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Preface 

This textbook is intended to provide a comprehensive introduc­

tion to forecasting methods and present enough information 

about each method for readers to use them sensibly. We don't 

attempt to give a thorough discussion of the theoretical details 

behind each method, although the references at the end of each 

chapter will fill in many of those details. 

The book is written for three audiences: (1) people finding 

themselves doing forecasting in business when they may not 

have had any formal training in the area; (2) undergraduate stu­

dents studying business; (3) MBA students doing a forecasting 

elective. We use it ourselves for a second-year subject for stu­

dents undertaking a Bachelor of Commerce degree at Monash 

University, Australia. 

For most sections, we only assume that readers are familiar 

with algebra, and high school mathematics should be sufficient 

background. Readers who have completed an introductory 

course in statistics will probably want to skip some of Chap­

ters 2 and 4. There are a couple of sections which also require 

knowledge of matrices, but these are flagged. 

At the end of each chapter we provide a list of "further 

reading". In general, these lists comprise suggested textbooks 

that provide a more advanced or detailed treatment of the 

subject. Where there is no suitable textbook, we suggest journal 

articles that provide more information. 

We use R throughout the book and we intend students to 

learn how to forecast with R. R is free and available on almost 

every operating system. It is a wonderful tool for all statistical 

analysis, not just for forecasting. See http://otexts.com/ fpp / 

using-.r for instructions on installing and using R. 
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The book is different from other forecasting textbooks in 

several ways. 

• It is free and online, making it accessible to a wide

audience.

• It uses R, which is free, open-source, and extremely

powerful software.

• The online version is continuously updated. You don't

have to wait until the next edition for errors to be

removed or new methods to be discussed. We will

update the book frequently.

• There are dozens of real data examples taken from

our own consulting practice. We have worked with

hundreds of businesses and organizations helping

them with forecasting issues, and this experience has

contributed directly to many of the examples given

here, as well as guiding our general philosophy of

forecasting.

• We emphasise graphical methods more than most

forecasters. We use graphs to explore the data, anal­

yse the validity of the models fitted and present the

forecasting results.

Happy forecasting! 

Rob J Hyndman 

George Athanasopoulos 

August 2014. 
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Getting started 

Forecasting has fascinated people for thousands of years, some­

times being considered a sign of divine inspiration, and some­

times being seen as a criminal activity. The Jewish prophet 

Isaiah wrote in about 700 BC 

Tell us what the future holds, so we may know that you are gods. 
(Isaiah 41:23) 

One hundred years later, in ancient Babylon, forecasters would 

foretell the future based on the distribution of maggots in a 

rotten sheep's liver. By 300 BC, people wanting forecasts would 

journey to Delphi in Greece to consult the Oracle, who would 

provide her predictions while intoxicated by ethylene vapours. 

Forecasters had a tougher time under the emperor Constantine, 

who issued a decree in AD357 forbidding anyone "to consult a 

soothsayer, a mathematician, or a forecaster ... May curiosity 

to foretell the future be silenced forever." A similar ban on 

forecasting occurred in England in 1736 when it became an 

offence to defraud by charging money for predictions. The 

punishment was three months' imprisonment with hard labour! 

The varying fortunes of forecasters arise because good fore­

casts can seem almost magical, while bad forecasts may be 

dangerous. Consider the following famous predictions about 

computing. 

• I think there is a world market for maybe five computers.

(Chairman of IBM, 1943)

• Computers in the future may weigh no more than 1. 5 tons.

(Popular Mechanics, 1949)
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• There is no reason anyone would want a computer in their home.

(President, DEC, 1977)

The last of these was made only three years before IBM pro­

duced the first personal computer. Not surprisingly, you can no 

longer buy a DEC computer. Forecasting is obviously a difficult 

activity, and businesses that do it well have a big advantage over 

those whose forecasts fail. 

In this book, we will explore the most reliable methods for 

producing forecasts. The emphasis will be on methods that are 

replicable and testable, and have been shown to work. 

1/1 What can be forecast? 

Forecasting is required in many situations: deciding whether 

to build another power generation plant in the next five years 

requires forecasts of future demand; scheduling staff in a call 

centre next week requires forecasts of call volumes; stocking an 

inventory requires forecasts of stock requirements. Forecasts 

can be required several years in advance (for the case of capital 

investments), or only a few minutes beforehand (for telecom­

munication routing). Whatever the circumstances or time 

horizons involved, forecasting is an important aid to effective 

and efficient planning. 

Some things are easier to forecast than others. The time of 

the sunrise tomorrow morning can be forecast very precisely. 

On the other hand, tomorrow's lotto numbers cannot be forecast 

with any accuracy. The predictability of an event or a quantity 

depends on several factors including: 

1. how well we understand the factors that contribute to it;

2. how much data are available;

3. whether the forecasts can affect the thing we are trying

to forecast.

For example, forecasts of electricity demand can be highly 

accurate because all three conditions are usually satisfied. We 

have a good idea on the contributing factors: electricity demand 

is driven largely by temperatures, with smaller effects for 

calendar variation such as holidays, and economic conditions. 

Provided there is a sufficient history of data on electricity 

demand and weather conditions, and we have the skills to 
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develop a good model linking electricity demand and the key 

driver variables, the forecasts can be remarkably accurate. 

On the other hand, when forecasting currency exchange 

rates, only one of the conditions is satisfied: there is plenty of 

available data. However, we have a very limited understanding 

of the factors that affect exchange rates, and forecasts of the 

exchange rate have a direct effect on the rates themselves. If 

there are well-publicised forecasts that the exchange rate will 

increase, then people will immediately adjust the price they 

are willing to pay and so the forecasts are self-fulfilling. In a 

sense the exchange rates become their own forecasts. This is 

an example of the "efficient market hypothesis". Consequently, 

forecasting whether the exchange rate will rise or fall tomorrow 

is about as predictable as forecasting whether a tossed coin 

will come down as a head or a tail. In both situations, you will 

be correct about 50% of the time whatever you forecast. In 

situations like this, forecasters need to be aware of their own 

limitations, and not claim more than is possible. 

Often in forecasting, a key step is knowing when something 

can be forecast accurately, and when forecasts will be no better 

than tossing a coin. Good forecasts capture the genuine patterns 

and relationships which exist in the historical data, but do not 

replicate past events that will not occur again. In this book, we 

will learn how to tell the difference between a random fluctu­

ation in the past data that should be ignored, and a genuine 

pattern that should be modelled and extrapolated. 

Many people wrongly assume that forecasts are not possible 

in a changing environment. Every environment is changing, 

and a good forecasting model captures the way in which things 

are changing. Forecasts rarely assume that the environment 

is unchanging. What is normally assumed is that the way in 

which the environment is changing will continue into the future. 

That is, a highly volatile environment will continue to be highly 

volatile; a business with fluctuating sales will continue to have 

fluctuating sales; and an economy that has gone through booms 

and busts will continue to go through booms and busts. A 

forecasting model is intended to capture the way things move, 

not just where things are. As Abraham Lincoln said, "If we 

could first know where we are and whither we are tending, we 

could better judge what to do and how to do it". 
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Forecasting situations vary widely in their time horizons, 

factors determining actual outcomes, types of data patterns, 

and many other aspects. Forecasting methods can be very 

simple such as using the most recent observation as a forecast 

(which is called the "na1ve method"), or highly complex such as 

neural nets and econometric systems of simultaneous equations. 

Sometimes, there will be no data available at all. For example, 

we may wish to forecast the sales of a new product in its first 

year, but there are obviously no data to work with. In situations 

like this, we use judgmental forecasting, discussed in Chapter 3. 

The choice of method depends on what data are available and 

the predictability of the quantity to be forecast. 

1/2 Forecasting, planning and goals 

Forecasting is a common statistical task in business, where it 

helps to inform decisions about the scheduling of production, 

transportation and personnel, and provides a guide to long­

term strategic planning. However, business forecasting is often 

done poorly, and is frequently confused with planning and 

goals. They are three different things. 

Forecasting is about predicting the future as accurately as 

possible, given all of the information available, including 

historical data and knowledge of any future events that 

might impact the forecasts. 

Goals are what you would like to have happen. Goals should be 

linked to forecasts and plans, but this does not always occur. 

Too often, goals are set without any plan for how to achieve 

them, and no forecasts for whether they are realistic. 

Planning is a response to forecasts and goals. Planning involves 

determining the appropriate actions that are required to 

make your forecasts match your goals. 

Forecasting should be an integral part of the decision-making 

activities of management, as it can play an important role in 

many areas of a company. Modern organizations require short­

term, medium-term and long-term forecasts, depending on the 

specific application. 



1/ GETTING STARTED 13 

Short-term forecasts are needed for the scheduling of personnel, 

production and transportation. As part of the scheduling 

process, forecasts of demand are often also required. 

Medium-term forecasts are needed to determine future resource 

requirements, in order to purchase raw materials, hire per­

sonnel, or buy machinery and equipment. 

Long-term forecasts are used in strategic planning. Such deci­

sions must take account of market opportunities, environ­

mental factors and internal resources. 

An organization needs to develop a forecasting system that 

involves several approaches to predicting uncertain events. 

Such forecasting systems require the development of exper­

tise in identifying forecasting problems, applying a range of 

forecasting methods, selecting appropriate methods for each 

problem, and evaluating and refining forecasting methods over 

time. It is also important to have strong organizational support 

for the use of formal forecasting methods if they are to be used 

successfully. 

1/3 Determining what to forecast 

In the early stages of a forecasting project, decisions need to be 

made about what should be forecast. 

For example, if forecasts are required for items in a manufac­

turing environment, it is necessary to ask whether forecasts are 

needed for: 

1. every product line, or for groups of products?

2. every sales outlet, or for outlets grouped by region, or

only for total sales?

3. weekly data, monthly data or annual data?

It is also necessary to consider the forecasting horizon. Will 

forecasts be required for one month in advance, for 6 months, 

or for ten years? Different types of models will be necessary 

depending on what forecast horizon is most important. 

How frequently are forecasts required? Forecasts that need 

to be produced frequently are better done using an automated 

system than with methods that require careful manual work. 

It is worth spending time talking to the people who will use 

the forecasts to ensure that you understand their needs, and 
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how the forecasts are to be used, before embarking on extensive 

work in producing the forecasts. 

Once it has been determined what forecasts are required, it is 

then necessary to find or collect the data on which the forecasts 

will be based. The data required for forecasting may already 

exist. These days, a lot of data are recorded, and the forecaster's 

task is often to identify where and how the required data are 

stored. The data may include sales records of a company, the 

historical demand for a product, or the unemployment rate for 

a geographical region. A large part of a forecaster's time can 

be spent in locating and collating the available data prior to 

developing suitable forecasting methods. 

1/4 Forecasting data and methods 

The appropriate forecasting methods depend largely on what 

data are available. 

If there are no data available, or if the data available are not 

relevant to the forecasts, then qualitative forecasting methods 

must be used. These methods are not purely guesswork-there 

are well-developed structured approaches to obtaining good 

forecasts without using historical data. These methods are 

discussed in Chapter 3. 

Quantitative forecasting can be applied when two conditions 

are satisfied: 

1. numerical information about the past is available;

2. it is reasonable to assume that some aspects of the past

patterns will continue into the future.

There is a wide range of quantitative forecasting methods, often 

developed within specific disciplines for specific purposes. Each 

method has its own properties, accuracies, and costs that must 

be considered when choosing a specific method. 

Most quantitative forecasting problems use either time series 

data (collected at regular intervals over time) or cross-sectional 

data (collected at a single point in time). 

Cross-sectional forecasting 

With cross-sectional data, we are wanting to predict the value of 

something we have not observed, using the information on the 
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cases that we have observed. Examples of cross-sectional data 

include: 

• House prices for all houses sold in 2011 in a particular area.

We are interested in predicting the price of a house not in our

data set using various house characteristics: position, number

of bedrooms, age, etc.

• Fuel economy data for a range of 2009 model cars. We are

interested in predicting the carbon footprint of a vehicle

not in our data set using information such as the size of the

engine and the fuel efficiency of the car.

Example 1.1 Car emissions 

Table 1.1 gives some data on 2009 model cars, each of which has 

an automatic transmission and an engine size under 2 liters. 

Model Litres City Highway Carbon 

(litres) (mpg) (mpg) (tons CO2) 

Chevrolet Aveo 1.6 25 34 6.6 
Chevrolet Aveo 5 1.6 25 34 6.6 

Honda Civic 1.8 25 36 6.3 

Honda Civic Hybrid 1.3 40 45 4.4 
Honda Fit 1.5 27 33 6.1 

Honda Fit 1.5 28 35 5.9 

Hyundai Accent 1.6 26 35 6.3 
Kia Rio 1.6 26 35 6.1 

Nissan Versa 1.8 27 33 6.3 

Nissan Versa 1.8 24 32 6.8 
Pontiac G3 Wave 1.6 25 34 6.6 

Pontiac G3 Wave 5 1.6 25 34 6.6 

Pontiac Vibe 1.8 26 31 6.6 
Saturn Astra 2DR Hatchback 1.8 24 30 6.8 

Saturn Astra 4DR Hatchback 1.8 24 30 6.8 

Scion xD 1.8 26 32 6.6 
Toyota Corolla 1.8 27 35 6.1 

Toyota Matrix 1.8 25 31 6.6 

Toyota Prius 1.5 48 45 4.0 
Toyota Yaris 1.5 29 35 5.9 

A forecaster may wish to predict the carbon footprint (tons 

of CO2 per year) for other similar vehicles that are not included 

in the above table. It is necessary to first estimate the effects 

of the predictors (number of cylinders, size of engine, and 

fuel economy) on the variable to be forecast (carbon footprint). 

Then, provided that we know the predictors for a car not in the 

table, we can forecast its carbon footprint. 

Table 1.1: Fuel economy 
and carbon footprints 
for 2009 model cars 
with automatic trans-
missions and small 
engines. City and 
Highway represent fuel 
economy while driving 
in the city and on the 
highway. 



16 FORECASTING: PRINCIPLES AND PRACTICE 

Cross-sectional models are used when the variable to be 

forecast exhibits a relationship with one or more other predictor 

variables. The purpose of the cross-sectional model is to de­

scribe the form of the relationship and use it to forecast values 

of the forecast variable that have not been observed. Under this 

model, any change in predictors will affect the output of the 

system in a predictable way, assuming that the relationship 

does not change. Models in this class include regression models, 

additive models, and some kinds of neural networks. These 

models are discussed in Chapters 4, 5 and 9. 

Some people use the term "predict" for cross-sectional 

data and "forecast" for time series data (see below). In this 

book, we will not make this distinction-we will use the words 

interchangeably. 

Time series forecasting 

Time series data are useful when you are forecasting something 

that is changing over time (e.g., stock prices, sales figures, 

profits, etc.). Examples of time series data include: 

• Daily IBM stock prices

• Monthly rainfall

• Quarterly sales results for Amazon

• Annual Google profits

Anything that is observed sequentially over time is a time

series. In this book, we will only consider time series that are 

observed at regular intervals of time (e.g., hourly, daily, weekly, 

monthly, quarterly, annually). Irregularly spaced time series can 

also occur, but are beyond the scope of this book. 

When forecasting time series data, the aim is to estimate 

how the sequence of observations will continue into the future. 

Figure 1.1 shows the quarterly Australian beer production from 

1992 to the third quarter of 2008. 

The blue lines show forecasts for the next two years. Notice 

how the forecasts have captured the seasonal pattern seen in 

the historical data and replicated it for the next two years. The 

dark shaded region shows 80% prediction intervals. That is, 

each future value is expected to lie in the dark shaded region 

with a probability of 80%. The light shaded region shows 95% 

prediction intervals. These prediction intervals are a very useful 

way of displaying the uncertainty in forecasts. In this case, the 
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forecasts are expected to be very accurate, hence the prediction 

intervals are quite narrow. 

Time series forecasting uses only information on the variable 

to be forecast, and makes no attempt to discover the factors 

which affect its behavior. Therefore it will extrapolate trend and 

seasonal patterns, but it ignores all other information such as 

marketing initiatives, competitor activity, changes in economic 

conditions, and so on. 

Time series models used for forecasting include ARIMA 

models, exponential smoothing and structural models. These 

models are discussed in Chapters 6, 7 and 8. 

Predictor variables and time series forecasting 

Predictor variables can also be used in time series forecasting. 

For example, suppose we wish to forecast the hourly electricity 

demand (ED) of a hot region during the summer period. A 

model with predictor variables might be of the form 

ED= /(current temperature, strength of economy, population, 

time of day, day of week, error). 

The relationship is not exact-there will always be changes 

in electricity demand that cannot be accounted for by the 

predictor variables. The "error" term on the right allows for 

random variation and the effects of relevant variables that not 

included in the model. We call this an "explanatory model" 

Figure 1.1: Australian 

quarterly beer produc­

tion: 1992Ql-2008Q3, 

with two years of 

forecasts. 
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because it helps explain what causes the variation in electricity 

demand. 

Because the electricity demand data form a time series, we 

could also use a time series model for forecasting. In this case, a 

suitable time series forecasting equation is of the form 

where t is the present hour, t + I is the next hour, t - I is the 

previous hour, t - 2 is two hours ago, and so on. Here, prediction 

of the future is based on past values of a variable, but not on 

external variables which may affect the system. Again, the 

"error" term on the right allows for random variation and the 

effects of relevant variables that are not included in the model. 

There is also a third type of model which combines the 

features of the above two models. For example, it might be 

given by 

EDt+1 = f (EDt,current temperature, time of day, day of week, error). 

These types of mixed models have been given various names 

in different disciplines. They are known as dynamic regression 

models, panel data models, longitudinal models, transfer 

function models, and linear system models (assuming f is 

linear). These models are discussed in Chapter 9. 

An explanatory model is very useful because it incorporates 

information about other variables, rather than only historical 

values of the variable to be forecast. However, there are several 

reasons a forecaster might select a time series model rather than 

an explanatory model. First, the system may not be understood, 

and even if it was understood it may be extremely difficult 

to measure the relationships that are assumed to govern its 

behavior. Second, it is necessary to know or forecast the future 

values of the various predictors in order to be able to forecast 

the variable of interest, and this may be too difficult. Third, the 

main concern may be only to predict what will happen, not to 

know why it happens. Finally, the time series model may give 

more accurate forecasts than an explanatory or mixed model. 

The model to be used in forecasting depends on the resources 

and data available, the accuracy of the competing models, and 

how the forecasting model is to be used. 
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For cross-sectional data, we will use the subscript i to indicate 

a specific observation. For example, J/i will denote the ith 

observation in a data set. We will also use N to denote the total 

number of observations in the data set. 

For time series data, we will use the subscript t instead of i.

For example, J/t will denote the observation at time t. We will 

use T to denote the number of observations in a time series. 

When we are making general comments that could be appli­

cable to either cross-sectional or time series data, we will tend 

to use i and N.

1/5 Some case studies 

The following four cases are from our consulting practice and 

demonstrate different types of forecasting situations and the 

associated problems that often arise. 

Case 1 The client was a large company manufacturing dispos­

able tableware such as napkins and paper plates. They needed 

forecasts of each of hundreds of items every month. The time 

series data showed a range of patterns, some with trends, some 

seasonal, and some with neither. At the time, they were using 

their own software, written in-house, but it often produced 

forecasts that did not seem sensible. The methods that were 

being used were the following: 

1. average of the last 12 months data;

2. average of the last 6 months data;

3. prediction from a straight line regression over the last

12 months;

4. prediction from a straight line regression over the last

6 months;

5. prediction obtained by a straight line through the last

observation with slope equal to the average slope of

the lines connecting last year's and this year's values;

6. prediction obtained by a straight line through the last

observation with slope equal to the average slope of

the lines connecting last year's and this year's values,

where the average is taken only over the last 6 months.
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They required us to tell them what was going wrong and to 

modify the software to provide more accurate forecasts. The 

software was written in COBOL making it difficult to do any 

sophisticated numerical computation. 

Case 2 In this case, the client was the Australian federal gov­

ernment who needed to forecast the annual budget for the 

Pharmaceutical Benefit Scheme (PBS). The PBS provides a sub­

sidy for many pharmaceutical products sold in Australia, and 

the expenditure depends on what people purchase during the 

year. The total expenditure was around A$7 billion in 2009 and 

had been underestimated by nearly $1 billion in each of the two 

years before we were asked to assist with developing a more 

accurate forecasting approach. 

In order to forecast the total expenditure, it is necessary to 

forecast the sales volumes of hundreds of groups of pharma­

ceutical products using monthly data. Almost all of the groups 

have trends and seasonal patterns. The sales volumes for many 

groups have sudden jumps up or down due to changes in what 

drugs are subsidised. The expenditures for many groups also 

have sudden changes due to cheaper competitor drugs becom­

ing available. 

Thus we needed to find a forecasting method that allowed for 

trend and seasonality if they were present, and at hte same time 

was robust to sudden changes in the underlying patterns. It also 

needed to be able to be applied automatically to a large number 

of time series. 

Case 3 A large car fleet company asked us to help them fore­

cast vehicle re-sale values. They purchase new vehicles, lease 

them out for three years, and then sell them. Better forecasts 

of vehicle sales values would mean better control of profits; 

understanding what affects resale values may allow leasing and 

sales policies to be developed in order to maximize profits. 

At the time, the resale values were being forecast by a group 

of specialists. Unfortunately, they saw any statistical model 

as a threat to their jobs and were uncooperative in providing 

information. Nevertheless, the company provided a large 

amount of data on previous vehicles and their eventual resale 

values. 
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Case 4 In this project, we needed to develop a model for fore­

casting weekly air passenger traffic on major domestic routes 

for one of Australia's leading airlines. The company required 

forecasts of passenger numbers for each major domestic route 

and for each class of passenger (economy class, business class 

and first class). The company provided weekly traffic data from 

the previous six years. 

Air passenger numbers are affected by school holidays, major 

sporting events, advertising campaigns, competition behaviour, 

etc. School holidays often do not coincide in different Aus­

tralian cities, and sporting events sometimes move from one 

city to another. During the period of the historical data, there 

was a major pilots' strike during which there was no traffic 

for several months. A new cut-price airline also launched and 

folded. Towards the end of the historical data, the airline had 

trialled a redistribution of some economy class seats to business 

class, and some business class seats to first class. After several 

months, however, the seat classifications reverted to the original 

distribution. 

1/6 The basic steps in a forecasting task 

A forecasting task usually involves five basic steps. 

Step 1: Problem definition. Often this is the most difficult part 

of forecasting. Defining the problem carefully requires an 

understanding of the way the forecasts will be used, who 

requires the forecasts, and how the forecasting function fits 

within the organization requiring the forecasts. A forecaster 

needs to spend time talking to everyone who will be involved 

in collecting data, maintaining databases, and using the 

forecasts for future planning. 

Step 2: Gathering information. There are always at least two 

kinds of information required: (a) statistical data, and (b) 

the accumulated expertise of the people who collect the data 

and use the forecasts. Often, it will be difficult to obtain 

enough historical data to be able to fit a good statistical 

model. However, occasionally, very old data will be less 

useful due to changes in the system being forecast. 
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Step 3: Preliminary (exploratory) analysis. Always start by graph­

ing the data. Are there consistent patterns? Is there a signif­

icant trend? Is seasonality important? Is there evidence of 

the presence of business cycles? Are there any outliers in the 

data that need to be explained by those with expert knowl­

edge? How strong are the relationships among the variables 

available for analysis? Various tools have been developed to 

help with this analysis. These are discussed in Chapters 2 

and 6. 

Step 4: Choosing and fitting models. The best model to use de­

pends on the availability of historical data, the strength of 

relationships between the forecast variable and any explana­

tory variables, and the way the forecasts are to be used. It 

is common to compare two or three potential models. Each 

model is itself an artificial construct that is based on a set of 

assumptions (explicit and implicit) and usually involves one 

or more parameters which must be "fitted" using the known 

historical data. We will discuss regression models (Chapters 

4 and 5), exponential smoothing methods (Chapter 7), Box­

Jenkins ARIMA models (Chapter 8), and a variety of other 

topics including dynamic regression models, neural networks 

and vector autoregression in Chapter 9. 

Step 5: Using and evaluating a forecasting model. Once a model 

has been selected and its parameters estimated, the model 

is used to make forecasts. The performance of the model 

can only be properly evaluated after the data for the forecast 

period have become available. A number of methods have 

been developed to help in assessing the accuracy of forecasts. 

There are also organizational issues in using and acting on 

the forecasts. A brief discussion of some of these issues is in 

Chapter 2. 

1/7 The statistical forecasting perspective 

The thing we are trying to forecast is unknown (or we wouldn't 

be forecasting it), and so we can think of it as a random variable. 

For example, the total sales for next month could take a range 

of possible values, and until we add up the actual sales at the 

end of the month we don't know what the value will be. So, 

until we know the sales for next month, it is a random quantity. 
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Because next month is relatively close, we usually have a 

good idea what the likely sales values could be. On the other 

hand, if we are forecasting the sales for the same month next 

year, the possible values it could take are much more variable. 

In most forecasting situations, the variation associated with the 

thing we are forecasting will shrink as the event approaches. In 

other words, the further ahead we forecast, the more uncertain 

we are. 

When we obtain a forecast, we are estimating the middle of 

the range of possible values the random variable could take. 

Very often, a forecast is accompanied by a prediction interval 

giving a range of values the random variable could take with 

relatively high probability. For example, a 95% prediction 

interval contains a range of values which should include the 

actual future value with probability 95%. 

A forecast is always based on some observations. Suppose we 

denote all the information we have observed as I and we want 

to forecast J/i· We then write y;II meaning "the random variable 

Jli given what we know in I". The set of values that this random 

variable could take, along with their relative probabilities, is 

known as the "probability distribution" of y;II. In forecasting, 

we call this the "forecast distribution". 

When we talk about the "forecast", we usually mean the 

average value of the forecast distribution, and we put a "hat" 

over y to show this. Thus, we write the forecast of J/i as Yi , 

meaning the average of the possible values that J/i could take 

given everything we know. Occasionally, we will use Yi to refer 

to the median (or middle value) of the forecast distribution 

instead. 

With time series forecasting, it is often useful to specify ex­

actly what information we have used in calculating the forecast. 

Then we will write, for example, Ytlt-l to mean the forecast 

of Jlt taking account of all previous observations (y1, ... ,Jlt-i)­

Similarly, YT+hlT means the forecast of J/T+h taking account of 

y1, ... , J/T (i.e., an h-step forecast taking account of all observa­

tions up to time T). 
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1/8 Exercises 

1.1 For each of the four case studies in Section 1/5, what 

sort of data is involved: time series or cross-sectional 

data? 

1.2 For cases 3 and 4 in Section 1 /5, list the possible pre­

dictor variables that might be useful, assuming that the 

relevant data are available. 

1.3 For case 3 in Section 1/5, describe the five steps of 

forecasting in the context of this project. 

1/9 Further reading 

• Armstrong, J. S., ed. (2001). Principles of forecasting: a handbook

for researchers and practitioners. Boston, MA: Kluwer Academic

Publishers.

• Ord, J. K. and R. Fildes (2012). Principles of business forecasting.

South-Western College Pub.



2 

The forecaster's toolbox 

Before we discuss any forecasting methods, it is necessary 

to build a toolbox of techniques that will be useful for many 

different forecasting situations. Each of the tools discussed in 

this chapter will be used repeatedly in subsequent chapters as 

we develop and explore a range of forecasting methods. 

2/1 Graphics 

The first thing to do in any data analysis task is to plot the 

data. Graphs enable many features of the data to be visualized 

including patterns, unusual observations, changes over time, 

and relationships between variables. The features that are seen 

in plots of the data must then be incorporated, as far as possible, 

into the forecasting methods to be used. 

Just as the type of data determines what forecasting method 

to use, it also determines what graphs are appropriate. 

Time plots 

For time series data, the obvious graph to start with is a time 

plot. That is, the observations are plotted against the time of 

observation, with consecutive observations joined by straight 

lines. Figure 2.1 below shows the weekly economy passenger 

load on Ansett Airlines between Australia's two largest cities. 
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Rcode 
plot(melsyd[,"Economy.Class"], 

main="Economy class passengers: Melbourne-Sydney", 
xlab="Year", ylab="Thousands") 

The time plot immediately reveals some interesting features. 

• There was a period in 1989 when no passengers were

carried - this was due to an industrial dispute.

• There was a period of reduced load in 1992. This was

due to a trial in which some economy class seats were

replaced by business class seats.

• A large increase in passenger load occurred in the

second half of 1 991.

• There are some large dips in load around the start of

each year. These are due to holiday effects.

• There is a long-term fluctuation in the level of the

series which increases during 1987, decreases in 1989

and increases again through 1990 and 1991.

• There are some periods of missing observations.

Any model will need to take account of all these features in 

order to effectively forecast the passenger load into the future. 

A simpler time series is shown in Figure 2.2. Here there is 

a clear and increasing trend. There is also a strong seasonal 

pattern that increases in size as the level of the series increases. 

The sudden drop at the end of each year is caused by a gov­

ernment subsidisation scheme that makes it cost-effective for 

Figure 2.1: Weekly 

economy passenger 

load on Ansett Airlines. 
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---------- R code 

plot(a10, ylab="$ million", xlab="Year", 

main="Antidiabetic drug sales") 

2005 

patients to stockpile drugs at the end of the calendar year. Any 

forecasts of this series would need to capture the seasonal 

pattern, and the fact that the trend is changing slowly. 

Time series patterns 

In describing these time series, we have used words such as 

"trend" and "seasonal" which need to be more carefully de­

fined. 

• A trend exists when there is a long-term increase or de­

crease in the data. There is a trend in the antidiabetic

drug sales data shown above.

• A seasonal pattern occurs when a time series is affected

by seasonal factors such as the time of the year or the

day of the week. The monthly sales of antidiabetic

drugs above show seasonality partly induced by the

change in cost of the drugs at the end of the calendar

year. 

• A cycle occurs when the data exhibit rises and falls that

are not of a fixed period. These fluctuations are usually

due to economic conditions and are often related to

Figure 2.2: Monthly 

sales of antidiabetic 

drugs in Australia. 
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the "business cycle". The economy class passenger data 

above showed some indications of cyclic effects. 

It is important to distinguish cyclic patterns and seasonal pat­

terns. Seasonal patterns have a fixed and known length, while 

cyclic patterns have variable and unknown length. The average 

length of a cycle is usually longer than that of seasonality, and 

the magnitude of cyclic variation is usually more variable than 

that of seasonal variation. Cycles and seasonality are discussed 

further in Section 6/1. 

Many time series include trend, cycles and seasonality. When 

choosing a forecasting method, we will first need to identify the 

time series patterns in the data, and then choose a method that 

is able to capture the patterns properly. 

Seasonal plots 

A seasonal plot is similar to a time plot except that the data are 

plotted against the individual "seasons" in which the data were 

observed. An example is given below showing the antidiabetic 

drug sales. 

These are exactly the same data shown earlier, but now the 

data from each season are overlapped. A seasonal plot allows 

the underlying seasonal pattern to be seen more clearly, and 

is especially useful in identifying years in which the pattern 

changes. 

In this case, it is clear that there is a large jump in sales in 

January each year. Actually, these are probably sales in late 

December as customers stockpile before the end of the calendar 

year, but the sales are not registered with the government until 

a week or two later. The graph also shows that there was an 

unusually low number of sales in March 2008 (most other years 

show an increase between February and March). The small 

number of sales in June 2008 is probably due to incomplete 

counting of sales at the time the data were collected. 

Seasonal subseries plots 

An alternative plot that emphasises the seasonal patterns is 

where the data for each season are collected together in separate 

mini time plots. 
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Seasonal lot: antldiabetlc dru sales 
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Rcode 

2007 

/-◄2006 

2004 

2003 
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seasonplot(a10,ylab="$ million", xlab="Year", 

main="Seasonal plot: antidiabetic drug sales", 

year.labels=TRUE, year.labels.left=TRUE, col=1:20, pch=19) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Month 

Rcode 

monthplot(a10,ylab="$ million",xlab="Month",xaxt="n", 

main="Seasonal deviation plot: antidiabetic drug sales") 

axis(1,at=1:12,labels=month.abb,cex=0.8) 

Figure 2.3: Seasonal 

plot of monthly antidi­

abetic drug sales in 

Australia. 

Figure 2.4: Seasonal 

plot of monthly antidi­

abetic drug sales in 

Australia. 
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The horizontal lines indicate the means for each month. 

This form of plot enables the underlying seasonal pattern 

to be seen clearly, and also shows the changes in seasonality 

over time. It is especially useful in identifying changes within 

particular seasons. In this example, the plot is not particularly 

revealing; but in some cases, this is the most useful way of 

viewing seasonal changes over time. 

Scatterplots 

The graphs discussed so far are useful for time series data. 

Scatterplots are most useful for exploring relationships between 

variables in cross-sectional data. 

The figure below shows the relationship between the carbon 

footprint and fuel economy for small cars (using an extension 

of the data set shown in Section 1 / 4). Each point on the graph 

shows one type of vehicle. 
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City mpg 

Rcode 
plot(jitter(fuel[,5]), jitter(fuel[,8]), 

xlab="City mpg", ylab="Carbon footprint") 

0 

40 

# The use of jitter is to add a small random value 
# to each point to prevent overlapping points. 

0 

45 

There is a strong non-linear relationship between the size of 

a car's carbon footprint and its city-based fuel economy. Vehi­

cles with better fuel-economy have a smaller carbon-footprint 

than vehicles that use a lot of fuel. However, the relationship 

Figure 2.5: Carbon 
footprint and fuel 
economy for cars made 
in 2009. 
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is not linear - there is much less benefit in improving fuel­

economy from 30 to 40 mpg than there was in moving from 20 

to 30 mpg. The strength of the relationship is good news for 

forecasting: for any cars not in this database, knowing the fuel 

economy of the car will allow a relatively accurate forecast of its 

carbon footprint. 

The scatterplot helps us visualize the relationship between 

the variables, and suggests that a forecasting model must 

include fuel-economy as a predictor variable. Some of the other 

information we know about these cars may also be helpful in 

improving the forecasts. 

Scatterplot matrices 

When there are several potential predictor variables, it is useful 

to plot each variable against each other variable. These plots 

can be arranged in a scatterplot matrix, as shown in Figure 2.6. 

For each panel, the variable on the vertical axis is given by the 

variable name in that row, and the variable on the horizontal 

axis is given by the variable name in that column. For example, 

the graph of carbon-footprint against city mpg is shown on the 

bottom row, second from the left. 

The value of the scatterplot matrix is that it enables a quick 

view of the relationships between all pairs of variables. Outliers 

can also be seen. In this example, there are two vehicles that 

have very high highway mileage, small engines and low carbon 

footprints. These are hybrid vehicles: Honda Civic and Toyota 

Prius. 

2/2 Numerical data summaries 

Numerical summaries of data sets are widely used to capture 

some essential features of the data with a few numbers. A 

summary number calculated from the data is called a statistic. 

Univariate statistics 

For a single data set, the most widely used statistics are the 

average and median. 
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---------- R code 

pairs(fuel[,-c(1:2,4,7)], pch=19) 
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Suppose N denotes the total number of observations and x;
denotes the ith observation. Then the average can be written as 1 1 The [ indicates that 

the values of x; are to 
be summed from i = I 
toi=N. 

1
N

x= N [x; =(x1 +x2+x3+-·•+xN)/N.
i=l 

The average is also called the sample mean.

By way of illustration, consider the carbon footprint from the
20 vehicles listed in Section 1 / 4. The data listed in order are

4.0 4.4 5.9 5.9 6.1 6.1 6.1 6.3 6.3 6.3 

6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.8 6.8 6.8 
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In this example, N = 20 and xi denotes the carbon footprint of 

vehicle i. Then the average carbon footprint is 

= (x1 + x2 + x3 + · · · + xio)/20
= (4.0+ 4.4+ 5. 9+ ···+ 6.8 + 6.8 + 6.8)/20 

= 124/20 = 6.2 tons CO2• 

The median, on the other hand, is the middle observation

when the data are placed in order. In this case, there are 20 

observations and so the median is the average of the 10th and 

1 1th largest observations. That is 

median= (6.3 + 6.6)/2 = 6.45. 

Percentiles are useful for describing the distribution of data.

For example, 90% of the data are no larger than the 90th per­

centile. In the carbon footprint example, the 90th percentile is 

6.8 because 90% of the data ( 18 observations) are less than or 

equal to 6.8. Similarly, the 75th percentile is 6.6 and the 25th 

percentile is 6. 1. The median is the 50th percentile. 

A useful measure of how spread out the data are is the 

interquartile range or IQR. This is simply the difference between

the 75th and 25th percentiles. Thus it contains the middle 50% 

of the data. For the example, 

IQR = (6.6-6. 1) = 0.5. 

An alternative and more common measure of spread is the 

standard deviation. This is given by the formula

1 N 

s= 
N- 1

L,(x;-.x)2 .
i=l 

In the example, the standard deviation is 

s = ✓ 
1

1

9 
[(4.0-6.2)2 + (4.4-6.2)2 + · · · + (6.8 -6.2)2 ] = 0.74.

---------- R code 
fuel2 <- fuel[fuel[,"Litres"]<2,] 

summary(fuel2[,"Carbon"]) 

sd(fuel2[,"Carbon"]) 
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Bivariate statistics 

The most commonly used bivariate statistic is the correlation 

coefficient. It measures the strength of the relationship between 

two variables and can be written as 

where the first variable is denoted by x and the second variable 

by y. The correlation coefficient only measures the strength of 

the linear relationship; it is possible for two variables to have a 

strong non-linear relationship but low correlation coefficient. 

The value of r always lies between -1 and 1 with negative 

values indicating a negative relationship and positive values 

indicating a postive relationship. 

For example, the correlation between the carbon footprint 

and city mpg variables shown in Figure 2.5 (in the previous 

section) is -0.97. The value is negative because the carbon 

footprint decreases as the city mpg increases. While a value of 

-0.97 is very high, the relationship is even stronger than that

number suggests due to its nonlinear nature.

Correlation= -0.99 

00 
� 

Correlation= 0.99 

Correlation= -0.75 

Correlation= 0.75 

0 0 

Correlation= -0.5 
0 

Correlation= 0.5 

Correlation= -0.25 

Correlation= 0.25 

The graphs in Figure 2.7 show examples of data sets with 

varying levels of correlation. Those in Figure 2.8 all have corre­

lation coefficients of 0.82, but they have very different shaped 

relationships. This shows how important it is not to rely only on 

correlation coefficients but also to look at the plots of the data. 

Figure 2.7: Examples of 

data sets with different 

levels of correlation. 
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Autocorrelation 

Just as correlation measures the extent of a linear relationship 
between two variables, autocorrelation measures the linear 
relationship between lagged values of a time series. There are 
several autocorrelation coefficients, depending on the lag length. 
For example, r1 measures the relationship between Yt and Yt-1, 
r2 measures the relationship between Yt and Yt-2, and so on. 

Figure 2.9 displays scatterplots of the beer production time 
series where the horizontal axis shows lagged values of the time 
series. Each graph shows Yt plotted against Yt-k for different 
values of k. The autocorrelations are the correlations associated 
with these scatterplots. 

The value of rk can be written as 

L (Yt -PHYt-k -y)
t=k+l 

where T is the length of the time series. 
The first nine autocorrelation coefficients for the beer produc­

tion data are given in the following table. 

r1 r2 r3 r 4 r5 r 6 r7

Figure 2.8: Each of 

these plots has a 

correlation coefficient 

of 0.82. Data from 

Anscombe F. J. (1973) 

Graphs in statistical 

analysis. American 

Statistician, 27, 17-21. 

rs r9 

-0.126 -0.650 -0.094 0.863 -0.099 -0.642 -0.098 0.834 -0.116
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beer2 <- window(ausbeer, start=1992, end=2006-. 1) 

lag.plot(beer2, lags=9, do.lines=FALSE) 
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These correspond to the nine scatterplots in Figure 2.9. The 

autocorrelation coefficients are normally plotted to form the 

autocorrelation function or ACF, shown in Figure 2.10. The plot 

is also known as a correlogram. 

In this graph: 

0 0 
� 

0 0 
., 

0 0 
� 

0 0 
� 

0 0 
., 

• r4 is higher than for the other lags. This is due to the seasonal

pattern in the data: the peaks tend to be four quarters apart

and the troughs tend to be four quarters apart.

• r2 is more negative than for the other lags because troughs

tend to be two quarters behind peaks.

Figure 2. 9: Lagged scat­

terplots for quarterly 

beer production. 
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---------- R code 
Acf(beer2) 

White noise 

Time series that show no autocorrelation are called "white 

noise". Figure 2.11 gives an example of a white noise series. 

White noise 

0 

X 

' 

I 

I 

0 10 20 

Time 

---------- R code 
set.seed(30) 
x <- ts(rnorm(50)) 
plot(x, main="White noise") 

30 40 50 

Figure 2.10: Autocor­
relation function of 
quarterly beer produc­
tion. 

Figure 2.11: A white 
noise time series. 
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---------- R code 
Acf(x) 

For white noise series, we expect each autocorrelation to be 
close to zero. They are not exactly zero as there is some random 
variation. For a white noise series, we expect 95% of the spikes 
in the ACF to lie within ±2/VT, where T is the length of the 
time series. It is common to plot these bounds on a graph of the 
ACF. If there are one or more large spikes outside these bounds, 
or if more than 5% of spikes are outside these bounds, then the 
series is probably not white noise. 

In this example, T = 50 and so the bounds are at ±2/VSO =
±0.28. All autocorrelation coefficients lie within these limits, 
confirming that the data are white noise. 

2/3 Some simple forecasting methods 

Some forecasting methods are very simple and surprisingly 
effective. Here are four methods that we will use as benchmarks 
for other forecasting methods. 

Average method 

Here, the forecasts of all future values are equal to the mean of 
the historical data. If we let the historical data be denoted by 
Yt,···,YT, then we can write the forecasts as 

YT +hlT = y = (yi + ... + YT )IT.

Figure 2.12: Autocorre­

lation function for the 

white noise series. 
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The notation YT+hlT is a short-hand for the estimate of YT+h 
based on the data y1, ... ,YT · 

Although we have used time series notation here, this 
method can also be used for cross-sectional data (when we 
are predicting a value not included in the data set). Then the 
prediction for values not observed is the average of those values 
that have been observed. The remaining methods in this section 
are only applicable to time series data. 

---------- R code 

meanf(y, h) 

# y c ontains the time s eri es, his the f or ecast horizon 

Nai"ve method 

All forecasts are simply set to be the value of the last obser­
vation. That is, the forecasts of all future values are set to be 
YT, where YT is the last observed value. This method works 
remarkably well for many economic and financial time series. 

---------- R code 

naive(y, h) 

rwf(y, h) # Alt ernative 

Seasonal nai"ve method 

A similar method is useful for highly seasonal data. In this 
case, we set each forecast to be equal to the last observed value 
from the same season of the year (e.g., the same month of the 
previous year). Formally, the forecast for time T +his written as 

YT+h-km where m = seasonal period, k = L(h-1)/mJ + 1, 

and LuJ denotes the integer part of u. That looks more com­
plicated than it really is. For example, with monthly data, the 
forecast for all future February values is equal to the last ob­
served February value. With quarterly data, the forecast of all 
future Q2 values is equal to the last observed Q2 value (where 
Q2 means the second quarter). Similar rules apply for other 
months and quarters, and for other seasonal periods. 

---------- R code 

snaive(y, h) 
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Drift method
A variation on the naiVe method is to allow the forecasts to
increase or decrease over time, where the amount of change
over time (called the drift) is set to be the average change seen
in the historical data. So the forecast for time T + h is given by

T 

YT + T � I L,(Yt- Yt-d = YT + h( Y; =�1 ).
t=2 

This is equivalent to drawing a line between the first and last
observation, and extrapolating it into the future.

Rcode 

rwf(y, h, drift=TRUE) 

Forecasts or auarterlv beer production 

- Mean method 

- Naive method 

- Seasonal naive method 

0 

\ \ v 
\_ v � 0 

0 

1/ 
... 

I I 

1995 2000 2005 

Rcode 

beer2 <- window(ausbeer,start=1992,end=2006-.1) 

beerfit1 <- meanf(beer2, h=11) 

beerfit2 <- naive(beer2, h=11) 

beerfit3 <- snaive(beer2, h=11) 

plot(beerfit1, plot.conf=FALSE, 

main="Forecasts for quarterly beer production") 

lines(beerfit2$mean,col=2) 

lines(beerfit3$mean,col=3) 

legend("topright",lty=1,col=c(4,2,3), 

Figure 2.13: Forecasts 

of Australian quarterly 

beer production. 

legend=c("Mean method","Naive method","Seasonal naive method")) 
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---------- R code 

dj2 <- window(dj,end=250) 

200 250 

plot(dj2,main="Dow Jones Index (daily ending 15 Jul 94)", 

ylab="",xlab="Day",xlim=c(2,290)) 

lines(meanf(dj2,h=42)$mean,col=4) 

lines(rwf(dj2,h=42)$mean,col=2) 

lines(rwf(dj2,drift=TRUE,h=42)$mean,col=3) 

legend("topleft",lty=1,col=c(4,2,3), 

legend=c("Mean method","Naive method","Drift method")) 

Examples 

300 

Figure 2.13 shows the first three methods applied to the quar­

terly beer production data. 

In Figure 2.14, the non-seasonal methods were applied to a 

series of 250 days of the Dow Jones Index. 

Sometimes one of these simple methods will be the best 

forecasting method available. But in many cases, these methods 

will serve as benchmarks rather than the method of choice. 

That is, whatever forecasting methods we develop, they will 

be compared to these simple methods to ensure that the new 

method is better than these simple alternatives. If not, the new 

method is not worth considering. 

Figure 2.14: Forecasts 

based on 250 days of 

the Dow Jones Index. 
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2/4 Transformations and adjustments 

Adjusting the historical data can often lead to a simpler fore­
casting model. Here we deal with four kinds of adjustments: 
mathematical transformations, calendar adjustments, popu­
lation adjustments and inflation adjustments. The purpose of 
all these transformations and adjustments is to simplify the 
patterns in the historical data by removing known sources of 
variation or by making the pattern more consistent across the 
whole data set. Simpler patterns usually lead to more accurate 
forecasts. 
Mathematical transformations 

If the data show variation that increases or decreases with the 
level of the series, then a transformation can be useful. For 
example, a logarithmic transformation is often useful. If we de­
note the original observations as y1, .. . ,yr and the transformed 
observations as w1, ... ,wy, then W t = log(yt)- Logarithms are 
useful because they are interpretable: changes in a log value 
are relative (or percentage) changes on the original scale. So if 
log base 10 is used, then an increase of 1 on the log scale corre­
sponds to a multiplication of 10 on the original scale. Another 
useful feature of log transformations is that they constrain the 
forecasts to stay positive on the original scale. 

Sometimes other transformations are also used (although 
they are not so interpretable). For example, square roots and 
cube roots can be used. These are called power transformations

because they can be written in the form W t = yf. 
A useful family of transformations that includes logarithms 

and power transformations is the family of "Box-Cox transfor­
mations", which depend on the parameter ,,\ and are defined as 
follows: 

{ log(yt) if,,\= 0; W t = (yf- I)/,,\ otherwise. 
The logarithm in a Box-Cox transformation is always a natural 
logarithm (i.e., to base e). So if,,\ = 0, natural logarithms are 
used, but if,,\-:;:. 0, a power transformation is used followed by 
some simple scaling. 

Figure 2.15 shows a logarithmic transformation of the 
monthly electricity demand data. 
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1960 1970 1980 1990 

Year 

---------- R code 

plot(log(elec), ylab="Transformed electricity demand", 

xlab="Year", main="Transformed monthly electricity demand") 

title(main="Log",line=-1) 

A good value of ,\ is one that makes the size of the seasonal 

variation about the same across the whole series, as that makes 

the forecasting model simpler. In this case, ,\ = 0.30 works quite 

well, although any value of ,\ between 0 and 0.5 would give 

similar results. 

---------- R code 

Figure 2.15: Power 
transformations of 
Australian monthly 
electricity data. 

# The BoxCox.lambda() function will choose a value of lambda for you. 

lambda <- BoxCox.lambda(elec) # = 0.27 

plot(BoxCox(elec,lambda)) 

Having chosen a transformation, we need to forecast the 

transformed data. Then, we need to reverse the transformation 

(or back-transform) to obtain forecasts on the original scale. The 

reverse Box-Cox transformation is given by 

Features of power transformations 

A= O; 

otherwise. 

• If some Yt < 0, no transformation is possible unless all

observations are adjusted by adding a constant to all values.
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• Choose a simple value of,,\. It makes explanations easier.

• Forecasting results are relatively insensitive to the value of,,\.

• Often no transformation is needed.

• Transformations sometimes make little difference to the

forecasts but have a large effect on prediction intervals.

Calendar adjustments 

Some variation seen in seasonal data may be due to simple 

calendar effects. In such cases, it is usually much easier to 

remove the variation before fitting a forecasting model. 

For example, if you are studying monthly milk production 

on a farm, then there will be variation between the months 

simply because of the different numbers of days in each month 

in addition to seasonal variation across the year. 

Notice how much simpler the seasonal pattern is in the 

average daily production plot compared to the average monthly 

production plot. By looking at average daily production instead 

of average monthly production, we effectively remove the 

variation due to the different month lengths. Simpler patterns 

are usually easier to model and lead to more accurate forecasts. 

A similar adjustment can be done for sales data when the 

number of trading days in each month will vary. In this case, 

the sales per trading day can be modelled instead of the total 

sales for each month. 

Population adjustments 

Any data that are affected by population changes can be ad­

justed to give per-capita data. That is, consider the data per 

person (or per thousand people, or per million people) rather 

than the total. For example, if you are studying the number 

of hospital beds in a particular region over time, the results 

are much easier to interpret if you remove the effect of popu­

lation changes by considering number of beds per thousand 

people. Then you can see if there have been real increases in 

the number of beds, or whether the increases are entirely due 

to population increases. It is possible for the total number of 

beds to increase, but the number of beds per thousand people 

to decrease. This occurs when the population is increasing 
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---------- R code 

9 10 11 12 13 14 

9 10 11 12 13 14 

monthdays <- rep(c(31,28,31,30,31,30,31,31,30,31,30,31),14) 

monthdays[26 + (4*12)*(0:2)] <- 29 

par(mfrow=c(2, 1)) 

plot(milk, main="Monthly milk production per cow", 

ylab="Pounds",xlab="Years") 

Figure 2.16: Monthly 

milk production per 

cow. Source: Cryer 

(1986). 

plot(milk/monthdays, main="Average milk production per cow per day", 

ylab="Pounds", xlab="Years") 

faster than the number of hospital beds. For most data that are 

affected by population changes, it is best to use per-capita data 

rather than the totals. 

Inflation adjustments 

Data that are affected by the value of money are best adjusted 

before modelling. For example, data on the average cost of a 

new house will have increased over the last few decades due 
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to inflation. A $200,000 house this year is not the same as a 
$200,000 house twenty years ago. For this reason, financial 
time series are usually adjusted so all values are stated in dollar 
values from a particular year. For example, the house price data 
may be stated in year 2000 dollars. 

To make these adjustments a price index is used. If Zt de­
notes the price index and Jlt denotes the original house price 
in year t, then Xt = ytf zt * z2000 gives the adjusted house price 
at year 2000 dollar values. Price indexes are often constructed 
by government agencies. For consumer goods, a common price 
index is the Consumer Price Index (or CPI). 

2/5 Evaluating forecast accuracy 

Forecast accuracy measures 

Let Yi denote the ith observation and Yi denote a forecast of Yi·

Scale-dependent errors The forecast error is simply ei = Yi -yi,

which is on the same scale as the data. Accuracy measures that 
are based on ei are therefore scale-dependent and cannot be 
used to make comparisons between series that are on different 
scales. 

The two most commonly used scale-dependent measures are 
based on the absolute errors or squared errors: 

Mean absolute error: MAE = mean(leil), 

Root mean squared error: RMSE = ✓mean(eT)-

When comparing forecast methods on a single data set, the 
MAE is popular as it is easy to understand and compute. 

Percentage errors The percentage error is given by Pi =

1 00eJYi · Percentage errors have the advantage of being scale­
independent, and so are frequently used to compare forecast 
performance between different data sets. The most commonly 
used measure is: 

Mean absolute percentage error: MAPE = mean(lp;I). 

Measures based on percentage errors have the disadvantage 
of being infinite or undefined if Yi = 0 for any i in the period 
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of interest, and having extreme values when any Yi is close to 
zero. Another problem with percentage errors that is often over­
looked is that they assume a meaningful zero. For example, a 
percentage error makes no sense when measuring the accuracy 
of temperature forecasts on the Fahrenheit or Celsius scales. 

They also have the disadvantage that they put a heavier 
penalty on negative errors than on positive errors. This observa­
tion led to the use of the so-called "symmetric" MAPE (sMAPE) 
proposed by Armstrong (1985, p.348), which was used in the 
M3 forecasting competition. It is defined by 

sMAPE = mean (200lyi -y;l/(y; + y;)). 

However, if y; is zero, Yi is also likely to be close to zero. Thus, 
the measure still involves division by a number close to zero. 
Also, the value of sMAPE can be negative, so it is not really a 
measure of "absolute percentage errors" at all. 

Hyndman and Koehler (2006) recommend that the sMAPE 
not be used. It is included here only because it is widely used, 
although we will not use it in this book. 

Scaled errors Scaled errors were proposed by Hyndman and 
Koehler (2006) as an alternative to using percentage errors 
when comparing forecast accuracy across series on different 

scales. They proposed scaling the errors based on the training 
MAE from a simple forecast method. For a non-seasonal time 
series, a useful way to define a scaled error uses na1ve forecasts: 

ej 

Because the numerator and denominator both involve values 
on the scale of the original data, qj is independent of the scale 
of the data. A scaled error is less than one if it arises from a 
better forecast than the average naYve forecast computed on the 
training data. Conversely, it is greater than one if the forecast is 
worse than the average naYve forecast computed on the training 

data. For seasonal time series, a scaled error can be defined 
using seasonal na1ve forecasts: 

l 
T 

T-m L, lyt-Yt-ml
t=m+l 
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For cross-sectional data, a scaled error can be defined as 

In this case, the comparison is with the mean forecast. (This 

doesn't work so well for time series data as there may be trends 

and other patterns in the data, making the mean a poor com­

parison. Hence, the naYve forecast is recommended when using 

time series data.) 

The mean absolute scaled error is simply 

MASE = mean(lqjl). 

Similarly, mean squared scaled errors (MSSE) can be defined 

where the errors (on the training data and test data) are squared 

instead of using absolute values. 

Examples 

Figure 2.17 shows three forecast methods applied to the 

quarterly Australian beer production using data only to the end 

of 2005. The actual values for the period 2006-2008 are also 

shown. 

We compute the forecast accuracy measures for this period. 

Method RMSE MAE MAPE MASE 

Mean method 38.01 33.78 8.17 2.30 

na1ve method 70.91 63.91 15.88 4.35 

Seasonal na1ve method 12.97 11.27 2.73 0.77 

---------- R code 
beer3 <- window(ausbeer, start=2006) 
accuracy(beerfit1, beer3) 
accuracy(beerfit2, beer3) 
accuracy(beerfit3, beer3) 

It is obvious from the graph that the seasonal na1ve method 

is best for these data, although it can still be improved, as we 

will discover later. Sometimes, different accuracy measures 

will lead to different results as to which forecast method is best. 

However, in this case, all the results point to the seasonal naYve 

method as the best of these three methods for this data set. 
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---------- R code 

2005 

beer2 <- window(ausbeer,start=1992,end=2006-. 1) 

beerfit1 <- meanf(beer2,h=11) 

beerfit2 <- rwf(beer2,h=11) 

beerfit3 <- snaive(beer2,h=11) 

plot(beerfit1, plot.conf=FALSE, 

main="Forecasts for quarterly beer production") 

lines(beerfit2$mean,col=2) 

lines(beerfit3$mean,col=3) 

lines(ausbeer) 

legend("topright", lty=1, col=c(4,2,3), 

V V 

Figure 2.17: Forecasts 

of Australian quarterly 

beer production using 

data up to the end of 

2005. 

legend=c("Mean method","Naive method","Seasonal naive method")) 

To take a non-seasonal example, consider the Dow Jones In­

dex. The following graph shows the 250 observations ending on 

15 July 1994, along with forecasts of the next 42 days obtained 

from three different methods. 

Method RMSE MAE 

Mean method 148.24 142.42 

Nai"ve method 62.03 54.44 

Drift method 53.70 45.73 

---------- R code 
dj3 <- window(dj, start=251) 

accuracy(meanf(dj2,h=42), dj3) 

accuracy(rwf(dj2,h=42), dj3) 

accuracy(rwf(dj2,drift=TRUE,h=42), dj3) 

MAPE MASE 

3.66 8.70 

1.40 3.32 

1.18 2.79 
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Rcode 
dj2 <- window(dj, end=250) 

200 250 300 

plot(dj2, main="Dow Jones Index (daily ending 15 Jul 94)", 
ylab="", xlab="Day", xlim=c(2,290)) 

lines(meanf(dj2,h=42)$mean, col=4) 
lines(rwf(dj2,h=42)$mean, col=2) 
lines(rwf(dj2,drift=TRUE,h=42)$mean, col=3) 
legend("topleft", lty=1, col=c(4,2,3), 

legend=c("Mean method","Naive method","Drift method")) 
lines(dj) 

Here, the best method is the drift method (regardless of 

which accuracy measure is used). 

Training and test sets 

It is important to evaluate forecast accuracy using genuine 

forecasts. That is, it is invalid to look at how well a model 

fits the historical data; the accuracy of forecasts can only be 

determined by considering how well a model performs on new 

data that were not used when fitting the model. When choosing 

models, it is common to use a portion of the available data for 

testing, and use the rest of the data for fitting the model, as was 

done in the above examples. Then the testing data can be used 

to measure how well the model is likely to forecast on new data. 

Figure 2.18: Forecasts 

of the Dow Jones Index 

from 16 July 1994.
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The size of the test set is typically about 20% of the total 

sample, although this value depends on how long the sample 

is and how far ahead you want to forecast. The size of the test 

set should ideally be at least as large as the maximum forecast 

horizon required. 

The following points should be noted. 

• A model which fits the data well does not necessarily

forecast well.

• A perfect fit can always be obtained by using a model

with enough parameters.

• Over-fitting a model to data is as bad as failing to

identify the systematic pattern in the data.

Some references describe the test set as the "hold-out set" 

because these data are "held out" of the data used for fitting. 

Other references call the training set the "in-sample data" and 

the test set the "out-of-sample data". We prefer to use "training 

set" and "test set" in this book. 

Cross-validation 

A more sophisticated version of training/test sets is cross­

validation. 

For cross-sectional data, cross-validation works as follows. 

1. Select observation i for the test set, and use the remaining

observations in the training set. Compute the error on the

test observation.

2. Repeat the above step for i = l, 2, ... , N where N is the total

number of observations.

3. Compute the forecast accuracy measures based on the errors

obtained.

This is a much more efficient use of the available data, as you 

only omit one observation at each step. However, it can be very 

time consuming to implement. 

For time series data, the procedure is similar but the training 

set consists only of observations that occurred prior to the 

observation that forms the test set. Thus, no future observations 

can be used in constructing the forecast. However, it is not 

possible to get a reliable forecast based on a very small training 

set, so the earliest observations are not considered as test sets. 
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Suppose k observations are required to produce a reliable 

forecast. Then the process works as follows. 

1. Select the observation at time k + i for the test set, and use the

observations at times 1, 2, ... , k+ i- l to estimate the forecasting

model. Compute the error on the forecast for time k + i.

2. Repeat the above step for i = l, 2, ... , T -k where Tis the total

number of observations.

3. Compute the forecast accuracy measures based on the errors

obtained.

This procedure is sometimes known as a "rolling forecasting 

origin" because the "origin" (k + i -1) at which the forecast is 

based rolls forward in time. 

With time series forecasting, one-step forecasts may not 

be as relevant as multi-step forecasts. In this case, the cross­

validation procedure based on a rolling forecasting origin can 

be modified to allow multi-step errors to be used. Suppose 

we are interested in models that produce good h-step-ahead 

forecasts. 

1. Select the observation at time k + h + i -l for the test set, and

use the observations at times 1,2, .. . ,k + i -l to estimate the

forecasting model. Compute the h-step error on the forecast

for time k + h + i -l. 

2. Repeat the above step for i = l, 2, ... , T -k -h + l where T is 

the total number of observations.

3. Compute the forecast accuracy measures based on the errors

obtained.

When h = l, this gives the same procedure as outlined above. 

2/6 Residual diagnostics 

A residual in forecasting is the difference between an observed 

value and its forecast based on other observations: e; = Jli -y;. 

For time series forecasting, a residual is based on one-step 

forecasts; that is Yt is the forecast of J/t based on observations 

y1, ... , Yt-l · For cross-sectional forecasting, a residual is based on 

all other observations; that is Yi is the prediction of J/i based on 

all observations except Jli· 
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A good forecasting method will yield residuals with the 

following properties: 

• The residuals are uncorrelated. If there are correla­

tions between residuals, then there is information left

in the residuals which should be used in computing

forecasts.

• The residuals have zero mean. If the residuals have a

mean other than zero, then the forecasts are biased.

Any forecasting method that does not satisfy these properties 

can be improved. That does not mean that forecasting methods 

that satisfy these properties can not be improved. It is possible 

to have several forecasting methods for the same data set, all 

of which satisfy these properties. Checking these properties is 

important to see if a method is using all available information 

well, but it is not a good way for selecting a forecasting method. 

If either of these two properties is not satisfied, then the 

forecasting method can be modified to give better forecasts. 

Adjusting for bias is easy: if the residuals have mean m, then 

simply add m to all forecasts and the bias problem is solved. 

Fixing the correlation problem is harder and we will not ad­

dress it until Chapter 8. 

In addition to these essential properties, it is useful (but 

not necessary) for the residuals to also have the following two 

properties. 

• The residuals have constant variance.

• The residuals are normally distributed.

These two properties make the calculation of prediction inter­

vals easier (see the next section for an example). However, a 

forecasting method that does not satisfy these properties cannot 

necessarily be improved. Sometimes applying a transformation 

such as a logarithm or a square root may assist with these prop­

erties, but otherwise there is usually little you can do to ensure 

your residuals have constant variance and have a normal distri­

bution. Instead, an alternative approach to finding prediction 

intervals is necessary. Again, we will not address how to do this 

until later in the book. 

Example: Forecasting the Dow-Jones Index 

For stock market indexes, the best forecasting method is often 

the na1ve method. That is each forecast is simply equal to the 
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last observed value, or Yt = Yt-l · Hence, the residuals are simply 

equal to the difference between consecutive observations: 

The following graphs show the Dow Jones Index (OJI), and 

the residuals obtained from forecasting the OJI with the na1ve 

method. 
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Figure 2.19: The Dow 

Jones Index measured 

daily to 15 July 1994. 

Figure 2.20: Residuals 

from forecasting the 

Dow Jones Index with 

the narve method. 
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---------- R code 

dj2 <- window(dj, end=250) 

14 16 18 20 22 

plot(dj2, main="Dow Jones Index (daily ending 15 Jul 94)", 

ylab="", xlab="Day") 

res <- residuals(naive(dj2)) 

plot(res, main="Residuals from naive method", 

ylab="", xlab="Day") 

Acf(res,main="ACF of residuals") 

hist(res, nclass="FD", main="Histogram of residuals") 

These graphs show that the nai"ve method produces forecasts 

that appear to account for all available information. The mean 

of the residuals is very close to zero and there is no significant 

correlation in the residuals series. The time plot of the residuals 

Figure 2.21: Histogram 

of the residuals from 

the naive method 

applied to the Dow 

Jones Index. The 

left tail is a little too 

long for a normal 

distribution. 

Figure 2.22: ACF of 

the residuals from the 

naive method applied 

to the Dow Jones Index. 

The lack of correlation 

suggests the forecasts 

are good. 
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shows that the variation of the residuals stays much the same
across the historical data, so the residual variance can be treated
as constant. However, the histogram suggests that the residuals
may not follow a normal distribution - the left tail looks a
little too long. Consequently, forecasts from this method will
probably be quite good but prediction intervals computed
assuming a normal distribution may be inaccurate.

Portmanteau tests for autocorrelation 

In addition to looking at the ACF plot, we can do a more formal
test for autocorrelation by considering a whole set of rk values
as a group, rather than treat each one separately. 

Recall that rk is the autocorrelation for lag k. When we look
at the ACF plot to see if each spike is within the required limits,
we are implicitly carrying out multiple hypothesis tests, each
one with a small probability of giving a false positive. When
enough of these tests are done, it is likely that at least one will
give a false positive and so we may conclude that the residuals
have some remaining autocorrelation, when in fact they do not.

In order to overcome this problem, we test whether the first
h autocorrelations are significantly different from what would
be expected from a white noise process. A test for a group of
autocorrelations is called a portmanteau test, from a French
word describing a suitcase containing a number of items.

One such test is the Box-Pierce test based on the following
statistic

h 

Q = T [_rf_ 
k=l 

where h is the maximum lag being considered and T is number
of observations. If each rk is close to zero, then Q will be small.
If some rk values are large (positive or negative), then Q will
be large. We suggest using h = 10 for non-seasonal data and
h = 2m for seasonal data (where mis the period of seasonality).
However, the test is not good when his large, so if these values
are larger than T /5, then use h = T /5.

A related (and more accurate) test is the Ljung-Box test based
on

h 

Q* = T(T + 2) L,(T-kr 1 r{
k=l 
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Again, large values of Q* suggest that the autocorrelations do 

not come from a white noise series. 

How large is too large? If the autocorrelations did come 

from a white noise series, then both Q and Q* would have a 

x2 distribution with (h - K) degrees of freedom where K is the 

number of parameters in the model. If they are calculated from 

raw data (rather than the residuals from a model), then set 

K=O. 

For the Dow-Jones example, the naive model has no param­

eters, so K = 0 in that case also. For both Q and Q*, the results 

are not significant (i.e., the p-values are relatively large). So we 

can conclude that the residuals are not distinguishable from a 

white noise series. 

---------- R code 
# lag=h and fitdf=K 
> Box.test(res, lag=10, fitdf=0)

Box-Pierce test 
X-squared = 10.6548, df = 10, p-value = 0.385
> Box.test(res,lag=10, fitdf=0, type="Lj")

Box-Ljung test 
X-squared = 11.0879, df = 10, p-value = 0.3507

2/7 Prediction intervals 

As discussed in Section 1/7, a prediction interval gives an inter­

val within which we expect Yi to lie with a specified probability. 

For example, assuming the forecast errors are uncorrelated and 

normally distributed, then a simple 95% prediction interval for 

the next observation in a time series is 

Yi± 1.96a, 

where a is an estimate of the standard deviation of the forecast 

distribution. In forecasting, it is common to calculate 80% 

intervals and 95% intervals, although any percentage may be 

used. 

When forecasting one-step ahead, the standard deviation 

of the forecast distribution is almost the same as the standard 

deviation of the residuals. (In fact, the two standard deviations 

are identical if there are no parameters to be estimated such 

as with the na1ve method. For forecasting methods involving 
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parameters to be estimated, the standard deviation of the 

forecast distribution is slightly larger than the residual standard 

deviation, although this difference is often ignored.) 

For example, consider a naYve forecast for the Dow-Jones 

Index. The last value of the observed series is 3830, so the 

forecast of the next value of the OJI is 3830. The standard 

deviation of the residuals from the naYve method is 21.99. 

Hence, a 95% prediction interval for the next value of the OJI is 

3830 ± 1.96(21.99) = [3787,3873]. 

Similarly, an 80% prediction interval is given by 

3830 ± 1.28(21.99) = [3802,3858]. 

The value of the multiplier (1.96 or 1.28) determines the per­

centage of the prediction interval. Table 2.1 gives the values to 

be used for different percentages. 

Percentage Multiplier 

50 0.67 

55 0.76 

60 0.84 

65 0.93 

70 1.04 

75 1.15 

80 1.28 

85 1.44 

90 1.64 

95 1.96 

96 2.05 

97 2.17 

98 2.33 

99 2.58 

The use of this table and the formula Yi ± k<J (where k is the 

multiplier) assumes that the residuals are normally distributed 

and uncorrelated. If either of these conditions does not hold, 

then this method of producing a prediction interval cannot be 

used. 

The value of prediction intervals is that they express the 

uncertainty in the forecasts. If we only produce point forecasts, 

there is no way of telling how accurate the forecasts are. But if 

Table 2.1: Multipliers to 

be used for prediction 

intervals. 
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we also produce prediction intervals, then it is clear how much 

uncertainty is associated with each forecast. For this reason, 

point forecasts can be of almost no value without accompanying 

prediction intervals. 

To produce a prediction interval, it is necessary to have an 

estimate of the standard deviation of the forecast distribution. 

For one-step forecasts for time series, the residual standard 

deviation provides a good estimate of the forecast standard 

deviation. But for all other situations, including multi-step fore­

casts for time series, a more complicated method of calculation 

is required. These calculations are usually done with standard 

forecasting software and need not trouble the forecaster (unless 

he or she is writing the software!). 

A common feature of prediction intervals is that they in­

crease in length as the forecast horizon increases. The further 

ahead we forecast, the more uncertainty is associated with the 

forecast, and so the prediction intervals grow wider. However, 

there are some (non-linear) forecasting methods that do not 

have this attribute. 

If a transformation has been used, then the prediction in­

terval should be computed on the transformed scale, and the 

end points back-transformed to give a prediction interval on 

the original scale. This approach preserves the probability cov­

erage of the prediction interval, although it will no longer be 

symmetric around the point forecast. 

2/8 Exercises 

2.1 For each of the following series (from the fma pack­

age), make a graph of the data. If transforming seems 

appropriate, do so and describe the effect. 

(a) Monthly total of people on unemployed bene­

fits in Australia (January 1956-July 1992).

(b) Monthly total of accidental deaths in the

United States (January 1973-December 1978).

(c) Quarterly production of bricks (in millions

of units) at Portland, Australia (March 1956-

September 1994).
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Hints: 

• data ( package= 11 £ma 11 ) will give a list of the available

data.

• To plot a transformed data set, use plot (BoxCox ( x, 0. 5))

where xis the name of the data set and 0.5 is the Box­

Cox parameter.

2.2 Use the Dow Jones index (data set dowjones) to do the 

following: 

(a) Produce a time plot of the series.

(b) Produce forecasts using the drift method and

plot them.

(c) Show that the graphed forecasts are identical

to extending the line drawn between the first

and last observations.

(d) Try some of the other benchmark functions to

forecast the same data set. Which do you think

is best? Why?

2.3 Consider the daily closing IBM stock prices (data set 

ibmclose). 

(a) Produce some plots of the data in order to

become familiar with it.

(b) Split the data into a training set of 300 observa­

tions and a test set of 69 observations.

(c) Try various benchmark methods to forecast the

training set and compare the results on the test

set. Which method did best?

2.4 Consider the sales of new one-family houses in the USA, 

Jan 1973 - Nov 1995 (data set hsales). 

(a) Produce some plots of the data in order to

become familiar with it.

(b) Split the hsales data set into a training set and

a test set, where the test set is the last two years

of data.

(c) Try various benchmark methods to forecast the

training set and compare the results on the test

set. Which method did best?
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2.5 Why is a Box-Cox transformation unhelpful for the 

cangas data? 

2/9 Further reading 

Graphics and data summary 

• Cleveland, W. S. (1993). Visualizing Data. Hobart Press.

• Maindonald, J. and H. Braun (2010). Data analysis and graphics

using R: an example-based approach. 3rd ed. Cambridge, UK:

Cambridge University Press.

Simple forecasting methods 

• Ord, J. K. and R. Fildes (2012). Principles of business forecasting.

South-Western College Pub.

Evaluating forecast accuracy 

• Hyndman, R. J. and A. B. Koehler (2006). Another look at mea­

sures of forecast accuracy. International Journal of Forecasting

22(4), 679-688.
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2/A The forecast package in R 

This book uses the facilities in the forecast package in R 

(which is automatically loaded whenever you load the £pp 

package). This appendix briefly summarizes some of the fea­

tures of the package. Please refer to the help files for individual 

functions to learn more, and to see some examples of their use. 

Functions that output a forecast object: 

• mean£()

• naive(), snaive()

• rwf ()

• croston()

• stlf()

• ses ()

• holt(), hw()

• spline£

• theta£

• forecast ()

forecast() function 

The forecast class contains 

• Original series

• Point forecasts

• Prediction interval

• Forecasting method used

• Residuals and in-sample (train­

ing) one-step forecasts

• Takes a time series or time series model as its main

argument

• If first argument is of class ts, it returns forecasts from

automatic ETS algorithm.

• Methods are available for objects of class Arima, ar,

Hol tWinters, StructTS, etc.

• Output as class forecast.

---------- R output 

> forecast(beer)

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 

2008 04 480.8 458.7 503.7 446.5 515.7 

2009 01 423.3 403.0 442.9 392.3 452.5 

2009 02 386.1 367.4 404.6 357.6 414.8 

2009 03 402.7 382.5 423.2 371.8 433.9 

2009 04 481.0 455.0 508.3 441.1 522.5 

2010 01 423.5 398.8 448.7 386.2 461.8 

2010 02 386.3 362.8 411.3 350.5 423.1 

2010 03 402.9 377.5 429.5 363.7 444.8 



3 

Judgmental forecasts 

3/1 Introduction 

Forecasting using judgement is very common in practice. There 

are many cases where judgmental forecasting is the only option, 

such as when there is a complete lack of historical data, or when 

a new product is being launched, or when a new competitor 

enters the market, or during completely new and unique mar­

ket conditions. For example, in December 2012 the Australian 

government was the first in the world to pass legislation that 

banned the use of company logos on cigarette packets, and re­

quired all cigarette packets to be a dark green color. Judgement 

must be applied in order to forecast the effect of such a drastic 

policy as there are no historical precedents. 

There are also situations where the data are incomplete or 

only become available after some delay. For example central 

banks include judgement when forecasting the current level of 

economic activity, a procedure known as nowcasting, as GDP 

only becomes available on a quarterly basis. 

What has been learned from research in this area 1 is that

the accuracy of judgmental forecasting improves when the 

forecaster has (i) important domain knowledge, and (ii) more 

timely up-to-date information. A judgmental approach can be 

quick to adjust to such changes, information or events. 

Over the years the acceptance of judgmental forecasting as 

a science has increased and so has the recognition for its need. 

More importantly the quality of judgmental forecasts has also 

improved as a direct result of recognising that improvements 

in judgmental forecasting can be achieved by implementing 

1 M. Lawrence, P.
Goodwin, M. O'Connor
and D. Onkal (2006).
Judgmental forecasting:
A review of progress
over the last 25 years. 
International Journal 

of Forecasting 22(3 ),
493-518. 
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well-structured and systematic approaches. It is important 

to recognise that judgmental forecasting is subjective and 

comes with limitations. However, implementing systematic and 

well-structured approaches can confine these limitations and 

markedly improve forecast accuracy. 

There are three general settings where judgmental forecast­

ing is used: (i) there are no available data so that statistical 

methods are not applicable and judgmental forecasting is 

the only feasible approach; (ii) data are available, statistical 

forecasts are generated and these are then adjusted using judge­

ment; and (iii) data are available and statistical and judgmental 

forecasts are independently generated and then combined. We 

should clarify that when data are available, applying statistical 

methods (such as those discussed in other chapters of this book), 

is preferable and should, at the very least, be used as a starting 

point. Statistical forecasts are in general superior to generating 

forecasts using only judgement and this is commonly observed 

in the literature. For the majority of the chapter we focus on 

the first setting where no data are available, and in the very last 

section we discuss judgmentally adjusting statistical forecasts. 

We leave combining forecasts for a later edition of this book. 

3/2 Beware of limitations 

Judgmental forecasts are subjective and therefore do not come 

free of bias or limitations. 

Judgmental forecasts can be inconsistent. Unlike statistical 

forecasts which can be generated by the same mathematical 

formulae every time, judgmental forecasts depend heavily 

on human cognition and are vulnerable to its limitations. For 

example, a limited memory may render recent events more 

important than they actually are and may ignore momentous 

events from the more distant past; or a limited attention span 

may result in important information being missed; or a mis­

understanding of causal relationships may lead to erroneous 

inference. Furthermore, human judgement can vary due to 

the effect of psychological factors. We can think of a manager 

who is in a positive frame of mind one day, generating forecasts 

that may tend to be somewhat optimistic, and in a negative 

frame of mind another day, generating somewhat less optimistic 

forecasts. 
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Judgement can be clouded by personal or political agendas, 

where targets and forecasts (as defined in Chapter 1) are not 

segregated. For example if a sales manager knows that the fore­

casts she generates will be used to set the expectation of sales 

(targets), she may have the tendency to set these low in order 

to show a good performance (i.e., exceed the expected targets). 

Even in cases where targets and forecasts are well segregated, 

judgement may be plagued with optimism or wishful thinking. 

For example, it would be highly unlikely that a team working 

towards launching a new product would forecast its failure. 

As we will discuss later, this optimism can be accentuated in 

a group meeting setting. "Beware of the enthusiasm of your 

marketing and sales colleagues"2•

Another undesirable property commonly seen in judgmental 

forecasting is the effect of anchoring. In this case, subsequent 

forecasts tend to converge or be very close to an initial famil­

iar reference point. For example, it is common to take the last 

observed value as a reference point. The forecaster is unduly 

influenced by prior information and therefore gives this more 

weight in the forecasting process. Anchoring may lead to con­

servatism and undervaluing new and more current information 

and thereby create a systematic bias. 

3/3 Key principles 

Using a systematic and well structured approach in judgmental 

forecasting helps to reduce the adverse effects of the limitations 

of judgmental forecasting, some of which we listed in the 

previous section. Whether this approach involves one or many 

individuals, the following principles should be followed. 

Set the forecasting task clearly and concisely 

Care is needed when setting the forecasting challenges and 

expressing the forecasting tasks. It is important that everyone 

is clear about what the task is. All definitions should be clear 

and comprehensive, avoiding ambiguous and vague expressions. 

Also it is important to avoid incorporating emotive terms and 

irrelevant information that may distract the forecaster. In the 

2 R. Fildes and P. Good­

win (2007b). Good 

and bad judgment in 

forecasting: lessons 

from four companies. 

Foresight: The Interna­

tional Journal of Applied 

Forecasting (8), 5-10. 
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Delphi method that follows (see Section 3/4), it may be some­

times useful to conduct a preliminary round of information 

gathering before setting the forecasting task. 

Implement a systematic approach 

Forecast accuracy and consistency can be improved by using a 

systematic approach to judgmental forecasting involving check­

lists of categories of information relevant to the forecasting 

task. For example, it is helpful to identify what information is 

important and how this information is to be weighted. When 

forecasting the demand of a new product, what factors should 

we account for and how should we account for them? Should 

it be the price, the quality and/or quantity of the competition, 

the economic environment at the time, the target population of 

the product? It is worth while devoting significant effort and 

resources in putting together decision rules that lead to the best 

possible systematic approach. 

Document and justify 

Formalising and documenting the decision rules and assump­

tions implemented in the systematic approach can promote 

consistency as the same rules can be implemented repeatedly. 

Also, requesting a forecaster to document and justify fore­

casts leads to accountability which can lead to a reduced bias. 

Furthermore, formal documentation significantly aids in the 

systematic evaluation process that is suggested next. 

Systematically evaluate forecasts 

Systematically monitoring the forecasting process can iden­

tify unforeseen irregularities. In particular, keep records of 

forecasts and use them to obtain feedback as the forecasted 

period becomes observed. Although you can do your best as a 

forecaster, the environment you operate in is dynamic. Changes 

occur and you need to monitor these in order to evaluate the 

decision rules and assumptions. Feedback and evaluation helps 

forecasters learn and improve forecast accuracy. 
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Segregate forecasters and users 

Forecast accuracy may be impeded if the forecasting task is 

carried out by users of the forecasts, such as those responsible 

for implementing plans of action about which the forecast is 

concerned. We should clarify again here (as in Section 1/2), 

forecasting is about predicting the future as accurately as 

possible, given all the information available including historical 

data and knowledge of any future events that might impact the 

forecasts. Forecasters and users should be clearly segregated. 

A classic case is that of a new product being launched. The 

forecast should be a reasonable estimate of the sales volume of a 

new product, which may be very different to what management 

expects or hopes the sales will be in order to meet company 

financial objectives. A forecaster in this case may be delivering a 

reality check to the user. 

It is important that forecasters thoroughly communicate 

forecasts to potential users. As we will see in Section 3/8, users 

may feel distant and disconnected from forecasts and may not 

have full confidence in them. Explaining and clarifying the 

process and justifying basic assumptions that led to forecasts 

will provide some assurance to users. 

How forecasts may then be used and implemented will 

clearly depend on managerial decision making. For example, 

management may decide to adjust a forecast upwards (be over­

optimistic) as the forecast may be used to guide purchasing and 

stock keeping levels. Such a decision may have been taken after 

cost-benefit analysis reveals that the cost of holding excess stock 

is much lower than that of lost sales. This type of adjustment 

should be part of setting goals or planning supply rather than 

part of the forecasting process. In contrast, if forecasts are used 

as targets, they may be set low so that these can be exceeded 

more easily. Again, setting targets is different from producing 

forecasts, and the two should not be confused. 

The example that follows comes from our experience in 

industry. It exemplifies two contrasting styles of judgmental 

forecasting - one that adheres to the principles we have just 

presented and one that does not. 
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Example 3.1 Pharmaceutical Benefits Scheme (PBS) 

The Australian government subsidises the cost of a wide range 

of prescription medicines as part of the PBS. Each subsidised 

medicine falls into one of four categories: concession copay­

ments, concession safety net, general copayments, and general 

safety net. Each person with a concession card makes a conces­

sion copayment per PBS medicine ($5.80)3 until they reach a 

set threshold amount labelled the concession safety net ($348). 

For the rest of the financial year all PBS listed medicines are 

free. Each general patient makes a general copayment per PBS 

medicine ($35.40) until the general safety net amount is reached 

($1,363.30). For the rest of the financial year they contribute a 

small amount per PBS listed medicine ($5.80). The PBS fore­

casting process uses 84 groups of PBS listed medicines, and 

produces forecasts of the medicine volume and the total expen­

diture for each group and for each of the four PBS categories, a 

total of 672 series. This forecasting process aids in setting the 

government budget allocated to the PBS which is over $7 billion 

per year or approximately 1 % of GDP. 

Figure 3.1 summarises the forecasting process. Judgmental 

forecasts are generated for new listings of medicines and for 

estimating the impact of new policies. These are shown by the 

green items. The pink items indicate the data used obtained 

from various government departments and associated author­

ites. The blue items show things that are calculated from the 

data provided. There were judgmental adjustments to the data 

to take account of new listings and new policies, and there 

were judgmental adjustments to the forecasts also. Because of 

the changing size of the concession population and the total 

population, forecasts are produced on a per capita basis, and 

then multiplied for the forecast population to obtain forecasts 

of total volume and expenditure per month. 

One of us (Hyndman) was asked to evaluate the forecasting 

process a few years ago. We found that using judgement for 

new listings and new policy impacts gave better forecasts 

than using a statistical model alone. However, we also found 

that forecasting accuracy and consistency could be improved 

through a more structured and systematic process, especially 

for policy impacts. 

3 These are Australian 

dollar amounts pub­

lished by the Australian 

government for 2012. 
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New listing 

Total 

population 

data 

Total 

population 

forecasts 

Monthly 

script and 

cost data 

Adjusted monthly 

script and cost data 

Monthly per 

capita data 

Monthly per 

capita forecasts 

Monthly base 

forecasts 

Monthly ad­

justed forecasts 

Concession 

population 

data 

Concession 

population 

forecasts 

Policy impact 

estimates 

Forecasting new listings: Companies who are applying for 

their medicine to be added to the PBS are asked to submit de­

tailed forecasts for various aspects of the medicine, such as 

projected patient numbers, market share of the new medicine, 

substitution effects, etc. The Pharmaceutical Benefits Advi­

sory Committee provides guidelines of a highly structured 

Figure 3.1: Process 

for producing PBS 

forecasts. 

and systematic approach for generating these forecasts and 

requires careful documentation for each step of the process. 

This structured process helps reduce the likelihood and effect of 

deliberate self-serving biases. Two detailed evaluation rounds 

of the company forecasts are implemented by a sub-committee, 
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one before the medicine is added to the PBS and one after it 

is added. Finally comparisons of observed versus forecasts for 

some selected new listings 12 months and also 24 months after 

the listing are performed and the results are sent back to the 

companies for comment. 

Policy impact forecasts: In contrast to the highly structured 

process used for new listings, there were no systematic proce­

dures for policy impact forecasts. On many occasions forecasts 

of policy impacts were calculated by a small team, often heav­

ily reliant on the work of one person. The forecasts were not 

usually subject to a formal review process. There were no 

guidelines for how to construct judgmental forecasts for policy 

impacts and there was often a lack of adequate documentation 

about how these forecasts were obtained, what assumptions 

underly them, etc. 

Consequently we recommended several changes: 

• that guidelines for forecasting new policy impacts

be developed to encourage a more systematic and

structured forecasting approach;

• that the forecast methodology be documented in each

case including all assumptions made in forming the

forecasts;

• that new policy forecasts be made by at least two

people from different areas of the organisation;

• that a review of forecasts be conducted one year after

the implementation of each new policy by a review

committee, especially for new policies that have a

significant annual projected cost or saving. The review

committee should include those involved in generating

the forecasts but also others.

These recommendations reflect the principles outlined in 

Section 3/3. 

3/4 The Delphi method 

The Delphi method was invented by Olaf Helmer and Norman 

Dalkey of the Rand Corporation in the 1950s for the purpose of 

addressing a specific military problem. The method relies on 

the key assumption that forecasts from a group are generally 

more accurate than those from individuals. The aim of the 

Delphi method is to construct consensus forecasts from a group 
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of experts in a structured iterative manner. A facilitator is 

appointed in order to implement and manage the process. The 

Delphi method generally involves the following stages: 

1. A panel of experts is assembled.

2. Forecasting tasks/challenges are set and distributed to

the experts.

3. Experts return initial forecasts and justifications.

These are compiled and summarised in order to pro­

vide feedback.

4. Feedback is provided to the experts who now review

their forecasts in light of the feedback. This step may

be iterated until a satisfactory level of consensus is

reached.

5. Final forecasts are constructed by aggregating the

experts' forecasts.

Each stage of the Delphi method comes with its own chal­

lenges. In what follows we provide some suggestions and 

discussion about each one of these.4

Experts and anonymity 

The first challenge of the facilitator is to identify a group of 

experts that can contribute to the forecasting task. The usual 

suggestion is somewhere between 5 and 20 experts with diverse 

expertise. Experts submit forecasts and also provide detailed 

qualitative justifications for these. 

A key feature of the Delphi method is that the participating 

experts remain anonymous at all times. This means that the 

experts cannot be influenced by political and social pressures 

in their forecasts. Furthermore, all experts are given an equal 

say and all are made accountable for their forecasts. This avoids 

the situation where a group meeting is held and some mem­

bers do not contribute, while others dominate. It also prevents 

members exerting influence based on seniority or personality. 

There are suggestions that even something as simple as seating 

arrangements in a group setting can influence the group dynam­

ics. Furthermore, there is ample evidence that a group meeting 

4 For further reading, 

refer to: 

G. Rowe (2007). A 

guide to Delphi. Fore­

sight: The International 

Journal of Applied 

Forecasting (8), 11-16. 

G. Rowe and G. 

Wright (1999). The 

Delphi technique as 

a forecasting tool: 

issues and analysis. 

International Journal of 

Forecasting 15, 353-375. 
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setting promotes enthusiasm and influences individual judge­

ment leading to optimism and overconfidence.5

A byproduct of anonymity is that the experts do not need to 

meet as a group in a physical location. An important advantage 

of this is that it increases the likelihood of gathering experts 

with diverse skills and expertise from varying locations. Fur­

thermore, it makes the process cost-effective by eliminating the 

expense and inconvenience of travel, and it makes it flexible 

as the experts only have to meet a common deadline for sub­

mitting forecasts rather than having to set a common meeting 

time. 

Setting the forecasting task in a Delphi 

In a Delphi setting, it may be useful to conduct a preliminary 

round of information gathering from the experts before setting 

the forecasting tasks. Alternatively, as experts submit their 

initial forecasts and justifications, valuable information not 

shared between all experts can be identified by the facilitator 

when compiling the feedback. 

Feedback 

Feedback to the experts should include summary statistics of 

forecasts and outlines of qualitative justifications. Numerical 

data summaries and graphical representations can be used to 

summarise experts' forecasts. 

As the feedback is controlled by the facilitator, there may be 

scope to direct attention and information from the experts to 

areas where it is most required. For example the facilitator may 

direct the experts' attention to responses that fall outside the 

interquartile range, and the qualitative justification for such 

forecasts. 

Iteration 

The process of the experts submitting forecasts, receiving 

feedback, and re-viewing their forecasts in light of the feedback, 

is repeated until a satisfactory level of consensus between 

the experts is reached. Satisfactory consensus does not mean 

complete convergence in the forecast value; it means that the 

variability of the responses has decreased to a satisfactory level. 

5 R. Buehler, D. Messer­

vey and D. Griffin 

(2005). Collaborative

planning and pre­

diction: Does group

discussion affect opti­

mistic biases in time

estimation? Orga­

nizational Behavior

and Human Decision

Processes 97(1 ), 47-63. 
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Usually two or three rounds are sufficient. Experts are more 

likely to drop out as the number of iterations increases, so too 

many rounds should be avoided. 

Final forecasts 

The final forecasts are usually constructed by giving equal 

weight to all experts' forecasts. The facilitator should keep in 

mind the possibility of extreme values which can distort the 

final forecast. 

Limitations and variations 

Applying the Delphi method can be time consuming. In a group 

meeting, final forecasts can possibly be reached in hours or 

even minutes - something almost impossible to do in a Delphi 

setting. If it is taking a long time to reach a consensus in a 

Delphi setting, the panel may lose interest and cohesiveness. 

In a group setting, personal interactions can lead to quicker 

and better clarifications of qualitative justifications. A vari­

ation to the Delphi method often applied is the "estimate­

talk-estimate method", where experts can interact between 

iterations. The forecast submissions can still remain anonymous. 

A disadvantage of this variation is the possibility of the loudest 

person exerting undue influence. 

The facilitator 

The role of the facilitator is of utmost importance. The facili­

tator is largely responsible for the design and administration 

of the Delphi process. The facilitator is also responsible for 

accommodating feedback to the experts and generating the final 

forecasts. In this role the facilitator needs to be experienced 

enough to recognise areas which may need more attention than 

others, and to direct the attention of the experts to these. Also, 

as there is no face-to-face interaction between the experts, the 

facilitator is responsible for disseminating important infor­

mation. The efficiency and effectiveness of the facilitator can 

dramatically improve the probability of a successful Delphi 

method in a judgmental forecasting setting. 
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3/5 Forecasting by analogy 

A useful judgmental approach often implemented in practice 

is forecasting by analogy. A common everyday example is the 

pricing of a house through an appraisal process. An appraiser 

estimates the market value of a house by comparing it to similar 

properties that have sold in the area. The degree of similarity 

depends on the attributes considered. With house appraisals, 

attributes such as land size, dwelling size, number of bedrooms, 

number of bathrooms, and garage space are usually considered. 

Even thinking and discussing analogous products or situa­

tions can generate useful (and sometimes crucial) information. 

We illustrate this point with the following example.6

Example 3.2 Designing a high school curriculum 

A small group of academics and teachers were assigned the 

task of developing a curriculum for teaching judgement and 

decision making under uncertainty for high schools in Israel. 

Each group member was asked to forecast how long it would 

take for the curriculum to be completed. Responses ranged 

between 18 and 30 months. One of the group members who was 

an expert in curriculum design was asked to consider analogous 

curricula developments around the world. He concluded that 

40% of analogous groups he considered never completed the 

task. The rest took between 7 to 10 years. The Israel project was 

completed in 8 years. 

Obviously forecasting by analogy comes with challenges. 

We should aspire to base forecasts on multiple analogies rather 

than a single analogy, which may create biases. However these 

may be challenging to identify. Similarly we should aspire to 

consider multiple attributes. Identifying or even comparing 

these may not always be straight forward. As always we suggest 

performing these comparisons and the forecasting process 

using a systematic approach. Developing a detailed scoring 

mechanism to rank attributes and record the process of ranking 

will always be useful. 

6 This example is 

extracted from D. 

Kahneman and D. 

Lovallo (1993). Timid 

choices and bold 

forecasts: A cognitive 

perspective on risk 

taking. en. Management 

Science 39(1), 17-31. 
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A structured analogy 

Alternatively a structured approach comprising a panel of 

experts can be implemented as proposed by Green and Arm­

strong7. The concept is similar to that of a Delphi; however, the 

forecasting task is completed by considering analogies. First 

of all a facilitator is appointed. Then the structured approach 

involves the following steps. 

1. A panel of experts who are likely to have experience

with analogous situations is assembled.

2. Tasks/challenges are set and distributed to the experts.

3. Experts identify and describe as many analogies as

they can.

4. Experts list similarities and differences of each analogy

to the target situation, then rate the similarity of each

analogies to the target situation on a scale.

5. Forecasts are derived by facilitator by using a set rule.

This can be a weighted average where the weights can

be guided by the ranking scores of each analogy by the

experts.

Similarly to the Delphi approach, anonymity of the experts 

could be an advantage in not suppressing creativity but could 

hinder collaboration. Green and Armstrong found no gain in 

collaboration between the experts in their results. A key finding 

was that experts with multiple analogies (more than two), and 

who had direct experience with the analogies, generated the 

most accurate forecasts. 

3/6 Scenario Forecasting 

A fundamentally different approach to judgmental forecasting 

is scenario-based forecasting. The aim of this approach is to 

generate forecasts based on plausible scenarios. In contrast 

to the two previous approaches (Delphi and forecasting by 

analogy) where the resulting forecast is intended to be a likely 

outcome, here each scenario-based forecast may have a low 

probability of occurrence. The scenarios are generated by 

considering all possible factors or drivers, their relative impacts, 

the interactions between them, and the targets to be forecasted. 

Building forecasts based on scenarios allows for a wide range 

of possible forecasts to be generated and some extremes to be 

7 K. C. Green and J. S. 

Armstrong (2007). 

Structured analogies 

for forecasting. In­

ternational Journal of 

Forecasting 23(3), 365-

376. 
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identified. For example is it usual for "best", "middle" and 

"worst" case scenarios to be presented, although many other 

scenarios will be generated. Thinking about and document­

ing these contrasting extremes can lead to early contingency 

planning. 

With scenario forecasting, decision makers often participate 

directly in the generation of scenarios. While this may lead to 

some bias, it can ease the communication of the scenario-based 

forecasts, and lead to better understanding of the results. 

3/7 New product forecasting 

The definition of a new product can vary. It may be an entirely 

new product has been launched, a variation of an existing 

product ("new and improved"), a change in the pricing scheme 

of an existing product, or even an existing product entering a 

new market. 

Judgmental forecasting is usually the only available method 

for new product forecasting as historical data are unavailable. 

The approaches we have already outlined (Delphi, forecasting 

by analogy and scenario forecasting) are all applicable when 

forecasting the demand of a new product. 

Other methods more specific to the situation are also avail ­

able. We briefly describe three such methods that are commonly 

applied in practice. These methods are less structured than 

those already discussed, and are likely to lead to more biased 

forecasts as a result. 

Sales force composite 

In this approach, forecasts for each outlet/branch/store of a 

company are generated by salespeople and are then aggregated. 

This usually involves sales managers forecasting demand for 

the outlet they manage. Salespeople are usually closest to the 

interaction between customers and products, and often develop 

an intuition about customer purchasing intentions. They bring 

to the forecast this valuable experience and expertise. 

However having salespeople generate forecasts violates the 

key principle of segregating forecasters and users which can 

create biases in many directions. It is very common that the 

performance of a salesperson is evaluated against sales forecasts 
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or expectations set beforehand. In this case the salesperson 

acting as a forecaster may introduce some self-serving bias by 

generating low forecasts. On the other hand we can think of the 

very enthusiastic salesperson full of optimism generating high 

forecasts. 

Moreover a successful salesperson does not equate to a suc­

cessful nor a well informed forecaster. A large proportion of 

salespeople will have no or very limited formal training in fore­

casting. Finally salespeople will feel customer displeasure at 

first hand if, for example, the product runs out or is not intro­

duced in their store. Such interactions will cloud judgement. 

Executive opinion 

In contrast to the sales force composite, this approach involves 

staff at the top of the managerial structure generating aggregate 

forecasts. Forecasts are usually generated in a group meeting 

where executives contribute information from their own area of 

the company. Having executives from different functional areas 

of the company promotes great skill and knowledge diversity in 

the group. 

This process carries all the advantages and disadvantages of a 

group meeting setting we have discussed earlier. It is important 

in this setting to justify and document the forecasting process. 

That is, executives need to be held accountable in order to 

reduce biases generated by the group meeting setting. There 

may also be scope to apply variations to a Delphi approach in 

this setting; for example, the estimate-talk-estimate process 

described earlier. 

Customer intentions 

Customer intentions can be used in forecasting demand for a 

new product or for a variation on an existing product. Ques­

tionnaires are filled by customers on their intentions to buy the 

product. A structured questionnaire is used, asking customers 

to rate the likelihood of purchasing a product on a scale; for 

example, highly likely, likely, possible, unlikely, highly unlikely. 
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Survey design challenges such as collecting a representative 

sample, applying a time- and cost-effective method, and dealing 

with non-responses, need to be addressed8 • 

Furthermore, in this survey setting we must think about 

the relationship between purchase intention and purchase be­

haviour. Customers may not always do what they say they will. 

Many studies have found a positive correlation between pur­

chase intentions and purchase behaviour; however the strength 

of these correlations varies substantially. Factors driving this 

variation include the timing between data collection and prod­

uct launch, the definition of "new" for the product, and the 

type of industry. Behavioural theory tells us that intentions 

predict behaviour if the intentions are measured just before 

the behaviour.9 The time between intention and behaviour will

vary depending on whether it is a completely new product or a 

variation on an existing product. Also the correlation between 

intention and behaviour is found to be stronger for variations 

on existing and familiar products than for completely new 

products. 

Whichever method of new product forecasting is used, it is 

important to thoroughly document the forecasts made, and the 

reasoning behind them, in order to evaluate them when data 

become available. 

3/8 Judgmental adjustments 

In this final section we consider the situation where historical 

data are available and used to generate statistical forecasts. It 

is common for practitioners to then apply judgmental adjust­

ments to these forecasts. These adjustments can potentially 

provide all of the advantages of judgmental forecasting dis­

cussed earlier in the chapter. For example they provide an 

avenue for incorporating factors that may not be accounted 

for in the statistical model, such as promotions, large sporting 

events, holidays, or recent events that are not yet reflected in 

the data. However, these advantages come to fruition only when 

the right conditions are present. Judgmental adjustments, like 

judgmental forecasts, come with biases and limitations, and we 

must implement methodical strategies to minimise them. 

8 R. M. Groves, F. J.

Fowler, Jr., M. P.

Couper, J.M. Lep­

kowski, E. Singer and 

R. Tourangeau (2009). 

Survey Methodology.

2nd ed. Wiley.

9 D. M. Randall and 

J. A. Wolff (1994). The 

time interval in the

intention-behaviour 

relationship: Meta­

analysis. British Journal 

of Social Psychology 33, 

405-418. 
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Use adjustments sparingly 

Practitioners adjust much more often than they should, and 

many times for the wrong reasons. By adjusting statistical 

forecasts, users of forecasts create a feeling of ownership and 

credibility. Users often do not understand or appreciate the 

mechanisms that generate the statistical forecasts (as they most 

likely will have no training in this area). By implementing 

judgmental adjustments, users feel that they have contributed 

and completed the forecasts, and they can now relate their 

own intuition and interpretations to these. The forecasts have 

become their own. 

Judgmental adjustments should not aim to correct for a sys­

tematic pattern in the data that is thought to have been missed 

by the statistical model. This has proven to be ineffective as 

forecasters tend to read non-existent patterns in noisy series. 

Statistical models are much better at taking account of data 

patterns, and judgmental adjustments only hinder accuracy. 

Judgmental adjustments are most effective when there is 

significant additional information at hand or strong evidence 

for the need of an adjustment. We should only adjust when 

we have important extra information not incorporated in the 

statistical model. Hence, adjustments seem to be most accurate 

when they are large in size. Small adjustments (especially in 

the positive direction promoting the illusion of optimism) are 

found to hinder accuracy and should be avoided. 

Apply a structured approach 

Using a structured and systematic approach will improve the ac­

curacy of judgmental adjustments. Following the key principles 

outlined in Section 3/3 is vital. In particular, documenting and 

justifying adjustments will make it more challenging to over­

ride the statistical forecasts and will guard against adjusting 

unnecessarily. 

It is common for adjustments to be implemented by a panel 

(see the example that follows). Using a Delphi setting carries 

great advantages. But if adjustments are implemented in a 

group meeting, it is wise to consider forecasts of key markets 

or products first as panel members will get tired during this 
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process. Fewer adjustments tend to be made as the meeting 

goes on through the day. 

Example 3.3 Tourism Forecasting Committee (TFC) 

Tourism Australia publishes forecasts for all aspects of Aus­

tralian tourism twice a year. The published forecasts are gen­

erated by the TFC, an independent body which comprises 

experts from various government and private industry sectors; 

for example, the Australian Commonwealth Treasury, airline 

companies, consulting firms, banking sector companies, and 

tourism bodies. 

The forecasting methodology applied is an iterative process. 

First, model-based statistical forecasts are generated by the 

forecasting unit within Tourism Australia. Then judgmental 

adjustments are made to these in two rounds. In the first round, 

the TFC Technical Committee10 (comprising senior researchers, 

economists and independent advisors) adjusts the model-based 

forecasts. In the second and final round, the TFC (comprising 

industry and government experts) makes final adjustments. 

Adjustments in both rounds are made by consensus. 

--e- Observed data 

-x- Regression model forecasts 

- 'if- ETS model forecasts 

o + TFC forecasts 
0 
0 
0 
0 

0 
0 
0 
0 
<O 
(\J 

0 
0 
0 
0 
"' 
(\J 

1998 2000 2002 2004 2006 2008 2010 

In 2008 we11 analysed forecasts for Australian domestic 

tourism. We concluded that the published TFC forecasts were 

optimistic, especially for the long-run, and we proposed al­

ternative model-based forecasts. We now have observed data 

up to and including 2011. In Figure 3.2 we plot the published 

10 GA was an observor 

on this technical 

committee for a few 

years. 

Figure 3.2: Long run 

annual forecasts for 

domestic visitor nights 

for Australia. We study 

regression models in 

Chapters 4 and 5, and 

ETS (ExponenTial 

Smoothing) models in 

Chapter 7. 

11 G. Athanasopoulos

and R. J. Hyndman 

(2008). Modelling and 

forecasting Australian 

domestic tourism. 

Tourism Management 

29(1 ), 19-31. 



3/ JUDGMENTAL FORECASTS 81 

forecasts against the actual data. We can see that the published 

TFC forecasts have continued to be optimistic. 

What can we learn from this example? Although the TFC 

clearly states in its methodology that it produces 'forecasts' 

rather than 'targets', could this be a case were these have been 

confused? Are forecasters and users sufficiently well-segregated 

in this process? Could the iterative process itself be improved? 

Could the adjustment process in the meetings be improved? 

Could it be that the group meetings have promoted optimism? 

Could it be that domestic tourism should have been considered 

earlier in the day? 
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Simple regression 

In this chapter we introduce simple linear regression. The basic 

concept is that we forecast variable y assuming it has a linear 

relationship with variable x. The model is called "simple" re­

gression as we only allow one predictor variable x. In Chapter 5 

we will discuss forecasting with several predictor variables. 

The forecast variable y is sometimes also called the regres­

sand, dependent or explained variable. The predictor variable x 

is sometimes also called the regressor, independent or explana­

tory variable. In this book we will always refer to them as the 

"forecast variable" and "predictor variable". 

4/1 The simple linear model 

In this chapter, the forecast and predictor variables are assumed 

to be related by the simple linear model: 

An example of data from such a model is shown in Figure 4.1. 

The parameters f3o and {31 determine the intercept and the 

slope of the line respectively. The intercept f3o represents the 

predicted value of y when x = 0. The slope {31 represents the 

predicted increase in y resulting from a one unit increase in x.

Notice that the observations do not lie on the straight line 

but are scattered around it. We can think of each observation 

J/i consisting of the systematic or explained part of the model, 

f3o + f31 xi, and the random "error", E;. The "error" term does not 

imply a mistake, but a deviation from the underlying straight 

line model. It captures anything that may affect J/i other than x;. 
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Observation 
Yi = �o +�,xi+ Ei 

0 

We assume that these errors: 

X 

1. have mean zero; otherwise the forecasts will be system­

atically biased.

2. are not autocorrelated; otherwise the forecasts will be

inefficient as there is more information to be exploited

in the data.

3. are unrelated to the predictor variable; otherwise there

would be more information that should be included in

the systematic part of the model.

It is also useful to have the errors normally distributed with 

constant variance in order to produce prediction intervals 

and to perform statistical inference. While these additional 

conditions make the calculations simpler, they are not necessary 

for forecasting. 

Another important assumption in the simple linear model 

is that xis not a random variable. If we were performing a 

controlled experiment in a laboratory, we could control the 

values of x (so they would not be random) and observe the 

resulting values of y. With observational data (including most 

data in business and economics) it is not possible to control the 

value of x, although they can still be non-random. For example, 

suppose we are studying the effect of interest rates on inflation. 

Then xis the interest rate and y is the rate of inflation. Interest 

rates are usually set by a committee and so they are not random. 

Figure 4.1: An example 

of data from a linear 

regression model. 
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4/2 Least squares estimation 

In practice, of course, we have a collection of observations
but we do not know the values of f3o and {31. These need to be
estimated from the data. We call this "fitting a line through the
data".

There are many possible choices for f3o and {31, each choice
giving a different line. The least squares principle provides a
way of choosing f3o and {31 effectively by minimizing the sum of
the squared errors. That is, we choose the values of f3o and {31

that minimize
N N 

L Ef = L,(JI; -/3o-f31x;)2.
i=l i=l 

Using mathematical calculus, it can be shown that the resulting
least squares estimators are

L,(J1;-y)(x;-i)

and

where i is the average of the x observations and y is the average
of the JI observations.

The estimated line is known as the "regression line" and is
shown in Figure 4.2.

We imagine that there is a "true" line denoted by JI = f3o +
f31 x (shown as the dashed green line in Figure 4.2, but we do
not know f3o and {31 so we cannot use this line for forecasting.
Therefore we obtain estimates Po and p1 from the observed data
to give the "regression line" (the solid purple line in Figure 4.2).

The regression line is used for forecasting. For each value of
x, we can forecast a corresponding value of JI using y = Po + p1 x.

Fitted values and residuals 

The forecast values of JI obtained from the observed x values
are called "fitted values". We write these as Yi = Po + P1 x;,
for i = l, .. . ,N. Each Yi is the point on the regression line
corresponding to observation x;.
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The difference between the observed y values and the corre­
sponding fitted y values are the "residuals":

The residuals have some useful properties including the
following two:

[e; =0 and
i=l

[x;e; =0.
i=l

As a result of these properties, it is clear that the average of the
residuals is zero, and that the correlation between the residuals
and the observations for predictor variable is also zero.

4/3 Regression and correlation 

The correlation coefficient r was introduced in Section 2/2.
Recall that r measures the strength and the direction (positive
or negative) of the linear relationship between the two variables.
The stronger the linear relationship, the closer the observed
data points will cluster around a straight line.

The slope coefficient fi1 can also be expressed as
A 

S
y 

/3i =r-, 
Sx 

where S
y 

is the standard deviation of the y observations and sx is
the standard deviation of the x observations.

Observation 
Y; = �o + �1 X; + I\ 

X 

Figure 4.2: Estimated 

regression line for a 

random sample of size 

N. 
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So correlation and regression are strongly linked. The advan­

tage of a regression model over correlation is that it asserts a 

predictive relationship between the two variables (x predicts y) 

and quantifies this in a way that is useful for forecasting. 

Example 4.1 Car emissions 
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---------- R code 

0 

35 

0 

40 45 

plot(jitter(Carbon) - jitter(City), xlab="City (mpg)", 

ylab="Carbon footprint (tons per year)",data=fuel) 

fit <- lm(Carbon - City, data=fuel) 

abline(fit) 

---------- R output 
> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(> It I) 

(Intercept) 12.525647 0. 199232 62.87 <2e-16 *** 

City -0.220970 0.008878 -24.89 <2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0. 1 

Residual standard error: 0.4703 on 132 degrees of freedom 

0 

Multiple A-squared: 0.8244, Adjusted A-squared: 0.823 

F-statistic: 619.5 on 1 and 132 DF, p-value: < 2.2e-16

Data on the carbon footprint and fuel economy for 2009 

model cars were first introduced in Chapter 1. A scatter plot of 

Figure 4.3: Fitted 

regression line from 

regressing the carbon 

footprint of cars versus 

their fuel economy in 

city driving conditions. 
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Carbon (carbon footprint in tonnes per year) versus City (fuel 

economy in city driving conditions in miles per gallon) for all 

134 cars is presented in Figure 4.3. Also plotted is the estimated 

regression line 

y = 12.53 - 0.22x.

The regression estimation output from R is also shown. Notice 

the coefficient estimates in the column labelled "Estimate". 

The other features of the output will be explained later in this 

chapter. 

Interpreting the intercept, Po = 12.53. A car that has fuel 

economy of 0 mpg in city driving conditions can expect an aver­

age carbon footprint of 12.53 tonnes per year. As often happens 

with the intercept, this is a case where the interpretation is 

nonsense as it is impossible for a car to have fuel economy of 0 

mpg. 

The interpretation of the intercept requires that a value of 

x = 0 makes sense. When x = 0 makes sense, the intercept Po 
is the predicted value of y corresponding to x = 0. Even when 

x = 0 does not make sense, the intercept is an important part 

of the model. Without it, the slope coefficient can be distorted 

unnecessarily. 

Interpreting the slope, p1 = -0.22. For every extra mile per 

gallon, a car's carbon footprint will decrease on average by 0.22 

tonnes per year. Alternatively, if we consider two cars whose 

fuel economies differ by 1 mpg in city driving conditions, their 

carbon footprints will differ, on average, by 0.22 tonnes per year 

(with the car travelling further per gallon of fuel having the 

smaller carbon footprint). 

4/4 Evaluating the regression model 

Residual plots 

Recall that each residual is the unpredictable random compo­

nent of each observation and is defined as 

for i = 1, . . . ,N. We would expect the residuals to be randomly 

scattered without showing any systematic patterns. A simple 

and quick way for a first check is to examine a scatterplot of the 

residuals against the predictor variable. 
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---------- R code 
res <- residuals(fit) 

35 40 45 

Figure 4.4: Residual 

plot from regressing 

carbon footprint versus 

fuel economy in city 

driving conditions. 

plot(jitter(res) - jitter(City), ylab="Residuals", xlab="City", data=fuel) 
abline(O,O) 

A non-random pattern may indicate that a non-linear rela­

tionship may be required, or some heteroscedasticity is present 

(i.e., the residuals show non-constant variance), or there is some 

left over serial correlation (only when the data are time series). 

Figure 4.4 shows that the residuals from the Car data ex­

ample display a pattern rather than being randomly scattered. 

Residuals corresponding to the lowest of the City values are 

mainly positive, for City values between 20 and 30 the residuals 

are mainly negative, and for larger City values (above 30 mpg) 

the residuals are positive again. 

This suggests the simple linear model is not appropriate for 

these data. Instead, a non-linear model will be required. 

Outliers and influential observations 

Observations that take on extreme values compared to the 

majority of the data are called" outliers". Observations that 

have a large influence on the estimation results of a regression 

model are called "influential observations". Usually, influential 

observations are also outliers that are extreme in the x direction. 
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Example 4.2 Predicting weight from height 
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In Figure 4.5 we consider simple linear models for predicting 

the weight of 7 year old children by regressing weight against 

height. The two samples considered are identical except for 

the one observation that is an outlier. In the first row of plots 

the outlier is a child who weighs 35kg and is 120cm tall. In 

the second row of plots the outlier is a child who also weighs 

35kg but is much taller at 150cm (so more extreme in the x 

direction). The black lines are the estimated regression lines 

when the outlier in each case is not included in the sample. The 

red lines are the estimated regression lines when including 

the outliers. Both outliers have an effect on the regression 

line, but the second has a much bigger effect - so we call it 

an influential observation. The residual plots show that an 

influential observation does not always lead to a large residual. 

There are formal methods for detecting outliers and influ­

ential observations that are beyond the scope of this textbook. 

Figure 4.5: The effect

of outliers and influ-

ential observations on 

regression.
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As we suggested at the beginning of Chapter 2, getting familiar 

with your data prior to performing any analysis is of vital im­

portance. A scatter plot of JI against xis always a useful starting 

point in regression analysis and often helps to identify unusual 

observations. 

One source for an outlier occurring is an incorrect data entry. 

Simple descriptive statistics of your data can identify minima 

and maxima that are not sensible. If such an observation is 

identified, and it has been incorrectly recorded, it should be 

immediately removed from the sample. 

Outliers also occur when some observations are simply 

different. In this case it may not be wise for these observations 

to be removed. If an observation has been identified as a likely 

outlier it is important to study it and analyze the possible 

reasons behind it. The decision of removing or retaining such 

an observation can be a challenging one (especially when 

outliers are influential observations). It is wise to report results 

both with and without the removal of such observations. 

Goodness-of-fit 

A common way to summarize how well a linear regression

model fits the data is via the coefficient of determination or

R2
• This can be calculated as the square of the correlation

between the observed JI values and the predicted y values.

Alternatively, it can also be calculated as:

2 [.(yi -y)
2 

R =--'-------'-�,

L.(Jli -y)2 

where the summations are over all observations. Thus, it is 

also the proportion of variation in the forecast variable that is 

accounted for (or explained) by the regression model. 

If the predictions are close to the actual values, we would 

expect R2 to be close to 1. On the other hand, if the predictions 

are unrelated to the actual values, then R2 = 0. In all cases, R2 

lies between O and 1. 

In simple linear regression, the value of R2 is also equal to 

the square of the correlation between JI and x. In the car data 

example r = -0.91, hence R2 = 0.82. The coefficient of deter­

mination is presented as part of the R output obtained when 

estimation a linear regression and is labelled "Multiple R-

s qua.red: 0. 8244" in Figure 4.3. Thus, 82% of the variation in 



92 FORECASTING: PRINCIPLES AND PRACTICE 

the carbon footprint of cars is captured by the model. However, 

a "high" R2 does not always indicate a good model for forecast­

ing. Figure 4.4 shows that there are specific ranges of values 

of JI for which the fitted JI values are systematically under- or 

over-estimated. 

The R2 value is commonly used, often incorrectly, in fore­

casting. There are no set rules of what a good R2 value is and

typical values of R2 depend on the type of data used. Validating 

a model's forecasting performance on the test data is much 

better than measuring the R2 value on the training data

Standard error of the regression 

Another measure of how well the model has fitted the data is 

the standard deviation of the residuals, which is often known as 

the "standard error of the regression" and is calculated by 

1 N 

Se = N -2 L, e;, (4.1) 
i=l 

Notice that this calculation is slightly different from the usual 

standard deviation where we divide by N -1 (see p.33). Here,

we divide by N -2 because we have estimated two parameters

(the intercept and slope) in computing the residuals. Normally, 

we only need to estimate the mean (i.e., one parameter) when 

computing a standard deviation. The divisor is always N minus

the number of parameters estimated in the calculation. 

The standard error is related to the size of the average error 

that the model produces. We can compare this error to the 

sample mean of JI or with the standard deviation of JI to gain 

some perspective on the accuracy of the model. In Figure 4.3, 

Se is part of the R output labeled "Residual standard error"

and takes the value 0.4703 tonnes per year. 

We should warn here that the evaluation of the standard 

error can be highly subjective as it is scale dependent. The 

main reason we introduce it here is that it is required when 

generating forecast intervals, discussed in Section 4/5. 
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4/5 Forecasting with regression 

Forecasts from a simple linear model are easily obtained using 

the equation 

where x is the value of the predictor for which we require a 

forecast. That is, if we input a value of x in the equation we 

obtain a corresponding forecast y. 

When this calculation is done using an observed value of x 

from the data, we call the resulting value of pa "fitted value". 

This is not a genuine forecast as the actual value of JI for that 

predictor value was used in estimating the model, and so the 

value of pis affected by the true value of JI· When the values 

of xis a new value (i.e., not part of the data that were used 

to estimate the model), the resulting value of pis a genuine 

forecast. 

Assuming that the regression errors are normally distributed, 

an approximate 95% forecast interval (also called a prediction 

interval) associated with this forecast is given by 

y ± l.96se 
1 (x-x)2 

1+-+----, 
N (N-l)s; 

(4.2) 

where N is the total number of observations, x is the mean 

of the observed x values, s
x 

is the standard deviation of the 

observed x values and Se is given by equation (4.1). Similarly, an 

80% forecast interval can be obtained by replacing 1.96 by 1.28 

in equation (4.2). Other appropriate forecasting intervals can be 

obtained by replacing the 1.96 with the appropriate value given 

in Table 2.1. If R is used to obtain forecast intervals, more exact 

calculations are obtained (especially for small values of N) than 

what is given by equation (4.2). 

Equation (4.2) shows that the forecast interval is wider when 

xis far from x. That is, we are more certain about our forecasts 

when considering values of the predictor variable close to its 

sample mean. 

The estimated regression line in the Car data example is 

y = 12 .53-0.22x. 

For the Chevrolet Aveo (the first car in the list) x1 =25 mpg 

and Jll = 6.6 tons of CO2 per year. The model returns a fitted 



94 FORECASTING: PRINCIPLES AND PRACTICE 

value of y1 =7.00, i.e., e1 = -0.4. For a car with City driving 

fuel economy x = 30 mpg, the average footprint forecasted is 

y = 5.90 tons of CO2 per year. The corresponding 95% and 80% 

forecast intervals are [4.95, 6.84] and [5.28, 6.51] respectively 

(calculated using R). 

Forecasts from Linear re ression model 
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fitted(fit) I 1] 
feast <- forecast(fit, newdata=30) 
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Figure 4.6: Forecast 

with 80% and 95% 

forecast intervals for a 

car with x = 30 mpg in 

city driving. 

plot(fcast, xlab="City (mpg)", ylab="Carbon footprint (tons per year)") 
# The displayed graph uses jittering, while the code above does not. 

4/6 Statistical inference 

(This section is an optional digression.) 

As well as being used for forecasting, simple linear regres­

sion models are also valuable in studying the historical effects 

of predictors. The analysis of the historical effect of a predictor 

uses statistical inference methods. 

Hypothesis testing 

If you are an analyst then you may also be interested in testing 

whether the predictor variable x has had an identifiable effect 
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on JI· That is, you may wish to explore whether there is enough 

evidence to show that x and JI are related. 

We use statistical hypothesis testing to formally examine this 

issue. If x and JI are unrelated, then the slope parameter {31 = 0. 

So we can construct a test to see if it is plausible that {31 = 0 

given the observed data. 

The logic of hypothesis tests is to assume that the hypothesis 

you want to disprove is true, and then to look for evidence that 

the assumption is wrong. In this case, we assume that there 

is no relationship between x and JI· This is called the "null 

hypothesis" and is stated as 

Evidence against this hypothesis is provided by the value of µ1 , 

the slope estimated from the data. If µ1 is very different from 

zero, we conclude that the null hypothesis is incorrect and that 

the evidence suggests there really is a relationship between x

and JI. 

To determine how big the difference between µ1 and {3 1 must 

be before we would reject the null hypothesis, we calculate 

the probability of obtaining a value of µ1 as large as we have 

calculated if the null hypothesis were true. This probability is 

known as the "p-value". 

The details of the calculation need not concern us here, 

except to note that it involves assuming that the errors are 

normally distributed. R will provide the p-values if we need 

them. 

In the car fuel example, R provides the following output. 

R output 
Coefficients: 

Estimate Std. Error t value Pr(>lt I) 
(Intercept) 12.525647 0. 199232 62.87 <2e-16 *** 
City -0.220970 0.008878 -24.89 <2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0. 1 

Residual standard error: 0.4703 on 132 degrees of freedom 
Multiple A-squared: 0.8244, Adjusted A-squared: 0.823 
F-statistic: 619.5 on 1 and 132 DF, p-value: < 2.2e-16

The column headed Pr> It I provides the p-values. The p-value 

corresponding to the slope is in the row beginning City and 
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takes value <2e-16. That is, it is so small, it is less than 2 x 

10-16 = 0.0000000000000002. In other words, the observed data

are extremely unlikely to have arisen if the null hypothesis were

true. Therefore we reject H0• It is much more likely that there

is a relationship between city fuel consumption and the carbon

footprint of a car. (Although, as we have seen, that relationship

is more likely to be non-linear than linear.)

The asterisks to the right of the p-values give a visual indica­

tion of how small the p-values are. Three asterisks correspond 

to values less than 0.001, two asterisks indicate values less than 

0.01, one asterisk means the value is less than 0.05, and so on. 

The legend is given in the line beginning Sign if. codes. 

There are two other p-values provided in the above output. 

The p-value corresponding to the intercept is also< 2x 10-16; this

p-value is usually not of great interest - it is a test on whether

the intercept parameter is zero or not. The other p-value is

on the last line and, in the case of simple linear regression, is

identical to the p-value for the slope.

Confidence intervals 

It is also sometimes useful to provide an interval estimate for 

/3i, usually referred to as a confidence interval (and not to be 

confused with a forecast or prediction interval). The interval 

estimate is a range of values that probably contain {31. 

In the car fuel example, R provides the following output. 

---------- R output 
> confint(fit,level=0.95)

2.5 % 97.5 % 

(Intercept) 12.1315464 12.9197478 

City -0.2385315 -0.2034092 

So if the linear model is a correct specification of the relation­

ship between x and y, then the interval [-0.239,-0.203] con­

tains the slope parameter, f3v with probability 95%. Intervals 

for the intercept and for other probability values are obtained in 

the same way. 

There is a direct relationship between p-values and confi­

dence intervals. If the 95% confidence interval for {31 does not 

contain 0, then the associated p-value must be less than 0.05. 

More generally, if the 100(1 - a)% confidence interval for a 
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parameter does not contain 0, then the associated p-value must 

be less than a. 

4/7 Non-linear functional forms 

Although the linear relationship assumed at the beginning 

of this chapter is often adequate, there are cases for which a 

non-linear functional form is more suitable. The scatter plot 

of Carbon versus City in Figure 4.3 shows an example where a 

non-linear functional form is required. 

Simply transforming variables y and/or x and then estimat­

ing a regression model using the transformed variables is the 

simplest way of obtaining a non-linear specification. The most 

commonly used transformation is the (natural) logarithmic 

(see Section 2/4). Recall that in order to perform a logarithmic 

transformation to a variable, all its observed values must be 

greater than zero. 

A log-log functional form is specified as 

logyi = /3o + /31 logx; + Ej. 

In this model, the slope {31 can be interpreted as an elasticity: 

{31 is the average percentage change in y resulting from a 1 % 

change in x.

Figure 4.7 shows a scatter plot of Carbon versus City and the 

fitted log-log model in both the original scale and the logarith­

mic scale. The plot shows that in the original scale the slope 

of the fitted regression line using a log-log functional form is 

non-constant. The slope depends on x and can be calculated for 

each point (see Table 4.1 ). In the logarithmic scale the slope of 

the line which is now interpreted as an elasticity is constant. So 

estimating a log-log functional form produces a constant elas­

ticity estimate in contrast to the linear model which produces a 

constant slope estimate. 

Figure 4.8 shows a plot of the residuals from estimating the 

log-log model. They are now randomly scatted compared to the 

residuals from the linear model plotted in Figure 4.4. We can 

conclude that the log-log functional form clearly fits the data 

better. 
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Rcode 
par(mfrow=c(1,2)) 

0 

0 

2.8 3.0 3.2 3.4 3.6 3.8 

log City mpg 

fit2 <- lm(log(Carbon) - log(City), data=fuel) 
plot(jitter(Carbon) - jitter(City), xlab="City (mpg)", 

ylab="Carbon footprint (tonnes per year)", data=fuel) 
lines(1:50, exp(fit2$coef[1]+fit2$coef[2]*log(1:50))) 
plot(log(jitter(Carbon)) - log(jitter(City)), 

0 

xlab="log City mpg", ylab="log carbon footprint", data=fuel) 
abline(fit2) 

Other useful forms are the log-linear form and the linear-log 
form. Table 4.1 summarises these. 

Model Functional form Slope 

linear y = /3o+f3ix /31 

log-log logy= f3o + f3i logx f31ylx 
linear-log y = /3o + f3i logx f3i fx 
log-linear logy= f3o + f3ix /31Y 

4/8 Regression with time series data 

Elasticity 

f31ylx 

/31 

/31/y 
f31x 

When using regression for prediction, we are often considering 
time series data and we are aiming to forecast the future. There 
are a few issues that arise with time series data but not with 
cross-sectional data that we will consider in this section. 

Figure 4.7: Fitting a 

log-log functional form 

to the Car data example. 

Plots show the esti­

mated relationship both 

in the original and the 

logarithmic scales. 

Table 4.1: Summary 

of selected functional 

forms. Elasticities that 

depend on the observed 

values of Y and X are 

commonly calculated 

for the sample means of 

these, i and y. 
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---------- R code 

res <- residuals(fit2) 

0 

3.4 3.6 

plot(jitter(res, amount=.005) - jitter(log(City)), 

ylab="Residuals", xlab="log(City)", data=fuel) 

Linear Log-Log 

·I I ·I 
Linear-Log Log-Linear 

·I I ·I 

Example 4.3 US consumption expenditure 

0 

3.8 

Figure 4.10 shows time series plots of quarterly percentage 

changes (growth rates) of real personal consumption expendi­

ture ( C) and real personal disposable income (I) for the US for 

the period March 1970 to Dec 2010. Also shown is a scatter plot 

Figure 4.8: Residual 

plot from estimating 
a log-log functional 

form for the Car data 
example. The residuals 

now look much more 
randomly scattered 

compared to Figure 4.4. 

Figure 4. 9: The four 

non-linear forms shown 
in Table 4.1, for f3I < 0. 
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fit.ex3 <- lm(consumption - income, data=usconsumption) 

plot(usconsumption, ylab="% change in consumption and income", 

plot.type="single", col=1:2, xlab="Year") 

legend("topright", legend=c("Consumption","Income"), 

lty=1, col=c(1,2), cex=.9) 

plot(consumption - income, data=usconsumption, 

ylab="% change in consumption", xlab="% change in income") 

abline(fit.ex3) 

summary(fit.ex3) 

R output 
Coefficients: 

Estimate Std. Error t value Pr(> It I) 

(Intercept) 0.52062 0.06231 8.356 2.79e-14 ***

income 0.31866 0.05226 6.098 7.61e-09 ***

including the estimated regression line 

c = o.s2 + o.321,

with the estimation results shown below the graphs. These 

show that a 1 % increase in personal disposable income will 

result to an average increase of 0.84% in personal consumption 

expenditure. We are interested in forecasting consumption for 

the four quarters of 2011. 

Using a regression model to forecast time series data poses 

a challenge in that future values of the predictor variable (in­

come in this case) are needed to be input into the estimated 

Figure 4.10: Percentage 

changes in personal 

consumption expendi­

ture for the US. 
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model, but these are not known in advance. One solution to this 

problem is to use "scenario based forecasting". 

Scenario based forecasting 

In this setting the forecaster assumes possible scenarios for 

the predictor variable that are of interest. For example the US 

policy maker may want to forecast consumption if there is a 1 % 

growth in income for each of the quarters in 2011. Alternatively 

a 1 % decline in income for each of the quarters may be of 

interest. The resulting forecasts are calculated and shown in 

Figure 4.11. 
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g � 
a. 
E 
::, 
<I) 
C 

8 0 
.£ 

# I

N 
I 

1970 

Forecasts from Linear re ression model 

1980 1990 2000 

% change in income 

---------- R code 

2010 

feast <- forecast(fit.ex3, newdata=data.frame(income=c(-1,1))) 

Figure 4.11: Forecast­

ing percentage changes 

in personal consump­

tion expenditure for the 

us. 

plot(fcast, ylab="% change in consumption", xlab="% change in income") 

Forecast intervals for scenario based forecasts do not include 

the uncertainty associated with the future values of the predic­

tor variables. They assume the value of the predictor is known 

in advance. 

An alternative approach is to use genuine forecasts for the 

predictor variable. For example, a pure time series based ap­

proach can be used to generate forecasts for the predictor 

variable (more on this in Chapter 9) or forecasts published by 

some other source such as a government agency can be used. 
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Ex-ante versus ex-post forecasts 

When using regression models with time series data, we need 

to distinguish between two different types of forecasts that can 

be produced, depending on what is assumed to be known when 

the forecasts are computed. 

Ex ante forecasts are those that are made using only the 

information that is available in advance. For example, ex ante 

forecasts of consumption for the four quarters in 2011 should 

only use information that was available before 2011. These are 

the only genuine forecasts, made in advance using whatever 

information is available at the time. 

Ex post forecasts are those that are made using later infor­

mation on the predictors. For example, ex post forecasts of 

consumption for each of the 2011 quarters may use the actual 

observations of income for each of these quarters, once these 

have been observed. These are not genuine forecasts, but are 

useful for studying the behaviour of forecasting models. 

The model from which ex-post forecasts are produced should 

not be estimated using data from the forecast period. That 

is, ex-post forecasts can assume knowledge of the predictor 

variable (the x variable), but should not assume knowledge of 

the data that are to be forecast (the JI variable). 

A comparative evaluation of ex ante forecasts and ex post 

forecasts can help to separate out the sources of forecast uncer­

tainty. This will show whether forecast errors have arisen due 

to poor forecasts of the predictor or due to a poor forecasting 

model. 

Example 4.4 Linear trend 

A common feature of time series data is a trend. Using regres­

sion we can model and forecast the trend in time series data by 

including t = l, ... , T, as a predictor variable: 

Figure 4.12 shows a time series plot of aggregate tourist arrivals 

to Australia over the period 1980 to 2010 with the fitted linear 

trend line Yt = 0.3375 + 0.1761 t. Also plotted are the point and 

forecast intervals for the years 2011 to 2015. 
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Forecasts from Linear re ression model 

1980 1985 1990 1995 

---------- R code 
fit.ex4 <- tslm(austa - trend) 

2000 

f <- forecast(fit.ex4, h=5,level=c(80,95)) 

2005 2010 2015 

Figure 4.12: Forecast­

ing international tourist 

arrivals to Australia for 

the period 2011-2015 

using a linear trend. 

80% and 95% forecast 

intervals are shown. 

plot(£, ylab="International tourist arrivals to Australia (millions)", 
xlab="t") 

lines(fitted(fit.ex4),col="blue") 
summary(fit.ex4) 

R output 
Coefficients: 

Estimate Std. Error t value Pr(> It I) 
(Intercept) 0.337535 0. 100366 3.363 0.00218 **

trend 0. 176075 0.005475 32. 157 < 2e-16 ***

Residual autocorrelation 

With time series data it is highly likely that the value of a 

variable observed in the current time period will be influenced 

by its value in the previous period, or even the period before 

that, and so on. Therefore when fitting a regression model 

to time series data, it is very common to find autocorrelation 

in the residuals. In this case, the estimated model violates 

the assumption of no autocorrelation in the errors, and our 

forecasts may be inefficient - there is some information left 

over which should be utilized in order to obtain better forecasts. 

The forecasts from a model with autocorrelated errors are still 
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unbiased, and so are not "wrong", but they will usually have 

larger prediction intervals than they need to. 

Figure 4.13 plots the residuals from Examples 4.3 and 4.4, 

and the ACFs of the residuals (see Section 2/2 for an introduc­

tion to the ACF). The ACF of the consumption residuals shows 

a significant spike at lag 2 and 3 and the ACF of the tourism 

residuals shows significant spikes at lags 1 and 2. Usually 

plotting the ACFs of the residuals is adequate to reveal any 

potential autocorrelation in the residuals. More formal tests for 

autocorrelation are discussed in Section 5/ 4. 
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Rcode 
par(mfrow=c(2,2)) 
res3 <- ts(resid(fit.ex3),s=1970.25,f=4) 
plot.ts(res3,ylab="res (Consumption)") 
abline(O,O) 
Acf(res3) 
res4 <- resid(fit.ex4) 
plot(res4,ylab="res (Tourism)") 
abline(O,O) 
Acf(res4) 

Spurious regression 

More often than not, time series data are "non-stationary"; 

that is, the values of the time series do not fluctuate around a 

constant mean or with a constant variance. We will deal with 

Figure 4.13: Residuals 

from the regression 

models for Consump­

tion and Tourism. 

Because these involved 

time series data, it is 

important to look at the 

ACF of the residuals 

to see if there is any 

remaining information 

not accounted for by 

the model. In both 

these examples, there 

is some remaining 

autocorrelation in the 

residuals. 
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time series stationarity in more detail in Chapter 8, but here 

we need to address the effect non-stationary data can have on 

regression models. 

For example consider the two variables plotted in Fig-

ure 4.14, which appear to be related simply because they both 

trend upwards in the same manner. However, air passenger 
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R output 
Coefficients: 

1990 

Year 

Estimate Std. Error t value Pr(>ltl) 

2000 

0 

1.4 

(Intercept) -5.7297 

guinearice 37.4101 

0.9026 -6.348 1.9e-07 *** 

1.0487 35.672 < 2e-16 *** 

Multiple R-squared: 0.971. 

lag Autocorrelation 

1 0.7496971 

2010 

Figure 4.14: Trending 

time series data can 

appear to be related, 

as shown in this 

example in which air 

passengers in Australia 

are regressed against 

rice production in 

Guinea. 
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traffic in Australia has nothing to do with rice production in 
Guinea. Selected output obtained from regressing the number 
of air passengers transported in Australia versus rice produc­
tion in Guinea (in metric tons) is also shown in Figure 4.14. 

Regressing non-stationary time series can lead to spurious 
regressions. High R2s and high residual autocorrelation can be 
signs of spurious regression. We discuss the issues surround­
ing non-stationary data and spurious regressions in detail in 
Chapter 9. 

Cases of spurious regression might appear to give reasonable 
short-term forecasts, but they will generally not continue to 
work into the future. 

4/9 Summary of notation and terminology 

• xi is observation ion variable x.
• Yi = f3o + f31 xi + E; is the simple linear model with

intercept f3o and slope {3 1 . The error is denoted by E i •
• Yi = Po + P1 x; + e; is the estimated regression model

with intercept Po and slope p1 . The estimated error or
residual is denoted by ei.

• Yi = Po + P1 x; is the fitted or estimated regression line;

Yi is the fitted value corresponding to observation Yi·
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4/10 Exercises 

4.1 Electricity consumption was recorded for a small town 

on 12 randomly chosen days. The following maxi-

mum temperatures (degrees Celsius) and consumption 

(megawatt-hours) were recorded for each day. 

Day 1 2 3 4 5 6 7 8 9 10 11 

Mwh 16.3 16.8 15.5 18.2 15.2 17.5 19.8 19.0 17.5 16.0 19.6 

temp 29.3 21.7 23.7 10.4 29.7 11.9 9.0 23.4 17.8 

(a) Plot the data and find the regression model

for Mwh with temperature as an explanatory

variable. Why is there a negative relationship?

(b) Produce a residual plot. Is the model adequate?

Are there any outliers or influential observa­

tions?

(c) Use the model to predict the electricity con­

sumption that you would expect for a day with

maximum temperature 10° and a day with

maximum temperature 35° . Do you believe

these predictions?

(d) Give prediction intervals for your forecasts.

The following R code will get you started: 

plot(Mwh - temp, data=econsumption) 

30.0 

fit <- lm(Mwh - temp, data=econsumption) 

plot(residuals(fit) - temp, data=econsumption) 

forecast(fit, newdata=data .frame(temp=c(10,35))) 

4.2 The following table gives the winning times (in seconds) 

for the men's 400 meters final in each Olympic Games 

from 1896 to 2012 (data set olympic). 

1896 54.2 1928 47.8 1964 45.1 1992 43.50 

1900 49.4 1932 46.2 1968 43.8 1996 43.49 

1904 49.2 1936 46.5 1972 44.66 

1908 50.0 1948 46.2 1976 44.27 

1912 48.2 1952 45.9 1980 44.60 

1920 49.6 1956 46.7 1984 44.27 

1924 47.6 1960 44.9 1988 43.87 

8.6 

12 

18.0 

11.8 
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(a) Update the data set olympic to include the

winning times from the last few Olympics.

(b) Plot the winning time against the year. De­

scribe the main features of the scatterplot.

(c) Fit a regression line to the data. Obviously the

winning times have been decreasing, but at

what average rate per year?

(d) Plot the residuals against the year. What does

this indicate about the suitability of the fitted

line?

(e) Predict the winning time for the men's 400

meters final in the 2000, 2004, 2008 and 2012

Olympics. Give a prediction interval for each

of your forecasts. What assumptions have you

made in these calculations?

(f) Find out the actual winning times for these

Olympics (see www. databaseolympics. com).

How good were your forecasts and prediction

intervals?

4.3 An elasticity coefficient is the ratio of the percentage 

change in the forecast variable (y) to the percentage 

change in the predictor variable (x). Mathematically, 

the elasticity is defined as (dy/dx) x (x/y). Consider the 

log-log model, 

logy= /3o + /31 logx + c. 

Express y as a function of x and show that the coeffi­

cient {31 is the elasticity coefficient. 

4/11 Further reading 

• Chatterjee, S. and A. S. Hadi (2012). Regression analysis by exam­
ple. 5th ed. New York: John Wiley & Sons.

• Fox, J. and H. S. Weisberg (2010). An R Companion to Applied
Regression. SAGE Publications, Inc.

• Pardoe, I. (2006). Applied regression modeling: a business approach.
Hoboken, NJ: John Wiley & Sons.
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Multiple regression 

In multiple regression there is one variable to be forecast and 

several predictor variables. Throughout this chapter we will 

use two examples of multiple regression, one based on cross­

sectional data and the other on time series data. 

Example: credit scores 

Banks score loan customers based on a lot of personal infor-

mation. A sample of 500 customers from an Australian bank 

provided the following information. 

Score Savings Income Time current address Time current job 

($'000) ($'000 ) (Months) (Months) 

39.40 0.01 111.17 27 

51.79 0.65 56.40 29 

32.82 0.75 36.74 2 

57.31 0.62 55.99 14 

37.17 4.13 62.04 2 

33.69 0.00 43.75 7 

25.56 0.94 79.01 4 

32.04 0.00 45.41 3 

41.34 4.26 55.22 16 

The credit score in the left hand column is used to determine 

if a customer will be given a loan or not. For these data, the 

score is on a scale between 0 and 100. It would save a lot of time 

if the credit score could be predicted from the other variables 

listed above. Then there would be no need to collect all the 

other information that banks require. Even if the credit score 

8 

33 

16 

7 

14 

7 

11 

3 

18 



110 FORECASTING: PRINCIPLES AND PRACTICE 

can only be roughly forecast using these four predictors, it 

might provide a way of filtering out customers that are unlikely 

to receive a high enough score to obtain a loan. 

This is an example of cross-sectional data where we want to 

predict the value of the credit score variable using the values of 

the other variables. 

Example: Australian quarterly beer production 

Recall the Australian quarterly beer production data shown 

below. 

0 
0 

0 
0 

1992 1994 

Quarter! Australian beer reduction 

1996 1998 2000 2002 2004 

Year 

2006 

These are time series data and we want to forecast the value 

of future beer production. There are no other variables avail­

able for predictors. Instead, with time series data, we use the 

number of quarters since the start of the series as a predictor 

variable. We may also use the quarter of the year corresponding 

to each observation as a predictor variable. Then, knowing the 

number of quarters since the start of the series and the specific 

quarter of interest, we can forecast the value of beer production 

in that quarter. 

5/1 Introduction to multiple linear regression 

The general form of a multiple regression is 

Figure 5.1: Australian 

quarterly beer produc­

tion 
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where Yi is the variable to be forecast and x1,i, ... , xk,i are the 

k predictor variables. Each of the predictor variables must 

be numerical. The coefficients {31, ... , /h measure the effect of 

each predictor after taking account of the effect of all other 

predictors in the model. Thus, the coefficients measure the 

marginal effects of the predictor variables. 

As for simple linear regression, when forecasting we require 

the following assumptions for the errors (c1, ... ,EN): 

1. the errors have mean zero;

2. the errors are uncorrelated with each other;

3. the errors are uncorrelated with each predictor Xj,i·

It is also useful to have the errors normally distributed with 

constant variance in order to produce prediction intervals, but 

this is not necessary for forecasting. 

Example: credit scores 

All 500 observations of the credit score data are shown in 

Figure 5.2. The top row shows the relationship between each 

predictor and credit score. While there appear to be some rela­

tionships here, particularly between credit score and income, 

the predictors are all highly skewed and the few outlying obser­

vations are making it hard to see what is going on in the bulk of 

the data. 

A way around this problem is to take transformations of 

the predictors. However, we cannot take logarithms of the 

predictors because they contain some zeros. Instead, we use 

the transformation log(x + 1) where xis the predictor value. 

That is, we add one to the value of the predictor and then take 

logarithms. This has a similar effect to taking logarithms but 

avoids the problem of zeros. It also has the neat side-effect of 

zeros on the original scale remaining zeros on the transformed 

scale. The scatterplot matrix showing the transformed data is 

shown in Figure 5.3. 

Now the relationships between the variables are clearer, 

although there is a great deal of random variation present. We 

shall try fitting the following model: 
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pairs(credit[,-(4:5)),diag.panel=panel.hist) 
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#The panel.hist function is defined in help(pairs). 

where y = credit score, 
x1 = log savings, 
x2 = log income, 
x3 = log time at current address, 
x4 = log time in current job, 

E = error. 

Here "log" means the transformation log(x + 1 ). 

Figure 5.2: Scatterplot 

matrix of the credit 

scores and the four 

predictors. 
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20 60 100 3.5 4.5 5.5 

Rcode 

creditlog <- data.frame(score=credit$score, 

log.savings=log(credit$savings+1), 

log.income=log(credit$income+1), 

log.address=log(credit$time.address+1), 

log.employed=log(credit$time.employed+1), 

fte=credit$fte, single=credit$single) 

pairs(creditlog[,1:5),diag.panel=panel.hist) 

Estimation of the model 

0 1 2 3 4 

The values of the coefficients {30 , ... , f3k are obtained by finding 
the minimum sum of squares of the errors. That is, we find the 
values of {30 , ... , f3k which minimize 

N N 

L, cf= L, (y; - /3o - /3i x1,i - · · · - f3kxk,i) 2 . 
i=l i=l 

Figure 5.3: Scatterplot 

matrix of the credit 

scores and the four 

predictors, after 

transforming the 

four predictors using 

logarithms. 
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This is called "least squares" estimation because it gives the 

least value for the sum of squared errors. In practice, the calcu­

lation is always done using a computer package. Finding the 

best estimates of the coefficients is often called "fitting" the 

model to the data. 

When we refer to the estimated coefficients, we will use the 

notation Po, ... , Pk- The equations for these will be given in 

Section 5/5. 

Example: credit scores (continued) 

The following computer output is obtained after fitting the 

regression model described earlier. 

---------- R code 

fit <- lm(score - log.savings+ log.income+ log.address 

+log.employed+ single, data=creditlog)

summary(fit) 

R output 
Coefficients: 

Estimate Std. Error t value P value 

(Intercept) -0.219 5.231 -0.04 0.9667 

log.savings 10.353 0.612 16.90 < 2e-16 

log.income 5.052 1.258 4.02 6.8e-05 

log.address 2.667 0.434 6. 14 1. 7e-09

log.employed 1. 314 0.409 3.21 0.0014 

Residual standard error: 10. 16 on 495 degrees of freedom 

Multiple A-squared: 0.4701, Adjusted A-squared: 0.4658 

F-statistic: 109.8 on 4 and 495 OF, p-value: < 2.2e-16

The first column gives the estimates of each f3 coefficient and 

the second column gives its "standard error" (i.e., the standard 

deviation which would be obtained from repeatedly estimating 

the f3 coefficients on similar data sets). The standard error gives 

a measure of the uncertainty in the estimated f3 coefficient. 

For forecasting purposes, the final two columns are of lim­

ited interest. The "t value" is the ratio of a f3 coefficient to its 

standard error and the last column gives the p-value: the proba­

bility of the estimated f3 coefficient being as large as it is if there 

was no real relationship between the credit score and the pre­

dictor. This is useful when studying the effect of each predictor, 

but is not particularly useful when forecasting. 
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Fitted values, forecast values and residuals 

Predictions of JI can be calculated by ignoring the error in the 

regression equation. That is 

Plugging in values of x1, ... ,xk into the right hand side of this 

equation gives a prediction of JI for that combination of predic­

tors. 

When this calculation is done using values of the predictors 

from the data that were used to estimate the model, we call the 

resulting values of y the "fitted values". These are "predictions" 

of the data used in estimating the model. They are not genuine 

forecasts as the actual value of JI for that set of predictors was 

used in estimating the model, and so the value of y is affected 

by the true value of JI· 

When the values of x1, ... ,xk are new values (i.e., not part of 

the data that were used to estimate the model), the resulting 

value of y is a genuine forecast. 

The difference between the JI observations and the fitted 

values are the "residuals": 

As with simple regression (see Section 4/2), the residuals have 

zero mean and are uncorrelated with any of the predictors. 

R2 : the coefficient of determination 

The R2 value was introduced in Section 4/4. It is the square 

of the correlation between the actual values and the predicted 

values. The following graph shows the actual values plotted 

against the fitted values for the credit score data. 

Recall that the value of R2 can also be calculated as the 

proportion of variation in the forecast variable that is explained 

by the regression model: 

In this case, R2 = 0.47, so about half of the variation in the 

scores can be predicted using the model. 

Thus, the model is not really sufficient to replace a more 

detailed approach to credit scoring, but it might be helpful in 
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Rcode 
plot(fitted(fit), creditlog$score, 

ylab="Score", xlab="Predicted score") 
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filtering out customers who will get a very low score. In the 

above graph it is evident that anyone with a predicted score 

below 35 has a true score not much more than 60. Consequently, 

if the bank wanted to identify high scoring customers quickly, 

using this model will provide a first filter, and more detailed 

information need only be collected on a subset of the customers. 

5/2 Some useful predictors 

Dummy variables 

So far, we have assumed that each predictor takes numerical val­

ues. But what about when a predictor is a categorical variable 

taking only two values (e.g., "yes" and "no"). Such a variable 

might arise, for example, when forecasting credit scores and 

you want to take account of whether the customer is in full­

type employment. So the predictor takes value "yes" when the 

customer is in full-time employment, and "no" otherwise. 

This situation can still be handled within the framework of 

multiple regression models by creating a "dummy variable" 

taking value 1 corresponding to "yes" and O corresponding 

Figure 5.4: Actual 

credit scores plot-

ted against fitted 

credit scores using the 

multiple regression 

model. The correla­

tion is 0.6856, so the 

squared correlation is 

(0.6856)2 = 0.4701. 



5/ MULTIPLE REGRESSION 117 

to "no". A dummy variable is also known as an "indicator 

variable". 

If there are more than two categories, then the variable can 

be coded using several dummy variables (one fewer than the 

total number of categories). 

Seasonal dummy variables For example, suppose we are fore-

casting daily electricity demand and we want to account for 

the day of the week as a predictor. Then the following dummy 

variables can be created. 

Day DI D2 D3 D4 DS D6 

Monday 1 0 0 0 0 0 

Tuesday 0 1 0 0 0 0 

Wednesday 0 0 1 0 0 0 

Thursday 0 0 0 1 0 0 

Friday 0 0 0 0 1 0 

Saturday 0 0 0 0 0 1 

Sunday 0 0 0 0 0 0 

Monday 1 0 0 0 0 0 

Tuesday 0 1 0 0 0 0 

Wednesday 0 0 1 0 0 0 

Thursday 0 0 0 1 0 0 

Notice that only six dummy variables are needed to code 

seven categories. That is because the seventh category (in this 

case Sunday) is specified when the dummy variables are all set 

to zero. 

Many beginners will try to add a seventh dummy variable 

for the seventh category. This is known as the "dummy variable 

trap" because it will cause the regression to fail. There will be 

too many parameters to estimate. The general rule is to use one 

fewer dummy variables than categories. So for quarterly data, 

use three dummy variables; for monthly data, use 11 dummy 

variables; and for daily data, use six dummy variables. 

The interpretation of each of the coefficients associated with 

the dummy variables is that it is a measure of the effect of that 

category relative to the omitted category. In the above example, 

the coefficient associated with Monday will measure the effect 

of Monday compared to Sunday on the forecast variable. 
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Outliers If there is an outlier in the data, rather than omit it, 
you can use a dummy variable to remove its effect. In this case, 
the dummy variable takes value one for that observation and 
zero everywhere else. 

Public holidays For daily data, the effect of public holidays 
can be accounted for by including a dummy variable predictor 
taking value one on public holidays and zero elsewhere. 

Easter Easter is different from most holidays because it is 
not held on the same date each year and the effect can last for 
several days. In this case, a dummy variable can be used with 
value one where any part of the holiday falls in the particular 
time period and zero otherwise. 

For example, with monthly data, when Easter falls in March 
then the dummy variable takes value 1 in March, when it falls 
in April, the dummy variable takes value 1 in April, and when 
it starts in March and finishes in April, the dummy variable 
takes value 1 for both months. 

Trend 

A linear trend is easily accounted for by including the predic­
tor x1 ,t = t. A quadratic or higher order trend is obtained by
specifying 

- 2 x2,t 
-

t 
,

However, it is not recommended that quadratic or higher order 
trends are used in forecasting. When they are extrapolated, the 
resulting forecasts are often very unrealistic. 

A better approach is to use a piecewise linear trend which 
bends at some time. If the trend bends at time 'f, then it can be 
specified by including the following predictors in the model. 

0 

(t- -r) 
t < 'f 

t ?. 'f 

If the associated coefficients of x1,t and x2,t are {31 and /32, then 
{31 gives the slope of the trend before time 'f, while the slope of 
the line after time 'f is given by {31 + /32• 

An extension of this idea is to use a spline ( see Section 5 / 6). 
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Ex post and ex ante forecasting 

As discussed in Section 4/8, ex ante forecasts are those that are 

made using only the information that is available in advance, 

while ex post forecasts are those that are made using later 

information on the predictors. 

Normally, we cannot use future values of the predictor 

variables when producing ex ante forecasts because their values 

will not be known in advance. However, the special predictors 

introduced in this section are all known in advance, as they are 

based on calendar variables (e.g., seasonal dummy variables or 

public holiday indicators) or deterministic functions of time. In 

such cases, there is no difference betweeen ex ante and ex post 

forecasts. 

Example: Australian quarterly beer production 

We can model the Australian beer production data using a 

regression model with a linear trend and quarterly dummy 

variables: 

where d i,t = I if tis in quarter i and O otherwise. The first 

quarter variable has been omitted, so the coefficients associated 

with the other quarters are measures of the difference between 

those quarters and the first quarter. 

Computer output from this model is given below. 

---------- R code 

beer2 <- window(ausbeer,start=1992,end=2006-.1) 

fit <- tslm(beer2 - trend+ season) 

summary(fit) 

---------- R output 
Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 441.8141 4.5338 97.449 < 2e-16 

trend -0.3820 0.1078 -3.544 0.000854 

season2 -34.0466 4.9174 -6.924 7.18e-09 

season3 -18.0931 4.9209 -3.677 0.000568 

season4 76.0746 4.9268 15.441 < 2e-16 

Residual standard error: 13.01 on 51 degrees of freedom 

Multiple A-squared: 0.921, Adjusted A-squared: 0.9149 
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So there is a strong downward trend of 0.382 megalitres per 

quarter. On average, the second quarter has production of 34.0 

megalitres lower than the first quarter, the third quarter has 

production of 18.1 megalitres lower than the first quarter, and 

the fourth quarter has production 76.1 megalitres higher than 

the first quarter. The model explains 92.1 % of the variation in 

the beer production data. 

The following plots show the actual values compared to the 

predicted (i.e., fitted) values. 
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Quarter! Beer Production 
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Year 

Rcode 

2004 

Actual 

Predicted 

2006 

Figure 5.5: Time plot 

of beer production 

and predicted beer 

production. 

plot(beer2, xlab="Year", ylab="", main="Quarterly Beer Production") 

lines(fitted(fit), col=2) 

legend("topright", lty=1, col=c(1,2), legend = c("Actual","Predicted")) 

Forecasts obtained from the model are shown in Figure 5.7. 
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Figure 5.6: Actual beer 

production plotted 

against predicted beer 

production. 

plot(fitted(fit), beer2, xy.lines = FALSE, xy.labels = FALSE, xlab="Predicted values", 
ylab="Actual values", main="Quarterly Beer Production") 

abline(O, 1, col="gray") 
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feast <- forecast(fit) 
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Figure 5.7: Forecasts 

from the regression 

model for beer produc­

tion. The dark shaded 

region shows 80% 

prediction intervals and 

the light shaded region 

shows 95% prediction 

intervals. 

plot(fcast, main="Forecasts of beer production using linear regression") 

Intervention variables 

It is often necessary to model interventions that may have 

affected the variable to be forecast. For example, competitor 
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activity, advertising expenditure, industrial action, and so on, 

can all have an effect. 

When the effect lasts only for one period, we use a spike 

variable. This is a dummy variable taking value one in the 

period of the intervention and zero elsewhere. A spike variable 

is equivalent to a dummy variable for handling an outlier. 

Other interventions have an immediate and permanent 

effect. If an intervention causes a level shift (i.e., the value of 

the series changes suddenly and permanently from the time 

of intervention), then we use a step variable. A step variable 

takes value zero before the intervention and one from the time 

of intervention onwards. 

Another form of permanent effect is a change of slope. Here 

the intervention is handled using a piecewise linear trend as 

discussed earlier (where 'f is the time of intervention). 

Trading days 

The number of trading days in a month can vary considerably 

and can have a substantial effect on sales data. To allow for this, 

the number of trading days in each month can be included as a 

predictor. An alternative that allows for the effects of different 

days of the week has the following predictors: 

Distributed lags 

x1 = # Mondays in month; 

x2 = # Tuesdays in month; 

x7 = # Sundays in month. 

It is often useful to include advertising expenditure as a predic­

tor. However, since the effect of advertising can last beyond the 

actual campaign, we need to include lagged values of advertis­

ing expenditure. So the following predictors may be used. 

x1 = advertising for previous month; 

x2 = advertising for two months previously; 

Xm = advertising for m months previously. 
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It is common to require the coefficients to decrease as the 

lag increases. In Chapter 9 we discuss methods to allow this 

constraint to be implemented. 

5/3 Selecting predictors 

When there are many possible predictors, we need some strat­

egy to select the best predictors to use in a regression model. 

A common approach that is not recommended is to plot the 

forecast variable against a particular predictor and if it shows 

no noticeable relationship, drop it. This is invalid because it is 

not always possible to see the relationship from a scatterplot, 

especially when the effect of other predictors has not been 

accounted for. 

Another common approach which is also invalid is to do a 

multiple linear regression on all the predictors and disregard 

all variables whose p-values are greater than 0.05. To start with, 

statistical significance does not always indicate predictive value. 

Even if forecasting is not the goal, this is not a good strategy 

because the p-values can be misleading when two or more 

predictors are correlated with each other (see Section 5/7). 

Instead, we will use a measure of predictive accuracy. Five 

such measures are introduced in this section. 

Adjusted R2 

Computer output for regression will always give the R2 value, 

discussed in Section 5/1. However, it is not a good measure of 

the predictive ability of a model. Imagine a model which pro­

duces forecasts that are exactly 20% of the actual values. In that 

case, the R2 value would be 1 (indicating perfect correlation), 

but the forecasts are not very close to the actual values. 

In addition, R2 does not allow for "degrees of freedom". 

Adding any variable tends to increase the value of R2
, even 

if that variable is irrelevant. For these reasons, forecasters 

should not use R2 to determine whether a model will give good 

predictions. 
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An equivalent idea is to select the model which gives the 
minimum sum of squared errors (SSE), given by 

SSE= L, e;,
i=l 

Minimizing the SSE is equivalent to maximizing R2 and will 
always choose the model with the most variables, and so is not a 
valid way of selecting predictors. 

An alternative, designed to overcome these problems, is the 
adjusted R2 (also called "R-bar-squared"): 

2 2 N-1
R =1-(1-R )---, 

N-k-l

where N is the number of observations and k is the number of 
predictors. This is an improvement on R2 as it will no longer 
increase with each added predictor. Using this measure, the 
best model will be the one with the largest value of R.2

• 

Maximizing R.2 is equivalent to minimizing the following 
estimate of the variance of the forecast errors: 

A2 SSE 
a =----

N-k-l

Maximizing R.2 works quite well as a method of selecting 
predictors, although it does tend to err on the side of selecting 
too many predictors. 

Cross-validation 

As discussed in Section 2/5, cross-validation is a very useful 
way of determining the predictive ability of a model. In general, 
leave-one-out cross-validation for regression can be carried out 
using the following steps. 

1. Remove observation i from the data set, and fit the
model using the remaining data. Then compute the er­
ror (e; = Yi -y;) for the omitted observation. (This is not 
the same as the residual because the ith observation
was not used in estimating the value of y;.)

2. Repeat step 1 for i = l, .. . ,N.

3. Compute the MSE from e'i,· . . ,eN. We shall call this the 
CV.

For many forecasting models, this is a time-consuming pro­
cedure, but for regression there are very fast methods of cal­
culating CV so it takes no longer than fitting one model to 
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the full data set. The equation for computing CV is given in
Section 5/5.

Under this criterion, the best model is the one with the
smallest value of CV.

Akaike's Information Criterion 

A closely-related method is Akaike's Information Criterion,
which we define as

(SSE) AIC=Nlog N +2(k+2),

where N is the number of observations used for estimation and
k is the number of predictors in the model. Different computer
packages use slightly different definitions for the AIC, although
they should all lead to the same model being selected. The k + 2
part of the equation occurs because there are k + 2 parameters in
the model - the k coefficients for the predictors, the intercept
and the variance of the residuals. The idea here is to penalize
the fit of the model (SSE) with the number of parameters that
need to be estimated.

The model with the minimum value of the AIC is often the
best model for forecasting. For large values of N, minimizing
the AIC is equivalent to minimizing the CV value.

Corrected Akaike's Information Criterion 

For small values of N, the AIC tends to select too many pre­
dictors, and so a bias-corrected version of the AIC has been
developed.

AICc = AIC + 2(k + 2)(k + 3) .
N-k-3 

As with the AIC, the AICc should be minimized.

Schwarz Bayesian Information Criterion 

A related measure is Schwarz's Bayesian Information Criterion
(known as SBIC, BIC or SC):

(SSE) BIC=Nlog N +(k+2) log(N).

As with the AIC, minimizing the BIC is intended to give the
best model. The model chosen by BIC is either the same as that
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chosen by AIC, or one with fewer terms. This is because BIC 

penalizes the SSE more heavily than the AIC. For large values 

of N, minimizing BIC is similar to leave-v-out cross-validation 

when v = N[l -1/(log(N)-1)]. 

Many statisticians like to use BIC because it has the feature 

that if there is a true underlying model, then with enough data 

the BIC will select that model. However, in reality there is 

rarely if ever a true underlying model, and even if there was a 

true underlying model, selecting that model will not necessarily 

give the best forecasts (because the parameter estimates may 

not be accurate). 

---------- R code 

# To obtain all these measures in R, use 

CV( fit) 

Example: credit scores (continued) 

In the credit scores regression model we used four predictors. 

Now we can check if all four predictors are actually useful, or 

whether we can drop one or more of them. With four predictors, 

there are 24 = 16 possible models. All 16 models were fitted, 

and the results are summarized in the table below. 

Savings Income Address Employ. CV AIC AICc 

X X X X 104.7 2325.8 2325.9 
X X X 106.5 2334.1 2334.2 
X X X 107.7 2339.8 2339.9 
X X 109.7 2349.3 2349.3 
X X X 112.2 2360.4 2360.6 
X X 115.1 2373.4 2373.5 
X X 116.1 2377.7 2377.8 
X 119.5 2392.1 2392.2 

X X X 164.2 2551.6 2551.7 
X X 164.9 2553.8 2553.9 
X X 176.1 2586.7 2586.8 

X X 177.5 2591.4 2591.5 
X 178.6 2594.6 2594.6 

X 179.1 2595.3 2595.3 
X 190.0 2625.3 2625.4 

193.8 2635.3 2635.3 

An X indicates that the variable was included in the model. 

The best models are given at the top of the table, and the worst 

models are at the bottom of the table. 

BIC Adj R2 

2351.1 0.4658 
2355.1 0.4558 
2360.9 0.4495 
2366.1 0.4379 
2381.5 0.4263 
2390.3 0.4101 
2394.6 0.4050 
2404.8 0.3864 
2572.7 0.1592 
2570.7 0.1538 
2603.6 0.0963 
2608.3 0.0877 
2607.2 0.0801 
2607.9 0.0788 
2638.0 0.0217 
2643.7 0.0000 
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The model with all four predictors has the lowest CV, AIC, 

AICc and BIC values and the highest iF value. So in this case, 

all the measures of predictive accuracy indicate the same "best" 

model which is the one that includes all four predictors. The 

different measures do not always lead to the same model being 

selected. 

Best subset regression 

Where possible, all potential regression models can be fitted (as 

was done in the above example) and the best one selected based 

on one of the measures discussed here. This is known as "best 

subsets" regression or "all possible subsets" regression. 

It is recommended that one of CV, AIC or AICc be used for 

this purpose. If the value of N is large enough, they will all 

lead to the same model. Most software packages will at least 

produce AIC, although CV and AICc will be more accurate for 

smaller values of N.

While R.2 is very widely used, and has been around longer 

than the other measures, its tendency to select too many predic­

tor variables makes it less suitable for forecasting than either 

CV, AIC or AI Cc. Also, the tendency of BIC to select too few 

variables makes it less suitable for forecasting than either CV, 

AIC or AICc. 

Stepwise regression 

If there are a large number of predictors, it is not possible to fit 

all possible models. For example, 40 predictors leads to 240 > 1 

trillion possible models! Consequently, a strategy is required to 

limit the number of models to be explored. 

An approach that works quite well is backwards stepwise 

regression: 

• Start with the model containing all potential predic­

tors.

• Try subtracting one predictor at a time. Keep the

model if it improves the measure of predictive accu­

racy.

• Iterate until no further improvement.
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It is important to realise that a stepwise approach is not guar­

anteed to lead to the best possible model. But it almost always 

leads to a good model. 

If the number of potential predictors is too large, then this 

backwards stepwise regression will not work and the starting 

model will need to use only a subset of potential predictors. In 

this case, an extra step needs to be inserted in which predictors 

are also added one at a time, with the model being retained if it 

improves the measure of predictive accuracy. 

5/4 Residual diagnostics 

The residuals from a regression model are calculated as the 

difference between the actual values and the fitted values: 

ei = J/i - Pi. Each residual is the unpredictable component of the 

associated observation. 

After selecting the regression variables and fitting a regres­

sion model, it is necessary to plot the residuals to check that the 

assumptions of the model have been satisfied. There are a series 

of plots that should be produced in order to check different 

aspects of the fitted model and the underlying assumptions. 

Scatterplots of residuals against predictors 

Do a scatterplot of the residuals against each predictor in the 

model. If these scatterplots show a pattern, then the relation­

ship may be nonlinear and the model will need to be modified 

accordingly. See Section 5/6 for a discussion of nonlinear regres­

sion. 

It is also necessary to plot the residuals against any pre­

dictions not in the model. If these show a pattern, then the 

predictor may need to be added to the model (possibly in a 

nonlinear form). 

Figure 5.8 shows the residuals from the model fitted to credit 

scores. In this case, the scatterplots show no obvious patterns, 

although the residuals tend to be negative for large values of the 

savings predictor. This suggests that the credit scores tend to 

be over-estimated for people with large amounts of savings. To 

correct this bias, we would need to use a non-linear model (see 

Section 5/6). 
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Rcode 
fit <- lm(score - log.savings + log.income + 

log.address + log.employed, data=creditlog) 

par(mfrow=c(2,2)) 

plot(creditlog$log.savings,residuals(fit),xlab="log(savings)") 

plot(creditlog$log.income,residuals(fit),xlab="log(income)") 

plot(creditlog$log.address,residuals(fit),xlab="log(address)") 

plot(creditlog$log.employed,residuals(fit),xlab="log(employed)") 

Scatterplot of residuals against fitted values 

A plot of the residuals against the fitted values should show no 

pattern. If a pattern is observed, there may be "heteroscedas­

ticity" in the errors. That is, the variance of the residuals may 

not be constant. To overcome this problem, a transformation of 

the forecast variable (such as a logarithm or square root) may be 

required. 

Figure 5.9 shows a plot of the residuals against the fitted 

values for the credit score model. 

Again, the plot shows no systematic patterns and the varia­

tion in the residuals does not seem to change with the size of 

the fitted value. 
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Rcode 
plot(fitted(fit), residuals(fit), 

xlab="Predicted scores", ylab="Residuals") 

Autocorrelation in the residuals 
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When the data are a time series, you should look at an ACF plot 

of the residuals. This will reveal if there is any autocorrelation 

in the residuals (suggesting that there is information that has 

not been accounted for in the model). 

Figure 5.10 shows a time plot and ACF of the residuals 

from the model fitted to the beer production data discussed in 

Section 5/2. 

There is an outlier in the residuals (2004:Q4) which suggests 

there was something unusual happening in that quarter. It 

would be worth investigating that outlier to see if there were 

any unusual circumstances or events that may have reduced 

beer production for the quarter. 

The remaining residuals show that the model has captured 

the patterns in the data quite well, although there is a small 

amount of autocorrelation left in the residuals (seen in the 

significant spike in the ACF plot). This suggests that the model 

can be slightly improved, although it is unlikely to make much 

difference to the resulting forecasts. 

Another test of autocorrelation that is designed to take ac­

count of the regression model is the Durbin-Watson test. It 

Figure 5.9: The resid­

uals from the credit 

score model plotted 

against the fitted values 

obtained from the 

model. 
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---------- R code 

fit <- tslm(beer2 - trend+ season) 

res <- residuals(fit) 

par(mfrow=c(1,2)) 

plot(res, ylab="Residuals",xlab="Year") 

Acf(res, main="ACF of residuals") 

3 5 7 9 11 14 

Lag 

is used to test the hypothesis that there is no lag one autocor­

relation in the residuals. If there is no autocorrelation, the 

Durbin-Watson distribution is symmetric around 2. Most com­

puter packages will report the DW statistic automatically, and 

should also provide a p-value. A small p-value indicates there is 

significant autocorrelation remaining in the residuals. For the 

beer model, the Durbin-Watson test reveals some significant lag 

one autocorrelation. 

---------- R code 

dwtest(fit, alt="two.sided") 

# It is recommended that the two-sided test always be used 

# to check for negative as well as positive autocorrelation 

---------- R output 
Durbin-Watson test 

DW = 2.5951, p-value = 0.02764 

Both the ACF plot and the Durbin-Watson test show that 

there is some autocorrelation remaining in the residuals. This 

means there is some information remaining in the residuals 

that can be exploited to obtain better forecasts. The forecasts 

Figure 5.10: Residuals 

from the regression 

model for beer produc­

tion. 
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from the current model are still unbiased, but will have larger 

prediction intervals than they need to. A better model in this 

case will be a dynamic-regression model which will be covered 

in Chapter 9. 

A third possible test is the Breusch-Godfrey test designed to 

look for significant higher-lag autocorrelations. 

Rcode 

# Test for autocorrelations up to lag 5. 

bgtest(fit,5) 

Histogram of residuals 

Finally, it is a good idea to check if the residuals are normally 

distributed. As explained earlier, this is not essential for fore­

casting, but it does make the calculation of prediction intervals 

much easier. 

Histogram of residuals 

0 
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"' 

0 

-40 -20 0 

Residuals 

Rcode 

hist(res, breaks="FD", xlab="Residuals", 

main="Histogram of residuals", ylim=c(0,22)) 

X <- -50:50 

lines(x, 560*dnorm(x,0,sd(res)),col=2) 

20 

In this case, the residuals seem to be slightly negatively 

skewed, although that is probably due to the outlier. 

Figure 5.11: Histogram 
of residuals from 
regression model for 
beer production. 



5/ MULTIPLE REGRESSION 133 

5/5 Matrix formulation 

Warning: this is a more advanced optional section and assumes 

knowledge of matrix algebra. 

The multiple regression model can be written as 

Yi = f3o + /31 x1,i + f32x2,i + .. · + f3kxk,i + E;. 

This expresses the relationship between a single value of the 

forecast variable and the predictors. It can be convenient to 

write this in matrix form where all the values of the forecast 

variable are given in a single equation. Let y = (y1, ... ,yN)', 
e = (E1, .. ,,EN)', f3 = (/3o, .. ,,f3k)' and 

1 X1,l X2,l xk,l 
1 Xl,2 X2,2 xk,2 

X= 

1 X1,N X2,N xk,N 

Then 

y = X/3+ e. 

Least squares estimation 

Least squares estimation is obtained by minimizing the ex­

pression e'e = (Y -Xf3)'(Y -X/3). It can be shown that this is 

minimized when f3 takes the value 

p = (X'xr 1 X'Y

This is sometimes known as the "normal equation". The esti­

mated coefficients require the inversion of the matrix X'X. If 

this matrix is singular, then the model cannot be estimated. 

This will occur, for example, if you fall for the "dummy variable 

trap" (having the same number of dummy variables as there are 

categories of a categorical predictor). 

The residual variance is estimated using 

A2 
1 A / A 

a = 
N -k 

(Y -X/3) (Y -X/3).

Fitted values and cross-validation 

The normal equation shows that the fitted values can be calcu­

lated using 
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where H = X(X'Xt 1 X' is known as the "hat-matrix" because it
is used to compute Y ("Y-hat").

If the diagonal values of Hare denoted by h1 , ••• ,hN, then the
cross-validation statistic can be computed using

1 N CV= 
N 

�[eJ(l-h;)]2,
t=l 

where e; is the residual obtained from fitting the model to all N
observations. Thus, it is not necessary to actually fit N separate
models when computing the CV statistic.

Forecasts 

Let X* be a row vector containing the values of the predictors
for the forecasts (in the same format as X). Then the forecast is
given by

y = X* µ = X*(X'Xt 1 
X'Y

and its variance by

Then a 95% prediction interval can be calculated (assuming
normally distributed errors) as

This takes account of the uncertainty due to the error term E 

and the uncertainty in the coefficient estimates. However, it
ignores any errors in X*. So if the future values of the predictors
are uncertain, then the prediction interval calculated using this
expression will be too narrow.

5/6 Non-linear regression 

Sometimes the relationship between the forecast variable and a
predictor is not linear, and then the usual multiple regression
equation needs modifying. In Section 4/7, we discussed using
log transformations to deal with a variety of non-linear forms,
and in Section 5/2 we showed how to include a piecewise-linear
trend in a model; that is a nonlinear trend constructed out of
linear pieces. Allowing other variables to enter in a nonlinear
manner can be handled in exactly the same way.
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To keep things simple, suppose we have only one predictor x.

Then the model we use is

y=f(x)+e, 

where f is a possibly nonlinear function. In standard (linear)
regression, f (x) = f3o + {31 x, but in nonlinear regression, we allow
f to be a nonlinear function of x.

One of the simplest ways to do nonlinear regression is to
make f piecewise linear. That is, we introduce points where the
slope off can change. These points are called "knots".

Example 5.1 Car emissions continued 

In Chapter 4, we considered an example of forecasting the
carbon footprint of a car from its city-based fuel economy. Our
previous analysis (Section 4/7) showed that this relationship
was nonlinear. Close inspection of Figure 4.3 suggests that a
change in slope occurs at about 25mpg. This can be achieved
using the following variables: x (the City mpg) and

z = (x- 25)+ = { O 
x-25 

if X < 25 
if X � 25.

The resulting fitted values are shown as the red line below.
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Figure 5.12: Piecewise 

linear trend to fuel 

economy data. 
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---------- R code 
Cityp <- pmax(fuel$City-25,0) 
fit2 <- lm(Carbon - City + Cityp, data=fuel) 
x <- 15:50; z <- pmax(x-25,0) 
fcast2 <- forecast(fit2, newdata=data.frame(City=x,Cityp=z)) 
plot(jitter(Carbon) - jitter(City), data=fuel) 
lines(x, fcast2$mean,col="red") 

Additional bends can be included in the relationship by 

adding further variables of the form (x - c)
+ 

where c is the "knot" 

or point at which the line should bend. As above, the notation 

(x - c)+ means the value x - c if it is positive and O otherwise. 

Regression splines 

Piecewise linear relationships constructed in this way are a 

special case of regression splines. In general, a linear regression 

spline is obtained using 

where c1, ... ,ck-l are the knots (the points at which the line can 

bend). Selecting the number of knots (k - I) and where they 

should be positioned can be difficult and somewhat arbitrary. 

Automatic knot selection algorithms are available in some 

software, but are not yet widely used. 

A smoother result is obtained using piecewise cubics rather 

than piecewise lines. These are constrained so they are continu­

ous (they join up) and they are smooth (so there are no sudden 

changes of direction as we see with piecewise linear splines). In 

general, a cubic regression spline is written as 

An example of a cubic regression spline fitted to the fuel 

economy data is shown below with a single knot at c1 = 25. 

This usually gives a better fit to the data, although forecast­

ing values of Carbon when City is outside the range of the 

historical data becomes very unreliable. 
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---------- R code 

35 40 45 

Figure 5.13: Cubic 

regression spline fitted 

to the fuel economy 

data. 

fit3 <- lm(Carbon - City + I(City'2) + I(City'3) + I(Cityp'3), data=fuel) 

fcast3 <- forecast(fit3,newdata=data.frame(City=x,Cityp=z)) 

plot(jitter(Carbon) - jitter(City), data=fuel) 

lines(x, fcast3$mean,col="red") 

5/7 Correlation, causation and forecasting 

Correlation is not causation 

It is important not to confuse correlation with causation, or 

causation with forecasting. A variable x may be useful for 

predicting a variable y, but that does not mean xis causing y. It 

is possible that xis causing y, but it may be that the relationship 

between them is more complicated than simple causality. 

For example, it is possible to model the number of drownings 

at a beach resort each month with the number of ice-creams 

sold in the same period. The model can give reasonable fore­

casts, not because ice-creams cause drownings, but because 

people eat more ice-creams on hot day s when they are also 

more likely to go swimming. So the two variables (ice-cream 

sales and drownings) are correlated, but one is not causing the 

other. It is important to understand that correlations are use­

ful for forecasting, even when there is no causal relationship 

between the two variables. 

However, often a better model is possible if a causal mecha­

nism can be determined. In this example, both ice-cream sales 
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and drownings will be affected by the temperature and by the 

numbers of people visiting the beach resort. Again, high temper­

atures do not actually cause people to drown, but they are more 

directly related to why people are swimming. So a better model 

for drownings will probably include temperatures and visitor 

numbers and exclude ice-cream sales. 

Confounded predictors 

A related issue involves confounding variables. Suppose we 

are forecasting monthly sales of a company for 2012, using 

data from 2000-2011. In January 2008 a new competitor came 

into the market and started taking some market share. At the 

same time, the economy began to decline. In your forecasting 

model, you include both competitor activity (measured using 

advertising time on a local television station) and the health 

of the economy (measured using GDP). It will not be possible 

to separate the effects of these two predictors because they are 

correlated. We say two variables are confounded when their 

effects on the forecast variable cannot be separated. Any pair 

of correlated predictors will have some level of confounding, 

but we would not normally describe them as confounded unless 

there was a relatively high level of correlation between them. 

Confounding is not really a problem for forecasting, as we 

can still compute forecasts without needing to separate out the 

effects of the predictors. However, it becomes a problem with 

scenario forecasting as the scenarios should take account of the 

relationships between predictors. It is also a problem if some 

historical analysis of the contributions of various predictors is 

required. 

Multicollinearity and forecasting 

A closely related issue is multicollinearity which occurs when 

similar information is provided by two or more of the predictor 

variables in a multiple regression. It can occur in a number of 

ways. 

• Two predictors are highly correlated with each other

(that is, they have a correlation coefficient close to

+1 or -1). In this case, knowing the value of one of

the variables tells you a lot about the value of the



other variable. Hence, they are providing similar 

information. 
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• A linear combination of predictors is highly correlated

with another linear combination of predictors. In

this case, knowing the value of the first group of

predictors tells you a lot about the value of the second

group of predictors. Hence, they are providing similar

information.

The dummy variable trap is a special case of multicollinearity. 

Suppose you have quarterly data and use four dummy variables, 

D1 ,D2,D3 and D4• Then D4 = 1-D1 - D2 -D3, so there is perfect 

correlation between D4 and D1 + D2 + D3• 

When multicollinearity occurs in a multiple regression 

model, there are several consequences that you need to be 

aware of. 

1. If there is perfect correlation (i.e., a correlation of+ 1

or -1, such as in the dummy variable trap), it is not

possible to estimate the regression model.

2. If there is high correlation (close to but not equal to +1

or -1 ), then the estimation of the regression coefficients

is computationally difficult. In fact, some software

(notably Microsoft Excel) may give highly inaccurate

estimates of the coefficients. Most reputable statistical

software will use algorithms to limit the effect of

multicollinearity on the coefficient estimates, but you

do need to be careful. The major software packages

such as R, SPSS, SAS and Stata all use estimation

algorithms to avoid the problem as much as possible.

3. The uncertainty associated with individual regression

coefficients will be large. This is because they are dif­

ficult to estimate. Consequently, statistical tests (e.g.,

t-tests) on regression coefficients are unreliable. (In

forecasting we are rarely interested in such tests.) Also,

it will not be possible to make accurate statements

about the contribution of each separate predictor to

the forecast.

4. Forecasts will be unreliable if the values of the future

predictors are outside the range of the historical values

of the predictors. For example, suppose you have fitted

a regression model with predictors X and Z which are
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highly correlated with each other, and suppose that 

the values of X in the fitting data ranged between 0 

and 100. Then forecasts based on X > 100 or X < 0 

will be unreliable. It is always a little dangerous when 

future values of the predictors lie much outside the 

historical range, but it is especially problematic when 

multicollinearity is present. 

Note that if you are using good statistical software, if you are 

not interested in the specific contributions of each predictor, 

and if the future values of your predictor variables are within 

their historical ranges, there is nothing to worry about - multi­

collinearity is not a problem. 
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Exercises 

The data below (data set fancy) concern the monthly 

sales figures of a shop which opened in January 1987 

and sells gifts, souvenirs, and novelties. The shop is situ-

ated on the wharf at a beach resort town in Queensland, 

Australia. The sales volume varies with the seasonal 

population of tourists. There is a large influx of visitors 

to the town at Christmas and for the local surfing festi-

val, held every March since 1988. Over time, the shop 

has expanded its premises, range of products, and staff. 

1987 1988 1989 1990 1991 

Jan 1664.81 2499.81 4717.02 5921.10 4826.64 

Feb 2397.53 5198.24 5702.63 5814.58 6470.23 

Mar 2840.71 7225.14 9957.58 12421.25 9638.77 

Apr 3547.29 4806.03 5304.78 6369.77 8821.17 

May 3752.96 5900.88 6492.43 7609.12 8722.37 

Jun 3714.74 4951.34 6630.80 7224.75 10209.48 

Jul 4349.61 6179.12 7349.62 8121.22 11276.55 

Aug 3566.34 4752.15 8176.62 7979.25 12552.22 

Sep 5021.82 5496.43 8573.17 8093.06 11637.39 

Oct 6423.48 5835.10 9690.50 8476.70 13606.89 

Nov 7600.60 12600.08 15151.84 17914.66 21822.11 

Dec 19756.21 28541.72 34061.01 30114.41 45060.69 

(a) Produce a time plot of the data and describe

the patterns in the graph. Identify any unusual

or unexpected fluctuations in the time series.

(b) Explain why it is necessary to take logarithms

of these data before fitting a model.

(c) Use R to fit a regression model to the loga­

rithms of these sales data with a linear trend,

seasonal dummies and a "surfing festival"

dummy variable.

(d) Plot the residuals against time and against

the fitted values. Do these plots reveal any

problems with the model?

(e) Do boxplots of the residuals for each month.

Does this reveal any problems with the model?

(f) What do the values of the coefficients tell you

about each variable?

1992 1993 

7615.03 10243.24 

9849.69 11266.88 

14558.40 21826.84 

11587.33 17357.33 

9332.56 15997.79 

13082.09 18601.53 

16732.78 26155.15 

19888.61 28586.52 

23933.38 30505.41 

25391.35 30821.33 

36024.80 46634.38 

80721.71 104660.67 
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(g) What does the Durbin-Watson statistic tell you

about your model?

(h) Regardless of your answers to the above ques­

tions, use your regression model to predict

the monthly sales for 1994, 1995, and 1996.

Produce prediction intervals for each of your

forecasts.

(i) Transform your predictions and intervals to

obtain predictions and intervals for the raw

data.

(j) How could you improve these predictions by

modifying the model?

5.2 The data below (data set texasgas) shows the demand 

for natural gas and the price of natural gas for 20 towns 

in Texas in 1969. 

City Average price P Consumption per customer C 

(cents per thousand cubic feet) (thousand cubic feet) 

Amarillo 30 134 

Borger 31 112 

Dalhart 37 136 

Shamrock 42 109 

Royalty 43 105 

Texarkana 45 87 

Corpus Christi 50 56 

Palestine 54 43 

Marshall 54 77 

Iowa Park 57 35 

Palo Pinto 58 65 

Millsap 58 56 

Memphis 60 58 

Granger 73 55 

Llano 88 49 

Brownsville 89 39 

Mercedes 92 36 

Karnes City 97 46 

Mathis 100 40 

La Pryor 102 42 

(a) Do a scatterplot of consumption against price.

The data are clearly not linear. Three possible
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nonlinear models for the data are given below 

Ci = exp(a+ bPi + e;) 

Ci = { a1 + b1 P; + e;

a2 + b2 P; + e; 

Ci = a+ b1 P + b2P2
• 

when P; :0:::: 60 

when P; > 60; 

The second model divides the data into two 

sections, depending on whether the price is 

above or below 60 cents per 1,000 cubic feet. 

(b) Can you explain why the slope of the fitted line

should change with P?

(c) Fit the three models and find the coefficients,

and residual variance in each case.

For the second model, the parameters a1, a2 , 

bi , b2 can be estimated by simply fitting a

regression with four regressors but no constant:

(i) a dummy taking value 1 when P :0:::: 60 and

0 otherwise; (ii) Pl = P when P :0:::: 60 and 0

otherwise; (iii) a dummy taking value 0 when

P :0:::: 60 and 1 otherwise; (iv) P2 = P when

P > 60 and 0 otherwise.

(d) For each model, find the value of R2 and AIC,

and produce a residual plot. Comment on the

adequacy of the three models.

(e) For prices 40, 60, 80, 100, and 120 cents per

1,000 cubic feet, compute the forecasted per

capita demand using the best model of the

three above.

(f) Compute 95% prediction intervals. Make a

graph of these prediction intervals and discuss

their interpretation.

(g) What is the correlation between P and P2?

Does this suggest any general problem to

be considered in dealing with polynomial

regressions-especially of higher orders?
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5/9 Further reading 

Regression with cross-sectional data 

• Chatterjee, S. and A. S. Hadi (2012). Regression analysis by exam­

ple. 5th ed. New York: John Wiley & Sons.

• Fox, J. and H. S. Weisberg (2010). An R Companion to Applied

Regression. SAGE Publications, Inc.

• Harrell, Jr, F. E. (2001). Regression modelling strategies: with

applications to linear models, logistic regression, and survival

analysis. New York: Springer.

• Pardoe, I. (2006). Applied regression modeling: a business approach.

Hoboken, NJ: John Wiley & Sons.

• Sheather, S. J. (2009). A modern approach to regression with R. New

York: Springer.

Regression with time series data 

• Shumway, R.H. and D.S. Stoffer (2011). Time series analysis and

its applications: with R examples. 3rd ed. New York: Springer.
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Time series decomposition 

Time series data can exhibit a huge variety of patterns and it is 

helpful to categorize some of the patterns and behaviours that 

can be seen in time series. It is also sometimes useful to try to 

split a time series into several components, each representing 

one of the underlying categories of patterns. 

In this chapter, we consider some common patterns and 

methods to extract the associated components from a time 

series. Often this is done to help understand the time series 

better, but it can also be used to improve forecasts. 

6/1 Time series components 

Time series patterns 

In this chapter, we will refer to three types of time series pat­

terns. 

Trend A trend exists when there is a long-term increase or 

decrease in the data. It does not have to be linear. Sometimes 

we will refer to a trend "changing direction" when it might 

go from an increasing trend to a decreasing trend. 

Seasonal A seasonal pattern exists when a series is influenced 

by seasonal factors (e.g., the quarter of the year, the month, 

or day of the week). Seasonality is always of a fixed and 

known period. 

Cyclic A cyclic pattern exists when data exhibit rises and falls 

that are not of fixed period. The duration of these fluctuations 

is usually of at least 2 years. 
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Many people confuse cyclic behaviour with seasonal behaviour, 

but they are really quite different. If the fluctuations are not of 

fixed period then they are cyclic; if the period is unchanging 

and associated with some aspect of the calendar, then the 

pattern is seasonal. In general, the average length of cycles is 

longer than the length of a seasonal pattern, and the magnitude 

of cycles tends to be more variable than the magnitude of 

seasonal patterns. 

The following four examples shows different combinations of 

the above components. 
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R code 
par(mfrow=c(2,2)) 
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plot(hsales,xlab="Year",ylab="Monthly housing sales (millions)") 
plot(ustreas,xlab="Day",ylab="US treasury bill contracts") 
plot(elec,xlab="Year",ylab="Australian monthly electricity production") 
plot(diff(dj),xlab="Day",ylab="Daily change in Dow Jones index") 

Figure 6.1: Four time 

series exhibiting 

different types of time 

series patterns. 
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1. The monthly housing sales (top left) show strong seasonality

within each year, as well as some strong cyclic behaviour

with period about 6-10 years. There is no apparent trend in

the data over this period.

2. The US treasury bill contracts (top right) show results from

the Chicago market for 100 consecutive trading days in 1981.

Here there is no seasonality, but an obvious downward trend.

Possibly, if we had a much longer series, we would see that

this downward trend is actually part of a long cycle, but

when viewed over only 100 days it appears to be a trend.

3. The Australian monthly electricity production (bottom left)

shows a strong increasing trend, with strong seasonality. 

There is no evidence of any cyclic behaviour here.

4. The daily change in the Dow Jones index (bottom right) has

no trend, seasonality or cyclic behaviour. There are random

fluctuations which do not appear to be very predictable,

and no strong patterns that would help with developing a

forecasting model.

Time series decomposition 

We shall think of the time series Yt as comprising three com­

ponents: a seasonal component, a trend-cycle component 

(containing both trend and cycle), and a remainder component 

(containing anything else in the time series). For example, if we 

assume an additive model, then we can write 

where Yt is the data at period t, S t is the seasonal component 

at period t, Tt is the trend-cycle component at period t and E t 

is the remainder (or irregular or error) component at period t.

Alternatively, a multiplicative model would be written as 

The additive model is most appropriate if the magnitude 

of the seasonal fluctuations or the variation around the trend­

cycle does not vary with the level of the time series. When the 

variation in the seasonal pattern, or the variation around the 

trend-cycle, appears to be proportional to the level of the time 
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series, then a multiplicative model is more appropriate. With 

economic time series, multiplicative models are common. 

An alternative to using a multiplicative model, is to first 

transform the data until the variation in the series appears to 

be stable over time, and then use an additive model. When a 

log transformation has been used, this is equivalent to using a 

multiplicative decomposition because 

Yt = S t x Tt x E t is equivalent to logyt = log S t + log Tt + log E t . 

Sometimes, the trend-cycle component is simply called 

the "trend" component, even though it may contain cyclic 

behaviour as well. 

Example 6.1 Electrical equipment manufacturing 

We will look at several methods for obtaining the components 

S t, Tt and E t later in this chapter. But first, it is helpful to see an 

example. We will decompose the new orders index for electrical 

equipment shown in Figure 6.2. These data show the number of 

new orders for electrical equipment (computer, electronic and 

optical products) in the Euro area (16 countries). The data have 

been adjusted by working days and normalized so a value of 

100 corresponds to 2005. 

Figure 6.2 shows the trend-cycle component, Tt, in red and 

the original data, Yt, in grey. The trend-cycle shows the overall 

movement in the series, ignoring the seasonality and any small 

random fluctuations. 

Figure 6.3 shows an additive decomposition of these data. 

The method used for extracting components in this example is 

STL which is discussed in Section 6/ 5. 

All three components are shown in the bottom three panels 

of Figure 6.3. These three components can be added together 

to reconstruct the data shown in the top panel. Notice that 

the seasonal component changes very slowly over time, so any 

two consecutive years have very similar pattern, but years far 

apart may have different seasonal patterns. The remainder 

component shown in the bottom panel is what is left over when 

the seasonal and trend-cycle components have been subtracted 

from the data. 

The grey bars to the right of each panel show the relative 

scales of the components. Each grey bar represents the same 
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---------- R code 
fit <- stl(elecequip, s.window=5) 
plot(elecequip, col="gray", 

2005 

main="Electrical equipment manufacturing", 
ylab="New orders index", xlab="") 

lines(fit$time.series[,2],col="red",ylab="Trend") 

2010 

length but because the plots are on different scales, the bars 

vary in size. The large grey bar in the bottom panel shows that 

the variation in the remainder component is small compared to 

the variation in the data which has a bar about one quarter the 

size. In other words, if we shrunk the bottom three panels until 

their bars became the same size as that in the data panel, then 

all the panels would be on the same scale. 

It can be useful to use seasonal plots and seasonal sub-series 

plots of the seasonal component. These help us to visualize 

the variation in the seasonal component over time. Figure 6.4 

shows a seasonal sub-series plot of the seasonal component 

from Figure 6.3. In this case, there are only very small changes 

over time. 

Seasonally adjusted data 

If the seasonal component is removed from the original data, 

the resulting values are called the "seasonally adjusted" data. 

For an additive model, the seasonally adjusted data are given 

by Yt - S t, and for multiplicative data, the seasonally adjusted 

Figure 6.2: Electrical 

equipment orders: the 

trend-cycle component 

(red) and raw data 

(grey). 
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Figure 6.3: The electri­

cial equipment orders 

(top) and its three 

additive components. 

Figure 6.4: Seasonal 

sub-series plot of the 

seasonal component 

from the STL decom­

position shown in 

Figure 6.3. 

Rcode 
monthplot(fit$time.series[,"seasonal"], main="" ylab="Seasonal") 
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values are obtained using y1/S1• Figure 6.5 shows the seasonally 

adjusted electrical equipment orders. 
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---------- R code 

plot(elecequip, col="grey", 

main="Electrical equipment manufacturing", 

xlab="", ylab="New orders index") 

lines(seasadj(fit),col="red",ylab="Seasonally adjusted") 

If the variation due to seasonality is not of primary inter­

est, the seasonally adjusted series can be useful. For example, 

monthly unemployment data are usually seasonally adjusted to 

highlight variation due to the underlying state of the economy 

than the seasonal variation. An increase in unemployment due 

to school leavers seeking work is seasonal variation while an 

increase in unemployment due to large employers laying off 

workers is non-seasonal. Most people who study unemploy­

ment data are more interested in the non-seasonal variation. 

Consequently, employment data (and many other economic 

series) are usually seasonally adjusted. 

Seasonally adjusted series contain the remainder component 

as well as the trend-cycle. Therefore they are not "smooth" and 

"downturns" or "upturns" can be misleading. If the purpose 

is to look for turning points in the series, and interpret any 

changes in the series, then it is better to use the trend-cycle 

component rather than the seasonally adjusted data. 

Figure 6.5: Seasonally 

adjusted electrical 

equipment orders (red) 

and the original data 

(grey). 
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6/2 Moving averages 

The classical method of time series decomposition originated 

in the 1920s and was widely used until the 1950s. It still forms 

the basis of later time series methods, and so it is important to 

understand how it works. The first step in a classical decom­

position is to use a moving average method to estimate the 

trend-cycle, so we begin by discussing moving averages. 

Moving average smoothing 

A moving average of order m can be written as

, 1 k 
Tt = m L,Yt+j1 

j=-k 

where m = 2k + 1. That is, the estimate of the trend-cycle at

time t is obtained by averaging values of the time series within 

k periods oft. Observations that are nearby in time are also 

likely to be close in value, and the average eliminates some 

of the randomness in the data, leaving a smooth trend-cycle 

component. We call this an "m-MA" meaning a moving average

of order m.
For example, consider Figure 6.6 showing the volume of 

electricity sold to residential customers in South Australia each 

1990 1995 2000 2005 

Year 

Figure 6.6: Residential 

electricity sales (exclud­

ing hot water) for South 

Australia: 1989-2008. 
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year from 1989 to 2008 (hot water sales have been excluded). 
The data are also shown in Table 6.1. 

Year Sales (GWh) 5-MA

1989 2354.34 
1990 2379.71 
1991 2318.52 2381.53 
1992 2468.99 2424.56 
1993 2386.09 2463.76 
1994 2569.47 2552.60 
1995 2575.72 2627.70 
1996 2762.72 2750.62 
1997 2844.50 2858.35 
1998 3000.70 3014.70 
1999 3108.10 3077.30 
2000 3357.50 3144.52 
2001 3075.70 3188.70 
2002 3180.60 3202.32 
2003 3221.60 3216.94 
2004 3176.20 3307.30 
2005 3430.60 3398.75 
2006 3527.48 3485.43 
2007 3637.89 
2008 3655.00 

Rcode 

ma(elecsales, order=5) 

In the second column of this table, a moving average of order 
5 is shown, providing an estimate of the trend-cycle. The first 
value in this column is the average of the first five observations 
(1989-1993); the second value in the 5-MA column is the 
average of the values 1990-1994; and so on. Each value in the 
5-MA column is the average of the observations in the five
year period centered on the corresponding year. There are no
values for the first two years or last two years because we don't
have two observations on either side. In the formula above,
column 5-MA contains the values of ft with k = 2. To see what
the trend-cycle estimate looks like, we plot it along with the
original data in Figure 6.7.

Table 6.1: Annual 
electricity sales to 
residential customers 
in South Australia, 
1989-2008. 
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Rcode 

2005 

plot(elecsales, main="Residential electricity sales", 

ylab="GWh", xlab="Year") 

lines(ma(elecsales,5),col="red") 

Notice how the trend (in red) is smoother than the original 

data and captures the main movement of the time series with­

out all the minor fluctuations. The moving average method 

does not allow estimates of T1 where t is close to the ends of 

the series; hence the red line does not extend to the edges of 

the graph on either side. Later we will use more sophisticated 

methods of trend-cycle estimation which do allow estimates 

near the endpoints. 

The order of the moving average determines the smoothness 

of the trend-cycle estimate. In general, a larger order means 

a smoother curve. Figure 6.8 shows the effect of changing the 

order of the moving average for the residential electricity sales 

data. 

Simple moving averages such as these are usually of odd or­

der (e.g., 3, 5, 7, etc.) This is so they are symmetric: in a moving 

average of order m = 2k + 1, there are k earlier observations, k

later observations and the middle observation that are averaged. 

But if m was even, it would no longer be symmetric. 

Figure 6.7: Residential 

electricity sales (black) 

along with the 5-MA 

estimate of the trend­

cycle (red). 
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Moving averages of moving averages 

It is possible to apply a moving average to a moving average. 

One reason for doing this is to make an even-order moving 

average symmetric. 

For example, we might take a moving average of order 4, and 

then apply another moving average of order 2 to the results. In 

the following table, this has been done for the first few years of 

the Australian quarterly beer production data. 

The notation "2 x 4-MA" in the last column means a 4-MA 

followed by a 2-MA. The values in the last column are ob­

tained by taking a moving average of order 2 of the values 

in the previous column. For example, the first two values 

in the 4-MA column are 451.2=(443+410+420+532)/ 4 and 

448.8=(410+420+532+433)/4. The first value in the 2 x 4-MA 

column is the average of these two: 450.0=(451.2+448.8)/2. 

When a 2-MA follows a moving average of even order (such 

as 4), it is called a "centered moving average of order 4". This 

is because the results are now symmetric. To see that this is the 

2000 2005 

Year 

Figure 6.8: Different 

moving averages ap­

plied to the residential 

electricity sales data. 
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Year Data 4-MA 2 x4-MA 

1992 QI 443.00 

1992 Q2 410.00 451.25 

1992 Q3 420.00 448.75 450.00 

1992 Q4 532.00 451.50 450.12 

1993 QI 433.00 449.00 450.25 

1993 Q2 421.00 444.00 446.50 

1993 Q3 410.00 448.00 446.00 

1993 Q4 512.00 438.00 443.00 

1994 QI 449.00 441.25 439.62 

1994 Q2 381.00 446.00 443.62 

1994 Q3 423.00 440.25 443.12 

1994 Q4 531.00 447.00 443.62 

1995 QI 426.00 445.25 446.12 

1995 Q2 408.00 442.50 443.88 

1995 Q3 416.00 438.25 440.38 

1995 Q4 520.00 435.75 437.00 

1996 QI 409.00 431.25 433.50 

1996 Q2 398.00 428.00 429.62 

1996 Q3 398.00 433.75 430.88 

Rcode 

beer2 <- window(ausbeer,start=1992) 

ma4 <- ma(beer2, order=4, centre=FALSE) 

ma2x4 <- ma(beer2, order=4, centre=TRUE) 

case, we can write the 2 x 4-MA as follows: 

It is now a weighted average of observations, but it is symmet­

ric. 

Other combinations of moving averages are also possible. 

For example a 3 x 3-MA is often used, and consists of a moving 

average of order 3 followed by another moving average of order 

3. In general, an even order MA should be followed by an even

order MA to make it symmetric. Similarly, an odd order MA

should be followed by an odd order MA.

Table 6.2: A moving 
average of order 4 
applied to the quarterly 
beer data, followed by 
a moving average of 
order 2. 
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The most common use of centered moving averages is in es­
timating the trend-cycle from seasonal data. Consider the 
2 x 4-MA: 

When applied to quarterly data, each quarter of the year is 
given equal weight as the first and last terms apply to the 
same quarter in consecutive years. Consequently, the seasonal 
variation will be averaged out and the resulting values of ft will 
have little or no seasonal variation remaining. A similar effect 
would be obtained using a 2 x 8-MA or a 2 x 12-MA. 

In general, a 2 x m-MA is equivalent to a weighted moving 
average of order m + I with all observations taking weight 1/m

except for the first and last terms which take weights 1/(2m). So 
if the seasonal period is even and of order m, use a 2 x m-MA

to estimate the trend-cycle. If the seasonal period is odd and of 
order m, use a m-MA to estimate the trend cycle. In particular, 
a 2 x 12-MA can be used to estimate the trend-cycle of monthly 
data and a 7-MA can be used to estimate the trend-cycle of 
daily data. 

Other choices for the order of the MA will usually result in 
trend-cycle estimates being contaminated by the seasonality in 
the data. 

Example 6.2 Electrical equipment manufacturing 

Figure 6.9 shows a 2 x 12-MA applied to the electrical equipment 
orders index. Notice that the smooth line shows no seasonality; 
it is almost the same as the trend-cycle shown in Figure 6.2 
which was estimated using a much more sophisticated method 
than moving averages. Any other choice for the order of the 
moving average (except for 24, 36, etc.) would have resulted in 
a smooth line that shows some seasonal fluctuations. 

Weighted moving averages 

Combinations of moving averages result in weighted moving 
averages. For example, the 2x4-MA discussed above is equivalent 
to a weighted 5-MA with weights given by [ ½, ¼, ¼, ¼, ½ ]. In 
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plot(elecequip, ylab="New orders index", col="gray", 

main="Electrical equipment manufacturing (Euro area)") 

lines(ma(elecequip, order=12), col="red") 

general, a weighted m-MA can be written as 

k 

tt = L llfJlt+j• 
j=-k 

where k = (m-1)/2 and the weights are given by [a_k, ... ,ak]. It 
is important that the weights all sum to one and that they are 
symmetric so that aj = a_j• The simple m-MA is a special case 
where all the weights are equal to 1/m.

A major advantage of weighted moving averages is that 

they yield a smoother estimate of the trend-cycle. Instead of 
observations entering and leaving the calculation at full weight, 
their weights are slowly increased and then slowly decreased 
resulting in a smoother curve. 

Some specific sets of weights are widely used. Some of these 
are given in Table 6.3. 

Figure 6.9: A 2 x 12-MA 

applied to the electrical 

equipment orders 

index. 
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Name ao a1 a2 a3 a4 a5 a6 a7 as a9 a10 au 

3-MA .333 .333
SMA .200 .200 .200 

2x 12-MA .083 .083 .083 .083 .083 .083 .042 
3x3-MA .333 .222 .111 
3x5-MA .200 .200 .133 .067 
S15-MA .231 .209 .144 .066 .009 -.016 -.019 -.009 
S21-MA .171 .163 .134 .037 .051 .017 -.006 -.014 -.014 -.009 -.003 
HS-MA .558 .294 -.073 
H9-MA .330 .267 .119 -.010 -.041 

H13-MA .240 .214 .147 .066 .000 -.028 -.019 
H23-MA .148 .138 .122 .097 .068 .039 .013 -.005 -.015 

S = Spencer's weighted moving average 
H = Henderson's weighted moving average 

6/3 Classical decomposition 

The classical decomposition method originated in the 1920s. It 
is a relatively simple procedure and forms the basis for most 
other methods of time series decomposition. There are two 
forms of classical decomposition: an additive decomposition 
and a multiplicative decomposition. These are described below 
for a time series with seasonal period m (e.g., m = 4 for quar­
terly data, m = l 2 for monthly data, m = 7 for daily data with a 
weekly pattern). 

In classical decomposition, we assume the seasonal compo­
nent is constant from year to year. These m values are some­
times called the "seasonal indices". 

Additive decomposition 

Step 1 If mis an even number, compute the trend-cycle compo­
nent using a 2 x m-MA to obtain Tt. If mis an odd number, 
compute the trend-cycle component using an m-MA to ob­
tain Tt. 

Step 2 Calculate the detrended series: Yt - Tt. 

Step 3 To estimate the seasonal component for each month, 
simply average the detrended values for that month. For 

-.016 -.011 -.004 

Table 6.3: Commonly 
used weights in 
weighted moving 
averages. 
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example, the seasonal index for March is the average of all 
the detrended March values in the data. These seasonal 
indexes are then adjusted to ensure that they add to zero. 
The seasonal component is obtained by stringing together all 
the seasonal indices for each year of data. This gives S t. 

Step 4 The remainder component is calculated by subtracting 
the estimated seasonal and trend-cycle components: Et = 
Yt - tt -S t . 

Multiplicative decomposition 

A classical multiplicative decomposition is very similar except 
the subtractions are replaced by divisions. 

Step 1 If mis an even number, compute the trend-cycle compo­
nent using a 2 x m-MA to obtain I't. If mis an odd number, 
compute the trend-cycle component using an m-MA to ob­
tain I't . 

Step 2 Calculate the detrended series: ytfTt. 

Step 3 To estimate the seasonal component for each month, 
simply average the detrended values for that month. For 
example, the seasonal index for March is the average of all 
the detrended March values in the data. These seasonal 
indexes are then adjusted to ensure that they add to m. The 
seasonal component is obtained by stringing together all the 
seasonal indices for each year of data. This gives S t. 

Step 4 The remainder component is calculated by dividing 
out the estimated seasonal and trend-cycle components: 
Et

= ytf(Tt s t )-
---------- R code 
#xis the time series 

fit <- decompose(x, type="multiplicative") 
plot(fit) 

Comments on classical decomposition 

While classical decomposition is still widely used, it is not rec­
ommended. There are now several much better methods. Some 
of the problems with classical decomposition are summarised 
below. 
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• The estimate of the trend is unavailable for the first few

and last few observations. For example, if m = 12, there is

no trend estimate for the first six and last six observations.

Consequently, there is also no estimate of the remainder

component for the same time periods.

• Classical decomposition methods assume that the seasonal

component repeats from year to year. For many series, this

is a reasonable assumption, but for some longer series it is

not. For example, electricity demand patterns have changed

over time as air conditioning has become more widespread.

So in many locations, the seasonal usage pattern from sev­

eral decades ago had maximum demand in winter (due to

heating), while the current seasonal pattern has maximum

demand in summer (due to air conditioning). The classical

decomposition methods are unable to capture these seasonal

changes over time.

• Occasionally, the value of the time series in a small num­

ber of periods may be particularly unusual. For example,

monthly air passenger traffic may be affected by an industrial

dispute making the traffic during the dispute very different

from usual. The classical method is not robust to these kinds

of unusual values.

6/4 X-12-ARIMA decomposition 

One of the most popular methods for decomposing quarterly 

and monthly data is X-12-ARIMA, which has its origins in 

methods developed by the US Bureau of the Census. It is now 

widely used by the Bureau and government agencies around 

the world. Earlier versions of the method included X-11 and 

X-11-ARIMA. An X-13-ARIMA method is currently under

development at the US Bureau of the Census.

The X-12-ARIMA method is based on classical decomposi­

tion, but with many extra steps and features to overcome the 

drawbacks of classical decomposition that were discussed in the 

previous section. In particular, the trend estimate is available 

for all observations including the end points, and the seasonal 

component is allowed to vary slowly over time. It is also rela­

tively robust to occasional unusual observations. X-12-ARIMA 
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handles both additive and multiplicative decomposition, but 
only allows for quarterly and monthly data. 

The "ARIMA" part of X-12-ARIMA refers to the use of an 
ARIMA model (see Chapter 7) that provides forecasts of the 
series forward in time, as well as backwards in time. Then, 
when a moving average is applied to obtain an estimate of the 
trend-cycle, there is no loss of observations at the start and end 
of the series. 

The algorithm begins in a similar way to classical decompo­
sition, and then the components are refined through several 
iterations. The following outline of the method describes a 
multiplicative decomposition applied to monthly data. Similar 
algorithms are used for additive decompositions and quarterly 
data. 

1. Compute a 2x12 moving average applied to the original
data to obtain a rough estimate of the trend-cycle Tt 

for all periods.
2. Calculate ratios of the data to trend (called "centered

ratios"): ytfTt.
3. Apply separate 3 x 3 MAs to each month of the centered

ratios to form a rough estimate of S t.
4. Divide the centered ratios by S t to get an estimate of

the remainder, Et.
5. Reduce extreme values of E t to get modified Et.
6. Multiply modified E t by S t to get modified centered

ratios.
7. Repeat Step 3 to obtain revised St.
8. Divide original data by the new estimate of S t to give

the preliminary seasonally adjusted series, ytf St.
9. The trend-cycle Tt is estimated by applying a weighted

Henderson MA to the preliminary seasonally adjusted
values. (The greater the randomness, the longer the
length of the moving average used.) For monthly
series: either a 9-, 13-, or 23-term Henderson moving
average is used.

10. Repeat Step 2. New ratios are obtained by dividing the
original data by the new estimate of Tt.

11. Repeat Steps 3-6 using the new ratios and applying a
3 x 5 MA instead of a 3 x 3 MA.
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12. Repeat Step 7 but using a 3 x 5 MA instead of a 3 x 3

MA.

13. Repeat Step 8.

14. The remainder component is obtained by dividing the

seasonally adjusted data from Step 13 by the trend­

cycle obtained in Step 9.

15. Extreme values of the remainder component are

replaced as in Step 5.

16. A series of modified data is obtained by multiplying

the trend-cycle, seasonal component, and adjusted

remainder component together.

The whole process is repeated two more times using the data 

obtained in the Step 16 each time. On the final iteration, the 3 x 5 

MA of Steps 11 and 12 is replaced by either a 3 x 3, 3 x 5, or 3 x 9 

moving average, depending on the variability in the data. 

X-12-ARIMA also has some sophisticated methods to handle

trading day variation, holiday effects and the effects of known 

predictors, which are not covered here. 

A complete discussion of the method is available in 1 Ladiray

and Quenneville (2001). 

There is currently no R package for X-12-ARIMA decompo­

sition. However, free software that implements the method is 

available from the US Census Bureau and an R interface to that 

software is provided by the x12 package. 

6/5 STL decomposition 

STL is a very versatile and robust method for decomposing 

time series. STL is an acronym for "Seasonal and Trend decom­

position using Loess", while Loess is a method for estimating 

nonlinear relationships. The STL method was developed by2 

Cleveland et al. (1990) 

STL has several advantages over the classical decomposition 

method and X-12-ARIMA: 

• Unlike X-12-ARIMA, STL will handle any type of

seasonality, not only monthly and quarterly data.

• The seasonal component is allowed to change over

time, and the rate of change can be controlled by the

user.

• The smoothness of the trend-cycle can also be con­

trolled by the user.

1 Ladiray, D., & Quen­

neville, B. (2001) Sea­
sonal Adjustment with 

the X-11 Method, Lec­

ture Notes in Statistics 

158, Springer-Verlag: 

New York. 

2 Cleveland, R.B. 

and Cleveland, W.S. 

and McRae, J.E. and 

Terpenning, I. (1990) 

"STL: A seasonal-

trend decomposition 

procedure based on 

loess", Journal of Official 

Statistics, 6(1 ), 3-73. 
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• It can be robust to outliers (i.e., the user can specify a

robust decomposition). So occasional unusual obser­

vations will not affect the estimates of the trend-cycle

and seasonal components. They will, however, affect

the remainder component.

On the other hand, STL has some disadvantages. In particular, 

it does not automatically handle trading day or calendar varia­

tion, and it only provides facilities for additive decompositions. 

It is possible to obtain a multiplicative decomposition by 

first taking logs of the data, and then back-transforming the 

components. Decompositions some way between additive and 

multiplicative can be obtained using a Box-Cox transformation 

of the data with O < ,l < 1. A value of ,l = 0 corresponds to the 

multiplicative decomposition while ,l = 1 is equivalent to an 

additive decomposition. 

The best way to begin learning how to use STL is to see some 

examples and experiment with the settings. Figure 6.3 showed 

an example of STL applied to the electrical equipment orders 

data. Figure 6.10 shows an alternative STL decomposition 

where the trend is more flexible, the seasonal component does 

not change over time, and the robust option has been used. 

Here it is more obvious that there has been a down-turn at 

the end of the series, and that the orders in 2009 were unusu­

ally low (corresponding to some large negative values in the 

remainder component). 

The two main parameters to be chosen when using STL are 

the trend window ( t. window) and seasonal window ( s. window). 

These control how rapidly the trend and seasonal components 

can change. Small values allow more rapid change. Setting 

the seasonal window to be infinite is equivalent to forcing the 

seasonal component to be periodic (i.e., identical across years). 

6/6 Forecasting with decomposition 

While decomposition is primarily useful for studying time 

series data, and exploring the historical changes over time, it 

can also be used in forecasting. 

Assuming an additive decomposition, the decomposed time 

series can be written as 
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0 Figure 6.10: The 

electrical equipment 

., 
0 

� 
orders (top) and 

its three additive u 

0 components obtained ro 

from a robust STL 
0 � decomposition with © 

r 
flexible trend and fixed 

oi seasonality. 
C 

{I) 

., 

{I) 

� 
' 

0 

0 

I
u 0 

C 

0 

0 
ro � 

u 
C 

2000 2005 2010 

time 

---------- R code 
fit <- stl(elecequip, t.window=15, s.window="periodic", robust=TRUE) 

plot(fit) 

where A t = ft + Et is the seasonally adjusted component. Or if a 
multiplicative decomposition has been used, we can write 

where A t = TtEt. 
To forecast a decomposed time series, we separately forecast 

the seasonal component, S t , and the seasonally adjusted compo­
nent A t. It is usually assumed that the seasonal component is 
unchanging, or changing extremely slowly, and so it is forecast 
by simply taking the last year of the estimated component. In 
other words, a seasonal na"ive method is used for the seasonal 
component. 

To forecast the seasonally adjusted component, any non­
seasonal forecasting method may be used. For example, a 
random walk with drift model, or Holt's method (discussed in 
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the next chapter), or a non-seasonal ARIMA model (discussed 

in Chapter 8), may be used. 

Example 6.3 Electrical equipment manufacturing 

0 
Naive forecasts of seasonal! ad·usted data 

� 
-

X 0 
4) 

�
.!: 

4) 

"' 

4) 

0 

2000 2005 2010 

Rcode 

fit <- stl(elecequip, t.window=15, s.window="periodic", 

robust=TRUE) 

eeadj <- seasadj(fit) 

plot(naive(eeadj), ylab="New orders index", 

main="Naive forecasts of seasonally adjusted data") 

Figure 6.11 shows nai:ve forecasts of the seasonally adjusted 

electrical equipment orders data. These are then "reseasonal­

ized" by adding in the seasonal nai:ve forecasts of the seasonal 

component. The resulting forecasts of the original data are 

shown in Figure 6.12. The prediction intervals shown in this 

graph are constructed in the same way as the point forecasts. 

That is, the upper and lower limits of the prediction intervals 

on the seasonally adjusted data are "reseasonalized" by adding 

in the forecasts of the seasonal component. In this calculation, 

the uncertainty in the forecasts of the seasonal component has 

been ignored. The rationale for this choice is that the uncer­

tainty in the seasonal component is much smaller than that for 

the seasonally adjusted data, and so it is a reasonable approxi­

mation to ignore it. 

Figure 6.11: Naive fore­

casts of the seasonally 

adjusted data obtained 

from an STL decompo­

sition of the electrical 

equipment orders data. 
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Forecasts from STL + Random walk 
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---------- R code 
feast <- forecast(fit, method="naive") 
plot(fcast, ylab="New orders index") 

6/7 Exercises 

6.1 Show that a 3 x 5 MA is equivalent to a 7-term weighted 

moving average with weights of 0.067, 0.133, 0.200, 

0.200, 0.200, 0.133, and 0.067. 

6.2 The data below represent the monthly sales (in thou-

sands) of product A for a plastics manufacturer for years 

1 through 5 (data set plastics). 

1 2 3 4 5 

Jan 742 741 896 951 1030 

Feb 697 700 793 861 1032 

Mar 776 774 885 938 1126 

Apr 898 932 1055 1109 1285 
May 1030 1099 1204 1274 1468 

Jun 1107 1223 1326 1422 1637 

Jul 1165 1290 1303 1486 1611 

Aug 1216 1349 1436 1555 1608 

Sep 1208 1341 1473 1604 1528 
Oct 1131 1296 1453 1600 1420 

Nov 971 1066 1170 1403 1119 

Dec 783 901 1023 1209 1013 

(a) Plot the time series of sales of product A. Can

you identify seasonal fluctuations and/or a

trend?

Figure 6.12: Forecasts 

of the electrical equip­

ment orders data based 

on a nai:ve forecast of 

the seasonally adjusted 

data and a seasonal 

naive forecast of the 

seasonal component, 

after an an STL de­

composition of the 

data. 
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(b) Use a classical multiplicative decomposition to

calculate the trend-cycle and seasonal indices.

(c) Do the results support the graphical interpreta­

tion from part (a)?

(d) Compute and plot the seasonally adjusted

data.

(e) Change one observation to be an outlier (e.g.,

add 500 to one observation), and recompute

the seasonally adjusted data. What is the effect

of the outlier?

(f) Does it make any difference if the outlier is

near the end rather than in the middle of the

time series?

(g) Use a random walk with drift to produce

forecasts of the seasonally adjusted data.

(h) Reseasonalize the results to give forecasts on

the original scale.

6.3 Figure 6.13 shows the result of decomposing the num­

ber of persons in the civilian labor force in Australia 

each month from February 1978 to August 1995. 

(a) Write about 3-5 sentences describing the re-

sults of the seasonal adjustment. Pay particular

attention to the scales of the graphs in making

your interpretation.

(b) Is the recession of 1991/1992 visible in the

estimated components?



"' 

� ""C 

§ 

C: 

u, 

"' 

u, 

""C 
C: 

� 

""C 
C: 

"iii 

0 
0 

C: 

C: 
0 

0 

6/ TIME SERIES DECOMPOSITION 169 

Australian civilian labour force ('000 persons) 
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Figure 6.13: Decompo­
sition of the number of 
persons in the civilian 
labor force in Australia 
each month from Febru­
ary 1978 to August 
1995. 
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York: John Wiley & Sons. Chap. 8, pp.202-246.
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Exponential smoothing 

Exponential smoothing was proposed in the late 1950s (Brown 

1959, Holt 1957 and Winters 1960 are key pioneering works) 

and has motivated some of the most successful forecasting 

methods. Forecasts produced using exponential smoothing 

methods are weighted averages of past observations, with the 

weights decay ing exponentially as the observations get older. 

In other words, the more recent the observation the higher the 

associated weight. This framework generates reliable forecasts 

quickly and for a wide range of time series which is a great 

advantage and of major importance to applications in industry. 

This chapter is divided into two parts. In the first part we 

present in detail the mechanics of all exponential smoothing 

methods and their application in forecasting time series with 

various characteristics. This is key in understanding the intu­

ition behind these methods. In this setting, selecting and using 

a forecasting method may appear to be somewhat ad-hoc. The 

selection of the method is generally based on recognising key 

components of the time series (trend and seasonal) and how 

these enter the smoothing method (in an additive or multiplica­

tive manner). 

In the second part of the chapter we present statistical mod­

els that underlie exponential smoothing methods. These models 

generate identical point forecasts to the methods discussed in 

the first part of the chapter, but also generate prediction inter­

vals. Furthermore, this statistical framework allows for genuine 

model selection between competing models. 
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Rcode 

oildata <- window(oil,start=1996,end=2007) 

2004 2006 

plot(oildata, ylab="Oil (millions of tonnes)",xlab="Year") 

7/1 Simple exponential smoothing 

The simplest of the exponentially smoothing methods is nat­

urally called "simple exponential smoothing" (SES)1 . This 

method is suitable for forecasting data with no trend or sea­

sonal pattern. For example, the data in Figure 7.1 do not display 

any clear trending behaviour or any seasonality, although the 

mean of the data may be changing slowly over time. We have al­

ready considered the nai:Ve and the average as possible methods 

for forecasting such data (Section 2/3). 

Using the nai:Ve method, all forecasts for the future are equal 

to the last observed value of the series, 

YT+hlT = YT, 

for h = 1, 2, .... Hence, the na"ive method assumes that the most 

current observation is the only important one and all previous 

observations provide no information for the future. This can be 

thought of as a weighted average where all the weight is given 

to the last observation. 

Figure 7.1: Oil produc­

tion in Saudi Arabia 

from 1996 to 2007. 

1 In some books, it is 

called "single exponen­

tial smoothing". 
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Using the average method, all future forecasts are equal to a 
simple average of the observed data, 

l T 

YT+hlT = T L,Yt, 
t=l 

for h 
= l, 2, .... Hence, the average method assumes that all 

observations are of equal importance and they are given equal 
weight when generating forecasts. 

We often want something between these two extremes. For 
example it may be sensible to attach larger weights to more 
recent observations than to observations from the distant 
past. This is exactly the concept behind simple exponential 
smoothing. Forecasts are calculated using weighted averages 
where the weights decrease exponentially as observations come 
from further in the past - the smallest weights are associated 
with the oldest observations: 

YT+llT = 
ayy + a(l - a)Yr-1 + a(l - a)2J1r-2 + a(l - a)3J1T-3 + .. •,

(7.1) 
where O :0:::: a :0:::: 1 is the smoothing parameter. The one-step­
ahead forecast for time T + 1 is a weighted average of all the ob­
servations in the series y 1, ... ,yy. The rate at which the weights 
decrease is controlled by the parameter a. 

Table 7.1 shows the weights attached to observations for four 
different values of a when forecasting using simple exponential 
smoothing. Note that the sum of the weights even for a small a 
will be approximately one for any reasonable sample size. 

Weights assigned to observations for: 
Observation a= 0.2 a =0.4 a= 0.6 a= 0.8 
JIT 0.2 0.4 0.6 0.8 
JIT-1 0.16 0.24 0.24 0.16 
J/T-2 0.128 0.144 0.096 0.032 
J/T-3 0.1024 0.0864 0.0384 0.0064 
J/T-4 (0.2)(0.8)4 (0.4)(0.6)4 (0.6)(0.4)4 (0.8)(0.2)4 

J/T-5 (0.2)(0.8)5 (0.4)(0.6)5 (0.6)(0.4)5 (0.8)(0.2)5 

For any a between O and 1, the weights attached to the 
observations decrease exponentially as we go back in time, 
hence the name "exponential smoothing". If a is small (i.e., 

Table 7.1: Exponen-

tially decaying weights 

attached to observa-

tions of the time series 

when generating fore-

casts using simple 

exponential smoothing. 
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close to 0), more weight is given to observations from the more 
distant past. If a is large (i.e., close to 1 ), more weight is given 
to the more recent observations. At the extreme case where 
a= l, :YT+llT = YT and forecasts are equal to the nai:Ve forecasts. 

We present three equivalent forms of simple exponential 
smoothing, each of which leads to the forecast equation (7 .1 ). 

Weighted average form 

The forecast at time t + l is equal to a weighted average between 
the most recent observation Yt and the most recent forecast 

:Ytlt-1, 

:Yt+llt = ayt + (1 -a):Ytlt-1 
fort= l, ... , T, where O :0:::: a :0:::: 1 is the smoothing parameter. 

The process has to start somewhere, so we let the first fore-
cast of y1 be denoted by fo. Then 

:Y2 11 = ay1 + (1 -a)fo 

:Y3 12 = ay2 + (l -a)P211 

:Y413 = ay3 + (1 -a)f3 12 

Then substituting each equation into the following equation, we 
obtain 

:Y3 12 = ay2 + (1-a) [ay1 + (1-a)fo] 

= ay2 + a(l -a)y1 + (1 -a)2t0 

:Y413 = ay3 + (l -a)[ay2 + a(l -a)y1 + (1-a)2fo] 

= ay3 + a(l -a)y2 + a(l -a)2y1 + (1 -a)3 fo 

T-1
A 

\ 

• 

T YT+IIT = L a(l -a)1YT-j + (1 -a) fo. 
j=O 

(7.2) 

So the weighted average form leads to the same forecast equa­
tion (7.1). 

Component form 

An alternative representation is the component form. For sim­
ple exponential smoothing the only component included is the 
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level, et . (Other methods considered later in this chapter may 

also include a trend b t and seasonal component st.) Component 

form representations of exponential smoothing methods com -

prise a forecast equation and a smoothing equation for each of 

the components included in the method. The component form 

of simple exponential smoothing is given by: 

Forecast equation 

Smoothing equation 

:Yt+11t = 
et 

et = a31t + (1 - a)et-1, 

where et is the level (or the smoothed value) of the series at time 

t. The forecast equation shows that the forecasted value at time

t + 1 is the estimated level at time t. The smoothing equation

for the level (usually referred to as the level equation) gives the

estimated level of the series at each period t.

Applying the forecast equation for time T gives, :YT+llT = eT , 

the most recent estimated level. 

If we replace et by :Yt+llt and et-l by :Ytlt-1 in the smoothing 

equation, we will recover the weighted average form of simple 

exponential smoothing. 

Error correction form 

The third form of simple exponential smoothing is obtained by 

re-arranging the level equation in the component form to get 

what we refer to as the error correction form 

et = 
et-l + a(yt - et-l) 

= 
et-l + aet 

where et
= Yt -et-l = Yt -Ytlt-l fort= 1, ... , T. That is, et is the one­

step error at time t computed on the training data. The training 

data errors lead to the adjustment/correction of the estimated 

level throughout the smoothing process fort= 1, ... , T.

For example, if the error at time tis negative, then :Ytlt-l > Yt 

and so the level at time t - 1 has been over-estimated. The new 

level et is then the previous level et-l adjusted downwards. The 

closer a is to one the "rougher" the estimate of the level (large 

adjustments take place). The smaller the a the "smoother" the 

level (small adjustments take place). 
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Multi-horizon Forecasts 

So far we have given forecast equations for only one step ahead. 
Simple exponential smoothing has a "flat" forecast function, 
and therefore for longer forecast horizons, 

YT+hlT = YT+11r = er, h = 2,3, .... 

Remember these forecasts will only be suitable if the time series 
has no trend or seasonal component. 

Initialisation 

The application of every exponential smoothing method re­
quires the initialisation of the smoothing process. For simple 
exponential smoothing we need to specify an initial value for 
the level, e0, which appears in the last term of equation (7.2). 
Hence e0 plays a role in all forecasts generated by the process. 
In general, the weight attached to e0 is small. However, in the 
case that a is small and/or the time series is relatively short, the 
weight may be large enough to have a noticeable effect on the 
resulting forecasts. Therefore, selecting suitable initial values 
can be quite important. A common approach is to set e0 = y1 
(recall that fo = P110)-

Other exponential smoothing methods that also involve a 
trend and/or a seasonal component require initial values for 
these components also. We tabulate common strategies for 
selecting initial values in Table 7.9. 

An alternative approach (see below) is to use optimization to 
estimate the value of e0 rather than set it to some value. Even 
if optimization is used, selecting appropriate initial values can 
assist the speed and precision of the optimization process. 

Optimization 

For every exponential smoothing method we also need to 
choose the value for the smoothing parameters. For simple 
exponential smoothing, there is only one smoothing parameter 
(a), but for the methods that follow there is usually more than 
one smoothing parameter. 

There are cases where the smoothing parameters may be 
chosen in a subjective manner - the forecaster specifies the 
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value of the smoothing parameters based on previous expe­
rience. However, a more robust and objective way to obtain 
values for the unknown parameters included in any exponential 
smoothing method is to estimate them from the observed data. 

In Section 4/2 we estimated the coefficients of a regression 
model by minimizing the sum of the squared errors (SSE). Sim­
ilarly, the unknown parameters and the initial values for any 
exponential smoothing method can be estimated by minimizing 
the SSE. The errors are specified as et = Yt -Ytlt-1 for t = 1, ... , T 
(the one-step-ahead training errors). Hence we find the values 
of the unknown parameters and the initial values that minimize 

T T 

SSE = L, (Yt -Ptit-il 2 
= L, e;. 

t=l t=l 
(7.3) 

Unlike the regression case (where we have formulae that return 
the values of the regression coefficients which minimize the 
SSE) this involves a non-linear minimization problem and we 
need to use an optimization tool to perform this. 

Example 7.1 Oil production 

In this example, simple exponential smoothing is applied 
to forecast oil production in Saudi Arabia. The black line in 
Figure 7.2 is a plot of the data over the period 1996-2007, 
which shows a changing level over time but no obvious trending 
behaviour. 

In Table 7 .2 we demonstrate the application of simple expo­
nential smoothing. The last three columns show the estimated 
level for times t = 0 tot= 12, then the forecasts for h = l,2,3, 
for three different values of a. For the first two columns the 
smoothing parameter a is set to 0.2 and 0.6 respectively and 
the initial level e0 is set to y1 in both cases. In the third col­
umn both the smoothing parameter and the initial level are 
estimated. Using an optimization tool, we find the values of 
a and e0 that minimize the SSE, subject to the restriction that 
0 :0:::: a :0:::: 1. Note that the SSE values presented in the last row 
of the table is smaller for this estimated a and e0 than for the 
other values of a and f0• 

The three different sets of forecasts for the period 2008-
2010 are plotted in Figure 7 .2. Also plotted are one-step-ahead 
training forecasts alongside the data over the period 1996-2007. 
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Year 

Rcode 

2008 

fit1 <- ses(oildata, alpha=0.2, initial="simple", h=3) 

fit2 <- ses(oildata, alpha=0.6, initial="simple", h=3) 

fit3 <- ses(oildata, h=3) 

2010 

plot(fit1, plot.conf=FALSE, ylab="Oil (millions of tonnes)", 

xlab="Year", main="", fcol="white", type="o") 

lines(fitted(fit1), col="blue", type="o") 

lines(fitted(fit2), col="red", type="o") 

lines(fitted(fit3), col="green", type="o") 

lines(fit1$mean, col="blue", type="o") 

lines(fit2$mean, col="red", type="o") 

lines(fit3$mean, col="green", type="o") 

legend("topleft",lty=1, col=c(1,"blue","red","green"), 

Figure 7.2: Simple 

exponential smoothing 

applied to oil produc­

tion in Saudi Arabia 

( 1996-2007). 

c("data", expression(alpha == 0.2), expression(alpha 

expression(alpha == 0.89)),pch=1) 

0 .6), 

The influence of a on the smoothing process is clearly visible. 

The larger the a the greater the adjustment that takes place in 

the next forecast in the direction of the previous data point; 

smaller a leads to less adjustment and so the series of one-step 

training forecasts is smoother. 
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Time Observed a = 0.2 a = 0.6 a = 0.89* 

Year period t values Level et 

Yt 

1995 0 446.7 446.7 447.5* 

1996 1 446.7 446.7 446.7 446.7 

1997 2 454.5 448.2 451.3 453.6 

1998 3 455.7 449.7 453.9 455.4 

1999 4 423.6 444.5 435.8 427.1 

2000 5 456.3 446.8 448.1 453.1 

2001 6 440.6 445.6 443.6 441.9 

2002 7 425.3 441.5 432.6 427.1 

2003 8 485.1 450.3 464.1 478.9 

2004 9 506.0 461.4 489.3 503.1 

2005 10 526.8 474.5 511.8 524.2 

2006 11 514.3 482.5 513.3 515.3 

2007 12 494.2 484.8 501.8 496.5 

h Forecasts YT+hlT 
2008 13 484.8 501.8 496.5 

2009 14 484.8 501.8 496.5 

2010 15 484.8 501.8 496.5 

Analysis of one-step-ahead training errors over period 1-12 

MAE 24.7 20.2 20.1 

RMSE 32.1 26.0 25.1 

MAPE 5.1 4.2 4.3 

SSE 12391.7 8098.6 7573.4 

*a= 0.89 and Ea = 447.5 are obtained by minimizing SSE over periods t = 1,2, ... , 12.

7/2 Holt's linear trend method 

Holt (1957) extended simple exponential smoothing to allow 

forecasting of data with a trend. This method involves a forecast 

equation and two smoothing equations (one for the level and 

one for the trend): 

Forecast equation 

Level equation 

Trend equation 

Yt+hlt = et + hht 

et
= ayt + (1 -a)(et-1 + ht-d 

ht
= f3"(et-et-d + (1-/3*)ht-1 

Table 7.2: Forecasting 

total oil production 

in millions of tonnes 

for Saudi Arabia using 

simple exponential 

smoothing with three 

different values for the 

smoothing parameter a 
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where et denotes an estimate of the level of the series at time t, 

ht denotes an estimate of the trend (slope) of the series at time 

t, a is the smoothing parameter for the level, 0 :0:::: a :0:::: 1 and 

/3* is the smoothing parameter for the trend, 0 :0:::: /3* :0:::: 1 (we 

denote this as /3* instead of f3 for reasons that will be explained 

in Section 7 /7). 

As with simple exponential smoothing, the level equation 

here shows that et is a weighted average of observation Yt and 

the one-step-ahead training forecast for time t, here given by 

et-I +ht-I· The trend equation shows that ht is a weighted average 

of the estimated trend at time t based on et -et-I and ht-I, the 

previous estimate of the trend. 

The forecast function is no longer flat but trending. The 

h-step-ahead forecast is equal to the last estimated level plus h

times the last estimated trend value. Hence the forecasts are a

linear function of h.

The error correction form of the level and the trend equa­

tions show the adjustments in terms of the one-step training 

errors: 

et = et-1 + ht-1 + aet 

ht = ht-I + a/3* et 

Example 7.2 Air Passengers 

In Table 7 .3 we demonstrate the application of Holt's linear 

method to air transportation data for all passengers with an 

Australian airline. To initialise the method we set e0 = YI and 

ho = Y2 -y1 as suggested in Table 7.9. Alternatively we could 

fit a linear trend to the first few observations (see Section 4/8) 

and use the estimates of the intercept and the slope as the initial 

values for the level and the trend respectively. 

For demonstration purposes the smoothing parameters 

are set to a = 0.8 and /3* = 0.2. Otherwise, the smoothing 

parameters together with the initial values could be estimated 

by minimizing the SSE for the one-step training errors as in 

Section 7 I l. 
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I
Holt's linear method 

I
Exponential trend method Table 7.3: Applying 

Holt's linear method 
Year t Yt et ht Yt et ht Yt and the Exponential 

trend method with 
1989 0 17.55 4.31 17.55 1.25 

a = 0.8 and p• = 0.2 to 

1990 1 17.55 18.41 3.62 21.86 18.41 1.21 21.86 Australian Air Passen-

1991 2 21.86 21.89 3.59 22.03 21.93 1.20 22.21 
ger data, (thousands of 
passengers) 

1992 3 23.89 24.21 3.33 25.48 24.39 1.18 26.38 

1993 4 26.93 27.05 3.24 27.54 27.32 1.17 28.89 

1994 5 26.89 27.57 2.69 30.29 27.91 1.14 32.02 

1995 6 28.83 29.12 2.46 30.26 29.44 1.12 31.88 

1996 7 30.08 30.38 2.22 31.58 30.68 1.11 33.10 

1997 8 30.95 31.28 1.96 32.60 31.56 1.09 33.99 

1998 9 30.19 30.80 1.47 33.24 31.04 1.07 34.47 

1999 10 31.58 31.72 1.36 32.27 31.91 1.06 33.23 

2000 11 32.58 32.68 1.28 33.08 32.84 1.06 33.89 

2001 12 33.48 33.57 1.20 33.96 33.71 1.05 34.66 

2002 13 39.02 38.17 1.88 34.78 38.29 1.07 35.39 

2003 14 41.39 41.12 2.10 40.06 41.28 1.07 40.86 

2004 15 41.60 41.92 1.84 43.22 42.10 1.06 44.13 

h YT+hlT YT+hlT 
2005 1 43.76 44.60 

2006 2 45.59 47.24 

2007 3 47.43 50.04 

2008 4 49.27 53.01 

2009 5 51.10 56.15 

Rcode 

air <- window(ausair,start=1990,end=2004) 

fit1 <- holt(air, alpha=0.8, beta=0.2, initial="simple", h=5) 

fit2 <- holt(air, alpha=0.8, beta=0.2, initial="simple", exponential=TRUE, h=5) 

# Results for first model: 

fit1$model$state 

fitted(fit1) 

fi t1$mean 

7 /3 Exponential trend method 

A variation from Holt's linear trend method is achieved by 

allowing the level and the slope to be multiplied rather than 
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added: 

Yt+hl t = et h7 
et = ayt + (1- a)(et-1 ht-d

b * et *)b t = f3 -
e 

+ (1- f3 t-1t-1 

where ht now represents an estimated growth rate (in relative 
terms rather than absolute) which is multiplied rather than 
added to the estimated level. The trend in the forecast function 
is now exponential rather than linear, so that the forecasts 
project a constant growth rate rather than a constant slope. The 

0 
N 

1990 

Forecasts from Holt's method with ex onential trend 

Data 

Holt's linear trend 

Exponential trend 

Additive damped trend 

1995 2000 

Year 

Rcode 

2005 

Figure 7.3: Forecasting 
Air Passengers in 
Australia (thousands 
of passengers). For all 
methods a = 0.8 and 
/3* = 0.2, and for the 
additive damped trend 
method <p = 0.85. 

fit3 <- holt(air, alpha=0.8, beta=0.2, damped=TRUE, initial="simple", h=5) 

plot(fit2, type="o", ylab="Air passengers in Australia (millions)", xlab="Year", 

fcol="white", plot.conf=FALSE) 

lines(fitted(fit1), col="blue") 

lines(fitted(fit2), col="red") 

lines(fitted(fit3), col="green") 

lines(fit1$mean, col="blue", type="o") 

lines(fit2$mean, col="red", type="o") 

lines(fit3$mean, col="green", type="o") 

legend("topleft", lty=1, col=c("black","blue","red","green"), 

c("Data","Holt's linear trend","Exponential trend","Additive damped trend")) 
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Example 7.2 Air Passengers (continued) 
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In Table 7.3 we also demonstrate the application of the ex­
ponential trend method. As for Holt's linear method we set, 
a= 0.8, /3* = 0.2 and £0 = yi, however h0 = y2/y 1 as suggested in 
Table 7.9. 

Notice the difference between the trend and the growth rate 
in the two methods in the columns labelled h t. In Holt's linear 
method, h t is added to the corresponding level term in the 
calculations; in the exponential trend method, h t is multiplied 
with the corresponding level term in the calculations. 

7/4 Damped trend methods 

The forecasts generated by Holt's linear method display a 
constant trend (increasing or decreasing) indefinitely into the 
future. Even more extreme are the forecasts generated by the 
exponential trend method which include exponential growth or 
decline. 

Empirical evidence indicates that these methods tend to 
over-forecast, especially for longer forecast horizons. Motivated 
by this observation, Gardner and McKenzie (1985) introduced a 
parameter that "dampens" the trend to a flat line some time in 
the future. Methods that include a damped trend have proven 
to be very successful and are arguably the most popular indi­
vidual methods when forecasts are required automatically for 
many series. 

Additive damped trend 

In conjunction with the smoothing parameters a and /3* (with 
values between 0 and 1 as in Holt's method), this method also 
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includes a damping parameter 0 < <p < 1: 

Yt+hl t =et+ ( </J + </J2 
+ • • • + </Jh)bt

et
= ayt + (1 -a)(et-1 + </Jbt-d 

bt = f3'(et -et-d + (1 -/3*)</Jbt+ 

If <p = l the method is identical to Holt's linear method. For val­
ues between 0 and 1, <p dampens the trend so that it approaches 
a constant some time in the future. In fact the forecasts con­
verge to er + <fJbr/(l - <p) as h - oo for any value 0 < <p < l. 
The effect of this is that short-run forecasts are trended while 
long-run forecasts are constant. 

The error correction form of the smoothing equations is 

et = et-1 + </Jbt-1 + aet 
bt = </Jbt-1 + af3'et . 

Example 7.2 Air Passengers (continued) 

Figure 7.3 shows the one-step training forecasts, and the fore­
casts for years 2005-2010 generated from Holt's linear trend 
method, exponential trend and additive damped trend. The 
most optimistic forecasts come from the exponential trend 
method while the least optimistic come from the damped trend 
method, with the forecasts generated by Holt's linear trend 
method somewhere between the two. 

Multiplicative damped trend 

Motivated by the improvements in forecasting performance 
seen in the additive damped trend case, Taylor (2003) intro­
duced a damping parameter to the exponential trend method 
resulting to a multiplicative damped trend method: 

A - e b(<P+<P2+··+<Ph l Yt+hl t - t t 

- cf, et - ayt + (1 -a)et-1 bt-l

bt = /3* /t + (1 -/3*)bt1 ·t-1 

This method will produce even more conservative forecasts 
than the additive damped trend method when compared to 
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Holt's linear method. The error correction form of the smooth­

ing equations is 

Example 7.3 Sheep in Asia 

In this example we compare the forecasting performance of 

all the non-seasonal methods we have considered so far in 

forecasting the sheep livestock population in Asia. The data 

spans the period 1970-2007. We withhold the period 2001-

2007 as a test set, and use the data up to and including year 

2000 for the training set (see Section 2.5 for a definition of 

training and test sets). Figure 7.5 shows that data and the 

forecasts from all methods. 

The parameters and initial values of the methods are es­

timated for all methods by minimizing SSE (as specified in 

Equation (7.3)) over the training set. In Table 7.4 we present the 

estimation results and error measures over the training and the 

test sets. 

---------- R code 

livestock2 <- window(livestock,start=1970,end=2000) 

fit1 <- ses(livestock2) 

fit2 <- holt(livestock2) 

fit3 <- holt(livestock2,exponential=TRUE) 

fit4 <- holt(livestock2,damped=TRUE) 

fit5 <- holt(livestock2,exponential=TRUE,damped=TRUE) 

# Results for first model: 

fi t1$model 

accuracy(fit1) # training set 

accuracy(fit1,livestock) # test set 

For the simple exponential smoothing method, the estimated 

smoothing parameter is a = l. This is expected as the series is 

clearly trending over time and simple exponential smoothing 

requires the largest possible adjustment in each step to capture 

this trend. 

For the other methods, there is also a trend component. With 

the exception of the multiplicative damped trend method, the 

smoothing parameter for the slope parameter is estimated to 
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SES Holt's Exponential Additive Multiplicative 

linear trend damped damped 

a 

{3* 

</> 

Parameter estimates and initial values 

1.00 0.98 

0 

263.92 257.78 

5.01 

0.98 

0 

255.52 

1.01 

0.99 

0 

0.98t 

254.58 

5.39 

training errors over the training set 1970-2000 

RMSE 14.77 13.92 14.06 14.00 

SSE 

MAE 

RMSE 

MAPE 

MASE 

6761.47 6006.06 6128.46 6080.26 

Forecast errors over the test set 2001-2007 

20.38 

25.46 

4.60 

2.26 

10.69 

11.88 

2.54 

1.19 

9.64 

12.50 

2.33 

1.07 

14.18 

15.78 

3.26 

1.57 

t the parameter is restricted to </> � 0. 98. See text for more details. 

Holt's linear trend 

0 

0.98 

0 

0.98t 

254.69 

1.02 

14.03 

6100.11 

11.77 

12.62 

2.76 

1.31 

�7-----------------------------, 

0 

t-----------------------------, M 

Additive damped trend 

�>---------------------------< 

0 

0 
.; 

0 

L__----------------------==s---i'" 

1970 1975 1980 1985 

---------- R code 
plot(fit2$model$state) 
plot(fit4$model$state) 

1990 1995 2000 

Table 7.4: Estimation 
results for Example 7.3. 

Figure 7.4: Level and 
slope components for 
Holt's linear trend 
method and the ad­
ditive damped trend 
method. 
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---------- R code 

Figure 7.5: Forecasting 

livestock, sheep in Asia: 

comparing forecasting 

performance of non­

seasonal methods. 

plot(fit3, type="o", ylab="Livestock, sheep in Asia (millions)", 

flwd=1, plot.conf=FALSE) 

lines(window(livestock,start=2001),type="o") 

lines(fit1$mean,col=2) 

lines(fit2$mean,col=3) 

lines(fit4$mean,col=5) 

lines(fit5$mean,col=6) 

legend("topleft", lty=1, pch=1, col=1:6, 

c("Data","SES","Holt's","Exponential", 

"Additive Damped","Multiplicative Damped")) 

be zero, indicating that the trend is not changing over time. Of 

course, the trend estimated using the damped trend methods 

will change in the future due to the damping. 

In Figure 7.4, we plot the level and trend components for 

Holt's method and for the additive damped trend method. The 

slope of the trend component for Holt's method is constant, 

showing that the trend is linear. In contrast, the slope of the 

trend component for the damped trend method is decreasing, 

showing that the trend is levelling off. 

For the additive damped trend method, the damping pa­

rameter</> is restricted to a maximum of 0.98 (the estimation 

returned an optimal value of</>= 1 ). This restriction is imposed 

to ensure that the additive damped trend method generates no­

ticeably different forecasts from Holt's linear method, otherwise 

we get identical forecasts. 
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The SSE measures calculated over the training set show 

that Holt's linear trend method provides the best fit to the 

data followed by the additive damped trend method. Simple 

exponential smoothing generates the largest one-step training 

errors. In Figure 7.5 we can examine the forecasts generated by 

the methods. Pretending that we have not seen the data over the 

test-set we would conclude that all forecasts are quite plausible 

especially from the methods that account for the trend in the 

data. 

Comparing the forecasting performance of the methods over 

the test set in Table 7.4, the exponential trend model is the 

most accurate method according to the MAE, MAPE and MASE, 

while Holt's linear method is most accurate according to the 

RMSE. 

Conflicting results like this are very common when perform­

ing forecasting competitions between methods. As forecasting 

tasks can vary by many dimensions (length of forecast horizon, 

size of test set, forecast error measures, frequency of data, etc.), 

it is unlikely that one method will be better than all others for 

all forecasting scenarios. What we require from a forecasting 

method are consistently sensible forecasts, and these should be 

frequently evaluated against the task at hand. 

7/5 Holt-Winters seasonal method 

Holt (1957) and Winters (1960) extended Holt's method to cap­

ture seasonality. The Holt-Winters seasonal method comprises 

the forecast equation and three smoothing equations - one for 

the level et, one for trend b t, and one for the seasonal compo­

nent denoted by s t, with smoothing parameters a, p• and y. We 

use m to denote the period of the seasonality, i.e., the number of 

seasons in a year. For example, for quarterly data m = 4, and for 

monthly data m = 12. 

There are two variations to this method that differ in the 

nature of the seasonal component. The additive method is 

preferred when the seasonal variations are roughly constant 

through the series, while the multiplicative method is preferred 

when the seasonal variations are changing proportional to 

the level of the series. With the additive method, the seasonal 

component is expressed in absolute terms in the scale of the 

observed series, and in the level equation the series is seasonally 
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adjusted by subtracting the seasonal component. Within each 
year the seasonal component will add up to approximately 
zero. With the multiplicative method, the seasonal component 
is expressed in relative terms (percentages) and the series 
is seasonally adjusted by dividing through by the seasonal 
component. Within each year, the seasonal component will sum 
up to approximately m.

Holt-Winters additive method 

The component form for the additive method is: 

Yt+hlt = et+ hbt + St-m+h1;, 

et= a(yt -St-m) + (1 -a)(et-1 + bt-d

bt = f3'(et -et-d + (l -f3*)bt-1 

St = y(yt -et-1 -bt-1) + (1 -y)st-m, 

where hin = L(h-1) mod mJ + 1, which ensures that the estimates 
of the seasonal indices used for forecasting come from the final 
year of the sample. The level equation shows a weighted aver­
age between the seasonally adjusted observation (Yt -St-m) and 
the non-seasonal forecast (et-I+ bt-d for time t. The trend equa­
tion is identical to Holt's linear method. The seasonal equation 
shows a weighted average between the current seasonal index, 

(Yt -et-I -bt-d, and the seasonal index of the same season last 
year (i.e., m time periods ago). 

The equation for the seasonal component is often expressed 
as 

St= y*(yt -et)+ (1 -y*)st-m•

If we substitute et from the smoothing equation for the level of 
the component form above, we get 

which is identical to the smoothing equation for the seasonal 
component we specify here with y = y*(l - a). The usual 
parameter restriction is O :0:::: y* :0:::: 1, which translates to O :0:::: y :0:::: 

l -a.

The error correction form of the smoothing equations is:

et = et-1 + bt-1 + aet 

bt = bt-1 + af3'et 

The notation LuJ means 

the largest integer not 

greater than u. 



190 FORECASTING: PRINCIPLES AND PRACTICE 

where et = Yt -( et-I + b t-I + S t-m) = Yt -Ptit-l are the one-step 
training forecast errors. 

Holt-Winters multiplicative method 

The component form for the multiplicative method is: 

Yt+hl t = (et + hb t)St-m+h"i;,· 

et = a .1'.!__ 
+ (l -a)(et-1 + b t-d

5 t-m

and the error correction representation is: 

Example 7.4 International tourist visitor nights in Australia 

In this example we employ the Holt-Winters method with 
both additive and multiplicative seasonality to forecast tourists 
visitor nights in Australia by international arrivals. Figure 7.6 
shows the data alongside the one-step-ahead training forecasts 
over the sample period 2005Q 1-201 0Q4 and the forecasts for 
the period 2011Ql-2012Q4. The data show an obvious seasonal 
pattern with peaks observed in the March quarter of each year 
as this corresponds to the Australian summer. 
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The application of the method with additive and multiplica­

tive seasonality are presented in Tables 7 .5 and 7 .6 respectively. 

The results show that the method with the multiplicative sea­

sonality fits the data best. This was expected as the time plot 

shows the seasonal variation in the data increases as the level 

of the series increases. This is also reflected in the two sets of 

forecasts; the forecasts generated by the method with the mul­

tiplicative seasonality portray larger and increasing seasonal 

variation as the level of the forecasts increases compared to the 

forecasts generated by the method with additive seasonality. 

Forecasts from Holt-Winters' multi licative method 

"' 
-e- data 

0 -e- Holt Winters' Additive C 
<D 

� -e- Holt Winters' Multiplicative 

I 
.!!! 

0 
U) "" 

.!: 

"' ·c 

.9 
0 

·.;; 
·;;: 

C 

0 

C 

2006 2008 

Year 

---------- R code 
aust <- window(austourists,start=2005) 
fit1 <- hw(aust,seasonal="additive") 

2010 

fit2 <- hw(aust,seasonal="multiplicative") 

2012 

Figure 7.6: Forecasting 

international visitor 

nights in Australia 

using Holt-Winters 

method with both addi­

tive and multiplicative 

seasonality. 

plot(fit2,ylab="lnternational visitor night in Australia (millions)", 
plot.conf=FALSE, type="o", fcol="white", xlab="Year") 

lines(fitted(fit1), col="red", lty=2) 
lines(fitted(fit2), col="green", lty=2) 
lines(fit1$mean, type="o", col="red") 
lines(fit2$mean, type="o", col="green") 
legend("topleft",lty=1, pch=1, col=1:3, 

c("data","Holt Winters' Additive","Holt Winters' Multiplicative")) 
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Qtr-Year t Yt et ht 

2004 QI -3

2004 Q2 -2

2004 Q3 -1

2004 Q4 0 33.8 0.65 

2005 QI 1 41.7 34.4 0.57 

2005 Q2 2 24.0 34.9 0.53 

2005 Q3 3 32.3 35.4 0.52 

2005 Q4 4 37.3 35.9 0.52 

2006 QI 5 46.2 36.4 0.50 

2006 Q2 6 29.3 37.0 0.54 

2006 Q3 7 36.5 37.6 0.58 

2006 Q4 8 43.0 38.2 0.66 

2007 QI 9 48.9 38.9 0.64 

2007 Q2 10 31.2 39.6 0.67 

2007 Q3 11 37.7 40.2 0.67 

2007 Q4 12 40.4 40.9 0.63 

2008 QI 13 51.2 41.5 0.61 

2008 Q2 14 31.9 42.0 0.59 

2008 Q3 15 41.0 42.7 0.61 

2008 Q4 16 43.8 43.2 0.59 

2009 QI 17 55.6 43.9 0.62 

2009 Q2 18 33.9 44.4 0.59 

2009 Q3 19 42.1 45.0 0.58 

2009 Q4 20 45.6 45.6 0.55 

2010 QI 21 59.8 46.2 0.62 

2010 Q2 22 35.2 46.8 0.57 

2010 Q3 23 44.3 47.3 0.56 

2010 Q4 24 47.9 47.8 0.53 

h 

2011 QI 1 

2011 Q2 2 

2011 Q3 3 

2011 Q4 4 

2012 QI 5 

2012 Q2 6 

2012 Q3 7 

2012 Q4 8 

St Pt 

10.7 

-9.5

-2.6

1.4 

10.7 45.1 

-9.5 25.5 

-2.6 32.9 

1.4 37.3 

10.7 47.1 

-9.5 27.5 

-2.6 35.0 

1.4 39.5 

10.7 49.6 

-9.5 30.0 

-2.6 37.7 

1.4 42.3 

10.7 52.1 

-9.5 32.6 

-2.6 40.1 

1.4 44.7 

10.7 54.5 

-9.5 35.0 

-2.6 42.5 

1.4 47.0 

10.7 56.8 

-9.5 37.3 

-2.6 44.8 

1.4 49.3 

J/T+hlT 

59.0 

39.4 

46.9 

51.3 

61.1 

41.5 

49.0 

53.4 

The smoothing parameters and initial estimates for the components have been 

estimated by minimizing SSE (a = 0.025, p• = 0.023, y = 0 and SSE= 60.27, 
RMSE= 1.585). 

Table 7.5: Applying 

Holt-Winters method 
with additive season-

ality for forecasting 
international visitor 

nights in Australia. 
Notice the additive 

seasonal component 
summing to approxi-

mately zero. 



Qtr-Year t Yt et 

2004 QI -3

2004 Q2 -2

2004 Q3 -1

2004 Q4 0 32.2 

2005 QI 1 41.7 33.1 

2005 Q2 2 24.0 32.9 

2005 Q3 3 32.3 33.9 

2005 Q4 4 37.3 35.4 

2006 QI 5 46.2 36.4 

2006 Q2 6 29.3 37.9 

2006 Q3 7 36.5 38.7 

2006 Q4 8 43.0 40.6 

2007 QI 9 48.9 40.4 

2007 Q2 10 31.2 41.2 

2007 Q3 11 37.7 41.1 

2007 Q4 12 40.4 40.8 

2008 QI 13 51.2 41.0 

2008 Q2 14 31.9 41.7 

2008 Q3 15 41.0 42.7 

2008 Q4 16 43.8 43.0 

2009 QI 17 55.6 43.7 

2009 Q2 18 33.9 44.4 

2009 Q3 19 42.1 44.8 

2009 Q4 20 45.6 44.9 

2010 QI 21 59.8 46.2 

2010 Q2 22 35.2 46.6 

2010 Q3 23 44.3 47.0 

2010 Q4 24 47.9 47.2 

h 

2011 QI 1 

2011 Q2 2 

2011 Q3 3 

2011 Q4 4 

2012 QI 5 

2012 Q2 6 

2012 Q3 7 

2012 Q4 8 

ht 

0.93 

0.93 

0.78 

0.81 

0.91 

0.92 

1.00 

0.98 

1.11 

0.92 

0.90 

0.76 

0.60 

0.54 

0.57 

0.63 

0.58 

0.61 

0.61 

0.58 

0.52 

0.63 

0.59 

0.57 

0.51 

7 / EXPONENTIAL SMOOTHING 193 

St Pt 
Table 7.6: Applying 

Holt-Winters method 

1.3 with multiplicative sea-

0.8 
sonality for forecasting 
international visitor 

0.9 nights (millions) in 

1.0 
Australia. Notice the 

multiplicative seasonal 
1.3 41.8 component summing to 

0.8 25.9 approximately m = 4. 

0.9 31.9 

1.0 35.7 

1.3 45.9 

0.8 28.4 

0.9 36.8 

1.0 40.8 

1.3 52.7 

0.8 31.5 

0.9 39.8 

1.0 43.0 

1.3 52.3 

0.8 31.6 

0.9 40.0 

1.0 44.6 

1.3 55.1 

0.8 33.8 

0.9 42.6 

1.0 46.6 

1.3 57.5 

0.8 35.7 

0.9 44.6 

1.0 48.9 

J/T+hlT 

60.3 

36.7 

46.1 

50.6 

62.8 

38.2 

48.0 

52.7 

The smoothing parameters and initial estimates for the components have 

been estimated by minimizing SSE (a = 0, p• = 0 and y = 0 and SSE= 34.6, 
RMSE= 1.201). 
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Figure 7.7: Estimated 

components for Holt­

Winters method 

with additive and 

multiplicative seasonal 

components. 

states <- cbind(fit1$model$states[,1:3],fit2$model$states[,1:3]) 

colnames(states) <- c("level","slope","seasonal","level","slope","seasonal") 

plot(states, xlab="Year") 

fit1$model$state[,1:3] 

fitted( fit 1) 

fit1$mean 

Holt-Winters damped method 

A method that is often the single most accurate forecasting 

method for seasonal data is the Holt-Winters method with a 

damped trend and multiplicative seasonality: 

Yt+h lt 
= [et+(</>+ </>

2 
+ · · · + </>

h
)bt]St-m+h;,,· 

et
= a(yifs i-m) + (1 -a)(et-1 + <f>b i-d 

ht
= f3*(ei -ei-d + (1-13*)</>ht-1 

Yi 
) St

= Y
(e <f>b )

+(1-yst-m 
t-1 + t-1 

Rcode 

hw(x, damped=TRUE, seasonal="multiplicative") 
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7 /6 A taxonomy of exponential smoothing methods 

Exponential smoothing methods are not restricted to those 

we have presented so far. By considering variations in the 

combination of the trend and seasonal components, fifteen 

exponential smoothing methods are possible, listed in Table 7.7. 

Each method is labelled by a pair of letters (T,S) defining the 

type of 'Trend' and 'Seasonal' components. For example, (A,M) 

is the method with an additive trend and multiplicative sea­

sonality; (M,N) is the method with multiplicative trend and no 

seasonality; and so on. 

Seasonal Component 

Trend N A M 

Component (None) (Additive) (Multiplicative) 

N (None) (N,N) (N,A) (N,M) 

A (Additive) (A,N) (A,A) (A,M) 

Ad (Additive damped) (Ad,N) (Ad,A) (Ad,M) 

M (Multiplicative) (M,N) (M,A) (M,M) 

Md (Multiplicative damped) (Md,N) (Md,A) (Md,M) 

Some of these methods we have already seen: 

(N,N) = simple exponential smoothing 

(A,N) = Holt's linear method 

(M,N) = Exponential trend method 

(Ad,N) = additive damped trend method 

(Md,N) = multiplicative damped trend method 

(A,A) = additive Holt-Winters method 

(A,M) = multiplicative Holt-Winters method 

(Ad,M) = Holt-Winters damped method 

This type of classification was proposed by Pegels (1969). It 

was later extended by Gardner (1985) to include methods with 

additive damped trend and by Taylor (2003) to include methods 

with multiplicative damped trend. 

Table 7.8 gives the recursive formulae for applying all possi­

ble fifteen exponential smoothing methods. Each cell includes 

the forecast equation for generating h-step-ahead forecasts 

Table 7.7: A two 

way classification of 

exponential smoothing 

methods. 
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Trend Seasonal 

N A 

Yt+hlt = et Yt+hlt = ft + St-m+h:;, 
N et = ayt + (1-a)ft-1 et = a(yt-St-ml + (l -a)ft-1 

St = Y(Yt - ft-d + (1-y)st-m 
Yt+hlt = et + hht Yt+hlt = et + hht + St-m+h:;, 

A et = ayt + (1-a)(ft-1 + ht-1) et = a(yt-St-ml + (l -a)(ft-1 + ht-1) 
ht = /3*(ft -ft- 1 ) + (1 -f3*)ht-1 ht = /3*(ft -ft- 1 ) + (l -/3*)ht-1 

St = Y(Yt - ft-1 - ht-1) + (1-y)st-m 
Yt+hlt = et + </>hht Yt+hlt = ft + </>hht + St-m+h:;, 

Ad et = ayt + (1-a)(ft-1 + </>ht-1) et = a(yt -St-m) + (1 -a)(ft-1 + </>ht-1) 
ht = /3*(ft -ft- 1 ) + (1 -/3*)</>ht-1 ht = /3*(ft -ft- 1 ) + (l -/3*)</>ht-1 

St = Y(Yt -et-1 - </>ht-1) + (1 -y)st-m 
Yt+hlt = fth� Yt+hlt = ft h� + St-m+h:;, 

M ft = ayt + (1-a)ft-1 ht-1 ft = a(yt-St-ml + (l -a)ft-lht-1 
ht = /3*(ftlft-i) + (1 -/3')ht-i ht = f3'({tf{t-1) + (1-f3')ht-1 

St = Y(Yt - ft-lht-d + (1-y)st-m 
Yt+hlt = fthf" Yt+hlt = fthf" + St-m+h:;, 

Md et = ayt + (1-a)ft-1 ht_! et = a(yt-St-ml + (l-a)ft-1hf-i 
ht = /3*(ftlft-i) + (1 -/3')ht_ 1 ht = f3'(ltflt-1) + (1-/3')hf-i 

St = Y(Yt -ft- 1 ht_ 1 ) + (1-y)st-m 

M 

Yt+hlt = ftSt-m+h:;, 
et = a(yt!st-ml + (l-a)ft-1 
St = y(ytlft-1) + (1-y)st-m 
Yt+hlt = (ft + hht)St-m+h:;, 
et = a(yt!st-ml + (l -a)(ft-1 + ht-il 
ht = /3*(ft -ft- 1 ) + (1 -f3*)ht-1 
St = y(ytl(ft-1 + ht-d) + (1 -y)st-m 
Yt+hlt = (ft + </>hhtlst-m+h:;, 
et = a(yt!st-ml + (l -a)(ft-1 + </>ht-il 
ht = /3*(ft -ft- 1 ) + (1 -/3*)</>ht-1 
St = y(ytf(ft-1 + </>ht_iJ) + (1-y)st-m 
:Yt+hlt = ft h� St-m+h:;, 
ft = a(ytfst-m) + (l -a)ft-lht-1 
ht = f3'({tf{t-1) + (1-/3'lht- 1 

St = y(yt/(ft-1 ht-1 )) + (1-y)st-m 
Yt+hlt = fthf" St-m+h:;, 
et = a(yt!st-ml + (l -a)ft-1 ht_! 
ht = f3'(ltfft-1) + (1-/3')hf-i 
St = y(yt/(ft-1 ht_1 )) + (1-y)st-m 

Table 7.8: Formulae for recursive calculations and point forecasts. In each case, ft denotes the 

series level at time t, ht denotes the slope at time t, St denotes the seasonal component of the 

series at time t, and m denotes the number of seasons in a year; a, {3*, y and <pare smoothing 
parameters, <fJh = <p + cp 2 

+ •· • + <ph and h� = L(h-1) mod mJ + 1. 

Method Initial values 

(N,N) fo = Y1 

(A,N) (Ad,N) fo = Y1, ho = Y2 -y1 

(M,N) (Md,N) fo = Y1, ho = Y2IY1 
(A,A) (Ad,A) fo = ¼(Y1 + · · · + Ym) 

ho = ¼ [Ym+�-yl + ... + Ym+;,?m] 
So = Ym -eo, 5-1 = Ym-1 -eo, • • •  , 5-m +l = YI -eo 

(A,M) (Ad ,M) fo = ¼(Y1 + · · · + Ym) 
ho = ¼ [Ym+�-yl + ... + Ym+;,?m] 
So = Ymlfo, 5-1 = Ym-1/fo, • • ., 5-m +l = Y1lfo 

Table 7. 9: Initialisation
strategies for some of 
the more commonly
used exponential
smoothing methods.
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and the smoothing equations for applying the method. In Ta­

ble 7.9 we present some strategies for selecting initial values 

for some of the most commonly applied exponential smoothing 

methods. We do not recommend that these strategies be used 

directly; rather, they are useful in providing starting values for 

the optimization process. 

7/7 Innovations state space models for exponential smooth­

ing 

In the rest of this chapter we study statistical models that under­

lie the exponential smoothing methods we have considered so 

far. The exponential smoothing methods presented in Table 7 .8 

are algorithms that generate point forecasts. The statistical 

models in this section generate the same point forecasts, but 

can also generate prediction (or forecast) intervals. A statistical 

model is a stochastic (or random) data generating process that 

can produce an entire forecast distribution. The general statis­

tical framework we will introduce also provides a platform for 

using the model selection criteria introduced in Chapter 5, thus 

allowing the choice of model to be made in an objective manner. 

Each model consists of a measurement equation that de­

scribes the observed data and some transition equations that 

describe how the unobserved components or states (level, trend, 

seasonal) change over time. Hence these are referred to as "state 

space models". 

For each method there exist two models: one with additive 

errors and one with multiplicative errors. The point forecasts 

produced by the models are identical if they use the same 

smoothing parameter values. They will, however, generate 

different prediction intervals. 

To distinguish between a model with additive errors and one 

with multiplicative errors (and to also distinguish the models 

from the methods) we add a third letter to the classification 

of Table 7 .7. We label each state space model as ETS( •, •, •) for 

(Error, Trend, Seasonal). This label can also be thought of 

as ExponenTial Smoothing. Using the same notation as in 

Table 7.7, the possibilities for each component are: Error= 

{A,M}, Trend= {N,A,Ad,M,Md} and Seasonal= {N,A,M). 
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Therefore, in total there exist 30 such state space models: 15 
with additive errors and 15 with multiplicative errors. 

ETS(A,N,N): simple exponential smoothing with additive errors 

As discussed in Section 7 /1, the error correction form of simple 

exponential smoothing is given by 

where et
= Yt -et-1 and Ytlt-1 = et-1 · Thus, et

= Yt -Ytlt-1 represents 

a one-step forecast error and we can write Yt 
= et-I+ et. 

To make this into an innovations state space model, all 
we need to do is specify the probability distribution for et. 
For a model with additive errors, we assume that one-step 
forecast errors et are normally distributed white noise with 

mean O and variance a 2. A short-hand notation for this is et
= 

E t ~ NID(O,a 2); NID stands for "normally and independently 
distributed". 

Then the equations of the model can be written 

Yt = et-1 + E t 

et
= et-1 + aE t . 

(7.4) 

(7.5) 

We refer to (7.4) as the measurement (or observation) equation 
and (7.5) as the state (or transition) equation. These two equa­
tions, together with the statistical distribution of the errors, 
form a fully specified statistical model. Specifically, these con­
stitute an innovations state space model underlying simple 
exponential smoothing. 

The term "innovations" comes from the fact that all equa­

tions in this type of specification use the same random error 
process, E t · For the same reason this formulation is also referred 
to as a "single source of error" model in contrast to alternative 
multiple source of error formulations, which we do not present 
here. 

The measurement equation shows the relationship between 
the observations and the unobserved states. In this case observa­
tion Yt is a linear function of the level et-V the predictable part 
of Yt, and the random error E t, the unpredictable part of Yt · For 

other innovations state space models, this relationship may be 
nonlinear. 
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The transition equation shows the evolution of the state 
through time. The influence of the smoothing parameter a is 
the same as for the methods discussed earlier. For example a 
governs the degree of change in successive levels. The higher 
the value of a, the more rapid the changes in the level; the 
lower the value of a, the smoother the changes. At the lowest 
extreme, where a = 0, the level of the series does not change 
over time. At the other extreme, where a = I, the model reduces 
to a random walk model, Jlt = Yt-1 + Et · 

ETS(M,N,N): simple exponential smoothing with multiplicative 

errors 

In a similar fashion, we can specify models with multiplicative 
errors by writing the one-step random errors as relative errors: 

Yt -Ptit-1 
Et

= --A --
Ytlt-1 

where Et ~ NID(O, a 2). Substituting Ytlt-l = et-I gives Yt =

et-1 + et-1 Et and et
= Yt -Ptit-1 = et-1 Et · 

Then we can write the multiplicative form of the state space 
model as 

Yt = et_i(I + Et) 

et
= et-I (1 + a Et). 

ETS(A,A,N): Holt's linear method with additive errors 

For this model, we assume that one-step forecast errors are 
given by Et = Yt - et-I - ht-I ~ NID(O, a2). Substituting this 
into the error correction equations for Holt's linear method we 
obtain 

Yt = et-1 + ht-1 + Et 

et
= et-1 + b t-1 + aEt 

ht = b t-1 + f3Et, 

where for simplicity we have set f3 = af3*. 

ETS(M,A,N): Holt's linear method with multiplicative errors 

Specifying one-step forecast errors as relative errors such that 

Yt -( et-1 + ht-d 
Et

= ------
(et-1 + ht-d 
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and following a similar approach as above, the innovations state 

space model underlying Holt's linear method with multiplica­

tive errors is specified as 

Jlt = (ft-l + ht-1Hl + Et) 

ft= (ft-l + ht-1)(1 + aEt) 

ht= ht-l + J3(ft-l + ht-1)Et 

where again /3 = a/3* and Et ~ NID(0,a 2). 

Other ETS models 

In a similar fashion, we can write an innovations state space 

model for each of the exponential smoothing methods of Ta­

ble 7 .8. Table 7 .10 presents the equations for all of the models 

in the ETS framework. 

Estimating ETS models 

An alternative to estimating the parameters by minimizing 

the sum of squared errors, is to maximize the "likelihood". 

The likelihood is the probability of the data arising from the 

specified model. So a large likelihood is associated with a 

good model. For an additive error model, maximizing the 

likelihood gives the same results as minimizing the sum of 

squared errors. However, different results will be obtained for 

multiplicative error models. In this section, we will estimate the 

smoothing parameters a, /3, y and <p, and the initial states £0, h0, 

so,5-1,···,s_m+V by maximizing the likelihood. 

The possible values that the smoothing parameters can 

take is restricted. Traditionally the parameters have been 

constrained to lie between 0 and 1 so that the equations can be 

interpreted as weighted averages. That is, 0 < a, /3*, y*, <p < l. For 

the state space models, we have set /3 = a/3* and y = (l - a)y*. 

Therefore the traditional restrictions translate to 0 < a <

1, 0 < /3 < a and 0 < y < l - a. In practice, the damping 

parameter <p is usually constrained further to prevent numerical 

difficulties in estimating the model. A common constraint is to 

set 0.8 < <p < 0.98. 

Another way to view the parameters is through a considera­

tion of the mathematical properties of the state space models. 

Then the parameters are constrained to prevent observations in 



ADDITIVE ERROR MODELS 

Trend 

N 

N Yt = t,_1 +Et 
e, = e,_ 1 + at:, 

y, = e,_1 + b,_1 + c, 
A e, = e,_ 1 + b,_ 1 + at:, 

b, = b,_ 1 + /fr, 

y, = e,_1 + cfib,_1 + c, 
Ad e, = e,_ 1 + cf,h,_ 1 + at:, 

b, = cf,h,_ 1 + /fr, 

y, = e,_1 h,_ 1 + c, 
M e, = e,_ 1 b,_ 1 + at:, 

b, = b,_ 1 + /fr,/t,_ 1 

y, = e,_1 ht_1 + c, 
Md e, =t,_ 1 bt-

1 +aE, 
b, = bt_1 + ffr,lt,_1 

MULTIPLICATIVE ERROR MODELS 

Trend 

N 

A 

M 

N 

Yt = t,_1 (1 +E,) 
e, = e,_i(l + at:,) 

y, = (t,_ 1 + h,_i)(l + t:,) 
e, = (t,_1 + h,_1 )(1 + at:,) 
b, = b,_ 1 + f)(t,_ 1 + h,_ 1 )t:, 

y, = (t,_ 1 + cf,h,_i)(l + Et) 
e, = (t,_ 1 + cfib,_i)(l + at:,) 
b, = cfih,_1 + p(e,_ 1 + cfib,_i)E, 

y, = e,_1 h,_ 1 (1 + c,} 
e, = e,_ 1 b,_i(l + at:,) 
b, = b,_i(l + f)t:,) 

y, = e,_1 ht_1 (1 + t:,) 
e, = e,_ 1 bt_1 (1 + at:,) 
b, = bt_1 (1 + /jt:,) 
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Seasonal 

A 

Yt = e,_ 1 + 5 t-m + Et 
e, = e,_ 1 + at:, 
s, = s,_m + JI Et 

Yt = e,_ 1 + b,_ 1 + s,_m + Et 
e, = e,_ 1 + b,_ 1 + at:, 
b, = b,_ 1 + /fr, 
s, = St-m + JI Et 

Yt = e,_ 1 + cfih,_1 + s,_m + E, 
e, = e,_ 1 + cf,h,_ 1 + at:, 
h, = cf,h,_ 1 + /fr, 
s, = St-m + JI Et 

Yt = e,_ 1 b,_ 1 + s,_m + Et 

e, = e,_ 1 h,_ 1 + at:, 
h, = h,_ 1 + /fr,/t,_ 1 

s, = s,_m + JI Et 

Yt =t,_ibt-1 +s,_m +Et 

e, = e,_ 1 ht_1 + at:, 
h, = ht_1 + /fr,/t,_ 1 

s, = s,_m + JI Et 

Seasonal 

A 

Yt = (t,_ 1 + s,_m)(l + E,} 
t, = t,_ 1 + a(tt-1 + s,_m)Et 
St = St-m + y(tt-1 + St-m)Et 

Yt = (t,_ 1 + h,_ 1 + s,_m)(l + t:,) 
e, = e,_ 1 + b,_ 1 + a(e,_1 + h,_ 1 + s,_m)E, 
h, = h,_ 1 + p(e,_ 1 + h,_ 1 + s,_m)E, 
s, = s,_m + y(e,_1 + h,_ 1 + s,_m)E, 

Yt = (t,_ 1 + cf,b,_1 + s,_m)(l + E,) 
e, = e,_ 1 + cfih,_1 + a(e,_1 + cf,h,_ 1 + s,_m)E, 
h, = cf,h,_ 1 + p(e,_ 1 + cf,h,_ 1 + s,_m)E, 
s, = s,_m + y(e,_1 + cfih,_1 + s,_m)E, 

Yt = (t,_ 1 h,_ 1 + s,_m)(l +Et) 
e, = e,_ 1 h,_ 1 + a(e,_1 h,_ 1 + s,_m)E, 
h, = h,_ 1 + p(e,_ 1 h,_ 1 + s,_m)E,/t,_1 
s, = s,_m + y(e,_1 b,_ 1 + s,_m)E, 

Yt = (t,_ 1 ht_1 + s,_m)(l + E,) 
e, = e,_ 1 ht_! + a(e,_1 ht_! + s,_m)E, 
h, =ht_!+ p(e,_ 1 ht_!+ s,_m)E,/t,_1 
s, = s,_m + y(e,_1bt-1 + s,_m)E, 

M 

Yt = e,-t 5t-m + Et 
e, = e,_ 1 + at:,!s,_m 
s, = s,_m + JIE,/t,_1 

Yt = (t,_ 1 + h,_ 1 )s,_m + Et 
e, = e,_ 1 + b,_ 1 + aE,/s,_m 
b, = b,_1 + ffr,/s,_m 
s, = s,_m + JIE,/(t,_1 + b,_i) 

Yt = (t,_ 1 + cfih,_1 )s,_m + E, 
e, = e,_ 1 + cf,h,_ 1 + at:,/s,_m 
b, = cfiht-1 + ffr,ls,_m 
s, = s,_m + JIE,/(t,_1 + cf,h,_i) 

Yt = e,_ 1 h,_ 1 s,_m + Et 

e, = e,_ 1 b,_1 + at:,ls,_m 
b, = b,_1 + ffr,/(s,_me,_ 1 ) 
s, = s,_m + JIE,/(t,_1 h,_i) 

Yt = e,_ 1 ht_! s,_m + Et 

e, =t,_ 1 bt-
1 +aE,ls,_m 

b, = bt-1 + {)E,/(s,_me,_1) 
s, = s,_m +JIE,/(t,_ 1 ht_

1 ) 

M 

Yt = e,_1s,_m(l + E,} 
e, = e,_i(l + at:,) 
s, = s,_m(l + JIE,) 

Yt = (t,_ 1 + h,_i)s,_m(l + t:,) 
e, = (t,_1 + h,_1 )(1 + at:,) 
b, = b,_1 + f)(t,_ 1 + h,_ 1 )t:, 
s, = s,_m(l + JIE,) 

Yt = (t,_ 1 + cf,h,_i)s,_m(l + E,) 
e, = (t,_ 1 + cfib,_i)(l + at:,) 
b, = cfih,_1 + p(e,_ 1 + cfib,_i)E, 
s, = s,_m(l + JIE,) 

Yt = e,_ 1 h,_ 1 s,_m(l + Et) 
e, = e,_ 1 b,_i(l + at:,) 
b, = b,_i(l + f)t:,) 
s, = s,_m(l + JIE,) 

Yt = e,_ 1 ht_! s,_m(l + E,} 
e, = e,_ 1 bt_1 (1 + at:,) 
b, = bt_1 (1 + /jt:,) 
s, = s,_m(l + JI Et) 

Table 7.10: State space equations for each of the models in the ETS framework. 



202 FORECASTING: PRINCIPLES AND PRACTICE 

the distant past having a continuing effect on current forecasts. 

This leads to some admissibility constraints on the parame-

ters which are usually (but not always) less restrictive than 

the usual region. For example for the ETS(A,N,N) model, the 

usual parameter region is 0 < a < I but the admissible region 

is 0 < a < 2. For the ETS(A,A,N) model, the usual parameter 

region is 0 < a < I and 0 < f3 < a but the admissible region is 

0 < a < 2 and 0 < f3 < 4 - 2a. 

Model selection 

A great advantage of the ETS statistical framework is that 

information criteria can be used for model selection. The AIC, 

AICc and BIC, introduced in Section 5/3, can be used here to 

determine which of the 30 ETS models is most appropriate for a 

given time series. 

For ETS models, Akaike's Information Criterion (AIC) is 

defined as 

AIC = -2log(L) + 2k, 

where L is the likelihood of the model and k is the total number 

of parameters and initial states that have been estimated. 

The AIC corrected for small sample bias (AICc) is defined as 

AICc = AIC + 

2(k + l)(k + 2)
, 

T-k

and the Bayesian Information Criterion (BIC) is

BIC = AIC + k[log(T) - 2]. 

Some of the combinations of (Error, Trend, Seasonal) can lead 

to numerical difficulties. Specifically, the models that can cause 

such instabilities are: ETS(M,M,A), ETS(M,Md,A), ETS(A,N,M), 

ETS(A,A,M), ETS(A,Ad,M), ETS(A,M,N), ETS(A,M,A), ETS(A,M,M), 

ETS(A,Md,N), ETS(A,Md,A), and ETS(A,Md,M). We normally 

do not consider these particular combinations when selecting a 

model. 

Models with multiplicative errors are useful when the data 

are strictly positive, but are not numerically stable when the 

data contain zeros or negative values. Therefore multiplicative 

errors models will not be considered if the time series is not 

strictly positive. In that case only the six fully additive models 

will be applied. 
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The ets () function in R 

The models can be estimated in R using the ets ( ) function in 

the forecast package. The R code below shows all the possible 

arguments this function takes, and their default values. If only 

the time series is specified, and all other arguments are left at 

their default values, then an appropriate model will be selected 

automatically. We explain each of the arguments below. 

---------- R code 

ets(y, model="ZZZ", damped=NULL, alpha=NULL, beta=NULL, 

y 

gamma=NULL, phi=NULL, additive.only=FALSE, lambda=NULL, 

lower=c(rep(0.0001,3), 0.8), upper=c(rep(0.9999,3),0.98), 

opt.crit=c(''lik'',"amse", 11 mse","sigma'',"mae"), nmse=3, 

bounds=c("both","usual","admissible"), 
ic=c("aicc","aic","bic"), restrict=TRUE) 

The time series to be forecast. 

model 

A three-letter code indicating the model to be estimated us­

ing the ETS classification and notation. The possible inputs 

are "N" for none, "A" for additive, "M" for multiplicative, or 

"Z" for automatic selection. If any of the inputs is left as "Z" 

then this component is selected according to the information 

criterion chosen. The default value of ZZZ ensures that all 

components are selected using the information criterion. 

damped 

If damped=TRUE, then a damped trend will be used (either Ad 

or Md )- If damped=FALSE, then a non-damped trend will used. 

If damped=NULL (the default), then either a damped or a non­

damped trend will be selected according to the information 

criterion chosen. 

alpha, beta, gamma, phi 

The values of the smoothing parameters can be specified us­

ing these arguments. If they are set to NULL (the default 

setting for each of them), the parameters are estimated. 

additive.only 

Only models with additive components will be considered if 

additive.only=TRUE. Otherwise all models will be considered. 

lambda 

Box-Cox transformation parameter. It will be ignored if 
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lambda=NULL (the default value). Otherwise, the time series 
will be transformed before the model is estimated. When 
lambda is not NULL, additive.only is set to TRUE. 

lower, upper 

Lower and upper bounds for the parameter estimates a, {3*, 
y* and cp. 

opt.c.rit 

The optimization criterion to be used for estimation. The de­
fault setting is maximum likelihood estimation, used when 
opt. c.ri t=lik. 

bounds 

ic 

This specifies the constraints to be used on the parameters. 
The traditional constraints are set using bounds=" usual" and 
the admissible constraints are set using bounds=" admissible". 

The default (bounds="both") requires the parameters to sat­
isfy both sets of constraints. 

The information criterion to be used in selecting models, set 
by default to a ice . 

.restrict 

If .rest.rict=TRUE (the default), the models that cause numer­
ical difficulties are not considered in model selection. 

Forecasting with ETS models 

Point forecasts are obtained from the models by iterating the 
equations for t = T + I, ... , T +hand setting all Et = 0 for t > T.

For example, for model ETS(M,A,N), JIT+l =(fr+ by)(l + Er+d· 
Therefore YT+IIT =er+ by. Similarly, 

Yr+2 = (fr+1 + br+1Hl + Er+1) 

=[(fr+ br)(l + aEr+d +by+ {3(fr + by)Er+il (1 + Er+il• 

Therefore, YT+2IT = fr + 2br, and so on. These forecasts are 
identical to the forecasts from Holt's linear method and also 
those from model ETS(A,A,N). So the point forecasts obtained 
from the method and from the two models that underlie the 
method are identical (assuming the same parameter values are 
used). 

A big advantage of the models is that prediction intervals can 
also be generated- something that cannot be done using the 
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methods. The prediction intervals will differ between models 

with additive and multiplicative methods. 

For some models, there are exact formulae that enable pre­

diction intervals to be calculated. A more general approach that 

works for all models is to simulate future sample paths, condi­

tional on the last estimate of the states, and to obtain prediction 

intervals from the percentiles of these simulated future paths. 

These options are available in R using the forecast function 

in the forecast package. The R code below shows the all the 

possible arguments this function takes when applied to an ETS 

model. We explain each the arguments in what follows. 

---------- R code 

forecast(object, h=ifelse(object$m>1, 2*object$m, 10), 

level=c(B0,95), fan=FALSE, simulate=FALSE, bootstrap=FALSE, 

npaths=5000, Pl=TRUE, lambda=object$lambda, ... ) 

object 

The object returned by the ets ( ) function. 

h 

The forecast horizon - the number of periods to be forecast. 

level 

The confidence level for the prediction intervals. 

fan 

If fan= TRUE, level=seq ( 50, 99, by=1). This is suitable for 

fan plots. 

simulate 

If simulate=TRUE, prediction intervals are produced by simu­

lation rather than using algebraic formulae. Simulation will 

also be used (even if simulate=FALSE) where there are no 

algebraic formulae available for the particular model. 

bootstrap 

If bootstrap= TRUE and simulate= TRUE, then the simulated 

prediction intervals use re-sampled errors rather than nor­

mally distributed errors. 

npaths 

PI 

The number of sample paths used in computing simulated 

prediction intervals. 

If PI= TRUE, then prediction intervals are produced; otherwise 

only point forecasts are calculated. If PI=FALSE, then level, 

fan, simulate, bootstrap and npaths are all ignored. 
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lambda 

The Box-Cox transformation parameter. This is ignored if 

lambda=NULL. Otherwise, forecasts are back-transformed via 

an inverse Box-Cox transformation. 

Example 7.1 Oil production example ( revisited) 

Figure 7.8 shows the point forecasts and prediction intervals 

from an estimated ETS(A,N,N) model. The estimates for the 

smoothing parameter a and the initial level £0 are 0.89 and 

447 .49 respectively, identical to the estimates for the simple 

exponential smoothing method estimated earlier (see beginning 

of Example 7.1). The plot shows the importance of generating 

prediction intervals. The intervals here are relatively wide, so 

interpreting the point forecasts without accounting for the large 

uncertainty can be very misleading. 

0 

0 
<D 

2000 

Forecasts from ETS A N N 

2005 2010 

Rcode 

oildata <- window(oil,start=1996,end=2007) 

fit <- ets(oildata, model="ANN") 

2015 

plot(forecast(fit, h=3), ylab="Oil (millions of tones)") 

fit$par 

alpha l 

0.892 447.489 

R output 

Figure 7.8: Point 
forecasts and 80% 
and 95% prediction 
intervals from model 
ETS(A,N,N). 
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Example 7.4 International tourist visitor nights in Australia (revisited) 

We now employ the ETS statistical framework to forecast 
tourists visitor nights in Australia by international arrivals 
over the period 2011-2012. We let the ets () function select the 
model by minimizing the AICc. 

---------- R code 

vndata <- window(austourists, start=2005) 

fit <- ets(vndata) 

summary(fit) 

---------- R output 
ETS(M,A,M) 

Call: 

ets(y = vndata) 

Smoothing parameters: 

alpha = 0.4504 

beta = 4e-04 

gamma = 0.0046 

Initial states: 

l = 32.4349

b = 0.6533

s=1.0275 0.9463 0.7613 1.2648

sigma: 0.0332 

AIC AI Cc BIC 

105.972 115.572 115.397 

Training set error measures: 

ME RMSE MAE MPE MAPE MASE ACF1 

Training set -0.081646 1.33328 1.0647 -0.221243 2.65469 0.374361 -0.089119 

The model selected is ETS(M,A,M): 

Jlt = (et-1 + bt-dSt-m(l + Et) 

et= (ft-1 + bt_i)(l + act)

ht= bt-1 + /3(ft-1 + bt1 )Et

5t = 5t-m(l + YEt). 

The parameter estimates are a = 0.4504, f3 = 0.0004, and 
y = 0.0046. The output returns the estimates for the initial 
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states f0, b0, s0, s_1, s_2 and s_3. The training RMSE for this 

model is slightly lower than the Holt-Winter methods with 

additive and multiplicative seasonality presented in Tables 7.5 

and 7.6 respectively. Figure 7.9 shows the states over time while 

Figure 7.10 shows point forecasts and prediction intervals 

generated from the model. The intervals are much narrower 

than the prediction intervals in the oil production example. 
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Rcode 
plot(fit) 

Forecasts from ETS M Md M 

2006 2008 

Rcode 
plot(forecast(fit,h=8), 

2010 

2010 

2012 

ylab="International visitor night in Australia (millions)") 

Figure 7.9: Graphical 

representation of the 

estimated states over 

time. 

Figure 7.10: Forecast­

ing international visitor 

nights in Australia 

from an ETS(M,Md,M) 

model. 
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7.1 Data set books contains the daily sales of paperback 

and hardcover books at the same store. The task is to 

forecast the next four days' sales for paperback and 

hardcover books (data set books). 

(a) Plot the series and discuss the main features of

the data.

(b) Use simple exponential smoothing with the

ses function (setting initial="simple") and

explore different values of a for the paperback

series. Record the within-sample SSE for the

one-step forecasts. Plot SSE against a and find

which value of a works best. What is the effect

of a on the forecasts?

(c) Now let ses select the optimal value of a. Use

this value to generate forecasts for the next

four days. Compare your results with (b).

(d) Repeat but with ini tial="optimal ". How

much difference does an optimal initial level

make?

(e) Repeat steps (b)-(d) with the hardcover series.

7.2 (a) Apply Holt's linear method to the paperback 

and hardback series and compute four-day 

forecasts in each case. 

(b) Compare the SSE measures of Holt's method

for the two series to those of simple exponen­

tial smoothing in the previous question. Dis­

cuss the merits of the two forecasting methods

for these data sets.

(c) Compare the forecasts for the two series using

both methods. Which do you think is best?

(d) Calculate a 95% prediction interval for the first

forecast for each series using both methods, as­

suming normal errors. Compare your forecasts

with those produced by R.

7.3 For this exercise, use the price of a dozen eggs in the 

United States from 1900-1993 (data set eggs). Experi­

ment with the various options in the hol t () function 

to see how much the forecasts change with damped or 
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exponential trend. Also try changing the parameter 

values for a and f3 to see how they affect the forecasts. 

Try to develop an intuition of what each parameter and 

argument is doing to the forecasts. 

[Hint: use h= 100 when calling hol t ( ) so you can clearly 

see the differences between the various options when 

plotting the forecasts.] 

Which model gives the best RMSE? 

7.4 For this exercise, use the quarterly UK passenger vehicle 

production data from 1997:1-2005:1 (data set ukcars). 

(a) Plot the data and describe the main features of

the series.

(b) Decompose the series using STL and obtain the

seasonally adjusted data.

(c) Forecast the next two years of the series using

an additive damped trend method applied to

the seasonally adjusted data. Then reseasonal­

ize the forecasts. Record the parameters of the

method and report the RMSE of the one-step

forecasts from your method.

(d) Forecast the next two years of the series using

Holt's linear method applied to the seasonally

adjusted data. Then reseasonalize the forecasts.

Record the parameters of the method and

report the RMSE of of the one-step forecasts

from your method.

(e) Now use ets () to choose a seasonal model for

the data.

(f) Compare the RMSE of the fitted model with

the RMSE of the model you obtained using an

STL decomposition with Holt's method. Which

gives the better in-sample fits?

(g) Compare the forecasts from the two ap­

proaches? Which seems most reasonable?

7.5 For this exercise, use the monthly Australian short-term 

overseas visitors data, May 1985-April 2005. (Data set: 

visitors.) 

(a) Make a time plot of your data and describe the

main features of the series.
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(b) Forecast the next two years using Holt-Winters'

multiplicative method.

(c) Why is multiplicative seasonality necessary

here?

(d) Experiment with making the trend exponential

and/or damped.

(e) Compare the RMSE of the one-step forecasts

from the various methods. Which do you

prefer?

(f) Now fit each of the following models to the

same data:

(i) a multiplicative Holt-Winters' method;

(ii) an ETS model;

(iii) an additive ETS model applied to a

Box-Cox transformed series;

(iv) a seasonal naive method applied to

the Box-Cox transformed series;

(v) an STL decomposition applied to

the Box-Cox transformed data fol­

lowed by an ETS model applied to

the seasonally adjusted (transformed)

data.

(g) For each model, look at the residual diagnos­

tics and compare the forecasts for the next two

years. Which do you prefer?

7/9 Further reading 

• Gardner Jr, E. S. (1985). Exponential smoothing: The state of the
art. Journal of Forecasting 4(1), 1-28.

• Gardner Jr, E. S. (2006). Exponential smoothing: The state of the
art-Part II. International Journal of Forecasting 22( 4), 637-666.

• Hyndman, R. J., A. B. Koehler, J. K. Ord and R. D. Snyder (2008).

Forecasting with exponential smoothing: the state space approach.

Berlin: Springer-Verlag.
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ARIMA models 

ARIMA models provide another approach to time series fore­

casting. Exponential smoothing and ARIMA models are the 

two most widely-used approaches to time series forecasting, 

and provide complementary approaches to the problem. While 

exponential smoothing models were based on a description 

of trend and seasonality in the data, ARIMA models aim to 

describe the autocorrelations in the data. 

Before we introduce ARIMA models, we need to first discuss 

the concept of stationarity and the technique of differencing 

time series. 

8/1 Stationarity and differencing 

A stationary time series is one whose properties do not de­

pend on the time at which the series is observed. 1 So time

series with trends, or with seasonality, are not stationary - the 

trend and seasonality will affect the value of the time series 

at different times. On the other hand, a white noise series is 

stationary - it does not matter when you observe it, it should 

look much the same at any period of time. 

Some cases can be confusing - a time series with cyclic be­

haviour (but with no trend or seasonality) is stationary. That is 

because the cycles are not of fixed length. So before we observe 

the series we cannot be sure where the peaks and troughs of the 

cycles will be. 

In general, a stationary time series will have no predictable 

patterns in the long-term. Time plots will show the series to be 

1 More precisely, if {ytl 
is a stationary time 
series, then for alls, 
the distribution of 
(Yt,•••,Yt+sl does not 
depend on t. 
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Figure 8.1: Which of these series are stationary? (a) Dow Jones index on 292 consecutive days; 

(b) Daily change in Dow Jones index on 292 consecutive days; (c) Annual number of strikes

in the US; (d) Monthly sales of new one-family houses sold in the US; (e) Annual price of a

dozen eggs in the US (constant dollars); (f) Monthly total of pigs slaughtered in Victoria, Aus­

tralia; (g) Annual total of lynx trapped in the McKenzie River district of north-west Canada;

(h) Monthly Australian beer production; (i) Monthly Australian electricity production.

roughly horizontal (although some cyclic behaviour is possible) 

with constant variance. 

Consider the nine series plotted in Figure 8.1. Which of these 

do you think are stationary? 

Obvious seasonality rules out series (d), (h) and (i). Trend 

rules out series (a), (c), (e), (f) and (i). Increasing variance also 

rules out (f). That leaves only (b) and (g) as stationary series. 
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At first glance, the strong cycles in series (g) might appear to 

make it non-stationary. But these cycles are aperiodic - they 

are caused when the lynx population becomes too large for 

the available feed, so they stop breeding and the population 

falls to very low numbers, then the regeneration of their food 

sources allows the population to grow again, and so on. In the 

long-term, the timing of these cycles is not predictable. Hence 

the series is stationary. 

Differencing 

In Figure 8.1, notice how the Dow Jones index data was non­

stationary in panel (a), but the daily changes were stationary in 

panel (b). This shows one way to make a time series stationary 

- compute the differences between consecutive observations.

This is known as differencing.

Transformations such as logarithms can help to stabilize the 

variance of a time series. Differencing can help stabilize the 

mean of a time series by removing changes in the level of a time 

series, and so eliminating (or reducing) trend and seasonality. 

As well as looking at the time plot of the data, the ACF plot 

is also useful for identifying non-stationary time series. For 

a stationary time series, the ACF will drop to zero relatively 

quickly, while the ACF of non-stationary data decreases slowly. 

Also, for non-stationary data, the value of r1 is often large and 

positive. 
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Figure 8.2: The ACF of 

the Dow-Jones index 

(left) and of the daily 

changes in the Dow­

Jones index (right). 
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The ACF of the differenced Dow-Jones index looks just like 
that from a white noise series. There is only one autocorrelation 
lying just outside the 95% limits, and the Ljung-Box Q* statistic 
has a p-value of 0.153 (for h 

= 
l 0). This suggests that the daily 

change in the Dow-Jones index is essentially a random amount 

uncorrelated with previous days. 

Random walk model 

The differenced series is the change between consecutive obser­
vations in the original series, and can be written as 

The differenced series will have only T -1 values since it is not 
possible to calculate a difference y{ for the first observation. 

When the differenced series is white noise, the model for the 
original series can be written as 

Yt -Yt-1 = et or Yt = Yt-1 +et• 

A random walk model is very widely used for non-stationary 
data, particularly finance and economic data. Random walks 
typically have: 

• long periods of apparent trends up or down
• sudden and unpredictable changes in direction.

The forecasts from a random walk model are equal to the last 

observation, as future movements are unpredictable, and are 
equally likely to be up or down. Thus, the random walk model 
underpins na1ve forecasts. 

A closely related model allows the differences to have a 
non-zero mean. Then 

Yt -Yt-1 = c + et or Yt = c + Yt-1 +et· 

The value of c is the average of the changes between consecutive 
observations. If c is positive, then the average change is an 

increase in the value of Jlt· Thus Yt will tend to drift upwards. 
But if c is negative, Yt will tend to drift downwards. 

This is the model behind the drift method discussed in 
Section 2/3. 
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Second-order differencing 

Occasionally the differenced data will not appear stationary 

and it may be necessary to difference the data a second time to 

obtain a stationary series: 

" ' ' 

Yt = Yt -Yt-l 

= (Yt -Yt-1) -(Yt-1 -Yt-2) 

= Yt -2Jlt-l + Yt-2· 

In this case, y;' will have T -2 values. Then we would model the 

"change in the changes" of the original data. In practice, it is 

almost never necessary to go beyond second-order differences. 

Seasonal differencing 

A seasonal difference is the difference between an observation 

and the corresponding observation from the previous year. So 

'

Yt = Yt -Yt-m where m = number of seasons.

These are also called "lag-m differences" as we subtract the 

observation after a lag of m periods. 

If seasonally differenced data appear to be white noise, then 

an appropriate model for the original data is 

Forecasts from this model are equal to the last observation from 

the relevant season. That is, this model gives seasonal na1ve 

forecasts. 

Figure 8.3 shows the seasonal differences of the logarithm 

of the monthly scripts for Al O (antidiabetic) drugs sold in 

Australia. The transformation and differencing has made the 

series look relatively stationary. 

To distinguish seasonal differences from ordinary differences, 

we sometimes refer to ordinary differences as "first differences" 

meaning differences at lag 1. 

Sometimes it is necessary to do both a seasonal difference 

and a first difference to obtain stationary data, as shown in 

Figure 8.4. Here, the data are first transformed using logarithms 

(second panel). Then seasonal differenced are calculated (third 

panel). The data still seem a little non-stationary, and so a 

further lot of first differences are computed (bottom panel). 
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plot(a10, xlab="Year", ylab="Sales ($million)", 

main="Antidiabetic drug sales") 

plot(log(a10), xlab="Year", ylab="Monthly log sales") 

plot(diff(log(a10),12), xlab="Year", 

ylab="Annual change in monthly log sales") 

There is a degree of subjectivity in selecting what differences 

to apply. The seasonally differenced data in Figure 8.3 do not 

show substantially different behaviour from the seasonally 

differenced data in Figure 8.4. In the latter case, we may have 

decided to stop with the seasonally differenced data, and not 

done an extra round of differencing. In the former case, we 

may have decided the data were not sufficiently stationary 

and taken an extra round of differencing. Some formal tests 

Figure 8.3: Logs and 

seasonal differences 

of the Al O (antidia­

betic) sales data. The 

logarithms stabilize 

the variance, while the 

seasonal differences 

remove the seasonality 

and trend. 
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Figure 8.4: Top panel: 
US net electricity 
generation (billion 
kWh). Other panels 
show the same data 
after transforming and 
differencing. 
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for differencing will be discussed later, but there are always 
some choices to be made in the modeling process, and different 
analysts may make different choices. 

If y; 
= Yt -Yt-m denotes a seasonally differenced series, then 

the twice-differenced series is 

" ' ' 

Yt = Yt -Yt-l 

= 
(Yt -Yt-m) - (Yt-l -Yt-m-l)

= Yt -Yt-l -Yt-m + Yt-m-l 

When both seasonal and first differences are applied, it 
makes no difference which is done first-the result will be the 
same. However, if the data have a strong seasonal pattern, we 
recommend that seasonal differencing be done first because 
sometimes the resulting series will be stationary and there will 
be no need for a further first difference. If first differencing is 
done first, there will still be seasonality present. 

It is important that if differencing is used, the differences 
are interpretable. First differences are the change between one 

observation and the next. Seasonal differences are the change 
between one year to the next. Other lags are unlikely to make 
much interpretable sense and should be avoided. 

Unit root tests 

One way to determine more objectively if differencing is re­
quired is to use a unit root test. These are statistical hypothesis 
tests of stationarity that are designed for determining whether 
differencing is required. 

A number of unit root tests are available, and they are based 
on different assumptions and may lead to conflicting answers. 

One of the most popular tests is the Augmented Dickey-Fuller 
(ADP) test. For this test, the following regression model is 
estimated: 

where y; denotes the first-differenced series, y; 
= Yt -Yt-l and k 

is the number of lags to include in the regression (often set to 
be about 3). If the original series, Yt, needs differencing, then 
the coefficient � should be approximately zero. If Yt is already
stationary, then � < 0. The usual hypothesis tests for regression 
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coefficients do not work when the data are non-stationary, but 
the test can be carried out using the following R command. 

---------- R code 
adf.test(x, alternative = "stationary") 

In R, the default value of k is set to LT - IJ 113 where Tis the
length of the time series and LT- lJ means the largest integer not 
greater than T - l. 

The null-hypothesis for an ADF test is that the data are non­
stationary. So large p-values are indicative of non-stationarity, 
and small p-values suggest stationarity. Using the usual 5% 
threshold, differencing is required if the p-value is greater than 
0.05. 

Another popular unit root test is the Kwiatkowski-Phillips­

Schmidt-Shin (KPSS) test. This reverses the hypotheses, so the 
null-hypothesis is that the data are stationary. In this case, 
small p-values (e.g., less than 0.05) suggest that differencing is 
required. 

---------- R code 
kpss.test(x) 

A useful R function is ndiffs() which uses these tests to 
determine the appropriate number of first differences required 
for a non-seasonal time series. 

More complicated tests are required for seasonal differencing 
and are beyond the scope of this book. A useful R function 
for determining whether seasonal differencing is required is 
nsdiffs() which uses seasonal unit root tests to determine the 
appropriate number of seasonal differences required. 

The following code can be used to find how to make a sea­
sonal series stationary. The resulting series stored as xstar has 
been differenced appropriately. 
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---------- R code 
ns <- nsdiffs(x) 
if(ns > 0) { 

xstar <- diff(x,lag=frequency(x),differences=ns) 
} else { 

xstar <- x 

} 

nd <- ndiffs(xstar) 
if(nd > 0) { 

xstar <- diff(xstar,differences=nd) 

8/2 Backshift notation 

The backward shift operator B is a useful notational device 

when working with time series lags: 

Byt = Yt-1 

(Some references use L for "lag" instead of B for "backshift".) 

In other words, B, operating on Yt, has the effect of shifting the 

data back one period. Two applications of B to Yt shifts the 

data back two periods: 

For monthly data, if we wish to consider "the same month last 

,
, 

h . . B12 year, t e notation 1s Yt = Yt-12·
The backward shift operator is convenient for describing the 

process of differencing. A first difference can be written as 

Note that a first difference is represented by (1 - B). Similarly, if 

second-order differences have to be computed, then: 

In general , a dth-order difference can be written as 

Backshift notation is very useful when combining differences 

as the operator can be treated using ordinary algebraic rules. In 

particular, terms involving B can be multiplied together. 
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For example, a seasonal difference followed by a first differ­

ence can be written as 

= Yt -Yt-1 -Yt-m + Yt-m-1, 

the same result we obtained earlier. 

8/3 Autoregressive models 

In a multiple regression model, we forecast the variable of 

interest using a linear combination of predictors. In an au­

toregression model, we forecast the variable of interest using 

a linear combination of past values of the variable. The term 

autoregression indicates that it is a regression of the variable 

against itself. 

Thus an autoregressive model of order p can be written as 

where et is white noise. This is like a multiple regression but 

with lagged values of Yt as predictors. We refer to this as an 

AR(p) model. 

Autoregressive models are remarkably flexible at handling 

a wide range of different time series patterns. The two series 

in Figure 8.5 show series from an AR(l) model and an AR(2) 

model. Changing the parameters <{>1, ... , </>
p 

results in different 

time series patterns. The variance of the error term et will only 

change the scale of the series, not the patterns. 

"' 
"' 

0 
"' 

CX) 

AR 2 Figure 8.5: Two ex­
amples of data from 
autoregressive models 
with different parame­
ters. 

Left: AR(l) with 

Yt = 18-0.Byt-l +et. 

Right: AR(2) with Yt = 
8 + 1.3:Yt-l - 0.7Yt-2 + e1. 

In both cases, e1 is 
normally distributed 

0 20 40 60 80 100 0 20 40 60 80 100 white noise with mean 
zero and variance one. 

Time Time 

For an AR(l) model: 
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• when </>1 = 0, Yt is equivalent to white noise;

• when <f>1 = 1 and c = 0, Yt is equivalent to a random walk;

• when <f>1 = 1 and c-:;; 0, Yt is equivalent to a random walk with drift;

• when <f>1 < 0, Yt tends to oscillate between positive and negative values.

We normally restrict autoregressive models to stationary

data, and then some constraints on the values of the parameters 

are required. 

• For an AR(l) model: -1 < </>1 < 1.

• For an AR(2) model: -1 < </>2 < 1, </>1 + </>2 < 1, </>2-</>1 < 1.

When p � 3 the restrictions are much more complicated. R takes 

care of these restrictions when estimating a model. 

8/4 Moving average models

Rather than use past values of the forecast variable in a regres­

sion, a moving average model uses past forecast errors in a 

regression-like model. 

where et is white noise. We refer to this as an MA(q) model. 

Of course, we do not observe the values of et, so it is not really 

regression in the usual sense. 

Notice that each value of Yt can be thought of as a weighted 

moving average of the past few forecast errors. However, mov­

ing average models should not be confused with moving average 

smoothing we discussed in Chapter 6. A moving average model 

is used for forecasting future values while moving average 

smoothing is used for estimating the trend-cycle of past values. 

C\J 

0 

C\J 
I 

" 

I 

MA 2 Figure 8.6: Two ex­

amples of data from 

moving average models 

with different parame­

ters. 

Left: MA( 1 ) with 

Yt = 20 + e1 + 0.8e1-l • 

Right: MA(2) with 

Yt = e1 - et-I + 0.Bet-2· 

In both cases, e1 is 

normally distributed 

0 20 40 60 80 100 0 20 40 60 80 100 white noise with mean 
zero and variance one. 

Time Time 



Figure 8.6 shows some data from an MA(l) model and an 
MA(2) model. Changing the parameters 81 , ••• ,8

q 
results in 

different time series patterns. As with autoregressive models, 
the variance of the error term et will only change the scale of 
the series, not the patterns. 

It is possible to write any stationary AR(p) model as an 
MA(oo) model. For example, using repeated substitution, we 
can demonstrate this for an AR(l) model: 

Jh = </>1Yt-1 + et 

= </>d</>1Yt-2 + et-d + et 
= </>iYt-2 + </>1 et-1 + et 
= </>iYt-3 + <f>iet-2 + <f>1et-l + et 

etc. 
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Provided -1 < <f>1 < 1, the value of <f>t will get smaller ask gets 
larger. So eventually we obtain 

an MA(oo) process. 
The reverse result holds if we impose some constraints on the 

MA parameters. Then the MA model is called "invertible". That 
is, that we can write any invertible MA(q) process as an AR(oo) 
process. 

Invertible models are not simply to enable us to convert from 
MA models to AR models. They also have some mathematical 
properties that make them easier to use in practice. 

The invertibility constraints are similar to the stationarity 
constraints. 

• For an MA(l) model: -1 < 81 < 1.
• For an MA(2) model: -1 < 82 < 1, 82 + 81 > -1, 81 -

82 < 1. 
More complicated conditions hold for q � 3. Again, R will take 
care of these constraints when estimating the models. 

8/5 Non-seasonal ARIMA models 

If we combine differencing with autoregression and a mov­
ing average model, we obtain a non-seasonal ARIMA model. 
ARIMA is an acronym for AutoRegressive Integrated Moving 
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Average model ("integration" in this context is the reverse of 

differencing). The full model can be written as 

where y; is the differenced series (it may have been differenced 

more than once). The "predictors" on the right hand side in­

clude both lagged values of J/t and lagged errors. We call this an 

ARIMA(p,d,q) model, where

p = order of the autoregressive part; 

d = degree of first differencing involved; 

q = order of the moving average part. 

The same stationarity and invertibility conditions that are used 

for autoregressive and moving average models apply to this 

ARIMA model. 

Once we start combining components in this way to form 

more complicated models, it is much easier to work with the 

backshift notation. Then equation (8.1) can be written as 

(l-</JiB-•••-</JpBP) (l-B)dYt = c+(l+81B+···+8qB
q)et

i i i 

AR(p) d differences MA(q) 

Selecting appropriate values for p, d and q can be difficult. 

The auto .arima() function in R will do it for you automatically. 

Later in this chapter, we will learn how the function works, and 

some methods for choosing these values yourself. 

Many of the models we have already discussed are special 

cases of the ARIMA model as shown in the following table. 

White noise 

Random walk 

Random walk with drift 

Autoregression 

Moving average 

ARIMA(0,0,0) 

ARIMA(0,1,0) with no constant 

ARIMA(0,1,0) with a constant 

ARIMA(p,0,0) 

ARIMA(0,0,q) 

Example 8.1 US personal consumption 

Figure 8.7 shows quarterly percentage changes in US consump­

tion expenditure. Although it is quarterly data, there appears 

to be no seasonal pattern, so we will fit a non-seasonal ARIMA 

model. 
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N 

N 
I 

1970 1980 

US consum tion 

1990 

Year 

2000 

The following R code was used to automatically select a 
model. 

---------- R output 
> fit <- auto.arima(usconsumption[,1], seasonal=FALSE)

ARIMA(0,0,3) with non-zero mean 

Coefficients: 

s.e.

ma1 ma2 ma3 

0.2542 0.2260 0.2695 

0.0767 0.0779 0.0692 

intercept 

0.7562 

0.0844 

sigma'2 estimated as 0.3856: log likelihood=-154.73 

AIC=319.46 AICc=319.84 BIC=334.96 

This is an ARIMA(0,0,3) or MA(3) model: 

Yt = 0. 756 +et + 0.254et-I + 0.226et_2 + 0.269et_3, 

2010 

where et is white noise with standard deviation 0.62 = ✓o.3856. 
Forecasts from the model are shown in Figure 8.8. 

Understanding ARIMA models 

The au to. ar ima ( ) function is very useful, but anything auto­
mated can be a little dangerous, and it is worth understanding 
something of the behaviour of the models even when you rely 
on an automatic procedure to choose the model for you. 

Figure 8.7: Quarterly 

percentage change 

in US consumption 

expenditure. 
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' 

Forecasts from ARIMA O O 3 with non-zero mean 

1995 2000 

Rcode 
plot(forecast(fit,h=10),include=80) 

2005 2010 

The constant c has an important effect on the long-term 

forecasts obtained from these models. 

• If c = 0 and d = 0, the long-term forecasts will go to

zero.

• If c = 0 and d = I, the long-term forecasts will go to a

non-zero constant.

• If c = 0 and d = 2, the long-term forecasts will follow a

straight line.

• If c * 0 and d = 0, the long-term forecasts will go to the

mean of the data.

• If c * 0 and d = I, the long-term forecasts will follow a

straight line.

• If c * 0 and d = 2, the long-term forecasts will follow a

quadratic trend.

The value of d also has an effect on the prediction intervals 

- the higher the value of d, the more rapidly the prediction

intervals increase in size. Ford = 0, the long-term forecast

standard deviation will go to the standard deviation of the

historical data, so the prediction intervals will all be essentially

the same.

This behaviour is seen in Figure 8.8 where d = 0 and c * 0. In 

this figure, the prediction intervals are the same for the last few 

forecast horizons, and the point forecasts are equal to the mean 

of the data. 

Figure 8.8: Forecasts of 
quarterly percentage 
change in US consump­
tion expenditure. 
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The value of pis important if the data show cycles. To obtain 

cyclic forecasts, it is necessary to have p � 2 along with some 

additional conditions on the parameters. For an AR(2) model, 

cyclic behaviour occurs if </Ji+ 4cp2 < 0. In that case, the average

period of the cycles is2 

2n 

ACF and PACF plots 

It is usually not possible to tell, simply from a time plot, what 

values of p and q are appropriate for the data. However, it is 

sometimes possible to use the ACF plot, and the closely related 

PACF plot, to determine appropriate values for p and q.

Recall that an ACF plot shows the autocorrelations which 

measure the relationship between Yt and Yt-k for different 

values of k. Now if Yt and Yt-l are correlated, then Yt-l and 

Yt-2 must also be correlated. But then Yt and Yt-2 might be 

correlated, simply because they are both connected to Yt-l, 

rather than because of any new information contained in Yt-i 
that could be used in forecasting Yt· 

To overcome this problem, we can use partial autocorrela­

tions. These measure the relationship between Yt and Yt-k after 

removing the effects of other time lags - 1, 2, 3, ... , k -1. So the 

first partial autocorrelation is identical to the first autocorre­

lation, because there is nothing between them to remove. The 

partial autocorrelations for lags 2, 3 and greater are calculated 

as follows: 

ak = kth partial autocorrelation coefficient 

= the estimate of </Jk in the autoregression model 

Yt = c + </J1Yt-1 + </J2Yt-2 + · · · + </JkYt-k + et. 

Varying the number of terms on the right hand side of this 

autoregression model gives ak for different values of k. (In 

practice, there are more efficient algorithms for computing ak 

than fitting all these autoregressions, but they give the same 

results.) 

Figure 8.9 shows the ACF and PACF plots for the US con­

sumption data shown in Figure 8.7. 

2 arc cos is the inverse 

cosine function. You 

should be able to find 

it on your calculator. It 

may be labelled acos or 

cos-1.
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The partial autocorrelations have the same critical values 
of ±1.96/-vT as for ordinary autocorrelations, and these are 
typically shown on the plot as in Figure 8.9. 
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---------- R code 
par(mfrow=c(1,2)) 

Lag 

Acf(usconsumption[,1],main="") 
Pacf(usconsumption[,1],main="") 

If the data are from an ARIMA(p,d,O) or ARIMA(O,d,q) 
model, then the ACF and PACF plots can be helpful in deter­
mining the value of p or q. If both p and q are positive, then the 
plots do not help in finding suitable values of p and q.

The data may follow an ARIMA(p,d,O) model if the ACF and 
PACF plots of the differenced data show the following patterns: 

• the ACF is exponentially decaying or sinusoidal;
• there is a significant spike at lag p in PACF, but none

beyond lag p.

The data may follow an ARIMA(O,d,q) model if the ACF and 
PACF plots of the differenced data show the following patterns: 

• the PACF is exponentially decaying or sinusoidal;
• there is a significant spike at lag q in ACF, but none

beyond lag q.

In Figure 8.9, we see that there are three spikes in the ACF 
and then no significant spikes thereafter (apart from one just 
outside the bounds at lag 14). In the PACF, there are three 
spikes decreasing with the lag, and then no significant spikes 

Figure 8. 9: ACF and 

PACF of quarterly 

percentage change in 

US consumption. 

A convenient way to 

produce a time plot, 

ACF plot and PACF 

plot in one command 

is to use the tsdisplay 

function in R. 



thereafter (apart from one just outside the bounds at lag 8). 

We can ignore one significant spike in each plot if it is just 

outside the limits, and not in the first few lags. After all, the 

probability of a spike being significant by chance is about 
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one in twenty, and we are plotting 21 spikes in each plot. The 

pattern in the first three spikes is what we would expect from 

an ARIMA(0,0,3) as the PACF tends to decay exponentially. So 

in this case, the ACF and PACF lead us to the same model as 

was obtained using the automatic procedure. 

8/6 Estimation and order selection 

Maximum likelihood estimation 

Once the model order has been identified (i.e., the values of 

p, d and q), we need to estimate the parameters c, <{> 1 , ••. ,</>p
, 

8 1 , ••. ,eq
. When R estimates the ARIMA model, it uses max­

imum likelihood estimation (MLE). This technique finds the 

values of the parameters which maximize the probability of 

obtaining the data that we have observed. For ARIMA models, 

MLE is very similar to the least squares estimates that would be 

obtained by minimizing 

I>r
t=l 

(For the regression models considered in Chapters 4 and 5, MLE 

gives exactly the same parameter estimates as least squares esti­

mation.) Note that ARIMA models are much more complicated 

to estimate than regression models, and different software will 

give slightly different answers as they use different methods of 

estimation, or different estimation algorithms. 

In practice, R will report the value of the log likelihood of the 

data; that is, the logarithm of the probability of the observed 

data coming from the estimated model. For given values of p, d 

and q, R will try to maximize the log likelihood when finding 

parameter estimates. 
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Information Criteria 

Akaike's Information Criterion (AIC), which was useful in se­

lecting predictors for regression, is also useful for determining 

the order of an ARIMA model. It can be written as 

AIC = -2 log(L) + 2(p + q + k+ 1), 

where L is the likelihood of the data, k = l if c -:t:- 0 and k = 0 

if c = 0. Note that the last term in parentheses is the number 

of parameters in the model (including a 2
, the variance of the 

residuals). 

For ARIMA models, the corrected AIC can be written as 

AICc = AIC + 

2(p + q + k + l)(p + q + k + 2)
.

T-p-q-k-2

and the Bayesian Information Criterion can be written as

BIC = AIC + [log(T)- 2](p + q + k + 1). 

Good models are obtained by minimizing either the AIC, AICc 

or BIC. Our preference is to use the AICc. 

8/7 ARIMA modelling in R 

How does auto. arima () work? 

The auto.arima() function in R uses a variation of the Hynd­

man and Khandakar algorithm3 which combines unit root tests, 

minimization of the AICc and MLE to obtain an ARIMA model. 

The algorithm follows these steps. 

The arguments to auto.arima() provide for many varia­

tions on the algorithm. What is described here is the default 

behaviour. 

Choosing your own model 

If you want to choose the model yourself, use the Ar ima ( ) func­

tion in R. For example, to fit the ARIMA(0,0,3) model to the US 

consumption data, the following commands can be used. 

---------- R code 

fit <- Arima(usconsumption[,1], order=c(0,0,3)) 

3 robjhyndman.com/ 
papers/automatic 



Hyndman-Khandakar algorithm 

for automatic ARIMA modelling 
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1. The number of differences d is determined using repeated

KPSS tests.

2. The values of p and q are then chosen by minimizing the

AICc after differencing the data d times. Rather than consid­

ering every possible combination of p and q, the algorithm

uses a stepwise search to traverse the model space.

(a) The best initial model (with smallest AICc) is se-

lected from the following four:

ARIMA(2, d, 2), 

ARIMA(0,d,0), 

ARIMA(l, d, 0), 

ARIMA(0,d,l). 

If d = 0 then the constant c is included; if d � l 

then the constant c is set to zero. This is called the 

"current model". 

(b) Variations on the current model are considered:

• vary p and/or q from the current model by

±1;

• include/exclude c from the current model.

The best model considered so far (either the current 

model, or one of these variations) becomes the new 

current model. 

(c) Repeat Step 2(b) until no lower AICc can be found.

There is another function arima() in R which also fits an 

ARIMA model. However, it does not allow for the constant c

unless d = 0, and it does not return everything required for the 

forecast() function. Finally, it does not allow the estimated 

model to be applied to new data (which is useful for checking 

forecast accuracy). Consequently, it is recommended that you 

use Arima() instead. 
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Modelling procedure 

When fitting an ARIMA model to a set of time series data, the 

following procedure provides a useful general approach. 

1. Plot the data. Identify any unusual observations.

2. If necessary, transform the data (using a Box-Cox

transformation) to stabilize the variance.

3. If the data are non-stationary: take first differences of

the data until the data are stationary. 

4. Examine the ACF/PACF: Is an AR(p) or MA(q) model

appropriate?

5. Try your chosen model(s), and use the AICc to search

for a better model.

6. Check the residuals from your chosen model by plot­

ting the ACF of the residuals, and doing a portmanteau

test of the residuals. If they do not look like white

noise, try a modified model.

7. Once the residuals look like white noise, calculate

forecasts.

The automated algorithm only takes care of steps 3-5. So even 

if you use it, you will still need to take care of the other steps 

yourself. 

The process is summarized in Figure 8.10. 

Example 8.2 Seasonally adjusted electrical equipment orders 

We will apply this procedure to the seasonally adjusted electri­

cal equipment orders data shown in Figure 8.11. 

1. The time plot shows some sudden changes, particu­

larly the big drop in 2008/2009. These changes are

due to the global economic environment. Otherwise

there is nothing unusual about the time plot and there

appears to be no need to do any data adjustments.

2. There is no evidence of changing variance, so we will

not do a Box-Cox transformation.

3. The data are clearly non-stationary as the series wan­

ders up and down for long periods. Consequently, we

will take a first difference of the data. The differenced

data are shown in Figure 8.12. These look stationary,

and so we will not consider further differences.



Select model 

order yourself. 

3. If necessary, difference 

the data until it appears 

stationary. Use unit-root 

tests if you are unsure. 

4. Plot the ACF /PACF of 

the differenced data and 

try to determine possible 

candidate models. 

5. Try your chosen 

model(s) and use 

the AICc to search 

for a better model. 
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1. Plot the data. Identify 

unusual observations. 

Understand patterns. 

2. If necessary, use a 

Box-Cox transformation 

to stabilize the variance. 

6. Check the residuals 

from your chosen model 

by plotting the ACF 

of the residuals, and 

doing a portmanteau 

test of the residuals. 

Do the residuals 

look like white 

noise? 

7. Calculate forecasts. 
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Use automated 

algorithm. 

Use auto. arima () to find 

the best ARIMA model 

for your time series. 

Figure 8.10: General 
process for forecasting 
using an ARIMA 
model. 
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Rcode 
eeadj <- seasadj(stl(elecequip, s.window="periodic")) 

plot(eeadj) 
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Rcode 
tsdisplay(diff(eeadj), main="") 
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Figure 8.11: Seasonally 

adjusted electrical 

equipment orders index 

in the Euro area. 

Figure 8.12: Time plot 

and ACF and PACF 

plots for differenced 

seasonally adjusted 

electrical equipment 

data. 



4. The PACF shown in Figure 8.12 is suggestive of an

AR(3) model. So an initial candidate model is an

ARIMA(3,1,0). There are no other obvious candidate

models.

5. We fit an ARIMA(3,1,0) model along with variations

including ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1),

etc. Of these, the ARIMA(3,1,1) has a slightly smaller

AICc value.

--------- R output
> fit <- Arima(eeadj, order=c(3,1,1))
> summary(fit)
Series: eeadj
ARIMA(3,1,1)

Coefficients: 
ar1 ar2 ar3 ma1 

0.0519 0. 1191 0.3730 -0.4542 
s.e. 0. 1840 0.0888 0.0679 0. 1993

sigma"2 estimated as 9.532: log likelihood=-484.08 
AIC=978. 17 AICc=978.49 BIC=994.4 

6. The ACF plot of the residuals from the ARIMA(3,1,1)

model shows all correlations within the threshold

limits indicating that the residuals are behaving like

white noise. A portmanteau test returns a large p­

value, also suggesting the residuals are white noise.

--------- R code
Acf(residuals(fit))
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Box.test(residuals(fit), lag=24, fitdf=4, type="Ljung")

7. Forecasts from the chosen model are shown in Fig­

ure 8.13.

If we had used the automated algorithm instead, we would 

have obtained exactly the same model in this example. 
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---------- R code 

plot(forecast(fit)) 

Understanding constants in R 

A non-seasonal ARIMA model can be written as 

or equivalently as 

2010 

(1 - </>1 B - · · · - </>
p

BP )( 1 - B)d (y1 -µtd / d!) = (1 + 81 B + · · · + 0 
q
Bq)e1, 

(8.2) 

where c = µ(1 - </>1 - • • • - </>p) andµ is the mean of (1 - B)d
y1• R

uses the parametrization of equation (8.2). 

Thus, the inclusion of a constant in a non-stationary ARIMA 

model is equivalent to inducing a polynomial trend of order d 

in the forecast function. (If the constant is omitted, the forecast 

function includes a polynomial trend of order d - 1.) When d = 0, 

we have the special case that µ is the mean of y1• 

arima() By default, the ar ima () command in R sets c = µ = 0 

when d > 0 and provides an estimate of µ when d = 0. The 

parameterµ is called the "intercept" in the R output. It will 

be close to the sample mean of the time series, but usually 

not identical to it as the sample mean is not the maximum 

likelihood estimate when p + q > 0. 

Figure 8.13: Forecasts 

for the seasonally 

adjusted electrical 

orders index. 
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The arima() command has an argument include .mean which 

only has an effect when d = 0 and is TRUE by default. Setting 

include .mean=FALSE will forceµ= 0. 

Arima() The Arima() command from the forecast package 

provides more flexibility on the inclusion of a constant. It has 

an argument include. mean which has identical functionality 

to the corresponding argument for arima( ). It also has an 

argument include. drift which allowsµ -:;:. 0 when d = l. 

For d > I, no constant is allowed as a quadratic or higher 

order trend is particularly dangerous when forecasting. The 

parameterµ is called the "drift" in the R output when d = l. 

There is also an argument include. constant which, if TRUE, 

will set include.mean=TRUE if d = 0 and include.drift=TRUE 

when d = l. If include.constant=FALSE, both include.mean 

and include. drift will be set to FALSE. If include. constant is 

used, the values of include. mean= TRUE and include. drift= TRUE 

are ignored. 

auto.arima() The auto.arima() function automates the inclusion 

of a constant. By default, for d = 0 or d = I, a constant will be 

included if it improves the AICc value; for d > I the constant 

is always omitted. If allowdrift=FALSE is specified, then the 

constant is only allowed when d = 0. 

8/8 Forecasting 

Point forecasts 

Although we have calculated forecasts from the ARIMA mod­

els in our examples, we have not yet explained how they are 

obtained. Point forecasts can be calculated using the following 

three steps. 

1. Expand the ARIMA equation so that Jlt is on the left

hand side and all other terms are on the right.

2. Rewrite the equation by replacing t by T + h.

3. On the right hand side of the equation, replace future

observations by their forecasts, future errors by zero,

and past errors by the corresponding residuals.

Beginning with h = I, these steps are then repeated for h = 

2, 3, ... until all forecasts have been calculated. 
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The procedure is most easily understood via an example. We 
will illustrate it using the ARIMA(3,1,1) model fitted in the 
previous section. The model can be written as follows 

where 1>1 = 0.0519, ef>2 = 0.1191, ef>3 = 0.3730 and 01 = -0.4542.
Then we expand the left hand side to obtain 

and applying the backshift operator gives 

Finally, we move all terms other than Yt to the right hand side: 

Yt = (1 +1>1):Yt-1-(1>1 -1>2)Yt-2-(1>2-ef>3)Jlt-3-1>3Yt-4+et+01et-l· 
(8.3) 

This completes the first step. While the equation now looks like 
an ARIMA(4,0,1), it is still the same ARIMA(3,1,1) model we 
started with. It cannot be considered an ARIMA(4,0,1) because 
the coefficients do not satisfy the stationarity conditions. 

For the second step, we replace t by T + l in (8.3): 

Assuming we have observations up to time T, all values on the 
right hand side are known except for eT+l which we replace by 
zero and eT which we replace by the last observed residual eT : 

A forecast of J/T+2 is obtained by replacing t by T + 2 in (8.3). 
All values on the right hand side will be known at time T except 
J/T+l which we replace by YT+ll T • and eT+2 and eT+V both of 
which we replace by zero: 

The process continues in this manner for all future time 
periods. In this way, any number of point forecasts can be 
obtained. 



Forecast intervals 

The calculation of ARIMA forecast intervals is much more 

difficult, and the details are largely beyond the scope of this 

book. We will just give some simple examples. 
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The first forecast interval is easily calculated. If a is the 

standard deviation of the residuals, then a 95% forecast interval 

is given by YT+IIT ± 1.966. This result is true for all ARIMA

models regardless of their parameters and orders. 

Multi-step forecast intervals for ARIMA(0,0,q) models are 

relatively easy to calculate. We can write the model as 

Jlt =et + [, eiet-i·
i=l

Then the estimated forecast variance can be written as 

for h = 2,3, . .. , 

and a 95% forecast interval is given by YT+hlT ± l.96✓vT+hlT· 

On page 225, we showed that an AR(l) model can be written 

as an MA(oo) model. Using this equivalence, the above result for 

MA(q) models can also be used to obtain forecast intervals for 

AR(l) models. 

More general results, and other special cases of multi-step 

forecast intervals for an ARIMA(p,d,q) model, are given in more 

advanced textbooks such as Brockwell and Davis (1991, Section 

9.5). 

The forecast intervals for ARIMA models are based on as­

sumptions that the residuals are uncorrelated and normally 

distributed. If either of these are assumptions do not hold, 

then the forecast intervals may be incorrect. For this reason, 

always plot the ACF and histogram of the residuals to check the 

assumptions before producing forecast intervals. 

In general, forecast intervals from ARIMA models will 

increase as the forecast horizon increases. For stationary models 

(i.e., with d = 0), they will converge so forecast intervals for 

long horizons are all essentially the same. Ford> l, the forecast 

intervals will continue to grow into the future. 

As with most forecast interval calculations, ARIMA-based 

intervals tend to be too narrow. This occurs because only the 

variation in the errors has been accounted for. There is also 
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variation in the parameter estimates, and in the model order,
that has not been included in the calculation. In addition, the
calculation assumes that the historical patterns that have been
modelled will continue into the forecast period.

8/9 Seasonal ARIMA models 

So far, we have restricted our attention to non-seasonal data and
non-seasonal ARIMA models. However, ARIMA models are also
capable of modelling a wide range of seasonal data.

A seasonal ARIMA model is formed by including additional
seasonal terms in the ARIMA models we have seen so far. It is
written as follows:

ARIMA (p,d,q) (P,D,Q)m -------- ------

i i 

( Non-seasonal part ) ( Seasonal part )of the model of the model 
where m = number of observations per year. We use uppercase
notation for the seasonal parts of the model, and lowercase
notation for the non-seasonal parts of the model.

The seasonal part of the model consists of terms that are
very similar to the non-seasonal components of the model, but
they involve backshifts of the seasonal period. For example,
an ARIMA(l, 1, 1 )(1, 1, 1 )4 model (without a constant) is for
quarterly data (m = 4) and can be written as

(l -<f,1B) (l-<I>1B4) (1-B) (1-B4 }},1t

(
Non-seaLnal

) 
1

(
Non-selsonal

) 
1

AR(l) difference 

(
Seasonal

) ( 
Seasonal 

) AR(l) difference 

The additional seasonal terms are simply multiplied with the
non-seasonal terms.
ACF/PACF 

The seasonal part of an AR or MA model will be seen in
the seasonal lags of the PACF and ACF. For example, an
ARIMA(0,0,0)(0,0,1)12 model will show:
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• a spike at lag 12 in the ACF but no other significant

spikes.

• The PACF will show exponential decay in the seasonal

lags; that is, at lags 12, 24, 36, .... 

Similarly, an ARIMA(0,0,0)( 1,0,0)12 model will show: 

• exponential decay in the seasonal lags of the ACF

• a single significant spike at lag 12 in the PACF. 

In considering the appropriate seasonal orders for an ARIMA 

model, restrict attention to the seasonal lags. 

The modelling procedure is almost the same as for non­

seasonal data, except that we need to select seasonal AR and 

MA terms as well as the non-seasonal components of the model. 

The process is best illustrated via examples. 

Example 8.3 European quarterly retail trade 

We will describe the seasonal ARIMA modelling procedure 

using quarterly European retail trade data from 1996 to 20 1 1. 

The data are plotted in Figure 8.14. 

N 

;' 

0 

;' 

cr, 

"' 
.!: cr, 

cr, 

N 

cr, 

0 
cr, 

2000 2005 

Year 

---------- R code 
plot(euretail, ylab="Retail index", xlab="Year") 

2010 

The data are clearly non-stationary, with some seasonality, 

so we will first take a seasonal difference. The seasonally dif­

ferenced data are shown in Figure 8.15. These also appear to 

Figure 8.14: Quarterly 

retail trade index 

in the Euro area ( 17 

countries), 1996-2011, 

covering wholesale and 

retail trade, and repair 

of motor vehicles and 

motorcycles. (Index: 

2005 = 100). 
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be non-stationary, and so we take an additional first difference, 

shown in Figure 8.16. 

' 

I 

"" 

I 

2000 2005 2010 

v 
u. o

v 

"/�--------� 
10 15 

Lag 

---------- R code 
tsdisplay(diff(euretail,4)) 

"/�--------� 
10 15 

Lag 

Our aim now is to find an appropriate ARIMA model based 

on the ACF and PACF shown in Figure 8.16. The significant 

spike at lag 1 in the ACF suggests a non-seasonal MA(l) com­

ponent, and the significant spike at lag 4 in the ACF suggests 

a seasonal MA(l) component. Consequently, we begin with an 

ARIMA(0,1,1)(0,1,1)4 model, indicating a first and seasonal 

difference, and non-seasonal and seasonal MA( 1) components. 

The residuals for the fitted model are shown in Figure 8.17. (By 

analogous logic applied to the PACF, we could also have started 

with an ARIMA(l,1,0)(1,1,0)4 model.) 

Both the ACF and PACF show significant spikes at lag 2, and 

almost significant spikes at lag 3, indicating some additional 

non-seasonal terms need to be included in the model. The AICc 

of the ARIMA(0,1,2)(0,1,1)4 model is 74.36, while that for the 

ARIMA(0,1,3)(0,1,1)4 model is 68.53. We tried other models 

with AR terms as well, but none that gave a smaller AICc value. 

Consequently, we choose the ARIMA(0,1,3)(0,1,1)4 model. Its 

residuals are plotted in Figure 8 .18. All the spikes are now 

within the significance limits, and so the residuals appear to be 

Figure 8.15: Seasonally 

differenced European 

retail trade index. 
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2000 2005 2010 

"�----------� 

"' 

� ci-+--'-�._,_����-'--,-��-.----'----rl 

10 

Lag 

15 

Rcode 
tsdisplay(diff(diff(euretail,4))) 

2000 

:;�----------� 

Lag 

Rcode 

.. 

0 

I 

2005 

10 

Lag 

Lag 

15 

2010 

fit <- Arima(euretail, order=c(0,1,1), seasonal=c(O, 1,1)) 
tsdisplay(residuals(fit)) 

Figure 8.16: Double 

differenced European 

retail trade index. 

Figure 8.17: Resid-

uals from the fitted 

ARIMA(0,1,3)(0,1,1 )4 

model for the European 

retail trade index data. 
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,�------�------�-------�--� 

2000 2005 2010 

Lag Lag 

Rcode 

fit3 <- Arima(euretail, order=c(0,1,3), seasonal=c(0,1,1)) 
res <- residuals(fit3) 
tsdisplay(res) 
Box.test(res, lag=16, fitdf=4, type="Ljung") 

white noise. A Ljung-Box test also shows that the residuals have 

no remaining autocorrelations. 

So we now have a seasonal ARIMA model that passes the 

required checks and is ready for forecasting. Forecasts from 

the model for the next three years are shown in Figure 8.19. 

Notice how the forecasts follow the recent trend in the data 

(this occurs because of the double differencing). The large and 

rapidly increasing prediction intervals show that the retail trade 

index could start increasing or decreasing at any time - while 

the point forecasts trend downwards, the prediction intervals 

allow for the data to trend upwards during the forecast period. 

We could have used auto. ar ima ( ) to do most of this work for 

us. It would have given the following result. 

Figure 8.18: Resid­

uals from the fitted 

ARIMA(0,l,3)(0,l,l )4 

model for the European 

retail trade index data. 
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0 
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"' 
m 

0 
m 

2000 2005 

---------- R code 
plot(forecast(fit3, h=12)) 

--------- R output 
> auto.arima(euretail)
AR IMA( 1, 1, 1) ( 0, 1, 1) I 4 I

Coefficients: 
ar1 ma 1 sma 1 

0.8828 -0.5208 -0.9704 
s .e. 0. 1424 0. 1755 0.6792 

2010 

sigma-2 estimated as 0. 1411: log likelihood=-30. 19 
AIC=68.37 AICc=69. 11 BIC=76.68 

2015 

Notice that it has selected a different model (with a larger AICc 

value). auto.arima() takes some short-cuts in order to speed up 

the computation and will not always give the best model. You 

can turn the short-cuts off and then it will sometimes return a 

different model. 

Figure 8.19: Fore-

casts of the Euro-

pean retail trade 

index data using the 

ARIMA(0,1,3)(0,1,1 )4 

model. 80% and 95% 

prediction intervals are 

shown. 
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---------- R output 
> auto.arima(euretail, stepwise=FALSE, approximation=FALSE)

AR IMA ( 0, 1 , 3) ( 0, 1, 1 )I 4 I

Coefficients: 

ma1 ma2 ma3 sma1 

0.2625 0.3697 0.4194 -0.6615 

s.e. 0.1239 0.1260 0.1296 0.1555 

sigma"2 estimated as 0.1451: log likelihood=-28.7 

AIC=67.4 AICc=68.53 BIC=77.78 

This time it returned the same model we had identified. 

Example 8.4 Cortecosteroid drug sales in Australia 

Our second example is more difficult. We will try to forecast 

monthly cortecosteroid drug sales in Australia. These are 

known as H02 drugs under the Anatomical Therapeutical 

Chemical classification scheme. 

Data from July 1991 to June 2008 are plotted in Figure 8.20. 

There is a small increase in the variance with the level, and so 

we take logarithms to stabilize the variance. 

The data are strongly seasonal and obviously non-stationary, 

and so seasonal differencing will be used. The seasonally differ­

enced data are shown in Figure 8.21. It is not clear at this point 

whether we should do another difference or not. We decide not 

to, but the choice is not obvious. 

The last few observations appear to be different (more vari­

able) from the earlier data. This may be due to the fact that data 

are sometimes revised as earlier sales are reported late. 

In the plots of the seasonally differenced data, there are 

spikes in the PACF at lags 12 and 24, but nothing at seasonal 

lags in the ACF. This may be suggestive of a seasonal AR(2) 

term. In the non-seasonal lags, there are three significant spikes 

in the PACF suggesting a possible AR(3) term. The pattern in 

the ACF is not indicative of any simple model. 

Consequently, this initial analysis suggests that a possible 

model for these data is an ARIMA(3,0,0)(2,1,0)12• We fit this 

model, along with some variations on it, and compute their 

AICc values which are shown in the following table. 
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---------- R code 
1h02 <- log(h02) 
par(mfrow=c(2,1)) 

2005 

2005 

plot(h02, ylab="H02 sales (million scripts)", xlab="Year") 
plot(lh02, ylab="Log H02 sales", xlab="Year") 

Model AICc 

ARIMA(3,0,0)(2,l,0)12 -475.12

ARIMA(3,0,l )(2,1,0)12 -476.31

ARIMA(3,0,2)(2,l,0)12 -474.88

ARIMA(3,0,l )(1,1,0)12 -463.40

ARIMA(3,0,l )(0,1,1 h2 -483.67

ARIMA(3,0,l )(0,1,2)12 -485.48

ARIMA(3,0,l )(1,1,1 )12 -484.25

Of these models, the best is the ARIMA(3,0,l)(0,l,2)12 model 

(i.e., it has the smallest AICc value). 
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Figure 8.20: Cortecos­

teroid drug sales in 

Australia (in millions 

of scripts per month). 

Logged data shown in 

bottom panel. 
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Lag Lag 

Rcode 

tsdisplay(diff(lh02,12), 

main="Seasonally differenced H02 scripts", xlab="Year") 

R output 

Figure 8.21: Seasonally 

differenced cortecos­

teroid drug sales in 

Australia (in millions of 

scripts per month). 

> fit <- Arima(h02, order=c(3,0,1), seasonal=c(0,1,2), lambda=0)

ARIMA(3,0,1)(0,1,2)[12] 

Box Cox transformation: lambda= 0 

Coefficients: 

ar1 ar2 ar3 ma1 sma1 sma2 

-0.1603 0.5481 0.5678 0.3827 -0.5222 -0.1768

s.e. 0.1636 0.0878 0.0942 0.1895 0.0861 0.0872 

sigma'2 estimated as 0.004145: log likelihood=250.04 

AIC=-486.08 AICc=-485.48 BIC=-463.28 

The residuals from this model are shown in F igure 8.22. 

There are significant spikes in both the ACF and PACF, and the 

model fails a Ljung-Box test. The model can still be used for 

forecasting, but the prediction intervals may not be accurate 

due to the correlated residuals. 
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---------- R code 

tsdisplay(residuals(fit)) 
Box.test(residuals(fit), lag=36, fitdf=6, type="Ljung") 

Next we will try using the automatic ARIMA algorithm. 

Running auto. ar ima ( ) with arguments left at their default 

values led to an ARIMA(2,l,3)(0,l,1)12 model. However, the 

model still fails a Ljung-Box test. Sometimes it is just not 

possible to find a model that passes all the tests. 

Finally, we tried running auto.arima() with differencing 

specified to be d = 0 and D = 1, and allowing larger models than 

usual. This led to an ARIMA(4,0,3)(0,l,1)12 model, which did 

pass all the tests. 

---------- R code 

fit <- auto.arima(h02, lambda=O, d=0,D=1,max.order=9, 
stepwise=FALSE, approximation=FALSE) 

tsdisplay(residuals(fit)) 
Box.test(residuals(fit), lag=36, fitdf=8, type="Ljung") 

Test set evaluation: We will compare some of the models fitted 

so far using a test set consisting of the last two years of data. 

Thus, we fit the models using data from July 1991 to June 2006, 

and forecast the script sales for July 2006 - June 2008. The 

results are summarised in the following table. 

Figure 8.22: Resid­
uals from the 
ARIMA(3,0,l )(0,l ,2)i 2 
model applied to the 
H02 monthly script 
sales data. 
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Model RMSE 

ARIMA(3,0,0)(2,1,0h2 0.0661 
ARIMA(3,0,1 )(2,1,0)12 0.0646 
ARIMA(3,0,2)(2,1,0h2 0.0645 
ARIMA(3,0,1)(1,1,0)12 0.0679 
ARIMA(3,0,1)(0,1,1)12 0.0644 
ARIMA(3,0,1 )(0,1,2)12 0.0622 
ARIMA(3,0,1 )(l,l,lh2 0.0630 
ARIMA(4,0,3)(0,1,lh2 0.0648 
ARIMA(3,0,3)(0,1,lh2 0.0640 
ARIMA(4,0,2)(0,1,lh2 0.0648 
ARIMA(3,0,2)(0,1,lh2 0.0644 
ARIMA(2,1,3)(0,1,lh2 0.0634 
ARIMA(2,1,4)(0,1,lh2 0.0632 
ARIMA(2,1,5)(0,1,lh2 0.0640 

--------- R code 
getrmse <- function(x ,h , . .. ) 

{ 
train.end <- time(x)[length(x)-h] 
test.start <- time(x)[length(x)-h+1] 
train <- window(x ,end=train .end) 
test <- window(x , start=test . start) 
fit <- Arima(train , .. . ) 
fc <- forecast(fit ,h=h) 
return(accuracy(fc ,test)[2,"RMSE"]) 

getrmse(h02,h=24,order=c(3,0 ,0),seasonal=c(2,1,0),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,1),seasonal=c(2,1,0),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,2),seasonal=c(2,1,0),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,1),seasonal=c(1,1,0),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,1),seasonal=c(0 ,1,1),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,1),seasonal=c(0 ,1,2),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,1),seasonal=c(1,1,1),lambda=0) 
getrmse(h02,h=24,order=c( 4,0 ,3),seasonal=c(0 ,1,1),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,3),seasonal=c(0 ,1,1),lambda=0) 
getrmse(h02,h=24,order=c( 4,0 ,2),seasonal=c(0 ,1,1),lambda=0) 
getrmse(h02,h=24,order=c(3,0 ,2),seasonal=c(0 ,1,1),lambda=0) 
getrmse(h02,h=24,order=c(2,1,3),seasonal=c(0 ,1,1),lambda=0) 
getrmse(h02,h=24,order=c(2,1, 4),seasonal=c(0 ,1,1),lambda=0) 
getrmse(h02,h=24,order=c(2,1,5),seasonal=c(0 ,1,1),lambda=0) 

The models that have the lowest AICc values tend to give 

slightly better results than the other models, but there is not a 

large difference. Also, the only model that passed the residual 

tests did not give the best test set RMSE values. 

When models are compared using AICc values, it is im­

portant that all models have the same orders of differencing. 

However, when comparing models using a test set, it does not 

matter how the forecasts were produced - the comparisons are 

always valid. Consequently, in the table above, we can include 

some models with only seasonal differencing and some mod­

els with both first and seasonal differencing. But in the earlier 

table containing AICc values, we compared models with only 

seasonal differencing. 

None of the models considered here pass all the residual 

tests. In practice, we would normally use the best model we 

could find, even if it did not pass all tests. 

Forecasts from the ARIMA(3,0,1)(0,1,2)12 model (which has 

the lowest RMSE value on the test set, and the best AICc value 

amongst models with only seasonal differencing and fewer than 

six parameters) are shown in the figure below. 
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Forecasts from ARIMA 3 O 1 O 1 2 12 
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<D 
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---------- R code 

2005 2010 

fit <- Arima(h02, order=c(3,0,1), seasonal=c(0,1,2), lambda=O) 

Figure 8.23: Fore­
casts from the 
ARIMA(3,0,l )(0,l ,2)i 2 
model applied to the 
H02 monthly script 
sales data. 

plot(forecast(fit), ylab="H02 sales (million scripts)", xlab="Year") 

8/1 0 ARIMA vs ETS 

It is a commonly held myth that ARIMA models are more 

general than exponential smoothing. While linear exponential 

smoothing models are all special cases of ARIMA models, the 

non-linear exponential smoothing models have no equivalent 

ARIMA counterparts. There are also many ARIMA models that 

have no exponential smoothing counterparts. In particular, 

every ETS model is non-stationary, while ARIMA models can be 

stationary. 

The ETS models with seasonality or non-damped trend or 

both have two unit roots (i.e., they need two levels of differenc­

ing to make them stationary). All other ETS models have one 

unit root (they need one level of differencing to make them 

stationary). 

The following table gives the equivalence relationships for 

the two classes of models. 
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ETS model ARIMA model Parameters 

ETS(A,N,N) ARIMA(0,1,1) 01 = a-1 

ETS(A,A,N) ARIMA(0,2,2) 01 =a+ {3-2 

02 = 1-a 

ETS(A,Ad,N) ARIMA(l,1,2) <f>1 = <{> 

01=a+<{>/3-2 

02 = (1-a)<{> 

ETS(A,N,A) ARIMA(0,0,m)(0,l,0)m 

ETS(A,A,A) ARIMA(0,l,m + 1)(0,1,0)m 

ETS(A,Ad,A) ARIMA(l,0,m + 1)(0,1,0)m 

For the seasonal models, there are a large number of restric­

tions on the ARIMA parameters 

8/11 Exercises 

8.1 Figure 8.24 shows the ACFs for 36 random numbers, 

360 random numbers and for 1,000 random numbers. 

0 

u, 
0 

(a) Explain the differences among these figures.

Do they all indicate the data are white noise?

0 
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u.. 0 
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Lag 
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Lag 

(b) Why are the critical values at different dis­

tances from the mean of zero? Why are the

autocorrelations different in each figure when

they each refer to white noise?

0 5 1 0 15 20 25 30 

Lag 

Figure 8.24: Left: ACF 

for a white noise series 

of 36 numbers. Middle: 

ACF for a white noise 

series of 360 numbers. 

Right: ACF for a white 

noise series of 1,000 

numbers. 



8/ ARIMA MODELS 255 

8.2 A classic example of a non-stationary series is the daily 

closing IBM stock prices (data set ibmclose). Use R to 

plot the daily closing prices for IBM stock and the ACF 

and PACF. Explain how each plot shows the series is 

non-stationary and should be differenced. 

8.3 For the following series, find an appropriate Box-Cox 

transformation and order of differencing in order to 

obtain stationary data. 

(a) usnetelec

(b) usgdp

(c) mcopper

(d) enplanements

(e) visitors

8.4 For the enplanements data, write down the differences 

you chose above using backshift operator notation. 

8.5 Use R to simulate and plot some data from simple 

ARIMA models. 

(a) Use the following R code to generate data from

an AR(l) model with <f>1 = 0.6 and a 2 
= 1. The

process starts with y1 = 0.

-------- R code

y <- ts(numeric(100))

e <- rnorm(100)

for(i in 2:100)

y[i] <- 0.6*y[i-1] + e[i] 

(b) Produce a time plot for the series. How does

the plot change as you change </>1?

(c) Write your own code to generate data from an

MA(l) model with 01 = 0.6 and a 2 
= 1.

(d) Produce a time plot for the series. How does

the plot change as you change 01?

(e) Generate data from an ARMA(l,1) model with

</>1 = 0.6 and 01 = 0.6 and a 2 
= 1.

(f) Generate data from an AR(2) model with

<f>1 = -0.8 and <f>2 = 0.3 and a 2 
= 1. (Note that

these parameters will give a non-stationary

series.)

(g) Graph the latter two series and compare them.
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8.6 Consider the number of women murdered each year 

(per 100,000 standard population) in the United States 

(data set wmu.rde.rs). 

(a) By studying appropriate graphs of the series

in R, find an appropriate ARIMA(p,d,q) model

for these data.

(b) Should you include a constant in the model?

Explain.

(c) Write this model in terms of the backshift

operator.

(d) Fit the model using R and examine the residu­

als. Is the model satisfactory?

(e) Forecast three times ahead. Check your fore­

casts by hand to make sure you know how they

have been calculated.

(f) Create a plot of the series with forecasts and

prediction intervals for the next three periods

shown.

(g) Does auto. a.rima give the same model you

have chosen? If not, which model do you think

is better?

8.7 Consider the quarterly number of international tourists 

to Australia for the period 1999-2010. (Data set 

aus tou.ris ts.) 

(a) Describe the time plot.

(b) What can you learn from the ACF graph?

(c) What can you learn from the PACF graph?

(d) Produce plots of the seasonally differenced

data (1 - B4)Yt. What model do these graphs

suggest?

(e) Does auto. a.rima give the same model that

you chose? If not, which model do you think is

better?

(f) Write the model in terms of the backshift

operator, and then without using the backshift

operator.
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8.8 Consider the total net generation of electricity (in 

billion kilowatt hours) by the U.S. electric industry 

(monthly for the period 1985-1996). (Data set usmelec.) 

In general there are two peaks per year: in mid-summer 

and mid-winter. 

(a) Examine the 12-month moving average of this

series to see what kind of trend is involved.

(b) Do the data need transforming? If so, find a

suitable transformation.

(c) Are the data stationary? If not, find an appro­

priate differencing which yields stationary

data.

(d) Identify a couple of ARIMA models that might

be useful in describing the time series. Which

of your models is the best according to their

AIC values?

(e) Estimate the parameters of your best model

and do diagnostic testing on the residuals. Do

the residuals resemble white noise? If not, try

to find another ARIMA model which fits better.

(f) Forecast the next 15 years of generation of

electricity by the U.S. electric industry. Get the

latest figures from http://data.is/zgRWCO to

check on the accuracy of your forecasts.

(g) How many years of forecasts do you think are

sufficiently accurate to be usable?

8.9 For the mc oppe.r data: 

(a) if necessary, find a suitable Box-Cox transfor­

mation for the data;

(b) fit a suitable ARIMA model to the transformed

data using auto. arima ();

(c) try some other plausible models by experiment­

ing with the orders chosen;

(d) choose what you think is the best model and

check the residual diagnostics;

(e) produce forecasts of your fitted model. Do the

forecasts look reasonable?

(f) compare the results with what you would

obtain using ets () (with no transformation).
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8.10 Choose one of the following seasonal time series: 

condmilk,hsales,uselec 

(a) Do the data need transforming? If so, find a

suitable transformation.

(b) Are the data stationary? If not, find an appro­

priate differencing which yields stationary

data.

(c) Identify a couple of ARIMA models that might

be useful in describing the time series. Which

of your models is the best according to their

AIC values?

(d) Estimate the parameters of your best model

and do diagnostic testing on the residuals. Do

the residuals resemble white noise? If not, try

to find another ARIMA model which fits better.

(e) Forecast the next 24 months of data using your

preferred model.

(f) Compare the forecasts obtained using ets ().

8.11 For the same time series you used in 8.10, try using a 

non-seasonal model applied to the seasonally adjusted 

data obtained from STL. The s tlf ( ) function will make 

the calculations easy (with method="arima"). Compare 

the forecasts with those obtained in 8.10. Which do you 

think is the best approach? 

8/12 Further reading 

• Box, G. E. P., G. M. Jenkins and G. C. Reinsel (2008). Time series

analysis: forecasting and control. 4th. Hoboken, NJ: John Wiley &

Sons.

• Brockwell, P. J. and R. A. Davis (2002). Introduction to Time Series

and Forecasting. 2nd ed. New York: Springer.

• Chatfield, C. (2000). Time-series forecasting. Boca Raton: Chap­

man & Hall/CRC.

• Pena, D., G. C. Tiao and R. S. Tsay, eds. (2001). A course in time

series analysis. New York: John Wiley & Sons.

• Shumway, R.H. and D.S. Stoffer (2011). Time series analysis and

its applications: with R examples. 3rd ed. New York: Springer.
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Advanced forecasting methods 

In this chapter, we briefly discuss four more advanced fore­

casting methods that build on the models discussed in earlier 

chapters. 

9/1 Dynamic regression models 

The time series models in the previous two chapters allow for 

the inclusion of information from the past observations of a 

series, but not for the inclusion of other information that may 

be relevant. For example, the effects of holidays, competitor 

activity, changes in the law, the wider economy, or some other 

external variables may explain some of the historical variation 

and allow more accurate forecasts. On the other hand, the 

regression models in Chapter 5 allow for the inclusion of a lot 

of relevant information from predictor variables, but do not 

allow for the subtle time series dynamics that can be handled 

with ARIMA models. 

In this section, we consider how to extend ARIMA models to 

allow other information to be included in the models. We begin 

by simply combining regression models and ARIMA models to 

give regression with ARIMA errors. These are then extended 

into the general class of dynamic regression models. 

In Chapter 5 we considered regression models of the form 

where Yt is a linear function of the k predictor variables (x1,t, ... ,xk,t), 

and et is usually assumed to be an uncorrelated error term (i.e., 

it is white noise). We considered tests such as the Durbin-

Watson test for assessing whether et was significantly correlated. 



260 FORECASTING: PRINCIPLES AND PRACTICE 

In this chapter, we will allow the errors from a regression to 
contain autocorrelation. To emphasise this change in perspec­
tive, we will replace et by n t in the equation. The error series 
n t is assumed to follow an ARIMA model. For example, if n t 

follows an ARIMA(l,1,1) model, we can write 

Yt = /3o + /31 x1 , t + · · · + f3kxk, t + n t, 

(1-<f>1B)(l -B)n t = (1 + (J i B)et, 

where et is a white noise series. 

Notice that the model has two error terms here - the error 
from the regression model that we denote by n t and the error 
from the ARIMA model that we denote by et. Only the ARIMA 
model errors are assumed to be white noise. 

Estimation 

When we estimate the parameters from the model, we need 
to minimise the sum of squared et values. If, instead, we min­
imised the sum of squared n t values (which is what would 
happen if we estimated the regression model ignoring the 
autocorrelations in the errors), then several problems arise. 

1. The estimated coefficients Po, ... , Pk are no longer the
best estimates as some information has been ignored in
the calculation;

2. Statistical tests associated with the model (e.g., t-tests
on the coefficients) are incorrect.

3. The AIC of the fitted models are not a good guide as to
which is the best model for forecasting.

In most cases, the p-values associated with the coefficients 
will be too small, and so some predictor variables appear to 

be important when they are not. This is known as "spurious 
regression". 

Minimising the sum of squared et values avoids these prob­
lems. Alternatively, maximum likelihood estimation can be 
used; this will give very similar estimates for the coefficients. 

An important consideration in estimating a regression with 
ARMA errors is that all variables in the model must first be sta­
tionary. So we first have to check that Yt and all the predictors 
(x1 , t,···,xk, t) appear to be stationary. If we estimate the model 

while any of these are non-stationary, the estimated coefficients 
can be incorrect. 
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One exception to this is the case where non-stationary vari­

ables are co-integrated. If there exists a linear combination 

between the non-stationary Yt and predictors that is stationary, 

then the estimated coefficients are correct. 1 

So we first difference the non-stationary variables in the 

model. It is often desirable to maintain the form of the rela­

tionship between Yt and the predictors, and consequently it is 

common to difference all variables if any of them need differenc­

ing. The resulting model is then called a "model in differences" 

as distinct from a "model in levels" which is what is obtained 

when the original data are used without differencing. 

If all the variables in the model are stationary, then we only 

need to consider ARMA errors for the residuals. It is easy to 

see that a regression model with ARIMA errors is equivalent 

to a regression model in differences with ARMA errors. For 

example, if the above regression model with ARIMA(l,1,1) 

errors is differenced we obtain the model 

h ' ' d ' h" h. w ere Yt = Yt-Yt-1' xt. = Xt i-Xt-l i an nt = nt-nt-1' w 1c 1s a 
,l ' , 

regression model in differences with ARMA errors. 

Model selection 

To determine the appropriate ARIMA error structure, we first 

need to calculate nt. But we cannot get nt without knowing the 

coefficients, f3o , ... , f3k • To estimate these coefficients, we first 

need to specify the ARIMA error structure. So we are stuck 

in an infinite loop where each part of the model needs to be 

specified before we can estimate the other parts of the models. 

A solution is to begin with a proxy model for the ARIMA 

errors. A common approach with non-seasonal data is to start 

with an AR(2) model for the errors, or an ARIMA(2,0,0)(1,0,0)m 

model for seasonal data. While it is unlikely that these will 

be the best error models, they will allow most of the autocor­

relation to be included in the model, and so the resulting f3 

coefficients should not be too far wrong. 

Once we have a proxy model for the ARIMA errors, we 

estimate the regression coefficients, calculate the preliminary 

1 Forecasting with 

cointegrated models 

is discussed in R. 

Harris and R. Sollis 

(2003). Applied Time 
Series Modelling and 
Forecasting. Chichester, 

UK: John Wiley & Sons. 
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values of nt, and then select a more appropriate ARMA model 

for nt before re-estimating the entire model. 

The full modelling procedure is outlined below. We assume 

that you have already chosen the predictor variables (this 

assumption will be removed shortly). We also assume that any 

Box-Cox transformations have already been applied if required. 

1. Check that the forecast variable and all predictors are sta­

tionary. If not, apply differencing until all variables are

stationary. Where appropriate, use the same differencing for

all variables to preserve interpretability.

2. Fit the regression model with AR(2) errors for non-seasonal

data or ARIMA(2,0,0)(1,0,0)m errors for seasonal data.

3. Calculate the errors (nt) from the fitted regression model

and identify an appropriate ARMA model for them.

4. Re-fit the entire model using the new ARMA model for the

errors.

5. Check that the et series looks like white noise.

The AIC can be calculated for the final model, and this

value can be used to determine the best predictors. That is, the 

procedure should be repeated for all subsets of predictors to be 

considered, and the model with the lowest AIC value selected. 

The procedure is illustrated in the following example. 

Example 9.1 US Personal Consumption and Income

Figure 9.1 shows quarterly changes in personal consumption 

expenditure and personal disposable income from 1970 to 2010. 

We would like to forecast changes in expenditure based on 

changes in income. An increase in income does not necessarily 

translate into an instant increase in consumption (e.g., after 

the loss of a job, it may take a few months for expenses to be 

reduced to allow for the new circumstances). However, we will 

ignore this complexity in this example and try to measure the 

instantaneous effect of the average change of income on the 

average change of consumption expenditure. 

The data are clearly already stationary (as we are considering 

percentage changes rather than raw expenditure and income), 
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Quarterly changes In US consumption and personal Income 
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plot(usconsumption, xlab="Year", 

2000 2010 

Figure 9.1: Percentage 

changes in quarterly 

personal consumption 

expenditure and 

personal disposable 

income for the USA, 

1970 to 2010. 

main="Ouarterly changes in US consumption and personal income") 
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Rcode 

10 

Lag 

15 

fit <- Arima(usconsumption[, 1], xreg=usconsumption[,2], 
order=c(2,0,0)) 

tsdisplay(arima.errors(fit), main="ARIMA errors") 

20 

Figure 9.2: Errors 

( n1) obtained from 

regression change in 

consumption expen­

diture on change in 

disposable income, 

assuming a proxy AR(2) 

error model. 



264 FORECASTING: PRINCIPLES AND PRACTICE 

so there is no need for any differencing. So we first regress con­

sumption on income assuming AR(2) errors. The resulting n t 

values are shown in Figure 9.2. Possible candidate ARIMA mod­

els include an MA(3) and AR(2). However, further exploration 

reveals that an ARIMA(l,0,2) has the lowest AICc value. We re­

fit the model with ARIMA(l,0,2) errors to obtain the following 

results. 

---------- R output 
> (fit2 <- Arima(usconsumption[,1], xreg=usconsumption[,2],

order=c(1,0,2))) 
Series: usconsumption [, 1] 
ARIMA(1,0,2) with non-zero mean 

Coefficients: 
ar1 ma1 ma2 intercept usconsumption[, 2] 

0.6516 -0.5440 0.2187 0.5750 
s.e. 0. 1468 0. 1576 0.0790 0.0951 

sigma"2 estimated as 0.3396: log likelihood=-144.27 
AIC=300.54 AICc=301.08 BIC=319.14 

A Ljung-Box test shows the residuals are uncorrelated. 

---------- R output 

0.2420 
0.0513 

> Box.test(residuals(fit2), fitdf=5, lag=10, type="Ljung")
Box-Ljung test 

data: residuals(fit2) 
X-squared = 4.5948, df = 5, p-value = 0.4673

Forecasts are, of course, only possible if we have future 

values of changes in personal disposable income. Here we will 

calculate forecasts assuming that for the next 8 quarters, the 

percentage change in personal disposable income is equal to the 

mean percentage change from the last forty years. 

The prediction intervals for this model are narrower than 

those for the model developed in Section 8.1 (p. 8.8) because we 

are now able to explain some of the variation in the data using 

the income predictor. 

Regression with ARIMA errors in R 

The R function Arima() will fit a regression model with ARIMA 

errors if the argument xreg is used. The order argument spec­

ifies the order of the ARIMA error model. If differencing is 
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---------- R code 
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Figure 9.3: Forecasts 

obtained from regress­

ing the percentage 

change in consumption 

expenditure on the 

percentage change in 

disposable income, 

with an ARIMA(l,0,2) 

error model. 

feast<- forecast(fit2, xreg=rep(mean(usconsumption(,2)),8), h=8) 
plot(fcast, 

main="Forecasts from regression with ARIMA(1,0,2) errors") 

specified, then the differencing is applied to all variables in the 

regression model before the model is estimated. For example, 

suppose we issue the following R command. 

---------- R code 

fit<- Arima(y, xreg=x, order=c(1,1,0)) 

This will fit the model y; = f3 1 x; + n; where n; = <f>1 n;_1 + e1 is an

AR( 1) error. This is equivalent to the model 

where n1 is an ARIMA(l,1,0) error. Notice that the constant 

term disappears due to the differencing. If you want to include 

a constant in the differenced model, specify include.drift= TRUE. 

The auto. arima () function will also handle regression terms. 

For example, the following command will give the same model 

as that obtained in the preceding analysis. 

---------- R code 

fit<- auto.arima(usconsumption[, 1], xreg=usconsumption[,2]) 
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Forecasting 

To forecast a regression model with ARIMA errors, we need to 

forecast the regression part of the model and the ARIMA part 

of the model, and combine the results. As with ordinary regres­

sion models, to obtain forecasts, we need to first forecast the 

predictors. When the predictors are known into the future (e.g., 

calendar-related variables such as time, day-of-week, etc.), this 

is straightforward. But when the predictors are themselves un­

known, we must either model them separately, or use assumed 

future values for each predictor. 

It is important to realise that the prediction intervals from 

regression models (with or without ARIMA errors) do not take 

account of the uncertainty in the forecasts of the predictors. 

Stochastic and deterministic trends 

We have considered two different ways of modelling a trend. A 

deterministic trend is obtained using the regression model 

where nt is an ARMA process. A stochastic trend is obtained 

using the model 

where nt is an ARIMA process with d = l. In that case, we can 

difference both sides so that y; = {31 + n; where n; is an ARMA

process. In other words, 

Yt = Yt-l + /31 + n;. 

So this is very similar to a random walk with drift, but here the 

error term is an ARMA process rather than simply white noise. 

Although these models appear quite similar (they only differ 

in the number of differences that need to be applied to nt ), their 

forecasting characteristics are quite different. 

Example 9.2 International visitors to Australia 

Figure 9.4 shows the total number of international visitors 

to Australia each year from 1980 to 2010. We will fit both a 

deterministic and a stochastic trend model to these data. 

The deterministic trend model is obtained as follows: 
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Total annual international visitors to Australia 

N 

1980 1985 1990 1995 

Year 

---------- R output 

2000 

> auto.arima(austa, d=0, xreg=1:length(austa))

ARIMA(2,0,0) with non-zero mean 

Coefficients: 

2005 

ar1 ar2 intercept 

1.0371 -0.3379 0.4173 

s.e. 0.1675 0. 1797 0. 1866 

1:length(austa) 

0. 1715

0.0102 

sigma'2 estimated as 0.02486: log likelihood=12.7 

This model can be written as 

Yt = 0.42 + 0.17t + nt 

nt = l .04nt-l - 0.34nt-2 + et

et~ NID(0, 0.025). 

2010 

The estimated growth in visitor numbers is 0.17 million people 

per year. 

Alternatively, the stochastic trend model can be estimated. 

Figure 9.4: Annual 

international visitors to 

Australia, 1980-2010. 
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> auto.arima(austa, d=1)

Series: austa

ARIMA(0, 1,0) with drift

Coefficients: 

drift 

0. 154

s.e. 0.033

R output 

sigma'2 estimated as 0.0324: log likelihood=9.07 

AIC=-14.14 AICc=-13.69 BIC=-11.34 

This model can be written as Yt -Yt-l = 0.15 + et , or equivalently
Yt

= JJo+0.15t+n t 

et ~ NID(0,0.032).

Forecasts from linear trend + AR 2 error 

r--

�
lO 

1980 1990 2000 2010 2020 

Forecasts from ARIMA O 1 0 with drift 

r--

�
lO 

(') 

1980 1990 2000 2010 2020 

Rcode 
fit1 <- Arima(austa, order=c(0,1,0), include.drift=TRUE) 

fit2 <- Arima(austa, order=c(2,0,0), include.drift=TRUE) 

par(mfrow=c(2, 1)) 

Figure 9.5: Forecasts 

of annual international 

visitors to Australia 

using a deterministic 

trend model and a 

stochastic trend model. 

plot(forecast(fit2), main="Forecasts from linear trend+ AR(2) error", 

ylim=c( 1,8)) 

plot(forecast(fit1), ylim=c(1,8)) 
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In this case, the estimated growth in visitor numbers is 0.15 

million people per year. 

Although the growth estimates are similar, the prediction in­

tervals are not, as shown in Figure 9.5. In particular, stochastic 

trends have much wider prediction intervals because the errors 

are non-stationary. 

There is an implicit assumption with a deterministic trend 

that the slope of the trend is not going to change over time. On 

the other hand, stochastic trends can change and the estimated 

growth is only assumed to be the average growth over the 

historical period, not necessarily the rate of growth that will be 

observed into the future. Consequently, it is safer to forecast 

with stochastic trends, especially for longer forecast horizons, as 

the prediction intervals allow for greater uncertainty in future 

growth. 

Lagged predictors 

Sometimes, the impact of a predictor included in a regression 

model will not be simple and immediate. For example, an 

advertising campaign may impact sales for some time beyond 

the end of the campaign, and sales in one month will depend 

on advertising expenditure in each of the past few months. 

Similarly, a change in a company safety policy may reduce 

accidents immediately, but have a diminishing effect over time 

as employees take less care as they become familiar with the 

new working conditions. 

In these situations, we need to allow for lagged effects of the 

predictor. Suppose we have only one predictor in our model. 

Then a model that allows for lagged effects can be written as 

Jlt = /3o + YoXt + Y1 Xt-1 + · · · + YkXt-k + nt, 

where nt is an ARIMA process. The value of k can be selected 

using the AIC along with the values of p and q for the ARIMA 

error. 

Example 9.3 TV advertising and insurance quotations 

A US insurance company advertises on national television 

in an attempt to increase the number of insurance quotations 

provided (and consequently the number of new policies). Fig­

ure 9.6 shows the number of quotations and the expenditure 
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Insurance advertising and quotations 
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Figure 9.6: Number of 
insurance quotations 
provided per month 
and th e expenditure on 
advertising per month. 

plot(insurance, main="lnsurance advertising and quotations", xlab="Year") 

# Lagged predictors. Test 0, 1, 2 or 3 lags. 

Advert <- cbind(insurance[,2], 

c(NA,insurance[1:39,2]), 

c(NA,NA,insurance[1:38,2]), 

c(NA,NA,NA,insurance[1:37,2])) 

colnames(Advert) <- paste("Adlag",0:3,sep="") 

# Choose optimal lag length for advertising based on AIC 

# Restrict data so models use same fitting period 

fit1 <- auto.arima(insurance[4:40, 1], xreg=Advert[4:40,1], d=0) 

fit2 <- auto.arima(insurance[4:40, 1], xreg=Advert[4:40,1:2], d=0) 

fit3 <- auto.arima(insurance[4:40, 1], xreg=Advert[4:40,1:3], d=0) 

fit4 <- auto.arima(insurance[4:40, 1], xreg=Advert[4:40,1:4], d=0) 

# Best model fitted to all data (based on AICc) 

# Refit using all data 

fit <- auto.arima(insurance[,1], xreg=Advert[,1:2], d=0) 

R output 
> fit

ARIMA(3,0,0) with non-zero mean

ar1 ar2 ar3 intercept Adlag0 Adlag1 

1. 4117 -0.9317 0.3591 2.0393 1.2564 0. 1625 

s.e. 0. 1698 0.2545 0. 1592 0.9931 0.0667 0.0591 

sigma'2 estimated as 0. 1887: log likelihood=-23.89 

AIC=61.78 AICc=65.28 BIC=73.6 
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on television advertising for the company each month from 

January 2002 to April 2005. 

We will consider including advertising expenditure for up to 

four months; that is, the model may include advertising expen­

diture in the current month, and the three months before that. 

It is important when comparing models that they are all using 

the same training set. So in the following code, we exclude the 

first three months in order to make fair comparisons. The best 

model is the one with the smallest AICc value. 

The chosen model includes advertising only in the current 

month and the previous month, and has AR(3) errors. The 

model can be written as 

where Yt is the number of quotations provided in month t, x1 is 

the advertising expenditure in month t,

and e1 is white noise. 

We can calculate forecasts using this model if we assume 

future values for the advertising variable. If we set future 

monthly advertising to 8 units, we get the following forecasts. 

� 
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---------- R code 

Figure 9.7: Forecasts 

of monthly insurance 

quotes assuming future 

advertising is 8 units in 

each future month. 

fc8 <- forecast(fit, xreg=cbind(c(Advert[40,1],rep(8,19)),rep(8,20)), h=20) 

plot(fc8, main="Forecast quotes with advertising set to 8", ylab="Quotes") 
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9/2 Vector autoregressions 

One limitation with the models we have considered so far is 
that they impose a unidirectional relationship -the forecast 
variable is influenced by the predictor variables, but not vice 

versa. However, there are many cases where the reverse should 
also be allowed for -where all variables affect each other. 
Consider the series in Example 9.1. The changes in personal 
consumption expenditure (Ct) are forecast based on the changes 
in personal disposable income (It)- In this case a bi-directional 
relationship may be more suitable: an increase in It will lead to 
an increase in Ct and vice versa. 

An example of such a situation occurred in Australia during 
the Global Financial Crisis of 2008-2009. The Australian gov­

ernment issued stimulus packages that included cash payments 
in December 2008, just in time for Christmas spending. As 
a result, retailers reported strong sales and the economy was 
stimulated. Consequently, incomes increased. 

Such feedback relationships are allowed for in the vector 
autoregressive (VAR) framework. In this framework, all vari­
ables are treated symmetrically. They are all modelled as if 
they influence each other equally. In more formal terminology, 

all variables are now treated as "endogenous". To signify this 
we now change the notation and write all variables as ys: Yl,t 
denotes the tth observation of variable y1, y2,t denotes the tth 
observation of variable y2, and so on. 

A VAR model is a generalisation of the univariate autoregres­
sive model for forecasting a collection of variables; that is, a 
vector of time series.2 It comprises one equation per variable 
considered in the system. The right hand side of each equation 
includes a constant and lags of all the variables in the system. 

To keep it simple, we will consider a two variable VAR with one 
lag. We write a 2-dimensional VAR(l) as 

Yl,t = c1 + 'P11,1Y1,t-1 + 'P12,1Y2,t-1 + e1,t 

Y2,t = c2 + <p21,1Y1,t-1 + <p22,1Y2,t-1 + e2,t 

(9.la) 

(9.lb) 

where e1,t and e2,t are white noise processes that may be contem­

poraneously correlated. Coefficient 'Pii ,e captures the influence 
of the fth lag of variable Yi on itself, while coefficient 'Pij,e 
captures the influence of the fth lag of variable Yj on Yi· 

2 A more flexible 

generalisation would 

be a Vector ARMA 

process. However,the 

relative simplicity 

ofVARs has led to 

their dominance in 

forecasting . Interested 

readers may refer to G. 

Athanasopoulos, D. S. 

Poskitt and F. Vahid 

(2012). Two Canonical 

VARMA Forms: Scalar 

Component Models 

Vis-a-Vis the Echelon 

Form. Econometric

Reviews 31(1), 60-83. 
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If the series modelled are stationary we forecast them by 

directly fitting a VAR to the data (known as a "VAR in levels"). 

If the series are non-stationary we take differences to make 

them stationary and then we fit a VAR model (known as a 

"VAR in differences"). In both cases, the models are estimated 

equation by equation using the principle of least squares. For 

each equation, the parameters are estimated by minimising the 

sum of squared ei,t values. 

The other possibility which is beyond the scope of this book 

and therefore we do not explore here, is that series may be 

non-stationary but they are cointegrated, which means that 

there exists a linear combination of them that is stationary. In 

this case a VAR specification that includes an error correction 

mechanism (usually referred to as a vector error correction 

model) should be included and alternative estimation methods 

to least squares estimation should be used.3

Forecasts are generated from a VAR in a recursive manner. 

The VAR generates forecasts for each variable included in the 

system. To illustrate the process, assume that we have fitted 

the 2-dimensional VAR(l) described in equations (9.la)-(9.1 b) 

for all observations up to time T. Then the one-step-ahead 

forecasts are generated by 

Yl,T+llT = (\ + �11,1Y1,T + �12,1Y2,T 

Y2,T+llT = C2 + �21,1Y1,T + �22,1Y2,T• 

This is the same form as (9.la)-(9.lb) except that the errors 

have been set to zero and parameters have been replaced with 

their estimates. For h = 2, the forecasts are given by 

Yl,T+2IT = C1 + �11,1:Yl,T+l + �12,1P2,T+l 

Y2,T+2IT = C2 + �21,1:Yl,T+l + �22,l:Y2,T+l· 

Again, this is the same form as (9.la)-(9.lb) except that the 

errors have been set to zero, parameters have been replaced 

with their estimates, and the unknown values of y1 and y2 have 

been replaced with their forecasts. The process can be iterated 

in this manner for all future time periods. 

There are two decisions one has to make when using a VAR 

to forecast. They are, how many variables (denoted by K) and 

how many lags (denoted by p) should be included in the system. 

The number of coefficients to be estimated in a VAR is equal 

3 Interested readers 
should refer to J. D. 
Hamilton (1994). 
Time Series Analysis. 
Princeton University 
Press, Princeton, and 
H. Lutkepohl (2007).
General-to-specific
or specific-to-general
modelling? An opinion
on current econometric
terminology. Journal
of Econometrics 136,
234-319.
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to K + pK 2 (or 1 + pK per equation). For example, for a VAR 

with K = 5 variables and p = 3 lags, there are 16 coefficients per 

equation making for a total of 80 coefficients to be estimated. 

The more coefficients to be estimated the larger the estimation 

error entering the forecast. 

In practice it is usual to keep K small and include only 

variables that are correlated to each other and therefore useful 

in forecasting each other. Information criteria are commonly 

used to select the number of lags to be included. 

VARs are implemented in the vars package in R. It contains 

a function VARselect to choose the number of lags p using four 

different information criteria: AIC, HQ, SC and FPE. We have 

met the AIC before, and SC is simply another name for the BIC 

(SC stands for Schwarz Criterion after Gideon Schwarz who 

proposed it). HQ is the Hannan-Quinn criterion and FPE is the 

"Final Prediction Error" criterion.4 Care should be taken using

the AIC as it tends to choose large numbers of lags. Instead, for 

VAR models, we prefer to use the BIC. 

A criticism VARs face is that they are atheoretical. They 

are not built on some economic theory that imposes a theo­

retical structure to the equations. Every variable is assumed 

to influence every other variable in the system, which makes 

direct interpretation of the estimated coefficients very difficult. 

Despite this, VARs are useful in several contexts: 

1. forecasting a collection of related variables where no

explicit interpretation is required;

2. testing whether one variable is useful in forecasting

another (the basis of Granger causality tests);

3. impulse response analysis, where the response of one

variable to a sudden but temporary change in another

variable is analysed;

4. forecast error variance decomposition, where the

proportion of the forecast variance of one variable is

attributed to the effect of other variables.

Example 9.4 A VAR model for forecasting US consumption 

The R output on the following page shows the lag length 

selected by each of the information criteria available in the 

vars package. There is a large discrepancy between a VAR(S) 

selected by the AIC and a VAR(l) selected by the BIC. This is 

4 For a detailed compar­

ison of these criteria, 

see Chapter 4.3 of H. 

Liltkepohl (2005). New 

introduction to multiple 

time series analysis. 

Berlin: Springer-Verlag. 
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---------- R output 
> library(vars)

> VARselect(usconsumption, lag.max=8, type="const")$selection

AIC(n) HQ(n) SC(n) FPE(n)

5 1 1 5 

> var <- VAR(usconsumption, p=3, type="const")

> serial.test(var, lags.pt=10, type="PT.asymptotic")

Portmanteau Test (asymptotic)

data: Residuals of VAR object var

Chi-squared = 33.3837, df = 28, p-value = 0.2219

> summary(var)

VAR Estimation Results:

Endogenous variables: consumption, income 

Deterministic variables: const 

Sample size: 161 

Estimation results for equation consumption: 

Estimate Std. Error t value Pr(>ltl) 

consumption.11 0.22280 0.08580 2.597 0.010326 * 

income.11 0.04037 0.06230 0.648 0.518003 

consumption.12 0.20142 0.09000 2.238 0.026650 * 

income.12 -0.09830 0.06411 -1.533 0.127267

consumption.13 0.23512 0.08824 2.665 0.008530 

income.13 -0.02416 0.06139 -0.394 0.694427

const 0.31972 0.09119 3.506 0.000596 

Estimation results for equation income: 

Estimate Std. Error t value Pr(>ltl) 

consumption.11 0.48705 0. 11637 4. 186 4. 77e-05 

income.11 -0.24881 0.08450 -2.945 0.003736

consumption.12 0.03222 0. 12206 0.264 0.792135 

income.12 -0. 11112 0.08695 -1.278 0.203170

consumption.13 0.40297 0. 11967 3.367 0.000959 

income.13 -0.09150 0.08326 -1.099 0.273484

const 0.36280 0. 12368 2.933 0.003865 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 

Correlation matrix of residuals: 

consumption income 

consumption 1.0000 0.3639 

income 0.3639 1.0000 

** 

*** 

*** 

** 

*** 

** 

0. 1 ' ' 1
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not unusual. As a result we first fit a VAR(l), selected by the 

BIC. In similar fashion to the univariate ARIMA methodology 

we test that the residuals are uncorrelated using a Portmanteau 

test5 The null hypothesis of no serial correlation in the residuals 

is rejected for both a VAR(l) and a VAR(2) and therefore we fit a 

VAR(3) as now the null is not rejected. The forecasts generated 

by the VAR(3) are plotted in Figure 9.8. 

Forecasts from VAR(3) 
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fest <- forecast(var) 

plot(fcst, xlab="Year") 
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9/3 Neural network models 

2000 2010 

Artificial neural networks are forecasting methods that are 

based on simple mathematical models of the brain. They allow 

complex nonlinear relationships between the response variable 

and its predictors. 

Neural network architecture 

A neural network can be thought of as a network of "neurons" 

organised in layers. The predictors (or inputs) form the bottom 

5 The tests for serial 

correlation in the "vars" 

package are multivari­

ate generalisations of 

the tests presented in 

Section 2/6. 

Figure 9. 8: Forecasts for 

US consumption and 

income generated from 

a VAR(3). 
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layer, and the forecasts (or outputs) form the top layer. There 

may be intermediate layers containing "hidden neurons". 

The very simplest networks contain no hidden layers and 

are equivalent to linear regression. Figure 9.9 shows the neural 

network version of a linear regression with four predictors. The 

coefficients attached to these predictors are called "weights". 

The forecasts are obtained by a linear combination of the inputs. 

The weights are selected in the neural network framework using 

a "learning algorithm" that minimises a "cost function" such 

as MSE. Of course, in this simple example, we can use linear 

regression which is a much more efficient method for training 

the model. 

Input 

layer 

Input #1 -> 

Input #2-> 

lnput#3-> 

Input #4-> 

Output 

layer 

Once we add an intermediate layer with hidden neurons, the 

neural network becomes non-linear. A simple example is shown 

in Figure 9.10. 

Input 

layer 

Hidden 

layer 

Input #1 -

� 

Input #2 -

-
Input #3 -

Input #4-> 

Output 

layer 

,e- Output

This is known as a multilayer feed-forward network where 

each layer of nodes receives inputs from the previous layers. 

Figure 9.9: A sim­

ple neural network 

equivalent to a linear 

regression. 

Figure 9.10: A neural 

network with four 

inputs and one hidden 

layer with three hidden 

neurons. 
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The outputs of nodes in one layer are inputs to the next layer. 

The inputs to each node are combined using a weighted linear 

combination. The result is then modified by a nonlinear func­

tion before being output. For example, the inputs into hidden 

neuron j in Figure 9.10 are linearly combined to give 

Zj = bj + L Wi,jXi­
i=l 

In the hidden layer, this is then modified using a nonlinear 

function such as a sigmoid, 

1 
s(z)=--, 

1 + e-z 

to give the input for the next layer. This tends to reduce the 

effect of extreme input values, thus making the network some­

what robust to outliers. 

The parameters b1,b2,b3 and w1,1, ... ,w4,3 are "learned" 

from the data. The values of the weights are often restricted to 

prevent them becoming too large. The parameter that restricts 

the weights is known as the "decay parameter" and is often set 

to be equal to 0.1. 

The weights take random values to begin with, which are 

then updated using the observed data. Consequently, there 

is an element of randomness in the predictions produced by 

a neural network. Therefore, the network is usually trained 

several times using different random starting points, and the 

results are averaged. 

The number of hidden layers, and the number of nodes 

in each hidden layer, must be specified in advance. We will 

consider how these can be chosen using cross-validation later in 

this chapter. 

Example 9. 5 Credit scoring 

To illustrate neural network forecasting, we will use the credit 

scoring example that was discussed in Chapter 5. There we 

fitted the following linear regression model: 



where y = credit score, 

x1 = log savings, 

x2 = log income, 
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x3 = log time at current address, 

x4 = log time in current job, 

e = error.

Here "log" means the transformation log(x + 1 ). This could 

be represented by the network shown in Figure 9.9 where the 

inputs are x1, ... , x4 and the output is y. The more sophisticated 

neural network shown in Figure 9.10 could be fitted as follows. 

---------- R code 
library (caret) 
creditlog <- data.frame(score=credit$score, 

log.savings=log(credit$savings+1), 
log.income=log(credit$income+1), 
log.address=log(credit$time.address+1), 
log.employed=log(credit$time.employed+1), 
fte=credit$fte, single=credit$single) 

fit <- avNNet(score - log.savings + log.income + log.address + 
log.employed, data=creditlog, repeats=25, size=3, decay=0.1, 
linout=TRUE ) 

The avNNet function from the caret package fits a feed­

forward neural network with one hidden layer. The network 

specified here contains three nodes (size=3) in the hidden 

layer. The decay parameter has been set to 0.1. The argument 

repeats=25 indicates that 25 networks were trained and their 

predictions are to be averaged. The argument linout= TRUE indi­

cates that the output is obtained using a linear function. In this 

book, we will always specify linout= TRUE. 

Neural network autoregression 

With time series data, lagged values of the time series can be 

used as inputs to a neural network. Just as we used lagged 

values in a linear autoregression model (Chapter 8), we can use 

lagged values in a neural network autoregression. 

In this book, we only consider feed-forward networks with 

one hidden layer, and use the notation NNAR(p,k) to indicate 

there are p lagged inputs and k nodes in the hidden layer. For 
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example, a NNAR(9,5) model is a neural network with the 

last nine observations (Yt-i,Yt-2, ... ,yt_9) used as inputs to 

forecast the output Yt, and with five neurons in the hidden 

layer. A NNAR(p,0) model is equivalent to an ARIMA(p,0,0) 

model but without the restrictions on the parameters to ensure 

stationarity. 

With seasonal data, it is useful to also add the last ob-

served values from the same season as inputs. For exam-

ple, an NNAR(3,1,2)12 model has inputs Yt-l, Yt-2, Yt-3 and 

Yt-i2, and two neurons in the hidden layer. More generally, an 

NNAR(p,P,k)m model has inputs (Yt-1,Yt-2, 0 0 •,Yt-p,Yt- m,Yt-2m,Yt-Pm)

and k neurons in the hidden layer. A NNAR(p,P,0)m model is 

equivalent to an ARIMA(p,0,0)(P,0,0)m model but without the 

restrictions on the parameters to ensure stationarity. 

The nnetar() function fits an NNAR(p,P,k)m model. If the 

values of p and P are not specified, they are automatically 

selected. For non-seasonal time series, the default is the optimal 

number of lags (according to the AIC) for a linear AR(p) model. 

For seasonal time series, the default values are P = I and p is 

chosen from the optimal linear model fitted to the seasonally 

adjusted data. If k is not specified, it is set to k = (p + P + I )/2 

(rounded to the nearest integer). 

Example 9. 6 Sunspots 

The surface of the sun contains magnetic regions that appear as 

dark spots. These affect the propagation of radio waves and so 

telecommunication companies like to predict sunspot activity 

in order to plan for any future difficulties. Sunspots follow a 

cycle of length between 9 and 14 years. In Figure 9.11, forecasts 

from an NNAR(9) are shown for the next 20 years. 

---------- R code 
fit <- nnetar(sunspotarea) 
plot(forecast(fit,h=20)) 

The forecasts actually go slightly negative, which is of course 

impossible. If we wanted to restrict the forecasts to remain 

positive, we could use a log transformation (specified by the 

Box-Cox parameter A= 0): 
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---------- R code 

fit <- nnetar(sunspotarea,lambda=O) 

plot(forecast(fit,h=20)) 

2000 

9/4 Forecasting hierarchical or grouped time series 

Warning: this is a more advanced section and assumes knowledge of 

matrix algebra. 

Time series can often be naturally disaggregated in a hierar­

chical structure using attributes such as geographical location, 

product type, etc. For example, the total number of bicycles 

sold by a cycling warehouse can be disaggregated into a hier­

archy of bicycle types. Such a warehouse will sell road bikes, 

mountain bikes, children bikes or hybrids. Each of these can 

be disaggregated into finer categories. Children's bikes can 

be divided into balance bikes for children under 4 years old, 

single speed bikes for children between 4 and 6 and bikes for 

children over the age of 6. Hybrid bikes can be divided into 

city, commuting, comfort, and trekking bikes; and so on. Such 

disaggregation imposes a hierarchical structure. We refer to 

these as hierarchical time series. 

Another possibility is that series can be naturally grouped 

together based on attributes without necessarily imposing a 

hierarchical structure. For example the bicycles sold by the 

warehouse can be for males, females or unisex. They can be 

Figure 9.11: Forecasts 

from a neural network 

with nine lagged 

inputs and one hidden 

layer containing five 

neurons. 
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used for racing, commuting or recreational purposes. They 

can be single speed or have multiple gears. Frames can be 

carbon, aluminium or steel. Grouped time series can be thought 

of as hierarchical time series that do not impose a unique 

hierarchical structure in the sense that the order by which the 

series can be grouped is not unique. 

In this section we present alternative approaches for fore­

casting time series data that possess hierarchical structures. 

Figure 9.12 shows a K = 2-level hierarchy.6 At the top of the

hierarchy, level 0, is the "Total", the most aggregate level of 

the data. We denote as Yt the tth observation of the "Total" se­

ries for t = 1, ... , T. Below this level we denote as Yj,t the tth

observation of the series which corresponds to node j of the 

hierarchical tree. The "Total" is disaggregated into 2 series 

at level 1 and each of these into 3 and 2 series respectively at 

the bottom level of the hierarchy, level 2. The total number of 

series in a hierarchy is given by n = I + n1 + · · · + nK where n; 

is the number of series at level i of the hierarchy. In this case 

n =I+ 2 + 5 = 8. 

AA AC BA 

For any time t, the observations of the bottom level series 

will aggregate to the observations of the series above. This can 

be effectively represented using matrix notation. We construct 

an n x nK matrix referred to as the "summing" matrix S which 

dictates how the bottom level series are aggregated, consistent 

with the hierarchical structure. For the hierarchy in Figure 9.12 

6 We will use this hier­

archical structure in 

order to introduce the 

methods for forecasting 

hierarchical time series 

that follow. 

Figure 9.12: A two 

level hierarchical tree 

diagram. 
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we can write 

Yt 1 1 1 1 1 

YA,t 1 1 1 0 0 

YB,t 0 0 0 1 1 
YAA,t 

YAA,t 1 0 0 0 0 
YAB,t 

YAB,t 0 1 0 0 0 
YAC,t 

YAC,t 0 0 1 0 0 
YBA,t 

YBA,t 0 0 0 1 0 
YBB,t 

YBB,t 0 0 0 0 1 

or in more compact notation 

Jlt = SyK,t, 

where Yt is a vector of all the observations in the hierarchy at 
time t, S is the summing matrix as defined above, and YK,t is a 
vector of all the observation in the bottom level of the hierarchy 
at time t.

We are interested in generating forecasts for each series 
in the hierarchy. We denote as Y

i ,h the h-step-ahead forecast 
generated for the series at node j having observed the time 
series up to observation T and as Yh the h-step-ahead forecast 
generated for the "Total" series.7 We refer to these as "base" 
forecasts. They are independent forecasts generated for each 
series in the hierarchy using a suitable forecasting method 
presented in earlier sections of this book. These base forecasts 
are then combined to produce final forecasts for the whole 
hierarchy that aggregate in a manner that is consistent with the 
structure of the hierarchy. We refer to these as revised forecasts 
and denote them as Y

i ,h and Yh respectively. 
There are a number of ways of combining the base forecasts 

in order to obtain revised forecasts. The following sections 
discuss some of the possible combining approaches. 

The bottom-up approach 

A commonly applied method for hierarchical forecasting is the 
bottom-up approach. This approach involves first generating 
base independent forecasts for each series at the bottom level of 
the hierarchy and then aggregating these upwards to produce 
revised forecasts for the whole hierarchy. 

For example, for the hierarchy of Figure 9.12 we first gen­
erate h-step-ahead base forecasts for the bottom level series: 

7 We have simplified 

the previously used 
notation of JIT+hlT for 

brevity. 



284 FORECASTING: PRINCIPLES AND PRACTICE 

YAA,h, YAB,h, YAc,h, YBA,h and YBB,h· Aggregating these up the 

hierarchy we get h-step-ahead forecasts for the rest of the series: 

YA,h = 
YAA,h + YAB,h + YAc,h, YB,h = 

YBA,h + YBB,h and Yh = 
YA,h + YB,h· 

Note that for the bottom-up approach the revised forecasts for 

the bottom level series are equal to the base forecasts. 

Using matrix notation we can again employ the summing 

matrix and write 

The greatest advantage of this approach is that no informa­

tion is lost due to aggregation. On the other hand bottom level 

data can be quite noisy and more challenging to model and 

forecast. 

Top-down approaches 

Top-down approaches involve first generating base forecasts 

for the "Total" series Yt on the top of the hierarchy and then 

disaggregating these downwards. We let P1,• .. ,pmK 
be a set 

of proportions which dictate how the base forecasts of the 

"Total" series are to be distributed to revised forecasts for each 

series at the bottom level of the hierarchy. Once the bottom 

level forecasts have been generated we can use the summing 

matrix to generate forecasts for the rest of the series in the 

hierarchy. Note that for top-down approaches the top level 

revised forecasts are equal to the top level base forecasts, i.e., 

Yh = 
Yh· 

The most common top-down approaches specify proportions 

based on the historical proportions of the data. The two most 

common versions follow. 

Average historical proportions 

for j 
= 

l, ... ,mK. Each proportion Pj reflects the average of the 

historical proportions of the bottom level series Yj,t over the 

period t 
= 

I, ... , T relative to the total aggregate Yt· 



Proportions of the historical averages 

T T _ , Yj,t;, YtPi-LT Ly
t=l t=l 
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for j = l, ... ,mK. Each proportion Pj captures the average
historical value of the bottom level series Yj,t relative to the
average value of the total aggregate Yt·

The greatest attribute of such top-down approaches is their
simplicity to apply. One only needs to model and generate
forecasts for the most aggregated top level series. In general
these approaches seem to produce quite reliable forecasts for
the aggregate levels and they are very useful with low count
data. On the other hand, their greatest disadvantage is the
loss of information due to aggregation. With these top-down
approaches, we are unable to capture and take advantage of
individual series characteristics such as time dynamics, special
events, etc.

In the example on forecasting Australian domestic tourism
demand that follows, the data are highly seasonal. The seasonal
pattern of tourist arrivals may vary across series depending
on the tourism destination. An area with beaches as its main
tourist attractions will have a very different seasonal pattern to
an area with skiing as its main tourist attraction. This will not
be captured by disaggregating the total of these destinations
based on historical proportions. Finally, with these methods
the disaggregation of the "Total" series forecasts depends on
historical and static proportions, and these proportions may be
distorted by trends in the data.

Forecasted proportions An alternative approach that improves
on the historical and static nature of the proportions specified
above is to use forecasted proportions.

To demonstrate the intuition of this method, consider a one
level hierarchy. We first generate h-step-ahead base forecasts for
all the series independently. At level 1 we calculate the propor­
tion of each h-step-ahead base forecast to the aggregate of all
the h-step-ahead base forecasts at this level. We refer to these as
the forecasted proportions and we use these to disaggregate the
top level forecast and generate revised forecasts for the whole of
the hierarchy.
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For a K-level hierarchy this process is repeated for each node going from the top to the very bottom level. Applying this process leads to the following general rule for obtaining the forecasted proportions 
K-1 A(f)
n Yj,hPj = A(f+l) f=O Sj,h 

for j = 1, 2, ... , mK. These forecasted proportions disaggregate the h-step-ahead base forecast of the "Total" series to h-step­
ahead revised forecasts of the bottom level series. le

h

) is the
}, h-step-ahead base forecast of the series that corresponds to

the node which is e levels above j. S�e

h

) is the sum of the h-step­
J, ahead base forecasts below the node that is e levels above node j

and are directly connected to that node.We will use the hierarchy of Figure 9 .12 to explain this 
notation and to demonstrate how this general rule is reached. 
Assume we have generated independent base forecasts for each series in the hierarchy. Remember that for the top level "Total" 
series, Yh = Yh· Here are some example using the above notation: 

A(l) A(l) -• YA, h = YB, h = Y h 

A(l) A(l) A • YBA, h = YBB, h = YB, h 

A(2) A(2) A(2) A(2) A(2) -• Y AA, h = Y AB, h = Y AC, h = YBA, h = YBB, h = Y h 

A(l) A(l) A A• SBA, h = SBB, h = YBA, h + YBB, h 

A(2) A(2) A(l) A(l) A A A • SBA, h = SBB, h = S A, h = SB, h = S h = Y A, h + YB, h 

Moving down the farthest left branch of the hierarchy the finalrevised forecasts are

and 
( A ) ( 

A(l) 
) _ YA, h _ YAA, h _ YA, h = A(l) Y h = � Y h sA, h 

5AA, h 

( A ) ( A )( 
A(l) 

) - YAA, h - YAA, h y AA, h -YAA, h = � YA, h = � � Y h · S AA, h S AA, h S AA, h Consequently, 
Y AA, h Y AA, h -( A )( 

A(l) 
) P1 = � � Yh sAA, h 

5AA, h 
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The other proportions can be similarly obtained. The greatest 

disadvantage of the top-down forecasted proportions approach, 

which is a disadvantage of any top-down approach, is that 

they do not produce unbiased revised forecasts even if the base 

forecasts are unbiased. 

Middle-out approach 

The middle-out approach combines bottom-up and top-down 

approaches. First the "middle level" is chosen and base fore­

casts are generated for all the series of this level and the ones 

below. For the series above the middle level, revised forecasts 

are generated using the bottom-up approach by aggregating the 

"middle-level" base forecasts upwards. For the series below the 

"middle level", revised forecasts are generated using a top-down 

approach by disaggregating the "middle level" base forecasts 

downwards. 

The optimal combination approach 

This approach involves first generating independent base fore­

cast for each series in the hierarchy. As these base forecasts are 

independently generated they will not be "aggregate consistent" 

(i.e., they will not add up according to the hierarchical struc­

ture). The optimal combination approach optimally combines 

the independent base forecasts and generates a set of revised 

forecasts that are as close as possible to the univariate forecasts 

but also aggregate consistently with the hierarchical structure. 

Unlike any other existing method, this approach uses all 

the information available within a hierarchy. It allows for 

correlations and interactions between series at each level of the 

hierarchy, it accounts for ad hoc adjustments of forecasts at any 

level, and, provided the base forecasts are unbiased, it produces 

unbiased revised forecasts. 

The general idea is derived from the representation of the 

h-step-ahead base forecasts for the whole of the hierarchy by the

linear regression model. We write

where 'Ph is a vector of the h-step-ahead base forecasts for the 

whole hierarchy, /Jh is the unknown mean of the future values of 
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the bottom level K, and eh has zero mean and covariance matrix 
I.h . Note that eh represents the error in the above regression and 
should not be confused with the h-step-ahead forecast error. 

In general I.h in unknown. However, if we assume that the 
errors approximately satisfy the same aggregation structure as 
the original data, (i.e., eh � SeK,h where eK,h contains the fore­
cast errors in the bottom level), then the best linear unbiased 
estimator for /Jh is Ph= (S'St 1 S'yn (h). This leads to a set of 
revised forecasts given by 

Assuming that the errors approximately satisfy the hierarchi­
cal aggregation structure will be true provided that the base 
forecasts also approximately satisfy this aggregation structure, 
which should occur for any reasonable set of forecasts. 

The hts package 

Hierarchical time series forecasting is implemented in the hts

package in R. 
The hts function creates a hierarchical time series. The 

required inputs are the bottom level time series obsverations, 
and information about the hierarchical structure. For example, 
the structure shown in Figure 9.12 is specified as follows: 

Rcode 

# bts is a time series matrix containing the bottom level series 

# The first three series belong to one group, and the last two series 

# belong to a different group 

y <- hts(bts, nodes=list(2, c(3,2))) 

For a grouped but non-hierarchical time series, the gts function 
can be used. If there are more levels, the g argument should be 
a matrix where each row contains the grouping structure for 
each level. 

Forecasts are obtained, as usual, with the forecast function. 
By default it produces forecasts using the optimal combination 
approach with ETS models used for the base forecasts. But 
other models and methods can be specified via the following 
arguments. 

£method The forecasting model to be used for the base fore­
casts. Possible values are II ets 11 , 

11 arima II and II rw 11 • 
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method The method used for reconciling the base forecasts. It 

can take the following values: 

comb Optimal combination forecasts; 

bu Bottom-up forecasts; 

mo Middle-out forecasts where the level used is specified by 

the level argument' 

tdgsa Top-down forecasts based on the average historical 

proportions (Gross-Sohl method A); 8 

tdgsf Top-down forecasts based on the proportion of histor­

ical averages (Gross-Sohl method F); 

tdfp Top-down forecasts using forecast proportions. 

Example 9.7 Australian tourism hierarchy 

Australia is divided into eight geographical areas (some referred 

to as states and others as territories) with each one having its 

own government and some economic and administrative auton­

omy. Business planners and tourism authorities are interested 

in forecasts for the whole of Australia, the states and the terri­

tories, and also smaller regions. In this example we concentrate 

on quarterly domestic tourism demand, measured as the num­

ber of visitor nights Australians spend away from home, for the 

three largest states of Australia, namely Victoria (VIC), New 

South Wales (NSW), Queensland (QLD) and other. For each of 

these we consider visitor nights for each respective capital city, 

namely, Melbourne (MEL), Sydney (SYD) and Brisbane (BGC).9

The hierarchical structure is shown in Figure 9.13. The CAP 

category in the bottom level includes visitor nights in all other 

five capital cities of the remaining states and territories. 

SYD BGC 

8 C. W. Gross and J.E.

Sohl (1990). Disag­

gregation methods to

expedite product line

forecasting. Journal of
Forecasting 9, 233-254. 

9 For the purpose 

of this example we 

include with Brisbane, 

visitor nights at the 

Gold Coast, a coastal 

city and a major 

tourism attraction near 

Brisbane. 

Figure 9.13: Australian 

tourism hierarchy. 
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Figure 9.14 shows all the times series in the hierarchy which

span the period 1998:Ql to 2011:Q4. The dotted lines show

the revised forecasts generated by the optimal combination

approach. The base forecasts for each series are generated using

the ETS methodology of Chapter 7.

Level O 

Tot I 

I 
0 
0 
0 
0 

0 
0 

0 

2000 2005 

Level 1 
0 

8 

0 
0 

0 
0 
0 
0 

8 
0 

0 

8 

2000 2005 

Level 2 

2000 2005 

Rcode 
require(hts) 
y <- hts(vn, nodes=list(4,c(2,2,2,2))) 
all£ <- forecast(y, h=8) 
plot(allf) 

2010 

2010 

2010 

Figure 9.14: Hierar­

chical time series and 

8-step-ahead revised

forecasts for Australian
domestic tourism gen­

erated by the optimal

combination approach.

The base forecasts
for each series were 

generated using the

ETS methodology of

Chapter 7. 
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