

Sebastien Goasguen

Boston

Docker Cookbook

Table of Contents

Preface. vii

1. Getting Started with Docker. 15
1.1 Installing Docker on Ubuntu 14.04 and CentOS 6.5 15
1.2 Setting Up a Local Docker Host Using Vagrant 17
1.3 Using boot2docker to Get a Docker Host on OSX 18
1.4 Running Boot2docker on Windows 8.1 Desktop 22
1.5 Starting a Docker Host in the Cloud Using Docker Machine 24
1.6 Running Hello World in Docker 28
1.7 Running a Docker Container in Detached Mode 30
1.8 Creating, Starting, Stopping, Removing Containers. 31
1.9 Sharing Host Data With Containers 33
1.10 Sharing Data Between Containers 34
1.11 Copying Data To And From Containers 35
1.12 Managing and Configuring the Docker Daemon 36
1.13 Running a Wordpress Blog Using Two Linked Containers 37
1.14 Backing up a Database Running in a Container 40
1.15 Using Supervisor to Run Wordpress in a Single Container 41

2. Image Creation and Sharing. 45
2.1 Keeping Changes Made to a Container by Committing to an Image. 45
2.2 Saving Images and Containers as Tar Files for Sharing. 46
2.3 Writing your First Dockerfile 48
2.4 Packaging a Flask Application inside a container 50
2.5 Versioning an Image with Tags 53
2.6 Migrating From Vagrant to Docker With the Docker Provider 54
2.7 Using Packer to Create a Docker Image 56
2.8 Publishing your image to Docker hub 60

iii

2.9 Running a Private Registry 64
2.10 Setting Up an Automated Build on DockerHub for Continous

Integration/Deployment 66
2.11 Setting up a Local Automated Build Using a Git Hook and a Private

Registry 71

3. Docker Networking. 73
3.1 Introducing Docker Containers Networking 73
3.2 Choosing a Container Networking Stack 76
3.3 Configuring the Docker Daemon IP tables and IP forwarding settings 78
3.4 Linking Containers in Docker 80
3.5 Using Pipework to Understand Container Networking 80
3.6 Setting up a Custom Bridge for Docker 85
3.7 Using OVS with Docker 86
3.8 Building a GRE Tunnel Between Docker Hosts 88
3.9 Networking Containers on Multiple Hosts with Docker Network 91
3.10 Diving Deeper Into The Docker Network Namespaces Configuration 95
3.11 Running Containers on a Weave Network 96
3.12 Running a Weave Network on AWS 97
3.13 Deploying flannel Overlay Between Docker Hosts 99
3.14 Using an Ambassador Container to Expose Services 101

4. Docker Configuration and Development. 103
4.1 Compiling Your Own Docker Binary From Source 103
4.2 Running the Docker Test Suite for Docker Development 105
4.3 Replacing Your Current Docker Binary With a New One 106
4.4 Using nsenter 107
4.5 Introducing libcontainer 110
4.6 Using nsinit 110
4.7 Switching Execution Environment 110
4.8 Accessing the Docker Daemon Remotely 110
4.9 Exploring the Docker remote API to automate Docker tasks. 112
4.10 Securing the Docker Deamon for Remote Access 114
4.11 Using docker-py to Access the Docker Daemon Remotely 116
4.12 Using docker-py Securely 118

5. Kubernetes. 121
5.1 Understanding Kubernetes Architecture 123
5.2 Networking Pods for Container Connectivity 126
5.3 Using Labels for Container Placement and Application Management 129
5.4 Creating a Multi-node Kubernetes Cluster With Vagrant 129
5.5 Starting Containers on a Kubernetes Cluster with Pods 132

iv | Table of Contents

5.6 Taking Advantage of Labels For Querying Kubernetes Objects 134
5.7 Using a Replication Controller to Manage the Number of Replicas of a

Pod 135
5.8 Running Multiple Containers in a Pod 137
5.9 Using Service Proxies For Dynamic Linking of Containers 140
5.10 Defining Volumes in Pods 142
5.11 Creating a Single Node Kubernetes Cluster Using Docker Compose 143
5.12 Compiling Kubernetes to Create Your Own Release 146
5.13 Starting Kubernetes Components with hyperkube Binary 149
5.14 Exploring the Kubernetes API 150
5.15 Running the Kubernetes Dashboard 154
5.16 Switching to a New API Version 156
5.17 Configuring Authentication to a Kubernetes Cluster 158
5.18 Configuring the Kubernetes Client to Access Remote Clusters 159

6. Just Enough Operating System for Docker. 161
6.1 Discovering the CoreOS Linux Distribution with Vagrant 161
6.2 Starting a Container on CoreOS via Cloud-init 164
6.3 Starting a CoreOS Cluster via Vagrant to Run Containers on Multiple

Hosts 166
6.4 Using Fleet to Start Containers on a CoreOS Cluster 169
6.5 Deploying a Flannel Overlay Between CoreOS Instances 171
6.6 Running Docker Containers on RancherOS 174
6.7 Using Project Atomic to run Docker Containers 175
6.8 Starting and Atomic Instance on AWS to use Docker 176
6.9 Running Docker on Ubuntu Core Snappy in a Snap 177
6.10 Starting an Ubuntu Core Snappy Instance on AWS EC2 179

7. The Docker Ecosystem: Tools. 185
7.1 Using Docker compose to Create a Wordpress Site 185
7.2 Using Docker compose to test Apache Mesos and Marathon on Docker 188
7.3 Looking at Docker Compose as a Replacement to Fig 190
7.4 Starting Containers on a Cluster with Docker Swarm 193
7.5 Using Docker Machine to Create a Swarm Cluster Across Cloud Providers 196
7.6 Managing Containers through Docker UI 198
7.7 Orchestrating Containers with Ansible Docker Module 200
7.8 Using Clocker 204
7.9 Using Deis 204
7.10 Using Rancher to Manage Containers on a Cluster of Docker Hosts 204
7.11 Running Containers Via Apache Mesos and Marathon 208
7.12 Using the Mesos Docker Containerizer on a Mesos Cluster 213
7.13 Discovering Docker Services with Registrator 215

Table of Contents | v

8. Docker in the Cloud. 219
8.1 Accessing Public Clouds to Run Docker 220
8.2 Starting a Docker Host on AWS EC2 223
8.3 Starting a Docker Host on Google GCE 226
8.4 Starting a Docker Host on Microsoft Azure 229
8.5 Starting a Docker Host on Azure with Docker Machine 231
8.6 Running Cloud Providers CLI in Docker Containers 233
8.7 Using Google Container Registry to Store your Docker Images 235
8.8 Using Docker in GCE Google-Container Instances 237
8.9 Starting a Docker Host on AWS Using Docker Machine 240
8.10 Using Kubernetes in the Cloud via Google Container Engine 242
8.11 Managing Google Container Engine Resources Using kubecfg 244
8.12 Getting Setup to Use the EC2 Container Service 246
8.13 Creating a ECS Cluster 249
8.14 Starting Docker Containers on a ECS Cluster 252
8.15 Starting an Application in the Cloud Using Docker Support in AWS

Beanstalk 256
8.16 Using AWS Elastic Container Service as a Beanstalk Environment 260

9. Monitoring containers. 261
9.1 Getting Detailed Information About a Container With docker inspect 261
9.2 Obtaining Usage Statistics of a Running Container 263
9.3 Listening to Docker Events on Your Docker Hosts 264
9.4 Getting The Logs of a Container With docker logs 266
9.5 Using Logspout to Collect Container Logs 267
9.6 Managing logspout Routes to Store Container Logs 269
9.7 Using Elasticsearch and Kibana to Store and Visualize Container Logs 271
9.8 Using Collectd to Visualize Container Metrics 272
9.9 Accessing Container Logs Through Mounted Volumes 278
9.10 Using cAdvisor to Monitor Resource Usage in Containers 278
9.11 Monitoring Container Metrics With InfluxDB, Grafana and cAdvisor 280
9.12 Gaining Visibility Into Your Containers Layout with Weavescope 281
9.13 Monitoring a Kubernetes Cluster with Heapster 283

vi | Table of Contents

Preface

This book is not finished, it has not gone through technical review
nor has it been edited for grammar, punctuation, typos etc. You are
reading this book through the advanced release program of
O’Reilly, please consider it a preview of a draft and be kind in your
reviews. Feel free to send me any suggestions or comments to
how2dock@gmail.com. You can also file a review in the O’Reilly
portal. Happy reading.

Why I Wrote This Book
I have been working on Clouds at the IaaS layer for over ten years. With Amazon
AWS, Google GCE and Microsoft Azure now providing large scale Cloud services for
several years, it is fair to say that getting access to a server has never been that easy
and that quick. The real value to me has been the availability of an API to access these
services. We can now program to create an infrastructure and program to deploy an
application. These programmable layers help us reach a higher level of automation,
which for a business translates in faster time to market, more innovation and better
user service.

However, application packaging, configuration, composition of services in a dis‐
tributed environment has not progressed much despite a lot of work in configuration
management and orchestration. Deploying and running a distributed application at
scale and in a fault tolerant manner is still hard.

I was not crazy about Docker until I tried it and understood what it brings to the
table. Docker primarily brings a new user experience to linux containers. It is not
about full virtualization versus containers, it is about the ease of packaging and run‐
ning an application. Once you start using Docker and enjoy this new experience, the
side effect is that you will also start thinking automatically about composition and
clustering.

vii

Containers help us think more in terms of functional isolation which in turn forces us
to decompose our applications before stitching it back together for a distributed
world. Yes, I have drunk the Kool-Aid but hopefully this book will show you why.

How This Book Is Organized
This cookbook is currently made of ten chapters. Each chapter is composed of recipes
written in the standard O’Reilly recipes format (i.e Problem, Solution, Discussion).
You can read it front to back or pick up a specific chapter/recipe. Each recipe is made
to be independent of the others but when concepts needed in a recipe are needed,
appropriate references are provided.

• The Chapter 1 chapter goes through several Docker installation scenarios includ‐
ing Docker machine. It then presents the basic Docker commands to manage con‐
tainers, mount data volumes, link containers and so on. At the end of this chapter
you should have a working Docker host and you should have started multiple
containers as well as understood the lifecycle of containers.

• In Chapter 2 we introduce the Dockerfile, Docker Hub and show how to
build/tag/commit an image. We also show how to run your own Docker registry
and setup automated builds. At the end of this chapter you will know how to cre‐
ate Docker images and share them privately or publicly and have some basic
foundation to build continuous delivery pipelines.

• Currently the Chapter 3 chapter only contains stubs of planned recipes. You will
find information such as linking containers, using an ambassador container to
expose services from different hosts, configuring a custom bridge for use in your
Docker host. You will also learn about more advanced networking setups and
tools, such as Weave, Flannel and Socketplane VXLAN overlays. Empty chapter
right now.

• The Chapter 4 chapter goes through some configuration of the Docker daemon,
especially security settings and access to the Docker API remotely. It also covers a
few basic problems, like compiling Docker from source, running its test suite and
using a new Docker binary. A few recipes are meant to gain a better insight on
linux namespaces and its use in containers.

• Chapter 5 introduces the new container management platform from Google.
Kubernetes provides a way to deploy multi container applications on a dis‐
tributed cluster. In addition it provides an automated way to expose services and
create replicas of containers. We show how to deploy Kubernetes on your own
infrastructure, starting with a local Vagrant cluster and subsequently on a set of
machines started in the Cloud. We then present the key aspects of Kubernetes:
pods, services and replication controllers. Empty chapter right now.

viii | Preface

• In the Chapter 6 chapter we cover three new linux distributions that are custom‐
ized to run containers: CoreOS, Project Atomic and Ubuntu core. These new dis‐
tributions provide just enough operating system to run and orchestrate docker
containers. Recipes cover installation and access to machines that use these dis‐
tributions. We also introduce tools that are used with these distributions to ease
container orchestration (e.g etcd, fleet, systemd)

• One of Docker’s strength is its booming ecosystem. In Chapter 7 we introduce
several tools that have been created over the last 18 months and that leverage
Docker to ease application deployment, continuous integration, service discovery
and orchestration. As an example, you will find recipes about Fig, Docker
Swarm, Flynn and Apache Clocker.

• The Docker daemon can be installed on a developer local machine, however,
with Cloud computing providing easy access to on-demand servers it is fair to
say that a lot of container based applications will be deployed in the Cloud. In
Chapter 8 we present a few recipes to show how to access a Docker host on Ama‐
zon AWS, Google GCE and Microsoft Azure. We also introduce two new cloud
services that use Docker: The AWS Elastic Container Service (ECS) and the Goo‐
gle Container Engine. This chapter is currently stubbed out. Empty chapter right
now.

• The Chapter 9 chapters aims to address some concerns about application moni‐
toring when using containers. Monitoring and visibility of the infrastructure and
the application has been a huge focus in the DevOps community. As Docker
becomes more pervasive as a development and operational mechanism, lessons
learned need to be applied to container based applications. This chapter is cur‐
rently stubbed out. Empty chapter right now.

• Finally, in the ??? chapter we present end to end application deployment scenar‐
ios on both single host and clusters. While some basic application deployments
are presented in earlier chapters. The recipes presented here aim to be closer to a
production deployment setup. This is a more in depth chapter that puts the
reader on the path towards designing more complex microservices. This chapter
is currently stubbed out. Empty chapter right now.

The book structure may still change and the order of the chapters
may be modified.

Finally, ??? summarizes the book and provides some tips for further reading and
investigation.

Preface | ix

https://coreos.com
http://www.projectatomic.io
http://www.ubuntu.com/cloud/tools/snappy
http://aws.amazon.com
https://cloud.google.com/compute/
http://azure.microsoft.com/en-us/
http://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/

Technology You Need to Understand
This book is of an intermediate level and requires a minimum understanding of a few
development and system administration concepts. Before diving into the book, you
might want to review:

Bash (Unix shell)
This is the default Unix shell on Linux and OS X. Familiarity with the Unix shell,
such as editing files, setting file permissions, moving files around the filesystems,
user privileges, and some basic shell programming will be very beneficial. If you
don’t know the Linux shell in general, consult books such as Cameron Newham’s
Learning the Bash Shell or Carl Albing, JP Vossen, and Cameron Newham’s Bash
Cookbook, both from O’Reilly.

Package management
The tools we will present in this book often have multiple dependencies that need
to be met by installing some packages. Knowledge of the package management
on your machine is therefore required. It could be apt on Ubuntu/Debian sys‐
tems, yum on CentOS/RHEL systems, port or brew on OS X. Whatever it is, make
sure that you know how to install, upgrade, and remove packages.

Git
Git has established itself as the standard for distributed version control. If you are
already familiar with CVS and SVN, but have not yet used Git, you should. Ver‐
sion Control with Git by Jon Loeliger and Matthew McCullough (O’Reilly) is a
good start. Together with Git, the GitHub website is a great resource to get
started with a hosted repository of your own. To learn GitHub, try http://train
ing.github.com and the associated interactive tutorial.

Python
In addition to programming with C/C++ or Java, I always encourage students to
pick up a scripting language of their choice. Perl used to rule the world, while
these days, Ruby and Go seem to be prevalent. I personally use Python. Most
examples in this book use Python but there are a few examples with Ruby, one
even uses Clojure. O’Reilly offers an extensive collection of books on Python,
including Introducing Python by Bill Lubanovic, Programming Python by Mark
Lutz, and Python Cookbook by David Beazley and Brian K. Jones.

Vagrant
Vagrant has become one of the great tools for DevOps engineer to build and
manage their virtual environments. It is best suited for testing and quickly provi‐
sioning virtual machines locally, but also has several plugins to connect to public
cloud providers. In this book we use Vagrant to quickly deploy a virtual machine

x | Preface

http://github.com
http://training.github.com
http://training.github.com
http://try.github.io

instance that acts as a docker host. You might want to read Vagrant, Up and Run‐
ning from the author of Vagrant itself, Mitchell Hashimoto.

Go
Docker is written in Go. Over the last couple years go has established itself has
the new programming language of choice in many startups. Docker is written in
go, and while this cookbook is not about go programming, we will show how to
compile a few go projects. If you want to know more, Go Up and Running is a
good start.

Online Content
Code examples, Vagrantfile and other scripts used in this book are available at Git‐
Hub. You can clone this repository, go to the relevant chapter and recipe and use the
code as is. For example to start an Ubuntu 14.04 virtual machine using Vagrant and
install Docker do:

$ git clone https://github.com/how2dock/docbook.git
$ cd dockbook/ch01/ubuntu14.04/
$ vagrant up

The examples in this repo are not made to represent optimized set‐
ups. There are the basic minimum required to run the examples in
the recipes. Until the book is complete, expect frequent changes to
this repo.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Preface | xi

https://github.com/how2dock/docbook
https://github.com/how2dock/docbook

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc. 1005 Gravenstein Highway North Sebastopol, CA 95472
800-998-9938 (in the United States or Canada) 707-829-0515 (international or local)
707-829-0104 (fax)
We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://shop.oreilly.com/product/
0636920034377.do.

xii | Preface

http://shop.oreilly.com/product/0636920034377.do
http://shop.oreilly.com/product/0636920034377.do

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements

Preface | xiii

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Getting Started with Docker

This chapter consists of introductory recipes. Readers should be
able to go through the recipes to install a Docker Host, then pro‐
gressively discover the Docker CLI to manage containers and start
a two container application. You can send me suggestions at
how2dock@gmail.com

There will be an introduction here.

1.1 Installing Docker on Ubuntu 14.04 and CentOS 6.5
Problem
You want to use Docker on Ubuntu 14.04 or CentOS 6.5

Solution
Install the docker.io package using your package management system and start the
docker service.

On Ubuntu 14.04 this is achieved in two lines of bash commands. The actual package
to install is docker.io since there is a pre-existing docker package for Ubuntu which
is not related to Docker.

$ sudo apt-get update
$ sudo apt-get install -y docker.io

You can test that the installation worked fine by checking the version of docker:

$ sudo docker --version
Docker version 1.0.1, build 990021a

15

http://www.docker.com

You can stop, start, restart the service. For example, to restart it do:

$ sudo service docker.io restart

On CentOS 6.5, getting docker is achieved by grabing the docker-io package from
the EPEL repository.

$ sudo yum -y update
$ sudo yum -y install epel-release
$ sudo yum -y install docker-io
$ sudo service docker start
$ chkconfig docker on

While on Ubuntu 14.04 the setup installed version 1.0.1, on CentOS 6.5 it installed
version 1.3.1

docker --version
Docker version 1.3.1, build c78088f/1.3.1

If you want to use docker from a non root user, add the user
account to the docker group

$ sudo gpasswd -a <user> docker

Discussion
To install the latest version of Docker on fedora, Ubuntu, Debian, Linux Mint and
Gentoo, there exists a simple bootstrap script that you can run instead.

$ sudo curl -sSL https://get.docker.com/ | sudo sh
$ sudo docker --version
Docker version 1.4.1, build 5bc2ff8

See Also
For installation of Docker on other operating systems see the official installation doc‐
umentation

By Publishing time, the default version number and latest version
number of Docker might change.

16 | Chapter 1: Getting Started with Docker

https://docs.docker.com/installation/#installation
https://docs.docker.com/installation/#installation

1.2 Setting Up a Local Docker Host Using Vagrant
Problem
The operating system of your local machine is different than the operating system
you want to use Docker on. For example you are running OSX and want to try
Docker on Ubuntu.

Solution
Use Vagrant to start a virtual machine (VM) locally and bootstrap the VM using a
shell provisioner in the Vagrantfile.

With a working Virtual Box and Vagrant installation, create a Vagrantfile:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty64"

 config.vm.network "private_network", ip: "192.168.33.10"

 config.vm.provider "virtualbox" do |vb|
 vb.customize ["modifyvm", :id, "--memory", "1024"]
 end

 config.vm.provision :shell, :path => "docker-bootstrap.sh"

end

And create a docker_bootstrap.sh script:

#!/bin/bash

sudo apt-get update
sudo apt-get -y install docker.io
sudo gpasswd -a vagrant docker
sudo service docker.io restart

You can then bring up the virtual machine. Vagrant will download the ubuntu/
trusty64 box from the Vagrant cloud, start an instance of it using virtual box and run
the bootstrap script in the instance. You will then be able to ssh to the instance and
use docker

$ vagrant up
$ vagrant ssh
vagrant@vagrant-ubuntu-trusty-64:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

1.2 Setting Up a Local Docker Host Using Vagrant | 17

http://vagrantup.com
http://virtualbox.org
http://vagrantup.com
http://vagrantcloud.com

In this Vagrant setup, the vagrant user was added to the docker
group. Hence docker commands can be issued even if you are not
root. You can get these scripts from the how2dock repository in the
ch01 directory.

Discussion
If you have never used Vagrant before, you will need to install it. The download page
on the Vagrant website lists all major packages families. For example on Debian based
systems grab the .deb package and install it like so:

$ wget https://dl.bintray.com/mitchellh/vagrant/vagrant_1.6.5_x86_64.deb
$ sudo dpkg -i vagrant_1.6.5_x86_64.deb
$ sudo vagrant --version
Vagrant 1.6.5

1.3 Using boot2docker to Get a Docker Host on OSX
Problem
The Docker daemon is not supported on OSX, but you want to use the Docker client
seamlessly on your OSX host.

Solution
Use the boot2docker lightweight linux distribution. Boot2docker is based on Tiny
Core Linux and configured specifically to act as a docker host. After installation, a
boot2docker command will be available to you. You will use it to interact with a vir‐
tual machine started through virtual box that will act as a docker host. The docker
client -which runs on OSX, unlike the daemon- will be setup on your local OSX
machine.

Let’s start by downloading and installing boot2docker. Go to the site where you will
find several download links. From the release page, grab the latest release. Once the
download is finished, launch the installer.

18 | Chapter 1: Getting Started with Docker

https://github.com/how2dock/docbook.git
https://www.vagrantup.com/downloads
http://boot2docker.io
http://boot2docker.io
https://github.com/boot2docker/osx-installer/releases

Figure 1-1. Boot2docker installer wizard

Once the installation is finished you are ready to use boot2docker.

1.3 Using boot2docker to Get a Docker Host on OSX | 19

Figure 1-2. Boot2docker installer completion

In a terminal window, type boot2docker at the prompt, you should see the usage
options. You can also check the version number that you installed.

$ boot2docker
Usage: boot2docker [<options>] {help|init|up|ssh|save|down|poweroff|reset|
 restart|config|status|info|ip|shellinit|delete|
 download|upgrade|version} [<args>]
$ boot2docker version
Boot2Docker-cli version: v1.3.2
Git commit: e41a9ae

With boot2docker installed, the first step is to initialize it. If you have not downloa‐
ded the boot2docker ISO, this step will do so and create the virtual machine in vir‐
tualbox.

$ boot2docker init
Latest release for boot2docker/boot2docker is v1.3.2
Downloading boot2docker ISO image...
Success:
 downloaded https://github.com/boot2docker/boot2docker/releases/download/\
 v1.3.2/boot2docker.iso
 to /Users/sebgoa/.boot2docker/boot2docker.iso

20 | Chapter 1: Getting Started with Docker

As you can see the ISO will be located in your home directory under .boot2docker/
boot2docker.iso and when you open the VirtualBox UI you will see the
boot2docker VM in a powered off state.

Figure 1-3. Boot2docker Virtual Box VM

You do not need to have the VirtualBox UI open, the snapshots are
only here for illustration. Boot2docker uses the VBoxManage com‐
mands to manage the boot2docker VM in the background.

1.3 Using boot2docker to Get a Docker Host on OSX | 21

You are now ready to start boot2docker. This will run the VM and return some
instructions to set environment variables for properly connecting to the docker dae‐
mon running in the VM.

$ boot2docker start
Waiting for VM and Docker daemon to start...
.........................ooooooooooooooooooooo
Started.
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/cert.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/key.pem

To connect the Docker client to the Docker daemon, please set:
 export DOCKER_CERT_PATH=/Users/sebgoa/.boot2docker/certs/boot2docker-vm
 export DOCKER_TLS_VERIFY=1
 export DOCKER_HOST=tcp://192.168.59.103:2376

While you can set the environment variables by hand, boot2docker provides a handy
command shellinit. Use it to configure the TLS connection to the docker daemon
and you will have access to the docker host from your local OSX machine.

$ $(boot2docker shellinit)
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/cert.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/key.pem
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Discussion
When a new version of boot2docker is available, you can upgrade easily by down‐
loading the new boot2docker installer and downloading a new ISO image with the
download command.

Make sure that you stop the current boot2docker vm $

boot2docker stop before running the installer script

$ boot2docker stop
$ boot2docker download
$ boot2docker start

1.4 Running Boot2docker on Windows 8.1 Desktop
Problem
You have a Windows 8.1 Desktop and would like to use Boot2docker to test Docker.

22 | Chapter 1: Getting Started with Docker

Solution
Use the Boot2docker windows installer.

After downloading the latest version of the windows installer (an .exe binary), run it
through the command prompt or through your file explorer (see <<boot2dockeri>).
It will automatically install Virtualbox, MSYSGit and the boot2docker ISO. MSYSGit
is necessary to get the ssk-keygen binary on your windows machine. Going through
the installer wizard, you will need to accept couple VirtualBox licenses from Oracle.
The installer can create shortcuts in your Desktop for VirtualBox and to start
boot2docker.

Figure 1-4. Boot2docker Windows 8.1 Installer

Once the installation is finished, double click on the shortcut for boot2docker, this
will launch the VM in VirtualBox and you will get a command prompt inside it (see
Figure 1-5). You can now use Docker on your Windows desktop.

1.4 Running Boot2docker on Windows 8.1 Desktop | 23

https://github.com/boot2docker/windows-installer/releases/latest

Figure 1-5. Boot2docker Windows 8.1 Command

Discussion
Docker machine also comes with an Hyper-V driver. If you setup Hyper-V on your
desktop you could start a boot2docker instance with docker machine.

Recipe on Docker machine with Hyper-V will come.

See Also
• Boot2docker for Windows official Docker documentation.

1.5 Starting a Docker Host in the Cloud Using Docker
Machine
Problem
You do not want to install the Docker daemon locally, use Vagrant (Recipe 1.2) or use
Boot2docker (Recipe 1.3). Instead you would like to use a Docker host in the Cloud
(e.g AWS, DigitalOcean, Azure, GCE etc) and connect to it seamlessly using the local
Docker client.

24 | Chapter 1: Getting Started with Docker

https://docs.docker.com/installation/windows/

Solution
Use Docker machine to start a cloud instance in your public cloud of choice. Machine
will automatically install Docker and setup TLS for secure communication. You will
then be able to use the cloud instance as your Docker host and use it from a local
Docker client. See Chapter 8 for more recipes dedicated to using Docker in the
Cloud.

Docker machine beta was announced on February 26th 2015. Offi‐
cial documentation is now available on the Docker website. The
source code is available on GitHub.

Let’s get started. Machine currently supports VirtualBox, DigitalOcean, Amazon Web
Services, Azure, GCE and a few other providers. There are several drivers under
development or review, so we should definitely expect much more soon. In this
recipe, we will use DigitalOcean, therefore if you want to follow along step by step
you will need an account on DigitalOcean.

Once you have an account, generate an access token for using Docker Machine. This
token will need to be both a read and a write token so that Machine can upload a pub‐
lic SSH key (Figure 1-6). Set an environment variable DIGITALOCEAN_ACCESS_TOKEN
that defines the token you created.

Machine will upload an SSH key to your cloud account, make sure
that your access tokens or API keys give you the privileges neces‐
sary to create a key.

Figure 1-6. DigitalOcean Access Token for Machine

1.5 Starting a Docker Host in the Cloud Using Docker Machine | 25

http://blog.docker.com/2015/02/announcing-docker-machine-beta/
https://docs.docker.com/machine/
https://github.com/docker/machine
https://www.digitalocean.com
https://aws.amazon.com
https://aws.amazon.com
https://azure.microsoft.com
http://cloud.google.com
https://github.com/docker/machine/pulls
https://cloud.digitalocean.com/registrations/new

You are almost set. You just need to download the docker-machine binary. Go to the
documentation site and choose the correct binary for your local computer architec‐
ture. For example on OSX:

$ wget https://github.com/docker/machine/releases/download/v0.1.0/docker-machine_darwin-amd64
$ mv docker-machine_darwin-amd64 docker-machine
$ chmod +x docker-machine
$./docker-machine --version
docker-machine version 0.1.0

With the environment variable DIGITALOCEAN_ACCESS_TOKEN set, you can create your
remote Docker host with:

$./docker-machine create -d digitalocean foobar
INFO[0000] Creating SSH key...
INFO[0001] Creating Digital Ocean droplet...
INFO[0005] Waiting for SSH...
INFO[0072] Configuring Machine...
INFO[0117] "foobar" has been created and is now the active machine.
INFO[0117] To point your Docker client at it, run this in your shell: $(docker-machine env foobar)

If you go back to your DigitalOcean dashboard, you will see that a SSH Key has been
created, as well as a new droplet.

Figure 1-7. DigitalOcean SSH Keys Generated by Machine

Figure 1-8. DigitalOcean Droplet Created by Machine

To configure your local Docker client to use this remote Docker host, you execute the
sub-shell command that was listed in the output of creating the machine.

26 | Chapter 1: Getting Started with Docker

https://docs.docker.com/machine/

$ $(docker-machine env foobar)
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Enjoy Docker running remotely on a DigitalOcean droplet created with Docker
Machine.

Discussion

If not specified at the command line, Machine will look for a DIGI
TALOCEAN_IMAGE, DIGITALOCEAN_REGION and DIGITALOCEAN_SIZE
environment variables. By default they are set to docker, nyc3 and
512mb respectively.

The docker-machine binary lets you create multiple machines, on multiple providers.
You also have the basic management capabilities: start, stop, rm etc.

$./docker-machine
...
COMMANDS:
 active Get or set the active machine
 create Create a machine
 config Print the connection config for machine
 inspect Inspect information about a machine
 ip Get the IP address of a machine
 kill Kill a machine
 ls List machines
 restart Restart a machine
 rm Remove a machine
 env Display the commands to set up the environment for the Docker client
 ssh Log into or run a command on a machine with SSH
 start Start a machine
 stop Stop a machine
 upgrade Upgrade a machine to the latest version of Docker
 url Get the URL of a machine
 help, h Shows a list of commands or help for one command

For instance you can list the machine you created previously, obtain its IP address
and even connect to it via SSH.

$./docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
foobar * digitalocean Running tcp://45.55.161.171:2376
$./docker-machine ip foobar
45.55.161.171
$./docker-machine ssh foobar
Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-43-generic x86_64)
...

1.5 Starting a Docker Host in the Cloud Using Docker Machine | 27

Last login: Mon Mar 16 09:02:13 2015 from ...
root@foobar:~#

Before you are done with this recipe, do not forget to delete the machine you created:

$./docker-machine rm foobar

See Also
• Official documentation

1.6 Running Hello World in Docker
Problem
You have access to a Docker host and want to run your first container, executing
Hello World in it.

Solution
Typing docker at the prompt will return the usage of the docker command:

$ docker
Usage: docker [OPTIONS] COMMAND [arg...]

A self-sufficient runtime for linux containers.

...

Commands:
 attach Attach to a running container
 build Build an image from a Dockerfile
 commit Create a new image from a container's changes
...
 rm Remove one or more containers
 rmi Remove one or more images
 run Run a command in a new container
 save Save an image to a tar archive
 search Search for an image on the Docker Hub
 start Start a stopped container
 stop Stop a running container
 tag Tag an image into a repository
 top Lookup the running processes of a container
 unpause Unpause a paused container
 version Show the Docker version information
 wait Block until a container stops, then print its exit code

28 | Chapter 1: Getting Started with Docker

https://docs.docker.com/machine/

We have already seen the docker ps command which list all running containers.
They are many more commands that we will explore in the recipes of this book. To
get started we want to run a container. Let’s get straight to it and use docker run.

$ docker run busybox echo hello world
Unable to find image 'busybox' locally
busybox:latest: The image you are pulling has been verified
511136ea3c5a: Pull complete
df7546f9f060: Pull complete
e433a6c5b276: Pull complete
e72ac664f4f0: Pull complete
Status: Downloaded newer image for busybox:latest
hello world

Containers are based on images. An image needs to be passed to the docker run
command. In the example above we specified an image called busybox. Docker did
not have this image locally and pulled it from a public registry. Once the image was
pulled, it started a container based on it and executed the echo hello world com‐
mand. Congratulations your ran your first container.

Discussion
If we list the running containers, we will see that they are none running. That’s
because as soon as the container did its job (i.e echoing hello world) it stopped. How‐
ever it is not totally gone and we can see it with the docker ps -a command:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$ docker ps -a
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
8f7089b187e8 busybox:latest "echo hello world" ... thirsty_morse

We see that the container has an ID (8f7089b187e8) and an image (busybox:latest) as
well as a name, and we see the command that it ran. You can remove permanently
this container with docker rm 8f7089b187e8. The image that we used was downloa‐
ded locally and docker images returns it.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest e72ac664f4f0 9 weeks ago 2.433 MB

If no running or stopped containers are using this image, you can remove it with
docker rmi busybox.

Running echo is fun but getting a terminal session within a container is even better.
Try to run a container that executes /bin/bash. You will need to use the -t and -i
options to get a proper interactive session and while we are at it, let’s use an Ubuntu
image.

1.6 Running Hello World in Docker | 29

$ docker run -t -i ubuntu:14.04 /bin/bash
Unable to find image 'ubuntu:14.04' locally
ubuntu:14.04: The image you are pulling has been verified
01bf15a18638: Pull complete
30541f8f3062: Pull complete
e1cdf371fbde: Pull complete
9bd07e480c5b: Pull complete
511136ea3c5a: Already exists
Status: Downloaded newer image for ubuntu:14.04
root@6f1050d21b41:/#

We see that docker pulled the Ubuntu:14.04 image composed of several layers, and we
got a session as root within a container. The prompt gives us the ID of the container.
As soon as we exit this terminal, the container will stop running just like our first
hello world example.

If you skipped the first few recipes on installing Docker. You
should try the web emulator. It will give you a 10 minute tour of
Docker and you will get your first practice with it.

1.7 Running a Docker Container in Detached Mode
Problem
You know how to run a container interactively but would like to run a service in the
background.

Solution
Use the -d option of docker run and expose a port with the -p option.

To try this we are going to run a simple HTTP server with Python in a python:2.7
Docker image pulled from Docker Hub (see also Recipe 2.8).

$ docker run -d -p 1234:1234 python:2.7 python -m SimpleHTTPServer 1234

You will see that the container keeps running and that it is exposing its port 1234 to
the Docker host 1234 port

$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
0fae2d2e8674 python:2.7 "python -m SimpleHTT ... 0.0.0.0:1234->1234/tcp suspicious_pike

If you open your browser at the IP of your Docker host on port 1234, you will see the
listing of the root directory inside your container.

30 | Chapter 1: Getting Started with Docker

https://www.docker.com/tryit/
https://registry.hub.docker.com/_/python/

Discussion
The -d option made the container run in the background. You can connect to the
container by using the exec command and running a bash shell.

$ docker exec -ti 9d7cebd75dcf /bin/bash
root@9d7cebd75dcf:/# ps -ef | grep python
root 1 0 0 15:42 ? 00:00:00 python -m SimpleHTTPServer 1234

docker exec was introduced in Docker 1.3. Upgrade to Docker
1.3+ if you want to use it.

While you specified a container port to host port mapping with the -p option, you
could have let Docker decide of this port forwarding rule using the P option and
exposing port 1234 with the --expose option. The mapping would be visible from
docker ps or directly from docker port:

$ docker run -d -P --expose=1234 python:2.7 python -m SimpleHTTPServer 1234
$ docker port 317451b6eab3
1234/tcp -> 0.0.0.0:49153

Lots of other options are available for docker run. Try to experiment by specifying a
name for the container, changing the working directory of the container, setting an
environment variables and so on.

See Also
• Docker run reference

1.8 Creating, Starting, Stopping, Removing Containers.
Problem
You know how to start containers, you can also run them in detached mode, you
would like to learn the basic commands to manage the entire lifecycle of a container.

Solution
Use the create, start, stop, kill and rm commands of the Docker cli. Find the
appropriate usage of each command with the -h or the --h option or simply by typ‐
ing the command with no arguments (e.g docker create)

1.8 Creating, Starting, Stopping, Removing Containers. | 31

https://docs.docker.com/reference/run/
https://docs.docker.com/reference/run/

Discussion
In Recipe 1.7 we started a container with docker run, the container started automati‐
cally. You can also stage a container with the docker create command. Using the
same example of running a simple HTTP server, the only difference will be that we
will not specify the -d option. Once staged, the container will need to be started with
docker start

$ docker create -P --expose=1234 python:2.7 python -m SimpleHTTPServer 1234
a842945e2414132011ae704b0c4a4184acc4016d199dfd4e7181c9b89092de13
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED ... NAMES
a842945e2414 python:2.7 "python -m SimpleHTT 8 seconds ago ... fervent_hodgkin
$ docker start a842945e2414
a842945e2414
$ docker ps
CONTAINER ID IMAGE COMMAND PORTS NAMES
a842945e2414 python:2.7 "python -m SimpleHTT 0.0.0.0:49154->1234/tcp fervent_hodgkin

To stop a running container, you have the choice between docker kill which will
send a SIGKILL signal to the container or docker stop which will send a SIGTERM
and after a grace period will send a SIGKILL. The end result will be that the container
is stopped and is not listed in the list of running containers docker ps. However the
container has not yet disappeared (i.e the filesystem of the container is still there),
you could restart it docker restart or remove it forever with docker rm.

$ docker restart a842945e2414
a842945e2414
$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
a842945e2414 python:2.7 "python -m SimpleHTT ... 0.0.0.0:49155->1234/tcp fervent_hodgkin
$ docker kill a842945e2414
a842945e2414
$ docker rm a842945e2414
a842945e2414
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

If you have a lot of stopped containers that you would like to
remove, use a subshell to do it in one command. The -q option of
docker ps will return only the containers IDs.

$ docker rm $(docker ps -a -q)

32 | Chapter 1: Getting Started with Docker

1.9 Sharing Host Data With Containers
Problem
You have some data on your host that you would like to make available in a container.

Solution
Use the -v option of docker run to mount a host volume into a container.

For example, to share the working directory of your host into a /cookbook directory
in a container do:

$ ls
data
$ docker run -ti -v $PWD:/cookbook ubuntu:14.04 /bin/bash
root@11769701f6f7:/# ls /cookbook
data

If you create files or directories within the container, the changes will be written
directly to the mounted host directory.

$ docker run -ti -v $PWD:/cookbook ubuntu:14.04 /bin/bash
root@44d71a605b5b:/# touch /cookbook/foobar
root@44d71a605b5b:/# exit
exit
$ ls -l foobar
-rw-r--r-- 1 root root 0 Mar 11 11:42 foobar

You can inspect your mount mapping with the docker inspect command. See
Recipe 9.1 for more information about inspect.

$ docker inspect -f 44d71a605b5b
map[/cookbook:/home/vagrant]

Discussion
• Understanding Volumes
• Data container
• Docker volumes
• Official Docker documentation

1.9 Sharing Host Data With Containers | 33

http://container-solutions.com/2014/12/understanding-volumes-docker/
http://container42.com/2014/11/18/data-only-container-madness/
http://container42.com/2014/11/03/docker-indepth-volumes/
https://docs.docker.com/userguide/dockervolumes/

1.10 Sharing Data Between Containers
Problem
You know how to mount a host volume into a running container, but you would like
to share a volume defined in a container with other containers. This would have the
benefit of letting Docker manage the volumes and keep with the principle of single
responsibility.

Solution
Use Data containers. In Recipe 1.9 we saw how to mount a host volume into a con‐
tainer. The -v option of docker run was used, specifying a host volume and a path
within a container to mount that volume to. If the host path is omitted we create a so-
called data container. The volume specified is created inside the container as a read-
write filesystem not layered on top of the read-only layers used to create the container
image. Docker manages that filesystem but you can read and write to it from the host.
Let’s illustrate this.

$ docker run -ti -v /cookbook ubuntu:14.04 /bin/bash
root@b5835d2b951e:/# touch /cookbook/foobar
root@b5835d2b951e:/# ls cookbook/
foobar
root@b5835d2b951e:/# exit
exit
$ docker inspect -f b5835d2b951e
map[/cookbook:/var/lib/docker/vfs/dir/0262f322bd19f61a1fd56c3183c1f7b9358fa4b3a8226556b8487a86b523ec38]
$ sudo ls /var/lib/docker/vfs/dir/0262f322bd19f61a1fd56c3183c1f7b9358fa4b3a8226556b8487a86b523ec38
foobar

When the container was started, Docker created the /cookbook directory, from
within the container you can read and write to this volume. Once you exit the con‐
tainer you can use inspect (see Recipe 9.1) to know where the volume has been cre‐
ated on the host. Docker created it under /var/lib/docker/vfs/dir. From the host
you can read and write to it. Changes will persist and be available if you restart the
container:

$ sudo touch /var/lib/docker/vfs/dir/0262f322bd19f61a1fd56c3183c1f7b9358fa4b3a8226556b8487a86b523ec38/foobar2
$ docker start b5835d2b951e
$ docker exec -ti b5835d2b951e /bin/bash
root@b5835d2b951e:/# ls /cookbook
foobar foobar2

To share this data volume with other containers, use the --volumes-from option.
Create a data container, then start another container that will mount the volume from
the data container.

34 | Chapter 1: Getting Started with Docker

$ docker run -v /data --name data ubuntu:14.04
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$ docker inspect -f data
map[/data:/var/lib/docker/vfs/dir/4ee1d9e3d453e843819c6ffca7b05d7f7431dcbf90195f392288214a1ddb3ecc]

Note that the Data container is not running. Still, the volume map‐
ping exists and the volume has persisted in /var/lib/docker/vfs/
dir. You can only remove the container and the volume with
docker rm -v data. If you do not use the rm -v option to delete
containers and their volumes, you will end up with lots of
orphaned volumes.

Even though the data container is not running you can mount the volume from it
with --volumes-from option.

$ docker run -ti --volumes-from data ubuntu:14.04 /bin/bash
root@b94a006377c1:/# touch /data/foobar
root@b94a006377c1:/# exit
exit
$ sudo ls /var/lib/docker/vfs/dir/4ee1d9e3d453e843819c6ffca7b05d7f7431dcbf90195f392288214a1ddb3ecc
foobar

See Also
• Understanding Volumes
• Data container
• Docker volumes
• Official Docker documentation
• The Ah Ah moment of Docker volumes.

1.11 Copying Data To And From Containers
Problem
You have a running container started without any volumes configuration, but you
would like to copy files in and out of the container.

Solution
Use the docker cp command to copy files from a running container to the Docker
host.

1.11 Copying Data To And From Containers | 35

http://container-solutions.com/2014/12/understanding-volumes-docker/
http://container42.com/2014/11/18/data-only-container-madness/
http://container42.com/2014/11/03/docker-indepth-volumes/
https://docs.docker.com/userguide/dockervolumes/
https://medium.com/@ramangupta/why-docker-data-containers-are-good-589b3c6c749e

Let’s first start a container that will just sleep. We can enter the container and create a
file manually.

$ docker run -d --name testcopy ubuntu:14.04 sleep 360
$ docker exec -ti testcopy /bin/bash
root@b81793e9eb3e:/# cd /root
root@b81793e9eb3e:~# echo I am in the container > file.txt
root@b81793e9eb3e:~# exit

Now to get the file that we just created in the container back in the host, docker cp
does the work.

$ docker cp testcopy:/root/file.txt .
$ cat file.txt
I am in the container

To copy from the host to the container, we can use a combination of docker exec
and some shell redirection.

$ echo I am in the host > host.txt
$ docker exec -i testcopy sh -c 'cat > /root/host.txt' < host.txt
$ docker exec -i testcopy sh -c 'cat /root/host.txt'
I am in the host

To copy from one container to another container, it is a matter of combining the two
methods by temporarily saving the files on the host. For example if we want to trans‐
fer /root/file.txt from two running containers c1 and c2:

$ docker cp c1:/root/file.txt .
$ docker exec -i c2 sh -c 'cat > /root/file.txt' < file.txt

See Also
• Original idea for this recipe from Grigoriy Chudnov

1.12 Managing and Configuring the Docker Daemon
Problem
You would like to stop, start, restart the Docker Daemon. Additionally, you would
like to configure it in specific ways, potentially changing things like the path to the
docker binary or using a different network bridge.

Solution
Use the docker init script to manage the Docker daemon. On most systems it is loca‐
ted at /etc/init.d/docker.io (for docker.io package on Ubuntu) or /etc/init.d/

36 | Chapter 1: Getting Started with Docker

https://medium.com/@gchudnov/copying-data-between-docker-containers-26890935da3f

docker for the latest versions of Docker. Like most other init services it can be man‐
aged via the service command. The Docker daemon runs as root.

service docker status
docker start/running, process 2851
service docker stop
docker stop/waiting
service docker start
docker start/running, process 3119

The configuration file is located in /etc/default/docker. On Ubuntu systems, all
configuration variables are commented out. The /etc/default/docker file looks like
this:

Docker Upstart and SysVinit configuration file

Customize location of Docker binary (especially for development testing).
#DOCKER="/usr/local/bin/docker"

Use DOCKER_OPTS to modify the daemon startup options.
#DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"

If you need Docker to use an HTTP proxy, it can also be specified here.
#export http_proxy="http://127.0.0.1:3128/"

This is also a handy place to tweak where Docker's temporary files go.
#export TMPDIR="/mnt/bigdrive/docker-tmp"

For example, if you wanted to configure the daemon to listen on a TCP socket to
enable remote API access, you would edit this file as explained in Recipe 4.8.

Check for CentOS … Recipes not finished and probably misplaced
in the book.

Discussion

1.13 Running a Wordpress Blog Using Two Linked
Containers
Problem
You want to run a Wordpress site with containers, but you do not want to run the
Mysql database in the same container as Wordpress. Keeping the concept of separa‐
tion of concerns in mind and decoupling the various components of an application as
much as possible.

1.13 Running a Wordpress Blog Using Two Linked Containers | 37

http://wordpress.com

Solution
You start two containers. One running Wordpress using the official image from the
Docker hub, and one running the Mysql database. The two containers are linked
using the --link option of the Docker cli.

Start by pulling the latest images for https://registry.hub.docker.com//wordpress/[Word‐
press] and https://registry.hub.docker.com//mysql/[Mysql]:

$ docker pull wordpress:latest
$ docker pull mysql:latest
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
mysql latest 9def920de0a2 4 days ago 282.9 MB
wordpress latest 93acfaf85c71 8 days ago 472.8 MB

Start a Mysql container, give it a name via the --name cli option, and set the
MYSQL_ROOT_PASSWORD via an environment variable:

$ docker run --name mysqlwp -e MYSQL_ROOT_PASSWORD=wordpressdocker -d mysql

By not specifying the tag for the mysql image, it automatically
chose the latest tag, which is the one we downloaded specifically.
The container was daemonized with the -d option.

You can now run a wordpress container based on the wordpress:latest image. It
will be linked to the Mysql container using the --link option, which means that
Docker will automatically set up the networking so that the ports exposed by the
Mysql container are reachable inside the Wordpress container.

$ docker run --name wordpress --link mysqlwp:mysql -p 80:80 -d wordpress

Both containers should be running in the background, with port 80 of the wordpress
container mapped to port 80 of the host.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...
e1593e7a20df wordpress:latest "/entrypoint.sh apac About a minute ago ...
d4be18e33153 mysql:latest "/entrypoint.sh mysq 5 minutes ago ...

... STATUS PORTS NAMES

... Up About a minute 0.0.0.0:80->80/tcp wordpress

... Up 5 minutes 3306/tcp mysqlwp

Open a browser at http://<ip _of _host> and it should show the Wordpress instal‐
lation screen with the language selection window. If you go through the Wordpress
setup, you will then have a fully functional Wordpress site running with two linked
containers.

38 | Chapter 1: Getting Started with Docker

http://hub.docker.com
https://registry.hub.docker.com/
https://registry.hub.docker.com/
http://<ip

Figure 1-9. Working Wordpress Site Within Containers

Discussion
The two images for Wordpress and Mysql are official images maintained by the
Wordpress and Mysql communities. Each page on the Docker Hub provides addi‐
tional documentation for configuration of containers started with those images.

Do not forget to read: - The Wordpress image https://regis
try.hub.docker.com//wordpress/[documentation]. - The Mysql image
https://registry.hub.docker.com//mysql/[documentation].

Of interest is that we can create a database and a user with appropriate privileges to
manipulate that database using a few environment variables MYSQL_DATABASE,
MYSQL_USER and MYSQL_PASSWORD. In the example above, Wordpress was run as the
root mysql user and this is far from best practice. It would be better to create a word‐
press database and a user for it, like so:

$ docker run --name mysqlwp -e MYSQL_ROOT_PASSWORD=wordpressdocker
 -e MYSQL_DATABASE=wordpress
 -e MYSQL_USER=wordpress
 -e MYSQL_PASSWORD=wordpresspwd
 -d mysql

1.13 Running a Wordpress Blog Using Two Linked Containers | 39

https://registry.hub.docker.com/
https://registry.hub.docker.com/
https://registry.hub.docker.com/

If you need to remove existing containers:
$ docker stop $(docker ps -q)
$ docker rm $(docker ps -aq)

Once the database container is running, you run the wordpress container and specify
the database tables you defined:

$ docker run --name wordpress --link mysqlwp:mysql -p 80:80
 -e WORDPRESS_DB_NAME=wordpress
 -e WORDPRESS_DB_USER=wordpress
 -e WORDPRESS_DB_PASSWORD=wordpresspwd
 -d wordpress

1.14 Backing up a Database Running in a Container
Problem
You are using a Mysql image to provide a database service. You need to backup this
database for data persistency.

Solution
There are several backup strategies possible alone or in combination. The two main
concepts with containers are that you can execute a command inside a container run‐
ning in the background and that you can also mount a host volume into the con‐
tainer. In this recipe we will see how to:

• Mount a volume from the docker host into the mysql container.
• Use the docker exec command to call mysqldump.

Starting from the recipe Recipe 1.13, where we setup a Wordpress site using two
linked containers, we are going to modify the way we start the mysql container. Once
the containers are started and that we have a fully functional Wordpress site, you can
stop the containers, which stops your application. At that point the containers have
actually not been removed entirely yet and the data in the database is still accessible.
However as soon as you remove the containers (e.g docker rm $(docker ps -aq))
all data will be lost.

A way to keep the data, even when containers are removed is to mount a volume
from your Docker host inside a container. If you look at the Dockerfile used to build
the Mysql image, you sill see a reference to VOLUME /var/lib/mysql. This means that
when we start a container based on this image we can bind mount a host directory to
this mount point inside the container. Let’s do it:

40 | Chapter 1: Getting Started with Docker

https://github.com/docker-library/mysql/blob/d6268ace61047c74468d7c59b4d8da6be5dec16a/5.6/Dockerfile

$ docker run --name mysqlwp -e MYSQL_ROOT_PASSWORD=wordpressdocker
 -e MYSQL_DATABASE=wordpress
 -e MYSQL_USER=wordpress
 -e MYSQL_PASSWORD=wordpresspwd
 -v /home/docker/mysql:/var/lib/mysql
 -d mysql

Note the -v /home/docker/mysql:/var/lib/mysql line which does this mount.
After doing the wordpress configuration, /home/docker/mysql directory on the host
is populated:

$ ls mysql/
auto.cnf ibdata1 ib_logfile0 ib_logfile1 mysql performance_schema wordpress

To get a dump of the entire Mysql database, simply use the docker exec command to
run mysqldump inside the container

$ docker exec mysqlwp mysqldump --all-databases
 --password=wordpressdocker > wordpress.backup

You can then use the traditional techniques for backup and recovery of the database.
For instance in the cloud, you might want to use an Elastic Block Store (e.g AWS EBS)
mounted on an instance and then mounted inside a container. You can also keep your
mysql dumps inside an Elastic Storage (e.g AWS S3)

Discussion
While this recipe uses Mysql, same techniques are valid for Postgres and other data‐
bases. If you use the Postgres image from Docker hub, you can also see in the Docker‐
file that a volume is created (i.e VOLUME /var/lib/postgresql/data)

1.15 Using Supervisor to Run Wordpress in a Single
Container
Problem
While you know how to link containers together (See Recipe 1.13), you would like to
run all services needed for your application in a single container. Specifically for run‐
ning Wordpress, you would like to run Mysql and httpd at the same time in a con‐
tainer. However Docker executes foreground processes, therefore you need to figure
out a way to run multiple “foreground” processes simultaneously.

Solution
Use Supervisor to monitor and run both Mysql and httpd. Supervisor is not an init
system, but is meant to control multiple processes and is ran like any other program.

1.15 Using Supervisor to Run Wordpress in a Single Container | 41

https://registry.hub.docker.com/_/postgres/
https://github.com/docker-library/postgres/blob/5f401753715311752f2346cdbd32bd55e7251ddd/9.4/Dockerfile
https://github.com/docker-library/postgres/blob/5f401753715311752f2346cdbd32bd55e7251ddd/9.4/Dockerfile
http://supervisord.org/index.html

This recipe is an example of using Supervisor to run multiple pro‐
cesses in a container. It can be used as the basis to run any number
of services via a single Docker image (e.g SSH, Nginx). The Word‐
press setup detailed below is a minimum viable setup, not meant
for production use.

The example files can be found at https://github.com/how2dock/docbook/tree/
master/ch01/supervisor. It consists of a Vagrantfile to start a virtual machine that
runs Docker, a Dockerfile that defines the image being created, a supervisor configu‐
ration file supervisord.conf and a Wordpress configuration file wp-config.php.

If you do not want to use Vagrant, you can simply take the Docker‐
file, supervisord and Wordpress configuration files and set things
up on your own Docker host.

To run Wordpress, you will need to install Mysql, Apache2 (i.e httpd), Php and grab
the latest Wordpress release. You will need to create a database for Wordpress. In the
configuration file used in this recipes, the Wordpress database user is root, its pass‐
word is root and the database is wordpress. Change these settings to your liking in
the wp-config.php file and edit the Dockerfile accordingly.

A Dockerfile is a manifest that describes how a Docker image is built, it will be
described in details in follow-on chapters. If this is your first use of a Dockerfile you
can use it as is and come back to it later on (see Recipe 2.3 for an introduction to
Dockerfile).

FROM ubuntu:14.04

RUN apt-get update && apt-get -y install \
 apache2 \
 php5 \
 php5-mysql \
 supervisor \
 wget

RUN echo 'mysql-server mysql-server/root_password password root' | debconf-set-selections && \
 echo 'mysql-server mysql-server/root_password_again password root' | debconf-set-selections

RUN apt-get install -qqy mysql-server

RUN wget http://wordpress.org/latest.tar.gz && \
 tar xzvf latest.tar.gz && \
 cp -R ./wordpress/* /var/www/html && \
 rm /var/www/html/index.html

RUN (/usr/bin/mysqld_safe &); sleep 5; mysqladmin -u root -proot create wordpress

42 | Chapter 1: Getting Started with Docker

COPY wp-config.php /var/www/html/wp-config.php
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf

EXPOSE 80

CMD ["/usr/bin/supervisord"]

Supervisor is configured via the supservisord.conf file like so:

[supervisord]
nodaemon=true

[program:mysqld]
command=/usr/bin/mysqld_safe
autostart=true
autorestart=true
user=root

[program:httpd]
command=/bin/bash -c "rm -rf /run/httpd/* && /usr/sbin/apachectl -D FOREGROUND"

Two programs are defined to be run and monitored: mysqld and httpd. Each pro‐
gram can use a number of options like autorestart and autostart. The most
important directive is command which defines how to run each program. With this
configuration, a Docker container only needs to run a single foreground process
supervisord. Hence the line in the Dockerfile CMD ["/usr/bin/supervisord"].

On your Docker host, build the image and start a background container off of it. If
you are using the Vagrant virtual machine started via the example files do:

$ cd /vagrant
$ docker build -t wordpress .
$ docker run -d -p 80:80 wordpress

Port forwarding will be setup between your host and the docker container for port 80.
You will just need to open your browser http://<IP_OF_DOCKER_HOST> and config‐
ure Wordpress.

Discussion
While using Supervisor to run multiple application services in a single container
works perfectly. It is better to use multiple containers. It promotes the isolation of
concerns using containers and helps create a microservices based design for your
application. Ultimately this will help with scale and resilience.

See Also
• Supervisor documentation.

1.15 Using Supervisor to Run Wordpress in a Single Container | 43

http://shop.oreilly.com/product/0636920033158.do
http://supervisord.org/index.html

• Docker supervisor article.

44 | Chapter 1: Getting Started with Docker

https://docs.docker.com/articles/using_supervisord/

CHAPTER 2

Image Creation and Sharing

This chapter consists of recipes focused on creating and sharing
Docker images. You can send me suggestions at
how2dock@gmail.com

2.1 Keeping Changes Made to a Container by Committing
to an Image.
Problem
After making some changes inside a container, you decide that you would like to keep
those changes. You do not want to loose those changes once you exit or stop the con‐
tainer and you would like to re-use this type of container as a basis for others.

Solution
Commit the changes that you made using the docker commit command and define a
new image.

Let’s start a container with an interactive bash shell and update the packages in it:

$ docker run -t -i ubuntu:14.04 /bin/bash
root@69079aaaaab1:/# apt-get update

When we exit the container it stops running, but it is still available to you until you
remove it entirely with docker rm. So before we do this, we can commit the changes
made to the container and create a new image ubuntu:update. The name of the
image is ubuntu and we added a tag update (see Recipe 2.5) to mark the difference
from the ubuntu:latest image.

45

$ docker commit 69079aaaaab1 ubuntu:update
13132d42da3cc40e8d8b4601a7e2f4dbf198e9d72e37e19ee1986c280ffcb97c
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu update 13132d42da3c 5 days ago 213 MB
...

You can now safely remove the stopped container and you will be able to start new
ones based on the ubuntu:update image.

Discussion
We can inspect the changes that have been made inside this container with the
docker diff command

$ docker diff 69079aaaaab1
C /root
A /root/.bash_history
C /tmp
C /var
C /var/cache
C /var/cache/apt
D /var/cache/apt/pkgcache.bin
D /var/cache/apt/srcpkgcache.bin
C /var/lib
C /var/lib/apt
C /var/lib/apt/lists
...

Where A means that the file or directory listed was added, C means that there was a
change made and D means that it was deleted.

See Also
• docker commit reference
• docker diff reference

2.2 Saving Images and Containers as Tar Files for Sharing.
Problem
You have created some images or have some containers that you would like to keep
and share with your collaborators.

46 | Chapter 2: Image Creation and Sharing

https://docs.docker.com/reference/commandline/cli/#commit
https://docs.docker.com/reference/commandline/cli/#diff

Solution
Use the Docker CLI save and load command to create a tar ball from a previously
created image or use the Docker CLI import and export command for containers.

Let’s start with a stop container and export it to a new tar ball:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
77d9619a7a71 ubuntu:14.04 "/bin/bash" 10 seconds ago Exited (0) 2 seconds ago high_shockley
$ docker export 77d9619a7a71 > update.tar
$ ls
update.tar

You could off course commit this container as a new image (see Recipe 2.1) locally
but you could also use the Docker import command:

$ docker import - update < update.tar
157bcbb5fdfce0e7c10ef67ebdba737a491214708a5f266a3c74aa6b0cfde078
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
update latest 157bcbb5fdfc 8 seconds ago 188.1 MB

If you wanted to share this image with one of your collaborators you could upload a
zip version of this tar ball on a webserver and let your collaborator download it and
use the import command on his Docker host.

If you would rather deal with images that you have already committed, you can use
the load and save commands.

$ docker save -o update1.tar update
$ ls -l
total 385168
-rw-rw-r-- 1 vagrant vagrant 197206528 Jan 13 14:13 update1.tar
-rw-rw-r-- 1 vagrant vagrant 197200896 Jan 13 14:05 update.tar
$ docker rmi update
Untagged: update:latest
Deleted: 157bcbb5fdfce0e7c10ef67ebdba737a491214708a5f266a3c74aa6b0cfde078
$ docker load < update1.tar
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
update latest 157bcbb5fdfc 5 minutes ago 188.1 MB
ubuntu 14.04 8eaa4ff06b53 12 days ago 192.7 MB

Discussion
The two methods are very similar, the difference is that saving an image will keep its
history, exporting a container will squash its history.

2.2 Saving Images and Containers as Tar Files for Sharing. | 47

2.3 Writing your First Dockerfile
Problem
Running a container in interactive mode, making changes to it and then committing
these changes to create a new image works well (see Recipe 2.1). However, you want
to automate building your image and share your build steps with others.

Solution
To automate building a Docker image, you decribe the building steps in a Docker
manifesto called the Dockerfile. This text file uses a set of instructions used to
describe which base image the new container is based on, what steps need to be taken
to install various dependencies and applications, what files need to be present in the
image, how they are made available to a container, what ports should be exposed,
what command should run when a container starts as well as a few other things.

To illustrate this, let’s write our first Dockerfile. The resulting image will allow us to
create a container that executes the /bin/echo command. Create a text file called
Dockerfile in your working directory and write the following content in it:

FROM ubuntu:14.04

ENTRYPOINT ["/bin/echo"]

The FROM instruction tells us which image to base the new image off of. Here we
choose the ubuntu:14.04 image from the Official Ubuntu repository in Docker hub.
The ENTRYPOINT instruction tells us which command to run when a container
based on this image is started. To build the image, issue a docker build . at the
prompt like so:

$ docker build .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
 ---> 9bd07e480c5b
Step 1 : ENTRYPOINT /bin/echo
 ---> Running in da3fa01c973a
 ---> e778362ca7cf
Removing intermediate container da3fa01c973a
Successfully built e778362ca7cf
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
<none> <none> e778362ca7cf 4 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 10 days ago 192.7 MB

We are now ready to run this container, specifying the image ID of the freshly built
image and passing an argument to it Hi Docker !.

48 | Chapter 2: Image Creation and Sharing

https://registry.hub.docker.com/_/ubuntu/

$ docker run e778362ca7cf Hi Docker !
Hi Docker !

Amazing, we ran echo in a container ! A container was started using the image that
we built from this two line Dockerfile. The container ran and executed the command
defined by the ENTRYPOINT instruction. Once this command was finished the con‐
tainer job was done and it exited. If you run it again without passing an argument,
nothing is echoed.

$ docker run e778362ca7cf

This image is not very useful, since the ENTRYPOINT value cannot be overwritten
this image will only be able to run echo. If you wanted to do something else with this
container, you could instead use the CMD instruction in a Dockerfile like so:

FROM ubuntu:14.04

CMD ["/bin/echo" , "Hi Docker !"]

Let’s build it and run it:

$ docker build .
...
$ docker run eff764828551
Hi Docker !

It looks the same but if we pass a new executable as argument to the docker run com‐
mand, this command will be executed instead of the /bin/echo defined in the Dock‐
erfile.

$ docker run eff764828551 /bin/date
Thu Dec 11 02:49:06 UTC 2014

Discussion
A Dockerfile is a text file that represents the way a Docker image is built and what
happens when a container is started with this image. Starting with three simple
instructions you can build a fully functioning container: FROM, ENTRYPOINT,
CMD. Of course this is quite limited in this recipe. Read the Docker file reference to
learn about all the other instructions, or go to Recipe 2.4 for a more detailed example.

The CentOS project maintains a large set of Dockerfile examples.
You should check out this repository and run a few of their exam‐
ples to get more familiar with Dockerfile files.

Remember that CMD can be overwritten by an argument while ENTRYPOINT can‐
not. Also we saw that once a command is finished the container exits. A process that

2.3 Writing your First Dockerfile | 49

https://docs.docker.com/reference/builder/
https://github.com/CentOS/CentOS-Dockerfiles

we want to run in a container needs to run in the foreground, otherwise the container
will stop.

Once our first build was done, a new image was created with in our case, the ID
e778362ca7cf. Note that there was no repository or tag defined because we did not
specify any. We can rebuild the image with the repository cookbook as name and the
tag hello using the -t option of docker build. As long as you are doing this locally
the choice of repository and tag is up to you, but once you start publishing this image
into a registry, you will need to follow a naming convention.

$ docker build -t cookbook:echo .
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
cookbook echo e778362ca7cf 4 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 10 days ago 192.7 MB

The docker build command has couple options to deal with inter‐
mediate containers

$ docker build -h

Usage: docker build [OPTIONS] PATH | URL | -

Build a new image from the source code at PATH

 --force-rm=false Always remove intermediate containers...
 --no-cache=false Do not use cache when building the ...
 -q, --quiet=false Suppress the verbose output generated...
 --rm=true Remove intermediate containers after ...
 -t, --tag="" Repository name (and optionally a tag)...

See Also
• Dockerfile reference
• Best practices for writing a Dockerfile
• The CentOS project maintains a large set of Dockerfiles.

2.4 Packaging a Flask Application inside a container
Problem
You have a web application built with the Python framework Flask, running in
Ubuntu 14.04. You want to run this application in a container.

50 | Chapter 2: Image Creation and Sharing

https://docs.docker.com/reference/builder/
https://docs.docker.com/articles/dockerfile_best-practices/
https://github.com/CentOS/CentOS-Dockerfiles
http://flask.pocoo.org

Solution
As an example we are going to use the simple Hello World application defined by the
following Python script

#!/usr/bin/env python

from flask import Flask
app = Flask(__name__)

@app.route('/hi')
def hello_world():
 return 'Hello World!'

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

To get this application running inside a Docker container, we need to write a Docker‐
file that installs the pre-requisites needed to run the application using the RUN key
and exposes the port that the application runs on using the EXPOSE key. We also
need to move the application inside the container filesystem using the ADD key.

Our Dockerfile will be:

FROM ubuntu:14.04

RUN apt-get update
RUN apt-get install -y python
RUN apt-get install -y python-pip
RUN apt-get clean all

RUN pip install flask

ADD hello.py /tmp/hello.py

EXPOSE 5000

CMD ["python","/tmp/hello.py"]

The RUN commands allow us to executed specific shell commands during the con‐
tainer image build time. Here we update the repository cache, we install Python as
well as Pip and we install the Flask micro-framework.

To copy the application inside the container image we use the ADD command. It
copies the file hello.py in the /tmp/ directory.

The application uses port 5000, and we expose this port to the Docker host docker
bridge.

Finally the CMD command, specifies that the container will run python /tmp/

hello.py at run time.

2.4 Packaging a Flask Application inside a container | 51

http://flask.pocoo.org

What is left to do is to build the image with docker build -t flask .. This will
create a flask docker image:

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask latest d381310506ed 4 days ago 354.6 MB
cookbook echo e778362ca7cf 4 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 10 days ago 192.7 MB

To run the application, we use the -d option of docker run which daemonizes the
container, and we also use the -P option of docker run to let Docker choose a port
on the Docker host that will be mapped to the exposed port specified in the Docker‐
file (e.g 5000).

$ docker run -d -P flask
5ac72ed12a72f0e2bec0001b3e78f11660905d20f40e670d42aee292263cb890
sebimac:bottle sebgoa$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
5ac72ed12a72 flask:latest "python /tmp/hello.p 4 days ago Up 2 seconds 0.0.0.0:49153->5000/tcp boring_babbage

We see that the container returned, it has been daemonized and we are not logged
into an interactive shell. The PORTS shows a mapping between port 5000 of the con‐
tainer and port 49153 of the Docker host. A simple curl to http://localhost:
49153/hi will return Hello World, or you can also open your browser to the same
url.

If you are using boot2docker you will have to use the IP address of
the bridge network, instead of localhost. If you do want to use
localhost then add port forwarding rules in VirtualBox

Discussion
Since our Dockerfile specified a command to run via CMD, we do not need to specify
a command after the name of the image to use. However since we used CMD and not
ENTRYPOINT, we could override it and start the container in interactive mode, to
explore it

$ docker run -t -i -P flask /bin/bash
root@fc1514ced93e:/# ls -l /tmp
total 4
-rw-r--r-- 1 root root 194 Dec 8 13:41 hello.py
root@fc1514ced93e:/#

52 | Chapter 2: Image Creation and Sharing

2.5 Versioning an Image with Tags
Problem
You are creating multiple images and multiple versions of the same image. You would
like to keep track of each image and its versions easily, instead of using an image ID.

Solution
Tag the image with the docker tag command. This allows you to rename an existing
image, or create a new tag for the same name.

When we committed an image (see Recipe 2.1) we already used tags. The naming
convention for images is that everything after a colon is a TAG.

A tag is actually optional. If a tag is not used, docker will implicitly
try to use a tag called latest. If such a tag for the image being refer‐
enced, does not exist, then docker will throw an error.

For example, let’s rename the ubuntu:14.04 image to foobar. We will not specify a tag,
just change the name, hence docker will use the latest tag automatically.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 14.04 9bd07e480c5b 12 days ago 192.7 MB

$ docker tag ubuntu foobar
2014/12/17 09:57:48 Error response from daemon: No such id: ubuntu

$ docker tag ubuntu:14.04 foobar

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
foobar latest 9bd07e480c5b 12 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 12 days ago 192.7 MB

The first thing that we see in the example above, is that when we tried to tag the
ubuntu image, Docker threw an error. That is because the ubuntu image only has a
14.04 tag and no latest tag. In our second attempt we specified the existing tag using a
colon and the tagging was successull. Docker created a new foobar image and auto‐
matically added the latest tag. If we specify a tag by using a colon after the new name
for the image, we get:

$ docker tag ubuntu:14.04 foobar:cookbook

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

2.5 Versioning an Image with Tags | 53

foobar cookbook 9bd07e480c5b 12 days ago 192.7 MB
foobar latest 9bd07e480c5b 12 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 12 days ago 192.7 MB

All the images we used so far are local to the Docker host we used. But when we want
to share these images through registries, we need to name them appropriately. Specif‐
ically we will need to follow the USERNAME/NAME convention when preparing an
image for Docker Hub. When using a private registry we will need to specify the reg‐
istry host, and optional username and the name of the image (i.e REGISTRYHOST/
USERNAME/NAME). And of course we can still use a tag (i.e :TAG)

Discussion
Properly Tagging the image is an important part of sharing an image on Docker Hub
(see Recipe 2.8) or using a private registry (see Recipe 2.9) The docker tag help
information is pretty succint but shows the proper naming convention which refer‐
ences the proper namespace, be it local, on docker Hub or on a private registry.

$ docker tag -h

Usage: docker tag [OPTIONS] IMAGE[:TAG] [REGISTRYHOST/][USERNAME/]NAME[:TAG]

Tag an image into a repository

 -f, --force=false Force

2.6 Migrating From Vagrant to Docker With the Docker
Provider
Problem
You have been using Vagrant for your testing and development work and would like
to re-use some of your Vagrantfiles to work with Docker.

Solution
Use the Vagrant Docker provider. You can keep writing Vagrant files to bring up new
containers and develop your Dockerfile files.

An example Vagrantfile that uses the Docker provider is:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

54 | Chapter 2: Image Creation and Sharing

https://hub.docker.com
http://vagrantup.com
https://docs.vagrantup.com/v2/docker/index.html

 config.vm.provider "docker" do |d|
 d.build_dir = "."
 end

 config.vm.network "forwarded_port", guest: 5000, host: 5000

end

The build_dir option will simply look for a Dockerfile in the same directory as the
Vagrantfile. Vagrant will then issue a docker build in turn, and start the container.

$ vagrant up --provider=docker
Bringing machine 'default' up with 'docker' provider...
==> default: Building the container from a Dockerfile...
 default: Sending build context to Docker daemon 8.704 kB
 default: Step 0 : FROM ubuntu:14.04
...
==> default: Creating the container...
 default: Name: provider_default_1421147689
 default: Image: 324f2babf057
 default: Volume: /vagrant/provider:/vagrant
 default: Port: 5000:5000
 default:
 default: Container created: efe111afb8b9d3ff
==> default: Starting container...
==> default: Provisioners will not be run since container doesn't support SSH.

Once the vagrant up is over, the container will be running and an image will have
been created. You can use the regular Docker commands to interact with the con‐
tainer or use the new vagrant docker-logs and vagrant docker-run commands.
Standard commands like vagrant status, vagrant destroy will also work with
your containers.

It is very likely that you will not install ssh in your container.
Therefore the Vagrant provisioners will not be able to run. Any
software installation within your container will need to happen
through the Dockerfile.

Discussion
I created a simple environment to help you test this recipe. Similarly to other recipes
you can clone the git repository that accompanies this book and head over to the
recipe examples. An Ubuntu 14.04 virtual machine will be started, Docker 1.01 will
be installed as well as Vagrant. In the /vagrant/provider directory you will find yet
another Vagrantfile (shown above), and a Dockerfile. This Dockerfile builds a sim‐
ple Flask application in the container.

$ git clone
$ cd ch02/vagrantprovider/

2.6 Migrating From Vagrant to Docker With the Docker Provider | 55

$ vagrant up
$ vagrant ssh
$ cd /vagrant/provider
$ vagrant up --provider=docker

The possible configurations of the Vagrantfile are almost a one to one match with
directives in a Dockerfile. You can define what software to install in a container, what
environment variables to pass, which ports to expose, which containers to link to and
which volumes to mount. The interesting thing is that Vagrant will attempt to trans‐
late the regular Vagrant configuration into Docker run options. For instance, for‐
warding ports from a Docker container to the host can be done with the regular
Vagrant command:

config.vm.network "forwarded_port", guest: 5000, host: 5000

Overall, it is a personal feeling that the Docker support in Vagrant should be seen as a
transitioning step for developers who might have invested a lot of work with Vagrant
and would like to slowly adopt Docker.

Vagrant also features a Docker provisioner. It can be used in a case
where you are starting virtual machines, provisioning them with
configuration management solutions (e.g Puppet, Chef) but would
also like to start containers within those virtual machines.

See Also
• Vagrant Docker provider configuration
• Vagrant Docker provider documentation

2.7 Using Packer to Create a Docker Image
Problem
You have developed several configuration management recipes using Chef, Puppet,
Ansible or SaltStack. You would like to re-use those recipes to build Docker images.

Solution
Use Packer from Hashicorp. Packer as mentioned on its home page is a tool to create
identical machine images for multiple platforms from a single template definition.
For example from a template it can automatically create images for Amazone EC2 (i.e
AMI), VMware, VirtualBox, DigitalOcean etc. One of those target platforms is
Docker.

56 | Chapter 2: Image Creation and Sharing

https://docs.vagrantup.com/v2/provisioning/docker.html
https://docs.vagrantup.com/v2/docker/configuration.html
https://docs.vagrantup.com/v2/docker/index.html
http://www.getchef.com
http://www.getchef.com
http://www.ansible.com/home
http://www.saltstack.com
https://www.packer.io

This means that if you define a Packer template, you can automatically generate a
Docker image. You can also post-process it to tag the image and push it to Docker
Hub (see Recipe 2.8).

The following template shows three main steps. First it specifies a builder, here we use
Docker and specify to use the base image ubuntu:14.04, then it defines the provision‐
ing step. Here we use a simple shell provisioning. Finally, it lists post-processing steps.
Here we only tag the resulting image.

{
"builders": [
 {
 "type": "docker",
 "image": "ubuntu:14.04",
 "commit": "true"
 }
],
"provisioners": [
 {
 "type": "shell",
 "script": "bootstrap.sh"
 }
],
"post-processors": [
 {
 "type": "docker-tag",
 "repository": "how2dock/packer",
 "tag": "latest"
 }
]
}

You can validate the template and launch a build of the image with two commands:

$ packer validate template.json
$ packer build template.json

Setup several builders in your template and output different images
for your application (e.g Docker and AMI)

There is currently a bug with Packer and the latest version of
Docker 1.4.1.

2.7 Using Packer to Create a Docker Image | 57

https://github.com/mitchellh/packer/issues/1752

To help you test Packer, I created a Vagrantfile which starts an Ubuntu 14.04 virtual
machine, installs Docker 1.0.1 on it and downloads Packer. Test it like this:

$ git clone https://github.com/how2dock/docbook.git
$ cd ch02/packer
$ vagrant up
$ vagrant ssh
$ cd /vagrant
$ /home/vagrant/packer validate template.json
Template validated successfully.
$ /home/vagrant/packer build template.json
...
==> docker: Creating a temporary directory for sharing data...
==> docker: Pulling Docker image: ubuntu:14.04
...
==> Builds finished. The artifacts of successful builds are:
--> docker: Imported Docker image: 3ebae8e2f2a8af8f2c5f366c603091c5e9c8e234bff8
--> docker: Imported Docker image: how2dock/packer:latest
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
how2dock/packer latest 3ebae8e2f2a8 20 seconds ago 210.8 MB
ubuntu 14.04 8eaa4ff06b53 11 days ago 192.7 MB

In this particular example you can now run nginx (which has been installed via the
boostrap.sh script) with:

$ docker run -d -p 80:80 how2dock/packer /usr/sbin/nginx -g "daemon off;"

But note that since a Dockerfile was not used to create this image, there was no CMD
or ENTRYPOINT defined. Nginx will not be started when the container is launched,
hence a container started from the image generated without specifying how to run
nginx will exit right away.

Discussion
Packer is a great tool which can help you migrate some of your work from previous
DevOps workflows into a Docker based workflow. However, Docker containers run
applications in the foreground and encourage running single application processes
per container. Hence, creating a Docker image with Packer that would have for exam‐
ple, Mysql, Nginx and Wordpress in the same image would go contrary to the Docker
philosophy and might prove difficult to run without some additional manual post-
processing with something like Supervisor (see Recipe 1.15).

The solution above featured a basic shell provisioning. If you have existing configura‐
tion management recipes, you can also use them to create a Docker image. Packer
features shell, Ansible, Chef, Puppet and Salt provisioners. As an example, the
template-ansible.json file in the repository used above makes use of the Ansible
local provisioner. The packer template gets modified like so:

58 | Chapter 2: Image Creation and Sharing

https://www.packer.io/docs/provisioners/shell.html

{
"builders": [
 {
 "type": "docker",
 "image": "ansible/ubuntu14.04-ansible:stable",
 "commit": "true"
 }
],
"provisioners": [
 {
 "type": "ansible-local",
 "playbook_file": "local.yml"
 }
],
"post-processors": [
 {
 "type": "docker-tag",
 "repository": "how2dock/packer",
 "tag": "latest"
 }
]
}

It uses a special Docker image, pulled from Docker hub that has Ansible installed in
it. Packer will use the local Ansible CLI to run the ansible playbook local.yml. The
playbook installs nginx locally:

- hosts: localhost
 connection: local
 tasks:
 - name: install nginx
 apt: pkg=nginx state=installed update_cache=true

The result of building with Packer will be a working Docker template:

$ /home/vagrant/packer build template-ansible.json
...
==> docker: Creating a temporary directory for sharing data...
==> docker: Pulling Docker image: ansible/ubuntu14.04-ansible:stable
 docker: Pulling repository ansible/ubuntu14.04-ansible
...
==> docker: Provisioning with Ansible...
 docker: Creating Ansible staging directory...
 docker: Creating directory: /tmp/packer-provisioner-ansible-local
 docker: Uploading main Playbook file...
...
 docker:
 docker: PLAY [localhost] **************************************
 docker:
 docker: GATHERING FACTS ***************************************
 docker: ok: [localhost]
 docker:

2.7 Using Packer to Create a Docker Image | 59

 docker: TASK: [install nginx] *********************************
 docker: changed: [localhost]
 docker:
 docker: PLAY RECAP **
 docker: localhost : ok=2 changed=1 unreachable=0 failed=0
 docker:
==> docker: Committing the container
..
 docker (docker-tag): Repository: how2dock/packer:latest
Build 'docker' finished.

2.8 Publishing your image to Docker hub
Problem
You have written a Dockerfile and build an image for a useful container. You want to
share this image with everyone.

Solution
Share this image on the Docker hub. Docker hub is to Docker what GitHub is to
source code. It allows anyone to host its image on-line and share it publicly or keep it
private. To share an image on Docker hub you will need to:

• Create an account on Docker hub
• Login to the hub on your Docker host
• Push your image

Let’s get started. Registering only takes a valid email address. Head over to the signup
page and create create an account

Figure 2-1. Docker Hub Signup Page

60 | Chapter 2: Image Creation and Sharing

http://hub.docker.com
https://github.com
https://hub.docker.com/account/signup
https://hub.docker.com/account/signup

After verifying the email address that you used to create the account, your registra‐
tion will be complete. This will be a free account that allows you to publish public
images as well as have one private repository. If you want to have more than one pri‐
vate repositories, you will need to pay a subscription.

Figure 2-2. Docker Hub Home Page

Now that we have an account created, we can head back to our Docker host, select
one of our images and use the docker CLI to publish this image on our public reposi‐
tory. This will be a three step process:

• Login with docker login. This will ask for our Docker Hub credentials
• Tag an existing image with our username from Docker Hub
• Push the newly tagged image

The login step will store your Docker Hub credentials in a ~/.dockercfg file

$ docker login
Username: how2dock
Password:
Email: how2dock@gmail.com
Login Succeeded
$ cat ~/.dockercfg
{"https://index.docker.io/v1/":{"auth":"aG93MmerTertWertqyaVpoMzUh",
 "email":"how2dock@gmail.com"}}

If we check the list of images that we currently have, we see that our flask image from
Recipe 2.4 is using a local repository and has a tag called latest.

2.8 Publishing your image to Docker hub | 61

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask latest 88d6464d1f42 5 days ago 354.6 MB
...

To push this image to our Docker Hub account we need to tag this image with our
own Docker Hub repository with the docker tag command (see Recipe 2.5).

$ docker tag flask how2dock/flask
sebimac:flask sebgoa$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask latest 88d6464d1f42 5 days ago 354.6 MB
how2dock/flask latest 88d6464d1f42 5 days ago 354.6 MB

We now have our Flask image with the repository of how2dock/flask which follows
the proper naming convention for repositories. We are ready to push the image.
Docker will attempt to push the various layers that make the image, if the layer is pre-
existing on the Docker Hub it will skip it. Once the push is finished the how2dock/
flask image will be visible in your Docker Hub page and anyone will be able to
docker pull how2dock/flask.

$ docker push how2dock/flask
The push refers to a repository [how2dock/flask] (len: 1)
Sending image list
Pushing repository how2dock/flask (1 tags)
511136ea3c5a: Image already pushed, skipping
01bf15a18638: Image already pushed, skipping
30541f8f3062: Image already pushed, skipping
e1cdf371fbde: Image already pushed, skipping
9bd07e480c5b: Image already pushed, skipping
e659c9e9ba21: Image successfully pushed
22ebd8b6f3e6: Image successfully pushed
54280d866a09: Image successfully pushed
6667589085ed: Image successfully pushed
dc4a9a43bb7f: Image successfully pushed
e394b9fbe3fa: Image successfully pushed
3f7abcdc10d4: Image successfully pushed
88d6464d1f42: Image successfully pushed
Pushing tag for rev [88d6464d1f42] on
{https://cdn-registry-1.docker.io/v1/repositories/how2dock/flask/tags/latest}

See Also
• Docker Hub reference

62 | Chapter 2: Image Creation and Sharing

https://docs.docker.com/userguide/dockerrepos/#working-with-the-repository

Figure 2-3. Docker Hub Flask image

Discussion
The docker tag command allows you to change the repository and tag of an image.
In our example we did not specify a tag, hence Docker assigned it the latest tag. If
we wanted we could specifiy tags and push these to Docker hub, maintaining several
versions of an image in the same repository.

This recipes allowed us to be introduced to two new docker CLI commands docker
tag and docker push. There is one more that is worth noting in terms of image man‐
agement and that is docker search. It allows you to search for images in Docker
Hub. For example, if we are looking for an image that would give us postgres:

$ docker search postgres
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
postgres The PostgreSQL ... 402 [OK]
paintedfox/postgresql A docker image ... 50 [OK]
helmi03/docker-postgis PostGIS 2.1 in ... 20 [OK]
atlassianfan/jira Atlassian Jira ... 17 [OK]
orchardup/postgresql https://github ... 16 [OK]
abevoelker/ruby Ruby 2.1.2, Post ... 13 [OK]
slafs/sentry my approach for ... 12 [OK]
...

The command actually returns over 600 images. The first one is the official postgres
image maintained by the postgres team. The other ones are images created by users of
Docker Hub. Some of the images are built and pushed automatically and we will learn
about Automated builds in Recipe 2.10.

2.8 Publishing your image to Docker hub | 63

2.9 Running a Private Registry
Problem
Using the public Docker Hub is very easy, however you might have data governance
concerns with your images being hosted outside of your own infrastructure. You
would like to run your own Docker registry, hosting it on your own infrastructure.

Solution
Use the Docker registry image and start a container from it. You will have your pri‐
vate registry.

Pull the official registry image and run it as a detached container. You should then
be able to curl http://localhost:5000 for a quick test that the registry is running.

$ docker pull registry:0.9.1
$ docker run -d -p 5000:5000 registry:0.9.1
$ curl http://localhost:5000
"\"docker-registry server\""

You can now prepare a local image that you have created previously (e.g a flask
image, Recipe 2.4) and tag it with the proper naming convention for use with a pri‐
vate registry. In our case, the registry is running at http://localhost:5000, so we
will prefix our tag with localhost:5000 and then push this image to the private reg‐
istry.

$ docker tag flask localhost:5000/flask
$ docker push localhost:5000/flask
The push refers to a repository [localhost:5000/flask] (len: 1)
Sending image list
Pushing repository localhost:5000/flask (1 tags)
511136ea3c5a: Image successfully pushed
...
88d6464d1f42: Image successfully pushed
Pushing tag for rev [88d6464d1f42] on
{http://localhost:5000/v1/repositories/flask/tags/latest}

If you try to access this private registry from another machine, you will get an error
message telling you that your Docker client does not allow you to use an insecure reg‐
istry. For testing purposes only, edit your Docker configuration file to use the
insecure-registry option. For instance on Ubuntu 14.04, edit /etc/default/
docker and add the line:

DOCKER_OPTS="--insecure-registry <IP_OF_REGISTRY>:5000"

Then restart Docker on your machine sudo service docker restart and try to
access the remote private registry again. (Remember that this is done on a different
machine than where you are running the registry).

64 | Chapter 2: Image Creation and Sharing

https://registry.hub.docker.com/_/registry/

Discussion
In this short example, we used the default setup of the registry. It assumed no authen‐
tication, an insecure registry, local storage and a sqlalchemy search backend. All of
these can be set via environmental variables or by editing a configuration file. This is
well documented.

The registry that is running via the registry Docker image is a Flask application,
running via Gunicorn. It exposes an API, that you can access with your own registry
client or even curl.

For example to list all images stored in the private registry, you can use the search
API with no search term:

$ curl -s http://localhost:5000/v1/search | python -m json.tool
{
 "num_results": 1,
 "query": "",
 "results": [
 {
 "description": "",
 "name": "library/flask"
 }
]
}

You will notice that the name of the image is prefixed with the default registry name‐
space library. If we push a busybox image to the private registry and use curl again
to search across all images in the repository we get:

$ docker pull buysbox
$ docker tag busybox localhost:5000/busybox
$ docker push localhost:5000/busybox
$ curl -s http://localhost:5000/v1/search | python -m json.tool
{
 "num_results": 2,
 "query": "",
 "results": [
 {
 "description": "",
 "name": "library/flask"
 },
 {
 "description": "",
 "name": "library/busybox"
 }
]
}

You can delete a repository by issuing a HTTP DELETE request to /v1/reposito
ries/library/flask:

2.9 Running a Private Registry | 65

https://github.com/docker/docker-registry
http://flask.pocoo.org
http://gunicorn.org
https://docs.docker.com/reference/api/registry_api/
https://docs.docker.com/reference/api/registry_api_client_libraries/

$ curl -s -X DELETE http://localhost:5000/v1/repositories/library/flask/ | python -m json.tool
true

To list all tags for a specific image use the v1/repositories/library/<image name>/
tags endpoint:

$ curl -s http://localhost:5000/v1/repositories/library/busybox/tags | python -m json.tool
{
 "latest": "4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125"
}

And if you want to add a tag manuall, send a HTTP PUT request with some json pay‐
load like so:

$ curl -s -X PUT
 -H 'Content-Type: application/json;'
 -d '"4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125"'
 http://localhost:5000/v1/repositories/library/busybox/tags/foobar
$ curl -s http://localhost:5000/v1/repositories/library/busybox/tags | python -m json.tool
{
 "foobar": "4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125",
 "latest": "4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125"
}

These couple examples using curl are meant to give you a sense of the registry API.
Complete API documentation is availabe on the Docker website.

See Also
• The Docker registry page on Docker Hub.
• The more extensive documentation on Github

2.10 Setting Up an Automated Build on DockerHub for
Continous Integration/Deployment
Problem
You have access to Docker Hub (see Recipe 2.8) and already pushed an image to it.
However this is a manual process. You want to automate the build of this image
everytime you commit a change to it.

Solution
Instead of setting up a standard repository, create an Automated Build repository and
point to your application on GitHub or Bitbucket. Then

66 | Chapter 2: Image Creation and Sharing

https://docs.docker.com/reference/api/registry_api/#set-a-tag-for-a-specified-image-id
https://registry.hub.docker.com/_/registry/
https://github.com/docker/docker-registry
https://hub.docker.com
https://github.com
https://bitbucket.org

On your docker hub page, click on the Add Repository button and select Automated
Build (Figure 2-4). You will then have the choice between GitHub and Bitbucket
(Figure 2-5).

Figure 2-4. Create An Automated Build Repository

2.10 Setting Up an Automated Build on DockerHub for Continous Integration/Deployment | 67

Figure 2-5. Choose Between GitHub and Bitbucket

Docker Hub allows you to setup an automated build as a public or
private repository pointing to a public or private code repository. If
you are setting up a private automated build Docker Hub will need
read and write access to your GitHub account.

After selecting the type of on-line version control system you want to use, you will be
allowed to select the project you want to build from (Figure 2-6). This should be a
project on GitHub or Bitbucket that contains the Dockerfile you want to build. Once
selected, you will be able to give a name to the Docker Hub repository your are creat‐
ing, you will be able to select the branch and specify the location of the Dockerfile.
This is handy as it allows you to maintain several Dockerfile inside a single GitHub/
Bitbucket repository.

68 | Chapter 2: Image Creation and Sharing

Figure 2-6. Enter Details of Build

The name of the Docker hub repository you are creating does not
have to be the same as the GitHub/ bitbucket repository you select.

Once you have setup the build, you will have access to the build details. The status
will go from pending to building to pushing and finally to finished. Once the build is
finished you will be able to pull the new image:

$ docker pull runseb/flask

The Dockerfile tab will automatically be populated with the content of your Docker‐
file in your GitHub repository and the Information tab will automatically be popula‐
ted with the content of the README.md file if it exists.

2.10 Setting Up an Automated Build on DockerHub for Continous Integration/Deployment | 69

As soon as you push a new commit to the GitHub repo used for the build, a new
build will be triggered and once finished and new image will be available.

You can edit the build settings, to trigger builds from different
branches and specify a different tag. For instance you can decide to
build from your master branch and associate the latest tag to it, and
use a release branch to build a different tag (i.e 1.0 tag from a 1.0
release branch)

Discussion
In addition to builds being automatically triggered when you push to your GitHub or
Bitbucket repository, you can trigger builds by sending an http POST request to a
specific url generated on the Build Trigger page, see Figure 2-7 below. To prevent
abusing the system, builds maybe be ignored.

Figure 2-7. Turning on the Build Trigger

Finally, whether you build automatically or use a trigger on your own, you can also
use Webhooks. In the Build details page of your automated build you will be able to
access the Web hooks page. In it you can add URLs that will receive an http POST

70 | Chapter 2: Image Creation and Sharing

http://en.wikipedia.org/wiki/Webhook

when a successful build happens. The body of this POST request will contain a call
back URL. In response, you will need to send another http POST with a json payload
containing the state key and the value of either success, failure or error. On receiving a
successfull state, the automated build can call another webhook, henceforth allowing
you to chain several actions together.

See Also
• The Automated builds reference documentation

2.11 Setting up a Local Automated Build Using a Git Hook
and a Private Registry
Problem
Automated builds using Docker Hub and GitHub or Bitbucket are great (see Recipe
2.10), but you might be using a private registry (i.e local hub) and may want to trigger
docker builds when you commit to your local git projects.

Solution
Create a post-commit git hook that triggers a build and pushes the new image to your
private registry.

In the root tree of your git project, create a bash script ./git/hooks/post-commit
that contains something as simple as this

#!/bin/bash

tag=`git log -1 HEAD --format="%h"`
docker build -t flask:$tag /home/sebgoa/docbook/examples/flask

Make it executable with chmod +x .git/hooks/post-commit

Now everytime you will make a commit to this git project, this post-commit bash
script will run. It will create a tag using the short version of the sha of the latest com‐
mit and then trigger the build based on the Dockerfile referenced. It will then create a
new image with the name flask and the computer tag.

$ git commit -m "fixing hook"
9c38962
Sending build context to Docker daemon 3.584 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
 ---> 9bd07e480c5b
Step 1 : RUN apt-get update

2.11 Setting up a Local Automated Build Using a Git Hook and a Private Registry | 71

https://docs.docker.com/docker-hub/builds/

 ---> Using cache
 ---> e659c9e9ba21
Step 2 : RUN apt-get install -y python
 ---> Using cache
 ---> 22ebd8b6f3e6
Step 3 : RUN apt-get install -y python-pip
 ---> Using cache
 ---> 54280d866a09
Step 4 : RUN apt-get clean all
 ---> Using cache
 ---> 6667589085ed
Step 5 : RUN pip install flask
 ---> Using cache
 ---> dc4a9a43bb7f
Step 6 : ADD hello.py /tmp/hello.py
 ---> 8f60127ef5b1
Removing intermediate container 3af40a03b3f3
Step 7 : EXPOSE 5000
 ---> Running in 05c13744c7bf
 ---> b464df2bc5ca
Removing intermediate container 05c13744c7bf
Step 8 : CMD python /tmp/hello.py
 ---> Running in 124cd2ada52d
 ---> 9a50c7b2bee9
Removing intermediate container 124cd2ada52d
Successfully built 9a50c7b2bee9
[master 9c38962] fixing hook
 1 file changed, 1 insertion(+), 1 deletion(-)
sebimac:flask sebgoa$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask 9c38962 9a50c7b2bee9 5 days ago 354.6 MB

While this works very nicely and is achieved with two lines of bash, if the build were
to take a long time, it would not be practical to build the image as a post-commit
task. It would be better to use the post-commit hook to trigger a remote build and
then register this image in a private repo.

Discussion

Unfinished recipe. Might use stackstorm or striderCD to showcase
this a bit better.

72 | Chapter 2: Image Creation and Sharing

CHAPTER 3

Docker Networking

This chapter consists of recipes about Docker networking. It will
cover Docker built-in networking capabilities as well as a few third
party networking solutions. You can send me suggestions at
how2dock@gmail.com

3.1 Introducing Docker Containers Networking
Problem
You would like to understand the basics of networking Docker containers.

Solution
In the default installation of Docker, a linux bridge docker0 is created on the Docker
host. This bridge gets a private address and a subnet associated to it. While it is ran‐
dom, most of the time your docker0 bridge will get the address 172.17.42.1. All con‐
tainers that will attach to this bridge will get an address in the 172.17.42.0/24
network. Containers networking interfaces get attached to this bridge and will use the
docker0 interface has a networking gateway. When a container gets created, Docker
creates a pair of “peer” network interfaces that are placed in two separate networking
namespace. One interface in the networking namespace of the container (i.e eth0)
and one interface in the networking namespace of the host, attached to the docker0
bridge.

To illustrate this setup, let’s have a look at a Docker host and let’s start a container. You
can use an existing Docker host or use the Vagrant box prepared for this book like so:

$ git clone https://github.com/how2dock/docbook
$ cd ch03/simple

73

$ vagrant up
$ vagrant ssh

The diagram below shows the network configuration of this Vagrant box. It contains
a single NAT interface to get to the outside network. Inside the host is a linux bridge
docker0 and two containers are depicted.

Figure 3-1. Network Diagram of Single Docker Host.

Once connected to he host, if you list the network links you will see the loopback
device, an eth0 interface and the docker0 bridge as depicted in the diagram. Docker

74 | Chapter 3: Docker Networking

started when the machine was booted and automatically created a bridge and
assigned a subnet to it.

$ ip -d link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast ...
 link/ether 08:00:27:98:a7:ad brd ff:ff:ff:ff:ff:ff promiscuity 0
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue ...
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge

Now let’s start a container and check its network interface:

$ docker run -ti --rm ubuntu:14.04 bash
root@4e3ffb9bc381:/# ip addr show eth0
6: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:42:ac:11:2a:03 brd ff:ff:ff:ff:ff:ff
 inet 172.17.42.3/24 scope global eth0
...

Indeed the container got an IP (i.e 172.17.42.3) in the 172.17.42.0/24 network. On the
host itself a virtual interface (i.e veth450b81a below) was created and attached to the
bridge. You can see this by listing the links on the Docker host with the ip tool (or
ifconfig) and the brctl tool if you installed the bridge-utils package.

$ ip -d link show
...
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP ...
 link/ether aa:85:e0:61:69:2d brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge
7: veth450b81a: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master docker0 ...
 link/ether aa:85:e0:61:69:2d brd ff:ff:ff:ff:ff:ff promiscuity 1
 veth
$ brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.aa85e061692d no veth450b81a

From the container you can ping the network gateway 172.17.42.1 (i.e docker0) other
containers on the same host and you can ping the outside world.

Start another container on a separate terminal and try to ping each
container. Verify that the second container interface is also attached
to the bridge. Since there are no IP tables rules dropping traffic,
both containers can communicate with each other on any port.

Discussion
Outbound networking traffic is forwarded to the other interfaces of your Docker host
via IP forwarding and will go through NAT translation using an IP table masquerad‐

3.1 Introducing Docker Containers Networking | 75

ing rule. On your Docker host you can check that IP forwarding has been enabled
with:

$ cat /proc/sys/net/ipv4/ip_forward
1

Try turning off IP forwarding, you will see that your container will
loose outbound network connectivity.

echo 0 > /proc/sys/net/ipv4/ip_forward

You can also check the NAT rule that does the IP masquerading for outbound traffic:

$ sudo iptables -t nat -L
...
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 172.17.42.0/24 anywhere
...

In Recipe 3.5 we will see how to create this configuration from scratch.

See Also
• Docker official networking documentation

3.2 Choosing a Container Networking Stack
Problem
When starting a container you want to be able to choose a specific network stack.

Solution
In Recipe 3.1 we started a container using the defaults of the docker run command.
This attached the container to a linux bridge and created a the appropriate network
interfaces. It takes advantage of IP forwarding and IP tables managed by the Docker
engine to provide outbound network connectivity and NAT.

However you can start a container with a different type of networking, namely the
host networking stack, no networking stack at all or the networking stack of another
container using the --net option of docker run.

Let’s start a container on a Docker host without any networking stack using --
net=none:

76 | Chapter 3: Docker Networking

https://docs.docker.com/articles/networking/

$ docker run -it --rm --net=none ubuntu:14.04 bash
root@3a22f5076f9a:/# ip -d link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0
root@3a22f5076f9a:/# route
 Kernel IP routing table
 Destination Gateway Genmask Flags Metric Ref Use Iface

When listing the networking links, you only see a link local address. There is no other
network interfaces and no networking routes. You will have to bring up the network
manually if you need it (see Recipe 3.5).

Now let’s start a container with the networking stack of the host using --net=host:

$ docker run -it --rm --net=host ubuntu:14.04 bash
root@foobar-server:/# ip -d link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state ...
 link/ether 08:00:27:98:a7:ad brd ff:ff:ff:ff:ff:ff promiscuity 0
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state ...
 link/ether c6:4b:6b:b7:4b:98 brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge

When listing the networking links within this container, you see exactly the same
interfaces as in the host, including the docker0 bridge. This means that while the con‐
tainer processes are isolated in their own namespace and resource limited through
cgroup, the network namespace of the container is the same as the one of the host.
You see in the example above that the hostname of the container is actually the
Docker host hostname (you cannot use the -h option to set a hostname when using
the host networking stack). Note however that you will not be able to reconfigure the
host network from such a container. For example you cannot bring down interfaces:

root@foobar-server:/# ifconfig eth0 down
SIOCSIFFLAGS: Operation not permitted

While it can be very handy, it needs to be handled with lots of care.

Starting a container with --net=host can be very dangerous, espe‐
cially if you start a privileged container with --privileged=true

The final option is to use the network stack of another already running container.
Let’s start a container with the hostname cookbook:

$ docker run -it --rm -h cookbook ubuntu:14.04 bash
root@cookbook:/# ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:02

3.2 Choosing a Container Networking Stack | 77

 inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0
 ...

We see at the prompt that the hostname has been set to cookbook and that the IP is
172.17.02. It got attached to the docker0 bridge. Now let’s start another container and
let’s use the same network namespace. First we list the running containers to get the
name of the container with just started. The convention calls to use --

net=container:CONTAINER_NAME_OR_ID.

$ docker ps
CONTAINER ID IMAGE COMMAND ... NAMES
cc7f72826c36 ubuntu:14.04 "bash" ... cocky_galileo
$ docker run -ti --rm --net=container:cocky_galileo ubuntu:14.04 bash
root@cookbook:/# ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:02
 inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0
 ...

As we see above, the new container has the same hostname as the first container
started and of course has the same IP. The processes in each container will be isolated
and exist in their own process namespace, but they share the same networking name‐
space and can communicate on the loopback device.

Discussion
Which networking namespace to use is up to the application you are running and
what you want the network to look like. Docker networking is extremely flexible and
will allow you to build any topology and secure network scenarios between your con‐
tainer processes.

See Also
• How Docker networks containers

3.3 Configuring the Docker Daemon IP tables and IP
forwarding settings
Problem
You may not like the fact that by default the Docker daemon turned on IP forwarding
as well as modified your IP tables. You would like more control on how traffic flows
on your host, between your containers and with the outside world.

78 | Chapter 3: Docker Networking

https://docs.docker.com/articles/networking/#container-networking

Solution
This behavior is customizable when you start the Docker daemon through the --ip-
forward, --iptables options.

To try this, stop the Docker daemon on the host that you are using. On Ubuntu/
Debian based systems edit /etc/default/docker and set these options to false (on
CentOS/RHEL systems edit /etc/sysconfig/docker).

$ sudo service docker stop
$ sudo su
echo DOCKER_OPTS=\"--iptables=false --ip-forward=false\" >> /etc/default/docker

You may have to remove the POSTROUTING rule manually first
as well as set the IP forwarding rule to zero, before restarting the
Docker daemon. To do this, try the following on your Docker host:

iptables -t nat -D POSTROUTING 1
echo 0 > /proc/sys/net/ipv4/ip_forward

With this configuration, traffic on the Docker bridge docker0 will not be forwarded
to the other networking interfaces and the POSTROUTING masquerading rule will
not be present. This means that all outbound connectivity from your containers to
the outside world will be dropped.

Verify this behavior by starting a container and trying to reach the outside world, for
example:

$ docker run -it --rm ubuntu:14.04 bash
WARNING: IPv4 forwarding is disabled.

root@ba12d578e6c8:/# ping -c 2 -W 5 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

--- 8.8.8.8 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1009ms

To re-enable communication to the outside manually, enable IP forwarding and set
the POSTROUTING rule on the Docker host like so:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -s 172.17.0.0/16 -j MASQUERADE

Go back to the terminal of your container and try pinging 8.8.8.8 again.

With --iptables=false set for the Docker daemon, you will not
be able to restrict traffic between containers since Docker will not
be able to manage the IP table rules. This means that all containers
started on the same bridge will be able to communicate on all
ports. See the Discussion below for more on this topic.

3.3 Configuring the Docker Daemon IP tables and IP forwarding settings | 79

Discussion
By default the Docker daemon is allowed to manage the IP table rules on the Docker
host, this means that it can add rules that restrict traffic between containers and pro‐
vide network isolation between them.

If you disallow Docker to manipulate the IP table rules, then it will not be able to add
rules that restrict traffic between containers.

If you do allow Docker to manipulate the IP table rules, then you can set the --
icc=false option for the Docker daemon. This will add a default DROP rule for all
packets on the bridge and containers will not be able to reach each other.

You can try this by editing the Docker config file (i.e /etc/default/docker on
Ubuntu/Debian and /etc/sysconfig/docker on CentOS/RHEL) and adding the --
icc=false option. Restart Docker and start two containers on your host you will see
that you cannot ping one container from another.

Since this drastically restricts traffic between containers, how can you have them
communicating ? This is solved with container linking, which creates specific IP table
rules (see Recipe 3.4).

3.4 Linking Containers in Docker
Problem

Solution

Discussion
Allow ping from the Docker host to all the containers

$ sudo iptables -A DOCKER -p icmp --icmp-type echo-request -j ACCEPT
$ sudo iptables -A DOCKER -p icmp --icmp-type echo-reply -j ACCEPT

3.5 Using Pipework to Understand Container Networking
Problem
Docker built-in networking capabilities work great but you would like a hands-on
approach where you use traditional networking tools to create network interfaces for
your containers.

80 | Chapter 3: Docker Networking

Solution
Use pipework. Pipework was created by Jerome Petazzoni from Docker inc back in
2013, it manipulates cgroups and network namespaces to build networking scenarios
for your containers. At first it supported pure LXC containers but now it also sup‐
ports Docker containers. If you start a container with the --net=none option, pipe
work is very handy to add networking to that container.

While almost everything you can do with pipework is built-in within Docker, it is a
great tool to reverse engineer Docker networking and get a deeper understanding of
how the containers communicate with each other and the outside world. This recipe
aims at showing you a few examples to deconstruct Docker networking capabilities
and become a little more comfortable dealing with different networking namespaces.

pipework is a single bash script that you can download. For convenience I created a
Vagrant box that contains pipework, you can get it by cloning the repository and
starting the Vagrant VM like so:

$ git clone https://github.com/how2dock/docbook
$ cd ch03/simple
$ vagrant up
$ vagrant ssh
vagrant@foobar-server:~$ cd /vagrant
vagrant@foobar-server:/vagrant$ ls
pipework Vagrantfile

Let’s start a container without any network using --net=none like shown in Recipe
3.2.

$ docker run -it --rm --net none --name cookbook ubuntu:14.04 bash
root@556d04d8637e:/# ip -d link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0

In another terminal on the Docker host, let’s use pipework to create a bridge br0,
assign an IP address to the container and set the correct routing from the container to
the bridge.

$ cd /vagrant
$ sudo ./pipework br0 cookbook 192.168.1.10/24@192.168.1.254
Warning: arping not found; interface may not be immediately reachable

In the container verify that the interface eth1 is up and that the routing is in place:

root@556d04d8637e:/# ip -d link show eth1
7: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP ...
 link/ether a6:95:12:b9:8f:55 brd ff:ff:ff:ff:ff:ff promiscuity 0
 veth
root@556d04d8637e:/# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

3.5 Using Pipework to Understand Container Networking | 81

https://github.com/jpetazzo/pipework
https://raw.githubusercontent.com/jpetazzo/pipework/master/pipework

default 192.168.1.254 0.0.0.0 UG 0 0 0 eth1
192.168.1.0 * 255.255.255.0 U 0 0 0 eth1

Now if you list the network links on the host, you will see a bridge br0 in addition to
the default docker0 bridge, and if you list the bridges (using brctl from the bridge-
utils package), you will see the virtual ethernet interface attached to br0 by pipe
work.

$ ip -d link show
...
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge
8: br0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default
 link/ether 22:43:24:f5:91:7e brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge
10: veth1pl31668: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast master br0 state DOWN mode DEFAULT group default qlen 1000
 link/ether 22:43:24:f5:91:7e brd ff:ff:ff:ff:ff:ff promiscuity 1
 veth
$ brctl show
bridge name bridge id STP enabled interfaces
br0 8000.224324f5917e no veth1pl31668
docker0 8000.000000000000 no

At this stage you can reach the container from the host or reach any other containers
from the container cookbook. However, if you try to reach outside the Docker host
you will notice that it will not work. There is no NAT masquerading rule in place -
rule that is added automatically by Docker when you use the defaults-. Add the rule
manually on the Docker host and try to ping 8.8.8.8 (for example) from the con‐
tainer interactive terminal.

iptables -t nat -A POSTROUTING -s 192.168.0.0/16 -j MASQUERADE

On the container verify that you can reach outside your Docker host:

root@556d04d8637e:/# ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=61 time=22.6 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=61 time=23.8 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=61 time=23.9 ms

pipework can do a lot more, make sure to check the README file and don’t hesitate
to pick inside the bash script to gain an even greater understanding of networking
namespace.

Discussion
While pipework is extremely powerfull and allowed us to build a proper networking
stack for a container started with --net=none, it also hid some of the details of
manipulating the container network namespace. If you read the code of pipework

82 | Chapter 3: Docker Networking

https://github.com/jpetazzo/pipework

you will see what it does. A very good explanation is also available in the Docker doc‐
umentation and is a very good exercise, both in networking and containers. I highly
recommend it.

This discussion is not about pipework specifically, it aims to show
you all the steps necessary to build a networking stack for a con‐
tainer. It is extremely useful to obtain a better understanding of
container networking and reverse engineer how Docker works.

Let’s look back at this single pipework command:

$ sudo ./pipework br0 cookbook 192.168.1.10/24@192.168.1.254

It did several almost magical things at once:

• It created a bridge br0 on the host
• It assigned IP address 192.168.1.254 to it
• It created a network interface inside the container and assigned it IP address
192.168.1.10

• Finally it added a route inside the container setting up the bridge as the default
gateway.

Let’s do it step by step but without pipework this time. To get started, let’s add a
bridge br0 and give it the IP 192.168.1.254. If you have worked on virtual machine
virtualization before, this should be very familiar. If not, follow along, we create the
bridge with the brctl utility, we use ip to add the IP address to the bridge and we
finish by bringing the bridge up.

$ sudo brctl addbr br0
$ sudo ip addr add 192.168.1.254/24 dev br0
$ sudo ip link set dev br0 up

If you want to delete this bridge and start over, just bring it down and delete it:

$ sudo ip link set br0 down
$ sudo brctl delbr br0

The tricky part compared to full network virtualization comes from the fact that we
are dealing with containers and that the networking stack is in fact a different net‐
work namespace on the host. To assign network interfaces to the container you need
to assign an interface to the network namespace that the container will use. The inter‐
faces that you can assign to a specific network namespace are virtual ethernet inter‐
face pairs. These pairs act as a pipe, with one end of the pipe in the container
namespace an the other end on the bridge that we just created on the host.

Therefore let’s create a veth pair foo, bar and attach foo to the bridge br0:

3.5 Using Pipework to Understand Container Networking | 83

https://docs.docker.com/articles/networking/#container-networking
https://docs.docker.com/articles/networking/#container-networking

$ sudo ip link add foo type veth peer name bar
$ sudo brctl addif br0 foo
$ sudo ip link set foo up

The result can be seen with ip -d link show. A new bridge br0 and foo interface of
type veth attached to it.

$ ip -d link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN mode DEFAULT group default qlen 1000
 link/ether 08:00:27:98:a7:ad brd ff:ff:ff:ff:ff:ff promiscuity 0
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge
6: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
 link/ether ee:7d:7e:f7:6f:18 brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge
8: foo: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br0 state UP mode DEFAULT group default qlen 1000
 link/ether ee:7d:7e:f7:6f:18 brd ff:ff:ff:ff:ff:ff promiscuity 1
 veth
$ brctl show
bridge name bridge id STP enabled interfaces
br0 8000.ee7d7ef76f18 no foo
docker0 8000.000000000000 not

Do not call each end of your veth pair the traditional eth0 or eth1
as it could conflict with existing physical interfaces on the host.

To complicate things a bit, when we started our container with --net=none it did
creat a network namespace for it, just that there was nothing in it except teh loopback
device. Now that we want to configure it (e.g adding an interface, setting up a route)
we need to find the network namespace ID. Docker keeps its network namespaces
in /var/run/docker/netns which is a non-default location. To be able to use the ip
tool properly we are going to do a little non-conventional hack and sym‐
link /var/run/docker/netns to /var/run/netns which is the default location where
the ip tool looks for network namespaces. Doing so we can list the existing network
namespaces. Below we see that the namespace ID of our container is actually the con‐
tainer ID.

$ cd /var/run
$ sudo ln -s /var/run/docker/netns netns
$ sudo ip netns
c785553b22a1
$ NID=$(sudo ip netns)

84 | Chapter 3: Docker Networking

Now, let’s put the bar veth in the container namespace using ip link set netns and
use ip netns exec to give it a name and a MAC address inside this namespace.

$ sudo ip link set bar netns $NID
$ sudo ip netns exec $NID ip link set dev bar name eth1
$ sudo ip netns exec $NID ip link set eth1 address 12:34:56:78:9a:bc
$ sudo ip netns exec $NID ip link set eth1 up

The final thing to do is to assign an IP address to eth1 of the container and define a
default route so that the container can reach the Docker host and beyond.

$ sudo ip netns exec $pid ip addr add 192.168.1.1/24 dev eth1
$ sudo ip netns exec $pid ip route add default via 192.168.1.254

That’s it. At this stage your container should have the exact same networking stack
than the one built with pipework earlier with a single command.

Remember that if you want to reach outside your container, you
need to add the IP NAT masquerading rule:

$ sudo iptables -t nat -A POSTROUTING -s 192.168.0.0/16 -j MASQUERADE

See Also
• pipework has an extensive readme that covers multiple scenarios.
• How Docker networks containers.
• ip netns man page
• Introduction to linux nework namespace

3.6 Setting up a Custom Bridge for Docker
Problem
You would like to set up your own bridge for Docker to use instead of using the
default.

Solution
Create a bridge and change the start-up options of the Docker daemon to use.

In the Recipe 3.5 solution section we saw how to create a full networking stack for a
container started with the --net=none option. In that section we actually showed how
to create a bridge. Let’s re-use what we discussed there.

First let’s turn off the Docker daemon, delete and create a bridge called cookbook:

3.6 Setting up a Custom Bridge for Docker | 85

https://github.com/jpetazzo/pipework
https://docs.docker.com/articles/networking/#container-networking
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

$ sudo service docker stop
$ sudo brctl addbr cookbook
$ sudo ip link set cookbook up
$ sudo ip addr add 10.0.0.1/24 dev cookbook

Now that the bridge is up we can edit the Docker daemon configuration file and
restart the daemon (e.g on Ubuntu).

$ sudo su
echo 'DOCKER_OPTS="-b=cookbook"' >> /etc/default/docker
service docker restart

You can start a container and list the IP addres assigned to it and check network con‐
nectivity.

root@c557cdb072ba:/# ip addr show eth0
10: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:42:0a:00:00:02 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.2/24 scope global eth0
 ...

Automatically as expected, Docker also created the NAT rule for this bridge:

$ sudo iptables -t nat -L
...
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 10.0.0.0/24 anywhere

Discussion
While you can do this manually, there is nothing different between the bridge cook
book that we just created and the default docker0 bridge.

If you wanted to change the IP range that Docker uses for the containers started with
the default networking (i.e bridge) you could use the --bip option. You could also
restrict this IP range with the --fixed-cidr option as well as set the MTU size with
--mtu.

To bring down the bridge simply execute the following two commands:

$ sudo ip link set cookbook down
$ sudo brctl delbr cookbook

3.7 Using OVS with Docker
Problem
You know how to use your own bridge to network your Docker containers (see
Recipe 3.6), but you would like to use the Open Vswitch virtual switch instead of the
standard linux bridge. Maybe you want to build your own GRE or VXLAN based

86 | Chapter 3: Docker Networking

overlay, or you want to build a software defined network solution with a network
controller.

Solution

As of Docker 1.7, Open Vswitch is not yet support natively. You
can use it, but you will need to use a tool like pipework (see Recipe
3.5) or a manual process to build the network stack of the contain‐
ers. It should be supported in future version of Docker network
(see Recipe 3.9).

Use Open Vswitch(OVS) as your bridge and specify its name in the Docker daemon
configuration file.

On your Docker host, start by installing the packages for OVS.

$ sudo apt-get -y install openvswitch-switch openvswitch-common

If you want a more recent version of Open Vswitch, you can build
it from source relatively easily.

Now create a bridge and bring it up:

$ sudo ovs-vsctl add-br ovs-cookbook
$ sudo ip link set ovs-cookbook up
$ ifconfig
ovs-cookbook Link encap:Ethernet HWaddr 36:b1:d3:e5:fc:44
 inet addr:10.0.0.1 Bcast:0.0.0.0 Mask:255.255.255.0
 ...

You are now ready to use pipework (see Recipe 3.5) to build the network stack of con‐
tainers attached to this Openvswitch bridge. You will need to start containers without
network stack (i.e --net=none), for example:

$ docker run -it --rm --name foobar --net=none ubuntu:14.04 bash
$ sudo su
./pipework ovs-cookbook foobar 10.0.0.10/24@10.0.0.1
ovs-vsctl list-ports ovs-cookbook
veth1pl31350

And your container will now have a network interface:

root@8fda6e33eb88:/# ifconfig
eth1 Link encap:Ethernet HWaddr 52:fe:9f:78:b7:fc
 inet addr:10.0.0.10 Bcast:0.0.0.0 Mask:255.255.255.04
....

3.7 Using OVS with Docker | 87

http://openvswitch.org
https://github.com/openvswitch/ovs

Of course you could also create the interface by hand using ip netns like we did in
the discussion section of Recipe 3.5.

See Also
• The OpenVswitch website

3.8 Building a GRE Tunnel Between Docker Hosts
Problem
You need to have network connectivity between containers on multiple hosts using
their own IP addresses.

Solution
Build a GRE tunnel to encapsulate IPv4 in IPv4 and provide a route between contain‐
ers using their private addresses. To show case this technique we are going to bring
up two docker hosts and setup the network configuration that you can see in the dia‐
gram below.

Host 1 has IP address 192.168.33.11, we will give the docker0 bridge IP address
172.17.0.1 and create a GRE tunnel endpoint with IP address 172.17.0.2. Docker
will give containers addresses in the 172.17.0.0/17 network.

Host 2 has IP address 192.168.33.12, we will give the docker0 bridge IP address
172.17.128.1 and create a GRE tunnel endpoint with IP address 171.17.128.2.
Docker will give containers addresses in the 172.17.128.0/17 network.

Splitting a /16 network in two /17 network and assigning each subnet to the two dif‐
ferent hosts assures us that containers will not get conflicting IP addresses.

88 | Chapter 3: Docker Networking

http://openvswitch.org

Figure 3-2. Network Diagram of a Two Hosts GRE Tunnel Overlay.

You can start this configuration with this Vagrantfile. Each host has the latest stable
version of Docker and two network interfaces: one NAT interface that gives out‐
bound connectivity and one interface on a private network.

The first thing to do to avoid any issues is to stop the Docker engine and remove that
docker0 bridge which was started during the Docker provisioning step. You will need
to do this on all your hosts.

$ sudo su
service docker stop
ip link set docker0 down
ip link del docker0

Now you can create a GRE tunnel between the two hosts. You do not need Open
Vswitch for this, you can just use the ip tool. If you used the Vagrantfile mentioned
earlier, on your first host with IP 192.168.33.11 do the following.

ip tunnel add foo mode gre local 192.168.33.11 remote 192.168.33.12
ip link set foo up
ip addr add 172.17.127.254 dev foo
ip route add 172.17.128.0/17 dev foo

If you did not use the Vagrantfile mentioned, just replace the IP addresses for the
local and remote endpoints in the ip tunnel command above with the IP addresses
of your two Docker hosts. In the previous four commands, with create a GRE tunnel
that we named foo. We brought the interface up and assigned an IP address to it.
Then we setup a route which sends all 172.17.128.0/17 traffic in the tunnel.

3.8 Building a GRE Tunnel Between Docker Hosts | 89

https://github.com/how2dock/docbook/blob/master/ch03/gresimple/Vagrantfile

On your second host, repeat the previous step to create the other end of the tunnel.
We call this other end bar and setup a route that sends all 172.17.0.0/17 traffic over
in the tunnel.

ip tunnel add bar mode gre local 192.168.33.12 remote 192.168.33.11
ip link set bar up
ip addr add 172.17.255.254 dev bar
ip route add 172.17.0.0/17 dev bar

Once the tunnel is up, verify that you can ping back and forth using the tunnel. Now
let’s bring up Docker on both hosts. Before we do this we need to configure each
Docker daemon so that it uses the appropriate subnets for its containers and uses the
correct IP address for the docker0 bridge. To do this we edit the Docker daemon con‐
figuration file and use the --bip and --fixed-cidr options.

On host #1 that would be:

echo DOCKER_OPTS=\"--bip=172.17.0.1/17 --fixed-cidr=172.17.0.0/17\" >> /etc/default/docker

And on host #2 that would be:

echo DOCKER_OPTS=\"--bip=172.17.128.1/17 --fixed-cidr=172.17.128.0/17\" >> /etc/default/docker

If you have chosen a different partitioning schema or have more than two hosts,
repeat this with your values.

Since Docker will turn on IP forwarding, all traffic on docker0 will
get forwarded to foo and bar, so there is no need to attach the tun‐
nel endpoints to any bridges.

All that is left now is to restart Docker, then you can start one container on each host
and you will see that they have direct network connectivity using the private IP
address given to them by Docker.

Discussion
There are multiple ways to build a networking overlay for your Docker host, Docker
network (see Recipe 3.9) which should be released in Docker 1.8 allows you to build
VXLAN overlays using Docker built-in features. Other third party solutions exist like
Weave (see Recipe 3.11) or Flannel (see Recipe 3.13). As the Docker plugin frame‐
work matures, this type of functionality will change quite significantly. For instance
Weave and Flannel will be available as Docker plugins, instead of separate network
setup.

90 | Chapter 3: Docker Networking

See Also
• This recipe was inspired by a blog post from Vincent Viallet on wiredcraft

3.9 Networking Containers on Multiple Hosts with Docker
Network
Problem
While you could build tunnels between your Docker hosts manually (see Recipe 3.8),
you want to take advantage of the new Docker network feature and use a VXLAN
overlay.

Solution

Docker network is a new feature, currently available on the Docker
experimental channel. It should be released with Docker 1.8 in
August 2015. The recipe provided here is a preview which will give
you a taste of what you will be able to find in future Docker relea‐
ses.

As of this writing, Docker network relies on Consul for key-value
store, uses Serf for discovery of the nodes and builds a VXLAN
overlay using the standard linux bridge. Since Docker network is
under heavy development these requirements and methods may
change in the near future.

As common in this book, I prepared a Vagrantfile that will start three virtual
machines. One will act as a consul server, and the other two will act as Docker host.
The experimental version of Docker is installed on the two Docker hosts, while the
latest stable version of Docker is installed on the machine running the Consul server.

The setup is as follows:

• consul-server is the Consul server node, based on Ubuntu 14.04, this has IP
192.168.33.10

• net-1 is the first Docker host based on Ubuntu 14.10, this has IP 192.168.33.11
• net-2 is the second Docker host based on Ubuntu 14.10, this has IP

192.168.33.12

The following diagram illustrates this setup.

3.9 Networking Containers on Multiple Hosts with Docker Network | 91

http://wiredcraft.com/blog/multi-host-docker-network/

Figure 3-3. Network Diagram of a Two Hosts Docker Network VXLAN Overlay with an
Additional Consul Node.

Clone the repository, change to the docbook/ch03/networks directory and let
Vagrant do the work.

$ git clone https://github.com/how2dock/docbook/
$ cd docbook/ch03/network
$ vagrant up
$ vagrant status
Current machine states:

consul-server running (virtualbox)
net-1 running (virtualbox)
net-2 running (virtualbox)

You are now ready to SSH to the Docker hosts and start containers. You will see that
you are running the Docker experimental version -dev, the version number that you
will see may be different depending on where we are in the release cycle…<

$ vagrant ssh net-1
vagrant@net-1:~$ docker version

92 | Chapter 3: Docker Networking

Client version: 1.8.0-dev
...<snip>...

Check that Docker network is functional by listing the default networks:

vagrant@net-1:~$ docker network ls
NETWORK ID NAME TYPE
4275f8b3a821 none null
80eba28ed4a7 host host
64322973b4aa bridge bridge

No services has been published so far, so the docker service ls will return an
empty list:

$ docker service ls
SERVICE ID NAME NETWORK CONTAINER

Start a container and check the content of /etc/hosts.

$ docker run -it --rm ubuntu:14.04 bash
root@df479e660658:/# cat /etc/hosts
172.21.0.3 df479e660658
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.21.0.3 distracted_bohr
172.21.0.3 distracted_bohr.multihost

In a separate terminal on net-1 list the networks again. You will see that the multihost
overlay now appears. The overlay network multihost is your default network. This
was setup by the Docker daemon during the Vagrant provisioning. Check /etc/
default/docker to see the options that were set.

vagrant@net-1:~$ docker network ls
NETWORK ID NAME TYPE
4275f8b3a821 none null
80eba28ed4a7 host host
64322973b4aa bridge bridge
b5c9f05f1f8f multihost overlay

Now in a separate terminal, SSH to net-2, check the network and services. The net‐
works will be the same, and the default network will also be multihost of type overlay.
But the service will show the container started on net-1:

$ vagrant ssh net-2
vagrant@net-2:~$ docker service ls
SERVICE ID NAME NETWORK CONTAINER
b00f2bfd81ac distracted_bohr multihost df479e660658

Start a container on net-2 and check the /etc/hosts.

3.9 Networking Containers on Multiple Hosts with Docker Network | 93

vagrant@net-2:~$ docker run -ti --rm ubuntu:14.04 bash
root@2ac726b4ce60:/# cat /etc/hosts
172.21.0.4 2ac726b4ce60
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.21.0.3 distracted_bohr
172.21.0.3 distracted_bohr.multihost
172.21.0.4 modest_curie
172.21.0.4 modest_curie.multihost

You will see not only the container that you just started on net-2 but also the con‐
tainer that you started earlier on net-1. And of course you will be able to ping each
container.

Discussion
The solution discussed above used the default network overlay that was configured at
startup time by specifying in the /etc/default/docker configuration file. You can
however used a non default overlay network. This means that you can create as many
overlays as you want and that container started in each overlay will be isolated.

In the previous test we started containers with regular options -ti --rm and these
containers got placed automatically in the default network which was set to be the
multihost network of type overlay.

But you could create your own overlay network and start containers in it. Let’s try
this, first create a new overlay network with the docker network create command.

On one of your Docker hosts, net-1 or net-2 do:

$ docker network create -d overlay foobar
8805e22ad6e29cd7abb95597c91420fdcac54f33fcdd6fbca6dd4ec9710dd6a4
$ docker network ls
NETWORK ID NAME TYPE
a77e16a1e394 host host
684a4bb4c471 bridge bridge
8805e22ad6e2 foobar overlay
b5c9f05f1f8f multihost overlay
67d5a33a2e54 none null

Automatically, the second host will also see this network. To start a container on this
new network, simply use the --publish-service option of docker run like so:

$ docker run -it --rm --publish-service=bar.foobar.overlay ubuntu:14.04 bash

94 | Chapter 3: Docker Networking

You could directly start a container with a new overlay using the --
publish-service option and it will create the network automati‐
cally.

Check the docker services now:

$ docker service ls
SERVICE ID NAME NETWORK CONTAINER
b1ffdbfb1ac6 bar foobar 6635a3822135

Repeat the getting started steps, by starting another container in this new overlay on
the other host, check the /etc/hosts file and try to ping each container.

3.10 Diving Deeper Into The Docker Network Namespaces
Configuration
Problem
You would like to understand better what Docker network does, especially where do
the VXLAN interfaces exist.

Solution
This new Docker multihost networking is made possible via VXLAN tunnels and the
use of network namespaces. In Recipe 3.5 we already saw how to explore and manip‐
ulate network namespaces. The same can be done for Docker network.

Check the designdocumentation for all the details. But to explore these concepts a bit,
nothing beats an example.

Discussion
With a running container in one overlay, check the network namespace:

$ docker inspect -f '' 6635a3822135
/var/run/docker/netns/6635a3822135

This is a none default location for network namespaces which might confuse things a
bit. So let’s become root, head over to this directory that contains the network name‐
spaces of the containers and check the interfaces:

$ sudo su
root@net-2:/home/vagrant# cd /var/run/docker/
root@net-2:/var/run/docker# ls netns
6635a3822135
8805e22ad6e2

3.10 Diving Deeper Into The Docker Network Namespaces Configuration | 95

https://github.com/docker/libnetwork/blob/master/docs/design.md

To be able to check the interfaces in those network namespace using ip command,
just create a symlink for netns that points to /var/run/docker/netns:

root@net-2:/var/run# ln -s /var/run/docker/netns netns
root@net-2:/var/run# ip netns show
6635a3822135
8805e22ad6e2

The two namespace ID return are the ones of the running container on that host and
the one of the actual overlay network the container is in. Let’s check the interfaces in
the container:

root@net-2:/var/run/docker# ip netns exec 6635a3822135 ip addr show eth0
15: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:42:b3:91:22:c3 brd ff:ff:ff:ff:ff:ff
 inet 172.21.0.5/16 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:b3ff:fe91:22c3/64 scope link
 valid_lft forever preferred_lft forever

Indeed we get back the network interface of our running container, same MAC
address, same IP. If we check the links of the overlay namespace we see our vxlan
interface and the VLAN ID being used.

root@net-2:/var/run/docker# ip netns exec 8805e22ad6e2 ip -d link show
...<snip>...
14: vxlan1: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br0 state UNKNOWN mode DEFAULT group default
 link/ether 7a:af:20:ee:e3:81 brd ff:ff:ff:ff:ff:ff promiscuity 1
 vxlan id 256 srcport 32768 61000 dstport 8472 proxy l2miss l3miss ageing 300
 bridge_slave
16: veth2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br0 state UP mode DEFAULT group default qlen 1000
 link/ether 46:b1:e2:5c:48:a8 brd ff:ff:ff:ff:ff:ff promiscuity 1
 veth
 bridge_slave

If you sniff packets on these interfaces you will see the traffic between your contain‐
ers.

3.11 Running Containers on a Weave Network
Contributed by Fintan Ryan

Problem
Networking of Docker containers across multiple hosts can be solved by the ambassa‐
dor pattern. However you would like every container to get a routable IP across the
Docker hosts that you are using.

96 | Chapter 3: Docker Networking

Solution
Use Weave from Weaveworks. To help you test Weave we have created a Vagrantfile
which starts two hosts running Ubuntu 14.04, installs docker, weave and two example
containers. You can test it as follows

$ git clone https://github.com/how2dock/docbook.git
$ cd ch03/weavesimple
$ vagrant up
$./launch-simple-demo.sh

You can now log into our first host, weave-gs-01 and connect to our container on the
second host

$ vagrant ssh weave-gs-01
$ CONTAINER=$(sudo docker ps | grep weave-gs-ubuntu-curl | awk '{print $1}')
$ sudo docker attach $CONTAINER
$ curl 10.3.1.1

{
 "message" : "Hello World",
 "date" : "2015-03-13 15:03:52"
}

Discussion
Weave allows you to connect to your containers in the same manner as you are
already famiilar with for your existing infrastructure. Weave creates an overlay net‐
work

On your first host, weave-gs-01, you have launched a Weave router container. On
your second host, weave-gs-02, you launched another Weave router container with
the IP address of your first host. This command tells the Weave on weave-gs-02 to
peer with the Weave on weave-gs-01.

Any containers you launch after this using weave are visible within the Weave net‐
work to all other containers no matter what host they are on.

See Also
• Weave Getting Started Guides

3.12 Running a Weave Network on AWS
Contributed by Fintan Ryan

3.12 Running a Weave Network on AWS | 97

http://github.com/zettio/weave
http://weave.works
http://weave.works/guides

Problem
You would like to use Weave and WeaveDNS on instances deployed in AWS.

Solution
As prequisites you will need

• An account on AWS
• A set of access and secret API keys
• Ansible installed, with the boto package

To help you experiment with Weave on AWS we have created an ansible playbook
which starts two hosts running Ubuntu 14.04 on ec2, installs docker and installs
weave. We have provided a second playbook specifically for launching a simple demo
application using HAProxy as a load balancer in front of containers across our two
hosts.

$ git clone https://github.com/how2dock/docbook.git
$ cd ch03/weaveaws
$ ansible-playbook setup-weave-ubunu-aws.yml

Example 3-1.

You can change your AWS region and AMI in the file ansible_aws_variables.yml

To launch your containers call

$ ansible-playbook launch-weave-haproxy-aws-demo.yml

We have provided a script to quickly connect to your HAProxy container and cycle
through a number of requests. Each container will return its hostname as part of its
JSON output.

$./access-aws-hosts.sh

Connecting to HAProxy with Weave on AWS demo

{
 "message" : "Hello Weave - HAProxy Example",
 "hostname" : ws1.weave.local",
 "date" : "2015-03-13 11:23:12"
}

{
 "message" : "Hello Weave - HAProxy Example",
 "hostname" : ws4.weave.local",
 "date" : "2015-03-13 11:23:12"
}

98 | Chapter 3: Docker Networking

{
 "message" : "Hello Weave - HAProxy Example",
 "hostname" : ws5.weave.local",
 "date" : "2015-03-13 11:23:12"
}
....

Discussion
Using Weave we have placed HAProxy as a load balancing solution in front of a num‐
ber of containers running a simple application distributed across a number of hosts.

See Also
• Weave Getting Started Guides

3.13 Deploying flannel Overlay Between Docker Hosts
Contributed by Eugene Yakubovich

Problem
You want containers on different hosts to communicate with each other without port
mapping.

Solution
Use flannel to create an overlay network for containers. Each container will be
assigned an IP that can be reachable from other hosts. Start out with the following
Vagrantfile:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.provider "virtualbox" do |vb|
 vb.customize ["modifyvm", :id, "--memory", "1024"]
 end

 config.vm.provision :shell, :path => "bootstrap.sh"

 config.vm.define "master" do |master|
 master.vm.network "private_network", ip: "192.168.33.10"
 end

 config.vm.define "worker" do |worker|
 worker.vm.network "private_network", ip: "192.168.33.11"

3.13 Deploying flannel Overlay Between Docker Hosts | 99

http://weave.works/guides

 end
end

This will define two virtual machines. The “master” will run a key/value store (etcd)
that flannel uses for coordination. bootstrap.sh, shown below, is used to install suit‐
able version of Docker, etcd and flannel.

ETCD_URL=https://github.com/coreos/etcd/releases/download/v0.4.6/etcd-v0.4.6-linux-amd64.tar.gz
FLANNEL_URL=https://github.com/coreos/flannel/releases/download/v0.3.0/flannel-0.3.0-linux-amd64.tar.gz

Install latest Docker
curl -sSL https://get.docker.com/ubuntu/ | sudo sh
sudo gpasswd -a vagrant docker
sudo service docker stop

Docker doesn't delete its bridge when stopped.
Once flannel is started, it will be re-created with different set of options
sudo ip link del docker0

Download and untar etcd and flannel
sudo mkdir /opt/coreos
cd /opt/coreos
sudo curl -L $ETCD_URL | tar xzv
sudo curl -L $FLANNEL_URL | tar xzv
sudo chown -R vagrant:vagrant /opt/coreos

Next, “vagrant ssh master” and start etcd in the background:

$ cd /opt/coreos/etcd-v0.4.6-linux-amd64
$ nohup ./etcd &

Before starting flannel daemon, write the overlay network configuration into etcd. Be
sure to pick a subnet range that does not conflict with other IP addresses.

$./etcdctl set /coreos.com/network/config '{ "Network": "10.100.0.0/16" }'

Now start flannel daemon. Notice that --iface option specifies the IP of the private
network given in Vagrantfile. flannel will forward encapsulated packets over this
interface.

$ cd /opt/coreos/flannel-0.3.0
$ sudo ./flanneld --iface=192.168.33.10 --ip-masq &
$ sudo ./mk-docker-opts.sh -c -d /etc/default/docker

flannel will acquire a lease for a /24 subnet to be assigned to docker0 bridge. The
acquired subnet will be written out to /run/flannel/subnet.env file. mk-docker-opts.sh
utility converts this file into a set of command line options for Docker daemon.

Finally, start the Docker daemon. Verify that everything is running as expected by
checking the IP of docker0 bridge. It should be within the 10.100.0.0/16 range.

$ sudo service docker start
$ ifconfig docker0
docker0 Link encap:Ethernet HWaddr 56:84:7a:fe:97:99

100 | Chapter 3: Docker Networking

 inet addr:10.100.63.1 Bcast:0.0.0.0 Mask:255.255.255.0
...

Over on the “worker” node repeat the procedure of bringing up flannel. Since etcd is
running on “master”, do not launch it on this node. Instead point flannel to use the
instance running on “master”.

$ sudo ./flanneld --etcd-endpoints=http://192.168.33.10:4001 --iface=192.168.33.11 --ip-masq &
$ sudo ./mk-docker-opts.sh -c -d /etc/default/docker
$ sudo service docker start

With both nodes bootstrapped into the flannel network, bring up a simple busybox
container on each of the nodes. The containers will have an IP pingable from the
remote container.

Discussion
All flannel members use etcd for coordination. Upon startup, flannel daemon reads
the overlay network configuration from etcd as well as all other subnets in use by
other nodes. It then picks an used subnet (/24 by default) and attempts to claim it by
creating a key for it in etcd. If the creation succeeds, the node has acquired a 24 hour
lease on the subnet. The associated value contains the host’s IP.

Next, flannel uses the TUN device to create a flannel0 interface. IP fragments routed
to flannel0 from docker0 bridge will be delivered to the flannel daemon. It encapsu‐
lates each IP fragment in a UDP packet and uses the subnet information from etcd to
forward it to the correct host. The receiving end unwraps the IP fragment from its
encapsulation and sends it to docker0 via the TUN device.

flannel continues to watch etcd for changes in the memberships to keep its knowl‐
edge current. Additionally, the daemon will renew its lease an hour before its expira‐
tion.

3.14 Using an Ambassador Container to Expose Services
Problem

Solution

Discussion

3.14 Using an Ambassador Container to Expose Services | 101

CHAPTER 4

Docker Configuration and Development

This chapter consists of recipes focused on Docker development,
configuration and API usage. It is not meant to be a developer
guide or a programming guide. The recipes will illustrates several
concepts such as how to build a docker binary. I also plan to illus‐
trate a few namespace concepts. You can send me suggestions at
how2dock@gmail.com

4.1 Compiling Your Own Docker Binary From Source
Problem
You would like to do develop the Docker software and build your own Docker binary

Solution
Use Git to clone the Docker repository from GitHub and use the Makefile to create
your own binary.

Docker is built within Docker. In a Docker Host you can clone the Docker repository
and use the Makefile rules to build a new binary. This binary is obtained by running a
privileged Docker container. The Makefile containes several targets including a
binary target:

$ cat Makefile
...
default: binary

all: build
 $(DOCKER_RUN_DOCKER) hack/make.sh

103

https://github.com/docker/docker

binary: build
 $(DOCKER_RUN_DOCKER) hack/make.sh binary
...

Therefore it is as easy as sudo make binary:

The hack directory in the root of the Docker repository has been
moved to the project directory. Therefore the make.sh script is in
fact at project/make.sh. It uses scripts for each bundle that are
stored in project/make/ directory.

$ sudo make binary
...
docker run --rm -it --privileged \
 -e BUILDFLAGS -e DOCKER_CLIENTONLY -e DOCKER_EXECDRIVER \
 -e DOCKER_GRAPHDRIVER -e TESTDIRS -e TESTFLAGS \
 -e TIMEOUT \
 -v "/tmp/docker/bundles:/go/src/github.com/docker/docker/bundles" \
 "docker:master" hack/make.sh binary

---> Making bundle: binary (in bundles/1.4.1-dev/binary)
Created binary: \
/go/src/github.com/docker/docker/bundles/1.4.1-dev/binary/docker-1.4.1-dev

We see that the binary target of the Makefile will launch a privileged Docker con‐
tainer from the docker:master image, with a set of environment variables, a volume
mount and call to the hack/make.sh binary command.

With the current state of Docker development, the new binary will be located in the
bundles/1.4.1-dev/binary/ directory.

Discussion
To ease this process, you can clone the repository that accompanies this cookbook. A
Vagrantfile is provided which starts an Ubuntu 14.04 virtual machine, installs the lat‐
est stable Docker release and clones the Docker repository.

$ git clone https://github.com/how2dock/docbook
$ cd docbook/ch04/compile/
$ vagrant up

Once the machine is up, ssh to it and go to the /tmp/docker directory which should
have been created during the Vagrant provisioning process. Then run make. The first
time you run the Makefile, the stable Docker installed on the machine will pull the
base image being used by the Docker build process ubuntu:14.04, then build the
docker:master image defined in the /tmp/docker/Dockerfile. This can take a bit of
time the first time you do it.

104 | Chapter 4: Docker Configuration and Development

$ vagrant ssh
$ cd /tmp/docker
$ sudo make binary
docker build -t "docker:master" .
Sending build context to Docker daemon 55.95 MB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
...

Once this completes you will have a new Docker binary.

$ cd bundles/1.4.1-dev/binary/docker
$ ls
docker docker-1.4.1-dev docker-1.4.1-dev.md5 docker-1.4.1-dev.sha256

See Also
• How to contribute to Docker on GitHub

4.2 Running the Docker Test Suite for Docker
Development
Problem
You have made some changes to the Docker source and you have successfully built a
new binary. You also need to make sure that you pass all the tests.

Solution
Use the Makefile test target to run the four sets of tests present in the Docker source.
Alternatively pick only the set of tests that matters to you.

$ cat Makefile
...
test: build
 $(DOCKER_RUN_DOCKER) hack/make.sh binary cross \
 test-unit test-integration \
 test-integration-cli test-docker-py
test-unit: build
 $(DOCKER_RUN_DOCKER) hack/make.sh test-unit

test-integration: build
 $(DOCKER_RUN_DOCKER) hack/make.sh test-integration

test-integration-cli: build
 $(DOCKER_RUN_DOCKER) hack/make.sh binary test-integration-cli

test-docker-py: build

4.2 Running the Docker Test Suite for Docker Development | 105

https://github.com/docker/docker/blob/master/CONTRIBUTING.md

 $(DOCKER_RUN_DOCKER) hack/make.sh binary test-docker-py
...

You can see in the Makefile that you can choose which set of tests you want to run. If
you run all of them with make test it will also build the binary.

$ sudo make test
....
---> Making bundle: test-docker-py (in bundles/1.4.1-dev/test-docker-py)
+++ exec docker --daemon --debug --storage-driver vfs \
 -exec-driver native \
 --pidfile \
 /go/src/github.com/docker/docker/bundles/1.4.1-dev/test-docker-py/docker.pid
..
--
Ran 56 tests in 75.366s

OK

Depending on tests coverage, if all the tests pass, you have some confidence that your
new binary works.

See Also
• Official Docker development environment documentation

4.3 Replacing Your Current Docker Binary With a New One
Problem
You have built a new Docker binary, ran the unit and integration tests using the rec‐
ipes described at Recipe 4.1 and Recipe 4.2. Now you would like to use this new
binary on your host.

Solution
Starting from within the virtual machine setup in Recipe 4.1.

Stop the current Docker daemon. On Ubuntu 14.04, edit the /etc/default/docker
file to uncomment the DOCKER variable that defines where to find the binary and set it
to DOCKER="/usr/local/bin/docker". Copy the new binary to /usr/local/bin/
docker and finally restart the Docker daemon.

$ pwd
/tmp/docker
$ sudo service docker stop
docker stop/waiting
$ sudo vi /etc/default/docker

106 | Chapter 4: Docker Configuration and Development

https://docs.docker.com/contributing/devenvironment/

$ sudo cp bundles/1.4.1-dev/binary/docker-1.4.1-dev /usr/local/bin/docker
$ sudo cp bundles/1.4.1-dev/binary/docker-1.4.1-dev /usr/bin/docker
$ sudo service docker restart
stop: Unknown instance:
$ docker version
Client version: 1.4.1-dev
Client API version: 1.16
Go version (client): go1.4
Git commit (client): a83e904
OS/Arch (client): linux/amd64
Server version: 1.4.1-dev
Server API version: 1.16
Go version (server): go1.4
Git commit (server): a83e904

You are now using the latest Docker version from the master development branch (i.e
master branch at Git commit a83e904 at the time of this writing).

Discussion
The Docker bootstrap script used in the Vagrant virtual machine provisioning installs
the latest stable version of Docker with:

sudo curl -sSL https://get.docker.com/ubuntu/ | sudo sh

This puts the Docker binary in /usr/bin/docker. This may conflict with your new
binary installation. Either remove it or replace it with the new one if you see any con‐
flicts when running docker version.

4.4 Using nsenter
Problem
You would like to enter a container for debugging purposes, you are using a Docker
version older than 1.3.1 or you do not want to use the docker exec command.

Solution
Use nsenter. Starting with Docker 1.3, docker exec allows you to easily enter a run‐
ning container, hence there is no need to do things like running an SSH server and
exposing port 22 or using the now deprecated attach command.

nsenter was created to solve the problem of entering the namespace (hence, nsenter)
of a container prior to the availability of docker exec. Nonetheless it is a useful tool
that merits a short recipe in this book.

Let’s start a container that sleeps for the duration of this recipe, and for completeness
purposes, let’s enter the running container with docker exec

4.4 Using nsenter | 107

https://github.com/jpetazzo/nsenter

$ docker pull ubuntu:14.04
$ docker run -d --name sleep ubuntu:14.04 sleep 300
$ docker exec -ti sleep bash
root@db9675525fab:/#

nsenter gives the same result. Conveniently it comes as an image in Docker hub. Pull
the image, run the container and use nsenter.

$ docker pull jpetazzo/nsenter
$ sudo docker run docker run --rm -v /usr/local/bin:/target jpetazzo/nsenter

At this time, it is useful to have a look at the Dockerfile for nsenter and check the
CMD option. You will see that it runs a script called installer. This small bash
script does nothing else but detect if a mount point exists at /target. If it does, it
copies a script called docker-enter and a binary called nsenter to that mount point.
In the docker run command, since we specified a volumes (i.e -v /usr/local/bin:/
target), running the container will have the effect of copying nsenter on our local
machine. Quite a nice trick with a powerfull effect:

$ which docker-enter nsenter
/usr/local/bin/docker-enter
/usr/local/bin/nsenter

Note that to copy the files in /usr/local/bin I run the container
with sudo. If you do not want to use this mount point convenience,
you can copy the files locally with a command like:

$ docker run --rm jpetazzo/nsenter cat /nsenter \
 > /tmp/nsenter && chmod +x /tmp/nsenter

You are now ready to enter the container. You can pass a command, if you do not
want to get an interactive shell in the container.

$ docker-enter sleep
root@db9675525fab:/#
$ docker-enter sleep hostname
db9675525fab

docker-enter is nothing else than a wrapper around nsenter. You could use nsenter
directly after finding the process ID of the container with docker inspect like so:

$ docker inspect --format sleep
9302
$ sudo nsenter --target 9302 --mount --uts --ipc --net --pid
root@db9675525fab:/#

Discussion
Starting with Docker 1.3, you do not need to use nsenter, use docker exec instead.

108 | Chapter 4: Docker Configuration and Development

https://github.com/jpetazzo/nsenter/blob/master/Dockerfile

$ docker exec -h

Usage: docker exec [OPTIONS] CONTAINER COMMAND [ARG...]

Run a command in a running container

 -d, --detach=false Detached mode: run command in the background
 --help=false Print usage
 -i, --interactive=false Keep STDIN open even if not attached
 -t, --tty=false Allocate a pseudo-TTY

See Also
• GitHub page from Jerome Petazzo nsenter repository.

4.4 Using nsenter | 109

https://github.com/jpetazzo/nsenter

4.5 Introducing libcontainer
Problem

Solution

Discussion

4.6 Using nsinit
Problem

Solution

Discussion

4.7 Switching Execution Environment
Problem

Solution

Discussion

4.8 Accessing the Docker Daemon Remotely
Problem
The default Docker daemon listens on a local unix socket /var/run/docker.sock
which is only accessible locally. However you would like to access your Docker host
remotely, calling the Docker API from a different machine.

Solution
Switch the listening protocol that the Docker daemon is using by editing the configu‐
ration file in /etc/default/docker and issue remote API call.

In /etc/default/docker add a line that sets the DOCKER_HOST to use tcp on port
2375. Then restart the docker daemon with sudo service docker restart.

110 | Chapter 4: Docker Configuration and Development

$ cat /etc/default/docker
...
Use DOCKER_OPTS to modify the daemon startup options.
#DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"
DOCKER_OPTS="-H tcp://127.0.0.1:2375"
...

You will then be able to use the docker client by specifying a host accessed using tcp.

$ docker -H tcp://127.0.0.1:2375 images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 14.04 04c5d3b7b065 6 days ago 192.7 MB

This method is unencrypted and un-authenticated. You should not
use this on a publicly routable host. This would expose your
Docker daemon to anyone. You will need to properly secure your
Docker daemon if you want to do this in production (See Recipe
4.10)

Discussion
With the Docker daemon listening over tcp you can now use curl to make API calls
and explore the response. This is a good way to learn the Docker remote API.

$ curl -s http://127.0.0.1:2375/images/json | python -m json.tool
[
 {
 "Created": 1418673175,
 "Id": "04c5d3b7b0656168630d3ba35d8889bdaafcaeb32bfbc47e7c5d35d2",
 "ParentId": "d735006ad9c1b1563e021d7a4fecfd384e2a1c42e78d8261b83d6271",
 "RepoTags": [
 "ubuntu:14.04"
],
 "Size": 0,
 "VirtualSize": 192676726
 }
]

Above, we pipe the output of the curl command through python -m json.tool to
make the json object that is returned readable. And the -s option removes the infor‐
mation of the data transfer.

4.8 Accessing the Docker Daemon Remotely | 111

4.9 Exploring the Docker remote API to automate Docker
tasks.
Problem
After being able to access the Docker daemon remotely (See Recipe 4.8), you want to
explore the Docker remote API in order to write programs. This will allow you to
automate Docker tasks.

Solution
The Docker remote API is fully documented. It is currently on version 1.16. It is a
REST API, in the sense that it manipulates resources (e.g images and containers)
through HTTP calls using various HTTP methods (e.g GET, POST, DELETE). The
attach and pull APIs are not purely REST as noted in the documentation.

We already saw how you can make the Docker daemon listen on a tcp socket (Recipe
4.8) and use curl to make API calls.

Table 4-1. A sample of the API for container actions

Action on containers HTTP method URI

List containers GET /containers/json

Create container POST /containers/create

Inspect a container GET /containers/(id)/json

Start a container POST /containers/(id)/start

Stop a container POST /containers/(id)/stop

Restart a container POST /containers/(id)/restart

Kill a container POST /containers/(id)/kill

Pause a container POST /containers/(id)/pause

Remove a container DELETE /containers/(id)

Table 4-2. A sample of the API for image actions

Action on images HTTP method URI

List images GET /images/json

112 | Chapter 4: Docker Configuration and Development

https://docs.docker.com/reference/api/docker_remote_api_v1.16/
https://docs.docker.com/reference/api/docker_remote_api_v1.16/

Action on images HTTP method URI

Create an image POST /images/create

Tag an image into a repository POST /images/(name)/tag

Remove an image DELETE /images/(name)

Search images GET /images/search

For example, let’s download the Ubuntu 14.0 image from the public registry (a.k.a
Docker Hub), create a container from that image and start it. Remove it and then
remove the image. Note that in this toy example, running the container will cause it
to exit immediately since we are not passing any commands.

$ curl -X POST -d "fromImage=ubuntu" -d "tag=14.04"
 http://127.0.0.1:2375/images/create
$ curl -X POST -H 'Content-Type: application/json'
 -d '{"Image":"ubuntu:14.04"}'
 http://127.0.0.1:2375/containers/create
{"Id":"6b6bd46f483a5704d4bced62ff58a0ac5758fb0875ec881fa68f0e2be2f42681","Warnings":null}
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ...
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS ...
6b6bd46f483a ubuntu:14.04 "/bin/bash" 16 seconds ago ...
$ curl -X POST http://127.0.0.1:2375/containers/6b6bd46f483a/start
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED ...
6b6bd46f483a ubuntu:14.04 "/bin/bash" About a minute ago ...

Now let’s clean things up

$ curl -X DELETE http://127.0.0.1:2375/containers/6b6bd46f483a
$ curl -X DELETE http://127.0.0.1:2375/images/04c5d3b7b065
[{"Untagged":"ubuntu:14.04"}
,{"Deleted":"04c5d3b7b0656168630d3ba35d8889bd0e9caafcaeb3004d2bfbc47e7c5d35d2"}
,{"Deleted":"d735006ad9c1b1563e021d7a4fecfd75ed36d4384e2a1c42e78d8261b83d6271"}
,{"Deleted":"70c8faa62a44b9f6a70ec3a018ec14ec95717ebed2016430e57fec1abc90a879"}
,{"Deleted":"c7b7c64195686444123ef370322b5270b098c77dc2d62208e8a9ce28a11a63f9"}
,{"Deleted":"511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158"}
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS ...
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

4.9 Exploring the Docker remote API to automate Docker tasks. | 113

After enabling remote API access you can set the DOCKER_HOST
variable to its HTTP endpoint, this relieves you from passing it to
the docker command as a -H option. For example, instead of
docker -H http://127.0.0.1:2375 ps, you can do export

DOCKER_HOST=tcp://127.0.0.1:2375 and you will be able to sim‐
ply do docker ps.

Discussion
While you can of course use curl, or write your own client, existing Docker clients
like docker-py (see Recipe 4.11) can ease calling the API.

The list of APIs presented in Table 4-1 and Table 4-2 is not exhaustive and you should
check the complete API documentation for all API calls, query parameters and
response examples.

4.10 Securing the Docker Deamon for Remote Access
Problem
You need to access your Docker daemon remotely and securely.

Solution
Setup a Transport Layer Security (TLS) based access to your Docker daemon. This
will use public key cryptography to encrypt and authenticate communication
between a Docker client and the Docker daemon that you have setup with TLS.

The basic steps to test this security feature is described on the Docker website. How‐
ever, it shows how to create your own Certificate Authority (CA) and sign server and
client certificates using the CA. In a properly setup infrastructure you will need to
contact the CA that you use routinely and ask for server certificates.

To conveniently test this TLS setup, I created an image that contains a script which
creates the CA and the server and client certificates and keys. You can use this image
to create a container and generate all the needed files.

We start with an Ubuntu 14.04 machine, running the latest Docker version (see
Recipe 1.1). Download the image and start a container. You will need to mount a vol‐
ume from your host and bind mount it to the /tmp/ca inside the docker container.
You will also need to pass the hostname as argument to running the container (in the
example below <hostname>). Once you are done running the container, all CA,
server and client keys and certificates will be available in your working directory.

$ docker pull runseb/dockertls
$ docker run -ti -v $(pwd):/tmp/ca runseb/dockertls <hostname>

114 | Chapter 4: Docker Configuration and Development

https://docs.docker.com/reference/api/docker_remote_api_v1.16/
http://tools.ietf.org/html/rfc5246
https://docs.docker.com/articles/https/#daemon-modes
https://registry.hub.docker.com/u/runseb/dockertls/

$ ls
cakey.pem ca.pem ca.srl clientcert.pem client.csr clientkey.pem
extfile.cnf makeca.sh servercert.pem server.csr serverkey.pem

Stop the running Docker daemon. Create a /etc/docker directory and a ~/.docker
directory. Copy the CA, server key and server certificates to /etc/docker. Copy the
CA, client key and certificate to ~/.docker.

$ sudo service docker stop
$ sudo mkdir /etc/docker
$ mkdir ~/.docker
$ sudo cp {ca,servercert,serverkey}.pem /etc/docker
$ cp ca.pem ~/.docker/
$ cp clientkey.pem ~/.docker/key.pem
$ cp clientcert.pem ~/.docker/cert.pem

Edit the /etc/default/docker (you need to be root) configuration file to specify
DOCKER_OPTS like so (replace test with your own hostname):

DOCKER_OPTS="-H tcp://<test>:2376 --tlsverify --tlscacert=/etc/docker/ca.pem \
 --tlscert=/etc/docker/servercert.pem \
 --tlskey=/etc/docker/serverkey.pem"

Then restart the Docker service with sudo service docker restart and try to con‐
nect to the Docker daemon:

$ docker -H tcp://test:2376 --tlsverify images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
runseb/dockertls latest 5ed60e0f6a7c 17 minutes ago 214.7 MB

Discussion

The runseb/dockertls convenience image is automatically built
from the https://github.com/how2dock/docbook/ch04/tls

Dockerfile. Check it out.

By setting up a few environment variables DOCKER_HOST and DOCKER_TLS_VERIFY you
can simply the TLS connection from the CLI:

$ export DOCKER_HOST=tcp://test:2376
$ export DOCKER_TLS_VERIFY=1
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
runseb/dockertls latest 5ed60e0f6a7c 19 minutes ago 214.7 MB

You can still use curl as discussed in Recipe 4.8 but you will need to specify the client
key and certificate:

4.10 Securing the Docker Deamon for Remote Access | 115

https://github.com/how2dock/docbook/ch04/tls

$ curl --insecure --cert ~/.docker/cert.pem --key ~/.docker/key.pem \
 -s https://test:2376/images/json | python -m json.tool
[
 {
 "Created": 1419280147,
 "Id": "5ed60e0f6a7ce3df3614d20dcadf2e4d43f4054da64d52709c1559ac",
 "ParentId": "138f848eb669500df577ca5b7354cef5e65b3c728b0c241221c611b1",
 "RepoTags": [
 "runseb/dockertls:latest"
],
 "Size": 0,
 "VirtualSize": 214723529
 }
]

Note that above we used the --insecure curl option, because we created our own
Certificate Authority. By default curl will check the certificates against the CAs con‐
tained in the default CA bundle installed on your server. If you were to get server and
client keys and certificates from a trusted CA listed in the default CA bundle you
would not have to make a --insecure+ connection. However this does not mean that
the connection is not properly using TLS.

4.11 Using docker-py to Access the Docker Daemon
Remotely
Problem
While the Docker client is very powerfull, you would like to access the Docker dae‐
mon through a Python client. Specifically you would like to write a Python program
that calls the Docker remote API.

Solution
Import the docker-py Python module from Pip. In a Python script of interactive
shell, create a connection to a remote Docker daemon and start making API calls.

While this recipe is about docker-py, it serves as an example that
you can use your own client to communicate with the Docker dae‐
mon and you are not restricted to the default Docker client. There
exists Docker clients in several programming languages (e.g Java,
Groovy, Perl, PHP, Scala, Erlang etc) and you can write your own
by studying the API reference.

116 | Chapter 4: Docker Configuration and Development

https://docs.docker.com/reference/api/remote_api_client_libraries/
https://docs.docker.com/reference/api/docker_remote_api_v1.16/

docker-py is a Python client for Docker. It can be installed from source or simply
fetched from the Python Package Index using the pip command. First install python-
pip, then get the docker-py package. On Ubuntu 14.04:

$ sudo apt-get install python-pip
$ sudo pip install docker-py

The documentation tells you how to create aconnection to the Docker daemon. Sim‐
ply create an instance of the Client() class, by passing it a base_url argument that
specifies how the Docker daemon is listening. If it is listening locally on a unix socket:

$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from docker import Client
>>> c=Client(base_url="unix://var/run/docker.sock")
>>> c.containers()
[]

If it is listening over tcp, as we set it up in Recipe 4.8:

$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from docker import Client
>>> c=Client(base_url="tcp://127.0.0.1:2375")
>>> c.containers()
[]

You can explore the methods available via docker-py by doing a help(c) at the
Python prompt in the interactive sessions started above.

Discussion
The docker-py module has a few basics documented. Of note is the integration with
boot2docker (Recipe 1.3) which has a helper function to setup the connection. Since
the latest boot2docker uses TLS for added security in accessing the Docker daemon,
the setup is slightly different that what we presented above. In addition there is cur‐
rently a bug that is worth mentioning for those who will be interested in testing
docker-py.

Start boot2docker:

$ boot2docker start
Waiting for VM and Docker daemon to start...
................oooo
Started.
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/cert.pem

4.11 Using docker-py to Access the Docker Daemon Remotely | 117

https://github.com/docker/docker-py
https://pypi.python.org/pypi
http://docker-py.readthedocs.org/en/latest/
http://docker-py.readthedocs.org/en/latest/
http://docker-py.readthedocs.org/en/latest/boot2docker/

Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/key.pem

To connect the Docker client to the Docker daemon, please set:
 export DOCKER_HOST=tcp://192.168.59.103:2376
 export DOCKER_CERT_PATH=/Users/sebgoa/.boot2docker/certs/boot2docker-vm
 export DOCKER_TLS_VERIFY=1

It returns a set of environment variables that need to be set. Boot2docker provides a
nice convenience utility $(boot2docker shellinit) to set everything up. However
for docker-py to work we need to edit our /etc/hosts file and set a different
DOCKER_HOST. In /etc/hosts add a line with the IP of boot2docker and its local DNS
name (i.e boot2docker) then export DOCKER_HOST=tcp://boot2docker:2376. Then
in a Python interactive shell:

>>> from docker.client import Client
>>> from docker.utils import kwargs_from_env
>>> client = Client(**kwargs_from_env())
>>> client.containers()
[]

4.12 Using docker-py Securely
Problem
You want to use the docker-py Python client to access a remote Docker daemon
setup with TLS secure access.

Solution
After setting up a Docker host as explained in Recipe 4.10, verify that you can con‐
nect to the Docker daemon with TLS. For example assuming a host with hostname
dockerpytls and client certificate, key and CA located in the default location at
~/.docker/ try:

$ docker -H tcp://dockerpytls:2376 --tlsverify ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Make sure you have installed docker_py:
sudo apt-get -y install python-pip
sudo pip install docker-py

Once this is successfull, open a Python interactive shell and create a docker-py client
instance using the following configuration:

tls_config = docker.tls.TLSConfig(
 client_cert=('/home/vagrant/.docker./cert.pem', '/home/vagrant/.docker/key.pem'),

118 | Chapter 4: Docker Configuration and Development

 ca_cert='/home/vagrant/.docker/ca.pem'
)
client = docker.Client(base_url='https://host:2376', tls=tls_config)

Which is equivalent to calling the Docker daemon on the command line with:

$ docker -H tcp://host:2376 --tlsverify --tlscert /path/to/client-cert.pem \
 --tlskey /path/to/client-key.pem \
 --tlscacert /path/to/ca.pem ...

Recipe not yet finished

Discussion

See Also
• Documentation of docker=py
• Docker article on HTTPS support

4.12 Using docker-py Securely | 119

http://docker-py.readthedocs.org/en/latest/tls/
https://docs.docker.com/articles/https/

CHAPTER 5

Kubernetes

This chapter consists of recipes focused on Kubernetes. You can
send me suggestions at how2dock@gmail.com

As applications grow beyond what can be safely handed on a single host, a need for
what has come to be called an orchestration system. An orchestration systems helps
users view a set of hosts (also referred to as nodes) as a unified programmable reliable
cluster. That cluster can be viewed and used as a giant computer.

Kubernetes (often abbreviated as k8s) is an open source system started by Google to
fill this need. Kubernetes is based on ideas validated through internal Google systems
over the last ten years (Borg and Omega). These systems are used to run and manage
all of the myriad Google services including Google Search, Google Mail and more.
Many of the engineers that built and operated Borg clusters at scale are helping to
design and build Kubernetes.

Traditinally, Borg has been one of the key things that ex-Google engineers miss. But
now Kubernetes fills this need for engineers that don’t happen to work for Google.
Enhanced Capabilties
A Kubernetes cluster coordinates Docker across multiple nodes and provides a uni‐
fied programming model with enhanced capabilities.

Reliable Container Restart
Kubernetes can monitor the health of a container and restart it when it fails.

121

http://kubernetes.io
http://kubernetes.io
http://research.google.com/pubs/pub43438.html
http://research.google.com/pubs/pub41684.html

Self Healing
If a node fails, the Kubernetes management system can automatically reschedule
work onto healthy nodes. Dynamic service membership ensures that those new
containers can be found and used.

High Cluster Utilization
By scheduling a diverse set of workloads on a common set of machines users can
drive dramatically higher utilization compared to static manual placement. The
larger the cluster and the more diverse the workloads, the better the utilization.

Organzation and Grouping
With large clusters it can be difficult to keep track of all of the containers that are
running. Kubernetes provides a flexible labeling system that allows both users
and other systems to think in sets of containers. In addition, Kubernetes supports
the idea of namespaces so different users or teams can have isolated views into
the cluster.

Horizontal Scaling and Replication
Kubernetes is built to enable easy horizontal scaling. Scaling and load balancing
are intrinsic concepts.

Microservice friendly
Kubernetes clusters are a perfect companion for teams adopting a microservices
architecture. Applications can be broken down into smaller parts that are easier
to develop, scale and reason about. Kubernetes provides building ways for a ser‐
vice to find (commonly called discovery) and communicate with other services.

Streamlined Operations
Kubernetes allows for specialized ops team. Management of the Kubernetes sys‐
tem and the nodes that it runs on can be driven by a dedicated team or out‐
sourced to a cloud service. Operational teams for specific apps (or the
development team itself) can then focus on running that application without
managing the details of individual nodes.

New Concepts
While Docker is great for dealing with containers running on a single node, Kuber‐
netes also has to contend with challenges around cross-node communication and
scale. To help, Kubernetes introduces a set of new concepts:

Cluster Scheduling
The process of placing a container on a specific node to optimize the reliability
and utilization of the cluster.

122 | Chapter 5: Kubernetes

Pods
A group of containers that must be placed on a single node and work together as
a team. Allowing a set of containers to work closely together on a single node is a
powerful way to make applications even more manageable.

Labels
Data attached to pods in order to organize a group for monitoring and manage‐
ment.

Replication Controllers
Agents that work to make sure that a horizontal scaling group or Pods is reliably
maintained.

Network Services
A way to communicate between not just pods, but groups of pods using dynami‐
cally configured naming and network proxies.

With that let’s jump into understanding and using Kubernetes!

5.1 Understanding Kubernetes Architecture
Contributed by Joe Beda

Problem
You need a container management system that provides scale and fault-tolerance, you
would like to understand the architecture of Kubernetes.

5.1 Understanding Kubernetes Architecture | 123

Solution

The main architecture parts of a Kubernetes cluster include:

Kubernetes Master Services
These centralized services (that can run in Docker Containers) provide an API,
collect and surface the current state of the cluster and assign pods to nodes. Most
users will only ever interact directly with the Master API. This provides a unified
view of the entire cluster.

Master Storage
Currently all persistent Kubernetes state is stored in etcd. It is likely that new
storage engines will be built out over time.

Kubelet
The Kubelet is an agent that runs on every node and is responsible for driving
Docker, reporting status to the Master and setting up node level resources (like
remote disk storage).

124 | Chapter 5: Kubernetes

Kubernetes Proxy
This proxy runs on every node (and can run elsewhere) and provides local con‐
tainers a single network endpoint to reach an array of pods.

Discussion
A user interacts with a Kubernetes master through tools (like kubectl) that call the
Kubernetes API. API documentation (automatically generated from source) is avail‐
able on the Kubernetes site: http://kubernetes.io/third_party/swagger-ui/. The master
is responsible for storing user requests (modeled as a specification). It then works to
turn that specification into reality. It reports the current state of the cluster as status.

Running on every worker node in the cluster are the kubelet and the proxy. The
kubelet is responsible for driving Docker and setting up other node specific state, like
storage volumes. The proxy is responsible for providing a stable local endpoint for
talking to services (frequently implemented by a set of containers running in cluster).

Kubernetes works to manage Pods. Pods are a grouping of compute resources that
provide context for a set of containers. Users can use Pods to force a set of containers
that work as a team to be scheduled on a single physical node.

• Multiple Docker containers can exist in a Pod. This allows for some advanced
scenarios explored in XXX. Each container starts with its file system and process
as normal.

• Pods define a shared network interface. Unlike regular containers, containers in
a Pod all share the same network interface. This allows for efficient and easy
access across containers using localhost. It also means that different containers in
the same Pod cannot use the same network port.

• Storage volumes are defined as part of the Pod. These volumes can be mapped
into multiple containers as needed. There also exist specialized types of volumes
based on the needs of users and the capabilities of the cluster. See XXX for more
details on storage volumes.

The general flow for how work is run with Kubernetes:

1. Via the kubectl tool and the Kubernetes API, the user creates a specification for a
Replication Controller with a Pod Template and a count for the number of
desired replicas

2. The Kubernetes uses the template in the Replication Controller to create a num‐
ber of actual pods.

3. The Kubernetes Scheduler (part of the master) looks at the current state of the
cluster (which nodes are available and what resources are available on those
nodes) and binds a pod to a specific node.

5.1 Understanding Kubernetes Architecture | 125

http://kubernetes.io/third_party/swagger-ui/

4. The Kubelet on that node watches for a change in the set of pods assigned to the
node it is running on. It then starts up or kills pods as necessary. This includes
configuring any storage volumes as necessary, downloading the Docker image to
that specific node and calling the Docker API to start/stop individual containers.

Fault tolerance is implemented at multiple levels. Individual containers within a Pod
can be health checked and monitored by the local Kubelet. If they stop of fail, they
can be restarted automatically. If the entire node fails, the master will notice this and
update its state to reflect this. At that point Replication Controllers (if used) will cre‐
ate replacements for pods that were on that Node. Multiple levels of monitoring and
restarting help to keep applications running even when the cluster is experience
problems (software or hardware).

Pods Only Get Scheduled Once
Once a pod is scheduled on a node it will never be moved. If that node is lost or
removed from the cluster the pod will not be restarted. This is surprising behavior
given that a goal of Kubernetes is reliably keep work running. This is required as net‐
works are imperfect. In the event that the master cannot talk a node, any pod on that
node is in an indeterminate state as far as the master is concerned — it may or may
not be running. If that same pod were restarted on another machine, there may be 2
pods with the exact same name/idenity running at the same time. This can cause all
sorts of problems. For instance, distributed logs might be written from multiple
places all keyed to the same pod id. Or the pod id may be used as part of a master
election system and clients may be confused as to which pod is really the master.

Instead, to reliably run a workload, it is necessary to use a Replication Controller.
This takes a pod template and tries to ensure that there is always a specific number of
pods running to accomplish that task. In the case of the master not being able to talk
to a node, a Replication Controller is in charge of spinning up a new pod to replace
the lost pods. If communication is reestablished, it is up to the Replication Controller
to delete one of the redundant pods.

5.2 Networking Pods for Container Connectivity
Contributed by Joe Beda

Problem
You want to control how network traffic gets directed to your containers as they are
scheduled across a Kubernetes cluster.

126 | Chapter 5: Kubernetes

Solution
The solution is to use Kubernetes Services. These can be used to communicate
between containers within a cluster or to direct external traffic to a set of pods.

TODO

We need an example here of bringing up a set of pods using a repli‐
cation controller and then configuring a service to point at it. We
should also show how to configure an external IP

Discussion

Networking Assumption: IP per Pod

Kubernetes assumes a network model where each Pod gets an IP.
Each pod can then connect to other pods regardless of which phys‐
ical node they happen to be running on. The easiest way to get this
running on most configuration is to use Flannel from CoreOS. In
certain other environments (e.g. Google Compute Engine with
advanced routing) communication can be handled directly by the
network infrastructure.
However, just because pods can connect directly doesn’t mean that
is the best or easiest way to communicate between pods. In the
event that a pod fails or is replaced on to a new node, the calling
code would have to know to reconnect to a new address. This
dynamic reconnection is hard to integrate with many existing
servers and frameworks.

Kubernetes Services make it easy to connect between Pods. Creating a Kubernetes
Service will allocate a new IP address for the Service that is independent of any spe‐
cific Pod. When a calling Pod then establishes a connection to that Service, it will be
handled by the local Kubernetes Proxy that is running on that node. This Proxy will
forward the connection on a Pod that is implementing that service. In the case where
there are multiple Pods backing a Service, the proxy will load balance across those
Pods.

5.2 Networking Pods for Container Connectivity | 127

https://github.com/coreos/flannel

The calling code can find the IP for a service in two ways: environment variables and
DNS. The environment variables created for Services are similar to Docker link vari‐
ables. For example, suppose you have a service called redis that exposes port 6379.

REDIS_MASTER_SERVICE_HOST=10.0.0.11
REDIS_MASTER_SERVICE_PORT=6379
REDIS_MASTER_PORT=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP_PROTO=tcp
REDIS_MASTER_PORT_6379_TCP_PORT=6379
REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11

When DNS support is configured on a Kubernetes cluster, each Service will also be
given a resolvable name. In this example, assuming the default namespace of name
space and a DNS domain root of cluster.local, the service will be exposed as
redis.default.cluster.local.

128 | Chapter 5: Kubernetes

TODO

Joe’s Outline:

• Overview of Kubernetes networking with IP-per-node
• Discuss proxy and how it is used to spray traffic across a set of

pods. Diagram will help here. Each service gets an IP and that
can be optionally surfaced into DNS.

• Discuss how to connect from outside the cluster by configur‐
ing the proxy to listen for and handle other IPs. Also mention
that for specific clouds an external IP can be provisioned auto‐
matically.

See Also
• Documentation on Kubernetes Services

5.3 Using Labels for Container Placement and Application
Management
Contributed by Joe Beda

Problem

Solution

Discussion

5.4 Creating a Multi-node Kubernetes Cluster With
Vagrant
Problem
You want to get started with Kubernetes and would like to create a small cluster on
your local machine using Vagrant.

Solution
You will need to install Vagrant and VirtualBox if you have not done so already. Then
set two environment variables, KUBERNETES_PROVIDER to specify that you will use
Vagrant and NUM_MINIONS to set the number of nodes in your cluster (in addition to

5.3 Using Labels for Container Placement and Application Management | 129

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://vagrantup.com
http://virtualbox.org

the master node). Then you will use the installation script provided by the Kuber‐
netes community. It will read the environment variables, detect your operating sys‐
tem, download the latest stable release of Kubernetes and untar it in a kubernetes
directory. The following commands show you these steps on the command line:

export KUBERNETES_PROVIDER=vagrant
export NUM_MINIONS=2
curl -sS https://get.k8s.io | bash

If you do not specify the NUM_MINIONS environment variables, only
one node will be started in addition to the master node.

Each virtual machine started with Vagrant will use 1GB of RAM, so
make sure you have enough memory.

Downloading the Vagrant box being used, and provisioning the virtual machines
using Saltstack will take a bit of time. Once it is done, the nodes will got through a
validation step and you should see a similar output on stdout:

...
Using credentials: vagrant:vagrant
KUBE_MASTER_IP: 10.245.1.2
Minions already detected
current-context: "vagrant"
...
Found 2 nodes.
 1 10.245.1.3
 2 10.245.1.4
Attempt 1 at checking Kubelet installation on node 10.245.1.3 ... [working]
Attempt 1 at checking Kubelet installation on node 10.245.1.4 ... [working]
Cluster validation succeeded
...

The vagrant status command will list your running VMs:

$ vagrant status
Current machine states:

master running (virtualbox)
minion-1 running (virtualbox)
minion-2 running (virtualbox)

At this point you have a working Kubernetes cluster running locally within virtual
machines.

130 | Chapter 5: Kubernetes

https://get.k8s.io
http://saltstack.com

Discussion
The Vagrant box used to create this cluster are based on Fedora 20 and use systemd.
If you connect to these VMs you can list the systemd units that are running and make
up the Kubernetes system.

On the master node, we find four services running. The Addon object manager, the
API server, the Controller manager and the Scheduler. Docker is also running.

$ vagrant ssh master
Last login: Tue Feb 24 20:08:45 2015 from 10.0.2.2
[vagrant@kubernetes-master ~]$ sudo systemctl list-units | grep kube
kube-addons.service loaded active running Kubernetes Addon Object Manager
kube-apiserver.service loaded active running Kubernetes API Server
kube-controller-manager.service loaded active running Kubernetes Controller Manager
kube-scheduler.service loaded active running Kubernetes Scheduler Plugin

On the minions, we find two more Kubernetes related services. The Kube-Proxy
server and the Kubelet server. Docker is of course also running.

$ vagrant ssh minion-1
Last login: Tue Feb 24 20:08:45 2015 from 10.0.2.2
[vagrant@kubernetes-minion-1 ~]$ sudo systemctl list-units | grep kube
kube-proxy.service loaded active running Kubernetes Kube-Proxy Server
kubelet.service loaded active running Kubernetes Kubelet Server

To interact with the cluster you can use the kubectl.sh script on your localhost. This
script allows you to manage all Kubernetes resources that make up container schedul‐
ing tasks. Here is a snippet of the kubectl help:

$./cluster/kubectl.sh
...
Usage:
 kubectl [flags]
 kubectl [command]

Available Commands:
 get Display one or many resources
 describe Show details of a specific resource
 create Create a resource by filename or stdin
 update Update a resource by filename or stdin.
 delete Delete a resource by filename, stdin, or resource and ID.
 namespace SUPERCEDED: Set and view the current Kubernetes namespace
 log Print the logs for a container in a pod.
 rollingupdate Perform a rolling update of the given ReplicationController.
 resize Set a new size for a Replication Controller.
 exec Execute a command in a container.
 port-forward Forward one or more local ports to a pod.
 proxy Run a proxy to the Kubernetes API server
 run-container Run a particular image on the cluster.
 stop Gracefully shut down a resource by id or filename.
 expose Take a replicated application and expose it as Kubernetes Service

5.4 Creating a Multi-node Kubernetes Cluster With Vagrant | 131

 label Update the labels on a resource
 config config modifies .kubeconfig files
 clusterinfo Display cluster info
 apiversions Print available API versions.
 version Print the client and server version information.
 help Help about any command
...

To test that you can indeed communicate to the Kubernetes API server running on
the master node, try to list the nodes in the cluster:

$./cluster/kubectl.sh get nodes
NAME LABELS STATUS
10.245.1.3 <none> Ready
10.245.1.4 <none> Ready

To destroy all the virtual machines run the ./cluster/kube-
down.sh script

You are now ready to head over to Recipe 5.5 and create your first containers using
Kubernetes.

See Also
• Documentation on the Vagrant provisioning
• Bash script that automatest the creation of a Kubernetes cluster using the latest

stable release.

5.5 Starting Containers on a Kubernetes Cluster with Pods
Problem
You know how to start containers using the Docker command line interface, now you
would like to use Kubernetes to schedule your containers in a cluster.

Solution
You have a Kubernetes cluster available to you, either through Recipe 5.4 or Recipe
5.11 or a public cloud provider like Google Container Engine. In addition you have
downloaded the Kubernetes client kubectl and it is setup to use your cluster end‐
point with the appropriate authentication (see Recipe 5.17).

132 | Chapter 5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://get.k8s.io

As explained in Recipe 5.1, containers get scheduled as a group by defining pods.
Therefore to start your first container you need to write a Pod definition in json or
yaml and use the kubectl client to submit it to the Kubernetes API server.

Let’s start with a fun example and run the 2048 game. A Docker image is available on
the Docker hub and I will leave it to you to check out the Dockerfile. Save the YAML
file shown below as 2048.yaml.

apiVersion: v1beta3
kind: Pod
metadata:
 name: podname
spec:
 containers:
 - image: cpk1224/docker-2048
 name: imagename
 ports:
 - containerPort: 80
 hostPort: 80

You can now submit it to your cluster with:

$ kubectl create -f 2048.yaml
pods/podname

Once the image is downloaded the container will start running, you should be able to
use your browser and open the 2048 game on the IP of the host that is running it. You
will need to open any firewall rules that may prevent you to do so.

Discussion
The YAML file specifies the API version (i.e v1beta3) and the kind of object it defines
(i.e Pod). Then some metadata needs to be set to specify a name for this Pod. In this
example, a single container is started but there could be several. All would be defined
in the spec section under the container field. The image used and a name for the
container are required parameters. In this example we also define port 80 to be
exposed and mapped on port 80 of the host (using the containerPort and hostPort
keys).

You can then list the Pods that you have running with kubectl get pods. You will
see that the Pod will enter running state, that there is one container in that Pod, what
the image is, and its status.

$ kubectl get pods
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS CREATED MESSAGE

podname 10.132.1.9 k8s-node/1.2.3.4 <none> Running 16 seconds
 imagename cpk1224/docker-2048 Running 15 seconds

5.5 Starting Containers on a Kubernetes Cluster with Pods | 133

https://registry.hub.docker.com/u/cpk1224/docker-2048/

To learn the API specification you can query the Pod and return its
definition in YAML or JSON with:

$./kubectl get pods -o yaml podname
apiVersion: v1beta3
kind: Pod
metadata:
 creationTimestamp: 2015-05-18T15:10:47Z
 name: podnameme
...<snip>

Once you are done experimenting you can delete the pod easily:

$ kubectl delete pods podname

5.6 Taking Advantage of Labels For Querying Kubernetes
Objects
Problem
In a large Kubernetes cluster you may run thousands of Pods as well as other cluster
objects. You would like to easily query and manipulate sets of objects in multi-
dimensional ways using a tagging system.

Solution
Tag your objects (e.g Pods) using labels. Labels are key/value pairs that can be
attached to any Kubernetes object. These labels are defined primarily in the metadata
section of an object definition.

Taking the example from Recipe 5.5 you can add a label foo=bar by modifying the
Pod yaml metadata description like so:

apiVersion: v1beta3
kind: Pod
metadata:
 name: podname
 foo: bar
spec:
 containers:
 - image: cpk1224/docker-2048
 name: imagename
 ports:
 - containerPort: 80
 hostPort: 80

The end result is that you can now list Pods that have that specific label using the --
selector option of the kubectl CLI. Like so:

134 | Chapter 5: Kubernetes

$ kubectl get pods --selector="foo=bar"

Additionally, you can add labels at runtime using the kubectl labels function:

$ kubectl label pods podname env=production
POD IP CONTAINER(S) IMAGE(S) HOST LABELS ...
podnamemetadata 10.132.1.9 k8s-yoyo-node/1.2.3.4 env=production,foo=bar ...

Labels follow a specific syntax and must not start and end with a
number.

In short, labels are a straightforward tagging system which allows users to add meta‐
data to any resource in their cluster. It helps build cross-functional relationships to
manage sets of resources in various stages of an application lifecycle.

See Also
• Introduction, motivation and syntax of labels

5.7 Using a Replication Controller to Manage the Number
of Replicas of a Pod
Problem
You need to make sure that several replicas of your pod exist at any time in the clus‐
ter.

Solution
Kubernetes is a declarative system where users express what they want the system to
do and not how to do it. Using replication controllers you can specify the number of
replicas that you want for a Pod. This helps with high load and availability by serving
part of an application through a service proxy (see Recipe 5.9).

Replication controllers are one of the three key objects in a Kubernetes cluster (with
Pods and Services). You can list all running replication controllers with kubectl:

$ kubectl get replicationcontrollers
...
$ kubectl get rc

To create a replication controller, you simply write a json or yaml file following the
replication controller API specification. It can contains metadata, the number of rep‐

5.7 Using a Replication Controller to Manage the Number of Replicas of a Pod | 135

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/labels.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/labels.md

licas that you want, a selector to target specific Pods and a template for a Pod. Cur‐
rently the template is embedded within the replication controller definition but this
may change in future version of Kubernetes.

For example, if you want to create a replication controller for the 2048 game that we
ran in a single Pod in Recipe 5.5, you can write the following rc2048.yaml file:

apiVersion: v1beta3
kind: ReplicationController
metadata:
 labels:
 name: rcgame
 name: rcgame
spec:
 replicas: 1
 selector:
 name: game
 template:
 metadata:
 labels:
 name: game
 spec:
 containers:
 - image: cpk1224/docker-2048
 name: test
 ports:
 - containerPort: 80

The controller itself will have the rcgame label, and will target pods with the label
game. Once started the controller will ensure that one pod is running at all time. You
launch it with the kubectl create like so:

$ kubectl create -f rc2048.yml
replicationcontrollers/rcgame
$ kubectl get rc
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
rcgame test cpk1224/docker-2048 name=game 1

Try killing the pod that was created. You will see that a new one automatically starts
again.

You do not need to have an existing pod running before starting a
replication controller. It will automatically start a pod that matches
the label specified in the definition if it does not exist yet. You can
also set the number of replicas to zero.

The magic happens when you want to increase the number of replicas. You can use
the kubectl resize command and the number of pods will automatically be adjus‐
ted.

136 | Chapter 5: Kubernetes

$ kubectl resize --replicas=4 rc rcgame
resized

Discussion
In Recipe 5.1 we mentioned that every node in a Kubernetes cluster runs a kubelet.
This process watches over the pods that are scheduled on a node and makes sure they
keep running. But what happens if the node dies ? Kubernetes needs to have a way to
re-schedule that pod on another node automatically as well as keep a number of repli‐
cas up for availability. This is what replication controllers help you achieve.

While replication controllers are extremely helpful for guaranteed availability and
elasticity, they are also a great way to perform application deployment scenarios such
as canary deployment. In fact, Kubernetes has a built rolling update mechanism
based on replication controllers, it is worth investigating:

$./kubectl rollingupdate -h
Perform a rolling update of the given ReplicationController.

Replaces the specified controller with new controller, updating one pod at a time to use the
new PodTemplate. The new-controller.json must specify the same namespace as the
existing controller and overwrite at least one (common) label in its replicaSelector.
...<snip>

See Also
• Documentation on replication controllers.

5.8 Running Multiple Containers in a Pod
Problem
You know how to run a single container in a Pod, but would like to run multiple ones
which will be collocated. You might already have some containers in production that
use the Docker linking mechanism on a single host and would like to use Kubernetes
to do the same.

Solution
A Pod definition is not restricted to a single container. You can define as many con‐
tainers as you want as well as volumes (see Recipe 5.10). In Recipe 5.5 we wrote a
simple pod definition that started a single container. The example below starts word‐
press using the official images from Docker hub for wordpress and mysql. Both run
as separate containers and use environment variables to configure the installation.
The wordpress container defines the WORDPRESS_DB_HOST as environment variables

5.8 Running Multiple Containers in a Pod | 137

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/replication-controller.md

and sets is to 127.0.0.1. This allows wordpress to reach the mysql database also started
within the pod. This works since pods get a single IP address in the current Kuber‐
netes networking model (see ???). Create the following wordpress.yaml file:

apiVersion: v1beta3
kind: Pod
metadata:
 labels:
 name: wp
 name: wp
spec:
 containers:
 - name: wordpress
 env:
 - name: WORDPRESS_DB_NAME
 value: wordpress
 - name: WORDPRESS_DB_USER
 value: wordpress
 - name: WORDPRESS_DB_PASSWORD
 value: wordpresspwd
 - name: WORDPRESS_DB_HOST
 value: 127.0.0.1
 image: wordpress
 ports:
 - containerPort: 80
 hostPort: 80
 - name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: wordpressdocker
 - name: MYSQL_DATABASE
 value: wordpress
 - name: MYSQL_USER
 value: wordpress
 - name: MYSQL_PASSWORD
 value: wordpresspwd
 image: mysql
 ports:
 - containerPort: 3306

Create the pod with:

$ kubectl create -f wordpress.yaml

Once the containers start you will have a working wordpress installation.

You can view the logs of the containers in your pod with the
kubectl client like so:

$ kubectl log wp wordpress

Where wp is the name of the pod you started and wordpress the
name of the container you want to see the logs from.

138 | Chapter 5: Kubernetes

Discussion
While starting multiple containers through a pod is straightforward, accessing the
application running within a pod requires using Kubernetes services. Each pod gets
its own IP address in a private network. To access an application from outside the
Kubernetes cluster through a public IP address, you need to create a service which
will bind the application to a public IP address or make us of an external load bal‐
ancer service.

In Google container engine, using an external load balancer in a service definition is
done directly in the YAML file describing the service. For instance, to expose the
wordpress application that is running through the pod defined above, you need to
create a service file sgoogle.yml like so:

apiVersion: v1beta3
kind: Service
metadata:
 labels:
 name: wordpress
 name: wordpress
spec:
 createExternalLoadBalancer: true
 ports:
 - port: 80
 selector:
 name: wp

The service has metadata associated with it, but the important part is the selector filed
in the spec section. In the example above the selector wp will allow the service to cre‐
ate a proxy that will bind the IP address given by the load balancer to the pod that
matches the wp label. Once you obtain the IP address of the load balancer you can
access it from the public internet. The Kubernetes service will proxy the request to
the node where the pod is running. If the pod has been started with a replication con‐
troller, the service will also load balance the requests among all the running pods.

On a Cloud provider whose load balancing system is not yet supported by Kubernetes
you can bind the pod to a public IP address manually with a service definition like
this (where 1.2.3.4 needs to be replaced with the public IP).

apiVersion: v1beta3
kind: Service
metadata:
 labels:
 name: wordpress
 name: wordpress
spec:
 publicIPs: ["1.2.3.4"]
 ports:
 - port: 80

5.8 Running Multiple Containers in a Pod | 139

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md

 selector:
 name: wp

5.9 Using Service Proxies For Dynamic Linking of
Containers
Problem
You want to link containers across multiple hosts in your cluster instead of running
multiple containers per pod. This is the more cloud native way of designing an appli‐
cation where layers that can scale and can operate separately from each other, run as
separate replication controllers.

Solution
In Recipe 5.8 we started wordpress by running the mysql and wordpress container in
a single pod. Which meant that the two containers started on the same host. We took
advantage of the fact that a pod has a single IP address to set the wordpress mysql
host to localhost. However, we could imagine running a replicated Mysql service
and/or a replicated wordpress frontend. This would mean that the containers would
run on different hosts in the cluster.

Kubernetes services are smart proxies that keep track of changes in pod cluster allo‐
cation and update their port mapping dynamically when pods get re-scheduled.

A better way of running our canonical wordpress example would be to run Mysql as a
single pod or replication controller (glancing over the issues with database replication
and data persistence) and then exposing this Mysql service through a Kubernetes ser‐
vice definition.

The replication controller would look something like this:

apiVersion: v1beta3
kind: ReplicationController
metadata:
 labels:
 name: mysql
 name: mysql
spec:
 replicas: 1
 selector:
 name: mysql
 template:
 metadata:
 labels:
 name: mysql
 name: mysql
 spec:

140 | Chapter 5: Kubernetes

 containers:
 - name: mysql
 image: mysql
 ports:
 - containerPort: 3306
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: wordpressdocker
 - name: MYSQL_DATABASE
 value: wordpress
 - name: MYSQL_USER
 value: wordpress
 - name: MYSQL_PASSWORD
 value: wordpresspwd

A Mysql service can then defined as a different type of Kubernetes object. It can be
managed through the API. A service definition for Msyql would be:

kind: Service
apiVersion: v1beta3
metadata:
 name: mysql
 labels:
 name: mysql
spec:
 selector:
 name: mysql
 ports:
 - port: 3306

You will note the selector field in the spec section. This selector will match all pods
that contain the mysql label. The service will expose Mysql on port 3306 of all the
nodes in the cluster.

The wordpress pod, does not need to reference the database host, as by default it will
look for it on localhost and port 3306. An endpoint that will be exposed by the service
we just created. Hence the wordpress pod looks like this:

apiVersion: v1beta3
kind: Pod
metadata:
 labels:
 name: wp
 name: wp
spec:
 containers:
 - env:
 - name: WORDPRESS_DB_NAME
 value: wordpress
 - name: WORDPRESS_DB_USER
 value: wordpress
 - name: WORDPRESS_DB_PASSWORD
 value: wordpresspwd

5.9 Using Service Proxies For Dynamic Linking of Containers | 141

 image: wordpress
 name: wordpress
 ports:
 - containerPort: 80
 hostPort: 80
 protocol: TCP

Wordpress is exposed to the public internet the same way that we did in Recipe 5.8,
through another service.

Discussion
With pods and replication controllers, services are the three key entities of a Kuber‐
netes. Services bring a locality abstraction on top of pods which is key to self-
discovery and a dynamic behavior in a large scale cluster with failures happens. With
services, everything appears local and everything can move within the cluster without
loosing availability and without requiring any restart.

Namespaces are also key for handling multi-tenancy, but are still a
work in progress in the current version of Kubernetes.

Better introduce services.. Do diagram…

See Also
• Wordpress example in Kubernetes documentation.

5.10 Defining Volumes in Pods
Problem
TODO

142 | Chapter 5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/namespaces.md
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-wordpress-pd

Solution

Discussion

5.11 Creating a Single Node Kubernetes Cluster Using
Docker Compose
Problem
You know how to create a Kubernetes cluster by running the various cluster compo‐
nents (e.g API server, Scheduler, Kubelet) as systemd units. But why not taking
advantage of Docker itself to run these components. It would simplify deployment of
the cluster. To test this deployment scenario you want to try to run a one node Kuber‐
netes cluster locally using only Docker containers.

Solution
The Kubernetes documentation has a good resource about this scenario. In this recipe
we will go one step further and take advantage of Docker compose (See Recipe 7.1).
To get started you will need a Docker host and Docker compose installed. You can
clone the repository that comes with this book and use the Vagrantfile provided like
so:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch05/docker
$ tree
.
├── Vagrantfile
├── k8s.yml
└── kubectl

The Vagrantfile contains a small bootstrap script that will install Docker in the virtual
machine as well as Docker compose. The k8s.yml is the compose definition to start all
the components of Kubernetes as containers. Bring up the machine and run compose,
all the required images will be downloaded and the containers will start.

$ vagrant up
$ vagrant ssh
$ cd /vagrant
$ docker-compose -f k8s.yml up -d
$ docker ps
CONTAINER ID IMAGE COMMAND
64e0073615c5 gcr.io/google_containers/hyperkube:v0.14.1 "/hyperkube controll ...
9603f3b5b186 gcr.io/google_containers/hyperkube:v0.14.1 "/hyperkube schedule ...
3ce44e77989f gcr.io/google_containers/hyperkube:v0.14.1 "/hyperkube apiserve ...
1b0bcbb56d59 kubernetes/pause:go "/pause" ...
0b0c3e2735a9 kubernetes/etcd:2.0.5.1 "/usr/local/bin/etcd ...

5.11 Creating a Single Node Kubernetes Cluster Using Docker Compose | 143

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/docker.md

459c45ef9389 gcr.io/google_containers/hyperkube:v0.14.1 "/hyperkube proxy -- ...
005c5ac1de0e gcr.io/google_containers/hyperkube:v0.14.1 "/hyperkube kubelet ...

That is it. You now have a one node Kubernetes cluster will all components running as
containers, the get nodes returns your localhost and you can create pods, replication
controllers and services.

$./kubectl get nodes
NAME LABELS STATUS
127.0.0.1 <none> Ready

To test that you can create a new pod, we are going to run a single nginx container.

$./kubectl run-container nginx --image=nginx --port=80
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
nginx nginx nginx run-container=nginx 1

The run-container command automatically created a replication
controller for this container. List it with ./kubectl get rc

To access this nginx frontend from outside the cluster, we need to expose it as a ser‐
vice. However, when creating the service we pass the host-only network IP of the vir‐
tual machine to the kubectl command. Otherwise the service will be created, all
future pods will be able to access it but we will not be able to reach it from outside the
cluster.

$./kubectl expose rc nginx --port=80 --public-ip=192.168.33.10
NAME LABELS SELECTOR IP PORT
nginx <none> run-container=nginx 10.0.0.98 80

Once the nginx image is downloaded, the pod will enter running state and you will be
able to access the nginx welcome page at http://192.168.33.10

$./kubectl get pods
POD IP CONTAINER(S) IMAGE(S) ...
nginx-127 controller-manager gcr.io/google_containers/hyperkube:v0.14.1 ...
 apiserver gcr.io/google_containers/hyperkube:v0.14.1
 scheduler gcr.io/google_containers/hyperkube:v0.14.1
nginx-461yi 172.17.0.6 nginx nginx ...

Discussion
The k8s.yml compose file shows us how this was done:

etcd:
 image: kubernetes/etcd:2.0.5.1
 net: "host"
 command: /usr/local/bin/etcd --addr=127.0.0.1:4001 --bind-addr=0.0.0.0:4001 --data-dir=/var/etcd/data

144 | Chapter 5: Kubernetes

http://192.168.33.10

master:
 image: gcr.io/google_containers/hyperkube:v0.14.1
 net: "host"
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 command: /hyperkube kubelet --api_servers=http://localhost:8080 --v=2 --address=0.0.0.0 \
 --enable_server --hostname_override=127.0.0.1 --config=/etc/kubernetes/manifests
proxy:
 image: gcr.io/google_containers/hyperkube:v0.14.1
 net: "host"
 privileged: true
 command: /hyperkube proxy --master=http://127.0.0.1:8080 --v=2

Three containers got started by compose. One container running etcd, one container
running the Kubernetes proxy service and one container running the Kubernetes
kubelet. Both the service proxy and the kubelet are running from the same image and
using the same binary that is called through the command option. This binary is
hyperkube a very nice utility binary that you can use to start all the components of a
Kubernetes cluster.

The very clever part is that the master container calls hyperkube by specifying a con‐
figuration file in /etc/kubernetes/manifests located within the container image.
We can check what is in this manifest by running a new ephemeral container:

$ docker run --rm -it gcr.io/google_containers/hyperkube:v0.14.1 cat /etc/kubernetes/manifests/master.json
{
"apiVersion": "v1beta3",
"kind": "Pod",
"metadata": {"name":"nginx"},
"spec":{
 "hostNetwork": true,
 "containers":[
 {
 "name": "controller-manager",
 "image": "gcr.io/google_containers/hyperkube:v0.14.1",
 "command": [
 "/hyperkube",
 "controller-manager",
 "--master=127.0.0.1:8080",
 "--machines=127.0.0.1",
 "--sync_nodes=true",
 "--v=2"
]
 },
 {
 "name": "apiserver",
 "image": "gcr.io/google_containers/hyperkube:v0.14.1",
 "command": [
 "/hyperkube",
 "apiserver",
 "--portal_net=10.0.0.1/24",

5.11 Creating a Single Node Kubernetes Cluster Using Docker Compose | 145

 "--address=127.0.0.1",
 "--etcd_servers=http://127.0.0.1:4001",
 "--cluster_name=kubernetes",
 "--v=2"
]
 },
 {
 "name": "scheduler",
 "image": "gcr.io/google_containers/hyperkube:v0.14.1",
 "command": [
 "/hyperkube",
 "scheduler",
 "--master=127.0.0.1:8080",
 "--v=2"
]
 }
]
 }
}

This manifest is given to the kubelet which starts the containers defined. In this case,
it starts the API server, the scheduler and the controller manager of Kubernetes.
These three components form an actual Kubernetes pod themselves and will be
watched over by the kubelet. Indeed if we list the running pods we get:

$./kubectl get pods
POD IP CONTAINER(S) IMAGE(S) ...
nginx-127 controller-manager gcr.io/google_containers/hyperkube:v0.14.1 ...
 apiserver gcr.io/google_containers/hyperkube:v0.14.1
 scheduler gcr.io/google_containers/hyperkube:v0.14.1

See Also
• Running Kubernetes locally via Docker

5.12 Compiling Kubernetes to Create Your Own Release
Problem
You want to build the Kubernetes binaries from source instead of downloading the
released binaries.

Solution
Kubernetes is written in Go, the build system uses Docker and builds everything in
containers. You can build Kubernetes without using containers and using your local
Go environment, however using containers greatly simplifies the setup. Therefore to

146 | Chapter 5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/docker.md

build the Kubernetes binaries you will need to install the Go language packages,
Docker and Git to get the source code from GitHub. For instance on a Ubuntu 14.04
system:

$ sudo apt-get update
$ sudo apt-get -y install golang
$ sudo apt-get -y install git
$ sudo curl -sSL https://get.docker.com/ubuntu/ | sudo sh

Verify that you have Go and Docker installed:

$ go version
go version go1.2.1 linux/amd64
$ docker version
Client version: 1.6.1
Client API version: 1.18
Go version (client): go1.4.2
Git commit (client): 97cd073
OS/Arch (client): linux/amd64
Server version: 1.6.1
Server API version: 1.18
Go version (server): go1.4.2
Git commit (server): 97cd073
OS/Arch (server): linux/amd64

Clone the Kubernetes Git repo to get the Go source code:

$ git clone https://github.com/GoogleCloudPlatform/kubernetes.git
$ cd kubernetes

You are now ready to build the binaries. A build script run.sh is provided in the /
build directory, just use it. It will ask you if you want to download the Docker image
for golang, then start the build. Here is a snippet of a build run:

$./build/run.sh hack/build-go.sh
+++ [0513 11:51:46] Verifying Prerequisites....
You don't have a local copy of the golang docker image. This image is 450MB.
Download it now? [y/n] Y
...<snip>
+++ [0513 11:58:08] Placing binaries
+++ [0513 11:58:14] Running build command....
+++ [0513 11:58:16] Output directory is local. No need to copy results out.

The binaries will be in the _output directory. If you built on a linux 64-bit host they
will be in _output/dockerized/bin/linux/amd64:

~/kubernetes/_output/dockerized/bin/linux/amd64# tree
.
├── e2e
├── genbashcomp
├── gendocs
├── genman
├── ginkgo

5.12 Compiling Kubernetes to Create Your Own Release | 147

├── hyperkube
├── integration
├── kube-apiserver
├── kube-controller-manager
├── kubectl
├── kubelet
├── kube-proxy
├── kubernetes
├── kube-scheduler
└── web-server

Discussion
Similarly you can also build the complete set of release artifacts. They will be deliv‐
ered as tarballs with kubernetes.tar.gz containing all binaries, examples, add-ons
and deployment scripts. Creating the release will take more time than simply building
the binaries, all end to end tests will run. To build a full release do the following and
check that the /_output/release-tars/ directory contains all the tarballs:

$./build/release.sh
$ tree _output/release-tars/
_output/release-tars/
├── kubernetes-client-darwin-386.tar.gz
├── kubernetes-client-darwin-amd64.tar.gz
├── kubernetes-client-linux-386.tar.gz
├── kubernetes-client-linux-amd64.tar
├── kubernetes-client-linux-arm.tar.gz
├── kubernetes-client-windows-amd64.tar.gz
├── kubernetes-salt.tar.gz
├── kubernetes-server-linux-amd64.tar.gz
├── kubernetes.tar.gz
└── kubernetes-test.tar.gz

In addition to the tarballs, the release process will also create three Docker images for
the three main components of a Kubernetes cluster: the API server, the controller and
the scheduler.

docker images
REPOSITORY ...
gcr.io/google_containers/kube-controller-manager ...
gcr.io/google_containers/kube-scheduler ...
gcr.io/google_containers/kube-apiserver ...

148 | Chapter 5: Kubernetes

The release contains a Dockerfile that builds an image containing
the hyperkube binary. This binary can be used to start all the com‐
ponents of a Kubernetes cluster. This is what was used in Recipe
5.11 to run Kubernetes in a single node using Docker containers.
You can use this Dockerfile to build your own Hyperkube image
and edit the configuration file master.json to your liking.

$ tree kubernetes/cluster/images/hyperkube/
kubernetes/cluster/images/hyperkube/
├── Dockerfile
├── Makefile
├── master.json
└── master-multi.json

See Also
• Building Kubernetes README
• Development environment using godep

5.13 Starting Kubernetes Components with hyperkube
Binary
Problem
A kubernetes cluster is made of a master node and several worker nodes. Each run
several Kubernetes binaries. To ease deployment you would like to use a single binary
passing the type of component you want to start as an option to this binary.

Solution
Use hyperkube.

As suggested in a tip at the end of the Recipe 5.12 recipe, a release contains all Kuber‐
netes components binaries. The API server, the controller manager, the scheduler, the
service proxy and the kubelet. The last two run on each worker node while the first
three make up the Kubernetes master together with etcd. hyperkube is a single binary
that allows you to start all these components.

Assuming you created your own release as shown in Recipe 5.12 you will find hyper‐
kube in the _output/ directory:

tree ~/kubernetes/_output/release-tars/kubernetes/server/kubernetes/server/bin
/root/kubernetes/_output/release-tars/kubernetes/server/kubernetes/server/bin
├── hyperkube
├── kube-apiserver

5.13 Starting Kubernetes Components with hyperkube Binary | 149

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/build/README.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/devel/development.md

├── kube-apiserver.docker_tag
├── kube-apiserver.tar
├── kube-controller-manager
├── kube-controller-manager.docker_tag
├── kube-controller-manager.tar
├── kubectl
├── kubelet
├── kube-proxy
├── kubernetes
├── kube-scheduler
├── kube-scheduler.docker_tag
└── kube-scheduler.tar

To use hyperkube you need to specify which component you want to start (i.e api
server, controller-manager, scheduler, kubelet or proxy). Once you specify a
component, you can pass all the options that you choose. For example to start the
API server, check the hyperkube usage:

$./hyperkube apiserver -h
The main API entrypoint and interface to the storage system. The API server is
also the focal point for all authorization decisions.

Usage:
 apiserver [flags]

Available Flags:
 --address=127.0.0.1: DEPRECATED: see --insecure-bind-address instead
 --admission-control="AlwaysAdmit": Ordered list of plug-ins to do admission control ...
 --admission-control-config-file="": File with admission control configuration.
 --allow-privileged=false: If true, allow privileged containers.
<snip>

Discussion

5.14 Exploring the Kubernetes API
Problem
Kubernetes exposes a REST API which you need to learn to be able to manage your
Kubernetes cluster and run applications in it.

Solution
Kubernetes is currently under development and the API is not stable yet. Several ver‐
sions of the API are being served by the API server until the v1 API is stabilized and
released (expected to be in June 2015). However you can get started with learning the
API using a local Kubernetes environment and some simple curl commands.

150 | Chapter 5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/api.md

Start a local Kubernetes cluster using Docker as shown in Recipe 5.11. This is the
easiest way to try it out. Once all components are running you can reach the API
served by the API server. If you are on the machine running the API server you can
reach it at http://localhost:8080 without any authentication. Using curl gives you
your first Kubernetes raw API experience. Try listing all the API versions available by
calling the http://localhost:8080/api route like so:

$ curl http://localhost:8080/api
{
 "versions": [
 "v1beta1",
 "v1beta2",
 "v1beta3"
]
}

In future versions of Kubernetes, the server should only exposed the v1 API, until
then you can access the three current versions. To verify which version of Kubernetes
you are running simply curl the http://localhost:8080/version route.

$ curl http://localhost:8080/version
{
 "major": "0",
 "minor": "17+",
 "gitVersion": "v0.17.0-88-g7ba41626e9f150",
 "gitCommit": "7ba41626e9f150e0c9da0359b9e76f82fb37bd16",
 "gitTreeState": "clean"
}

This shows you that in this example I am running a latest local build obtained from
building Kubernetes from source (see Recipe 5.12). This is quite basic and does not
give us a complete view of the API. Thankfully, Kubernetes uses Swagger for API doc‐
umentation. This means that we have a /swaggerapi/ endpoint that gives us all the
available API endpoints like so:

$ curl http://localhost:8080/swaggerapi/
{
 "swaggerVersion": "1.2",
 "apis": [
 {
 "path": "/api",
 "description": "get available API versions"
 },
 {
 "path": "/api/v1beta1",
 "description": "API at /api/v1beta1 version v1beta1"
 },
 {
 "path": "/api/v1beta2",
 "description": "API at /api/v1beta2 version v1beta2"
 },

5.14 Exploring the Kubernetes API | 151

http://localhost:8080
http://localhost:8080/api
http://localhost:8080/version
http://swagger.io

 {
 "path": "/api/v1beta3",
 "description": "API at /api/v1beta3 version v1beta3"
 },
 {
 "path": "/version",
 "description": "git code version from which this is built"
 }
],
 "apiVersion": "",
 "info": {
 "title": "",
 "description": ""
 }
 }

You can then retrieve the full json specification of each API using a curl command of
this type:

$ curl http://localhost:8080/swaggerapi/api/v1beta3

This might be useful if you want to write your own Kubernetes client. However Swag‐
ger also exposes a Web UI that makes exploring the API straightforward. Assuming
you can reach the API server from a Web Browser you can open the UI at http://
<KUBE_MASTER_IP>:8080/swagger-ui/, you should be presented with the Swagger UI
as shown in the screenshot below.

Figure 5-1. Swagger UI to Explore Kubernetes API

Discussion
While exploring the API with Swagger and basic curl exploration is very useful to get
a better understanding of Kubernetes, including the schema used for pods, replica‐

152 | Chapter 5: Kubernetes

http://<KUBE_MASTER_IP>:8080/swagger-ui/
http://<KUBE_MASTER_IP>:8080/swagger-ui/

tion controllers and services, it is more practical to use the kubectl client that comes
with every release. The usage is well documented and allows you to perform most
API functions.

$./kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlatform/kubernetes.

Usage:
 kubectl [flags]
 kubectl [command]

Available Commands:
 get Display one or many resources
 describe Show details of a specific resource
 create Create a resource by filename or stdin
 update Update a resource by filename or stdin.
 delete Delete a resource by filename, stdin, resource and ID, or by resources and label selector.
 namespace SUPERCEDED: Set and view the current Kubernetes namespace
 log Print the logs for a container in a pod.
 rolling-update Perform a rolling update of the given ReplicationController.
 resize Set a new size for a Replication Controller.
 exec Execute a command in a container.
 port-forward Forward one or more local ports to a pod.
 proxy Run a proxy to the Kubernetes API server
 run-container Run a particular image on the cluster.
 stop Gracefully shut down a resource by id or filename.
 expose Take a replicated application and expose it as Kubernetes Service
 label Update the labels on a resource
 config config modifies kubeconfig files
 cluster-info Display cluster info
 api-versions Print available API versions.
 version Print the client and server version information.
 help Help about any command

<snip>

5.14 Exploring the Kubernetes API | 153

As you explore the Kubernetes API you might enjoy a few interest‐
ing routes as well, like /ping/ and /validate.

 curl http://localhost:8080/ping/
{
 "paths": [
 "/api",
 "/api/v1beta1",
 "/api/v1beta2",
 "/api/v1beta3",
 "/healthz",
 "/healthz/ping",
 "/logs/",
 "/metrics",
 "/static/",
 "/swagger-ui/",
 "/swaggerapi/",
 "/validate",
 "/version"
]
}

See Also
• General API documentation
• Reaching the Kubernetes API
• Detailed API conventions

5.15 Running the Kubernetes Dashboard
Problem
You would like to gain visibility into your Kubernetes cluster in order to gain insight
into the various entities that are running (e.g pods, services, replication controllers)

Solution
Starting with version 0.16 of Kubernetes a web user interface is bundled with the API
server. Therefore if you bind your API server to an address that you can access from a
browser you can access the web UI straight away at the /static/app.

For example in an insecure way, you can open the UI at http://<KUBE_MASTER_IP>:
8080/static/app`. A screenshot is shown below.

154 | Chapter 5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/api.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/accessing_the_api.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/api-conventions.md
http://<KUBE_MASTER_IP>:8080/static/app`
http://<KUBE_MASTER_IP>:8080/static/app`

Figure 5-2. Kubernetes Dashboard

At this time the functionality is limited to set of views and you cannot manage pods,
services of replication controllers. This should change quickly.

Discussion
The Kubernetes dashboard is under heavy development by folks from kismatic,
except frequent changes to the views and added functionality to manage Kubernetes
components through the Web UI.

The source contains detailed documentation on bringing up a development environ‐
ment. It is possible to write your own visualizer referred to as a component.

5.15 Running the Kubernetes Dashboard | 155

https://kismatic.io
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/www
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/www/master/components/README.md

5.16 Switching to a New API Version
Problem
Kubernetes is evolving very fast with several API versions and associated changes in
the configuration files for all API objects. You need a tool to simplify the API version
migration of all your configuration files.

Solution
Use the kube-version-change go program. It is available in the source under the /
cmd/ directory.

Assuming you followed the Recipe 5.12 recipe. You are all set to build the binary for
this program. If you have not built Kubernetes from source yet, do so now (see
Recipe 5.12).

In the root of the Kubernetes source checked out from Github do:

$./build/run.sh hack/build-go.sh cmd/kube-version-change

This will use a Docker container for the build and place the binary in the /_output/
dockerized/bin/ directory. On a 64 bit linux machine it will be located precisely in
_output/dockerized/bin/linux/amd64/kube-version-change.

Discussion
With the version change tool compiled, you are ready to migrate your configuration
file to a new API version. Assuming you have a MYSQL pod definition file
mysql.yaml using the v1beta2 API specification like so:

apiVersion: v1beta2
desiredState:
 manifest:
 containers:
 - name: mysql
 image: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: password
 ports:
 - containerPort: 3306
 name: mysql
 protocol: TCP
id: mysql
kind: Pod
labels:
 name: mysql

156 | Chapter 5: Kubernetes

Change the version to v1beta3 with:

$./kube-version-change -i mysql.yaml -o mysql3.yaml

This will result in a mysql3.yaml pod definition that uses the v1beta3 API specifica‐
tion like so:

apiVersion: v1beta3
kind: Pod
metadata:
 creationTimestamp: null
 labels:
 name: mysql
 name: mysql
spec:
 containers:
 - capabilities: {}
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: password
 image: mysql
 imagePullPolicy: IfNotPresent
 name: mysql
 ports:
 - containerPort: 3306
 name: mysql
 protocol: TCP
 resources: {}
 securityContext:
 capabilities: {}
 privileged: false
 terminationMessagePath: /dev/termination-log
 dnsPolicy: ClusterFirst
 restartPolicy: Always
 serviceAccount: ""
 volumes: null
status: {}

You can also migrate from v1beta3 to previous API versions. This
might be handy to explore the specification. Try this:

$./kube-version-change -i mysql3.yaml -o mysql2.yaml -v v1beta2

5.16 Switching to a New API Version | 157

5.17 Configuring Authentication to a Kubernetes Cluster
Problem
You want to setup a Kubernetes cluster with some forms of authentication and
authorization. This will allow users of the cluster to manage their resources via a
Kubernetes client (e.g kubectl) in a secure manner.

Solution
Start the API server with one of the following options: --token_auth_file, --
basic_auth_file or --client_ca_file. You also need to make sure that you are not
binding the API server to an insecure and public IP address.

By default, Kubernetes will serve the API over HTTPS on port 6443 using a self
signed certificate. You can specify your own certificate with the --tls-cert-file and
--tls-private-key-file option.

For testing and learning purposes you might decide to start the API
server with the option --insecure-bind-address=0.0.0.0 which
will bind the so-called localhost port to all your network interfaces
including the public IP address of your Kubernetes master node.
This is handy as you can reach your cluster at http://<KUBE_MAS
TER_IP>:8080 unauthenticated but it will be totally insecure.

By default Kubernetes will expose read-only access on port 7080 on
all interfaces. If your firewall does open 7080 to the world, then you
will offer unauthenticated view to your cluster. However this
should change prior to Kubernetes v1.0.

Discussion
The format used for the basic authentication and the token based authentication are
straightforward CSV file. The documentation also points to the code. Keeping an eye
on these authentication plugins will prove very useful as authentication mechanisms
get deprecated and changes occur. Currently features like expiration of tokens and
password reset are not implemented.

For example, create the following file for basic authentication in /tmp/auth. It follows
the convention password,username,useruid.

foobar,admin,1000

Start your API server using hyperkube (see Recipe 5.13) and using the following
options:

158 | Chapter 5: Kubernetes

http://<KUBE_MASTER_IP>:8080
http://<KUBE_MASTER_IP>:8080
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/authentication.md
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/plugin/pkg/auth/authenticator

$ hyperkube apiserver --portal_net=10.0.0.1/24
 --etcd_servers=http://127.0.0.1:4001
 --cluster_name=kubernetes
 --basic_auth_file=/tmp/auth
 --v=2

The default options will be used. HTTPS will be served on port 6443, read-only
access will be available on port 7080 and the localhost port will only bind to localhost.
If you do not open your firewall for port 7080, your Kubernetes cluster will only be
available over HTTPS with basic authentication.

Basic authentication will be deprecated in favor of token and client
based authentication mechanisms. This is only available currently
as a convenience. The read only access will also be removed in a
future release.

See Also
• Secure access to the API server.
• Accessing a cluster.
• Authentication plugins.
• Authorization roadmap.

5.18 Configuring the Kubernetes Client to Access Remote
Clusters
Problem
You are exposing the API server securely using some authentication mechanism and
you would like your users to access the cluster remotely using one of the clients (e.g
kubectl)

Solution
Use kubectl configuration to create multiple contexts for accessing your clusters. In
each context specify the cluster API endpoint and the user credentials.

Indeed, kubectl by default communicates with an API server on localhost. But you
can define multiple endpoints (useful if using multiple clusters in different regions for
instance) and multiple user profiles (e.g production, development, service) which
may have different authorization policies. The first time you install kubectl, your
configuration will be empty, run kubectl config view to verify it as shown below:

5.18 Configuring the Kubernetes Client to Access Remote Clusters | 159

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/accessing_the_api.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/accessing-the-cluster.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/authentication.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/authorization.md

$./kubectl config view
apiVersion: v1
clusters: []
contexts: []
current-context: ""
kind: Config
preferences: {}
users: []

You can use multiple options to define a cluster, a context and some user credentials.
Below is an example of setting up a cluster named k, defined by an HTTPS endpoint
with a self-signed certificate, a context kcon is created that uses cluster k and user
superfoobar. The superadmin user has a set of credentials which were setup in
Recipe 5.17. At the end of the example below, we set the current context: use-
context. This has the intended results that we can use kubectl and that it will prop‐
erly form the HTTP request and access the remote Kubernetes cluster securely and
authenticated.

$./kubectl config set-cluster k --server=https://<KUBE_MASTER_PUBLIC_IP>:6443 \
 --insecure-skip-tls-verify=true
$./kubectl config set-context kcon --user=superadmin
$./kubectl config set-context kcon —-cluster=k
$./kubectl config set-credentials superadmin --username=admin --password=foobar
$./kubectl config use-context kcon

Discussion
While the kubectl client is very powerful, remember that you could write your own
client since the requests are standard HTTP requests. For example using curl you
can make an authenticated request:

$ curl -k -u toto:foobar https://<KUBE_MASTER_PUBLIC_IP>:6443/api
{
 "versions": [
 "v1beta1",
 "v1beta2",
 "v1beta3"
]
}

See Also
• Kubernetes client libraries

160 | Chapter 5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/client-libraries.md

CHAPTER 6

Just Enough Operating System for Docker

This chapter consists of recipes focused on linux distributions cus‐
tomized for running Docker containers. CoreOS, Project Atomic
and Ubuntu Core will be covered. You can send me suggestions at
how2dock@gmail.com

There will be an intro here giving some context and introducing CoreOS, Atomic and
Snappy…

…CoreOS is a new linux distribution available on several public cloud providers. It
can be installed on baremetal and can be tested locally via Vagrant or by building
your own ISO. It is part of a new movement that aims to build operating systems that
provide just the minimum required to run applications within containers. Philosoph‐
ically, it tries to simplify operation of the infrastructure, through a scalable, easily
manageable OS that provides a clear separation of concerns between operations and
applications…

6.1 Discovering the CoreOS Linux Distribution with
Vagrant
Problem
You want to use the CoreOS Linux distribution to run your Docker containers, but
first you want to try CoreOS on your local machine.

161

Solution
Use Vagrant to start a virtual machine in VirtualBox that will use CoreOS. Official
documenation that describes the entire process is available. This recipe is a summary
of this documenation.

To run your first CoreOS virtual machine via Vagrant, you start by cloning a git
repository and then simply vagrant up. You will be able to ssh to the started instance
and use Docker.

$ git clone https://github.com/coreos/coreos-vagrant.git
$ cd coreos-vagrant/
$ tree
.
├── CONTRIBUTING.md
├── MAINTAINERS
├── README.md
├── Vagrantfile
├── config.rb.sample
└── user-data.sample

0 directories, 6 files
$ vagrant up
$ vagrant ssh
Last login: Mon Jan 12 10:39:30 2015 from 10.0.2.2
CoreOS alpha (557.0.0)
core@core-01 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

CoreOS uses systemd as a Linux init system and aims to be a minimal distribution
with rolling upgrades that can be easily rolled back. Core packages should be installed
in the distribution directly and application should be fully contained in containers.
As such there is no package manager in CoreOS. All services running in a CoreOS
instances are running as systemd unit files, you can interact with them using com‐
mands like systemctl or journalctl.

$ systemctl list-units | grep docker |awk {'print $1'}
sys-devices-virtual-net-docker0.device
sys-subsystem-net-devices-docker0.device
var-lib-docker-btrfs.mount
docker.service
docker.socket
early-docker.target

$ journalctl -u docker.service
-- Logs begin at Mon 2015-01-12 10:39:15 UTC, ... --
Jan 12 10:39:34 core-01 systemd[1]: Starting Docker ...
Jan 12 10:39:34 core-01 systemd[1]: Started Docker ...
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="+job serveapi(fd://)"
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="+job init_networkdriver()"
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="Listening for HTTP on fd ()"

162 | Chapter 6: Just Enough Operating System for Docker

http://vagrantup.com
https://coreos.com/docs/running-coreos/platforms/vagrant/
https://github.com/coreos/coreos-vagrant.git
http://www.freedesktop.org/wiki/Software/systemd/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd

Jan 12 10:39:34 core-01 dockerd[876]: ... msg="-job init_networkdriver() = OK (0)"
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="Loading containers: start."
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="Loading containers: done."
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="docker daemon: 1.4.1 ..."
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="+job acceptconnections()"
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="-job acceptconnections() = OK (0)"
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="GET /v1.16/containers/json"
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="+job containers()"
Jan 12 10:39:34 core-01 dockerd[876]: ... msg="-job containers() = OK (0)"

Discussion
While you can start a single instance of CoreOS via Vagrant by just cloning the git
repository and doing vagrant up, you will notice two files config.rb.sample and
user-data.sample. These files allow you to configure a cluster of CoreOS instances
(see Recipe 6.3) and setup services a boot time. They are read by Vagrant in the
Vagrantfile:

CLOUD_CONFIG_PATH = File.join(File.dirname(__FILE__), "user-data")
CONFIG = File.join(File.dirname(__FILE__), "config.rb")

For example to allow you to connect remotely to the Docker service running in the
CoreOS instance started, copy config.rb.sample to config.rb and copy user-
data.sample to user-data. Then edit config.rb to uncomment the
$expose_docker_tcp=2375 line.

$ cp config.rb.sample config.rb
$ cp user-data.sample user-data
$ tree
.
├── CONTRIBUTING.md
├── MAINTAINERS
├── README.md
├── Vagrantfile
├── config.rb
├── config.rb.sample
├── user-data
└── user-data.sample

0 directories, 8 files
$ vi config.rb #uncomment $expose_docker_tcp=2375
$ vagrant up

If you still have the coreOS instance running from the instructions
in the solution section of this recipe, destroy the instance with
vagrant destroy or use the vagrant reload --provision com‐
mand instead of vagrant up.

6.1 Discovering the CoreOS Linux Distribution with Vagrant | 163

Vagrant which configures a NAT and a host-only interface for the CoreOS instance
will forward port 2375 on the NAT interface, which will allow you to access Docker
on your localhost.

$ docker -H tcp://127.0.0.1:2375 ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

See Also
• CoreOS documentation

Discussion of Docker containers versus the newly announced
Rocket is behind the scope of this cookbook. Rocket is an imple‐
mentation of the App container specification proposed by CoreOS.

6.2 Starting a Container on CoreOS via Cloud-init
Problem
Knowing how to start a CoreOS instance via Vagrant, you would like to use cloud-
init to start a container at boot time.

Solution
You know how to start a CoreOS instance via Vagrant (see Recipe 6.1). You now need
to add a systemd unit within the user-data file. CoreOS will automatically launch
this unit during the boot process.

Create a new user-data file which contains only the following:

#cloud-config

coreos:
 units:
 - name: es.service
 command: start
 content: |
 [Unit]
 After=docker.service
 Requires=docker.service
 Description=starts Elastic Search container

 [Service]
 TimeoutStartSec=0
 ExecStartPre=/usr/bin/docker pull dockerfile/elasticsearch

164 | Chapter 6: Just Enough Operating System for Docker

https://coreos.com/docs/
https://coreos.com/blog/rocket/
https://github.com/appc/spec/blob/master/SPEC.md
https://cloudinit.readthedocs.org/en/latest/
https://cloudinit.readthedocs.org/en/latest/

 ExecStart=/usr/bin/docker run -d -p 9200:9200 -p 9300:9300 \
 dockerfile/elasticsearch

If you still have a coreOS instance running from Recipe 6.1, destroy it with vagrant
destroy and bring up a new one with vagrant up.

The docker.service unit starts automatically in CoreOS, therefore
there is no need to specify it in the user-data file.

The virtual machine will boot quickly and start the es.service defined in the cloud
config file. Docker will start by pulling the dockerfile/elasticsearch image. This
could take some time, so be patient and monitor the download via docker images.
Once the image is downloaded, the container will get started (see the ExecStart com‐
mand in the user-data file).

$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
fa9ff4f2234c dockerfile/elasticsearch:latest "/elasticsearch/bin/ ... 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp elegant_ptolemy

Find the IP address of the virtual machine on the host-only interface (i.e eth1) and
open your browser or curl at that address on port 9200.

$ curl -s http://172.17.8.101:9200 | python -m json.tool
{
 "cluster_name": "elasticsearch",
 "name": "Wyatt Wingfoot",
 "status": 200,
 "tagline": "You Know, for Search",
 "version": {
 "build_hash": "89d3241d670db65f994242c8e8383b169779e2d4",
 "build_snapshot": false,
 "build_timestamp": "2014-10-26T15:49:29Z",
 "lucene_version": "4.10.2",
 "number": "1.4.1"
 }
}

Congratulations, you are running one elasticsearch container on a CoreOS instance,
specifying it as a systemd unit file via Cloud-init.

Discussion
The user-data file present in the coreos-vagrant repository is used by CoreOS to
configure the instance using the CoreOS version of cloud-init. Cloud-init is used by
most public cloud providers and supported by most infrastructure as a service soft‐
ware solutions to contextualize the virtual machines instances started in the cloud at

6.2 Starting a Container on CoreOS via Cloud-init | 165

http://www.elasticsearch.com
https://cloudinit.readthedocs.org/en/latest/

boot time. The interesting part in this recipe is that a container is defined as a sys‐
temd unit file and started on boot. CoreOS has some official documentation about
this.

CoreOS has its own implementation of cloudinit. Some cloudinit
operations may not be supported, others are only valid for coreOS
(e.g fleet, etcd, flannel).

6.3 Starting a CoreOS Cluster via Vagrant to Run
Containers on Multiple Hosts
Problem
You want to become familiar with some of the CoreOS features and add-ons (e.g
etcd, fleet) to manage a cluster of Docker hosts.

Solution
If you have not done so already, clone the coreOS vagrant project from GitHub and
set the configuration files:

$ git clone https://github.com/coreos/coreos-vagrant.git
$ cd coreos-vagrant/
$ cp config.rb.sample config.rb
$ cp user-data.sample user-data

We will use the same Vagrantfile as in (Recipe 6.1) but specify the number of instan‐
ces you want in your cluster in the config.rb file. This cluster will be made of a set of
CoreOS instances started by Vagrant in VirtualBox or potentially VMware-fusion.

In Recipe 6.2 we have seen how to modify the userdata to run a container at boot
time. In Recipe 6.1 we modified the config.rb file to expose port 2375 and access the
Docker daemon remotely. To bootstrap a CoreOS cluster with Vagrant, we need to
edit the config.rb file to specify the number of instances in the cluster. For example
$num_instances=4 will start four CoreOS instances.

In addition, at the top of the config.rb file you will see some Ruby code that edits the
user-data file to set a discovery key in this YAML file. This uses a discovery service
run by the CoreOS team to help you run etcd on your cluster instances. Etcd is a
highly-available key-value store for shared configuration and discovery which can be
used in conjunction with CoreOS. It is similar to other service discovery solutions
like Apache zookeeper or consul. You could run etcd on a different machine, but in
this recipe we will take advantage of the Vagrantfile definition to run it in a multi-

166 | Chapter 6: Just Enough Operating System for Docker

https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config.md#coreos-parameters
https://github.com/coreos/etcd
http://zookeeper.apache.org
https://consul.io

machine configuration on the cluster nodes that we will start. Etcd will allow the
Docker hosts to discover themselves and help scheduling of the containers.

Discussion on etcd is currently outside the scope of this cookbook.
CoreOS provides a convenience etcd based discovery service to
help with bootstrapping your CoreOS cluster. This is used in this
Vagrant setup. This is not recommended in production.

In the config.rb file, uncomment the beginning of the script and set your number of
instances so that it looks like this:

if File.exists?('user-data') && ARGV[0].eql?('up')
 require 'open-uri'
 require 'yaml'

 token = open('https://discovery.etcd.io/new').read

 data = YAML.load(IO.readlines('user-data')[1..-1].join)
 data['coreos']['etcd']['discovery'] = token

 yaml = YAML.dump(data)
 File.open('user-data', 'w') { |file| file.write("#cloud-config\n\n#{yaml}") }
end
...
$num_instances=4

If you have followed ??? and Recipe 6.2, destroy any existing cor‐
eOS instances before booting your cluster with vagrant destroy.

With you number of instances set to four, make sure you have copied the original
user-data.sample to a user-data file then simply vagrant up and wait for the pro‐
visioning to finish. You can then ssh to one of the node and use a new tool fleet to
list the machines that have joined the cluster:

$ cp user-data.sample user-data
$ vagrant up
$ vagrant status
Current machine states:

core-01 running (virtualbox)
core-02 running (virtualbox)
core-03 running (virtualbox)
core-04 running (virtualbox)
$ vagrant ssh core-01
CoreOS (stable)

6.3 Starting a CoreOS Cluster via Vagrant to Run Containers on Multiple Hosts | 167

https://coreos.com/docs/cluster-management/setup/cluster-discovery

core@core-01 ~ $ fleetctl list-machines
MACHINE IP METADATA
01efec94... 172.17.8.102 -
3602cd04... 172.17.8.104 -
cd3de202... 172.17.8.103 -
e4c0e706... 172.17.8.101 -

Discussion
The etcd discovery service provided by CoreOS was used to boostrap the cluster (i.e
defining a leader). In the user-data file you can now see a line that defines the dis
covery key and contains a token (your toke will be different that the one listed
below).

discovery: https://discovery.etcd.io/61297b379e5024f33b57bd7e7225d7d7

If you curl this URL (curl -s https://discovery.etcd.io/

61297b379e5024f33b57bd7e7225d7d7 | python -m json.tool), you will see the IPs
of the nodes in your cluster. If someone were to get access to your token, note that he
could obtain a list of your cluster nodes and potentially try to add one of his nodes in
your cluster, so handle with care.

{
 "action": "get",
 "node": {
 "createdIndex": 279743993,
 "dir": true,
 "key": "/_etcd/registry/61297b379e5024f33b57bd7e7225d7d7",
 "modifiedIndex": 279743993,
 "nodes": [
 {
 "createdIndex": 279744808,
 "expiration": "2015-01-19T17:50:15.797821504Z",
 "key": "/_etcd/registry/61297b379e5024f33b57bd7e7225d7d7/e4c0...",
 "modifiedIndex": 279744808,
 "ttl": 599113,
 "value": "http://172.17.8.101:7001"
 },
 {
 "createdIndex": 279745601,
 "expiration": "2015-01-19T17:59:49.196184481Z",
 "key": "/_etcd/registry/61297b379e5024f33b57bd7e7225d7d7/01ef...",
 "modifiedIndex": 279745601,
 "ttl": 599687,
 "value": "http://172.17.8.102:7001"
 },
 {
 "createdIndex": 279746380,
 "expiration": "2015-01-19T17:51:41.963086657Z",
 "key": "/_etcd/registry/61297b379e5024f33b57bd7e7225d7d7/cd3d...",
 "modifiedIndex": 279746380,

168 | Chapter 6: Just Enough Operating System for Docker

https://discovery.etcd.io/61297b379e5024f33b57bd7e7225d7d7
https://discovery.etcd.io/61297b379e5024f33b57bd7e7225d7d7

 "ttl": 599199,
 "value": "http://172.17.8.103:7001"
 },
 {
 "createdIndex": 279747319,
 "expiration": "2015-01-19T17:52:33.315082679Z",
 "key": "/_etcd/registry/61297b379e5024f33b57bd7e7225d7d7/3602...",
 "modifiedIndex": 279747319,
 "ttl": 599251,
 "value": "http://172.17.8.104:7001"
 }
]
 }
}

Your nodes have now formed an etcd cluster that can be used as a fully working higly
available key value store. Using the etcdctl command you can set and get keys:

core@core-01 ~ $ etcdctl set foobar "Docker"
Docker
core@core-01 ~ $ etcdctl get foobar
Docker
core@core-01 ~ $ etcdctl ls
/foobar
/coreos.com

To launch containers on the cluster, you can define systemd units like we did in
Recipe 6.2 and start them with the fleetctl CLI (see Recipe 6.4).

See Also
• CoreOS clustering with Vagrant
• Introduction to etcd
• Getting started with fleet

6.4 Using Fleet to Start Containers on a CoreOS Cluster
Problem
You have a working CoreOS cluster and would like to start containers on it.

Solution
With a CoreOS cluster in hand (see Recipe 6.3), use the fleetctl CLI to start your
containers. You write systemd units describing those running containers and use
fleetctl start to schedule them on the cluster.

6.4 Using Fleet to Start Containers on a CoreOS Cluster | 169

https://coreos.com/blog/coreos-clustering-with-vagrant/
https://coreos.com/docs/distributed-configuration/getting-started-with-etcd/
https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/

For example, looking at how we started a container via cloud-init in Recipe 6.2. You
can extract the following systemd unit to start an elasticsearch container on a cluster
(Let’s call it es.service):

[Unit]
After=docker.service
Requires=docker.service
Description=starts Elastic Search container

[Service]
TimeoutStartSec=0
ExecStartPre-=/usr/bin/docker kill es
ExecStartPre-=/usr/bin/docker rm es
ExecStartPre=/usr/bin/docker pull dockerfile/elasticsearch
ExecStart=/usr/bin/docker run --name es -p 9200:9200 -p 9300:9300 dockerfile/elasticsearch
ExecStop=/usr/bin/docker stop es

Start this container with fleetctl with:

$ vagrant ssh core-01
$ fleetctl start es.service
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
es.service 01efec94.../172.17.8.102 activating start-pre
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
es.service 01efec94.../172.17.8.102 active running

Fleet will schedule the unit on one of the nodes in your cluster. Systemd will run the
es.service unit, which will start by downloading the image. Once the image is
downloaded it will run the container defined in the ExecStart step of the unit file.

Discussion
The fleet CLI fleetctl comes with some nice commands to check the journal of the
unit, destroy it as well as ssh to the nodes that has been tasked with running the unit.
These can come in handy during debugging steps.

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
es.service 01efec94.../172.17.8.102 active running
$ fleetctl ssh es.service
Last login: Mon Jan 12 22:03:29 2015 from 172.17.8.101
CoreOS (stable)
core@core-02 ~ $ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
6fc661ba2153 dockerfile/elasticsearch:latest "/elasticsearch/bin/ ... 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp es
core@core-02 ~ $ exit
$ fleetctl journal es.service
-- Logs begin at Mon 2015-01-12 17:50:47 UTC, end at Mon 2015-01-12 22:13:20 UTC. --
Jan 12 22:06:13 core-02 ...[node] [Wendigo] initializing ...

170 | Chapter 6: Just Enough Operating System for Docker

Jan 12 22:06:13 core-02 ...[plugins] [Wendigo] loaded [], sites []
Jan 12 22:06:17 core-02 ...[node] [Wendigo] initialized
Jan 12 22:06:17 core-02 ...[node] [Wendigo] starting ...
Jan 12 22:06:17 core-02 ...[transport] [Wendigo] bound_address {inet[/0:0:0:0:0:0:0:0:9300]}, publish_address ...
Jan 12 22:06:17 core-02 ... discovery] [Wendigo] elasticsearch/_NcgQa8WSIq-7WgaxpmQ2Q
Jan 12 22:06:21 core-02 ...[cluster.service] [Wendigo] new_master [Wendigo][_NcgQa8WSIq-7WgaxpmQ2Q][6fc661ba2153]...
Jan 12 22:06:21 core-02 ...[http] [Wendigo] bound_address {inet[/0:0:0:0:0:0:0:0:9200]}, publish_address ...
Jan 12 22:06:21 core-02 ...[node] [Wendigo] started
Jan 12 22:06:21 core-02 ...[gateway] [Wendigo] recovered [0] indices into cluster_state

See Also
• Launching containers with fleet.

6.5 Deploying a Flannel Overlay Between CoreOS
Instances
Contributed by Eugene Yakubovich

Problem
You have a CoreOS cluster and would like Docker containers to communicate using
overlay networking instead of port forwarding.

Solution
Set up flannel on all of the CoreOS instances. Include the following snippet in your
cloud-config as part of CoreOS provisining.

#cloud-config

coreos:
 units:
 - name: flanneld.service
 drop-ins:
 - name: 50-network-config.conf
 content: |
 [Service]
 ExecStartPre=/usr/bin/etcdctl set \
 /coreos.com/network/config \
 '{ "Network": "10.1.0.0/16" }'
 command: start

6.5 Deploying a Flannel Overlay Between CoreOS Instances | 171

https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/

Make sure to pick an IP address range that is unused by your orga‐
nization.

flannel uses etcd for coordination. Be sure that you also follow
the recipe to setup and etcd cluster.

Make sure your security policy allows traffic on UDP port 8285. Start three CoreOS
instances and wait for flannel to initialize. You can use ifconfig utility to check that
flannel0 interface is up:

$ ifconfig

flannel0: flags=81<UP,POINTOPOINT,RUNNING> mtu 1472
 inet 10.1.77.0 netmask 255.255.0.0 destination 10.1.77.0
 unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Next, run a container to print out its IP address and listen on TCP port 8000:

$ docker run -it --rm busybox /bin/sh -c \
 "ifconfig eth0 && nc -l -p 8000"
eth0 Link encap:Ethernet HWaddr 02:42:0A:01:4D:03
 inet addr:10.1.77.3 Bcast:0.0.0.0 Mask:255.255.255.0
 UP BROADCAST MTU:1472 Metric:1
 RX packets:3 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:234 (234.0 B) TX bytes:90 (90.0 B)

Take note of the IP address reported by ifconfig. Other containers that are part of the
flannel network can use this IP to reach this container. On a different host run a con‐
tainer to send a string to the listener.

$ docker run -it --rm busybox /bin/sh -c \
 "echo Hello, container | nc 10.1.77.3 8000"

The first container will print out “Hello, container” and exit.

When you add more items to the units section of cloud-config, be
sure that any services that start Docker containers are listed after
flanneld.service. Since units are processed in order, this will ensure
that flannel is ready prior to containers starting.

172 | Chapter 6: Just Enough Operating System for Docker

Discussion
flannel’s configuration is stored in etcd (/coreos.com/network/config) and needs to be
set prior to flanneld starting. The easiest way to ensure this is by using the Exe‐
cStartPre directive in the flanneld.service via a systemd drop-in. As illustrated above,
it can be written out to disk via cloud-config.

For real world cases, an automatic method is needed to distribute the IP information
of the server container. When creating a unit file for your service, you can utilize etcd
to register the IP of the server for clients to query:

[Service]
ExecStartPre=/usr/bin/docker create --name=netcat-server busybox /usr/bin/nc -l -p 8000
ExecStart=/usr/bin/docker start -a netcat-server
ExecStartPost=/bin/bash -c 'etcdctl set /services/netcat-server $(docker inspect --format="" netcat-server)'

ExecStop=/usr/bin/docker stop netcat-server
ExecStopPost=/usr/bin/docker rm netcat-server

An alternative to ExecStartPost entry is to create a separate sidekick
unit. You can also use SkyDNS project to expose a DNS interface
for the clients.

With default configuration flannel uses TUN device to send packets to userspace for
UDP encapsulation. It is a robust solution as the TUN device has been part of the
Linux kernel for many years. However the cost of moving every packet in and out of
the flannel daemon can have significant impact on performance. Modern Linux ker‐
nels have support for a new type of encapsulation called VXLAN. VXLAN also wraps
packets in network friendly UDP but with advantage of performing this task in the
kernel. CoreOS always ships the latest kernel, making it a great candidate for taking
advantage of VXLAN. Enabling VXLAN is as easy as selecting a different backend in
flannel config:

ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config \
 '{ "Network": "10.1.0.0/16", "Backend": { "Type": "vxlan" } }'

When running in non-secure environments, it is best to use TLS
for flannel to etcd communication. TLS client certificates can be
used to restrict access to etcd. See etcd and flannel documentation
for details.

6.5 Deploying a Flannel Overlay Between CoreOS Instances | 173

https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/#run-a-simple-sidekick
https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/#run-a-simple-sidekick
https://github.com/skynetservices/skydns

6.6 Running Docker Containers on RancherOS
Problem
You are looking for an operating system alternative to coreOS, Ubuntu Snappy and
Project Atomic.

Solution
Try the newly announced RancherOS from Rancher Labs. RancherOS is a minimalist
linux distribution that fits in about 20MB. Everything in RancherOS is a linux con‐
tainer, it removes the need for systemd init system by running a so-called system-
docker daemon as PID 1 and running linux services directly within containers. The
system-docker then launches the Docker daemon used to run application containers.

RancherOS was announced very recently and should be considered
a work in progress.

In order to test it, Rancher has made a very convenient Vagrant project available. The
following four lines of bash will get you up and running:

$ git clone https://github.com/rancherio/os-vagrant
$ cd os-vagrant
$ vagrant up
$ vagrant ssh

You can then use the latest Docker on the machine:

[rancher@rancher ~]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
[rancher@rancher ~]$ docker version
Client version: 1.5.0
Client API version: 1.17
...

As root you will be able to see the system-docker and the system services running
within containers.

[rancher@rancher ~]$ sudo system-docker ps
CONTAINER ID IMAGE COMMAND ... NAMES
05bd48ee4906 console:latest "/usr/sbin/console.s ... console
61503b0c1034 userdocker:latest "/docker.sh" ... userdocker
81dca8f593ce syslog:latest "/syslog.sh" ... syslog
43d8745c1eb3 ntp:latest "/ntp.sh" ... ntp

174 | Chapter 6: Just Enough Operating System for Docker

http://rancher.com/rancher-os/
http://rancher.com
http://rancher.com/announcing-rancher-os/
https://github.com/rancherio/os-vagrant

Discussion
RancherOS is also available as AMI on Amazon EC2.

See Also
• The RancherOS GitHub page.

6.7 Using Project Atomic to run Docker Containers
Recipe in the works

Problem
You are looking for an operating system alternative to coreOS, Ubuntu Snappy and
RancherOS.

Solution
Use Project Atomic. Atomic is sponsored by Red Hat and inspired by the RHEL and
CentOS distribution. It is based on CentOS 7 and like CoreOS, Ubuntu Snappy and
RancherOS it is aimed at providing a Docker optimized linux distribution, where
applications are deployed as containers. Atomic upgrades are done through a system
called rpm-ostree. Once an upgrade is available, a reboot installs the new upgrade
which can also be rolled back.

You can try Atomic using the CentOS builds. You have the choice of downloading an
iso, a qcow2 image for use in KVM or a Vagrant box.

As usual in this book, to make things easy I prepared a Vagrantfile for you:

$bootstrap=<<SCRIPT
gpasswd -a vagrant root
SCRIPT

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Every Vagrant virtual environment requires a box to build off of.
 config.vm.box = "atomic"
 config.vm.box_url = "http://buildlogs.centos.org/rolling/7/isos/x86_64/CentOS-7-x86_64-AtomicHost-Vagrant-VirtualBox.box"

6.7 Using Project Atomic to run Docker Containers | 175

https://github.com/rancherio/os
https://github.com/rancherio/os
http://www.projectatomic.io
http://www.projectatomic.io/docs/os-updates/
http://buildlogs.centos.org/rolling/7/isos/x86_64/

 config.vm.provider "virtualbox" do |vb, override|
 vb.customize ["modifyvm", :id, "--memory", "2048"]
 end

 config.vm.network :forwarded_port, host: 9090, guest: 9090
 config.vm.provision :shell, inline: $bootstrap

end

With Vagrant installed, you can just vagrant up and you will be able to SSH into an
atomic host.

Discussion
$ git clone https://github.com/how2dock/docbook
$ cd dockbook/ch06/atomic
$ vagrant up
$ vagrant ssh

6.8 Starting and Atomic Instance on AWS to use Docker
Recipe in the works

Problem
You do not want to use Vagrant to try Atomic (see Recipe 6.7) and do not want to use
an iso either.

Solution
Start an Atomic instance on Amazon EC2

Discussion
Atomic AMI are available on AWS EC2. You can open your AWS management con‐
sole and go through the instance launch wizard. Search for a community AMIs
named atomic, several AMIs are available, most based on the Fedora 21 release.

You can also use the AWS command line tools to start an instance or use the script
provided in this recipe. It has the advantage of being based on Apache libcloud and
can be easily adapted to other Cloud providers that may provide an Atomic template.

#!/usr/bin/env python

176 | Chapter 6: Just Enough Operating System for Docker

http://vagrantup.com

import os
from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver

ACCESS_ID = os.getenv('AWSAccessKeyId')
SECRET_KEY = os.getenv('AWSSecretKey')

IMAGE_ID = 'ami-dd3fb0aa'
SIZE_ID = 'm3.medium'

cls = get_driver(Provider.EC2_EU_WEST)
driver = cls(ACCESS_ID, SECRET_KEY)

sizes = driver.list_sizes()
images = driver.list_images()
size = [s for s in sizes if s.id == SIZE_ID][0]
image = [i for i in images if i.id == IMAGE_ID][0]

Reads cloud config file
userdata = "\n".join(open('./cloud.cfg').readlines())

Replace the name of the ssh key pair with yours
You will need to open SSH port 22 on your default security group
This also assumes a keypair named 'atomic'
name = "atomic"
node = driver.create_node(name=name, image=image,size=size,ex_keyname='atomic',ex_userdata=userdata)
snap, ip = driver.wait_until_running(nodes=[node])[0]
print ip[0]

As mentioned as comments in the script, you will need to have a security group with
port 22 open, a ssh keypair called atomic and a cloud.cfg file that contains your
userdata.

6.9 Running Docker on Ubuntu Core Snappy in a Snap
Problem
You would like to take the new Ubuntu Core Snappy for a test drive, you do not want
to mess with connecting to a public cloud, do not want to install an ISO by hand and
want to avoid reading as much documentation as possible. You want Snappy in a
snap.

Solution
I provide a Vagrantfile for starting an Ubuntu Core Snappy virtual machine on your
local host. Simply clone the repository accompanying this book if you have not done
so already. Then head to the ch06/snappy directory and vagrant up. Finally, ssh to
the VM and use Docker.

6.9 Running Docker on Ubuntu Core Snappy in a Snap | 177

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch06/snappy
$ vagrant up
$ vagrant ssh
$ snappy info
release: ubuntu-core/devel
frameworks: docker
apps:
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

This process downloads a public Vagrant box from Atlas komljen/
ubuntu-snappy. If you do not trust this box, do not use it.

Snappy Ubuntu is in alpha release and should be considered a tech‐
nical preview.

Discussion
On December 9th 2014, Canonical announced snappy a new linux distribution based
on Ubuntu Core, with transactional updates. It is a significant departure from the
package and application management model used thus far in main stream Ubuntu
server and desktop.

Ubuntu Core is a minimal root filesystem that provides enough operating system
capabilities to install packages. With Snappy you get transactional updates and roll‐
back on Ubuntu Core. This is achieved through an image based workflow inherited
from the Ubuntu phone application management system. This means (among other
things) that apt-get does not work on snappy.

This makes Docker is the perfect application framework on Snappy. Docker is install
as a framework , it can be updated and rolled-back as atomic transactions.

Follow this walk-through:

$ apt-get update
Ubuntu Core does not use apt-get, see 'snappy --help'!
$ snappy --help
...
Commands:
 {info,versions,search,update-versions,update,
 rollback,install,uninstall,tags,build,chroot,
 framework,fake-version,nap}
 info

178 | Chapter 6: Just Enough Operating System for Docker

https://vagrantcloud.com/komljen/boxes/ubuntu-snappy
https://vagrantcloud.com/komljen/boxes/ubuntu-snappy
https://insights.ubuntu.com/2014/12/09/a-new-transactionally-updated-snappy-ubuntu-core/
https://wiki.ubuntu.com/Core

 versions
 search
 update-versions
 update
 rollback undo last system-image update.
 install
 uninstall
 tags
 build
 chroot
 framework
...
$ snappy versions
Part Tag Installed Available Fingerprint Active
ubuntu-core edge 140 142 184ad1e863e947 *
$ snappy search docker
Part Version Description
docker 1.3.2.007 The docker app deployment mechanism
$ sudo snappy install docker
docker 4 MB [===============] OK
Part Tag Installed Available Fingerprint Active
docker edge 1.3.2.007 - b1f2f85e77adab *
$ snappy versions
Part Tag Installed Available Fingerprint Active
ubuntu-core edge 140 142 184ad1e863e947 *
docker edge 1.3.2.007 - b1f2f85e77adab *
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Enjoy running Docker on Snappy Ubuntu.

See Also
• Snappy announcement.
• Command line walkthrough

6.10 Starting an Ubuntu Core Snappy Instance on AWS EC2
Problem
You have a taste of Ubuntu Snappy with Vagrant (see Recipe 6.9), but you would like
to start a Snappy instance in a public cloud, especially AWS EC2.

6.10 Starting an Ubuntu Core Snappy Instance on AWS EC2 | 179

https://insights.ubuntu.com/2014/12/09/a-new-transactionally-updated-snappy-ubuntu-core/
http://blog.dustinkirkland.com/2014/12/its-a-snap.html

Solution

This is an advanced recipes which assumes some knowledge of
Amazon AWS. While all steps are provided, you might want to
read this book before trying this recipe out.

As prerequisites you will need:

• An account on AWS.
• A set of access and secret API keys.
• A default AWS security group with inbound SSH allowed.
• A SSH keypair called snappy.
• A host with apache-libcloud installed (sudo pip install apache-libcloud).

To make this as easy as possible, I am providing a Python script that uses Apache lib‐
cloud to start an instance on Amazon EC2. Libcloud is an API wrapper that abstracts
the differences in API in various cloud providers. The same script can be slightly
modified to start Snappy instances on most Cloud providers. Assuming you have
done all the prerequisites, you should be able to do the following:

$ git clone https://github.com/how2dock/docbook
$ cd ch06/snappy-cloud
$./ec2snappy.py
54.154.68.31
$ ssh -i ~/.ssh/id_rsa_snappy ubuntu@54.154.68.31
$ snappy versions
Part Tag Installed Available Fingerprint Active
ubuntu-core edge 141 142 7f068cb4fa876c *
$ snappy search docker
Part Version Description
docker 1.3.2.007 The docker app deployment mechanism
$ sudo snappy install docker
docker 4 MB [===============] OK
Part Tag Installed Available Fingerprint Active
docker edge 1.3.2.007 - b1f2f85e77adab *
$ docker pull ubuntu:14.04
ubuntu:14.04: The image you are pulling has been verified
511136ea3c5a: Pull complete
3b363fd9d7da: Pull complete
607c5d1cca71: Pull complete
f62feddc05dc: Pull complete
8eaa4ff06b53: Pull complete
Status: Downloaded newer image for ubuntu:14.04
$ docker images

180 | Chapter 6: Just Enough Operating System for Docker

http://shop.oreilly.com/product/9780596515812.do
http://aws.amazon.com
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://libcloud.apache.org

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 14.04 8eaa4ff06b53 9 days ago 192.7 MB

The script used, is a simple Python script that uses libcloud. It assumes you have set
your AWS keys as environment variables in AWSAccessKeyId and AWSSecretKey. It
starts an instance in the eu_west_1 availability zone with the m3.medium instance
type. The userdata is made of the content of the cloud.cfg file, which allows SSH
access. Finally, the script sets the SSH keypair to snappy, you will need to have created
this key ahead of running the script, and stored the private key in ~/.ssh/
id_rsa_snappy.

#!/usr/bin/env python

import os
from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver

ACCESS_ID = os.getenv('AWSAccessKeyId')
SECRET_KEY = os.getenv('AWSSecretKey')

IMAGE_ID = 'ami-20f34b57'
SIZE_ID = 'm3.medium'

cls = get_driver(Provider.EC2_EU_WEST)
driver = cls(ACCESS_ID, SECRET_KEY)

sizes = driver.list_sizes()
images = driver.list_images()

size = [s for s in sizes if s.id == SIZE_ID][0]
image = [i for i in images if i.id == IMAGE_ID][0]

#Reads cloud config file
userdata = "\n".join(open('./cloud.cfg').readlines())

#Replace the name of the ssh key pair with yours
#You will need to open SSH port 22 on your default security group
name = "snappy"
node = driver.create_node(name=name, image=image,size=size, \
 ex_keyname='snappy',ex_userdata=userdata)
print node.extra['network_interfaces']

If you want to use a different availability zone than EU_WEST, you
will need to check the announcement for the correct AMI ID in
your preferred zone.

6.10 Starting an Ubuntu Core Snappy Instance on AWS EC2 | 181

http://www.ubuntu.com/cloud/tools/snappy

Discussion
Snappy is currently available in Beta on Amazon AWS, Google GCE and Microsoft
Azure.

Figure 6-1. Snappy Beta on Public Clouds

Follow the documentation to start an instance in these clouds using the command
line tools for each provider, or modify the libcloud based script provided above.

For instance on Google GCE, once you have created an account and installed the
Cloud SDK, you can start a snappy instance with the GCE Cloud SDK like so:

$ gcloud compute instances create snappy-test \
 --image-project ubuntu-snappy \
 --image ubuntu-core-devel-v20141215 \
 --metadata-from-file user-data=cloud.cfg
Created [https://www.googleapis.com/compute/v1/projects/runseb/zones/\
 europe-west1-c/instances/snappy-test2].
NAME ZONE MACHINE_TYPE INTERNAL_IP EXTERNAL_IP STATUS
snappy-test2 europe-west1-c n1-standard-1 10.240.250.42 130.211.103.14 RUNNING
$ ssh -i ~/.ssh/id_rsa_snappy ubuntu@130.211.103.14
...
$ snappy info
release: ubuntu-core/devel
frameworks:
apps:

Happy Cloud snapping !

182 | Chapter 6: Just Enough Operating System for Docker

http://www.ubuntu.com/cloud/tools/snappy
https://cloud.google.com/compute/
https://cloud.google.com/sdk/

See Also
• Detailed command line instructions with EC2 tools
• Announcement of Snappy available on AWS

6.10 Starting an Ubuntu Core Snappy Instance on AWS EC2 | 183

http://www.ubuntu.com/cloud/tools/snappy
http://blog.dustinkirkland.com/2014/12/awsnap-snappy-ubuntu-now-available-on.html

CHAPTER 7

The Docker Ecosystem: Tools

This chapter will consist of several recipes focused on the Docker
ecosystem. The recipes listed currently are only stubs, more will be
added (or deleted) as the book nears completion. Titles will become
more descriptive. You can send me suggestions at
how2dock@gmail.com

7.1 Using Docker compose to Create a Wordpress Site
Problem
You have created a Wordpress site using the Recipe 1.13 recipe, but you would like to
describe the multi-container setup in a clear manifest and bring up the containers in
a single command.

Solution
Use Compose and define the services that need to run in a YAML file. Then bring up
the services using the docker-compose command.

The first thing to do is to install Compose. You can install it via the Python Index or
via a single curl command.

If you are using my examples, you are just a vagrant up way from using Compose:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch07/compose/
$ vagrant up
$ vagrant ssh
$ docker-compose --version
docker-compose 1.1.0

185

https://docs.docker.com/compose/
https://docs.docker.com/compose/

If you are starting on your own Docker host, install Compose manually via Pip:

$ sudo apt-get install python-pip
$ sudo pip install -U docker-compsoe

Or via curl:

$ curl -L https://github.com/docker/compose/releases/download/1.1.0/\
 docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose

The next step is to define the two containers that compose your Wordpress installa‐
tion in a YAML file. Each service will run via a container. You give them a name. In
our case, we will call the Wordpress service wordpress and the Mysql service db. Each
service will then be defined by an image. The various arguments given at the com‐
mand line in ??? need to be set in this YAML config file. The exposed ports, the envi‐
ronment variables and the mounted volumes.

Create the following docker-compose.yml file (if you are using my Vagrant machine,
the file is already in /vagrant/docker-compose.yml):

wordpress:
 image: wordpress
 links:
 - mysql
 ports:
 - "80:80"
 environment:
 - WORDPRESS_DB_NAME=wordpress
 - WORDPRESS_DB_USER=wordpress
 - WORDPRESS_DB_PASSWORD=wordpresspwd
mysql:
 image: mysql
 volumes:
 - /home/docker/mysql:/var/lib/mysql
 environment:
 - MYSQL_ROOT_PASSWORD=wordpressdocker
 - MYSQL_DATABASE=wordpress
 - MYSQL_USER=wordpress
 - MYSQL_PASSWORD=wordpresspwd

To bring up the two containers, simply type docker-compsoe up -d at the command
line, in the directory where you have your docker-compose.yml file. The two linked
containers will start and you will be able to access the Wordpress site by opening your
browser at http://<ip_of_host>.

$ docker-compose up -d
Creating vagrant_mysql_1...
Creating vagrant_wordpress_1...
$ docker-compose ps
 Name Command State Ports

186 | Chapter 7: The Docker Ecosystem: Tools

http://<ip_of_host>

vagrant_mysql_1 /entrypoint.sh mysqld Up 3306/tcp
vagrant_wordpress_1 /entrypoint.sh apache2-for ... Up 0.0.0.0:80->80/tcp

Discussion

Docker compose was originally developed by Orchard and was
called Fig. After acquisition of Orchard by Docker Inc, Fig was
renamed Docker compose. We can expect a tight integration of com‐
pose with the Docker CLI even though the current compose is a
separate binary. The source can be found on GitHub.

Compose has the following commands to manage a container environment:

Fast, isolated development environments using Docker.
...

Commands:
 build Build or rebuild services
 help Get help on a command
 kill Kill containers
 logs View output from containers
 port Print the public port for a port binding
 ps List containers
 pull Pulls service images
 rm Remove stopped containers
 run Run a one-off command
 scale Set number of containers for a service
 start Start services
 stop Stop services
 restart Restart services
 up Create and start containers

The usage of each command is obtained by specifying the --help after the command,
like docker-compose kill --help. Most commands take a SERVICE as a parameter.
A service in compose is the name given to the running container in the docker-
compose.yml file. For example you could stop the wordpress service and start it again
with:

$ docker-compose stop wordpress
Stopping vagrant_wordpress_1...
$ docker-compose ps
 Name Command State Ports
--
vagrant_mysql_1 /entrypoint.sh mysqld Up 3306/tcp
vagrant_wordpress_1 /entrypoint.sh apache2-for ... Exit 0
$ docker-compose start wordpress
Starting vagrant_wordpress_1...
$ docker-compose ps
 Name Command State Ports

7.1 Using Docker compose to Create a Wordpress Site | 187

http://www.fig.sh
https://github.com/docker/compose

vagrant_mysql_1 /entrypoint.sh mysqld Up 3306/tcp
vagrant_wordpress_1 /entrypoint.sh apache2-for ... Up 0.0.0.0:80->80/tcp

7.2 Using Docker compose to test Apache Mesos and
Marathon on Docker
Problem
You are interested in Apache Mesos, the data center resource allocation system used
by companies like Twitter. Mesos allows multi-level scheduling to share resources
between different type of workloads while maximizing utilization of your servers.
Before going into production with Mesos you would like to experiment with it on a
single server.

Solution
With Docker compose seen in Recipe 7.1 it is straightforward to deploy Mesos on a
single Docker host with one command.

You need to start four containers. One for Zookeeper, one for the Mesos master, one
for the Mesos slave and one for the Mesos framework Marathon. Starting these four
containers can be made simple by describing their startup options in a YAML file that
is read by compose. Here is a sample YAML manifest to deploy Mesos using compose.

zookeeper:
 image: garland/zookeeper
 ports:
 - "2181:2181"
 - "2888:2888"
 - "3888:3888"
mesosmaster:
 image: garland/mesosphere-docker-mesos-master
 ports:
 - "5050:5050"
 links:
 - zookeeper:zk
 environment:
 - MESOS_ZK=zk://zk:2181/mesos
 - MESOS_LOG_DIR=/var/log/mesos
 - MESOS_QUORUM=1
 - MESOS_REGISTRY=in_memory
 - MESOS_WORK_DIR=/var/lib/mesos
marathon:
 image: garland/mesosphere-docker-marathon
 links:
 - zookeeper:zk
 - mesosmaster:master
 command: --master zk://zk:2181/mesos --zk zk://zk:2181/marathon

188 | Chapter 7: The Docker Ecosystem: Tools

http://mesos.apache.org
http://zookeeper.apache.org
https://github.com/mesosphere/marathon

 ports:
 - "8080:8080"
mesosslave:
 image: garland/mesosphere-docker-mesos-master:latest
 ports:
 - "5051:5051"
 links:
 - zookeeper:zk
 - mesosmaster:master
 entrypoint: mesos-slave
 environment:
 - MESOS_HOSTNAME=192.168.33.10
 - MESOS_MASTER=zk://zk:2181/mesos
 - MESOS_LOG_DIR=/var/log/mesos
 - MESOS_LOGGING_LEVEL=INFO

To access the Marathon sandbox, we started the Mesos slave with
the environment variable MESOS_HOSTNAME=192.168.33.10.
Replace this IP with the IP of your Docker host.

Copy this file into docker-compose.yml and launch compose:

$./docker-compose up -d
Recreating vagrant_zookeeper_1...
Recreating vagrant_mesosmaster_1...
Recreating vagrant_marathon_1...
Recreating vagrant_mesosslave_1...
...

Once the images have been downloaded and the containers started you will be able to
access the Mesos UI at http://<IP_OF_HOST>:5050. The Marathon UI will be avail‐
able on port 8080 of the same host.

Discussion
If you have cloned the on-line repository that comes with this book, you are only a
vagrant up away from running Mesos with Docker:

$ git clone https://github.com/how2dock/docbook.git
$ cd dockbook/ch07/compose
$ vagrant up
$ vagrant ssh
$ cd /vagrant
$ docker-compose -f mesos.yml up -d

You can then manage the containers with the docker-compose command.

7.2 Using Docker compose to test Apache Mesos and Marathon on Docker | 189

See Also
• Deploying Mesos in seven commands.
• Mesos frameworks

7.3 Looking at Docker Compose as a Replacement to Fig
Problem
You enjoy Fig but you would like to only use the Docker CLI to bring up your multi-
container based applications.

Solution
Use Docker compose, a newly announced feature of Docker that brings the fig expe‐
rience directly into the Docker CLI.

This recipe is now obsolete with the release of Docker compose.
The scope and UX experience of the new compose is quite different
from what is described in this release, but this may be interesting
for developers.

Docker Compose is a new Docker feature announced during Dock‐
erCon Europe in December 2014 and released on February 26th
2015.

To ease testing, I prepared a Vagrantfile for you. It boots an Ubuntu 14.04 virtual
machine, installs Docker but also grabs the test binaries from issue #9459. It replaces
the Docker binary with this new one. Get started like so:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch07/compose/
$ vagrant up
$ vagrant ssh
$ docker version
Client version: 1.3.2-dev
Client API version: 1.16
Go version (client): go1.3.3
Git commit (client): c6bf574
OS/Arch (client): linux/amd64
Server version: 1.3.2-dev
Server API version: 1.16

190 | Chapter 7: The Docker Ecosystem: Tools

https://medium.com/@gargar454/deploy-a-mesos-cluster-with-7-commands-using-docker-57951e020586
http://mesos.apache.org/documentation/latest/mesos-frameworks/
http://blog.docker.com/tag/docker-compose/
http://blog.docker.com/tag/docker-compose/
http://blog.docker.com/2015/02/announcing-docker-compose/

Go version (server): go1.3.3
Git commit (server): c6bf574

Note the development version of the Docker daemon and client are now installed.
You can check the bootstrap script (docker-bootstrap.sh) to see how it was done.

With compose now installed, we are going to start a Wordpress blog similarly to what
we did with Fig in ???. The only change is the structure of the YAML file describing
the composition of the Wordpress setup (i.e two containers, one for wordpress and
one for mysql) and the way we start the containers (i.e docker up)

The fig.yml file is replaced by a group.yml file that as the following structure:

name: blog

containers:
 wordpress:
 image: wordpress
 links:
 - mysql
 ports:
 - "80:80"
 environment:
 - WORDPRESS_DB_NAME=wordpress
 - WORDPRESS_DB_USER=wordpress
 - WORDPRESS_DB_PASSWORD=wordpresspwd
 mysql:
 image: mysql
 environment:
 - MYSQL_ROOT_PASSWORD=wordpressdocker
 - MYSQL_DATABASE=wordpress
 - MYSQL_USER=wordpress
 - MYSQL_PASSWORD=wordpresspwd

The group has a name blog and the two containers are now listed under the contain
ers key. The group.yml file is located in /vagrant directory in the virtual machine
started via Vagrant. Go to this directory and start the containers with docker up

$ cd /vagrant
$ ls
docker-bootstrap.sh group.yml README.md Vagrantfile
$ docker up
...
mysql | 2015-01-07 14:42:54 1 [Note] mysqld: ready for connections.
mysql | Version: '5.6.22' socket: '/var/run/mysqld/mysqld.sock' port: 3306 MySQL Community Server (GPL)
wordpress | Complete! WordPress has been successfully copied to /var/www/html
mysql | 2015-01-07 14:43:00 1 [Warning] IP address '172.17.0.3' could not be resolved: Name or service not known
wordpress | AH00558: apache2: Could not reliably determine the ...
wordpress | AH00558: apache2: Could not reliably determine the ...
wordpress | [Wed Jan 07 14:43:00.948827 2015] [mpm_prefork:notice] [pid 1] AH00163: Apache/2.4.10 ...
wordpress | [Wed Jan 07 14:43:00.948951 2015] [core:notice] [pid 1] AH00094: Command line: 'apache2 -D FOREGROUND'

7.3 Looking at Docker Compose as a Replacement to Fig | 191

With the two containers up, open your browser at http://192.168.33.10/ and you
will see the Wordpress configuration page. Just like Fig, you can daemonize the provi‐
sioning:

$ docker up -d
Recreating mysql
Starting mysql
Recreating wordpress
Starting wordpress
vagrant@vagrant-ubuntu-trusty-64:/vagrant$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
685ac8b1a38d wordpress:latest "/entrypoint.sh apac 3 seconds... Up 2 seconds 0.0.0.0:80->80/tcp blog_wordpress
f61bca3e3f31 mysql:latest "/entrypoint.sh mysq 4 seconds... Up 3 seconds 3306/tcp blog_mysql

Discussion
Docker Compose has been proposed on the Docker issues list. It was first described
in issue 9175 then 9459. When the first official release of compose came out, issue
9694 was closed. Issue 9459 contains links to binaries as well as examples. This what
this recipe is based on.

With this current implementation of Docker compose you can use the Docker CLI
with some added functionality to perform queries/operations on groups. For instance
you can check the containers that are running for a given group, or execute com‐
mands on a container defined by its name in the group.yml file (using the : prefix)

$ docker ps blog
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
685ac8b1a38d wordpress:latest "/entrypoint.sh apac 4 minutes ago Up 4 minutes 0.0.0.0:80->80/tcp blog_wordpress
f61bca3e3f31 mysql:latest "/entrypoint.sh mysq 4 minutes ago Up 4 minutes 3306/tcp blog_mysql

$ docker exec -ti :wordpress /bin/bash
root@685ac8b1a38d:/var/www/html#

If you do not want to use the provided Vagrant setup at https://github.com/how2dock/
docbook, you can clone the Docker repository, add the git remote which contains the
development branch of Compose and build a new Docker binary from it.

$ git clone git@github.com:docker/docker
$ cd docker
$ git remote add aanand git@github.com:aanand/docker.git
$ git fetch --all
$ git checkout -b composition aanand/composition

192 | Chapter 7: The Docker Ecosystem: Tools

https://github.com/docker/docker/issues/9175
https://github.com/docker/docker/issues/9459
https://github.com/docker/docker/issues/9694
https://github.com/docker/docker/issues/9459
https://github.com/how2dock/docbook
https://github.com/how2dock/docbook

7.4 Starting Containers on a Cluster with Docker Swarm
Problem
You know how to use Docker with a single host. You would like to start containers on
a cluster of hosts while keeping the user experience of the Docker CLI you are accus‐
tomed to on a single machine.

Solution
Use Docker swarm.

Docker Swarm is a new Docker feature announced during Docker‐
Con Europe in December 2014. The first beta release of Swarm was
announced on February 26th 2015. Thus this recipes represents
work in progress. The Vagrantfile provided is purely for testing
purposes.

To ease testing of Docker swarm, I am providing a Vagrant setup and bootstrap
scripts that setup a four nodes Swarm cluster. The cluster is composed of one head
node and three compute nodes, all running Ubuntu 14.04. To get the cluster up, sim‐
ply clone the git repository accompanying this book (if you have not done so
already), head to the seventh chapter and the swarm sub-directory. Use Vagrant to
boot the cluster. Like so:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch07/swarm/
$ vagrant up

You should see four virtual machines being started by Vagrant. The machines will be
bootstrapped via bash scripts defined in the Vagrantfile:

...
$bootstrap=<<SCRIPT
apt-get update
curl -sSL https://get.docker.com/ubuntu/ | sudo sh
gpasswd -a vagrant docker
echo "DOCKER_OPTS=\"-H tcp://0.0.0.0:2375\"" >> /etc/default/docker
service docker restart
SCRIPT

$swarm=<<SCRIPT
apt-get update
curl -sSL https://get.docker.com/ubuntu/ | sudo sh
gpasswd -a vagrant docker
docker pull swarm
SCRIPT
...

7.4 Starting Containers on a Cluster with Docker Swarm | 193

https://github.com/docker/swarm
http://blog.docker.com/tag/docker-swarm/
http://blog.docker.com/tag/docker-swarm/
http://blog.docker.com/2015/02/scaling-docker-with-swarm/

Once the nodes are up and Vagrant has returned, ssh to the head node and start a
swarm container using the swarm image that was pulled during the bootstrap process.

$ vagrant ssh swarm-head
$ docker run -v /vagrant:/tmp/vagrant -p 1234:1234 -d swarm manage \
 file://tmp/vagrant/swarm-cluster.cfg -H=0.0.0.0:1234
72acd5bc00de0b411f025ef6f297353a1869a3cc8c36d687e1f28a2d8f422a06

The Swarm server setup shown above uses a file based discovery
mechanism. The swarm-cluster.cfg file contains the hard coded
lists of the swarm nodes started by Vagrant. Additional discovery
services are available for Swarm. You can use a service hosted by
Docker Inc, Consul, Etcd or Zookeeper. You can also write your
own discovery interface.

With the swarm server running and the worker nodes discovered, you will be able to
use the local docker client to get information about the cluster and start containers.
You will need to use the -H option of the Docker CLI to target the Swarm server run‐
ning in a container instead of the local docker daemon.

$ docker -H 0.0.0.0:1234 info
Containers: 0
Nodes: 3
 swarm-2: 192.168.33.12:2375
 └ Containers: 0
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 490 MiB
 swarm-3: 192.168.33.13:2375
 └ Containers: 0
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 490 MiB
 swarm-1: 192.168.33.11:2375
 └ Containers: 0
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 490 MiB

Using the local docker client and specifying the Swarm server as a Docker daemon
endpoint, we can start containers on the entire cluster. For example let’s start nginx.

$ docker -H 0.0.0.0:1234 run -d -p 80:80 nginx
8399c544b61953fd5610b01be787cb3802e2e54f220673b94d78160d0ee35b33
$ docker -H 0.0.0.0:1234 run -d -p 80:80 nginx
1b2c4634fc6d9f2c3fd63dd48a2580f466590ddff7405f889ada885746db3cbd
 docker -H 0.0.0.0:1234 ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
1b2c4634fc6d nginx:1.7 "nginx -g 'daemon of ... 443/tcp, 192.168.33.11:80->80/tcp swarm-1/condescending_bardeen
8399c544b619 nginx:1.7 "nginx -g 'daemon of ... 443/tcp, 192.168.33.12:80->80/tcp swarm-2/elated_yonath

194 | Chapter 7: The Docker Ecosystem: Tools

http://docs.docker.com/swarm/discovery/
https://consul.io
https://github.com/coreos/etcd
http://zookeeper.apache.org

We just started two nginx containers. Swarm scheduled them on two of the nodes in
the cluster. You can open your browser at http://192.168.33.11 and http://
192.168.33.12 and you will see the default nginx page.

The docker run command can take some time to return, Swarm
needs to schedule the container on a node in the cluster and that
node needs to pull the nginx image.

Discussion
In this setup the Docker swarm server is running within a local container on the
Swarm head node. You can see it with docker ps and you can check the logs with
docker logs. In the logs you see the requests made to start the nginx containers. It is
interesting to see that we are using the Docker client on the Swarm head node to
communicate with the local Docker daemon and the Swarm server running in a local
container.

$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
72acd5bc00de swarm:latest swarm manage file: ... 2375/tcp, 0.0.0.0:1234->1234/tcp silly_brown

$ docker logs 72acd5bc00de
time="2015-03-16T16:06:35Z" level=info msg="Listening for HTTP" addr="0.0.0.0:1234" proto=tcp
time="2015-03-16T16:06:56Z" level=info msg="HTTP request received" method=GET uri="/v1.17/info"
time="2015-03-16T16:21:13Z" level=info msg="HTTP request received" method=GET uri="/v1.17/containers/json"
time="2015-03-16T16:21:27Z" level=info msg="HTTP request received" method=POST uri="/v1.17/containers/create"
time="2015-03-16T16:27:13Z" level=info msg="HTTP request received" method=POST uri="/v1.17/containers/8399c544b61953fd5610b01be787cb3802e2e54f220673b94d78160d0ee35b33/start"
time="2015-03-16T16:30:48Z" level=info msg="HTTP request received" method=GET uri="/v1.17/containers/json"
time="2015-03-16T16:30:52Z" level=info msg="HTTP request received" method=POST uri="/v1.17/containers/create"
time="2015-03-16T16:36:45Z" level=info msg="HTTP request received" method=POST uri="/v1.17/containers/1b2c4634fc6d9f2c3fd63dd48a2580f466590ddff7405f889ada885746db3cbd/start"
time="2015-03-16T16:45:11Z" level=info msg="HTTP request received" method=GET uri="/v1.17/containers/json"

In these logs we clearly see the API calls being made to the Swarm server to launch
the nginx containers in the cluster.

While Swarm is currently a separate release of Docker, heavy devel‐
opment on it is to be expected. Docker Inc. and Mesosphere
announced a partnership to include Apache Mesos as a scheduler
in Swarm. This will likely take the form of an Apache Mesos frame‐
work for Swarm. In addition, with development of Docker
machine, we could see a merge of machine and swarm where cre‐
ation of a swarm cluster in the Cloud is fully automated (see Recipe
7.5).

7.4 Starting Containers on a Cluster with Docker Swarm | 195

http://mesosphere.com
http://mesos.apache.org

7.5 Using Docker Machine to Create a Swarm Cluster
Across Cloud Providers
Problem
You understand how to create a Swarm cluster manually (see Recipe 7.4), but you
would like to create one with nodes in multiple public Cloud Providers and keep the
UX experience of the local Docker CLI.

Solution
Use Docker Machine to start Docker hosts in several Cloud providers and bootstrap
them automatically to create a swarm cluster.

This is an experimental feature in Docker Machine and is subject to
change.

The first thing to do is to obtain a swarm discovery token. This will be used during
the bootstrapping process when starting the nodes of the cluster. As explained in
Recipe 7.4, swarm features multiple discovery process. In this recipe, we used the ser‐
vice hosted by Docker, Inc. A discovery token is obtained by running a container
based on the swarm image and running the create command. Assuming we do not
have access to a Docker host already, we use docker-machine to create one solely for
this purpose.

$./docker-machine create -d virtualbox local
INFO[0000] Creating SSH key...
...
INFO[0042] To point your Docker client at it, run this in your shell: $(docker-machine env local)
$ $(docker-machine env local)
$ docker run swarm create
31e61710169a7d3568502b0e9fb09d66

With the token in hand, we can use docker-machine and multiple public Cloud driv‐
ers to start worker nodes. We can start a swarm head node on VirtualBox, a worker
on DigitalOcean (see Figure 1-6) and another one on Azure (see Recipe 8.5).

Do not start a swarm head in a public cloud and a worker on your
localhost with VirtualBox. Chances are the head will not be able to
route network traffic to your local worker node. It is possible to do,
but you would have to open ports on your local router.

196 | Chapter 7: The Docker Ecosystem: Tools

$ docker-machine create -d virtualbox --swarm --swarm-master --swarm-discovery token://31e61710169a7d3568502b0e9fb09d66 head
INFO[0000] Creating SSH key...
...
INFO[0069] To point your Docker client at it, run this in your shell: $(docker-machine env head)
$ docker-machine create -d digitalocean --swarm --swarm-discovery token://31e61710169a7d3568502b0e9fb09d66 worker-00
...
$ docker-machine create -d azure --swarm --swarm-discovery token://31e61710169a7d3568502b0e9fb09d66 swarm-worker-01
...

Your swarm cluster is now ready. Your swarm head node is running locally in a Vir‐
tualbox VM, one worker node is running in DigitalOcean and another one in Azure.
You can set the local docker-machine binary to use the head node running in Virtual‐
Box and start using the swarm subcommands:

$ $(docker-machine env --swarm head)
$ docker info
Containers: 4
Nodes: 3
 head: 192.168.99.103:2376
 └ Containers: 2
 └ Reserved CPUs: 0 / 4
 └ Reserved Memory: 0 B / 999.9 MiB
 worker-00: 45.55.160.223:2376
 └ Containers: 1
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 490 MiB
 swarm-worker-01: swarm-worker-01.cloudapp.net:2376
 └ Containers: 1
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 1.639 GiB

Discussion
If you start a container, swarm will schedule it in round-robin fashion on the cluster.
For example, starting three nginx container in a for loop with:

$ for i in `seq 1 3`;do docker run -d -p 80:80 nginx;done

Will lead to three nginx container on the three nodes in your cluster. Remember that
you will need to open port 80 on the instances running in the Cloud to access the
container (e.g see Recipe 8.5).

$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
9bff07d8ee18 nginx:1.7 "nginx -g 'daemon of ... 443/tcp, 104.210.33.180:80->80/tcp swarm-worker-01/loving_torvalds
457ed59c9bb3 nginx:1.7 "nginx -g 'daemon of ... 443/tcp, 45.55.160.223:80->80/tcp worker-00/drunk_swartz
6013be18cdbc nginx:1.7 "nginx -g 'daemon of ... 443/tcp, 192.168.99.103:80->80/tcp head/condescending_galileo

7.5 Using Docker Machine to Create a Swarm Cluster Across Cloud Providers | 197

Do not forget to remove the machine you started in the Cloud.

See Also
• Using Docker machine with Docker swarm.

7.6 Managing Containers through Docker UI
Problem
You have access to a Docker host and know how to manage images and containers,
but you would like to use a simple web interface.

Solution
Use the Docker UI. While you can create your own image from source, the Docker
UI is also available on Docker Hub which makes it straightforward to run it in a con‐
tainer.

On your Docker host start the Docker UI container:

$ docker run -d -p 9000:9000
 --privileged
 -v /var/run/docker.sock:/var/run/docker.sock
 dockerui/dockerui

You can then open your browser at http://<IP_OF_DOCKER_HOST>:9000 and you will
have access to the UI. An example is shown below.

198 | Chapter 7: The Docker Ecosystem: Tools

https://docs.docker.com/machine/#using-docker-machine-with-docker-swarm
https://github.com/crosbymichael/dockerui
https://github.com/crosbymichael/dockerui/wiki/Ways-to-run-dockerui
https://registry.hub.docker.com/u/dockerui/dockerui/

Figure 7-1. Docker UI dashboard

The Docker UI is not part of the official Docker release and is a
community maintained project.

Discussion
Once you have access to the UI you can start a container. Go to the Images tab, select
an image and click on the create button. You will be able to specify all the container
startup options through the UI. Do not miss the HostConfig options where you can
set port mappings. The screenshot below shows you a preview of this screen.

7.6 Managing Containers through Docker UI | 199

https://github.com/crosbymichael/dockerui

Figure 7-2. Start a Container Through the Docker UI

See Also
• Docker UI wiki which contains additional documentation.

7.7 Orchestrating Containers with Ansible Docker Module
Problem
You have developed some expertise with Ansible to configure your servers and
orchestrate application deployment. You would like to take advantage of this exper‐
tise and use Ansible to manage Docker containers.

Solution
Use the Ansible Docker module. This module is part of the Ansible core, therefore
after installing Ansible no additional packages need to be installed.

200 | Chapter 7: The Docker Ecosystem: Tools

https://github.com/crosbymichael/dockerui/wiki
http://www.ansible.com/home
http://docs.ansible.com/docker_module.html

Ansible will run from your local machine, connect over SSH to your Docker hosts
and use the docker-py API client to issue calls to the Docker daemon.

For example to start a nginx container in detached mode with a port mapping, you
would write an Ansible playbook like this:

- hosts: nginx
 tasks:
 - name: Run nginx container
 docker: image=nginx:latest detach=true ports=80:80

Discussion about how to use Ansible are beyond the scope of this
recipe. See the Ansible documentation.

Discussion
To get you up and running with the Ansible Docker module you can use the Vagrant‐
file accompanying this recipe. This will start a virtual machine acting as a Docker
Host with the docker-py client installed. Two playbooks, an inventory file and some
Ansible configurations are also available to make it turn key.

The first thing will be to install Ansible on your local machine:

$ sudo pip install ansible

Then to test the nginx playbook follow the instructions below:

$ git clone https://github.com/how2dock/docbook.git
$ cd ch07/ansible
$ tree
.
├── README.md
├── Vagrantfile
├── ansible.cfg
├── dock.yml
├── inventory
├── solo
│ ├── Vagrantfile
│ └── dock.yml
└── wordpress.yml
$ vagrant up

The nginx playbook shown in the solution section above is in the dock.yml file. To
start this container using Ansible simply run the playbook. Once it finishes open your
browser at http://192.168.33.10 and you will see the welcome screen of Nginx.
You can also connect to the VM with vagrant ssh and check the running container
with the usual docker ps command.

7.7 Orchestrating Containers with Ansible Docker Module | 201

http://docs.ansible.com/playbooks.html
http://docs.ansible.com

$ ansible-playbook -u vagrant dock.yml
PLAY [nginx] **

GATHERING FACTS ***
ok: [192.168.33.10]

TASK: [Run nginx container] ***
changed: [192.168.33.10]

PLAY RECAP **
192.168.33.10 : ok=2 changed=1 unreachable=0 failed=0

You can kill this nginx container with docker kill within the virtual machine or run
a playbook that sets the state of the container to killed:

- hosts: nginx
 tasks:
 - name: Kill nginx container
 docker: image=nginx:latest detach=true ports=80:80 state=killed

If you want to try a little more complex example, check the Wordpress playbook word
press.yml. We have deployed Wordpress several times already (see ??? or Figure 1-9).
Run the playbook and open your browser at http://192.168.33.10 and enjoy
Wordpress once again. (You will need to have killed any container using port 80 on
the host, otherwise you will get a port conflict error).

$ ansible-playbook -u vagrant wordpress.yml

PLAY [wordpress] **

GATHERING FACTS ***
ok: [192.168.33.10]

TASK: [Docker pull mysql] ***
changed: [192.168.33.10]

TASK: [Docker pull wordpress] ***
changed: [192.168.33.10]

TASK: [Run mysql container] ***
ok: [192.168.33.10]

TASK: [Run wordpress container] ***
changed: [192.168.33.10]

PLAY RECAP **
192.168.33.10 : ok=5 changed=3 unreachable=0 failed=0

Since Ansible playbook are written in YAML, you will notice some similarities with
the fig.yml file in ???>

202 | Chapter 7: The Docker Ecosystem: Tools

- hosts: wordpress
 tasks:

 - name: Docker pull mysql
 command: docker pull mysql:latest

 - name: Docker pull wordpress
 command: docker pull wordpress:latest

 - name: Run mysql container
 docker:
 name=mysql
 image=mysql
 detach=true
 env="MYSQL_ROOT_PASSWORD=wordpressdocker,MYSQL_DATABASE=wordpress, \
 MYSQL_USER=wordpress,MYSQL_PASSWORD=wordpresspwd"

 - name: Run wordpress container
 docker:
 image=wordpress
 env="WORDPRESS_DB_NAME=wordpress,WORDPRESS_DB_USER=wordpress, \
 WORDPRESS_DB_PASSWORD=wordpresspwd"
 ports="80:80"
 detach=true
 links="mysql:mysql"

We have run the playbooks directly from the local machine, how‐
ever Vagrant has an Ansible provisioner. This means that you can
run the playbook when the VM is started. Go to ch07/ansible/
solo and vagrant up. The nginx container will automatically start.

See Also
• Ansible Up and Running book has a section on the Docker module.

7.7 Orchestrating Containers with Ansible Docker Module | 203

http://shop.oreilly.com/product/0636920035626.do

7.8 Using Clocker
Problem

Solution

Discussion

7.9 Using Deis
Problem

Solution
Install deisctl

$ curl -sSL http://deis.io/deisctl/install.sh | sh -s 1.4.1

$ git clone https://github.com/deis/deis.git
$ cd deis
$ make discovery-url
$ vagrant up
$ ssh-add ~/.vagrant.d/insecure_private_key
$ export DEISCTL_TUNNEL=172.17.8.100
$ deisctl config platform set sshPrivateKey=$(HOME)/.vagrant.d/insecure_private_key
$ deisctl config platform set sshPrivateKey=$HOME/.vagrant.d/insecure_private_key
$ deisctl config platform set domain=local3.deisapp.com
$ deisctl install platform

Discussion

7.10 Using Rancher to Manage Containers on a Cluster of
Docker Hosts
Problem
You want to manage containers in production through a system that supports multi-
host, an overlay network that allows containers to reach each other without complex
port forwarding rules, group management and a powerful dashboard.

204 | Chapter 7: The Docker Ecosystem: Tools

http://docs.deis.io/en/latest/installing_deis/install-deisctl/

Solution
Consider Rancher from Rancher Labs, the makers of Rancher OS (see Recipe 6.6). It
is straightforward to setup with a management server running as a container and
worker agent running as a container as well.

To ease up testing Rancher and see if it suits your needs, clone the project repository
on GitHub and start a virtual machine locally through Vagrant, as shown below:

$ git clone https://github.com/rancherio/rancher.git
$ cd rancher
$ vagrant up

The virtual machine started is based on CoreOS (see Recipe 6.1) but you could use
any other OS that runs Docker. The Vagrantfile contains two provisioning steps that
install the management server and the worker agent from Docker images. You can
use these commands almost identically to start Rancher on your own machines.

Once in the Rancher dashboard, if you navigate to the Add Host
button, you will be presented with the exact Docker command to
run on another host to join this Rancher deployment.

$ docker run -d -p 8080:8080 rancher/server:latest
$ docker run -e CATTLE_AGENT_IP=172.17.8.100 --privileged -e WAIT=true \
 -v /var/run/docker.sock:/var/run/docker.sock \
 rancher/agent:latest http://localhost:8080

Once the Vagrant machine is up and that the rancher images have been downloaded,
two containers will start and you will be able to access the Rancher dashboard at
http://localhost:8080.

If you already have a server running on port 8080 in your local
machine, Vagrant will pick a different port to server the Rancher
UI on. You can always access it using the host only network at
http://172.17.8.100:8080

The dashboard will show only one host and no running containers, by clicking on
Add Container you will be redirected to a page where you can set the container run
parameters, see the snapshot below. You can expand the Advanced Options area to set
parameters like environment variables, volumes, networking and capabilities of the
containers (e.g memory, privileged mode). By default the networking will be a so-
called managed network, which will use a network overlay. You can still use the
default Docker networking.

7.10 Using Rancher to Manage Containers on a Cluster of Docker Hosts | 205

http://rancher.com/rancher-io/
http://rancher.com
https://github.com/rancherio/rancher
http://localhost:8080
http://172.17.8.100:8080

Considering the changes that will happen with Docker networking,
this recipe will not expand on the Rancher overlay itself. See Chap‐
ter 3 for more information.

Figure 7-3. Starting a Container via the Rancher UI

Rancher will build a network overlay even though in this case we are using a single
host and start the container within the IP range of the overlay. If you map the
exposed port of the container to a port on the host, you will be able to access it
through your browser. For example, if we start nginx and map it to port 80 of the
host, you will enjoy the welcome screen of nginx. The container creation screen looks
like the snapshot below:

206 | Chapter 7: The Docker Ecosystem: Tools

Figure 7-4. Rancher Dashboard with Running Container

At this stage, you have a working Rancher testbed. You can explore the dashboard.
The container tab will list all your running containers. You will be able to open a shell
into a container, start/stop it, . The volumes tab will list the volumes currently being
used, volume manipulation through the dashboard is limited at this time. Finally you
will also be able to define an existing private registry, or define load-balancers.

Discussion
While we did everything so far using the dashboard, Rancher also exposes a REST
API to manage all its resources. To use the API you will need to generate a set of API
access and secret keys. This is done by clicking on the user icon on the top right of
the dashboard and selecting the API & Keys option. The API is not documented on th
GitHub page, but the dashboard offers a nice API explorer.

You can manage a running container through the dashboard, by clicking it you will
see an option to View in API. This will redirect you the the API explorer. This
explorer features the json object describing the container as well as a set of Actions
that can be performed (Green boxesin the UI). Selecting one of the Action will open a
new window that will show you the API request that you can make. This is a perfect
way to learn the API and possible write your own client. Below is a snapshot of a
request to stop a container.

7.10 Using Rancher to Manage Containers on a Cluster of Docker Hosts | 207

Figure 7-5. Rancher API Request Example

7.11 Running Containers Via Apache Mesos and Marathon
Problem
You are looking for a cluster scheduler to launch containers on a Docker hosts in
your data-center. You might also already be running Apache Mesos to schedule long
running jobs, cron jobs or even Hadoop or parallel computing workloads and would
like to use it to run containers.

Solution
Use Apache Mesos and the Docker containerizer. Mesos is a cluster resource allocator
that leverages multiple scheduling frameworks to maximize utilization of your data-
center resources. Mesos is used by large companies like Ebay, Twitter, Netflix or
AirBnB and more.

The Mesos architecture is based on one or several master nodes, worked nodes (or
Mesos slaves), one or more scheduling frameworks that are deployed in Mesos and a
service discovery system that uses Zookeeper. In Recipe 7.2, we already saw how to
use Docker compose to start a testing Mesos infrastructure on a single node.

208 | Chapter 7: The Docker Ecosystem: Tools

http://mesos.apache.org
http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://mesos.apache.org/documentation/latest/mesos-architecture/
http://zookpeeper.apache.org

Marathon is one of the Mesos frameworks that can allow you to run tasks on a Mesos
cluster. Mesos supports Docker (i.e Docker containerizer). This means that you can
launch Marathon tasks that are made of Docker containers.

Amazon ECS service (see Recipe 8.12) can also use Mesos to sched‐
ule containers on AWS. Docker Swarm (see Recipe 7.4) is also
scheduled to add support for Mesos based scheduling.

This recipe uses Mesos Playa a Mesos sandbox to show you how to run Docker con‐
tainers with Mesos.

To get started, clone the playa-mesos repository from GitHub, start the virtual
machine via Vagrant and ssh to it.

$ git clone https://github.com/mesosphere/playa-mesos.git
$ vagrant up
$ vagrant ssh

Once the machine is up you can access the Mesos web interface at http://
10.141.141.10:5050 and the Marathon web interface at http://

10.141.141.10:8080.

Discussion on how to use Mesos and Marathon are beyond the
scope of this book. Refer to the two websites for more information.

Marathon exposes a REST API that you can use to start tasks. Tasks are defined in
JSON file and can be submitted to the API endpoint via curl. Here is an example task
describe in JSON.

{
 "id": "http",
 "cmd": "python -m SimpleHTTPServer $PORT0",
 "mem": 50,
 "cpus": 0.1,
 "instances": 1,
 "constraints": [
 ["hostname", "UNIQUE"]
],
 "ports": [0]
}

The id is the name of the task (also called Application in Marathon). The cmd is what
the application will run. Here a simple HTTP server via Python. What is important to

7.11 Running Containers Via Apache Mesos and Marathon | 209

http://mesos.apache.org/documentation/latest/mesos-frameworks/
https://github.com/mesosphere/playa-mesos
http://mesos.apache.org
http://https://mesosphere.github.io/marathon/

note is the use of ports which is set to a list containing 0. This means that Marathon
will dynamically allocate a port that this application will use. This dynamic port is
passed to the cmd argument as $PORT0.

Save this JSON description in a file called test.json and submit this application via
curl like so:

$ curl -is -H "Content-Type: application/json"
 -d @test.json 10.141.141.10:8080/v2/apps
HTTP/1.1 201 Created
...

Once the application starts, you will see it in the UI and be able to access the URL
that points to the HTTP server that was just started. Note the port that was dynami‐
cally allocated.

Figure 7-6. Marathon UI for HTTP Server

Let’s now move on to starting an application that is made of a Docker container. By
default the VM started by Playa Mesos will contain Docker but the Mesos slave is not
configured to use it. Therefore we need to do a few configurations and restart mesos-
salve. In the virtual machine do the following:

vagrant@mesos:~$ sudo su
root@mesos:/home/vagrant# cd /etc/mesos-slave
root@mesos:/etc/mesos-slave# echo 'docker,mesos' > containerizers
root@mesos:/etc/mesos-salve# echo '5mins' > executor_registration_timeout
root@mesos:/etc/mesos-slave# service mesos-slave restart
mesos-slave stop/waiting
mesos-slave start/running, process 2581

Create the following JSON file (e.g docker.json) that describes running an nginx
container with a dynamic port allocation on the host.

{
 "container": {
 "type": "DOCKER",
 "docker": {

210 | Chapter 7: The Docker Ecosystem: Tools

 "image": "nginx",
 "network": "BRIDGE",
 "portMappings": [
 { "containerPort": 80, "hostPort": 0 }
]
 }
 },
 "id": "nginx",
 "instances": 1,
 "cpus": 0.5,
 "mem": 512
}

Create this application via the Marathon API using curl and check the list of running
applications:

$ curl -si -H 'Content-Type: application/json'
 -d @docker.json 10.141.141.10:8080/v2/apps
$ curl -sX GET -H "Content-Type: application/json" 10.141.141.10:8080/v2/tasks
 | python -m json.tool

{
 "tasks": [
 {
 "appId": "/nginx",
 "host": "10.141.141.10",
 "id": "nginx.404b7376-d47b-11e4-8cd2-56847afe9799",
 "ports": [
 31236
],
 "servicePorts": [
 10001
],
 "stagedAt": "2015-03-27T12:17:35.285Z",
 "startedAt": null,
 "version": "2015-03-27T12:17:29.312Z"
 },
 {
 "appId": "/http",
 "host": "10.141.141.10",
 "id": "http.a55c2bd5-d479-11e4-8cd2-56847afe9799",
 "ports": [
 31235
],
 "servicePorts": [
 10000
],
 "stagedAt": "2015-03-27T12:06:05.873Z",
 "startedAt": "2015-03-27T12:14:49.986Z",
 "version": "2015-03-27T12:06:00.485Z"
 }
]
}

7.11 Running Containers Via Apache Mesos and Marathon | 211

You see the http application that we started earlier. And you also see the new nginx
application which uses Docker. The application will take a little bit of time to deploy,
just enough time to docker pull nginx. To take into account the time it may take to
download an image from a registry we defined the executor_registration_timeout
before restarting the mesos-slave. Marathon also allocated a port dynamically to
bind port 80 of the nginx container to the host, and in this case it chose 31236. If you
open your browser at http://10.141.141.10:31236 you will see the familiar web
page of Nginx.

Discussion
The Docker application definition specified in JSON format can contain volume
mounts, it can specify arguments that will overwrite the CMD arguments defined in a
Dockerfile, it can specify docker run parameters and can also run in privileged
mode. The Docker containerizer documentation has more detailed information. But
as a quick reference you could also define an application with all those extra function‐
alities like so:

{
 "id": "privileged-job",
 "container": {
 "docker": {
 "image": "mesosphere/inky"
 "privileged": true,
 "parameters": [
 { "key": "hostname", "value": "a.corp.org" },
 { "key": "volumes-from", "value": "another-container" },
 { "key": "lxc-conf", "value": "..." }
]
 },
 "type": "DOCKER",
 "volumes": []
 },
 "args": ["hello"],
 "cpus": 0.2,
 "mem": 32.0,
 "instances": 1
}

Finally, running Mesos on a single host defeats the purpose of this recipe, and you
will want to create a Mesos cluster with the Docker containerizer enabled on all
Mesos slaves.

See Also
• Mesosphere documentation for the Docker containerizer.
• Marathon example JSON files.

212 | Chapter 7: The Docker Ecosystem: Tools

https://mesosphere.github.io/marathon/docs/native-docker.html
https://mesosphere.github.io/marathon/docs/native-docker.html
https://github.com/mesosphere/marathon/tree/master/examples

• Original post this recipe is based on.

7.12 Using the Mesos Docker Containerizer on a Mesos
Cluster
Problem
In Recipe 7.11 you saw how to test the Mesos Docker containerizer to run containers
on a Mesos sandbox. You would like to do the same but on a Mesos cluster.

Solution
Build a Mesos cluster using containers and the images prepared by Mesosphere on
the Docker hub. Configure the Mesos slave to use the Docker containerizer.

To ease testing this recipe use the on-line material accompanying this book. For this
recipe we are going to use a Vagrantfile that sets up a local three nodes Mesos cluster
and uses Ansible to start the container that run the Mesos software components (i.e
Zookeeper, Mesos master, Marathon framework and Mesos slave.)

Clone the repository if you have not done so already, head to ch07/mesos and use
Vagrant to bring up the three node cluster:

If you have enough memory on your local machine, you can add
more nodes to this setup or change the memory allocated to each
node (see the Vagrantfile)

$ git clone https://github.com/how2dock/docbook.git
$ cd dockbook/ch07/mesos
$ vagrant up
$ vagrant status
Current machine states:

mesos-head running (virtualbox)
mesos-1 running (virtualbox)
mesos-2 running (virtualbox)

If you have followed along recipe by recipe, you will have read Recipe 7.7. If not, read
that recipe first to configure Ansible on your machine. We will use a Ansible play‐
book to start a few containers on the VM. The playbook is mesos.yml. To start all
containers simply run the playbook:

$ ansible-playbook -u vagrant mesos.yml

7.12 Using the Mesos Docker Containerizer on a Mesos Cluster | 213

http://frankhinek.com/deploy-docker-containers-on-mesos-0-20/
https://mesosphere.com
http://ansible.com

Once the play is done, the Mesos head node will have three containers running (i.e
Zookeeper, Mesos Master and the Marathon framework). The two slaves will have
one container running (i.e the Mesos slave). All images come from Docker hub

Open your browser at http://192.168.33.10:5050 to access the Mesos UI, then
open your browser at http://192.168.33.10:8080 to access the Marathon UI.

To start a nginx container in that Mesos cluster, create a Mesos application in the
Marathon framework using the API.

$ curl -si -H 'Content-Type: application/json' -d @docker.json 192.168.33.10:8080/v2/apps

Once the image has been downloaded you will be able to access the nginx welcome
screen in a similar fashion than described in Recipe 7.11.

The docker.json application definition specifies 128 MB of RAM.
If your slaves do not have enough memory the application could be
stuck in deploying stage. Make sure that your slave have enough
RAM of reduce the memory constraint of your application.

Discussion
The inventory used by Ansible is harcoded in the inventory file. If you change the IP
address of the nodes or add more nodes, make sure to update the inventory as well.

The current play executes docker run commands remotely over SSH. If you want to
use the Ansible Docker module, comment the command tasks and uncomment the
docker tasks.

You will notice that the Mesos slave actually runs as a container. When starting the
container we pass the environment variable MESOS_CONTAINERIZERS=docker,mesos
which configures the slave to use Docker. The slave will actually start other containers
on the host itself. This is achieved by mounting /var/run/docker.sock, /usr/bin/
docker and /sys from the host to the container. While it works in testing scenario,
the Mesos containerizer is not made to do this. You should consider running the slave
on the host themselves until Mesos development recommends running the slave in
containers for production.

I am currently unable to obtain a workable cluster using the play
that uses the docker module. If you find out why, don’t hesitate to
send me a pull request. Thanks.

214 | Chapter 7: The Docker Ecosystem: Tools

http://192.168.33.10:5050
http://192.168.33.10:8080

See Also
• Apache Mesos configuration

7.13 Discovering Docker Services with Registrator
Problem
You are building a distributed applications with services based on containers started
on multiple hosts. You need to automatically discover these services to configure your
application. This is needed when services migrate from one host to another or when
they are started automatically.

Solution
Use registrator. It runs as a container on the hosts in your system. By mounting the
Docker socket /var/run/docker.sock it listens to containers that come and go and
register or unregisters them on a data store backend. Currently several backend data
store are available (e.g etcd, consul, skyDNS2) and can possibly support more. These
service registries are not specific to Docker even though etcd comes bundled in the
coreOS distribution (see Recipe 6.3)

To use registrator, you first need to setup one backend for service registries. Since
there are available as static binary, you can just download them and run them in the
foreground for testing. For example to use etcd:

$ curl -L https://github.com/coreos/etcd/releases/download/v0.4.6/\
 etcd-v0.4.6-linux-amd64.tar.gz
 -o etcd-v0.4.6-linux-amd64.tar.gz
$ tar xzvf etcd-v0.4.6-linux-amd64.tar.gz
$ cd etcd-v0.4.6-linux-amd64
$ sudo ./etcd
2015/03/26 14:02:21 no data-dir provided, using default data-dir ./default.etcd
2015/03/26 14:02:21 etcd: listening for peers on http://localhost:2380
2015/03/26 14:02:21 etcd: listening for peers on http://localhost:7001
2015/03/26 14:02:21 etcd: listening for client requests on http://localhost:2379
2015/03/26 14:02:21 etcd: listening for client requests on http://localhost:4001
...

Leave etcd running and in another terminal session create a directory in the etcd key
value-store (e.g cookbook below). This directory will hold the services when they are
discovered:

$ cd etcd-v0.4.6-linux-amd64
$./etcdctl mkdir cookbook
$./etcdctl ls
/cookbook

7.13 Discovering Docker Services with Registrator | 215

http://mesos.apache.org/documentation/latest/configuration/
https://github.com/gliderlabs/registrator
https://github.com/coreos/etcd
https://www.consul.io

Then download the registrator image from Docker hub and run it.

You define the registry service backend as an argument to the gli
derlabs/registrator image. Do not forget the key that you direc‐
tory name that you set just above.

$ docker pull gliderlabs/registrator
$ docker run -d -v /var/run/docker.sock:/tmp/docker.sock
 -h 192.168.33.10
 gliderlabs/registrator
 -ip 192.168.33.10
 etcd://192.168.33.10:4001/cookbook

Replace 192.168.33.10 above with the IP address of your own
setup. In this particular example I ran everything on the same host.
But you will most likely want to run an etcd cluster separate from
your cluster of Docker hosts where you will run registrator.

You can now start any container, expose ports to the host and you will see the regis‐
tration in your etcd key-value store

$ docker run -d -p 80:80 nginx
$./etcdctl ls /cookbook
/cookbook/nginx-80
$./etcdctl ls /cookbook/nginx-80
/cookbook/nginx-80/192.168.33.10:pensive_franklin:80
$./etcdctl get /cookbook/nginx-80/192.168.33.10:pensive_franklin:80
192.168.33.10:80

If you look at the logs of the registrator container you will see that it is listening to
Docker events and registering the ports exposed to the host:

$ docker logs <CONTAINER_ID>
2015/03/26 ... registrator: Forcing host IP to 192.168.33.10
2015/03/26 ... registrator: Using etcd registry backend at \
 etcd://192.168.33.10:4001/cookbook
2015/03/26 ... registrator: ignored: 6f8043d9973f no published ports
2015/03/26 ... registrator: Listening for Docker events...
2015/03/26 ... registrator: ignored 8c033ca03a82 port 443 not published on host
2015/03/26 ... registrator: added: 8c033ca03a82 192.168.33.10:pensive_franklin:80

In the logs above, 6f8043d9973f is the container ID of the registrator container and
8c033ca03a82 is the container ID of the nginx container that we started.

216 | Chapter 7: The Docker Ecosystem: Tools

Discussion
The naming convention for the keys stored in etcd is based on the Service object cre‐
ated by registrator and passed to the registry backend. From the GitHub repo, the
Service structure is defined like this:

type Service struct {
 ID string // <hostname>:<container-name>:<internal-port>
 //[:udp if udp]
 Name string // <basename(container-image)>
 //[-<internal-port> if >1 published ports]
 Port int // <host-port>
 IP string // <host-ip> || <resolve(hostname)> if 0.0.0.0
 Tags []string // empty, or includes 'udp' if udp
 Attrs map[string]string // any remaining service metadata from environment
}

The key for the service is defined by:

<registry-uri-path>/<service-name>/<service-id>

In the example above it is then (see the ID definition in the Service object):

cookbook/nginx-80/192.168.33.10:pensive_franklin:80

And set to <ip>:<port> or in the example above 192.168.33.10:80 (see the Port and
IP definitions in the Service object)

If you do not want to use etcd but rather use consul, you can switch registry back‐
end. You can easily try this on a single host, by using the progrium/consul image
from Docker hub. Pull the image and run the consul agent in one terminal session
(the consul container is not detached in this example)

$ docker pull progrium/consul
$ docker run -p 8400:8400 -p 8500:8500 -p 8600:53/udp
 -h cookbook progrium/consul -server
 -bootstrap -ui-dir /ui

In another session start registrator but change the registry URI to consul://
192.168.33.10:8500/foobar

$ docker run -d -v /var/run/docker.sock:/tmp/docker.sock
 -h 192.168.33.10 gliderlabs/registrator
 -ip 192.168.33.10 consul://192.168.33.10:8500/foobar

You can now start an nginx container:

$ docker run -d -p 80:80 nginx

And now, if you check the consul UI at http://192.168.33.10:8500/ui you will see
that a foobar directory has been created with several keys in them. The keys for the
consul container itself and the key for your nginx container. See the snapshot below:

7.13 Discovering Docker Services with Registrator | 217

https://github.com/gliderlabs/registrator
http://consul.io
http://192.168.33.10:8500/ui

Figure 7-7. Consul UI

With Docker service registration under control you can start thinking about dynami‐
cally reconfiguring other services (see ???)

See Also
• GitHub repository of registrator
• Original Blog post from Jeff Lindsay

218 | Chapter 7: The Docker Ecosystem: Tools

https://github.com/gliderlabs/registrator
http://progrium.com/blog/2014/09/10/automatic-docker-service-announcement-with-registrator/

CHAPTER 8

Docker in the Cloud

This chapter will consist of several recipes focused on using Docker
in Public and Private Clouds. The four recipes listed currently are
only stubs, more will be added as the book nears completion. You
can send me suggestions at how2dock@gmail.com

With the advent of pubic and private clouds, enterprises have moved an increasing
number of workloads to the clouds. A significant portion of IT infrastructure is now
provisioned on public Clouds like Amazon Web Services(AWS), Google Compute
Engine(GCE) and Microsoft Azure(Azure). In addition, companies have deployed
private clouds to provide a self-service infrastructure for IT needs.

While Docker, like any software, runs on bare metal servers, running a Docker host
in a public or private Cloud (i.e on virtual machines) and orchestrating containers
started on those hosts is going to be a critical part of new IT infrastructure needs.

In this chapter we look at the top three public Clouds(i.e AWS, GCE and Azure) and
some of the Docker services they offer. We briefly review how to use CLI to start
instances in the Cloud and install Docker, then look at some container optimized
instances or linux distributions offered. While Docker machine (see Recipe 1.5) will
ultimately remove the need to use these provider CLIs, learning how to start instan‐
ces will be useful to use the other Docker related services. Indeed, we also cover two
new services currently in preview: The Amazon Container Service and the Google
container engine.

AWS, GCE and Azure are the recognized top three public Cloud
providers in the world. However, Docker can be installed on any
public cloud where you can run a linux distribution supported by
Docker (e.g Ubuntu, CentOS, coreOS).

219

http://aws.amazon.com
https://cloud.google.com
https://cloud.google.com
http://azure.microsoft.com/en-us/
https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/

Docker machine as been covered in Recipe 1.5, once Docker 1.5 is
released the recipe will be updated and I will problably move it to
this chapter.

Figure 8-1. Docker in the Cloud draft image

8.1 Accessing Public Clouds to Run Docker
Problem
You need access to a Public Cloud to run Docker in cloud instances.

Solution
If you do not already have access, create an account on your public Cloud provider of
choice.

• For GCE, you can start with a free trial. You will need a Google account. You will
then be able to log into the console

• For Azure, you can start with a free trial.
• For AWS, you can have access to a free tier. Once you create an account, you can

log into the console

220 | Chapter 8: Docker in the Cloud

https://cloud.google.com/
https://cloud.google.com/console
http://azure.microsoft.com/en-us/pricing/free-trial/
http://aws.amazon.com/free/
https://aws.amazon.com/console

Log into the web console of the provider that you want to use and go through the
launch instance wizard. Make sure you can start an instance that you can connect to
via ssh.

Figure 8-2. AWS Console

Figure 8-3. GCE Console

8.1 Accessing Public Clouds to Run Docker | 221

Figure 8-4. Azure Console

Discussion

If you are not familiar with one of these Clouds and have not com‐
pleted this setup, you will not be able to follow the recipes in this
chapter. However a complete step by step walkthrough of using
these Clouds is beyond the scope of this cookbook.

These instructions are not Docker specific. Once you create an
account on one of these clouds you will have access to any of the
Cloud services provided.

On AWS, the recipes in this chapter will make use of the Elastic Compute
Cloud(EC2) service. To start instances, you will need to become familiar with four
basic principles:

• AWS API keys to use with the AWS command line interface (CLI).
• SSH Key pairs to connect to your instances via ssh.
• Security Groups to control traffic to and from EC2 instances.

222 | Chapter 8: Docker in the Cloud

http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

• Instance user data to configure your instances at startup time.

On GCE, we will use the Google compute engine service. The AWS principles also
apply to GCE:

• GCE authentication. In the rest of the chapter we will use the gcloud CLI, which
uses OAuth2 for authentication. There are other types of authentication and
authorization mechanisms for GCE.

• Using an SSH key to connect to an instance.
• Instance firewall
• Instance metadata

See Also
• Programming Amazon Web Services
• AWS getting started guide
• Automating Microsoft Azure Infrastructure Services
• GCE getting started guide

8.2 Starting a Docker Host on AWS EC2
Problem
You want to start a VM instance on AWS EC2 Cloud and use it as a Docker Host.

Solution
While you can start an instance and install Docker in it via the EC2 web console, we
will use the AWS command line interface (CLI). Before you do that as mentioned in
Recipe 8.1 you should obtain a set of API keys. In the web console, select your
account name on the top right of the page and go to the security credentials page. You
will be able to create a new access key. The secret key corresponding to this new
access key will be given to you only once, so make sure that you store it securely.

8.2 Starting a Docker Host on AWS EC2 | 223

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://cloud.google.com/compute/docs/
https://cloud.google.com/compute/docs/authentication
https://cloud.google.com/compute/docs/instances#sshkeys
https://cloud.google.com/compute/docs/networking#addingafirewall
https://cloud.google.com/compute/docs/metadata#updatinginstancemetadata
http://shop.oreilly.com/product/9780596515812.do
http://aws.amazon.com/documentation/gettingstarted/
http://shop.oreilly.com/product/0636920032380.do
https://cloud.google.com/compute/docs/signup

Figure 8-5. AWS Security Credentials Page

You can then install the AWS CLI and configure it to use your newly generated keys.
Select an AWS region where you want to start your instances by default.

The AWS CLI, aws is a Python package that can be installed via the Python Package
Index (i.e pip). For example on Ubuntu:

$ sudo apt-get -y install python-pip
$ sudo pip install awscli
$ aws configure
AWS Access Key ID [****************n-mg]: AKIAIEFDGHQRTW3MNQ
AWS Secret Access Key [****************UjEg]: b4pWYhMUosg976arg9869Qd+Yg1qo22wC
Default region name [eu-east-1]: eu-west-1
Default output format [table]:
$ aws --version
aws-cli/1.7.4 Python/2.7.6 Linux/3.13.0-32-generic

To access your instance via ssh you will need to have an SSH key pair setup in EC2.
Create a key pair via the CLI, copy the returned private key into a file in your ~/.ssh
folder and make that file only readable and writable by you. Verify that the key has
been created, either via the CLI or by checking the web console.

$ aws ec2 create-key-pair --key-name cookbook
$ vi ~/.ssh/id_rsa_cookbook
$ chmod 600 ~/.ssh/id_rsa_cookbook
$ aws ec2 describe-key-pairs

| DescribeKeyPairs |
+---+
|| KeyPairs ||
|+---+-----------+|
|| KeyFingerprint | KeyName ||

224 | Chapter 8: Docker in the Cloud

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

|+---+-----------+|
|| 69:aa:64:4b:72:50:ee:15:9a:da:71:4e:44:cd:db:c0:a1:72:38:36 | cookbook ||
|+---+-----------+|

You are now ready to start an instance on EC2. The standard linux images from AWS
now contain a Docker repository. Hence when starting an EC2 instance from an
Amazon Linux AMI we will be one step away from running Docker (i.e sudo yum
install docker).

Use a para virtualized (i.e PV) Amazon Linux AMI, so that you can
use a t1.micro instance type. In addition, the default security
group allows you to connect via ssh, hence you do not need to cre‐
ate any additional rules in the security group if you only need to
ssh to it.

$ aws ec2 run-instances --image-id ami-7b3db00c
 --count 1
 --instance-type t1.micro
 --key-name cookbook
$ aws ec2 describe-instances
$ ssh -i ~/.ssh/id_rsa_cookbook ec2-user@54.194.31.39
The authenticity of host '54.194.31.39 (54.194.31.39)' can't be established.
RSA key fingerprint is 9b:10:32:10:ac:46:62:b4:7a:a5:94:7d:4b:2a:9f:61.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.194.31.39' (RSA) to the list of known hosts.

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2014.09-release-notes/
[ec2-user@ip-172-31-8-174 ~]$

Install the Docker package, start the docker daemon and verify that the Docker cli is
working.

[ec2-user@ip-172-31-8-174 ~]$ sudo yum install docker
[ec2-user@ip-172-31-8-174 ~]$ sudo service docker start
[ec2-user@ip-172-31-8-174 ~]$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Do not forget to terminate the instance or you might get charged for it:

$ aws ec2 terminate-instances --instance-ids <instance id>

Discussion
While we spent some time in this recipe creating API access keys and installing the
CLI. Hopefully you see the ease of creating Docker hosts in AWS. The standard AMI
are now ready to go to install Docker in two commands.

8.2 Starting a Docker Host on AWS EC2 | 225

The Amazon Linux AMI also contains cloud-init which has become the standard for
configuring cloud instances at boot time. This allows you to pass so called user data at
instance creation. Cloud init will parse the content of the user data and execute the
commands. Using the AWS cli we can pass some user data to automatically install
Docker. The small downside is that it needs to be base64 encoded.

Create a small bash script with the two commands that we did earlier:

#!/bin/bash
yum -y install docker
service docker start

Encode this script and pass it to the instance creation command:

$ udata="$(cat docker.sh | base64)"
$ aws ec2 run-instances --image-id ami-7b3db00c
 --count 1
 --instance-type t1.micro
 --key-name cookbook
 --user-data $udata
$ ssh -i ~/.ssh/id_rsa_cookbook ec2-user@<public IP of the created instance>
$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

With Docker daemon running, if you wanted to access it remotely
you would need to setup TLS access (see Recipe 4.10), and open
port 2376 in your security group.

Using this CLI is not Docker specific. This CLI gives you access to
the complete set of AWS APIs. However, using it to start instances
and install Docker in them significantly streamlines the provision‐
ing of Docker hosts.

See Also
• Installing the AWS CLI.
• Configuring the AWS CLI.
• Launching an instance via the AWS CLI.

8.3 Starting a Docker Host on Google GCE
Problem
You want to start a VM instance on Google GCE Cloud and use it as a Docker Host.

226 | Chapter 8: Docker in the Cloud

https://cloudinit.readthedocs.org/en/latest/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-ec2-launch.html

Solution
Install the gcloud cli (you will need to answer a few questions), then log into the
Google cloud. If the CLI can open a browser you will be redirected to a web page and
ask to sign in and accept the terms of use. If your terminal cannot launch a browser
you will be given a URL to open in a browser. This will give you an access token to
enter at the command prompt.

$ curl https://sdk.cloud.google.com | bash
$ gcloud auth login
Your browser has been opened to visit:
 https://accounts.google.com/o/oauth2/auth?redirect_uri=...
...
$ gcloud compute zones list
NAME REGION STATUS NEXT_MAINTENANCE TURNDOWN_DATE
asia-east1-c asia-east1 UP
asia-east1-a asia-east1 UP
asia-east1-b asia-east1 UP
europe-west1-b europe-west1 UP
europe-west1-c europe-west1 UP
us-central1-f us-central1 UP
us-central1-b us-central1 UP
us-central1-a us-central1 UP

If you have not setup a project, set one up in the web console. Projects allow you to
manage authorization or resources. It is the equivalent of Amazon IAM for the Goo‐
gle Cloud resources.

To start instances it is handy to set some defaults for the region and zone that you
would prefer to use. (Even though deploying a robust system in the Cloud will
involved instances in multiple regions and zones.) To do this use te gcloud config
set command, for example:

$ gcloud config set compute/region europe-west1
$ gcloud config set compute/zone europe-west1-c
$ gcloud config list --all

To start an instance you will need an image name and an instance type. Then the
gcloud tool will do the rest:

$ gcloud compute instances create cookbook \
 --machine-type n1-standard-1 \
 --image ubuntu-14-04 \
 --metadata startup-script="sudo apt-get -y install docker.io"
...
$ gcloud compute ssh cookbook
sebastiengoasguen@cookbook:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
...
$ gcloud compute instances delete cookbook

8.3 Starting a Docker Host on Google GCE | 227

https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/compute/docs/zones
https://cloud.google.com/sdk/gcloud/reference/compute/instances/create
https://cloud.google.com/compute/docs/machine-types

In the example above we created an Ubuntu 14.04 instance, of machine type n1-
standard-1 and we passed some metadata specifying that it was to be used as a
startup script. The bash command specified installed the docker.io package from the
standard Ubuntu repository. This led to a running instance with Docker running.
The GCE metadata is relatively equivalent to the AWS EC2 user-data and is processed
by cloud-init in the instance.

Discussion
If you list the images available in a zone you will see that some images are very inter‐
esting for Docker specific tasks.

$ gcloud compute images list
NAME PROJECT ALIAS DEPRECATED STATUS
...
coreos-alpha-584-0-0-v20150205 coreos-cloud READY
coreos-beta-557-2-0-v20150204 coreos-cloud READY
coreos-stable-522-6-0-v20150128 coreos-cloud coreos READY
...
container-vm-v20141208 google-containers container-vm READY
container-vm-v20150112 google-containers container-vm READY
container-vm-v20150129 google-containers container-vm READY
...

Indeed, GCE provides coreOS images, as well as so called container VMs. CoreOS is
discussed in Chapter 6 chapter. Container VMs are Debian 7 based instances that
contain the Docker daemon and the Kubernetes kubelet. Kubernetes is discussed in
Chapter 5 and we will go in more details about the container VM in Recipe 8.8.

If you want to start a coreOS instance, you can use the image alias. You will not need
to specify any metadata to install Docker:

$ gcloud compute instances create cookbook --machine-type n1-standard-1
 --image coreos
$ gcloud compute ssh cookbook
...
CoreOS (stable)
sebastiengoasguen@cookbook ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Using the gcloud CLI is not Docker specific. This CLI gives you
access to the complete set of GCE APIs. However, using it to start
instances and install Docker in them significantly streamlines the
provisioning of Docker hosts.

228 | Chapter 8: Docker in the Cloud

http://coreos.com
https://cloud.google.com/compute/docs/containers/container_vms
http://kubernetes.io

8.4 Starting a Docker Host on Microsoft Azure
Problem
You want to start a VM instance on Microsoft Azure Cloud and use it as a Docker
Host.

Solution
First you will need an account on Azure (see Figure 8-1). If you do not want to use
the Azure portal you will need to install the Azure CLI. On a fresh Ubuntu 14.04
machine you would do:

$ sudo apt-get update
$ sudo apt-get -y install nodejs-legacy
$ sudo apt-get -y install npm
$ sudo npm install -g azure-cli
$ azure -v
0.8.14

Then you will need to setup your account for authentication from the CLI. Several
methods are available. One is to download your account settings from the portal and
import them on the machine you are using the CLI from:

$ azure account download
$ azure account import ~/Downloads/Free\ Trial-2-5-2015-credentials.publishsettings
$ azure account list

You are now ready to use the Azure CLI to start VM instances. Pick a location and an
image.

$ azure vm image list | grep Ubuntu
$ azure vm location list
info: Executing command vm location list
+ Getting locations
data: Name
data: ----------------
data: West Europe
data: North Europe
data: East US 2
data: Central US
data: South Central US
data: West US
data: East US
data: Southeast Asia
data: East Asia
data: Japan West
info: vm location list command OK

To create an instance with ssh access using password authentication use the azure vm
create command like so:

8.4 Starting a Docker Host on Microsoft Azure | 229

https://manage.windowsazure.com
http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/

$ azure vm create cookbook --ssh=22
 --password #@$#%#@$
 --userName cookbook
 --location "West Europe"
 b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-LTS-amd64-server-20150123-en-us-30GB
...
$ azure vm list
...
data: Name Status Location DNS Name IP Address
data: -------- --------- ----------- --------------------- -------------
data: cookbook ReadyRole West Europe cookbook.cloudapp.net 100.91.96.137
info: vm list command OK

You can then ssh to the instance and setup Docker like you did in Recipe 1.1.

Discussion
The Azure CLI is still under active development. The source can be found on GitHub
and a Docker machine driver is available.

The Azure CLI also allows you to create a Docker host automatically by using the
azure vm docker create command.

$ azure vm docker create goasguen -l "West Europe" \
 b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-LTS-amd64-server-20150123-en-us-30GB cookbook @#$%@#$%$
info: Executing command vm docker create
warn: --vm-size has not been specified. Defaulting to "Small".
info: Found docker certificates.
...
info: vm docker create command OK
$ azure vm list
info: Executing command vm list
+ Getting virtual machines
data: Name Status Location DNS Name IP Address
data: -------- --------- ----------- --------------------- -------------
data: goasguen ReadyRole West Europe goasguen.cloudapp.net 100.112.4.136

The host started started will automatically have the Docker daemon running and you
will be able to connect to it using the Docker client and a TLS connection.

$ docker --tls -H tcp://goasguen.cloudapp.net:4243 ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$ docker --tls -H tcp://goasguen.cloudapp.net:4243 images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

Using this CLI is not Docker specific. This CLI gives you access to
the complete set of Azure APIs. However, using it to start instances
and install Docker in them significantly streamlines the provision‐
ing of Docker hosts.

230 | Chapter 8: Docker in the Cloud

https://msopentech.com/blog/2014/10/08/latest-updates-to-azure-cli/
https://github.com/Azure/azure-xplat-cli
https://github.com/docker/machine#microsoft-azure

See Also
• The Azure command line interface
• Starting a coreOS instance on Azure.
• Using Docker machine with Azure.

8.5 Starting a Docker Host on Azure with Docker Machine
Problem
You know how to start a Docker Host on Azure using the Azure CLI but you would
like to unify the way you start Docker hosts in the Cloud using Docker machine.

Solution
Use the Docker Machine Azure driver. In Figure 1-6 you saw how to use Docker
Machine to start a Docker Host on Digital Ocean, the same thing can be done on
Microsoft Azure. You will need a valid subscription to Azure.

You need to download the docker-machine binary. Go to the documentation site and
choose the correct binary for your local computer architecture. For example on OSX:

$ wget https://github.com/docker/machine/releases/download/v0.1.0/docker-machine_darwin-amd64
$ mv docker-machine_darwin-amd64 docker-machine
$ chmod +x docker-machine
$./docker-machine --version
docker-machine version 0.1.0

With a valid Azure subscription, create a X.509 certificate and upload it through the
Azure portal. You can create the certificate with the following commands:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mycert.pem -out mycert.pem
$ openssl pkcs12 -export -out mycert.pfx -in mycert.pem -name "My Certificate"
$ openssl x509 -inform pem -in mycert.pem -outform der -out mycert.cer

Upload the mycert.cer and define the following environment variables:

$ export AZURE_SUBSCRIPTION_ID=<UID of your subscription>
$ export AZURE_SUBSCRIPTION_CERT=mycert.pem

You can then use docker-machine and set your local Docker client to use this remote
Docker daemon:

$./docker-machine create -d azure goasguen-foobar
INFO[0002] Creating Azure machine...
INFO[0061] Waiting for SSH...
INFO[0360] "goasguen-foobar" has been created and is now the active machine.
INFO[0360] To point your Docker client at it, run this in your shell: $(docker-machine env goasguen-foobar)

8.5 Starting a Docker Host on Azure with Docker Machine | 231

http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/
https://coreos.com/docs/running-coreos/cloud-providers/azure/#via-the-cross-platform-cli
https://github.com/chanezon/azure-linux/blob/master/docker/machine.md
http://azure.microsoft.com/en-us/pricing/free-trial/
https://docs.docker.com/machine/
https://manage.windowsazure.com

$./docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
toto1111 * azure Running tcp://goasguen-foobar.cloudapp.net:2376
$ $(docker-machine env goasguen-foobar)
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

In the example above goasguen-foobar is the name that I gave to
my Docker machine. This needs to be a globally unique name.
Chances are that names like foobar and test have already been
taken.

Discussion
With your local Docker client setup to use the remote Docker daemon running in
this Azure virtual machine, you can pull images from your favorite registries and
start containers.

For example, let’s start an nginx container:

$ docker pull nginx
$ docker run -d -p 80:80 nginx

In order to expose port 80 of this remote host in Azure you will need to add an end‐
point to the VM that was created. Head over to the Azure portal, select the VM (here,
goasguen-foobar) and add an endpoint for HTTP request, like in the snapshot
below. Once the endpoint is created, you will be able to access nginx at http://
<unique_name>.cloudapp.net

Figure 8-6. Azure Endpoint for a Virtual Machine

232 | Chapter 8: Docker in the Cloud

http://<unique_name>.cloudapp.net
http://<unique_name>.cloudapp.net

See Also
• Docker Machine Azure driver documentation.

8.6 Running Cloud Providers CLI in Docker Containers
Problem
You want to take advantage of containers and run your Cloud provider CLI of choice
within a container. This gives you more portability options and avoids having to
install the CLI from scratch. You just need to download a container image from the
Docker hub.

Solution
For the Google GCE CLI, there is a public image maintained by Google. Download
the image via docker pull and run your GCE commands through interactive
ephemeral containers.

For example using boot2docker on a OSX machine:

$ boot2docker up
$ $(boot2docker shellinit)
$ docker pull google/cloud-sdk
$ docker images | grep google
google/cloud-sdk latest a7e7bcdfdc16 10 days ago 1.263 GB

You can then login and issue commands like described in Recipe 8.3. The only differ‐
ence is that the CLI is actually running within containers. The login command is
issue through a named container. That named container is used as a data volume con‐
tainer (i.e --volumes-from cloud-config) in subsequent CLI calls. This allows you
to use the authorization token that is stored in it.

$ docker run -t -i --name gcloud-config google/cloud-sdk gcloud auth login
Go to the following link in your browser:
...
$ docker run --rm \
 -ti \
 --volumes-from gcloud-config google/cloud-sdk \
 gcloud compute zones list
NAME REGION STATUS NEXT_MAINTENANCE TURNDOWN_DATE
asia-east1-c asia-east1 UP
asia-east1-a asia-east1 UP
asia-east1-b asia-east1 UP
europe-west1-b europe-west1 UP
europe-west1-c europe-west1 UP
us-central1-f us-central1 UP

8.6 Running Cloud Providers CLI in Docker Containers | 233

http://docs.docker.com/machine/#microsoft-azure
https://registry.hub.docker.com/u/google/cloud-sdk/

us-central1-b us-central1 UP
us-central1-a us-central1 UP

Using an alias makes things even better:

$ alias magic='docker run --rm \
 -ti \
 --volumes-from gcloud-config \
 google/cloud-sdk gcloud'
$ magic compute zones list
NAME REGION STATUS NEXT_MAINTENANCE TURNDOWN_DATE
asia-east1-c asia-east1 UP
asia-east1-a asia-east1 UP
asia-east1-b asia-east1 UP
europe-west1-b europe-west1 UP
europe-west1-c europe-west1 UP
us-central1-f us-central1 UP
us-central1-b us-central1 UP
us-central1-a us-central1 UP

Discussion
A Similar process can be used for AWS. If you search for an awscli image on Docker
hub, you will see several answers. The Dockerfile provided show you how the image
was constructed and the CLI installed within the image. If we take the nathanlec
laire/awscli image, we notice that no volumes are mounted to keep the credentials
from container to container. Hence we need to pass the AWS access keys as environ‐
ment variables when we launch a container:

$ docker pull nathanleclaire/awscli
$ docker run --rm \
 -ti \
 -e AWS_ACCESS_KEY_ID="AKIAIUCASDLGFIGDFGS" \
 -e AWS_SECRET_ACCESS_KEY="HwQdNnAIqo/XSVASGayqerwy9797arghqQERfrgot" \
 nathanleclaire/awscli \
 --region eu-west-1 \
 --output=table \
 ec2 describe-key-pairs

| DescribeKeyPairs |
+---+
|| KeyPairs ||
|+---+-----------+|
|| KeyFingerprint | KeyName ||
|+---+-----------+|
|| 69:aa:64:4b:72:50:ee:15:9a:da:71:4e:44:cd:db:c0:a1:72:38:36 | cookbook ||
|+---+-----------+|

We also notice that aws was setup as an entrypoint in this image, therefore there is no
need to specify it and we should only pass arguments to it.

234 | Chapter 8: Docker in the Cloud

https://registry.hub.docker.com/u/nathanleclaire/awscli/dockerfile/

You can build your own AWS CLI image which allows you handle
API keys more easily.

See Also
• Official documentation on the containerized Google SDK

8.7 Using Google Container Registry to Store your Docker
Images
Problem
You have used a Docker private registry hosted on your own infrastructure (see
Recipe 2.9) but you would like to take advantage of a hosted service, specifically you
would like to take advantage of the newly announced Google container registry cur‐
rently in Beta release.

There are other hosted private registry solutions. Like Docker Hub
Enterprise or Quay.io. This recipe does not represent an endorse‐
ment of one versus another.

Solution
If you have not done so yet, go through Recipe 8.1 to sign up on Google Cloud Plat‐
form. Then download the Google Cloud CLI and create a project (see Recipe 8.3).
Since the Google Container Registry (GCR) is a preview, update your gcloud CLI on
your Docker host to load the preview components. You will have access to gcloud
preview docker which is a wrapper around the docker client.

$ gcloud components update preview
$ gcloud preview docker help
Usage: docker [OPTIONS] COMMAND [arg...]

A self-sufficient runtime for linux containers.
...

In this example, we have created a cookbook project on Google Cloud with project ID
sylvan-plane-862. Your project name and project ID will differ.

8.7 Using Google Container Registry to Store your Docker Images | 235

https://registry.hub.docker.com/u/google/cloud-sdk/
https://cloud.google.com/tools/container-registry/
https://www.docker.com/enterprise/hub/
https://quay.io
https://cloud.google.com/storage/docs/projects

As an example, on the Docker host that we are using, we have a busybox image that
we to upload to GCR. You need to tag the image you want to push to the GCR so that
it follows the namespace naming convention of the GCR (i.e _gcr.io/project_id/
image_name). You can then upload the image with gcloud preview docker push

$ docker images | grep busybox
busybox latest a9eb17255234 8 months ago 2.433 MB
$ docker tag busybox gcr.io/sylvan_plane_862/busybox
$ gcloud preview docker push gcr.io/sylvan_plane_862/busybox
The push refers to a repository [gcr.io/sylvan_plane_862/busybox] (len: 1)
Sending image list
Pushing repository gcr.io/sylvan_plane_862/busybox (1 tags)
511136ea3c5a: Image successfully pushed
42eed7f1bf2a: Image successfully pushed
120e218dd395: Image successfully pushed
a9eb17255234: Image successfully pushed
Pushing tag for rev [a9eb17255234] on \
{https://gcr.io/v1/repositories/sylvan_plane_862/busybox/tags/latest}

The naming convention of the GCR namespace is such that if you
have dashes in your project ID you need to replace them with
underscores.

If you navigate to your storage browser in your Google Developers console, you will
see that a new bucket has been created and that all the layers making your image have
been uploaded.

Figure 8-7. Google Container Registry Image

236 | Chapter 8: Docker in the Cloud

Discussion
Automatically, Google compute instances started in the same project that you used to
push the images to, will have the correct privileges to pull that image. If you want
other people to be able to pull that image you will need to add them as members to
that project. You can set your project by default with gcloud config set project
<project_id> so you do not have to specify it on subsequent gcloud commands.

Let’s start an instance in GCE, ssh to it and pull the busybox image from GCR.

$ gcloud compute instances create cookbook-gce --image container-vm \
 --zone europe-west1-c \
 --machine-type f1-micro
$ gcloud compute ssh cookbook-gce
Updated [https://www.googleapis.com/compute/v1/projects/sylvan-plane-862].
...
$ sudo gcloud preview docker pull gcr.io/sylvan_plane_862/busybox
Pulling repository gcr.io/sylvan_plane_862/busybox
a9eb17255234: Download complete
511136ea3c5a: Download complete
42eed7f1bf2a: Download complete
120e218dd395: Download complete
Status: Downloaded newer image for gcr.io/sylvan_plane_862/busybox:latest
sebastiengoasguen@cookbook:~$ sudo docker images | grep busybox
gcr.io/sylvan_plane_862/busybox latest a9eb17255234 ...

To be able to push from a GCE instance you will need to start it
with the correct scope --scopes https://www.googleapis.com/
auth/devstorage.read_write.

8.8 Using Docker in GCE Google-Container Instances
Problem
You know how to start instances in Google GCE and configure Docker to be setup at
boot time, but you would like to use an image that is already configured with Docker

Solution
As mentioned in Recipe 8.3, GCE offers some container optimized images.

Make sure that you set your project to the project ID with gcloud
config set project <project_id>

8.8 Using Docker in GCE Google-Container Instances | 237

https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write

$ gcloud compute images list
NAME PROJECT ALIAS DEPRECATED STATUS
...
container-vm-v20141208 google-containers container-vm READY
container-vm-v20150112 google-containers container-vm READY
container-vm-v20150129 google-containers container-vm READY
...

These images are based on Debian 7, they contain the Docker daemon and the
Kubernetes kubelet service.

Kubernetes is discussed in more details in the Chapter 5 up-
coming chapter.

The kubelet service running in instances based on these images, allows the user to
pass a manifest (known as pod) that describes the set of containers that need to run in
the instance. The kubelet will start the containers and monitor them. A pod manifest
is a YAML file like so:

version: v1beta2
containers:
 - name: nginx
 image: nginx
 ports:
 - name: nginx
 hostPort: 80
 containerPort: 80

Your image in the pod manifest can reference an image in the Goo‐
gle Container Registry (GCR, see Recipe 8.7) for instance gcr.io/
<your_project_name>/busybox.

This simple manifest, describes a single container based on the nginx image and an
exposed port. You can pass this manifest to the gcloud instance creation command.
Save the above YAML file in nginx.yml then to start the instance:

$ gcloud compute instances create cookbook-gce \
 --image container-vm \
 --metadata-from-file google-container-manifest=nginx.yml \
 --zone europe-west1-c \
 --machine-type f1-micro

In your Google GCE console, you can browse to the started instance. You can allow
HTTP traffic as well as see the container manifest you passed. Once the containers

238 | Chapter 8: Docker in the Cloud

https://cloud.google.com/compute/docs/containers/container_vms
http://kubernetes.io
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/pods.md

defined in the pod manifest have started, open your browser at the IP of the instance
on port 80 and you will see the nginx welcome page.

Figure 8-8. Pod Manifest in GCE Container VM

Discussion
If you connect to the instance directly via ssh you can list the containers that are run‐
ning. You will see a google/cadvisor container used for monitoring and two kuber
netes/pause:go container. The last two acts as network proxy to the cadvisor
monitoring container and to the pod exposed ports.

$ gcloud compute ssh cookbook-gce
...
sebastiengoasguen@cookbook-gce:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND ...
1f83bb1197c9 nginx:latest "nginx -g 'daemon of ...
b1e6fed3ee20 google/cadvisor:0.8.0 "/usr/bin/cadvisor" ...

8.8 Using Docker in GCE Google-Container Instances | 239

79e879c48e9e kubernetes/pause:go "/pause" ...
0c1a51ab2f94 kubernetes/pause:go "/pause" ...

In Chapter 9 we will discuss cadvisor.

8.9 Starting a Docker Host on AWS Using Docker Machine
Problem
You understand how to use the AWS CLI to start an instance in the Cloud and know
how to install Docker (see Recipe 8.2). But you would like to use a streamlined pro‐
cess integrated with the Docker user experience.

Solution
Use Docker machine and its AWS EC2 driver.

Download the release candidate binaries for Docker machine. Set some environment
variables so that Docker Machine knows your AWS API keys and your default VPC
in which to start the Docker host. Then use Docker Machine to start the instance.
Docker will automatically setup a TLS connection and you will be able to use this
remote Docker host started in AWS. On a 64 bit linux machine.

$ wget https://github.com/docker/machine/releases/download/\
 v0.1.0-rc2/docker-machine_linux-amd64
$ chmod +x docker-machine
$ export AWS_ACCESS_KEY_ID=<your AWS access key>
$ export AWS_SECRET_ACCESS_KEY_ID=<your AWS secret key>
$ export AWS_VPC_ID=<the VPC ID you want to start the instance in>
$./docker-machine create -d amazonec2 cookbook
INFO[0000] Launching instance...
INFO[0023] Waiting for SSH ...
...
INFO[0129] "cookbook" has been created and is now the active machine
INFO[0129] To connect: docker $(docker-machine config cookbook) ps

Once the machine has been created, you can use your local Docker client to commu‐
nicate with it. Do not forget to kill the machine once your are done.

$ docker $(./docker-machine config cookbook) ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$./docker-machine ls
NAME ACTIVE DRIVER STATE URL
cookbook * amazonec2 Running tcp://<IP_of_your_Docker_machine_in_AWS>:2376
$./docker-machine kill cookbook

You can manage your machines directly from the Docker Machine CLI:

$./docker-machine -h
...
COMMANDS:

240 | Chapter 8: Docker in the Cloud

https://github.com/google/cadvisor
https://github.com/docker/machine

 active Get or set the active machine
 create Create a machine
 config Print the connection config for machine
 inspect Inspect information about a machine
 ip Get the IP address of a machine
 kill Kill a machine
 ls List machines
 restart Restart a machine
 rm Remove a machine
 env Display the commands to set up the environment for the Docker client
 ssh Log into or run a command on a machine with SSH
 start Start a machine
 stop Stop a machine
 upgrade Upgrade a machine to the latest version of Docker
 url Get the URL of a machine
 help, h Shows a list of commands or help for one command

Discussion

Docker machine 0.1.0 is not yet released. It contains drivers for
several cloud providers. We already showcase the Digital Ocean
driver (see ???).

The AWS driver takes several command line options to set your keys, VPC, key pair,
image and instance type. You can set them up as environment variables like we did
above or directly on the machine command line.

$./docker-machine create -h
...
OPTIONS:
 --amazonec2-access-key AWS Access Key [$AWS_ACCESS_KEY_ID]
 --amazonec2-ami AWS machine image [$AWS_AMI]
 --amazonec2-instance-type 't2.micro' AWS instance type [$AWS_INSTANCE_TYPE]
 --amazonec2-region 'us-east-1' AWS region [$AWS_DEFAULT_REGION]
 --amazonec2-root-size '16' AWS root disk size (in GB) [$AWS_ROOT_SIZE]
 --amazonec2-secret-key AWS Secret Key [$AWS_SECRET_ACCESS_KEY]
 --amazonec2-security-group 'docker-machine' AWS VPC security group [$AWS_SECURITY_GROUP]
 --amazonec2-session-token AWS Session Token [$AWS_SESSION_TOKEN]
 --amazonec2-subnet-id AWS VPC subnet id [$AWS_SUBNET_ID]
 --amazonec2-vpc-id AWS VPC id [$AWS_VPC_ID]
 --amazonec2-zone 'a' AWS zone for instance (i.e. a,b,c,d,e) [$AWS_ZONE]

Finally, machine will create a SSH key pair and a security group for you. The security
group will allow traffic on port 2376 to allow communications over TLS from a
Docker client.

8.9 Starting a Docker Host on AWS Using Docker Machine | 241

https://github.com/docker/machine/releases/latest
https://github.com/docker/machine/tree/master/drivers

Figure 8-9. Security Group for Machine

8.10 Using Kubernetes in the Cloud via Google Container
Engine
Problem
You want to use a group of Docker hosts and manage containers on them. You like
the Kubernetes container orchestration engine but would like to use it as a hosted
cloud service.

Solution
Use the Google container engine service. This new service allows you to create a
Kubernetes cluster on-demand using the Google API. A cluster will be composed of a
master node and a set of compute nodes that act as container VMs similar to what
was described in Recipe 8.8.

Google container engine is currently in Alpha preview. Kubernetes
is under heavy development. Expect frequent changes to the API
and use it in production at your own risk. For details on Kuber‐
netes see Chapter 5.

Update your gcloud SDK to use the container engine preview. If you have not yet
installed the Google SDK, see Recipe 8.3.

$ gcloud components update preview

242 | Chapter 8: Docker in the Cloud

https://kubernetes.io
https://cloud.google.com/container-engine/

To start a Kubernetes cluster using the Google container engine service is a single
command

$ gcloud preview container clusters create cook --num-nodes 1 --machine-type g1-small
$ gcloud compute instances list
NAME ZONE MACHINE_TYPE INTERNAL_IP EXTERNAL_IP STATUS
k8s-cook-master us-central1-a g1-small 10.240.40.103 104.154.39.165 RUNNING
k8s-cook-node-1 us-central1-a g1-small 10.240.82.238 130.211.137.25 RUNNING

Your cluster IP addresses will differ from what shown above.

You could also create a cluster through the Google cloud web console.

Figure 8-10. Container Engine Wizard

Once your cluster is up you can submit containers to it. Meaning that you can inter‐
act with the underlying Kubernetes master node to launch group of containers on the
set of nodes in your cluster. Groups of containers are defined as pods. This is the same
concept introduced in Recipe 8.8. The gcloud CLI gives you a convenient way to
define simple pods and submit them to the cluster. Below we are going to launch a
container using the tutum/wordpress image which contains a MySQL database in it.

$ gcloud preview container pods create --name wordpress \
 --image=tutum/wordpress \
 --port=80 wordpress
$ gcloud preview container pods describe wordpress

8.10 Using Kubernetes in the Cloud via Google Container Engine | 243

POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS
wordpress 10.188.0.5 wordpress tutum/wordpress k8s-cook-node-1.c... name=wordpress Pending

Once the container is scheduled on one of the cluster nodes, we will need to open the
firewall using tags.

$ gcloud compute firewall-rules create wordpress-80 --allow tcp:80 \
 --target-tags k8s-cook-node
...
NAME NETWORK SRC_RANGES RULES SRC_TAGS TARGET_TAGS
wordpress-80 default 0.0.0.0/0 tcp:80 k8s-cook-node

You will then be able to enjoy Wordpress.

Discussion
While we can launch simple pods consisting of a single container, we can also specify
a more advanced pod defined in a json or YAML file using the --config-file
option.

$ gcloud preview container pods create --config-file /path/to/pod/pod.json

See Also
• Cluster operations
• Pods operations
• Services operations
• Replication controllers operations

8.11 Managing Google Container Engine Resources Using
kubecfg

Problem
You have created a Kubernetes cluster through the Google container engine service.
You know how to create pods, services and replication controllers using the gcloud
cli but would like to use the default kubecfg CLI to do it.

Solution
With a Kubernetes cluster started (see Recipe 8.10), you connect to the master node
via ssh using the gcloud CLI, you then have access to kubecfg. The IP addresses lis‐
ted below will differ.

244 | Chapter 8: Docker in the Cloud

https://cloud.google.com/container-engine/docs/clusters/operations
https://cloud.google.com/container-engine/docs/pods/operations
https://cloud.google.com/container-engine/docs/services/operations
https://cloud.google.com/container-engine/docs/services/operations

$ gcloud preview container clusters create cookbook --num-nodes 2 \
 --machine-type g1-small
$ $ gcloud compute instances list
NAME ZONE MACHINE_TYPE INTERNAL_IP EXTERNAL_IP STATUS
k8s-cookbook-node-2 us-central1-a g1-small 10.240.222.210 104.154.39.165 RUNNING
k8s-cookbook-node-1 us-central1-a g1-small 10.240.240.234 130.211.170.38 RUNNING
k8s-cookbook-master us-central1-a g1-small 10.240.154.207 130.211.115.17 RUNNING
$ gcloud compute ssh k8s-cookbook-master --zone us-central1-a
sebastiengoasguen@k8s-cookbook-master:~$ which kubecfg
/usr/local/bin/kubecfg

The Kubernetes cluster may not have been created in your default
zone. Specify the zone with the --zone option to ssh to the master
node.

The power of kubecfg is now at your fingertips:

$ kubecfg list minions
Minion identifier Labels
---------- ----------
k8s-cookbook-node-1.c.<your_google_project>.internal
k8s-cookbook-node-2.c.<your_google_project>.internal

Discussion
The kubecfg CLI can be used to manage all resources in a Kubernetes cluster.

$ kubecfg -h
....
Usage: kubecfg -h [-c config/file.json|url|-] <method>

Kubernetes REST API:

 kubecfg [OPTIONS] get|list|create|delete|update \
 <events|minions|nodes|pods|replicationControllers|services>[/<id>]

To start a pod you need to define it in a YAML or json file. In Recipe 8.8, we saw an
example in YAML. Here we write our pod in a json file, using the newly released
Kubernetes v1beta2 API version. This pod will simply start nginx.

{
 "id": "nginx",
 "kind": "Pod",
 "apiVersion": "v1beta2",
 "desiredState": {
 "manifest": {
 "id": "nginx",
 "version": "v1beta2",
 "containers": [{
 "name": "nginx",

8.11 Managing Google Container Engine Resources Using kubecfg | 245

 "image": "nginx",
 "imagePullPolicy": "PullIfNotPresent",
 "ports": [{"containerPort": 80, "hostPort": 80}],
 }]
 }
 },
}

Start the pod and check its status. Once it is running and that you have a firewall with
port 80 open for the cluster nodes, you will be able to see the nginx welcome page.
Additional examples are available on the Kubernetes GitHub page. For more infor‐
mation on the skydns pod that you see running below check the Chapter 5 chapter.

$ kubecfg -c nginx.json create pods
$ kubecfg list pods
$ kubecfg list pods
Name Image(s) Host Labels Status
---------- ---------- ---------- ---------- ----------
nginx nginx k8s-cookbook-node-2.c.runseb.internal/104.154.39.165 Running
skydns-fplln quay.io... k8s-cookbook-node-1.c.runseb.internal/130.211.170.38 k8s-app=skydns Running

To clean things up, remove your pod, exit the master node and delete your cluster.

$ kubecfg delete pods/nginx
$ exit # On the kubernetes master
$ gcloud preview container clusters delete cookbook

8.12 Getting Setup to Use the EC2 Container Service
Problem
You want to try the new Amazon AWS EC2 container service (ECS).

Solution
ECS is currently a preview and only available in the AWS Northern Virginia region.
Getting setup to test ECS involves several steps which are well documented on AWS
documentation. In this recipe we summarize the main steps but you should refer to
the official documentation for all details.

• Sign up for AWS if you have not done so.
• Log into the AWS console. Review Recipe 8.1 and Recipe 8.2 if you have not read

those recipes. You will launch ECS instances within a security group associated to
a VPC. Create a VPC and a security group or ensure that you have default ones
present.

246 | Chapter 8: Docker in the Cloud

https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
http://aws.amazon.com

• Go to the Identity and Account Management (IAM) console and create a role for
ECS. If you are not familiar with IAM, this step is a bit advanced and can be fol‐
lowed step by step on the AWS documentation for ECS.

• For the role that you just created create an inline policy. If successfull when you
select the Show Poliyc link you should see the screenshot below. See the discus‐
sion section of this recipe for an automated way of creating this policy using
Boto.

Figure 8-11. ECS Policy in IAM Role Console

• Install the latest AWS CLI. The ECS API is available in version 1.7.0 or greater.
You can verify that the aws ecs commands are now available.

$ sudo pip install awscli
$ aws --version
aws-cli/1.7.8 Python/2.7.9 Darwin/12.6.0
$ aws ecs help

ECS() ECS()

NAME

8.12 Getting Setup to Use the EC2 Container Service | 247

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
http://docs.pythonboto.org/en/latest/
http://aws.amazon.com/cli/

 ecs -

DESCRIPTION
 Amazon EC2 Container Service (Amazon ECS) is a highly scalable, fast,
 container management service that makes it easy to run, stop, and man-
 age Docker containers on a cluster of Amazon EC2 instances. Amazon ECS
 lets you launch and stop container-enabled applications with simple API
 calls, allows you to get the state of your cluster from a centralized
 service, and gives you access to many familiar Amazon EC2 features like
 security groups, Amazon EBS volumes, and IAM roles.
...

• Create a AWS CLI configuration file which contains the API keys of the IAM user
your created above. Note the region being set to is us-east-1, which is the
Northern Virginia region where ECS is currently available.

$ cat ~/.aws/config
[default]
output = table
region = us-east-1
aws_access_key_id = <your AWS access key>
aws_secret_access_key = <your AWS secret key>

Once you have completed all these steps you will be ready to use ECS. You will need
to create a cluster (see Recipe 8.13), define tasks corresponding to containers and run
those tasks to start the containers on the cluster (see Recipe 8.14)

Discussion
Creating the IAM profile and the ECS policy for the instances that will be started to
form the cluster can be overwhelming if you have not used AWS before. To ease this
step. You can use the online material accompanying this book. It contains a small
code that uses the Python Boto client to create the policy.

Install Boto, copy ~/.aws/config to ~/.aws/credentials, clone the repository and
execute the script.

$ git clone https://github.com/how2dock/docbook.git
$ sudo pip install boto
$ cp ~/.aws/config ~/.aws/credentials
$ cd ch08/ecs
$./ecs-policy.py

This script will create a ecs role, an ecspolicy policy and a cookbook instance pro‐
file. You can edit the script to change these names. After completion, you should see
the role and the policy in the IAM console.

248 | Chapter 8: Docker in the Cloud

http://docs.pythonboto.org/en/latest/
https://console.aws.amacon.con/iam/home#roles

See Also
• Video of an ECS demo
• ECS documentation

8.13 Creating a ECS Cluster
Problem
You are setup to use ECS (see Recipe 8.12), you want to create a cluster and some
instances in it to run containers.

Solution
Use the AWS CLI that you installed in Recipe 8.12 and explore the new ECS API. In
this recipe we will learn to use:

• aws ecs list-clusters

• aws ecs create-cluster

• aws ecs describe-clusters

• aws ecs list-container-instances

• aws ecs delete-cluster

By default you have one cluster in ECS but until you have launched an instance in
that cluster it is not active. Try to describe the default cluster.

$ aws ecs describe-clusters

| DescribeClusters |
+---+
|| failures ||
|+--+----------+|
|| arn | reason ||
|+--+----------+|
|| arn:aws:ecs:us-east-1:587264368683:cluster/default | MISSING ||
|+--+----------+

Currently you are limited to two ECS clusters.

8.13 Creating a ECS Cluster | 249

https://aws.amazon.com/blogs/compute/amazon-ecs-video-demo/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html

To activate this cluster, launch an instance using Boto. The AMI used is specific to
ECS and contains the ECS agent. You will need to have created a SSH key pair to SSH
into the instance if you want to and you will need an instance profile associated with
a role that has the ECS policy (see Recipe 8.12).

$ python
...
>>> import boto
>>> c = boto.connect_ec2()
>>> c.run_instances('ami-34ddbe5c', \
 key_name='ecs', \
 instance_type='t2.micro', \
 instance_profile_name='cookbook')

With one instance started, wait that it runs and registers in the cluster. Then if you
describe the cluster again you will see that the default cluster has switched to active
state. You can also list container instances.

$ aws ecs describe-clusters

| DescribeClusters |
+---+
|| clusters ||
|+---+--------------+----------+|
|| clusterArn | clusterName | status ||
|+---+--------------+----------+|
|| arn:aws:ecs:us-east-1:587264368683:cluster/default | default | ACTIVE ||
|+---+--------------+----------+|
sebimac:ecs sebgoa$ aws ecs list-container-instances
--
| ListContainerInstances |
+--+
|| containerInstanceArns ||
|+--+|
|| arn:aws:ecs:us-east-1:587264368683:container-instance/e62d3d79-c88f-48f9-99e4-28bc19b2a665 ||
|+--+|

Starting additional instances will just increase the size of the cluster.

$ aws ecs list-container-instances
--
| ListContainerInstances |
+--+
|| containerInstanceArns ||
|+--+|
	arn:aws:ecs:us-east-1:587264368683:container-instance/75738343-6fad-46fd-ba62-d4070b270207	
	arn:aws:ecs:us-east-1:587264368683:container-instance/b457e535-feb6-4a14-9a1b-44f9612239d2	
	arn:aws:ecs:us-east-1:587264368683:container-instance/e5c0be59-ce1d-40d8-8b72-e845f2d87efa	
	arn:aws:ecs:us-east-1:587264368683:container-instance/e62d3d79-c88f-48f9-99e4-28bc19b2a665	
+--+		

250 | Chapter 8: Docker in the Cloud

https://github.com/aws/amazon-ecs-agent

Since these container instances are regular EC2 instances, you will see them in your
EC2 console. If you have setup a SSH key properly and opened port 22 on the secu‐
rity group used you can also ssh to them:

The aws ecs describe-container-instances call does not seem
to be working properly. So check the IP addresses of your instances
in the AWS console.

$ ssh -i ~/.ssh/id_rsa_ecs ec2-user@52.1.224.245
...

 __| __| __|
 _| (__ \ Amazon ECS-Optimized Amazon Linux AMI
 ____|___|____/

 Image created: Thu Dec 18 01:39:14 UTC 2014
 PREVIEW AMI

9 package(s) needed for security, out of 10 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-33-78 ~]$ docker ps
CONTAINER ID IMAGE ...
4bc4d480a362 amazon/amazon-ecs-agent:latest ...
[ec2-user@ip-172-31-33-78 ~]$ docker version
Client version: 1.3.3
Client API version: 1.15
Go version (client): go1.3.3
Git commit (client): c78088f/1.3.3
OS/Arch (client): linux/amd64
Server version: 1.3.3
Server API version: 1.15
Go version (server): go1.3.3
Git commit (server): c78088f/1.3.3

You see that the container instance is running Docker 1.3.3 and that the ECS agent is
actually a container.

Discussion
While you can use the default cluster, you can also create your own.

$ aws ecs create-cluster --cluster-name cookbook
--
| CreateCluster |
+--+
|| cluster ||
|+--+--------------+----------+|
|| clusterArn | clusterName | status ||

8.13 Creating a ECS Cluster | 251

|+--+--------------+----------+|
|| arn:aws:ecs:us-east-1:587264368683:cluster/cookbook | cookbook | ACTIVE ||
|+--+--------------+----------+|
$ aws ecs list-clusters

| ListClusters |
+---+
|| clusterArns ||
|+---+|
|| arn:aws:ecs:us-east-1:587264368683:cluster/cookbook ||
|| arn:aws:ecs:us-east-1:587264368683:cluster/default ||
|+---+|

To launch instances in that freshly created cluster instead of the default one you will
just need to pass some user data during the instance creation step. Via Boto this can
be achieved with the following script:

#!/usr/bin/env python

import boto
import base64

userdata="""
#!/bin/bash
echo ECS_CLUSTER=cookbook >> /etc/ecs/ecs.config
"""

c = boto.connect_ec2()
c.run_instances('ami-34ddbe5c', \
 key_name='ecs', \
 instance_type='t2.micro', \
 instance_profile_name='cookbook', \
 user_data=base64.b64encode(userdata))

Once you are done with the cluster you can delete it entirely with the aws ecs
delete-cluster --cluster cookbook command.

See Also
• The ECS agent on GitHub.

8.14 Starting Docker Containers on a ECS Cluster
Problem
You know how to create a ECS cluster on AWS (see Recipe 8.13), you are ready to
start containers on the instances forming the cluster.

252 | Chapter 8: Docker in the Cloud

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://github.com/aws/amazon-ecs-agent

Solution
Define your containers or group of containers in a definition file in json format. This
will be called a task. You will register this task and then run it. It is a two step process.
Once the task is running in the cluster you can list, stop and start it.

For example to run nginx in a container based on the nginx image from Docker hub,
you create the following task definition in json format:

[
 {
 "environment": [],
 "name": "nginx",
 "image": "nginx",
 "cpu": 10,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "memory": 10,
 "essential": true
 }
]

You can notice the similarities between this task definition, a Kubernetes pod (Recipe
8.11) and a fig file (???). To register this task use the ECS register-task-definition
call, specify a family which groups the tasks and helps you keep revision history
which can be handy for roll back purposes.

$ aws ecs register-task-definition --family nginx
 --container-definitions file://$PWD/nginx.json
$ aws ecs list-task-definitions
--
| ListTaskDefinitions |
+--+
|| taskDefinitionArns ||
|+--+|
|| arn:aws:ecs:us-east-1:587264368683:task-definition/nginx:1 ||
|+--+|

To start the container defined in this task definition you simply use the run-task
command and specify the number of containers you want running. To stop the con‐
tainer, you stop the task specifying it via its task UUID obtained from list-tasks, as
shown below:

$ aws ecs run-task --task-definition nginx:1 --count 1
$ aws ecs stop-task --task 6223f2d3-3689-4b3b-a110-ea128350adb2

8.14 Starting Docker Containers on a ECS Cluster | 253

ECS will schedule the task on one of the container instances in your cluster. The
image will be pulled from Docker hub and the container started using the options
specified in the task definion. At this preview stage of ECS, it is not straightforward to
find the instance where the task is running and find the associated IP address. If you
have multiple instances running, you will have to do a bit of a guess work. There does
not seem to be a proxy service like in Kubernetes either.

Since ECS is in preview, the API might change. The returned
objects from API calls might also be altered. Expect changes and
improvements.

Discussion
While the Nginx example above represents a task with a single container running,
you can also define a task with linked containers. The task definition reference
describes all possible keys that can be used to define a task. to continue with our
example of running Wordpress with two containers (a wordpress one and a mysql
one), we can define a wordpress task. It is a translation of the fig (see ???) file to AWS
ECS task defintion format. It will not go unnoticed that a standardization effort
among fig, pod and task would benefit the community.

[
 {
 "image": "wordpress",
 "name": "wordpress",
 "cpu": 10,
 "memory": 200,
 "essential": true,
 "links": [
 "mysql"
],
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "environment": [
 {
 "name": "WORDPRESS_DB_NAME",
 "value": "wordpress"
 },
 {
 "name": "WORDPRESS_DB_USER",
 "value": "wordpress"
 },
 {

254 | Chapter 8: Docker in the Cloud

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html

 "name": "WORDPRESS_DB_PASSWORD",
 "value": "wordpresspwd"
 }
]
 },
 {
 "image": "mysql",
 "name": "mysql",
 "cpu": 10,
 "memory": 200,
 "essential": true,
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "wordpressdocker"
 },
 {
 "name": "MYSQL_DATABASE",
 "value": "wordpress"
 },
 {
 "name": "MYSQL_USER",
 "value": "wordpress"
 },
 {
 "name": "MYSQL_PASSWORD",
 "value": "wordpresspwd"
 }
]
 }
]

The task is registered the same way as done previously with Nginx, but we specify a
new family. When the task is run, it could however fail due to constraints not being
met. In this example, my container instances where of type t2.micro with 1GB of
memory. Since the task defintion is asking for 500 MB for wordpress and 500 MB for
Mysql, there was not enough memory for the cluster scheduler to find an instance
that matched the constraints and running the task failed.

$ aws ecs register-task-definition --family wordpress
 --container-definitions file://$PWD/wordpress.json
$ aws ecs run-task --task-definition wordpress:1 --count 1

| RunTask |
+---+
|| failures ||
|+--+------------------+|
|| arn | reason ||
|+--+------------------+|
|| arn:aws:ecs:us-east-1:587264368683:container-instance/f2acd785-5c55-4736-8cfe-3ae79e741e39 | RESOURCE:MEMORY ||
|| arn:aws:ecs:us-east-1:587264368683:container-instance/9ff17f44-df6f-4cff-875a-68e80eb51fb3 | RESOURCE:MEMORY ||

8.14 Starting Docker Containers on a ECS Cluster | 255

|| arn:aws:ecs:us-east-1:587264368683:container-instance/038fc90b-6bca-4383-a052-4579cf4cc848 | RESOURCE:MEMORY ||
|+--+------------------+|

You can edit the task definition, relax the memory constraint and register a new task
in the same family (revision 2). It will successfully run. If you log into the instance
running this task you will see the containers running alongside the ECS agent.

$ aws ecs run-task --task-definition wordpress:2 --count 1
$ ssh -i ~/.ssh/id_rsa_ecs ec2-user@54.152.108.134
...

 __| __| __|
 _| (__ \ Amazon ECS-Optimized Amazon Linux AMI
 ____|___|____/

...
[ec2-user@ip-172-31-36-83 ~]$ docker ps
CONTAINER ID IMAGE ... PORTS NAMES
36d590a206df wordpress:4 ... 0.0.0.0:80->80/tcp ecs-wordpress-2-wordpress-baa2d9b7aaa4d6d89001
893d1bd24421 mysql:5 ... 3306/tcp ecs-wordpress-2-mysql-a4eedcf5a48fc9cf4e00
81023576f81e amazon/amazon-ecs ... 127.0.0.1:51678->51678/tcp ecs-agent

Enjoy ECS and keep an eye on improvements and general availability.

See Also
• Task definition reference

8.15 Starting an Application in the Cloud Using Docker
Support in AWS Beanstalk
Problem
You would like to deploy a Docker based application in the Cloud by just pushing
your Dockerfile. You want the Cloud service to automatically spin up instances and
configure possible load-balancers.

Solution
Use AWS Elastic Beanstalk. Beanstalk use AWS EC2 instances, it can automatically
create an elastic load-balancer, create a security group and monitor the health of your
application and resources. Docker support in Beanstalk was announced in April
2014. Originally, Beanstalk only supported single container applications, however
recently AWS announced a coupling between AWS ECS and Beanstalk. This coupling
allows you to let Beanstalk use an ECS cluster as an environment for your application
and run multiple containers per instances (see Recipe 8.16).

256 | Chapter 8: Docker in the Cloud

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html
http://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/blogs/aws/aws-elastic-beanstalk-for-docker/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_ecs.html

To illustrate Docker support in Beanstalk we are going to setup a Beanstalk environ‐
ment using AWS CLI tools, and deploy the 2048 game using a single Dockerfile. This
is a variant of the official Beanstalk documentation.

To get started you will need couple things:

• An AWS account (see Figure 8-1).
• The AWS CLI (see Recipe 8.2).
• Register for Beanstalk by accessing the console and follow the on-screen instruc‐

tions.

The application deployment will consist of four steps: * Create a Beanstalk applica‐
tion with awscli * Create a Beanstalk environment based on a Docker software stack
(called solution stack in Beanstalk). * Create your Dockerfile and deploy it using the
eb CLI.

All these steps can be done via the AWS console. In this recipe we
chose to show a complete CLI based deployment. The output of the
awscli calls however are truncated.

With the AWS CLI, create an application foobar, list the solution stacks and pick the
Docker environment you need. Create a configuration template using the solution
stack of your choice, and finally create an environment.

$ aws elasticbeanstalk create-application --application-name foobar
...
$ aws elasticbeanstalk list-available-solution-stacks
...
$ aws elasticbeanstalk create-configuration-template
 --application-name foobar
 --solution-stack-name="64bit Amazon Linux 2014.09 v1.2.1 running Docker 1.5.0"
 --template-name foo
...
$ aws elasticbeanstalk create-environment
 --application-name foobar
 --environment-name cookbook
 --template-name foo

At this point, if you head over to the AWS Beanstalk console, you will see a foobar
application and a cookbook environment being created. Once Beanstalk has finished
creating the environment you can use the describe-environments API call and see
that the environment is ready. In the console, you will also see that an EC2 instance, a
security group and an elastic load-balancer has been created. You can configure the
load-balancers through the Beanstalk console.

8.15 Starting an Application in the Cloud Using Docker Support in AWS Beanstalk | 257

http://gabrielecirulli.github.io/2048/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_image.html
https://console.aws.amazon.com/elasticbeanstalk/

Going back to our CLI steps. Check the the environment is ready:

$ aws elasticbeanstalk describe-environments
--
| DescribeEnvironments |
+--+
|| Environments ||
|+-------------------+--+|
	ApplicationName	foobar	
	CNAME	cookbook-pmpgzmx2e6.elasticbeanstalk.com	
	DateCreated	2015-03-30T15:32:47.814Z	
	DateUpdated	2015-03-30T15:38:14.291Z	
	EndpointURL	awseb-e-7-AWSEBLoa-CUXDVD6RL9R7-992275618.eu-west-1.elb.amazonaws.com	
	EnvironmentId	e-7hamntqqnw	
	EnvironmentName	cookbook	
	Health	Green	
	SolutionStackName	64bit Amazon Linux 2014.09 v1.2.1 running Docker 1.5.0	
	Status	Ready	
+-------------------+--+			
		Tier	
	+---+--+		
		Name	WebServer
		Type	Standard
		Version	
	+---+--+		

Once it is ready, you can push your Docker application to it. This is done the most
easily by using the eb CLI which unfortunately is not included in the awscli. To fin‐
ish the deployment, we will do the following steps:

• Install the awsebcli
• Create your Dockerfile
• Initialize the application foobar that you created earlier.
• List the environment to make sure you are using the cookbook environment cre‐

ated above.
• Deploy the application

Let’s do this, install awsebcli, and create our application directory with our Docker‐
file in it.

$ sudo pip install awsebcli
$ mkdir beanstalk
$ cd beanstalk
$ cat > Dockerfile
FROM ubuntu:12.04

RUN apt-get update
RUN apt-get install -y nginx zip curl

258 | Chapter 8: Docker in the Cloud

RUN echo "daemon off;" >> /etc/nginx/nginx.conf
RUN curl -o /usr/share/nginx/www/master.zip -L https://codeload.github.com/gabrielecirulli/2048/zip/master
RUN cd /usr/share/nginx/www/ && unzip master.zip && mv 2048-master/* . && rm -rf 2048-master master.zip

EXPOSE 80

CMD ["/usr/sbin/nginx", "-c", "/etc/nginx/nginx.conf"]

We can then use the eb CLI to initialize the application (using the application name
used in the steps above, i.e foobar) and deploy it with eb deploy.

$ eb init foobar
$ eb list
* cookbook
$ eb deploy
Creating application version archive "app-150331_181300".
Uploading foobar/app-150331_181300.zip to S3. This may take a while.
Upload Complete.
INFO: Environment update is starting.
...
INFO: Successfully built aws_beanstalk/staging-app
INFO: Docker container ba7e79c37c43 is running aws_beanstalk/current-app.
INFO: New application version was deployed to running EC2 instances.
INFO: Environment update completed successfully.

You application is now deployed. Head over to the Beanstalk console and you will
find the URL of the application. Click on the URL and it will open the 2048 game.
This is fronted by an elastic load-balancer, which means that increased load on the
game will trigger the creation of additional instances serving the game behind the
load-balancer.

8.15 Starting an Application in the Cloud Using Docker Support in AWS Beanstalk | 259

Figure 8-12. AWS Beanstalk Console

Discussion
In the example above our application was encapsulated in a single Dockerfile with no
additional dependencies.

See Also

8.16 Using AWS Elastic Container Service as a Beanstalk
Environment
Problem

Solution

Discussion

See Also

260 | Chapter 8: Docker in the Cloud

CHAPTER 9

Monitoring containers

This chapter will consist of several recipes focused on application
and container monitoring as well as log management. The four rec‐
ipes listed currently are only stubs, more will be added as the book
nears completion. You can send me suggestions at
how2dock@gmail.com

9.1 Getting Detailed Information About a Container With
docker inspect

Problem
You want to get detailed information about a container. Details like when it was cre‐
ated, what command was passed to the container, what port mappings exists, what IP
address the container has etc.

Solution
Use the docker inspect command. For example start a nginx container and use
inspect:

$ docker run -d -p 80:80 nginx
$ docker inspect kickass_babbage
[{
 "AppArmorProfile": "",
 "Args": [
 "-g",
 "daemon off;"
],
...
 "ExposedPorts": {

261

 "443/tcp": {},
 "80/tcp": {}
 },
...
 "NetworkSettings": {
...
 "IPAddress": "172.17.0.3",
...

The inspect command also works on an image:

$ docker inspect nginx
[{
 "Architecture": "amd64",
 "Author": "NGINX Docker Maintainers \"docker-maint@nginx.com\"",
 "Comment": "",
 "Config": {
 "AttachStderr": false,
 "AttachStdin": false,
 "AttachStdout": false,
 "Cmd": [
 "nginx",
 "-g",
 "daemon off;"
],
...

Discussion
Docker inspect command takes a format option. You can use it to specify a go tem‐
plate and extract specific information about a container or image instead of getting
the full json output.

$ docker inspect --help

Usage: docker inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]

Return low-level information on a container or image

 -f, --format="" Format the output using the given go template.
 --help=false Print usage

For example to get the IP address of a running container and check its state.

$ docker inspect -f '' kickass_babbage
172.17.0.3
$ docker inspect -f '' kickass_babbage
true

If you prefer to use another Docker client like Docker-py (see Recipe 4.11) you can
also access the detailed information about containers and images using standard
Python dictionary notation:

262 | Chapter 9: Monitoring containers

$ python
...
>>> from docker import Client
>>> c=Client(base_url="unix://var/run/docker.sock")
>>> c.inspect_container('kickass_babbage')['State']['Running']
True
>>> c.inspect_container('kickass_babbage')['NetworkSettings']['IPAddress']
u'172.17.0.3'

9.2 Obtaining Usage Statistics of a Running Container
Problem
You have a running container on one of your Docker hosts and would like to monitor
its resource usage (e.g Memory, CPU, Network).

Solution
Using the docker stats command. This new API endpoint was introduced on Feb‐
ruary 10th 2015 and is accessible in Docker 1.5. The usage syntax is quite simple, you
just pass the container name (or container ID) to it and you will receive a stream of
statistics. Below we start a Flask application container and run stats on it:

$ docker run -d -p 5000:5000 runseb/flask
$ docker stats dreamy_mccarthy
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
dreamy_mccarthy 0.03% 24.01 MiB/1.955 GiB 1.20% 648 B/648 B

Since you are receiving a stream, you will not to Ctrl-C to kill the stream.

Discussion
Getting quick stats from the command line is quite useful for interactive debugging.
However you will most likely want to collect all these statistics and aggregate them
with a log collector solution like Logstash for futher visualiztion and analysis.

To prepare for such a monitoring framework you can try to use the stats API via
curl, by issuing TCP requests to the Docker daemon. First you will need to configure
your local Docker daemon to listen on port 2375 over TCP. On Ubuntu systems
edit /etc/default/docker to include:

DOCKER_OPTS="-H tcp://127.0.0.1:2375"

Restart your Docker daemon with sudo service docker restart. You are now
ready to use curl and target the Docker remote API. The syntax is again quite simple.
It is a HTTP GET request to the /containers/(id)/stats URI. Try it like so:

9.2 Obtaining Usage Statistics of a Running Container | 263

http://logstash.net
https://docs.docker.com/reference/api/docker_remote_api_v1.17/#get-container-stats-based-on-resource-usage

$ $ docker -H tcp://127.0.0.1:2375 run -d -p 5001:5000 runseb/flask
$ curl http://127.0.0.1:2375/containers/agitated_albattani/stats
{"read":"2015-04-01T11:48:40.609469913Z","network":{"rx_bytes":648,"rx_packets":8,"...

DO not forget to replace agitated_albattani with the name of your container. You
will start receiving a stream of statistics that you can interrupt with Ctrl-C. For practi‐
cal purposes I truncated most of the results from the previous command. This is very
handy to try things out, however if like me you like Python, you might want to access
these statistics from a Python program. To do this you can use docker-py (see Recipe
4.11). A Python script like the one below will put you on the right track.

#!/usr/bin/env python

import json
import docker
import sys

cli=docker.Client(base_url='tcp://127.0.0.1:2375')
stats=cli.stats(sys.argv[1])
print json.dumps(json.loads(next(stats).rstrip('\n')),indent=4)

The stats object in the Python script above is a generator which
yields results instead of the standard return behavior of functions.
It uses to capture the statistics stream and pick up where it left off.
next(stats) in the script is the way to yield the lates result from
the stream.

See Also
• Original GitHub pull request for stats.
• API documentation

9.3 Listening to Docker Events on Your Docker Hosts
Problem
You want to monitor Docker events on your host. You are interested in image untag‐
ging and deletion and container life cycle events (e.g create, destroy, kill)

Solution
Use the docker events command. It will return a stream of events as they happen on
your Docker host. The command takes a few optional arguments if you want to select
events for a specific time range:

264 | Chapter 9: Monitoring containers

https://github.com/docker/docker/pull/9984
https://docs.docker.com/reference/api/docker_remote_api_v1.17/#get-container-stats-based-on-resource-usage

$ docker events --help

Usage: docker events [OPTIONS]

Get real time events from the server

 -f, --filter=[] Provide filter values (i.e., 'event=stop')
 --help=false Print usage
 --since="" Show all events created since timestamp
 --until="" Stream events until this timestamp

Hence while, docker events will work and block until your Ctrl-C the stream, you
can use the --since or --until options like so:

$ docker events --since 1427890602
2015-04-01T12:17:04....9393146cb55e5bc9f04e20eb5a0622b3e26aae7: untag
2015-04-01T12:17:09....d5266f8777bfba4974ac56e3270e7760f6f0a81: untag
2015-04-01T12:17:22....d5266f8777bfba4974ac56e3270e7760f6f0a85: untag
2015-04-01T12:17:23....66f8777bfba4974ac56e3270e7760f6f0a81253: delete
2015-04-01T12:17:23....e9b5a793523481a0a18645fc77ad53c4eadsfa2: delete
2015-04-01T12:17:23....878585defcc1bc6f79d2728a13957871b345345: delete

Just as a reminder, you can get the current timestamp in epoch with
date +"%s"

Discussion
This events command is also available as an API call and you can use curl to access
it (see Recipe 9.2). Let’s leave this as an exercise and give an example of using docker-
py to get the list of events.

In Recipe 9.2, we reconfigured the Docker daemon to access the remote API over
TCP. We can also use docker-py to access the unix docker socket. A sample Python
script that would do this and save you some time to reconfigure the Docker daemon
looks like this:

#!/usr/bin/env python
import json
import docker
import sys

cli=docker.Client(base_url='unix://var/run/docker.sock')
events=cli.events(since=sys.argv[1],until=sys.argv[2])
for e in events:
 print e

This scrip takes two timestamps as arguments and returns the events between these
two. An example output would be:

9.3 Listening to Docker Events on Your Docker Hosts | 265

$./events.py 1427890602 1427891476
{"status":"untag","id":"967a84db1eff36cab6e77fe9c9393146c...","time":1427890624}
{"status":"untag","id":"4986bf8c15363d1c5d15512d5266f8777...","time":1427890629}
{"status":"untag","id":"4986bf8c15363d1c5d15512d5266f8777...","time":1427890642}
{"status":"delete","id":"4986bf8c15363d1c5d15512d5266f877...","time":1427890643}
{"status":"delete","id":"ea13149945cb6b1e746bf28032f02e9b...","time":1427890643}
{"status":"delete","id":"df7546f9f060a2268024c8a230d86398...","time":1427890643}

Event based tools likehttp://stackstorm.com[StackStorm] take advantage of this to
orchestrate various parts of a Docker base infrastructure.

See Also
• API documentation

9.4 Getting The Logs of a Container With docker logs
Problem
You have a running container, it runs a process in the foreground within the con‐
tainer, you would like to access the process logs from the host.

Solution
Use the docker logs command.

For example start an nginx container and open your browser on port 80 of the
Docker host:

$ docker run -d -p 80:80 nginx
$ docker ps
CONTAINER ID IMAGE ... PORTS NAMES
dd0e926c4015 nginx:latest ... 443/tcp, 0.0.0.0:80->80/tcp gloomy_mclean
$ docker logs gloomy_mclean
192.168.34.1 - - [10/Mar/2015:10:12:35 +0000] "GET / HTTP/1.1" 200 612 "-" ...
...

Discussion
You can get a continuous log stream using the -f option.

$ docker logs -f gloomy_mclean
192.168.34.1 - - [10/Mar/2015:10:12:35 +0000] "GET / HTTP/1.1" 200 612 "-" ...
...

In addition you can also monitor the process running in the container with docker
top

266 | Chapter 9: Monitoring containers

https://docs.docker.com/reference/api/docker_remote_api_v1.17/#monitor-dockers-events

$ docker top gloomy_mclean
UID PID PPID ... CMD
root 5605 4732 ... nginx: master process nginx -g daemon off;
syslog 5632 5605 ... nginx: worker process

9.5 Using Logspout to Collect Container Logs
Problem
Container logs can be obtained from docker logs as seen in Recipe 9.4, but you
would like to collect these logs from containers running in multiple Docker hosts and
aggregate them.

Solution
Use logspout. Logspout can collect logs from all containers running on a host and
route them to another host. It runs as a container and is purely stateless. You can use
it to route logs to a syslog server or send it to logstash for processing.

Let’s install logspout on one Docker host to collect logs from a nginx container. We
run nginx on port 80 of the host. Start logspout, mount the Docker unix
socket /var/run/docker.sock in /tmp/docker.sock and specify a syslog endpoint
(here we use another Docker host with the IP address of 192.168.34.11)

$ docker pull nginx
$ docker pull gliderlabs/logspout
$ docker run -d --name webserver -p 80:80 nginx
$ docker run -d --name logspout -v /var/run/docker.sock:/tmp/docker.sock \
 gliderlabs/logspout syslog://192.168.34.11:5000

To collect the logs we are going to use a logstash container running at 192.168.34.11.
To simplify things, it will listen for syslog input on UDP port 5000 and output every‐
thing to stdout on the same host. Start by pulling the logstash image (We use the
image ehazlett/logstash but there are many logstash images that you might want
to consider). After pulling the image we are going to build our own and specify a cus‐
tom logstash configuration file (this is based on the /etc/logstash.conf.sample
from the +ehazlett/logstash image).

$ docker pull ehazlett/logstash
$ cat logstash.conf
input {
 tcp {
 port => 5000
 type => syslog
 }
}

filter {

9.5 Using Logspout to Collect Container Logs | 267

https://github.com/gliderlabs/logspout
http://logstash.net

 if [type] == "syslog" {
 grok {
 match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} \
 %{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?: \
 %{GREEDYDATA:syslog_message}" }
 add_field => ["received_at", "%{@timestamp}"]
 add_field => ["received_from", "%{host}"]
 }
 syslog_pri { }
 date {
 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]
 }
 }
}

output {
 stdout { codec => rubydebug }
}
$ cat Dockerfile
FROM ehazlett/logstash

COPY logstash.conf /etc/logstash.conf
ENTRYPOINT ["/opt/logstash/bin/logstash"]
$ docker build -t logstash .

You are now ready to run the logstash container, and bind port 5000 of the container
to port 5000 of the host listening for UDP traffic.

$ docker run -d --name logstash -p 5000:5000/udp log -f /etc/logstash.conf

Once you open your browser to access Nginx running on the first Docker host you
used, logs will appear in the logstash container:

$ docker logs logstash
...
{
 "message" => "<14>2015-03-10T13:00:39Z 889bbf0753a8 nginx[1]: 192.168.34.1 - \
 - [10/Mar/2015:13:00:39 +0000] \"GET / HTTP/1.1\" 200 612 \"-\" \"Mozilla/5.0 \
 (Macintosh; Intel Mac OS X 10_8_5) AppleWebKit/600.3.18 (KHTML, like Gecko) \
 Version/6.2.3 Safari/537.85.12\" \"-\"\n",
 "@version" => "1",
 "@timestamp" => "2015-03-10T13:00:36.241Z",
 "type" => "syslog",
 "host" => "192.168.34.10",
 "tags" => [
...

Discussion
To simplify testing logspout with logstash you can clone the repository accompany‐
ing this book and go to the ch09/logspout directory. A Vagrantfile will start two
Docker hosts and pull the required Docker images on each host.

268 | Chapter 9: Monitoring containers

$ git clone https://github.com/how2dock/docbook.git
$ vagrant up
$ vagrant status
Current machine states:

w running (virtualbox)
elk running (virtualbox)
...

On the web server node, you can run nginx and the logspout container. On the elk
node you can run the logstash container.

$ vagrant ssh w
$ docker run --name nginx -d -p 80:80 nginx
$ docker run -d --name logspout -v /var/run/docker.sock:/tmp/docker.sock \
 gliderlabs/logspout syslog://192.168.34.11:5000

$ vagrant ssh elk
$ cd /vagrant
$ docker build -t logstash .
$ docker run -d --name logstash -p 5000:5000/udp log -f /etc/logstash.conf

You should see your nginx logs in the logstash container. Experiment with more
hosts, different containers and play with the logstash plugins to store your logs in dif‐
ferent formats.

See Also
• logstash website.
• Configuration of logstash.
• Plugins for logstash inputs, outputs, codecs and filters

9.6 Managing logspout Routes to Store Container Logs
Problem
You are using logspout to stream your logs to a remote server, but you would like to
modify this endpoint. Specifically, you want to debug your containers by looking
directly at logspout, change the endpoint it uses or add more endpoints.

Solution
In Recipe 9.5, you might have noticed that the logspout container has port 8000
exposed. You can use this port to manage routes via a straightfoward HTTP API.

You can bind port 8000 to the host to access this API remotely, but as an exercise we
are going to use a linked container to do it locally. Pull an image that contains curl

9.6 Managing logspout Routes to Store Container Logs | 269

http://logstash.net
http://logstash.net/docs/1.4.2/configuration
http://logstash.net/docs/1.4.2/index

and start a container interactively. Verify that you can ping the logspout container
(Here I assume that we have the same setup that in Recipe 9.5). Then use curl to
access the logspout API at http://logspout:8000.

$ docker pull tutum/curl
$ docker run -ti --link logspout:logspout tutum/curl /bin/bash
root@c94a4eacb7cc:/# ping logspout
PING logspout (172.17.0.10) 56(84) bytes of data.
64 bytes from logspout (172.17.0.10): icmp_seq=1 ttl=64 time=0.075 ms
...
root@c94a4eacb7cc:/# curl http://logspout:8000/logs
 logspout|[martini] Started GET /logs for 172.17.0.12:38353
 nginx|192.168.34.1 - - [10/Mar/2015:13:57:38 +0000] "GET / HTTP/1.1" 200 ...
 nginx|192.168.34.1 - - [10/Mar/2015:13:57:43 +0000] "GET / HTTP/1.1" 200 ...

Discussion
To manage the log streams the API exposes a /routes route. The standard HTTP
verbs GET, DELETE and POST can be used to list, delete and update the streaming
endpoints.

root@1fbb2f9636a8:/# curl http://logspout:8000/routes
[
 {
 "id": "e508de0c9689",
 "target": {
 "type": "syslog",
 "addr": "192.168.34.11:5000"
 }
 }
]
root@1fbb2f9636a8:/# curl http://logspout:8000/routes/e508de0c9689
{
 "id": "e508de0c9689",
 "target": {
 "type": "syslog",
 "addr": "192.168.34.11:5000"
 }
}
root@1fbb2f9636a8:/# curl -X DELETE http://logspout:8000/routes/e508de0c9689
root@1fbb2f9636a8:/# curl http://logspout:8000/routes
[]
root@1fbb2f9636a8:/# curl -X POST \
 -d '{"target": {"type": "syslog", \
 "addr": "192.168.34.11:5000"}}' \
 http://logspout:8000/routes
{
 "id": "f60d30502654",
 "target": {
 "type": "syslog",
 "addr": "192.168.34.11:5000"

270 | Chapter 9: Monitoring containers

 }
}
root@1fbb2f9636a8:/# curl http://logspout:8000/routes
[
 {
 "id": "f60d30502654",
 "target": {
 "type": "syslog",
 "addr": "192.168.34.11:5000"
 }
 }
]

You can create a route to Papertrail which provides automatic‐
backup to Amazon S3.

9.7 Using Elasticsearch and Kibana to Store and Visualize
Container Logs
Problem
In Recipe 9.5 we only used logstash to receive logs and we sent them to stdout. How‐
ever logstash many plugins allow you to do much more. You would like to go further
and use elasticsearch to store your container logs.

Solution
Start an elasticsearch and a Kibana container. Kibana is a dashboard that allows you
to easily visualize and query your elasticsearch indexes. Start a logstash container
using the default configuration from the ehazlett/logstash image.

$ docker run --name es -d -p 9200:9200 -p 9300:9300 ehazlett/elasticsearch
$ docker run --name kibana -d -p 80:80 ehazlett/kibana
$ docker run -d --name logstash -p 5000:5000/udp \
 --link es:elasticsearch ehazlett/logstash \
 -f /etc/logstash.conf.sample

Notice that the logstash container is linked to the elasticsearch con‐
tainer. If you do not link it, logstash will not be able to find the
elasticsearch server.

9.7 Using Elasticsearch and Kibana to Store and Visualize Container Logs | 271

https://papertrailapp.com
http://logstash.net
http://logstash.net/docs/1.4.2/index
http://www.elasticsearch.com
http://www.elasticsearch.org/overview/kibana/

With the container running, you can open your browser on port 80 of the Docker
host where you are running the Kibana container. You will see the Kibana default
dashboard. Select 1. Sample Dashboard, this will extract some information from your
index and build a basic dashboard. You should see the logs obtained from hitting the
Nginx server, below is a sample snapshot:

Figure 9-1. Snapshot of a Kibana dashboard obtained with this recipe.

Discussion
In the solution above, elasticsearch is running on a single container. The index cre‐
ated when storing your logs streamed by logspout will not persist if you kill and
remove the elasticsearch container. Consider mounting a volume and backing it up to
persist your elasticsearch data. In addition, if you need more storage and an efficient
index, you should create an elasticsearch cluster across multiple Docker hosts.

9.8 Using Collectd to Visualize Container Metrics
Problem
In addition to visualizing application logs (see Recipe 9.7), you would like to monitor
container metrics such as CPU.

Solution
Use Collectd. Run it in a container on all hosts where you have running containers
that you want to monitor. By mounting the /var/run/docker.sock socket in a col
lectd container you can use a collectd plugin that uses the Docker stats API (see
Recipe 9.2) and sends metrics to a Graphite dashboard running in a different host.

This is an advanced recipe that uses several concepts covered ear‐
lier. Make sure to do Recipe 7.1 and Recipe 9.7 before doing this
recipe.

272 | Chapter 9: Monitoring containers

https://collectd.org

To test this, we are going to use the following setup, with two Docker hosts. One runs
four containers. A nginx container used to generate dummy logs to stdout, a logsp
out container that will route all stdout logs to a logstash instance, one that generates
synthetic load (i.e borja/unixbench) and one collectd container. These four con‐
tainers can be started using Docker compose.

The other host runs four containers as well. A logstash container to collect the logs
coming from logspout, an elasticsearch container to store the logs, a Kibana con‐
tainer to visualize those logs and a graphite container. The graphite container also
runs carbon to store the metrics.

The following diagram illustrates this two hosts, eight containers setup:

Figure 9-2. Two Hosts, Collectd, Logstash, Kibana, Graphite setup.

On the first host (the worker), you can start all the containers with Docker compose
(see Recipe 7.1) using a YAML file like this one:

nginx:
 image: nginx
 ports:
 - 80:80
logspout:
 image: gliderlabs/logspout
 volumes:
 - /var/run/docker.sock:/tmp/docker.sock
 command: syslog://192.168.33.11:5000

9.8 Using Collectd to Visualize Container Metrics | 273

collectd:
 build: .
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
load:
 image: borja/unixbench

The logspout container uses a command that specifies your logstash enpoint.
Change the IP above if you are running in a different networking environment. The
collectd container is built by Docker compose and based on the following Docker‐
file:

FROM debian:jessie

RUN apt-get update && apt-get -y install \
 collectd \
 python \
 python-pip
RUN apt-get clean
RUN pip install docker-py

RUN groupadd -r docker && useradd -r -g docker docker

ADD docker-stats.py /opt/collectd/bin/docker-stats.py
ADD docker-report.py /opt/collectd/bin/docker-report.py
ADD collectd.conf /etc/collectd/collectd.conf

RUN chown -R docker /opt/collectd/bin

CMD ["/usr/sbin/collectd","-f"]

In the discussion section of this recipe, we will go over the scripts used in this Dock‐
erfile.

On the second host (the monitor), you can start all containers with Docker compose
(see Recipe 7.1) using a YAML file like this one:

es:
 image: ehazlett/elasticsearch
 ports:
 - 9300:9300
 - 9200:9200
kibana:
 image: ehazlett/kibana
 ports:
 - 8080:80
graphite:
 image: hopsoft/graphite-statsd
 ports:
 - 80:80
 - 2003:2003
 - 8125:8125/udp

274 | Chapter 9: Monitoring containers

logstash:
 image: ehazlett/logstash
 ports:
 - 5000:5000
 - 5000:5000/udp
 volumes:
 - /root/docbook/ch09/collectd/logstash.conf:/etc/logstash.conf
 links:
 - es:elasticsearch
 command: -f /etc/logstash.conf

Several non-official images are being used in this setup. glider
labs/logspout, borja/unixbench, ehazlett/elasticsearch, eha
zlett/kibana, ehazlett/logstash and hopsoft/graphite-

statsd. Check the Dockerfile of these images on Docker Hub or
build your own images if you do not trust them.

Once all the containers are up on the two hosts and assuming that you setup the net‐
working and any firewall that may exists properly (open ports on security groups if
you are using cloud instances), you will be able to access the nginx container on port
80 of the worker host, the Kibana dashboard on port 8080 of the monitor host and
the graphite dashboard on port 80 of the monitor host.

The graphite dashboard will show you basic CPU metric coming from all the con‐
tainers running on the worker host, See the snapshot below for what you should see:

Figure 9-3. Snapshot of the Graphite Dashboard Showing CPU Metrics for All Contain‐
ers.

9.8 Using Collectd to Visualize Container Metrics | 275

Discussion
You can get all the scripts used in this recipe using the on-line material coming with
this book. Clone the repository if you have not done so already and head over to the
docbook/ch09/collectd directory.

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch09/collectd
$ tree
.
├── Dockerfile
├── README.md
├── Vagrantfile
├── collectd.conf
├── docker-report.py
├── docker-stats.py
├── logstash.conf
├── monitor.yml
└── worker.yml

The Vagrantfile will allow you to start two Docker hosts on your local machine to
experiment with this setup. However you can clone this repository in two cloud
instances that have Docker and Docker compose installed and then start all the con‐
tainers. If you use Vagrant do:

$ vagrant up
$ vagrant ssh monitor
$ vagrant ssh worker

While using Vagrant for this recipe I encountered several intermit‐
tent errors as well as delays when downloading the images. Using
cloud instances with better network connectivity might be more
enjoyable.

The two YAML files are used to easily start all containers on the two hosts. Do not
run them on the same host.

$ docker-compose -f monitor.yml up -d
$ docker-compose -f worker.yml up -d

The logstash.conf file was discussed in Recipe 9.5. Go back to this recipe if you do
not understand this configuration file.

The Dockerfile is used to build a collectd image and was shown in the solution sec‐
tion earlier. It is based on a Debian Jessie image and installs Docker-py (see Recipe
4.11) and a few other scripts.

Collectd makes uses of plugins to collect metrics and send them to a data store (e.g
Carbon with Graphite). In this setup we use the simplest form of collectd plugin

276 | Chapter 9: Monitoring containers

https://collectd.org/wiki/index.php/Table_of_Plugins

which is called an exec plugin. This is defined in the collectd.conf file in the sec‐
tion:

<Plugin exec>
 Exec "docker" "/opt/collectd/bin/docker-stats.py"
 NotificationExec "docker" "/opt/collectd/bin/docker-report.py"
</Plugin>

The collectd process running in the foreground in the collectd container will rou‐
tinely execute the two Python scripts defined in the configuration file. This is also
why we copy them in the Dockerfile. The docker-report.py script, simply outputs
values to syslog. This has the benefit that we will also collect them via our logspout
container and see them in our Kibana dashboard. The docker-stats.py script makes
use of the Docker stats API (see Recipe 9.2) and the docker-py Python package. This
script lists all the running containers, for obtains the statistics for them. For the stats
called cpu_stats it writes a so-called PUTVAL string to stdout. This string is under‐
stood by collectd and sent to the Graphite data store (a.k.a Carbon) for storage and
visualization. The PUTVAL string follows the Collectd exec plugin syntax.

#!/usr/bin/env python

import random
import json
import docker
import sys

cli=docker.Client(base_url='unix://var/run/docker.sock')

types = ["gauge-cpu0"]

for h in cli.containers():
 if not h["Status"].startswith("Up"):
 continue
 stats = json.loads(cli.stats(h["Id"]).next())
 for k, v in stats.items():
 if k == "cpu_stats":
 print("PUTVAL %s/%s/%s N:%s" % (h['Names'][0].lstrip('/'), \
 'docker-cpu', types[0], v['cpu_usage']['total_usage']))

The example plugin in this recipe is very minimal and the statistics
need to be processed further. You might want to consider using this
Python based plugin instead.

See Also
• Collectd website

9.8 Using Collectd to Visualize Container Metrics | 277

https://github.com/cloudwatt/docker-collectd-plugin
https://collectd.org

• Collectd Exec plugin
• Graphite website
• Logstash website
• Collectd Docker plugin

9.9 Accessing Container Logs Through Mounted Volumes
Problem

Solution

Discussion

9.10 Using cAdvisor to Monitor Resource Usage in
Containers
Problem
While logspout (see Recipe 9.5) allows you to stream application logs to remote end‐
points, you need a resource utilization monitoring system.

Solution
Use cAdvisor, it was created by Google to monitor resource usage and performance of
their lcmtfy containers. cAdvisor runs as a container on your Docker hosts, by
mounting local volumes it can monitor the performance of all other running contain‐
ers on that same host. It provides a local web UI, exposes an API and can stream data
to InfluxDB. Streaming data from running containers to a remote InfluxDB cluster
allows you to aggregate performance metrics for all your containers running in a
cluster.

To get started, let’s use a single host. Download the cAdvisor image as well as borja/
unixbench an image that will allows us to simulate a workload inside a container.

$ docker pull google/cadvisor:latest
$ docker pull borja/unixbench
$ docker run -v /var/run:/var/run:rw\
 -v /sys:/sys:ro \
 -v /var/lib/docker/:/var/lib/docker:ro \
 -p 8080:8080 \
 -d \
 --name cadvisor \

278 | Chapter 9: Monitoring containers

http://collectd.org/documentation/manpages/collectd-exec.5.shtml
http://graphite.wikidot.com
http://logstash.net
https://github.com/cloudwatt/docker-collectd-plugin
https://github.com/google/cadvisor
https://github.com/google/lmctfy
https://github.com/google/cadvisor/blob/master/docs/api.md
http://influxdb.com

 google/cadvisor:latest
$ docker run -d borja/unixbench

With the two containers running, you can open your browser at http://

<IP_DOCKER_HOST>:8080 and you will enjoy the cAdvisor UI. You will be able to
browse the running containers and access metrics for each of them.

Figure 9-4. Snapshot of the cAdvisor UI.

9.10 Using cAdvisor to Monitor Resource Usage in Containers | 279

Discussion

See Also
• cAdvisor API documentation

9.11 Monitoring Container Metrics With InfluxDB, Grafana
and cAdvisor
Problem

Solution
$ docker run -d -p 8083:8083 -p 8086:8086 \
 -e PRE_CREATE_DB="db" \
 --name influxdb \
 tutum/influxdb:latest
$ docker run -d -p 80:80 \
 --link=influxdb:influxdb \
 -e HTTP_USER=admin \
 -e HTTP_PASS=root \
 -e INFLUXDB_HOST=influxdb \
 -e INFLUXDB_NAME=db \
 --name=grafana \
 tutum/grafana
$ docker run -v /var/run:/var/run:rw \
 -v /sys:/sys:ro \
 -v /var/lib/docker/:/var/lib/docker:ro \
 -p 8080:8080 \
 --link=influxdb:influxdb \
 -d --name=cadvisor \
 google/cadvisor:latest \
 -storage_driver=influxdb \
 -storage_driver_host=influxdb:8086 \
 -storage_driver_db=db
$ docker run -d borja/unixbench

280 | Chapter 9: Monitoring containers

https://github.com/google/cadvisor/blob/master/docs/api.md

Discussion

9.12 Gaining Visibility Into Your Containers Layout with
Weavescope
Problem
Building a distributed application based on a microservices architecture will lead to
hundreds and potentially more containers running in your data center. Visibility into
that application and all the containers that it will be made of will be crucial and a key
part of your overall infrastructure.

Solution
Weavescope from Weaveworks provides you with a simple yet powerful way of prob‐
ing your infrastructure and dynamically create a map of all your containers. It gives
you multiple views: per container, per image, per host and per application, allows you
to do grouping of containers and drill down on their characteristics.

It is open source and available on GitHub.

To ease testing I prepared a Vagrant box similar to many other recipes in this book.
Clone the repository with Git and launch the Vagrant box like so:

$ git clone https://github.com/how2dock/docbook.git
$ cd how2dock/ch09/weavescope
$ vagrant up

The Vagrant box installs the latest Docker version (i.e 1.6.2 as of this writing) and also
installs Docker compose (see <<>>). In the /vagrant folder you will find a compose
file that gives you a synthetic three tiered application made of two load balancers, two
application containers and three databases containers. This is a toy application meant
to illustrate Weavescope. Once the VM has booted, ssh into it, go to the /vagrant
folder, launch compose and the weavescope script (i.e scope) like so:

$ vagrant ssh
$ cd /vagrant
$ docker-compose up -d
$./scope launch

You will end up with eight containers running. Seven for the tiered toy application
and one for weavescope. The toy application is accessible at http://

192.168.33.10:8001 or http://192.168.33.10:8002. Of course the most interest‐
ing part is the weavescope dashboard. Open your browser at http://

192.168.33.10:4040 and you will see something similar to the snapshot below.

9.12 Gaining Visibility Into Your Containers Layout with Weavescope | 281

http://martinfowler.com/articles/microservices.html
http://weave.works
https://github.com/weaveworks/scope

Figure 9-5. Snapshot of the Weavescope Dashboard.

Navigate through the UI, explore the various groupings capabilities and explore the
information of each container.

Discussion
Weavescope is still in early development and considered pre-alpha as of this writing.
You should expect more features to be added to this open source product. Definitely
worth keeping an eye on this visibility solution for Docker containers.

Building from source is straightforward with a Makefile that builds a Docker image.

See Also
• Detect, Map and Monitor Docker containers with weavescope

282 | Chapter 9: Monitoring containers

http://thenewstack.io/how-to-detect-map-and-monitor-docker-containers-with-weave-scope-from-weaveworks/

9.13 Monitoring a Kubernetes Cluster with Heapster
Problem

Solution

Discussion

9.13 Monitoring a Kubernetes Cluster with Heapster | 283

	Cover
	Table of Contents
	Preface
	Why I Wrote This Book
	How This Book Is Organized
	Technology You Need to Understand
	Online Content
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. Getting Started with Docker
	1.1 Installing Docker on Ubuntu 14.04 and CentOS 6.5
	Problem
	Solution
	Discussion
	See Also

	1.2 Setting Up a Local Docker Host Using Vagrant
	Problem
	Solution
	Discussion

	1.3 Using boot2docker to Get a Docker Host on OSX
	Problem
	Solution
	Discussion

	1.4 Running Boot2docker on Windows 8.1 Desktop
	Problem
	Solution
	Discussion
	See Also

	1.5 Starting a Docker Host in the Cloud Using Docker Machine
	Problem
	Solution
	Discussion
	See Also

	1.6 Running Hello World in Docker
	Problem
	Solution
	Discussion

	1.7 Running a Docker Container in Detached Mode
	Problem
	Solution
	Discussion
	See Also

	1.8 Creating, Starting, Stopping, Removing Containers.
	Problem
	Solution
	Discussion

	1.9 Sharing Host Data With Containers
	Problem
	Solution
	Discussion

	1.10 Sharing Data Between Containers
	Problem
	Solution
	See Also

	1.11 Copying Data To And From Containers
	Problem
	Solution
	See Also

	1.12 Managing and Configuring the Docker Daemon
	Problem
	Solution
	Discussion

	1.13 Running a Wordpress Blog Using Two Linked Containers
	Problem
	Solution
	Discussion

	1.14 Backing up a Database Running in a Container
	Problem
	Solution
	Discussion

	1.15 Using Supervisor to Run Wordpress in a Single Container
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Image Creation and Sharing
	2.1 Keeping Changes Made to a Container by Committing to an Image.
	Problem
	Solution
	Discussion
	See Also

	2.2 Saving Images and Containers as Tar Files for Sharing.
	Problem
	Solution
	Discussion

	2.3 Writing your First Dockerfile
	Problem
	Solution
	Discussion
	See Also

	2.4 Packaging a Flask Application inside a container
	Problem
	Solution
	Discussion

	2.5 Versioning an Image with Tags
	Problem
	Solution
	Discussion

	2.6 Migrating From Vagrant to Docker With the Docker Provider
	Problem
	Solution
	Discussion
	See Also

	2.7 Using Packer to Create a Docker Image
	Problem
	Solution
	Discussion

	2.8 Publishing your image to Docker hub
	Problem
	Solution
	See Also
	Discussion

	2.9 Running a Private Registry
	Problem
	Solution
	Discussion
	See Also

	2.10 Setting Up an Automated Build on DockerHub for Continous Integration/Deployment
	Problem
	Solution
	Discussion
	See Also

	2.11 Setting up a Local Automated Build Using a Git Hook and a Private Registry
	Problem
	Solution
	Discussion

	Chapter 3. Docker Networking
	3.1 Introducing Docker Containers Networking
	Problem
	Solution
	Discussion
	See Also

	3.2 Choosing a Container Networking Stack
	Problem
	Solution
	Discussion
	See Also

	3.3 Configuring the Docker Daemon IP tables and IP forwarding settings
	Problem
	Solution
	Discussion

	3.4 Linking Containers in Docker
	Problem
	Solution
	Discussion

	3.5 Using Pipework to Understand Container Networking
	Problem
	Solution
	Discussion
	See Also

	3.6 Setting up a Custom Bridge for Docker
	Problem
	Solution
	Discussion

	3.7 Using OVS with Docker
	Problem
	Solution
	See Also

	3.8 Building a GRE Tunnel Between Docker Hosts
	Problem
	Solution
	Discussion
	See Also

	3.9 Networking Containers on Multiple Hosts with Docker Network
	Problem
	Solution
	Discussion

	3.10 Diving Deeper Into The Docker Network Namespaces Configuration
	Problem
	Solution
	Discussion

	3.11 Running Containers on a Weave Network
	Problem
	Solution
	Discussion
	See Also

	3.12 Running a Weave Network on AWS
	Problem
	Solution
	Discussion
	See Also

	3.13 Deploying flannel Overlay Between Docker Hosts
	Problem
	Solution
	Discussion

	3.14 Using an Ambassador Container to Expose Services
	Problem
	Solution
	Discussion

	Chapter 4. Docker Configuration and Development
	4.1 Compiling Your Own Docker Binary From Source
	Problem
	Solution
	Discussion
	See Also

	4.2 Running the Docker Test Suite for Docker Development
	Problem
	Solution
	See Also

	4.3 Replacing Your Current Docker Binary With a New One
	Problem
	Solution
	Discussion

	4.4 Using nsenter
	Problem
	Solution
	Discussion
	See Also

	4.5 Introducing libcontainer
	Problem
	Solution
	Discussion

	4.6 Using nsinit
	Problem
	Solution
	Discussion

	4.7 Switching Execution Environment
	Problem
	Solution
	Discussion

	4.8 Accessing the Docker Daemon Remotely
	Problem
	Solution
	Discussion

	4.9 Exploring the Docker remote API to automate Docker tasks.
	Problem
	Solution
	Discussion

	4.10 Securing the Docker Deamon for Remote Access
	Problem
	Solution
	Discussion

	4.11 Using docker-py to Access the Docker Daemon Remotely
	Problem
	Solution
	Discussion

	4.12 Using docker-py Securely
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Kubernetes
	5.1 Understanding Kubernetes Architecture
	Problem
	Solution
	Discussion

	5.2 Networking Pods for Container Connectivity
	Problem
	Solution
	Discussion
	See Also

	5.3 Using Labels for Container Placement and Application Management
	Problem
	Solution
	Discussion

	5.4 Creating a Multi-node Kubernetes Cluster With Vagrant
	Problem
	Solution
	Discussion
	See Also

	5.5 Starting Containers on a Kubernetes Cluster with Pods
	Problem
	Solution
	Discussion

	5.6 Taking Advantage of Labels For Querying Kubernetes Objects
	Problem
	Solution
	See Also

	5.7 Using a Replication Controller to Manage the Number of Replicas of a Pod
	Problem
	Solution
	Discussion
	See Also

	5.8 Running Multiple Containers in a Pod
	Problem
	Solution
	Discussion

	5.9 Using Service Proxies For Dynamic Linking of Containers
	Problem
	Solution
	Discussion
	See Also

	5.10 Defining Volumes in Pods
	Problem
	Solution
	Discussion

	5.11 Creating a Single Node Kubernetes Cluster Using Docker Compose
	Problem
	Solution
	Discussion
	See Also

	5.12 Compiling Kubernetes to Create Your Own Release
	Problem
	Solution
	Discussion
	See Also

	5.13 Starting Kubernetes Components with hyperkube Binary
	Problem
	Solution
	Discussion

	5.14 Exploring the Kubernetes API
	Problem
	Solution
	Discussion
	See Also

	5.15 Running the Kubernetes Dashboard
	Problem
	Solution
	Discussion

	5.16 Switching to a New API Version
	Problem
	Solution
	Discussion

	5.17 Configuring Authentication to a Kubernetes Cluster
	Problem
	Solution
	Discussion
	See Also

	5.18 Configuring the Kubernetes Client to Access Remote Clusters
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Just Enough Operating System for Docker
	6.1 Discovering the CoreOS Linux Distribution with Vagrant
	Problem
	Solution
	Discussion
	See Also

	6.2 Starting a Container on CoreOS via Cloud-init
	Problem
	Solution
	Discussion

	6.3 Starting a CoreOS Cluster via Vagrant to Run Containers on Multiple Hosts
	Problem
	Solution
	Discussion
	See Also

	6.4 Using Fleet to Start Containers on a CoreOS Cluster
	Problem
	Solution
	Discussion
	See Also

	6.5 Deploying a Flannel Overlay Between CoreOS Instances
	Problem
	Solution
	Discussion

	6.6 Running Docker Containers on RancherOS
	Problem
	Solution
	Discussion
	See Also

	6.7 Using Project Atomic to run Docker Containers
	Problem
	Solution
	Discussion

	6.8 Starting and Atomic Instance on AWS to use Docker
	Problem
	Solution
	Discussion

	6.9 Running Docker on Ubuntu Core Snappy in a Snap
	Problem
	Solution
	Discussion
	See Also

	6.10 Starting an Ubuntu Core Snappy Instance on AWS EC2
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. The Docker Ecosystem: Tools
	7.1 Using Docker compose to Create a Wordpress Site
	Problem
	Solution
	Discussion

	7.2 Using Docker compose to test Apache Mesos and Marathon on Docker
	Problem
	Solution
	Discussion
	See Also

	7.3 Looking at Docker Compose as a Replacement to Fig
	Problem
	Solution
	Discussion

	7.4 Starting Containers on a Cluster with Docker Swarm
	Problem
	Solution
	Discussion

	7.5 Using Docker Machine to Create a Swarm Cluster Across Cloud Providers
	Problem
	Solution
	Discussion
	See Also

	7.6 Managing Containers through Docker UI
	Problem
	Solution
	Discussion
	See Also

	7.7 Orchestrating Containers with Ansible Docker Module
	Problem
	Solution
	Discussion
	See Also

	7.8 Using Clocker
	Problem
	Solution
	Discussion

	7.9 Using Deis
	Problem
	Solution
	Discussion

	7.10 Using Rancher to Manage Containers on a Cluster of Docker Hosts
	Problem
	Solution
	Discussion

	7.11 Running Containers Via Apache Mesos and Marathon
	Problem
	Solution
	Discussion
	See Also

	7.12 Using the Mesos Docker Containerizer on a Mesos Cluster
	Problem
	Solution
	Discussion
	See Also

	7.13 Discovering Docker Services with Registrator
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Docker in the Cloud
	8.1 Accessing Public Clouds to Run Docker
	Problem
	Solution
	Discussion
	See Also

	8.2 Starting a Docker Host on AWS EC2
	Problem
	Solution
	Discussion
	See Also

	8.3 Starting a Docker Host on Google GCE
	Problem
	Solution
	Discussion

	8.4 Starting a Docker Host on Microsoft Azure
	Problem
	Solution
	Discussion
	See Also

	8.5 Starting a Docker Host on Azure with Docker Machine
	Problem
	Solution
	Discussion
	See Also

	8.6 Running Cloud Providers CLI in Docker Containers
	Problem
	Solution
	Discussion
	See Also

	8.7 Using Google Container Registry to Store your Docker Images
	Problem
	Solution
	Discussion

	8.8 Using Docker in GCE Google-Container Instances
	Problem
	Solution
	Discussion

	8.9 Starting a Docker Host on AWS Using Docker Machine
	Problem
	Solution
	Discussion

	8.10 Using Kubernetes in the Cloud via Google Container Engine
	Problem
	Solution
	Discussion
	See Also

	8.11 Managing Google Container Engine Resources Using kubecfg
	Problem
	Solution
	Discussion

	8.12 Getting Setup to Use the EC2 Container Service
	Problem
	Solution
	Discussion
	See Also

	8.13 Creating a ECS Cluster
	Problem
	Solution
	Discussion
	See Also

	8.14 Starting Docker Containers on a ECS Cluster
	Problem
	Solution
	Discussion
	See Also

	8.15 Starting an Application in the Cloud Using Docker Support in AWS Beanstalk
	Problem
	Solution
	Discussion
	See Also

	8.16 Using AWS Elastic Container Service as a Beanstalk Environment
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Monitoring containers
	9.1 Getting Detailed Information About a Container With docker inspect
	Problem
	Solution
	Discussion

	9.2 Obtaining Usage Statistics of a Running Container
	Problem
	Solution
	Discussion
	See Also

	9.3 Listening to Docker Events on Your Docker Hosts
	Problem
	Solution
	Discussion
	See Also

	9.4 Getting The Logs of a Container With docker logs
	Problem
	Solution
	Discussion

	9.5 Using Logspout to Collect Container Logs
	Problem
	Solution
	Discussion
	See Also

	9.6 Managing logspout Routes to Store Container Logs
	Problem
	Solution
	Discussion

	9.7 Using Elasticsearch and Kibana to Store and Visualize Container Logs
	Problem
	Solution
	Discussion

	9.8 Using Collectd to Visualize Container Metrics
	Problem
	Solution
	Discussion
	See Also

	9.9 Accessing Container Logs Through Mounted Volumes
	Problem
	Solution
	Discussion

	9.10 Using cAdvisor to Monitor Resource Usage in Containers
	Problem
	Solution
	Discussion
	See Also

	9.11 Monitoring Container Metrics With InfluxDB, Grafana and cAdvisor
	Problem
	Solution
	Discussion

	9.12 Gaining Visibility Into Your Containers Layout with Weavescope
	Problem
	Solution
	Discussion
	See Also

	9.13 Monitoring a Kubernetes Cluster with Heapster
	Problem
	Solution
	Discussion

