


Demand Forecasting for Inventory Control



Nick T. Thomopoulos

Demand Forecasting 
for Inventory Control

1  3



ISBN 978-3-319-11975-5        ISBN 978-3-319-11976-2 (eBook)
DOI 10.1007/978-3-319-11976-2

Library of Congress Control Number: 2014954807

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilms or in any other physical way, and transmission or in-
formation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the 
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Nick T. Thomopoulos
Stuart School of Business
Illinois Institute of Technology
Burr Ridge
Illinois 
USA



v

For my wife, my children, and my grandchildren



vii

Preface

Looking back over my working years, I was most fortunate with the background 
gained as it happened to unfold from year-to-year in both industry and in academia. 
This included working in industry at International Harvester as supervisor of opera-
tions research in the corporate headquarters; at IIT Research Institute (IITRI) as a 
senior scientist serving as a consultant to international industry and government; 
as a professor in the Industrial Engineering Department at the Illinois Institute of 
Technology (IIT) and also in the Stuart School of Business at IIT My experience 
with FIC Inc., a software company, is where I gained knowledge on the software 
tools needed in industry, as well as the customers’ call for user friendly tools. For 
many of the years, I was privileged to serve as consultant to a wide variety of in-
dustries in the United States, Europe and Asia. At IIT, I was fortunate to be assigned 
an array of courses, gaining a wide breadth with the variety of topics, and with the 
added knowledge I gained from the students and with every repeat of the course. 
I also was fortunate to serve as the advisor to 36 bright Ph.D. students as they car-
ried on their dissertation research. Bits of knowledge from the various courses and 
research helped me in the classroom, in research, and also in my consulting assign-
ments. When I could, I used my industry knowledge in classroom lectures so the 
students could see how some of the textbook methodologies actually are applied in 
industry. At the same time, the knowledge I gained from the classroom helped me 
to formulate and develop solutions to industry applications as they unfolded. The 
wide variety of experience allowed me to paint a picture on which quantitative tools 
really are useful in industry. This book is based on this total experience and also in-
cludes the demand forecasting methods that I found doable and helpful to industry.

Thanks foremost to my wife, Elaine Thomopoulos, who has encouraged me to 
write this volume. She inspired and gave consultation very often as the need called. 
Thanks also to the many people who have helped and inspired me along the way. 
I can name only a few here. Raida Abuizam (Purdue University—Calumet), Brian 
Ahearn (Komatsu Dresser), Wayne Bancroft (Walgreens), Owen Baxter (Wolver-
ine World Wide), Fred Bock (IIT Research Institute), Harry Bock (Florsheim Shoe 
Company), Randy Braun (Komatsu Dresser), Toemchai Bunnag (PTT Public), John 
Cada (Florsheim Shoe Company), Dan Cahill (International Truck and Engine), 
Debbie Cernauskas (Benedictine University), Edine Dahel (Monterey Institute), 
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John DeMotts (International Harvester), Frank Donahue (Navistar), Nick Faklis 
(Patterson Office Supplies), Jim Gleason (International Harvester), Mark Graham 
(International Truck and Engine), Scott Halligas (Florsheim Shoe Compnay), Jim 
Harrington (International Harvester), Willard Huson (Navistar), Dick Ilseman (In-
ternational Truck and Engine), Marsha Jance (Indiana University—Richmond), 
Tom Lewis (International Harvester), Carol Lindee (Panduit), Keith Mahal (Navi-
star), Nick Malham (FIC Inc.), Craig Marasek (Komatsu Dresser), Pricha Pan-
tumsinchai (M-Focus), Ted Prenting (Marist Colllege), Athapol Ruangkanjanases 
(Chulalongkorn Univeristy), Doloris Santucci (Navistar), Mark Spieglan (FIC Inc.), 
and Toli Xanthopoulos, (Mercer Investment Consulting).
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1.1 � Introduction

1.1.1 � Demand Forecasting

Management is continually faced with a fast-paced flow of business planning and 
decision-making situations. A forecast of some type is used as a basis to meet many 
of these needs, whereby, the more reliable the forecasts, the better the outcome for 
the planning and decisions. Forecasting has plagued management for centuries, but 
now, with the advancement in computers, forecasting methods that previously were 
impossible to explore are currently achievable.

A sound forecasting system is a necessity in the expanding supply change man-
agement world, allowing firms to cope with the ever-changing shifts in demands 
for their products and resources. The common goal is to have the least amount of 
inventory to satisfy the customers’ demands for its products, and at the same time 
minimize the cost of buying and holding the inventory. A company with an oversup-
ply in inventory incurs undue costs caused by excess storage, stock deterioration 
and obsolescence of the items. With an undersupply, expediting, bad will and lost 
sales results. Reliable forecasts are essential for a company to survive and grow.

In manufacturing, management must forecast the future demands for its prod-
ucts to provide for the materials, labor, and capacity to fulfill these needs. These 
resources are planned and scheduled well before the demands for the products are 
placed on the firm.

In inventory holding locations, (distribution centers, stores, dealers), forecasts 
are essential to the inventory control system. Locations hold thousands of items in 
stock and must anticipate in advance the demands that will occur against each of 
these items. This is needed to have the proper inventory available to fill the custom-
ers’ demands as they come in. In distribution centers, the lead-time is typically two 
or more months and in stores and dealers it is two or more days. Management must 
plan in advance for how much inventory to have available. With each item in the in-
ventory, forecasts are needed for the months over the planning horizon. The forecast 
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is the catalyst that determines when to buy and how much. In a typical inventory 
system, the forecasts are revised once a month for each item in every location, and 
decisions on when and how much to buy is run daily.

Demand forecasting is a term more recently coined to define the forecast of de-
mands for items in stock. The demands are from customers who want to purchase 
the item for immediate use. A part number, style number, product number, and so 
forth identifies each item; and the demand is for the item at a particular stocking lo-
cation. The term stock-keeping-unit (sku) represents an item at a particular location.

1.1.2 � At the Beginning

Eli Whitney in 1797 used assembly lines to mass-produce muskets for the US gov-
ernment. All the parts of the musket were produced with the same engineering tol-
erances so that each could be inserted into any musket. In this way, the parts and 
components were standard. From that era on, as soon as mass production of items 
became a reality, and the items were offered for sale to the public, forecasts on the 
number of future sales of the items was needed to determine how many items to 
produce over the near planning horizon.

Standard parts were also used in the design of the finished good items. Over 
time, with customer use, some of the parts wore-out or were damaged in use, and 
the customers could purchase a replacement part to reinsert in the finished good 
item. Thereby forecasts were also needed on each replacement part. An extra sup-
ply of inventory was needed to provide for the projected replacement needs. The 
replacement parts are now called service parts.

The forecasting methods of products and replacement parts were limited since data 
collection and large computations were inaccessible, slow and difficult. It was not 
common to save the quantity of sales by item over the prior time periods, and com-
putation mechanisms were not available to help in the mathematical manipulations.

1.1.3 � Calculators

In the 1800s, a few mechanical calculators that could add and subtract were pro-
duced. The face of the machines included rows and columns of buttons to press to 
insert the numbers. These machines were slightly helpful to the person responsible 
to forecast future demands of each item. Mechanical calculators became more com-
mon in the early 1900s, and by the 1950s they were able to add, subtract, multiple 
and divide numbers. However, the machines were noisy and wearing on the user.

In the 1960s, battery and electronic handheld calculators became available and 
some had printing capability. As the prices of these newer calculators became cheaper 
and their use more popular, the need for mechanical calculators diminished and soon 
the mechanical units fell out of use in the workplace. Still, those persons responsible to 
project (forecast) the sales of items were limited to the mathematical functions avail-
able (add, subtract, multiply, divide, square root) in the newer electronic calculators.
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1.1.4 � Data Processing

In the meantime, automatic data processing was starting with the introduction of 
the punched card system in the late 1880s by Herman Hollerith. The first success-
ful application of this system occurred during the 1890 US Census. Subsequently, 
the system was oriented for commercial use, and slowly the punched card system 
improved. By 1928, the card had capacity of 80 columns and 12 rows. A host of 
machines (card punchers, collators, sorters, interpreters, so on) became available to 
process the cards for a variety of functions. The punched card allowed the storage 
of numbers so that the machines could be used to process the numbers in a variety 
of ways. This capability allowed the forecaster more flexibility in the collection and 
computations needed to forecast future demands on each item.

Electronic processing grew in the 1950s when magnetic tapes were introduced 
to store the numbers. The tapes and the cards were used together to process the 
numbers for all types of commercial companies. The use was for payroll, invoicing, 
inventory, account receivable and so forth. But as before, the primary mathematical 
functions of the systems were adding, subtracting, multiplying, and dividing. The 
people responsible for developing forecasting methods were limited to the capabili-
ties of the machines available to them in that era.

1.1.5 � Forecasting Pioneers

Looking back, three individuals (Brown, Holt, Winters) were the pioneers in de-
mand forecasting. They developed forecast models that are still in common use 
today. All three used a method called exponential smoothing that requires only the 
demand from the most current time period. In the 1950s, it was not common to store 
and save multiple time periods of demand.

In 1956, Robert G. Brown was the first to apply the forecasting method called 
exponential smoothing. The method required the demand from the most recent time 
period (month, week) and a coefficient from the prior time period. The method is 
called single exponential smoothing and requires one coefficient (called the level) 
from the prior time period. The single exponential smoothing method generated 
forecasts for horizontal demand patterns. The method combines the current demand 
entry with the past coefficient and is an easy mathematical step to apply, either 
by data processing or by a hand-held calculator. Brown also introduced a double 
exponential smoothing model to forecast trend demand patterns, and a triple expo-
nential smoothing model to forecast quadratic demand patterns. The single expo-
nential smoothing model is still in high use today and is described fully in Chap. 3. 
The trend and quadratic models are not in common use anymore. In the 1970s, the 
author was privileged to work along with Robert G. Brown on an inventory consult-
ing assignment at a large automotive corporation.

In 1957, Charles C. Holt added a trend component to the exponential smooth-
ing method and this allowed forecasts that included trends up or down. The model 
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requires two coefficients (level and slope). To apply the method, the demand from 
the most current time period is needed, along with two coefficients from the forecast 
model. As before, the current demand is smoothed with the prior forecast coef-
ficients. Holt’s trend method is still is high use today and is described in Chap. 4.

In 1960, Peter Winters, along with Holt, added seasonal components to the expo-
nential smoothing forecasts. The forecast model requires three coefficients, (level, 
slope, and seasonal). Two models were introduced, the multiplicative model and 
the additive model. As in the prior exponential smoothing models, only the demand 
from the most current time period and three coefficients from the prior time period 
are needed to generate the forecast. This model is described in Chap. 5.

1.1.6 � Computer Era

In the 1940s, computers with many thousands of vacuum tubes were developed, 
like the ENIAC for government research use. Moving on to the 1950s, computers 
with transistors became available for use in research facilities.

The author took a graduate course using the then state-of-art ILLIAC computer 
at the University of Illinois in 1957. The input and output mode to the computer was 
by way of a five-hole capacity (half-inch wide) paper tape. The programming code 
was crude and limited in capability. The code was punched onto the paper tape from 
a separate machine and when completed, the paper tape was inserted in the com-
puter for processing. If the code was without any faults, a paper tape was punched as 
the output. The output tape was inserted into another machine that printed the output 
results. The author remembers many agonizing late nights at the computer lab until 
the homework assignment was successful.

In the 1960s, more commercial friendly computers became available, the IBM 
650, IBM 700 series, and later the IBM 1401. Other computer manufacturers in-
cluded Burroughs, Control Data, Honeywell, Sperry-Rand, so forth. Two basic pro-
gramming languages became available for use, COBOL (common business orient-
ed language) for commercial use, and FORTRAN (formula translator) for scientific 
use. From that point on, computer programmers were handed powerful tools that 
could apply to all sorts of developments in research and industry. Inventory control 
was now becoming more accessible to companies since demands from the past 
time periods could readily be stored and used in developing more powerful demand 
forecasting methods.

1.1.7 � Qualification

Demand forecasting can be done using different time periods, e.g., days, weeks, 
months or quarters. Once the time period is chosen, the demand history for these 
periods of time in the past are used to project the demands for equal length time 
periods in the future. The concepts presented in this book can be used for any type 
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of time period. However, to avoid confusion and complexity, the author has chose to 
write this book using only monthly time periods. Conversion to other time periods 
is left up to the reader.

1.2 � Chapter Summaries

The following is a list of the remaining chapters and a quick summary on the con-
tent of each.

Chapter 2. Demand History  Forecasts are necessary for each part in every stock-
ing location as they are used in the stocking decisions on when to replenish the stock 
and how much. The forecasts are typically revised each month as the new monthly 
demand entry becomes available. The forecasts are based on the history flow of the 
demands over the past months. The more accurate the demand history, the better 
the forecasts. The typical inventory system saves anywhere from 12–36 months of 
demand history.

The data to save is the monthly demand history, denoted as, x(1), …, x(N), where 
x(t) is the demand in month t, t = 1, the oldest month in the history, and t = N, the 
most current month. The demand history to save varies depending on the stock keep-
ing facility. Often, the database history includes the monthly demands and monthly 
lines, where each customer order represents a line and the quantity on the order is 
the demand. At the end of each month, the total demands and lines are tallied for the 
month. The database may also include the demand-to-date for the current month as 
it is progressing. In service parts distribution centers, the demands from dealers are 
often classified as either regular or emergency. For distribution centers that supply 
retail stores, the demands may be labeled as new stock and replenish stock. New 
stock includes the initial delivery to the stores. Some stocking facilities save their 
demands on a weekly basis rather than monthly.

Plants often operate with fiscal (rather than calendar) months that are denoted 
as 445 or 454 or 544. Some distribution centers have demands that are classified 
as either regular demands and as other-requirements. Other requirements are from 
out-of-the-ordinary customers. In some distribution centers and stores, the demands 
may be partitioned as regular demands and as promotion demands. Another type 
of demand is called advance demand and this occurs when a distribution center 
receives a customer order that is not to be shipped until some future date. When de-
mands are shipped incorrectly, the customer returns the stock to the stocking loca-
tion and these are labeled as return demands. Sometimes unusual events occur that 
cause a spike in the demand, or an error happens in order entry where the quantity or 
part number enters incorrectly, causing the entry on the database to be significantly 
different from the normal flow and is called an outlier demand. This type of demand 
is damaging to the forecasts and needs to be found and adjusted accordingly, prior to 
the forecasts. The flow of the demands, called the demand pattern, is mostly of the 
horizontal, trend or seasonal type. The chapter describes a way to convert fractional 
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forecasts to integer forecast; and how to compute cumulative forecasts for the future 
months. Some statistics from an actual inventory system is presented.

Chapter 3. Horizontal Forecasts  Perhaps the most typical demand pattern is the 
horizontal where the month-to-month demands fluctuate above and below a path 
(called the level) without any trend or seasonal influence. This chapter describes 
five horizontal forecasting models. These forecast models are here called the fol-
lowing: horizontal forecast, horizontal moving average forecast, horizontal dis-
count forecast, horizontal smoothing forecast, and forecasts using 2 stages. In all 
situations, the concept of raw and integer forecasts is shown. For each of the mod-
els, monthly raw forecasts are generated in fractional form. A corresponding set of 
forecasts is called integer forecasts and these are converted from the raw forecasts 
by way of the rounding algorithm. A key measure of the forecasts is the standard 
deviation of the one-month forecast errors. This measure is needed subsequently 
when inventory decision are computed. Another useful measure, the coefficient-of-
variation, is a relative way to measure the forecast error.

Chapter 4. Trend Forecasts  Some of the items stocked in the inventory have 
demand patterns where the month-to-month level is gradually increasing (or 
decreasing) in a steady way, and thereby, a trend forecast model is called. The model 
has two coefficients, a and b, where a is the intercept and b is the slope. Three such 
models are described here: trend regression forecasts, trend discount forecasts and 
trend smoothing forecasts. The trend regression forecast model generates a straight 
line fit through the most recent N history demands giving equal weight to each his-
tory demand. The trend discount forecast model also uses the N most recent history 
demands, but gives relatively less weight to each older demand. This model is based 
on a discount parameter, β, that specifies how to apportion the weight to each older 
demand entry. The trend smoothing forecast model revises the forecast coefficients 
as each new demand entry becomes available. The model has two parameters, α and 
β, that are used to revise the trend coefficients, (a, b), at each month. All three of 
the forecast models generate forecasts that are in fractional numbers and are here 
called raw forecasts. The forecasts are converted to integers using the cumulative 
rounding algorithm described in Chap. 2. For latter use, in inventory control, the 
standard deviation of each of the forecast models is also generated each month. For 
comparative sake, the coefficient of variation, cov, is also generated each month. 
Three forecast models are described for dampening the fast declining forecasts.

Chapter 5. Seasonal Forecasts  Seasonal forecasts are needed when the demands 
over a year have a cyclical flow such as the rise for light clothing during the sum-
mers; heavy clothing during the winters; school supplies in late summers; antifreeze 
during the winters; golf balls in the summers; cold tablets in the winters; and sun-
glasses in the summers. Two forecast models are described: the seasonal smooth-
ing multiplicative forecast model, and the seasonal smoothing additive forecast 
model. Perhaps the most common application of the model is when the demands 
are monthly covering 12 months in a year. The seasonal multiplicative model is 
described fully with example data. The model has two stages: first is to initialize 
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the forecasts using the most current N history demands, and second is to revise the 
forecasts as each new monthly demand becomes available. The model includes a 
trend component and twelve seasonal ratios for each month of the year. The trend 
component could be flat, rising or falling, and the seasonal ratios could vary for 
each month of the year indicating an increase or decrease in the demands for the 
month relative to the trend. The model requires three smoothing parameters that 
assign higher weights to the more recent demands in the history. This way, the fore-
casts can readily react to any changes in the demand flow of the items in forecast. 
For brevity, an abridged discussion of the seasonal additive model is presented.

Chapter 6. Promotion Forecasts  Promotions come in various ways: price reduc-
tion, buy one get one free, zero interest, no money down, and so on. They often 
occur when a supplier or a stock location offers a price incentive of some sort to 
the customers to buy now with enticements for purchases in larger quantities. The 
promotion typically has a start-date and end-date, and the demand during these 
days is relatively higher than the normal non-promo days. This situation causes 
wild fluctuations in the demand history and upsets the forecasting model in use. 
The standard deviation increases and the forecast coefficients swing out of normal 
control. Special adjustments are needed in the forecast models to overcome the 
fluctuations. Two forecast models are described here to accommodate the promo-
tion activity: the promotion horizontal model and the promotion trend model. Both 
of the models involve two stages: the initial stage and the revision stage. The initial 
stage is the first estimates of the coefficients of the model. This stage requires N 
history months of demands and promotion measures. The coefficients of the model 
are estimated using regression methods where equal weight is given to each of 
the history months. The revision stage is used for the months after the initial stage 
where the coefficients are revised every month with each current month’s data using 
the smoothing method. The standard deviation and the coefficient of variation are 
computed for each of the two stages.

Chapter 7. Multi SKU Forecasts  An sku is an abbreviation for the term stock-
keeping-unit that identifies an item being in the inventory at a stocking location. 
Could be a part number, a product number, a style number, so forth. Should a model 
of a certain tool be in stock at a dealer, it is an sku at that dealer. If the same model 
is in stock in 1000 dealers, it is an sku in each of the 1000 dealers. It is also an sku 
at each distribution center that stocks the model. A truck parts dealer typically has 
15,000 skus and a truck distribution center may have 100,000 skus. A shoe store in 
the mall may have 2000 skus in shoes alone, since each style by size and width is 
a separate sku. Forecasts are needed for each sku (usually monthly) to use in the 
inventory stocking computations.

When a part is stocked as a service part in an inventory system with five distri-
bution centers (DC), the part is an sku in each of the DC’s. Forecasts are needed 
for each part by location to arrange for the proper stock at each location. A forecast 
is also needed for the aggregate demands of the part in all locations so economic 
replenishments of the part from the supplier can be determined.
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Consider a style shoe with 36 size and width combinations. Each size and width 
for the style shoe is an sku. Forecasts are needed for each size and width to be used 
in the inventory decisions at the distribution centers and at each store. The forecast 
is typically generated for the style itself, and this forecast is apportioned down to 
each of the size and width combinations. The same scenario also occurs in clothing, 
like men’s shirts, with different sizes, and so forth.

This chapter describes two common ways to forecast when multiple skus are of 
concern in an inventory system, the top-down method and the bottom-up method. 
Top-down is when the aggregate demand history is used to forecast the demands 
over the future months. The aggregate forecast is then allocated down to each sku 
using an sku percent representing it’s portion of the total demand. This way, the 
forecasts for the total and for each sku are generated in a systematic manner. The 
bottom-up method is in use when a forecast is generated for each sku and the sum 
of the sku forecasts are used to determine the forecast for the total.

In both methods, the standard deviation of each forecast is of need for subse-
quent use in inventory decisions. Methods are shown on how to compute the stan-
dard deviations for each sku and for the total when the top-down and bottom-up 
methods are in use.

Chapter 8. Forecast Sensitivity  Along the supply chain, in distribution centers, 
stores, dealers, so forth, forecasts are in continual need for inventory decisions to 
project the flow of demands over the future months for each item stocked. The more 
accurate the forecasts, the better the inventory decisions and the more profitable the 
entity. A 10 % decrease in the measure of the forecast error will result in approxi-
mately a 10 + percent decrease in the amount of safety stock needed. This reduced 
stock is very helpful to the profit margin on the inventory system.

In this chapter, a series of simulation runs are developed to apprise the forecaster 
on how some elements in forecasting affect the accuracy of the forecasts. For this 
purpose, the forecast accuracy is measured by the coefficient of variation, cov, of 
the one-month ahead forecast error. A first series of tests concern the number of 
months of demand history to use in developing the forecasts. The cov is measured 
as the history of demands range from 6 to 48 months and the forecasts are for the 
horizontal and trend demand patterns. A second series of tests are aimed at measur-
ing how forecast accuracy depends on the choice of parameters and forecast model 
selected. Three separate simulations are run; one for the horizontal demand pattern, 
another for the trend demand pattern, and yet another for the seasonal demand pat-
tern. A third series of tests demonstrate how damaging outlier demands are to the 
forecasts and the forecast accuracy. Two examples are given, one for a horizontal 
demand pattern and another for a trend demand pattern.

Chapter 9. Filtering Outliers  A primary goal of forecasting is to measure the flow 
of demands from the history months and project to the future months with a mini-
mum forecast error. A way to enhance this goal is by filtering the history demands 
to seek out any outlier demands and adjust accordingly. As demonstrated in the 
prior chapter, outlier demands cause much damage to the forecasts and increase 
the forecast error. Filtering of the demand history is not an easy process, but is 
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important to yield forecasts with minimal forecast error. Reducing the forecast error 
will reduce the amount of safety stock needed to run the inventory operation. This 
chapter shows a way to seek out and adjust any outlier demands from the history 
months when the demand patterns are of the horizontal, trend or seasonal type. The 
filtering process takes place just prior to generating the forecasts.

Another way to minimize outlier demands is by filtering the line demands that 
occur in the order entry phase of the inventory stocking location. This is when the 
customers send in the purchase orders and list on each line of the order, a part num-
ber and a quantity. This part number request is a line demand and can be filtered to 
seek if it is an outlier. If an outlier is detected here, the line demand is sent back to 
the customer seeking verification on the quantity.

Chapter 10. Standard Normal and Truncated Normal Distributions  The nor-
mal distribution is perhaps the most commonly used probability distribution in 
materials management as well as in many other scientific developments. This chap-
ter shows how the variable x, from the normal, is related to the standard normal 
distribution with variable z. A portion of the standard normal contains all values of 
(z > k) where k is a specific value of z. Of particular interest in subsequent use is the 
partial mean and partial standard deviation of the measure (z-k) from this portion 
of the standard normal. Another useful distribution is the truncated normal that also 
is defined with a parameter k. This distribution has many shapes and a measure 
of interest is the coefficient of variation, cov, that helps to identify the shape of 
the distribution. The two distributions, standard normal and truncated normal, have 
applications in inventory control and examples on how they are used appears in 
Chaps. 11 and 12.

Chapter 11. Safety Stock  Safety stock is the extra inventory to hold for an item 
for protection against demands exceeding the forecast. This type of stock concerns 
entities where the demands of the future are not known until they happen, like in 
distribution centers, stores and dealers. In plants, where the production schedules 
are set in advance, safety stock is usually not needed. The typical way to measure 
the variability in the forecasts is by the one month ahead forecast error. A relative 
measure is the coefficient of variation. Two common methods of generating the 
safety stock are: the service level (probability not out of stock), and the percent fill 
(ratio of demand filled over total demand) methods. Both methods are also some-
times referred as the service level method. The normal distribution is used primarily 
to generate how much safety stock to have available. This chapter shows how the 
truncated normal distribution can also serve this function. The truncated normal 
has many shapes and includes only portions of the right-hand-side of the standard 
normal.

Chapter 12. Auxiliary Forecasts  Management often needs forecasts that are not 
like the models described in the earlier chapters that are generated using the flow 
of demands from the history months. This chapter describes some of the more com-
monly needed forecasts of this type. A first concerns the forecasts for the first future 
month and the demand-to-date as the month is progressing. For the first month, a 
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forecast has already been generated, and as the month progresses, the demand-to-
date demand is evolving. The forecast for the remaining portion of the month is 
generated along with the associated standard deviation. Another scenario occurs 
for parts when some demands are ordered for future deliveries, called advance 
demands. A forecast for the future month has already been generated in the usual 
way from the flow of history demands. An adjustment to the future month’s forecast 
is developed based on the advance demand information. Another situation that often 
occurs in service parts inventory is when a forecast is needed on a part even when 
no history demands are available. This happens when a new part is included on the 
bill-of-material of a finished good item due to an engineering change or a redesign, 
and the part is to be immediately held in inventory at the service part location. This 
situation is called the initial buy quantity. Another condition that takes place often in 
service parts locations is when the supplier will stop supplying the part, even when 
the service part location is obliged to carry the part for future possible needs from 
its customers. This is called the all-time-buy.
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2.1 � Introduction

Forecasts are necessary for each part in every stocking location as they are used 
in the stocking decisions on when to replenish the stock and how much. The fore-
casts are typically revised each month as the new monthly demand entry becomes 
available. The forecasts are based on the history flow of the demands over the past 
months. The more accurate the demand history, the better the forecasts. The typical 
inventory system saves anywhere from 12 to 36 months of demand history.

The data to save is the monthly demand history, denoted as, x(1),…, x(N), where 
x(t) is the demand in month t, t = 1, the oldest month in the history, and t = N, the 
most current month. The demand history to save varies depending on the stock keep-
ing facility. Often, the database history includes the monthly demands and monthly 
lines, where each customer order represents a line and the quantity on the order is 
the demand. At the end of each month, the total demands and lines are tallied for the 
month. The database may also include the demand-to-date for the current month as 
it is progressing. In service parts distribution centers, the demands from dealers are 
often classified as either regular or emergency. For distribution centers that supply 
retail stores, the demands may be labeled as new stock and replenish stock. New 
stock includes the initial delivery to the stores. Some stocking facilities save their 
demands on a weekly basis rather than monthly. Plants often operate with fiscal 
(rather than calendar) months that are denoted as 445 or 454 or 544.

Some distribution centers have demands that are classified as either regular de-
mands and as other-requirements. Other requirements are from out-of-the-ordinary 
customers. In some distribution centers and stores, the demands may be partitioned 
as regular demands and as promotion demands. Another type of demand is called 
advance demand and this occurs when a distribution center receives a customer order 
that is not to be shipped until some future date. When demands are shipped incorrect-
ly, the customer returns the stock to the stocking location and these are labeled as re-
turn demands. Sometimes unusual events occur that cause a spike in the demand, or 
an error happens in order entry where the quantity or part number enters incorrectly, 
causing the entry on the database to be significantly different from the normal flow 
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and is called an outlier demand. This type of demand is damaging to the forecasts 
and needs to be found and adjusted accordingly, prior to the forecasts. The flow of 
the demands, called the demand pattern, is mostly of the horizontal, trend or seasonal 
type. The chapter describes a way to convert fractional forecasts to integer forecasts; 
and how to compute cumulative forecasts for the future months. An inventory profile 
section is given that summarizes some revealing statistics on the demand history and 
forecast results that are taken from an actual large inventory holding system.

2.2 � Customer Demand History for a Part

The demand history (for a part) is the main data used to generate a forecast for the 
future months. The history of customer demands is usually denoted as: x(1), …, 
x(N) where x(t) is the demand in month t. For newer parts, N is also the number of 
months of history since the part was introduced. For long time parts, N may be cut 
off to 12, or 24 or 36 months depending on the discretion of the management. The 
number of lines for month t, n(t), is also useful information and the history is here 
denoted as: n(1),…, n(N). Using the history of the demands and of the lines, it is 
possible to compute the history of pieces-per-line and this is denoted as: d’(1), …, 
d’(N) where d’(t) = 0 if n(t) = 0, otherwise, d’(t) = x(t)/n(t). Note also, the number of 
pieces for line i in month t is here denoted as: d(i, t) i = 1, …, n(t). The corresponding 
demands for month t is tallied from: x(t) = d(1,t) + … + d(n(t),t).

In summary, the notation on the demand history of a part is denoted as follows:

N = number of months history saved
t = 1,…, N = demand history months
x(t) = demands in month t
n(t) = number of lines in month t
d’(t) = x(t) / n(t) = pieces-per-line in month t

2.3 � Demand-to-Date

Another piece of demand data that may become useful occurs in the first future 
month of forecasts as time rolls on. This is the month immediately after month t = N 
that has been previously labeled as the last month of the history months. In month 
N + 1, the first subsequent month after t = N, the demands to date for a part, are here 
labeled as xw, and the corresponding portion of time of this month, is labeled as w. 
This data is dynamic. the entry xw will change with each new demand in the month, 
and w will change with each day of the month. This data is useful to determine the 
integrity of the month-1 forecast, as the month progresses.

A summary of the data for the current month to date is below:

xw = demand for current-month-to-date
w = portion of current month-to-date (0 w 1)≤ ≤
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2.4 � Service Part Regular and Emergency Demands

In a service parts distribution center, DC, of finished goods items (autos, trucks, 
farm equipment, construction equipment) the DC carries service parts to fill the 
demands that come from its dealers. The demands are of two type, regular and 
emergency. When a customer orders with a regular line, this is generally to provide 
stock needed for a subsequent need as it may occur at the dealership, whereas, 
the quantity on an emergency line is needed to immediately maintain or repair a 
finished-good-item that is in the dealership in a down status. Typically, the average 
number of pieces per line for a regular line is larger than for an emergency line.

Some of the data that is useful in this situation is listed below:

x(t) = monthly service part demands from customers
xr(t) = regular service part demands from customers
xe(t) = emergency service part demands from customers

p(r) = probability a line is regular demand
p(e) = probability a line is an emergency demand

nr(t) = number of regular lines in month t
ne(t) = number of emergency lines in month t
n t nr t ne t( ) ( ) ( )= +  = number of lines in month t
dr(i, t) = number of pieces for i-th regular demand in month t
de(i, t) = number of pieces for i-th emergency demand in month t
dr̀  = average of regular pieces per line
dè  = average of emergency pieces per line
x t dr dr de de1 t nr t t 1 t ne t t( ) ( , ) ( ( ), ) ( , ) ( ( ), )= +…+ + +…+    = demands for month t

2.5 � New and Replenish Stock Demands  
for Retail Items at DC

Consider a distribution center, DC, for finished-good-items that supplies the stock 
to retail stores. This could be for shoes, sweaters, furniture, and so on. The sales-
person for the DC may visit the stores in his/her territory and arrange to provide a 
quantity of stock to be stocked for sale for the store customers to view and purchase. 
This stock is not a true demand at this point, but is here called a new stock demand. 
Subsequently, should sufficient sales of the item be sold to the store customers, the 
store may reorder more stock from the DC. This new line of demands is here called 

x t xr t xe t( ) ( ) ( )= +

p r p e 1( ) ( )+ =
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replenish stock demands. The initial new stock demand is not really a demand until 
the customer sends in an order to the DC for replenish stock on the item. In the event 
the store cannot sell the new stock, the store might return part or all of the new stock 
that it was initially provided by the DC.

Below is a summary of the data for the supplier of this scenario:

xn(t) = new stock demand at month t
xr(t) = replenish stock demand at month t
x t xn t xr t( ) ( ) ( )= +  = total demand at month t

2.6 � Weekly Demands

Most plants and many retailers operate on a weekly basis and thereby cumulate 
their requirements and demands weekly. The plants typically schedule their produc-
tion activities weekly and thereby plan accordingly. Many retail stores also sched-
ule their replenish and promotion plans on a weekly basis. Weekly demands tend 
to fluctuate more than the counterpart monthly demands, and thereby subsequent 
weekly forecasts are less accurate than monthly forecasts. Weekly demands also 
are more compatible to horizontal and trend forecast models, whereas, monthly 
demands are compatible to horizontal, trend and seasonal forecast models.

Some of the data notation for weekly demands is listed below:

w(t) = demand at week t
Nm= 12 = number months in a year
Nw= 52 = number weeks in a year
Nw/Nm= 4.33 = average weeks in a month
w`  = forecast for an average week’s demand

if w` is the forecast:

x` = 4.33w`  = forecast for an average month
σw

2 = variance of weekly demands
σ σx

2
w
24 33= .  = relation between variance for monthly and weekly demands

σ σ σx w w2 8= =4 33 0. .  = standard deviation for monthly demands
σ σ σw x x1 2 8 481= =/ . .0 0  = standard deviation for weekly demands

If x` is the monthly forecast:

w` (1/ 4.33)x`=  = forecast for an average week

2.7 � 445 Fiscal Months at Plants

Many plants operate on a fiscal monthly basis of the 445 type. This is when the 
first three fiscal months of the year are defined as follows: the first four weeks 
of the year represent fiscal January, the next four weeks are fiscal February, and 
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the next five weeks are fiscal March. The pattern repeats for the remaining nine 
fiscal months of the year. The fiscal months may also be defined as 454 instead 
of 445, or by 544 instead of 445. In either case of 454 or 544, the fiscal months 
are defined by the stated number of weeks in the month. This way of defining the 
fiscal months ensures that there are twelve fiscal months in a year, and also satis-
fies the plant’s desire to end each fiscal month on the same day of the week, e.g.  
Saturday.

In summary, the months of the year can be of the calendar type or of the fiscal 
type as described above. The three options for fiscal months are defined as below.

445 is for fiscal January, February and March.
454 is for fiscal January, February and March.
544 is for fiscal January, February and March.

The pattern is repeated for the remaining 9 months of the year

2.8 � Regular Demands and Other Requirements at DCs

A distribution center of service parts is structured to house inventory for its regular 
customers (dealers) so that the stock is available when the customers send in their 
orders. The demand history is the data that is used to generate the DC forecasts 
covering the future months of demands. The forecasts are the tools that allow the 
DC to properly provide stock for the customers accordingly. On some occasions, 
usually infrequently, an order will come in from a non-regular customer for one or 
for a variety of parts. This non-regular customer could be from an overseas loca-
tion, or a government facility or the military. In any event, the demand is not from 
the regular set of customers that the forecast covers. It also is often a demand for a 
future time period, perhaps to be delivered in a future month from the date of the 
order. This demand is here called an: other requirement. The demand is not included 
in the history of demands that are used to forecast the demands of the regular type 
demands. The demand is added to the forecasts for the future months and becomes 
part of the total requirements for the part. The inventory replenishment side of the 
computations needs to provide stock to cover the forecast of regular demands and 
also for the other requirements.

Below is a summary of the data described for this scenario.

x(t) = regular demands at t
xo(t) = other requirements at t
r(t) x(t) xo(t)= +  = total requirements at t
x(t) t = 1 to N is used to forecast the demands from the regular customers for the 
future months
xo(τ) = other requirement for future month τ and is any demand from a non-regular 
customer base (overseas customer, military order, etc.)
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2.9 � Regular and Promotion Demands at DCs and Stores

Promotions of various type occur from time to time at the DC or at the dealers. A 
common promotion is when the supplier offers a discount on the price for all units 
sold from day d1 to day d2. This could be for one item or for a line of items. The 
units sold during the promotion period are recorded and identified as promotion 
demands. The portion of the months that are included in the promotion period could 
also be recorded. This data is useful in generating forecasts for the future months, 
when there is no promotion and when there is a promotion.

One way to capture the demands associated with a promotion is as follows. Let 
p(t) = portion of month t where a promotion is active. If the promotion runs from 
d1 = June 14 to d2 = July 14, and June is month t = 6, p(6) = (30-13)/30 = 0.57; and 
p(7) = 14/31 = 0.45. In any month t with no promotion, p(t) = 0. Further, the demands 
during the promotion period are saved as xp(6) for June, and xp(7) for July. Subse-
quent computations allow the forecaster to use this data in generating the forecasts.

A review of the data when promotions are involved is listed below:

p(t) = portion of month t when a promotion is live
xr(t) = regular demands at t
xp(t) = promotion demands at t
x t xr t xp t( ) ( ) ( )= +  = total demands at t

2.10 � Advance Demands

On some occasions, a customer places an order for stock to be delivered in a future 
date, usually a month or two in the future. This demand is not for the current month 
and thereby is not recorded as a demand in the current month. Instead, the demand 
is labeled as advance demand, for the future month as the order calls. This advance 
demand is important information and could be used to adjust the forecast for the 
named future month.

The data (quantity and month) recorded for this demand is the following:
xa(τ) = advance demand for τ-th future month

2.11 � Demand Patterns

There are three basic demand patterns: horizontal, trend and seasonal. Horizontal 
occurs when the demands are neither rising of falling over time whereby the aver-
age is relatively steady. Trend is when the demands are gradually increasing or are 
decreasing over time. Seasonal is when the demands vary by the months of the 
year, and the pattern repeats every year. Two versions of the seasonal pattern occur: 
seasonal multiplicative and seasonal additive. Often, low volume parts are of the 
horizontal type. Mid to high volume parts could follow any of the three demand 
patterns.
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Letting µ(t)represent the average demand at month t, the demand patterns could 
be defined as follows:

Horizontal

Trend

Seasonal multiplicative:

r(t) = seasonal ratio at month t
r(t) = 1 when month t demand is same as the trend (a + bt)
r(t) > 1 = when month t demand is higher than the trend
r(t) < 1 = when month t demand is lower than the trend

Seasonal additive:

d(t) = seasonal increment at month t
d(t) =0 = when month t demand is same as the trend
d(t) >0 = when month t demand is higher than the trend
d(t) <0 = when month t demand is lower that the trend

2.12 � Return Demands

As an order comes in to a stocking facility with a line of items, each line lists the 
part and the quantity to ship to the customer. Should an error occur by incorrectly 
picking the part, in typing the part number or the quantity, the part and quantity are 
nevertheless shipped to the customer. When the customer discovers the fault, the 
pieces are returned to the supplier and are here called returned demands. The de-
mand history is in error for the part when this event occurs, and a correction to the 
demand history should be made accordingly.

Suppose the data associated with a returned demand is the following: xr(to) = stock 
returned at month to. With this data in hand, a routine is needed to estimate where 
this demand came from. One possibility is to scan the demand history of the part, 
x(1), …, x(N) and find the most recent month, t1, where x(t1) ≥  xr(to) and where 
t1 ≤  to, and then adjust the demand entry at t1 as: x(t1) = x(t1) − xr(to).

µ(t) a a level= =

µ(t) a bt b slope= + =

µ( ) ( ) ( )t a bt r t= +

µ( )t (a + bt) + d(t)=
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2.13 � Outlier Demands

On occasion, the demand history may include a demand entry that is significantly 
beyond the flow of the normal demands in the history. This demand is here called 
and outlier demand. Outlier demands are mostly above the normal flow of demands. 
An outlier demand could occur in several ways, one is when the demand is ordered 
for a wrong part, or the quantity ordered is mistyped. This could also occur due to 
unusual weather conditions, e.g., windshield wiper demands when an unusual ice 
storm occurs. Outlier demands are very damaging to the accuracy of the forecasts 
and as much as possible, prior to generating the forecasts, they should be detected 
and adjusted accordingly.

A routine is needed to seek if any demand entry, say x(to), in the history of de-
mands, x(1), …, x(N), is significantly outside the flow of its neighbor demands. 
Should a demand entry be found, the entry is adjusted accordingly, ideally to fall in 
line with the flow of all the demand entries.

2.14 � Coefficient of Variation

The coefficient of variation, cov, is a relative way to measure the forecast error as-
sociated with a part. This is computed by cov = (σ/a), where a is the level, and σ 
is the standard deviation of the one period ahead forecast error. The level, a, is a 
measure used in forecasting to represent the average flow of demands in the most 
current month. When a seasonal demand pattern is in effect, the level represents a 
measure of the seasonally adjusted demand for the current month. The cov is always 
positive, and the closer to zero, the more accurate the forecasts.

2.15 � Demand Distribution

It is possible to estimate the probability distribution of the forecast errors associated 
with each part. The one month ahead forecast error for month t would be: e= (x` − x) 
where x̀  is the forecast of the month’s demand and x is the actual demand. The 
shape of the probability distribution is important in the subsequent computations 
where the inventory control on the part takes place, when determining the safety 
stock that complies with the desired service level specified by the management.

Recall, the level, a, represents the average flow of demands at the current time, 
and σ is the standard deviation of the one month forecast error. Further, cov = σ/a is 
a relative measure of the forecast error on the part. In the event the forecast errors 
are shaped like a normal distribution, cov is near or less than 0.33. In the event cov 
is close to 1.00 or above, the distribution is called lumpy and is more like an expo-
nential distribution, which is far different than a normal distribution.

Very often in forecasting, the cov on a part is not in the neighborhood of 0.33, 
but is much higher. This is especially true on parts where the demands are of the 
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low volume type. The inventory management is here cautioned not to always as-
sume the normal distribution in the inventory analysis for the parts where the cov 
is relatively high.

2.16 � Cumulative Round Algorithm

The demand forecasting models of this book will generate forecasts that are in frac-
tional form, and are here called raw forecasts. The typical inventory system will 
convert these fractional forecast to integers. A way to do this is introduced below 
in pseudo code and is called the cumulative round algorithm (CRA). The notation 
uses f(τ) as the raw forecast for future monthτ (τ = 1 to N`) where N` is the number 
of future months, and x̀ (τ) is the associated integer forecast.

2.17 � Cumulative Forecasts

Often, forecasts are needed for an accumulation of future months. If the monthly 
forecast is denoted as x̀ (τ) for future month τ, and the cumulative forecast for T 
future months is X`(T), the computations are as below.

and so forth.

2.18 � Inventory Profile

In this section are some statistics from the service parts division of a large au-
tomotive corporation with over 100,000 part numbers and annual demand over 
$ 1 billion. The service part division includes multiple locations in North America.

Table 2.1 lists the percent of part numbers (% N), by number-months-of-demand-
history (NMH). Note, 7.0 % of the part numbers have 1–12 months of demand  

If T 3 (3) x (1)  x (2) x (3)X= = + +, ` ` ` `

If T  17 X 17 x (1) 0 7x 2= = +. , ( . ) . ( )` ` `

If T X x (1)= =0 6 0 6 0 6. , ( . ) .` `
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history, while 77.8 % have over 36 months of demand history. Note, the system 
generates roughly 7 % of new parts each year; and assuming equilibrium, about 7 % 
of the parts are discarded each year as well. The database holds the most current 36 
months of demand history on each part number.

Table  2.2 gives the results of the outlier filtering algorithm, where 74.7 % of 
the part numbers (%N) had no outlier detected, 0.1 % had a low outlier detected, 
and 25.2 % had a high outlier detected. The filtering process checks all 36 months 
of demand history in each of the distribution centers. Each of the 36 demands are 
checked in every distribution center and should any be significantly out-of-the-or-
dinary, the part is labeled as an outlier.

Table 2.3 lists the type of forecast model by percent of part numbers (%N), and 
percent of annual demand in dollars (%$). The table shows where 52 % of the part 
numbers had a horizontal forecast model and this amounted to 4 % of the annual 
demands in dollars. Note also where 4 % of part numbers have a seasonal forecast 
model and they amount to 27 % of the annual demands in dollars.

Table 2.4 gives the monthly growth rate, g, of the part numbers, by percent of 
part numbers, (%N), and percent of annual demand in dollars, (%$). The monthly 
growth rate was computed by: g=(a+b)/a where a is the level and b is the slope. 
Note, 74 % of the part numbers had a monthly growth rate of (0.995–1.005) and 
these parts amounted to 36 % of the annual demands in dollars.

Table 2.5 gives the monthly coefficient of variation, cov, by percent of part num-
bers (%N), and percent of annual demand dollars (%$). The table shows where 26 % 

NMH %N
1–12 7.0
13–24 6.7
35–36 8.5
37+ 77.8
Sum 100

Table 2.1   Percent of part 
numbers (%N), by number-
months-of-demand-history 
(NMH)

Outlier Type %N
none 74.7
low 0.1
high 25.2
Sum 100

Table 2.2   Percent of part 
numbers (%N), by outlier 
type (none, low, high)

Forecast Type %N %$
horizontal 52 4
trend 44 69
seasonal 4 27
Sum 100 100

Table 2.3   Percent of part 
numbers (%N) and percent of 
annual demand dollars (%$), 
by forecast type (horizontal, 
trend, seasonal)
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of the part numbers had a cov of (0.0–0.3) and these amounted to 68 % of the annual 
demand in dollars. Note, 50 % of the parts have irregular (lumpy) demands since 
the cov is 0.80 or larger. But these parts are a combination of low volume and low 
value since they amount to only 9 % of the annual dollar demand. 84 % of the annual 
dollar demands are from parts with a cov of 0.5 or less.

Summary

The more precise and detailed the demand history on each part in the stocking loca-
tion, the more flexibility and accurate the forecasts become. In the typical stocking 
location, the demand history is saved in calendar monthly or weekly buckets. Plants 
often save their demands in fiscal 445 type monthly buckets. One or more years of 
demand history is needed to generate the forecasts. Various type of demands are 
saved, depending on the operation of the stocking location. The various type of 
demand include the following: regular, emergency, advance stock, regular stock, 
promotion, other-requirements, new stock, advance demands and return demands. 
In some stocking locations, the history of the number of customer lines is saved and 
becomes useful in generating the forecasts. Sometimes outlier demands creep into 
the demand history and it is important to seek out and adjust the outliers accord-
ingly. The more accurate demands, the better the forecasts. Care in the forecasts is 
essential, since good forecasts will minimize the events of lost sales, backorders and 
surplus. The coefficient of variation, cov, is a useful relative measure on the forecast 
accuracy of a part. Also described is the cumulative round algorithm that converts 
fractional forecasts into integer forecasts. Also of occasional need are cumulative 
forecasts for various durations of the future months.

Growth Rate %N %$
1.030– 1 3
1.005–1.030 14 29
0.995–1.005 74 36
0.970–0.995 10 30
–0.970 1 2
Sum 100 100

Table 2.4   Percent of part 
numbers (%N), and percent 
of annual demand dollars 
(%$), by monthly growth 
rate (g)

COV %N %$
0.0–0.3 26 68
0.3–0.5 12 16
0.5–0.8 12 7
0.8–1.0 10 4
1.0– 40 5
Sum 100 100

Table 2.5   Percent of part 
numbers (%N), and percent 
of annual demand dollars 
(%$), by 1-month coefficient 
of variation (COV)
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3.1 � Introduction

Perhaps the most typical demand pattern is the horizontal where the month-to-
month demands fluctuate above and below a path (called the level) without any 
trend or seasonal influence. This chapter describes five horizontal forecasting 
models. These forecast models are here called the following: horizontal fore-
cast, horizontal moving average forecast, horizontal discount forecast, horizontal 
smoothing forecast, and forecasts using 2 stages. In all situations, the concept of 
raw and integer forecasts is shown. For each of the models, monthly raw forecasts 
are generated in fractional form. A corresponding set of forecasts is called integer 
forecasts and these are converted from the raw forecasts by way of the rounding 
algorithm. A key measure of the forecasts is the standard deviation of the 1-month 
forecast errors. This measure is needed subsequently when inventory decision are 
computed. Another useful measure, the coefficient-of-variation, is a relative way 
to measure the forecast error.

3.2 � Horizontal Forecasts

When the least square method is used to generate a horizontal forecast model, a pa-
rameter N specifies the number of history demands to use in the forecast. The most 
recent N demands are denoted as x(1), …, x(N) where x(t) is the demand in month 
t, t = 1 is the oldest month, and t = N is the most recent month. The forecast for the 
τ-th future month is

where a is called the level representing the average demand per month.

f ( ) a 2 . , . .1,τ τ= =
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The estimate of the level is obtained by formulating the expression on the sum 
of squares, S(e), as below,

where e(t) = [x(t)  −  a] is the residual error at history month t. The value of the level, 
a, that yields the minimum of S(e) is called the least squares estimate, and in this 
situation, the level becomes,

3.3 � Raw Forecasts

The forecasts for the τ-th future month is thereby,

This forecast is here called a raw forecast since the forecast values are most likely 
fractions, same as the value of a`.

3.4 � Cumulative Rounding Algorithm

In most systems, the raw forecasts, f(τ), are converted to integer forecasts, denoted 
as x`(τ). Various ways to do this are in use. A cumulative-rounding algorithm (CRA) 
to accomplish is described below in a pseudo code manner. The method assumes N` 
future forecasts are needed.

The algorithm applies for any of the forecast models presented subsequently in 
this book for the purpose of converting the raw forecasts, f(τ), to integer forecasts, 
x`(τ).

Example 3.1  Suppose a part is to be forecast with the horizontal forecast model 
and the forecast parameter is N = 12. Assume the most recent 12 demands are the 
following: 10, 12, 6, 9, 4, 10, 6, 7, 9, 8, 13, 11. Below shows how to find the estimate 

S e( ) ( )= −[ ]=Σ t
N x t a1

2

a N`= =Σ t
N x t1 ( )/

f ( ) a`   1, 2 ...,τ = τ =
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of the level, and generate the raw and integer forecasts for the future months. The 
example further describes how to estimate the standard deviation of the forecast 
error and compute the associated coefficient of variation.

3.5 � Estimate the Level

Using the least squares method, the estimate of the level is obtained by seeking the 
minimum sum of square of errors as shown below:

The residual error for month t, here denoted as e(t), is obtained from, 
e(t) = (x(t) − a`). The associated sum of square of residual errors, referred as S(e), is 
the following:

Using calculus, the value of the level that minimizes S(e) is obtained, thus yielding 
the least sum of square errors. The optimal value of the level becomes

Since, Σ t
N x t= =1 105( )  and N = 12, the estimated of the level is:

3.6 � Raw Forecasts

The raw forecast for the τ-th future month is simply,

3.7 � Integer Forecasts

To convert the raw forecasts to integer forecasts, the algorithm listed earlier is now 
demonstrated where the associated integer forecasts are denoted as x̀ (τ) for τ = 1, 
2, … Table 3.1 is a worksheet that shows how to convert the raw forecasts, f(τ), to 
integer forecasts, x`(τ) for each of the future months, τ = 1 to 12. To begin, d is set 
to zero. At each τ, the raw forecast becomes the integer of [f(τ) + d + 0.5]. The entry, 
d is then revised by d = d + [f(τ) − x`(τ)].

Figure 3.1 is a plot of the 12 history demands, followed by the 12 future integer 
forecasts.

S e( ) ( ( ))= =Σ t
N e t1

2

a N` = =Σ t
N x t1 ( )/

a 105/12 8.75= =`

f ( ) a 8.75   ` ……1, 2,τ = = τ =
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3.8 � Standard Deviation and Cov

The computations to find the estimate of the standard deviation of the forecast er-
rors, and also the corresponding coefficient of variation are now described. The 
estimate of the standard deviation, denoted here as s, is obtained from the sum of 
square of errors, S(e), as follows:

s S e N= −

= −

=
=

( )/( )

. /( )

.
.

1

78 419 12 1

7 129
2 67

Fig. 3.1   Plot of the history demands and the forecasts for Example 3.1

 

Table 3.1   Worksheet to convert raw forecasts, f(τ), to integer forecasts x`(τ) for Example 3.1
τ f(τ) d [f(τ) + d + 0.5] x̀ (τ) d + [f(τ) − x̀ (τ)]

1 8.75 0.00 9.25 9  − 0.25
2 8.75  − 0.25 9.00 9  − 0.50
3 8.75  − 0.50 8.75 8 0.25
4 8.75 0.25 9.50 9 0.00
5 8.75 0.00 9.25 9  − 0.25
6 8.75  − 0.25 9.00 9  − 0.50
7 8.75  − 0.50 8.75 8 0.25
8 8.75 0.25 9.50 9 0.00
9 8.75 0.00 9.25 9  − 0.25

10 8.75  − 0.25 9.00 9  − 0.50
11 8.75  − 0.50 8.75 8 0.25
12 8.75 0.25 9.50 9 0.00
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Finally, the coefficient of variation is obtained as below:

3.9 � Horizontal Moving Average Forecasts

The horizontal moving average forecast model is associated with a parameter, N, 
that specifies the number of months history to use in calculating the average. The 
average is from the most recent N demand entries, x(1), …, X(N), where N is the 
most recent demand. In forecasting, the average is called the level and is labeled as 
a. For this forecast model, the estimate of the level becomes,

A difficulty occurs for new parts where the number of months of history (nmh) is 
smaller than the parameter, N. This is overcome by using the following temporary 
parameter, N` as below:

Example 3.2  Suppose a forecaster wants to use the horizontal moving average 
model with parameter N = 10. To begin, the only history demand is at nmh = 1, 
where x(1) = 10. Applying the rule given above, the temporary parameter becomes, 
N` = 1, and thereby the estimate of the level is a` = x(1) = 10.00. Suppose at nmh = 2, 
x(2) = 12, thereby N` = 2, and à  = [10 + 12]/2 = 11.00. Also assume at nmh = 3, 
x(3) = 6, yielding N` = 3, and à  = [10 + 12 + 6] = 9.33. Table 3.2, lists the demands, 
x(t), for the first 12 months of history for the part, along with the parameter to use, 
N`, and the estimate of the level, a`, that results. Figure 3.2 depicts the estimated 
values of the level for the first 12 months of history.

Table 3.3 is a snapshot of the raw and integer forecasts over the next 12 months 
for the part when the number of months of history is nmh = 12. Note from Table 3.2, 
the 10 month moving average of the demands is a` = 8.30. So, the raw forecasts for 
each of the future months is f(τ) = 8.30. The corresponding integer forecasts, x`(τ), 
are listed in the table.

3.10 � Standard Deviation and Cov

The standard deviation of the forecast errors is estimated in the same way as the ear-
lier horizontal (least squares) forecast. In this situation, the most recent N` demand 
entries are computed. When (nmh < N), all the past history months are used, but 
when ( nmh N≥ ), only the most recent N entries of demand history is used.

cov / . / . .= = =s a` 2 678 75 0 305

[ ) + ... + x a x(1 N)]  / ( N=`

N Min(N, nmh)`=
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The method is described using Example 3.2 at the point when nmh = 12 and 
N = 10. The most recent 10 demand entries are: x(3), …, x(12), and the estimate 
of the level at that point is a` = 8.3. The residual errors for the N = 10 demands are 
computed by e(t) = [x(t) − a`] for t = 3 to 12. The sum of square of residual errors is 
denoted as S(e) and the estimate of the standard deviation, s, is obtained as follows:

In the example, S(e) = 64.160b, N = 10 and

s = −S e N( )/( )1

s =

=

−

=

64 160 10 1

7 118
2 67

. /( )

.
.

Fig. 3.2   Twelve months 
of the moving average for 
Example 3.2 with parameter 
N = 10

 

Table 3.2   First 12 months of moving average with parameter N = 10
t x(t) N` a`
11 10 1 10.00

2 12 2 11.00
3 6 3 9.33
4 9 4 9.25
5 4 5 8.20
6 10 6 8.50
7 6 7 8.14
8 7 8 8.00
9 9 9 8.11

10 8 10 8.10
11 13 10 8.40
12 11 10 8.30
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The coefficient of variation becomes,

3.11 � Horizontal Discount Forecasts

Discounting is used in forecasting when the forecaster wants to use a specified 
number of months history to generate the forecasts and also desires to apply higher 
weights to each more recent demand history in a relative manner. Two parameters 
are needed here: N = the number of months of history to use, and β (0 < β < 1) = the 
discount weight. The demand history is, x(1), …, x(N). The discount parameter, β, 
assigns the weight w(t) = β(N−t) to each demand history month t. The estimate of the 
level, a, is computed as shown below:

In this way, the estimate of the level is a discount weighted average with relatively 
more weight assigned to each more recent month by a factor of β = 0.9.

Example 3.3  Suppose the forecaster wants to use the horizontal discount forecast 
model with N = 12 months of demand history and β = 0.9 as the discount parameter. 
Assume also the demand history is the same as listed in Example 3.1. Table 3.4 is 
a worksheet that lists the history months, t, the demand history, x(t), the discount 
weights by month, w(t), and the product, x(t)w(t), for t = 1 to 12. At the bottom of 
the table are the sums,

cov / . / . .= = =s a 2 67 8 30 0 322

1 1a ( ) ( )/ ( )N N
t tx t w t w t= == Σ Σ`

Σ t w t= =1
12 7 176( ) .

Σ t x t w t= =1
12 64 625( ) ( ) .

τ f(τ) x̀ (τ)
1 8.3 8
2 8.3 9
3 8.3 8
4 8.3 8
5 8.3 9
6 8.3 8
7 8.3 8
8 8.3 8
9 8.3 9

10 8.3 8
11 8.3 8
12 8.3 9

Table 3.3   Twelve months of 
raw and integer forecasts for 
Example 3.2 when nmh = 12 
and N = 10
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Using the above sums, the estimate of the level is obtained as follows:

and thereby, the raw forecast for the 12 future months becomes,

Figure  3.3 depicts the 12 months of demand history and the corresponding 12 
months of forecasts. Note the forecasts are the raw forecasts. In this example, the 
integer forecasts are set to x`(τ) = 9 for each of the future 12 months

3.12 � Standard Deviation and Cov

The standard deviation of the forecast errors is estimated by using the weighted av-
erage of the residual errors from the past demand history. The method is described 
using the data of Example 3.3. The 12 demand entries are: x(1), …, x(12), and the 
estimate of the level is a` = 9.006b. The residual errors for the N = 12 demands are 

à =
=
=

= =Σ Σt tx t w t w t1
12

1
12

64 625 7 176
9 006

( ) ( )/ ( )
. / .

.

f ( ) 9.006 1 to 12τ = τ =

Table 3.4   Worksheet for Example 3.3 with history months, t, history demands, x(t), discount 
weights, w(t), and product, x(t)w(t)
t x(t) w(t) x(t)w(t)

1 10 0.314 3.138
2 12 0.349 4.184
3 6 0.387 2.325
4 9 0.430 3.874
5 4 0.478 1.913
6 10 0.531 5.314
7 6 0.590 3.543
8 7 0.656 4.593
9 9 0.729 6.561

10 8 0.810 6.480
11 13 0.900 11.700
12 11 1.000 11.000
Sum 7.176 64.625
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computed by e(t) = [x(t) − a`] for t = 1 to 12. The discounted sum of square of re-
sidual errors is denoted as S(e) and is obtained as follows:

So now, the estimate of the standard deviation of the forecast errors is computed as 
below:

Table 3.5 is a worksheet to compute the discount estimate of the standard deviation of 
the forecast error. The table lists the following: history months, t, demand history, x(t), 
forecast a`, residual error, e(t), the square of the residual error, the monthly discount 
weights, w(t), and the product, w(t)e(t)2. At the bottom of the table are the sums:

Applying the discounted sums, the estimate of the standard deviation becomes,

Finally, the cov is,

S(e) =  =Σ t w t e t1
12 2( ) ( )

s = =S e w tt( ) / ( )Σ 1
12

Σ t w t= =1
12 7 176( ) .

12 2
1 ( ) ( ) 46.576t w t e t=   = Σ

s =

=
=

46 576 7 176

6 491
2 55

. / .

.
.

cov / . / . .= = =s à 2 55 9 006 0 283

Fig. 3.3   Twelve months of demand history and 12 months of forecasts for Example 3.3 using the 
horizontal discount forecast model
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3.13 � Horizontal Smoothing Forecasts

The horizontal (exponentially) smoothing forecast model is used when the forecast-
er wants to revise the forecast each month with the most current demand entry, and 
also chooses to give higher weights to each more recent demand history in a relative 
manner. This method is often referred as exponential smoothing. One parameters is 
needed here, denoted as α (0 < α < 1) where typically, α = 0.10.

To apply the model for a part at the current time, t, the data file houses the prior 
estimate of the level, a`(t − 1), and retains the smooth parameter, α. Also, this is 
when the new demand entry becomes available, x(t). The two values, a`(t − 1) and 
x(t) are now smoothed in the following way:

The level becomes the estimate of the average value as of the most current month, 
t, and thereby the forecast for future month, τ, becomes,

A difficulty occurs at the outset when no history demands are available to use in 
smoothing. Further, in the early months, the forecaster may also wish to give higher 
weights to the demands. A way to overcome is the following. The forecaster specifies 
a parameter value to use, α, and for the early history months, the parameter is set as:

a (t) x(t) (1 )a (t 1)= α + − α −` `

f (  ) a (t)  1, 2, ..... τ = τ =`

(t) max( ,1 t)α = α

Table 3.5   Worksheet to compute the discount standard deviation of the forecast error, using his-
tory months, t, history demands, x(t), residual error, e(t), e(t)2, the monthly discount weights, w(t), 
and product, w(t)e(t)2

t x(t) à e(t) e(t)2 w(t) w(t)e(t)2

1 10 9.006 0.993 0.988 0.314 0.310
2 12 9.006 2.993 8.963 0.349 3.125
3 6 9.006  − 3.006 9.037 0.387 3.501
4 9 9.006  − 0.006 0.000 0.430 0.000
5 4 9.006  − 5.006 25.061 0.478 11.987
6 10 9.006 0.993 0.988 0.531 0.525
7 6 9.006  − 3.006 9.037 0.590 5.336
8 7 9.006  − 2.006 4.024 0.656 2.640
9 9 9.006  − 0.006 0.000 0.729 0.000

10 8 9.006  − 1.006 1.012 0.810 0.820
11 13 9.006 3.993 15.951 0.900 14.356
12 11 9.006 1.993 3.976 1.000 3.976
Sum 7.176 46.576
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So now, the smoothed estimate of the level at month t is as follows:

3.14 � Standard Deviation

The estimate of the standard deviation of the forecast error is also revised each 
month in the following way:

Let v(t) represent the estimate of the variance of the forecast error at time t. The 
data file on the part will save, a`(t − 1), the estimate of the level, and v(t − 1), the vari-
ance from the prior month (t − 1). The forecast error at month t is now measured by

whereby, the revised variance becomes,

So now, the estimate of the standard deviation of the forecast error at month t is:

Finally, the associated cov becomes,

Example 3.4  Consider an inventory system where the forecasts are generated 
using the horizontal smoothing model with the smoothing parameter set at α = 0.10. 
Assume at the first month of history, t = 1, the demand entry is x(1) = 22. Suppose 
also the forecaster uses the method described above to determine the smooth param-
eter for the early months. Hence,

In the example, α(1) = 1.00, and the estimate of the level is

Continuing at t = 1, the forecasts for future month τ are,

a (t) (t)x(t) [1 (t)]a (t 1)= α + − α −` `

e(t) x(t) a ( 1` t )= − −

2v(t) (t)e(t) [1 (t)]v(t 1)= α + − α −

s t( ) ( )= v t

cov(t) s(t)/à (t)=

  (t) max(0.10, 1/ t) t 1, ...2,α = =

à ( ) . ( )1 1 00 22 1 1 0 22= × + − × =

f ( ) 22   1, 2, ...τ = τ =
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Note the prior estimate of the level is a`(0) = 0. Continuing are the computations 
(at t = 1) for the forecast error, variance, standard deviation and the coefficient of 
variation.

and cov(1) = 22/22 = 1.00.
At t = 2, assume the demand is x(2) = 43. The corresponding computations are:

and cov(2) = 21.5/32.5 = 0.662
Table 3.6 shows how the calculations would take place for the first 24 months 

of demands. The table lists the month, smooth parameter, demand, level, variance, 
standard deviation and the coefficient of variation for each month t. Since the speci-
fied smooth parameter is α = 0.10, the smooth parameters are higher than 0.10 for 
the first 9 months. Thereafter, the desired smooth parameter (0.10) is used.

Note how the cov starts out as cov(1) = 1.00, and gradually decreases as the num-
ber of months of history increases. Near month t = 22, the cov settles in at about 
0.30.

3.15 � 2-Stage Forecasts

In many inventory systems, the data saved for each part is the number of lines, n(t), 
and the demands, x(t), for each history month t. When each customer order comes 
into the order entry system, the order contains a finite number of lines, where each 
line is for an individual part. The line further states how many pieces, d, is needed 
for the part. So when a month has n(t) lines on a part, and the demand is x(t) for 

e( ) [ ]1 22 0 22= − =

v( ) . ( )1 1 00 22 1 1 0 4842= × + − × =

s( )1 482 22= =

(2) 1 2 0.50α = =

à ( ) . ( . ) .2 0 50 43 1 0 5 22 32 5= × + − × =

e( )2 43 22 21= − =

2v(2) 0.50 21 (1 0.50) 484 462.5= × + − × =

s( ) . .2 462 5 21 5= =
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the month, x(t) = d(1,t) + … + d(n(t),t), where d(i,t) is the number of pieces for line i of 
month t. In most systems, the database will save the entries, n(t) and x(t), but not the 
individual line quantities, d(i,t).

3.16 � Raw Lines to Integer Forecasts

When N months of data are saved, the following computations are as below:

n n t
t

N
= =

=∑ ( )/N average lines per month
1

x t demands in month t( ) ( , )
( )

= =
=∑ d i ti

n t

1

Table 3.6   Horizontal smoothing forecasts for history months t = 1 to 24, with smooth parameter, 
α(t), demand, x(t), level, a`(t), variance of forecast error, v(t), standard deviation of forecast error, 
s(t), and coefficient of variation, cov(t)
t α(t) x(t) à (t) v(t) s(t) cov(t)
 1 1.000 22 22.00 484.0 22.0 1.000
 2 0.500 43 32.50 462.5 21.5 0.662
 3 0.333 42 35.67 338.4 18.4 0.516
 4 0.250 14 30.25 371.2 19.3 0.637
 5 0.200 56 35.40 429.6 20.7 0.585
 6 0.167 46 37.17 376.7 19.4 0.522
 7 0.143 67 41.43 450.0 21.2 0.512
 8 0.125 58 43.50 428.1 20.7 0.476
 9 0.111 41 43.22 381.2 19.5 0.452
10 0.100 41 43.00 343.6 18.5 0.431
11 0.100 44 43.10 309.3 17.6 0.408
12 0.100 53 44.09 288.2 17.0 0.385
13 0.100 30 42.68 279.2 16.7 0.392
14 0.100 56 44.01 269.1 16.4 0.373
15 0.100 50 44.61 245.7 15.7 0.351
16 0.100 78 47.95 332.6 18.2 0.380
17 0.100 29 46.06 335.3 18.3 0.398
18 0.100 55 46.95 309.8 17.6 0.375
19 0.100 52 47.45 281.3 16.8 0.353
20 0.100 47 47.41 253.2 15.9 0.336
21 0.100 62 48.87 249.2 15.8 0.323
22 0.100 50 48.98 224.4 15.0 0.306
23 0.100 53 49.38 203.6 14.3 0.289
24 0.100 38 48.25 196.2 14.0 0.290
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The estimate of the level per month is:

and thereby, the raw forecast on the demand per month becomes:

Note, the forecasts are based on raw forecast of the lines per month and also on the 
average pieces per line.

Example 3.5  Suppose a part where the demand history is as listed in Table 3.7. For 
each of the 12 months of history, the lines, n(t), and the demands, x(t), are saved. 
The sums for the two variables are at the bottom of the table where n t( )∑ = 13  and 
Sx(t) = 28. Hence, the average lines per month becomes,

d x t n t
t

N

t

N
= =

= =∑ ∑( ) ( ) �
1 1

average pieces per line

1
( )/N

average demand per month

N

t

x nd

x t
=

=

=

=
∑

à = x

f t a t( ) , ,= = …` 1 2

n = =13 12 1 083/ .

t n(t) x(t)
 1 1 3
 2 0 0
 3 2 5
 4 1 2
 5 0 0
 6 3 4
 7 2 3
 8 1 4
 9 0 0
10 0 0
11 1 3
12 2 4
Sum 13 28

Table 3.7   Example 3.5 data 
of lines per month, n(t), and 
demands per month, x(t)



373.16 � Raw Lines to Integer Forecasts

Also, the average pieces per line is

The estimate of the level is obtained from

or from

Table 3.8 lists the forecasts for the first 6 future months. Note, the raw forecasts are 
f(τ) = 2.33, and the corresponding integer forecasts, x`(τ), become (2, 3, 2, 2, 3, 2).

Example 3.6  Consider another part where the lines and demands are saved in the 
data file, and these are listed in Table 3.9. This part has low demands where over the 
past 12 months, only two lines came in, one for 50 pieces and another for 30 pieces.

d = =28 13 2 15/ .

a x t N=`= =∑ ( )/ / .28 12 2 33

à = = × =nd 1 083 2 15 2 33. . .

t n(t) x(t)
 1 0 0
 2 0 0
 3 0 0
 4 1 50
 5 0 0
 6 0 0
 7 0 0
 8 0 0
 9 0 0
10 1 30
11 0 0
12 0 0
Sum 2 80

Table 3.9   Lines, n(t), and 
demands, x(t), per month for 
the part in Example 3.6

τ f(τ) x̀ (τ)
1 2.33 2
2 2.33 3
3 2.33 2
4 2.33 2
5 2.33 3
6 2.33 2

Table 3.8   Raw, f(τ), and 
integer, x`(τ), forecasts 
for 6 future months, τ, in 
Example 3.5
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In this situation, the following averages are computed:

The estimate of the level is à = × = × =d n 40 0 167 6 67. . . Table 3.10 lists the raw 
and integer forecasts of this part for the future 12 months. Note, in this low line 
item, the forecasts don’t look much like the history months.

3.17 � Integer Lines to Integer Forecasts

Another way to generate the forecasts so they more closely resemble the flow of de-
mands is shown in Table 3.11. In this situation, the raw and integer lines are forecast 
for each of the 12 future months. The raw lines are n = 0 17.  per month. The integer 
lines, ǹ (t), are zero’s and one’s, where months 3 and 10 have an integer forecast of 
one. The demands for these months becomes:

When n`(t) = 1, the forecast is 40, and when n`(t) = 0, the forecast is zero.

n = = =2 12 0 167/ . average lines permonth

d = = =80 2 40/ average pieces per line

x (t) n )` `(t= d

t f(τ) x`(τ)
1 6.67 7
 2 6.67 7
 3 6.67 6
 4 6.67 7
 5 6.67 7
 6 6.67 6
 7 6.67 7
 8 6.67 7
 9 6.67 6
10 6.67 7
11 6.67 7
12 6.67 6

Table 3.10   Raw forecasts, 
f(τ), and integer forecasts, 
x`(τ), for the part in Example 
3.6
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�Summary

Five horizontal forecast models are described. The horizontal forecast model is 
based on the N most prior monthly demands where each demand entry is assigned 
the same weight in generating the forecasts. The horizontal moving average fore-
cast model uses a parameter N that specifies the number of most recent monthly 
demands to use in generating the forecasts. The method gives equal weight to each 
of the demands. A special adjustment is made for new parts when the number of 
history months is less than the parameter of N. The horizontal discounting forecast 
model is based on two parameters, N, the number of months of history to use, and 
β, the discount rate that assigns more weight to each more recent demand. The 
horizontal smoothing forecast model also gives more weight to the more recent 
demand entries. The model adjusts the prior forecast with the most current demand 
entry. The horizontal 2-stage forecast model generates a forecast for the number 
of lines by future months and then applies the average pieces-per-line to obtain 
the forecast of demands for each of the future months. This method may be useful 
when the history demands are of the lumpy type. For each of the forecast models, 
the methods generate raw forecasts that are in fractional form. A cumulative round 
algorithm converts the raw forecasts to integer forecasts. The standard deviation of 
the 1-month forecast error is also computed for the models. This is a measure on 
the accuracy of the forecasts and is needed in subsequent computations concerning 
the inventory replenishments in the stocking location. A relative way to measure the 
forecast error is by the coefficient of variation, denoted as cov.

τ n`(τ) x`(τ)

 1 0.17 0 0
 2 0.17 0 0
 3 0.17 1 40
 4 0.17 0 0
 5 0.17 0 0
 6 0.17 0 0
 7 0.17 0 0
 8 0.17 0 0
 9 0.17 0 0
10 0.17 1 40
11 0.17 0 0
12 0.17 0 0

nTable 3.11   Raw lines, n ,  
integer lines, n`(τ), and 
integer forecast of demands, 
x`(τ) for future months τ
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4.1 � Introduction

Some of the items stocked in the inventory have demand patterns where the month-
to-month level is gradually increasing (or decreasing) in a steady way, and thereby, 
a trend forecast model is called. The model has two coefficients, a and b, where 
a is the intercept and b is the slope. Three such models are described here: trend 
regression forecasts, trend discount forecasts and trend smoothing forecasts. The 
trend regression forecast model generates a straight line fit through the most recent 
N history demands giving equal weight to each history demand. The trend discount 
forecast model also uses the N most recent history demands, but gives relatively 
less weight to each older demand. This model is based on a discount parameter, β, 
that specifies how to apportion the weight to each older demand entry. The trend 
smoothing forecast model revises the forecast coefficients as each new demand 
entry becomes available. The model has two parameters, α and β, that are used to 
revise the trend coefficients, (a, b), at each month. All three of the forecast models 
generate forecasts that are in fractional numbers and are here called raw forecasts. 
The forecasts are converted to integers using the cumulative rounding algorithm 
described in Chap. 2. For latter use, in inventory control, the standard deviation of 
each of the forecast models is also generated each month. For comparative sake, 
the coefficient of variation, cov, is also generated each month. Three dampening 
forecast models are described, to avoid situations when the forecasts are quickly 
declining to zero and below.

4.2 � Trend Regression Forecast

The trend regression model generates a straight line fit through the past demands to 
project as forecasts for the future months. The model requires one parameter, N, that 
specifies the number of most recent past monthly demands to use in generating the 
forecasts. The history demands are labeled as, x(t) for t = 1 to N, and N is the most 
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current history month, whereby t = 1 is the oldest month. The forecast model has 
two coefficients, (a, b), where a is the intercept at t = 0, and b is the slope. The fit of 
the demands over the N history months is denoted as f(t) where,

The regression model is based on finding the estimates of the coefficients that mini-
mize the sum of squares of residual errors, e(t), over the history months. The re-
sidual error for history month t is the following:

The sum of square of the residual errors is denoted as S(e) where,

A bit of calculus is used to determine how to find the fit that yields the least sum of 
squares of the residual errors. The minimum of S(e) requires finding the coefficients 
(a, b) that satisfy the following two equations:

where the sums are for t = 1 to N. Also, for notational ease, 
1
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t
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Solving for the coefficients, yields,

Recall, a is the intercept at t = 0. In forecasting, the level is commonly used in its 
place and represents the average of the demands at t = N, the most current month. 
This also is the level at τ = 0, where τ identifies the future months. For this purpose, 
the intercept, a, is converted to the level, a`, as follows:

The forecast for future month τ becomes,

(t) a bt tf 1toN= + =

[ ]e(t) x(t) f (t)  = −

2
1

S(e) ( )
N

t
e t

=
= ∑

x = aN b t Σ + Σ

2xt = a t + b t  Σ Σ Σ

[ ] ( )
[ ]

2 2b x t N xt t N t

a x b t N

 = Σ Σ − Σ Σ − Σ 
= Σ − Σ

a`= a + Nb    

f ( ) a` b                  =1,2,  τ = + τ τ …
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Example 4.1  Suppose a system where the trend regression forecast model is to be 
used on a part with N = 12 history months of demands, and the history demands are 
those listed in Table 4.1 as x(t).

Raw Forecasts  To apply the model, the following computations and summations 
are carried out, and are listed below where the summations range from t = 1 to 12.

Solving for the coefficients (b, a) yields:

The level becomes,

So now, the forecasts for each of the future 12 months are generated using:

Integer Forecasts  Since the forecasts are in fractional form, the forecasts are raw 
forecasts. The corresponding integer forecasts, x̀ (τ), are also generated in the same 

2

N 12
x = 237
xt = 1596
t 78
t 650

=
Σ
Σ
Σ =
Σ =

b 0.388 slope
a 17.227 intercept at t 0

 
  

= =
= = =

a’ a 12b 21.885 level at 0 (t 12)  = + = = τ = =

f ( ) 21.885 0.388 1 to 12  τ = + τ τ =

t x(t)
1 17
2 18
3 10
4 25
5 18
6 25
7 23
8 20
9 17
10 23
11 23
12 18

Table 4.1   Demand his-
tory months, t, and his-
tory demands, x(t), for 
Example 4.1
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way as given in Chap. 2. Table 4.2 lists the raw and integer forecasts for the future 
12 months. Figure 4.1 depicts the flow to the 12 months of history demands and the 
12 months of integer forecasts.

Standard Deviation  Table 4.3 is a worksheet to begin the calculations of estimat-
ing the standard deviation of the forecast errors. The table lists the 12 history months 
with the associated demand history. and the corresponding fit values, f(t). Next is a 
list of the residual errors, e(t) = [x(t) − f(t)], and then the square of e(t). The sum of the 
square of the residual errors is in the base of the table, and is denoted as S(e).

The estimate of the standard deviation, s, is as follows:

In the example,

s ( ) / ( 2)S e N= −

s= 184.71/ (12 2) 4.30− =

Fig. 4.1.   Plot of 12 month history of demands and 12 future integer forecasts of Example 4.1

 

τ f(τ) x̀ (τ)
1 22.27 22
2 22.66 23
3 23.04 23
4 23.43 23
5 23.82 24
6 24.21 24
7 24.60 25
8 24.98 25
9 25.37 25
10 25.76 26
11 26.15 26
12 26.54 27

Table 4.2   Future months, τ, 
with raw forecasts, f(τ), and 
integer forecasts, x`(τ)
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Coefficient of Variation  The coefficient of variation is measured using the level, 
a`, as the base. This is,

4.3 � Trend Discount Forecasts

The trend discount forecast model is the same as the trend regression forecast model 
except this model generates linear forecasts that give relatively more weight to each 
more recent history demand. The model requires two parameters, N and β. N states 
the number of history demands to use in generating the forecasts, and β is the dis-
count parameter that specifies how much less weight to give to each older history 
demand. The history demands are labeled as, x(t) for t = 1 to N. The forecast model 
has two coefficients, (a, b), where a is the intercept at t = 0, and b is the slope. The fit 
of the demands over the N history months is denoted as f(t) where,

The regression model is based on finding the estimates of the coefficients that mini-
mize the weighted sum of squares of residual errors, e(t), over the history months. 
The residual error for history month t is the following:

cov s / a` = 4.30/21.885 = 0.196    =

( )f t a bt t 1 to N  = + =

e t x t f t( ) = ( ) − ( ) 

Table 4.3   Worksheet listing the history months, t, demand history, x(t), fit, f(t), residual errors, 
e(t), and square of residual errors, e(t)2

t x(t) f(t) e(t) e(t)2

1 17 17.61 −0.62     0.38
2 18 18.00   0.00     0.00
3 10 18.39 −8.39   70.42
4 25 18.77   6.22   38.69
5 18 19.16 −1.17     1.36
6 25 19.55   5.44   29.64
7 23 19.94   3.06     9.34
8 20 20.33 −0.33     0.11
9 17 20.72 −3.72   13.84
10 23 21.10   1.89     3.58
11 23 21.49   1.50     2.26
12 18 21.88 −3.88   15.09
Sum 184.71
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The discount parameter, β, falls in the interval (0 < β < 1) The demand history is, 
x(1),…, x(N). The discount parameter, β, assigns the weight w(t) = β(N−t) to each 
history month t. In this way, the estimate of the forecast coefficients, (a, b), are 
obtained where a higher weight is assigned to each more recent month by a factor 
of β. A common value of the discount parameter used for the trend forecast model 
is β = 0.95.

The weighted sum of square of the residual errors is denoted as S(e) and is com-
puted by,

A bit of calculus is used to determine how to find the fit that yields the least sum of 
squares of the weighted residual errors. The minimum of S(e) requires finding the 
coefficients (a, b) that satisfy the following two equations:

where the sums are for t = 1 to N. Also, for notational ease, 
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Solving for the coefficients, yields,

As before, a is the intercept at t = 0. In the notation here, the level represents the av-
erage value of the demands for the most current month, t = N. This also is the level 
at τ = 0, where τ represents the future months. Hence, the intercept, a, is converted 
to the level, a`, as follows:

So now, the forecast for future month τ becomes,

Example 4.2  Suppose the forecaster now wants to apply the trend discount regres-
sion forecast model to the data of Example 4.1. The parameters are: N = 12 for the 
number of history demand months, and β = 0.95 for the discount weights. Table 4.4 
is a list of the 12 months of demand history and the corresponding monthly discount 
weights. Note at t = 12, w(12) = 0.95(12−12) = 1.000; at t = 11, w(11) = 0.95(12−11) = 0.95, 
and so forth.

2
1
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t
w t e t

=
= ∑
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xw a w b tw
xtw a tw b t w

  = +∑ ∑ ∑
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2 2b xw tw w xtw tw w t w

a xw b tw w

 = − −∑ ∑ ∑ ∑ ∑ ∑ ∑ 
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a` = a + Nb    

f ( ) a` b 1,2,τ = + τ τ = …
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To apply the model, the following computations and summations are carried out, 
and are listed below.

Raw Forecasts  Solving for the coefficients (b, a) yields:

The level at t = N becomes,

So now, the forecasts for each of the future 12 months are generated using:

Integer Forecasts  Since the forecasts are in fractional form, the forecasts are raw 
forecasts. The corresponding integer forecasts, x`(τ), are also generated in the same 
way as given in Chap. 2. Table 4.5 lists the raw and integer forecasts for the future 
12 months. Figure 4.2 depicts the flow to the 12 months of history demands and the 
corresponding 12 months of integer forecasts.

xw 
xtw 1339 59
tw 65 34
t w 57186
w 9 19

∑ =
∑ =
∑ =
∑ =
∑ =

183 55

2

.
.

.
.

.

b 0.326 slope
a 17.652 interceptat t 0

     = =
= = =

( )a’ a 12b 21.561 level at 0 t 12    = + = = τ = =

f ( ) 21.561 0.326 1 to 1 2    τ = + τ τ =

t x(t) w(t)
1 17 0.568
2 18 0.598
3 10 0.630
4 25 0.663
5 18 0.698
6 25 0.735
7 23 0.773
8 20 0.814
9 17 0.857
10 23 0.902
11 23 0.950
12 18 1.000

Table 4.4   Demand history 
months, t, demands, x(t), and 
discount weights, w(t), for 
Example 4.2



48 4  Trend Forecasts

Table  4.6 is a worksheet to begin the calculations of estimating the standard 
deviation of the forecast errors. The table lists the 12 history months with the as-
sociated demand history, the discount weights, w(t), and the corresponding linear 
fit of the history months, f(t). Next is a list of the residual errors, e(t) = [x(t) − f(t)], 
and then the discount weighted square of e(t). The weighted sum of the square of 
the residual errors, S(e), is listed at the bottom of the table.

Standard Deviation  The estimate of the standard deviation, s, is as follows:

In the example,

s ( )S e w= ∑

s 132.23 / 9.19 3.793= =

Fig. 4.2   Twelve months of demand history and 12 months of integer forecasts for Example 4.2

 

τ f(τ) x̀ (τ)
1 21.88 22
2 22.21 22
3 22.53 23
4 22.86 23
5 23.18 23
6 23.51 23
7 23.84 24
8 24.16 24
9 24.49 25
10 24.81 25
11 25.14 25
12 25.46 25

Table 4.5   Future months, τ, 
raw forecasts, f(τ) and integer 
forecasts, x̀ (τ)
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Coefficient of Variation  The coefficient of variation is measured using the level, 
a`, as the base. This is,

4.4 � Trend Smoothing Forecasts

The trend (exponentially) smoothing forecast model is another popular way to fore-
cast the demands that include a trend component. The forecast model at month t for 
future month τ is formulated as below:

The coefficients are the following:

a(t) = estimate of the level at month t
b(t) = estimate of the slope at month t

The model requires two parameters: α = smooth parameter for the level, and 
β  = smooth parameter for the slope. The current month is labeled as t, and the esti-
mates of the prior month’s level and slope, are denoted as a(t-1) and b(t-1), respec-
tively. At month t, the most current demand entry becomes available and is noted 

cov s /a
3.793 /21.561
0 7

`

.1 6

=
=
=

f ( ) a(t) b(t) for 1, 2,τ = + τ τ = …

Table 4.6   Worsheet with history months, t, demand history, x(t), discount weights, w(t), fit of his-
tory months, f(t), residdual errors, e(t), and weighted square of residual errors, e(t)2w(t)
t x(t) w(t) f(t) e(t) e(t)2w(t)
1 17 0.568 17.98 − 0.98     0.54
2 18 0.598 18.30 − 0.30     0.06
3 10 0.630 18.63 − 8.63   46.93
4 25 0.663 18.95    6.05   24.24
5 18 0.698 19.28 − 1.28     1.15
6 25 0.735 19.61    5.39   21.39
7 23 0.773 19.93    3.07     7.28
8 20 0.814 20.26 − 0.26     0.05
9 17 0.857 20.58 − 3.58   11.01
10 23 0.902 20.91    2.09     3.95
11 23 0.950 21.23    1.77     2.96
12 18 1.000 21.56 − 3.56   12.68
Sum 132.23
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as x(t). As each month passes on, the estimates of the level and slope are revised in 
the following way:

Standard Deviation  The estimate of the standard deviation of the one-month 
ahead forecast error is also revised at each month in the following way. The one-
month ahead forecast error at month t is:

The estimate of the standard deviation of the one-month forecast error is smoothed 
and calculated as below:

where s(t − 1) is the standard deviation from the prior month, (t − 1), and s(t) is the 
standard deviation of the current month t.

Coefficient of Variation  Finally, the coefficient of variation at month t is com-
puted by,

Initial Forecast Adjustments  When a part is new to the inventory system, there is 
no prior estimate of the level and slope, and thereby some minor adjustments to the 
computations are often applied.

An adjustment for this situation is described here. The smoothing parameter for 
the level, α, is adjusted each month in the following way:

This adjustment only pertains to the early months of a part’s history. For example, 
if α = 0.20 is desired, the adjusted values of the parameter become: 1.00, 0.50, 0.33, 
0.25, 0.20, 0.20,…for months, t = 1, 2, 3, 4, 5, 6, and remain at 0.20 for t = 5 or high-
er. This way, more weight is assigned to the early months, since there is minimum 
data, while the demands are (possibly) fluctuating more. So, for the early months, 
the smoothing parameter to estimate the level uses α(t) as described here.

Second, at the first month, t = 1, since there is no prior estimate of the level at 
t = 0, the estimate of the slope is automatically set to b(1) = 0. Hence, at t = 1, the 
estimates of the level and slope become,

[ ] [ ]
[ ] [ ]

a(t) (t) (1 ) a(t 1) + b(t 1)

b(t) a(t) a(t 1) (1 ) b(t 1)

x   −    −
 −   −

= α + − α

= β − + − β

[ ]
e(t) x(t) f (t 1)

x(t) a(t 1) b(t 1)
= − −
= − − + −

2 2s(t)  ( )    (1 ) ( 1)   = α + − α −   e t s t

cov(t) s(t) a(t)  =

(t) max( ,1/ t) t 1,2,α = α = …

a(1) x(1)
b(1) 0

=
=
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Example 4.3  Suppose an inventory system is using the trend smoothing forecast 
model with parameters, α =  β  =  0.10 where the parameter for the level is adjusted 
for the early months as described. A new part enters the system and the first month 
(t  = 1) of demand becomes x(1) = 23 pieces. Note, the prior estimates of the coef-
ficients are: a(0)  =  b(0)  =  0.00.

At month t  = 1, the following computations take place:

These measures are listed in Table 4.7 at t = 1.
Assume at month t = 2, the demand becomes, x(2) = 44. The smooth parameter 

for the level is now α(2) = 1/2 = 0.50. Below are the calculations for this month:

The above measures are listed in Table 4.7 at t = 2.
Table 4.7 shows how the measures would appear as they progress from month to 

month for each of the first 24 months of the demand history. At each month, a new 
demand becomes available and the calculations are carried out, accordingly. Each 
month, the forecast model is revised, and for subsequent inventory needs, so also 
is the standard deviation of the one-month ahead forecast error. Note in the table 
where the coefficient of variation, cov, starts out high and as the months pass by, 
the cov gradually becomes lower, indicating, the forecasts are turning more reliable.

Figure  4.3 depicts how the estimates of the level has changed from the first 
month, t = 1, to the last month, t = 24, in the example. Figure 4.4 is a corresponding 
plot for the slope. Figure 4.5 is a plot that shows the relation with the demand his-
tory, x(t), and the one month ahead foread, f(t − 1), of the demand.
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Fig. 4.3   Plot of the level coefficient, a(t), for t = 1 to 24

 

Table 4.7   Worksheet with month t, smooth parameter α(t), demand x(t), level a(t), slope b(t), 
forecast f(τ), forecast error e(t), square of forecast error e(t)2, standard deviation s(t), and coef-
ficient of variation cov(t)
t α(t) x(t) a(t) b(t) f(τ) e(t) e(t)2 s(t) cov(t)
1 1.00 23 23.00 0.00 23.00 23.00 529.00 23.00 1.000
2 0.50 44 33.50 1.05 34.55 21.00 485.00 22.02 0.657
3 0.33 43 37.37 1.33 38.70 8.45 347.13 18.63 0.499
4 0.25 15 32.77 0.74 33.51 −23.70 400.75 20.02 0.611
5 0.20 57 38.21 1.21 39.42 23.49 430.93 20.76 0.543
6 0.17 47 40.68 1.34 42.02 7.58 368.69 19.20 0.472
7 0.14 69 45.87 1.72 47.59 26.98 420.02 20.49 0.447
8 0.13 60 49.14 1.88 51.02 12.41 386.76 19.67 0.400
9 0.11 44 50.24 1.80 52.04 −7.02 349.26 18.69 0.372
10 0.10 44 51.23 1.72 52.95 −8.04 320.80 17.91 0.350
11 0.10 47 52.36 1.66 54.01 −5.95 292.26 17.10 0.327
12 0.10 56 54.21 1.68 55.89 1.99 263.43 16.23 0.299
13 0.10 33 53.60 1.45 55.05 −22.89 289.48 17.01 0.317
14 0.10 59 55.45 1.49 56.93 3.95 262.09 16.19 0.292
15 0.10 53 56.54 1.45 57.99 −3.93 237.43 15.41 0.273
16 0.10 82 60.39 1.69 62.08 24.01 271.34 16.47 0.273
17 0.10 34 59.27 1.41 60.68 −28.08 323.05 17.97 0.303
18 0.10 59 60.51 1.39 61.90 −1.68 291.03 17.06 0.282
19 0.10 57 61.41 1.34 62.76 −4.90 264.33 16.26 0.265
20 0.10 52 61.68 1.23 62.92 −10.76 249.47 15.79 0.256
21 0.10 67 63.32 1.28 64.60 4.08 226.19 15.04 0.238
22 0.10 56 63.74 1.19 64.93 −8.60 210.96 14.52 0.228
23 0.10 58 64.24 1.12 65.36 −6.93 194.67 13.95 0.217
24 0.10 44 63.22 0.91 64.13 −21.36 220.81 14.86 0.235
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4.5 � Dampening

Consider an item where a trend forecast model is being applied and the trend is de-
clining and is swiftly approaching zero and below. Even though the trend is derived 
using the history of demands in a sound manner, the forecaster may wish to change 
the drop from a straight line leading to zero, to a flow that is always positive and is 
gradually approaching zero. The gradual flow to zero is in essence, how most items 
in the inventory die out anyway. This technique is called dampening and is an espe-
cially useful adjustment for fast declining forecasts. Three forecast models that use 
dampening are described is this section. These are the linear trend forecast model, 
the geometric forecast model and the maximum forecast model.

4.6 � Linear Trend Forecast Model

Recall, the forecasts with a trend model have coefficients as listed below:

a  =  level as of the most current time period
b  =  slope

Fig. 4.5   Plot of the demands, x(t), and the 1 month ahead forecasts, f(t) for t = 1 to 24

 

Fig. 4.4   Plot of the slope coefficient, b(t), for t = 1 to 24
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For convenience in this section, this is called a linear trend forecast model. When 
the forecast is declining, b < 0, it is of interest to find the month where the forecasts 
will fall to zero. This is obtained by setting the forecast to zero (xL(τ) = 0) and solv-
ing for τ. The particular month where the forecast reaches zero is denoted τo and is 
obtained as below:

To avoid negative forecasts, the linear trend forecasts are adjusted as below:

It is also useful to compute the all-time-forecast from the linear trend forecast mod-
el, denoted as X L̀. This is obtained using some algebra as below:

4.7 � Geometric Forecast Model

Now consider another way to generate forecasts that are declining in a gradual manner. 
This is by way of the geometric forecast model, defined with two coefficients, a = lev-
el, and θ =  growth rate. When θ lies between zero and one, the raw forecasts are drop-
ping each month and never reach zero or below. The model is formulated as below:

The all-time-forecast using the geometric model, denoted as X`G, is obtained, using 
algebra, as below:

It is also of interest to find the value of θ that allows the geometric forecast mod-
el to have the same all-time-forecast as the linear trend forecast model, whereby, 
X`G = X`L. This is by solving for the value of θ that equates the two all-time-fore-
casts, as shown below:

Using algebra, the particular value of θ is the following:

This is the value of θ to use when converting forecasts based on the linear trend 
model to forecasts using the geometric model. As stated earlier, the geometric fore-
casts will never fall to zero or below and the all-time-forecasts will be the same as 
the linear trend forecast model.

o a/bτ = −

Lx` ( ) max(a b ,0) 1, 2, τ = + τ τ = …

L 1
X x ( ) = a(a b) (2b)` `

o
L   τ

= τ − +∑

Gx ( ) a 1, 2` ,θ  ττ = τ = …

G 1
X ( ) a / (` 1` )θ θ∞

= τ = −∑ Gx

a / (1 ) a(a b) / (2b)θ θ− = − +

( ) ( )a b a bθ = + −
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4.8 � Maximum Forecast Model

A criticism of the geometric forecast model is that for the early months, the forecasts 
generated are smaller than the counterpart forecasts from the linear trend forecast 
model. Some forecasters are reluctant to accept this situation. A way to overcome 
is to select the maximum of the two forecasts, denoted as x`M(τ), and this forecast 
is obtained as below:

Note for this formulation, the forecasts are declining each month, they never fall 
below zero, and the all-time-forecast is a bit larger than the counterpart all-time-
forecasts of both the linear trend forecast model and the geometric forecast model.

Example 4.4  Suppose a situation where the trend model yields a level and trend of: 
(a = 10 and b = − 1), and the forecaster wants to explore the three models of forecast-
ing for this situation.

Linear Trend Forecasts: The monthly forecasts using the linear trend model is 
listed as below:

In Table 4.8, the first 12 future months, τ, are listed in column 1, and the linear trend 
forecasts, x L̀(τ), are in column 2. Note where the first month the demands reach 
zero is τ = 10, and this corresponds to:

( )M L Gx ( ) max x ( )` , x (` ) 1, 2,`  τ = τ τ τ = …

[ ]Lx ( ) max (10 1 ),0` t 1, 2, τ = − τ = …

o a b 10 1 10τ = − = − − =

Table 4.8   Listing of the 12 future months, τ, the forecasts from the linear model, x L̀(τ), θτ, the 
forecasts from the geometric model, x G̀(τ), and from the maximum model, x`M(τ)
τ xL`(τ) θτ xG`(τ) x`M(τ)
1   9 0.818   8.182   9.000
2   8 0.669   6.694   8.000
3   7 0.548   5.477   7.000
4   6 0.448   4.481   6.000
5   5 0.367   3.666   5.000
6   4 0.300   3.000   4.000
7   3 0.245   2.454   3.000
8   2 0.201   2.008   2.008
9   1 0.164   1.643   1.643
10   0 0.134   1.344   1.344
11   0 0.110   1.100   1.100
12   0 0.090   0.900   0.900

45 40.950 48.995
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The all-time-forecast for the linear trend forecast model is computed as:

This quantity agrees with the sum at the bottom of column 2 in the table.
Geometric Forecasts: A first step to apply the geometric forecast model is to 

determine the growth rate, θ, as shown below:

Hence, the forecasts are generated as below:

The values of θτ are listed in column 3 of the table, and the monthly geometric 
forecasts are in column 4.

The all-time-forecast using the geometric forecast model is computed as below:

Note, the sum of the forecasts for the first 12 months of the geometric model is 
listed at the bottom of column 4 and is 40.950, a bit smaller than the corresponding 
sum of 45 for the linear trend forecast.

Maximum Forecast: A third way to generate the forecasts for a fast declining 
item is the maximum forecast that is computed as below:

The results are listed in the fifth column of the table, x M̀(τ). Note the sum of the 
forecasts for the first 12 months is 48.995, which is higher than the counterpart sum 
from the linear trend forecast model.

Figure  4.6 is a plot of the 12 future forecasts using the linear trend forecast 
model, x L̀(τ), and the geometric trend forecast model, x G̀(τ). Figure 4.7 depicts the 
forecasts from the maximum forecast model, x M̀(τ).

( ) ( )Lx` a a b 2b
10(10 1) ( 2)

45
     
     

= − +
= − − −
=

(a b) (a b)
(10 1) (10 1)
9 11

θ
   
   

= + −
= − +
=

Lx` ( ) a

10(9 /11) 1, 2,

θ
 

τ

τ

τ =

= τ = …

GX` a (1 )
10(9 /11) / (1 9 /11)
45

θ θ= −
= −
=

M L Gx` ( ) max(x` ( ), x` ( )) 1, 2,  τ = τ τ τ = …
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4.9 � Other Dampening Applications

Dampening can also be applied to the seasonal models of Chap. 5 and the promotion 
trend model of Chap. 6. The only portion of the seasonal and promotion models that 
are affected is the trend, (a + bτ).

Summary

Three forecast models are described that have a trend demand pattern, the trend re-
gression forecast model, the trend discount forecast model and the trend smoothing 
forecast model. The trend regression model generates the forecasts using the most 
recent N monthly demands and assigns equal weight to each demand entry. The 
trend discount forecast model also uses the N most recent demand entries and gives 
relatively less weight to each older monthly demand entry. The trend smoothing 
forecast model revises the forecast each month with use of the most current demand 
entry. Each of the forecast models develops forecasts that are in numerical fractions 

Fig. 4.7   Plot of the 
12 months of forecasts from 
the maximum forecast model, 
x M̀(τ)

 

Fig. 4.6   Plot of the 
12 months of forecasts from 
the linear forecast model, 
x`L(τ), and from the geomet-
ric forecast model, x`G(τ)
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and here called raw forecasts. The raw forecasts are converted to integer forecasts 
in a systematic way. The standard deviation of the one-month forecast error is also 
computed for each of the forecast models, and the coefficient of variation is com-
puted as well. Three dampening forecast models are also described.

4  Trend Forecasts
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Chapter 5
Seasonal Forecasts

© Springer International Publishing Switzerland 2015
N. T. Thomopoulos, Demand Forecasting for Inventory Control,  
DOI 10.1007/978-3-319-11976-2_5

5.1 � Introduction

Seasonal forecasts are needed when the demands over a year have a cyclical flow 
such as the rise for light clothing during the summers; heavy clothing during the 
winters, school supplies in late summers; antifreeze during the winters; golf balls in 
the summers; cold tablets in the winters; and sunglasses in the summers. Two fore-
cast models are described: the seasonal smoothing multiplicative forecast model, 
and the seasonal smoothing additive forecast model. Perhaps the most common 
application of the model is when the demands are monthly covering 12 months in a 
year. The seasonal multiplicative model is described fully with example data. The 
model has two stages: first is to initialize the forecasts using the most current N his-
tory demands, and second is to revise the forecasts as each new monthly demand 
becomes available. The model includes a trend component and twelve seasonal ra-
tios for each month of the year. The trend component could be flat, rising or falling, 
and the seasonal ratios could vary for each month of the year indicating an increase 
or decrease in the demands for the month relative to the trend. The model requires 
three smoothing parameters that assign higher weights to the more recent demands 
in the history. This way, the forecasts can readily react to any changes in the demand 
flow of the items in forecast. For brevity, an abridged discussion of the seasonal ad-
ditive model is presented.

5.2 � Seasonal Multiplicative Model

The seasonal (exponentially) smoothing multiplicative model applies when the de-
mands follow a cyclical pattern from year to year, like the rise in the sale of bathing 
suits during the summer months. This demand flow is called a seasonal demand 
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pattern and combines both seasonal and trend components. The forecast model for 
the τ-th future month, as of month t, is below:

where: t is the current month, a is the level of the current month, b is the slope, 
and r(t + τ) is the seasonal ratio for the τ-th future month. The underlying trend of 
the seasonal pattern is measured by (a + bt). The seasonal ratios specify how the 
expected demand for the month will vary with respect to the trend. Altogether, there 
are 12 separate seasonal ratios, r(1),…, r(12), one for each month of the year and 
they repeat year after year. The seasonal ratios have an average of one and all are 
greater than zero. When r(t) = 1.00, the expected demand for month t is the same as 
the trend; when r(t) > 1, the expected demand for month t is larger than the trend; 
and when r(t) < 1, the expected demand is below the trend.

The model is run in two stages: initialize and revise. The initialize stage is need-
ed to estimate the 14 coefficients of the model (a, b, r(1),…, r(12)). The revise stage 
is used to update the model coefficients each month when a new demand entry 
becomes available.

Initialize Forecast Stage  The initialize stage is described assuming 24 months of 
history demands are available. The demands are labeled as x(1),…, x(24) where 
x(1) is the oldest demand, and x(24) the most current.

The seasonal model also calls for three parameters, (α, β, γ), all in the range of 
zero to one, and typically, all are set near 0.10. The parameter α is used to smooth 
the estimate of the level, β to smooth the slope, and γ to smooth the seasonal ratios.

Below is an overview of the ten steps in the initialize stage.

  1.  X1 is the average of the first 12 history demands.
  2.  X2 is the average of the last 12 history demands.
  3.  b`(0) is the estimate of the slope at t = 0.
  4.  a`(0) is the estimate of the level at t = 0.
  5.  a`(t) is the estimate of the level at month t for t = 1 to 24.
  6.  r`(t) is a measure of the seasonal ratio at t = 1 to 24.
  7.  r(t) is an average estimate of the seasonal ratio at t = 1 to 12.
  8.  Let a(0) = a`(0) and b(0) = b`(0).
  9. � Smoothed estimates of a(t), b(t) and r(t) are derived one month at a time starting 

with month t = 1 and continuing till t = 24.
10. �� At t = 24, the initial forecast for future month τ is: f(τ) = [a(24) + b(24)τ]r(24 + τ).

In a more detailed mathematical way, the ten steps to initialize the seasonal  
model listed above are below:

f ( ) (a  b )r(t )  1,  2,  τ = + τ + τ τ = …
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Because t = 24 is the final history month, the forecasts for the τ-th future month, as 
of t = 24, is computed as below:

It is important to synchronize the 12 unique seasonal ratios to the months following 
the most current month, t = 24. For example, if month t = 24 is March, then arrange 
for the seasonal ratio of the subsequent months to begin with April, and so forth.

Example 5.1  Suppose a system where the 24 months of demand history are those 
listed in Table 5.1 in the column, x(t). In the example, the smoothing parameters are 
(α = 0.10, β = 0.10 and γ = 0.10). The following is a summary of the nine initialize 
steps.

f ( ) [a(24)  b(24) ]r(24 )  1,  2,τ = + τ + τ τ = …
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Initial Forecasts  The initialize stage is now complete, and the initial forecast as of 
month t = 24 for the τ-th future month is the following:

Note, the seasonal ratios, at t = 24, for the future months are listed in column 8 under 
r(t + 12). So for the first future month, the seasonal ratio is for month t = (24 + 1) = 25, 
and this is found in the row when t = 13 and the seasonal ratio is r(13 + 12) = 0.60. 
In a like way, all of the seasonal ratios for the future months are obtained. The fore-
casts for the first three future months are listed below:

τ	 f(τ)
1	 [ . . ] . .30 02 0 62 1 0 60 18 38+ × =
2	 [ . . ] . .30 02 0 62 2 0 68 21 26+ × =
3	 [ . . ] . .30 02 0 62 3 1 31 41 76+ × =

Seasonally Adjusted Average  Figure 5.1 depicts the flow of the demand history, 
x(t), and the estimates of the associated level, a(t), for each of the months t = 1 to 
24. Recall, the level estimates the seasonally adjusted average for the month. The 
figure shows where the level is slightly increasing each month.

Fitted Values  The fitted values are also listed in Table  5.1 for each of the 
history months, t = 1 to 24. The fit is denoted as f(t) and is computed by, 
f(t) = a(t)×r(t). For example, at t = 10, a(10) = 23.935 and r(10) = 0.915, thereby, 
f(10) = 23.935×0.915 = 20.986. For brevity, the table only lists two decimals in the 
columns, while the computations are based on the higher fractional values. Fig-
ure 5.2 is a plot showing the relationship between the demand history, x(t), and the 
associated fitted value, f(t), for each month in the history.

Residual Errors  The residual errors, e(t), are also listed in Table 5.1 for each of the 
history months, t = 1 to 24. These are computed by

e(t) = x(t) – f(t).

f( ) [a(24)  b(24) ] r(24 ) 1,  2,  
[30.02 0.62 ]r(24 )       

τ = + τ + τ τ = …
= + τ + τ

Fig. 5.1   Plot of 24 months of demand history, x(t), and the corresponding, level, a(t)
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At   month   t = 10, say, x(10) = 21, f(10) = 20.98, and thereby e(10) = (21 − 20.98) = 0.02.
In general, the absolute values of the residual errors will tend to flow higher and 

lower in a direct relation with the seasonal ratios. The lower the seasonal ratio for 
a month, the smaller the absolute values tend to be, and so forth. In Table 5.1, the 
average of the monthly absolute value is e = 3 83. . Figure 5.3 depicts the flow of 
the absolute values, |e| for each of the history months. The table also lists a pseudo 
way to generate a fitted value of the absolute value, denoted as `e . The fitted values 
are computed in the following way:

Note at t = 10, r(10) = 0.91, and thereby,

Figure  5.3 depicts the flow of the fitted error values for each of the 24 history 
months. The flow shows where the absolute values of the residual errors appear to 
rise and fall in the same direction as the fitted values. The swing is also in the same 
direction as the seasonal ratios.

`e(t) 3.83 ( )  for t 1 to 24= × =r t

`e(10) 3.83 0.91 3.63= × =

Fig. 5.2   Plot of 24 months of demand history, x(t), and the corresponding fit, f(t)

   

Fig. 5.3   Plot of absolute residual error, e , and fit 
`e  over 24 months of history
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Standard Deviation  An estimate of the standard deviation of the forecast errors is 
computed as shown below where s(t)2 is the standard deviation squared at month t.

The estimate of the standard deviation for the item is the final one, s(t)2, computed 
at t = N, i.e.,

In the example,

Assuming the pseudo fitted relation sited above with the absolute residual errors, 
the following rule-of-thumb may be applied with respect to the estimate of the stan-
dard deviation of the forecast error for each month. This is the following:

where s(r) is the standard deviation for a month, t, with the seasonal ratio set as 
r = r(t).

For example, s = 5.55, and at month t = 10, r(10) = 0.91, thereby,

5.3 � Revised Forecasts

After completing the initial stage, the forecasts are revised each month when a new 
demand entry becomes available. The revision uses smoothing, with the same pa-
rameters, (α, β, γ), as in the initialize stage. As each month t passes on, and a new 
demand entry, x(t), becomes available, the three model coefficients are revised as 
below:

At t = 1: s 1  e 12 2( ) ( )=

For t 2 to N: s t e t 1 s t2 2 2= = + −( ) ( ) ( ) ( )α α

s s N= ( )2

s = 5 55.

s r  = s r

r

( )

.= 5 55

s 91 5 55( . ) . .
.

0 0 91
5 29

=
=

a(t) = [x(t)/r(t)] (1 )[a(t 1) + b(t 1)]α + − α − −

b t a t a t 1 1 b t 1( ) = ( ) − −( )  + − −( ) β β( )

r t 12 x t a t 1 r t( ) [ ( ) / ( )] ( )[ ( )]+ = + −γ γ
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And as before, the forecast at month t for future month τ is the following:

Example 5.2  Continuing with Example 5.1, suppose the demand at month t = 25 is 
x(25) = 15. So now the revised coefficients are computed as below:

The τ month ahead forecasts as of month t = 25 becomes,

At τ = 1,

and so forth.

5.4 � Initialize with 12-Months of Demand History

When 12 months of demand history are available, [x(1),…, x(12)], the seasonal 
multiplicative model can be initialized as described below:

f a t b t r t t = 1, 2, ...( ) [ ( ) ( ) ] ( )τ τ τ= + +

a 25 1 15 9 3 2 62 29 76( ) . . [ . . ] .= × + × + =0 0 0 0 0 0

b 25 1 29 76 3 2 9 62 0.464( ) = × −[ ]+ × =0 0 0 0 0 0. . . . .

r 36 1 15 29 76 9 6 5916( ) . [ / . ] . . .= × + × =0 0 0 0 0 0

f 29 76 r 25  1  2  0.464( ) [ . ] ( ) , ,τ τ τ τ= + + = …0

f 1 29 76 1 r 26
29 76 68

464
464

20.09

( ) [ . . ] ( )
[ . . ] .

= + ×
= +
=

0 0
0 0 0

X1 x 1  x 12 /12 average demand for year 1= + + =[ ( ) ( )]

a`(12) X1 estimate of level at month t 12= = =

b`(12) 0.0 estimate of slope at month t 12= = =

r t 12 x t X1 for t 1 to 12 estimate of seasonal ratios f( ) ( ) /+ = = = oor 12 months
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5.5 � Seasonal Additive Model

The additive version of the seasonal smoothing model is almost the same as the 
multiplicative version. Instead of using seasonal ratios as the multiplicative model 
does, the additive model uses seasonal increments that can be plus or minus. The 
initializing steps and the revision steps are almost the same in both models. For 
brevity, the description below is given without an example to illustrate the steps.

Initialize Forecast Stage  The initialize stage is described assuming 24 months of 
history demands are available. The demands are labeled as x(1),…, x(24) where 
x(1) is the oldest demand, and x(24) the most current.

The seasonal model also calls for three parameters, (α, β, γ), all in the range of 
zero to one, and typically, all are set near 0.10. The parameter α is used to smooth 
the estimate of the level, β to smooth the slope, and γ to smooth the seasonal incre-
ments.

Below is an overview of the ten steps in the initialize stage.

  1.  X1 is the average of the first 12 history demands.
  2.  X2 is the average of the last 12 history demands.
  3.  b`(0) is the estimate of the slope at t = 0.
  4.  a`(0) is the estimate of the level at t = 0.
  5.  a`(t) is the estimate of the level at month t for t = 1 to 24.
  6.  d`(t) is a measure of the seasonal increment at t = 1 to 24.
  7.  d(t) is an average estimate of the seasonal increment at t = 1 to 12.
  8.  Let a(0) = a`(0) and b(0) = b`(0).
  9. � Smoothed estimates of a(t), b(t) and d(t) are derived one month at a time start-

ing with month t = 1 and continuing till t = 24.
10.	 At t = 24, the initial forecast for future month τ is:
	 f(τ) = [a(24) + b(24)τ + d(24 + τ)]

In a more detailed mathematical way, the ten steps to initialize the seasonal additive 
model listed above are below:
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Because t = 24 is the final history month, the forecasts for the τ-th future month, as 
of t = 24, is computed as below:

It is important to synchronize the 12 unique seasonal increments to the months fol-
lowing the most current month, t = 24. For example, if month t = 24 is March, then 
arrange for the seasonal increments of the subsequent months to begin with April, 
and so forth.

5.6 � Initialize With 12-Months of Demand History

When 12 months of demand history are available, [x(1),…, x(12)], the seasonal 
additive model can be initialized as described below:

5.7  Revision Forecasts

After the initialize stage passes, the forecasts coefficients are revised each month 
with the arrival of a new demand entry, x(t). The revision steps for the three forecast 
coefficients are listed below:

f a 24 b 24 d 24 1  2( ) [ ( ) ( ) ( )] , ,τ τ τ τ= + + + = …

X1 x 1  x 12 12  average demand for year 1= +…+ =[ ( ) ( )] /

a` (12) X1 estimate of level at month t 12= = =

b`(12) 0.0 estimate of slope at month t 12= = =

d(t 12) [x(t) X1] for t 1 to 12
 estimate of seasonal additives for 12 months             

+ = − =
=

a t x t d t 1 a t 1 b t 1( ) [ ( ) ( )] ( )[ ( ) ( )]= − + − − + −α α

b t a t a t 1 1 b t 1( ) = ( ) − −( )  + − −( ) β β( )

d t 12 x t a t 1 d t( ) [ ( ) ( )] ( )[ ( )]+ = − + −γ γ
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Upon the revision, the new forecast as of time t for the τ-th future month becomes 
the following:

�Summary

The seasonal multiplicative model has components for the trend and monthly sea-
sonal ratios. The model is run with two stages, the initial stage and the revision 
stage. This chapter shows how the initial stage estimates the fourteen model co-
efficients using the most recent months of demand history. Three parameters are 
used in the process, one to smooth the level, another to smooth the slope, and a 
third to smooth the seasonal ratios. Upon completing the initial stage, the initial 
forecasts can be generated. The chapter also shows how to compute an estimate of 
the standard deviation of the 1-month forecast error. Subsequent to the initial stage, 
the revision stage is run after each new monthly demand entry becomes available. 
With each new month, when a new demand entry becomes available, the model 
coefficients are revised by smoothing, and refreshed forecasts are generated. A brief 
review of the seasonal additive model is also presented.

f ( ) [a(t) + b(t) d(t )] 1, 2,τ = τ + + τ τ = …
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Chapter 6
Promotion Forecasts

© Springer International Publishing Switzerland 2015
N. T. Thomopoulos, Demand Forecasting for Inventory Control, 
DOI 10.1007/978-3-319-11976-2_6

6.1 � Introduction

Promotions come in various ways: price reduction, buy one get one free, zero 
interest, no money down, and so on. They often occur when a supplier or a stock 
location offers a price incentive of some sort to the customers to buy now with 
enticements for purchases more often or in larger quantities. The promotion typi-
cally has a start-date and end-date, and the demand during these days is relatively 
higher than the normal non-promo days. This situation causes wild fluctuations 
in the demand history and upsets the forecasting model in use. The standard devi-
ation increases and the forecast coefficients swing out of normal control. Special 
adjustments are needed in the forecast models to overcome the fluctuations. Two 
forecast models are described here to accommodate the promotion activity: the 
promotion horizontal model and the promotion trend model. Both of the models 
involve two stages: the initial stage and the revision stage. The initial stage is 
the first estimates of the coefficients of the model. This stage requires N history 
months of demands and promotion measures. The coefficients of the model are 
estimated using regression methods where equal weight is given to each of the 
history months. The revision stage is used for the months after the initial stage 
where the coefficients are revised every month with each current month’s data 
using the smoothing method. Estimates of the standard deviation and the coef-
ficient of variation are computed for each of the two stages.

6.2 � Promotion Horizontal Model

The promotion horizontal model is based on the most recent N months of demand 
and promotion history. The demands are denoted as x(t) and the promotions are p(t) 
for t = 1 to N, where t = 1 is the oldest month and t = N is the most current month. The 
model is of the following form:
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where f(t) is the fitted value at history month t, and p(t) is the corresponding promo-
tion measure at t. The promotion, p(t), could be a measure of the portion of month 
t that is active with a promotion. The two coefficients are (a, c), where a, is the 
estimate of the level, and c is the promo coefficient.

To apply, the model requires two stages, initialize and revision as described be-
low. The initialize stage uses regression to estimate the coefficients of the model, 
and the revision stage uses smoothing.

6.3 � Initialize Stage

The initialize first stage requires some history data for the part. The data comes from 
the most recent N months of demand and promotion history. The history months 
are t = 1,…., N. The demand history is x(1),…, x(N), and the promotion history is 
p(1),…, p(N). Regression analysis is used to estimate the coefficients for the level 
and promotion coefficients.

Using the least squares method in the typical way, the following two equations 
are generated to obtain the two unknown coefficients, (a, c).

For notational ease, the following summation substitutions are used:

Below shows how to compute the coefficients.

f(t) a cp(t)= +

( )
( ) ( )2

x (N)a p c

xp p a+ p c

= +

=

∑ ∑
∑ ∑ ∑

1

1

1

2 2
1

( ) x

( ) p

( ) ( ) xp

( ) p

N

t
N

t
N

t
N

t

x t

p t

x t p t

p t

=

=

=

=

=

=

=

=

∑ ∑
∑ ∑
∑ ∑
∑ ∑

[ ] ( )
[ ]

2 2x p xpN p p N

a x c p N

 = ∑ ∑ − ∑ ∑ − ∑ 
= ∑ − ∑

c`

` `
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The fitted values over the history months are calculated as follows:

For each of the history months, the residual errors, e(t), are obtained in the follow-
ing way:

The residual errors are used to estimate the standard deviation of the one month 
forecast error, denoted as s. To apply, the sum of the square of the residual errors is 
tallied, ∑e(t)2, and is used as follows:

Finally, the coefficient of variation, cov, for the forecast error is computed using the 
estimate of the standard deviation, s, and the level, a`, as follows:

Example 6.1  Suppose the forecaster wishes to apply the promotion horizontal 
regression model for an item with N = 12 months of past history of demands and 
promotion as listed in Table 6.1.

f(t) a c`p(t) t 1 to N= + =`

e(t) x(t) f(t)= −

( )2s ( ) 2e t N= ∑ −

cov s a= `

Table 6.1   Example 6.1 data: history month t, demand history x(t), and promotion p(t)
t x(t) p(t)
1   9 0
2 13 0
3 38 0.4
4 18 0.2
5   6 0
6   7 0
7 13 0
8 26 0.5
9   6 0
10 10 0
11   4 0
12   8 0
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The summations described above are the following:

The coefficient estimates are listed below:

and thereby, the fitted values for the history months are obtained by the relation,

Table 6.2 lists the fitted values, f(t), and the corresponding residual errors, e(t), for 
the history months. The residual error for month t is obtained by: e(t) = x(t)—f(t). 
Figure 6.1 depicts the relation between the demand history and the associated fitted 
value for the history months, t = 1 to 12.

2

x 158
p 1.1
xp 31.8
p 0.45

∑ =
∑ =
∑ =
∑ =

a 8.621
c 49.59

=
=
`
`

f(t) 8.621 49.59p(t) t 1to12= + =

Table 6.2   Worksheet for history months t, with demand history x(t), promotion p(t), fit f(t), and 
residual error e(t)
t x(t) p(t) f(t) e(t)
1 9 0   8.62 0.38
2 13 0   8.62 4.38
3 38 0.4 28.46 9.54
4 18 0.2 18.54 − 0.54
5   6 0   8.62 − 2.62
6   7 0   8.62 − 1.62
7 13 0   8.62 4.38
8 26 0.5 33.42 − 7.42
9   6 0   8.62 − 2.62
10 10 0   8.62 1.38
11   4 0   8.62 − 4.62
12   8 0   8.62 − 0.62
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6.4 � Standard Deviation and Cov

Continuing with Example 6.1, the sum of square of errors over the twelve history 
months is computed as:

So now, the standard deviation can be estimated as described earlier. This is,

The associated coefficient of variation becomes,

6.5  �Forecasts

The forecasts for the future months can now be generated. To apply, the analyst 
must have some projection of the promotion activity for the future months. In this 
model, p(τ) represents the portion of future month τ where a promo is to be held. 
Applying this data, the forecast is the following:

Using the estimates of the coefficients from Example 6.1, the forecast model is,

2e(t) 224.86=∑

s 224.86 /10 4.742= =

cov s a 4.742 8.621 0.550= = =`

f a c p( ) ( ) , ,τ τ τ= + =` ` 1 2

f p( ) . . ( ) , ,τ τ τ= + = …8 621 49 59 1 2

Fig. 6.1   Plot of demand his-
tory x(t), and fit f(t) for t = 1 
to 12

 



76 6  Promotion Forecasts

Example 6.2  Applying the results from Example 6.1, suppose forecasts are needed 
for future months τ = 1, 2, 3, where no promotion is planned for months 1 and 2, but 
a full month of promotion is set for month 3. Thereby, p(1) = p(2) = 0 and p(3) = 1. 
The forecasts for the first three future months become:

6.6 � Revision Stage

The second stage of the forecast model uses smoothing to estimate the coefficients 
of the model and pertains to the months beyond the initialize months. To apply this 
method, a smoothing parameter, α, is needed. At current month t, the data available 
to revise the coefficients are listed below:

Using the above data, the revise equations for the level, a(t), and for the promo, c(t), 
coefficients are the following:

6.7 � Unbiased Estimates

The expected values of the above two equations are listed below.

Note where the expected value of a(t) is a (the true level), and for c(t) it is c (the true 
promo coefficient). This verifies that the revise equations yield unbiased estimators. 

f (1) 8.621
f (2) 8.621
f (3) 8.621 49.59 1 58.52

=
=
= + × =

( )
( )
( ) ( )
( ) ( )

x t demand at month t

p t promotion at month t

a t 1 estimateof the levelcoefficient at prior month t 1

c t 1 estimateof the promocoefficient at prior month

t history m

t 1
smoothing paramet

onth

er

=

=

− = −

− = −
α =

=

[ ] ( )

( )

a(t) x(t) c(t 1)p(t) 1 a(t 1)
if p(t) 0,set c(t) c(t 1), else,

c(t) x(t) a(t) p(t) (1 )c(t 1)

= α − − + − α −
= = −

= α − + − α −  

[ ] [ ]
[ ] ( )

E a(t) a c p(t) c p(t) (1 )a a

E c(t) a c p(t) a p(t) (1 )c c

= α + × − × + − α =

= α + × − + − α =  
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The revised coefficient estimates are then used to project unbiased forecasts for the 
future monthly demands.

Example 6.3  Continuing with Examples 6.1 and 6.2, suppose at the first future 
month, t = 13, the new demand entry is x(13) = 8 and there is no promotion. Hence, 
p(13) = 0. In the example, the smoothing parameter is set as α = 0.10. The revised 
coefficients and related computations are listed below:

Continuing with the example, assume at month t = 14, the demand is x(14) = 2 and 
the promotion is p(14) = 0. Thereby, the revised coefficients are:

Going further at month t = 15, suppose the demand is x(15) = 67, and the month had 
a full promotion, whereby, p(14) = 1.0. The revised estimates of the coefficients are 
the following;

The example continues for months t = 13 to 24, with the associated demand, x(t), 
and promo, p(t), entries for each month listed in Table 6.3. The table also shows how 
the coefficients (a, c) and fitted values, f(t), would change as each month passes.

With each new month t, the computations described above are carried and the re-
vised coefficients a(t) and c(t) become available. Hence, the forecasts for the future 
months, τ, become the following;

At t = 24, the forecast for future month τ is the following:

[ ] [ ]

[ ] [ ]
[ ]{ }0.52 2

c(13) 49.59
e(13) x(13) f (13) 8 8.621 0.621

s(13) 0.1 0.621 0.9 4.742

a(13) 0.1 8 0 49.59 0

4.501

cov(13) s(13) a(13) 4.501 8.558 0

.9 8.621 8.558

.526

=
= − = − = −

 = − + =

=


= = =

− × + =

[ ] [ ]a(14) 0.1 2 0 49.59 0.9 8.558 7.90
c(14)

2
49.59=

= − × + =

[ ] [ ]
( ) [ ]c(15

a(15) 0.1 67 1 49.59 0.9 7.902 8.853

) 0.1 67 8.853 1.0 0.9 49.594 50.450=  −

= − × + =

 + = 

f( ) a(t) c(t)p( ) 1,2,τ = + τ τ = …

f( ) 8.481 49.474p( ) 1,2,τ = + τ τ = …
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Assume now where forecasts are needed for each of the subsequent three months. 
Suppose also where marketing is planning no promo in future months τ = 1 and 2, 
but a 40 % promotion in future month τ = 3. Thereby, p(1) = p(2) = 0 and p(3) = 0.4, 
and the associated forecasts are the following:

Figure 6.2 compares the total demand history, x(t), for the initialize months, with 
t = 1 to 12 on the left-hand-side, and with the revised months, t = 13 to 24 on the 
right-hand-side. The associated fitted values, f(t), are also shown.

6.8 � Promotion Trend Model

Promotion forecasting is now extended to include a trend factor, and is here called 
the promotion trend model. The model pertains to demands that are trending, either 
up or down, in the long run, and has periodic promotion activities. The model is of 
the following form,

where f(t) is the fitted value for history month t, and p(t) is the promotion measure 
at month t. The coefficients are (a, b, c) where a is the intercept at t = 0, b is the slope 

f (2) 8.48
f(3) 8.48 49.47(0.4) 28.2

f (1) 8.

7

48
=
= + =

=

f(t) a bt cp(t)= + +

Table 6.3   Worksheet showing the demands x(t), and promotions p(t), for months t = 13 to 24, and 
the corresponding estimates of the level a(t), the promo coefficient c(t), and the fitted value f(t)
t x(t) p(t) a(t) c(t) f(t)
13 8 0 8.558 49.594 8.56
14 2 0 7.902 49.594 7.90
15 67 1 8.852 50.449 59.30
16 9 0 8.867 50.449 8.87
17 13 0 9.280 50.449 9.28
18 11 0 9.452 50.449 9.45
19 8 0 9.307 50.449 9.31
20 41 0.8 8.440 49.474 48.02
21 8 0 8.396 49.474 8.40
22 10 0 8.557 49.474 8.56
23 5 0 8.201 49.474 8.20
24 11 0 8.481 49.474 8.48
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coefficient, and c is the promo coefficient. As in the horizontal model, p(t) could be 
the portion of the month that contains promotion activity. As before, the model has 
two stages, initialize and revision. The initialize stage uses regression to estimate 
the coefficients, and the revision stage uses smoothing.

6.9 � Initialize Stage

The initialize first stage requires some history data for the part. The data comes 
from the most recent N months of demand and promotion history. The history 
months are t = 1,…., N. The demand history is x(1),…, x(N), and the promotion 
history is p(1),…, p(N). Regression analysis is used to estimate the coefficients for 
the level and promotion.

Using the least squares method in the typical way, the following three equations 
are generated to obtain the three unknowns, (a, b, c).

For notational ease, the summations listed above are abbreviations as shown 
below:

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

2

x N a+ t b+ p c

xt t a+ t b+ pt c

xp p a+ pt b+ p c

∑ = ∑ ∑

∑ = ∑ ∑ ∑

∑ = ∑ ∑ ∑

( )
( ) ( )
( )
( )

1

1

1

1

1

x

xp

xt

pt

t

N

t
N

t
N

t
N

t
N

t

x t

x t p t

x t t

p t t

t

=

=

=

=

=

= ∑

= ∑

= ∑

= ∑

= ∑

∑
∑
∑
∑
∑
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60
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80

x

f

Fig. 6.2   Depiction of the demands (x) and the fitted values (f) for the12 history months (t = 1 to 
12), and for the subsequent 12 revised months (t = 13 to 24)
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Matrix methods are used to solve for the three coefficients. The matrix relation is 
the following:

The following notation is now helpful. The vector, X becomes,

Matrix T is,

and vector A is,

Using the notation above, the relation below becomes,

and the solution of the vector A is found as follows:

where T− 1 is the inverse of the matrix T. For notational ease, the coefficient esti-
mates are listed as: a`, b`, c`.

The fitted value for history month t is the following:

( )

2 2
1

1

2 2
1

( )

t

p

pN

t

N

t
N

t

t

p t

p t

=

=

=
=

= ∑

= ∑

∑
∑
∑ ∑

2

2

x t p
xt t t pt
xp p pt p

N a
b
c

∑ ∑ ∑     
     ∑ = ∑ ∑ ∑     
     ∑ ∑ ∑ ∑     

x
X xt

xp

∑ 
 = ∑ 
 ∑ 

2

2

t p
T t t pt

p pt p

N ∑ ∑ 
 = ∑ ∑ ∑ 
 ∑ ∑ ∑ 

A
a
b
c

 
 =  
  

X TA=

1A T X−=

( ) ( )f t a + b t +c p t t 1toT= = ̀ ` `
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and the associated residual error is computed as below:

6.10 � Standard Deviation and Cov

To compute an estimate of the standard deviation of the forecast error, denoted as s, 
the sum of square of errors, ∑e(t)2, is needed. With N months of history, the estimate 
of the standard deviation is computed as below:

Finally, the coefficient of variation uses the standard deviation, s, and the level, a, 
as follows:

Example 6.4  Assume the trend promotion forecast model will be used for a part 
with 12 months of past history of demands, x(t), and promotion, p(t), as listed in 
Table 6.4.

To begin, the summations needed to estimate the coefficients, (a, b, c), are tallied 
and the summations are below:

Applying the matrix notation given earlier, X and T become,

e(t) x(t) f (t)= −

2s ( ) / ( 3)e t N= −∑

cov s a= `

2

2

x 208

xp 35.6

xt 1384

pt 6

t 78

t 650

p 1.1

p 0.45

=

=

=

=

=

=

=

=

∑
∑
∑
∑
∑

∑
∑

∑

208
X= 1384

35.6

 
 
 
  

6.10 � Standard Deviation and Cov�



82 6  Promotion Forecasts

The inverse of the matrix T is the following;

Solving for the vector A, the coefficient estimates become,

Note, a` is an estimate for t = 0, and b` and c` are estimates for any month t = 1 to 12. 
Using the notation a(t), b(t) and c(t) as the estimates for month t,

So now, a(12) is the estimate of the level at the most current month.

12 78 1.1
T= 78 650 6

1.1 6 0.45

 
 
 
  

1

0.440 0.049 0.423
T 0.049 0.007 0.024

0.423 0.024 2.942

−

− − 
 = − 
 − 

a 8.645
b 0.350
c 49.967

=
=
=

`
`
`

a(0) a , b(12) b , c(12) c , and a(12) a(0) 12b= = = = +` ` ` `

Table 6.4   Data for Example 6.4: history months t, demand history x(t), and promotion history 
p(t) for t = 1 to 12
t x(t) p(t)
1   8 0
2 10 0
3 38 0.4
4 22 0.2
5 11 0
6 10 0
7 10 0
8 32 0.5
9 15 0
10 10 0
11 26 0
12 16 0
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Using the matrix solution results, the coefficients are the following:

The fitted values for months t = 1 to 12 are obtained by the relation below:

The associated residual errors, e(t) = x(t)—f(t), can now be calculated for each of 
the history months. Table 6.5 is a list of the 12 history months, along with their de-
mands, promotions, fitted values and residual errors.

The sum of squares of the N = 12 residuals errors is tallied and becomes,

This sum is needed to compute the estimate of the standard deviation, s, of the re-
sidual errors. The result is below:

So now, the coefficient of variation is calculated as follows:

Figure 6.3 gives a comparison of the demands, x(t), and the fitted values, f(t), for 
the history months, t = 1 to 13.

a(12) (a`+12b )̀ (8.645 12 0.350) 12.845
b(12) b` 0.350
c(12) c` 49.967

= = + × =
= =
= =

f (t) 8.645 0.350t 49.967p(t) t 1 to 12= + + =

e(t 2∑ =) .303 386

s 303.386 / 9 5.806= =

cov . . .= = =s/a(12) /5 806 12 85 0 452

Table 6.5   Worksheet with history months t, demand history x(t), promotion history p(t), fit f(t), 
and residual error e(t) for months t = 1 to 12
t x(t) p(t) f(t) e(t)
1   8 0   9.00 − 0.99
2 10 0   9.35 0.66
3 38 0.4 29.68 8.32
4 22 0.2 20.04 1.96
5 11 0 10.40 0.61
6 10 0 10.75 − 0.74
7 10 0 11.10 − 1.10
8 32 0.5 36.43 − 4.43
9 15 0 11.80 3.21
10 10 0 12.15 − 2.15
11 26 0 12.50 13.51
12 16 0 12.85 3.16
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6.11 � Revision Stage

The second stage of the promotion trend model is run beyond the initial 12 history 
months. This is when new demand and promotion data become available. With each 
new month of data, smoothing is used to revise the forecast coefficients, a, b and c. 
To apply this method, a smoothing parameter, α, is needed. At current month t, the 
data available to revise the coefficients are listed below:

Using the above data, smoothing is used as shown below:

6.12 � Unbiased Estimates

The expected values of the three coefficients, a(t), b(t) and c(t) are obtained below.

x(t) demand at month t
a(t 1) estimate of the level at prior month t 1
b(t 1) estimate of the slope at prior month t 1
c(t 1) estimate of the promo coefficient at mon

t current

th t 1
smooth parameter

month
=

− = −
− = −
− = −

α =

=

a(t) [x(t) c(t 1)p(t)] (1 )[a(t 1) b(t 1)]
b(t) [a(t) a(t 1)] (1 )b(t 1)
if p(t) 0, c(t) c(t 1), else,
c(t) [(x(t) a(t)) / p(t)] (1 )c(t 1)

= α − − + − α − + −
= α − − + − α −

= = −
= α − + − α −

E[a(t)] [a c p(t) c p(t)] (1 )[a b+b] a
E[b(t)] [a (a b)] (1 )b b
E[c(t)] [(a c p(t) a) / p(t)] (1 )c c

= α + × − × + − α − =
= α − − + − α =
= α + × − + − α =

Fig. 6.3   Plot of history 
months t = 1 to12, demands 
x(t), and fit f(t)
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Note where the expected value of a(t) is a, (the true level), b(t) = b, (the true slope), 
and for c(t), it is c (the true promo coefficient). This verifies that the revise equa-
tions yield unbiased estimators. The revised coefficient estimates are then used to 
project unbiased forecasts of future monthly demands.

Continuing with the Example 6.4, at t = 12, the coefficients are the following:

Example 6.5  Suppose at month t = 13, the demand is x(13) = 30 and there is no 
promotion, p(13) = 0. With this new data, the revise computations are below:

The associated residual error, estimate of the standard deviation and the coefficient 
of variation are computed as follows:

Continuing with the example, suppose at month t = 14, the demand is x(14) = 77, and 
a full promotion takes place, whereby p(14) = 1.00. The revise computations for the 
coefficients are the following:

b(12) 0.
a(12) 1

350
c(12) 49.967

2.845
=
=

=

a(13) 1 3 49 9679 9 12 845 35 14 878

b(13) 1(

= − ×[ ]+ +[ ] =
=

0 0 0 0 0 0

0

. . . . . .

. 114 878 12 845 9 35 518
c(13) 49 967
f(13) 14 878

. . ) . . .
.
.

− + ( ) =
=
= +

0 0 0 0

0 ==14 878.

e(13) [x(13)] f (13)]
[30 14.878] 15.122

= −
= − =

`

( ) ( )

2 2 0.5

0.52 2

 s(13)  [ e(13)  (1 ) s(12) ]

 0.1 15.122  0.9 5.806  6.181

= α× + − α ×

 = + = 

cov(13) s(13)/a(13) 6.18 /14.878 0.415= = =

[ ] [ ]
b(t) 0.1[16.55 14.83] 0.9 [0.514] 0.63

c(

a(14) 0.1 77 1.00 49.968 0.9 14.8

14) 0.1[(77 16.550) /1.00] 0.9 [49.967

35 1

] 51.01

6.55= − × + × =
= − + × =
= − + × =

6.12 � Unbiased Estimates�



86 6  Promotion Forecasts

Table 6.6 is a list of the demands, x(t), and promotions, p(t), that are assumed for 
months t = 13 to 24. The table also gives the associated estimates of the coeffi-
cients, (a, b, c), and the fitted value, f(t), for each month t.

Note, during the revise months, the only promotion occurs at t = 14 which is for 
a full month and thereby, p(14) = 1.00.

Figure 6.4 depicts the demands, x(t), for the initial stage (t = 1 to 12), and for 
revision stage (t = 13 to 24), and also shows the corresponding fitted values, f(t) for 
each of the months.

Table 6.6   Worksheet showing the months t = 13 to 24, the demands x(t), promotion p(t), and esti-
mates of the level a(t), slope b(t), promo coefficient c(t), and the fit f(t)
t x(t) p(t) a(t) b(t) c(t) f(t)
13 30 0 14.875 0.52 49.97 14.88
14 77 1 16.557 0.63 51.01 66.52
15 26 0 18.072 0.72 51.01 18.07
16 12 0 18.115 0.65 51.01 18.12
17 28 0 19.693 0.75 51.01 19.69
18 31 0 21.496 0.85 51.01 21.50
19 21 0 22.213 0.84 51.01 22.21
20 32 0 23.947 0.93 51.01 23.95
21 24 0 24.788 0.92 51.01 24.79
22 34 0 26.537 1.00 51.01 26.54
23 23 0 27.085 0.96 51.01 27.09
24 32 0 28.438 1.00 51.01 28.44

10
20
30
40
50
60
70
80
90

x

f

Fig. 6.4   Depiction of the history demands x(t), and their fit f(t), for history months 1 to 12 on the 
left, and for months 13 to 24 on the right
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Summary

Two promotion forecast models are described: the promotion horizontal model and 
the promotion trend model. Both have two stages; the initial stage and the revision 
stage. The initial stage uses N prior months of demand and promotion activities to 
estimate the coefficients of the model. The revision stage is for the months after the 
initial stage and uses the current demand and promotion data to update the forecast 
coefficients. Regression is used in the initial stage, and smoothing in the revision 
stage. In both situations, the standard deviation estimate and the coefficient of varia-
tion are computed.



89

Chapter 7
Multi-SKU Forecasts
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7.1  �Introduction

An sku is an abbreviation for the term stock-keeping-unit that identifies an item be-
ing in the inventory at a stocking location. Could be a part number, a product num-
ber, a style number, so forth. Should a model of a certain tool be in stock at a dealer, 
it is an sku at that dealer. If the same model is in stock in 1000 dealers, it is an sku in 
each of the 1000 dealers. It is also an sku at each distribution center that stocks the 
model. A truck parts dealer typically has 15,000 skus and a truck distribution center 
may have 100,000 skus. A shoe store in the mall may have 2000 skus in shoes alone, 
since each style by size and width is a separate sku. Forecasts are needed for each 
sku (usually monthly) to use in the inventory stocking computations.

When a part is stocked as a service part in an inventory system with five distri-
bution centers (DC), the part is an sku in each of the DC’s. Forecasts are needed 
for each part by location to arrange for the proper stock at each location. A forecast 
is also needed for the aggregate demands of the part in all locations so economic 
replenishments of the part from the supplier can be determined.

Consider a style shoe with 36 size and width combinations. Each size and width 
for the style shoe is an sku. Forecasts are needed for each size and width to be used 
in the inventory decisions at the distribution centers and at each store. The forecast 
is typically generated for the style itself, and this forecast is apportioned down to 
each of the size and width combinations. The same scenario also occurs in clothing, 
like men’s shirts, with different size and widths, and so forth.

This chapter describes two common ways to forecast when multiple skus are of 
concern in an inventory system, the top-down method and the bottom-up method. 
Top-down is when the aggregate demand history is used to forecast the demands 
over the future months. The aggregate forecast is then allocated down to each sku 
using an sku percent representing it’s portion of the total demand. This way, the 
forecasts for the total and for each sku are generated in a systematic manner. The 
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bottom-up method is in use when a forecast is generated for each sku and the sum 
of the sku forecasts is used to determine the forecast for the total.

In both methods, the standard deviation of each forecast is of need for subse-
quent use in inventory decisions. Methods are shown on how to compute the stan-
dard deviations for each sku and for the total when the top-down and bottom-up 
methods are in use.

Example 7.1  Consider an inventory system with M = 3 locations, denoted as: j = 1, 
2, 3, where they could represent three distribution centers, or three stores. Assume 
an item in stock has month 1 demands of one piece each for locations j = 1 and j = 2, 
and five pieces for location j = 3. The notation for demands at location j in month t is 
denoted as x(j,t), and the total demand for all three locations is noted as x(t). Hence, 
the location demands in month 1 become: x(1,1) = 1, x(2,1) = 1, x(3,1) = 5, and the 
total demand is x(1) = 7. Table 7.1 lists the location and total demand for each of the 
first 15 months of history.

7.2 � SKU Mean and Standard Deviation

In this chapter, the demands of an item at each location j are tallied separately and 
summed to yield the total demand as described in Example 7.1. In some of the fore-
casting methods, the known values for an item are the forecast of the total demand, 
F, the associated standard deviation, s, and also the percent of the total demand, p, 
that occurs at a particular sku. Of concern here is to use this information to estimate 

Table 7.1   Location j demands x(j,t), and total demand x(t), at month t
t x(1,t) x(2,t) x(3,t) x(t)
 1 1 1 5 7
 2 4 3 3 10
 3 0 3 7 10
 4 1 3 3 7
 5 4 6 3 13
 6 1 2 9 12
 7 0 3 13 16
 8 2 3 10 15
 9 5 7 1 13
10 3 6 5 14
11 1 3 11 15
12 0 8 8 16
13 4 7 3 14
14 2 6 10 18
15 3 8 6 17
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the forecast and standard deviation for an individual sku. A mathematical derivation 
of this situation follows.

Below shows how to compute the mean and an estimate of the standard deviation 
for an individual sku when the known values are the total mean, μ, and standard 
deviation, σ, for all skus combined. For convenience here, the demand for all skus 
is denoted as n and the demand for a selected sku is x. Further, p is the probability 
an arbitrary demand is for the selected sku. This way, with the parameters, n and 
p, x is almost distributed by the binomial distribution. But in this scenario, n is a 
random variable itself with mean μ and variance σ2, and thereby, the binomial does 
not exactly apply. Below shows how to derive the mean and variance for the sku 
demand, x, when the data, (μ, σ, p), is provided.

7.3 � Derivation of Binomial When n is a Random Variable

Suppose x is binomial with probability p, and n trials where, the number of trials, is 
a random variable with mean and variance as below:

The mean and variance of x, labeled as E(x) and V(x) are obtained as below. Using 
conditional probability notation:

In summary,

E(n) = µ

V(n)  2= σ

E x n np( | ) =

E(x) E(n)p  p= = µ

V x n E x n E x n np(1 p)2 2( | ) ( | ) ( | )= − = −

E x n V x n E x n p(1 p)n p n2 2 2 2( | ) ( | ) ( | )= + = − +

E x p(1 p)E(n) p E n

p(1 p) p    

2 2 2

2 2 2

( ) = − + ( )
= − + +( )µ µ σ

V(x) E x E x p(1 p) p  2 2 2 2= − = − +( ) ( ) µ σ

E(x) p = µ

V(x) p(1 p) p  2 2= − +µ σ
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7.4 � Top-Down Forecasting Method

Top-down forecasting involves the following seven steps:

1.	 Gather N months of demand history for each sku,

2.	  Sum the sku demands by month to yield the total monthly demands,

3.	  Using the total monthly demands, generate the forecasts for the future months,

4.	 Compute an estimate of the standard deviation of the 1 month ahead forecast 
error, s.

5.	 Measure the portion of total demand that applies to sku j,

6.	 Allocate the total monthly forecasts to each sku,

7.	 Calculate an estimate of the standard deviation for each sku,

where a is the level and s is an estimate of the standard deviation for the total fore-
cast.

7.5 � Total Demand Forecasts

Continuing with Example 7.1, the first step is to forecast the total demands one 
month at a time. When the part is new and has only one month of demand history, 
the trend smoothing model is applied with parameter values β = 0.05 for the slope, 
and the smoothing parameter, ɑ, value for the level is as follows:

x(j t) j 1 to M and t 1 to N, .= =

x(t) x(j t) j 1 to M t 1 to N= = =Σ , , .

f 1 2( ) , ,τ τ =

p(j) x j t x(t) j 1toM= =Σ Σ( , ) /

f ( j, ) p(j)f ( ) j 1 to M, 1,  2,τ = τ = τ =

s(j) a p(j)(1 p(j)) p(j) s j 1 to M2 5= × − + × =[ ( ) ] .0

 1 t t 1 2α = = …max( . , / ) , ,0 0 1
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Month-1 Forecast  In month t = 1, the computations are the following. Note, the 
prior values of the level and slope, at t = 0, are a(0) = b(0) = 0.00, since the part is 
new. The total demand for the part is x(1) = 7, and the parameters are ɑ = max(0.10, 
1/1) = 1.00 and β = 0.05. Thereby, the smoothed values of the level and the slope 
become:

The 1-month ahead forecast becomes:

Since the part is new, the prior standard deviation estimate is s(0) = 0.00 and the 
revised standard deviation becomes,

The coefficient of variation is below:

These are the values listed in Table 7.1 for the first month (t = 1) of demand history.

Month-2 Forecast  Continuing with Example 7,1, the corresponding computations 
for month t = 2, become: ɑ = max(0.10, ½) = 0.50, β = 0.05, x(2) = 10, a(1) = 8.68, 
b(2) = 0.42, f = 9.09, s(2) = 5.29 and cov(2) = 0.61. These values are in Table  7.2 
when t = 2.

Month-t Forecast  Table  7.2 is a listing of the forecasting results for the total 
demand for each of the months t = 1 to 15.

7.6 � Location Portion of Demand

Consider month t = 1 again where the demands are 1, 1 and 5 for locations 1, 2 and 
3, respectively. The portion of demand for each location becomes:

a(1) x(1) 1 a(0) b(0)
1 7 1 1 7

= + − +[ ]
= × + − × =
α α( )
. ( . ) .00 00 0 00

[ ]b(1) a(1) a(0) (1 )b(0) 
0.05(7.00 0.00) 0.95 0.00 0.35

= β − + − β
= − + × =

f(1) a(1) b(1) 1
7 35 1 7 35

= + ×
= + × =. . .00 0

s(1) x(1) a(0) 1 s(0)

1 7

2 2
5

2

= [ ] +{ }
= [ ] + ×

α − −α

−

( )

. . . .

.0

00 00 0 00 0 00 0{{ } =
0

00
.

.
5

7

cov(1) s a(1)
1

=
= =

( ) /
. / . .
1

7 00 7 00 00

p(1) / 142= =1 7 0.
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At month t = 2, the cumulative demand for each of the three locations are: 5, 4 and 8 
at j = 1, 2, 3, respectively. The cumulative total demand is 17. Hence, the portion of 
demands for each location becomes:

These are the values at t = 2.
In the same way, the location portion of the total demand by month is calculated 

as each month passes by. The values for months 1–15 are shown in the Table 7.3.

7.7 � The Level by Location and Total

The level for the total demand at month t is denoted as a(t), and the level for location 
j at t is a(j,t). In the example, at month t = 1, the level for the total monthly demand 
was reported as a(1) = 7.00, and the corresponding level for each location j becomes:

p(2) / 142= =1 7 0.

p(3) / 714= =5 7 0.

p(1) / 294= =5 17 0.

p(2) / 235= =4 17 0.

p(2) / 471= =8 17 0.

Table 7.2   Worksheet for total forecasts with months t, monthly demands x(t), level a(t), slope b(t), 
1 month ahead forecast f(t), standard deviation s(t), and coefficient of variation cov(t)
t x(t) a(t) b(t) f(t) s(t) cov(t)
1 7 7.00 0.35 7.35 7.00 1.00
2 10 8.68 0.42 9.09 5.29 0.61
3 10 9.39 0.43 9.83 4.35 0.46
4 7 9.12 0.40 9.52 4.03 0.44
5 13 10.21 0.43 10.64 3.92 0.38
6 12 10.87 0.44 11.31 3.62 0.33
7 16 11.98 0.48 12.46 3.79 0.32
8 15 12.77 0.49 13.27 3.66 0.29
9 13 13.24 0.49 13.73 3.45 0.26

10 14 13.75 0.49 14.25 3.28 0.24
11 15 14.32 0.50 14.82 3.12 0.22
12 16 14.93 0.50 15.44 2.98 0.20
13 14 15.29 0.49 15.79 2.87 0.19
14 18 16.01 0.51 16.51 2.81 0.18
15 17 16.56 0.51 17.07 2.67 0.16
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Table 7.4 lists the level for the total and for each location for every month t = 1 to 15.

7.8 � Standard Deviation by Location and Total

The estimate of the standard deviation for the total demand at month t is denoted as 
s(t), and the same value for location j is s(j,t). The location standard deviations are 
calculated as shown earlier. At month t = 1, s(1) = 7.00 and for j = 1,

In the same way, the standard deviation estimates for locations j = 2 and 3 are 
s(2,1) = 0.136 and s(3,1) = 5.14. Table 7.5 lists the standard deviations for month 
t = 1 to 15 for the total demand and for each of the three locations.

a(1 1) p(1)a(1) 142 7 1, . .= = × =0 00

a(2 1) p(2)a(1) 142 7 1, . .= = × =0 00

a(3 1) p(3)a(1) 741 7 5, . .= = × =0 00

s(1 1) 7 142(1 142) 142 7 1362 5
, . . . ( . . ) .

.
= −{ }+ ×  =00 0 0 0 00

0

Table 7.3   Monthly portion of demand p(j), by location j
t p(1) p(2) p(3)
1 0.14 0.14 0.71
2 0.29 0.24 0.47
3 0.19 0.26 0.56
4 0.18 0.29 0.53
5 0.21 0.34 0.45
6 0.19 0.31 0.51
7 0.15 0.28 0.57
8 0.14 0.27 0.59
9 0.17 0.30 0.52

10 0.18 0.32 0.50
11 0.17 0.30 0.53
12 0.15 0.32 0.53
13 0.16 0.34 0.50
14 0.16 0.34 0.51
15 0.16 0.35 0.49
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Table 7.5   Monthly estimates of the total standard deviation s(t), and location j standard deviation 
s(j,t)
t s(t) s(1,t) s(2,t) s(3,t)
1 7.00 1.36 1.36 5.14
2 5.29 2.06 1.76 2.89
3 4.35 1.44 1.75 2.86
4 4.03 1.35 1.82 2.61
5 3.92 1.55 2.02 2.37
6 3.62 1.45 1.88 2.47
7 3.79 1.35 1.88 2.77
8 3.66 1.36 1.86 2.78
9 3.45 1.51 1.97 2.57

10 3.28 1.54 2.01 2.48
11 3.12 1.50 1.98 2.51
12 2.98 1.44 2.05 2.49
13 2.87 1.51 2.09 2.42
14 2.81 1.51 2.12 2.45
15 2.67 1.54 2.15 2.42

Table 7.4   Monthly estimates of total level a(t), and location j level a(j,t)
t a(t) a(1,t) a(2,t) a(3,t)
1 7.00 1.00 1.00 5.00
2 8.68 2.55 2.04 4.08
3 9.39 1.74 2.44 5.22
4 9.12 1.61 2.68 4.83
5 10.21 2.17 3.48 4.56
6 10.87 2.03 3.32 5.53
7 11.98 1.76 3.35 6.87
8 12.77 1.85 3.41 7.52
9 13.24 2.31 3.98 6.94

10 13.75 2.47 4.35 6.94
11 14.32 2.39 4.34 7.59
12 14.93 2.22 4.84 7.87
13 15.29 2.45 5.19 7.65
14 16.01 2.49 5.42 8.09
15 16.56 2.61 5.80 8.15
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7.9 � Cov by Location and Total

The coefficient of variation for the total demand at month t is denoted as cov(t), and 
for location j it is cov(j,t). At month t = 1,

In the same way, the cov’s are computed as each month t passes by. Table 7.6 gives 
the progress of the covs for the total and for each location for months t = 1 to 15.

7.10 � Bottom-Up Forecasting Method

Bottom-up forecasting requires the following five steps.

1. Gather the N most recent history demands by sku j.

2. Generate the forecast for each sku j for future months τ.

3. Compute the standard deviation estimate for each sku j as of the current time t.

4. Sum all the sku forecasts to yield the total forecast.

5. Compute the standard deviation estimate for the total demand, s.

cov(1) s a(1) 1= = =( ) / / .1 7 7 00

cov(1,1) 136= =1 36 1 00. / . .

cov(2,1) 136= =1 36 1 00. / . .

cov(3,1) 1 3= =5 14 5 00 0. / . .

x(j,t) 1 to M and t 1 to N= =

( )f j,    j = 1 to M and = 1, 2, ... τ τ

s(j,t) j 1 to M=

f f j j 1 to M and 1 2( ) ( , ) , ,....τ τ τ= = =Σ
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7.11 � Location j Forecasts

Example  7.2  Forecasts are required for each location j, using the most current 
demands and the associated parameters. Assume for this example, the trend smooth-
ing model will be used with parameters, ɑ = max(0.10, 1/t) where t is the number of 
months of history, and the slope parameter is β = 0.05. Recall, the revised forecasts 
for any month t are obtained as follows:

and

The standard deviation estimate for sku j and current month t, is revised in the fol-
lowing way:

a(j,t) x(j,t) 1 a(j t 1) b(j t 1)= + +[ ]α −α − −( ) , ,

b(j,t) a(j,t) a(j t 1) 1 b(j t 1)= [ ]+β − − −β −, ( ) ,

f j a(j,t) b(j,t) 1 2( , ) , ,...τ τ τ= + =

s(j,t) e(j t) 1 s(j t 1)2 2 5
= + − −{ }α α, ( ) ,

.0

Table 7.6   Monthly measures of the coefficient of variationfor the total, cov(t), and for location 
j, cov(j,t)
t cov(t) cov(1,t) cov(2,t) cov(3,t)
1 1.00 1.36 1.36 1.03
2 0.61 0.81 0.86 0.71
3 0.46 0.83 0.72 0.55
4 0.44 0.84 0.68 0.54
5 0.38 0.71 0.58 0.52
6 0.33 0.72 0.57 0.45
7 0.32 0.77 0.56 0.40
8 0.29 0.74 0.55 0.37
9 0.26 0.65 0.49 0.37

10 0.24 0.62 0.46 0.36
11 0.22 0.63 0.46 0.33
12 0.20 0.65 0.42 0.32
13 0.19 0.61 0.40 0.32
14 0.18 0.61 0.39 0.30
15 0.16 0.59 0.37 0.30
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where e(j,t) = x(j,t) − f(j,t − 1) is the 1 month ahead forecast error at month t.
The coefficient of variation for sku j and month t becomes,

Forecasts at Location j = 1  At month t = 1, when the item is new, the demand for 
sku j is denoted as x(j,1). The prior estimates of the level and slope, at t = 0, are 
a(j,0) = 0 and b(j,0) = 0, respectively. The smoothed values of the level and the slope 
become,

and the τ-month ahead forecast becomes:

The standard deviation estimate becomes:

and the cov is

These are the values listed in Table 7.7 for the first month (t = 1) of demand his-
tory. The table also lists the forecast results for the months t = 1 to 15. Table 7.8 
lists the corresponding results for location j = 2, and Table  7.9 gives the same 
for location j = 3.

7.12 � Bottom-Up Total Forecast

The total forecast, at month t, using the bottom-up method is computed in the fol-
lowing way for a trend forecast model. First, the levels for each of the sku’s are 
summed to give the level for the total demand as shown below:

In the same way, the slopes from each sku j, are summed to yield the slope for the 
total demand,

cov(j,t) s j,t a(j,t= ( ) / )

a(1,1) 1= .00

b( , ) .1 1 0 0= 5

f 1 1 5 1 2( , ) . . , ,...τ τ τ= + =00 0 0

s(1,1) 1= .00

cov(1,1) 1= .00

a t( ) ( , )=
=∑ a j t
j

M

1

b b j t
j

M( ) ( , )t =
=∑ 1
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So now, the forecast for the τ-th future month for the total demand as of the current 
month t is the following:

f a(t) b(t) 1 2( ) , ,...τ τ τ= + =

Table 7.7   Forecast worksheet for location 1 with months t, level a(1,t), slope b(1,t), forecast f(1,t), 
standard deviation s(1,t) and coefficient of variation cov(1,t)
t x(1,t) a(1,t) b(1,t) f(1,t) s(1,t) cov(1,t)
1 1 1.00 0.05 1.05 1.00 1.00
2 4 2.53 0.12 2.65 2.20 0.87
3 0 1.77 0.08 1.85 2.36 1.34
4 1 1.63 0.07 1.70 2.09 1.28
5 4 2.16 0.09 2.25 2.13 0.99
6 1 2.05 0.08 2.13 2.01 0.98
7 0 1.82 0.07 1.89 2.03 1.11
8 2 1.90 0.07 1.97 1.90 1.00
9 5 2.31 0.08 2.39 2.05 0.89

10 3 2.45 0.09 2.54 1.96 0.80
11 1 2.38 0.08 2.46 1.92 0.81
12 0 2.22 0.07 2.28 1.98 0.89
13 4 2.46 0.08 2.53 1.96 0.80
14 2 2.48 0.07 2.55 1.86 0.75
15 3 2.60 0.08 2.67 1.77 0.68

Table 7.8   Forecast worksheet for location 2 with months t, level a(2,t), slope b(2,t), forecast f(2,t), 
standard deviation s(2,t) and coefficient of variation cov(2,t)
t x(2,t) a(2,t) b(2,t) f(2,t) s(2,t) cov(2,t)
1 1 1.00 0.05 1.05 1.00 1.00
2 3 2.03 0.10 2.12 1.55 0.76
3 3 2.42 0.11 2.53 1.36 0.56
4 3 2.65 0.12 2.77 1.20 0.45
5 6 3.41 0.15 3.56 1.80 0.53
6 2 3.30 0.14 3.44 1.77 0.53
7 3 3.38 0.14 3.51 1.64 0.49
8 3 3.45 0.13 3.58 1.55 0.45
9 7 3.96 0.15 4.11 1.85 0.47

10 6 4.30 0.16 4.46 1.85 0.43
11 3 4.32 0.15 4.47 1.82 0.42
12 8 4.82 0.17 4.99 2.06 0.43
13 7 5.19 0.18 5.38 2.05 0.39
14 6 5.44 0.18 5.62 1.96 0.36
15 8 5.86 0.20 6.06 2.00 0.34
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The 1 month ahead forecast error is

and the revised standard deviation estimate becomes

Finally, the coefficient of variation is

7.13 � Total Forecast at Month 1

At month t = 1, the level and slope are obtained from the same values for the three 
locations as follows:

Hence, the forecast of the total demand for future month τ is

e(t) x(t) f(t 1)= − −

s(t) = + − −α αe t s t( ) ( ) ( )2 21 1

cov(t) s(t) a(t)= /

a(1) 1 1 5 7= + + =. . . .00 00 00 00

b(1) 5 5 15 25= + + =0 0 0 0 0 0. . . .

f 7 25 1 2( ) . . , ,.....τ τ τ= + =00 0

Table 7.9   Forecast worksheet for location 3 with months t, level a(3,t), slope b(3,t), forecast f(3,t), 
standard deviation s(3,t) and coefficient of variation cov(3,t)
t x(3,t) a(3,t) b(3,t) f(3,t) s(3,t) cov(3,t)
1 5 5.00 0.25 5.25 5.00 1.00
2 3 4.13 0.19 4.32 3.88 0.94
3 7 5.21 0.24 5.45 3.52 0.68
4 3 4.84 0.21 5.05 3.29 0.68
5 3 4.64 0.19 4.82 3.08 0.66
6 9 5.52 0.22 5.74 3.29 0.60
7 13 6.78 0.27 7.05 4.10 0.60
8 10 7.42 0.29 7.71 3.97 0.54
9 1 6.97 0.26 7.22 4.36 0.63

10 5 7.00 0.24 7.24 4.20 0.60
11 11 7.62 0.26 7.88 4.16 0.55
12 8 7.89 0.26 8.16 3.94 0.50
13 3 7.64 0.24 7.88 4.08 0.53
14 10 8.09 0.25 8.34 3.93 0.49
15 6 8.11 0.24 8.34 3.80 0.47
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The forecast error for month t = 1 is e(1) = 7.00 − 0.00 = 7.00
and so, the standard deviation estimate is:

Finally, the cov becomes,

The values are listed in Table 7.10 at t = 1.
In the same way, the corresponding forecasts and related measures are calculated 

and listed in the table for months t = 1 to 15.

7.14 � Horizontal SKU Forecasts

Sometimes there are many sku’s where forecasts are needed on the the future de-
mands. This happens often in consumer items where many sizes and or colors of 
styles are stocked in the inventory in the distribution centers or in stores where 
replenishment decisions are needed on each sku. In these situations, the demands 
over the short run are often of the horizontal type and the forecasts are generated on 
a top-down basis.

s(1) 1 7 72 5
= × + ×  =. ( ) .

.
00 0 0 00

0

cov(1) 1= =7 00 7 00 00. / . .

Table 7.10   Forecast worksheet for the total with months t, level a(t), slope b(t), forecast f(t), stan-
dard deviation s(t), and coefficient of variation cov(t)
t x(t) a(t) b(t) f(t) s(t) cov(t)
1 7 7.00 0.35 7.35 7.00 1.00
2 10 8.68 0.42 9.09 5.29 0.61
3 10 9.39 0.43 9.83 4.35 0.46
4 7 9.12 0.40 9.52 4.03 0.44
5 13 10.21 0.43 10.64 3.92 0.38
6 12 10.87 0.44 11.31 3.62 0.33
7 16 11.98 0.48 12.46 3.79 0.32
8 15 12.77 0.49 13.27 3.66 0.29
9 13 13.24 0.49 13.73 3.45 0.26

10 14 13.75 0.49 14.25 3.28 0.24
11 15 14.32 0.50 14.82 3.12 0.22
12 16 14.93 0.50 15.44 2.98 0.20
13 14 15.29 0.49 15.79 2.87 0.19
14 18 16.01 0.51 16.51 2.81 0.18
15 17 16.56 0.51 17.07 2.67 0.16
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In this section, the example to illustrate the method is taken from the shoe indus-
try where a style shoe is under review and the style has many combinations by size 
and width. In a top-down manner, the demand history of the style is used to forecast 
the style forecasts for the future months. The style forecast is then allocated to each 
size and width combination via a measure of the prior demand for each sku.

In the shoe industry, the portion of demand by sku is called a profile and the 
profile is often the same for a whole class of styles. Caution however, the profile of 
men’s work shoes may be different than the profile of men’s dress shoes. The profile 
could also change by location of the country where, for casual shoes, the profile in 
Florida may be different than the profile in Minnesota, say. The profile may even 
be different by store location in a city where the store is in an ethnic neighborhood. 
Some ethnic men may be larger in general than other ethnic men.

Example 7.3  Assume a style shoe has 33 sku’s as identified in Table 7.11. The sizes 
range from 7.0 to 13.0 and the widths are narrow (N), medium (M) and wide (W). 
For the style of interest, the portion of total demand by sku is also listed in the table. 
The sum over all of the sku portions, p(s,w), is 1.000.

7.15 � SKU Forecasts at the Distribution Center

Forecasts are needed at the distribution center and at each store. The forecasts at 
the DC is used to determine the replenish needs for each size and width. When 
new stock is needed, the DC places an order by sku with the plant that serves as the 
source supplier. The example assumes the monthly forecast for the style is F = 500 
pair. Using the style forecast, F, the associated sku forecast for the DC is generated 
by,

f(s w) p(s w) F, ,= ×

Table 7.11   Portion of demand by size, s, and width, w, p(s,w)
s/w N M W

7 0.0094 0.0188 0.0102
8 0.0129 0.0259 0.0184
8.5 0.0165 0.0329 0.0267
9 0.0200 0.0400 0.0349
9.5 0.0235 0.0470 0.0431

10 0.0270 0.0541 0.0513
10.5 0.0055 0.0500 0.0550
11 0.0052 0.0470 0.0517
11.5 0.0049 0.0441 0.0485
12 0.0045 0.0412 0.0453
13 0.0042 0.0382 0.0420
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The raw forecasts are rounded to integers. Because of rounding, the sum of the raw 
forecasts will not always equal the corresponding sum of the integer forecasts.

Consider sku s = 10 and w = M, where p(10,M) = 0.0541, the raw forecast for this 
sku is,

The raw forecasts are listed in Table 7.12 and the corresponding integer forecasts 
are in Table 7.13. The raw forecast for size s = 7 and width w = N, say, becomes,

f(7,N) = p(7,N) × F = 0.0094 × 500 = 4.7. The corresponding integer forecast is 
f(7,N) = 5 pair.

f(1 M) 541 5 27 50 0 0 00 0, . .= × =

Table 7.13   Integer forecast x(s,w) by size s, and width w, of F = 500 at the distribution center
s/w N M W

7 5 9 5
8 6 13 9
8.5 8 16 13
9 10 20 17
9.5 12 24 22

10 14 27 26
10.5 3 25 27
11 3 24 26
11.5 2 22 24
12 2 21 23
13 2 19 21

Table 7.12   Raw forecast for total demand f(s,w) by size s, and width w, when F = 500 per month 
at the distribution center
s/w N M W

7 4.70 9.41 5.10
8 6.47 12.94 9.21
8.5 8.23 16.46 13.33
9 10.00 19.99 17.44
9.5 11.76 23.52 21.56

10 13.52 27.05 25.67
10.5 2.75 24.99 27.49
11 2.59 23.52 25.87
11.5 2.43 22.05 24.25
12 2.26 20.58 22.64
13 2.10 19.11 21.02
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7.16 � SKU Forecasts at the Stores

Suppose the forecast for a store is ten pair a month, F = 10, for the style. The associ-
ated integer forecasts for the style size and width at the store become those listed in 
Table 7.14. Although the raw forecasts for this store sums to ten pair,

the corresponding integer forecasts sum to only four pair.
Table 7.15 lists the integer forecasts for a store when the monthly style forecast 

is F = 20 pair. In this scenario, both the raw and the integer forecasts sum to 20 pair.

ΣΣf(s w) 1, = 0

7.16 � SKU Forecasts at the Stores�

Table 7.14   Integer forecast x(s,w) by size s, and width w, when F = 10 at a store location
s/w N M W

7 0 0 0
8 0 0 0
8.5 0 0 0
9 0 0 0
9.5 0 0 0

10 0 1 1
10.5 0 0 1
11 0 0 1
11.5 0 0 0
12 0 0 0
13 0 0 0

Table 7.15   Integer forecast x(s,w) by size s, and width w, when F = 20 at a store location
s/w N M W

7 0 0 0
8 0 1 0
8.5 0 1 1
9 0 1 1
9.5 0 1 1

10 1 1 1
10.5 0 1 1
11 0 1 1
11.5 0 1 1
12 0 1 1
13 0 1 1
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Table 7.16 lists the forecasts when the style forecast is F = 30 pair. In this situ-
ation, the sum of the raw forecasts is 30, but the sum of the integer forecasts is 28 
pair.

�Summary

The top-down and bottom-up forecasting methods are used when multiple skus are 
related in some manner, like the same part is stocked in various locations, or when 
a retail item is available in a variety of sizes, colors or models. Could be when a 
part (or product) is stocked in multiple locations, and forecasts at each location is 
needed as well as a forecast for the total. A common use is for retail items, shoes, 
shirts, sweaters, so forth, where forecasts are needed by each size and for the total. 
The top-down method first generates forecasts of the total demand, and second, this 
forecast is apportioned down to each sku. The bottom-up method applies when a 
forecast for each sku is generated and the sum of the forecasts is used for the total. 
The individual sku forecasts are needed for subsequent inventory computation de-
cisions, and the total forecast is needed to arrange with the supplier the replenish 
needs for the total inventory system. In all situations, measures of the forecast error 
are needed for subsequent inventory decisions.

Table 7.16   Integer forecast x(s,w) by size s, and width w, when F = 30 at a store location
s/w N M W

7 0 1 0
8 0 1 1
8.5 0 1 1
9 1 1 1
9.5 1 1 1

10 1 2 2
10.5 0 1 2
11 0 1 2
11.5 0 1 1
12 0 1 1
13 0 1 1
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Chapter 8
Forecast Sensitivity
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8.1 � Introduction

Along the supply chain, in distribution centers, stores, dealers, so forth, forecasts 
are in continual need for inventory decisions to project the flow of demands over 
the future months for each item stocked. The more accurate the forecasts, the better 
the inventory decisions and the more profitable the entity. A 10 % decrease in the 
measure of the forecast error will result in approximately a 10+ percent decrease in 
the amount of safety stock needed. This reduced stock is very helpful to the profit 
margin on the inventory system.

In this chapter, a series of simulation runs are developed to apprise the fore-
caster on how some elements in forecasting affect the accuracy of the forecasts. For 
this purpose, the forecast accuracy is measured by the coefficient of variation, cov, 
of the 1-month ahead forecast error. A first series of tests concern the number of 
months of demand history to use in developing the forecasts. The cov is measured 
as the history of demands range from 6 to 48 months and the forecasts are for the 
horizontal and trend demand patterns. A second series of tests are aimed at measur-
ing how forecast accuracy depends on the choice of parameters and forecast model 
selected. Three separate simulations are run; one for the horizontal demand pattern, 
another for the trend demand pattern, and yet another for the seasonal demand pat-
tern. A third series of tests demonstrate how damaging outlier demands are to the 
forecasts and the forecast accuracy. Two examples are given, one for a horizontal 
demand pattern and another for a trend demand pattern.

8.2 � Cov by NMH when Horizontal Demands 
and Forecasts

A simulation is run to determine how the accuracy of the forecast is affected as the 
number of months of history (NMH) varies when the demand pattern is horizontal 
and a horizontal forecast model is applied. In this simulation, the NMH of demand 
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history is randomly generated from a horizontal demand pattern where the indi-
vidual monthly demands are normally distributed with a mean of µ and a standard 
deviation of   σ µ= ×cov  with cov 3= 0 0. . The demands are denoted as, x(1),…, 
x( N), where N = NMH, and the average demand is computed by the sample average,

The forecast errors of the 12 future months are calculated by: 
e(t) (x(t) a )̀ t N +1 to N +12    = − = , and the standard deviation estimate is com-
puted as,

So now, the coefficient of variation for this simulated sample is:

The simulation is carried out 25 times and the average cov for the stated NMH is 
computed.

Table 8.1 lists the average cov for each of the NMH’s (6–48) selected in this 
simulation. Note, the cov reaches equilibrium when 18 months of history is used to 
estimate the average demand.

8.3 � Cov by NMH when Trend Demands and Forecasts

A simulation is run to determine how the accuracy of the forecast changes when 
the number months of demand history varies for a trend demand pattern and a 
trend forecast model is in use. In this situation, NMH months of demand history 
is randomly generated from a trend demand pattern where the monthly demands 
are slowly ramping upwards. Each demand is normally distributed with a mean 
µ τ( ) ( )= +a bt  and the standard deviation is  ( )σ τ , where  ( ) cov ( )σ τ = × µ t , and 

[ ]a`= x(1) x(N) N  +…+

s = −∑e t N( ) / ( )2 1

cov s / a`=

NMH Cov
  6 0.362
12 0.346
18 0.297
24 0.292
30 0.303
36 0.316
42 0.320
48 0.318

Table 8.1   Average cov from 
25 samples by number of 
months history, NMH, using 
the horizontal moving aver-
age forecast model
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cov 3= 0 0. . Because the mean of each month is slowly ramping up in this simula-
tion, the associated standard deviation is also becoming larger with each month. 
The randomly generated demands are denoted as, x(1),…, x(N), where N = NMH.

The fit of the demands has two coefficients, (a, b), and these are estimated as 
follows:

Where the summations range from t = 1 to N, and for brevity, the summation nota-
tions are: x= x(t) and = x(tx )tt∑ ∑ ∑ ∑  

The forecast values for the 12 future months are computed by,

The average value of the forecast is here denoted as f .̀ The forecast errors of the 
12 future months is obtained, e(t) = (x(t) − f(t)) t = N + 1 to N + 12, and the standard 
deviation estimate is computed as,

So now, the coefficient of variation for this simulated sample is

The simulation is carried out 25 times and the average cov for the stated NMH is 
computed.

Table 8.2 lists the average cov for each of the NMH’s (6–48) selected in this 
simulation. Note, the cov reaches equilibrium when N = 24 months of history are 
used to generate the forecasts. This result is influenced because the demands are 
created from a trend demand pattern and the associated forecasts are also generated 
from a trend forecast model.

( )2’ 2b x t N xt t N t/   = − −    ∑ ∑ ∑ ∑ ∑

’a x b t N/ = − ∑ ∑

f(t) a` b`t t N 1 to N 12= + = + +

s = −∑e t N( ) / ( )2 1

cov `s / f=

NMH Cov
  6 0.690
12 0.393
18 0.334
24 0.293
30 0.302
36 0.330
42 0.318
48 0.314

Table 8.2   Average cov from 
25 samples by number of 
month history, NMH, using 
the trend regression forecast 
model



110 8  Forecast Sensitivity

8.4 � Cov by Parameter and Forecast Model  
when Horizontal Demands

In this simulation, the accuracy of the forecast is measured when the demands are 
from a horizontal demand pattern and the forecasts are from the discount forecast 
models of horizontal and trend and the discount parameters vary. For this purpose, 
24 months of demand history are randomly generated from a horizontal demand 
pattern where the individual monthly demands are normally distributed with a mean 
of µ and a standard error of    σ µ= ×cov  with cov = 0.300. The demands are denoted 
as, x(1),…, x(24).

The forecasts are generated by the horizontal discount model and also by the 
trend discount model. The models use one parameter denoted as β. The values of β 
are: (0.95, 0.90, 0.85, 0.80, 0.75, 0.70). The forecasts are generated using the first 
12 months of demands, [x(1),…, x(12)]. The level, a, for the horizontal discount 
model is computed by,

where, xw x w t w w t∑ ∑ ∑ ∑= =( ) ( ), ( )τ , and the history discount weights  

are w t  N-t( ) = β .
The coefficients, a, b, for the trend discount model are obtained by the following:

where the summations range from t = 1 to 12. For brevity, the summation notations 
are: tw tw t t w t w t and xtw x t tw t2 2∑ ∑ ∑ ∑ ∑ ∑= = =( ), ( ), ( ) ( )

The cov of the forecast error is measured when the forecast is projected over the 
next 12 months of demand, [x(13),…, x(24)]. For simplicity, the cov for the horizon-
tal forecast model is denoted as cov(H), and for the trend forecast model it is cov(T).

The samples are run 25 times and the average covs are listed in Table 8.3. Note 
from the table, the cov is best when the horizontal forecast model is applied, and 

a` xw/ w= ∑ ∑

( )2 2b` xw tw w xtw tw w t w/   = −  −  ∑ ∑ ∑ ∑ ∑ ∑ ∑

a` xw b tw w/−  =  ∑ ∑ ∑

β Cov(H) Cov(T)
0.95 0.333 0.438
0.90 0.334 0.445
0.85 0.336 0.457
0.80 0.338 0.474
0.75 0.341 0.499
0.70 0.345 0.531

Table 8.3   Average cov 
from 25 samples by discount 
forecast models, horizontal 
and trend, and parameter β 
when true demand pattern is 
horizontal
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also, the cov for the horizontal model gives more accurate results when the discount 
parameter, β, is near 0.95.

8.5 � Cov by Parameter and Forecast Model  
when Trend Demands

This simulation is run to determine how the accuracy of the forecasts are affected 
for a trend demand pattern when the discount forecast models of horizontal and 
trend are in use and as the discount parameter varies. In this scenario, 24 months 
of demand history are randomly generated from a trend demand pattern where 
the monthly demands are slowly ramping upwards. Each demand is normally 
distributed with a mean ( ) ( )a bµ τ = + τ  and the standard deviation is  σ τ( ) , where 
 σ τ µ τ( ) cov ( )= × , and cov = 0.30. Because the mean of each month is slowly 
ramping up in this simulation, the associated standard deviation is also becom-
ing larger with each month. The randomly generated demands are denoted as, 
x(1),…, x(24).

The forecasts are generated by the horizontal discount model and also by the 
trend discount model. The models use one parameter denoted as β. The values of β 
are: (0.95, 0.90, 0.85, 0.80, 0.75, 0.70). The forecasts are generated using the first 
12 months of demands, [x(1),…, x(12)]. The level, a, for the horizontal discount 
model is computed by,

where, xw  x (  )w(t), w w(t)τ= =∑ ∑ ∑ ∑ and the history discount weights 

are w t  N-t( ) = β .
The coefficients, a, b, for the trend discount model are obtained by the following:

Where the summations range from t = 1 to 12 and for notation brevity, 
tw tw t t w t w t2∑ ∑ ∑ ∑= =( ), ( )2 , and xtw x t tw t∑ ∑= ( ) ( ).
The cov of the forecast error is measured when the forecast is projected over 

the next 12 months of demand, [x(13),…, x(24)]. For simplicity, the cov for the 
horizontal forecast model is denoted as cov(H), and for the trend forecast model it 
is cov(T).

The samples are run 25 times and the average covs are listed in Table 8.4. Note 
from the table results, the cov is best when the trend forecast model is applied, and 
also when the discount parameter, β, is near 0.95.

a` xw w= ∑ ∑

( )2 2b` xw tw w xtw tw w t w/   = − −    ∑ ∑ ∑ ∑ ∑ ∑ ∑

a` xw b tw w/ = − ∑ ∑ ∑
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8.6 � Cov by Parameter and Forecast Model  
when Seasonal Demands

In this scenario, 36 months of demand history are randomly generated from a sea-
sonal demand pattern where the monthly demands are slowly ramping upwards and 
have a seasonal cycle. This is the same seasonal data that is used in the Chap. 6 ex-
ample. Each demand is normally distributed with a mean   a bt r tµ τ( ) ( ) ( )= +  where 
a is the level, b is the slope and r(t) is the seasonal ratio for month t. The standard de-
viation is  σ τ( ), where  ( ) cov  ( ) σ τ = × µ τ , and cov = 0.30. Because the mean of each 
month is cycling up and down, the associated standard deviation is also changing 
with each month. The randomly generated demands are denoted as, x(1),…, x(36).

The seasonal smoothing multiplicative forecast model is used to generate the 
forecasts. The first 24 months of history demands are used to initialize the forecasts. 
The following three parameters, (α, β, γ), are needed where α is used to smooth the 
level, β is used to smooth the slope, and γ is used to smooth the seasonal ratios. The 
algorithm is the same as described in Chap. 6, and for brevity, it is not repeated here.

Since month t = 24 is the final history month, the forecasts for 12 subsequent 
months are projected in the following way:

where the coefficients, a(24) and b(24), are the level and slope at month t = 24, and 
r(24 )  + τ  is the seasonal ratio for the τ-th future month. The cov for the model is 
based on the forecast error of the 12 future months, t = 25 to 36. Eight combina-
tions of the three parameters are tried as listed in Table 8.6. For each combination, 
the cov is listed as cov(S). Note from the table, the best results are when the three 
parameters are set close to 0.10.

The trend smoothing forecast model is also applied with the same data, and uses 
only the parameter α and β. The cov is computed for future months t = 25 to 36 and 
the results, cov(T), are listed in Table 8.5 for four combination of parameter settings.

The horizontal smoothing forecast model is also applied with the same data and 
requires the parameter α. Two combinations of the parameter are tried and the cov 
is computed using the data of t = 25 to 36. The cov for these two combinations are 
listed in Table 8.5 under cov(H).

[ ]f( ) a(24) b(24) r(24 )  1, ,12    τ = + τ + τ τ = …

β Cov(H) Cov(T)
0.95 0.676 0.341
0.90 0.646 0.344
0.85 0.619 0.350
0.80 0.596 0.362
0.75 0.576 0.386
0.70 0.560 0.438

Table 8.4   Average cov from 
25 samples by discount fore-
cast model, horizontal and 
trend, and parameter β when 
true demand pattern is trend
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8.7 � Cov when Horizontal Demands with an Outlier

The purpose of this simulation is to demonstrate how damaging an outlier demand 
is to the forecast results when an outlier is in the demand history. For this situa-
tion, N=12 months of demand history are randomly generated from a horizontal de-
mand pattern where the individual monthly demands are normally distributed with a 
mean of µ and a standard deviation of  cov   σ = × µ  with cov = 0.30. The demands are  

α β γ Cov(S)
0.10 0.10 0.10 0.332
0.10 0.10 0.20 0.342
0.10 0.20 0.10 0.335
0.20 0.10 0.10 0.351
0.10 0.20 0.20 0.346
0.20 0.10 0.20 0.365
0.20 0.20 0.10 0.398
0.20 0.20 0.20 0.417
α β Cov(T)
0.10 0.10 0.475
0.10 0.20 0.478
0.20 0.10 0.508
0.20 0.20 0.530
α Cov(H)
0.10 0.558
0.20 0.563

Table 8.5   Cov from seasonal 
smoothing forecast model, S, 
the trend smoothing forecast 
model, T, the horizontal 
smoothing model, H, and 
parameters α, β, γ, when true 
demand pattern is seasonal

Outlier No outlier
t x(t) f(t) x̀ (t) f`(t)
1 13 10.67 13 8.83
2 7 10.67 7 8.83
3 6 10.67 6 8.83
4 33 10.67 11 8.83
5 4 10.67 4 8.83
6 9 10.67 9 8.83
7 8 10.67 8 8.83
8 3 10.67 3 8.83
9 11 10.67 11 8.83
10 9 10.67 9 8.83
11 13 10.67 13 8.83
12 12 10.67 12 8.83

Table 8.6   Twelve months 
of demand history, x(t), with 
one outlier demand and hori-
zontal fit, f(t); and demand 
history with the outlier 
removed, x`(t), and resulting 
fit, f ̀ (t)
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denoted as, x(1),…, x(N), where N = 12. The demand in month t = 4 is an outlier, 
with x(4) = 33. The average demand is computed by,

The residual errors of the history months is obtained, e(t) = (x(t) − a`) t = 1 to 12, and 
the standard deviation estimate is computed as,

So now, the coefficient of variation for this simulated sample is

Table  8.6 lists the 12 monthly demands, x(t) for t = 1 to 12. The average de-
mand is a` = 10.67 and the associated standard deviation is s = 7.76. Thereby, the 
cov = 7.76/10.67 = 0.727. These are the statistics when the outlier is not removed 
from the demand history. The table also lists the same demands when the outlier 
demand is removed, x`(t), and is adjusted to x`(4) = 11, say. The average demand in 
this situation is a’ = 8.83 and the standard deviation is s = 3.36, whereby, the cov is 
3.36/8.83 = 0.380.

Figure 8.1 shows a plot of the demands with the outlier and the projected forecast 
for the next 12 months. Figure 8.2 depicts the same demands when the outlier is 
removed and adjusted, and projects the forecast for 12 future months.

Should the outlier not be adjusted, the forecast would call for f = 10.67 piec-
es per month, and in inventory control, the related standard deviation would be 
s = 7.76 causing a need for much safety stock. Without the outlier, the forecast 
would be f = 8.83 pieces per month and the standard deviation would be 3.36. The 
results show how outliers cause a large and unnecessary increase in the invento-
ry needs. Chapter 9 describes a way to detect and modify outliers in the demand  
history.

[ ]a` x(1)+...+x(12) 12/=

2s ( ) (12 1)e t= −∑

cov s/ a`=

Fig. 8.1   Forecasts by hori-
zontal model from horizontal 
demand pattern with one 
outlier
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8.8 � Cov when Trend Demands with an Outlier

The purpose of this simulation is to demonstrate how damaging an undetected out-
lier in the demand history is to the forecasts when the demand pattern is a trend. 
In this situation, 24 months of demand history is randomly generated from a trend 
demand pattern where the monthly demands are slowly ramping upwards. Each de-
mand is normally distributed with a mean  + µ τ τ( ) ( )= a b  and the standard deviation 
is  σ τ( ) , where  σ τ µ( ) cov (t)= × , and cov = 0.30. Because the mean of each month 
is slowly ramping up in this simulation, the associated standard deviation is also 
becoming larger with each month. The randomly generated demands are denoted 
as, x(1),…, x(24).

Assume N = 12 history months, [x(1),…, X(12)], are available to generate the 
forecasts, and the next 12 demands, [X(13),…, X(24)], are used to estimate the ac-
curacy of the forecast. The fit of the demands has two coefficients, (a, b), and these 
are estimated as follows:

Where the summations range from t = 1 to 12 and for brevity, the summations are: 
x x t∑ ∑= ( )  and xt x t t∑ ∑= ( ) .
The fitted values for the history months are computed by,

The level at t = N becomes:

b` x t N xt t N t2= −  ( ) −



∑ ∑ ∑ ∑ ∑/ 2

x b ta N` / = − ∑ ∑

f(t) a` b` t t 1 to N= + =

a(12) (a` 12b )̀= +

Fig. 8.2   Forecasts by hori-
zontal regression model from 
horizontal demand pattern 
with the outlier adjusted
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and so, the forecasts for the τ-th future month is,

The forecast error is measured for each of the future 12 months by,

and the standard deviation is measured as follows,

Because the projected average forecast for the future 12 months, t = 13 to 24, is 
[a(12) + 6.5b`], the coefficient of variation is measured as below:

The 12 history demands, [x(1),…, x(12)], that includes an outlier, are listed in the 
2nd column of Table 8.7 as x(t), and their associated fitted values, f(t), are in the 3rd 
column. The outlier is in month t = 7 where x(7) = 56. The level and slope at t = 12 
become: a`(12) = 23.78 and b` = 0.47. The forecasts for the future 12 months are 
generated and the coefficient of variation becomes, cov = 0.501.

When the outlier is removed and adjusted to x(7) = 17, say, the estimates of 
the level and slope at t = 12 become: à (12) = 19.78 and b` = 0.34. The forecasts 
are projected for the 12 future months and the coefficient of variation becomes,  
cov = 0.316.

f ( ) a(12) + b`   1 to 12   τ = τ τ =

e( ) (x( ) f ( ))  1 to 12   τ = τ − τ τ =

2s ( ) (12 1)e t= −∑

[ ]cov s a(12 `)+6.5b=

Outlier No outlier
t x(t) f(t) x(t)̀ f(t)̀
1 27 18.55 27 16.05
2 15 19.03 15 16.39
3 12 19.50 12 16.73
4 22 19.98 22 17.07
5 9 20.45 9 17.41
6 17 20.93 17 17.75
7 56 21.40 17 18.09
8 6 21.88 6 18.43
9 22 22.36 22 18.76
10 18 22.83 18 19.10
11 27 23.31 27 19.44
12 23 23.78 23 19.78

Table 8.7  Twelve months 
of demand history, x(t), with 
one outlier demand and trend 
fit, f(t), and demand history 
with outlier removed, x`(t), 
and resulting fit, f ̀ (t)
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Figure 8.3 is a plot of the demands with the outlier and the projected forecast 
for the next 12 months. Figure 8.4 depicts the same demands when the outlier is 
removed and adjusted prior to forecasting, and projects the forecast for 12 future 
months.

Summary

The more accurate the forecasts, the better the inventory decisions on when and 
how much stock to carry for each item in a stocking location. These decisions are 
vital to the profitability of the entity at all of its inventory locations. The coefficient 
of variation of the 1 month ahead forecast error is used to measure the forecast 
accuracy. A series of simulations are run to determine how the number of months 
of demand history affects the cov when the demand history is from a horizontal 
demand pattern and from a trend demand pattern. Another series of simulations 
are aimed at measuring the forecast accuracy depending on the parameters and the 
forecast model chosen for an item when the demand pattern is horizontal, trend or 
seasonal. Another series of simulations are run to measure how an outlier demand 
in the demand history influences the accuracy of the forecast.

Fig. 8.4   Forecasts by trend 
regression model from trend 
demand pattern with the 
outlier adjusted

 

Fig. 8.3   Forecasts by trend 
regression model from trend 
demand pattern with an 
outlier
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9.1 � Introduction

A primary goal of forecasting is to measure the flow of demands from the history 
months and project to the future months with a minimum forecast error. A way to 
enhance this goal is by filtering the history demands to seek out any outlier demands 
and adjust accordingly. As demonstrated in the prior chapter, outlier demands cause 
much damage to the forecasts and increase the forecast error. Filtering of the de-
mand history is not an easy process, but is important to yield forecasts with minimal 
forecast error. Reducing the forecast error will reduce the amount of safety stock 
needed to run the inventory operation. This chapter shows a way to seek out and 
adjust any outlier demands from the history months when the demand patterns are 
of the horizontal, trend or seasonal type. The filtering process takes place just prior 
to generating the forecasts.

Another way to minimize outlier demands is by filtering the line demands that 
occur in the order entry phase of the inventory stocking location. This is when the 
customers send in the purchase orders and list on each line of the order, a part num-
ber and a quantity. This part number request is a line demand and can be filtered to 
seek if it is an outlier. If an outlier is detected here, the line demand is sent back to 
the customer seeking verification on the quantity.

9.2 � Horizontal Filtering

Suppose the horizontal demand pattern where N history demand entries, x(1),…, 
x(N), are to be used to generate a horizontal forecast. Prior to forecasting, the de-
mands are filtered seeking if any outlier demands, and if so, the outlier is adjusted 
accordingly. A way to do this is described in the following seven steps.
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9.2.1 � Horizontal Filtering Algorithm (HFA)

1.	 For each x(t), find the absolute average difference, called the difference measure 
and denoted as d(t), from its closest neighbors as follows:

2.	 Locate the maximum d(t), denoted as dmx, and call the month tmx where the 
associated demand is x(tmx).

3.	 For month tmx, get the adjusted demand as the average of its closest neighbors 
as below:

Let x`(t) = x(t) for all months other than t = tmx.

4.	 Using the N demands, x`(t), compute the fitted value f(t) using the horizontal 
model. For the horizontal forecast model, the fitted values for each history month 
is f(t) = x ,  the average value.

5.	 Compute the residual errors, e(t) x`(t)-f(t),=  for all months t = 1 to N.
6.	 Using the N residual errors, calculate the standard deviation estimate as,

7.	 Now compute a t-ratio as,

8.	 Choose a limit U, say U = 3, to be compared to the absolute value of T to deter-
mine if the demand, x(tmx) is an outlier.
If T U  then x tmx> , ( )  is an outlier.

9.	 If x(tmx) is an outlier, repeat the steps, (1–8) for a limited number of cycles, Nc, per 
part number, perhaps two cycles. If x(tmx) is not an outlier, use the original series, 
x(t) t = 1 to N, to generate the forecasts; else, use the adjusted series, x` (t) t = 1 to N.

Example 9.1  Consider the N = 12 demand entries, as shown in Table 9.1 where the 
horizontal forecast model is to be applied. Assume the filtering parameters are U = 3 
and Nc = 1. This is an example where the history demands have no outliers. Below 
is a summary of the filtering algorithm for this example:

( ) ( ) ( ) ( )d t x t 0.5 x t 1 x t 1 for t 2 to N 1| |= − − + + = −  

d(1) |x (1) x(2) | for t 1= − =

d(N) |x(N) x(N 1) | for  t N= − − =

x`(tmx) [x(tmx 1) x(tmx 1)]/2 if tmx 2 to N 1= − + + = −

x` (tmx) x(2) if tmx 1= =

x` (tmx) = x(N 1) if tmx N− =

2s ( ) /( 1)e t N= −∑

( ) ( )T x tmx f tmx /s= −  
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Example 9.2  Consider the N = 12 demand entries, as shown in Table 9.2 where the 
horizontal forecast model is to be applied. The filtering parameters are U = 3 and 
Nc = 1. This also is an example where the filtering process finds no outliers. Below 
is a summary of the filtering algorithm for this example:

t x(t) d(t) x`(t) f(t)
1 29 20 29 16.33
2 9 8 9 16.33
3 5 11 5 16.33
4 23 6 23 16.33
5 29 17 29 16.33
6 1 26 27 16.33
7 25 23 25 16.33
8 3 16 3 16.33
9 13 6.5 13 16.33
10 10 1 10 16.33
11 5 9 5 16.33
12 18 13 18 16.33

Table 9.1   Horizontal 
filtering worksheet, history 
months, t, demand history, 
x(t), difference measures, 
d(t), adjusted demands, x`(t), 
and fitted demands, f(t)
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Example 9.3  Consider the N = 12 demand entries, as shown in Table 9.3 where the 
horizontal forecast model is applied. The filtering parameters are the following: 
upper limit on T is U = 3.0 and number of filter cycles is Nc = 1. In this example, 
the filtering process finds one outlier at t = 5. Below is a summary of the filtering 
algorithm for this example:

Example 9.4  Consider the N = 24 demand entries, as shown in Table  9.4 where 
the horizontal forecast model is to be applied. The filtering parameters are the fol-
lowing: upper limit on T is U = 3.0 and number of filter cycles is Nc = 2. Below is a 
summary of the filtering algorithm for this example. For this part’s demand history, 
two outliers are detected. Table 9.4 is a worksheet for the first filtering cycle and 
Table 9.5 is the worksheet for second filtering cycle.

t x(t) d(t) x`(t) f(t)
1 24 24 0 4.17
2 0 12 0 4.17
3 0 6 0 4.17
4 12 1 12 4.17
5 22 16 22 4.17
6 0 18.5 0 4.17
7 15 15 15 4.17
8 0 7.5 0 4.17
9 0 0 0 4.17
10 0 0 0 4.17
11 0 0.5 0 4.17
12 1 1 1 4.17

Table 9.2   Horizontal 
filtering worksheet, history 
months, t, demand history, 
x(t), difference measure, d(t), 
adjusted demands, x`(t), fitted 
demands, f(t)
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t x(t) d(t) x`(t) f(t)
1 7 4 7 3.71
2 3 1.5 3 3.71
3 2 2.5 2 3.71
4 6 22.5 6 3.71
5 55 51.5 3.5 3.71
6 1 29.5 1 3.71
7 6 4.5 6 3.71
8 2 3 2 3.71
9 4 1.5 4 3.71
10 3 0 3 3.71
11 2 2 2 3.71
12 5 3 5 3.71

Table 9.3   Horizontal 
filtering worksheet, history 
months, t, demand history, 
x(t), difference measure, d(t), 
adjusted demands, x`(t), fitted 
demands, f(t)

t x(t) d(t) x`(t) f(t)
1 17 10 17 13.71
2 7 4 7 13.71
3 5 5.5 5 13.71
4 14 3.5 14 13.71
5 16 31 16 13.71
6 80 65 80 13.71
7 14 28 14 13.71
8 4 7.5 4 13.71
9 9 3.5 9 13.71
10 7 0 7 13.71
11 5 4 5 13.71
12 11 4 11 13.71
13 9 6.5 9 13.71
14 20 10 20 13.71
15 11 4.5 11 13.71
16 11 46.5 11 13.71
17 104 96 8.0 13.71
18 5 54 5 13.71
19 14 6 14 13.71
20 11 0.5 11 13.71
21 9 4.5 9 13.71
22 16 4.5 16 13.71
23 14 0 14 13.71
24 12 2 12 13.71

Table 9.4   Horizontal filter-
ing worksheet of cycle 1 
for Example 9.4, history 
months, t, demand history, 
x(t), difference measure, d(t), 
adjusted demands, x`(t), fitted 
demands, f(t)



124

t x(t) d(t) x`(t) f(t)
1 17 10 17 11.00
2 7 4 7 11.00
3 5 5.5 5 11.00
4 14 3.5 14 11.00
5 16 31 16 11.00
6 80 65 15.0 11.00
7 14 28 14 11.00
8 4 7.5 4 11.00
9 9 3.5 9 11.00
10 7 0 7 11.00
11 5 4 5 11.00
12 11 4 11 11.00
13 9 6.5 9 11.00
14 20 10 20 11.00
15 11 4.5 11 11.00
16 11 1.5 11 11.00
17 8 0 8 11.00
18 5 6 5 11.00
19 14 6 14 11.00
20 11 0.5 11 11.00
21 9 4.5 9 11.00
22 16 4.5 16 11.00
23 14 0 14 11.00
24 12 2 12 11.00

Table 9.5   Horizontal filter-
ing worksheet of cycle 2 
for Example 9.4, history 
months, t, demand history, 
x(t), difference measure, d(t), 
adjusted demands, x`(t), fitted 
demands, f(t)

9  Filtering Outliers

The nine filter steps of cycle 1 of Example  9.4 are below. The worksheet is 
Table 9.4.

Below is a summary of the filtering cycle 2 for the part in Example 9.4. Note 
Table 9.5 where an outlier is detected in history month t = 6.
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The filter steps of cycle 2 of Example 9.4 are below. The worksheet is Table 9.5.

9.3  �Trend Filtering

When the trend forecast model is to be applied for a part, the trend filtering algo-
rithm (TFA) is applied to the demand history seeking and adjusting any outliers. 
The only difference between TFA and HFA is the method of generating the fitted 
values for the history months. The fitted values for HFA is simply the average value 
of the adjusted demand history, and for TFA, the fitted values is a trend flow over 
the history months. The trend filter algorithm is summarized below.

9.3.1  �Trend Filtering Algorithm (TFA)

1.	 For each x(t), find the absolute average difference, called the difference measure 
and denoted as d(t), from its closest neighbors as follows:

2.	 Locate the maximum d(t), denoted as dmx, and call the month tmx where the 
associated demand is x(tmx).

d(t) |x(t) 0.5[x(t 1) x(t 1)]| for  t 2 to N 1= − − + + = −

d(1) |x(1) x(2) for t 1= − =|

d(N) |x(N) x(N 1) | for t N= − − =
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3.	 For month tmx, get the adjusted demand from the average of its closest neigh-
bors as below:

Let x`(t) x(t)=  for all months other than t tmx= .
4.	 For the N demands, x`(t), compute the fitted value f(t) using the trend forecast 

model. For the trend forecast model, the fitted values for each history month is 
f(t) = (a` + b`t), where a` and b` are estimates of the level and slope, respectively. 
One way to compute the level and slope is by way of the trend regression model 
as follows:

where x x(t)∑ ∑=  and xt x(t)t∑ ∑=  and all the sums are for t = 1 to N.

5.	 Compute the residual errors, e(t) = x`(t) − f(t), for all months t = 1 to N.
6.	 Using the N residual errors, calculate the standard deviation estimate as,

7.	 Now compute t-ratio as,

8.	 Choose a limit U, say U = 3, to be compared to T to determine if the demand, 
x(tmx) is an outlier.

If |T| U, x(tmx)>  is an outlier.
9.	 If x(tmx) is an outlier, repeat the steps, (1–8) for a limited number of cycles, Nc, 

per part number, perhaps two cycles. If x(tmx) is not an outlier, use the original 
series, x(t) t = 1 to N to generate the forecasts; else, use the adjusted series, x`(t) 
t = 1 to N.

Example 9.5  Consider the N = 24 demand entries, as shown in Table 9.6 where the  
trend forecast model is under review. The filtering parameters are the following: 
upper limit on T is U = 3.0, and number of filter cycles is Nc = 1. Below is a sum-
mary of the filtering algorithm for this example. For this part’s demand history, no 
outlier is detected. The table is a worksheet for the filtering cycle.

x`(tmx) [x(tmx 1) x(tmx 1)]/2 if tmx 2 to N 1= − + + = −

x`(tmx) x(2) if tmx 1= =

x`(tmx) x(N 1) if tmx N= − =

( )2 2b` x t N xt t N t/   = − −    ∑ ∑ ∑ ∑ ∑

a` x b t N/ = − ∑ ∑

2s (t) /(N 2)e= −∑

T [x(tmx) f(tmx)]/s= −
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The filter steps of Example 9.5 are listed below. The worksheet is Table 9.6

t x(t) d(t) x`(t) f(t)
1 14 8.00 14 8.47
2 6 3.50 6 9.06
3 5 5.00 5 9.66
4 14 3.00 14 10.25
5 17 8.50 17 10.84
6 3 13.50 16.5 11.42
7 16 12.50 16 12.02
8 4 9.50 4 12.61
9 11 4.50 11 13.20
10 9 0.50 9 13.79
11 6 6.00 6 14.38
12 15 6.00 15 14.98
13 12 9.50 12 15.57
14 28 13.50 28 16.16
15 17 5.00 17 16.75
16 16 2.00 16 17.34
17 19 7.00 19 17.93
18 8 12.50 8 18.52
19 22 8.50 22 19.11
20 19 0.00 19 19.70
21 16 8.00 16 20.30
22 29 8.50 29 20.89
23 25 0.50 25 21.48
24 22 3.00 22 22.07

Table 9.6   Trend filtering 
worksheet for Example 9.5, 
history months, t, demand 
history, x(t), difference mea-
sure, d(t), adjusted demands, 
x`(t), fitted demands, f(t)
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t x(t) d(t) x`(t) f(t)
1 14 8 14 11.42
2 6 3.5 6 11.36
3 5 5 5 11.31
4 14 3 14 11.26
5 17 29 17 11.20
6 78 61.5 16.5 11.15
7 16 25 16 11.09
8 4 9.5 4 11.04
9 11 4.5 11 10.98
10 9 0.5 9 10.93
11 6 6 6 10.88
12 15 9 15 10.82

Table 9.7   Trend filtering 
worksheet for Example 9.6, 
history months, t, demand 
history, x(t), difference mea-
sure, d(t), adjusted demands, 
x`(t), fitted demands, f(t)

9  Filtering Outliers

Example 9.6  Consider the N = 12 demand entries, as shown in Table 9.7 where the 
trend forecast model is under review. The filtering parameters are the following: 
upper limit on T is U = 3.0 and number of filter cycles is Nc = 1. Below is a summary 
of the filtering algorithm for this example. For this part’s demand history, an outlier 
is detected. The table is a worksheet for the filtering cycle.
Filter cycle 1 of Example 9.5:
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9.4 � Seasonal Filtering

When the seasonal multiplicative forecast model is to be applied for a part, the sea-
sonal filtering algorithm (SFA) is run to the demand history for which it is seeking 
and adjusting any outliers. The only difference between SFA and the prior filtering 
algorithms (TFA, HFA) is the method of generating the fitted values for the his-
tory months. The fitted value for HFA is the average value of the adjusted demand 
history, and for TFA, the fitted value is the trend flow over the history months. For 
SFA, the fitted values require a seasonal flow where the coefficients for the level, 
a`, slope, b`, and 12 seasonal ratios, r(j) j = 1 to 12, are needed. For a review, the 
seasonal filter algorithm is summarized below.

9.4.1 � Seasonal Filtering Algorithm (SFA)

1.	 For each x(t), find the absolute average difference, called the difference measure 
and denoted as d(t), from its closest neighbors as follows:

2.	 Locate the maximum d(t), denoted as dmx, and call the month tmx where the 
associated demand is x(tmx).

3.	 For month tmx, get the adjusted demand as the average of its closest neighbors 
as below:

Let x`(t) = x(t) for all months other than t tmx= .

4.	 For the N demands, x`(t), compute the fitted value f(t). For the seasonal forecast 
model, the fitted values for each history month is f(t) = (a` + b`t)r(t), where a` 
and b` are estimates of the level and slope, respectively, and r(t) is the seasonal 
ratio for month t. A way to compute the level and slope is by way of the seasonal 
model described in Chapter 5. A quick review is below:

d(t) |x(t) 0.5[x(t 1) x(t 1) | for t 2 to N 1]= − − + + = −

d(1) |x(1) x(2) | for t 1= − =

d(N) |x(N) x(N 1) | for t N= − − =

x`(tmx) = [x(tmx 1) + x(tmx 1)]/2 if tmx 2 to N 1− + = −

x`(tmx) x(2) if tmx 1= =

x`(tms) x(N 1) if tmx N= − =
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	 At the start, the seasonal smoothing parameters (α, β, γ) are selected for the 
model. The nine stages to initialize the seasonal forecast model are listed below 
when the months of history is N = 24:

In this example,

5.	 Compute the residual errors, e(t) = [x(t) − f(t)], for all months t = 1 to N.
6.	 The standard deviation estimate is revised each history month, t, as follows:

7.	 The final standard deviation, s(N), is used to compute T-ratio as below:

8.	 Choose a limit U, say U = 3, to be compared to T to determine if the demand, 
x(tmx) is an outlier.

	 If | | ,T U x(tmx)>  is an outlier.
9.	 If x(tmx) is an outlier, repeat the steps, (1–8) for a limited number of cycles, Nc, 

per part number, perhaps two cycles. If x(tmx) is not an outlier, use the original 
series, x(t) t = 1 to N to generate the forecasts; else, use the adjusted series, x`(t) 
t = 1 to N.

Example 9.7  Consider the N = 24 demand entries, as shown in Table  9.8 where 
the seasonal forecast model is under review. The filtering parameters are the 
following: upper limit on T is U = 3.0, and number of filter cycles is Nc = 1. 
Below is a summary of the filtering algorithm for this example. For this part’s 
demand history, an outlier is detected. The table is a worksheet for the filtering  
cycle.

s( ) ( ) ( ) ( )t e t s t= + − −α α2 21 1

T [x(tmx) f(tmx)]/s (N)= −
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Filter cycle 1 of Example 9.7:

t x(t) d(t) x`(t) f(t)
1 15 4 15 8.99
2 11 2 11 13.41
3 11 7.5 11 12.03
4 26 2.5 26 19.03
5 36 15.5 36 26.42
6 15 20.5 15 14.05
7 35 21 35 28.74
8 13 14 13 17.17
9 19 37.5 19 16.87
10 100 86 14.0 17.10
11 9 47 9 12.60
12 12 1.5 12 11.14
13 12 10 12 17.69
14 32 13 32 25.41
15 26 4 26 22.06
16 28 3.5 28 33.85
17 37 11 37 45.75
18 24 15.5 24 23.73
19 42 13 42 47.49
20 34 0.5 34 27.78
21 25 7.5 25 26.79
22 31 6.5 31 26.69
23 24 0.5 24 19.36
24 16 8 16 16.85

Table 9.8   Seasonal filtering 
worksheet for Example 9.7, 
history months, t, demand 
history, x(t), difference mea-
sure, d(t), adjusted demands, 
x`(t), fitted demands, f(t)
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Figure 9.1 is a depiction of the data from Example 9.7 with N = 24 months of de-
mand history. The plot compares the adjusted demand entries, x(t), and the fitted 
demands, f(t), for each history month.

9.5  �Filtering Line Demands in Order Entry

Another way to prevent outliers from occurring in the demand history is to filter the 
line demands at the order entry level stage early on, when the customers send in their 
orders. In order entry, the customer order is received with one or more line items. 
Each line is for a different part, and the line identifies the part and the quantity of the 
purchase. The quantity is here called the line demand and labeled as d. For month t, 
the number of lines for a part is denoted as n(t), and the total demands for the part is 
x(t). The i-th demand for the part in month t is denoted as d(i, t). For month t,

It is impractical for most companies to save history on all the line demands, d(i, t), for 
each part in the inventory. Instead, most companies may save the history of monthly 
number of lines, n(t), and the corresponding monthly demands, x(t), for the prior N 
months of history.

With this history, it is possible to compute the average and standard deviation of 
the line demand, d. These are labeled as d  for the average and sd for the standard 
deviation. With these, the management can select a safety factor, k, (typically k = 3 
or 4), and compute lower and upper limits for each part number as follows:

The limits are then used in the order entry system to filter each incoming line de-
mand, d, of the part in the following way:

( )
( , )1

x(t) n t
i ti

d
=

= ∑

dLL ksd= −

UL ksd= +d

If LL d UL accept d≤ ≤

Fig. 9.1   Example 9.7 filtered 
demand history, x`(t), and fit, 
f(t), for seasonal model
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Oftentimes, the lower limit is negative, whereby, only the line demands greater than 
the upper limit are filtered.

For notational convenience in the following developments, the number of lines 
over the N months of demand history is labeled as L where:

The average and standard deviation of the line demands are computed as below:

The mathematical verification of this result is provided subsequently in this chapter.

Example 9.8  Consider a part with N = 12 months of demand history as shown in 
Table 9.9. The table lists the months of history, t, the number of lines in the month, 
n(t), the demand in the month, x(t), and the individual line demands per month as 
d(i, t) for i = 1 to n(t). The management wants to establish lower and upper limits 
on future incoming line demands, d. For this example, assume the safety factor 

if d LL verify d<

if d UL verify d>

L =
=∑ n t
t

N ( )
1

1 1( ) ( )N N
t td x t n t= == ∑ ∑

s n(t) L L2= −  −
















∑ ∑= =

N

t t

Nx t d n t
1

2 2
1

0 5

( ) ( )/
.

t n(t) x(t) d(i, t)

1 4 6 2 2 1 1
2 4 7 1 2 2 2
3 0 0
4 2 5 3 2
5 2 6 3 3
6 0 0
7 5 8 1 2 2 1 2
8 2 3 1 2
9 3 4 1 1 2
10 4 9 2 3 3 1
11 3 6 3 1 2
12 1 3 3

Table 9.9   Demand history 
for N = 12 months, where 
t = history months, n(t) = num-
ber lines in t, x(t) = demand 
in t, and d(i, t) = individual line 
demands in t
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is set to k = 3.0. The computations are below where the summations range from  
t = 1 to N.

Since the lower limit, LL, is negative, the lower limit is reset to LL = 0. Also, be-
cause, the upper limit is not an integer, it is set to the next higher integer, UL = 5. 
So, the order entry system for this part would filter each line demand, d, in the fol-
lowing way:

If d 5,≤  the line demand is accepted.
If d > 5, the line is returned to the customer for verification.

9.6 � Derivation of Mean and Standard Deviation  
of Line Demands

In the following verification, the notation for the true mean and variance of the line 
demand, d, are denoted as μ and σ2, respectively. The corresponding estimates are 
labeled as: d  and sd

2. The goal here is to find unbiased estimates of the true mean 
and variance using only the demand history data listed below:

x(t) = demands in month t for t = 1 to N
n(t) = number of lines in month t for t = 1 to N

For each month t, the demands consist of the sum of all line demands in the month 
as follows:

The line demands, d(i, t) are not known and only the quantities, n(t) and x(t) are 
known.

n(t) 30∑ =

x(t) 57∑ =

n(t 1042∑ =)

x(t)/ n(t) 1.90d = =∑ ∑

S x(t) n(t) L L n(t 0.83d
2

0.5

= −  −{ } = ∑ ∑d
2 2/ )

dLL ks 0.59d= − = −

UL ks 4 39d= + =d .

(1,t ) (n(t),t )x(t) d ... d or t 1 to Nf = + + = 
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The average of the line demands is computed as follows:

The expected value of d  is obtained below.

Thereby, the average, d , is an unbiased estimator of the true mean, μ.
For notational ease, let L represent the total number of lines in the N months of 

history, whereby,

Note, the expected value of x(t) is below.

The square of the residual error, 2[x(t) n(t) ] ,d−  is listed below.

From the above expression, the expected values of the three components on the 
right-hand-side are listed below.

Thereby,

Replacing σ2 with sd
2, the estimate of the variance becomes:

since the expected value is unbiased as shown below.

1 1
( ) ( )/N N

t t
d x t n t

= =
= ∑ ∑

1 1 1 1
E( ) E ( ) ( ) ( ) ( )/N N N N

t t t t
d x t n t n t n t

= = = =
 = = µ =µ  ∑ ∑ ∑ ∑

L =
=∑ n t
t

N ( )
1

E[x(t)] n(t) ,= µ

2 2 2[x ] [x(t) [(n(t)(t) n(t ) 2[x(t)n(t)) ] ] ]d d d+ −− =

2 2 2E[x(t) n(t)] n(t) ][= µ + σ

2 2 2 2E[(n(t) ) n( ) L][ /] t= µ + σd

2 2 2E[x(t)n(t) ] n( ) L[t / ]= µ + σd

( )2 2 2 2E x L n(t) L(t) n(t) /d σ   = − −   ∑

22 2 2
d 1 1

s x(t) n(t) L L (t)/N N

t t
d n= =

  = − −   ∑ ∑

22 2 2 2
d 1 1

E s E ( ) n(t) L L ( )/= =
 

   = − − = σ    
 ∑ ∑N N

t t
x t d n t
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�Summary

Prior to forecasting, the history of monthly demands are filtered seeking out any 
outlier demands, and if found, the outliers are adjusted accordingly. Filtering is not 
easy, but is important to generate forecasts with minimal forecast error. The filter-
ing methods described here are developed when the demands follow a horizontal 
demand pattern, a trend demand pattern and a seasonal demand pattern. Another 
phase of filtering the demands, occurs in the order entry of the inventory location. 
This is when the orders come in from customers and the purchase order states a part 
number and quantity. The quantity is verified to be statistically consistent with those 
from the part’s history of demands. Any line demand detected as an outlier is sent 
back to the customer for verification.
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Chapter 10
Standard Normal and Truncated Normal 
Distributions

© Springer International Publishing Switzerland 2015  
N. T. Thomopoulos, Demand Forecasting for Inventory Control,  
DOI 10.1007/978-3-319-11976-2_10

10.1 � Introduction

The normal distribution is perhaps the most commonly used probability distribution 
in materials management as well as in many other scientific developments. This 
chapter shows how the variable x, from the normal, is related to the standard normal 
distribution with variable z. A portion of the standard normal contains all values of 
(z > k) where k is a specific value of z. Of particular interest in subsequent use is the 
partial mean and partial standard deviation of the measure (z − k) from this portion 
of the standard normal. Another useful distribution is the truncated normal that also 
is defined with a parameter k. This distribution has many shapes and a measure 
of interest is the coefficient of variation, cov, that helps to identify the shape of 
the distribution. The two distributions, standard normal and truncated normal, have 
applications in inventory control and examples on how they are used appears in 
Chaps. 11 and 12.

10.2 � Normal Distribution

A variable x with a normal distribution has a mean μ, standard deviation σ,  and 
is labeled as: x ~ N(μ, σ2). The distribution appears as bell shaped as depicted in 
Fig. 10.1. The range of x is almost always from (μ − 3σ) to (μ + 3σ) and the most 
likely value is μ.
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10.3 � Standard Normal Distribution

A companion distribution is the standard normal distribution with variable z that has 
a mean of zero, standard deviation of one, and thereby is denoted as: z ~ N(0, 1). The 
variable z is related to x in the following way:

and

10.3.1 � Probability Density

If k is a particular value of z, the probability density at z = k, denoted as f(k), is

10.3.2 � Cumulative Distribution Function

The cumulative probability distribution at z = k is the following;

This is the probability that z is less or equal to k.
The complement of F(k) is noted as H(k), the probability of z larger than k, and 

is obtained as follows:

Figure 10.2 shows the relation of z, k, f(k), F(k) and H(k).

z (x  ) /= − µ σ

x  z = µ + σ

2 /2f (k) 1/ 2 −= π ke

F(k) ( )
k

f z dz
−∞

= ∫

H( ) ( )

1 F(k)
k

k f z dz
∞

=

= −
∫

Fig. 10.1   The normal distri-
bution of x ~ N(μ, σ2)
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10.4  �Partial Measures

The partial measures of the standard normal depend on a parameter k, a particular 
value of the random variable z. Of importance is the portion of the standard normal 
that is larger than k, whereby the variable is denoted as (z > k). Of particular interest 
is the mean and standard deviation of (z > k). These are denoted as μP(k) and σP(k), 
respectively. The mean is commonly referred as the partial expectation and labeled 
as E(z > k) for which, μP(k) = E(z > k), and the standard deviation is called the partial 
standard deviation. These measures are used in inventory control applications as 
described in Chaps. 11 and 12.

10.4.1  �Partial Expectation

The partial expectation of z-greater-than-k is here denoted at E(z > k). This mea-
sures is derived as follows:

For notational ease, the mean of the partial normal is labeled here as μP(k), where,

10.4.2  �Partial Standard Deviation

The partial variance with parameter k is also a useful measure in subsequent analy-
sis. This is computed by,

where,

The partial standard deviation is simply σp(k).

E z k( ) ( ) ( )> = −
∞

∫ z k f z dz
k

p (k) E(z k)µ = >

[ ]22 2
p (k) E (z k) – E(z k)    σ = > > 

2 2E (z k) ( ) ( )
k

z k f z dz
∞

 = > − ∫

Fig. 10.2   Some measures 
from the standard normal 
distribution
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10.4.3  �Partial When (x > xo)

In the event x is normally distributed with x ~ N(μ, σ2), and a partial measure of 
(x > xo) is of interest, the partial expectation, variance and standard deviation of 
(x > xo) are obtained as below. First note that [ ]ok x= − µ σ .

and,

10.4.4 � Table Measures

Table  10.1 lists selected values from the standard normal distribution [k, F(k), 
H(k), f(k)], and related partial measures [ ]P P(k), (k) . µ σ  The final three columns 
list values from the truncated normal distribution, [ ]T T T(k), (k), c (k) ,  µ σ  which are 
described subsequently.

10.5 � Truncated Normal Distribution

Consider the truncated standard normal distribution with k a location parameter 
where only the values of z greater than k are included. Another variable, t, is defined 
where t = z − k and t > 0. The probability density of t with parameter k is here denoted 
as gk(t) where,

For a particular value of t, say t1, the corresponding value of z is z1 = t1 + k. The cu-
mulative probability of t1, denoted as Gk(t1), is obtained from,

The truncated expectancies, E(t) and E(t2), are obtained as below:

oE(x x ) E(z k)> = > σ

2
oV(x x ) V(z k)> = > σ

o(x x ) P (k)> =σ σ σ

kg (t) f (z) / H(k) t 0 and t z k= > = −

1

k 1 0
G (t ) g ( )

t

k t dt= ∫

0
E(t) ( )ktg t dt

∞
= ∫

2 2

0
E(t ) ( )kt g t dt

∞
= ∫
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K F(k) H(k) f(k) μP(k) σP(k) μΤ(k) σΤ(k) cT(k)

− 3.0 0.001 0.999 0.004 3.000 0.999 3.004 0.993 0.331
− 2.9 0.002 0.998 0.006 2.901 0.998 2.906 0.991 0.341
− 2.8 0.003 0.997 0.008 2.801 0.998 2.808 0.989 0.352
− 2.7 0.003 0.997 0.010 2.701 0.997 2.710 0.986 0.364
− 2.6 0.005 0.995 0.014 2.601 0.996 2.614 0.982 0.376
− 2.5 0.006 0.994 0.018 2.502 0.994 2.518 0.978 0.388
− 2.4 0.008 0.992 0.022 2.403 0.993 2.423 0.972 0.401
− 2.3 0.011 0.989 0.028 2.304 0.990 2.329 0.966 0.415
− 2.2 0.014 0.986 0.035 2.205 0.988 2.236 0.959 0.429
− 2.1 0.018 0.982 0.044 2.106 0.984 2.145 0.951 0.443
− 2.0 0.023 0.977 0.054 2.008 0.980 2.055 0.942 0.458
− 1.9 0.029 0.971 0.066 1.911 0.975 1.968 0.931 0.473
− 1.8 0.036 0.964 0.079 1.814 0.969 1.882 0.920 0.489
− 1.7 0.045 0.955 0.094 1.718 0.961 1.798 0.907 0.504
− 1.6 0.055 0.945 0.111 1.623 0.953 1.717 0.894 0.520
− 1.5 0.067 0.933 0.130 1.529 0.943 1.639 0.879 0.536
− 1.4 0.081 0.919 0.150 1.437 0.931 1.563 0.863 0.552
− 1.3 0.097 0.903 0.171 1.346 0.918 1.490 0.847 0.569
− 1.2 0.115 0.885 0.194 1.256 0.902 1.419 0.830 0.585
− 1.1 0.136 0.864 0.218 1.169 0.886 1.352 0.812 0.601
− 1.0 0.159 0.841 0.242 1.083 0.867 1.288 0.794 0.616
− 0.9 0.184 0.816 0.266 1.000 0.846 1.226 0.775 0.632
− 0.8 0.212 0.788 0.290 0.920 0.823 1.168 0.756 0.647
− 0.7 0.242 0.758 0.312 0.843 0.799 1.112 0.736 0.662
− 0.6 0.274 0.726 0.333 0.769 0.772 1.059 0.717 0.677
− 0.5 0.309 0.691 0.352 0.698 0.744 1.009 0.697 0.691
− 0.4 0.345 0.655 0.368 0.630 0.714 0.962 0.678 0.705
− 0.3 0.382 0.618 0.381 0.567 0.683 0.917 0.659 0.718
− 0.2 0.421 0.579 0.391 0.507 0.651 0.875 0.640 0.731
− 0.1 0.460 0.540 0.397 0.451 0.618 0.835 0.621 0.744
  0.0 0.500 0.500 0.399 0.399 0.584 0.798 0.603 0.756
  0.1 0.540 0.460 0.397 0.351 0.549 0.763 0.585 0.767
  0.2 0.579 0.421 0.391 0.307 0.515 0.729 0.568 0.778
  0.3 0.618 0.382 0.381 0.267 0.481 0.698 0.551 0.789
  0.4 0.655 0.345 0.368 0.230 0.446 0.669 0.534 0.799
  0.5 0.691 0.309 0.352 0.198 0.413 0.641 0.518 0.808
  0.6 0.726 0.274 0.333 0.169 0.380 0.615 0.503 0.817
  0.7 0.758 0.242 0.312 0.143 0.349 0.590 0.488 0.826

Table 10.1   Some statistics from the Standard Normal Distribution, [F(k), H(k,), f(k)], Partial 
Measures, [μP(k), σP(k)], and from the Truncated Normal Distribution [μT(k), σT(k), cT(k)]
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10.5.1 � Truncated Mean and Variance

For notational consistency, the truncated mean and variance are denoted as: μT(k) 
and σT(k)2, respectively, and are obtained as below:

Note, the truncated standard deviation is simply σT(k).

10.5.2 � Some Useful Identities

The following identities are useful in the calculations.

T (k) E(t)µ =

2 2 2
T (k) E(t ) E(t)σ = −

K F(k) H(k) f(k) μP(k) σP(k) μΤ(k) σΤ(k) cT(k)

0.8 0.788 0.212 0.290 0.120 0.318 0.567 0.473 0.834
0.9 0.816 0.184 0.266 0.100 0.289 0.546 0.460 0.842
1.0 0.841 0.159 0.242 0.083 0.262 0.525 0.446 0.850
1.1 0.864 0.136 0.218 0.069 0.236 0.506 0.433 0.857
1.2 0.885 0.115 0.194 0.056 0.211 0.488 0.421 0.863
1.3 0.903 0.097 0.171 0.046 0.189 0.470 0.409 0.870
1.4 0.919 0.081 0.150 0.037 0.168 0.454 0.398 0.876
1.5 0.933 0.067 0.130 0.029 0.148 0.439 0.387 0.882
1.6 0.945 0.055 0.111 0.023 0.131 0.424 0.376 0.887
1.7 0.955 0.045 0.094 0.018 0.115 0.410 0.366 0.892
1.8 0.964 0.036 0.079 0.014 0.100 0.397 0.356 0.897
1.9 0.971 0.029 0.066 0.011 0.087 0.385 0.347 0.902
2.0 0.977 0.023 0.054 0.008 0.075 0.373 0.338 0.906
2.1 0.982 0.018 0.044 0.006 0.065 0.362 0.330 0.910
2.2 0.986 0.014 0.035 0.005 0.056 0.351 0.321 0.914
2.3 0.989 0.011 0.028 0.004 0.048 0.341 0.313 0.918
2.4 0.992 0.008 0.022 0.003 0.041 0.332 0.306 0.921
2.5 0.994 0.006 0.018 0.002 0.035 0.323 0.298 0.924
2.6 0.995 0.005 0.014 0.001 0.029 0.314 0.291 0.926
2.7 0.997 0.003 0.010 0.001 0.025 0.306 0.284 0.928
2.8 0.997 0.003 0.008 0.001 0.021 0.298 0.277 0.929
2.9 0.998 0.002 0.006 0.001 0.017 0.291 0.270 0.931
3.0 0.999 0.001 0.004 0.000 0.014 0.283 0.264 0.933

Table 10.1  (continued)
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10.5.3 � Truncated Cov

A convenient way to identify the truncated normal distribution is by the coefficient 
of variation, cov, computed by,

For notational ease, the truncated coefficient of variation with parameter k is la-
beled here as cT(k), whereby,

Table 10.2 lists various values of the cov (0.3 to 1.0) from the truncated normal 
distribution with their associate parameter k and measure H(k). When cov is 0.50 
or less, the shape of the distribution is much like the standard normal distribution. 
When cov is 0.90 or larger, the distribution looks like an exponential distribution.

Figure 10.3 depicts the truncated normal distribution when cov = 0.3, 0.5, 0.7 and 
0.9. The corresponding parameters k are approximately − 3.5, − 1.7, − 0.4 and 1.9, 
respectively. Note at cov = 0.5 or less, the truncated normal appears much like the 

H(k) 1 F(k)= −

E(z k) f (k) kH(k)> = −

2 2E (z k) H(k)(1+k ) – kf(k) > = 

E(t) E(z k) / H(k)= >

E t E z k /H k2( ) ( ) ( )2 = > 

T (k) E(t)µ =

TTcov (k) /  (k)= σ µ

Tc (k) cov.=

Cov k H(k)
0.3 − 3.5 1.000
0.4 − 2.4 0.992
0.5 − 1.7 0.955
0.6 − 1.1 0.864
0.7 − 0.4 0.655
0.8   0.4 0.345
0.9   1.9 0.029
1.0   3.5 0.000

Table 10.2   The truncated 
normal distribution with 
selected values of cov and 
associated values of k and 
H(k)
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standard normal. When cov is 0.9 or larger, the distribution is like an exponential 
distribution, far from the standard normal.

Example 10.1  Consider the variable x that follows a normal distribution with 
parameters, μ = 10 and σ = 2. Hence, x ~ N(10, 22). Now assume the probability of x 
larger than xo = 9 is of interest to an analyst. Note, the corresponding values from the 
standard normal are as below:

Thereby, from Table 10.1,

is the probability of x > 9.

Example 10.2  Suppose the analyst is now interested in the partial variable (x > 9) 
and also the associated mean and standard deviation of the partial variable. From 
the standard normal, the parameter becomes,

Scanning Table 10.1 at k = − 0.5, yields μP(k) = 0.698 and σP(k) = 0.744. Thereby,

ok (x – ) /
(9 –10) / 2

0.5

= µ σ
=
= −

H( 0.5) = 0.691−

k (9 10)/ 2 0.5= − = −

( )P

E(x>9) = E (z k)
= k

0.698 2 =
= 1.396

> σ
µ

×
σ

Fig. 10.3   Truncated normal 
at cT(k) = cov = 0.3, 0.5, 0.7 
and 0.9
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So, the partial mean of (x > 9) is 1.396 and the associated partial standard deviation 
is 1.488.

Example 10.3  Assume now, the analyst is interested in measuring the coefficient 
of variation from the truncated distribution with x larger than xo = 9. This measure 
can be obtained from the corresponding standard truncated normal distribution with 
parameter k. From the standard normal, the parameter becomes,

Now pursuing the truncated measures in Table 10.1 with parameter k = − 0.5, the 
mean is μT(− 0.5) = 1.009; the standard deviation is σT(k) = 0.697; and the coefficient 
of variation is cT(k) = 0.697/1.009 = 0.691. Thereby, the coefficient of variation for 
the truncated normal with (x > 9) is cov = 0.691.

10.5.4 � Three Related Variables: z, t and w

Now consider another variable, w, that is related to the variables t and z as shown 
below:

Let,

and

Note also, since, t (z k)= − ,

For a particular value of t, say, to, there are corresponding values zo and wo as shown 
below,

Below shows the relation with the partial expectations of the three variables. Recall 
Table 10.1 where a given cov yields a unique location parameter k. Now for a given 
cov, k and (to > 0),

(x 9) p (k)

0.744 2
1.488

>σ = σ σ

= ×
=

k (9 10) / 2 0.5= − =

T T t (k) w (k)= µ + σ

[ ]T Tw t (k) / (k)= − µ σ

[ ]T Tw z k (k) (k)= − − µ σ

o oz t k= +

[ ]o o T Tw z k (k) / (k)= − − µ σ
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and

Also,

10.5.5 � Limits on w

The limits on the variable w can be derived now. Recall,

where k is the location parameter on z. When z = k,

Hence, the interval on the random variable w becomes,

Note, for example when the coefficient of variation is: cT(k) = cov = (0.33, 0.50, 
1.00), the limits are as listed below:

Cov w-interval
0.33 −  3.00  < w < ∞
0.50 −  2.00  < w < ∞
1.00 −  1.00 < w < ∞

The relations shown here between random variables t, z and w will be useful in 
developing the safety stock applications of Chap. 11.

10.5.6 � Hastings Approximations

There is no closed-form solution for the cumulative distribution F(z). A way to 
approximate F(z) has been developed by C. Hastings, Jr. Two methods credited to 
Hastings are listed below.

o oE(t t ) E(z z ) / H (k)> = >

[ ]
o o T

o T

E(w > w ) = E(t > t ) / (k)
E(z z ) / H(k) (k)

σ

= > σ

[ ]o o TE(z z ) E(w w ) H(k) (k)> = > σ

[ ]T Tw z k (k) / (k)= − − µ σ

TT

T

w (k) / (k)
1/ c (k)

= −µ σ
= −

T1/ c (k) w− < < ∞
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10.5.7 � Approximation of F(z) from z

For a given z, to find F(z), the following Hastings routine is run.
1.	 d 498673471 = 0 0 0.

2.	 If z 0,k z≥ =

3.	
162 3 4 5 6

1 2 3 4 5 6F 1 0.5 1 d k d k d k d k d k d k
−

 = − + + + + + + 
4.	 if z  F z F� , ( )≥ =0

Return F(z).

10.5.8 � Approximation of z from F(z)

Another useful approximation also comes from Hastings, and gives a formula that 
yields a random z from a value of F(z). The routine is listed below.
1.	 0 c 2.515517=

2.	 H 1 F( ) ( )z z= −

3.	 t 1n(1/= H 2 ) where ln = natural logarithm.
4.	 k t c c t c t 1 d t d t d t1 2

2
1 2

2
3

3= − + +  + + + 0

5.	 If H(z) 5  z k≤ =0. ,

If H z 0.5, z k( ) > = −

Return z.

d 21141 612 = 0 0 00.

d 327762633 = 0 00.

d 38 364 = 0 0000 00.

d 4889 65 = 0 0000 0.

d 0.00000538306 =

If z 0,k z< = −

If z F  1 F< = −0,�( )z

c 8 28531 = 0 0.
c 1 3282 = 0 0 0.
d 14327881 = .
d 1892692 = 0.
d 13 83 = 0 00 0.

If H 5  H H( ) . , ( )z z≤ =0
If H 5 H 1 H( ) . , ( )z z> = −0
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�Summary

The normal distribution with random variable, x, is defined along with its mean and 
standard deviation. The normal is related to the standard normal distribution with 
random variable z, and where table values are listed in almost all statistical books. 
The standard normal is also related to the partial measures that are defined here with 
parameter k and includes the portion of the distribution where (z > k). The standard 
normal is also related to the truncated normal with parameter k and includes only 
the values of (z > k). The coefficient of variation from the truncated normal is of 
particular interest. Table values are listed with measures from the standard normal 
distribution, partial measures, and truncated normal distribution. Two approxima-
tions are also given which allow the user to measure F(z) from z, and z from F(z), 
where F(z) is the cumulative distribution of the standard normal.
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Chapter 11
Safety Stock

© Springer International Publishing Switzerland 2015
N. T. Thomopoulos, Demand Forecasting for Inventory Control, 
DOI 10.1007/978-3-319-11976-2_11

11.1 � Introduction

Safety stock is the extra inventory to hold for an item for protection against de-
mands exceeding the forecast. This type of stock concerns entities where the de-
mands of the future are not known until they happen, like in distribution centers, 
stores and dealers. In plants, where the production schedules are set in advance, 
safety stock is usually not needed. The typical way to measure the variability in the 
forecasts is by the standard deviation of the one month ahead forecast error. A rela-
tive measure is the coefficient of variation. Two common methods of generating 
the safety stock are: the service level (probability not out of stock), and the percent 
fill (ratio of demand filled over total demand) methods. Both methods are also 
sometimes referred as the service level method. The normal distribution is used 
primarily to generate how much safety stock to have available. This chapter shows 
how the truncated normal distribution can also serve this function. The truncated 
normal has many shapes and includes only portions of the right-hand-side of the 
standard normal.

11.2 � Control of the Inventory

The amount of inventory to carry is computed to comply with management’s desire 
of service to the customers. The goal is to have enough stock to satisfy the demands 
coming in from the customers. Two methods of determining the safety stock are 
described in this chapter, the service level method and the percent fill method. In 
many stocking locations, the safety stock consists of almost half of the total inven-
tory. The primary desire of the inventory management is to have the least amount 
of inventory to satisfy the demands of the customers. The safety stock is needed 
because of the uncertainty in the forecasts. The more accurate the forecasts, the less 
safety stock is needed, and thereby, the less inventory.
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Customer service is defined in many ways, depending on the role by which 
the inventory is used. The two most common interpretations are the following: 
(1) the probability the demand over the lead time does not exceed the inventory 
on-hand, and (2) the ratio of demand filled from stock on-hand over the total 
demand. More on these are described below. A good inventory system is one 
where the level of customer service is high and the amount of inventory is at the 
minimum possible.

It is common to refer to the total inventory as total stock (TS). The total stock is 
partitioned into two components: cycle stock (CS) and safety stock (SS). The cycle 
stock is needed to fill the forecast of demands from the customers, and the safety 
stock is needed in the event the demands exceed the forecasts.

A common way to control the inventory on each item in the stocking location is 
by the order point, OP, and order level, OL. Figure 11.1 depicts how this works. At 
time t1, the on-hand, OH, plus on-order, OO, inventory reaches the OP, and this trig-
gers the system to buy new inventory of size Q to reach the OL. This new inventory 
is OO that is shown with a dotted line. The OH inventory is depicted with a solid 
line. The order Q will be received a lead time, L, later at t2 = t1 + L. At t3, the OH + 
OO again falls to the OP and a new replenishment of stock of size Q is ordered. This 
stock is received at time t4 = t3 + L. The time between two receipts of stock, t2 to t4, 
is called the order cycle.

This chapter describes the two main methods of generating the safety stock: the 
service level method and the percent fill method.

11.3 � Safety Stock when Normal Distribution

This section shows how to generate the safety stock with the assumption the month-
ly demands follow a normal distribution, where the mean is the monthly forecast 
and the variation is the standard deviation of the one month forecast error.

Fig. 11.1   On-hand and on-
order flow for a continuous 
review inventory system
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11.4 � Service Level Method

A common way to determine the safety stock is by the service level method. The 
management sets a parameter, SL, that specifies the probability the demand over 
the lead-time will not exceed the amount of stock available. With this method two 
measures are computed, the order point, OP, and the order level, OL, as follows:

where, FL = forecast of the demands over the lead time, SS = safety stock and Q = 
order quantity. All three of these quantities come from the forecasts of the future 
months, F(τ) τ= 1, 2,…. The computations for the safety stock is shown below.

The lead-time forecast, FL, is computed as,

and so forth.
The safety stock is obtained from the normal distribution, the standard deviation 

of the one-month ahead forecast error, σ, and the lead-time, L. The lead time is the 
length of time between ordering replenish stock till receiving the stock. The stan-
dard deviation over the lead-time, σL, is obtained by,

The parameter SL is set to the cumulative probability in the standard normal distri-
bution, F(k) and k is called the safety factor. That is,

where k is the value of z, from the standard normal, where P(z ≤ k) = F(k) = SL. So, 
the safety stock becomes,

The order quantity, Q, is the amount of stock to order for replenishment. This quan-
tity is determined by an economic analysis using the forecast of the future months 
as well as the costs associated with buying and holding the stock. With each new 
order quantity, the on-order, OO, increases by Q; and when the stock arrives, the 
OO decreases by Q and the on-hand, OH, increases by Q.

The on-hand, OH, plus on-order, OO, inventory is monitored daily with the order 
point, OP, to determine when and how much to buy as described below.

LOP F + SS
OL OP + Q

=
=

LF L F(1) if L 1
F(1) (L 1) F(2) if 1< L 2

= × ≤
= + − × ≤

L  Lσ = σ

F(k) SL=

LSS k= σ

If (OH + OO) > OP buy 0
If (OH + OO) OP buy OL-(OH + OO)

=
≤ =
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The buy quantity is placed when (OH + OO) falls equal or below the OP mark.

Example 11.1  Consider a part with horizontal forecasts of F = 100 for each of the 
future months, and a standard deviation of σ = 30. Suppose the lead time is L = 2 
months, the order quantity is Q = 100 pieces, and the management sets the service 
level at SL = 0.95. For this scenario, the following computations take place:

Each day, the sum (OH + OO) is compared with the OP, and if (OH + OO) ≤ 270, 
the replenish quantity becomes: buy = 370– (OH + OO).

11.5 � Percent Fill Method

Another common way to determine the safety stock, SS, with the normal distribu-
tion, is by the percent fill method, sometimes called the service level method. This 
method measures the percent fill (PF), as:

The management sets the PF desired and the method determines the order point, 
OP, and order level, OL needed to accomplish. This method requires the follow-
ing data: the monthly forecasts, F(τ) τ = 1, 2,…., the lead-time (month), L, the one 
month standard deviation, σ, the order quantity, Q, and the desired percent fill, PF. 
The forecast for the lead-time is FL, and the associated standard deviation over the 
lead-time is obtained by,

To find the safety factor, a time interval is needed that allows the computations to 
take place. The time duration covering the order cycle, OC, is selected, and the PF 
for this duration is set as the desired percent fill. The order cycle is the time interval 
between two receipts of new stock. For this length of time, the percent fill is:

L

L

2 30 42.4
k 1.65 (since F(1.65) 0.95 from Table 10.1)
SS 1.65 42.4 69.96 70
OP 200

F 2 100 200

70 270
OL 270 100 370

σ = × =
= ≈
= × = ≈
= + =
= + =

= × =

PF (demand filled) / (total demand)=

L Lσ = σ

L

PF (demand filled in OC) (totaldemand in OC)
1 (demand short in OC) (total demand in OC).
1 E (z > k) /Q

=
= −
= − σ
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Note, Q is the amount of replenish stock in the order cycle and represents the ex-
pected demand in the OC; and E(z > k)σL is the expected demand exceeding the OP 
during the order cycle, and therefore is a measure of the stock that is short in the 
OC. So now, the partial expectation becomes,

The safety factor, k, that corresponds to E(z > k) is obtained from Table 10.1. Note 
from the table where k > 0 only when E(z > k) < 0.40. To avoid a negative safety 
stock, k is set to zero when E(z > k) ≥  0.40, whereby no safety stock is needed.

With k now obtained, the safety stock is computed by,

The order point, OP, and order level, OL, become,

Each day the sum (OH + OO) is compared to the OP and if (OH + OO) ≤OP, a new 
buy quantity, buy, is needed and becomes,

In this way, the inventory replenishments for the item is controlled to yield the per-
cent fill, PF, desired by the management.

Example  11.2  Suppose a part where the management wants a percent fill of 
PF = 0.95. Assume the horizontal forecast is F = 100 per future month, the standard 
deviation is σ = 30, the lead-time is L = 2 months, and the order quantity is Q = 100 
pieces. For this situation, the following computations take place.

Table 10.1 shows: E(z > 0.8) = 0.120 and E(z > 0.9) = 0.100. Using interpolation,

LE(z k) (1 PF)Q> = − σ

LSS k= σ

LOP F + SS
OL OP + Q

=
=

buy OL (OH OO)= − +

L

L

2 30 42.4
E(z k) (1 0.

F 2 100 2

95)100 / 42.4 0.11

0

8

0

σ =

=

>

×

=
= =

=

×
−

k 0.80 [E(z k) E(z 0.8)] [0.9 0.8] [E(z 0.9) E(z 0.8)]
0.80 [0.118 0.120] [0.9 0.8] [0.100 0.120]
0.82

= + > − > × − > − >
= + − × − −
=
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Thereby,

11.6  �Sensitivity of Safety Stock with Cov

The accuracy of the forecast is measured by the standard deviation of the one-
month ahead forecast error, σ. A relative measure is the coefficient of variation, 
cov = σ/F, where F is the average one month forecast. The lower the cov, the more 
accurate the forecast, and the less safety stock is needed. Below shows how much 
safety stock can be reduced with a relative decrease in the forecast error measured 
by, σ or cov.

11.7 � Service Level Safety Stock and Cov

When the service level method is used, the safety stock is generated by,

where σ is the standard deviation, k is the safety factor, and L is the lead time in 
months. The only ingredient that is affected by the forecast accuracy is the standard 
deviation. Thereby, a 10 % decrease in the standard deviation will lower the safety 
stock needs by 10 %. In the same way, a 10 % decrease in the cov will lower the 
safety stock by 10 %. In essence, the more accurate the forecast, the lower the inven-
tory to satisfy management’s desire of customer service.

11.8 � Percent Fill Safety Stock and Cov

When the percent fill method is used to find the safety stock, the relation between 
the cov and the safety stock is not straight forward, as in the service level method. 
Recall, the partial expectation is computed as below,

where, PF is the percent fill desired, Q is the order quantity, σ is the one month 
standard deviation and L is the lead-time in months.

OP 200
SS 0.

35
82 42.

235
OL 235 100 3

4 34.7 35

3

7

5

= × = ≈
= + =
= + =

SS k L= σ

( )E(z k) (1 PF)Q L> = − σ
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In a generic way, when F = the average one month forecast, Q = M × F is the or-
der quantity where M is the months-in-buy, and σ = cov × F. The partial expectation 
becomes,

and thereby E(z > k) depends on the four generic ingredients: PF, M, cov and L
For a particular item in the inventory, the value of E(z > k) is computed and a 

search is needed to find the corresponding safety factor, k, whereby, the safety stock 
quantity becomes,

Months of Safety Stock
It is helpful to transform the safety stock quantity into months supply terms, 

denoted as, ss. Note, SS = ss ×  F where SS is safety stock in pieces and ss is safety 
stock in months supply. Recall, cov = σ/F. The measure for months supply is below.

Table 11.1 gives the months of safety stock needed for five levels of percent fill 
(0.90, 0.925, 0.95, 0.975, 0.99), and five values of the cov (0.30, 0.50, 0.60, 0.80, 
1.00). The table also give five combinations, (L, M), of lead-time (months), L, and 
months-in-buy, M: (0.5, 0.5), (0.5, 1.0), (1.0, 1.0), (1.0, 2.0), (2.0, 1.0). Note, for 
example, when PF = 0.95, L = 1, M = 2 and cov = 0.6, the months of safety stock 
needed is 0.36.

The right-hand-side of the table gives the percent reduction in months of safety 
stock when the cov reduces by 10 %. For example, consider the table values listed 
below:

PF L M cov ss
0.95 1.0 2.0 0.60 0.36
0.95 1.0 2.0 0.80 0.62

The percent change in cov is (0.80 − 0.60)/0.80 = 0.250 (25.0 %).
The percent change in months of safety stock is: (0.62 − 0.36)/0.62 = 0.419 

(41.9 %)
So, 0.419/0.250 = 1.676 is the percent change in months of safety stock with 

a one percent reduction in the cov. Using 10 % as the base, when the cov = 0.8 is 
reduced by 10 %, the corresponding reduction in the safety stock months is 16.8 %. 
This illustrates how the 10 % entries of Table 11.1 are derived.

( )E(z k) (1 PF) covM L> = −

SS k L= σ

ss k cov= × L
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11.9 � Safety Stock when Truncated Normal Distribution

In Chap. 10, the truncated normal distribution is introduced; and this is the distri-
bution used here to find the amount of safety stock needed by way of the service 
level method and the percent fill method. The distribution is useful in inventory 
control since it has many shapes that are applicable. Consider a part where the 
monthly forecast is labeled as F, the one month standard deviation is denoted by σ 
and the demands over the months are always zero or larger. Recall the coefficient of 
variation, cov, is measured by cov = σ/F. In the event F = 3σ, the standard deviation 

Table 11.1   Months of safety stock by percent fill (PF), when lead time months, L, months-in-buy, 
M, and coefficient of variation, cov; and percent reduction in safety stock for a 10 % reduction in 
cov
Months of safety stock Percent reduction in SS when 

10 % reduction in cov
Cov Cov
PF L M 0.3 0.5 0.6 0.8 1.0 0.5 0.6 0.8 1.0
0.90 0.5 0.5 0.08 0.25 0.34 0.55 0.77 17.0 15.9 15.3 14.3

0.5 1.0 0.00 0.09 0.16 0.32 0.50 25.0 26.4 20.0 18.0
1.0 1.0 0.04 0.24 0.36 0.62 0.90 20.8 20.1 16.8 15.6
1.0 2.0 0.00 0.00 0.08 0.27 0.49 — 60.2 28.1 22.4
2.0 1.0 0.16 0.50 0.69 1.09 1.53 17.0 16.6 14.7 14.4

0.925 0.5 0.5 0.12 0.31 0.41 0.63 0.87 15.3 14.7 14.0 13.8
0.5 1.0 0.02 0.16 0.24 0.42 0.61 21.9 20.1 17.1 15.6
1.0 1.0 0.10 0.33 0.47 0.75 1.05 17.4 17.9 14.9 14.3
1.0 2.0 0.00 0.11 0.20 0.42 0.67 25.0 27.1 21.0 18.7
2.0 1.0 0.24 0.61 0.82 1.26 1.73 15.2 15.4 14.0 13.6

0.95 0.5 0.5 0.17 0.38 0.50 0.74 1.00 13.8 14.5 13.0 13.0
0.5 1.0 0.08 0.25 0.34 0.55 0.77 17.0 15.9 15.3 14.3
1.0 1.0 0.18 0.45 0.60 0.92 1.25 15.0 15.1 13.9 13.2
1.0 2.0 0.04 0.24 0.36 0.62 0.90 20.8 20.1 16.8 15.6
2.0 1.0 0.34 0.77 1.00 1.48 2.00 14.0 13.9 13.0 13.0

0.975 0.5 0.5 0.25 0.50 0.63 0.92 1.21 12.5 12.4 12.6 12.0
0.5 1.0 0.17 0.38 0.50 0.74 1.00 13.8 14.5 13.0 13.0
1.0 1.0 0.30 0.63 0.80 1.18 1.57 13.1 12.8 12.9 12.4
1.0 2.0 0.18 0.45 0.60 0.92 1.25 15.0 15.1 13.9 13.2
2.0 1.0 0.50 1.00 1.27 1.83 2.42 12.5 12.8 12.2 12.2

0.99 0.5 0.5 0.34 0.64 0.79 1.12 1.46 11.7 11.4 11.8 11.6
0.5 1.0 0.27 0.53 0.68 0.97 1.27 12.3 13.3 12.0 11.8
1.0 1.0 0.43 0.83 1.04 1.48 1.94 12.0 12.2 11.9 11.9
1.0 2.0 0.33 0.68 0.86 1.25 1.66 12.9 12.6 12.5 12.3
2.0 1.0 0.68 1.27 1.59 2.24 2.92 11.6 12.1 11.6 11.6
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is one-third the forecast and cov = σ/F = 0.33. For this situation, the shape of the 
demands for the month could be the same as a normal since all the demands are 
zero or larger and the probability of a demand below zero is nil. For any part with  
cov ≤  0.33, the normal assumption is possible since the probability of all demands 
larger than zero is near one.

When cov = 1.00, however, the shape of the monthly demands are more like an 
exponential distribution, and are sometimes referred as lumpy demands. In this 
situation, the normal distribution does not apply. In this scenario, the distribution 
of monthly demands begins at zero and is skewed far to the right of F. The normal 
distribution does not closely resemble this distribution. The same is true for the 
distributions as cov increases above the 0.33 mark.

Table 11.2 has entries that are taken from Table 10.1 of Chap.  10. When the 
cov from the truncated normal is 0.4, say, the associated parameter from the stan-
dard normal is k = −2.4, and H(k) = 0.992. At cov = 0.5, the associated parameter is 
k = −1.7,and H(k) = 0.955. Neither of these truncated normal distributions are much 
different that the standard normal. But when cov = 0.6, k = −1.1 and H(k) = 0.864, 
whereby 13.6 % of the demands would fall negative, and this distribution starts 
to drift away from the normal. When cov = 0.7 or larger, the distribution becomes 
much different than a normal.

11.10 � Lead Time Demand

As the forecasting system measures the average monthly forecast, F, and the cor-
responding one month standard deviation, σ, the coefficient of variation for one 
month is cov = σ/F. But in computing the amount of safety stock to have available by 
the availability method and the percent fill method, the distribution of the demands 
cover the lead-time duration, and thereby the cov for the lead-time is needed to 
control the inventory properly. Since,

LF F(1) F(L)= +…+

Table 11.2   The truncated standard distribution with approximate values of cov, k and H(k)
Cov k H(k)
0.3 − 3.5 1.000
0.4 − 2.4 0.992
0.5 − 1.7 0.955
0.6 − 1.1 0.864
0.7 − 0.4 0.655
0.8 0.4 0.345
0.9 1.9 0.029
1.0 3.5 0.001
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is the mean of the lead-time distribution, and

is the associated standard deviation, the coefficient of variation for the lead-time 
becomes,

Table 11.3 shows how the covL is related to the one month cov and the lead time 
L. Note at L = 1.00, covL = cov; when L < 1.00, covL > cov; and when L > 1.00, 
covL < cov. For example, when cov = 0.30 (normal) and L = 0.25 months, covL = 0.60 
(not normal). When cov = 1.00 (not normal), and L = 4 months, covL = 0.50 (near 
normal), and so forth.

In stores and dealers, the lead-time is fairly low (a few days) for most items they 
stock, and thereby covL for many items in stock are high and the distribution tends 
to be not normally shaped. In distribution centers, the lead-time is often higher (two 
or more months), whereby covL increases and the shape of the lead-time demands 
approach a normal distribution.

11.11 � Service Level Methods and Truncated Normal

Truncated Normal Density  Consider the truncated normal with parameter k and 
variable t = z − k, where t ≥ 0. The parameter k identifies the left-hand-side of the 
standard normal distribution where the truncation begins, and the only values of z 
are those greater than k. The truncated normal probability density with parameter 
k is:

L Lσ = σ

L L L·cov / F= σ

kg (t) f(z) / H(k) t 0= ≥

Table 11.3   Value of the lead-time coefficient of variation, covL, when the lead-time is L months, 
and the one month coefficient of variation is cov
L\cov 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.25 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
0.50 0.14 0.28 0.42 0.57 0.71 0.85 0.99 1.13 1.27 1.41
0.75 0.12 0.23 0.35 0.46 0.58 0.69 0.81 0.92 1.04 1.15
1.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
2.00 0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.57 0.64 0.71
3.00 0.06 0.12 0.17 0.23 0.29 0.35 0.40 0.46 0.52 0.58
4.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
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The corresponding cumulative distribution of t is as follows:

Example 11.3  Suppose a situation where the management wants to set the safety 
stock to yield the service level measure as SL = 0.90 for an item with a truncated 
normal distribution with covL = 0.60 and where the standard deviation for the lead 
time is σL = 10.

Table 10.1 shows when covL = 0.60, the truncated location parameter is k = −1.1. 
The table also shows that μT(−1.1) = 1.352 and σT(−1.1) = 0.812. The way to find the 
safety factor for this scenario is given below.

In this situation,

and thereby,

Note from Table 10.1 where, F(k) = F(−1.1) = 0.136, thereby,

Referring back to Table 10.1 again, the value of zo that yields F(zo) = 0.914 is, with 
interpolation, zo = 1.36.

Recall, t > 0 and t = z − k.
It is useful now to introduce another variable, w, where,

and thereby,

Hence, when zo is known, the corresponding value of w, denoted as wo, is computed 
as below:

kG (t) [F(z) F(k)] / 1 F(k)] for z k and t[ (z k)= − − ≥ = −

KSet G (t) SL 0.90= =

SL [F(z) F(k)] [1 F(k)]= − −

SLF(z) F(k) [1 F(k)]= + × −

F(zo ) . . [ . ]
.

= + × −
=
0 136 0 90 1 0 136
0 914

T Tt  (k) w (k)= µ + σ

[ ]
[ ]

T T

T T

t  (k) (k)  

z k  (k) (k

w

)

− µ σ

= − − µ σ

=

o T o Tt (k) w (k)= µ + σ
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Continuing with Example, 11.3, zo = 1.36, k = −1.1, μT(k) = 1.352, σT(k) = 0.812, and 
thereby the safety factor to use is computed as below:

Hence, the safety stock to use for this part is set as below.

In comparison when the normal distribution is applied, the safety factor becomes 
k ≈ 1.29 via Table 10.1. The safety stock to use is computed below.

In general, the truncated safety stock will be greater or equal to the counterpart 
standard normal safety stock.

In summary, the steps to find the safety stock for the service level method from 
the truncated normal distribution are listed below:.

1.	 From covL, get k from Table 10.1.
2.	 Compute F(zo).
3.	 Find zo from Table 10.1.
4.	 Compute wo.
5.	 SS = woσL.

11.12 � Percent Fill Method and Truncated Normal

Consider an item where the safety stock, SS, from the truncated normal is needed 
and the percent fill method will now be used. The data that is needed for the part is 
listed below:

F = one-month forecast
σ = one-month standard deviation
L = lead-time

o o T Tw [z k  (k)] [ (k)]= − − µ σ

ow [1.36 1.1 1.352] 0.812
1.36

= + −
=

o LSS w
1.36 10
13.6

= σ
= ×
=

SS 1.29  10
12.9

= ×
=
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Q = order quantity
PF = desired percent fill
FL = L × F  = lead-time forecast
σ L =  L  σ  = lead-time standard deviation
covL = lead-time coefficient of variation

To obtain wo, gather the following measures from Table 10.1:
k = parameter associated with cT(k) = covL
H(k) = probability of (z > k)
μT(k), σT(k) = mean and standard deviation for parameter k of truncated normal
μP(k) = partial mean for parameter k
Also recall from Chap. 10, the following:

Now compute the following:

From E(z > zo), use Table 10.1 to find zo, and then compute wo as follows:

Finally, the safety stock becomes,

Example 11.4  Suppose an item with the average monthly forecast of F = 10, the 
standard deviation is σ = 6, the lead-time is L = 1 month, and the order quantity is 
Q = 10 pieces. Use the percent fill method with PF = 0.95, and the truncated normal 
distribution to find the safety stock.

The partial expectation for the item is computed as below:

o LE(w w ) (1 PF)Q> = − σ

To o

o T

E (w > w ) E(t > t ) (k)

E(z > z ) [H(k) (k)]

= σ

= σ

o o TE(z z ) E(w w )[H(k) (k)]> = > σ

o T Tw [ k (k)] (k)oz= − − µ σ

o LSS w σ=

o LE(w > w ) (1 PF)Q
(1 0.95)10 6
0.083

= − σ
= −
=
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Note the lead-time forecast is FL = 10, the lead-time standard deviation is σL = 6, 
and the lead-time coefficient of variation is covL = cT(k) = 0.60. From Table 10.1, 
at cT(k) = 0.6, the truncated mean and standard deviation are approximately 
μT(k) = 1.352 and σT(k) = 0.812, respectively. Further from the table, the truncated 
location parameter is k = −1.1 and H(−1.1) = 0.864.

The corresponding value, E(z > zo) is obtained as below,

From Table 10.1, zo ≈ 1.18 corresponds to E(z > zo) = 0.058.
The value of wo that conforms with zo is computed below.

Finally, the safety stock for the part is,

In comparison when the normal distribution is applied with E(z > k) = 0.083, the 
safety factor becomes k = 1.00 via Table 10.1. The safety stock to use is computed 
below:

As stated earlier, the truncated safety stock will be greater or equal to the counter-
part normal safety stock.

In summary, the steps to compute the safety stock for the percent fill method 
from the truncated normal distribution are listed below:

1.	  From covL, get k, H(k), σT(k) and μT(k) from Table 10.1.
2.	  Compute E(w > wo).
3.	  Compute E(z > zo).
4.	  Get zo from Table 10.1.
5.	  Compute wo.
6.	  SS = wosL.

o o TE(z z ) E(w w )H( 1.1) ( 1.1)
0.083 0.864 0.812
0.058

> = > − σ −
= × ×
=

o o T Tw [z k (k)] (k)
[1.18 1.1 1.352] 0.812
1.14

= − − µ σ
= + −
=

o LSS w
1.14 6
6.84

= σ
= ×
=

SS 1.00 6
6.00

= ×
=
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�Summary

Safety stock is one of the most important measures in inventory control. The two 
common ways to measure the safety stock are the service level method and the 
percent fill method. Two probability distributions are described on how to deter-
mine the amount of safety stock needed, the standard normal distribution and the 
truncated normal distribution. No doubt, the standard normal is far more known 
and used. Although the truncated normal distribution is not known or used by most 
practitioners, it is the more appropriate distribution to apply when seeking the safety 
stock for each sku in the inventory. To use the normal distribution, when the trun-
cated normal is appropriate, will result in a lower level of service (service level, 
percent fill), than is planned.
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Chapter 12
Auxiliary Forecasts
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12.1 � Introduction

Management often needs forecasts unlike the models described in the earlier chap-
ters that are generated using the flow of demands from the history months. This 
chapter describes some of the more commonly needed forecasts of this type. A 
first concerns the forecasts for the first future month and the demand-to-date as the 
month is progressing. For the first month, a forecast has already been generated, and 
as the month progresses, the demand-to-date demand is evolving. The forecast for 
the remaining portion of the month is generated along with the associated standard 
deviation. Another scenario occurs for parts when some demands are ordered for fu-
ture deliveries, called advance demands. A forecast for the future month has already 
been generated in the usual way from the flow of history demands. An adjustment to 
the future month’s forecast is developed based on the advance demand information. 
Another situation that often occurs in service parts inventory is when a forecast is 
needed on a part even when no history demands are available. This happens when 
a new part is included on the bill-of-material of a finished good item due to an en-
gineering change or a redesign, and the part is to be immediately held in inventory 
at the service part location. This situation is called the initial buy quantity. Another 
condition that takes place often in service parts locations is when the supplier will 
stop supplying the part, even when the service part location is obliged to carry the 
part for future possible needs from its customers. This is called the all-time-buy.

12.2 � Month-1 Forecasts and Demand-to-Date

Suppose a forecast system where the history demands, x(1), …, x(N), are used to 
generate the forecasts for the future months. The forecast for future month-1 is 
listed as x`(1), and the associated standard deviation is denoted as σ. Assume now 
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where a portion, w, of future month-1 has elapsed and the demand to date is xw. 
Note the forecast for this portion of month-1 would be,

and the corresponding standard deviation is:

A compatibility measure that may be useful to the management is shown below:

When all is in order, the accepted values of k are (− 3 < k < 3). In the event k is out 
of the range, the management may choose to review the forecast to make an adjust-
ment. If k < –3, the forecast is too low, and if k < 3, the forecast is too high.

The remainder portion of month-1 is (1-w), and the corresponding forecast and 
standard deviation are computed as below:

The adjusted forecast for the total of month-1 becomes,

and the standard deviation is,

Example 12.1 Suppose an item with the month-1 forecast of x`(1) = 100 and the 
standard deviation is σ = 30. Assume, w = 0.20 of the month has elapsed and the 
demand-to-date is Xw = 10  pieces. Note the forecast and standard deviation for the 
w portion of month-1 is as below:

The compatibility measure is:

F w x 1w = × (̀ )

w w= 

( )w w wk x F /= − 

F 1 w x 11 w( ) ( ) ( )− = − × `

(1 w)  (1 )−σ = − σw

w (1 w)F ( x´ 1) F −= +

(1 w)   ́  −σ = σ

F 2 1 2w = × =0 00 0.

w 0.2030 13.42σ = =

k (1 2 13 42 745= − =0 0 0)/ . .-
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and is well within the acceptable range of: (− 3 < k < 3).
The remaining portion of month-1 is (1-w) = (1 − 0.20) = 0.80. The associated 

forecast and standard deviation are:

For the total of month-1, the forecast and the standard deviation are as below,

and

12.3 � Advance Demand

On some occasions a demand for an item is known one or more months prior to 
the date the customer wants possession of the item. This is known as an advance 
demand. For example, in June, the customer orders the quantity prior to its need in 
August. The demand is part of the regular demand in August and not an addition 
to it. The forecast for the future months are already generated from the flow of de-
mands of the past and with this extra advance demand knowledge, an adjustment to 
the forecast is applied.

Assume the current month is t = N and F(τ) = forecast for the τ th future month 
with σ the corresponding standard deviation. Further, let xo = advance demand for 
future month τ. Of need now is an adjustment to the forecast for the τ th future 
month. It is assumed the demand for the future month comes from the normal dis-
tribution with parameters, F(τ) and σ. Note where,

and recall from Chap.  10, the partial expectation of the standard normal where 
(z > k) is:

(1 w)F  0.8 100 80− = × =

(1 w) 0.8 30

26.83
−σ = ×

=

w (1 w)F (1)   x F

8
9

´

10 0
0

−= +

= +
=

(1 w)     
2 .

´
6 83

−σ = σ
=

[ ]ok x F( )= − τ σ

P

k

(k) E(z k)

( ) ( )z k f z dz
∞

µ = >

= −∫
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The corresponding partial expectation for the demand, x, is:

and the corresponding standard deviation becomes:

Recall also, where σp(k) is the partial standard deviation of (z > k).
The forecast adjustment for future month τ becomes,

and the corresponding standard deviation is σ(x >xo).
Example 12.2 Suppose a part where the forecast for future month τ is F(τ) = 100 

and the standard deviation is σ = 30. Assume also an advance demand comes in for 
xo = 80 pieces, and an adjustment to the forecast is needed. In this scenario,

and with interpolation, Table 10.2 gives the partial expectation and standard devia-
tion as, P µ (− 0.67) = E(z > −0.67) ≈ 0.83 and σp(− 0.67) ≈ 0.79, respectively. Thereby, 
the adjusted forecast is,

and the adjusted standard deviation is,

Note in this example, the forecast goes up and the standard deviation goes down.
Example 12.3 Consider the same part as Example 12.2, (F(τ) = 100, σ = 30), but 

now assume the advance demand is xo = 10. In this scenario,

o
o x

E(x x ) ( ) ( )

 E(z k)

∞
> = −

= > σ

∫ ox x f x dx

  (  ( > ))o px  x κσ = σ σ

a ox ( ) x E(z k)τ = + > σ

k 8 1
67

= −[ ]
= −

0 00 30
0.

a ox ( )   x E(z 0.67)
0.83 80

1 04
3

.9
0

τ =
×

+ > − σ
= +
=

( )( )    0.67

 0.79 30
 23.7

´ pσ τ = σ − × σ

= ×
=

k  1 1
3

= −[ ]
= −

0 00 30
00.
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and from Table 10.2, μP(− 3.00) = 3.00 and σP(−3.00) = 1.00. Thereby, the adjusted 
forecast is,

and the standard deviation is,

Note, there is no change in the forecast and standard deviation since the demand is 
at or below the range of minus three standard deviations.

Example 12.4 Suppose once more the same part as Example 12.2, (F(τ)= 100, 
σ = 30), where now the advance demand is xo = 190 pieces. In this scenario,

and Table 10.2 gives, μP(3.00) = 0.00 ανδ σp(3.00) = 0.00. The adjusted forecast now 
becomes,

and the standard deviation is,

Note when the advance demand is three or more standard errors above the forecast, 
F(τ), the adjusted forecast is the same as the advance demand, xo, and the standard 
deviation reduces to zero.

12.4 � Initial Forecasts

An important mission of a service parts distribution center (spdc) is to stock the 
parts for the finished good items (fgi) that are currently or previously in the lineup 
of products of the original equipment manufacturer (oem). This includes all the 

a o Px ( )   x  ( 3.00)
1 0 3.00 30
1 00.0

τ = + µ − σ
= + ×
=

( )P  ( )  3.00  
 1.00 30
 30.0

τσ = σ − ×σ
= ×
=

[ ]k 190 100 30
3.00

= −
=

a o Px ( )   x  (3.00)
1 90 0.00 30
1 90.0

τ = + µ σ
= + ×
=

( )( ) 3.00  

0.0030
0.0

 ́ pτσ = σ × σ

=
=
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parts that are included in the bill-of-material (bom) of the fgi’s that are currently in 
production and for those that have been in production for the past years. The oem is 
obliged to carry the parts for any maintenance or repair need by the customers for a 
fixed number of years after the part is no longer in the production of the fgi’s on the 
assembly line. This length of time is called the obligation period.

At the beginning, when a new part is introduced in the bill-of-material for the fgi, 
due to an engineering or model change, the part must be stocked in the distribution 
center to fill any demands for the service and maintenance of the unit. A difficulty 
occurs in determining how much stock to buy since there is no demand history to 
base the buy decision. The first buy quantity on the part is called the initial buy 
quantity. The initial buy quantity requires an initial forecast of the part; one that is 
developed even when no demand history is available for the part. This situation is 
common for service parts where the parts are stored in a distribution center awaiting 
the demands from customers. The stocking location is confronted with determining 
how much to buy and store for each new part of this type. To accomplish, an initial 
forecast is needed.

The problem on how much to stock is indeed a very elusive and difficult one 
since there is no data to base the stocking decision. Often the decision on the amount 
to stock is assigned to experts who review each new part and determine the quantity 
to buy. The experts have little if any data to back their decisions and rely mainly on 
their experience.

The notions of new-parts-of-the-past (npop) and new-parts-of the-future (npof) 
are introduced. The npof are the parts where a forecast is needed now. The npop are 
the parts that have already occurred and where demand data is still available on the 
database for the initial year of their introduction.

An important element on the parts is here called an attribute (A), it describes the 
use of the part on the fgi. This could be a spring that is used on a door system, where 
each fgi has such a part. When possible, the attribute categorizes the type of part, 
its function, where it is used and so forth. The classification of attributes becomes 
valuable information to include on the database for each part.

For each npop, the average of the first 12 months of demand history is captured 
from the demand history. For a npof with an attribute A, all the npop with the same 
attribute are gathered and the first 12 months of their history demands are listed as 
D(i) where i identifies the i-th npop and n is the number of such parts. Hence, the 
data available becomes, D(1) ,…, D(n). Each yearly demand is now converted to a 
monthly average as d(i) = D(i)/12 for i = 1 to n.

From the monthly average demand history data, the average and variance of the 
demands are computed as shown below,

d ( )/
n

i
d i n=µ ∑

22 ( ) ( 1) σ = − − ∑ n
d i

d i d n
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Because of the possibility of a large spread in the npop demands, the lognormal dis-
tribution (LN) is assumed for the parts. Thereby, d ~ LN(μy, σy

2) where y = lognor-
mal of d, y = ln(d), with μy the mean and σy

2 the variance. Note the parameters of y 
are used as the parameters of d. The mean and variance of y are computed as below:

The distribution of y is normally distributed whereby y ~ N(μy, σy
2).

It is possible now to select a group of probabilities where the values of y may 
occur. For convenience here, ten probabilities are selected as: (0.05, 0.15, …, 0.95.) 
For each of these, the associated value of the z value from the standard normal dis-
tribution is gathered and labeled as: [z(1), z(2), …, z(10)]. These become:

So now, ten values of y can be calculated by y(i) = [μy + z(i) σy] for i = 1–10. Each of 
the ten values are chosen to represent the center of a range with probability of 0.10. 
The corresponding values of d, are now computed by,

Example 12.5 Suppose an engineering change to a fgi and a new part is included 
for the first time. The fgi will be produced on the assembly line and will contain this 
new part. The spdc is obliged to order some of these parts for any pending demands 
from the dealers to satisfy the potential customers needs on maintenance and repair. 
The engineers classify the part with an attribute A. The spdc computer system scans 
their database files to find any parts with the same attribute, A, where the first 12 
months of service part demands are still available. In the example, n = 5 such parts 
are found. The average monthly demands of the five parts are labeled as d(i) i= 1 to 
5 and are listed below:

The average, variance and standard deviation of the demands are computed with 
results below:

( )0.52 2 2
y d d d lnµ =  

 µ + µ σ

( )2 2 2 2
y d d d ln  σ = σ + µ µ  

[ ]-1.645,  -1.036,  -0.674,  -0.375,  -0.124,  0.124,  0.375,  0.674,  1.036,  1.645

y(i)(i) e i 1 td`  o 10= =

d(i) 1.2, 0.8, 1.5, 2.1, 9.3=

d 2.98d ′= µ =

2 2
d  12.707ds ′= σ =

sd = =′σd 3 565.
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Recall, the monthly demands are assumed to follow a lognormal distribution. The 
corresponding normal variable, y, is obtained by

where ln = lognormal. The parameters of y are the mean, variance and standard de-
viation and are computed as shown earlier. The resulting values are listed below:

The range of possible values of d is obtained in the following way. Ten selected 
probability points are selected as: 0.05, 0.15 ,…, 0.95 and are listed in Table 12.1. 
For each probability entry, the corresponding standard normal variable, z(i), is 
found where P(z < z(i)) = α(i). So now, the selected values of y are measured by,

Finally, the ten selected values of the average monthly demands, d, are:

The table shows the average monthly demands, d, ranges from 0.405 to 9.008. Some 
ranges of d with probability estimates are the following:

y ln(d)=

y 0.648µ =

2
y 0.888σ =

y 0.942σ =

y(i) 0.648 z(i)0.942 i 1 to 10= + =

y(i)e  i 1d`(i  t 10) o = =

P 1 13 d 3 6 8 5( . . ) .0 0 0 0< < =

Table 12.1   Ten selected probabilities, α(i), with corresponding standard normal variables, z(i), 
associated values of y(i), and of the average monthly demand, d`(i)
i α(i) z(i) y(i) d`(i)
1 0.05 − 1.645 − 0.903 0.405
2 0.15 − 1.036 − 0.329 0.720
3 0.25 − 0.674 0.013 1.013
4 0.35 − 0.385 0.285 1.330

5 0.45 − 0.124 0.531 1.701
6 0.55 0.124 0.765 2.148
7 0.65 0.385 1.011 2.747
8 0.75 0.674 1.283 3.608
9 0.85 1.036 1.624 5.074
10 0.95 1.645 2.198 9.008
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and so forth.

12.5 � All Time Forecasts

In the production of a finished-good-item (fgi), many parts and components are 
needed in the assembly process. Each part has a supplier that replenishes the plant 
in a steady manner. As time passes, the collection of parts for the fgi is ever chang-
ing due to engineering and model enhancements. From time-to-time, the parts are 
needed at the service parts distribution center who replenish the dealers as cus-
tomers seek maintenance or repair on their fgi. As the fgi is sold to the public, the 
population of fgi’s with the part will increase over time as long as the fgi is still in 
production. The increase will halt when the part is replaced on the fgi because of 
an engineering change or for a model change. From then on, the population of fgi 
decreases as the units age and slowly are being scrapped. Thereafter, the demands 
start approaching zero.

When the part is no longer in use in production on the fgi, and with the demands 
dwindling at the spdc, the supplier will eventually find it unprofitable to produce 
the part and will notify the spdc that it will soon stop as the supplier of the part. 
The spdc is still responsible to carry the part for an obligation period, could be 5–15 
years, after the part is no longer included in the bom of the current fgi. The spdc 
must order a quantity one last time from the supplier to carry for this all time need. 
This buy is often called the all-time-requirement (ATR). A forecast of the demands 
over the obligation years is now needed by the spdc.

A possible way to generate the forecast is given here. The method seeks to es-
timate the shape of the population of fgi units that have the service part included. 
The assumption is that the demands of the service part in question will be some-
what in parallel to the population of fgi’s that have the part included. The method 
described here uses five parameters: (1) jo = the number of years after a unit is sold 
to a customer where the fgi is free of being scrapped. For example, jo = 2 will state 
that most likely the fgi will not be scrapped within the first two years of use by the 
customers. (2) r = the probability that a unit (of the fgi) will be scrapped in a year’s 
duration. This is for each year after jo years. If r = 0.1, 90 % of all units of the fgi 
will continue to be used by the customer for yet another year, and 10 % will be 
scrapped. (3) to = the number of years the part has been included in the bom of the 
fgi. This parameter identifies how many units have been produced by the oem. (4) 
T = the current year relative to the year of introduction of the part in the fgi. If the 
part is first included in the bom of the fgi in the year 2005 and the current year is 
2013, T = 9 represents the number of years since and including the introduction year 
from 2005–2013. (5) N = the number of past years where the annual demands are 

P 4 5 d 9 8 9( . . ) .0 0 00 0 0< < =

P d 9 8 95( . ) .< =00 0
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available. For example, if the annual demands for the prior four years are still avail-
able on the database, N = 4.

In summary, the parameters of this forecasting method are listed below:
Parameters:

jo =  scrap free years
r =  probability of scrap per year after jo
to =  production years
T =  current year (after part is introduced)
N =  number years of part demand history

The forecast model seeks to estimate the shape of the population of fgi units with 
the part that are still in use by the customers. This requires estimating the probabil-
ity of a unit being scrapped each year. For a given unit, j=the number of years after 
the customer has possession of the fgi unit, and p(j) = probability the unit is scrapped 
in year j is computed as below:

The probability that the unit is scrapped in year j or sooner is noted as F(j), and 
the complement is H(j) = 1—F(j). Note, H(j) is the probability the unit will not be 
scrapped by the customer in the first j years. In summary, these probabilities are 
below.

F(j) =	 probability the unit is scrapped in year j or sooner. [ F(j) =  p j
j
( )

1∑ ]
H(j) = 	 probability the unit is not scrapped as of year j. [H(j) = 1−F(j)]

For all the years after the part is introduced, the notation of t is used where t ≥ 1. Of 
need here is to estimate the probability the fgi units will still be in use by the cus-
tomers for t years after the introduction of the part. The summary of this notation is 
provided below assuming to = 4 years of production:

t = number of years after part is introduced
H(1,t) = 	 probability year 1 production unit is not scrapped as of year t
H(2,t) = 	 probability year 2 production unit is not scrapped as of year t
H(3,t) = 	 probability year 3 production unit is not scrapped as of year t
H(4,t) = 	 probability year 4 production unit is not scrapped as of year t

The sum of the above probabilities by year, t, is used to estimate the shape of the 
population size that includes the service part in question. The notation uses x(t) to 
represent the sum of the probabilities as listed below:

 = generic shape of population in year t after introduction

p(j) j 1 to jo= =0

= − >− − r 1 r j jj jo 1
o( )

x(t)  H(1, t) H(2, t) H(3, t) H(4, t)= + + +
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The computation of x(t) is tallied for all the years from t = 1 to T; the years from 
introduction to the current year.

From the database, the demands at the spdc for the N prior years are now gath-
ered and listed as d(t), where,

d(t) = demand in year t for each year the service part demand is known.
For each of the N years where d(t) is available, the associated x(t) measures are 

gathered and the ratio of d over x is noted as dx and computed as below:

 = ratio of demand over generic shape where the sum is over the N demand years
Finally, the forecast of the service demands for the future years can be generated. 

The forecast for year t is denoted as f(t) and is calculated as follows:

Note, f(t) = forecast of the service part demand in year t for t > T
Example 12.6 Suppose the supplier of a part in the spdc informs the part will be 

dropped and requests one last time buy. The spdc is obliged to generate a forecast 
for the future years of the service obligation on this part. Assume the parameter 
values are below:

Parameters:

jo = 2 = scrap free years
r = 0.1 = probability of scrap per year after jo
to = 4 = production years
T = 6 = current year (after part is introduced)
N = 4 = number years of service part demand history

A first set of computations concern the probability the part will be scrapped in the 
j-th year after the customer takes possession of the unit. The probabilities, p(j), F(j) 
and H(j) are listed in Table 12.2. Note, for example, at j = 4, p(4) = 0.09, F(4) = 0.190 
and H(4) = 0.810. Figure 12.1 is a plot of the flow of H(j) for twenty years after the 
unit of the fgi is sold to the customer.

Table 12.3 is a worksheet that yields the forecasts for the future years on the 
service part. The table shows, H(1,t) as the probability that a unit produced in year 
t= 1 is still in use at year t. In the same way, H(2,t), H(3,t) and H(4,t) are the cor-
responding probabilities the units produced in years t = 2, 3 and 4 are still in use in 
year t. The sum of the four probabilities is x(t), that represents the shape of the units 
in the population that have the service part in the fgi. The service demands known 
for N= 4 years, (t= 3, 4, 5, 6) is listed as d(t). The sum of the four years of d(t) with 
corresponding x(t) are shown below:

dx d t x t= Σ Σ( )/ ( )

f(t) x(t) dx= ×

Σd(t) 11 12 13 125 485= + + + =0 0 0

Σx(t) 2 9 3 71 3 439 3 95 13 144= + + + =. . . . .00 0 0
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So now, the ratio of d to x becomes

The forecasts for each of the years beyond T = 6 are now calculated as,

dx  485/13.144 36.90= =

f(t) 36.90 x(t) for t 7 to 20= × =

Fig. 12.1   Probability the unit 
is not scrapped as of year j, 
H(j), when the probability of 
scrap per year is r = 0.1, and, 
scrap free years is jo = 2

 

Table 12.2   Years, j, with probability of scrap in the year, p(j), cumulative probability of scrap, 
F(j), and probability not scrap, H(j)
j p(j) F(j) H(j)
1 0.000 0.000 1.000
2 0.000 0.000 1.000
3 0.100 0.100 0.900
4 0.090 0.190 0.810
5 0.081 0.271 0.729
6 0.073 0.344 0.656
7 0.066 0.410 0.590
8 0.059 0.469 0.531
9 0.053 0.522 0.478
10 0.048 0.570 0.430
11 0.043 0.613 0.387
12 0.039 0.651 0.349
13 0.035 0.686 0.314
14 0.031 0.718 0.282
15 0.028 0.746 0.254
16 0.025 0.771 0.229
17 0.023 0.794 0.206
18 0.021 0.815 0.185
19 0.019 0.833 0.167
20 0.017 0.850 0.150
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Note, for example,

when probability of scrap per year is r = 0.1, scrap free years is jo= 2, and production 
years is to= 4 (Fig. 12.2)

f(7) 36 9 2 786 1 3= × =. .0 0

Table 12.3   Years since introduction, t, probability of non-scrap, H(j, t), for production years j = 1, 
2, 3, 4, generic population of units, x(t), demand history, d(t), and annual forecasts, f(t)
t H(1,t) H(2,t) H(3,t) H(4,t) x(t) d(t) f(t)
1 1.000 1.000
2 1.000 1.000 2.000
3 0.900 1.000 1.000 2.900 110
4 0.810 0.900 1.000 1.000 3.710 120
5 0.729 0.810 0.900 1.000 3.439 130
6 0.656 0.729 0.810 0.900 3.095 125
7 0.590 0.656 0.729 0.810 2.786 103
8 0.531 0.590 0.656 0.729 2.507 93
9 0.478 0.531 0.590 0.656 2.256 83
10 0.430 0.478 0.531 0.590 2.031 75
11 0.387 0.430 0.478 0.531 1.828 67
12 0.349 0.387 0.430 0.478 1.645 61
13 0.314 0.349 0.387 0.430 1.480 55
14 0.282 0.314 0.349 0.387 1.332 49
15 0.254 0.282 0.314 0.349 1.199 44
16 0.229 0.254 0.282 0.314 1.079 40
17 0.206 0.229 0.254 0.282 0.971 36
18 0.185 0.206 0.229 0.254 0.874 32
19 0.167 0.185 0.206 0.229 0.787 29
20 0.150 0.167 0.185 0.206 0.708 26

Fig. 12.2   Generic units in 
population in year t after 
introduction, x(t),
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�Summary

Forecasts of the following type are described: (1) The month-1 forecast is adjusted 
as the month progresses and the demand-to-date becomes available. The forecast 
includes the remaining portion of the month-1 and the associated standard devia-
tion. (2) Advance demand forecasts are needed when demands arrive months before 
the customer wants delivery. The advance demand forecast for a month is based on 
the flow of demands from the history months and also the advance demand for the 
future month. (3) In service parts, a forecast is often needed for a part that has no 
history demands. This occurs when the part is new on the bill-of-material, but yet 
the part is needed in stock at the service part holding location. (4) Also in service 
parts, a supplier may inform that the part will no longer be available and the service 
part location will need an all-time-buy. This requires a forecast on demands that 
may occur over the coming years for the obligation period of the part.
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