-07-11

3 Shipped 2020-07-12

Parsing URLs
Parsing out segments of URLs is a task with little or no busi‐
ness context involved. There are a number of URL components
that can be parsed out in a transform step and stored in indi‐
vidual columns in a database table.

For example, consider the following URL:

https://www.mydomain.com/page-name?utm_con‐
tent=textlink&utm_medium=social&utm_source=twit‐
ter&utm_campaign=fallsale

There are six components that are valuable and can be parsed
and stored into individual columns:

• The domain: www.domain.com
• The URL path: /page-name
• utm_content parameter value: textlink
• utm_medium parameter value: social
• utm_source parameter value: twitter
• utm_campaign parameter value: fallsale
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UTM Parameters
Urchin Tracking Module (UTM) parameters are URL parameters
that are used for tracking marketing and ad campaigns. They
are common across most platforms and organizations.

Parsing URLs is possible in both SQL and Python. The time
when you’re running the transform and where the URLs are
stored will help guide your decision on which to use. For exam‐
ple, if you’re following an EtLT pattern and can parse the URLs
after extraction from a source but before loading into a table in
a data warehouse, Python is an excellent option. I will start by
providing an example in Python, followed by SQL.

First, install the urllib3 Python library using pip. (See “Setting
Up Your Python Environment” on page 34 for instructions on
Python configuration):

(env) $ pip install urllib3

Then, use the urlsplit and parse_qs functions to parse out the
relevant components of the URL. In the following code sample,
I do so and print out the results:

from urllib.parse import urlsplit, parse_qs

url = """https://www.mydomain.com/page-name?utm_con
tent=textlink&utm_medium=social&utm_source=twit
ter&utm_campaign=fallsale"""

split_url = urlsplit(url)
params = parse_qs(split_url.query)

# domain
print(split_url.netloc)

# url path
print(split_url.path)
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# utm parameters
print(params['utm_content'][0])
print(params['utm_medium'][0])
print(params['utm_source'][0])
print(params['utm_campaign'][0])

When executed, the code sample produces the following:

www.mydomain.com
/page-name
textlink
social
twitter
fallsale

As in the data ingestion code samples from Chapters 4 and 5,
you can also parse and write out each parameter to a CSV file
to be loaded into your data warehouse to complete the inges‐
tion. Example 6-3 contains the code sample that does so for the
example URL, but you’ll likely be iterating through more than
one URL!

Example 6-3. url_parse.sql

from urllib.parse import urlsplit, parse_qs
import csv

url = """https://www.mydomain.com/page-name?utm_con
tent=textlink&utm_medium=social&utm_source=twit
ter&utm_campaign=fallsale"""

split_url = urlsplit(url)
params = parse_qs(split_url.query)
parsed_url = []
all_urls = []

# domain
parsed_url.append(split_url.netloc)

# url path
parsed_url.append(split_url.path)
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parsed_url.append(params['utm_content'][0])
parsed_url.append(params['utm_medium'][0])
parsed_url.append(params['utm_source'][0])
parsed_url.append(params['utm_campaign'][0])

all_urls.append(parsed_url)

export_file = "export_file.csv"

with open(export_file, 'w') as fp:
 csvw = csv.writer(fp, delimiter='|')
 csvw.writerows(all_urls)

fp.close()

If you need to parse URLs that have already been loaded into
the data warehouse using SQL, you may have a more difficult
task ahead. Though some data warehouse vendors provide
functions to parse URLs, others do not. Snowflake, for
instance, provides a function called PARSE_URL that parses a
URL into its components and returns the result as a JSON
object. For example, if you want to parse the URL in the pre‐
ceding example, the result will look like this:

SELECT parse_url('https://www.mydomain.com/page-
name?utm_content=text
link&utm_medium=social&utm_source=twitter&utm_cam
paign=fallsale');

+--------------------------------------------------
---------------+
| PARSE_URL('https://www.mydomain.com/page-name?
utm_content=textlink&utm_medium=social&utm_source=t
witter&utm_campaign=fallsale') |
|--------------------------------------------------
---------------|
| {                               |
|   "fragment": null,             |
|   "host": "www.mydomain.com",   |
|   "parameters": {               |
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|     "utm_content": "textlink",  |
|     "utm_medium": "social",   |
|     "utm_source": "twitter",    |
|     "utm_campaign": "fallsale"  |
|   },                            |
|   "path": "/page-name",         |
|   "query": 
"utm_content=textlink&utm_medium=social&utm_source=
twitter&utm_campaign=fallsale",                    
                        |
|   "scheme": "HTTPS"              |
| }                                |
+--------------------------------------------------
---------------+

If you are using Redshift or another data warehouse platform
without built-in URL parsing, you’ll need to make use of cus‐
tom string parsing or regular expressions. For example, Red‐
shift has a function called REGEXP_SUBSTR. Given the difficultly
of parsing URLs in most data warehouses, I recommend
parsing using Python or another language during data inges‐
tion and loading in the structured URL components.

Save the Original URL!
Whether you parse URLs during data ingestion or afterward,
it’s best to keep the original URL string in the data warehouse as
well. URLs may have a number of parameters that you didn’t
think to parse out and structure, but will want to access in the
future.

When to Transform? During or After
Ingestion?
Data transformations without business context, like the ones in
the previous section, can be run either during or after data
ingestion from a technical standpoint. However, there are some
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reasons you should consider running them as part of the inges‐
tion process (the EtLT pattern):

1. The transformation is easiest to do using a language besides
SQL: Like parsing URLs in an earlier example, if you find
it’s a lot easier to make use of Python libraries to handle
the transformation, then do so as part of the data inges‐
tion. In the ELT pattern, transforms done post-ingestion
are limited to data modeling that is performed by data
analysts who are typically most comfortable in SQL.

2. The transformation is addressing a data quality issue: It’s
best to address data quality as early in a pipeline as possi‐
ble (Chapter 9 has more detail on this topic). For example,
in the previous section I provided an example of identify‐
ing and removing duplicate records in data that’s been
ingested. There’s no reason to take the risk of a data ana‐
lyst getting tripped up by duplicated data if you can catch
it and fix it at the point of ingestion. Even though the
transform is written in SQL, it can be run at the tail end of
the ingestion rather than waiting for the analyst to trans‐
form the data.

When it comes to transformations that involve business logic,
it’s best to keep those separate from data ingestions. As you’ll
see in the next section, this type of transformation is referred to
as data modeling.

Data Modeling Foundations
Modeling data for use in analysis, dashboards, and reports is a
topic worth dedicating an entire book to. However, there are
some principles for modeling data in the ELT pattern that I dis‐
cuss in this section.

Unlike the previous section, data modeling is where business
context is taken into account in the transform step of the ELT
pattern in a pipeline. Data models make sense of all the data
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that’s been loaded into the warehouse from various sources
during the extract and load steps (data ingestion).

Key Data Modeling Terms
When I use the term data models in this section, I’m referring
to individual SQL tables in a data warehouse. In the sample
data models, I’ll focus on two properties of models:

Measures
These are things you want to measure! Examples include a
count of customers and a dollar value of revenue.

Attributes
These are things by which you want to filter or group in a
report or dashboard. Examples include dates, customer
names, and countries.

In addition, I will speak to the granularity of a data model.
Granularity is the level of detail stored in a data model. For
example, a model that must provide the number of orders
placed each day would require daily granularity. If it had to
answer the question of how many orders were placed each
hour, then it would require hourly granularity.

Source tables are tables that were loaded into the data ware‐
house or data lake via a data ingestion as described in Chapters
4 and 5. In data modeling, models are built from both source
tables as well as other data models.

Data Model Code Reuse
Though each data model is represented by its own table in a
data warehouse, the logic to build it may rely on other data
models. To learn more about the benefit of reusing logic and
deriving models from one another, see “Reuse of Data Model
Logic” on page 218.

118 | Chapter 6: Transforming Data



Modeling Fully Refreshed Data
When modeling data that has been fully reloaded, such as
described in “Extracting Data from a MySQL Database” on
page 39, you are confronted with a table (or multiple tables)
that contain the latest state of a source data store. For example,
Table 6-3 shows records in an Orders table similar to the one in
Table 6-2, but with only the latest records rather than a full his‐
tory. Notice that the Backordered record for OrderId 1 is not
present in this version. This is what would be present if the
table were loaded in full from the source database to the data
warehouse. In other words, it looks like the current state of the
Orders table in the source system at the time of data ingestion.

The other differences from Table 6-2 are a fourth column
named CustomerId, which stores the identifier of the customer
who placed the order, and a fifth column with the OrderTotal,
which is the dollar value of the order.

Table 6-3. A fully refreshed Orders table

OrderId OrderStatus OrderDate CustomerId OrderTotal

1 Shipped 2020-06-09 100 50.05

2 Shipped 2020-07-11 101 57.45

3 Shipped 2020-07-12 102 135.99

4 Shipped 2020-07-12 100 43.00

In addition to the Orders table, consider the Customers table,
shown in Table 6-4, which has also been loaded into the ware‐
house in full (meaning it contains the current state of each cus‐
tomer record).

Table 6-4. A fully refreshed Customers table

CustomerId CustomerName CustomerCountry

100 Jane USA

101 Bob UK

102 Miles UK
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If you’d like to create these tables in a database for use in the
following sections, you can use the following SQL statements to
do so. Note that if you created the version of the Orders table in
“Deduplicating Records in a Table” on page 107, you’ll need to
DROP it first.

CREATE TABLE Orders (
  OrderId int,
  OrderStatus varchar(30),
  OrderDate timestamp,
  CustomerId int,
  OrderTotal numeric
);

INSERT INTO Orders
  VALUES(1,'Shipped','2020-06-09',100,50.05);
INSERT INTO Orders
  VALUES(2,'Shipped','2020-07-11',101,57.45);
INSERT INTO Orders
  VALUES(3,'Shipped','2020-07-12',102,135.99);
INSERT INTO Orders
  VALUES(4,'Shipped','2020-07-12',100,43.00);

CREATE TABLE Customers
(
  CustomerId int,
  CustomerName varchar(20),
  CustomerCountry varchar(10)
);

INSERT INTO Customers VALUES(100,'Jane','USA');
INSERT INTO Customers VALUES(101,'Bob','UK');
INSERT INTO Customers VALUES(102,'Miles','UK');

Consider the need to create a data model that can be queried to
answer the following questions:
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• How much revenue was generated from orders placed
from a given country in a given month?

• How many orders were placed on a given day?

Facts and Dimensions
If you’re familiar with dimensional modeling (sometimes
referred to as Kimball modeling), you might notice that in this
example, the Orders table contains the type of data that would
be modeled in a fact table, while the data in the Customer table
would be modeled in a dimension. Such concepts are mostly out
of the scope of this book, but if you’re a data analyst I highly
recommend learning more about the fundamentals of dimen‐
sional modeling. For now, I’ll be creating a single data model
directly from the two source tables.

Though the sample tables contain only a few records, imagine a
case where both tables contain millions of records. While
answering those questions is quite straightforward using a SQL
query, when the data volume is high, query execution time and
the volume of data in a model can be reduced if the data model
is aggregated to some extent.

If those questions are the only two requirements of the data
model, there are two measures it must provide:

• Total Revenue
• Order Count

In addition, there are two attributes which the model must
allow a query to filter or group the data by:

• Order Country
• Order Date
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Finally, the granularity of the model is daily, since the smallest
unit of time in the requirements is by day.

Optimize for Granularity
The number of records in a data model is a factor of the
amount of data in the source tables used in the model, the num‐
ber of attributes, and the granularity. Always pick the granular‐
ity of the smallest unit required, but no less. If the model only
needs to provide measures by month, then setting daily granu‐
larity isn’t necessary, and will only increase the number of
records your model needs to store and query.

In this highly simplified data model, I’ll first define the struc‐
ture of the model (a SQL table) and then insert the data
sourced from a join of both tables:

CREATE TABLE IF NOT EXISTS order_summary_daily (
order_date date,
order_country varchar(10),
total_revenue numeric,
order_count int
);

INSERT INTO order_summary_daily
  (order_date, order_country,
  total_revenue, order_count)
SELECT
  o.OrderDate AS order_date,
  c.CustomerCountry AS order_country,
  SUM(o.OrderTotal) as total_revenue,
  COUNT(o.OrderId) AS order_count
FROM Orders o
INNER JOIN Customers c on
  c.CustomerId = o.CustomerId
GROUP BY o.OrderDate, c.CustomerCountry;

Now, you can query the model to answer the questions set out
in the requirements:
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-- How much revenue was generated from orders 
placed from a given country in a given month?

SELECT
  DATE_PART('month', order_date) as order_month,
  order_country,
  SUM(total_revenue) as order_revenue
FROM order_summary_daily
GROUP BY
  DATE_PART('month', order_date),
  order_country
ORDER BY
  DATE_PART('month', order_date),
  order_country;

With the sample data from Tables 6-3 and 6-4, the query
returns the following results:

order_month | order_country | order_revenue
-------------+---------------+---------------
          6 | USA           |         50.05
          7 | UK            |        193.44
          7 | USA           |         43.00
(3 rows)

-- How many orders were placed on a given day?
SELECT
  order_date,
  SUM(order_count) as total_orders
FROM order_summary_daily
GROUP BY order_date
ORDER BY order_date;

This returns the following:

order_date | total_orders
------------+--------------
2020-06-09 |            1
2020-07-11 |            1
2020-07-12 |            2
(3 rows)
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Slowly Changing Dimensions for Fully
Refreshed Data
Because data that’s been ingested as a full refresh overwrites
changes to existing data (such as a record in Customers), a more
advanced data modeling concept is often implemented to track
historical changes.

For example, in the next section you’ll make use of a Customers
table that’s been loaded incrementally and contains updates to
CustomerId 100. As you will see in Table 6-6, that customer has
a second record indicating that the value of her CustomerCoun
try changed from “USA” to “UK” on 2020-06-20. That means
that when she placed OrderId 4 on 2020-07-12 she no longer
lived in the USA.

When analyzing the order history, an analyst might want to
allocate a customer’s orders to where they lived at the time of
an order. With incrementally refreshed data it’s a bit easier to
do that, as you’ll see in the next section. With fully refreshed
data, it’s necessary to keep a full history of the Customers table
between each ingestion and keep track of those changes on
your own.

The method for doing so is defined in Kimball (dimensional)
modeling and referred to as a slowly changing dimension or
SCD. When dealing with fully refreshed data, I often make use
of Type II SCDs, which add a new record to a table for each
change to an entity, including the date range that the record
was valid.

A Type II SCD with Jane’s customer records would look some‐
thing like Table 6-5. Note that the latest record expires on a
date in very distant future. Some Type II SCDs use NULL for
unexpired records, but a date far in the future makes querying
the table a bit less error prone, as you’ll see in a moment.
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Table 6-5. A Type II SCD with customer data

CustomerId CustomerName CustomerCountry ValidFrom Expired

100 Jane USA 2019-05-01
7:01:10

2020-06-20
8:15:34

100 Jane UK 2020-06-20
8:15:34

2199-12-31
00:00:00

You can create and populate this table in your database using
the following SQL statements:

CREATE TABLE Customers_scd
(
  CustomerId int,
  CustomerName varchar(20),
  CustomerCountry varchar(10),
  ValidFrom timestamp,
  Expired timestamp
);

INSERT INTO Customers_scd
  VALUES(100,'Jane','USA','2019-05-01 7:01:10',
    '2020-06-20 8:15:34');
INSERT INTO Customers_scd
  VALUES(100,'Jane','UK','2020-06-20 8:15:34',
    '2199-12-31 00:00:00');

You can join the SCD with the Orders table you created earlier
to get the properties of the customer record at the time of the
order. To do so, in addition to joining on the CustomerId, you’ll
also need to join on the date range in the SCD that the order
was placed in. For example, this query will return the country
that Jane’s Customers_scd record indicated she lived in at the
time each of her orders was placed:

SELECT
  o.OrderId,
  o.OrderDate,
  c.CustomerName,
  c.CustomerCountry
FROM Orders o
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INNER JOIN Customers_scd c
  ON o.CustomerId = c.CustomerId
    AND o.OrderDate BETWEEN c.ValidFrom AND 
c.Expired
ORDER BY o.OrderDate;

orderid |     orderdate     | customer | customer
                                name      country
---------+--------------------+--------+---------
      1 | 2020-06-09 00:00:00 | Jane   | USA
      4 | 2020-07-12 00:00:00 | Jane   | UK
(2 rows)

Though this logic is all you need to make use of SCDs in data
modeling, keeping SCDs up to date can be a challenge. In the
case of the Customers table, you’ll need to take a snapshot of it
after each ingestion and look for any CustomerId records that
have changed. The best approach for doing so depends on
which data warehouse and which data orchestration tools you
are using. If you are interested in implementing SCDs, I suggest
learning the fundamentals of Kimball modeling, which is out‐
side the scope of this book. For more in-depth reading on the
subject, I suggest the book The Data Warehouse Toolkit, by
Ralph Kimball and Margy Ross (Wiley, 2013).

Modeling Incrementally Ingested Data
Recall from Chapter 4 that data ingested incrementally con‐
tains not only the current state of the source data, but also his‐
torical records from since the ingestion started. For example,
consider the same Orders table as in the prior section, but with
a new customers table named Customers_staging that is inges‐
ted incrementally. As you can see in Table 6-6, there are new
columns for the UpdatedDate value of the record, as well as a
new record for CustomerId 100 indicating that Jane’s Customer
Country (where she lives) changed from the US to the UK on
2020-06-20.
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Table 6-6. The incrementally loaded Customers_staging table

CustomerId CustomerName CustomerCountry LastUpdated

100 Jane USA 2019-05-01 7:01:10

101 Bob UK 2020-01-15 13:05:31

102 Miles UK 2020-01-29 9:12:00

100 Jane UK 2020-06-20 8:15:34

You can create and populate the Customers_staging table in
your database for use in the following examples using these
SQL statements:

CREATE TABLE Customers_staging (
  CustomerId int,
  CustomerName varchar(20),
  CustomerCountry varchar(10),
  LastUpdated timestamp
);

INSERT INTO Customers_staging
  VALUES(100,'Jane','USA','2019-05-01 7:01:10');
INSERT INTO Customers_staging
  VALUES(101,'Bob','UK','2020-01-15 13:05:31');
INSERT INTO Customers_staging
  VALUES(102,'Miles','UK','2020-01-29 9:12:00');
INSERT INTO Customers_staging
  VALUES(100,'Jane','UK','2020-06-20 8:15:34');

Recall the questions the model needs to answer from the previ‐
ous section, which I’ll apply to the model in this section as well:

• How much revenue was generated from orders placed
from a given country in a given month?

• How many orders were placed on a given day?

Before you can build your data model in this case, you’ll need
to decide how you want to handle changes to records in the
Customer table. In the example of Jane, which country should
her two orders in the Orders table be allocated to? Should they
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both be allocated to her current country (UK) or each to the
country that she lived in at the time of the order (the US and
the UK respectively)?

The choice you make is based on the logic required by the busi‐
ness case, but the implementation of each is a bit different. I’ll
start with an example of allocating to her current country. I’ll
do this by building a data model similar to the one in the previ‐
ous section, but using only the most current record for each
CustomerId in the Customers_staging table. Note that because
the second question in the requirements for the model requires
daily granularity, I’ll build the model at the date level:

CREATE TABLE order_summary_daily_current
(
  order_date date,
  order_country varchar(10),
  total_revenue numeric,
  order_count int
);

INSERT INTO order_summary_daily_current
  (order_date, order_country,
  total_revenue, order_count)
WITH customers_current AS
(
  SELECT CustomerId,
    MAX(LastUpdated) AS latest_update
  FROM Customers_staging
  GROUP BY CustomerId
)
SELECT
  o.OrderDate AS order_date,
  cs.CustomerCountry AS order_country,
  SUM(o.OrderTotal) AS total_revenue,
  COUNT(o.OrderId) AS order_count
FROM Orders o
INNER JOIN customers_current cc
  ON cc.CustomerId = o.CustomerId
INNER JOIN Customers_staging cs
  ON cs.CustomerId = cc.CustomerId
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    AND cs.LastUpdated = cc.latest_update
GROUP BY o.OrderDate, cs.CustomerCountry;

When answering the question of how much revenue was gen‐
erated from orders placed in a given country in a given month,
both of Jane’s orders are allocated to the UK, even though you
might expect to see the 50.05 from her order in June to be allo‐
cated to the US, given that’s where she lived at the time:

SELECT
  DATE_PART('month', order_date) AS order_month,
  order_country,
  SUM(total_revenue) AS order_revenue
FROM order_summary_daily_current
GROUP BY
  DATE_PART('month', order_date),
  order_country
ORDER BY
  DATE_PART('month', order_date),
  order_country;

order_month | order_country | order_revenue
-------------+---------------+---------------
          6 | UK            |         50.05
          7 | UK            |        236.44
(2 rows)

If instead you want to allocate orders to the country that the
customers lived in at the time of order, then building the model
requires a change in logic. Instead of finding the most recent
record in Customers_staging for each CustomerId in the com‐
mon table expression (CTE), I instead find the most recent
record that was updated on or before the time of each order
placed by each customer. In other words, I want the informa‐
tion about the customer that was valid at the time they placed
the order. That information is stored in the version of their Cus
tomer_staging record when the order was placed. Any later
updates to their customer information didn’t occur until after
that particular order was placed.
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The customer_pit (pit is short for “point-in-time”) CTE in the
following sample contains the MAX(cs.LastUpdated) for each
CustomerId/OrderId pair. I use that information in the final
SELECT statement to populate the data model. Note that I must
join based on both the OrderId and CustomerId in this query.
Here is the final SQL for the order_summary_daily_pit model:

CREATE TABLE order_summary_daily_pit
(
  order_date date,
  order_country varchar(10),
  total_revenue numeric,
  order_count int
);

INSERT INTO order_summary_daily_pit
  (order_date, order_country, total_revenue, 
order_count)
WITH customer_pit AS
(
  SELECT
    cs.CustomerId,
    o.OrderId,
    MAX(cs.LastUpdated) AS max_update_date
  FROM Orders o
  INNER JOIN Customers_staging cs
    ON cs.CustomerId = o.CustomerId
      AND cs.LastUpdated <= o.OrderDate
  GROUP BY cs.CustomerId, o.OrderId
)
SELECT
  o.OrderDate AS order_date,
  cs.CustomerCountry AS order_country,
  SUM(o.OrderTotal) AS total_revenue,
  COUNT(o.OrderId) AS order_count
FROM Orders o
INNER JOIN customer_pit cp
  ON cp.CustomerId = o.CustomerId
    AND cp.OrderId = o.OrderId
INNER JOIN Customers_staging cs
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  ON cs.CustomerId = cp.CustomerId
    AND cs.LastUpdated = cp.max_update_date
GROUP BY o.OrderDate, cs.CustomerCountry;

When you run the same query as before, you’ll see that the rev‐
enue from Jane’s first order is allocated to the US in June 2020,
while the second order in July 2020 remains allocated to the
UK as expected:

SELECT
  DATE_PART('month', order_date) AS order_month,
  order_country,
  SUM(total_revenue) AS order_revenue
FROM order_summary_daily_pit
GROUP BY
  DATE_PART('month', order_date),
  order_country
ORDER BY
  DATE_PART('month', order_date),
  order_country;

order_month | order_country | order_revenue
-------------+---------------+---------------
          6 | USA           |         50.05
          7 | UK            |        236.44
(2 rows)

Modeling Append-Only Data
Append-only data (or insert-only data) is immutable data that is
ingested into a data warehouse. Each record in such a table is
some kind of event that never changes. An example is a table of
all page views on a website. Each time the data ingestion runs,
it appends new page views to the table but never updates or
deletes previous events. What occurred in the past happened
and cannot be changed.

Modeling append-only data is similar to modeling fully
refreshed data. However, you can optimize the creation and
refresh of data models built off of such data by taking advan‐
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tage of the fact that once records are inserted, they’ll never
change.

Table 6-7 is an example of an append-only table named Page
Views containing record page views on a website. Each record
in the table represents a customer viewing a page on a compa‐
ny’s website. New records, representing page views logged since
the last ingestion, are appended to the table each time the data
ingestion job runs.

Table 6-7. PageViews table

CustomerId ViewTime UrlPath utm_medium

100 2020-06-01 12:00:00 /home social

100 2020-06-01 12:00:13 /product/2554 NULL

101 2020-06-01 12:01:30 /product/6754 search

102 2020-06-02 7:05:00 /home NULL

101 2020-06-02 12:00:00 /product/2554 social

You can create and populate the PageViews table in your data‐
base for use in the following examples using these SQL queries.

CREATE TABLE PageViews (
  CustomerId int,
  ViewTime timestamp,
  UrlPath varchar(250),
  utm_medium varchar(50)
);

INSERT INTO PageViews
  VALUES(100,'2020-06-01 12:00:00',
    '/home','social');
INSERT INTO PageViews
  VALUES(100,'2020-06-01 12:00:13',
    '/product/2554',NULL);
INSERT INTO PageViews
  VALUES(101,'2020-06-01 12:01:30',
    '/product/6754','search');
INSERT INTO PageViews
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  VALUES(102,'2020-06-02 7:05:00',
    '/home','NULL');
INSERT INTO PageViews
  VALUES(101,'2020-06-02 12:00:00',
    '/product/2554','social');

Note that a real table with page view data would contain dozens
or more columns storing attributes about the page viewed, the
referring URL, the user’s browser version, and more.

Recall URL Parsing
The PageViews table in Table 6-7 is a good example of the type
of table that is created via the methods described in “Parsing
URLs” on page 112.

Now, I’ll define a data model that is designed to answer the fol‐
lowing questions. I’ll be using the Customers table defined in
Table 6-4 earlier in this chapter to identify the country that
each customer resides in:

• How many page views are there for each UrlPath on the
site by day?

• How many page views do customers from each country
generate each day?

The granularity of the data model is daily. There are three
attributes required.

• The date (no timestamp required) of the page view
• The UrlPath of the page view
• The country that the customer viewing the page resides in

There is only one metric required:

• A count of page views
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The structure of the model is as follows:

CREATE TABLE pageviews_daily (
  view_date date,
  url_path varchar(250),
  customer_country varchar(50),
  view_count int
);

To populate the model for the first time, the logic is the same as
in the “Modeling Fully Refreshed Data” section of this chapter.
All records from the PageViews table are included in the popu‐
lation of pageviews_daily. Example 6-4 shows the SQL.

Example 6-4. pageviews_daily.sql

INSERT INTO pageviews_daily
  (view_date, url_path, customer_country, view_count)
SELECT
  CAST(p.ViewTime as Date) AS view_date,
  p.UrlPath AS url_path,
  c.CustomerCountry AS customer_country,
  COUNT(*) AS view_count
FROM PageViews p
LEFT JOIN Customers c ON c.CustomerId = p.CustomerId
GROUP BY
  CAST(p.ViewTime as Date),
  p.UrlPath,
  c.CustomerCountry;

To answer one of the questions required by the model (how
many page views do customers from each country generate
each day?), the following SQL will do the trick:

SELECT
  view_date,
  customer_country,
  SUM(view_count)
FROM pageviews_daily
GROUP BY view_date, customer_country
ORDER BY view_date, customer_country;
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view_date  | customer_country | sum
------------+------------------+-----
2020-06-01 | UK               |   1
2020-06-01 | USA              |   2
2020-06-02 | UK               |   2
(3 rows)

Now consider what to do when the next ingestion of data into
the PageViews table runs. New records are added, but all exist‐
ing records remain untouched. To update the pageviews_daily
model, you have two options:

• Truncate the pageviews_daily table and run the same
INSERT statement you used to populate it for the first time.
In this case, you are fully refreshing the model.

• Only load new records from PageViews into page

views_daily. In this case, you are incrementally refreshing
the model.

The first option is the least complex and less likely to result in
any logical errors on the part of the analyst building the model.
If the INSERT operation runs quickly enough for your use case,
then I suggest taking this path. Beware, however! While the full
refresh of the model might run quickly enough when it’s first
developed, as the PageViews and Customers datasets grow, the
runtime of the refresh will grow as well.

The second option is a little more complicated but may result
in a shorter runtime when you’re working with larger datasets.
The tricky part of an incremental refresh in this case is the fact
that the pageviews_daily table is granular to the day (date with
no timestamp), while new records ingested into the PageViews
table are granular to a full timestamp.

Why is that a problem? It’s unlikely that you refreshed page
views_daily at the end of a full day of records. In other words,
though pageviews_daily has data for 2020-06-02, it’s possible
that new records for that day will be loaded into PageViews in
the next ingestion run.
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Table 6-8 shows just that case. Two new records have been
appended to the previous version of PageViews from Table 6-7.
The first of the new page views occurred on 2020-06-02, and
the second was on the following day.

Table 6-8. PageViews table with additional records

CustomerId ViewTime UrlPath utm_medium

100 2020-06-01 12:00:00 /home social

100 2020-06-01 12:00:13 /product/2554 NULL

101 2020-06-01 12:01:30 /product/6754 search

102 2020-06-02 7:05:00 /home NULL

101 2020-06-02 12:00:00 /product/2554 social

102 2020-06-02 12:03:42 /home NULL

101 2020-06-03 12:25:01 /product/567 social

Before I attempt to incremental refresh the pageviews_daily
model, take a look at a snapshot of what it looks like currently:

SELECT *
FROM pageviews_daily
ORDER BY view_date, url_path, customer_country;

view_date  |   url_path   | customer | view_count
                            _country
------------+---------------+----------+---------
2020-06-01 | /home         | USA        |     1
2020-06-01 | /product/2554 | USA        |     1
2020-06-01 | /product/6754 | UK         |     1
2020-06-02 | /home         | UK         |     1
2020-06-02 | /product/2554 | UK         |     1
(5 rows)

You can now insert the two new records shown in Table 6-8
into your database using the following SQL statements:

INSERT INTO PageViews
  VALUES(102,'2020-06-02 12:03:42',
    '/home',NULL);
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INSERT INTO PageViews
  VALUES(101,'2020-06-03 12:25:01',
    '/product/567','social');

As a first attempt at an incremental refresh, you might simply
include records from PageViews with a timestamp greater than
the current MAX(view_date) in pageviews_daily (2020-06-02)
into pageviews_daily. I’ll try that, but instead of inserting into
pageviews_daily, I’ll create another copy of it called page
views_daily_2 and use that for this example. Why? Well, as
you’ll see in a moment, this is not the correct approach! The
SQL would look like the following:

CREATE TABLE pageviews_daily_2 AS
SELECT * FROM pageviews_daily;

INSERT INTO pageviews_daily_2
  (view_date, url_path,
  customer_country, view_count)
SELECT
  CAST(p.ViewTime as Date) AS view_date,
  p.UrlPath AS url_path,
  c.CustomerCountry AS customer_country,
  COUNT(*) AS view_count
FROM PageViews p
LEFT JOIN Customers c
  ON c.CustomerId = p.CustomerId
WHERE
  p.ViewTime >
  (SELECT MAX(view_date) FROM pageviews_daily_2)
GROUP BY
  CAST(p.ViewTime as Date),
  p.UrlPath,
  c.CustomerCountry;

However, as you can see in the following code, you’ll end up
with several duplicate records because all events from
2020-06-02 at midnight and after are included in the refresh. In
other words, page views from 2020-06-02 that were previously
accounted for in the model are counted again. That’s because
we don’t have the full timestamp stored in the daily granular
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pageviews_daily (and the copy named pageviews_daily_2). If
this version of the model was used for reporting or analysis, the
number of page views would be overstated!

SELECT *
FROM pageviews_daily_2
ORDER BY view_date, url_path, customer_country;

view_date  |   url_path   | customer | view_count
                            _country
------------+--------------+---------+-----------
2020-06-01 | /home         | USA     |     1
2020-06-01 | /product/2554 | USA     |     1
2020-06-01 | /product/6754 | UK      |     1
2020-06-02 | /home         | UK      |     2
2020-06-02 | /home         | UK      |     1
2020-06-02 | /product/2554 | UK      |     1
2020-06-02 | /product/2554 | UK      |     1
2020-06-03 | /product/567  | UK      |     1
(8 rows)

If you sum up view_count by date, you’ll see that there are five
page views on 2020-06-02 instead of the actual count of three
from Table 6-8. That’s because the two page views from that day
that were previously added to pageviews_daily_2 were added
again:

SELECT
  view_date,
  SUM(view_count) AS daily_views
FROM pageviews_daily_2
GROUP BY view_date
ORDER BY view_date;

view_date  | daily_views
------------+-------------
2020-06-01 |           3
2020-06-02 |           5
2020-06-03 |           1
(3 rows)
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Another approach that many analysts take is to store the full
timestamp of the final record from the PageViews table and use
it as the next starting point for the incremental refresh. Like
last time, I’ll create a new table (this time called page

views_daily_3) for this attempt as it is the incorrect solution:

CREATE TABLE pageviews_daily_3 AS
SELECT * FROM pageviews_daily;

INSERT INTO pageviews_daily_3
  (view_date, url_path,
  customer_country, view_count)
SELECT
  CAST(p.ViewTime as Date) AS view_date,
  p.UrlPath AS url_path,
  c.CustomerCountry AS customer_country,
  COUNT(*) AS view_count
FROM PageViews p
LEFT JOIN Customers c
  ON c.CustomerId = p.CustomerId
WHERE p.ViewTime > '2020-06-02 12:00:00'
GROUP BY
  CAST(p.ViewTime AS Date),
  p.UrlPath,
  c.CustomerCountry;

Again, if you take a look at the new version of page

views_daily_3, you’ll notice something nonideal. Although the
total number of page views for 2020-06-02 is now correct (3),
there are two rows that are the same (view_date of 2020-06-02,
url_path of /home, and customer_country of UK):

SELECT *
FROM pageviews_daily_3
ORDER BY view_date, url_path, customer_country;

view_date  |   url_path   | customer | view_count
                            _country
------------+--------------+---------+------------
2020-06-01 | /home         | USA     |     1
2020-06-01 | /product/2554 | USA     |     1
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2020-06-01 | /product/6754 | UK      |     1
2020-06-02 | /home         | UK      |     1
2020-06-02 | /home         | UK      |     1
2020-06-02 | /product/2554 | UK      |     1
2020-06-03 | /product/567  | UK      |     1
(7 rows)

Thankfully, in this case, the answer to the question of how
many page views there are by day and country is correct. How‐
ever, it’s wasteful to store data we don’t need. Those two records
could have been combined into a single one with a view_count
value of 2. Though the sample table is small in this case, it’s not
uncommon for such tables to have many billion records in
reality. The number of unnecessary duplicated records add up
and wastes storage and future query time.

A better approach is to assume that more data has been loaded
during the latest day (or week, month, and so on, based on the
granularity of the table) in the model. The approach I’ll take is
as follows:

1. Make a copy of pageviews_daily called tmp_page

views_daily with all records up through the second to last
day that it currently contains. In this example, that means
all data through 2020-06-01.

2. Insert all records from the source table (PageViews) into
the copy starting on the next day (2020-06-02).

3. Truncate pageviews_daily and load the data from
tmp_pageviews_daily into it.

4. Drop tmp_pageviews_daily.

A Modified Approach
Some analysts prefer to take a slightly different approach.
Instead of truncating pageviews_daily in step 3, they instead
drop pageviews_daily and then rename tmp_pageviews_daily
to pageviews_daily. The upside is that pageviews_daily isn’t
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empty between steps 3 and 4 and can be queried right away. The
downside is that on some data warehouse platforms you’ll lose
permissions set on pageviews_daily if they were not copied
over to tmp_pageviews_daily in step 1. Consult the documen‐
tation for your data warehouse platform before considering this
alternate approach.

The final, and correct, SQL for the incremental refresh of the
model is as follows:

CREATE TABLE tmp_pageviews_daily AS
SELECT *
FROM pageviews_daily
WHERE view_date
  < (SELECT MAX(view_date) FROM pageviews_daily);

INSERT INTO tmp_pageviews_daily
  (view_date, url_path,
  customer_country, view_count)
SELECT
  CAST(p.ViewTime as Date) AS view_date,
  p.UrlPath AS url_path,
  c.CustomerCountry AS customer_country,
  COUNT(*) AS view_count
FROM PageViews p
LEFT JOIN Customers c
  ON c.CustomerId = p.CustomerId
WHERE p.ViewTime
  > (SELECT MAX(view_date) FROM pageviews_daily)
GROUP BY
  CAST(p.ViewTime as Date),
  p.UrlPath,
  c.CustomerCountry;

TRUNCATE TABLE pageviews_daily;

INSERT INTO pageviews_daily
SELECT * FROM tmp_pageviews_daily;

DROP TABLE tmp_pageviews_daily;
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Finally, the following is the result of the proper incremental
refresh. The total count of page views is correct, and the data is
stored as efficiently as possible, given the requirements of the
model:

SELECT *
FROM pageviews_daily
ORDER BY view_date, url_path, customer_country;

view_date  |   url_path   | customer | view_count
                            _country
------------+--------------+---------+------------
2020-06-01 | /home         | USA     |     1
2020-06-01 | /product/2554 | USA     |     1
2020-06-01 | /product/6754 | UK      |     1
2020-06-02 | /home         | UK      |     2
2020-06-02 | /product/2554 | UK      |     1
2020-06-03 | /product/567  | UK      |     1
(6 rows)

Modeling Change Capture Data
Recall from Chapter 4 that data ingested via CDC is stored in a
specific way in the data warehouse after ingestion. For example,
Table 6-9 shows the contents of a table named Orders_cdc that’s
been ingested via CDC. It contains the history of three orders
in a source system.

Table 6-9. The Orders_cdc table

EventType OrderId OrderStatus LastUpdated

insert 1 Backordered 2020-06-01 12:00:00

update 1 Shipped 2020-06-09 12:00:25

delete 1 Shipped 2020-06-10 9:05:12

insert 2 Backordered 2020-07-01 11:00:00

update 2 Shipped 2020-07-09 12:15:12

insert 3 Backordered 2020-07-11 13:10:12
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You can create and populate the Orders_cdc table with the fol‐
lowing SQL statements:

CREATE TABLE Orders_cdc
(
  EventType varchar(20),
  OrderId int,
  OrderStatus varchar(20),
  LastUpdated timestamp
);

INSERT INTO Orders_cdc
  VALUES('insert',1,'Backordered',
    '2020-06-01 12:00:00');
INSERT INTO Orders_cdc
  VALUES('update',1,'Shipped',
    '2020-06-09 12:00:25');
INSERT INTO Orders_cdc
  VALUES('delete',1,'Shipped',
    '2020-06-10 9:05:12');
INSERT INTO Orders_cdc
  VALUES('insert',2,'Backordered',
    '2020-07-01 11:00:00');
INSERT INTO Orders_cdc
  VALUES('update',2,'Shipped',
    '2020-07-09 12:15:12');
INSERT INTO Orders_cdc
  VALUES('insert',3,'Backordered',
    '2020-07-11 13:10:12');

Order 1’s record was first created when the order was placed,
but in a status of Backordered. Eight days later, the record was
updated in the source system when it shipped. A day later the
record was deleted in the source system for some reason. Order
2 took a similar journey but was never deleted. Order 3 was
first inserted when it was placed and has never been updated.
Thanks to CDC, we not only know the current state of all
orders, but also their full history.

How to model data stored in this way depends on what ques‐
tions the data model sets out to answer. For example, you
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might want to report on the current status of all orders for use
on an operational dashboard. Perhaps the dashboard needs to
display the number of orders currently in each state. A simple
model would look something like this:

CREATE TABLE orders_current (
  order_status varchar(20),
  order_count int
);

INSERT INTO orders_current
  (order_status, order_count)
  WITH o_latest AS
  (
    SELECT
       OrderId,
       MAX(LastUpdated) AS max_updated
    FROM Orders_cdc
    GROUP BY orderid
  )
  SELECT o.OrderStatus,
    Count(*) as order_count
  FROM Orders_cdc o
  INNER JOIN o_latest
    ON o_latest.OrderId = o_latest.OrderId
      AND o_latest.max_updated = o.LastUpdated
  GROUP BY o.OrderStatus;

In this example, I use a CTE instead of a subquery to find the
MAX(LastUpdated) timestamp for each OrderId. I then join the
resulting CTE to the Orders_cdc table to get the OrderStatus of
the most recent record for each order.

To answer the original question, you can see that two orders
have an OrderStatus of Shipped and one is still Backordered:

SELECT * FROM orders_current;

order_status | order_count
--------------+-------------
Shipped      |           2
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Backordered  |           1
(2 rows)

Is this the right answer to the question, however? Recall that
while the latest status of OrderId 1 was currently Shipped, the
Order record was deleted from the source database. Though
that may seem like a poor system design, let’s say for now that
when an order is canceled by a customer, it gets deleted from
the source system. To take deletions into account, I’ll make a
minor modification to the model refresh to ignore deletes:

TRUNCATE TABLE orders_current;

INSERT INTO orders_current
  (order_status, order_count)
  WITH o_latest AS
  (
    SELECT
       OrderId,
       MAX(LastUpdated) AS max_updated
    FROM Orders_cdc
    GROUP BY orderid
  )
  SELECT o.OrderStatus,
    Count(*) AS order_count
  FROM Orders_cdc o
  INNER JOIN o_latest
    ON o_latest.OrderId = o_latest.OrderId
      AND o_latest.max_updated = o.LastUpdated
  WHERE o.EventType <> 'delete'
  GROUP BY o.OrderStatus;

As you can see, the deleted order is no longer considered:

SELECT * FROM orders_current;

order_status | order_count
--------------+-------------
Shipped      |           1
Backordered  |           1
(2 rows)
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Another common use for CDC-ingested data is making sense
of the changes themselves. For example, perhaps an analyst
wants to know how long, on average, orders take to go from a
Backordered to Shipped status. I’ll again use a CTE (two this
time!) to find the first date that each order was Backordered
and Shipped. I’ll then subtract the two to get how many days
each order that has been both backordered and shipped was in
a status of Backordered. Note that this logic intentionally
ignores OrderId 3, which is currently backordered but hasn’t
yet shipped:

CREATE TABLE orders_time_to_ship (
  OrderId int,
  backordered_days interval
);

INSERT INTO orders_time_to_ship
  (OrderId, backordered_days)
WITH o_backordered AS
(
  SELECT
     OrderId,
     MIN(LastUpdated) AS first_backordered
  FROM Orders_cdc
  WHERE OrderStatus = 'Backordered'
  GROUP BY OrderId
),
o_shipped AS
(
  SELECT
     OrderId,
     MIN(LastUpdated) AS first_shipped
  FROM Orders_cdc
  WHERE OrderStatus = 'Shipped'
  GROUP BY OrderId
)
SELECT b.OrderId,
  first_shipped - first_backordered
    AS backordered_days
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FROM o_backordered b
INNER JOIN o_shipped s on s.OrderId = b.OrderId;

You can see the backorder times of each order as well as use the
AVG() function to answer the original question:

SELECT * FROM orders_time_to_ship;

orderid | backordered_days
---------+------------------
      1 | 8 days 00:00:25
      2 | 8 days 01:15:12
(2 rows)

SELECT AVG(backordered_days)
FROM orders_time_to_ship;

avg
-------------------
8 days 00:37:48.5
(1 row)

There are numerous other use cases for data that you have a
full change history of, but just like modeling data that’s been
fully loaded or is append-only, there are some common best
practices and considerations.

Like the previous section, there are potential performance gains
to be made by taking advantage of the fact that data ingested
via CDC is loaded incrementally rather than fully refreshed.
However, as noted in that section, there are times when the
performance gain is not worth the added complexity of an
incremental model refresh instead of a full refresh. In the case
of working with CDC data, I find this to be true most times.
The additional complexity of dealing with both updates and
deletes is often enough to make a full refresh the preferred
path.
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CHAPTER 7

Orchestrating Pipelines

Previous chapters have described the building blocks of data
pipelines, including data ingestion, data transformation, and
the steps in a machine learning pipeline. This chapter covers
how to “orchestrate,” or tie together, those blocks or steps.

Orchestration ensures that the steps in a pipeline are run in the
correct order and that dependencies between steps are man‐
aged properly.

When I introduced the challenge of orchestrating pipelines in
Chapter 2, I also introduced the concept of workflow orchestra‐
tion platforms (also referred to as workflow management sys‐
tems (WMSs), orchestration platforms, or orchestration frame‐
works). In this chapter, I will highlight Apache Airflow, which is
one of the most popular such frameworks. Though the bulk of
the chapter is dedicated to examples in Airflow, the concepts
are transferable to other frameworks as well. In fact, I note
some alternatives to Airflow later in the chapter.

Finally, the later sections of this chapter discuss some more
advanced concepts in pipeline orchestration, including coordi‐
nating multiple pipelines on your data infrastructure.
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Directed Acyclic Graphs
Though I introduced DAGs in Chapter 2, it’s worth repeating
what they are. This chapter talks about how they are designed
and implemented in Apache Airflow to orchestrate tasks in a
data pipeline.

Pipeline steps (tasks) are always directed, meaning they start
with a task or multiple tasks and end with a specific task or
tasks. This is required to guarantee a path of execution. In
other words, it ensures that tasks do not run before all their
dependent tasks are completed successfully.

Pipeline graphs must also be acyclic, meaning that a task cannot
point back to a previously completed task. In other words, it
cannot cycle back. If it could, then a pipeline could run
endlessly!

You’ll recall the following example of a DAG from Chapter 2,
which is illustrated in Figure 7-1. This is a DAG that was
defined in Apache Airflow.

Figure 7-1. A DAG with four tasks. After Task A completes, Task B and
Task C run. When they both complete, Task D runs.

Tasks in Airflow can represent anything from the execution of
a SQL statement to the execution of a Python script. As you
will see in the following sections, Airflow allows you to define,
schedule, and execute the tasks in a data pipeline and ensure
that they are run in the proper order.
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Apache Airflow Setup and Overview
Airflow is an open source project started by Maxime Beauche‐
min at Airbnb in 2014. It joined the Apache Software Founda‐
tion’s Incubator program in March 2016. Airflow was built to
solve a common challenge faced by data engineering teams:
how to build, manage, and monitor workflows (data pipelines
in particular) that involve multiple tasks with mutual
dependencies.

In the six years since it was first released, Airflow has become
one of the most popular workflow management platforms
among data teams. Its easy-to-use web interface, advanced
command-line utilities, built-in scheduler, and high level of
customizability mean that it’s a good fit with just about any
data infrastructure. Though built in Python, it can execute
tasks running on any language or platform. In fact, though
most commonly used in managing data pipelines, it’s truly a
generalized platform for orchestrating any sort of dependent
tasks.

NOTE

The code samples and overview in this chapter reference
Airflow version 1.x. Airflow 2.0 is on the horizon and
promises some major enhancements such as a shiny new
Web UI, a new and improved scheduler, a fully featured
REST API, and more. Although the specifics of this chapter
refer to Airflow 1.x, the concepts will remain true in Air‐
flow 2.0. In addition, the code provided here is intended to
work with Airflow 2.0 with little or no modification.

Installing and Configuring
Installing Airflow is thankfully quite simple. You’ll need to
make use of pip, which was introduced in “Setting Up Your
Python Environment” on page 34. As you install and fire up
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Airflow for the first time, you’ll be introduced to some of its
components, such as the Airflow database, web server, and
scheduler. I define what each of these are and how they can be
further configured in the following sections.

Airflow in a Virtual Environment
Because Airflow is built in Python, you may want to install Air‐
flow into a Python virtual environment (virtualenv). In fact, if
you’re testing Airflow or running on a machine with other
Python projects, I recommend doing so. Refer to “Setting Up
Your Python Environment” on page 34 for instructions. If you
choose this method, ensure that the name of your virtual envi‐
ronment is created and activated before proceeding.

You can follow the installation instructions from the official
Airflow Quick Start Guide. This typically takes less than five
minutes!

Once you have Airflow installed and the web server running,
you can visit http://localhost:8080 in your browser to view the
Airflow web UI. If you’d like to learn more about the various
components of Airflow and how they can be configured, the
remainder of this section goes into detail on each. If you’re
ready to build your first Airflow DAG, you can skip ahead to
“Building Airflow DAGs” on page 161.

For more advanced deployments of Airflow, I suggest taking a
look at the official Airflow documentation.

Airflow Database
Airflow uses a database to store all the metadata related to the
execution history of each task and DAG as well as your Airflow
configuration. By default, Airflow uses a SQLite database.
When you ran the airflow initdb command during the instal‐
lation, Airflow created a SQLite database for you. For learning
Airflow or even a small-scale project, that’s just fine. However,
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for larger scale needs I suggest using a MySQL or Postgres
database. Thankfully, Airflow uses the highly regarded Sql
Alchemy library behind the scenes and can easily be reconfig‐
ured to use such a database instead of SQLite.

To change which database Airflow uses, you’ll need to open the
airflow.cfg file, which is located in the path you used for AIR
FLOW_HOME during installation. In the installation example, that
was ~/airflow. In the file, you’ll see a line for the
sql_alchemy_conn configuration. It will looks something like
this:

# The SqlAlchemy connection string to the metadata 
database.
# SqlAlchemy supports many different database 
engine, more information
# their website
sql_alchemy_conn = sqlite:////Users/myuser/airflow/
airflow.db

By default the value is set to a connection string for a local
SQLite database. In the following example, I’ll create and con‐
figure a Postgres database and user for Airflow and then con‐
figure Airflow to use the new database instead of the default
SQLite database.

Note that I assume that you have a Postgres server running and
access to run psql (the Postgres interactive terminal) and per‐
mission to create databases and users in psql. Any Postgres
database will do, but it must be accessible from the machine
where Airflow is running. To learn more about installing and
configuring a Postgres server, see the official site. You may also
be using a managed Postgres instance on a platform like AWS.
That’s just fine as long as the machine where Airflow is
installed can access it.

First, launch psql on the command line or otherwise open a
SQL editor connected to your Postgres server.

Now, create a user for Airflow to use. For simplicity, name it
airflow. In addition, set a password for the user:
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CREATE USER airflow;
ALTER USER airflow WITH PASSWORD 'pass1';

Next, create a database for Airflow. I’ll call it airflowdb:

CREATE DATABASE airflowdb;

Finally, grant the new user all privileges on the new database.
Airflow will need to both read and write to the database:

GRANT ALL PRIVILEGES
  ON DATABASE airflowdb TO airflow;

Now you can go back and modify the connection string in the
airflow.cfg file. I’ll assume that your Postgres server is running
on the same machine as Airflow, but if not, you’ll need to mod‐
ify the following by replacing localhost with the full path to
the host where Postgres is running. Save airflow.cfg when
you’re done:

sql_alchemy_conn = postgresql+psycopg2://
airflow:pass1@localhost:5432/airflowdb

Since Airflow will need to connect to a Postgres database via
Python, you’ll also need to install the psycopg2 library:

$ pip install psycopg2

Finally, go back to the command line to reinitialize the Airflow
database in Postgres:

$ airflow initdb

Going forward, you can find all of the Airflow metadata in the
airflowdb database on the Postgres server. There’s a wealth of
information there, including task history, that can be queried.
You can query it directly from the Postrgres database or right in
the Airflow web UI, as described in the next section. Having
the data queryable via SQL opens up a world of reporting and
analysis opportunities. There’s no better way to analyze the per‐
formance of your pipelines, and you can do it with the data that
Airflow collections by default! In Chapter 10 of this book, I
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discuss using this and other data to measure and monitor the
performance of your data pipelines.

Web Server and UI
When you started the web server after installation by running
the airflow webs erver -p 8080 command, you may have
taken a sneak peek at what it had in store. If not, open a web
browser and navigate to http://localhost:8080. If you’re working
with a fresh install of Airflow, you’ll see something like
Figure 7-2.

Figure 7-2. The Airflow web UI.

The home page of the Web UI shows a list of DAGs. As you can
see, Airflow comes with some sample DAGs included. They’re
a great place to get started if you’re new to Airflow. As you cre‐
ate your own DAGs, they’ll show up there as well.

There are a number of links and information for each DAG on
the page:

• A link to open the properties of the DAG including the
path where the source file resides, tags, the description,
and so on.

• A toggle to enable and pause the DAG. When enabled, the
schedule defined in the fourth column dictates when it
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runs. When paused, the schedule is ignored, and the DAG
can only be run by manual execution.

• The name of the DAG, which, when clicked, brings you to
the DAG detail page, as shown in Figure 7-3.

• The schedule that the DAG runs on when not paused. It’s
shown in crontab format and defined in the DAG source
file.

• The owner of the DAG. Usually this is airflow but in
more complex deployments you may have multiple own‐
ers to choose from.

• Recent Tasks, which is a summary of the latest DAG run.
• A timestamp of the last run of the DAG.
• A summary of previous DAG runs.
• A set of links to various DAG configuration and informa‐

tion. You’ll also see these links if you click the name of the
DAG.

When you click the name of a DAG, you’ll be taken to the tree
view of the DAG on the DAG detail page, as shown in
Figure 7-3. This is the example_python_operator DAG that
ships with Airflow. The DAG has five tasks that are all PythonOp
erators (you’ll learn about operators later in this section).
After the print_the_context task completes successfully, five
tasks kick off. When they are done, the DAG run is completed.
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Figure 7-3. A tree view of a Airflow DAG.

You can also click the Graph View button on the top of the
page to see what the DAG looks like as a graph. I find this view
to be the most useful. You can see what this particular DAG
looks like as a graph in Figure 7-4.

In more complex DAGs with lots of tasks, the graph view can
get a little difficult to see on the screen. However, note that you
can zoom in and out and scroll around the graph using your
mouse.
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Figure 7-4. A graph view of an Airflow DAG.

There are a number of other options on the screen, many
which are self-explanatory. However, I’d like to focus on two
more: Code and Trigger DAG.

When you click Code, you’ll of course see the code behind the
DAG. The first thing you’ll notice is that the DAG is defined in
a Python script. In this case, the file is called exam‐
ple_python_operator.py. You’ll learn more about the structure
of a DAG source file later in this chapter. For now, it’s
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important to know that it holds the configuration of the DAG,
including its schedule, a definition of each task, and the depen‐
dencies between each task.

The Trigger DAG button allows you to execute the DAG on-
demand. Though Airflow is built to run DAGs on a schedule,
during development, during testing, and for off-schedule needs
in production, this is the easiest way to run a DAG right away.

Besides managing DAGs, there are a number of other features
of the web UI that will come in handy. On the top navigation
bar, if you click Data Profiling, you’ll see options for Ad Hoc
Query, Charts, and Known Events. Here you can query infor‐
mation from the Airflow database if you’d rather not connect to
it directly from another tool.

Under Browse, you can find the run history of DAGs and other
log files, and under Admin you can find various configuration
settings. You can learn more about advanced configuration
options in the official Airflow documentation.

Scheduler
The Airflow Scheduler is a service that you kicked off when
you ran the airflow scheduler command earlier in this chap‐
ter. When running, the scheduler is constantly monitoring
DAGs and tasks and running any that have been scheduled to
run or have had their dependencies met (in the case of tasks in
a DAG).

The scheduler uses the executor that is defined in the [core]
section of the airflow.cfg file to run tasks. You can learn about
executors in the following section.

Executors
Executors are what Airflow uses to run tasks that the Scheduler
determines are ready to run. There are number of different
types of executors that Airflow supports. By default, the Sequen
tialExecutor is used. You can change the type of executor in
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the airflow.cfg file. Under the core section of the file, you’ll see
a executor variable that can be set to any of the executor types
listed in this section and in the Airflow documentation. As you
can see, the SequentialExecutor is set when Airflow is first
installed:

[core]
........

# The executor class that airflow should use. 
Choices include
# SequentialExecutor, LocalExecutor, 
CeleryExecutor, DaskExecutor, KubernetesExecutor
executor = SequentialExecutor

Though the default, the SequentialExecutor is not meant for
production use cases as it can run only one task at a time. It’s
fine for testing simple DAGs, but that’s about it. However, it’s
the only executor that is compatible with a SQLite database, so
if you haven’t configured another database with Airflow, the
SequentialExecutor is your only option.

If you plan to use Airflow at any sort of scale, I suggest using
another executor such as the CeleryExecutor, DaskExecutor, or
KubernetesExecutor. Your choice in part should depend on
what infrastructure you’re most comfortable with. For example,
to use the CeleryExecutor, you’ll need to set up a Celery broker
using RabbitMQ, Amazon SQL, or Redis.

Configuring the infrastructure required by each executor is out
of the scope of this book, but the samples in this section will
run even on the SequentialExecutor. You can learn more about
Airflow executors in their documentation.

Operators
Recall that each of the nodes in a DAG is a task. In Airflow,
each task implements an operator. Operators are what actually
execute scripts, commands, and other operations. There a
number of operators. Here are the most common:
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• BashOperator

• PythonOperator

• SimpleHttpOperator

• EmailOperator

• SlackAPIOperator

• MySqlOperator, PostgresOperator, and other database-
specific operators for executing SQL commands

• Sensor

As you’ll learn in the following section, operators are instanti‐
ated and assigned to each task in a DAG.

Building Airflow DAGs
Now that you know how Airflow works, it’s time to build a
DAG! Though Airflow comes with a collection of sample
DAGs, I’m going to follow some samples from earlier in this
book and build a DAG that performs the steps of a sample ELT
process. Specifically, it will extract data from a database, load it
into a data warehouse, and then transform the data into a data
model.

A Simple DAG
Before I build the sample ELT DAG, it’s important to under‐
stand how DAGs are defined in Airflow. A DAG is defined in a
Python script, where its structure and task dependencies are
written in Python code. Example 7-1 is the definition of a sim‐
ple DAG with three tasks. It’s referred to as a DAG definition
file. Each task is defined as a BashOperator, with the first and
third printing out some text and the second sleeping for three
seconds. Though it doesn’t do anything particularly useful, it’s
fully functional and representative of the DAG definitions
you’ll write later.
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Example 7-1. simple_dag.py

from datetime import timedelta
from airflow import DAG
from airflow.operators.bash_operator \
    import BashOperator
from airflow.utils.dates import days_ago

dag = DAG(
    'simple_dag',
    description='A simple DAG',
    schedule_interval=timedelta(days=1),
    start_date = days_ago(1),
)

t1 = BashOperator(
    task_id='print_date',
    bash_command='date',
    dag=dag,
)

t2 = BashOperator(
    task_id='sleep',
    depends_on_past=False,
    bash_command='sleep 3',
    dag=dag,
)

t3 = BashOperator(
    task_id='print_end',
    depends_on_past=False,
    bash_command='echo \'end\'',
    dag=dag,
)

t1 >> t2
t2 >> t3

Before you move on and run the DAG, I’d like to point out the
key features of the DAG definition file. First, like any Python
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script, necessary modules are imported. Next, the DAG itself is
defined and assigned some properties such as a name (sim
ple_dag), a schedule, a start date, and more. In fact, there are
many more properties that I don’t define in this simple example
that you may need to utilize and can find later in the chapter or
in the official Airflow documentation.

Next, I define the three tasks in the DAG. All are of type BashOp
erator, meaning when executed, they’ll run a bash command.
Each task is also assigned several properties, including an
alphanumeric identifier called task_id, as well as the bash com‐
mand that runs when the task is executed. As you’ll see later,
each operator type has its own custom properties just as the
BashOperator has bash_command.

The last two lines of the DAG definition define the dependen‐
cies between the tasks. The way to read it is that when the task
t1 completes, t2 runs. When t2 completes, t3 runs. When you
view the DAG in the Airflow web UI, you’ll see this reflected in
both the tree and graph view.

To run the DAG, you’ll need to save its definition file in the
location where Airflow is looking for DAGs. You can find this
location (or modify it) in the airflow.cfg file:

dags_folder = /Users/myuser/airflow/dags

Save the DAG definition in a file named simple_dag.py and
place it in the dags_folder location. If you already have the Air‐
flow web UI and Scheduler running, refresh the Airflow web
UI, and you should see a DAG named simple_dag in the listing.
If not, wait a few seconds and try again, or stop and restart the
web service.

Next, click the name of the DAG to view it in more detail.
You’ll be able to see the graph and tree view of the DAG as well
as the code that you just wrote. Ready to give it a try? Either on
this screen or back on the home page, flip the toggle so that the
DAG is set to On, as shown in Figure 7-5.
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Figure 7-5. An enabled DAG.

Recall that in the code, the schedule_interval property of the
DAG is set to timedelta(days=1). That means the DAG is set to
run once a day at midnight UTC. You’ll see that schedule
reflected on both the Airflow home page next to the DAG and
on the DAG detail page. Also note that the start_date property
of the DAG is set to days_ago(1). That means the first run of
the DAG is set one day prior to the current day. When the DAG
is set to On, the first scheduled run is 0:00:00 UTC on the day
prior the current day and thus will execute as soon as the exec‐
utor has availability.

DAG Start and End Dates
In this example, I set the start_date of the DAG to one day
prior so that as soon as I enabled it, a run would get scheduled
and kick off. It may make more sense to the hard-code a date in
the future as well, say, the day when you want the DAG to first
run on a production deployment of Airflow. You can also set an
end_date for a DAG, which I did not. When none is specified,
the DAG will be scheduled to run each day in perpetuity.

You can check on the status of a DAG run on the DAG detail
page or by navigating to Browse → DAG Runs on the top
menu. From there you should see a visual status of the DAG
run, as well as each task in the DAG. Figure 7-6 shows a run of
the simple_dag example where all tasks succeeded. The final
status of the DAG is marked as “success” near the top left of the
screen.

164 | Chapter 7: Orchestrating Pipelines



If you want to run the DAG on-demand, click the Trigger DAG
button on the DAG detail page.

Figure 7-6. A graph view of an Airflow DAG.

An ELT Pipeline DAG
Now that you know how to create a simple DAG, you can build
a functional DAG for the extract, load, and transform steps of a
data pipeline. This DAG consists of five tasks.

The first two tasks use BashOperators to execute two different
Python scripts that each extract data from a Postgres database
table and send the results as a CSV file to an S3 bucket. Though
I won’t re-create the logic for the scripts here, you can find it in
“Extracting Data from a PostgreSQL Database” on page 63. In
fact, you can use any of the extraction examples from that
chapter if you want to extract from a MySQL database, REST
API, or MongoDB database.

When each of those tasks completes, a corresponding task to
load the data from the S3 bucket into a data warehouse is exe‐
cuted. Once again, each task uses a BashOperator to execute a
Python script that contains the logic to load the CSV. You can
find the sample code for that in “Loading Data into a Snowflake
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Data Warehouse” on page 97 or “Loading Data into a Redshift
Warehouse” on page 86, depending on which platform you use.

Options for Executing Python Code
In this example, I utilize the BashOperator to execute Python
scripts instead of using the PythonOperator. Why? In order to
execute Python code with the PythonOperator, the code must
be either written in the DAG definition file or imported into it.
While I could have done that in this example, I like to keep a
greater separation between my orchestration and the logic of
the processes that it executes. For one thing, by doing so I avoid
potential issues of incompatible versions of Python libraries
between Airflow and any of my own code that I want to exe‐
cute. In general, I find it easier to maintain logic across a data
infrastructure by keeping projects (and Git repos) separated.
Orchestration and pipeline process logic is no different.

The final task in the DAG uses a PostgresOperator to execute a
SQL script (stored in a .sql file) on the data warehouse to create
a data model. You’ll recall this logic from Chapter 6. Together,
these five tasks make up a simple pipeline following the ELT
pattern first introduced in Chapter 3.

Figure 7-7 shows a graph view of the DAG.

Figure 7-7. Graph view of the sample ELT DAG.

Example 7-2 shows the definition of the DAG. Take a moment
to read it, even though I’ll walk through it in detail as well. You
can save it to the Airflow dags folder, but don’t enable it just yet.
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Example 7-2. elt_pipeline_sample.py

from datetime import timedelta
from airflow import DAG
from airflow.operators.bash_operator \
  import BashOperator
from airflow.operators.postgres_operator \
  import PostgresOperator
from airflow.utils.dates import days_ago

dag = DAG(
    'elt_pipeline_sample',
    description='A sample ELT pipeline',
    schedule_interval=timedelta(days=1),
    start_date = days_ago(1),
)

extract_orders_task = BashOperator(
    task_id='extract_order_data',
    bash_command='python /p/extract_orders.py',
    dag=dag,
)

extract_customers_task = BashOperator(
    task_id='extract_customer_data',
    bash_command='python /p/extract_customers.py',
    dag=dag,
)

load_orders_task = BashOperator(
    task_id='load_order_data',
    bash_command='python /p/load_orders.py',
    dag=dag,
)

load_customers_task = BashOperator(
    task_id='load_customer_data',
    bash_command='python /p/load_customers.py',
    dag=dag,
)
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revenue_model_task = PostgresOperator(
    task_id='build_data_model',
    postgres_conn_id='redshift_dw',
    sql='/sql/order_revenue_model.sql',
    dag=dag,
)

extract_orders_task >> load_orders_task
extract_customers_task >> load_customers_task
load_orders_task >> revenue_model_task
load_customers_task >> revenue_model_task

From Example 7-1, you’ll recall importing some necessary
Python packages and creating a DAG object. This time around,
there’s one more package to import to make use of the Postgre
sOperator in the final task of the DAG. This DAG, like the pre‐
vious sample, is scheduled to run once a day at midnight, start‐
ing the previous day.

The final task utilizes a PostgresOperator to execute a SQL
script stored in a directory on the same machine as Airflow on
the data warehouse. The contents of the SQL script will look
something like the data model transforms from Chapter 6. For
example, given the DAG is extracting and loading an Orders
table and a Customers table, I’ll use the following sample from
Chapter 6. You can of course use any SQL query to match the
data you’re working with.

CREATE TABLE IF NOT EXISTS order_summary_daily (
order_date date,
order_country varchar(10),
total_revenue numeric,
order_count int
);

INSERT INTO order_summary_daily
  (order_date, order_country,
  total_revenue, order_count)
SELECT
  o.OrderDate AS order_date,
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  c.CustomerCountry AS order_country,
  SUM(o.OrderTotal) AS total_revenue,
  COUNT(o.OrderId) AS order_count
FROM Orders o
INNER JOIN Customers c
  ON c.CustomerId = o.CustomerId
GROUP BY
  o.OrderDate, c.CustomerCountry;

Before you enable the DAG, there’s one more step. That is to set
the connection to use for the PostgresOperator. As you can see
in the DAG definition, there is a parameter called post
gres_conn_id with a value of redshift_dw. You’ll need to define
the redshift_dw connection in the Airflow web UI so that the
PostgresOperator can execute the script.

To do so, follow these steps:

1. Open the Airflow web UI and select Admin → Connec‐
tions from the top navigation bar.

2. Click the Create tab.
3. Set Conn ID to redshift_dw (or whatever ID you want to

use in your DAG definition file).
4. Select Postgres for Conn Type.
5. Set the connection information for your database.
6. Click Save.

Note that Amazon Redshift is compatible with Postgres con‐
nections, which I why I chose that Conn Type. You’ll find con‐
nections for Snowflake and dozens of other databases and plat‐
forms such as Spark.

Now, you’re ready to enable the DAG. You can go back to the
home page or view the DAG detail page and click the toggle to
set the DAG to On. Because the schedule of the DAG is daily at
midnight starting the previous day, a run will be scheduled
immediately, and the DAG will execute. You can check on the
status of a DAG run on the DAG detail page, or by navigating
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to Browse → DAG Runs on the top menu. As always, you can
trigger a one-time run of the DAG using the Trigger DAG but‐
ton on the DAG detail page.

Though this example is a bit simplified, it pieces together the
steps of an ELT pipeline. In a more complex pipeline, you will
find many more tasks. In addition to more data extracts and
loads, there will likely be many data models, some of which are
dependent on each other. Airflow makes it easy to ensure they
are executed in the proper order. On most production deploy‐
ments of Airflow you’ll find many DAGs for pipelines that may
have some dependency on each other, or some external system
or process. See “Advanced Orchestration Configurations” on
page 171 for some tips on managing such challenges.

Additional Pipeline Tasks
In addition to the functional tasks in the sample ELT pipeline
in the previous section, production-quality pipelines require
other tasks, such as sending notifications to a Slack channel
when a pipeline completes or fails, running data validation
checks at various points in a pipeline, and more. Thankfully, all
of these tasks can be handled by an Airflow DAG.

Alerts and Notifications
Although the Airflow web UI is a great place to view the status
of DAG runs, it’s often better to receive an email when DAG
fails (or even when it succeeds). There are a number of options
for sending notifications. For example, if you want to get an
email when a DAG fails, you can add the following parameters
when you instantiate the DAG object in the definition file. You
can also add these to tasks instead of the DAG if you only want
to be notified for particular tasks:

'email': ['me@example.com'],
'email_on_failure': True,

Before Airflow can send you email, you’ll need to provide the
details of your SMTP server in the [smtp] section of airflow.cfg.
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You can also use the EmailOperator in a task to send an email at
any point in a DAG:

email_task = EmailOperator(
            task_id='send_email',
            to="me@example.com",
            subject="Airflow Test Email",
            html_content='some test content',
        )

In addition to the EmailOperator, there are both official and
community-supported operators for sending messages to Slack,
Microsoft Teams, and other platforms. Of course, you can
always create your own Python script to send a message to the
platform of your choice and execute it using a BashOperator.

Data Validation Checks
Chapter 8 discusses data validation and testing pipelines in
more detail, but adding task to your Airflow DAGs to run vali‐
dation on data is a good practice. As you’ll learn in that chapter,
data validation may be implemented in a SQL or Python script
or by calling some other external application. By now you
know that Airflow can handle them all!

Advanced Orchestration Configurations
The previous section introduced a simple DAG that runs a full,
end-to-end data pipeline that follows the ELT pattern. This sec‐
tion introduces a few challenges you may face when building
more complex pipelines or find the need to coordinate multiple
pipelines with shared dependencies or different schedules.

Coupled Versus Uncoupled Pipeline Tasks
Though the examples so far may make it seem that all steps
(tasks) in a data pipeline are linked together cleanly, that is not
always the case. Take a streaming data ingestion. For example,
say Kafka is used to stream data to an S3 bucket where it is
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continuously loaded into a Snowflake data warehouse using
Snowpipe (see Chapters 4 and 5).

In this case, data is continuously flowing into the data ware‐
house, but the step to transform the data will still be scheduled
to run at a set interval such as every 30 minutes. Unlike the
DAG in Example 7-2, specific runs of the data ingestions are
not direct dependencies of the task to transform the data into a
data model. In such a situation, the tasks are said to be uncou‐
pled as opposed to the coupled tasks in a DAG.

Given this reality, data engineers must be thoughtful in how
they orchestrate pipelines. Though there are no hard rules, it’s
necessary to make consistent and resilient decisions through‐
out pipelines in order to manage decoupled tasks. In the exam‐
ple of streaming data ingestions and a scheduled transform
step, the transform logic must take into account that data from
two different sources (say the Orders and Customers tables)
might be in slightly different states of refresh. The transform
logic must take into account cases where there is an Order
record without a corresponding Customer record, for example.

When to Split Up DAGs
A key decision point in designing pipelines is determining
what tasks belong together in a DAG. Though it’s possible to
create a DAG with all the extract, load, transform, validation,
and alerting tasks on your data infrastructure, it’s going to get
overly complex pretty quickly.

Three factors go into determining when tasks should be broken
out into multiple DAGs and when they should remain in a sin‐
gle DAG:

When the tasks need to run on different schedules, break into
multiple DAGS

If you have some that only need to run daily, and some
that run every 30 minutes, you should likely split them
into two DAGs. Otherwise, you’ll waste time and resour‐
ces to run some tasks 47 extra times per day! In a world
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where compute costs are frequently based on actual usage,
that’s a big deal.

When a pipeline is truly independent, keep it separate
If the tasks in the pipeline only relate to each other, then
keep them in a single DAG. Going back to Example 7-2, if
the Orders and Customer table ingestions are only used by
the data model in that DAG and no other tasks rely on the
data model, then it makes sense for the DAG to remain on
its own.

When a DAG becomes too complex, determine whether you can
break it out logically

Though this is a bit subjective, if you find yourself looking
at a graph view of a DAG with hundreds of tasks and a spi‐
der web of dependency arrows, it’s time to consider how to
break up the DAG. Otherwise, you may find it hard to
maintain in the future.

Though it may seem like a headache to deal with multiple
DAGs that may share dependencies (for example, a data inges‐
tion), it’s often necessary. In the next section, I discuss how to
implement cross-DAG dependencies in Airflow.

Coordinating Multiple DAGs with Sensors
Given the need for shared dependencies between DAGs, Air‐
flow tasks can implement a special type of operator called a Sen
sor. An Airflow Sensor is designed to check the status of some
external task or process and then continue execution of down‐
stream dependencies in its DAG when the check criteria has
been met.

If you find the need to coordinate two different Airflow DAGs,
you can use a ExternalTaskSensor to check the status of a task
in another DAG or the status of another DAG in full.
Example 7-3 defines a DAG with two tasks. The first uses an
ExternalTaskSensor to check the status of the elt_pipe

line_sample DAG from an earlier section of this chapter. When
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that DAG completes, then the Sensor is marked as “success”
and the second task (“task1”) is executed.

Example 7-3. sensor_test.py

from datetime import datetime
from airflow import DAG
from airflow.operators.dummy_operator \
  import DummyOperator
from airflow.sensors.external_task_sensor \
  import ExternalTaskSensor
from datetime import timedelta
from airflow.utils.dates import days_ago

dag = DAG(
        'sensor_test',
        description='DAG with a sensor',
        schedule_interval=timedelta(days=1),
        start_date = days_ago(1))

sensor1 = ExternalTaskSensor(
            task_id='dag_sensor',
            external_dag_id = 'elt_pipeline_sample',
            external_task_id = None,
            dag=dag,
            mode = 'reschedule',
            timeout = 2500)

task1 = DummyOperator(
            task_id='dummy_task',
            retries=1,
            dag=dag)

sensor1 >> task1

Figure 7-8 shows the graph view of the DAG.
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Figure 7-8. Graph view of the sample ELT DAG.

When enabled, this DAG will first kick off the dag_sensor task.
Note its properties:

• The external_dag_id is set to the ID of the DAG that the
Sensor will monitor. In this case, it’s the elt_pipeline_sam
ple DAG.

• The external_task_id property is set to None in this case,
which means that the Sensor is waiting on the entire
elt_pipeline_sample DAG to complete successfully. If you
were to instead set this to a particular task_id in the
elt_pipeline_sample DAG, as soon as that task_id com‐
pleted successfully, sensor1 would complete and kick off
dummy_task.

• The mode property is set to reschedule. By default, sensors
run with the poke mode. In that mode, the sensor blocks a
worker slot while “poking” to check on the external task.
Depending on what kind of executor you’re using, and
how many tasks are being run, this is not ideal. In resched
ule mode, the worker slot is released by rescheduling the
task and thus opening up a worker slot until it is set to run
again.

• The timeout parameter is set to the number of seconds the
ExternalTaskSensor will continue to check its external
dependency before it times out. It’s good practice to set a
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reasonable timeout here; otherwise, the DAG will con‐
tinue to run in perpetuity.

One thing to keep in mind is that DAGs run on a specific
schedule, and thus the Sensor needs to check for a specific
DAG run. By default, the ExternalTaskSensor will check for the
run of the external_dag_id with the current schedule of the
DAG it belongs to. Because both the elt_pipeline_sample and
sensor_test DAGs run once per day at midnight, it’s fine to go
with the default. However, if the two DAGs run on different
schedules, then it’s best to specify which run of the elt_pipe
line_sample the Sensor should check on. You can do this using
either the execution_delta or execution_date_fn parameter of
the ExternalTaskSensor. The execution_date_fn parameter
defines a specific datetime of a DAG run, and I find it to be less
useful than execution_delta.

The execution_delta parameter can be used to look back at a
specific run of a DAG. For example, to look at the most recent
run of a DAG that is scheduled for every 30 minutes, you
would create a task that is defined like this:

sen1 = ExternalTaskSensor(
          task_id='dag_sensor',
          external_dag_id = 'elt_pipeline_sample',
          external_task_id = None,
          dag=dag,
          mode = 'reschedule',
          timeout = 2500,
          execution_delta=timedelta(minutes=30))

Managed Airflow Options
Though installing a simple Airflow instance is pretty straight‐
forward, it becomes much more of challenge at production
scale. Dealing with more complex executors to handle greater
parallelization of tasks, keeping your instance up-to-date, and
scaling underlying resources are jobs that not every data engi‐
neer has the time to take on.
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Like many other open source tools, there are several fully man‐
aged solutions for Airflow. Two of the most well known are
Cloud Composer on Google Cloud and Astronomer. Though
you’ll incur a monthly fee that will far exceed running Airflow
on a server of your own, the administration aspects of Airflow
are taken care of.

Similar to some of the build versus buy decisions throughout
this book, hosting Airflow on your own versus choosing a
managed solution depends on your particular situation:

• Do you have a systems operations team that can help you
self-host?

• Do you have the budget to spend on a managed service?
• How many DAGs and tasks make up your pipelines? Are

you running at a high enough scale to require more com‐
plex Airflow executors?

• What are your security and privacy requirements? Are you
comfortable allowing an external service to connect to
your internal data and systems?

Other Orchestration Frameworks
Though this chapter is focused on Airflow, it’s by no means the
only game in town. There are some other great orchestration
frameworks such as Luigi and Dagster. Kubeflow Pipelines,
which is geared toward machine learning pipeline orchestra‐
tion, is also well supported and popular in the ML community.

When it comes to orchestration of the transform step for data
models, dbt by Fishtown Analytics is an excellent option. Like
Airflow, it’s an open source product built in Python, so you can
run it on your own at no cost or choose to pay for a managed
version, called dbt Cloud. Some organizations choose to use
Airflow or another general orchestrator for their data inges‐
tions and to run things like Spark jobs, but then use dbt for
transforming their data models. In such a case, dbt job runs are
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triggered by a task in an Airflow DAG, with dbt handling the
dependencies between data models on its own. Some examples
of using dbt are included in Chapter 9.
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CHAPTER 8

Data Validation in Pipelines

Even in the best designed data pipeline, something is bound to
go wrong. Many issues can be avoided, or at least mitigated,
with good design of processes, orchestration, and infrastruc‐
ture. To ensure the quality of and validity of the data itself,
however, you’ll need to invest in data validation. It’s best to
assume that untested data is not safe to use in analytics. This
chapter discusses the principles of data validation throughout
the steps of an ELT pipeline.

Validate Early, Validate Often
Though well intentioned, some data teams leave data validation
to the end of a pipeline and implement some kind of validation
during transformation or even after all transformations are
complete. In this design, they are working with the idea that the
data analysts (who typically own the transform logic) are best
suited to make sense of the data and determine if there are any
quality issues.

In such a design, the data engineers focus on moving data from
one system to another, orchestrating pipelines, and maintain‐
ing the data infrastructure. Although that’s the role of a data
engineer, there’s one thing missing: by ignoring the content of
the data flowing through each step in the pipeline, they are
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putting trust in the owners of the source systems they ingest
from, their own ingestion processes, and the analysts who
transform the data. As efficient as such separation of responsi‐
bilities sounds, it’s likely to end with low data quality and an
inefficient debugging process when quality issues are
uncovered.

Finding a data quality issue at the end of a pipeline and having
to trace it back to the beginning is a worst-case scenario. By
validating at each step in a pipeline, you are more likely to find
the root cause in the current step rather than a previous one.

Though data engineers can’t be expected to have enough con‐
text to perform validation for every dataset, they can take the
lead by writing noncontextual validation checks as well as pro‐
viding the infrastructure and templates to enable those team
members and stakeholders closer to each step in the pipeline to
perform more specific validation.

Source System Data Quality
Given the large number of source systems that are ingested into
a typical data warehouse, it’s likely that invalid data will make
its way into the warehouse during data ingestion at some point.
Though it may seem that invalid data of some sort would be
found by the source system owner before it could be ingested,
it’s often not the case for several reasons:

Invalid data may not impact the functioning of the source system
itself

The logic of the source system application may work
around issues such as duplicate/ambiguous records in a
table by deduplicating at the application layer, or fill in
NULL date values with a default in the application itself.

The source system may function just fine when records are
orphaned

For example, a Customer record might be deleted, but the
Order records related to the customer may remain.
Though the application might just ignore such Order
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records, this situation will certainly have an impact on the
analysis of the data.

A bug that has not yet been found or fixed may actually exist in
the source system

I’ve encountered multiple instances in my career where a
critical issue in a source system was identified by the data
team!

NOTE

Regardless of the reason, the bottom line is that a data
engineer should never assume that the data they are ingest‐
ing is free of quality issues, even if the resulting data loaded
into the warehouse perfectly matches its source.

Data Ingestion Risks
In addition to quality issues in the source system, there’s the
possibility of the data ingestion process itself resulting in a data
quality problem. Here are some common examples:

A system outage or timeout in the extract or load step of an
ingestion

Though at times such a situation will throw a hard error
and halt the pipeline, in others a “silent” failure will result
in a partially extracted or loaded dataset.

A logical error in an incremental ingestion
Recall from Chapters 4 and 5 the pattern for an incremen‐
tal extract. The timestamp of the most recent record from
a table in the data warehouse is read, and any records with
a more recent timestamp in the source system are then
extracted so they an be loaded into the warehouse. A logi‐
cal error as simple as using a “greater than or equals” oper‐
ator rather than a “greater than” in a SQL statement can
result in duplicate records being ingested. There are
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numerous other possibilities such as inconsistencies in
time zones across systems.

Parsing issues in an extracted file
As you’ll recall from Chapters 4 and 5, it’s typical for data
to be extracted from a source system, stored in a flat file
such as a CSV, and then loaded from that file into a data
warehouse. When data is translated from a source system
into a flat file, there are times when it includes special
characters or other character encoding that is unexpected.
Depending on how the data engineer and the data ware‐
house loading mechanism handle such cases, it’s possible
for records to be discarded or the data contained in the
newly loaded records to be malformed.

NOTE

Like the assumption that source systems will present valid
data, the assumption that a data ingestion “simply” extracts
and loads data is a poor one.

Enabling Data Analyst Validation
When it comes to validating the data that’s been loaded into a
data warehouse and the data that’s been transformed into data
models, a data analyst is usually the best equipped to own vali‐
dation. They are the ones who understand the business context
of the raw data as well as in each data model (see Chapter 6).
However, it’s up to data engineers to provide analysts with the
tools they need to define and execute data validation through‐
out a data pipeline. Of course, for less contextual validations
such as row counts and duplicate records, data engineers
should take part in validation early in the pipeline.

The next section introduces a simplified framework that can be
used by analysts and data engineers to implement data valida‐
tion checks in a pipeline. The final section notes a few open
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source and commercial frameworks that can be used for the
same purpose. Whatever tool you choose, it’s important to
empower engineers and analysts with a reliable method of writ‐
ing and executing validation tests while introducing as little
friction as possible. Though everyone on a data team tends to
agree that valid data is important, if the bar to implement vali‐
dation is high, you’ll find that it will take a backseat to new
development and other priorities.

A Simple Validation Framework
In this section, I define a fully functional data validation frame‐
work written in Python and designed to execute SQL-based
data validation checks. Like other samples in this book, it’s
highly simplified and lacks many features you’d expect in a pro‐
duction environment. In other words, it’s not intended to han‐
dle all of your data validation needs. However, my goal is for it
to introduce the key concepts of such a framework while also
sharing something that can be extended and improved to fit
your infrastructure.

This simple version of the framework supports limited capabil‐
ities as far as what kind of outcomes can be checked in a valida‐
tion test and how tests can be executed in bulk, but not much
more. I note some possible additions to extend the framework
later in this section if you want to use it as a starting point.
Even if you choose to use an off-the-shelf framework, I believe
there is value in understanding the concepts involved in this
highly simplified approach.

Validator Framework Code
The general concept of this framework is a Python script that
executes a pair of SQL scripts and compares the two based on a
comparison operator. The combination of each script and the
outcome is considered a validation test, and the test is said to
pass or fail depending on how the result of the executed scripts
compares to the expected outcome. For example, one script
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might count the number of rows in a table for a given day, the
second counts the number of rows from the previous day, and a
comparison operator of >= checks to see if the current day has
more rows than the previous did. If so, it passes; if not, it fails.

Note that one of the SQL scripts can also return a static value
such as an integer. As you can see in the examples in “Valida‐
tion Test Examples” on page 198, that approach is used to
check for duplicated rows in a table. Though simple, this
framework can handle a wide range of validation logic.

Using command-line arguments, you can tell the validator to
execute a specific pair of scripts as well as the operator to use
for comparison. It then executes and returns a pass/fail code.
The return value can be used to trigger various actions in an
Airflow DAG, as shown later in this section, or consumed by
any other process that executes the validator.

Example 8-1 shows the code for the validator. This version is
set to execute tests against an Amazon Redshift data warehouse
using the psycopg2 Python library. It also uses the same pipe‐
line.conf configuration file from Chapters 4 and 5 to access the
credentials to the warehouse. You can easily modify this script
to access a Snowflake data warehouse per the samples in Chap‐
ter 5, or another data warehouse of your choice. The only dif‐
ference will be the library you use to connect and execute quer‐
ies. You’ll also need to make sure that your Python environ‐
ment is set up properly and a virtual environment is activated.
See “Setting Up Your Python Environment” on page 34 for
more information.

Example 8-1. validator.py

import sys
import psycopg2
import configparser

def connect_to_warehouse():
    # get db connection parameters from the conf file
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    parser = configparser.ConfigParser()
    parser.read("pipeline.conf")
    dbname = parser.get("aws_creds", "database")
    user = parser.get("aws_creds", "username")
    password = parser.get("aws_creds", "password")
    host = parser.get("aws_creds", "host")
    port = parser.get("aws_creds", "port")

    rs_conn = psycopg2.connect(
        "dbname=" + dbname
        + " user=" + user
        + " password=" + password
        + " host=" + host
        + " port=" + port)

    return rs_conn

# execute a test made of up two scripts
# and a comparison operator
# Returns true/false for test pass/fail
def execute_test(
        db_conn,
        script_1,
        script_2,
        comp_operator):

    # execute the 1st script and store the result
    cursor = db_conn.cursor()
    sql_file = open(script_1, 'r')
    cursor.execute(sql_file.read())

    record = cursor.fetchone()
    result_1 = record[0]
    db_conn.commit()
    cursor.close()

    # execute the 2nd script and store the result
    cursor = db_conn.cursor()
    sql_file = open(script_2, 'r')
    cursor.execute(sql_file.read())
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    record = cursor.fetchone()
    result_2 = record[0]
    db_conn.commit()
    cursor.close()

    print("result 1 = " + str(result_1))
    print("result 2 = " + str(result_2))

    # compare values based on the comp_operator
    if comp_operator == "equals":
        return result_1 == result_2
    elif comp_operator == "greater_equals":
        return result_1 >= result_2
    elif comp_operator == "greater":
        return result_1 > result_2
    elif comp_operator == "less_equals":
        return result_1 <= result_2
    elif comp_operator == "less":
        return result_1 < result_2
    elif comp_operator == "not_equal":
        return result_1 != result_2

    # if we made it here, something went wrong
    return False

if __name__ == "__main__":

    if len(sys.argv) == 2 and sys.argv[1] == "-h":
        print("Usage: python validator.py"
          + "script1.sql script2.sql "
          + "comparison_operator")
        print("Valid comparison_operator values:")
        print("equals")
        print("greater_equals")
        print("greater")
        print("less_equals")
        print("less")
        print("not_equal")
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        exit(0)

    if len(sys.argv) != 4:
        print("Usage: python validator.py"
          + "script1.sql script2.sql "
          + "comparison_operator")
        exit(-1)

    script_1 = sys.argv[1]
    script_2 = sys.argv[2]
    comp_operator = sys.argv[3]

    # connect to the data warehouse
    db_conn = connect_to_warehouse()

    # execute the validation test
    test_result = execute_test(
                    db_conn,
                    script_1,
                    script_2,
                    comp_operator)

    print("Result of test: " + str(test_result))

    if test_result == True:
        exit(0)
    else:
        exit(-1)

The following subsections describe the structure of the valida‐
tion tests that this framework is designed to run and how to
run a test from the command line as well as an Airflow DAG.
In the next section, I’ll share some sample validation tests based
on common types of tests.

Structure of a Validation Test
As briefly described in the previous subsection, a validation test
in this framework consists of three things:
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• A SQL file that runs a script that results in a single
numeric value

• A second SQL file that runs a script that results in a single
numeric value

• A “comparison operator” that is used to compare the two
values returned from the SQL scripts

Let’s look at a simple example that checks to make sure that two
tables have the same number of rows. In Example 8-2, the SQL
script counts the number of rows in a table named Orders,
while in Example 8-3, the SQL script gets the same count from
another table named Orders_Full.

Example 8-2. order_count.sql

SELECT COUNT(*)
FROM Orders;

Example 8-3. order_full_count.sql

SELECT COUNT(*)
FROM Orders_Full;

You can use the following SQL to create and populate the
Orders and Orders_Full tables used in examples throughout
this chapter:

CREATE TABLE Orders (
  OrderId int,
  OrderStatus varchar(30),
  OrderDate timestamp,
  CustomerId int,
  OrderTotal numeric
);

INSERT INTO Orders
  VALUES(1,'Shipped','2020-06-09',100,50.05);
INSERT INTO Orders
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  VALUES(2,'Shipped','2020-07-11',101,57.45);
INSERT INTO Orders
  VALUES(3,'Shipped','2020-07-12',102,135.99);
INSERT INTO Orders
  VALUES(4,'Shipped','2020-07-12',100,43.00);

CREATE TABLE Orders_Full (
  OrderId int,
  OrderStatus varchar(30),
  OrderDate timestamp,
  CustomerId int,
  OrderTotal numeric
);

INSERT INTO Orders_Full 
VALUES(1,'Shipped','2020-06-09',100,50.05);
INSERT INTO Orders_Full 
VALUES(2,'Shipped','2020-07-11',101,57.45);
INSERT INTO Orders_Full 
VALUES(3,'Shipped','2020-07-12',102,135.99);
INSERT INTO Orders_Full 
VALUES(4,'Shipped','2020-07-12',100,43.00);

The last piece of a validation test is the comparison operator to
be used to compare the two values. In the code sample from
Example 8-1, you can see the options available for comparison
operators, but here they are with their associated logical sym‐
bols in parentheses for reference:

• equals

• greater_equals

• greater

• less_equals

• less

• not_equal

Next we’ll look at how to run a test and make sense of the
result.
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Running a Validation Test
Using the example of the validation test from the previous sub‐
section, the test can be executed on the command line as
follows:

$ python validator.py order_count.sql 
order_full_count.sql equals

If the row counts of both the Orders and Orders_Full tables are
the same, the output will look like this:

result 1 = 15368
result 2 = 15368
Result of test: True

What you don’t see on the command line is the Exit Status
Code, which in this case is 0 but will be -1 in the case of a test
failure. You can consume this value programmatically, how‐
ever. The next section shows how to do so in an Airflow DAG.
You may also want to consider doing something like sending a
Slack message or email when a test fails. I’ll discuss some
options for doing that later in “Extending the Framework” on
page 193.

Usage in an Airflow DAG
As you learned in Chapter 7, an Airflow task can execute a
Python script using a BashOperator. Consider the elt_pipe
line_sample DAG from Example 7-2. After the Orders table is
ingested (after both the extract and load tasks), I will add
another task to run the validation test example I just shared to
check the row count of the Orders table against some fictional
table named Orders_Full. For the sake of this example, assume
that for some reason we want to make sure that the row count
in Orders is the same as Orders_Full, and if it’s not, to fail the
task and stop further execution of downstream tasks in the
DAG.

First, add the following task to the elt_pipeline_sample.py
DAG definition:
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check_order_rowcount_task = BashOperator(
    task_id='check_order_rowcount',
    bash_command='set -e; python validator.py' +
    'order_count.sql order_full_count.sql equals',
    dag=dag,
)

Next, redefine the dependency order of the DAG in the same
file to the following code. This ensures that after the
load_orders_task, the validation task runs, followed by the
revenue_model_task once both the validation is completed (and
passed) and the load_customers_task has completed
successfully:

extract_orders_task >> load_orders_task
extract_customers_task >> load_customers_task
load_orders_task >> check_order_rowcount_task
check_order_rowcount_task >> revenue_model_task
load_customers_task >> revenue_model_task

Figure 8-1 shows the updated graph view of the DAG.

Figure 8-1. Graph view of the sample ELT DAG with a validation test
included.

When check_order_rowcount_task is executed, the following
Bash command is run per the task definition:

set -e; python validator.py order_count.sql 
order_full_count.sql equals

You’ll recognize the execution of the validator with the
command-line arguments from earlier in this section. What’s
new is the set -e; prior to the rest of the command. This tells
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Bash to stop execution of the script on an error, which is
defined by a nonzero exit status code. As you’ll recall, if the val‐
idation test fails, it returns an exit status of -1. If that happens,
the Airflow task will fail, and no downstream tasks will execute
(revenue_model_task in this case).

It’s not always necessary to halt the further execution of a DAG
when a validation tests fails. In that case, you shouldn’t include
the set -e portion of the Bash command set on the Airflow
task or modify the validator to handle warnings and hard
errors differently. Next, I’ll discuss when to do so and when to
simply send some kind of notification instead.

When to Halt a Pipeline, When to Warn
and Continue
There are times, such as in the previous example, when halting
a pipeline is necessary when a data validation tests fails. In that
example, if the record count in the Orders table is incorrect,
perhaps by refreshing the data model in the final task, business
users will see incorrect sales figures. If that’s important to avoid,
then halting the DAG so that the issue can be addressed is the
right approach. When that’s done, the data model still has data
in it from the previous successful run of the DAG. In general,
stale data is better than incorrect data!

However, there are other times when the failure of a validation
test is less critical and more informational. For example, per‐
haps the number of orders in the table increased by 3% since
the previous run a day ago, while the average daily increase
over the previous 30 days was 1%. You may catch such an
increase with a basic statistical test as I show in the next sec‐
tion. Is it an issue worth halting for? The answer is that it
depends on your circumstances and appetite for risk, but you
can rely on multiple tests to get at that answer.

For example, if you were to also run a test to check for dupli‐
cate rows in the Orders table and it passed, then you know that
the issue isn’t some kind of duplication. Perhaps the company
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just had an incredible day of sales because of a promotion. You
can also adjust your test to take into account seasonality. Per‐
haps it’s the holiday season and yesterday was Black Friday.
Instead of comparing the growth in records to the past 30 days,
you should have compared it to the same period the previous
year, with or without an additional factor for growth in the
business year over year.

In the end, the decision whether to throw an error and halt a
pipeline versus sending an alert to a Slack channel should be
based on the context of the business and use case of the data.
However, it points to the need for both data engineers and ana‐
lysts being empowered to contribute validation tests to a pipe‐
line. Although a data engineer may check for a row count dis‐
crepancy, they may not have the business context to think of
creating a test to check for a seasonality factor in growth of a
row count in the Orders table.

What if you want to just warn instead of halt the pipeline?
You’ll need to make a few modifications either to the DAG in
the previous example or to the validation framework itself. Air‐
flow has a number of options for error handling that you can
learn about in the official Airflow documentation. In the fol‐
lowing section on some possible extensions to the validation
framework, I suggest some ways you can handle less critical
failures in the framework itself. Either option is fine; it’s up to
you where you want the logic to live.

Extending the Framework
As I noted earlier in the chapter, the sample data validation
framework from Example 8-1 is lacking many features that
you’ll want to consider for a production deployment. If you
decide to use this framework as a starting point rather than
considering an open source or commercial option, there are a
number of improvements you may want to consider.

A common need in a validation framework is to send a notifi‐
cation to a Slack channel or email when a test fails. I’ll provide
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an example of how to do so for a Slack channel, but there are
numerous examples on the Web for sending email and notifica‐
tions to other messaging services in Python.

First, you’ll need to create an incoming webhook for the Slack
channel you want to send to. An incoming webhook is a URL
that is unique to the channel that you can post data to in order
for it to show up as a message in that channel. You can follow
the instructions in the Slack documentation to learn how to
create one.

Once you have a webhook, you can add the following function
shown in Example 8-4 to validator.py. You can pass informa‐
tion about a validation test to it. The information sent to the
webhook is then published in the Slack channel.

Example 8-4. A function to send Slack messages

# test_result should be True/False
def send_slack_notification(
  webhook_url,
  script_1,
  script_2,
  comp_operator,
  test_result):
    try:
        if test_result == True:
            message = ("Validation Test Passed!: "
            + script_1 + " / "
            + script_2 + " / "
            + comp_operator)
        else:
            message = ("Validation Test FAILED!: "
            + script_1 + " / "
            + script_2 + " / "
            + comp_operator)

        slack_data = {'text': message}
        response = requests.post(webhook_url,
            data=json.dumps(slack_data),
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            headers={
                'Content-Type': 'application/json'
            })

        if response.status_code != 200:
            print(response)
            return False
    except Exception as e:
        print("error sending slack notification")
        print(str(e))
        return False

Now all you need to do is make a call to the function right
before validation.py exits. Example 8-5 shows the final lines of
the updated script.

Example 8-5. Send a Slack message when a test fails

if test_result == True:
        exit(0)
    else:
        send_slack_notification(
          webhook_url,
          script_1,
          script_2,
          comp_operator,
          test_result)
        exit(-1)

Of course, there is some room for improvement in the format‐
ting of the Slack messages that the function sends, but for now
it’s enough to get the job done. Note that I included the
test_result parameter in the send_slack_notification func‐
tion. It’s set up to handle notifications of passed tests as well as
failed ones. Though I don’t use it this way in the example, you
may want to do so.

As noted in the previous subsection, sometimes a Slack mes‐
sage is sufficient, and the result of a failed test should not result
in the pipeline coming to a halt. Though you can make use of
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the DAG configuration to handle such a case, you can also
improve the validation framework by adding another
command-line parameter to define severity.

Example 8-6 shows an updated __main__ block of validator.py
with handing for severity. When the script is executed with a
severity level of halt, then a failed test results in an exit code of
-1. When the severity level is set to warn, then a failed test
results in an exit code of 0, just as it does when a test passes. In
both cases, a failed message leads to a Slack message being sent
to your desired channel.

Example 8-6. Add handling for multiple severity levels of test
failure

if __name__ == "__main__":

    if len(sys.argv) == 2 and sys.argv[1] == "-h":
        print("Usage: python validator.py"
            + "script1.sql script2.sql "
            + "comparison_operator")
        print("Valid comparison_operator values:")
        print("equals")
        print("greater_equals")
        print("greater")
        print("less_equals")
        print("less")
        print("not_equal")

        exit(0)

    if len(sys.argv) != 5:
        print("Usage: python validator.py"
            + "script1.sql script2.sql "
            + "comparison_operator")
        exit(-1)

    script_1 = sys.argv[1]
    script_2 = sys.argv[2]
    comp_operator = sys.argv[3]
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    sev_level = sys.argv[4]

    # connect to the data warehouse
    db_conn = connect_to_warehouse()

    # execute the validation test
    test_result = execute_test(
                  db_conn,
                  script_1,
                  script_2,
                  comp_operator)

    print("Result of test: " + str(test_result))

    if test_result == True:
        exit(0)
    else:
        send_slack_notification(
          webhook_url,
          script_1,
          script_2,
          comp_operator,
          test_result)
        if sev_level == "halt":
            exit(-1)
        else:
            exit(0)

There are countless other ways to extend this framework, two
of which follow. I’m sure you’ll think of some others as well!

Exception handing through the application
Though I left it out for sake of space in this book, catching
and handling exceptions for things like invalid command-
line arguments and SQL errors in the test scripts are a
must in production.
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The ability to run a number of tests with a single execution of
validator.py

Consider storing your tests in a config file and grouping
them by table, DAG, or in another way that fits your
development pattern. Then you can execute all tests that
match a specific point in a pipeline with a single command
rather than one for each test you’ve defined.

Validation Test Examples
The preceding section defined a simple validation framework
and the concept behind how it works. As a reminder, a valida‐
tion test consists of the following:

• A SQL file that runs a script that results in a single
numeric value

• A second SQL file that runs a script that results in a single
numeric value

• A “comparison operator” that is used to compare the two
values returned from the SQL scripts

Assuming you added to enhancements from Examples 8-4, 8-5,
and 8-6 to the validator.py code in Example 8-1, you can exe‐
cute a test on the command line as follows:

python validator.py order_count.sql 
order_full_count.sql equals warn

Severity Level in Examples
Note that I use the warn value for the final command-line
parameter (severity_level) shown previously. I’ll do so
throughout the examples in this section, but you can use the
halt value if you want as well. See Example 8-6 for more.

In this section, I’ll define some sample tests that I find useful in
validating data in a pipeline. These are by no means all of the
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tests that you’ll need to run, but they do cover some common
points to get you started and inspire a wider range of tests.
Each subsection includes the source for the two SQL files that
make up the test as well as the command-line commands and
arguments to execute the tests.

Duplicate Records After Ingestion
Checking for duplicate records is a simple, common test. The
only thing you’ll need to consider is what defines a “duplicate”
in the table you’re checking. Is it based on a single ID value? An
ID as well as a second column? In this example, I’ll check to
make sure that there are not two records in the Orders table
with the same OrderId. To check for duplicates based on addi‐
tional columns, you can simply add those columns to the
SELECT and GROUP BY in the first query.

Note that the second query returns a static value of 0. That’s
because I expect no duplicates and want to compare the count
of duplicates to zero. If they match, the test passes.

Example 8-7. order_dup.sql

WITH order_dups AS
(
  SELECT OrderId, Count(*)
  FROM Orders
  GROUP BY OrderId
  HAVING COUNT(*) > 1
)
SELECT COUNT(*)
FROM order_dups;

Example 8-8. order_dup_zero.sql

SELECT 0;

To run the test, use this:
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python validator.py order_dup.sql 
order_dup_zero.sql equals warn

Unexpected Change in Row Count After Ingestion
When you expect the number of records from a recent inges‐
tion to be somewhat constant, you can use a statistical check to
see if the latest ingestion loaded more or fewer records than
history would suggest.

In this example, I assume that data is ingested daily and will
look to see if the number of records in the Orders table loaded
most recently (yesterday) is within a range I’m comfortable
with. You can do the same for hourly, weekly, or any other
interval, as long as it’s constant.

I’ll use a standard deviation calculation and look to see if yes‐
terday’s row count is within a 90% confidence level based on
the entire history of the Orders table. In other words, is the
value (number of rows) within a 90% confidence interval in
either direction (can be up to 5% off in either direction) of
what’s expected, based on history?

How Far to Look Back
You may want to look back a lesser time period than the entire
history of the table, like a year or two. That decision should be
based on the history of the data. Was there a systematic change
at some point in time? Is history further back than a year accu‐
rate? That decision is up to you.

In statistics, this is considered a two-tailed test because we are
looking under both sides of a normal distribution curve. You
can use a z-score calculator to determine what score to use for a
two-tailed test with a confidence interval of 90% to determine a
z-score of 1.645. In other words, we’re looking for a difference
in either direction, too high or too low, based on a set
threshold.
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I’ll use that z-score in the test to see if the count of order
records from yesterday passes or fails a test. In the validation
test, I’ll return the absolute value of the z-score for yesterday’s
row count and then compare it to a z-score of 1.645 in the sec‐
ond SQL script.

Because you need a good deal of sample data in the Orders
tables, I provide two versions of the first SQL script in the vali‐
dation test. The first (Example 8-9) is the “real” code used to go
through the Orders table, get row counts by day, and then cal‐
culate the z-score for the previous day.

However, you may want to instead use some sample data to
experiment with this kind of test. I provide an alternate version
to populate a table called orders_by_day and then execute the
latter section of Example 8-9 to calculate the z-score for the last
day of the sample set (2020-10-05). Example 8-11 shows the
alternate version.

Example 8-9. order_yesterday_zscore.sql

WITH orders_by_day AS (
  SELECT
    CAST(OrderDate AS DATE) AS order_date,
    COUNT(*) AS order_count
  FROM Orders
  GROUP BY CAST(OrderDate AS DATE)
),
order_count_zscore AS (
  SELECT
    order_date,
    order_count,
    (order_count - avg(order_count) over ())
     / (stddev(order_count) over ()) as z_score
  FROM orders_by_day
)
SELECT ABS(z_score) AS twosided_score
FROM order_count_zscore
WHERE
  order_date =
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    CAST(current_timestamp AS DATE)
    - interval '1 day';

Example 8-10 simply returns the value to check against.

Example 8-10. zscore_90_twosided.sql

SELECT 1.645;

To run the test, use this:

python validator.py order_yesterday_zscore.sql 
zscore_90_twosided.sql greater_equals warn

NOTE

If the Orders table contains a high volume of data, it’s
worth creating the orders_by_day dataset as a table in a
transform task (just as the data model examples in Chap‐
ter 6) rather than as a CTE in the validation script. Because
the number of orders by day should not change in the past,
you can create an incremental data model and append
rows for each subsequent day as new data arrives in the
Orders table.

Here is the alternative version, with a hard-coded date to check
along with the sample data required to run it. With this ver‐
sion, you can adjust the order_count values and run the test to
get different z-scores in and out of the desired range:

CREATE TABLE orders_by_day
(
  order_date date,
  order_count int
);

INSERT INTO orders_by_day
  VALUES ('2020-09-24', 11);
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INSERT INTO orders_by_day
  VALUES ('2020-09-25', 9);
INSERT INTO orders_by_day
  VALUES ('2020-09-26', 14);
INSERT INTO orders_by_day
  VALUES ('2020-09-27', 21);
INSERT INTO orders_by_day
  VALUES ('2020-09-28', 15);
INSERT INTO orders_by_day
  VALUES ('2020-09-29', 9);
INSERT INTO orders_by_day
  VALUES ('2020-09-30', 20);
INSERT INTO orders_by_day
  VALUES ('2020-10-01', 18);
INSERT INTO orders_by_day
  VALUES ('2020-10-02', 14);
INSERT INTO orders_by_day
  VALUES ('2020-10-03', 26);
INSERT INTO orders_by_day
  VALUES ('2020-10-04', 11);

Example 8-11. order_sample_zscore.sql

WITH order_count_zscore AS (
  SELECT
    order_date,
    order_count,
    (order_count - avg(order_count) over ())
     / (stddev(order_count) over ()) as z_score
  FROM orders_by_day
)
SELECT ABS(z_score) AS twosided_score
FROM order_count_zscore
WHERE
  order_date =
    CAST('2020-10-05' AS DATE)
    - interval '1 day';

To run the test, use this:
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python validator.py order_sample_zscore.sql 
zscore_90_twosided.sql greater_equals warn

Metric Value Fluctuations
As noted earlier in this chapter, validating data at each step of
the pipeline is critical. The previous two examples checked for
the validity of data after ingestion. This example checks to
make sure nothing went wrong after data was modeled in the
transform step of a pipeline.

In the data modeling examples from Chapter 6, multiple source
tables are joined together, and logic that determines how to
aggregate values is implemented. There’s no shortage of things
that can go wrong, including invalid join logic that results in
rows being duplicated or dropped. Even if the source data
passed validation earlier in a pipeline, it’s always good practice
to run validation on the data models that are built at the end of
a pipeline.

There are three things you can check on:

• Ensuring a metric is within certain lower and upper
bounds

• Checking row count growth (or reduction) in the data
model

• Checking to see if there is unexpected fluctuation in the
value of a particular metric

By now you probably have a good idea of how to implement
such tests, but I will provide one final example for checking
fluctuation in a metric value. The logic is nearly identical to
that of the last section where I shared how to use a two-sided
test to check the change in row count of a given source table.
This time, however, instead of checking a row count value, I’m
looking to see if the total revenue from orders placed on a
given day is out of historical norms.
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Like the prior section’s example of looking for row count
changes, I provide both a “real” example of how to do this on
raw data (Example 8-12) as well as one with sample, aggregate
data (Example 8-14). To run Example 8-12, you’ll need quite a
bit of data in the Orders table. This code makes sense for a true
implementation. However, you might find Example 8-14 easier
to experiment with for the sake of learning.

Example 8-12. revenue_yesterday_zscore.sql

WITH revenue_by_day AS (
  SELECT
    CAST(OrderDate AS DATE) AS order_date,
    SUM(ordertotal) AS total_revenue
  FROM Orders
  GROUP BY CAST(OrderDate AS DATE)
),
daily_revenue_zscore AS (
  SELECT
    order_date,
    total_revenue,
    (total_revenue - avg(total_revenue) over ())
     / (stddev(total_revenue) over ()) as z_score
  FROM revenue_by_day
)
SELECT ABS(z_score) AS twosided_score
FROM daily_revenue_zscore
WHERE
  order_date =
    CAST(current_timestamp AS DATE)
    - interval '1 day';

Example 8-13 simply returns the value to check against.

Example 8-13. zscore_90_twosided.sql

SELECT 1.645;

Use this to run the test:
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python validator.py revenue_yesterday_zscore.sql 
zscore_90_twosided.sql greater_equals warn

Here is the sample data for Example 8-14, which as previously
noted is a simplified version of Example 8-12 but for your own
experimentation:

CREATE TABLE revenue_by_day
(
  order_date date,
  total_revenue numeric
);

INSERT INTO revenue_by_day
  VALUES ('2020-09-24', 203.3);
INSERT INTO revenue_by_day
  VALUES ('2020-09-25', 190.99);
INSERT INTO revenue_by_day
  VALUES ('2020-09-26', 156.32);
INSERT INTO revenue_by_day
  VALUES ('2020-09-27', 210.0);
INSERT INTO revenue_by_day
  VALUES ('2020-09-28', 151.3);
INSERT INTO revenue_by_day
  VALUES ('2020-09-29', 568.0);
INSERT INTO revenue_by_day
  VALUES ('2020-09-30', 211.69);
INSERT INTO revenue_by_day
  VALUES ('2020-10-01', 98.99);
INSERT INTO revenue_by_day
  VALUES ('2020-10-02', 145.0);
INSERT INTO revenue_by_day
  VALUES ('2020-10-03', 159.3);
INSERT INTO revenue_by_day
  VALUES ('2020-10-04', 110.23);

Example 8-14. revenue_sample_zscore.sql

WITH daily_revenue_zscore AS (
  SELECT
    order_date,
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    total_revenue,
    (total_revenue - avg(total_revenue) over ())
     / (stddev(total_revenue) over ()) as z_score
  FROM revenue_by_day
)
SELECT ABS(z_score) AS twosided_score
FROM daily_revenue_zscore
WHERE
  order_date =
    CAST('2020-10-05' AS DATE)
    - interval '1 day';

To run the test, use this:

python validator.py revenue_sample_zscore.sql 
zscore_90_twosided.sql greater_equals warn

Of course, you’ll want to consider adjusting this test to fit your
business case.

Is looking at order revenue by day too “noisy”? Is your order
volume low enough that you need to look at weekly or monthly
aggregates instead? If so, you can modify Example 8-12 to
aggregate by week or month instead of day. Example 8-15
shows a monthly version of the same check. It compares the
previous month versus the 11 prior to it.

Note that this example checks the total revenue for the previous
month from the current date. This is the type of validation
you’d run when you “close” a month, which is usually on the
first day of the next month. For example, this is a validation
you might run on October 1 to check to make sure that revenue
from September is within your expected range based on past
history.

Example 8-15. revenue_lastmonth_zscore.sql

WITH revenue_by_day AS (
  SELECT
    date_part('month', order_date) AS order_month,
    SUM(ordertotal) AS total_revenue
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  FROM Orders
  WHERE
    order_date > date_trunc('month',current_timestamp 
- interval '12 months')
    AND
    order_date < date_trunc('month', current_timestamp)
  GROUP BY date_part('month', order_date)
),
daily_revenue_zscore AS (
  SELECT
    order_month,
    total_revenue,
    (total_revenue - avg(total_revenue) over ())
     / (stddev(total_revenue) over ()) as z_score
  FROM revenue_by_day
)
SELECT ABS(z_score) AS twosided_score
FROM daily_revenue_zscore
WHERE order_month = 
date_part('month',date_trunc('month',current_timestamp 
- interval '1 months'));

There are a number of other variations of such a validation test.
What level of date granularity, what date periods you want to
compare, and even the z-score are things you’ll need to analyze
and tweak based on your own data.

Metric Validation Requires Context
Writing validation tests for metric values in a data model can be
quite a challenge, and one best left to a data analyst who knows
the business context well. Taking into account growth in the
business, day of week effects, seasonality, and more is a skill in
and of itself and differs for each business and use case. Still, the
examples in this section should give you an idea of where to
start.
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Commercial and Open Source Data
Validation Frameworks
Throughout this section, I’ve used a sample Python-based vali‐
dation framework. As previously noted, though it’s simple, it
can easily be extended to become a full-featured, production-
ready application for all kinds of data validation needs.

That said, just like data ingestion, data modeling, and data
orchestration tools, there is a build-versus-buy decision to
make when it comes to what you use for data validation. In
fact, previous build-versus-buy decisions often play into what a
data team decides to use for data validation at different points
in a pipeline.

For instance, some data ingestion tools include features to
check for row count changes, unexpected values in columns,
and more. Some data transformation frameworks, such as dbt,
include data validation and testing functionally. If you’ve
already invested in such tools, check to see what options are
available.

Finally, there are open source frameworks for data validation.
The number of such frameworks is vast, and I suggest looking
for one that fits your ecosystem. For example, if you’re building
a machine learning pipeline and use TensorFlow, you might
consider TensorFlow Data Validation. For more general valida‐
tion, Yahoo’s Validator is an open source option.
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CHAPTER 9

Best Practices for
Maintaining Pipelines

Up to this point, this book has been focused on building data
pipelines. This chapter discusses how to maintain those pipe‐
lines as you encounter increased complexity and deal with the
inevitable changes in the systems that your pipelines rely on.

Handling Changes in Source Systems
One of the most common maintenance challenges for data
engineers is dealing with the fact that the systems they ingest
data from are not static. Developers are always making changes
to their software, either adding features, refactoring the code‐
base, or fixing bugs. When those changes introduce a modifica‐
tion to the schema or meaning of data to be ingested, a pipeline
is at risk of failure or inaccuracy.

As discussed throughout this book, the reality of a modern data
infrastructure is that data is ingested from a large diversity of
sources. As a result, it’s difficult to find a one-size-fits-all solu‐
tion to handling schema and business logic changes in source
systems. Nonetheless, there a few best practices I recommend
investing in.
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Introduce Abstraction
Whenever possible, it’s best to introduce a layer of abstraction
between the source system and the ingestion process. It’s also
important for the owner of the source system to either main‐
tain or be aware of the abstraction method.

For example, instead of ingesting data directly from a Postgres
database, consider working with the owner of the database to
build a REST API that pulls from the database and can be quer‐
ied for data extraction. Even if the API is simply a passthrough,
the fact that it exists in a codebase maintained by the owner of
the source system means that the system owner is aware of
what data is being extracted and doesn’t have to worry about
changes to the internal structure of their Postgres application
database. If they choose to modify the structure of a database
table, they’ll need to make a modification to the API but won’t
need to consider what other code might rely on it.

In addition, if the change to the source system results in the
removal of a field that a supported API endpoint includes, then
a conscience decision regarding what to do can be made. Per‐
haps the field is phased out over time or is supported with his‐
torical data but is NULL going forward. Either way, there is an
awareness of the need to handle the change when an explicit
abstraction layer exists.

REST APIs are not the only option for abstraction and at times
are not the best fit. Publishing data via a Kafka topic is an
excellent way to maintain an agreed-upon schema while leav‐
ing the particulars of the source system that publishes an event
and the system that subscribes to it (the ingestion) completely
separate from each other.

Maintain Data Contracts
If you must ingest data directly from a source system’s database
or via some method that is not explicitly designed for your
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extraction, creating and maintaining a data contract is a less
technical solution to managing schema and logic changes.

Data Contracts
A data contract is a written agreement between the owner of a
source system and the team ingesting data from that system for
use in a data pipeline. The contract should state what data is
being extracted, via what method (full, incremental), how often,
as well as who (person, team) are the contacts for both the
source system and the ingestion. Data contracts should be
stored in a well-known and easy-to-find location such as a Git‐
Hub repo or internal documentation site. If possible, format
data contracts in a standardized form so they can be integrated
into the development process or queried programmatically.

A data contract may be written in the form of a text document,
but preferably in a standardized configuration file such as in
Example 9-1. In this example, a data contract for an ingestion
from a table in a Postgres database is stored in JSON form.

Example 9-1. orders_contract.json

{
  ingestion_jobid: "orders_postgres",
  source_host: "my_host.com",
  source_db: "ecommerce",
  source_table: "orders",
  ingestion_type: "full",
  ingestion_frequency_minutes: "60",
  source_owner: "dev-team@mycompany.com",
  ingestion_owner: "data-eng@mycompany.com"
};

Once you create data contracts, here are some ways you can use
them to stay ahead of any source system changes that risk the
integrity of your pipelines:
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• Build a Git hook that looks for any changes (schema or
logic) to a table listed as a source_table in a data contract
when a PR is submitted or code is committed to a branch.
Automatically notify the contributor that the table is used
in a data ingestion and who to contact (the inges

tion_owner) for coordination of the change.
• If the data contract itself is in a Git repo (and it should

be!), add a Git hook to check for changes to the contract.
For example, if the frequency that the ingestion runs is
increased, not only should the data contract be updated,
but the source system owner should be consulted to
ensure there is not a negative impact on a production
system.

• Publish in readable form of all data contracts on the com‐
pany’s centralized documentation site and make them
searchable.

• Write and schedule a script to notify source system and
ingestion owners of any data contracts that haven’t been
updated in the past six months (or other frequency) and
ask them to review and update if needed.

Whether automated or not, the goal is for changes to the data
being ingested or the method of ingestion (say from incremen‐
tal to full load) to be flagged and communicated ahead of any
issues in the pipeline or source system.

Limits of Schema-on-Read
One approach to dealing with changes to the schema of source
data is to move from a schema-on-write design to schema-on-
read.

Schema-on-write is the pattern used throughout this book; in
particular, in Chapters 4 and 5. When data is extracted from a
source, the structure (schema) is defined, and the data is writ‐
ten to the data lake or S3 bucket. Then, when the load step in
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the ingestion is run, the data is in a predictable form and can be
loaded into a defined table structure.

Schema-on-read is a pattern where data is written to a data
lake, S3 bucket, or other storage system with no strict schema.
For example, an event defining an order placed in a system
might be defined as a JSON object, but the properties of that
object might change over time as new ones are added or exist‐
ing ones are removed. In this case, the schema of the data is not
known until it’s read, which is why it’s called schema-on-read.

While very efficient for writing data to storage, this pattern
adds complexity to the load step and has some major implica‐
tions in a pipeline. From a technical perspective, reading data
stored in this way from an S3 bucket is quite easy. Amazon
Athena and other products make querying the raw data as sim‐
ple as writing a SQL query. However, maintaining the defini‐
tion of the data is no small task.

First, you’ll want to make use of a data catalog that integrates
with whatever tool you are using to read the schema-flexible
data during the load step. A data catalog stores metadata for the
data in your data lake and warehouse. It can store both the
structure and the definition of datasets. For schema-on-read,
it’s critical to define and store the structure of data in a catalog
for both pragmatic use and human reference. AWS Glue Data
Catalog and Apache Atlas are popular data catalogs, but there
are many more to choose from.

Second, the logic of your load step becomes more complex.
You’ll need to consider how you’ll handle schema changes
dynamically. Do you want to dynamically add new columns to
a table in your warehouse when new fields are detected during
an ingestion? How will you notify data analysts who are model‐
ing the data in the transform step in a pipeline or changes to
their source tables?

If you choose to take a schema-on-read approach, you’ll want
to get serious about data governance, which includes not only
cataloging your data, but also defining the standards and
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process around how data is used in an organization. Data gov‐
ernance is a broad topic, and an important one regardless of
how you ingest data. However, it’s a topic that can’t be ignored
at a technical level if you do choose a schema-on-read
approach.

Scaling Complexity
Building data pipelines when source systems and downstream
data models are limited is challenging enough. When those
numbers get large, as they do in even relatively small organiza‐
tions, there are some challenges to scaling pipelines to handle
the increased complexity. This section includes some tips and
best practices for doing so at various stages of a pipeline.

Standardizing Data Ingestion
When it comes to complexity, the number of systems you
ingest from is typically less of an issue than the fact that each
system isn’t quite the same. That fact often leads to two pipeline
maintenance challenges:

• Ingestion jobs must be written to handle a variety of
source system types (Postgres, Kafka, and so on). The
more source system types you need to ingest from, the
larger your codebase and the more to maintain.

• Ingestion jobs for the same source system type cannot be
easily standardized. For example, even if you only ingest
from REST APIs, if those APIs do not have standardized
ways of paging, incrementally accessing data, and other
features, data engineers may build “one-off ” ingestion jobs
that don’t reuse code and share logic that can be centrally
maintained.

Depending on your organization, you may have little control
over the systems you ingest from. Perhaps you must ingest
from mostly third-party platforms or the internal systems are
built by an engineering team under a different part of the
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organization hierarchy. Neither is a technical problem, but each
should nonetheless be taken into account and addressed as part
of a data pipeline strategy. Thankfully, there are also some tech‐
nical approaches within your control to mitigate the impact on
your pipelines.

First, the nontechnical factors. If the systems you’re ingesting
from are built internally but are not well standardized, creating
awareness of the impact on the data organization pipelines can
lead to buy-in from system owners.

Especially in larger companies, the software engineers building
each system may not be aware that they are building systems
that are not quite the same as their counterparts elsewhere in
the organization. Thankfully, software engineers typically
understand the efficiency and maintainability benefits of stand‐
ardization. Forging a partnership with the engineering organi‐
zation requires patience and the right touch, but it’s an under‐
rated nontechnical skill for data teams.

If you find yourself needing to ingest from a large number of
third-party data sources, then your organization is likely choos‐
ing to buy versus build in many instances. Build/buy decisions
are complex, and organizations typically weigh many factors
when evaluating different vendors and proposals for internally
built solutions. One factor that’s often either left out or left to
later-than-ideal in the process is the impact on reporting and
analytics. In such cases, data teams are left with the challenge of
ingesting data from a product that wasn’t well designed for the
task. Do your best to be part of the evaluation process early,
and ensure your team has a seat at the table for the final deci‐
sion. Just like creating awareness for internal system standardi‐
zation, the importance of working with vendors to determine
analytics needs is something that is often not considered unless
the data team makes sure their voice is heard.

There are also some technical approaches within your control
that you can take to reduce the complexity of your ingestion
jobs:
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Standardize whatever code you can, and reuse
This is a general best practice in software engineering, but
is at times passed over in the creating of data ingestion
jobs.

Strive for config-driven data ingestions
Are you ingesting from a number of Postgres databases
and tables? Don’t write a different job for each ingestion,
but rather a single job that iterates through config files (or
records in a database table!) that defines the tables and
schemas you want to ingest.

Consider your own abstractions
If you can’t get source system owners to build some stan‐
dardized abstractions between their systems and your
ingestion, consider doing so yourself or partnering with
them and taking on the bulk of the development work. For
example, if you must ingest data from a Postgres or
MySQL database, get permission from the source team to
implement streaming CDC with Debezium (see Chap‐
ter 4) rather than writing yet another ingestion job.

Reuse of Data Model Logic
Complexity can also arise further down a pipeline and in par‐
ticular during data modeling in the transform phase of a pipe‐
line (see Chapter 6). As analysts build more data models, they
tend to do one of two things:

• Repeat logic in the SQL that builds each model.
• Derive models off of each other, creating numerous

dependencies between models.

Just as code reuse is ideal in data ingestions (and software engi‐
neering in general), it’s also ideal in data modeling. It ensures
that a single source of truth exists and reduces the amount of
code that needs to be changed in the case of a bug or business
logic change. The trade-off is a more complex dependency
graph in a pipeline.
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Figure 9-1 shows a DAG (see Chapter 7) with a single data
ingestion and four data models that are all built via scripts that
run in parallel. They can be executed in that fashion because
they have no dependencies on each other.

Figure 9-1. Four independent data models.

If they are truly unrelated data models, that is not a problem.
However, if they all share some logic, then it’s best to refactor
the models and the DAG to look something like Figure 9-2.

Figure 9-2. Data models with logic reuse and dependencies.

Example 9-2 shows a simple example of logic reuse that repre‐
sents the script executed in the build_model_1 task in
Figure 9-2. The script generates an order count by day and
stores it in a data model called orders_by_day.
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You can use the Orders table from Chapter 6, which can be re-
created and populated with the following SQL:

CREATE TABLE Orders (
  OrderId int,
  OrderStatus varchar(30),
  OrderDate timestamp,
  CustomerId int,
  OrderTotal numeric
);

INSERT INTO Orders
  VALUES(1,'Shipped','2020-06-09',100,50.05);
INSERT INTO Orders
  VALUES(2,'Shipped','2020-07-11',101,57.45);
INSERT INTO Orders
  VALUES(3,'Shipped','2020-07-12',102,135.99);
INSERT INTO Orders
  VALUES(4,'Shipped','2020-07-12',100,43.00);

Example 9-2. model_1.sql

CREATE TABLE IF NOT EXISTS orders_by_day AS
SELECT
    CAST(OrderDate AS DATE) AS order_date,
    COUNT(*) AS order_count
FROM Orders
GROUP BY CAST(OrderDate AS DATE);

Subsequent models in the DAG can refer to this table when
they need a daily order count rather than recalculating each
time. Example 9-3 represents the script executed in the
build_model_2 task in Figure 9-2. Instead of recalculating the
order count by day, it uses the orders_by_day model instead.
Though getting an order count by day may sound trivial, with
more complex calculations or queries with additional logic in
the WHERE clause or joins, it’s even more important to write the
logic once and reuse. Doing so ensures a single source of truth,
ensures a single model to maintain, and, as a bonus, only
requires your data warehouse to run any complex logic a single
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time and store the results for later reference. In some cases, that
time savings is notable in a pipeline’s runtime.

Example 9-3. model_2.sql

SELECT
  obd.order_date,
  ot.order_count
FROM orders_by_day obd
LEFT JOIN other_table ot
  ON ot.some_date = obd.order_date;

Though some savvy data analysts design their data models and
the subsequent DAG in this way from the start, it’s more com‐
mon to find opportunity to refactor only after problems arise
in a pipeline. For example, if a bug is found in the logic of a
model and needs to be fixed in multiple models, then there is
likely an opportunity to apply the logic to a single model and
derive other models from it.

Though the end result is a more complex set of dependencies,
if handled properly, as you’ll see in the following section, you’ll
find the logic in the data modeling portion of your pipeline to
be more reliable and less likely to result in multiple versions of
truth.

Ensuring Dependency Integrity
As noted in the previous section, despite all of the benefits of
reusing data model logic, there is a trade-off: the need to keep
track of what models rely on each other and ensure that those
dependencies are defined properly in a DAG for orchestration.

In Figure 9-2 in the previous section (and queries in Examples
9-2 and 9-3), model_2 is dependent on model_1, and model_3
and model_4 both depend on model_2. Those dependencies are
defined properly in the DAG, but as teams build more models,
keeping track of dependencies becomes quite a chore and
prone to error.
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As pipelines get more complex, it’s time to consider progra‐
matic approaches to defining and validating dependencies
between data models. There are a number of approaches, of
which I’ll discuss two.

First, you can build some logic into your development process
to identify dependencies in SQL scripts and ensure that any
tables that a script depends on are executed upstream in a
DAG. Doing so isn’t simple and can be done either by parsing
out table names from a SQL script or, more commonly, requir‐
ing the data analyst writing the model to provide a list of
dependencies manually in a config file when they submit a new
model or modification to an existing one. In both cases, you
have some work ahead of you and are adding some friction to
your development process.

Another approach is to use a data model development frame‐
work like dbt, which among other benefits has a mechanism
for analysts to define references between models right in the
SQL they write for the model definition.

More About dbt
dbt is an open source product created by Fishtown Analytics
that has grown into a widely used and contributed-to tool in the
data analytics community. It’s written in Python and is easy to
deploy and use on your own. There is also a commercial, fully
hosted version called dbt Cloud if you’d rather not run it on
your own. You can learn more about dbt by reading the official
documentation.

For example, I’ll rewrite model_2.sql from Example 9-3 and
use the ref() function in dbt to refer to model_1.sql in the
join. Example 9-4 shows the result.
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Example 9-4. model_2_dbt.sql

SELECT
  obd.order_date,
  ot.order_count
FROM {{ref('model_1')}} obd
LEFT JOIN other_table ot
  ON ot.some_date = obd.order_date;

Data Models in dbt
Data models in dbt are all defined as SELECT statements.
Though similar to how data models were introduced in Chap‐
ter 6, dbt models can take advantage of functions like ref() via
Jinja templating, which will be familiar to many Python
developers.

With the updated SQL, dbt knows that model_2 relies on
model_1 and ensures execution in the proper order. In fact, dbt
builds a DAG dynamically rather than forcing you to do so in a
tool like Airflow. When the data model is compiled by dbt prior
to executing, the reference to model_1 is filled in with the table
name (orders_by_day). If all four models from the DAG in
Figure 9-2 are instead written in dbt, they can be compiled and
executed with a single command on the command line:

$ dbt run

When dbt run is executed, the SQL scripts representing each
model will run in the proper order based on how each table is
referenced from each other. As you learned in Chapter 7, run‐
ning command-line tasks in Airflow is simple. If you’d still like
to use Airflow as your orchestrator alongside dbt for your data
model development, that’s no problem. Figure 9-3 shows an
updated DAG where the two steps in the ingestion are run just
like before. When they are completed, a single Airflow task
executes the dbt run command, which handles executing the
SQL for all four data models in the correct order.
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Figure 9-3. Data models executed in dbt from Airflow.

Though in this example I’m running all models in the dbt
project, you can specify a subset of models to run by passing
parameters to dbt run as well.

Whether you choose to identify and validate model dependen‐
cies with custom code you inject into your development pro‐
cess, or leverage a product like dbt, handling dependencies at
scale is key to maintaining a data pipeline. It’s best not to leave
it to manual checks and human eyes!
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CHAPTER 10

Measuring and Monitoring
Pipeline Performance

Even the most well-designed data pipelines are not meant to be
“set and forget.” The practice of measuring and monitoring the
performance of pipelines is essential. You owe it to your team
and stakeholders to set, and live up to, expectations when it
comes to the reliability of your pipelines.

This chapter outlines some tips and best practices for doing
something that data teams deliver to others but surprisingly
don’t always invest in themselves: collecting data and measur‐
ing performance of their work.

Key Pipeline Metrics
Before you can determine what data you need to capture
throughout your pipelines, you must first decide what metrics
you want to track.

Choosing metrics should start with identifying what matters to
you and your stakeholders. Some examples include the
following:
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• How many validation tests (see Chapter 8) are run, and
what percent of the total tests run pass

• How frequently a specific DAG runs successfully
• The total runtime of a pipeline over the course of weeks,

months, and years

How Many Metrics to Track?
Beware of a common trap: looking at too many metrics! Just as
there is danger in relying on a single metric to tell the entire
story of pipeline performance and reliability, too many metrics
make it difficult to focus on what’s most important. I suggest
choosing two to three metrics at most to focus on. It’s also
important to ensure that they each have a unique purpose
rather than overlapping in what they measure.

The good news is that gathering the data needed to calculate
such metrics is within reach. As you’ll see in the following sec‐
tions, it’s possible to capture this data directly from infrastruc‐
ture built earlier in this book; in particular, see Airflow (Chap‐
ter 7) and the data validation framework (Chapter 8).

Prepping the Data Warehouse
Before you can monitor and report on the performance of your
pipelines, you must of course capture the data required for
such measurement. Thankfully, as a data professional you have
the tools to do so right in front of you! Your data warehouse is
the best place to store log data from each step in your data
pipeline.

In this section, I define the structure of the tables you’ll use to
store data from Airflow and the data validation framework
defined in Chapter 8. This data will later be used to develop the
metrics essential to measuring pipeline performance.
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I’d like to point out that there are numerous other data points
you may want to track and report on. I like these two examples
because they cover the basics and should inspire other tracking
and measurements specific to your data infrastructure.

A Data Infrastructure Schema
First, you’ll need a table to store the history of DAG runs from
Airflow. Recall from Chapter 7 that Airflow is used to execute
each step in a data pipeline. It also keeps the history of each
DAG run. Before you extract that data, you need a table to load
it into. The following is a definition for a table named
dag_run_history. It should be created in your data warehouse
in whatever schema you load data into during data ingestion:

CREATE TABLE dag_run_history (
  id int,
  dag_id varchar(250),
  execution_date timestamp with time zone,
  state varchar(250),
  run_id varchar(250),
  external_trigger boolean,
  end_date timestamp with time zone,
  start_date timestamp with time zone
);

In addition to reporting on the performance of DAGs, it’s
important to provide insight into data validity. In Chapter 8, I
defined a simple, Python-based data validation framework. In
this chapter I will extend it so that it logs the results of each val‐
idation test to the data warehouse. The following table, named
validation_run_history, will be the destination of validation
test results. I suggest creating it in the same schema of your
data warehouse where ingested data lands upon load:

CREATE TABLE validation_run_history (
  script_1 varchar(255),
  script_2 varchar(255),
  comp_operator varchar(10),
  test_result varchar(20),
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  test_run_at timestamp
);

The rest of this chapter implements the logic to populate and
make use of the data loaded into the prior two tables.

Logging and Ingesting Performance Data
Now it’s time to populate the two tables you created in your
data warehouse in the previous section. The first will be popu‐
lated by building a data ingestion job just like you learned
about in Chapters 4 and 5. The second will require an enhance‐
ment to the data validation application first introduced in
Chapter 8.

Ingesting DAG Run History from Airflow
To populate the dag_run_history table you created in your data
warehouse in the previous section, you’ll need to extract data
from the Airflow application database you configured in
“Apache Airflow Setup and Overview” on page 151.

In that section, I chose to use a Postgres database for Airflow to
use, so the following extraction code follows the model defined
in “Extracting Data from a PostgreSQL Database” on page 63.
Note that I am choosing to load data incrementally, which is
easy, thanks to the auto-incrementing id column of the dag_run
table in the Airflow database. The output of this extraction
(defined in Example 10-1) is a CSV file named
dag_run_extract.csv, which is uploaded to the S3 bucket you set
up in Chapter 4.

Before you execute the code, you’ll need to add one new sec‐
tion to the pipeline.conf file from Chapter 4. As the following
shows, it must contain the connection details for the Airflow
database you set up in Chapter 7:

[airflowdb_config]
host = localhost
port = 5432
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username = airflow
password = pass1
database = airflowdb

The Airflow REST API
Though I’m ingesting DAG run history directly from the Air‐
flow application database, ideally I’d do so via an API or other
layer of abstraction. In Airflow version 1.x, there is an “experi‐
mental” REST API that is quite limited and does not include an
endpoint that supports the level of detail required for pipeline
performance reporting. However, with Airflow 2.0 on the hori‐
zon, there is promise of an expanded and stable REST API. I
suggest keeping an eye on the evolution of the Airflow API and
consider ingesting from it, rather than the application database,
in the future.

Example 10-1. airflow_extract.py

import csv
import boto3
import configparser
import psycopg2

# get db Redshift connection info
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("aws_creds", "database")
user = parser.get("aws_creds", "username")
password = parser.get("aws_creds", "password")
host = parser.get("aws_creds", "host")
port = parser.get("aws_creds", "port")

# connect to the redshift cluster
rs_conn = psycopg2.connect(
            "dbname=" + dbname
            + " user=" + user
            + " password=" + password
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            + " host=" + host
            + " port=" + port)

rs_sql = """SELECT COALESCE(MAX(id),-1)
            FROM dag_run_history;"""

rs_cursor = rs_conn.cursor()
rs_cursor.execute(rs_sql)
result = rs_cursor.fetchone()

# there's only one row and column returned
last_id = result[0]
rs_cursor.close()
rs_conn.commit()

# connect to the airflow db
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("airflowdb_config", "database")
user = parser.get("airflowdb_config", "username")
password = parser.get("airflowdb_config", "password")
host = parser.get("airflowdb_config", "host")
port =  parser.get("airflowdb_config", "port")
conn = psycopg2.connect(
        "dbname=" + dbname
        + " user=" + user
        + " password=" + password
        + " host=" + host
        + " port=" + port)

# get any new DAG runs. ignore running DAGs
m_query = """SELECT
                id,
                dag_id,
                execution_date,
                state,
                run_id,
                external_trigger,
                end_date,
                start_date
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            FROM dag_run
            WHERE id > %s
            AND state <> \'running\';
            """

m_cursor = conn.cursor()
m_cursor.execute(m_query, (last_id,))
results = m_cursor.fetchall()

local_filename = "dag_run_extract.csv"
with open(local_filename, 'w') as fp:
    csv_w = csv.writer(fp, delimiter='|')
    csv_w.writerows(results)

fp.close()
m_cursor.close()
conn.close()

# load the aws_boto_credentials values
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
access_key = parser.get("aws_boto_credentials",
                "access_key")
secret_key = parser.get("aws_boto_credentials",
                "secret_key")
bucket_name = parser.get("aws_boto_credentials",
                "bucket_name")

# upload the local CSV to the S3 bucket
s3 = boto3.client(
        's3',
        aws_access_key_id=access_key,
        aws_secret_access_key=secret_key)
s3_file = local_filename
s3.upload_file(local_filename, bucket_name, s3_file)

Once the extraction is complete, you can load the contents of
the CSV file into your data warehouse as described in detail in
Chapter 5. Example 10-2 defines how to do so if you have a
Redshift data warehouse.
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Example 10-2. airflow_load.py

import boto3
import configparser
import pyscopg2

# get db Redshift connection info
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
dbname = parser.get("aws_creds", "database")
user = parser.get("aws_creds", "username")
password = parser.get("aws_creds", "password")
host = parser.get("aws_creds", "host")
port = parser.get("aws_creds", "port")

# connect to the redshift cluster
rs_conn = psycopg2.connect(
            "dbname=" + dbname
            + " user=" + user
            + " password=" + password
            + " host=" + host
            + " port=" + port)

# load the account_id and iam_role from the conf files
parser = configparser.ConfigParser()
parser.read("pipeline.conf")
account_id = parser.get(
                "aws_boto_credentials",
                "account_id")
iam_role = parser.get("aws_creds", "iam_role")

# run the COPY command to ingest into Redshift
file_path = "s3://bucket-name/dag_run_extract.csv"

sql = """COPY dag_run_history
        (id,dag_id,execution_date,
        state,run_id,external_trigger,
        end_date,start_date)"""
sql = sql + " from %s "
sql = sql + " iam_role 'arn:aws:iam::%s:role/%s';"
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# create a cursor object and execute the COPY command
cur = rs_conn.cursor()
cur.execute(sql,(file_path, account_id, iam_role))

# close the cursor and commit the transaction
cur.close()
rs_conn.commit()

# close the connection
rs_conn.close()

You may want to run the ingestion once manually, but you can
later schedule it via an Airflow DAG as I describe in a later sec‐
tion of this chapter.

Adding Logging to the Data Validator
To log the results of the validation tests first introduced in
Chapter 8, I’ll add a function to the validator.py script called
log_result. Because the script already connects to the data
warehouse to run validation tests, I reuse the connection and
simply INSERT a record with the test result:

def log_result(
      db_conn,
      script_1,
      script_2,
      comp_operator,
      result):

    m_query = """INSERT INTO
                  validation_run_history(
                    script_1,
                    script_2,
                    comp_operator,
                    test_result,
                    test_run_at)
                VALUES(%s, %s, %s, %s,
                      current_timestamp);"""
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    m_cursor = db_conn.cursor()
    m_cursor.execute(
      m_query,
      (script_1, script_2, comp_operator, result))
    db_conn.commit()

    m_cursor.close()
    db_conn.close()

    return

As a final modification, you’ll need to call the new function
after a test is run. Example 10-3 defines the updated validator
in its entirety after the logging code is added. With this addi‐
tion, each time a validation test is run, the result is logged in
the validation_run_history table.

I suggest running a few validation tests to generate test data for
examples that follow. For more on running validation tests,
please refer to Chapter 8.

Example 10-3. validator_logging.py

import sys
import psycopg2
import configparser

def connect_to_warehouse():
    # get db connection parameters from the conf file
    parser = configparser.ConfigParser()
    parser.read("pipeline.conf")
    dbname = parser.get("aws_creds", "database")
    user = parser.get("aws_creds", "username")
    password = parser.get("aws_creds", "password")
    host = parser.get("aws_creds", "host")
    port = parser.get("aws_creds", "port")

    # connect to the Redshift cluster
    rs_conn = psycopg2.connect(
                "dbname=" + dbname
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                + " user=" + user
                + " password=" + password
                + " host=" + host
                + " port=" + port)

    return rs_conn

# execute a test made of up two scripts
# and a comparison operator
# Returns true/false for test pass/fail
def execute_test(
        db_conn,
        script_1,
        script_2,
        comp_operator):

    # execute the 1st script and store the result
    cursor = db_conn.cursor()
    sql_file = open(script_1, 'r')
    cursor.execute(sql_file.read())

    record = cursor.fetchone()
    result_1 = record[0]
    db_conn.commit()
    cursor.close()

    # execute the 2nd script and store the result
    cursor = db_conn.cursor()
    sql_file = open(script_2, 'r')
    cursor.execute(sql_file.read())

    record = cursor.fetchone()
    result_2 = record[0]
    db_conn.commit()
    cursor.close()

    print("result 1 = " + str(result_1))
    print("result 2 = " + str(result_2))

    # compare values based on the comp_operator
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    if comp_operator == "equals":
        return result_1 == result_2
    elif comp_operator == "greater_equals":
        return result_1 >= result_2
    elif comp_operator == "greater":
        return result_1 > result_2
    elif comp_operator == "less_equals":
        return result_1 <= result_2
    elif comp_operator == "less":
        return result_1 < result_2
    elif comp_operator == "not_equal":
        return result_1 != result_2

    # if we made it here, something went wrong
    return False

def log_result(
        db_conn,
        script_1,
        script_2,
        comp_operator,
        result):
    m_query = """INSERT INTO
                  validation_run_history(
                    script_1,
                    script_2,
                    comp_operator,
                    test_result,
                    test_run_at)
                VALUES(%s, %s, %s, %s,
                    current_timestamp);"""

    m_cursor = db_conn.cursor()
    m_cursor.execute(
                m_query,
                (script_1,
                    script_2,
                    comp_operator,
                    result)
            )
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    db_conn.commit()

    m_cursor.close()
    db_conn.close()

    return

if __name__ == "__main__":
    if len(sys.argv) == 2 and sys.argv[1] == "-h":
        print("Usage: python validator.py"
            + "script1.sql script2.sql "
            + "comparison_operator")
        print("Valid comparison_operator values:")
        print("equals")
        print("greater_equals")
        print("greater")
        print("less_equals")
        print("less")
        print("not_equal")

        exit(0)

    if len(sys.argv) != 5:
        print("Usage: python validator.py"
            + "script1.sql script2.sql "
            + "comparison_operator")
        exit(-1)

    script_1 = sys.argv[1]
    script_2 = sys.argv[2]
    comp_operator = sys.argv[3]
    sev_level = sys.argv[4]

    # connect to the data warehouse
    db_conn = connect_to_warehouse()

    # execute the validation test
    test_result = execute_test(
                    db_conn,
                    script_1,
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                    script_2,
                    comp_operator)

    # log the test in the data warehouse
    log_result(
        db_conn,
        script_1,
        script_2,
        comp_operator,
        test_result)

    print("Result of test: " + str(test_result))

    if test_result == True:
        exit(0)
    else:
        if sev_level == "halt":
            exit(-1)
        else:
            exit(0)

Logging at Scale
Though your data warehouse is an excellent place to store and
analyze performance data from your pipeline infrastructure, it’s
not always best to send such data directly to it. If you intend to
produce a high volume of log data, such as the result of valida‐
tion tests described in this section, it’s worth considering first 
routing it to log analysis infrastructure such as Splunk, Sumo‐
Logic, or the open source ELK Stack (Elasticsearch, Logstash,
and Kibana). Those platforms are designed to perform well on a
high volume of small write operations (as log entries tend to
be), while data warehouses like Snowflake and Redshift perform
better ingesting data in bulk. Once log data is sent to such a
platform, you can later ingest it in bulk into your data
warehouse.

Most logging platforms have some form of analysis and visuali‐
zation tooling included. I find such tooling preferable for ana‐
lyzing log data in isolation and for operational monitoring and
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reporting of the systems producing the logs. However, I still
find it valuable to ingest log data into my data warehouse for
further analysis, joining with nonlog sources, and displaying
higher-level performance metrics in enterprise dashboards
where non-engineers spend time. Thankfully, your organization
may already have the necessary log analysis infrastructure up
and running. In general, log analysis platforms complement
data analytics infrastructure and are worth becoming familiar
with.

For more on running validation tests, please see Chapter 8.

Transforming Performance Data
Now that you’re capturing key events from your pipelines and
storing them in your data warehouse, you can make use of
them to report on pipeline performance. The best way to do
that is to build a simple data pipeline!

Refer to the ELT pattern introduced in Chapter 3 and used
throughout this book. The work to build a pipeline for report‐
ing on the performance of each pipeline is nearly complete.
The extract and load (EL) steps were taken care of in the previ‐
ous section. All you have left is the transform (T) step. For this
pipeline, that means turning the data from Airflow DAG runs,
and other actions you’ve chosen to log, into the performance
metrics you set out to measure and hold yourself accountable
to.

In the following subsections, I define transformations to create
data models for some of the key metrics discussed earlier in the
chapter.

DAG Success Rate
As you’ll recall from Chapter 6, you must consider the granu‐
larity of the data you want to model. In this case, I’d like to
measure the success rate of each DAG by day. This level of
granularity allows me to measure the success of either
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individual DAGs or multiple DAGs daily, weekly, monthly, or
yearly. Whether the DAGs run once a day or more, this model
will support a success rate. Example 10-4 defines the SQL to
build the model. Note that this is a fully refreshed model for
simplicity.

Example 10-4. dag_history_daily.sql

CREATE TABLE IF NOT EXISTS dag_history_daily (
  execution_date DATE,
  dag_id VARCHAR(250),
  dag_state VARCHAR(250),
  runtime_seconds DECIMAL(12,4),
  dag_run_count int
);

TRUNCATE TABLE dag_history_daily;

INSERT INTO dag_history_daily
  (execution_date, dag_id, dag_state,
  runtime_seconds, dag_run_count)
SELECT
  CAST(execution_date as DATE),
  dag_id,
  state,
  SUM(EXTRACT(EPOCH FROM (end_date - start_date))),
  COUNT(*) AS dag_run_count
FROM dag_run_history
GROUP BY
  CAST(execution_date as DATE),
  dag_id,
  state;

From the dag_history_daily table, you can measure the suc‐
cess rate of a single, or all DAGs, over a given date range. Here
are a few examples based on runs of some DAGs defined in
Chapter 7, but you’ll see data based on your own Airflow DAG
run history. Make sure to run at least one ingestion of Airflow
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data (defined earlier in this chapter) to populate dag_his
tory_daily.

Here is a query to return the success rate by DAG. You can of
course filter to a given DAG or date range. Note that you must
CAST the dag_run_count as a DECIMAL to calculate a fractional
success rate:

SELECT
  dag_id,
  SUM(CASE WHEN dag_state = 'success' THEN 1
      ELSE 0 END)
      / CAST(SUM(dag_run_count) AS DECIMAL(6,2))
  AS success_rate
FROM dag_history_daily
GROUP BY dag_id;

The output of the query will look something like this:

dag_id          |      success_rate
-------------------------+------------------------
tutorial                | 0.83333333333333333333
elt_pipeline_sample     | 0.25000000000000000000
simple_dag              | 0.31250000000000000000
(3 rows)

DAG Runtime Change Over Time
Measuring the runtime of DAGs over time is often used to keep
track of DAGs that are taking longer to complete over time,
thus creating risk of data in the warehouse becoming stale. I’ll
use the dag_history_daily table I created in the last subsection
to calculate the average runtime of each DAG by day.

Note that in the following query I only include successful DAG
runs, but you may want to report on long-running DAG runs
that failed (perhaps due to a timeout!) in some cases. Also keep
in mind that because multiple runs of a given DAG may occur
in a single day, I must average the runtimes of such DAGs in
the query.
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Finally, because the dag_history_daily table is granular by date
and dag_state, I don’t really need to sum the runtime_seconds
and dag_run_count, but as a best practice I do. Why? If I, or
another analyst, decided to change the logic to do something
like include failed DAG runs as well, then the SUM() function
would be required, yet easily missed.

Here is the query for the elt_pipeline_sample DAG from
Chapter 7:

SELECT
  dag_id,
  execution_date,
  SUM(runtime_seconds)
    / SUM(CAST(dag_run_count as DECIMAL(6,2)))
  AS avg_runtime
FROM dag_history_daily
WHERE
  dag_id = 'elt_pipeline_sample'
GROUP BY
  dag_id,
  execution_date
ORDER BY
dag_id,
execution_date;

The output of the query will look something like this:

dag_id        | execution_date |     avg_runtime
---------------------+----------------+----------
elt_pipeline_sample | 2020-09-16     |  63.773900
elt_pipeline_sample | 2020-09-17     | 105.902900
elt_pipeline_sample | 2020-09-18     | 135.392000
elt_pipeline_sample | 2020-09-19     | 101.111700
(4 rows)

Validation Test Volume and Success Rate
Thanks to the additional logging you added to the data valida‐
tor earlier in this chapter, it’s now possible to measure the

242 | Chapter 10: Measuring and Monitoring Pipeline Performance



success rate of validation tests, as well as the overall volume of
tests run.

Test Volume in Context
Both success rate and test volume are worth monitoring,
though I suggest also putting the test volume into context. The
specifics of that are a bit out of scope for this chapter, but in
general, the number of validation tests run should be propor‐
tional to the number of DAG tasks run. In other words, you
should ensure that you’re testing each step in your pipelines.
What’s a proper ratio of tests to pipeline step (often measured
by DAG task)? That depends on how complex your steps are.
Simple ingestion steps might require a single test to check for
duplicate rows, while some transform steps are worthy of sev‐
eral tests to check for various context-specific errors.

Example 10-5 defines a new data model called validator_sum
mary_daily that calculates and stores the results of each valida‐
tor test at daily granularity.

Example 10-5. validator_summary_daily.sql

CREATE TABLE IF NOT EXISTS validator_summary_daily (
  test_date DATE,
  script_1 varchar(255),
  script_2 varchar(255),
  comp_operator varchar(10),
  test_composite_name varchar(650),
  test_result varchar(20),
  test_count int
);

TRUNCATE TABLE validator_summary_daily;

INSERT INTO validator_summary_daily
  (test_date, script_1, script_2, comp_operator,
  test_composite_name, test_result, test_count)
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SELECT
  CAST(test_run_at AS DATE) AS test_date,
  script_1,
  script_2,
  comp_operator,
  (script_1
    || ' '
    || script_2
    || ' '
    || comp_operator) AS test_composite_name,
  test_result,
  COUNT(*) AS test_count
FROM validation_run_history
GROUP BY
  CAST(test_run_at AS DATE),
  script_1,
  script_2,
  comp_operator,
  (script_1 || ' ' || script_2 || ' ' || comp_opera
tor),
  test_result;

Though the logic to create validator_summary_daily is fairly
straightforward, it’s worth calling out the test_composite_name
column. In the absence of a unique name for each validation
test (an enhancement worth considering), test_compo

site_name is the combination of the two scripts and operator
for the test. It acts as a composite key that can be used to group
validation test runs. For example, here is the SQL to calculate
the percentage of time that each test passes. You can of course
look at this by day, week, month, or any other time range you’d
like:

SELECT
  test_composite_name,
  SUM(
    CASE WHEN test_result = 'true' THEN 1
    ELSE 0 END)
    / CAST(SUM(test_count) AS DECIMAL(6,2))
  AS success_rate
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FROM validator_summary_daily
GROUP BY
  test_composite_name;

The output will look something like this:

test_composite_name    |      success_rate
--------------------------+----------------------
sql1.sql sql2.sql equals    | 0.33333333333333333
sql3.sql sql4.sql not_equal | 0.75000000000000000

(2 rows)

As for the volume of test runs, you may want to view this by
date, test, or both. As noted earlier, it’s important to keep this
value in context. As you grow the number and complexity of
your pipelines, you can use this measure to ensure that you’re
keeping up on testing the validity of data throughout pipelines.
The following SQL produces both the test count and the suc‐
cess rate by date. This is a dataset that you can plot on a double
y-axis line chart or similar visualization:

SELECT
  test_date,
  SUM(
    CASE WHEN test_result = 'true' THEN 1
    ELSE 0 END)
    / CAST(SUM(test_count) AS DECIMAL(6,2))
  AS success_rate,
  SUM(test_count) AS total_tests
FROM validator_summary_daily
GROUP BY
  test_date
ORDER BY
  test_date;

The results will look something like this:

test_date  |      success_rate      | total_tests
------------+------------------------+-----------
2020-11-03 | 0.33333333333333333333 |         3
2020-11-04 | 1.00000000000000000000 |         6
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2020-11-05 | 0.50000000000000000000 |         8

(3 row)

Orchestrating a Performance Pipeline
With the code from the previous sections in hand, you can cre‐
ate a new Airflow DAG to schedule and orchestrate a pipeline
to ingest and transform the pipeline performance data. It may
feel a bit recursive, but you can use the existing infrastructure
you have for this type of operation. Keep in mind that this
backward-looking reporting focused on insights and not some‐
thing mission critical like uptime monitoring or alerting on
pipelines. You never want to use the same infrastructure to do
that!

The Performance DAG
A DAG to orchestrate all of the steps defined in this chapter
will look familiar based on examples from Chapter 7. Per
Example 10-3, the results from the validation tests are already
logging in the data warehouse. That means that there are only a
few steps needed in this pipeline:

1. Extract data from the Airflow database (per
Example 10-1).

2. Load data from the Airflow extract into the warehouse
(per Example 10-2).

3. Transform the Airflow history (per Example 10-4).
4. Transform the data validation history (per Example 10-5).

Example 10-6 is the source for the Airflow DAG, and
Figure 10-1 shows the DAG in graph form.
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Figure 10-1. Graph view of the pipeline_performance DAG.

Example 10-6. pipeline_performance.py

from datetime import timedelta
from airflow import DAG
from airflow.operators.bash_operator \
    import BashOperator
from airflow.operators.postgres_operator \
    import PostgresOperator
from airflow.utils.dates import days_ago

dag = DAG(
    'pipeline_performance',
    description='Performance measurement pipeline',
    schedule_interval=timedelta(days=1),
    start_date = days_ago(1),
)

extract_airflow_task = BashOperator(
    task_id='extract_airflow',
    bash_command='python /p/airflow_extract.py',
    dag=dag,
)

load_airlflow_task = BashOperator(
    task_id='load_airflow',
    bash_command='python /p/airflow_load.py',
    dag=dag,
)

dag_history_model_task = PostgresOperator(
    task_id='dag_history_model',
    postgres_conn_id='redshift_dw',
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    sql='/sql/dag_history_daily.sql',
    dag=dag,
)

validation_history_model_task = PostgresOperator(
    task_id='validation_history_model',
    postgres_conn_id='redshift_dw',
    sql='/sql/validator_summary_daily.sql',
    dag=dag,
)

extract_airflow_task >> load_airlflow_task
load_airlflow_task >> dag_history_model_task
load_airlflow_task >> validation_history_model_task

Performance Transparency
With a working pipeline to measure the performance of your
production pipelines and data validation tests, there’s one last
thing to keep in mind: sharing the resulting insights with your
data team and stakeholders. Transparency of the pipeline per‐
formance is key to building trust with stakeholders and creat‐
ing a sense of ownership and pride on your team.

Here are a few tips for making use of the data and insights gen‐
erated throughout this chapter:

Leverage visualization tools
Make the metrics from the data models you created acces‐
sible in the same visualization tools that your stakeholders
use. That might be Tableau, Looker, or a similar product.
Whatever it is, make sure it’s where stakeholders and your
team are going every day, anyway.

Share summarized metrics regularly
Share summarized metrics at least monthly (if not weekly)
via email, Slack, or some other place that your team and
stakeholders keep an eye on.
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Watch trends, not just current values
Both on dashboards and summaries you share, don’t just
share the latest values of each metric. Include change over
time as well, and ensure that negative trends are pointed
out as often as positive ones.

React to trends
Sharing trends in metrics isn’t just for show. It’s an oppor‐
tunity to react and improve. Are validation tests failing at
a higher rate than the month before? Dig into why, make
changes, and watch future trends to measure the impact of
your work.
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