

Hands-On	Unsupervised	Learning
Using	Python

How	to	Build	Applied	Machine	Learning	Solutions	from
Unlabeled	Data

Ankur	A.	Patel

Hands-On	Unsupervised	Learning	Using	Python
by	Ankur	A.	Patel

Copyright	©	2019	Human	AI	Collaboration,	Inc.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.	,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Development	Editor:	Michele	Cronin

Acquisition	Editor:	Jonathan	Hassell

Production	Editor:	Katherine	Tozer

Copyeditor:	Jasmine	Kwityn

Proofreader:	Christina	Edwards

Indexer:	Judith	McConville

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

February	2019:	First	Edition

Revision	History	for	the	First	Edition

2019-02-21:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492035640	for	release

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492035640

details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Hands-On
Unsupervised	Learning	Using	Python,	the	cover	image,	and	related	trade	dress
are	trademarks	of	O’Reilly	Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	author,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	author	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	author	disclaims	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-492-03564-0

[LSI]

Preface

A	Brief	History	of	Machine	Learning
Machine	learning	is	a	subfield	of	artificial	intelligence	(AI)	in	which	computers
learn	from	data—usually	to	improve	their	performance	on	some	narrowly
defined	task—without	being	explicitly	programmed.	The	term	machine	learning
was	coined	as	early	as	1959	(by	Arthur	Samuel,	a	legend	in	the	field	of	AI),	but
there	were	few	major	commercial	successes	in	machine	learning	during	the
twenty-first	century.	Instead,	the	field	remained	a	niche	research	area	for
academics	at	universities.

Early	on	(in	the	1960s)	many	in	the	AI	community	were	too	optimistic	about	its
future.	Researchers	at	the	time,	such	as	Herbert	Simon	and	Marvin	Minsky,
claimed	that	AI	would	reach	human-level	intelligence	within	a	matter	of
decades:

Machines	will	be	capable,	within	twenty	years,	of	doing	any	work	a	man	can
do.

—Herbert	Simon,	1965

From	three	to	eight	years,	we	will	have	a	machine	with	the	general
intelligence	of	an	average	human	being.

—Marvin	Minsky,	1970

Blinded	by	their	optimism,	researchers	focused	on	so-called	strong	AI	or	general
artificial	intelligence	(AGI)	projects,	attempting	to	build	AI	agents	capable	of
problem	solving,	knowledge	representation,	learning	and	planning,	natural
language	processing,	perception,	and	motor	control.	This	optimism	helped	attract
significant	funding	into	the	nascent	field	from	major	players	such	as	the
Department	of	Defense,	but	the	problems	these	researchers	tackled	were	too
ambitious	and	ultimately	doomed	to	fail.

AI	research	rarely	made	the	leap	from	academia	to	industry,	and	a	series	of	so-
called	AI	winters	followed.	In	these	AI	winters	(an	analogy	based	on	the	nuclear
winter	during	this	Cold	War	era),	interest	in	and	funding	for	AI	dwindled.

1

Occasionally,	hype	cycles	around	AI	occurred	but	had	very	little	staying	power.
By	the	early	1990s,	interest	in	and	funding	for	AI	had	hit	a	trough.

AI	Is	Back,	but	Why	Now?
AI	has	re-emerged	with	a	vengeance	over	the	past	two	decades—first	as	a	purely
academic	area	of	interest	and	now	as	a	full-blown	field	attracting	the	brightest
minds	at	both	universities	and	corporations.

Three	critical	developments	are	behind	this	resurgence:	breakthroughs	in
machine	learning	algorithms,	the	availability	of	lots	of	data,	and	superfast
computers.

First,	instead	of	focusing	on	overly	ambitious	strong	AI	projects,	researchers
turned	their	attention	to	narrowly	defined	subproblems	of	strong	AI,	also	known
as	weak	AI	or	narrow	AI.	This	focus	on	improving	solutions	for	narrowly
defined	tasks	led	to	algorithmic	breakthroughs,	which	paved	the	way	for
successful	commercial	applications.	Many	of	these	algorithms—often	developed
initially	at	universities	or	private	research	labs—were	quickly	open-sourced,
speeding	up	the	adoption	of	these	technologies	by	industry.

Second,	data	capture	became	a	focus	for	most	organizations,	and	the	costs	of
storing	data	fell	dramatically	driven	by	advances	in	digital	data	storage.	Thanks
to	the	internet,	lots	of	data	also	became	widely	and	publicly	available	at	a	scale
never	before	seen.

Third,	computers	became	increasingly	powerful	and	available	over	the	cloud,
allowing	AI	researchers	to	easily	and	cheaply	scale	their	IT	infrastructure	as
required	without	making	huge	upfront	investments	in	hardware.

The	Emergence	of	Applied	AI
These	three	forces	have	pushed	AI	from	academia	to	industry,	helping	attract
increasingly	higher	levels	of	interest	and	funding	every	year.	AI	is	no	longer	just
a	theoretical	area	of	interest	but	rather	a	full-blown	applied	field.	Figure	P-1
shows	a	chart	from	Google	Trends,	indicating	the	growth	in	interest	in	machine
learning	over	the	past	five	years.

Figure	P-1.	Interest	in	machine	learning	over	time

AI	is	now	viewed	as	a	breakthrough	horizontal	technology,	akin	to	the	advent	of
computers	and	smartphones,	that	will	have	a	significant	impact	on	every	single
industry	over	the	next	decade.

Successful	commercial	applications	involving	machine	learning	include—but
are	certainly	not	limited	to—optical	character	recognition,	email	spam	filtering,
image	classification,	computer	vision,	speech	recognition,	machine	translation,
group	segmentation	and	clustering,	generation	of	synthetic	data,	anomaly
detection,	cybercrime	prevention,	credit	card	fraud	detection,	internet	fraud
detection,	time	series	prediction,	natural	language	processing,	board	game	and
video	game	playing,	document	classification,	recommender	systems,	search,
robotics,	online	advertising,	sentiment	analysis,	DNA	sequencing,	financial
market	analysis,	information	retrieval,	question	answering,	and	healthcare
decision	making.

Major	Milestones	in	Applied	AI	over	the	Past	20
Years
The	milestones	presented	here	helped	bring	AI	from	a	mostly	academic	topic	of
conversation	then	to	a	mainstream	staple	in	technology	today.

1997:	Deep	Blue,	an	AI	bot	that	had	been	in	development	since	the	mid-
1980s,	beats	world	chess	champion	Garry	Kasparov	in	a	highly
publicized	chess	event.

2

2004:	DARPA	introduces	the	DARPA	Grand	Challenge,	an	annually
held	autonomous	driving	challenge	held	in	the	desert.	In	2005,	Stanford
takes	the	top	prize.	In	2007,	Carnegie	Mellon	University	performs	this
feat	in	an	urban	setting.	In	2009,	Google	builds	a	self-driving	car.	By
2015,	many	major	technology	giants,	including	Tesla,	Alphabet’s
Waymo,	and	Uber,	have	launched	well-funded	programs	to	build
mainstream	self-driving	technology.

2006:	Geoffrey	Hinton	of	the	University	of	Toronto	introduces	a	fast
learning	algorithm	to	train	neural	networks	with	many	layers,	kicking
off	the	deep	learning	revolution.

2006:	Netflix	launches	the	Netflix	Prize	competition,	with	a	one	million
dollar	purse,	challenging	teams	to	use	machine	learning	to	improve	its
recommendation	system’s	accuracy	by	at	least	10%.	A	team	won	the
prize	in	2009.

2007:	AI	achieves	superhuman	performance	at	checkers,	solved	by	a
team	from	the	University	of	Alberta.

2010:	ImageNet	launches	an	annual	contest—the	ImageNet	Large	Scale
Visual	Recognition	Challenge	(ILSVRC)—in	which	teams	use	machine
learning	algorithms	to	correctly	detect	and	classify	objects	in	a	large,
well-curated	image	dataset.	This	draws	significant	attention	from	both
academia	and	technology	giants.	The	classification	error	rate	falls	from
25%	in	2011	to	just	a	few	percent	by	2015,	backed	by	advances	in	deep
convolutional	neural	networks.	This	leads	to	commercial	applications	of
computer	vision	and	object	recognition.

2010:	Microsoft	launches	Kinect	for	Xbox	360.	Developed	by	the
computer	vision	team	at	Microsoft	Research,	Kinect	is	capable	of
tracking	human	body	movement	and	translating	this	into	gameplay.

2010:	Siri,	one	of	the	first	mainstream	digital	voice	assistants,	is
acquired	by	Apple	and	released	as	part	of	iPhone	4S	in	October	2011.
Eventually,	Siri	is	rolled	out	across	all	of	Apple’s	products.	Powered	by
convolutional	neural	networks	and	long	short-term	memory	recurrent
neural	networks,	Siri	performs	both	speech	recognition	and	natural

language	processing.	Eventually,	Amazon,	Microsoft,	and	Google	enter
the	race,	releasing	Alexa	(2014),	Cortana	(2014),	and	Google	Assistant
(2016),	respectively.

2011:	IBM	Watson,	a	question-answering	AI	agent	developed	by	a	team
led	by	David	Ferrucci,	beats	former	Jeopardy!	winners	Brad	Rutter	and
Ken	Jennings.	IBM	Watson	is	now	used	across	several	industries,
including	healthcare	and	retail.

2012:	Google	Brain	team,	led	by	Andrew	Ng	and	Jeff	Dean,	trains	a
neural	network	to	recognize	cats	by	watching	unlabeled	images	taken
from	YouTube	videos.

2013:	Google	wins	DARPA’s	Robotics	Challenge,	involving	trials	in
which	semi-autonomous	bots	perform	complex	tasks	in	treacherous
environments,	such	as	driving	a	vehicle,	walking	across	rubble,
removing	debris	from	a	blocked	entryway,	opening	a	door,	and	climbing
a	ladder.

2014:	Facebook	publishes	work	on	DeepFace,	a	neural	network-based
system	that	can	identify	faces	with	97%	accuracy.	This	is	near	human-
level	performance	and	is	a	more	than	27%	improvement	over	previous
systems.

2015:	AI	goes	mainstream,	and	is	commonly	featured	in	media	outlets
around	the	world.

2015:	Google	DeepMind’s	AlphaGo	beats	world-class	professional	Fan
Hui	at	the	game	Go.	In	2016,	AlphaGo	defeats	Lee	Sedol,	and	in	2017,
AlphaGo	defeats	Ke	Jie.	In	2017,	a	new	version	called	AlphaGo	Zero
defeats	the	previous	AlphaGo	version	100	to	zero.	AlphaGo	Zero
incorporates	unsupervised	learning	techniques	and	masters	Go	just	by
playing	itself.

2016:	Google	launches	a	major	revamp	to	its	language	translation,
Google	Translate,	replacing	its	existing	phrase-based	translation	system
with	a	deep	learning-based	neural	machine	translation	system,	reducing
translation	errors	by	up	to	87%	and	approaching	near	human-level
accuracy.

2017:	Libratus,	developed	by	Carnegie	Mellon,	wins	at	head-to-head
no-limit	Texas	Hold’em.

2017:	OpenAI-trained	bot	beats	professional	gamer	at	Dota	2
tournament.

From	Narrow	AI	to	AGI
Of	course,	these	successes	in	applying	AI	to	narrowly	defined	problems	are	just
a	starting	point.	There	is	a	growing	belief	in	the	AI	community	that—by
combining	several	weak	AI	systems—we	can	develop	strong	AI.	This	strong	AI
or	AGI	agent	will	be	capable	of	human-level	performance	at	many	broadly
defined	tasks.

Soon	after	AI	achieves	human-level	performance,	some	researchers	predict	this
strong	AI	will	surpass	human	intelligence	and	reach	so-called	superintelligence.
Estimates	for	attaining	such	superintelligence	range	from	as	little	as	15	years	to
as	many	as	100	years	from	now,	but	most	researchers	believe	AI	will	advance
enough	to	achieve	this	in	a	few	generations.	Is	this	inflated	hype	once	again	(like
what	we	saw	in	previous	AI	cycles),	or	is	it	different	this	time	around?

Only	time	will	tell.

Objective	and	Approach
Most	of	the	successful	commercial	applications	to	date—in	areas	such	as
computer	vision,	speech	recognition,	machine	translation,	and	natural	language
processing—have	involved	supervised	learning,	taking	advantage	of	labeled
datasets.	However,	most	of	the	world’s	data	is	unlabeled.

In	this	book,	we	will	cover	the	field	of	unsupervised	learning	(which	is	a	branch
of	machine	learning	used	to	find	hidden	patterns)	and	learn	the	underlying
structure	in	unlabeled	data.	According	to	many	industry	experts,	such	as	Yann
LeCun,	the	Director	of	AI	Research	at	Facebook	and	a	professor	at	NYU,
unsupervised	learning	is	the	next	frontier	in	AI	and	may	hold	the	key	to	AGI.
For	this	and	many	other	reasons,	unsupervised	learning	is	one	of	the	trendiest
topics	in	AI	today.

The	book’s	goal	is	to	outline	the	concepts	and	tools	required	for	you	to	develop
the	intuition	necessary	for	applying	this	technology	to	everyday	problems	that
you	work	on.	In	other	words,	this	is	an	applied	book,	one	that	will	allow	you	to
build	real-world	systems.	We	will	also	explore	how	to	efficiently	label	unlabeled
datasets	to	turn	unsupervised	learning	problems	into	semisupervised	ones.

The	book	will	use	a	hands-on	approach,	introducing	some	theory	but	focusing
mostly	on	applying	unsupervised	learning	techniques	to	solving	real-world
problems.	The	datasets	and	code	are	available	online	as	Jupyter	notebooks	on
GitHub.

Armed	with	the	conceptual	understanding	and	hands-on	experience	you’ll	gain
from	this	book,	you	will	be	able	to	apply	unsupervised	learning	to	large,
unlabeled	datasets	to	uncover	hidden	patterns,	obtain	deeper	business	insight,
detect	anomalies,	cluster	groups	based	on	similarity,	perform	automatic	feature
engineering	and	selection,	generate	synthetic	datasets,	and	more.

Prerequisites
This	book	assumes	that	you	have	some	Python	programming	experience,
including	familiarity	with	NumPy	and	Pandas.

For	more	on	Python,	visit	the	official	Python	website.	For	more	on	Jupyter
Notebook,	visit	the	official	Jupyter	website.	For	a	refresher	on	college-level
calculus,	linear	algebra,	probability,	and	statistics,	read	Part	I	of	the	Deep
Learning	textbook	by	Ian	Goodfellow	and	Yoshua	Bengio.	For	a	refresher	on
machine	learning,	read	The	Elements	of	Statistical	Learning.

Roadmap
The	book	is	organized	into	four	parts,	covering	the	following	topics:

Part	I,	Fundamentals	of	Unsupervised	Learning

Differences	between	supervised	and	unsupervised	learning,	an	overview	of
popular	supervised	and	unsupervised	algorithms,	and	an	end-to-end	machine
learning	project

http://bit.ly/2Gd4v7e
https://www.python.org/
http://jupyter.org/index.html
http://www.deeplearningbook.org/
https://stanford.io/2Tju4al

Part	II,	Unsupervised	Learning	Using	Scikit-Learn

Dimensionality	reduction,	anomaly	detection,	and	clustering	and	group
segmentation

TIP
For	more	information	on	the	concepts	discussed	in	Parts	I	and	II,	refer	to	the	Scikit-learn
documentation.

Part	III,	Unsupervised	Learning	Using	TensorFlow	and	Keras

Representation	learning	and	automatic	feature	extraction,	autoencoders,	and
semisupervised	learning

Part	IV,	Deep	Unsupervised	Learning	Using	TensorFlow	and	Keras

Restricted	Boltzmann	machines,	deep	belief	networks,	and	generative
adversarial	networks

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

https://scikit-learn.org/stable/modules/classes.html

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	etc.)	is	available	for	download	on
GitHub.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Hands-On	Unsupervised
Learning	Using	Python	by	Ankur	A.	Patel	(O’Reilly).	Copyright	2019	Ankur	A.
Patel,	978-1-492-03564-0.”

http://bit.ly/2Gd4v7e

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

O’Reilly	Online	Learning

NOTE
For	almost	40	years,	O’Reilly	Media	has	provided	technology	and	business	training,
knowledge,	and	insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	conferences,	and	our	online	learning	platform.
O’Reilly’s	online	learning	platform	gives	you	on-demand	access	to	live	training
courses,	in-depth	learning	paths,	interactive	coding	environments,	and	a	vast
collection	of	text	and	video	from	O’Reilly	and	200+	other	publishers.	For	more
information,	please	visit	http://oreilly.com.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

additional	information.	You	can	access	this	page	at	http://bit.ly/unsupervised-
learning.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

1 	Such	views	inspired	Stanley	Kubrick	in	1968	to	create	the	AI	agent	HAL	9000	in	2001:	A	Space
Odyssey.

2 	According	to	McKinsey	Global	Institute,	over	half	of	all	the	professional	activities	people	are	paid
to	do	could	be	automated	by	2055.

http://bit.ly/unsupervised-learning
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Part	I.	Fundamentals	of
Unsupervised	Learning

To	start,	let’s	explore	the	current	machine	learning	ecosystem	and	where
unsupervised	learning	fits	in.	We	will	also	build	a	machine	learning	project	from
scratch	to	cover	basics	such	as	setting	up	the	programming	environment,
acquiring	and	preparing	data,	exploring	data,	selecting	machine	learning
algorithms	and	cost	functions,	and	evaluating	the	results.

Chapter	1.	Unsupervised
Learning	in	the	Machine	Learning
Ecosystem

Most	of	human	and	animal	learning	is	unsupervised	learning.	If	intelligence
was	a	cake,	unsupervised	learning	would	be	the	cake,	supervised	learning
would	be	the	icing	on	the	cake,	and	reinforcement	learning	would	be	the
cherry	on	the	cake.	We	know	how	to	make	the	icing	and	the	cherry,	but	we
don’t	know	how	to	make	the	cake.	We	need	to	solve	the	unsupervised	learning
problem	before	we	can	even	think	of	getting	to	true	AI.

—Yann	LeCun

In	this	chapter,	we	will	explore	the	difference	between	a	rules-based	system	and
machine	learning,	the	difference	between	supervised	learning	and	unsupervised
learning,	and	the	relative	strengths	and	weaknesses	of	each.

We	will	also	cover	many	popular	supervised	learning	algorithms	and
unsupervised	learning	algorithms	and	briefly	examine	how	semisupervised
learning	and	reinforcement	learning	fit	into	the	mix.

Basic	Machine	Learning	Terminology
Before	we	delve	into	the	different	types	of	machine	learning,	let’s	take	a	look	at
a	simple	and	commonly	used	machine	learning	example	to	help	make	the
concepts	we	introduce	tangible:	the	email	spam	filter.	We	need	to	build	a	simple
program	that	takes	in	emails	and	correctly	classifies	them	as	either	“spam”	or
“not	spam.”	This	is	a	straightforward	classification	problem.

Here’s	a	bit	of	machine	learning	terminology	as	a	refresher:	the	input	variables
into	this	problem	are	the	text	of	the	emails.	These	input	variables	are	also	known
as	features	or	predictors	or	independent	variables.	The	output	variable—what
we	are	trying	to	predict—is	the	label	“spam”	or	“not	spam.”	This	is	also	known
as	the	target	variable,	dependent	variable,	or	response	variable	(or	class	since

this	is	a	classification	problem).

The	set	of	examples	the	AI	trains	on	is	known	as	the	training	set,	and	each
individual	example	is	called	a	training	instance	or	sample.	During	the	training,
the	AI	is	attempting	to	minimize	its	cost	function	or	error	rate,	or	framed	more
positively,	to	maximize	its	value	function—in	this	case,	the	ratio	of	correctly
classified	emails.	The	AI	actively	optimizes	for	a	minimal	error	rate	during
training.	Its	error	rate	is	calculated	by	comparing	the	AI’s	predicted	label	with
the	true	label.

However,	what	we	care	about	most	is	how	well	the	AI	generalizes	its	training	to
never-before-seen	emails.	This	will	be	the	true	test	for	the	AI:	can	it	correctly
classify	emails	that	it	has	never	seen	before	using	what	it	has	learned	by	training
on	the	examples	in	the	training	set?	This	generalization	error	or	out-of-sample
error	is	the	main	thing	we	use	to	evaluate	machine	learning	solutions.

This	set	of	never-before-seen	examples	is	known	as	the	test	set	or	holdout	set
(because	the	data	is	held	out	from	the	training).	If	we	choose	to	have	multiple
holdout	sets	(perhaps	to	gauge	our	generalization	error	as	we	train,	which	is
advisable),	we	may	have	intermediate	holdout	sets	that	we	use	to	evaluate	our
progress	before	the	final	test	set;	these	intermediate	holdout	sets	are	called
validation	sets.

To	put	all	of	this	together,	the	AI	trains	on	the	training	data	(experience)	to
improve	its	error	rate	(performance)	in	flagging	spam	(task),	and	the	ultimate
success	criterion	is	how	well	its	experience	generalizes	to	new,	never-before-
seen	data	(generalization	error).

Rules-Based	vs.	Machine	Learning
Using	a	rules-based	approach,	we	can	design	a	spam	filter	with	explicit	rules	to
catch	spam	such	as	flag	emails	with	“u”	instead	of	“you,”	“4”	instead	of	“for,”
“BUY	NOW,”	etc.	But	this	system	would	be	difficult	to	maintain	over	time	as
bad	guys	change	their	spam	behavior	to	evade	the	rules.	If	we	used	a	rules-based
system,	we	would	have	to	frequently	adjust	the	rules	manually	just	to	stay	up-to-
date.	Also,	it	would	be	very	expensive	to	set	up—think	of	all	the	rules	we	would
need	to	create	to	make	this	a	well-functioning	system.

Instead	of	a	rules-based	approach,	we	can	use	machine	learning	to	train	on	the
email	data	and	automatically	engineer	rules	to	correctly	flag	malicious	email	as
spam.	This	machine	learning-based	system	could	be	automatically	adjusted	over
time	as	well.	This	system	would	be	much	cheaper	to	train	and	maintain.

In	this	simple	email	problem,	it	may	be	possible	for	us	to	handcraft	rules,	but,	for
many	problems,	handcrafting	rules	is	not	feasible	at	all.	For	example,	consider
designing	a	self-driving	car—imagine	drafting	rules	for	how	the	car	should
behave	in	each	and	every	single	instance	it	ever	encounters.	This	is	an	intractable
problem	unless	the	car	can	learn	and	adapt	on	its	own	based	on	its	experience.

We	could	also	use	machine	learning	systems	as	an	exploration	or	data	discovery
tool	to	gain	deeper	insight	into	the	problem	we	are	trying	to	solve.	For	example,
in	the	email	spam	filter	example,	we	can	learn	which	words	or	phrases	are	most
predictive	of	spam	and	recognize	newly	emerging	malicious	spam	patterns.

Supervised	vs.	Unsupervised
The	field	of	machine	learning	has	two	major	branches—supervised	learning	and
unsupervised	learning—and	plenty	of	sub-branches	that	bridge	the	two.

In	supervised	learning,	the	AI	agent	has	access	to	labels,	which	it	can	use	to
improve	its	performance	on	some	task.	In	the	email	spam	filter	problem,	we
have	a	dataset	of	emails	with	all	the	text	within	each	and	every	email.	We	also
know	which	of	these	emails	are	spam	or	not	(the	so-called	labels).	These	labels
are	very	valuable	in	helping	the	supervised	learning	AI	separate	the	spam	emails
from	the	rest.

In	unsupervised	learning,	labels	are	not	available.	Therefore,	the	task	of	the	AI
agent	is	not	well-defined,	and	performance	cannot	be	so	clearly	measured.
Consider	the	email	spam	filter	problem—this	time	without	labels.	Now,	the	AI
agent	will	attempt	to	understand	the	underlying	structure	of	emails,	separating
the	database	of	emails	into	different	groups	such	that	emails	within	a	group	are
similar	to	each	other	but	different	from	emails	in	other	groups.

This	unsupervised	learning	problem	is	less	clearly	defined	than	the	supervised
learning	problem	and	harder	for	the	AI	agent	to	solve.	But,	if	handled	well,	the
solution	is	more	powerful.

Here’s	why:	the	unsupervised	learning	AI	may	find	several	groups	that	it	later
tags	as	being	“spam”—but	the	AI	may	also	find	groups	that	it	later	tags	as	being
“important”	or	categorize	as	“family,”	“professional,”	“news,”	“shopping,”	etc.
In	other	words,	because	the	problem	does	not	have	a	strictly	defined	task,	the	AI
agent	may	find	interesting	patterns	above	and	beyond	what	we	initially	were
looking	for.

Moreover,	this	unsupervised	system	is	better	than	the	supervised	system	at
finding	new	patterns	in	future	data,	making	the	unsupervised	solution	more
nimble	on	a	go-forward	basis.	This	is	the	power	of	unsupervised	learning.

The	Strengths	and	Weaknesses	of	Supervised	Learning
Supervised	learning	excels	at	optimizing	performance	in	well-defined	tasks	with
plenty	of	labels.	For	example,	consider	a	very	large	dataset	of	images	of	objects,
where	each	image	is	labeled.	If	the	dataset	is	sufficiently	large	enough	and	we
train	using	the	right	machine	learning	algorithms	(i.e.,	convolutional	neural
networks)	and	with	powerful	enough	computers,	we	can	build	a	very	good
supervised	learning-based	image	classification	system.

As	the	supervised	learning	AI	trains	on	the	data,	it	will	be	able	to	measure	its
performance	(via	a	cost	function)	by	comparing	its	predicted	image	label	with
the	true	image	label	that	we	have	on	file.	The	AI	will	explicitly	try	to	minimize
this	cost	function	such	that	its	error	on	never-before-seen	images	(from	a	holdout
set)	is	as	low	as	possible.

This	is	why	labels	are	so	powerful—they	help	guide	the	AI	agent	by	providing	it
with	an	error	measure.	The	AI	uses	the	error	measure	to	improve	its	performance
over	time.	Without	such	labels,	the	AI	does	not	know	how	successful	it	is	(or
isn’t)	in	correctly	classifying	images.

However,	the	costs	of	manually	labeling	an	image	dataset	are	high.	And,	even
the	best	curated	image	datasets	have	only	thousands	of	labels.	This	is	a	problem
because	supervised	learning	systems	will	be	very	good	at	classifying	images	of
objects	for	which	it	has	labels	but	poor	at	classifying	images	of	objects	for	which
it	has	no	labels.

As	powerful	as	supervised	learning	systems	are,	they	are	also	limited	at
generalizing	knowledge	beyond	the	labeled	items	they	have	trained	on.	Since	the

majority	of	the	world’s	data	is	unlabeled,	with	supervised	learning,	the	ability	of
AI	to	expand	its	performance	to	never-before-seen	instances	is	quite	limited.

In	other	words,	supervised	learning	is	great	at	solving	narrow	AI	problems	but
not	so	good	at	solving	more	ambitious,	less	clearly	defined	problems	of	the
strong	AI	type.

The	Strengths	and	Weaknesses	of	Unsupervised	Learning
Supervised	learning	will	trounce	unsupervised	learning	at	narrowly	defined	tasks
for	which	we	have	well-defined	patterns	that	do	not	change	much	over	time	and
sufficiently	large,	readily	available	labeled	datasets.

However,	for	problems	where	patterns	are	unknown	or	constantly	changing	or
for	which	we	do	not	have	sufficiently	large	labeled	datasets,	unsupervised
learning	truly	shines.

Instead	of	being	guided	by	labels,	unsupervised	learning	works	by	learning	the
underlying	structure	of	the	data	it	has	trained	on.	It	does	this	by	trying	to
represent	the	data	it	trains	on	with	a	set	of	parameters	that	is	significantly	smaller
than	the	number	of	examples	available	in	the	dataset.	By	performing	this
representation	learning,	unsupervised	learning	is	able	to	identify	distinct	patterns
in	the	dataset.

In	the	image	dataset	example	(this	time	without	labels),	the	unsupervised
learning	AI	may	be	able	to	identify	and	group	images	based	on	how	similar	they
are	to	each	other	and	how	different	they	are	from	the	rest.	For	example,	all	the
images	that	look	like	chairs	will	be	grouped	together,	all	the	images	that	look
like	dogs	will	be	grouped	together,	etc.

Of	course,	the	unsupervised	learning	AI	itself	cannot	label	these	groups	as
“chairs”	or	“dogs”	but	now	that	similar	images	are	grouped	together,	humans
have	a	much	simpler	labeling	task.	Instead	of	labeling	millions	of	images	by
hand,	humans	can	manually	label	all	the	distinct	groups,	and	the	labels	will
apply	to	all	the	members	within	each	group.

After	the	initial	training,	if	the	unsupervised	learning	AI	finds	images	that	do	not
belong	to	any	of	the	labeled	groups,	the	AI	will	create	separate	groups	for	the
unclassified	images,	triggering	a	human	to	label	the	new,	yet-to-be-labeled

groups	of	images.

Unsupervised	learning	makes	previously	intractable	problems	more	solvable	and
is	much	more	nimble	at	finding	hidden	patterns	both	in	the	historical	data	that	is
available	for	training	and	in	future	data.	Moreover,	we	now	have	an	AI	approach
for	the	huge	troves	of	unlabeled	data	that	exist	in	the	world.

Even	though	unsupervised	learning	is	less	adept	than	supervised	learning	at
solving	specific,	narrowly	defined	problems,	it	is	better	at	tackling	more	open-
ended	problems	of	the	strong	AI	type	and	at	generalizing	this	knowledge.

Just	as	importantly,	unsupervised	learning	can	address	many	of	the	common
problems	data	scientists	encounter	when	building	machine	learning	solutions.

Using	Unsupervised	Learning	to	Improve
Machine	Learning	Solutions
Recent	successes	in	machine	learning	have	been	driven	by	the	availability	of	lots
of	data,	advances	in	computer	hardware	and	cloud-based	resources,	and
breakthroughs	in	machine	learning	algorithms.	But	these	successes	have	been	in
mostly	narrow	AI	problems	such	as	image	classification,	computer	vision,
speech	recognition,	natural	language	processing,	and	machine	translation.

To	solve	more	ambitious	AI	problems,	we	need	to	unlock	the	value	of
unsupervised	learning.	Let’s	explore	the	most	common	challenges	data	scientists
face	when	building	solutions	and	how	unsupervised	learning	can	help.

Insufficient	labeled	data

I	think	AI	is	akin	to	building	a	rocket	ship.	You	need	a	huge	engine	and	a	lot	of
fuel.	If	you	have	a	large	engine	and	a	tiny	amount	of	fuel,	you	won’t	make	it	to
orbit.	If	you	have	a	tiny	engine	and	a	ton	of	fuel,	you	can’t	even	lift	off.	To
build	a	rocket	you	need	a	huge	engine	and	a	lot	of	fuel.

—Andrew	Ng

If	machine	learning	were	a	rocket	ship,	data	would	be	the	fuel—without	lots	and
lots	of	data,	the	rocket	ship	cannot	fly.	But	not	all	data	is	created	equal.	To	use
supervised	algorithms,	we	need	lots	of	labeled	data,	which	is	hard	and	costly	to
generate.1

With	unsupervised	learning,	we	can	automatically	label	unlabeled	examples.
Here	is	how	it	would	work:	we	would	cluster	all	the	examples	and	then	apply	the
labels	from	labeled	examples	to	the	unlabeled	ones	within	the	same	cluster.
Unlabeled	examples	would	receive	the	label	of	the	labeled	ones	they	are	most
similar	to.	We	will	explore	clustering	in	Chapter	5.

Overfitting
If	the	machine	learning	algorithm	learns	an	overly	complex	function	based	on
the	training	data,	it	may	perform	very	poorly	on	never-before-seen	instances
from	holdout	sets	such	as	the	validation	set	or	test	set.	In	this	case,	the	algorithm
has	overfit	the	training	data—by	extracting	too	much	from	the	noise	in	the	data
—and	has	very	poor	generalization	error.	In	other	words,	the	algorithm	is
memorizing	the	training	data	rather	than	learning	how	to	generalize	knowledge
based	off	of	it.

To	address	this,	we	can	introduce	unsupervised	learning	as	a	regularizer.
Regularization	is	a	process	used	to	reduce	the	complexity	of	a	machine	learning
algorithm,	helping	it	capture	the	signal	in	the	data	without	adjusting	too	much	to
the	noise.	Unsupervised	pretraining	is	one	such	form	of	regularization.	Instead	of
feeding	the	original	input	data	directly	into	a	supervised	learning	algorithm,	we
can	feed	a	new	representation	of	the	original	input	data	that	we	generate.

This	new	representation	captures	the	essence	of	the	original	data—the	true
underlying	structure—while	losing	some	of	the	less	representative	noise	along
the	way.	When	we	feed	this	new	representation	into	the	supervised	learning
algorithm,	it	has	less	noise	to	wade	through	and	captures	more	of	the	signal,
improving	its	generalization	error.	We	will	explore	feature	extraction	in
Chapter	7.

Curse	of	dimensionality
Even	with	the	advances	in	computational	power,	big	data	is	hard	for	machine
learning	algorithms	to	manage.	In	general,	adding	more	instances	is	not	too
problematic	because	we	can	parallelize	operations	using	modern	map-reduce
solutions	such	as	Spark.	However,	the	more	features	we	have,	the	more	difficult
training	becomes.

In	a	very	high-dimensional	space,	supervised	algorithms	need	to	learn	how	to

2

separate	points	and	build	a	function	approximation	to	make	good	decisions.
When	the	features	are	very	numerous,	this	search	becomes	very	expensive,	both
from	a	time	and	compute	perspective.	In	some	cases,	it	may	be	impossible	to
find	a	good	solution	fast	enough.

This	problem	is	known	as	the	curse	of	dimensionality,	and	unsupervised	learning
is	well	suited	to	help	manage	this.	With	dimensionality	reduction,	we	can	find
the	most	salient	features	in	the	original	feature	set,	reduce	the	number	of
dimensions	to	a	more	manageable	number	while	losing	very	little	important
information	in	the	process,	and	then	apply	supervised	algorithms	to	more
efficiently	perform	the	search	for	a	good	function	approximation.	We	will	cover
dimensionality	reduction	in	Chapter	3.

Feature	engineering
Feature	engineering	is	one	of	the	most	vital	tasks	data	scientists	perform.
Without	the	right	features,	the	machine	learning	algorithm	will	not	be	able	to
separate	points	in	space	well	enough	to	make	good	decisions	on	never-before-
seen	examples.	However,	feature	engineering	is	typically	very	labor-intensive;	it
requires	humans	to	creatively	hand-engineer	the	right	types	of	features.	Instead,
we	can	use	representation	learning	from	unsupervised	learning	algorithms	to
automatically	learn	the	right	types	of	feature	representations	to	help	solve	the
task	at	hand.	We	will	explore	automatic	feature	extraction	in	Chapter	7.

Outliers
The	quality	of	data	is	also	very	important.	If	machine	learning	algorithms	train
on	rare,	distortive	outliers,	their	generalization	error	will	be	lower	than	if	they
ignored	or	addressed	the	outliers	separately.	With	unsupervised	learning,	we	can
perform	outlier	detection	using	dimensionality	reduction	and	create	a	solution
specifically	for	the	outliers	and,	separately,	a	solution	for	the	normal	data.	We
will	build	an	anomaly	detection	system	in	Chapter	4.

Data	drift
Machine	learning	models	also	need	to	be	aware	of	drift	in	the	data.	If	the	data
the	model	is	making	predictions	on	differs	statistically	from	the	data	the	model
trained	on,	the	model	may	need	to	retrain	on	data	that	is	more	representative	of
the	current	data.	If	the	model	does	not	retrain	or	does	not	recognize	the	drift,	the

model’s	prediction	quality	on	current	data	will	suffer.

By	building	probability	distributions	using	unsupervised	learning,	we	can	assess
how	different	the	current	data	is	from	the	training	set	data—if	the	two	are
different	enough,	we	can	automatically	trigger	a	retraining.	We	will	explore	how
to	build	these	types	of	data	discriminators	in	Chapter	12.

A	Closer	Look	at	Supervised	Algorithms
Before	we	delve	into	unsupervised	learning	systems,	let’s	take	a	look	at
supervised	learning	algorithms	and	how	they	work.	This	will	help	frame	where
unsupervised	learning	fits	within	the	machine	learning	ecosystem.

In	supervised	learning,	there	are	two	major	types	of	problems:	classification	and
regression.	In	classification,	the	AI	must	correctly	classify	items	into	one	of	two
or	more	classes.	If	there	are	just	two	classes,	the	problem	is	called	binary
classification.	If	there	are	three	or	more	classes,	the	problem	is	classed
multiclass	classification.

Classification	problems	are	also	known	as	discrete	prediction	problems	because
each	class	is	a	discrete	group.	Classification	problems	also	may	be	referred	to	as
qualitative	or	categorical	problems.

In	regression,	the	AI	must	predict	a	continuous	variable	rather	than	a	discrete
one.	Regression	problems	also	may	be	referred	to	as	quantitative	problems.

Supervised	machine	learning	algorithms	span	the	gamut,	from	very	simple	to
very	complex,	but	they	are	all	aimed	at	minimizing	some	cost	function	or	error
rate	(or	maximizing	a	value	function)	that	is	associated	with	the	labels	we	have
for	the	dataset.

As	mentioned	before,	what	we	care	about	most	is	how	well	the	machine	learning
solution	generalizes	to	never-before-seen	cases.	The	choice	of	the	supervised
learning	algorithm	is	very	important	at	minimizing	this	generalization	error.

To	achieve	the	lowest	possible	generalization	error,	the	complexity	of	the
algorithmic	model	should	match	the	complexity	of	the	true	function	underlying
the	data.	We	do	not	know	what	this	true	function	really	is.	If	we	did,	we	would
not	need	to	use	machine	learning	to	create	a	model—we	would	just	solve	the

function	to	find	the	right	answer.	But	since	we	do	not	know	what	this	true
function	is,	we	choose	a	machine	learning	algorithm	to	test	hypotheses	and	find
the	model	that	best	approximates	this	true	function	(i.e.,	has	the	lowest	possible
generalization	error).

If	what	the	algorithm	models	is	less	complex	than	the	true	function,	we	have
underfit	the	data.	In	this	case,	we	could	improve	the	generalization	error	by
choosing	an	algorithm	that	can	model	a	more	complex	function.	However,	if	the
algorithm	designs	an	overly	complex	model,	we	have	overfit	the	training	data
and	will	have	poor	performance	on	never-before-seen	cases,	increasing	our
generalization	error.

In	other	words,	choosing	more	complex	algorithms	over	simpler	ones	is	not
always	the	right	choice—sometimes	simpler	is	better.	Each	algorithm	comes
with	its	set	of	strengths,	weaknesses,	and	assumptions,	and	knowing	what	to	use
when	given	the	data	you	have	and	the	problem	you	are	trying	to	solve	is	very
important	to	mastering	machine	learning.

In	the	rest	of	this	chapter,	we	will	describe	some	of	the	most	common	supervised
algorithms	(including	some	real-world	applications)	before	doing	the	same	for
unsupervised	algorithms.

Linear	Methods
The	most	basic	supervised	learning	algorithms	model	a	simple	linear	relationship
between	the	input	features	and	the	output	variable	that	we	wish	to	predict.

Linear	regression
The	simplest	of	all	the	algorithms	is	linear	regression,	which	uses	a	model	that
assumes	a	linear	relationship	between	the	input	variables	(x)	and	the	single
output	variable	(y).	If	the	true	relationship	between	the	inputs	and	the	output	is
linear	and	the	input	variables	are	not	highly	correlated	(a	situation	known	as
collinearity),	linear	regression	may	be	an	appropriate	choice.	If	the	true
relationship	is	more	complex	or	nonlinear,	linear	regression	will	underfit	the
data.

Because	it	is	so	simple,	interpreting	the	relationship	modeled	by	the	algorithm	is
also	very	straightforward.	Interpretability	is	a	very	important	consideration	for

3

4

applied	machine	learning	because	solutions	need	to	be	understood	and	enacted
by	both	technical	and	nontechnical	people	in	industry.	Without	interpretability,
the	solutions	become	inscrutable	black	boxes.

Strengths

Linear	regression	is	simple,	intrepretable,	and	hard	to	overfit	because	it
cannot	model	overly	complex	relationships.	It	is	an	excellent	choice	when
the	underlying	relationship	between	the	input	and	output	variables	is	linear.

Weaknesses

Linear	regression	will	underfit	the	data	when	the	relationship	between	the
input	and	output	variables	is	nonlinear.

Applications

Since	the	true	underlying	relationship	between	human	weight	and	human
height	is	linear,	linear	regression	is	great	for	predicting	weight	using	height
as	the	input	variable	or,	vice	versa,	for	predicting	height	using	weight	as	the
input	variable.

Logistic	regression
The	simplest	classification	algorithm	is	logistic	regression,	which	is	also	a	linear
method	but	the	predictions	are	transformed	using	the	logistic	function.	The
outputs	of	this	transformation	are	class	probabilities—in	other	words,	the
probabilities	that	the	instance	belongs	to	the	various	classes,	where	the	sum	of
the	probabilities	for	each	instance	adds	up	to	one.	Each	instance	is	then	assigned
to	the	class	for	which	it	has	the	highest	probability	of	belonging	in.

Strengths

Like	linear	regression,	logistic	regression	is	simple	and	interpretable.	When
the	classes	we	are	trying	to	predict	are	nonoverlapping	and	linearly
separable,	logistic	regression	is	an	excellent	choice.

Weaknesses

When	classes	are	not	linearly	separable,	logistic	regression	will	fail.

Applications

When	classes	are	mostly	nonoverlapping—for	example,	the	heights	of	young
children	versus	the	heights	of	adults—logistic	regression	will	work	well.

Neighborhood-Based	Methods
Another	group	of	very	simple	algorithms	are	neighborhood-based	methods.
Neighborhood-based	methods	are	lazy	learners	since	they	learn	how	to	label
new	points	based	on	the	proximity	of	the	new	points	to	existing	labeled	points.
Unlike	linear	regression	or	logistic	regression,	neighborhood-based	models	do
not	learn	a	set	model	to	predict	labels	for	new	points;	rather,	these	models
predict	labels	for	new	points	based	purely	on	distance	of	new	points	to
preexisting	labeled	points.	Lazy	learning	is	also	referred	to	as	instance-based
learning	or	nonparametric	methods.

k-nearest	neighbors
The	most	common	neighborhood-based	method	is	k-nearest	neighbors	(KNN).
To	label	each	new	point,	KNN	looks	at	a	k	number	(where	k	is	an	integer	value)
of	nearest	labeled	points	and	has	these	already	labeled	neighbors	vote	on	how	to
label	the	new	point.	By	default,	KNN	uses	Euclidean	distance	to	measure	what	is
closest.

The	choice	of	k	is	very	important.	If	k	is	set	to	a	very	low	value,	KNN	becomes
very	flexible,	drawing	highly	nuanced	boundaries	and	potentially	overfitting	the
data.	If	k	is	set	to	a	very	high	value,	KNN	becomes	inflexible,	drawing	a	too
rigid	boundary	and	potentially	underfitting	the	data.

Strengths

Unlike	linear	methods,	KNN	is	highly	flexible	and	adept	at	learning	more
complex,	nonlinear	relationships.	Yet,	KNN	remains	simple	and
interpretable.

Weaknesses

KNN	does	poorly	when	the	number	of	observations	and	features	grow.	KNN
becomes	computationally	inefficient	in	this	highly	populated,	high-
dimensional	space	since	it	needs	to	calculate	distances	from	the	new	point	to
many	nearby	labeled	points	in	order	to	predict	labels.	It	cannot	rely	on	an
efficient	model	with	a	reduced	number	of	parameters	to	make	the	necessary

prediction.	Also,	KNN	is	very	sensitive	to	the	choice	of	k.	When	k	is	set	too
low,	KNN	can	overfit,	and	when	k	is	set	too	high,	KNN	can	underfit.

Applications

KNN	is	regularly	used	in	recommender	systems,	such	as	those	used	to
predict	taste	in	movies	(Netflix),	music	(Spotify),	friends	(Facebook),	photos
(Instagram),	search	(Google),	and	shopping	(Amazon).	For	example,	KNN
can	help	predict	what	a	user	will	like	given	what	similar	users	like	(known	as
collaborative	filtering)	or	what	the	user	has	liked	in	the	past	(known	as
content-based	filtering).

Tree-Based	Methods
Instead	of	using	a	linear	method,	we	can	have	the	AI	build	a	decision	tree	where
all	the	instances	are	segmented	or	stratified	into	many	regions,	guided	by	the
labels	we	have.	Once	this	segmentation	is	complete,	each	region	corresponds	to
a	particular	class	of	label	(for	classification	problems)	or	a	range	of	predicted
values	(for	regression	problems).	This	process	is	similar	to	having	the	AI	build
rules	automatically	with	the	explicit	goal	of	making	better	decisions	or
predictions.

Single	decision	tree
The	simplest	tree-based	method	is	a	single	decision	tree,	in	which	the	AI	goes
once	through	the	training	data,	creates	rules	for	segmenting	the	data	guided	by
the	labels,	and	uses	this	tree	to	make	predictions	on	the	never-before-seen
validation	or	test	set.	However,	a	single	decision	tree	is	usually	poor	at
generalizing	what	it	has	learned	during	training	to	never-before-seen	cases
because	it	usually	overfits	the	training	data	during	its	one	and	only	training
iteration.

Bagging
To	improve	the	single	decision	tree,	we	can	introduce	bootstrap	aggregation
(more	commonly	known	as	bagging),	in	which	we	take	multiple	random	samples
of	instances	from	the	training	data,	create	a	decision	tree	for	each	sample,	and
then	predict	the	output	for	each	instance	by	averaging	the	predictions	of	each	of
these	trees.	By	using	randomization	of	samples	and	averaging	results	from

multiple	trees—an	approach	that	is	also	known	as	the	ensemble	method—
bagging	will	address	some	of	the	overfitting	that	results	from	a	single	decision
tree.

Random	forests
We	can	improve	overfitting	further	by	sampling	not	only	the	instances	but	also
the	predictors.	With	random	forests,	we	take	multiple	random	samples	of
instances	from	the	training	data	like	we	do	in	bagging,	but,	for	each	split	in	each
decision	tree,	we	make	the	split	based	not	on	all	the	predictors	but	rather	a
random	sample	of	the	predictors.	The	number	of	predictors	we	consider	for	each
split	is	usually	the	square	root	of	the	total	number	of	predictors.

By	sampling	the	predictors	in	this	way,	the	random	forests	algorithm	creates
trees	that	are	even	less	correlated	with	each	other	(compared	to	the	trees	in
bagging),	reducing	overfitting	and	improving	the	generalization	error.

Boosting
Another	approach,	known	as	boosting,	is	used	to	create	multiple	trees	like	in
bagging	but	to	build	the	trees	sequentially,	using	what	the	AI	learned	from	the
previous	tree	to	improve	results	on	the	subsequent	tree.	Each	tree	is	kept	pretty
shallow,	with	only	a	few	decision	splits,	and	the	learning	occurs	slowly,	tree	by
tree.	Of	all	the	tree-based	methods,	gradient	boosting	machines	are	among	the
best-performing	and	are	commonly	used	to	win	machine	learning	competitions.

Strengths

Tree-based	methods	are	among	the	best-performing	supervised-learning
algorithms	for	prediction	problems.	These	methods	are	able	to	capture
complex	relationships	in	the	data	by	learning	many	simple	rules,	one	rule	at	a
time.	They	are	also	capable	of	handling	missing	data	and	categorical
features.

Weaknesses

Tree-based	methods	are	difficult	to	interpret,	especially	if	many	rules	are
needed	to	make	a	good	prediction.	Performance	also	becomes	an	issue	as	the
number	of	features	increase.

Applications

5

Gradient	boosting	and	random	forests	are	excellent	for	prediction	problems.

Support	Vector	Machines
Instead	of	building	trees	to	separate	data,	we	can	use	algorithms	to	create
hyperplanes	in	space	that	separate	the	data,	guided	by	the	labels	that	we	have.
The	approach	is	known	as	support	vector	machines	(SVMs).	SVMs	allow	some
violations	to	this	separation—not	all	the	points	within	an	area	in	hyperspace
need	to	have	the	same	label—but	the	distance	between	boundary-defining	points
of	a	certain	label	and	the	boundary-defining	points	of	another	label	should	be
maximized	as	much	as	possible.	Also,	the	boundaries	do	not	have	to	be	linear—
we	can	use	nonlinear	kernels	to	more	flexibly	separate	the	data.

Neural	Networks
We	can	learn	representations	of	the	data	using	neural	networks,	which	are
composed	of	an	input	layer,	several	hidden	layers,	and	an	output	layer. 	The
input	layer	uses	the	features,	and	the	output	layer	tries	to	match	the	response
variable.	The	hidden	layers	are	a	nested	hierarchy	of	concepts—each	layer	(or
concept)	is	trying	to	understand	how	the	previous	layer	relates	to	the	output
layer.

Using	this	hierarchy	of	concepts,	the	neural	network	is	able	to	learn	complicated
concepts	by	building	them	out	of	simpler	ones.	Neural	networks	are	one	of	the
most	powerful	approaches	to	function	approximation	but	are	prone	to	overfitting
and	are	hard	to	interpret,	shortcomings	that	we	will	explore	in	greater	detail	later
in	the	book.

A	Closer	Look	at	Unsupervised	Algorithms
We	will	now	turn	our	attention	to	problems	where	we	do	not	have	labels.	Instead
of	trying	to	make	predictions,	unsupervised	learning	algorithms	will	try	to	learn
the	underlying	structure	of	the	data.

Dimensionality	Reduction

6

One	family	of	algorithms—known	as	dimensionality	reduction	algorithms—
projects	the	original	high-dimensional	input	data	to	a	low-dimensional	space,
filtering	out	the	not-so-relevant	features	and	keeping	as	much	of	the	interesting
ones	as	possible.	Dimensionality	reduction	allows	unsupervised	learning	AI	to
more	effectively	identify	patterns	and	more	efficiently	solve	large-scale,
computationally	expensive	problems	(often	involving	images,	video,	speech,	and
text).

Linear	projection
There	are	two	major	branches	of	dimensionality—linear	projection	and
nonlinear	dimensionality	reduction.	We	will	start	with	linear	projection	first.

Principal	component	analysis	(PCA)

One	approach	to	learning	the	underlying	structure	of	data	is	to	identify	which
features	out	of	the	full	set	of	features	are	most	important	in	explaining	the
variability	among	the	instances	in	the	data.	Not	all	features	are	equal—for	some
features,	the	values	in	the	dataset	do	not	vary	much,	and	these	features	are	less
useful	in	explaining	the	dataset.	For	other	features,	the	values	might	vary
considerably—these	features	are	worth	exploring	in	greater	detail	since	they	will
be	better	at	helping	the	model	we	design	separate	the	data.

In	PCA,	the	algorithm	finds	a	low-dimensional	representation	of	the	data	while
retaining	as	much	of	the	variation	as	possible.	The	number	of	dimensions	we	are
left	with	is	considerably	smaller	than	the	number	of	dimensions	of	the	full
dataset	(i.e.,	the	number	of	total	features).	We	lose	some	of	the	variance	by
moving	to	this	low-dimensional	space,	but	the	underlying	structure	of	the	data	is
easier	to	identify,	allowing	us	to	perform	tasks	like	clustering	more	efficiently.

There	are	several	variants	of	PCA,	which	we	will	explore	later	in	the	book.
These	include	mini-batch	variants	such	as	incremental	PCA,	nonlinear	variants
such	as	kernel	PCA,	and	sparse	variants	such	as	sparse	PCA.

Singular	value	decomposition	(SVD)

Another	approach	to	learning	the	underlying	structure	of	the	data	is	to	reduce	the
rank	of	the	original	matrix	of	features	to	a	smaller	rank	such	that	the	original
matrix	can	be	recreated	using	a	linear	combination	of	some	of	the	vectors	in	the
smaller	rank	matrix.	This	is	known	as	SVD.	To	generate	the	smaller	rank	matrix,

SVD	keeps	the	vectors	of	the	original	matrix	that	have	the	most	information	(i.e.,
the	highest	singular	value).	The	smaller	rank	matrix	captures	the	most	important
elements	of	the	original	feature	space.

Random	projection

A	similar	dimensionality	reduction	algorithm	involves	projecting	points	from	a
high-dimensional	space	to	a	space	of	much	lower	dimensions	in	such	a	way	that
the	scale	of	distances	between	the	points	is	preserved.	We	can	use	either	a
random	Gaussian	matrix	or	a	random	sparse	matrix	to	accomplish	this.

Manifold	learning
Both	PCA	and	random	projection	rely	on	projecting	the	data	linearly	from	a
high-dimensional	space	to	a	low-dimensional	space.	Instead	of	a	linear
projection,	it	may	be	better	to	perform	a	nonlinear	transformation	of	the	data—
this	is	known	as	manifold	learning	or	nonlinear	dimensionality	reduction.

Isomap

Isomap	is	one	type	of	manifold	learning	approach.	This	algorithm	learns	the
intrinsic	geometry	of	the	data	manifold	by	estimating	the	geodesic	or	curved
distance	between	each	point	and	its	neighbors	rather	than	the	Euclidean	distance.
Isomap	uses	this	to	then	embed	the	original	high-dimensional	space	to	a	low-
dimensional	one.

t-distributed	stochastic	neighbor	embedding	(t-SNE)

Another	nonlinear	dimensionality	reduction—known	as	t-SNE—embeds	high-
dimensional	data	into	a	space	of	just	two	or	three	dimensions,	allowing	the
transformed	data	to	be	visualized.	In	this	two-	or	three-dimensional	space,
similar	instances	are	modeled	closer	together	and	dissimilar	instances	are
modeled	further	away.

Dictionary	learning

An	approach	known	as	dictionary	learning	involves	learning	the	sparse
representation	of	the	underlying	data.	These	representative	elements	are	simple,
binary	vectors	(zeros	and	ones),	and	each	instance	in	the	dataset	can	be
reconstructed	as	a	weighted	sum	of	the	representative	elements.	The	matrix
(known	as	the	dictionary)	that	this	unsupervised	learning	generates	is	mostly

populated	by	zeros	with	only	a	few	nonzero	weights.

By	creating	such	a	dictionary,	this	algorithm	is	able	to	efficiently	identify	the
most	salient	representative	elements	of	the	original	feature	space—these	are	the
ones	that	have	the	most	nonzero	weights.	The	representative	elements	that	are
less	important	will	have	few	nonzero	weights.	As	with	PCA,	dictionary	learning
is	excellent	for	learning	the	underlying	structure	of	the	data,	which	will	be
helpful	in	separating	the	data	and	in	identifying	interesting	patterns.

Independent	component	analysis
One	common	problem	with	unlabeled	data	is	that	there	are	many	independent
signals	embedded	together	into	the	features	we	are	given.	Using	independent
component	analysis	(ICA),	we	can	separate	these	blended	signals	into	their
individual	components.	After	the	separation	is	complete,	we	can	reconstruct	any
of	the	original	features	by	adding	together	some	combination	of	the	individual
components	we	generate.	ICA	is	commonly	used	in	signal	processing	tasks	(for
example,	to	identify	the	individual	voices	in	an	audio	clip	of	a	busy
coffeehouse).

Latent	Dirichlet	allocation
Unsupervised	learning	can	also	explain	a	dataset	by	learning	why	some	parts	of
the	dataset	are	similar	to	each	other.	This	requires	learning	unobserved	elements
within	the	dataset—an	approach	known	as	latent	Dirichlet	allocation	(LDA).	For
example,	consider	a	document	of	text	with	many,	many	words.	These	words
within	a	document	are	not	purely	random;	rather,	they	exhibit	some	structure.

This	structure	can	be	modeled	as	unobserved	elements	known	as	topics.	After
training,	LDA	is	able	to	explain	a	given	document	with	a	small	set	of	topics,
where	for	each	topic	there	is	a	small	set	of	frequently	used	words.	This	is	the
hidden	structure	the	LDA	is	able	to	capture,	helping	us	better	explain	a
previously	unstructured	corpus	of	text.

NOTE
Dimensionality	reduction	reduces	the	original	set	of	features	to	a	smaller	set	of	just	the	most
important	features.	From	here,	we	can	run	other	unsupervised	learning	algorithms	on	this
smaller	set	of	features	to	find	interesting	patterns	in	the	data	(see	the	next	section	on

clustering),	or,	if	we	have	labels,	we	can	speed	up	the	training	cycle	of	supervised	learning
algorithms	by	feeding	in	this	smaller	matrix	of	features	instead	of	using	the	original	feature
matrix.

Clustering
Once	we	have	reduced	the	set	of	original	features	to	a	smaller,	more	manageable
set,	we	can	find	interesting	patterns	by	grouping	similar	instances	of	data
together.	This	is	known	as	clustering	and	can	be	accomplished	with	a	variety	of
unsupervised	learning	algorithms	and	be	used	for	real-world	applications	such	as
market	segmentation.

k-means
To	cluster	well,	we	need	to	identify	distinct	groups	such	that	the	instances	within
a	group	are	similar	to	each	other	but	different	from	instances	in	other	groups.
One	such	algorithm	is	k-means	clustering.	With	this	algorithm,	we	specify	the
number	of	desired	clusters	k,	and	the	algorithm	will	assign	each	instance	to
exactly	one	of	these	k	clusters.	It	optimizes	the	grouping	by	minimizing	the
within-cluster	variation	(also	known	as	inertia)	such	that	the	sum	of	the	within-
cluster	variations	across	all	k	clusters	is	as	small	as	possible.

To	speed	up	this	clustering	process,	k-means	randomly	assigns	each	observation
to	one	of	the	k	clusters	and	then	begins	to	reassign	these	observations	to
minimize	the	Euclidean	distance	between	each	observation	and	its	cluster’s
center	point,	or	centroid.	As	a	result,	different	runs	of	k-means—each	with	a
randomized	start—will	result	in	slightly	different	clustering	assignments	of	the
observations.	From	these	different	runs,	we	can	choose	the	one	that	has	the	best
separation,	defined	as	the	lowest	total	sum	of	within-cluster	variations	across	all
k	clusters.

Hierarchical	clustering
An	alternative	clustering	approach—one	that	does	not	require	us	to	precommit	to
a	particular	number	of	clusters—is	known	as	hierarchical	clustering.	One
version	of	hierarchical	clustering	called	agglomerative	clustering	uses	a	tree-
based	clustering	method,	and	builds	what	is	called	a	dendrogram.	A	dendrogram
can	be	depicted	graphically	as	an	upside-down	tree,	where	the	leaves	are	at	the

7

bottom	and	the	tree	trunk	is	at	the	top.

The	leaves	at	the	very	bottom	are	individual	instances	in	the	dataset.
Hierarchical	clustering	then	joins	the	leaves	together—as	we	move	vertically	up
the	upside-down	tree—based	on	how	similar	they	are	to	each	other.	The
instances	(or	groups	of	instances)	that	are	most	similar	to	each	other	are	joined
sooner,	while	the	instances	that	are	not	as	similar	are	joined	later.	With	this
iterative	process,	all	the	instances	are	eventually	linked	together	forming	the
single	trunk	of	the	tree.

This	vertical	depiction	is	very	helpful.	Once	the	hierarchical	clustering	algorithm
has	finished	running,	we	can	view	the	dendrogram	and	determine	where	we	want
to	cut	the	tree—the	lower	we	cut,	the	more	individual	branches	we	are	left	with
(i.e.,	more	clusters).	If	we	want	fewer	clusters,	we	can	cut	higher	on	the
dendrogram,	closer	to	the	single	trunk	at	the	very	top	of	this	upside-down	tree.
The	placement	of	this	vertical	cut	is	similar	to	choosing	the	number	of	k	clusters
in	the	k-means	clustering	algorithm.

DBSCAN
An	even	more	powerful	clustering	algorithm	(based	on	the	density	of	points)	is
known	as	DBSCAN	(density-based	spatial	clustering	of	applications	with	noise).
Given	all	the	instances	we	have	in	space,	DBSCAN	will	group	together	those
that	are	packed	closely	together,	where	close	together	is	defined	as	a	minimum
number	of	instances	that	must	exist	within	a	certain	distance.	We	specify	both
the	minimum	number	of	instances	required	and	the	distance.

If	an	instance	is	within	this	specified	distance	of	multiple	clusters,	it	will	be
grouped	with	the	cluster	to	which	it	is	most	densely	located.	Any	instance	that	is
not	within	this	specified	distance	of	another	cluster	is	labeled	an	outlier.

Unlike	k-means,	we	do	not	need	to	prespecify	the	number	of	clusters.	We	can
also	have	arbitrarily	shaped	clusters.	DBSCAN	is	much	less	prone	to	the
distortion	typically	caused	by	outliers	in	the	data.

Feature	Extraction
With	unsupervised	learning,	we	can	learn	new	representations	of	the	original
features	of	data—a	field	known	as	feature	extraction.	Feature	extraction	can	be

8

used	to	reduce	the	number	of	original	features	to	a	smaller	subset,	effectively
performing	dimensionality	reduction.	But	feature	extraction	can	also	generate
new	feature	representations	to	help	improve	performance	on	supervised	learning
problems.

Autoencoders
To	generate	new	feature	representations,	we	can	use	a	feedforward,	nonrecurrent
neural	network	to	perform	representation	learning,	where	the	number	of	nodes	in
the	output	layer	matches	the	number	of	nodes	in	the	input	layer.	This	neural
network	is	known	as	an	autoencoder	and	effectively	reconstructs	the	original
features,	learning	a	new	representation	using	the	hidden	layers	in	between.

Each	hidden	layer	of	the	autoencoder	learns	a	representation	of	the	original
features,	and	subsequent	layers	build	on	the	representation	learned	by	the
preceding	layers.	Layer	by	layer,	the	autoencoder	learns	increasingly
complicated	representations	from	simpler	ones.

The	output	layer	is	the	final	newly	learned	representation	of	the	original	features.
This	learned	representation	can	then	be	used	as	an	input	into	a	supervised
learning	model	with	the	objective	of	improving	the	generalization	error.

Feature	extraction	using	supervised	training	of	feedforward
networks
If	we	have	labels,	an	alternate	feature	extraction	approach	is	to	use	a
feedforward,	nonrecurrent	neural	network	where	the	output	layer	attempts	to
predict	the	correct	label.	Just	like	with	autoencoders,	each	hidden	layer	learns	a
representation	of	the	original	features.

However,	when	generating	the	new	representations,	this	network	is	explicitly
guided	by	the	labels.	To	extract	the	final	newly	learned	representation	of	the
original	features	in	this	network,	we	extract	the	penultimate	layer—the	hidden
layer	just	before	the	output	layer.	This	penultimate	layer	can	then	be	used	as	an
input	into	any	supervised	learning	model.

Unsupervised	Deep	Learning
Unsupervised	learning	performs	many	important	functions	in	the	field	of	deep

9

learning,	some	of	which	we	will	explore	in	this	book.	This	field	is	known	as
unsupervised	deep	learning.

Until	very	recently,	the	training	of	deep	neural	networks	was	computationally
intractable.	In	these	neural	networks,	the	hidden	layers	learn	internal
representations	to	help	solve	the	problem	at	hand.	The	representations	improve
over	time	based	on	how	the	neural	network	uses	the	gradient	of	the	error
function	in	each	training	iteration	to	update	the	weights	of	the	various	nodes.

These	updates	are	computationally	expensive,	and	two	major	types	of	problems
may	occur	in	the	process.	First,	the	gradient	of	the	error	function	may	become
very	small,	and,	since	backpropagation	relies	on	multiplying	these	small	weights
together,	the	weights	of	the	network	may	update	very	slowly	or	not	at	all,
preventing	proper	training	of	the	network. 	This	is	known	as	the	vanishing
gradient	problem.

Conversely,	the	other	issue	is	that	the	gradient	of	the	error	function	might
become	very	large;	with	backprop,	the	weights	throughout	the	network	may
update	in	huge	increments,	making	the	training	of	the	network	very	unstable.
This	is	known	as	the	exploding	gradient	problem.

Unsupervised	pretraining
To	address	these	difficulties	in	training	very	deep,	multilayered	neural	networks,
machine	learning	researchers	train	neural	networks	in	multiple,	successive
stages,	where	each	stage	involves	a	shallow	neural	network.	The	output	of	one
shallow	network	is	then	used	as	the	input	of	the	next	neural	network.	Typically,
the	first	shallow	neural	network	in	this	pipeline	involves	an	unsupervised	neural
network,	but	the	later	networks	are	supervised.

This	unsupervised	portion	is	known	as	greedy	layer-wise	unsupervised
pretraining.	In	2006,	Geoffrey	Hinton	demonstrated	the	successful	application	of
unsupervised	pretraining	to	initialize	the	training	of	deeper	neural	network
pipelines,	kicking	off	the	current	deep	learning	revolution.	Unsupervised
pretaining	allows	the	AI	to	capture	an	improved	representation	of	the	original
input	data,	which	the	supervised	portion	then	takes	advantage	of	to	solve	the
specific	task	at	hand.

This	approach	is	called	“greedy”	because	each	portion	of	the	neural	network	is

10

trained	independently,	not	jointly.	“Layer-wise”	refers	to	the	layers	of	the
network.	In	most	modern	neural	networks,	pretraining	is	usually	not	necessary.
Instead,	all	the	layers	are	trained	jointly	using	backpropagation.	Major	computer
advances	have	made	the	vanishing	gradient	problem	and	the	exploding	gradient
problem	much	more	manageable.

Unsupervised	pretraining	not	only	makes	supervised	problems	easier	to	solve	but
also	facilitates	transfer	learning.	Transfer	learning	involves	using	machine
learning	algorithms	to	store	knowledge	gained	from	solving	one	task	to	solve
another	related	task	much	more	quickly	and	with	considerably	less	data.

Restricted	Boltzmann	machines
One	applied	example	of	unsupervised	pretraining	is	the	restricted	Boltzmann
machine	(RBM),	a	shallow,	two-layer	neural	network.	The	first	layer	is	the	input
layer,	and	the	second	layer	is	the	hidden	layer.	Each	node	is	connected	to	every
node	in	the	other	layer,	but	nodes	are	not	connected	to	nodes	of	the	same	layer—
this	is	where	the	restriction	occurs.

RBMs	can	perform	unsupervised	tasks	such	as	dimensionality	reduction	and
feature	extraction	and	provide	helpful	unsupervised	pretraining	as	part	of
supervised	learning	solutions.	RBMs	are	similar	to	autoencoders	but	differ	in
some	important	ways.	For	example,	autoencoders	have	an	output	layer,	while
RBMs	do	not.	We	will	explore	these	and	other	differences	in	detail	later	in	the
book.

Deep	belief	networks
RBMs	can	be	linked	together	to	form	a	multistage	neural	network	pipeline
known	as	a	deep	belief	network	(DBN).	The	hidden	layer	of	each	RBM	is	used	as
the	input	for	the	next	RBM.	In	other	words,	each	RBM	generates	a
representation	of	the	data	that	the	next	RBM	then	builds	upon.	By	successively
linking	this	type	of	representation	learning,	the	deep	belief	network	is	able	to
learn	more	complicated	representations	that	are	often	used	as	feature	detectors.

Generative	adversarial	networks
One	major	advance	in	unsupervised	deep	learning	has	been	the	advent	of
generative	adversarial	networks	(GANs),	introduced	by	Ian	Goodfellow	and	his

11

fellow	researchers	at	the	University	of	Montreal	in	2014.	GANs	have	many
applications;	for	example,	we	can	use	GANs	to	create	near-realistic	synthetic
data,	such	as	images	and	speech,	or	perform	anomaly	detection.

In	GANs,	we	have	two	neural	networks.	One	network—known	as	the	generator
—generates	data	based	on	a	model	data	distribution	it	has	created	using	samples
of	real	data	it	has	received.	The	other	network—known	as	the	discriminator—
discriminates	between	the	data	created	by	the	generator	and	data	from	the	true
data	distribution.

As	a	simple	analogy,	the	generator	is	the	counterfeiter,	and	the	discriminator	is
the	police	trying	to	identify	the	forgery.	The	two	networks	are	locked	in	a	zero-
sum	game.	The	generator	is	trying	to	fool	the	discriminator	into	thinking	the
synthetic	data	comes	from	the	true	data	distribution,	and	the	discriminator	is
trying	to	call	out	the	synthetic	data	as	fake.

GANs	are	unsupervised	learning	algorithms	because	the	generator	can	learn	the
underlying	structure	of	the	true	data	distribution	even	when	there	are	no	labels.
GANs	learn	the	underlying	structure	in	the	data	through	the	training	process	and
efficiently	capture	the	structure	using	a	small,	manageable	number	of
parameters.

This	process	is	similar	to	the	representation	learning	that	occurs	in	deep	learning.
Each	hidden	layer	in	the	neutral	network	of	a	generator	captures	a	representation
of	the	underlying	data—starting	very	simply—and	subsequent	layers	pick	up
more	complicated	representations	by	building	on	the	simpler	preceding	layers.

Using	all	these	layers	together,	the	generator	learns	the	underlying	structure	of
the	data	and,	using	what	it	has	learned,	the	generator	attempts	to	create	synthetic
data	that	is	nearly	identical	to	the	true	data	distribution.	If	the	generator	has
captured	the	essence	of	the	true	data	distribution,	the	synthetic	data	will	appear
real.

Sequential	Data	Problems	Using	Unsupervised	Learning
Unsupervised	learning	can	also	handle	sequential	data	such	as	time	series	data.
One	such	approach	involves	learning	the	hidden	states	of	a	Markov	model.	In	the
simple	Markov	model,	states	are	fully	observed	and	change	stochastically	(in
other	words,	randomly).	Future	states	depend	only	on	the	current	state	and	are

not	dependent	on	previous	states.

In	a	hidden	Markov	model,	the	states	are	only	partially	observable,	but,	like	with
simple	Markov	models,	the	outputs	of	these	partially	observable	states	are	fully
observable.	Since	the	observations	that	we	have	are	insufficient	to	determine	the
state	completely,	we	need	unsupervised	learning	to	help	discover	these	hidden
states	more	fully.

Hidden	Markov	model	algorithms	involve	learning	the	probable	next	state	given
what	we	know	about	the	sequence	of	previously	occurring,	partially	observable
states	and	fully	observable	outputs.	These	algorithms	have	had	major
commercial	applications	in	sequential	data	problems	involving	speech,	text,	and
time	series.

Reinforcement	Learning	Using	Unsupervised
Learning
Reinforcement	learning	is	the	third	major	branch	of	machine	learning,	in	which
an	agent	determines	its	optimal	behavior	(actions)	in	an	environment	based	on
feedback	(reward)	that	it	receives.	This	feedback	is	known	as	the	reinforcement
signal.	The	agent’s	goal	is	to	maximize	its	cumulative	reward	over	time.

While	reinforcement	learning	has	been	around	since	the	1950s,	it	has	made
mainstream	headline	news	only	in	recent	years.	In	2013,	DeepMind—now
owned	by	Google—applied	reinforcement	learning	to	achieve	superhuman-level
performance	at	playing	many	different	Atari	games.	DeepMind’s	system
achieved	this	with	just	raw	sensory	data	as	input	and	no	prior	knowledge	of	the
rules	of	the	games.

In	2016,	DeepMind	again	captured	the	imagination	of	the	machine	learning
community—this	time	the	DeepMind	reinforcement	learning-based	AI	agent
AlphaGo	beat	Lee	Sedol,	one	of	the	world’s	best	Go	players.	These	successes
have	cemented	reinforcement	learning	as	a	mainstream	AI	topic.

Today,	machine	learning	researchers	are	applying	reinforcement	learning	to
solve	many	different	types	of	problems	including:

Stock	market	trading,	in	which	the	agent	buys	and	sells	(actions)	and

receives	profits	or	losses	(rewards)	in	return

Video	games	and	board	games,	in	which	the	agent	makes	game
decisions	(actions)	and	wins	or	loses	(rewards)

Self-driving	cars,	in	which	the	agent	directs	the	vehicle	(actions)	and
either	stays	on	course	or	crashes	(rewards)

Machine	control,	in	which	the	agent	moves	about	its	environment
(actions)	and	either	completes	the	course	or	fails	(rewards)

In	the	simplest	reinforcement	learning	problems,	we	have	a	finite	problem—with
a	finite	number	of	states	of	the	environment,	a	finite	number	of	actions	that	are
possible	at	any	given	state	of	the	environment,	and	a	finite	number	of	rewards.
The	action	taken	by	the	agent	given	the	current	state	of	the	environment
determines	the	next	state,	and	the	agent’s	goal	is	to	maximize	its	long-term
reward.	This	family	of	problems	is	known	as	finite	Markov	decision	processes.

However,	in	the	real	world,	things	are	not	so	simple—the	reward	is	unknown
and	dynamic	rather	than	known	and	static.	To	help	discover	this	unknown
reward	function	and	approximate	it	as	best	as	possible,	we	can	apply
unsupervised	learning.	Using	this	approximated	reward	function,	we	can	apply
reinforcement	learning	solutions	to	increase	the	cumulative	reward	over	time.

Semisupervised	Learning
Even	though	supervised	learning	and	unsupervised	learning	are	two	distinct
major	branches	of	machine	learning,	the	algorithms	from	each	branch	can	be
mixed	together	as	part	of	a	machine	learning	pipeline. 	Typically,	this	mix	of
supervised	and	unsupervised	is	used	when	we	want	to	take	full	advantage	of	the
few	labels	that	we	have	or	when	we	want	to	find	new,	yet	unknown	patterns
from	unlabeled	data	in	addition	to	the	known	patterns	from	the	labeled	data.
These	types	of	problems	are	solved	using	a	hybrid	of	supervised	and
unsupervised	learning	known	as	semisupervised	learning.	We	will	explore	this
area	in	greater	detail	later	in	the	book.

Successful	Applications	of	Unsupervised

12

Learning
In	the	last	ten	years,	most	successful	commercial	applications	of	machine
learning	have	come	from	the	supervised	learning	space,	but	this	is	changing.
Unsupervised	learning	applications	have	become	more	commonplace.
Sometimes,	unsupervised	learning	is	just	a	means	to	make	supervised
applications	better.	Other	times,	unsupervised	learning	achieves	the	commercial
application	itself.	Here	is	a	closer	look	at	two	of	the	biggest	applications	of
unsupervised	learning	to	date:	anomaly	detection	and	group	segmentation.

Anomaly	Detection
Performing	dimensionality	reduction	can	reduce	the	original	high-dimensional
feature	space	into	a	transformed	lower-dimensional	space.	In	this	lower-
dimensional	space,	we	find	where	the	majority	of	points	densely	lie.	This	portion
is	the	normal	space.	Points	that	lie	much	farther	away	are	called	outliers—or
anomalies—and	are	worth	investigating	in	greater	detail.

Anomaly	detection	systems	are	commonly	used	for	fraud	detection	such	as
credit	card	fraud,	wire	fraud,	cyber	fraud,	and	insurance	fraud.	Anomaly
detection	is	also	used	to	identify	rare,	malicious	events	such	as	hacking	of
internet-connected	devices,	maintenance	failures	in	mission-critical	equipment
such	as	airplanes	and	trains,	and	cybersecurity	breaches	due	to	malware	and
other	pernicious	agents.

We	can	use	these	systems	for	spam	detection,	such	as	the	email	spam	filter
example	we	used	earlier	in	the	chapter.	Other	applications	include	finding	bad
actors	to	stop	activity	such	as	terrorist	financing,	money	laundering,	human	and
narcotics	trafficking,	and	arms	dealing,	identifying	high	risk	events	in	financial
trading,	and	discovering	diseases	such	as	cancer.

To	make	the	analysis	of	anomalies	more	manageable,	we	can	use	a	clustering
algorithm	to	group	similar	anomalies	together	and	then	hand-label	these	clusters
based	on	the	types	of	behavior	they	represent.	With	such	a	system,	we	can	have
an	unsupervised	learning	AI	that	is	able	to	identify	anomalies,	cluster	them	into
appropriate	groups,	and,	using	the	cluster	labels	provided	by	humans,
recommend	to	business	analysts	the	appropriate	course	of	action.

With	anomaly	detection	systems,	we	can	take	an	unsupervised	problem	and

eventually	create	a	semisupervised	one	with	this	cluster-and-label	approach.
Over	time,	we	can	run	supervised	algorithms	on	the	labeled	data	alongside	the
unsupervised	algorithms.	For	successful	machine	learning	applications,
unsupervised	systems	and	supervised	systems	should	be	used	in	conjunction,
complementing	one	another.

The	supervised	system	finds	the	known	patterns	with	a	high	level	of	accuracy,
while	the	unsupervised	system	discovers	new	patterns	that	may	be	of	interest.
Once	these	patterns	are	uncovered	by	the	unsupervised	AI,	the	patterns	are
labeled	by	humans,	transitioning	more	of	the	data	from	unlabeled	to	labeled.

Group	segmentation
With	clustering,	we	can	segment	groups	based	on	similarity	in	behavior	in	areas
such	as	marketing,	customer	retention,	disease	diagnosis,	online	shopping,	music
listening,	video	watching,	online	dating,	social	media	activity,	and	document
classification.	The	amount	of	data	that	is	generated	in	each	of	these	areas	is
massive,	and	the	data	is	only	partially	labeled.

For	patterns	that	we	already	know	and	want	to	reinforce,	we	can	use	supervised
learning	algorithms.	But	often	we	want	to	discover	new	patterns	and	groups	of
interest—for	this	discovery	process,	unsupervised	learning	is	a	natural	fit.	Again,
it	is	all	about	synergy.	We	should	use	supervised	and	unsupervised	learning
systems	in	conjunction	to	build	a	stronger	machine	learning	solution.

Conclusion
In	this	chapter,	we	explored	the	following:

The	difference	between	a	rules-based	system	and	machine	learning

The	difference	between	supervised	and	unsupervised	learning

How	unsupervised	learning	can	help	address	common	problems	in
training	machine	learning	models

Common	algorithms	for	supervised,	unsupervised,	reinforcement,	and
semisupervised	learning

Two	major	applications	of	unsupervised	learning—anomaly	detection

and	group	segmentation

In	Chapter	2,	we’ll	explore	how	to	build	machine	learning	applications.	Then,
we	will	cover	dimensionality	reduction	and	clustering	in	detail,	building	an
anomaly	detection	system	and	a	group	segmentation	system	in	the	process.

1 	There	are	startups	such	as	Figure	Eight	that	explicitly	provide	this	human	in	the	loop	service.

2 	Underfitting	is	another	problem	that	may	occur	in	building	machine	learning	applications,	but	this	is
easier	to	solve.	Underfitting	occurs	because	the	model	is	too	simple—the	algorithm	cannot	build	a
complex	enough	function	approximation	to	make	good	decisions	for	the	task	at	hand.	To	solve	this,
we	can	allow	the	algorithm	to	grow	in	size	(have	more	parameters,	perform	more	training	iterations,
etc.)	or	apply	a	more	complicated	machine	learning	algorithm.

3 	This	list	is	by	no	means	exhaustive	but	does	include	the	most	commonly	used	machine	learning
algorithms.

4 	There	may	be	other	potential	issues	that	might	make	linear	regression	a	poor	choice,	including
outliers,	correlation	of	error	terms,	and	nonconstant	variance	of	error	terms.

5 	For	more	on	gradient	boosting	in	machine	learning	competitions,	consult	Ben	Gorman’s	blog	post.

6 	For	more	on	neutral	networks,	check	out	Deep	Learning	by	Ian	Goodfellow,	Yoshua	Bengio,	and
Aaron	Courville	(MIT	Press).

7 	There	are	faster	variants	of	k-means	clustering	such	as	mini-batch	k-means,	which	we	cover	later	in
the	book.

8 	Hierarchical	clustering	uses	Euclidean	distance	by	default,	but	it	can	also	use	other	similarity	metrics
such	as	correlation-based	distance,	which	we	will	explore	in	greater	detail	later	in	the	book.

9 	There	are	several	types	of	autoencoders,	and	each	learns	a	different	set	of	representations.	These
include	denoising	autoencoders,	sparse	autoencoders,	and	variational	autoencoders,	all	of	which	we
will	explore	later	in	the	book.

10 	Backpropagation	(also	known	as	backward	propagation	of	errors)	is	a	gradient	descent-based
algorithm	used	by	neural	networks	to	update	weights.	In	backprop,	the	weights	of	the	final	layer	are
calculated	first	and	then	used	to	update	the	weights	of	the	preceding	layers.	This	process	continues
until	the	weights	of	the	very	first	layer	are	updated.

11 	Feature	detectors	learn	good	representations	of	the	original	data,	helping	separate	distinct	elements.
For	example,	in	images,	feature	detectors	help	separate	elements	such	as	noses,	eyes,	mouths,	etc.

12 	Pipeline	refers	to	a	system	of	machine	learning	solutions	that	are	applied	in	succession	to	achieve	a
larger	objective.

http://bit.ly/2S1C8Qy
http://www.deeplearningbook.org/

Chapter	2.	End-to-End	Machine
Learning	Project

Before	we	begin	exploring	unsupervised	learning	algorithms	in	detail,	we	will
review	how	to	set	up	and	manage	machine	learning	projects,	covering	everything
from	acquiring	data	to	building	and	evaluating	a	model	and	implementing	a
solution.	We	will	work	with	supervised	learning	models	in	this	chapter—an	area
most	readers	should	have	some	experience	in—before	jumping	into
unsupervised	learning	models	in	the	next	chapter.

Environment	Setup
Let’s	set	up	the	data	science	environment	before	going	further.	This	environment
is	the	same	for	both	supervised	and	unsupervised	learning.

NOTE
These	instructions	are	optimized	for	the	Windows	operating	system	but	installation	packages
are	available	for	Mac	and	Linux,	too.

Version	Control:	Git
If	you	have	not	already,	you	will	need	to	install	Git.	Git	is	a	version	control
system	for	code,	and	all	the	coding	examples	in	this	book	are	available	as
Jupyter	notebooks	from	the	GitHub	repository.	Review	Roger	Dudler’s	Git	guide
to	learn	how	to	clone	repositories;	add,	commit,	and	push	changes;	and	maintain
version	control	with	branches.

Clone	the	Hands-On	Unsupervised	Learning	Git	Repository
Open	the	command-line	interface	(i.e.,	command	prompt	on	Windows,	terminal
on	Mac,	etc.).	Navigate	to	the	directory	where	you	will	store	your	unsupervised

https://git-scm.com/
http://bit.ly/2Gd4v7e
http://rogerdudler.github.io/git-guide/

learning	projects.	Use	the	following	prompt	to	clone	the	repository	associated
with	this	book	from	GitHub:

$ git clone https://github.com/aapatel09/handson-unsupervised-learning.git
$ git lfs pull

Alternatively,	you	can	visit	the	repository	on	the	GitHub	website	and	manually
download	the	repository	for	your	use.	You	can	watch	or	star	the	repository	to
stay	updated	on	changes.

Once	the	repository	has	been	pulled	or	manually	downloaded,	use	the	command-
line	interface	to	navigate	into	the	handson-unsupervised-learning	repository.

$ cd handson-unsupervised-learning

For	the	rest	of	the	installations,	we	will	continue	to	use	the	command-line
interface.

Scientific	Libraries:	Anaconda	Distribution	of	Python
To	install	Python	and	the	scientific	libraries	necessary	for	machine	learning,
download	the	Anaconda	distribution	of	Python	(version	3.6	is	recommended
because	version	3.7	is	relatively	new	as	of	the	writing	of	this	book	and	not
supported	by	all	the	machine	libraries	we	will	use).

Create	an	isolated	Python	environment	so	that	you	can	import	different	libraries
for	each	project	separately:

$ conda create -n unsupervisedLearning python=3.6 anaconda

This	creates	an	isolated	Python	3.6	environment—with	all	of	the	scientific
libraries	that	come	with	the	Anaconda	distribution—called
unsupervisedLearning.

Now,	activate	this	for	use:

$ activate unsupervisedLearning

Neural	Networks:	TensorFlow	and	Keras

http://bit.ly/2Gd4v7e
https://www.anaconda.com/download/

Once	unsupervisedLearning	is	activated,	you	will	need	to	install	TensorFlow	and
Keras	to	build	neutral	networks.	TensorFlow	is	an	open	source	project	by	Google
and	is	not	part	of	the	Anaconda	distribution:

$ pip install tensorflow

Keras	is	an	open	source	netural	network	library	that	offers	a	higher-level	API	for
us	to	use	the	lower-level	functions	in	TensorFlow.	In	other	words,	we	will	use
Keras	on	top	of	TensorFlow	(the	backend)	to	have	a	more	intuitive	set	of	API
calls	to	develop	our	deep	learning	models:

$ pip install keras

Gradient	Boosting,	Version	One:	XGBoost
Next,	install	one	version	of	gradient	boosting	known	as	XGBoost.	To	make	this
simple	(for	Windows	users,	at	least),	you	can	navigate	into	the	xgboost	folder	in
the	handson-unsupervised-learning	repository	and	find	the	package	there.

To	install	the	package,	use	pip install:

cd xgboost
pip install xgboost-0.6+20171121-cp36-cp36m-win_amd64.whl

Alternatively,	download	the	correct	version	of	XGBoost	based	on	your	system—
either	the	32-bit	or	the	64-bit	version.

In	the	command-line	interface,	navigate	to	the	folder	with	this	newly
downloaded	file.	Use	pip install:

$ pip install xgboost-0.6+20171121-cp36-cp36m-win_amd64.whl

NOTE
Your	XGBoost	WHL	filename	may	be	slightly	different	as	newer	versions	of	the	software	are
released	publicly.

Once	XGBoost	has	been	successfully	installed,	navigate	back	to	the	handson-

http://bit.ly/2G1jBxs

unsupervised-learning	folder.

Gradient	Boosting,	Version	Two:	LightGBM
Install	another	version	of	gradient	boosting,	Microsoft’s	LightGBM:

$ pip install lightgbm

Clustering	Algorithms
Let’s	install	a	few	clustering	algorithms	we	will	use	later	in	the	book.	One
clustering	package,	fastcluster,	is	a	C++	library	with	an	interface	in
Python/SciPy.

This	fastcluster	package	can	be	installed	with	the	following	command:

$ pip install fastcluster

Another	clustering	algorithm	is	hdbscan,	which	can	also	be	installed	via	pip:

$ pip install hdbscan

And,	for	time	series	clustering,	let’s	install	tslearn:

$ pip install tslearn

Interactive	Computing	Environment:	Jupyter	Notebook
Jupyter	notebook	is	part	of	the	Anaconda	distribution,	so	we	will	now	activate	it
to	launch	the	environment	we	just	set	up.	Make	sure	you	are	in	the	handson-
unsupervised-learning	repository	before	you	enter	the	following	command	(for
ease	of	use):

$ jupyter notebook

You	should	see	your	browser	open	up	and	launch	the	http://localhost:8888/	page.
Cookies	must	be	enabled	for	proper	access.

We	are	now	ready	to	build	our	first	machine	learning	project.

1

http://localhost:8888/

Overview	of	the	Data
In	this	chapter,	we	will	use	a	real	dataset	of	anonymized	credit	card	transactions
made	by	European	cardholders	from	September	2013. 	These	transactions	are
labeled	as	fraudulent	or	genuine,	and	we	will	build	a	fraud	detection	solution
using	machine	learning	to	predict	the	correct	labels	for	never-before-seen
instances.

This	dataset	is	highly	imbalanced.	Of	the	284,807	transactions,	only	492	are
fraudulent	(0.172%).	This	low	percentage	of	fraud	is	pretty	typical	for	credit
card	transactions.

There	are	28	features,	all	of	which	are	numerical,	and	there	are	no	categorical
variables. 	These	features	are	not	the	original	features	but	rather	the	output	of
principal	component	analysis,	which	we	will	explore	in	Chapter	3.	The	original
features	were	distilled	to	28	principal	components	using	this	form	of
dimensionality	reduction.

In	addition	to	the	28	principal	components,	we	have	three	other	variables—the
time	of	the	transaction,	the	amount	of	the	transaction,	and	the	true	class	of	the
transaction	(one	if	fraud,	zero	if	genuine).

Data	Preparation
Before	we	can	use	machine	learning	to	train	on	the	data	and	develop	a	fraud
detection	solution,	we	need	to	prepare	the	data	for	the	algorithms.

Data	Acquisition
The	first	step	in	any	machine	learning	project	is	data	acquisition.

Download	the	data
Download	the	dataset	and,	within	the	handson-unsupervised-learning	directory,
place	the	CSV	file	in	a	folder	called	/datasets/credit_card_data/.	If	you
downloaded	the	GitHub	repository	earlier,	you	already	have	this	file	in	this
folder	in	the	repository.

Import	the	necessary	libraries

2

3

Import	the	Python	libraries	that	we	will	need	to	build	our	fraud	detection
solution:

'''Main'''
import numpy as np
import pandas as pd
import os

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Data Prep'''
from sklearn import preprocessing as pp
from scipy.stats import pearsonr
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score
from sklearn.metrics import confusion_matrix, classification_report

'''Algos'''
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
import lightgbm as lgb

Read	the	data

current_path = os.getcwd()
file = '\\datasets\\credit_card_data\\credit_card.csv'
data = pd.read_csv(current_path + file)

Preview	the	data
Table	2-1	shows	the	first	five	rows	of	the	dataset.	As	you	can	see,	the	data	has
been	properly	loaded:

data.head()

Table	2-1.	Preview	of	the	data

Table	2-1.	Preview	of	the	data

Time V1 V2 V3 V4 V5

0 0.0 –1.359807 –0.072781 2.536347 1.378155 –0.338321

1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018

2 1.0 –1.358354 –1.340163 1.773209 0.379780 –0.503198

3 1.0 –0.966272 –0.185226 1.792993 –0.863291 –0.010309

4 2.0 –1.158233 0.877737 1.548718 0.403034 –0.407193

5	rows	x	31	columns

Data	Exploration
Next,	let’s	get	a	deeper	understanding	of	the	data.	We	will	generate	summary
statistics	for	the	data,	identify	any	missing	values	or	categorical	features,	and
count	the	number	of	distinct	values	by	feature.

Generate	summary	statistics
Table	2-2	describes	the	data,	column	by	column.	The	block	of	code	that	follows
lists	all	the	column	names	for	easy	reference.

data.describe()

Table	2-2.	Simple	summary	statistics

Time V1 V2 V3 V4

count 284807.000000 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05

mean 94813.859575 3.919560e–15 5.688174e–16 –8.769071e–15 2.782312e–15

std 47488.145955 1.958696e+00 1.651309e+00 1.516255e+00 1.415869e+00

min 0.000000 –5.640751e+01 –7.271573e+01 –4.832559e+01 –5.683171e+00

25% 54201.500000 –9.203734e–01 –5.985499e–01 –8.903648e–01 –8.486401e–01

50% 84692.000000 1.810880e–02 6.548556e–02 1.798463e–01 –1.984653e–02

75% 139320.500000 1.315642e+00 8.037239e–01 1.027196e+00 7.433413e–01

max 172792.000000 2.454930e+00 2.205773e+01 9.382558e+00 1.687534e+01

8	rows	x	31	columns

data.columns

Index(['Time', 'V1,' 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10',
'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21',
'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount', 'Class'],
dtype='object')

data['Class'].sum()

The	total	number	of	positive	labels,	or	fraudulent	transactions,	is	492.	There	are
284,807	instances	and	31	columns	as	expected—28	numerical	features	(V1
through	V28),	Time,	Amount,	and	Class.

The	timestamps	range	from	0	to	172,792,	the	amounts	range	from	0	to
25,691.16,	and	there	are	492	fraudulent	transactions.	These	fraudulent
transactions	are	also	referred	to	as	positive	cases	or	positive	labels	(labeled	as
one);	the	normal	transactions	are	negative	cases	or	negative	labels	(labeled	as
zero).

The	28	numerical	features	are	not	standardized	yet,	but	we	will	standardize	the
data	soon.	Standardization	rescales	the	data	to	have	a	mean	of	zero	and	standard
deviation	of	one.

TIP
Some	machine	learning	solutions	are	very	sensitive	to	the	scale	of	the	data,	so	having	all	the
data	on	the	same	relative	scale—via	standardization—is	a	good	machine	learning	practice.

Another	common	method	to	scale	data	is	normalization,	which	rescales	the	data	to	a	zero	to
one	range.	Unlike	the	standardized	data,	all	the	normalized	data	is	on	a	positive	scale.

Identify	nonnumerical	values	by	feature
Some	machine	learning	algorithms	cannot	handle	nonnumerical	values	or

missing	values.	Therefore,	it	is	best	practice	to	identify	nonnumerical	values
(also	known	as	not	a	number,	or	NaNs).

In	the	case	of	missing	values,	we	can	impute	the	value—for	example,	by
replacing	the	missing	points	with	the	mean,	median,	or	mode	of	the	feature—or
substitute	with	some	user-defined	value.	In	the	case	of	categorical	values,	we	can
encode	the	data	such	that	all	the	categorical	values	are	represented	with	a	sparse
matrix.	This	sparse	matrix	is	then	combined	with	the	numerical	features.	The
machine	learning	algorithm	trains	on	this	combined	feature	set.

The	following	code	shows	that	none	of	the	observations	have	NaNs,	so	we	will
not	need	to	impute	or	encode	any	of	the	values:

nanCounter = np.isnan(data).sum()

Time 0
V1 0
V2 0
V3 0
V4 0
V5 0
V6 0
V7 0
V8 0
V9 0
V10 0
V11 0
V12 0
V13 0
V14 0
V15 0
V16 0
V17 0
V18 0
V19 0
V20 0
V21 0
V22 0
V23 0
V24 0
V25 0
V26 0
V27 0
V28 0
Amount 0
Class 0

dtype: int64

Identify	distinct	values	by	feature
To	develop	a	better	understanding	of	the	credit	card	transactions	dataset,	let’s
count	the	number	of	distinct	values	by	feature.

The	following	code	shows	that	we	have	124,592	distinct	timestamps.	But	we
know	from	earlier	that	we	have	284,807	observations	in	total.	That	means	that
there	are	multiple	transactions	at	some	timestamps.

And,	as	expected,	there	are	just	two	classes—one	for	fraud,	zero	for	not	fraud:

distinctCounter = data.apply(lambda x: len(x.unique()))

Time 124592
V1 275663
V2 275663
V3 275663
V4 275663
V5 275663
V6 275663
V7 275663
V8 275663
V9 275663
V10 275663
V11 275663
V12 275663
V13 275663
V14 275663
V15 275663
V16 275663
V17 275663
V18 275663
V19 275663
V20 275663
V21 275663
V22 275663
V23 275663
V24 275663
V25 275663
V26 275663
V27 275663
V28 275663
Amount 32767
Class 2
dtype: int64

Generate	Feature	Matrix	and	Labels	Array
Let’s	create	and	standardize	the	feature	matrix	X	and	isolate	the	labels	array	y
(one	for	fraud,	zero	for	not	fraud).	Later	on	we	will	feed	these	into	the	machine
learning	algorithms	during	training.

Create	the	feature	matrix	X	and	the	labels	array	Y

dataX = data.copy().drop([‘Class’],axis=1)
dataY = data[‘Class’].copy()

Standardize	the	feature	matrix	X
Let’s	rescale	the	feature	matrix	so	that	each	feature,	except	for	time,	has	a	mean
of	zero	and	standard	deviation	of	one:

featuresToScale = dataX.drop(['Time'],axis=1).columns
sX = pp.StandardScaler(copy=True)
dataX.loc[:,featuresToScale] = sX.fit_transform(dataX[featuresToScale])

As	shown	in	Table	2-3,	the	standardized	features	now	have	a	mean	of	zero	and	a
standard	deviation	of	one.

Table	2-3.	Summary	of	scaled	features

Time V1 V2 V3 V4

count 284807.000000 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05

mean 94813.859575 –8.157366e–16 3.154853e–17 –4.409878e–15 –6.734811e–16

std 47488.145955 1.000002e+00 1.000002e+00 1.000002e+00 1.000002e+00

min 0.000000 –2.879855e+01 –4.403529e+01 –3.187173e+01 –4.013919e+00

25% 54201.500000 –4.698918e–01 –3.624707e–01 –5.872142e–01 –5.993788e–01

50% 84692.000000 9.245351e–03 3.965683e–02 1.186124e–02 –1.401724e–01

75% 139320.500000 6.716939e–01 4.867202e–01 6.774569e–01 5.250082e–01

max 172792.000000 1.253351e+00 1.335775e+01 6.187993e+00 1.191874e+01

8	rows	x	30	columns

Feature	Engineering	and	Feature	Selection
In	most	machine	learning	projects,	we	should	consider	feature	engineering	and
feature	selection	as	part	of	the	solution.	Feature	engineering	involves	creating
new	features—for	example,	calculating	ratios	or	counts	or	sums	from	the
original	features—to	help	the	machine	learning	algorithm	extract	a	stronger
signal	from	the	dataset.

Feature	selection	involves	selecting	a	subset	of	the	features	for	training,
effectively	removing	some	of	the	less	relevant	features	from	consideration.	This
may	help	prevent	the	machine	learning	algorithm	from	overfitting	to	the	noise	in
the	dataset.

For	this	credit	card	fraud	dataset,	we	do	not	have	the	original	features.	We	have
only	the	principal	components,	which	were	derived	from	PCA,	a	form	of
dimensionality	reduction	that	we	will	explore	in	Chapter	3.	Since	we	do	not
know	what	any	of	the	features	represent,	we	cannot	perform	any	intelligent
feature	engineering.

Feature	selection	is	not	necessary	either	since	the	number	of	observations
(284,807)	vastly	outnumbers	the	number	of	features	(30),	which	dramatically
reduces	the	chances	of	overfitting.	And,	as	Figure	2-1	shows,	the	features	are
only	slightly	correlated	to	each	other.	In	other	words,	we	do	not	have	redundant
features.	If	we	did,	we	could	remove	or	reduce	the	redundancy	via
dimensionality	reduction.	Of	course,	this	is	not	a	surprise.	PCA	was	already
performed	on	this	credit	card	dataset,	removing	the	redundancy	for	us.

Check	correlation	of	features

correlationMatrix = pd.DataFrame(data=[],index=dataX.columns,
columns=dataX.columns)
for i in dataX.columns:
 for j in dataX.columns:
 correlationMatrix.loc[i,j] = np.round(pearsonr(dataX.loc[:,i],
 dataX.loc[:,j])[0],2)

Figure	2-1.	Correlation	matrix

Data	Visualization
As	a	final	step,	let’s	visualize	the	data	to	appreciate	just	how	imbalanced	the
dataset	is	(Figure	2-2).	Since	there	are	so	few	cases	of	fraud	to	learn	from,	this	is
a	difficult	problem	to	solve;	fortunately,	we	have	labels	for	the	entire	dataset:

count_classes = pd.value_counts(data['Class'],sort=True).sort_index()
ax = sns.barplot(x=count_classes.index, y=tuple(count_classes/len(data)))
ax.set_title('Frequency Percentage by Class')
ax.set_xlabel('Class')
ax.set_ylabel('Frequency Percentage')

Figure	2-2.	Frequency	percentage	of	labels

Model	Preparation
Now	that	the	data	is	ready,	let’s	prepare	for	the	model.	We	need	to	split	the	data
into	a	training	and	a	test	set,	select	a	cost	function,	and	prepare	for	k-fold	cross-
validation.

Split	into	Training	and	Test	Sets
As	you	may	recall	from	Chapter	1,	machine	learning	algorithms	learn	from	data
(i.e.,	train	on	the	data)	to	have	good	performance	(i.e.,	accurately	predict)	on
never-before-seen	cases.	The	performance	on	these	never-before-seen	cases	is
known	as	the	generalization	error—this	is	the	most	important	metric	in
determining	the	goodness	of	a	machine	learning	model.

We	need	to	set	up	our	machine	learning	project	so	that	we	have	a	training	set
from	which	the	machine	learning	algorithm	learns.	We	also	need	a	test	set	(the
never-before-seen	cases)	the	machine	learning	algorithm	can	make	predictions
on.	The	performance	on	this	test	set	will	be	the	ultimate	gauge	of	success.

Let’s	go	ahead	and	split	our	credit	card	transactions	dataset	into	a	training	set
and	a	test	set.

X_train, X_test, y_train, y_test = train_test_split(dataX,
 dataY, test_size=0.33,
 random_state=2018, stratify=dataY)

We	now	have	a	training	set	with	190,280	instances	(67%	of	the	original	dataset)
and	a	test	set	with	93,987	instances	(the	remaining	33%).	To	preserve	the
percentage	of	fraud	(~0.17%)	for	both	the	training	and	the	test	set,	we	have	set
the	stratify	parameter.	We	also	fixed	the	random	state	to	2018	to	make	it	easier	to
reproduce	results.

We	will	use	the	test	set	for	a	final	evaluation	of	our	generalization	error	(also
known	as	out-of-sample	error).

Select	Cost	Function

4

Before	we	train	on	the	training	set,	we	need	a	cost	function	(also	referred	to	as
the	error	rate	or	value	function)	to	pass	into	the	machine	learning	algorithm.	The
machine	learning	algorithm	will	try	to	minimize	this	cost	function	by	learning
from	the	training	examples.

Since	this	is	a	supervised	classification	problem—with	two	classes—let’s	use
binary	classification	log	loss	(as	shown	in	Equation	2-1),	which	will	calculate
the	cross-entropy	between	the	true	labels	and	the	model-based	predictions.

Equation	2-1.	Log	loss	function

Where	N	is	the	number	of	observations;	M	is	the	number	of	class	labels	(in	this
case,	two);	log	is	the	natural	logarithm;	 	is	1	if	observation	i	is	in	class	j	and	0
otherwise;	and	 	is	the	predicted	probability	that	observation	i	is	in	class	j.

The	machine	learning	model	will	generate	the	fraud	probability	for	each	credit
card	transaction.	The	closer	the	fraud	probabilities	are	to	the	true	labels	(i.e.,	one
for	fraud	or	zero	for	not	fraud),	the	lower	the	value	of	the	log	loss	function.	This
is	what	the	machine	learning	algorithm	will	try	to	minimize.

Create	k-Fold	Cross-Validation	Sets
To	help	the	machine	learning	algorithm	estimate	what	its	performance	will	be	on
the	never-before-seen	examples	(the	test	set),	it	is	best	practice	to	further	split
the	training	set	into	a	training	set	and	a	validation	set.

For	example,	if	we	split	the	training	set	into	fifths,	we	can	train	on	four-fifths	of
the	original	training	set	and	evalulate	the	newly	training	model	by	making
predictions	on	the	fifth	slice	of	the	original	training	set,	known	as	the	validation
set.

It	is	possible	to	train	and	evaluate	like	this	five	times—leaving	aside	a	different
fifth	slice	as	the	validation	set	each	time.	This	is	known	as	k-fold	cross-
validation,	where	k	in	this	case	is	five.	With	this	approach,	we	will	have	not	one
estimate	but	five	estimates	for	the	generalization	error.

yi,j

pi,j

We	will	store	the	training	score	and	the	cross-validation	score	for	each	of	the
five	runs,	and	we	will	store	the	cross-validation	predictions	each	time.	After	all
five	runs	are	complete,	we	will	have	cross-validation	predictions	for	the	entire
dataset.	This	will	be	the	best	all-in	estimate	of	the	performance	the	test	set.

Here’s	how	to	set	up	for	the	k-fold	validation,	where	k	is	five:

k_fold = StratifiedKFold(n_splits=5, shuffle=True, random_state=2018)

Machine	Learning	Models	(Part	I)
Now	we’re	ready	to	build	the	machine	learning	models.	For	each	machine
algorithm	we	consider,	we	will	set	hyperparameters,	train	the	model,	and
evaluate	the	results.

Model	#1:	Logistic	Regression
Let’s	start	with	the	most	basic	classification	algorithm,	logistic	regression.

Set	hyperparameters

penalty = 'l2'
C = 1.0
class_weight = 'balanced'
random_state = 2018
solver = 'liblinear'

logReg = LogisticRegression(penalty=penalty, C=C,
 class_weight=class_weight, random_state=random_state,
 solver=solver, n_jobs=n_jobs)

We	will	set	the	penalty	to	the	default	value	L2	instead	of	L1.	Compared	to	L1,
L2	is	less	sensitive	to	outliers	and	will	assign	nonzero	weights	to	nearly	all	the
features,	resulting	in	a	stable	solution.	L1	will	assign	high	weights	to	the	most
important	features	and	near-zero	weights	to	the	rest,	essentially	performing
feature	selection	as	the	algorithm	trains.	However,	because	the	weights	vary	so
much	feature	to	feature,	the	L1	solution	is	not	as	stable	to	changes	in	data	points
as	the	L2	solution.

C	is	the	regularization	strength.	As	you	may	recall	from	Chapter	1,
regularization	helps	address	overfitting	by	penalizing	complexity.	In	other
words,	the	stronger	the	regularization,	the	greater	the	penalty	the	machine
learning	algorithm	applies	to	complexity.	Regularization	nudges	the	machine
learning	algorithm	to	prefer	simpler	models	to	more	complex	ones,	all	else
equal.

This	regularization	constant,	C,	must	be	a	positive	floating	number.	The	smaller

5

the	value,	the	stronger	the	regularization.	We	will	keep	the	default	1.0.

Our	credit	card	transactions	dataset	is	very	imbalanced—out	of	all	the	284,807
cases,	only	492	are	fraudulent.	As	the	machine	learning	algorithm	trains,	we
want	the	algorithm	to	focus	more	attention	on	learning	from	the	positive	labeled
transactions—in	other	words,	the	fraudulent	transactions—because	there	are	so
few	of	them	in	the	dataset.

For	this	logistic	regression	model,	we	will	set	the	class_weight	to	balanced.
This	signals	to	the	logistic	regression	algorithm	that	we	have	an	imbalanced
class	problem;	the	algorithm	will	need	to	weigh	the	positive	labels	more	heavily
as	it	trains.	In	this	case,	the	weights	will	be	inversely	proportional	to	the	class
frequencies;	the	algorithm	will	assign	higher	weights	to	the	rare	positive	labels
(i.e.,	fraud)	and	lower	weights	to	the	more	frequent	negative	labels	(i.e.,	not
fraud).

The	random	state	is	fixed	to	2018	to	help	others—such	as	you,	the	reader—
reproduce	results.	We	will	keep	the	default	solver	liblinear.

Train	the	model
Now	that	the	hyperparameters	are	set,	we	will	train	the	logistic	regression	model
on	each	of	the	five	k-fold	cross-validation	splits,	training	on	four-fifths	of	the
training	set	and	evaulating	the	performance	on	the	fifth	slice	that	is	held	aside.

As	we	train	and	evaluate	like	this	five	times,	we	will	calculate	the	cost	function
—log	loss	for	our	credit	card	transactions	problem—for	the	training	(i.e.,	the
four-fifths	slice	of	the	original	training	set)	and	for	the	validation	(i.e.,	the	one-
fifth	slice	of	the	original	training	set).	We	will	also	store	the	predictions	for	each
of	the	five	cross-validation	sets;	by	the	end	of	the	fifth	run,	we	will	have
predictions	for	the	entire	training	set:

trainingScores = []
cvScores = []
predictionsBasedOnKFolds = pd.DataFrame(data=[],
 index=y_train.index,columns=[0,1])

model = logReg

for train_index, cv_index in k_fold.split(np.zeros(len(X_train))
 ,y_train.ravel()):

 X_train_fold, X_cv_fold = X_train.iloc[train_index,:], \
 X_train.iloc[cv_index,:]
 y_train_fold, y_cv_fold = y_train.iloc[train_index], \
 y_train.iloc[cv_index]

 model.fit(X_train_fold, y_train_fold)
 loglossTraining = log_loss(y_train_fold,
 model.predict_proba(X_train_fold)[:,1])
 trainingScores.append(loglossTraining)

 predictionsBasedOnKFolds.loc[X_cv_fold.index,:] = \
 model.predict_proba(X_cv_fold)
 loglossCV = log_loss(y_cv_fold,
 predictionsBasedOnKFolds.loc[X_cv_fold.index,1])
 cvScores.append(loglossCV)

 print('Training Log Loss: ', loglossTraining)
 print('CV Log Loss: ', loglossCV)

loglossLogisticRegression = log_loss(y_train,
 predictionsBasedOnKFolds.loc[:,1])
print('Logistic Regression Log Loss: ', loglossLogisticRegression)

Evaluate	the	results
The	training	log	loss	and	cross-validation	log	loss	are	shown	for	each	of	the	five
runs	in	the	following	code.	Generally	(but	not	always)	the	training	log	loss	will
be	lower	than	the	cross-validation	log	loss.	Because	the	machine	learning
algorithm	has	learned	directly	from	the	training	data,	its	performance	(i.e.,	log
loss)	should	be	better	on	the	training	set	than	on	the	cross-validation	set.
Remember,	the	cross-validation	set	has	the	transactions	that	were	explicitly	held
out	from	the	training	exercise.

Training Log Loss: 0.10080139188958696
CV Log Loss: 0.10490645274118293
Training Log Loss: 0.12098957040484648
CV Log Loss: 0.11634801169793386
Training Log Loss: 0.1074616029843435
CV Log Loss: 0.10845630232487576
Training Log Loss: 0.10228137039781758
CV Log Loss: 0.10321736161148198
Training Log Loss: 0.11476012373315266
CV Log Loss: 0.1160124452312548

NOTE
For	our	credit	card	transactions	dataset,	it	is	important	to	keep	in	mind	that	we	are	building	a
fraud	detection	solution.	When	we	refer	to	the	performance	of	the	machine	learning	model,	we
mean	how	good	the	model	is	at	predicting	fraud	among	the	transactions	in	the	dataset.

The	machine	learning	model	outputs	a	prediction	probability	for	each	transaction,	where	one	is
fraud	and	zero	is	not	fraud.	The	closer	the	probability	is	to	one,	the	more	likely	the	transaction
is	fraudulent;	the	closer	the	probability	is	to	zero,	the	more	likely	the	transaction	is	normal.	By
comparing	the	model’s	probabilities	with	the	true	labels,	we	can	assess	the	goodness	of	the
model.

For	each	of	the	five	runs,	their	training	and	cross-validation	log	losses	are
similar.	The	logistic	regression	model	does	not	exhibit	severe	overfitting;	if	it
did,	we	would	have	a	low	training	log	loss	and	comparably	high	cross-validation
log	loss.

Since	we	stored	the	predictions	for	each	of	the	five	cross-validation	sets,	we	can
combine	the	predictions	into	a	single	set.	This	single	set	is	the	same	as	the
original	training	set,	and	we	can	now	calculate	the	overall	log	loss	for	this	entire
training	set.	This	is	the	best	estimate	for	the	logistic	regression	model’s	log	loss
on	the	test	set:

Logistic Regression Log Loss: 0.10978811472134588

Evaluation	Metrics
Although	the	log	loss	is	a	great	way	to	estimate	the	performance	of	the	machine
learning	model,	we	may	want	a	more	intuitive	way	to	understand	the	results.	For
example,	of	the	fraudulent	transactions	in	the	training	set,	how	many	did	we
catch?	This	is	known	as	the	recall.	Or,	the	transactions	that	were	flagged	as
fraudulent	by	the	logistic	regression	model,	how	many	were	truly	fraudulent?
This	is	known	as	the	precision	of	the	model.

Let’s	take	a	look	at	these	and	other	similar	evaluation	metrics	to	help	us	more
intuitively	grasp	the	results.

NOTE

These	evaluation	metrics	are	very	important	because	they	empower	data	scientists	to
intuitively	explain	results	to	business	people,	who	may	be	less	familiar	with	log	loss,	cross-
entropy,	and	other	cost	functions.	The	ability	to	convey	complex	results	as	simply	as	possible
to	nondata	scientists	is	one	of	the	essential	skills	for	applied	data	scientists	to	master.

Confusion	Matrix
In	a	typical	classification	problem	(without	class	imbalance)	we	can	evaluate	the
results	using	a	confusion	matrix,	which	is	a	table	that	summarizes	the	number	of
true	positives,	true	negatives,	false	positives,	and	false	negatives	(Figure	2-3).

Figure	2-3.	Confusion	matrix

Given	that	our	credit	card	transactions	dataset	is	highly	imbalanced,	using	the
confusion	matrix	would	be	meaningful.	For	example,	if	we	predict	that	every
transaction	is	not	fraudulent,	we	would	have	284,315	true	negatives,	492	false
negatives,	zero	true	positives,	and	zero	false	positives.	We	would	have	a	0%
accuracy	in	identifying	the	truly	fraudulent	transactions.	The	confusion	matrix
does	a	poor	job	of	capturing	this	suboptimal	outcome	given	this	imbalanced
class	problem.

For	problems	involving	more	balanced	classes	(i.e.,	the	number	of	true	positives
is	roughly	similar	to	the	number	of	true	negatives),	the	confusion	matrix	may	be
a	good,	straightforward	evaluation	metric.	We	need	to	find	a	more	appropriate

6

evaluation	metric	given	our	imbalanced	dataset.

Precision-Recall	Curve
For	our	imbalanced	credit	card	transactions	dataset,	a	better	way	to	evaluate	the
results	is	to	use	precision	and	recall.	Precision	is	the	number	of	true	positives
over	the	number	of	total	positive	predictions.	In	other	words,	how	many	of	the
fraudulent	transactions	does	the	model	catch?

A	high	precision	means	that—of	all	our	positive	predictions—many	are	true
positives	(in	other	words,	it	has	a	low	false	positive	rate).

Recall	is	the	number	of	true	positives	over	the	number	of	total	actual	positives	in
the	dataset.	In	other	words	how	many	of	the	fraudulent	transactions	does	the
model	catch?

A	high	recall	means	that	the	model	has	captured	most	of	the	true	positives	(in
other	words,	it	has	a	low	false	negative	rate).

A	solution	with	high	recall	but	low	precision	returns	many	results—capturing
many	of	the	positives—but	with	many	false	alarms.	A	solution	with	high
precision	but	low	recall	is	the	exact	opposite;	it	returns	few	results—capturing	a
fraction	of	all	the	positives	in	the	dataset—but	most	of	its	predictions	are	correct.

To	put	this	into	context,	if	our	solution	had	high	precision	but	low	recall,	there
would	be	a	very	small	number	of	fraudulent	transactions	found	but	most	would
be	truly	fraudulent.

However,	if	the	solution	had	low	precision	but	high	recall	it	would	flag	many	of
the	transactions	as	fraudulent,	thus	catching	a	lot	of	the	fraud,	but	most	of	the
flagged	transactions	would	not	be	fraudulent.

Obviously,	both	solutions	have	major	problems.	In	the	high	precision–low	recall
case,	the	credit	card	company	would	lose	a	lot	of	money	due	to	fraud,	but	it
would	not	antagonize	customers	by	unnecessarily	rejecting	transactions.	In	the
low	precision-high	recall	case,	the	credit	card	company	would	catch	a	lot	of	the
fraud,	but	it	would	most	certainly	anger	customers	by	unnecessarily	rejecting	a

7

lot	of	normal,	non-fraudulent	transactions.

An	optimal	solution	needs	to	have	high	precision	and	high	recall,	rejecting	only
those	transactions	that	are	truly	fraudulent	(i.e.,	high	precision)	and	catching
most	of	the	fraudulent	cases	in	the	dataset	(high	recall).

There	is	generally	a	trade-off	between	precision	and	recall,	which	is	usually
determined	by	the	threshold	set	by	the	algorithm	to	separate	the	positive	cases
from	the	negative	cases;	in	our	example,	positive	is	fraud	and	negative	is	not
fraud.	If	the	threshold	is	set	too	high,	very	few	cases	are	predicted	as	positive,
resulting	in	high	precision	but	low	recall.	As	the	threshold	is	lowered,	more
cases	are	predicted	as	positive,	generally	decreasing	the	precision	and	increasing
the	recall.

For	our	credit	card	transactions	dataset,	think	of	the	threshold	as	the	sensitivity
of	the	machine	learning	model	in	rejecting	transactions.	If	the	threshold	is	too
high/strict,	the	model	will	reject	few	transactions,	but	the	ones	it	does	reject	will
be	very	likely	to	be	fraudulent.

As	the	threshold	moves	lower	(i.e.,	becomes	less	strict),	the	model	will	reject
more	transactions,	catching	more	of	the	fraudulent	cases	but	also	unnecessarily
rejecting	more	of	the	normal	cases	as	well.

A	graph	of	the	trade-off	between	precision	and	recall	is	known	as	the	precision-
recall	curve.	To	evaluate	the	precision-recall	curve,	we	can	calculate	the	average
precision,	which	is	the	weighted	mean	of	the	precision	achieved	at	each
threshold.	The	higher	the	average	precision,	the	better	the	solution.

NOTE
The	choice	of	the	threshold	is	a	very	important	one	and	usually	involves	the	input	of	business
decision	makers.	Data	scientists	can	present	the	precision-recall	curve	to	these	business
decision	makers	to	figure	out	where	the	threshold	should	be.

For	our	credit	card	transactions	dataset,	the	key	question	is	how	do	we	balance	customer
experience	(i.e.,	avoid	rejecting	normal	transactions)	with	fraud	detection	(i.e.,	catch	the
fraudulent	transactions)?	We	cannot	answer	this	without	business	input,	but	we	can	find	the
model	with	the	best	precision-recall	curve.	Then,	we	can	present	this	model	to	business
decision	makers	to	set	the	appropriate	threshold.

Receiver	Operating	Characteristic
Another	good	evaluation	metric	is	the	area	under	the	receiver	operating
characteristic	(auROC).	The	receiver	operating	characteristic	(ROC)	curve	plots
the	true	positive	rate	on	the	Y	axis	and	the	false	positive	rate	on	the	X	axis.	The
true	positive	rate	can	also	be	referred	to	as	the	sensitivity,	and	the	false	positive
rate	can	also	be	referred	to	as	the	1-specificity.	The	closer	the	curve	is	to	the	top-
left	corner	of	the	plot,	the	better	the	solution—with	a	value	of	(0.0,	1.0)	as	the
absolute	optimal	point,	signifying	a	0%	false	positive	rate	and	a	100%	true
positive	rate.

To	evaluate	the	solution,	we	can	compute	the	area	under	this	curve.	The	larger
the	auROC,	the	better	the	solution.

Evaluating	the	logistic	regression	model
Now	that	we	understand	some	of	the	evaluation	metrics	used,	let’s	use	them	to
better	understand	the	logistic	regression	model’s	results.

First,	let’s	plot	the	precision-recall	curve	and	calculate	the	average	precision:

preds = pd.concat([y_train,predictionsBasedOnKFolds.loc[:,1]], axis=1)
preds.columns = ['trueLabel','prediction']
predictionsBasedOnKFoldsLogisticRegression = preds.copy()

precision, recall, thresholds = precision_recall_curve(preds['trueLabel'],
 preds['prediction'])

average_precision = average_precision_score(preds['trueLabel'],
 preds['prediction'])

plt.step(recall, precision, color='k', alpha=0.7, where='post')
plt.fill_between(recall, precision, step='post', alpha=0.3, color='k')

plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])

plt.title('Precision-Recall curve: Average Precision = {0:0.2f}'.format(
 average_precision))

Figure	2-4	shows	the	plot	of	the	precision-recall	curve.	Putting	together	what	we
discussed	earlier,	you	can	see	that	we	can	achieve	approximately	80%	recall	(i.e.,

catch	80%	of	the	fraudulent	transactions)	with	approximately	70%	precision
(i.e.,	of	the	transactions	the	model	flags	as	fraudulent,	70%	are	truly	fraudulent
while	the	remaining	30%	were	incorrectly	flagged	as	fraudulent).

Figure	2-4.	Precision-recall	curve	of	logistic	regression

We	can	distill	this	precision-recall	curve	into	a	single	number	by	calculating	the
average	precision,	which	is	0.73	for	this	logistic	regression	model.	We	cannot	yet
tell	whether	this	is	good	or	bad	average	precision	yet	since	we	have	no	other
models	to	compare	our	logistic	regression	against.

Now,	let’s	measure	the	auROC:

fpr, tpr, thresholds = roc_curve(preds['trueLabel'],preds['prediction'])

areaUnderROC = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve')
plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic:
 Area under the curve = {0:0.2f}'.format(areaUnderROC))
plt.legend(loc="lower right")
plt.show()

As	shown	in	Figure	2-5,	the	auROC	curve	is	0.97.	This	metric	is	just	another

way	to	evaluate	the	goodness	of	the	logistic	regression	model,	allowing	you	to
determine	how	much	of	the	fraud	you	can	catch	while	keeping	the	false	positive
rate	as	low	as	possible.	As	with	the	average	precision,	we	do	not	know	whether
this	auROC	curve	of	0.97	is	good	or	not,	but	we	will	once	we	compare	it	with
those	of	other	models.

Figure	2-5.	auROC	curve	of	logistic	regression

Machine	Learning	Models	(Part	II)
To	compare	the	goodness	of	the	logistic	regression	model,	let’s	build	a	few	more
models	using	other	supervised	learning	algorithms.

Model	#2:	Random	Forests
Let’s	start	with	random	forests.

As	with	logistic	regression,	we	will	set	the	hyperparameters,	train	the	model,	and
evaluate	the	results	using	the	precision-recall	curve	and	the	auROC.

Set	the	hyperparameters

n_estimators = 10
max_features = 'auto'
max_depth = None
min_samples_split = 2
min_samples_leaf = 1
min_weight_fraction_leaf = 0.0
max_leaf_nodes = None
bootstrap = True
oob_score = False
n_jobs = -1
random_state = 2018
class_weight = 'balanced'

RFC = RandomForestClassifier(n_estimators=n_estimators,
 max_features=max_features, max_depth=max_depth,
 min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf,
 min_weight_fraction_leaf=min_weight_fraction_leaf,
 max_leaf_nodes=max_leaf_nodes, bootstrap=bootstrap,
 oob_score=oob_score, n_jobs=n_jobs, random_state=random_state,
 class_weight=class_weight)

Let’s	start	with	the	default	hyperparameters.	The	number	of	estimators	is	set	at
10;	in	other	words,	we	will	build	10	trees	and	average	the	results	across	these	10
trees.	For	each	tree,	the	model	will	consider	the	square	root	of	the	total	number
of	features	(in	this	case,	the	square	root	of	30	total	features,	which	is	5	features,
rounded	down).

By	setting	the	max_depth	to	none,	the	tree	will	grow	as	deep	as	possible,
splitting	as	much	as	possible	given	the	subset	of	features.	Similar	to	what	we	did
for	logistic	regression,	we	set	the	random	state	to	2018	for	reproducibility	of
results	and	class	weight	to	balanced	given	our	imbalanced	dataset.

Train	the	model
We	will	run	k-fold	cross-validation	five	times,	training	on	four-fifths	of	the
training	data	and	predicting	on	the	fifth	slice.	We	will	store	the	predictions	as	we
go:

trainingScores = []
cvScores = []
predictionsBasedOnKFolds = pd.DataFrame(data=[],
 index=y_train.index,columns=[0,1])

model = RFC

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)),
 y_train.ravel()):
 X_train_fold, X_cv_fold = X_train.iloc[train_index,:], \
 X_train.iloc[cv_index,:]
 y_train_fold, y_cv_fold = y_train.iloc[train_index], \
 y_train.iloc[cv_index]

 model.fit(X_train_fold, y_train_fold)
 loglossTraining = log_loss(y_train_fold, \
 model.predict_proba(X_train_fold)[:,1])
 trainingScores.append(loglossTraining)

 predictionsBasedOnKFolds.loc[X_cv_fold.index,:] = \
 model.predict_proba(X_cv_fold)
 loglossCV = log_loss(y_cv_fold, \
 predictionsBasedOnKFolds.loc[X_cv_fold.index,1])
 cvScores.append(loglossCV)

 print('Training Log Loss: ', loglossTraining)
 print('CV Log Loss: ', loglossCV)

loglossRandomForestsClassifier = log_loss(y_train,
 predictionsBasedOnKFolds.loc[:,1])
print('Random Forests Log Loss: ', loglossRandomForestsClassifier)

Evaluate	the	results
The	training	and	cross-validation	log	loss	results	are	as	follows:

Training Log Loss: 0.0003951763883952557
CV Log Loss: 0.014479198936303003
Training Log Loss: 0.0004501221178398935
CV Log Loss: 0.005712702421375242
Training Log Loss: 0.00043128813023860164
CV Log Loss: 0.00908372752510077
Training Log Loss: 0.0004341676022058672
CV Log Loss: 0.013491161736979267
Training Log Loss: 0.0004275530435950083
CV Log Loss: 0.009963232439211515

Notice	that	the	training	log	losses	are	considerably	lower	than	the	cross-
validation	log	losses,	suggesting	that	the	random	forests	classifier—with	the
mostly	default	hyperparameters—overfits	the	data	during	the	training	somewhat.

The	following	code	shows	the	log	loss	over	the	entire	training	set	(using	cross-
validation	predictions):

Random Forests Log Loss: 0.010546004611793962

Even	though	it	overfits	the	training	data	somewhat,	the	random	forests	has	a
validation	log	loss	that	is	about	one-tenth	that	of	the	logistic	regression—
significant	improvement	over	the	previous	machine	learning	solution.	The
random	forests	model	is	better	at	correctly	flagging	the	fraud	among	credit	card
transactions.

Figure	2-6	shows	the	precision-recall	curve	of	random	forests.	As	you	can	see
from	the	curve,	the	model	can	catch	approximately	80%	of	all	the	fraud	with
approximately	80%	precision.	This	is	more	impressive	than	the	approximately
80%	of	all	the	fraud	the	logistic	regression	model	caught	with	70%	precision.

Figure	2-6.	Precision-recall	curve	of	random	fores"ts

The	average	precision	of	0.79	of	the	random	forests	model	is	a	clear
improvement	over	the	0.73	average	precision	of	the	logistic	regression	model.
However,	the	auROC,	shown	in	Figure	2-7,	is	somewhat	worse—0.93	for
random	forests	versus	0.97	for	logistic	regression.

Figure	2-7.	auROC	curve	of	random	forests

Model	#3:	Gradient	Boosting	Machine	(XGBoost)
Now	let’s	train	using	gradient	boosting	and	evaluate	the	results.	There	are	two
popular	versions	of	gradient	boosting—one	known	as	XGBoost	and	another,
much	faster	version	by	Microsoft	called	LightGBM.	Let’s	build	a	model	using
each	one,	starting	with	XGBoost.8

Set	the	hyperparameters
We	will	set	this	up	as	a	binary	classification	problem	and	use	log	loss	as	the	cost
function.	We	will	set	the	max	depth	of	each	tree	to	the	default	six	and	a	default
learning	rate	of	0.3.	For	each	tree,	we	will	use	all	the	observations	and	all	the
features;	these	are	the	default	settings.	We	will	set	a	random	state	of	2018	to
ensure	the	reproducibility	of	the	results:

params_xGB = {
 'nthread':16, #number of cores
 'learning rate': 0.3, #range 0 to 1, default 0.3
 'gamma': 0, #range 0 to infinity, default 0
 # increase to reduce complexity (increase bias, reduce variance)
 'max_depth': 6, #range 1 to infinity, default 6
 'min_child_weight': 1, #range 0 to infinity, default 1
 'max_delta_step': 0, #range 0 to infinity, default 0
 'subsample': 1.0, #range 0 to 1, default 1
 # subsample ratio of the training examples
 'colsample_bytree': 1.0, #range 0 to 1, default 1
 # subsample ratio of features
 'objective':'binary:logistic',
 'num_class':1,
 'eval_metric':'logloss',
 'seed':2018,
 'silent':1
}

Train	the	model
As	before,	we	will	use	k-fold	cross-validation,	training	on	a	different	four-fifths
of	the	training	data	and	predicting	on	the	fifth	slice	for	a	total	of	five	runs.

For	each	of	the	five	runs,	the	gradient	boosting	model	will	train	for	as	many	as
two	thousand	rounds,	evaluating	whether	the	cross-validation	log	loss	is
decreasing	as	it	goes.	If	the	cross-validation	log	loss	stops	improving	(over	the
previous	two	hundred	rounds),	the	training	process	will	stop	to	avoid	overfitting.
The	results	of	the	training	process	are	verbose,	so	we	will	not	print	them	here,
but	they	can	be	found	via	the	code	on	GitHub:

trainingScores = []
cvScores = []
predictionsBasedOnKFolds = pd.DataFrame(data=[],
 index=y_train.index,columns=['prediction'])

http://bit.ly/2Gd4v7e

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)),
 y_train.ravel()):
 X_train_fold, X_cv_fold = X_train.iloc[train_index,:], \
 X_train.iloc[cv_index,:]
 y_train_fold, y_cv_fold = y_train.iloc[train_index], \
 y_train.iloc[cv_index]

 dtrain = xgb.DMatrix(data=X_train_fold, label=y_train_fold)
 dCV = xgb.DMatrix(data=X_cv_fold)

 bst = xgb.cv(params_xGB, dtrain, num_boost_round=2000,
 nfold=5, early_stopping_rounds=200, verbose_eval=50)

 best_rounds = np.argmin(bst['test-logloss-mean'])
 bst = xgb.train(params_xGB, dtrain, best_rounds)

 loglossTraining = log_loss(y_train_fold, bst.predict(dtrain))
 trainingScores.append(loglossTraining)

 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'] = \
 bst.predict(dCV)
 loglossCV = log_loss(y_cv_fold, \
 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'])
 cvScores.append(loglossCV)

 print('Training Log Loss: ', loglossTraining)
 print('CV Log Loss: ', loglossCV)

loglossXGBoostGradientBoosting = \
 log_loss(y_train, predictionsBasedOnKFolds.loc[:,'prediction'])
print('XGBoost Gradient Boosting Log Loss: ', loglossXGBoostGradientBoosting)

Evaluate	the	results
As	shown	in	the	following	results,	the	log	loss	over	the	entire	training	set	(using
the	cross-validation	predictions)	is	one-fifth	that	of	the	random	forests	and	one-
fiftieth	that	of	logistic	regression.	This	is	a	substantial	improvement	over	the
previous	two	models:

XGBoost Gradient Boosting Log Loss: 0.0029566906288156715

As	shown	in	Figure	2-8,	the	average	precision	is	0.82,	just	shy	of	that	of	random
forests	(0.79)	and	considerably	better	than	that	of	logistic	regression	(0.73).

Figure	2-8.	Precision-recall	curve	of	XGBoost	gradient	boosting

As	shown	in	Figure	2-9,	the	auROC	curve	is	0.97,	the	same	as	that	of	logistic
regression	(0.97)	and	an	improvement	over	random	forests	(0.93).	So	far,
gradient	boosting	is	the	best	of	the	three	models	based	on	the	log	loss,	the
precision-recall	curve,	and	the	auROC.

Figure	2-9.	auROC	curve	of	XGBoost	gradient	boosting

Model	#4:	Gradient	Boosting	Machine	(LightGBM)
Let’s	now	train	using	another	version	of	gradient	boosting	known	as
LightGBM.

Set	the	hyperparameters

9

We	will	set	this	up	as	a	binary	classification	problem	and	use	log	loss	as	the	cost
function.	We	will	set	the	max	depth	of	each	tree	to	4	and	use	a	learning	rate	of
0.1.	For	each	tree,	we	will	use	all	the	samples	and	all	the	features;	these	are	the
default	settings.	We	will	use	the	default	number	of	leaves	for	one	tree	(31)	and
set	a	random	state	to	ensure	reproducibility	of	the	results:

params_lightGB = {
 'task': 'train',
 'application':'binary',
 'num_class':1,
 'boosting': 'gbdt',
 'objective': 'binary',
 'metric': 'binary_logloss',
 'metric_freq':50,
 'is_training_metric':False,
 'max_depth':4,
 'num_leaves': 31,
 'learning_rate': 0.01,
 'feature_fraction': 1.0,
 'bagging_fraction': 1.0,
 'bagging_freq': 0,
 'bagging_seed': 2018,
 'verbose': 0,
 'num_threads':16
}

Train	the	model
As	before,	we	will	use	k-fold	cross-validation	and	cycle	through	this	five	times,
storing	the	predictions	on	the	validation	sets	as	we	go:

trainingScores = []
cvScores = []
predictionsBasedOnKFolds = pd.DataFrame(data=[],
 index=y_train.index,columns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)),
 y_train.ravel()):
 X_train_fold, X_cv_fold = X_train.iloc[train_index,:], \
 X_train.iloc[cv_index,:]
 y_train_fold, y_cv_fold = y_train.iloc[train_index], \
 y_train.iloc[cv_index]

 lgb_train = lgb.Dataset(X_train_fold, y_train_fold)
 lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
 gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=2000,

 valid_sets=lgb_eval, early_stopping_rounds=200)

 loglossTraining = log_loss(y_train_fold, \
 gbm.predict(X_train_fold, num_iteration=gbm.best_iteration))
 trainingScores.append(loglossTraining)

 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'] = \
 gbm.predict(X_cv_fold, num_iteration=gbm.best_iteration)
 loglossCV = log_loss(y_cv_fold, \
 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'])
 cvScores.append(loglossCV)

 print('Training Log Loss: ', loglossTraining)
 print('CV Log Loss: ', loglossCV)

loglossLightGBMGradientBoosting = \
 log_loss(y_train, predictionsBasedOnKFolds.loc[:,'prediction'])
print('LightGBM gradient boosting Log Loss: ', loglossLightGBMGradientBoosting)

For	each	of	the	five	runs,	the	gradient	boosting	model	will	train	for	as	many	as
two	thousand	rounds,	evaluating	whether	the	cross-validation	log	loss	is
decreasing	as	it	goes.	If	the	cross-validation	log	loss	stops	improving	(over	the
previous	two	hundred	rounds),	the	training	process	will	stop	to	avoid	overfitting.
The	results	of	the	training	process	are	verbose,	so	we	will	not	print	them	here,
but	they	can	be	found	via	the	code	on	GitHub.

Evaluate	the	results
The	following	results	show	that	the	log	loss	over	the	entire	training	set	(using	the
cross-validation	predictions)	is	similar	to	that	of	XGBoost,	one-fifth	that	of	the
random	forests	and	one-fiftieth	that	of	logistic	regression.	But	compared	to
XGBoost,	LightGBM	is	considerably	faster:

LightGBM Gradient Boosting Log Loss: 0.0029732268054261826

As	shown	in	Figure	2-10,	the	average	precision	is	0.82,	the	same	as	that	of
XGboost	(0.82),	better	than	that	of	random	forests	(0.79),	and	considerably
better	than	that	of	logistic	regression	(0.73).

http://bit.ly/2Gd4v7e

Figure	2-10.	Precision-recall	curve	of	LightGBM	gradient	boosting

As	shown	in	Figure	2-11,	the	auROC	curve	is	0.98,	an	improvement	over	that	of
XGBoost	(0.97),	logistic	regression	(0.97),	and	random	forests	(0.93).

Figure	2-11.	auROC	curve	of	LightGBM	gradient	boosting

Evaluation	of	the	Four	Models	Using	the	Test	Set
So	far	in	this	chapter,	we	have	learned	how	to:

Set	up	the	environment	for	machine	learning	projects

Acquire,	load,	explore,	clean,	and	visualize	data

Split	the	dataset	into	training	and	test	sets	and	set	up	k-fold	cross-

validation	sets

Choose	the	appropriate	cost	function

Set	the	hyperparameters	and	perform	training	and	cross-validation

Evaluate	the	results

We	have	not	explored	how	to	adjust	the	hyperparameters	(a	process	known	as
hyperparameter	fine-tuning)	to	improve	the	results	of	each	machine	learning
solution	and	address	underfitting/overfitting,	but	the	code	on	GitHub	will	allow
you	to	conduct	these	experiments	very	easily.

Even	without	such	fine-tuning,	the	results	are	pretty	clear.	Based	on	our	training
and	k-fold	cross-validation,	LightGBM	gradient	boosting	is	the	best	solution,
closely	followed	by	XGBoost.	Random	forests	and	logistic	regression	are	worse.

Let’s	use	the	test	set	as	a	final	evaluation	of	each	of	the	four	models.

For	each	model,	we	will	use	the	trained	model	to	predict	the	fraud	probabilities
for	the	test	set	transactions.	Then,	we	will	calculate	the	log	loss	for	each	model
by	comparing	the	fraud	probabilities	predicted	by	the	model	against	the	true
fraud	labels:

predictionsTestSetLogisticRegression = \
 pd.DataFrame(data=[],index=y_test.index,columns=['prediction'])
predictionsTestSetLogisticRegression.loc[:,'prediction'] = \
 logReg.predict_proba(X_test)[:,1]
logLossTestSetLogisticRegression = \
 log_loss(y_test, predictionsTestSetLogisticRegression)

predictionsTestSetRandomForests = \
 pd.DataFrame(data=[],index=y_test.index,columns=['prediction'])
predictionsTestSetRandomForests.loc[:,'prediction'] = \
 RFC.predict_proba(X_test)[:,1]
logLossTestSetRandomForests = \
 log_loss(y_test, predictionsTestSetRandomForests)

predictionsTestSetXGBoostGradientBoosting = \
 pd.DataFrame(data=[],index=y_test.index,columns=['prediction'])
dtest = xgb.DMatrix(data=X_test)
predictionsTestSetXGBoostGradientBoosting.loc[:,'prediction'] = \
 bst.predict(dtest)
logLossTestSetXGBoostGradientBoosting = \
 log_loss(y_test, predictionsTestSetXGBoostGradientBoosting)

http://bit.ly/2Gd4v7e

predictionsTestSetLightGBMGradientBoosting = \
 pd.DataFrame(data=[],index=y_test.index,columns=['prediction'])
predictionsTestSetLightGBMGradientBoosting.loc[:,'prediction'] = \
 gbm.predict(X_test, num_iteration=gbm.best_iteration)
logLossTestSetLightGBMGradientBoosting = \
 log_loss(y_test, predictionsTestSetLightGBMGradientBoosting)

There	are	no	surprises	in	the	following	log	loss	block.	LightGBM	gradient
boosting	has	the	lowest	log	loss	on	the	test	set,	followed	by	the	rest.

Log Loss of Logistic Regression on Test Set: 0.123732961313
Log Loss of Random Forests on Test Set: 0.00918192757674
Log Loss of XGBoost Gradient Boosting on Test Set: 0.00249116807943
Log Loss of LightGBM Gradient Boosting on Test Set: 0.002376320092424

Figures	2-12	through	2-19	are	the	precision-recall	curves,	average	precisions,
and	auROC	curve	for	all	four	models,	corroborating	our	findings	above.

Logistic	regression

Figure	2-12.	Test	set	precision-recall	curve	of	logistic	regression

Figure	2-13.	Test	set	auROC	curve	of	logistic	regression

Random	forests

Figure	2-14.	Test	set	precision-recall	curve	of	random	forests

Figure	2-15.	Test	set	auROC	curve	of	logistic	regression

XGBoost	gradient	boosting

Figure	2-16.	Test	set	precision-recall	curve	of	XGBoost	gradient	boosting

Figure	2-17.	Test	set	auROC	curve	of	XGBoost	gradient	boosting

LightGBM	gradient	boosting

Figure	2-18.	Test	set	precision-recall	curve	of	LightGBM	gradient	boosting

Figure	2-19.	Test	set	auROC	curve	of	LightGBM	gradient	boosting

The	results	of	LightGBM	gradient	boosting	are	impressive—we	can	catch	over
80%	of	the	fraudulent	transactions	with	nearly	90%	precision	(in	other	words,	in
catching	80%	of	the	total	fraud	the	LightGBM	model	gets	only	10%	of	the	cases
wrong).

Considering	how	few	cases	of	fraud	our	dataset	has,	this	is	a	great
accomplishment.

Ensembles
Instead	of	picking	just	one	of	the	machine	learning	solutions	we	have	developed
for	use	in	production,	we	can	evaluate	whether	an	ensemble	of	the	models	leads
to	an	improved	fraud	detection	rate.

Generally,	if	we	include	similarly	strong	solutions	from	different	machine
learning	families	(such	as	one	from	random	forests	and	one	from	neural
networks),	the	ensemble	of	the	solutions	will	lead	to	a	better	result	than	any	of
the	standalone	solutions.	This	is	because	each	of	the	standalone	solutions	has
different	strengths	and	weaknesses.	By	including	the	standalone	solutions
together	in	an	ensemble,	the	strengths	of	some	of	the	models	compensate	for	the
weaknesses	of	the	others,	and	vice	versa.

There	are	important	caveats,	though.	If	the	standalone	solutions	are	similarly
strong,	the	ensemble	will	have	better	performance	than	any	of	the	standalone
solutions.	But	if	one	of	the	solutions	is	much	better	than	the	others,	the

10

ensemble’s	performance	will	equal	the	performance	of	the	best	standalone
solution;	the	subpar	solutions	will	contribute	nothing	to	the	ensemble’s
performance.

Also,	the	standalone	solutions	need	to	be	relatively	uncorrelated.	If	they	are	very
correlated,	the	strengths	of	one	will	mirror	those	of	the	rest,	and	the	same	will	be
true	with	the	weaknesses.	We	will	see	little	benefit	from	diversifying	via	an
ensemble.

Stacking
In	our	problem	here,	two	of	the	models	(LightGBM	gradient	boosting	and
XGBoost	gradient	boosting)	are	much	stronger	than	the	others	(random	forests
and	logistic	regression).	But	the	two	strongest	models	are	from	the	same	family,
which	means	their	strengths	and	weaknesses	will	be	highly	correlated.

We	can	use	stacking	(which	is	a	form	of	ensembling)	to	determine	whether	we
can	get	an	improvement	in	performance	compared	to	the	standalone	models
from	earlier.	In	stacking,	we	take	the	predictions	from	the	k-fold	cross-validation
from	each	of	the	four	standalone	models	(known	as	layer	one	predictions)	and
append	them	to	the	original	training	dataset.	We	then	train	on	this	original
features	plus	layer	one	predictions	dataset	using	k-fold	cross-validation.

This	will	result	in	a	new	set	of	k-fold	cross-validation	predictions,	known	as
layer	two	predictions,	which	we	will	evaluate	to	see	if	we	have	an	improvement
in	performance	over	any	of	the	standalone	models.

Combine	layer	one	predictions	with	the	original	training	dataset
First,	let’s	combine	the	predictions	from	each	of	the	four	machine	learning
models	that	we	have	built	with	the	original	training	dataset:

predictionsBasedOnKFoldsFourModels = pd.DataFrame(data=[],index=y_train.index)
predictionsBasedOnKFoldsFourModels = predictionsBasedOnKFoldsFourModels.join(
 predictionsBasedOnKFoldsLogisticRegression['prediction'].astype(float), \
 how='left').join(predictionsBasedOnKFoldsRandomForests['prediction'] \
 .astype(float),how='left',rsuffix="2").join(\
 predictionsBasedOnKFoldsXGBoostGradientBoosting['prediction'] \
 .astype(float), how='left',rsuffix="3").join(\
 predictionsBasedOnKFoldsLightGBMGradientBoosting['prediction'] \
 .astype(float), how='left',rsuffix="4")

predictionsBasedOnKFoldsFourModels.columns = \
 ['predsLR','predsRF','predsXGB','predsLightGBM']

X_trainWithPredictions = \
 X_train.merge(predictionsBasedOnKFoldsFourModels,
 left_index=True,right_index=True)

Set	the	hyperparameters
Now	we	will	use	LightGBM	gradient	boosting—the	best	machine	learning
algorithm	from	the	earlier	exercise—to	train	on	this	original	features	plus	layer
one	predictions	dataset.	The	hyperparameters	will	remain	the	same	as	before:

params_lightGB = {
 'task': 'train',
 'application':'binary',
 'num_class':1,
 'boosting': 'gbdt',
 'objective': 'binary',
 'metric': 'binary_logloss',
 'metric_freq':50,
 'is_training_metric':False,
 'max_depth':4,
 'num_leaves': 31,
 'learning_rate': 0.01,
 'feature_fraction': 1.0,
 'bagging_fraction': 1.0,
 'bagging_freq': 0,
 'bagging_seed': 2018,
 'verbose': 0,
 'num_threads':16
}

Train	the	model
As	before,	we	will	use	k-fold	cross-validation	and	generate	fraud	probabilities
for	the	five	different	cross-validation	sets:

trainingScores = []
cvScores = []
predictionsBasedOnKFoldsEnsemble = \
 pd.DataFrame(data=[],index=y_train.index,columns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
 y_train.ravel()):
 X_train_fold, X_cv_fold = \

 X_trainWithPredictions.iloc[train_index,:], \
 X_trainWithPredictions.iloc[cv_index,:]
 y_train_fold, y_cv_fold = y_train.iloc[train_index], y_train.iloc[cv_index]

 lgb_train = lgb.Dataset(X_train_fold, y_train_fold)
 lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
 gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=2000,
 valid_sets=lgb_eval, early_stopping_rounds=200)

 loglossTraining = log_loss(y_train_fold, \
 gbm.predict(X_train_fold, num_iteration=gbm.best_iteration))
 trainingScores.append(loglossTraining)

 predictionsBasedOnKFoldsEnsemble.loc[X_cv_fold.index,'prediction'] = \
 gbm.predict(X_cv_fold, num_iteration=gbm.best_iteration)
 loglossCV = log_loss(y_cv_fold, \
 predictionsBasedOnKFoldsEnsemble.loc[X_cv_fold.index,'prediction'])
 cvScores.append(loglossCV)

 print('Training Log Loss: ', loglossTraining)
 print('CV Log Loss: ', loglossCV)

loglossEnsemble = log_loss(y_train, \
 predictionsBasedOnKFoldsEnsemble.loc[:,'prediction'])
print('Ensemble Log Loss: ', loglossEnsemble)

Evaluate	the	results
In	the	following	results,	we	do	not	see	an	improvement.	The	ensemble	log	loss	is
very	similar	to	the	standalone	gradient	boosting	log	loss.	Since	the	best
standalone	solutions	are	from	the	same	family	(gradient	boosting),	we	do	not	see
an	improvement	in	the	results.	They	have	highly	correlated	strengths	and
weaknesses	in	detecting	fraud.	There	is	no	benefit	in	diversifying	across	models:

Ensemble Log Loss: 0.002885415974220497

As	shown	in	Figures	2-20	and	2-21,	the	precision-recall	curve,	the	average
precision,	and	the	auROC	also	corroborate	the	lack	of	improvement.

Figure	2-20.	Precision-recall	curve	of	the	ensemble

Figure	2-21.	auROC	curve	of	the	ensemble

Final	Model	Selection
Since	the	ensemble	does	not	improve	performance,	we	favor	the	simplicity	of
the	standalone	LightGBM	gradient	boosting	model	and	will	use	it	in	production.

Before	we	create	a	pipeline	for	new,	incoming	transactions,	let’s	visualize	how
well	the	LightGBM	model	separates	the	fraudulent	transactions	from	the	normal
transactions	for	the	test	set.

Figure	2-22	displays	the	predicted	probabilities	on	the	x-axis.	Based	on	this	plot,
the	model	does	a	reasonably	good	job	of	assigning	a	high	probability	of	fraud	to
the	transactions	that	are	actually	fraudulent.	Vice	versa,	the	model	generally

assigns	a	low	probability	to	the	transactions	that	are	not	fraudulent.	Occasionally,
the	model	is	wrong,	and	assigns	a	low	probability	to	a	case	of	actual	fraud	and	a
high	probability	to	a	case	of	not	fraud.

Overall,	the	results	are	pretty	impressive.

Figure	2-22.	Plot	of	prediction	probabilities	and	the	true	label

Production	Pipeline
Now	that	we	have	selected	a	model	for	production,	let’s	design	a	simple	pipeline
that	performs	three	simple	steps	on	new,	incoming	data:	load	the	data,	scale	the
features,	and	generate	predictions	using	the	LightGBM	model	we	have	already
trained	and	selected	for	use	in	production:

'''Pipeline for New Data'''
first, import new data into a dataframe called 'newData'
second, scale data
newData.loc[:,featuresToScale] = sX.transform(newData[featuresToScale])
third, predict using LightGBM
gbm.predict(newData, num_iteration=gbm.best_iteration)

Once	these	predictions	are	generated,	analysts	can	act	on	(i.e.,	investigate
further)	the	ones	with	the	highest	predicted	probability	of	being	fraudulent	and
work	through	the	list.	Or,	if	automation	is	the	goal,	analysts	can	use	a	system	that
automatically	rejects	transactions	that	have	a	predicted	probability	of	being
fraudulent	above	a	certain	threshold.

For	example,	based	on	Figure	2-13,	if	we	automatically	reject	transactions	with	a
predicted	probability	above	0.90,	we	will	reject	cases	that	are	almost	certain	to
be	fraudulent	without	accidentally	rejecting	a	case	of	not	fraud.

Conclusion
Congratulations!	You	have	built	a	credit	card	fraud	detection	system	using
supervised	learning.

Together,	we	set	up	a	machine	learning	environment,	acquired	and	prepared	the
data,	trained	and	evaluated	multiple	models,	selected	the	final	model	for
production,	and	designed	a	pipeline	for	new,	incoming	transactions.	You	have
successfully	created	an	applied	machine	learning	solution.

Now	we	will	use	this	same	hands-on	approach	to	develop	applied	machine
learning	solutions	using	unsupervised	learning.

NOTE
The	solution	above	will	need	to	be	retrained	over	time	as	the	patterns	of	fraud	change.	Also,
we	should	find	other	machine	learning	algorithms—from	different	machine	learning	families
—that	perform	just	as	well	as	gradient	boosting	and	include	them	in	an	ensemble	to	improve
fraud	detection	performance	overall.

Finally,	interpretability	is	very	important	for	real-world	applications	of	machine	learning.
Because	the	features	in	this	credit	card	transactions	dataset	are	the	output	of	PCA	(a	form	of
dimensionality	reduction	that	we	will	explore	in	Chapter	3)	we	cannot	explain	in	plain	English
why	certain	transactions	are	being	flagged	as	potentially	fraudulent.	For	greater	interpretability
of	the	results,	we	need	access	to	the	original	pre-PCA	features,	which	we	do	not	have	for	this
sample	dataset.

1 	For	more	on	fastcluster,	consult	the	documentation.

2 	This	dataset	is	available	via	Kaggle	and	was	collected	during	a	research	collaboration	by	Worldline
and	the	Machine	Learning	Group	of	Universite	Libre	de	Bruxelles.	For	more	information,	see	Andrea
Dal	Pozzolo,	Olivier	Caelen,	Reid	A.	Johnson	and	Gianluca	Bontempi,	“Calibrating	Probability	with
Undersampling	for	Unbalanced	Classification”	in	Symposium	on	Computational	Intelligence	and
Data	Mining	(CIDM),	IEEE,	2015.

3 	Categorical	variables	take	on	one	of	a	limited	number	of	possible	qualitative	values	and	often	have
to	be	encoded	for	use	in	machine	learning	algorithms.

https://pypi.org/project/fastcluster/
https://www.kaggle.com/dalpozz/creditcardfraud

4 	For	more	on	how	the	stratify	parameter	preserves	the	ratio	of	positive	labels,	visit	the	official
website.	To	reproduce	the	same	split	in	your	experiments,	set	the	random	state	to	2018.	If	you	set	this
to	another	number	or	don’t	set	it	at	all,	the	results	will	be	different.

5 	For	more	on	L1	versus	L2,	refer	to	the	blog	post	“Differences	Between	L1	and	L2	as	Loss	Function
and	Regularization.”

6 	True	positives	are	instances	where	the	prediction	and	the	actual	label	are	both	true.	True	negatives
are	instances	where	the	prediction	and	the	actual	label	are	both	false.	False	positives	are	instances
where	the	prediction	is	true	but	the	actual	label	is	false	(also	known	as	a	false	alarm	or	Type	I	error).
False	negatives	are	instances	where	the	prediction	is	false	but	the	actual	label	is	true	(also	known	as	a
miss	or	Type	II	error).

7 	Recall	is	also	known	as	sensitivity	or	true	positive	rate.	Related	to	sensitivity	is	a	concept	called
specificity,	or	the	true	negative	rate.	This	is	defined	as	the	number	of	true	negatives	over	the	total
number	of	total	actual	negatives	in	the	dataset.	Specificity	=	true	negative	rate	=	true	negatives	/	(true
negatives	+	false	positives).

8 	For	more	on	XGBoost	gradient	boosting,	consult	the	GitHub	repository.

9 	For	more	on	Microsoft’s	LightGBM	gradient	boosting,	consult	the	GitHub	repository.

10 	For	more	on	ensemble	learning,	refer	to	the	“Kaggle	Ensembling	Guide,”	“Introduction	to
Ensembling/Stacking	in	Python,”	and	“A	Kaggler’s	Guide	to	Model	Stacking	in	Practice”.

http://bit.ly/2NiKWfi
http://bit.ly/2Bcx413
https://github.com/dmlc/xgboost
https://github.com/Microsoft/LightGBM
https://mlwave.com/kaggle-ensembling-guide/
http://bit.ly/2RYV4iF
http://bit.ly/2Rrs1iI

Part	II.	Unsupervised	Learning
Using	Scikit-Learn

In	the	next	few	chapters,	we	will	introduce	two	major	unsupervised	learning
concepts—dimensionality	reduction	and	clustering—and	use	these	to	perform
anomaly	detection	and	group	segmentation.

Both	anomaly	detection	and	group	segmentation	have	significant	real-world
applications	across	many	different	industries.

Anomaly	detection	is	used	to	efficiently	discover	rare	events	such	as	fraud;
cybersecurity	breaches;	terrorism;	human,	arms,	and	drug	trafficking;	money
laundering;	abnormal	trading	activity;	disease	outbreaks;	and	maintenance
failures	in	mission-critical	equipment.

Group	segmentation	allows	us	to	understand	user	behavior	in	areas	such	as
marketing,	online	shopping,	music	listening,	video	watching,	online	dating,	and
social	media	activity,	among	others.

Chapter	3.	Dimensionality
Reduction

In	this	chapter,	we	will	focus	on	one	of	the	major	challenges	in	building
successful	applied	machine	learning	solutions:	the	curse	of	dimensionality.
Unsupervised	learning	has	a	great	counter—dimensionality	reduction.	In	this
chapter,	we	will	introduce	this	concept	and	build	from	there	so	that	you	can
develop	an	intuition	for	how	it	all	works.

In	Chapter	4,	we	will	build	our	own	unsupervised	learning	solution	based	on
dimensionality	reduction—specifically,	an	unsupervised	learning-based	credit
card	fraud	detection	system	(as	opposed	to	the	supervised-based	system	we	built
in	Chapter	2).	This	type	of	unsupervised	fraud	detection	is	known	as	anomaly
detection,	a	rapidly	growing	area	in	the	field	of	applied	unsupervised	learning.

But	before	we	build	an	anomaly	detection	system,	let’s	cover	dimensionality
reduction	in	this	chapter.

The	Motivation	for	Dimensionality	Reduction
As	mentioned	in	Chapter	1,	dimensionality	reduction	helps	counteract	one	of	the
most	commonly	occurring	problems	in	machine	learning—the	curse	of
dimensionality—in	which	algorithms	cannot	effectively	and	efficiently	train	on
the	data	because	of	the	sheer	size	of	the	feature	space.

Dimensionality	reduction	algorithms	project	high-dimensional	data	to	a	low-
dimensional	space,	retaining	as	much	of	the	salient	information	as	possible	while
removing	redundant	information.	Once	the	data	is	in	the	low-dimensional	space,
machine	learning	algorithms	are	able	to	identify	interesting	patterns	more
effectively	and	efficiently	because	a	lot	of	the	noise	has	been	reduced.

Sometimes,	dimensionality	reduction	is	the	goal	itself—for	example,	to	build
anomaly	detection	systems,	as	we	will	show	in	the	next	chapter.

Other	times,	dimensionality	reduction	is	not	an	end	in	itself	but	rather	a	means	to

another	end.	For	example,	dimensionality	reduction	is	commonly	a	part	of	the
machine	learning	pipeline	to	help	solve	large-scale,	computationally	expensive
problems	involving	images,	video,	speech,	and	text.

The	MNIST	Digits	Database
Before	we	introduce	the	dimensionality	reduction	algorithms,	let’s	explore	the
dataset	that	we	will	use	in	this	chapter.	We	will	work	with	a	simple	computer
vision	dataset:	the	MNIST	(Mixed	National	Institute	of	Standards	and
Technology)	database	of	handwritten	digits,	one	of	the	best	known	datasets	in
machine	learning.	We	will	use	the	version	of	the	MNIST	dataset	publicly
available	on	Yann	LeCun’s	website. 	To	make	it	easier,	we	will	use	the	pickled
version,	courtesy	of	deeplearning.net.

This	dataset	has	been	divided	into	three	sets—a	training	set	with	50,000
examples,	a	validation	set	with	10,000	examples,	and	a	test	set	with	10,000
examples.	We	have	labels	for	all	the	examples.

This	dataset	consists	of	28x28	pixel	images	of	handwritten	digits.	Every	single
data	point	(i.e.,	every	image)	can	be	conveyed	as	an	array	of	numbers,	where
each	number	describes	how	dark	each	pixel	is.	In	other	words,	a	28x28	array	of
numbers	corresponds	to	a	28x28	pixel	image.

To	make	this	simpler,	we	can	flatten	each	array	into	a	28x28,	or	784,
dimensional	vector.	Each	component	of	the	vector	is	a	float	between	zero	and
one—representing	the	intensity	of	each	pixel	in	the	image.	Zero	stands	for	black;
one	stands	for	white.	The	labels	are	numbers	between	zero	and	nine,	and	indicate
which	digit	the	image	represents.

Data	acquisition	and	exploration
Before	we	work	with	the	dimensionality	reduction	algorithms,	let’s	load	the
libraries	we	will	use:

Import libraries
'''Main'''
import numpy as np
import pandas as pd
import os, time
import pickle, gzip

1

2

http://deeplearning.net

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from scipy.stats import pearsonr
from numpy.testing import assert_array_almost_equal
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score
from sklearn.metrics import confusion_matrix, classification_report

'''Algos'''
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
import lightgbm as lgb

Load	the	MNIST	datasets
Let’s	now	load	the	MNIST	datasets:

Load the datasets
current_path = os.getcwd()
file = '\\datasets\\mnist_data\\mnist.pkl.gz'

f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test_set = pickle.load(f, encoding='latin1')
f.close()

X_train, y_train = train_set[0], train_set[1]
X_validation, y_validation = validation_set[0], validation_set[1]
X_test, y_test = test_set[0], test_set[1]

Verify	shape	of	datasets
Let’s	verify	the	shape	of	the	datasets	to	make	sure	they	loaded	properly:

Verify shape of datasets

print("Shape of X_train: ", X_train.shape)
print("Shape of y_train: ", y_train.shape)
print("Shape of X_validation: ", X_validation.shape)
print("Shape of y_validation: ", y_validation.shape)
print("Shape of X_test: ", X_test.shape)
print("Shape of y_test: ", y_test.shape)

The	following	code	confirms	the	shapes	of	the	datasets	are	as	expected:

Shape of X_train: (50000, 784)
Shape of y_train: (50000,)
Shape of X_validation: (10000, 784)
Shape of y_validation: (10000,)
Shape of X_test: (10000, 784)
Shape of y_test: (10000,)

Create	Pandas	DataFrames	from	the	datasets
Let’s	convert	the	numpy	arrays	into	Pandas	DataFrames	so	they	are	easier	to
explore	and	work	with:

Create Pandas DataFrames from the datasets
train_index = range(0,len(X_train))
validation_index = range(len(X_train), /
 len(X_train)+len(X_validation))
test_index = range(len(X_train)+len(X_validation), /
 len(X_train)+len(X_validation)+len(X_test))

X_train = pd.DataFrame(data=X_train,index=train_index)
y_train = pd.Series(data=y_train,index=train_index)

X_validation = pd.DataFrame(data=X_validation,index=validation_index)
y_validation = pd.Series(data=y_validation,index=validation_index)

X_test = pd.DataFrame(data=X_test,index=test_index)
y_test = pd.Series(data=y_test,index=test_index)

Explore	the	data
Let’s	generate	a	summary	view	of	the	data:

Describe the training matrix
X_train.describe()

Table	3-1	displays	a	summary	view	of	the	image	data.	Many	of	the	values	are

zeros—in	other	words,	most	of	the	pixels	in	the	images	are	black.	This	makes
sense	since	the	digits	are	in	white	and	shown	in	the	middle	of	the	image	on	a
black	backdrop.

Table	3-1.	Data	exploration

0 1 2 3 4 5 6

count 50000.0 50000.0 50000.0 50000.0 50000.0 50000.0 50000.0

mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0

std 0.0 0.0 0.0 0.0 0.0 0.0 0.0

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0

75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0

max 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8	rows	x	784	columns

The	labels	data	is	a	one-dimensional	vector	representing	the	actual	content	in	the
image.	Labels	for	the	first	few	images	are	as	follows:

Show the labels
y_train.head()

 0 5
 1 0
 2 4
 3 1
 4 9
 dtype: int64

Display	the	images
Let’s	define	a	function	to	view	the	image	along	with	its	label:

def view_digit(example):

 label = y_train.loc[0]
 image = X_train.loc[example,:].values.reshape([28,28])
 plt.title('Example: %d Label: %d' % (example, label))
 plt.imshow(image, cmap=plt.get_cmap('gray'))
 plt.show()

A	view	of	the	first	image—once	the	784-dimensional	vector	is	reshaped	into	a
28	x	28	pixel	image—shows	the	number	five	(Figure	3-1).

Figure	3-1.	View	of	the	first	digit

Dimensionality	Reduction	Algorithms
Now	that	we’ve	loaded	and	explored	the	MNIST	digits	dataset,	let’s	move	to	the
dimensionality	reduction	algorithms.	For	each	algorithm,	we	will	introduce	the
concept	first	and	then	build	a	deeper	understanding	by	applying	the	algorithm	to
the	MNIST	digits	dataset.

Linear	Projection	vs.	Manifold	Learning
There	are	two	major	branches	of	dimensionality	reduction.	The	first	is	known	as
linear	projection,	which	involves	linearly	projecting	data	from	a	high-
dimensional	space	to	a	low-dimensional	space.	This	includes	techniques	such	as
principal	component	analysis,	singular	value	decomposition,	and	random
projection.

The	second	is	known	as	manifold	learning,	which	is	also	referred	to	as	nonlinear
dimensionality	reduction.	This	involves	techniques	such	as	isomap,	which	learns

the	curved	distance	(also	called	the	geodesic	distance)	between	points	rather
than	the	Euclidean	distance.	Other	techniques	include	multidimensional	scaling
(MDS),	locally	linear	embedding	(LLE),	t-distributed	stochastic	neighbor
embedding	(t-SNE),	dictionary	learning,	random	trees	embedding,	and
independent	component	analysis.

Principal	Component	Analysis
We	will	explore	several	versions	of	PCA,	including	standard	PCA,	incremental
PCA,	sparse	PCA,	and	kernel	PCA.

PCA,	the	Concept
Let’s	start	with	standard	PCA,	one	of	the	most	common	linear	dimensionality
reduction	techniques.	In	PCA,	the	algorithm	finds	a	low-dimensional
representation	of	the	data	while	retaining	as	much	of	the	variation	(i.e.,	salient
information)	as	possible.

PCA	does	this	by	addressing	the	correlation	among	features.	If	the	correlation	is
very	high	among	a	subset	of	the	features,	PCA	will	attempt	to	combine	the
highly	correlated	features	and	represent	this	data	with	a	smaller	number	of
linearly	uncorrelated	features.	The	algorithm	keeps	performing	this	correlation
reduction,	finding	the	directions	of	maximum	variance	in	the	original	high-
dimensional	data	and	projecting	them	onto	a	smaller	dimensional	space.	These
newly	derived	components	are	known	as	principal	components.

With	these	components,	it	is	possible	to	reconstruct	the	original	features—not
exactly	but	generally	close	enough.	The	PCA	algorithm	actively	attempts	to
minimize	the	reconstruction	error	during	its	search	for	the	optimal	components.

In	our	MNIST	example,	the	original	feature	space	has	784	dimensions,	known	as
d	dimensions.	PCA	will	project	the	data	onto	a	smaller	subspace	of	k	dimensions
(where	k	<	d)	while	retaining	as	much	of	the	salient	information	as	possible.
These	k	dimensions	are	known	as	the	principal	components.

The	number	of	meaningful	principal	components	we	are	left	with	is	considerably
smaller	than	the	number	of	dimensions	in	the	original	dataset.	We	lose	some	of
the	variance	(i.e.,	information)	by	moving	to	this	low-dimensional	space,	but	the

underlying	structure	of	the	data	is	easier	to	identify,	allowing	us	to	perform	tasks
like	anomaly	detection	and	clustering	more	effectively	and	efficiently.

Moreover,	by	reducing	the	dimensionality	of	the	data,	PCA	will	reduce	the	size
of	the	data,	improving	the	performance	of	machine	learning	algorithms	further
along	in	the	machine	learning	pipeline	(for	example,	for	tasks	such	as	image
classification).

NOTE
It	is	essential	to	perform	feature	scaling	before	running	PCA.	PCA	is	very	sensitive	to	the
relative	ranges	of	the	original	features.	Generally	we	must	scale	the	data	to	make	sure	the
features	are	in	the	same	relative	range.	However,	for	our	MNIST	digits	dataset,	the	features	are
already	scaled	to	a	range	of	zero	to	one,	so	we	can	skip	this	step.

PCA	in	Practice
Now	that	you	have	a	better	grasp	of	how	PCA	works,	let’s	apply	PCA	to	the
MNIST	digits	dataset	and	see	how	well	PCA	captures	the	most	salient
information	about	the	digits	as	its	projects	the	data	from	the	original	784-
dimensional	space	to	a	lower	dimensional	space.

Set	the	hyperparameters
Let’s	set	the	hyperparameters	for	the	PCA	algorithm:

from sklearn.decomposition import PCA

n_components = 784
whiten = False
random_state = 2018

pca = PCA(n_components=n_components, whiten=whiten, \
 random_state=random_state)

Apply	PCA
We	will	set	the	number	of	principal	components	to	the	original	number	of
dimensions	(i.e.,	784).	Then,	PCA	will	capture	the	salient	information	from	the
original	dimensions	and	start	generating	principal	components.	Once	these

components	are	generated,	we	will	determine	how	many	principal	components
we	need	to	effectively	capture	most	of	the	variance/information	from	the	original
feature	set.

Let’s	fit	and	transform	our	training	data,	generating	these	principal	components:

X_train_PCA = pca.fit_transform(X_train)
X_train_PCA = pd.DataFrame(data=X_train_PCA, index=train_index)

Evaluate	PCA
Because	we	have	not	reduced	the	dimensionality	at	all	(we’ve	just	transformed
the	data)	the	variance/information	of	the	original	data	captured	by	the	784
principal	components	should	be	100%:

Percentage of Variance Captured by 784 principal components
print("Variance Explained by all 784 principal components: ", \
 sum(pca.explained_variance_ratio_))

Variance Explained by all 784 principal components: 0.9999999999999997

However,	it	is	important	to	note	that	the	importance	of	the	784	principal
components	varies	quite	a	bit.	The	importance	of	the	first	X	principal
components	are	summarized	here:

Percentage of Variance Captured by X principal components
importanceOfPrincipalComponents = \
 pd.DataFrame(data=pca.explained_variance_ratio_)
importanceOfPrincipalComponents = importanceOfPrincipalComponents.T

print('Variance Captured by First 10 Principal Components: ',
 importanceOfPrincipalComponents.loc[:,0:9].sum(axis=1).values)
print('Variance Captured by First 20 Principal Components: ',
 importanceOfPrincipalComponents.loc[:,0:19].sum(axis=1).values)
print('Variance Captured by First 50 Principal Components: ',
 importanceOfPrincipalComponents.loc[:,0:49].sum(axis=1).values)
print('Variance Captured by First 100 Principal Components: ',
 importanceOfPrincipalComponents.loc[:,0:99].sum(axis=1).values)
print('Variance Captured by First 200 Principal Components: ',
 importanceOfPrincipalComponents.loc[:,0:199].sum(axis=1).values)
print('Variance Captured by First 300 Principal Components: ',
 importanceOfPrincipalComponents.loc[:,0:299].sum(axis=1).values)

Variance Captured by First 10 Principal Components: [0.48876238]
Variance Captured by First 20 Principal Components: [0.64398025]
Variance Captured by First 50 Principal Components: [0.8248609]
Variance Captured by First 100 Principal Components: [0.91465857]
Variance Captured by First 200 Principal Components: [0.96650076]
Variance Captured by First 300 Principal Components: [0.9862489]

The	first	10	components	in	total	capture	approximately	50%	of	the	variance,	the
first	one	hundred	components	over	90%,	and	the	first	three	hundred	components
almost	99%	of	the	variance;	the	information	in	the	rest	of	the	principal
components	is	of	negligible	value.

We	can	also	plot	the	importance	of	each	principal	component,	ranked	from	the
first	principal	component	to	the	last.	For	the	sake	of	readability,	just	the	first	10
components	are	displayed	in	Figure	3-2.

The	power	of	PCA	should	be	more	apparent	now.	With	just	the	first	two	hundred
principal	components	(far	fewer	than	the	original	784	dimensions),	we	capture
over	96%	of	the	variance/information.

PCA	allows	us	to	reduce	the	dimensionality	of	the	original	data	substantially
while	retaining	most	of	the	salient	information.	On	the	PCA-reduced	feature	set,
other	machine	learning	algorithms—downstream	in	the	machine	learning
pipeline—will	have	an	easier	time	separating	the	data	points	in	space	(to	perform
tasks	such	as	anomaly	detection	and	clustering)	and	will	require	fewer
computational	resources.

Figure	3-2.	Importance	of	PCA	components

Visualize	the	separation	of	points	in	space
To	demonstrate	the	power	of	PCA	to	efficiently	and	compactly	capture	the
variance/information	in	data,	let’s	plot	the	observations	in	two	dimensions.
Specifically,	we	will	display	a	scatterplot	of	the	first	and	second	principal
components	and	mark	the	observations	by	the	true	label.	Let’s	create	a	function
for	this	called	scatterPlot	because	we	also	need	to	present	visualizations	for
the	other	dimensionality	algorithms	later	on:

def scatterPlot(xDF, yDF, algoName):
 tempDF = pd.DataFrame(data=xDF.loc[:,0:1], index=xDF.index)
 tempDF = pd.concat((tempDF,yDF), axis=1, join="inner")

 tempDF.columns = ["First Vector", "Second Vector", "Label"]
 sns.lmplot(x="First Vector", y="Second Vector", hue="Label", \
 data=tempDF, fit_reg=False)
 ax = plt.gca()
 ax.set_title("Separation of Observations using "+algoName)

scatterPlot(X_train_PCA, y_train, "PCA")

As	seen	in	Figure	3-3,	with	just	the	top	two	principal	components,	PCA	does	a
good	job	of	separating	the	points	in	space	such	that	similar	points	are	generally
closer	to	each	other	than	they	are	to	other,	less	similar	points.	In	other	words,
images	of	the	same	digit	are	closer	to	each	other	than	they	are	to	images	of	other
digits.

PCA	accomplishes	this	without	using	any	labels	whatsoever.	This	demonstrates
the	power	of	unsupervised	learning	to	capture	the	underlying	structure	of	data,
helping	discover	hidden	patterns	in	the	absence	of	labels.

Figure	3-3.	Separation	of	observations	using	PCA

If	we	run	the	same	two-dimensional	scatterplot	using	two	of	the	most	important
features	from	the	original	784	feature	set—determined	by	training	a	supervised
learning	model—the	separation	is	poor,	at	best	(Figure	3-4).

Figure	3-4.	Separation	of	observations	without	PCA

Comparison	of	Figures	3-3	and	3-4	shows	just	how	powerful	PCA	is	in	learning
the	underlying	structure	of	the	dataset	without	using	any	labels	whatsoever—
even	with	just	two	dimensions,	we	can	start	meaningfully	separating	the	images
by	the	digits	they	display.

NOTE
Not	only	does	PCA	help	separate	data	so	that	we	can	discover	hidden	patterns	more	readily,	it
also	helps	reduce	the	size	of	the	feature	set,	making	it	less	costly—both	in	time	and	in
computational	resources—to	train	machine	learning	models.

With	the	MNIST	dataset,	the	reduction	in	training	time	will	be	modest	at	best	since	the	dataset
is	very	small—we	have	only	784	features	and	50,000	observations.	But	if	the	dataset	were
millions	of	features	and	billions	of	observations,	dimensionality	reduction	would	dramatically
reduce	the	training	time	of	the	machine	learning	algorithms	further	along	in	the	machine
learning	pipeline.

Lastly,	PCA	usually	throws	away	some	of	the	information	available	in	the	original	feature	set
but	does	so	wisely,	capturing	the	most	important	elements	and	tossing	the	less	valuable	ones.	A
model	that	is	trained	on	a	PCA-reduced	feature	set	may	not	perform	quite	as	well	in	terms	of
accuracy	as	a	model	that	is	trained	on	the	full	feature	set,	but	both	the	training	and	prediction
times	will	be	much	faster.	This	is	one	of	the	important	trade-offs	you	must	consider	when
choosing	whether	to	use	dimensionality	reduction	in	your	machine	learning	product.

Incremental	PCA
For	datasets	that	are	very	large	and	cannot	fit	in	memory,	we	can	perform	PCA
incrementally	in	small	batches,	where	each	batch	is	able	to	fit	in	memory.	The
batch	size	can	be	either	set	manually	or	determined	automatically.	This	batch-
based	form	of	PCA	is	known	as	incremental	PCA.	The	resulting	principal
components	of	PCA	and	incremental	PCA	are	generally	pretty	similar	(Figure	3-
5).	Here	is	the	code	for	incremental	PCA:

Incremental PCA
from sklearn.decomposition import IncrementalPCA

n_components = 784
batch_size = None

incrementalPCA = IncrementalPCA(n_components=n_components, \
 batch_size=batch_size)

X_train_incrementalPCA = incrementalPCA.fit_transform(X_train)
X_train_incrementalPCA = \
 pd.DataFrame(data=X_train_incrementalPCA, index=train_index)

X_validation_incrementalPCA = incrementalPCA.transform(X_validation)
X_validation_incrementalPCA = \
 pd.DataFrame(data=X_validation_incrementalPCA, index=validation_index)

scatterPlot(X_train_incrementalPCA, y_train, "Incremental PCA")

Figure	3-5.	Separation	of	observations	using	incremental	PCA

Sparse	PCA
The	normal	PCA	algorithm	searches	for	linear	combinations	in	all	the	input
variables,	reducing	the	original	feature	space	as	densely	as	possible.	But	for
some	machine	learning	problems,	some	degree	of	sparsity	may	be	preferred.	A
version	of	PCA	that	retains	some	degree	of	sparsity—controlled	by	a
hyperparameter	called	alpha—is	known	as	sparse	PCA.	The	sparse	PCA
algorithm	searches	for	linear	combinations	in	just	some	of	the	input	variables,
reducing	the	original	feature	space	to	some	degree	but	not	as	compactly	as
normal	PCA.

Because	this	algorithm	trains	a	bit	more	slowly	than	normal	PCA,	we	will	train
on	just	the	first	10,000	examples	in	our	training	set	(out	of	the	total	50,000
examples).	We	will	continue	this	practice	of	training	on	fewer	than	the	total
number	of	observations	when	the	algorithm	training	times	are	slow.

For	our	purposes	(i.e.,	developing	some	intuition	of	how	these	dimensionality
reduction	algorithms	work),	the	reduced	training	process	is	fine.	For	a	better
solution,	training	on	the	complete	training	set	is	advised:

Sparse PCA
from sklearn.decomposition import SparsePCA

n_components = 100
alpha = 0.0001
random_state = 2018
n_jobs = -1

sparsePCA = SparsePCA(n_components=n_components, \
 alpha=alpha, random_state=random_state, n_jobs=n_jobs)

sparsePCA.fit(X_train.loc[:10000,:])
X_train_sparsePCA = sparsePCA.transform(X_train)
X_train_sparsePCA = pd.DataFrame(data=X_train_sparsePCA, index=train_index)

X_validation_sparsePCA = sparsePCA.transform(X_validation)
X_validation_sparsePCA = \
 pd.DataFrame(data=X_validation_sparsePCA, index=validation_index)

scatterPlot(X_train_sparsePCA, y_train, "Sparse PCA")

Figure	3-6	shows	a	two-dimensional	scatterplot	using	the	first	two	principal
components	using	sparse	PCA.

Figure	3-6.	Separation	of	observations	using	sparse	PCA

Notice	that	this	scatterplot	looks	different	from	that	of	the	normal	PCA,	as
expected.	Normal	and	sparse	PCA	generate	principal	components	differently,
and	the	separation	of	points	is	somewhat	different,	too.

Kernel	PCA
Normal	PCA,	incremental	PCA,	and	sparse	PCA	linearly	project	the	original
data	onto	a	lower	dimensional	space,	but	there	is	also	a	nonlinear	form	of	PCA
known	as	kernel	PCA,	which	runs	a	similarity	function	over	pairs	of	original
data	points	in	order	to	perform	nonlinear	dimensionality	reduction.

By	learning	this	similarity	function	(known	as	the	kernel	method),	kernel	PCA
maps	the	implicit	feature	space	where	the	majority	of	data	points	lie	and	creates
this	implicit	feature	space	in	a	much	smaller	number	of	dimensions	than	the
dimensions	in	the	original	feature	set.	This	method	is	especially	effective	when
the	original	feature	set	is	not	linearly	separable.

For	the	kernel	PCA	algorithm,	we	need	to	set	the	number	of	components	we
desire,	the	type	of	kernel,	and	the	kernel	coefficient,	which	is	known	as	the
gamma.	The	most	popular	kernel	is	the	radial	basis	function	kernel,	more
commonly	referred	to	as	the	RBF	kernel.	This	is	what	we	will	use	here:

Kernel PCA
from sklearn.decomposition import KernelPCA

n_components = 100
kernel = 'rbf'
gamma = None
random_state = 2018
n_jobs = 1

kernelPCA = KernelPCA(n_components=n_components, kernel=kernel, \
 gamma=gamma, n_jobs=n_jobs, random_state=random_state)

kernelPCA.fit(X_train.loc[:10000,:])
X_train_kernelPCA = kernelPCA.transform(X_train)
X_train_kernelPCA = pd.DataFrame(data=X_train_kernelPCA,index=train_index)

X_validation_kernelPCA = kernelPCA.transform(X_validation)
X_validation_kernelPCA = \
 pd.DataFrame(data=X_validation_kernelPCA, index=validation_index)

scatterPlot(X_train_kernelPCA, y_train, "Kernel PCA")

The	two-dimensional	scatterplot	of	the	kernel	PCA	is	nearly	identical	to	the	one
of	the	linear	PCA	for	our	MNIST	digits	dataset	(Figure	3-7).	Learning	the	RBF
kernel	does	not	improve	the	dimensionality	reduction.

Figure	3-7.	Separation	of	observations	using	kernel	PCA

Singular	Value	Decomposition
Another	approach	to	learning	the	underlying	structure	of	the	data	is	to	reduce	the
rank	of	the	original	matrix	of	features	to	a	smaller	rank	such	that	the	original
matrix	can	be	recreated	using	a	linear	combination	of	some	of	the	vectors	in	the
smaller	rank	matrix.	This	is	known	as	singular	value	decomposition	(SVD).

To	generate	the	smaller	rank	matrix,	SVD	keeps	the	vectors	of	the	original
matrix	that	have	the	most	information	(i.e.,	the	highest	singular	value).	The
smaller	rank	matrix	captures	the	most	important	elements	of	the	original	feature
space.

This	is	very	similar	to	PCA.	PCA,	which	uses	the	eigen-decomposition	of	the
covariance	matrix	to	perform	dimensionality	reduction.	SVD	uses	singular	value
decomposition,	as	its	name	implies.	In	fact,	PCA	involves	the	use	of	SVD	in	its
calculation,	but	much	of	this	discussion	is	beyond	the	scope	of	this	book.

Here	is	how	SVD	works:

Singular Value Decomposition
from sklearn.decomposition import TruncatedSVD

n_components = 200
algorithm = 'randomized'
n_iter = 5
random_state = 2018

svd = TruncatedSVD(n_components=n_components, algorithm=algorithm, \
 n_iter=n_iter, random_state=random_state)

X_train_svd = svd.fit_transform(X_train)
X_train_svd = pd.DataFrame(data=X_train_svd, index=train_index)

X_validation_svd = svd.transform(X_validation)
X_validation_svd = pd.DataFrame(data=X_validation_svd, index=validation_index)

scatterPlot(X_train_svd, y_train, "Singular Value Decomposition")

Figure	3-8	displays	the	separation	of	points	that	we	achieve	using	the	two	most
important	vectors	from	SVD.

Figure	3-8.	Separation	of	observations	using	SVD

Random	Projection
Another	linear	dimensionality	reduction	technique	is	random	projection,	which
relies	on	the	Johnson–Lindenstrauss	lemma.	According	to	the	Johnson–
Lindenstrauss	lemma,	points	in	a	high-dimensional	space	can	be	embedded	into

a	much	lower-dimensional	space	so	that	distances	between	the	points	are	nearly
preserved.	In	other	words,	even	as	we	move	from	high-dimensional	space	to
low-dimensional	space,	the	relevant	structure	of	the	original	feature	set	is
preserved.

Gaussian	Random	Projection
There	are	two	versions	of	random	projection—the	standard	version	known	as
Gaussian	random	projection	and	a	sparse	version	known	as	sparse	random
projection.

For	Gaussian	random	projection,	we	can	either	specify	the	number	of
components	we	would	like	to	have	in	the	reduced	feature	space,	or	we	can	set
the	hyperparameter	eps.	The	eps	controls	the	quality	of	the	embedding	according
to	the	Johnson–Lindenstrauss	lemma,	where	smaller	values	generate	a	higher
number	of	dimensions.	In	our	case,	we	will	set	this	hyperparameter:

Gaussian Random Projection
from sklearn.random_projection import GaussianRandomProjection

n_components = 'auto'
eps = 0.5
random_state = 2018

GRP = GaussianRandomProjection(n_components=n_components, eps=eps, \
 random_state=random_state)

X_train_GRP = GRP.fit_transform(X_train)
X_train_GRP = pd.DataFrame(data=X_train_GRP, index=train_index)

X_validation_GRP = GRP.transform(X_validation)
X_validation_GRP = pd.DataFrame(data=X_validation_GRP, index=validation_index)

scatterPlot(X_train_GRP, y_train, "Gaussian Random Projection")

Figure	3-9	shows	the	two-dimensional	scatterplot	using	Gaussian	random
projection.

Figure	3-9.	Separation	of	observations	using	Gaussian	random	projection

Although	it	is	a	form	of	linear	projection	like	PCA,	random	projection	is	an
entirely	different	family	of	dimensionality	reduction.	Thus	the	random	projection
scatterplot	looks	very	different	from	the	scatterplots	of	normal	PCA,	incremental
PCA,	sparse	PCA,	and	kernel	PCA.

Sparse	Random	Projection
Just	as	there	is	a	sparse	version	of	PCA,	there	is	a	sparse	version	of	random
projection	known	as	sparse	random	projection.	It	retains	some	degree	of	sparsity
in	the	transformed	feature	set	and	is	generally	much	more	efficient,	transforming
the	original	data	into	the	reduced	space	much	faster	than	normal	Gaussian
random	projection:

Sparse Random Projection
from sklearn.random_projection import SparseRandomProjection

n_components = 'auto'
density = 'auto'
eps = 0.5
dense_output = False
random_state = 2018

SRP = SparseRandomProjection(n_components=n_components, \
 density=density, eps=eps, dense_output=dense_output, \

 random_state=random_state)

X_train_SRP = SRP.fit_transform(X_train)
X_train_SRP = pd.DataFrame(data=X_train_SRP, index=train_index)

X_validation_SRP = SRP.transform(X_validation)
X_validation_SRP = pd.DataFrame(data=X_validation_SRP, index=validation_index)

scatterPlot(X_train_SRP, y_train, "Sparse Random Projection")

Figure	3-10	shows	the	two-dimensional	scatterplot	using	sparse	random
projection.

Figure	3-10.	Separation	of	observations	using	sparse	random	projection

Isomap
Instead	of	linearly	projecting	the	data	from	a	high-dimensional	space	to	a	low-
dimensional	space,	we	can	use	nonlinear	dimensionality	reduction	methods.
These	methods	are	collectively	known	as	manifold	learning.

The	most	vanilla	form	of	manifold	learning	is	known	as	isometric	mapping,	or
Isomap	for	short.	Like	kernel	PCA,	Isomap	learns	a	new,	low-dimensional
embedding	of	the	original	feature	set	by	calculating	the	pairwise	distances	of	all
the	points,	where	distance	is	curved	or	geodesic	distance	rather	than	Euclidean

distance.	In	other	words,	it	learns	the	intrinsic	geometry	of	the	original	data
based	on	where	each	point	lies	relative	to	its	neighbors	on	a	manifold:

Isomap

from sklearn.manifold import Isomap

n_neighbors = 5
n_components = 10
n_jobs = 4

isomap = Isomap(n_neighbors=n_neighbors, \
 n_components=n_components, n_jobs=n_jobs)

isomap.fit(X_train.loc[0:5000,:])
X_train_isomap = isomap.transform(X_train)
X_train_isomap = pd.DataFrame(data=X_train_isomap, index=train_index)

X_validation_isomap = isomap.transform(X_validation)
X_validation_isomap = pd.DataFrame(data=X_validation_isomap, \
 index=validation_index)

scatterPlot(X_train_isomap, y_train, "Isomap")

Figure	3-11	shows	the	two-dimensional	scatterplot	using	Isomap.

Figure	3-11.	Separation	of	observations	using	isomap

Multidimensional	Scaling
Multidimensional	scaling	(MDS)	is	a	form	of	nonlinear	dimensionality	reduction
that	learns	the	similarity	of	points	in	the	original	dataset	and,	using	this	similarity
learning,	models	this	in	a	lower	dimensional	space:

Multidimensional Scaling
from sklearn.manifold import MDS

n_components = 2
n_init = 12
max_iter = 1200
metric = True
n_jobs = 4
random_state = 2018

mds = MDS(n_components=n_components, n_init=n_init, max_iter=max_iter, \
 metric=metric, n_jobs=n_jobs, random_state=random_state)

X_train_mds = mds.fit_transform(X_train.loc[0:1000,:])
X_train_mds = pd.DataFrame(data=X_train_mds, index=train_index[0:1001])

scatterPlot(X_train_mds, y_train, "Multidimensional Scaling")

Figure	3-12	displays	the	two-dimensional	scatterplot	using	MDS.

Figure	3-12.	Separation	of	observations	using	MDS

Locally	Linear	Embedding
Another	popular	nonlinear	dimensionality	reduction	method	is	called	locally
linear	embedding	(LLE).	This	method	preserves	distances	within	local
neighborhoods	as	it	projects	the	data	from	the	original	feature	space	to	a	reduced
space.	LLE	discovers	the	nonlinear	structure	in	the	original,	high-dimensional
data	by	segmenting	the	data	into	smaller	components	(i.e.,	into	neighborhoods	of
points)	and	modeling	each	component	as	a	linear	embedding.

For	this	algorithm,	we	set	the	number	of	components	we	desire	and	the	number
of	points	to	consider	in	a	given	neighborhood:

Locally Linear Embedding (LLE)
from sklearn.manifold import LocallyLinearEmbedding

n_neighbors = 10
n_components = 2
method = 'modified'
n_jobs = 4
random_state = 2018

lle = LocallyLinearEmbedding(n_neighbors=n_neighbors, \
 n_components=n_components, method=method, \
 random_state=random_state, n_jobs=n_jobs)

lle.fit(X_train.loc[0:5000,:])
X_train_lle = lle.transform(X_train)
X_train_lle = pd.DataFrame(data=X_train_lle, index=train_index)

X_validation_lle = lle.transform(X_validation)
X_validation_lle = pd.DataFrame(data=X_validation_lle, index=validation_index)

scatterPlot(X_train_lle, y_train, "Locally Linear Embedding")

Figure	3-13	shows	the	two-dimensional	scatterplot	using	LLE.

Figure	3-13.	Separation	of	observations	using	LLE

t-Distributed	Stochastic	Neighbor	Embedding
t-distributed	stochastic	neighbor	embedding	(t-SNE)	is	a	nonlinear
dimensionality	reduction	technique	for	visualizing	high-dimensional	data.	t-SNE
accomplishes	this	by	modeling	each	high-dimensional	point	into	a	two-	or	three-
dimensional	space,	where	similar	points	are	modeled	close	to	each	other	and
dissimilar	points	are	modeled	farther	away.	It	does	this	by	constructing	two
probability	distributions,	one	over	pairs	of	points	in	the	high-dimensional	space
and	another	over	pairs	of	points	in	the	low-dimensional	space	such	that	similar
points	have	a	high	probability	and	dissimilar	points	have	a	lower	probability.
Specifically,	t-SNE	minimizes	the	Kullback–Leibler	divergence	between	the	two
probability	distributions.

In	real-world	applications	of	t-SNE,	it	is	best	to	use	another	dimensionality
reduction	technique	(such	as	PCA,	as	we	do	here)	to	reduce	the	number	of
dimensions	before	applying	t-SNE.	By	applying	another	form	of	dimensionality
reduction	first,	we	reduce	the	noise	in	the	features	that	are	fed	into	t-SNE	and
speed	up	the	computation	of	the	algorithm:

t-SNE
from sklearn.manifold import TSNE

n_components = 2
learning_rate = 300
perplexity = 30
early_exaggeration = 12
init = 'random'
random_state = 2018

tSNE = TSNE(n_components=n_components, learning_rate=learning_rate, \
 perplexity=perplexity, early_exaggeration=early_exaggeration, \
 init=init, random_state=random_state)

X_train_tSNE = tSNE.fit_transform(X_train_PCA.loc[:5000,:9])
X_train_tSNE = pd.DataFrame(data=X_train_tSNE, index=train_index[:5001])

scatterPlot(X_train_tSNE, y_train, "t-SNE")

NOTE
t-SNE	has	a	nonconvex	cost	function,	which	means	that	different	initializations	of	the
algorithm	will	generate	different	results.	There	is	no	stable	solution.

Figure	3-14	shows	the	two-dimensional	scatterplot	of	t-SNE.

Figure	3-14.	Separation	of	observations	using	t-SNE

Other	Dimensionality	Reduction	Methods
We	have	covered	both	linear	and	nonlinear	forms	of	dimensionality	reduction.
Now	we	will	move	to	methods	that	do	not	rely	on	any	sort	of	geometry	or
distance	metric.

Dictionary	Learning
One	such	method	is	dictionary	learning,	which	learns	the	sparse	representation
of	the	original	data.	The	resulting	matrix	is	known	as	the	dictionary,	and	the
vectors	in	the	dictionary	are	known	as	atoms.	These	atoms	are	simple,	binary
vectors,	populated	by	zeros	and	ones.	Each	instance	in	the	original	data	can	be
reconstructed	as	a	weighted	sum	of	these	atoms.

Assuming	there	are	d	features	in	the	original	data	and	n	atoms	in	the	dictionary,
we	can	have	a	dictionary	that	is	either	undercomplete,	where	n	<	d,	or
overcomplete,	where	n	>	d.	The	undercomplete	dictionary	achieves
dimensionality	reduction,	representing	the	original	data	with	a	fewer	number	of
vectors,	which	is	what	we	will	focus	on.

There	is	a	mini-batch	version	of	dictionary	learning	that	we	will	apply	to	our
dataset	of	digits.	As	with	the	other	dimensionality	reduction	methods,	we	will	set
the	number	of	components.	We	will	also	set	the	batch	size	and	the	number	of
iterations	to	perform	the	training.

Since	we	want	to	visualize	the	images	using	a	two-dimensional	scatterplot,	we
will	learn	a	very	dense	dictionary,	but,	in	practice,	we	would	use	a	much	sparser
version:

Mini-batch dictionary learning

from sklearn.decomposition import MiniBatchDictionaryLearning

n_components = 50
alpha = 1
batch_size = 200
n_iter = 25
random_state = 2018

miniBatchDictLearning = MiniBatchDictionaryLearning(\
 n_components=n_components, alpha=alpha, \

3

 batch_size=batch_size, n_iter=n_iter, \
 random_state=random_state)

miniBatchDictLearning.fit(X_train.loc[:,:10000])
X_train_miniBatchDictLearning = miniBatchDictLearning.fit_transform(X_train)
X_train_miniBatchDictLearning = pd.DataFrame(\
 data=X_train_miniBatchDictLearning, index=train_index)

X_validation_miniBatchDictLearning = \
 miniBatchDictLearning.transform(X_validation)
X_validation_miniBatchDictLearning = \
 pd.DataFrame(data=X_validation_miniBatchDictLearning, \
 index=validation_index)

scatterPlot(X_train_miniBatchDictLearning, y_train, \
 "Mini-batch Dictionary Learning")

Figure	3-15	shows	the	two-dimensional	scatterplot	using	dictionary	learning.

Figure	3-15.	Separation	of	observations	using	dictionary	learning

Independent	Component	Analysis
One	common	problem	with	unlabeled	data	is	that	there	are	many	independent
signals	embedded	together	into	the	features	we	are	given.	Using	independent
component	analysis	(ICA),	we	can	separate	these	blended	signals	into	their

individual	components.	After	the	separation	is	complete,	we	can	reconstruct	any
of	the	original	features	by	adding	together	some	combination	of	the	individual
components	we	generate.	ICA	is	commonly	used	in	signal	processing	tasks	(for
example,	to	identify	the	individual	voices	in	an	audio	clip	of	a	busy
coffeehouse).

The	following	shows	how	ICA	works:

Independent Component Analysis
from sklearn.decomposition import FastICA

n_components = 25
algorithm = 'parallel'
whiten = True
max_iter = 100
random_state = 2018

fastICA = FastICA(n_components=n_components, algorithm=algorithm, \
 whiten=whiten, max_iter=max_iter, random_state=random_state)

X_train_fastICA = fastICA.fit_transform(X_train)
X_train_fastICA = pd.DataFrame(data=X_train_fastICA, index=train_index)

X_validation_fastICA = fastICA.transform(X_validation)
X_validation_fastICA = pd.DataFrame(data=X_validation_fastICA, \
 index=validation_index)

scatterPlot(X_train_fastICA, y_train, "Independent Component Analysis")

Figure	3-16	shows	the	two-dimensional	scatterplot	using	ICA.

Figure	3-16.	Separation	of	observations	using	independent	component	analysis

Conclusion
In	this	chapter,	we	introduced	and	explored	a	number	of	dimensionality
reduction	algorithms	starting	with	linear	methods	such	as	PCA	and	random
projection.	Then,	we	switched	to	nonlinear	methods—also	known	as	manifold
learning—such	as	Isomap,	multidimensional	scaling,	LLE,	and	t-SNE.	We	also
covered	nondistance-based	methods	such	as	dictionary	learning	and	ICA.

Dimensionality	reduction	captures	the	most	salient	information	in	a	dataset	in	a
small	number	of	dimensions	by	learning	the	underlying	structure	of	the	data,	and
it	does	this	without	using	any	labels.	By	applying	these	algorithms	to	the	MNIST
digits	dataset,	we	were	able	to	meaningfully	separate	the	images	based	on	the
digits	they	represented	with	just	the	top	two	dimensions.

This	highlights	the	power	of	dimensionality	reduction.

In	Chapter	4,	we	will	build	an	applied	unsupervised	learning	solution	using	these
dimensionality	reduction	algorithms.	Specifically,	we	will	revist	the	fraud
detection	problem	introduced	in	Chapter	2	and	attempt	to	separate	fraudulent
transactions	from	normal	ones	without	using	labels.

1 	The	MNIST	database	of	handwritten	digits,	courtesy	of	Yann	Lecun.

2 	The	pickled	version	of	the	MNIST	dataset,	courtesy	of	deeplearning.net.

3 	The	overcomplete	dictionary	serves	a	different	purpose	and	has	applications	such	as	image
compression.

http://yann.lecun.com/exdb/mnist/
http://deeplearning.net/tutorial/gettingstarted.html

Chapter	4.	Anomaly	Detection

In	Chapter	3,	we	introduced	the	core	dimensionality	reduction	algorithms	and
explored	their	ability	to	capture	the	most	salient	information	in	the	MNIST	digits
database	in	significantly	fewer	dimensions	than	the	original	784	dimensions.
Even	in	just	two	dimensions,	the	algorithms	meaningfully	separated	the	digits,
without	using	labels.	This	is	the	power	of	unsupervised	learning	algorithms—
they	can	learn	the	underlying	structure	of	data	and	help	discover	hidden	patterns
in	the	absence	of	labels.

Let’s	build	an	applied	machine	learning	solution	using	these	dimensionality
reduction	methods.	We	will	turn	to	the	problem	we	introduced	in	Chapter	2	and
build	a	credit	card	fraud	detection	system	without	using	labels.

In	the	real	world,	fraud	often	goes	undiscovered,	and	only	the	fraud	that	is
caught	provides	any	labels	for	the	datasets.	Moreover,	fraud	patterns	change	over
time,	so	supervised	systems	that	are	built	using	fraud	labels—like	the	one	we
built	in	Chapter	2—become	stale,	capturing	historical	patterns	of	fraud	but
failing	to	adapt	to	newly	emerging	patterns.

For	these	reasons	(the	lack	of	sufficient	labels	and	the	need	to	adapt	to	newly
emerging	patterns	of	fraud	as	quickly	as	possible),	unsupervised	learning	fraud
detection	systems	are	in	vogue.

In	this	chapter,	we	will	build	such	a	solution	using	some	of	the	dimensionality
reduction	algorithms	we	explored	in	the	previous	chapter.

Credit	Card	Fraud	Detection
Let’s	revisit	the	credit	card	transactions	problem	from	Chapter	2.

Prepare	the	Data
Like	we	did	in	Chapter	2,	let’s	load	the	credit	card	transactions	dataset,	generate
the	features	matrix	and	labels	array,	and	split	the	data	into	training	and	test	sets.
We	will	not	use	the	labels	to	perform	anomaly	detection,	but	we	will	use	the

labels	to	help	evaluate	the	fraud	detection	systems	we	build.

As	a	reminder,	we	have	284,807	credit	card	transactions	in	total,	of	which	492
are	fraudulent,	with	a	positive	(fraud)	label	of	one.	The	rest	are	normal
transactions,	with	a	negative	(not	fraud)	label	of	zero.

We	have	30	features	to	use	for	anomaly	detection—time,	amount,	and	28
principal	components.	And,	we	will	split	the	dataset	into	a	training	set	(with
190,820	transactions	and	330	cases	of	fraud)	and	a	test	set	(with	the	remaining
93,987	transactions	and	162	cases	of	fraud):

Load datasets
current_path = os.getcwd()
file = '\\datasets\\credit_card_data\\credit_card.csv'
data = pd.read_csv(current_path + file)

dataX = data.copy().drop(['Class'],axis=1)
dataY = data['Class'].copy()

featuresToScale = dataX.columns
sX = pp.StandardScaler(copy=True)
dataX.loc[:,featuresToScale] = sX.fit_transform(dataX[featuresToScale])

X_train, X_test, y_train, y_test = \
 train_test_split(dataX, dataY, test_size=0.33, \
 random_state=2018, stratify=dataY)

Define	Anomaly	Score	Function
Next,	we	need	to	define	a	function	that	calculates	how	anomalous	each
transaction	is.	The	more	anomalous	the	transaction	is,	the	more	likely	it	is	to	be
fraudulent,	assuming	that	fraud	is	rare	and	looks	somewhat	different	than	the
majority	of	transactions,	which	are	normal.

As	we	discussed	in	the	previous	chapter,	dimensionality	reduction	algorithms
reduce	the	dimensionality	of	data	while	attempting	to	minimize	the
reconstruction	error.	In	other	words,	these	algorithms	try	to	capture	the	most
salient	information	of	the	original	features	in	such	a	way	that	they	can
reconstruct	the	original	feature	set	from	the	reduced	feature	set	as	well	as
possible.	However,	these	dimensionality	reduction	algorithms	cannot	capture	all
the	information	of	the	original	features	as	they	move	to	a	lower	dimensional
space;	therefore,	there	will	be	some	error	as	these	algorithms	reconstruct	the

reduced	feature	set	back	to	the	original	number	of	dimensions.

In	the	context	of	our	credit	card	transactions	dataset,	the	algorithms	will	have	the
largest	reconstruction	error	on	those	transactions	that	are	hardest	to	model—in
other	words,	those	that	occur	the	least	often	and	are	the	most	anomalous.	Since
fraud	is	rare	and	presumably	different	than	normal	transactions,	the	fraudulent
transactions	should	exhibit	the	largest	reconstruction	error.	So	let’s	define	the
anomaly	score	as	the	reconstruction	error.	The	reconstruction	error	for	each
transaction	is	the	sum	of	the	squared	differences	between	the	original	feature
matrix	and	the	reconstructed	matrix	using	the	dimensionality	reduction
algorithm.	We	will	scale	the	sum	of	the	squared	differences	by	the	max-min
range	of	the	sum	of	the	squared	differences	for	the	entire	dataset,	so	that	all	the
reconstruction	errors	are	within	a	zero	to	one	range.

The	transactions	that	have	the	largest	sum	of	squared	differences	will	have	an
error	close	to	one,	while	those	that	have	the	smallest	sum	of	squared	differences
will	have	an	error	close	to	zero.

This	should	be	familiar.	Like	the	supervised	fraud	detection	solution	we	built	in
Chapter	2,	the	dimensionality	reduction	algorithm	will	effectively	assign	each
transaction	an	anomaly	score	between	zero	and	one.	Zero	is	normal	and	one	is
anomalous	(and	most	likely	to	be	fraudulent).

Here	is	the	function:

def anomalyScores(originalDF, reducedDF):
 loss = np.sum((np.array(originalDF)-np.array(reducedDF))**2, axis=1)
 loss = pd.Series(data=loss,index=originalDF.index)
 loss = (loss-np.min(loss))/(np.max(loss)-np.min(loss))
 return loss

Define	Evaluation	Metrics
Although	we	will	not	use	the	fraud	labels	to	build	the	unsupervised	fraud
detection	solutions,	we	will	use	the	labels	to	evaluate	the	unsupervised	solutions
we	develop.	The	labels	will	help	us	understand	just	how	well	these	solutions	are
at	catching	known	patterns	of	fraud.

As	we	did	in	Chapter	2,	we	will	use	the	precision-recall	curve,	the	average
precision,	and	the	auROC	as	our	evaluation	metrics.

Here	is	the	function	that	will	plot	these	results:

def plotResults(trueLabels, anomalyScores, returnPreds = False):
 preds = pd.concat([trueLabels, anomalyScores], axis=1)
 preds.columns = ['trueLabel', 'anomalyScore']
 precision, recall, thresholds = \
 precision_recall_curve(preds['trueLabel'],preds['anomalyScore'])
 average_precision = \
 average_precision_score(preds['trueLabel'],preds['anomalyScore'])

 plt.step(recall, precision, color='k', alpha=0.7, where='post')
 plt.fill_between(recall, precision, step='post', alpha=0.3, color='k')

 plt.xlabel('Recall')
 plt.ylabel('Precision')
 plt.ylim([0.0, 1.05])
 plt.xlim([0.0, 1.0])

 plt.title('Precision-Recall curve: Average Precision = \
 {0:0.2f}'.format(average_precision))

 fpr, tpr, thresholds = roc_curve(preds['trueLabel'], \
 preds['anomalyScore'])
 areaUnderROC = auc(fpr, tpr)

 plt.figure()
 plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve')
 plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--')
 plt.xlim([0.0, 1.0])
 plt.ylim([0.0, 1.05])
 plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.title('Receiver operating characteristic: \
 Area under the curve = {0:0.2f}'.format(areaUnderROC))
 plt.legend(loc="lower right")
 plt.show()

 if returnPreds==True:
 return preds

NOTE
The	fraud	labels	and	the	evaluation	metrics	will	help	us	assess	just	how	good	the	unsupervised
fraud	detection	systems	are	at	catching	known	patterns	of	fraud—fraud	that	we	have	caught	in
the	past	and	have	labels	for.

However,	we	will	not	be	able	to	assess	how	good	the	unsupervised	fraud	detection	systems	are
at	catching	unknown	patterns	of	fraud.	In	other	words,	there	may	be	fraud	in	the	dataset	that	is

incorrectly	labeled	as	not	fraud	because	the	financial	company	never	discovered	it.

As	you	may	see	already,	unsupervised	learning	systems	are	much	harder	to	evaluate	than
supervised	learning	systems.	Often,	unsupervised	learning	systems	are	judged	by	their	ability
to	catch	known	patterns	of	fraud.	This	is	an	incomplete	assessment;	a	better	evaluation	metric
would	be	to	assess	them	on	their	ability	to	identify	unknown	patterns	of	fraud,	both	in	the	past
and	in	the	future.

Since	we	cannot	go	back	to	the	financial	company	and	have	them	evaluate	any	unknown
patterns	of	fraud	we	identify,	we	will	have	to	evaluate	these	unsupervised	systems	solely	based
on	how	well	they	detect	the	known	patterns	of	fraud.	It’s	important	to	be	mindful	of	this
limitation	as	we	proceed	in	evaluating	the	results.

Define	Plotting	Function
We	will	reuse	the	scatterplot	function	from	Chapter	3	to	display	the	separation	of
points	the	dimensionality	reduction	algorithm	achieves	in	just	the	first	two
dimensions:

def scatterPlot(xDF, yDF, algoName):
 tempDF = pd.DataFrame(data=xDF.loc[:,0:1], index=xDF.index)
 tempDF = pd.concat((tempDF,yDF), axis=1, join="inner")
 tempDF.columns = ["First Vector", "Second Vector", "Label"]
 sns.lmplot(x="First Vector", y="Second Vector", hue="Label", \
 data=tempDF, fit_reg=False)
 ax = plt.gca()
 ax.set_title("Separation of Observations using "+algoName)

Normal	PCA	Anomaly	Detection
In	Chapter	3,	we	demonstrated	how	PCA	captured	the	majority	of	information	in
the	MNIST	digits	dataset	in	just	a	few	principal	components,	far	fewer	in
number	than	the	original	dimensions.	In	fact,	with	just	two	dimensions,	it	was
possible	to	visually	separate	the	images	into	distinct	groups	based	on	the	digits
they	displayed.

Building	on	this	concept,	we	will	now	use	PCA	to	learn	the	underlying	structure
of	the	credit	card	transactions	dataset.	Once	we	learn	this	structure,	we	will	use
the	learned	model	to	reconstruct	the	credit	card	transactions	and	then	calculate
how	different	the	reconstructed	transactions	are	from	the	original	transactions.
Those	transactions	that	PCA	does	the	poorest	job	of	reconstructing	are	the	most
anomalous	(and	most	likely	to	be	fraudulent).

NOTE
Remember	that	the	features	in	the	credit	card	transactions	dataset	we	have	are	already	the
output	of	PCA—this	is	what	we	were	given	by	the	financial	company.	However,	there	is
nothing	unusual	about	performing	PCA	for	anomaly	detection	on	an	already	dimensionality-
reduced	dataset.	We	just	treat	the	original	principal	components	that	we	are	given	as	the
original	features.

Going	forward,	we	will	refer	to	the	original	principal	components	that	we	were	given	as	the
original	features.	Any	future	mention	of	principal	components	will	refer	to	the	principal
components	from	the	PCA	process	rather	than	the	original	features	we	were	given.

Let’s	start	by	developing	a	deeper	understanding	of	how	PCA—and
dimensionality	reduction	in	general—helps	perform	anomaly	detection.	As
we’ve	defined	it,	anomaly	detection	relies	on	reconstruction	error.	We	want	the
reconstruction	error	for	rare	transactions—the	ones	that	are	most	likely	to	be
fraudulent—to	be	as	high	as	possible	and	the	reconstruction	error	for	the	rest	to
be	as	low	as	possible.

For	PCA,	the	reconstruction	error	will	depend	largely	on	the	number	of	principal
components	we	keep	and	use	to	reconstruct	the	original	transactions.	The	more
principal	components	we	keep,	the	better	PCA	will	be	at	learning	the	underlying
structure	of	the	original	transactions.

However,	there	is	a	balance.	If	we	keep	too	many	principal	components,	PCA
may	too	easily	reconstruct	the	original	transactions,	so	much	so	that	the
reconstruction	error	will	be	minimal	for	all	of	the	transactions.	If	we	keep	too
few	principal	components,	PCA	may	not	be	able	to	reconstruct	any	of	the
original	transactions	well	enough—not	even	the	normal,	nonfraudulent
transactions.

Let’s	search	for	the	right	number	of	principal	components	to	keep	to	build	a
good	fraud	detection	system.

PCA	Components	Equal	Number	of	Original	Dimensions
First,	let’s	think	about	something.	If	we	use	PCA	to	generate	the	same	number	of
principal	components	as	the	number	of	original	features,	will	we	be	able	to

perform	anomaly	detection?

If	you	think	through	this,	the	answer	should	be	obvious.	Recall	our	PCA
example	from	the	previous	chapter	for	the	MNIST	digits	dataset.

When	the	number	of	principal	components	equals	the	number	of	original
dimensions,	PCA	captures	nearly	100%	of	the	variance/information	in	the	data
as	it	generates	the	principal	components.	Therefore,	when	PCA	reconstructs	the
transactions	from	the	principal	components,	it	will	have	too	little	reconstruction
error	for	all	the	transactions,	fraudulent	or	otherwise.	We	will	not	be	able	to
differentiate	between	rare	transactions	and	normal	ones—in	other	words,
anomaly	detection	will	be	poor.

To	highlight	this,	let’s	apply	PCA	to	generate	the	same	number	of	principal
components	as	the	number	of	original	features	(30	for	our	credit	card
transactions	dataset).	This	is	accomplished	with	the	fit_transform	function
from	Scikit-Learn.

To	reconstruct	the	original	transactions	from	the	principal	components	we
generate,	we	will	use	the	inverse_transform	function	from	Scikit-Learn:

30 principal components
from sklearn.decomposition import PCA

n_components = 30
whiten = False
random_state = 2018

pca = PCA(n_components=n_components, whiten=whiten, \
 random_state=random_state)

X_train_PCA = pca.fit_transform(X_train)
X_train_PCA = pd.DataFrame(data=X_train_PCA, index=X_train.index)

X_train_PCA_inverse = pca.inverse_transform(X_train_PCA)
X_train_PCA_inverse = pd.DataFrame(data=X_train_PCA_inverse, \
 index=X_train.index)

scatterPlot(X_train_PCA, y_train, "PCA")

Figure	4-1	shows	the	plot	of	the	separation	of	transactions	using	the	first	two
principal	components	of	PCA.

Figure	4-1.	Separation	of	observations	using	normal	PCA	and	30	principal	components

Let’s	calculate	the	precision-recall	curve	and	the	ROC	curve:

anomalyScoresPCA = anomalyScores(X_train, X_train_PCA_inverse)
preds = plotResults(y_train, anomalyScoresPCA, True)

With	an	average	precision	of	0.11,	this	is	a	poor	fraud	detection	solution	(see
Figure	4-2).	It	catches	very	little	of	the	fraud.

Figure	4-2.	Results	using	30	principal	components

Search	for	the	Optimal	Number	of	Principal	Components
Now,	let’s	perform	a	few	experiments	by	reducing	the	number	of	principal
components	PCA	generates	and	evaluate	the	fraud	detection	results.	We	need	the
PCA-based	fraud	detection	solution	to	have	enough	error	on	the	rare	cases	that	it
can	meaningfully	separate	fraud	cases	from	the	normal	ones.	But	the	error
cannot	be	so	low	or	so	high	for	all	the	transactions	that	the	rare	and	normal
transactions	are	virtually	indistinguishable.

After	some	experimentation,	which	you	can	perform	using	the	GitHub	code,	we
find	that	27	principal	components	is	the	optimal	number	for	this	credit	card
transactions	dataset.

http://bit.ly/2Gd4v7e

Figure	4-3	shows	the	plot	of	the	separation	of	transactions	using	the	first	two
principal	components	of	PCA.

Figure	4-3.	Separation	of	observations	using	normal	PCA	and	27	principal	components

Figure	4-4	shows	the	precision-recall	curve,	average	precision,	and	auROC
curve.

Figure	4-4.	Results	using	normal	PCA	and	27	principal	components

As	you	can	see,	we	are	able	to	catch	80%	of	the	fraud	with	75%	precision.	This
is	very	impressive	considering	that	we	did	not	use	any	labels.	To	make	these
results	more	tangible,	consider	that	there	are	190,820	transactions	in	the	training
set	and	only	330	are	fraudulent.

Using	PCA,	we	calculated	the	reconstruction	error	for	each	of	these	190,820
transactions.	If	we	sort	these	transactions	by	highest	reconstruction	error	(also
referred	to	as	anomaly	score)	in	descending	order	and	extract	the	top	350
transactions	from	the	list,	we	can	see	that	264	of	these	transactions	are
fraudulent.

That	is	a	precision	of	75%.	Moreover,	the	264	transactions	we	caught	from	the
350	we	picked	represent	80%	of	the	total	fraud	in	the	training	set	(264	out	of	330

fraudulent	cases).	And,	remember	that	we	accomplished	this	without	using
labels.	This	is	a	truly	unsupervised	fraud	detection	solution.

Here	is	the	code	to	highlight	this:

preds.sort_values(by="anomalyScore",ascending=False,inplace=True)
cutoff = 350
predsTop = preds[:cutoff]
print("Precision: ",np.round(predsTop. \
 anomalyScore[predsTop.trueLabel==1].count()/cutoff,2))
print("Recall: ",np.round(predsTop. \
 anomalyScore[predsTop.trueLabel==1].count()/y_train.sum(),2))

The	following	code	summarizes	the	results:

Precision: 0.75
Recall: 0.8
Fraud Caught out of 330 Cases: 264

Although	this	is	a	pretty	good	solution	already,	let’s	try	to	develop	fraud
detection	systems	using	some	of	the	other	dimensionality	reduction	methods.

Sparse	PCA	Anomaly	Detection
Let’s	try	to	use	sparse	PCA	to	design	a	fraud	detection	solution.	Recall	that
sparse	PCA	is	similar	to	normal	PCA	but	delivers	a	less	dense	version;	in	other
words,	sparse	PCA	provides	a	sparse	representation	of	the	principal	components.

We	still	need	to	specify	the	number	of	principal	components	we	desire,	but	we
must	also	set	the	alpha	parameter,	which	controls	the	degree	of	sparsity.	We	will
experiment	with	different	values	for	the	principal	components	and	the	alpha
parameter	as	we	search	for	the	optimal	sparse	PCA	fraud	detection	solution.

Note	that	for	normal	PCA	Scikit-Learn	used	a	fit_transform	function	to
generate	the	principal	components	and	an	inverse_transform	function	to
reconstruct	the	original	dimensions	from	the	principal	components.	Using	these
two	functions,	we	were	able	to	calculate	the	reconstruction	error	between	the
original	feature	set	and	the	reconstructed	feature	set	derived	from	the	PCA.

Unfortunately,	Scikit-Learn	does	not	provide	an	inverse_transform	function

for	sparse	PCA.	Therefore,	we	must	reconstruct	the	original	dimensions	after	we
perform	sparse	PCA	ourselves.

Let’s	begin	by	generating	the	sparse	PCA	matrix	with	27	principal	components
and	the	default	alpha	parameter	of	0.0001:

Sparse PCA
from sklearn.decomposition import SparsePCA

n_components = 27
alpha = 0.0001
random_state = 2018
n_jobs = -1

sparsePCA = SparsePCA(n_components=n_components, \
 alpha=alpha, random_state=random_state, n_jobs=n_jobs)

sparsePCA.fit(X_train.loc[:,:])
X_train_sparsePCA = sparsePCA.transform(X_train)
X_train_sparsePCA = pd.DataFrame(data=X_train_sparsePCA, index=X_train.index)

scatterPlot(X_train_sparsePCA, y_train, "Sparse PCA")

Figure	4-5	shows	the	scatterplot	for	sparse	PCA.

Figure	4-5.	Separation	of	observations	using	sparse	PCA	and	27	principal	components

Now	let’s	generate	the	original	dimensions	from	the	sparse	PCA	matrix	by
simple	matrix	multiplication	of	the	sparse	PCA	matrix	(with	190,820	samples
and	27	dimensions)	and	the	sparse	PCA	components	(a	27	x	30	matrix),	provided
by	Scikit-Learn	library.	This	creates	a	matrix	that	is	the	original	size	(a	190,820
x	30	matrix).	We	also	need	to	add	the	mean	of	each	original	feature	to	this	new
matrix,	but	then	we	are	done.

From	this	newly	derived	inverse	matrix,	we	can	calculate	the	reconstruction
errors	(anomaly	scores)	as	we	did	with	normal	PCA:

X_train_sparsePCA_inverse = np.array(X_train_sparsePCA). \
 dot(sparsePCA.components_) + np.array(X_train.mean(axis=0))
X_train_sparsePCA_inverse = \
 pd.DataFrame(data=X_train_sparsePCA_inverse, index=X_train.index)

anomalyScoresSparsePCA = anomalyScores(X_train, X_train_sparsePCA_inverse)
preds = plotResults(y_train, anomalyScoresSparsePCA, True)

Now,	let’s	generate	the	precision-recall	curve	and	ROC	curve.

Figure	4-6.	Results	using	sparse	PCA	and	27	principal	components

As	Figure	4-6	shows,	the	results	are	identical	to	those	of	normal	PCA.	This	is
expected	since	normal	and	sparse	PCA	are	very	similar—the	latter	is	just	a
sparse	representaion	of	the	former.

Using	the	GitHub	code,	you	can	experiment	by	changing	the	number	of	principal
components	generated	and	the	alpha	parameter,	but,	based	on	our
experimentation,	this	is	the	best	sparse	PCA-based	fraud	detection	solution.

Kernel	PCA	Anomaly	Detection
Now	let’s	design	a	fraud	detection	solution	using	kernel	PCA,	which	is	a
nonlinear	form	of	PCA	and	is	useful	if	the	fraud	transactions	are	not	linearly

http://bit.ly/2Gd4v7e

separable	from	the	nonfraud	transactions.

We	need	to	specify	the	number	of	components	we	would	like	to	generate,	the
kernel	(we	will	use	the	RBF	kernel	as	we	did	in	the	previous	chapter),	and	the
gamma	(which	is	set	to	1/n_features	by	default,	so	1/30	in	our	case).	We	also
need	to	set	the	fit_inverse_transform	to	true	to	apply	the	built-in
inverse_transform	function	provided	by	Scikit-Learn.

Finally,	because	kernel	PCA	is	so	expensive	to	train	with,	we	will	train	on	just
the	first	two	thousand	samples	in	the	transactions	dataset.	This	is	not	ideal	but	it
is	necessary	to	perform	experiments	quickly.

We	will	use	this	training	to	transform	the	entire	training	set	and	generate	the
principal	components.	Then,	we	will	use	the	inverse_transform	function	to
recreate	the	original	dimension	from	the	principal	components	derived	by	kernel
PCA:

Kernel PCA
from sklearn.decomposition import KernelPCA

n_components = 27
kernel = 'rbf'
gamma = None
fit_inverse_transform = True
random_state = 2018
n_jobs = 1

kernelPCA = KernelPCA(n_components=n_components, kernel=kernel, \
 gamma=gamma, fit_inverse_transform= \
 fit_inverse_transform, n_jobs=n_jobs, \
 random_state=random_state)

kernelPCA.fit(X_train.iloc[:2000])
X_train_kernelPCA = kernelPCA.transform(X_train)
X_train_kernelPCA = pd.DataFrame(data=X_train_kernelPCA, \
 index=X_train.index)

X_train_kernelPCA_inverse = kernelPCA.inverse_transform(X_train_kernelPCA)
X_train_kernelPCA_inverse = pd.DataFrame(data=X_train_kernelPCA_inverse, \
 index=X_train.index)

scatterPlot(X_train_kernelPCA, y_train, "Kernel PCA")

Figure	4-7	shows	the	scatterplot	for	kernel	PCA.

Figure	4-7.	Separation	of	observations	using	kernel	PCA	and	27	principal	components

Now,	let’s	calculate	the	anomaly	scores	and	print	the	results.

Figure	4-8.	Results	using	kernel	PCA	and	27	principal	components

As	Figure	4-8	shows,	the	results	are	far	worse	than	those	for	normal	PCA	and
sparse	PCA.	While	it	was	worth	experimenting	with	kernel	PCA,	we	will	not	use
this	solution	for	fraud	detection	given	that	we	have	better	performing	solutions
from	earlier.

NOTE
We	will	not	build	an	anomaly	detection	solution	using	SVD	because	the	solution	is	very
similar	to	that	of	normal	PCA.	This	is	expected—PCA	and	SVD	are	closely	related.

Instead,	let’s	move	to	random	projection-based	anomaly	detection.

Gaussian	Random	Projection	Anomaly
Detection
Now,	let’s	try	to	develop	a	fraud	detection	solution	using	Gaussian	random
projection.	Remember	that	we	can	set	either	the	number	of	components	we	want
or	the	eps	parameter,	which	controls	the	quality	of	the	embedding	derived	based
on	the	Johnson–Lindenstrauss	lemma.

We	will	choose	to	explicitly	set	the	number	of	components.	Gaussian	random
projection	trains	very	quickly,	so	we	can	train	on	the	entire	training	set.

As	with	sparse	PCA,	we	will	need	to	derive	our	own	inverse_transform
function	because	none	is	provided	by	Scikit-Learn:

Gaussian Random Projection
from sklearn.random_projection import GaussianRandomProjection

n_components = 27
eps = None
random_state = 2018

GRP = GaussianRandomProjection(n_components=n_components, \
 eps=eps, random_state=random_state)

X_train_GRP = GRP.fit_transform(X_train)
X_train_GRP = pd.DataFrame(data=X_train_GRP, index=X_train.index)

scatterPlot(X_train_GRP, y_train, "Gaussian Random Projection")

Figure	4-9	shows	the	scatterplot	for	Gaussian	random	projection.	Figure	4-10
displays	the	results	for	Gaussian	random	projection.

Figure	4-9.	Separation	of	observations	using	Gaussian	random	projection	and	27	components

Figure	4-10.	Results	using	Gaussian	random	projection	and	27	components

These	results	are	poor,	so	we	won’t	use	Gaussian	random	projection	for	fraud
detection.

Sparse	Random	Projection	Anomaly	Detection
Let’s	try	to	design	a	fraud	detection	solution	using	sparse	random	projection.

We	will	designate	the	number	of	components	we	want	(instead	of	setting	the	eps
parameter).	And,	like	with	Gaussian	random	projection,	we	will	use	our	own
inverse_transform	function	to	create	the	original	dimensions	from	the	sparse
random	projection-derived	components:

Sparse Random Projection

from sklearn.random_projection import SparseRandomProjection

n_components = 27
density = 'auto'
eps = .01
dense_output = True
random_state = 2018

SRP = SparseRandomProjection(n_components=n_components, \
 density=density, eps=eps, dense_output=dense_output, \
 random_state=random_state)

X_train_SRP = SRP.fit_transform(X_train)
X_train_SRP = pd.DataFrame(data=X_train_SRP, index=X_train.index)

scatterPlot(X_train_SRP, y_train, "Sparse Random Projection")

Figure	4-11	shows	the	scatterplot	for	sparse	random	projection.	Figure	4-12
displays	the	results	for	sparse	random	projection.

Figure	4-11.	Separation	of	observations	using	sparse	random	projection	and	27	components

Figure	4-12.	Results	using	sparse	random	projection	and	27	components

As	with	Gaussian	random	projection,	these	results	are	poor.	Let’s	continue	to
build	anomaly	detection	systems	using	other	dimensionality	reduction	methods.

Nonlinear	Anomaly	Detection
So	far,	we	have	developed	fraud	detection	solutions	using	linear	dimensionality
reduction	methods	such	as	normal	PCA,	sparse	PCA,	Gaussian	random
projection,	and	sparse	random	projection.	We	also	developed	a	solution	using	the
nonlinear	version	of	PCA—kernel	PCA.

At	this	point,	PCA	is	by	far	the	best	solution.

We	could	turn	to	nonlinear	dimensionality	reduction	algorithms,	but	the	open

source	versions	of	these	algorithms	run	very	slowly	and	are	not	viable	for	fast
fraud	detection.	Therefore,	we	will	skip	this	and	go	directly	to	nondistance-based
dimensionality	reduction	methods:	dictionary	learning	and	independent
component	analysis.

Dictionary	Learning	Anomaly	Detection
Let’s	use	dictionary	learning	to	develop	a	fraud	detection	solution.	Recall	that,	in
dictionary	learning,	the	algorithm	learns	the	sparse	representation	of	the	original
data.	Using	the	vectors	in	the	learned	dictionary,	each	instance	in	the	original
data	can	be	reconstructed	as	a	weighted	sum	of	these	learned	vectors.

For	anomaly	detection,	we	want	to	learn	an	undercomplete	dictionary	so	that	the
vectors	in	the	dictionary	are	fewer	in	number	than	the	original	dimensions.	With
this	constraint,	it	will	be	easier	to	reconstruct	the	more	frequently	occurring
normal	transactions	and	much	more	difficult	to	construct	the	rarer	fraud
transactions.

In	our	case,	we	will	generate	28	vectors	(or	components).	To	learn	the	dictionary,
we	will	feed	in	10	batches,	where	each	batch	has	200	samples.

We	will	need	to	use	our	own	inverse_transform	function,	too:

Mini-batch dictionary learning
from sklearn.decomposition import MiniBatchDictionaryLearning

n_components = 28
alpha = 1
batch_size = 200
n_iter = 10
random_state = 2018

miniBatchDictLearning = MiniBatchDictionaryLearning(\
 n_components=n_components, alpha=alpha, batch_size=batch_size, \
 n_iter=n_iter, random_state=random_state)

miniBatchDictLearning.fit(X_train)
X_train_miniBatchDictLearning = \
 miniBatchDictLearning.fit_transform(X_train)
X_train_miniBatchDictLearning = \
 pd.DataFrame(data=X_train_miniBatchDictLearning, index=X_train.index)

scatterPlot(X_train_miniBatchDictLearning, y_train, \

 "Mini-batch Dictionary Learning")

Figure	4-13	shows	the	scatterplot	for	dictionary	learning.	Figure	4-14	shows	the
results	for	dictionary	learning.

Figure	4-13.	Separation	of	observations	using	dictionary	learning	and	28	components

Figure	4-14.	Results	using	dictionary	learning	and	28	components

These	results	are	much	better	than	those	for	kernal	PCA,	Gaussian	random
projection,	and	sparse	random	projection	but	are	no	match	for	those	of	normal
PCA.

You	can	experiment	with	the	code	on	GitHub	to	see	if	you	could	improve	on	this
solution,	but,	for	now,	PCA	remains	the	best	fraud	detection	solution	for	this
credit	card	transactions	dataset.

ICA	Anomaly	Detection
Let’s	use	ICA	to	design	our	last	fraud	detection	solution.

We	need	to	specify	the	number	of	components,	which	we	will	set	to	27.	Scikit-

Learn	provides	an	inverse_transform	function	so	we	do	not	need	to	use	our
own:

Independent Component Analysis

from sklearn.decomposition import FastICA

n_components = 27
algorithm = 'parallel'
whiten = True
max_iter = 200
random_state = 2018

fastICA = FastICA(n_components=n_components, \
 algorithm=algorithm, whiten=whiten, max_iter=max_iter, \
 random_state=random_state)

X_train_fastICA = fastICA.fit_transform(X_train)
X_train_fastICA = pd.DataFrame(data=X_train_fastICA, index=X_train.index)

X_train_fastICA_inverse = fastICA.inverse_transform(X_train_fastICA)
X_train_fastICA_inverse = pd.DataFrame(data=X_train_fastICA_inverse, \
 index=X_train.index)

scatterPlot(X_train_fastICA, y_train, "Independent Component Analysis")

Figure	4-15	shows	the	scatterplot	for	ICA.	Figure	4-16	shows	the	results	for
ICA.

Figure	4-15.	Separation	of	observations	using	ICA	and	27	components

Figure	4-16.	Results	using	ICA	and	27	components

These	results	are	identical	to	those	of	normal	PCA.	The	fraud	detection	solution
using	ICA	matches	the	best	solution	we’ve	developed	so	far.

Fraud	Detection	on	the	Test	Set
Now,	to	evaluate	our	fraud	detection	solutions,	let’s	apply	them	to	the	never-
before-seen	test	set.	We	will	do	this	for	the	top	three	solutions	we’ve	developed:
normal	PCA,	ICA,	and	dictionary	learning.	We	will	not	use	sparse	PCA	because
it	is	very	similar	to	the	normal	PCA	solution.

Normal	PCA	Anomaly	Detection	on	the	Test	Set

Let’s	start	with	normal	PCA.	We	will	use	the	PCA	embedding	that	the	PCA
algorithm	learned	from	the	training	set	and	use	this	to	transform	the	test	set.	We
will	then	use	the	Scikit-Learn	inverse_transform	function	to	recreate	the
original	dimensions	from	the	principal	components	matrix	of	the	test	set.

By	comparing	the	original	test	set	matrix	with	the	newly	reconstructed	one,	we
can	calculate	the	anomaly	scores	(as	we’ve	done	many	times	before	in	this
chapter):

PCA on Test Set
X_test_PCA = pca.transform(X_test)
X_test_PCA = pd.DataFrame(data=X_test_PCA, index=X_test.index)

X_test_PCA_inverse = pca.inverse_transform(X_test_PCA)
X_test_PCA_inverse = pd.DataFrame(data=X_test_PCA_inverse, \
 index=X_test.index)

scatterPlot(X_test_PCA, y_test, "PCA")

Figure	4-17	shows	the	scatterplot	for	PCA	on	the	test	set.	Figure	4-18	displays
the	results	for	PCA	on	the	test	set.

Figure	4-17.	Separation	of	observations	using	PCA	and	27	components	on	the	test	set

Figure	4-18.	Results	using	PCA	and	27	components	on	the	test	set

These	are	impressive	results.	We	are	able	to	catch	80%	of	the	known	fraud	in	the
test	set	with	an	80%	precision—all	without	using	any	labels.

ICA	Anomaly	Detection	on	the	Test	Set
Let’s	now	move	to	ICA	and	perform	fraud	detection	on	the	test	set:

Independent Component Analysis on Test Set
X_test_fastICA = fastICA.transform(X_test)
X_test_fastICA = pd.DataFrame(data=X_test_fastICA, index=X_test.index)

X_test_fastICA_inverse = fastICA.inverse_transform(X_test_fastICA)
X_test_fastICA_inverse = pd.DataFrame(data=X_test_fastICA_inverse, \
 index=X_test.index)

scatterPlot(X_test_fastICA, y_test, "Independent Component Analysis")

Figure	4-19	shows	the	scatterplot	for	ICA	on	the	test	set.	Figure	4-20	shows	the
results	for	ICA	on	the	test	set.

Figure	4-19.	Separation	of	observations	using	ICA	and	27	components	on	the	test	set

Figure	4-20.	Results	using	ICA	and	27	components	on	the	test	set

The	results	are	identical	to	normal	PCA	and	thus	quite	impressive.

Dictionary	Learning	Anomaly	Detection	on	the	Test	Set
Let’s	now	turn	to	dictionary	learning,	which	did	not	perform	as	well	as	normal
PCA	and	ICA	but	is	worth	a	final	look:

X_test_miniBatchDictLearning = miniBatchDictLearning.transform(X_test)
X_test_miniBatchDictLearning = \
 pd.DataFrame(data=X_test_miniBatchDictLearning, index=X_test.index)

scatterPlot(X_test_miniBatchDictLearning, y_test, \
 "Mini-batch Dictionary Learning")

Figure	4-21	shows	the	scatterplot	for	dictionary	learning	on	the	test	set.	Figure	4-
22	displays	the	results	for	dictionary	learning	on	the	test	set.

Figure	4-21.	Separation	of	observations	using	dictionary	learning	and	28	components	on	the	test	set

Figure	4-22.	Results	using	dictionary	learning	and	28	components	on	the	test	set

While	the	results	are	not	terrible—we	can	catch	80%	of	the	fraud	with	a	20%
precision—they	fall	far	short	of	the	results	from	normal	PCA	and	ICA.

Conclusion
In	this	chapter,	we	used	the	core	dimensionality	reduction	algorithms	from	the
previous	chapter	to	develop	fraud	detection	solutions	for	the	credit	card
transactions	dataset	from	Chapter	2.

In	Chapter	2	we	used	labels	to	build	a	fraud	detection	solution,	but	we	did	not
use	any	labels	during	the	training	process	in	this	chapter.	In	other	words,	we	built
an	applied	fraud	detection	system	using	unsupervised	learning.

While	not	all	the	dimensionality	reduction	algorithms	performed	well	on	this
credit	card	transactions	dataset,	two	performed	remarkably	well—normal	PCA
and	ICA.

Normal	PCA	and	ICA	caught	over	80%	of	the	known	fraud	with	an	80%
precision.	By	comparison,	the	best-performing	supervised	learning-based	fraud
detection	system	from	Chapter	2	caught	nearly	90%	of	the	known	fraud	with	an
80%	precision.	The	unsupervised	fraud	detection	system	is	only	marginally
worse	than	the	supervised	system	at	catching	known	patterns	of	fraud.

Recall	that	unsupervised	fraud	detection	systems	require	no	labels	for	training,
adapt	well	to	changing	fraud	patterns,	and	can	catch	fraud	that	had	gone
previously	undiscovered.	Given	these	additional	advantages,	the	unsupervised
learning-based	solution	will	generally	perform	better	than	the	supervised
learning-based	solution	at	catching	known	and	unknown	or	newly	emerging
patterns	of	fraud	in	the	future,	although	using	both	in	tandem	is	best.

Now	that	we’ve	covered	dimensionality	reduction	and	anomaly	detection,	let’s
explore	clustering,	another	major	concept	in	the	field	of	unsupervised	learning.

Chapter	5.	Clustering

In	Chapter	3,	we	introduced	the	most	important	dimensionality	reduction
algorithms	in	unsupervised	learning	and	highlighted	their	ability	to	densely
capture	information.	In	Chapter	4,	we	used	the	dimensionality	reduction
algorithms	to	build	an	anomaly	detection	system.	Specifically,	we	applied	these
algorithms	to	detect	credit	card	fraud	without	using	any	labels.	These	algorithms
learned	the	underlying	structure	in	the	credit	card	transactions.	Then,	we
separated	the	normal	transactions	from	the	rare,	potentially	fraudulent	ones
based	on	the	reconstruction	error.

In	this	chapter,	we	will	build	on	these	unsupervised	learning	concepts	by
introducing	clustering,	which	attempts	to	group	objects	together	based	on
similarity.	Clustering	achieves	this	without	using	any	labels,	comparing	how
similar	the	data	for	one	observation	is	to	data	for	other	observations	and	groups.

Clustering	has	many	applications.	For	example,	in	credit	card	fraud	detection,
clustering	can	group	fraudulent	transactions	together,	separating	them	from
normal	transactions.	Or,	if	we	had	only	a	few	labels	for	the	observations	in	our
dataset,	we	could	use	clustering	to	group	the	observations	first	(without	using
labels).	Then,	we	could	transfer	the	labels	of	the	few	labeled	observations	to	the
rest	of	the	observations	within	the	same	group.	This	is	a	form	of	transfer
learning,	a	rapidly	growing	field	in	machine	learning.

In	areas	such	as	online	and	retail	shopping,	marketing,	social	media,
recommender	systems	for	movies,	music,	books,	dating,	etc.,	clustering	can
group	similar	people	together	based	on	their	behavior.	Once	these	groups	are
established,	business	users	will	have	better	insight	into	their	user	base	and	can
craft	targeted	business	strategies	for	each	of	the	distinct	groups.

As	we	did	with	dimensionality	reduction,	let’s	introduce	the	concepts	first	in	this
chapter,	and	then	we	will	build	an	applied	unsupervised	learning	solution	in	the
next	chapter.

MNIST	Digits	Dataset

To	keep	things	simple,	we	will	continue	to	work	with	the	MNIST	image	dataset
of	digits	that	we	introduced	in	Chapter	3.

Data	Preparation
Let’s	first	load	the	necessary	libraries:

Import libraries
'''Main'''
import numpy as np
import pandas as pd
import os, time
import pickle, gzip

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score

Next,	let’s	load	the	dataset	and	create	Pandas	DataFrames:

Load the datasets
current_path = os.getcwd()
file = '\\datasets\\mnist_data\\mnist.pkl.gz'

f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test_set = pickle.load(f, encoding='latin1')
f.close()

X_train, y_train = train_set[0], train_set[1]
X_validation, y_validation = validation_set[0], validation_set[1]
X_test, y_test = test_set[0], test_set[1]

Create Pandas DataFrames from the datasets
train_index = range(0,len(X_train))
validation_index = range(len(X_train), \
 len(X_train)+len(X_validation))

test_index = range(len(X_train)+len(X_validation), \
 len(X_train)+len(X_validation)+len(X_test))

X_train = pd.DataFrame(data=X_train,index=train_index)
y_train = pd.Series(data=y_train,index=train_index)

X_validation = pd.DataFrame(data=X_validation,index=validation_index)
y_validation = pd.Series(data=y_validation,index=validation_index)

X_test = pd.DataFrame(data=X_test,index=test_index)
y_test = pd.Series(data=y_test,index=test_index)

Clustering	Algorithms
Before	we	perform	clustering,	we	will	reduce	the	dimensionality	of	the	data
using	PCA.	As	shown	in	Chapter	3,	dimensionality	reduction	algorithms	capture
the	salient	information	in	the	original	data	while	reducing	the	size	of	the	dataset.

As	we	move	from	a	high	number	of	dimensions	to	a	lower	number,	the	noise	in
the	dataset	is	minimized	because	the	dimensionality	reduction	algorithm	(PCA,
in	this	case)	needs	to	capture	the	most	important	aspects	of	the	original	data	and
cannot	devote	attention	to	infrequently	occurring	elements	(such	as	the	noise	in
the	dataset).

Recall	that	dimensionality	reduction	algorithms	are	very	powerful	in	learning	the
underlying	structure	in	data.	In	Chapter	3,	we	showed	that	it	was	possible	to
meaningfully	separate	the	MNIST	images	based	on	the	digits	they	displayed
using	just	two	dimensions	after	dimensionality	reduction.

Let’s	apply	PCA	to	the	MNIST	dataset	again:

Principal Component Analysis
from sklearn.decomposition import PCA

n_components = 784
whiten = False
random_state = 2018

pca = PCA(n_components=n_components, whiten=whiten, \
 random_state=random_state)

X_train_PCA = pca.fit_transform(X_train)
X_train_PCA = pd.DataFrame(data=X_train_PCA, index=train_index)

Although	we	did	not	reduce	the	dimensionality,	we	will	designate	the	number	of
principal	components	we	will	use	during	the	clustering	stage,	effectively
reducing	the	dimensionality.

Now	let’s	move	to	clustering.	The	three	major	clustering	algorithms	are	k-means,
hierarchical	clustering,	and	DBSCAN.	We	will	introduce	and	explore	each	now.

k-Means
The	objective	of	clustering	is	to	identify	distinct	groups	in	a	dataset	such	that	the
observations	within	a	group	are	similar	to	each	other	but	different	from
observations	in	other	groups.	In	k-means	clustering,	we	specify	the	number	of
desired	clusters	k,	and	the	algorithm	will	assign	each	observation	to	exactly	one
of	these	k	clusters.	The	algorithm	optimizes	the	groups	by	minimizing	the
within-cluster	variation	(also	known	as	inertia)	such	that	the	sum	of	the	within-
cluster	variations	across	all	k	clusters	is	as	small	as	possible.

Different	runs	of	k-means	will	result	in	slightly	different	cluster	assignments
because	k-means	randomly	assigns	each	observation	to	one	of	the	k	clusters	to
kick	off	the	clustering	process.	k-means	does	this	random	initialization	to	speed
up	the	clustering	process.	After	this	random	initialization,	k-means	reassigns	the
observations	to	different	clusters	as	it	attempts	to	minimize	the	Euclidean
distance	between	each	observation	and	its	cluster’s	center	point,	or	centroid.
This	random	initialization	is	a	source	of	randomness,	resulting	in	slightly
different	clustering	assignments,	from	one	k-means	run	to	another.

Typically,	the	k-means	algorithm	does	several	runs	and	chooses	the	run	that	has
the	best	separation,	defined	as	the	lowest	total	sum	of	within-cluster	variations
across	all	k	clusters.

k-Means	Inertia
Let’s	introduce	the	algorithm.	We	need	to	set	the	number	of	clusters	we	would
like	(n_clusters),	the	number	of	initializations	we	would	like	to	perform
(n_init),	the	maximum	number	of	iterations	the	algorithm	will	run	to	reassign
observations	to	minimize	inertia	(max_iter),	and	the	tolerance	to	declare
convergence	(tol).

We	will	keep	the	default	values	for	number	of	initializations	(10),	maximum
number	of	iterations	(300),	and	tolerance	(0.0001).	Also,	for	now,	we	will	use
the	first	100	principal	components	from	PCA	(cutoff).	To	test	how	the	number
of	clusters	we	designate	affects	the	inertia	measure,	let’s	run	k-means	for	cluster
sizes	2	through	20	and	record	the	inertia	for	each.

Here	is	the	code:

k-means - Inertia as the number of clusters varies
from sklearn.cluster import KMeans

n_clusters = 10
n_init = 10
max_iter = 300
tol = 0.0001
random_state = 2018
n_jobs = 2

kMeans_inertia = pd.DataFrame(data=[],index=range(2,21), \
 columns=['inertia'])
for n_clusters in range(2,21):
 kmeans = KMeans(n_clusters=n_clusters, n_init=n_init, \
 max_iter=max_iter, tol=tol, random_state=random_state, \
 n_jobs=n_jobs)

 cutoff = 99
 kmeans.fit(X_train_PCA.loc[:,0:cutoff])
 kMeans_inertia.loc[n_clusters] = kmeans.inertia_

As	Figure	5-1	shows,	the	inertia	decreases	as	the	number	of	clusters	increases.
This	makes	sense.	The	more	clusters	we	have,	the	greater	the	homogeneity
among	observations	within	each	cluster.	However,	fewer	clusters	are	easier	to
work	with	than	more,	so	finding	the	right	number	of	clusters	to	generate	is	an
important	consideration	when	running	k-means.

Figure	5-1.	k-means	inertia	for	cluster	sizes	2	through	20

Evaluating	the	Clustering	Results
To	demonstrate	how	k-means	works	and	how	increasing	the	number	of	clusters
results	in	more	homogeneous	clusters,	let’s	define	a	function	to	analyze	the
results	of	each	experiment	we	do.	The	cluster	assignments—generated	by	the
clustering	algorithm—will	be	stored	in	a	Pandas	DataFrame	called	clusterDF.

Let’s	count	the	number	of	observations	in	each	cluster	and	store	these	in	a
Pandas	DataFrame	called	countByCluster:

def analyzeCluster(clusterDF, labelsDF):
 countByCluster = \
 pd.DataFrame(data=clusterDF['cluster'].value_counts())
 countByCluster.reset_index(inplace=True,drop=False)
 countByCluster.columns = ['cluster','clusterCount']

Next,	let’s	join	the	clusterDF	with	the	true	labels	array,	which	we	will	call
labelsDF:

 preds = pd.concat([labelsDF,clusterDF], axis=1)
 preds.columns = ['trueLabel','cluster']

Let’s	also	count	the	number	of	observations	for	each	true	label	in	the	training	set
(this	won’t	change	but	is	good	for	us	to	know):

 countByLabel = pd.DataFrame(data=preds.groupby('trueLabel').count())

Now,	for	each	cluster,	we	will	count	the	number	of	observations	for	each	distinct
label	within	a	cluster.	For	example,	if	a	given	cluster	has	three	thousand
observations,	two	thousand	may	represent	the	number	two,	five	hundred	may
represent	the	number	one,	three	hundred	may	represent	the	number	zero,	and	the
remaining	two	hundred	may	represent	the	number	nine.

Once	we	calculate	these,	we	will	store	the	count	for	the	most	frequently
occurring	number	for	each	cluster.	In	the	example	above,	we	would	store	a	count
of	two	thousand	for	this	cluster:

 countMostFreq = \
 pd.DataFrame(data=preds.groupby('cluster').agg(\
 lambda x:x.value_counts().iloc[0]))
 countMostFreq.reset_index(inplace=True,drop=False)
 countMostFreq.columns = ['cluster','countMostFrequent']

Finally,	we	will	judge	the	success	of	each	clustering	run	based	on	how	tightly
grouped	the	observations	are	within	each	cluster.	For	example,	in	the	example
above,	the	cluster	has	two	thousand	observations	that	have	the	same	label	out	of
a	total	of	three	thousand	observations	in	the	cluster.

This	cluster	is	not	great	since	we	ideally	want	to	group	similar	observations
together	in	the	same	cluster	and	exclude	dissimilar	ones.

Let’s	define	the	overall	accuracy	of	the	clustering	as	the	sum	of	the	counts	of	the
most	frequently	occuring	observations	across	all	the	clusters	divided	by	the	total
number	of	observations	in	the	training	set	(i.e.,	50,000):

 accuracyDF = countMostFreq.merge(countByCluster, \
 left_on="cluster",right_on="cluster")
 overallAccuracy = accuracyDF.countMostFrequent.sum()/ \
 accuracyDF.clusterCount.sum()

We	can	also	assess	the	accuracy	by	cluster:

 accuracyByLabel = accuracyDF.countMostFrequent/ \
 accuracyDF.clusterCount

For	the	sake	of	conciseness,	we	have	all	this	code	in	a	single	function,	available
on	GitHub.

http://bit.ly/2Gd4v7e

k-Means	Accuracy
Let’s	now	perform	the	experiments	we	did	earlier,	but	instead	of	calculating
inertia,	we	will	calculate	the	overall	homogeneity	of	the	clusters	based	on	the
accuracy	measure	we’ve	defined	for	this	MNIST	digits	dataset:

k-means - Accuracy as the number of clusters varies

n_clusters = 5
n_init = 10
max_iter = 300
tol = 0.0001
random_state = 2018
n_jobs = 2

kMeans_inertia = \
 pd.DataFrame(data=[],index=range(2,21),columns=['inertia'])
overallAccuracy_kMeansDF = \
 pd.DataFrame(data=[],index=range(2,21),columns=['overallAccuracy'])

for n_clusters in range(2,21):
 kmeans = KMeans(n_clusters=n_clusters, n_init=n_init, \
 max_iter=max_iter, tol=tol, random_state=random_state, \
 n_jobs=n_jobs)

 cutoff = 99
 kmeans.fit(X_train_PCA.loc[:,0:cutoff])
 kMeans_inertia.loc[n_clusters] = kmeans.inertia_
 X_train_kmeansClustered = kmeans.predict(X_train_PCA.loc[:,0:cutoff])
 X_train_kmeansClustered = \
 pd.DataFrame(data=X_train_kmeansClustered, index=X_train.index, \
 columns=['cluster'])

 countByCluster_kMeans, countByLabel_kMeans, countMostFreq_kMeans, \
 accuracyDF_kMeans, overallAccuracy_kMeans, accuracyByLabel_kMeans \
 = analyzeCluster(X_train_kmeansClustered, y_train)

 overallAccuracy_kMeansDF.loc[n_clusters] = overallAccuracy_kMeans

Figure	5-2	shows	the	plot	of	the	overall	accuracy	for	different	cluster	sizes.

Figure	5-2.	k-means	accuracy	for	cluster	sizes	2	through	20

As	Figure	5-2	shows,	the	accuracy	improves	as	the	number	of	clusters	increases.
In	other	words,	clusters	become	more	homogeneous	as	we	increase	the	number
of	clusters	because	each	cluster	becomes	smaller	and	more	tightly	formed.

Accuracy	by	cluster	varies	quite	a	bit,	with	some	clusters	exhibiting	a	high
degree	of	homogeneity	and	others	exhibiting	less.	For	example,	in	some	clusters,
over	90%	of	the	images	have	the	same	digit;	in	other	clusters,	less	than	50%	of
the	images	have	the	same	digit:

0 0.636506
1 0.928505
2 0.848714
3 0.521805
4 0.714337
5 0.950980
6 0.893103
7 0.919040
8 0.404707
9 0.500522
10 0.381526
11 0.587680
12 0.463382
13 0.958046
14 0.870888
15 0.942325
16 0.791192
17 0.843972
18 0.455679
19 0.926480
dtype: float64

k-Means	and	the	Number	of	Principal	Components
Let’s	perform	yet	another	experiment—this	time,	let’s	assess	how	varying	the
number	of	principal	components	we	use	in	the	clustering	algorithm	impacts	the
homogeneity	of	the	clusters	(defined	as	accuracy).

In	the	experiments	earlier,	we	used	one	hundred	principal	components,	derived
from	normal	PCA.	Recall	that	the	original	number	of	dimensions	for	the	MNIST
digits	dataset	is	784.	If	PCA	does	a	good	job	of	capturing	the	underlying
structure	in	the	data	as	compactly	as	possible,	the	clustering	algorithm	will	have
an	easy	time	grouping	similar	images	together,	regardless	of	whether	the
clustering	happens	on	just	a	fraction	of	the	principal	components	or	many	more.
In	other	words,	clustering	should	perform	just	as	well	using	10	or	50	principal
components	as	it	does	using	one	hundred	or	several	hundred	principal
components.

Let’s	test	this	hypothesis.	We	will	pass	along	10,	50,	100,	200,	300,	400,	500,
600,	700,	and	784	principal	components	and	gauge	the	accuracy	of	each
clustering	experiment.	We	will	then	plot	these	results	to	see	how	varying	the
number	of	principal	components	affects	the	clustering	accuracy:

k-means - Accuracy as the number of components varies

n_clusters = 20
n_init = 10
max_iter = 300
tol = 0.0001
random_state = 2018
n_jobs = 2

kMeans_inertia = pd.DataFrame(data=[],index=[9, 49, 99, 199, \
 299, 399, 499, 599, 699, 784],columns=['inertia'])

overallAccuracy_kMeansDF = pd.DataFrame(data=[],index=[9, 49, \
 99, 199, 299, 399, 499, 599, 699, 784], \
 columns=['overallAccuracy'])

for cutoffNumber in [9, 49, 99, 199, 299, 399, 499, 599, 699, 784]:
 kmeans = KMeans(n_clusters=n_clusters, n_init=n_init, \
 max_iter=max_iter, tol=tol, random_state=random_state, \
 n_jobs=n_jobs)

 cutoff = cutoffNumber
 kmeans.fit(X_train_PCA.loc[:,0:cutoff])

 kMeans_inertia.loc[cutoff] = kmeans.inertia_
 X_train_kmeansClustered = kmeans.predict(X_train_PCA.loc[:,0:cutoff])
 X_train_kmeansClustered = pd.DataFrame(data=X_train_kmeansClustered, \
 index=X_train.index, columns=['cluster'])

 countByCluster_kMeans, countByLabel_kMeans, countMostFreq_kMeans, \
 accuracyDF_kMeans, overallAccuracy_kMeans, accuracyByLabel_kMeans \
 = analyzeCluster(X_train_kmeansClustered, y_train)

 overallAccuracy_kMeansDF.loc[cutoff] = overallAccuracy_kMeans

Figure	5-3	shows	the	plot	of	the	clustering	accuracy	for	the	different	number	of
principal	components.

Figure	5-3.	k-means	clustering	accuracy	with	varying	number	of	principal	components

This	plot	supports	our	hypothesis.	As	the	number	of	principal	components	varies
from	10	to	784,	the	clustering	accuracy	remains	stable	and	consistent	around
70%.	This	is	one	reason	why	clustering	should	be	performed	on	dimensionality-
reduced	datasets—the	clustering	algorithms	generally	perform	better,	both	in
terms	of	time	and	clustering	accuracy,	on	dimensionality-reduced	datasets.

In	our	case,	for	the	MNIST	dataset,	the	original	784	dimensions	are	manageable
for	a	clustering	algorithm,	but	imagine	if	the	original	dataset	were	thousands	or
millions	of	dimensions	large.	The	case	for	reducing	the	dimensionality	before
performing	clustering	is	even	stronger	in	such	a	scenario.

k-Means	on	the	Original	Dataset
To	make	this	point	clearer,	let’s	perform	clustering	on	the	original	dataset	and
measure	how	varying	the	number	of	dimensions	we	pass	into	the	clustering

algorithm	affects	clustering	accuracy.

For	the	PCA-reduced	dataset	in	the	previous	section,	varying	the	number	of
principal	components	that	we	passed	into	the	clustering	algorithm	did	not	affect
the	clustering	accuracy,	which	remained	stable	and	consistent	at	approximately
70%.	Is	this	true	for	the	original	dataset,	too?

k-means - Accuracy as the number of components varies
On the original MNIST data (not PCA-reduced)

n_clusters = 20
n_init = 10
max_iter = 300
tol = 0.0001
random_state = 2018
n_jobs = 2

kMeans_inertia = pd.DataFrame(data=[],index=[9, 49, 99, 199, \
 299, 399, 499, 599, 699, 784],columns=['inertia'])

overallAccuracy_kMeansDF = pd.DataFrame(data=[],index=[9, 49, \
 99, 199, 299, 399, 499, 599, 699, 784], \
 columns=['overallAccuracy'])

for cutoffNumber in [9, 49, 99, 199, 299, 399, 499, 599, 699, 784]:
 kmeans = KMeans(n_clusters=n_clusters, n_init=n_init, \
 max_iter=max_iter, tol=tol, random_state=random_state, \
 n_jobs=n_jobs)

 cutoff = cutoffNumber
 kmeans.fit(X_train.loc[:,0:cutoff])
 kMeans_inertia.loc[cutoff] = kmeans.inertia_
 X_train_kmeansClustered = kmeans.predict(X_train.loc[:,0:cutoff])
 X_train_kmeansClustered = pd.DataFrame(data=X_train_kmeansClustered, \
 index=X_train.index, columns=['cluster'])

 countByCluster_kMeans, countByLabel_kMeans, countMostFreq_kMeans, \
 accuracyDF_kMeans, overallAccuracy_kMeans, accuracyByLabel_kMeans \
 = analyzeCluster(X_train_kmeansClustered, y_train)

 overallAccuracy_kMeansDF.loc[cutoff] = overallAccuracy_kMeans

Figure	5-4	plots	the	clustering	accuracy	at	the	different	original	dimensions.

Figure	5-4.	k-means	clustering	accuracy	with	varying	number	of	original	dimensions

As	the	plot	shows,	clustering	accuracy	is	very	poor	at	lower	dimensions	but
improves	to	nearly	70%	only	as	the	number	of	dimensions	climbs	to	six	hundred
dimensions.

In	the	PCA	case,	clustering	accuracy	was	approximately	70%	even	at	10
dimensions,	demonstrating	the	power	of	dimensionality	reduction	to	densely
capture	salient	information	in	the	original	dataset.

Hierarchical	Clustering
Let’s	move	to	a	second	clustering	approach	called	hierarchical	clustering.	This
approach	does	not	require	us	to	precommit	to	a	particular	number	of	clusters.
Instead,	we	can	choose	how	many	clusters	we	would	like	after	hierarchical
clustering	has	finished	running.

Using	the	observations	in	our	dataset,	the	hierarchical	clustering	algorithm	will
build	a	dendrogram,	which	can	be	depicted	as	an	upside-down	tree	where	the
leaves	are	at	the	bottom	and	the	tree	trunk	is	at	the	top.

The	leaves	at	the	very	bottom	are	individual	instances	in	the	dataset.
Hierarchical	clustering	then	joins	the	leaves	together—as	we	move	vertically	up
the	upside-down	tree—based	on	how	similar	they	are	to	each	other.	The
instances	(or	groups	of	instances)	that	are	most	similar	to	each	other	are	joined
sooner,	while	the	instances	that	are	not	as	similar	are	joined	later.

With	this	iterative	process,	all	the	instances	are	eventually	linked	together
forming	the	single	trunk	of	the	tree.

This	vertical	depiction	is	very	helpful.	Once	the	hierarchical	clustering	algorithm
has	finished	running,	we	can	view	the	dendrogram	and	determine	where	we	want
to	cut	the	tree—the	lower	we	cut,	the	more	individual	branches	we	are	left	with
(i.e.,	more	clusters).	If	we	want	fewer	clusters,	we	can	cut	higher	on	the
dendrogram,	closer	to	the	single	trunk	at	the	very	top	of	this	upside-down	tree.

The	placement	of	this	vertical	cut	is	similar	to	choosing	the	number	of	k	clusters
in	the	k-means	clustering	algorithm.

Agglomerative	Hierarchical	Clustering
The	version	of	hierarchical	clustering	we	will	explore	is	called	agglomerative
clustering.	Although	Scikit-Learn	has	a	library	for	this,	it	performs	very	slowly.
Instead,	we	will	choose	to	use	another	version	of	hierarchical	clustering	called
fastcluster.	This	package	is	a	C++	library	with	an	interface	in	Python/SciPy.

The	main	function	that	we	will	use	in	this	package	is
fastcluster.linkage_vector.	This	requires	several	arguments,	including	the
training	matrix	X,	the	method,	and	the	metric.	The	method—which	can	be	set	to
single,	centroid,	median,	or	ward—specifies	which	clustering	scheme	to	use
to	determine	the	distance	from	a	new	node	in	the	dendrogram	to	the	other	nodes.
The	metric	should	be	set	to	euclidean	in	most	cases,	and	it	is	required	to	be
euclidean	if	the	method	is	centroid,	median,	or	ward.	For	more	on	these
arguments,	refer	to	the	fastcluster	documentation.

Let’s	set	up	the	hierarchical	clustering	algorithm	for	our	data.	As	before,	we	will
train	the	algorithm	on	the	first	one	hundred	principal	components	from	the	PCA-
reduced	MNIST	image	dataset.	We	will	set	the	method	to	ward	(which
performed	the	best,	by	far,	in	the	experimentation),	and	the	metric	to	euclidean.

Ward	stands	for	Ward’s	minimum	variance	method.	You	can	learn	more	about
this	method	online.	Ward	is	a	good	default	choice	to	use	in	hierarchical
clustering,	but,	as	always,	it	is	best	to	experiment	on	your	specific	datasets	in
practice.

import fastcluster
from scipy.cluster.hierarchy import dendrogram, cophenet
from scipy.spatial.distance import pdist

1

http://bit.ly/2WwOJK5

cutoff = 100
Z = fastcluster.linkage_vector(X_train_PCA.loc[:,0:cutoff], \
 method='ward', metric='euclidean')
Z_dataFrame = pd.DataFrame(data=Z, \
 columns=['clusterOne','clusterTwo','distance','newClusterSize'])

The	hierarchical	clustering	algorithm	will	return	a	matrix	Z.	The	algorithm	treats
each	observation	in	our	50,000	MNIST	digits	dataset	as	a	single-point	cluster,
and,	in	each	iteration	of	training,	the	algorithm	will	merge	the	two	clusters	that
have	the	smallest	distance	between	them.

Initially,	the	algorithm	is	just	merging	single-point	clusters	together,	but	as	it
proceeds,	it	will	merge	multipoint	clusters	with	either	single-point	or	multipoint
clusters.	Eventually,	through	this	iterative	process,	all	the	clusters	are	merged
together,	forming	the	trunk	in	the	upside-down	tree	(dendrogram).

The	Dendrogram
Table	5-1	shows	the	Z	matrix	that	was	generated	by	the	clustering	algorithm,
showing	what	the	algorithm	can	accomplish.

Table	5-1.	First	few	rows	of	Z	matrix	of
hierarchical	clustering

clusterOne clusterTwo distance newClusterSize

0 42194.0 43025.0 0.562682 2.0

1 28350.0 37674.0 0.590866 2.0

2 26696.0 44705.0 0.621506 2.0

3 12634.0 32823.0 0.627762 2.0

4 24707.0 43151.0 0.637668 2.0

5 20465.0 24483.0 0.662557 2.0

6 466.0 42098.0 0.664189 2.0

7 46542.0 49961.0 0.665520 2.0

8 2301.0 5732.0 0.671215 2.0

9 37564.0 47668.0 0.675121 2.0

10 3375.0 26243.0 0.685797 2.0

11 15722.0 30368.0 0.686356 2.0

12 21247.0 21575.0 0.694412 2.0

13 14900.0 42486.0 0.696769 2.0

14 30100.0 41908.0 0.699261 2.0

15 12040.0 13254.0 0.701134 2.0

16 10508.0 25434.0 0.708872 2.0

17 30695.0 30757.0 0.710023 2.0

18 31019.0 31033.0 0.712052 2.0

19 36264.0 37285.0 0.713130 2.0

The	first	two	columns	in	this	table,	clusterOne	and	clusterTwo,	list	which	two
clusters—could	be	single-point	clusters	(i.e.,	the	original	observations)	or
multipoint	clusters—are	being	merged	given	their	distance	relative	to	each	other.
The	third	column,	distance,	displays	this	distance,	which	was	determined	by
the	Ward	method	and	euclidean	metric	that	we	passed	into	the	clustering
algorithm.

As	you	can	see,	the	distance	is	monotonically	increasing.	In	other	words,	the
shortest-distance	clusters	are	merged	first,	and	the	algorithm	iteratively	merges
the	next	shortest-distance	clusters	until	all	the	points	have	been	joined	into	a
single	cluster	at	the	top	of	the	dendrogram.

Initially,	the	algorithm	merges	single-point	clusters	together,	forming	new
clusters	with	a	size	of	two,	as	shown	in	the	fourth	column,	newClusterSize.
However,	as	we	get	much	further	along,	the	algorithm	joins	large	multipoint
clusters	with	other	large	multipoint	clusters,	as	shown	in	Table	5-2.	At	the	very
last	iteration	(49,998),	two	large	clusters	are	joined	together,	forming	a	single
cluster—the	top	tree	trunk—with	all	50,000	original	observations.

Table	5-2.	Last	few	rows	of	Z	matrix	of	hierarchical

clustering

clusterOne clusterTwo distance newClusterSize

49980 99965.0 99972.0 161.106998 5197.0

49981 99932.0 99980.0 172.070003 6505.0

49982 99945.0 99960.0 182.840860 3245.0

49983 99964.0 99976.0 184.475761 3683.0

49984 99974.0 99979.0 185.027847 7744.0

49985 99940.0 99975.0 185.345207 5596.0

49986 99957.0 99967.0 211.854714 5957.0

49987 99938.0 99983.0 215.494857 4846.0

49988 99978.0 99984.0 216.760365 11072.0

49989 99970.0 99973.0 217.355871 4899.0

49990 99969.0 99986.0 225.468298 8270.0

49991 99981.0 99982.0 238.845135 9750.0

49992 99968.0 99977.0 266.146782 5567.0

49993 99985.0 99989.0 270.929453 10495.0

49994 99990.0 99991.0 346.840948 18020.0

49995 99988.0 99993.0 394.365194 21567.0

49996 99987.0 99995.0 425.142387 26413.0

49997 99992.0 99994.0 440.148301 23587.0

49998 99996.0 99997.0 494.383855 50000.0

You	may	be	a	bit	confused	by	the	clusterOne	and	clusterTwo	entries	in	this
table.	For	example,	in	the	last	row—49,998—cluster	99,996	is	joined	with
cluster	99,997.	But	as	you	know,	there	are	only	50,000	observations	in	the
MNIST	digits	dataset.

clusterOne	and	clusterTwo	refer	to	the	original	observations	for	numbers	0
through	49,999.	For	numbers	above	49,999,	the	cluster	numbers	refer	to
previously	clustered	points.	For	example,	50,000	refers	to	the	newly	formed
cluster	in	row	0,	50,001	refers	to	the	newly	formed	cluster	in	row	1,	etc.

In	row	49,998,	clusterOne,	99,996	refers	to	the	cluster	formed	in	row	49,996,
and	clusterTwo,	99,997,	refers	to	the	cluster	formed	in	row	49,997.	You	can
continue	to	work	your	way	through	this	table	using	this	formula	to	see	how	the
clusters	are	being	joined.

Evaluating	the	Clustering	Results
Now	that	we	have	the	dendrogram	in	place,	let’s	determine	where	to	cut	off	the
dendrogram	to	make	the	number	of	clusters	we	desire.	To	more	easily	compare
hierarchical	clustering	results	with	those	of	k-means,	let’s	cut	the	dendrogram	to
have	exactly	20	clusters.	We	will	then	use	the	clustering	accuracy	metric—
defined	in	the	k-means section—to	judge	how	homogenous	the	hierarchical
clustering	clusters	are.

To	create	the	clusters	we	desire	from	the	dendrogram,	let’s	pull	in	the	fcluster
library	from	SciPy.	We	need	to	specify	the	distance	threshold	of	the	dendrogram
to	determine	how	many	distinct	clusters	we	are	left	with.	The	larger	the	distance
threshold,	the	fewer	clusters	we	will	have.	Data	points	within	the	distance
threshold	we	set	will	belong	to	the	same	cluster.	A	large	distance	threshold	is
akin	to	cutting	the	upside-down	tree	at	a	very	high	vertical	point.	Since	more	and
more	of	the	points	are	grouped	together	the	higher	up	the	tree	we	go,	the	fewer
clusters	we	will	have.

To	get	exactly	20	clusters,	we	need	to	experiment	with	the	distance	threshold,	as
done	here.	The	fcluster	library	will	take	our	dendrogram	and	cut	it	with	the
distance	threshold	we	specify.	Each	observation	in	the	50,000	observations
MNIST	digits	dataset	will	get	a	cluster	label,	and	we	will	store	these	in	a	Pandas
DataFrame:

from scipy.cluster.hierarchy import fcluster

distance_threshold = 160
clusters = fcluster(Z, distance_threshold, criterion='distance')
X_train_hierClustered = \

 pd.DataFrame(data=clusters,index=X_train_PCA.index,columns=['cluster'])

Let’s	verify	that	there	are	exactly	20	distinct	clusters,	given	our	choice	of
distance	threshold:

print("Number of distinct clusters: ", \
 len(X_train_hierClustered['cluster'].unique()))

As	expected,	this	confirms	the	20	clusters:

Number of distinct clusters: 20

Now,	let’s	evaluate	the	results:

countByCluster_hierClust, countByLabel_hierClust, \
 countMostFreq_hierClust, accuracyDF_hierClust, \
 overallAccuracy_hierClust, accuracyByLabel_hierClust \
 = analyzeCluster(X_train_hierClustered, y_train)

print("Overall accuracy from hierarchical clustering: ", \
 overallAccuracy_hierClust)

We	find	that	the	overall	accuracy	is	approximately	77%,	even	better	than	the
approximately	70%	accuracy	from	k-means:

Overall accuracy from hierarchical clustering: 0.76882

Let’s	also	assess	the	accuracy	by	cluster.

As	shown	here,	the	accuracy	varies	quite	a	bit.	For	some	clusters,	the	accuracy	is
remarkably	high,	nearly	100%.	For	some,	the	accuracy	is	shy	of	50%:

0 0.987962
1 0.983727
2 0.988998
3 0.597356
4 0.678642
5 0.442478
6 0.950033
7 0.829060
8 0.976062
9 0.986141
10 0.990183

11 0.992183
12 0.971033
13 0.554273
14 0.553617
15 0.720183
16 0.538891
17 0.484590
18 0.957732
19 0.977310
dtype: float64

Overall,	hierarchical	clustering	performs	well	on	the	MNIST	digits	dataset.
Remember	that	we	accomplished	this	without	using	any	labels.

This	is	how	it	would	work	on	real-world	examples:	we	would	apply
dimensionality	reduction	first	(such	as	PCA),	then	we	would	perform	clustering
(such	as	hierarchical	clustering),	and	finally	we	would	hand-label	a	few	points
per	cluster.	For	example,	for	this	MNIST	digits	dataset,	if	we	did	not	have	any
labels,	we	would	look	at	a	few	images	per	cluster	and	label	those	images	based
on	the	digits	they	displayed.	So	long	as	the	clusters	were	homogeneous	enough,
the	few	hand	labels	we	generated	could	be	applied	automatically	to	all	the	other
images	in	the	cluster.

All	of	a	sudden,	without	much	effort,	we	could	have	labeled	all	the	images	in	our
50,000	dataset	with	a	near	77%	accuracy.	This	is	impressive	and	highlights	the
power	of	unsupervised	learning.

DBSCAN
Now	let’s	turn	to	the	third	and	final	major	clustering	algorithm,	DBSCAN,	which
stands	for	density-based	spatial	clustering	of	applications	with	noise.	As	the
name	implies,	this	clustering	algorithm	groups	based	on	the	density	of	points.

DBSCAN	will	group	together	closely	packed	points,	where	close	together	is
defined	as	a	minimum	number	of	points	that	must	exist	within	a	certian	distance.
If	the	point	is	within	a	certain	distance	of	multiple	clusters,	it	will	be	grouped
with	the	cluster	to	which	it	is	most	densely	located.	Any	instance	that	is	not
within	this	certain	distance	of	another	cluster	is	labeled	an	outlier.

In	k-means	and	hierarchical	clustering,	all	points	had	to	be	clustered,	and	outliers

were	poorly	dealt	with.	In	DBSCAN,	we	can	explicitly	label	points	as	outliers
and	avoid	having	to	cluster	them.	This	is	powerful.	Compared	to	the	other
clustering	algorithms,	DBSCAN	is	much	less	prone	to	the	distortion	typically
caused	by	outliers	in	the	data.	Also,	like	hierarchical	clustering—and	unlike	k-
means—we	do	not	need	to	prespecify	the	number	of	clusters.

DBSCAN	Algorithm
Let’s	first	use	the	DBSCAN	library	from	Scikit-Learn.	We	need	to	specify	the
maximum	distance	(called	eps)	between	two	points	for	them	to	be	considered	in
the	same	neighborhood	and	the	minimum	samples	(called	min_samples)	for	a
group	to	be	called	a	cluster.	The	default	value	for	eps	is	0.5,	and	the	default
value	for	min_samples	is	5.	If	eps	is	set	too	low,	no	points	may	be	close	enough
to	other	points	for	them	to	be	considered	in	the	same	neighborhood.	Hence,	all
the	points	would	remain	unclustered.	If	eps	is	set	too	high,	many	points	may	be
clustered	and	only	a	handful	of	points	would	remain	unclustered,	effectively
being	labeled	as	outliers	in	the	dataset.

We	need	to	search	for	the	optimal	eps	for	our	MNIST	digits	dataset.
min_samples	designates	how	many	points	need	to	be	within	the	eps	distance	in
order	for	the	points	to	be	called	a	cluster.	Once	there	are	min_samples	number
of	closely	located	points,	any	other	point	that	is	within	the	eps	distance	of	any	of
these	so-called	core	points	is	part	of	that	cluster,	even	if	those	other	points	do	not
have	the	min_samples	number	of	points	within	eps	distance	around	them.	These
other	points—if	they	do	not	have	the	min_samples	number	of	points	within	eps
distance	around	them—are	called	the	border	points	of	the	cluster.

Generally,	as	the	min_samples	increases,	the	number	of	clusters	decreases.	As
with	eps,	we	need	to	search	for	the	optimal	min_samples	for	our	MNIST	digits
dataset.	As	you	can	see,	the	clusters	have	core	points	and	border	points,	but	for
all	intents	and	purposes,	they	belong	to	the	same	group.	All	points	that	do	not	get
grouped—either	as	the	core	or	border	points	of	a	cluster—are	labeled	as	outliers.

Applying	DBSCAN	to	Our	Dataset
Let’s	now	move	to	our	specific	problem.	As	before,	we	will	apply	DBSCAN	to

the	first	one	hundred	principal	components	of	the	PCA-reduced	MNIST	digits
dataset:

from sklearn.cluster import DBSCAN

eps = 3
min_samples = 5
leaf_size = 30
n_jobs = 4

db = DBSCAN(eps=eps, min_samples=min_samples, leaf_size=leaf_size,
 n_jobs=n_jobs)

cutoff = 99
X_train_PCA_dbscanClustered = db.fit_predict(X_train_PCA.loc[:,0:cutoff])
X_train_PCA_dbscanClustered = \
 pd.DataFrame(data=X_train_PCA_dbscanClustered, index=X_train.index, \
 columns=['cluster'])

countByCluster_dbscan, countByLabel_dbscan, countMostFreq_dbscan, \
 accuracyDF_dbscan, overallAccuracy_dbscan, accuracyByLabel_dbscan \
 = analyzeCluster(X_train_PCA_dbscanClustered, y_train)

overallAccuracy_dbscan

We	will	keep	the	min_samples	at	the	default	value	of	five,	but	we	will	adjust	the
eps	to	three	to	avoid	having	too	few	points	clustered.

Here	is	the	overall	accuracy:

Overall accuracy from DBSCAN: 0.242

As	you	can	see,	the	accuracy	is	very	poor	compared	to	k-means	and	hierarchical
clustering.	We	can	fidget	with	the	parameters	eps	and	min_samples	to	improve
the	results,	but	it	appears	that	DBSCAN	is	poorly	suited	to	cluster	the
observations	for	this	particular	dataset.

To	explore	why,	let’s	look	at	the	clusters	(Table	5-3).

Table	5-3.	Cluster
results	for	DBSCAN

cluster clusterCount

0 –1 39575

1 0 8885

2 8 720

3 5 92

4 18 51

5 38 38

6 41 22

7 39 22

8 4 16

9 20 16

Most	of	the	points	are	unclustered.	You	can	see	this	in	the	plot.	39,651	points—
out	of	the	50,000	observations	in	the	training	set—are	in	cluster	-1,	which	means
that	they	do	not	belong	to	any	cluster.	They	are	labeled	as	outliers—noise,	in
other	words.

8,885	points	belong	in	cluster	0.	Then,	there	is	a	long	tail	of	smaller-sized
clusters.	It	appears	that	DBSCAN	has	a	hard	time	finding	distinct	dense	groups
of	points,	and,	therefore,	does	a	poor	job	of	clustering	the	MNIST	images	based
on	the	digits	they	display.

HDBSCAN
Let’s	try	another	version	of	DBSCAN	and	see	if	the	results	improve.	This	one	is
known	as	HDBSCAN,	or	hierarchical	DBSCAN.	The	takes	the	DBSCAN
algorithm	we	introduced	and	converts	it	into	a	hierarchical	clustering	algorithm.
In	other	words,	it	groups	based	on	density	and	then	links	the	density-based
clusters	based	on	distance	iteratively,	like	in	the	hierarchical	clustering	algorithm
we	introduced	in	an	earlier	section.

The	two	main	parameters	for	this	algorithm	are	min_cluster_size	and
min_samples,	which	defaults	to	min_cluster_size	when	set	to	None.	Let’s	use

the	out-of-the-box	parameter	selections	and	gauge	if	HDBSCAN	performs	better
than	DBSCAN	did	for	our	MNIST	digits	dataset:

import hdbscan

min_cluster_size = 30
min_samples = None
alpha = 1.0
cluster_selection_method = 'eom'

hdb = hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, \
 min_samples=min_samples, alpha=alpha, \
 cluster_selection_method=cluster_selection_method)

cutoff = 10
X_train_PCA_hdbscanClustered = \
 hdb.fit_predict(X_train_PCA.loc[:,0:cutoff])

X_train_PCA_hdbscanClustered = \
 pd.DataFrame(data=X_train_PCA_hdbscanClustered, \
 index=X_train.index, columns=['cluster'])

countByCluster_hdbscan, countByLabel_hdbscan, \
 countMostFreq_hdbscan, accuracyDF_hdbscan, \
 overallAccuracy_hdbscan, accuracyByLabel_hdbscan \
 = analyzeCluster(X_train_PCA_hdbscanClustered, y_train)

Here	is	the	overall	accuracy:

Overall accuracy from HDBSCAN: 0.24696

At	25%,	this	is	only	marginally	better	than	that	of	DBSCAN	and	well	short	of
the	70%-plus	achieved	by	k-means	and	hierarchical	clustering.	Table	5-4
displays	the	accuracy	of	the	various	clusters.

Table	5-4.	Cluster
results	for	HDBSCAN

cluster clusterCount

0 –1 42570

1 4 5140

2 7 942

3 0 605

4 6 295

5 3 252

6 1 119

7 5 45

8 2 32

We	see	a	similar	phenomenon	as	we	did	for	DBSCAN.	Most	points	are
unclustered,	and	then	there	is	a	long	tail	of	small-sized	clusters.	The	results	do
not	improve	much.

Conclusion
In	this	chapter,	we	introduced	three	major	types	of	clustering	algorithms—k-
means,	hierarchical	clustering,	and	DBSCAN—and	applied	them	to	a
dimensionality-reduced	version	of	the	MNIST	digits	dataset.	The	first	two
clustering	algorithms	performed	very	well	on	the	dataset,	grouping	the	images
well	enough	to	have	a	70%-plus	consistency	in	labels	across	the	clusters.

DBSCAN	did	not	perform	quite	so	well	for	this	dataset	but	remains	a	viable
clustering	algorithm.	Now	that	we’ve	introduced	the	clustering	algorithms,	let’s
build	an	applied	unsupervised	learning	solution	using	these	algorithms	in
Chapter	6.

1 	For	more	on	fastcluster,	check	out	the	project’s	web	page.

https://pypi.org/project/fastcluster/

Chapter	6.	Group	Segmentation

In	Chapter	5,	we	introduced	clustering,	an	unsupervised	learning	approach	to
identify	the	underlying	structure	in	data	and	grouping	points	based	on	similarity.
These	groups	(known	as	clusters)	should	be	homogeneous	and	distinct.	In	other
words,	the	members	within	a	group	should	be	very	similar	to	each	other	and	very
distinct	from	members	of	any	other	group.

From	an	applied	perspective,	the	ability	to	segment	members	into	groups	based
on	similarity	and	without	any	guidance	from	labels	is	very	powerful.	For
example,	such	a	technique	could	be	applied	to	find	different	consumer	groups	for
online	retailers,	customizing	a	marketing	strategy	for	each	of	the	distinct	groups
(i.e.,	budget	shoppers,	fashionistas,	sneakerheads,	techies,	audiophiles,	etc.).
Group	segmentation	could	improve	targeting	in	online	advertising	and	improve
recommendations	in	recommender	systems	for	movies,	music,	news,	social
networking,	dating,	etc.

In	this	chapter,	we	will	build	an	applied	unsupervised	learning	solution	using	the
clustering	algorithms	from	the	previous	chapter—more	specifically,	we	will
perform	group	segmentation.

Lending	Club	Data
For	this	chapter,	we	will	use	loan	data	from	Lending	Club,	a	US	peer-to-peer
lending	company.	Borrowers	on	the	platform	can	borrow	between	$1,000	to
$40,000	in	the	form	of	unsecured	personal	loans,	for	a	term	of	either	three	or
five	years.

Investors	can	browse	the	loan	applications	and	choose	to	finance	the	loans	based
on	the	credit	history	of	the	borrower,	the	amount	of	the	loan,	the	loan	grade,	and
the	purpose	of	the	loan.	Investors	earn	money	through	interest	paid	on	the	loans,
and	Lending	Club	makes	money	from	loan	origination	fees	and	service	charges.

The	loan	data	we	will	use	is	from	2007–2011	and	is	publicly	available	on	the
Lending	Club	website.	A	data	dictionary	is	also	available	there.

http://bit.ly/2FYN2zX

Data	Preparation
Like	in	previous	chapters,	let’s	prepare	the	environment	to	work	with	the
Lending	Club	data.

Load	libraries
First,	let’s	load	the	necessary	libraries:

Import libraries
'''Main'''
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score

'''Algorithms'''
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import fastcluster
from scipy.cluster.hierarchy import dendrogram, cophenet, fcluster
from scipy.spatial.distance import pdist

Explore	the	data
Next,	let’s	load	the	loan	data	and	designate	which	of	the	columns	to	keep:

The	original	loan	data	file	has	144	columns,	but	most	of	these	columns	are
empty	and	are	of	little	value	to	us.	Therefore,	we	will	designate	a	subset	of	the
columns	that	are	mostly	populated	and	are	worth	using	in	our	clustering
application.	These	fields	include	attributes	of	the	loan	such	as	the	amount
requested,	the	amount	funded,	the	term,	the	interest	rate,	the	loan	grade,	etc.,	and

attributes	of	the	borrower	such	as	employment	length,	home	ownership	status,
annual	income,	address,	and	purpose	for	borrowing	money.

We	will	also	explore	the	data	a	bit:

Load the data
current_path = os.getcwd()
file = '\\datasets\\lending_club_data\\LoanStats3a.csv'
data = pd.read_csv(current_path + file)

Select columns to keep
columnsToKeep = ['loan_amnt','funded_amnt','funded_amnt_inv','term', \
 'int_rate','installment','grade','sub_grade', \
 'emp_length','home_ownership','annual_inc', \
 'verification_status','pymnt_plan','purpose', \
 'addr_state','dti','delinq_2yrs','earliest_cr_line', \
 'mths_since_last_delinq','mths_since_last_record', \
 'open_acc','pub_rec','revol_bal','revol_util', \
 'total_acc','initial_list_status','out_prncp', \
 'out_prncp_inv','total_pymnt','total_pymnt_inv', \
 'total_rec_prncp','total_rec_int','total_rec_late_fee', \
 'recoveries','collection_recovery_fee','last_pymnt_d', \
 'last_pymnt_amnt']

data = data.loc[:,columnsToKeep]

data.shape

data.head()

The	data	has	42,542	loans	and	37	features	(42,542,	37).

Table	6-1	previews	the	data.

Table	6-1.	First	few	rows	of	the	loan	data

loan_amnt funded_amnt funded_amnt_inv term int_rate instsallment grade

0 5000.0 5000.0 4975.0 36
months 10.65% 162.87 B

1 2500.0 2500.0 2500.0 60
months 15.27% 59.83 C

2 2400.0 2400.0 2400.0 35
months 15.96% 84.33 C

3 10000.0 10000.0 10000.0 36
months

13.49% 339.31 C

4 3000.0 3000.0 3000.0 60
months 12.69% 67.79 B

Transform	String	Format	to	Numerical	Format
A	few	of	the	features—the	term	of	the	loan,	the	interest	rate	of	the	loan,
employment	length	of	the	borrower,	and	revolving	utilization	of	the	borrower—
need	to	be	altered	from	a	string	format	to	a	numerical	format.	Let’s	perform	the
transformation:

Transform features from string to numeric
for i in ["term","int_rate","emp_length","revol_util"]:
 data.loc[:,i] = \
 data.loc[:,i].apply(lambda x: re.sub("[^0-9]", "", str(x)))
 data.loc[:,i] = pd.to_numeric(data.loc[:,i])

For	our	clustering	application,	we	will	consider	just	the	numerical	features	and
ignore	all	the	categorical	features	because	nonnumerical	features	cannot	be
handled	by	our	clustering	algorithms	in	their	current	form.

Impute	Missing	Values
Let’s	find	these	numerical	features	and	count	the	number	of	NaNs	per	feature.
We	will	then	impute	these	NaNs	with	either	the	mean	of	the	feature	or,	in	some
cases,	just	the	number	zero,	depending	on	what	the	feature	represents	from	a
business	perspective:

Determine which features are numerical
numericalFeats = [x for x in data.columns if data[x].dtype != 'object']

Display NaNs by feature
nanCounter = np.isnan(data.loc[:,numericalFeats]).sum()
nanCounter

The	following	code	shows	the	number	of	NaNs	by	feature:

loan_amnt 7
funded_amnt 7

funded_amnt_inv 7
term 7
int_rate 7
installment 7
emp_length 1119
annual_inc 11
dti 7
delinq_2yrs 36
mths_since_last_delinq 26933
mths_since_last_record 38891
open_acc 36
pub_rec 36
revol_bal 7
revol_util 97
total_acc 36
out_prncp 7
out_prncp_inv 7
total_pymnt 7
total_pymnt_inv 7
total_rec_prncp 7
total_rec_int 7
total_rec_late_fee 7
recoveries 7
collection_recovery_fee 7
last_pymnt_amnt 7
dtype: int64

Most	features	have	a	few	NaNs,	and	some—such	as	the	months	since	last
delinquency	and	last	change	in	record—have	many.

Let’s	impute	these	so	we	do	not	have	to	deal	with	any	NaNs	during	the
clustering	process:

Impute NaNs with mean
fillWithMean = ['loan_amnt','funded_amnt','funded_amnt_inv','term', \
 'int_rate','installment','emp_length','annual_inc',\
 'dti','open_acc','revol_bal','revol_util','total_acc',\
 'out_prncp','out_prncp_inv','total_pymnt', \
 'total_pymnt_inv','total_rec_prncp','total_rec_int', \
 'last_pymnt_amnt']

Impute NaNs with zero
fillWithZero = ['delinq_2yrs','mths_since_last_delinq', \
 'mths_since_last_record','pub_rec','total_rec_late_fee', \
 'recoveries','collection_recovery_fee']

Perform imputation
im = pp.Imputer(strategy='mean')

data.loc[:,fillWithMean] = im.fit_transform(data[fillWithMean])

data.loc[:,fillWithZero] = data.loc[:,fillWithZero].fillna(value=0,axis=1)

Let’s	recalculate	the	NaNs	to	make	sure	no	NaNs	remain.

We	are	now	safe.	All	the	NaNs	have	been	filled:

numericalFeats = [x for x in data.columns if data[x].dtype != 'object']

nanCounter = np.isnan(data.loc[:,numericalFeats]).sum()
nanCounter

loan_amnt 0
funded_amnt 0
funded_amnt_inv 0
term 0
int_rate 0
installment 0
emp_length 0
annual_inc 0
dti 0
delinq_2yrs 0
mths_since_last_delinq 0
mths_since_last_record 0
open_acc 0
pub_rec 0
revol_bal 0
revol_util 0
total_acc 0
out_prncp 0
out_prncp_inv 0
total_pymnt 0
total_pymnt_inv 0
total_rec_prncp 0
total_rec_int 0
total_rec_late_fee 0
recoveries 0
collection_recovery_fee 0
last_pymnt_amnt 0
dtype: int64

Engineer	Features
Let’s	also	engineer	a	few	more	features	to	add	to	the	existing	feature	set.	These
new	features	are	mostly	ratios	between	loan	amount,	revolving	balance,

payments,	and	the	borrower’s	annual	income:

Feature engineering
data['installmentOverLoanAmnt'] = data.installment/data.loan_amnt
data['loanAmntOverIncome'] = data.loan_amnt/data.annual_inc
data['revol_balOverIncome'] = data.revol_bal/data.annual_inc
data['totalPymntOverIncome'] = data.total_pymnt/data.annual_inc
data['totalPymntInvOverIncome'] = data.total_pymnt_inv/data.annual_inc
data['totalRecPrncpOverIncome'] = data.total_rec_prncp/data.annual_inc
data['totalRecIncOverIncome'] = data.total_rec_int/data.annual_inc

newFeats = ['installmentOverLoanAmnt','loanAmntOverIncome', \
 'revol_balOverIncome','totalPymntOverIncome', \
 'totalPymntInvOverIncome','totalRecPrncpOverIncome', \
 'totalRecIncOverIncome']

Select	Final	Set	of	Features	and	Perform	Scaling
Next,	we	will	generate	the	training	dataframe	and	scale	the	features	for	our
clustering	algorithms:

Select features for training
numericalPlusNewFeats = numericalFeats+newFeats
X_train = data.loc[:,numericalPlusNewFeats]

Scale data
sX = pp.StandardScaler()
X_train.loc[:,:] = sX.fit_transform(X_train)

Designate	Labels	for	Evaluation
Clustering	is	an	unsupervised	learning	approach,	and,	therefore,	labels	are	not
used.	However,	to	judge	the	goodness	of	our	clustering	algorithm	at	finding
distinct	and	homogeneous	groups	of	borrowers	in	this	Lending	Club	dataset,	we
will	use	the	loan	grade	as	a	proxy	label.

The	loan	grade	is	currently	graded	by	letters,	with	loan	grade	“A”	as	the	most
credit-worthy	and	safe	and	loan	grade	“G”	as	the	least:

labels = data.grade
labels.unique()

array(['B', 'C', 'A', 'E', 'F', 'D', 'G', nan], dtype=object)

There	are	some	NaNs	in	the	loan	grade.	We	will	fill	these	with	a	value	of	“Z”
and	then	use	the	LabelEncoder	from	Scikit-Learn	to	transform	the	letter	grades
to	numerical	grades.	To	remain	consistent,	we	will	load	these	labels	into	a
“y_train”	Python	series:

Fill missing labels
labels = labels.fillna(value="Z")

Convert labels to numerical values
lbl = pp.LabelEncoder()
lbl.fit(list(labels.values))
labels = pd.Series(data=lbl.transform(labels.values), name="grade")

Store as y_train
y_train = labels

labelsOriginalVSNew = pd.concat([labels, data.grade],axis=1)
labelsOriginalVSNew

Table	6-2.
Numerical
versus	letter
loan	grades

grade grade

0 1 B

1 2 C

2 2 C

3 2 C

4 1 B

5 0 A

6 2 C

7 4 E

8 5 F

9 1 B

10 2 C

11 1 B

12 2 C

13 1 B

14 1 B

15 3 D

16 2 C

As	you	can	see	from	Table	6-2,	all	the	“A”	grades	have	been	transformed	into	0,
the	“B”	grades	into	1,	etc.

Let’s	also	check	whether	grade	“A”	loans	generally	have	the	lowest	interest	rate
charged,	since	they	are	the	least	risky	and	other	loans	are	charged	progressively
higher	rates	of	interest:

Compare loan grades with interest rates
interestAndGrade = pd.DataFrame(data=[data.int_rate,labels])
interestAndGrade = interestAndGrade.T

interestAndGrade.groupby("grade").mean()

Table	6-3	confirms	this.	Higher	letter	grade	loans	have	higher	interest	rates.

Table	6-3.	Grade
versus	interest
rate

grade int_rate

0.0 734.270844

1.0 1101.420857

2.0 1349.988902

3.0 1557.714927

1

4.0 1737.676783

5.0 1926.530361

6.0 2045.125000

7.0 1216.501563

Goodness	of	the	Clusters
Now	the	data	is	ready.	We	have	an	X_train	with	all	of	our	34	numerical	features,
and	a	y_train	with	the	numerical	loan	grades,	which	we	use	only	to	validate	the
results,	not	to	train	with	the	algorithm	as	you	would	do	in	a	supervised	machine
learning	problem.	Before	we	build	our	first	clustering	application,	let’s	introduce
a	function	to	analyze	the	goodness	of	the	clusters	we	generate	using	the
clustering	algorithms.	Specifically,	we	will	use	the	concept	of	homogeneity	to
assess	the	goodness	of	each	cluster.

If	the	clustering	algorithm	does	a	good	job	separating	the	borrowers	in	the
Lending	Club	dataset,	each	cluster	should	have	borrowers	that	are	very	similar	to
each	other	and	dissimilar	to	those	in	other	groups.	Presumably,	borrowers	that
are	similar	to	each	other	and	grouped	together	should	have	similar	credit	profiles
—in	other	words,	their	creditworthiness	should	be	similar.

If	this	is	the	case	(and	with	real-world	problems,	a	lot	of	these	assumptions	are
only	partially	true),	borrowers	in	a	given	cluster	should	generally	be	assigned	the
same	numerical	loan	grade,	which	we	will	validate	using	the	numerical	loan
grades	we	set	aside	in	y_train.	The	higher	the	percentage	of	borrowers	that	have
the	most	frequently	occurring	numerical	loan	grade	in	each	and	every	cluster,	the
better	the	clustering	application.

As	an	example,	consider	a	cluster	with	one	hundred	borrowers.	If	30	borrowers
have	a	numerical	loan	grade	of	0,	25	borrowers	have	a	loan	grade	of	1,	20
borrowers	have	a	loan	grade	of	2,	and	the	remaining	borrowers	have	loan	grades
ranging	from	3	to	7,	we	would	say	that	the	cluster	has	a	30%	accuracy,	given	that
the	most	frequently	occuring	loan	grade	for	that	cluster	applies	to	just	30%	of	the
borrowers	in	that	cluster.

If	we	did	not	have	a	y_train	with	the	numerical	loan	grades	to	validate	the

goodness	of	the	clusters,	we	could	use	an	alternative	approach.	We	could	sample
a	few	borrowers	in	each	cluster,	determine	the	numerical	loan	grade	for	them	by
hand,	and	determine	if	we	would	give	roughly	the	same	numerical	loan	grade	to
those	borrowers.	If	yes,	then	the	cluster	is	a	good	cluster—it	is	homogeneous
enough	that	we	would	give	roughly	the	same	numerical	loan	grade	to	the
borrowers	we	sampled.	If	not,	then	the	cluster	is	not	good	enough—the
borrowers	are	too	heterogeneous,	and	we	should	try	to	improve	the	solution
using	more	data,	a	different	clustering	algorithm,	etc.

We	won’t	have	to	sample	and	manually	hand-label	the	borrowers,	though,	given
that	we	have	the	numerical	loan	grades	already,	but	this	is	important	to	keep	in
mind	in	case	you	do	not	have	labels	for	your	particular	problem.

Here	is	the	function	to	analyze	the	clusters:

def analyzeCluster(clusterDF, labelsDF):
 countByCluster = \
 pd.DataFrame(data=clusterDF['cluster'].value_counts())
 countByCluster.reset_index(inplace=True,drop=False)
 countByCluster.columns = ['cluster','clusterCount']

 preds = pd.concat([labelsDF,clusterDF], axis=1)
 preds.columns = ['trueLabel','cluster']

 countByLabel = pd.DataFrame(data=preds.groupby('trueLabel').count())

 countMostFreq = pd.DataFrame(data=preds.groupby('cluster').agg(\
 lambda x:x.value_counts().iloc[0]))
 countMostFreq.reset_index(inplace=True,drop=False)
 countMostFreq.columns = ['cluster','countMostFrequent']

 accuracyDF = countMostFreq.merge(countByCluster, \
 left_on="cluster",right_on="cluster")

 overallAccuracy = accuracyDF.countMostFrequent.sum()/ \
 accuracyDF.clusterCount.sum()

 accuracyByLabel = accuracyDF.countMostFrequent/ \
 accuracyDF.clusterCount

 return countByCluster, countByLabel, countMostFreq, \
 accuracyDF, overallAccuracy, accuracyByLabel

k-Means	Application
Our	first	clustering	application	using	this	Lending	Club	dataset	will	use	k-means,
which	we	introduced	in	Chapter	5.	Recall	that	in	k-means	clustering,	we	need	to
specify	the	desired	clusters	k,	and	the	algorithm	will	assign	each	borrower	to
exactly	one	of	these	k	clusters.

The	algorithm	will	accomplish	this	by	minimizing	the	within-cluster	variation,
which	is	also	known	as	inertia,	such	that	the	sum	of	the	within-cluster	variations
across	all	k	clusters	is	as	small	as	possible.

Instead	of	specifying	just	one	value	of	k,	we	will	run	an	experiment	where	we	set
k	from	a	range	of	10	to	30	and	plot	the	results	of	the	accuracy	measure	we
defined	in	the	previous	section.

Based	on	which	k	measure	performs	best,	we	can	build	the	pipeline	for
clustering	using	this	best-performing	k	measure:

from sklearn.cluster import KMeans

n_clusters = 10
n_init = 10
max_iter = 300
tol = 0.0001
random_state = 2018
n_jobs = 2

kmeans = KMeans(n_clusters=n_clusters, n_init=n_init, \
 max_iter=max_iter, tol=tol, \
 random_state=random_state, n_jobs=n_jobs)

kMeans_inertia = pd.DataFrame(data=[],index=range(10,31), \
 columns=['inertia'])

overallAccuracy_kMeansDF = pd.DataFrame(data=[], \
 index=range(10,31),columns=['overallAccuracy'])

for n_clusters in range(10,31):
 kmeans = KMeans(n_clusters=n_clusters, n_init=n_init, \
 max_iter=max_iter, tol=tol, \
 random_state=random_state, n_jobs=n_jobs)

 kmeans.fit(X_train)
 kMeans_inertia.loc[n_clusters] = kmeans.inertia_
 X_train_kmeansClustered = kmeans.predict(X_train)

 X_train_kmeansClustered = pd.DataFrame(data= \
 X_train_kmeansClustered, index=X_train.index, \
 columns=['cluster'])

 countByCluster_kMeans, countByLabel_kMeans, \
 countMostFreq_kMeans, accuracyDF_kMeans, \
 overallAccuracy_kMeans, accuracyByLabel_kMeans = \
 analyzeCluster(X_train_kmeansClustered, y_train)

 overallAccuracy_kMeansDF.loc[n_clusters] = \
 overallAccuracy_kMeans

overallAccuracy_kMeansDF.plot()

Figure	6-1	displays	the	plot	of	the	results.

Figure	6-1.	Overall	accuracy	for	different	k	measures	using	k-means

As	we	can	see,	the	accuracy	is	best	around	30	clusters	and	levels	out	there	at
approximately	39%.	In	other	words,	for	any	given	cluster,	the	most-frequently
occurring	label	for	that	cluster	applies	to	approximately	39%	of	the	borrowers.
The	remaining	61%	of	the	borrowers	have	labels	that	are	not	the	most-frequently
occurring.

The	following	code	displays	the	accuracy	by	cluster	for	k	=	30:

0 0.326633
1 0.258993
2 0.292240
3 0.234242
4 0.388794
5 0.325654
6 0.303797

7 0.762116
8 0.222222
9 0.391381
10 0.292910
11 0.317533
12 0.206897
13 0.312709
14 0.345233
15 0.682208
16 0.327250
17 0.366605
18 0.234783
19 0.288757
20 0.500000
21 0.375466
22 0.332203
23 0.252252
24 0.338509
25 0.232000
26 0.464418
27 0.261583
28 0.376327
29 0.269129
dtype: float64

The	accuracy	varies	quite	a	bit	cluster	to	cluster.	Some	clusters	are	much	more
homogeneous	than	others.	For	example,	cluster	7	has	an	accuracy	of	76%,	while
cluster	12	has	an	accuracy	of	just	21%.	This	is	a	starting	point	to	build	a
clustering	application	to	automatically	assign	new	borrowers	that	apply	for	a
Lending	Club	loan	into	a	preexisting	group	based	on	how	similar	they	are	to
other	borrowers.	Based	on	this	clustering,	it	is	possible	to	automatically	assign	a
tentative	numerical	loan	grade	to	the	new	borrower,	which	will	be	correct
approximately	39%	of	the	time.

This	is	not	the	best	possible	solution,	and	we	should	consider	whether	acquiring
more	data,	performing	more	feature	engineering	and	selection,	selecting	different
parameters	for	the	k-means	algorithm,	or	changing	to	a	different	clustering
algorithm	will	improve	the	results.	It	is	possible	that	we	do	not	have	enough	data
to	meaningfully	separate	the	borrowers	into	distinct	and	homogeneous	groups
more	than	we	have	already;	if	this	is	the	case,	more	data	and	more	feature
engineering	and	selection	are	required.	Or,	it	could	be	that,	for	the	limited	data
that	we	have,	k-means	is	not	best	for	performing	this	separation.

Let’s	switch	to	hierarchical	clustering	to	see	if	our	results	improve.

Hierarchical	Clustering	Application
Recall	that	in	hierarchical	clustering	we	do	not	need	to	precommit	to	a	particular
number	of	clusters.	Instead,	we	can	choose	how	many	clusters	we	would	like
after	the	hierarchical	clustering	has	finished	running.	Hierarchical	clustering	will
build	a	dendrogram,	which	can	be	conceptually	viewed	as	an	upside-down	tree.
The	leaves	at	the	very	bottom	are	the	individual	borrowers	that	apply	for	loans
on	Lending	Club.

Hierarchical	clustering	joins	the	borrowers	together	as	we	move	vertically	up	the
upside-down	tree	based	on	how	similar	they	are	to	each	other.	The	borrowers
that	are	most	similar	to	each	other	are	joined	sooner,	while	borrowers	that	are	not
as	similar	are	joined	much	later.	Eventually,	all	the	borrowers	are	joined	together
at	the	very	top—the	trunk—of	the	upside-down	tree.

From	a	business	perspective,	this	clustering	process	is	clearly	very	powerful.	If
we	are	able	to	find	borrowers	that	are	similar	to	each	other	and	group	them
together,	we	can	more	efficiently	assign	creditworthiness	ratings	to	them.	We	can
also	have	specific	strategies	for	distinct	groups	of	borrowers	and	better	manage
them	from	a	relationship	perspective,	providing	better	overall	client	service.

Once	the	hierarchical	clustering	algorithm	finishes	running,	we	can	determine
where	we	want	to	cut	the	tree.	The	lower	we	cut,	the	more	groups	of	borrowers
we	are	left	with.

Let’s	first	train	the	hierarchical	clustering	algorithm	like	we	did	in	Chapter	5:

import fastcluster
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import cophenet
from scipy.spatial.distance import pdist

Z = fastcluster.linkage_vector(X_train, method='ward', \
 metric='euclidean')

Z_dataFrame = pd.DataFrame(data=Z,columns=['clusterOne', \
 'clusterTwo','distance','newClusterSize'])

Table	6-4	shows	what	the	output	dataframe	looks	like.	The	first	few	rows	are	the
initial	linkages	of	the	bottom-most	borrowers.

Table	6-4.	Bottom-most	leaves	of	hierarchical
clustering

clusterOne clusterTwo distance newClusterSize

0 39786.0 39787.0 0.000000e+00 2.0

1 39788.0 42542.0 0.000000e+00 3.0

2 42538.0 42539.0 0.000000e+00 2.0

3 42540.0 42544.0 0.000000e+00 3.0

4 42541.0 42545.0 3.399350e-17 4.0

5 42543.0 42546.0 5.139334e-17 7.0

6 33251.0 33261.0 1.561313e-01 2.0

7 42512.0 42535.0 3.342654e-01 2.0

8 42219.0 42316.0 3.368231e-01 2.0

9 6112.0 21928.0 3.384368e-01 2.0

10 33248.0 33275.0 3.583819e-01 2.0

11 33253.0 33265.0 3.595331e-01 2.0

12 33258.0 42552.0 3.719377e-01 3.0

13 20430.0 23299.0 3.757307e-01 2.0

14 5455.0 32845.0 3.828709e-01 2.0

15 28615.0 30306.0 3.900294e-01 2.0

16 9056	.0 9769.0 3.967378e-01 2.0

17 11162.0 13857.0 3.991124e-01 2.0

18 33270.0 42548.0 3.995620e-01 3.0

19 17422.0 17986.0 4.061704e-01 2.0

Recall	that	the	last	few	rows	represent	the	top	of	the	upside-down	tree,	and	all
42,541	borrowers	are	combined	together	eventually	(see	Table	6-5).

Table	6-5.	Top-most	leaves	of	hierarchical	clustering

clusterOne clusterTwo distance newClusterSize

42521 85038.0 85043.0 132.715723 3969.0

42522 85051.0 85052.0 141.386569 2899.0

42532 85026.0 85027.0 146.976703 2351.0

42524 85048.0 85049.0 152.660192 5691.0

42525 85036.0 85059.0 153.512281 5956.0

42526 85033.0 85044.0 160.825959 2203.0

42527 85055.0 85061.0 163.701428 668.0

42528 85062.0 85066.0 168.199295 6897.0

42529 85054.0 85060.0 168.924039 9414.0

42530 85028.0 85064.0 185.215769 3118.0

42531 85067.0 85071.0 187.832588 15370.0

42532 85056.0 85073.0 203.212147 17995.0

42533 85057.0 85063.0 205.285993 9221.0

42534 85068.0 85072.0 207.902660 5321.0

42535 85069.0 85075.0 236.754581 9889.0

42536 85070.0 85077.0 298.587755 16786.0

42537 85058.0 85078.0 309.946867 16875.0

42538 85074.0 85079.0 375.698458 34870.0

42539 85065.0 85080.0 400.711547 37221.0

42504 85076.0 85081.0 644.047472 42542.0

Now,	let’s	cut	the	dendrogram	so	that	we	are	left	with	a	manageable	number	of
clusters.	This	is	set	based	on	the	distance_threshold.	Based	on	trial	and	error,
a	distance_threshold	of	100	results	in	32	clusters,	which	is	what	we	will	use
for	this	example.

from scipy.cluster.hierarchy import fcluster
distance_threshold = 100
clusters = fcluster(Z, distance_threshold, criterion='distance')
X_train_hierClustered = pd.DataFrame(data=clusters,
 index=X_train_PCA.index,columns=['cluster'])

print("Number of distinct clusters: ",
 len(X_train_hierClustered['cluster'].unique()))

The	number	of	distinct	clusters	given	the	distance	threshold	we	picked	is	32:

countByCluster_hierClust, countByLabel_hierClust, countMostFreq_hierClust,
 accuracyDF_hierClust, overallAccuracy_hierClust, accuracyByLabel_hierClust =
 analyzeCluster(X_train_hierClustered, y_train)
print("Overall accuracy from hierarchical clustering: ",
 overallAccuracy_hierClust)

The	following	code	shows	the	overall	accuracy	of	hierarchical	clustering:

Overall accuracy from hierarchical clustering: 0.3651685393258427

The	overall	accuracy	is	approximately	37%,	a	bit	worse	than	with	k-means
clustering.	That	being	said,	hierarchical	clustering	works	differently	than	k-
means	and	may	group	some	borrowers	more	accurately	than	k-means,	while	k-
means	may	group	other	borrowers	more	accurately	than	hierarchical	clustering.

In	other	words,	the	two	clustering	algorithms	may	complement	each	other,	and
this	is	worth	exploring	by	ensembling	the	two	and	assessing	the	ensemble’s
results	compared	to	the	results	of	either	standalone	solution. 	As	with	k-means,
the	accuracy	varies	quite	a	bit	across	the	clusters.	Some	clusters	are	much	more
homogeneous	than	others:

Accuracy by cluster for hierarchical clustering

2

0 0.304124
1 0.219001
2 0.228311
3 0.379722
4 0.240064
5 0.272011
6 0.314560
7 0.263930
8 0.246138
9 0.318942
10 0.302752
11 0.269772
12 0.335717
13 0.330403
14 0.346320
15 0.440141
16 0.744155
17 0.502227
18 0.294118
19 0.236111
20 0.254727
21 0.241042
22 0.317979
23 0.308771
24 0.284314
25 0.243243
26 0.500000
27 0.289157
28 0.365283
29 0.479693
30 0.393559
31 0.340875

HDBSCAN	Application
Now	let’s	turn	to	HDBSCAN	and	apply	this	clustering	algorithm	to	group
similar	borrowers	in	this	Lending	Club	dataset.

Recall	that	HDBSCAN	will	group	borrowers	together	based	on	how	closely
packed	together	their	attributes	are	in	a	high-dimensional	space.	Unlike	k-means
or	hierarchical	clustering,	not	all	the	borrowers	will	be	grouped.	Some	borrowers
that	are	very	distinct	from	other	groups	of	borrowers	may	remain	ungrouped.
These	are	outlier	borrowers	and	are	worth	investigating	to	see	if	there	is	a	good
business	reason	they	are	dissimilar	from	other	borrowers.	It	may	be	possible	to

automatically	assign	numerical	loan	grades	to	some	groups	of	borrowers	but
other	borrowers—those	that	are	dissimilar—may	require	a	more	nuanced	credit-
scoring	approach.

Let’s	see	how	well	HDBSCAN	does:

import hdbscan

min_cluster_size = 20
min_samples = 20
alpha = 1.0
cluster_selection_method = 'leaf'

hdb = hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, \
 min_samples=min_samples, alpha=alpha, \
 cluster_selection_method=cluster_selection_method)

X_train_hdbscanClustered = hdb.fit_predict(X_train)
X_train_hdbscanClustered = pd.DataFrame(data= \
 X_train_hdbscanClustered, index=X_train.index, \
 columns=['cluster'])

countByCluster_hdbscan, countByLabel_hdbscan, \
 countMostFreq_hdbscan, accuracyDF_hdbscan, \
 overallAccuracy_hdbscan, accuracyByLabel_hdbscan = \
 analyzeCluster(X_train_hdbscanClustered, y_train)

The	following	code	shows	the	overall	accuracy	for	HDBSCAN:

Overall accuracy from HDBSCAN: 0.3246203751586667

As	seen	here,	the	overall	accuracy	is	approximately	32%,	worse	than	that	of
either	k-means	or	hierarchical	clustering.

Table	6-6	shows	the	various	clusters	and	their	cluster	sizes.

Table	6-6.	Cluster
results	for	HDBSCAN

cluster clusterCount

0 –1 32708

1 7 4070

2 2 3668

3 1 1096

4 4 773

5 0 120

6 6 49

7 3 38

8 5 20

32,708	of	the	borrowers	are	in	cluster	-1,	which	means	they	are	ungrouped.

The	following	shows	the	accuracy	by	cluster:

0 0.284487
1 0.341667
2 0.414234
3 0.332061
4 0.552632
5 0.438551
6 0.400000
7 0.408163
8 0.590663

Among	these	clusters,	the	accuracy	ranges	from	28%	to	59%.

Conclusion
In	this	chapter,	we	built	an	unsupervised	clustering	application	based	on
borrowers	that	applied	for	unsecured	personal	loans	on	Lending	Club	from
2007-2011.	The	applications	were	based	on	k-means,	hierarchical	clustering,	and
hierarchical	DBSCAN.	k-means	performed	the	best,	scoring	an	approximately
39%	overall	accuracy.

While	these	applications	performed	okay,	they	can	be	improved	quite	a	bit.	You
should	experiment	with	these	algorithms	to	improve	the	solution	from	here.

This	concludes	the	unsupervised	learning	using	Scikit-Learn	portion	of	the	book.
Next,	we	will	explore	neural	network-based	forms	of	unsupervised	learning

using	TensorFlow	and	Keras.	We	will	start	with	representation	learning	and
autoencoders	in	Chapter	7.

1 	We	can	ignore	grade	“7,”	which	corresponds	to	loan	grade	“Z.”	These	are	the	loans	with	missing
loan	grades	that	we	had	to	fill	in.

2 	We	explored	ensembling	in	Chapter	2.	Refer	back	to	“Ensembles”	if	you	need	a	refresher.

Part	III.	Unsupervised	Learning
Using	TensorFlow	and	Keras

We	just	concluded	the	Scikit-Learn-based	unsupervised	learning	portion	of	the
book.	Now	we	will	move	to	neural	network-based	unsupervised	learning.	In	the
next	few	chapters,	we	will	introduce	neural	networks,	including	the	popular
frameworks	used	to	apply	them,	TensorFlow	and	Keras.

In	Chapter	7,	we	will	use	an	autoencoder—a	shallow	neural	network—to
automatically	perform	feature	engineering	and	feature	selection.	Moving	on
from	there,	in	Chapter	8,	we	will	apply	autoencoders	to	a	real-world	problem.
Following	that,	Chapter	9	explores	how	to	turn	unsupervised	learning	problems
into	semisupervised	ones,	leveraging	the	few	labels	we	have	to	improve	the
precision	and	recall	of	a	purely	unsupervised	model.

Once	we	are	finished	reviewing	shallow	neural	networks,	we	will	look	at	deep
neural	networks	in	the	last	portion	of	the	book.

Chapter	7.	Autoencoders

The	first	six	chapters	of	this	book	explored	how	to	use	unsupervised	learning	to
perform	dimensionality	reduction	and	clustering,	and	the	concepts	we	covered
helped	us	build	applications	to	detect	anomalies	and	segment	groups	based	on
similarity.

However,	unsupervised	learning	is	capable	of	a	lot	more.	One	area	that
unsupervised	learning	excels	in	is	feature	extraction,	which	is	a	method	used	to
generate	a	new	feature	representation	from	an	original	set	of	features;	the	new
feature	representation	is	called	a	learned	representation	and	is	used	to	improve
performance	on	supervised	learning	problems.	In	other	words,	feature	extraction
is	an	unsupervised	means	to	a	supervised	end.

Autoencoders	are	one	such	form	of	feature	extraction.	They	use	a	feedforward,
nonrecurrent	neural	network	to	perform	representation	learning.	Representation
learning	is	a	core	part	of	an	entire	branch	of	machine	learning	involving	neural
networks.

In	autoencoders—which	are	a	form	of	representation	learning—each	layer	of	the
neural	network	learns	a	representation	of	the	original	features,	and	subsequent
layers	build	on	the	representation	learned	by	the	preceding	layers.	Layer	by
layer,	the	autoencoder	learns	increasingly	complicated	representations	from
simpler	ones,	building	what	is	known	as	a	hierarchy	of	concepts	that	become
more	and	more	abstract.

The	output	layer	is	the	final	newly	learned	representation	of	the	original	features.
This	learned	representation	can	then	be	used	as	input	into	a	supervised	learning
model	with	the	objective	of	improving	the	generalization	error.

But	before	we	get	too	far	ahead	of	ourselves,	let’s	begin	by	introducing	neural
networks	and	the	Python	frameworks	TensorFlow	and	Keras.

Neural	Networks
At	their	very	essence,	neural	networks	perform	representation	learning,	where

each	layer	of	the	neural	network	learns	a	representation	from	the	previous	layer.
By	building	more	nuanced	and	detailed	representations	layer	by	layer,	neural
networks	can	accomplish	pretty	amazing	tasks	such	as	computer	vision,	speech
recognition,	and	machine	translation.

Neural	networks	come	in	two	forms—shallow	and	deep.	Shallow	networks	have
few	layers,	and	deep	networks	have	many	layers.	Deep	learning	gets	its	name
from	the	deep	(many-layered)	neural	networks	it	deploys.	Shallow	neural
networks	are	not	particularly	powerful	since	the	degree	of	representation
learning	is	limited	by	the	low	number	of	layers.	Deep	learning,	on	the	other
hand,	is	incredibly	powerful	and	is	currently	one	of	the	hottest	areas	in	machine
learning.

To	be	clear,	shallow	and	deep	learning	using	neural	networks	are	just	a	part	of
the	entire	machine	learning	ecosystem.	The	major	difference	between	machine
learning	using	neural	networks	and	classical	machine	learning	is	that	a	lot	of	the
feature	representation	is	automatically	performed	in	the	neural	networks	case
and	is	hand-designed	in	classical	machine	learning.

Neural	networks	have	an	input	layer,	one	or	many	hidden	layers,	and	an	output
layer.	The	number	of	hidden	layers	defines	just	how	deep	the	neural	network	is.
You	can	view	these	hidden	layers	as	intermediate	computations;	these	hidden
layers	together	allow	the	entire	neural	network	to	perform	complex	function
approximation.

Each	layer	has	a	certain	number	of	nodes	(also	known	as	neurons	or	units)	that
comprise	the	layer.	The	nodes	of	each	layer	are	then	connected	to	the	nodes	of
the	next	layer.	During	the	training	process,	the	neural	network	determines	the
optimal	weights	to	assign	to	each	node.

In	addition	to	adding	more	layers,	we	can	add	more	nodes	to	a	neural	network	to
increase	the	capacity	of	the	neural	network	to	model	complex	relationships.
These	nodes	are	fed	into	an	activation	function,	which	determines	what	value	of
the	current	layer	is	fed	into	the	next	layer	of	the	neural	network.	Common
activation	functions	include	linear,	sigmoid,	hyperbolic	tangent,	and	rectified
linear	unit	(ReLU)	activation	functions.	The	final	activation	function	is	usually
the	softmax	function,	which	outputs	a	class	probability	that	the	input	observation
falls	in.	This	is	pretty	typical	for	classification	type	problems.

Neural	networks	may	also	have	bias	nodes;	these	nodes	are	always	constant
values	and,	unlike	the	normal	nodes,	are	not	connected	to	the	previous	layer.
Rather,	they	allow	the	output	of	an	activation	function	to	be	shifted	lower	or
higher.	With	the	hidden	layers—including	the	nodes,	bias	nodes,	and	activation
functions—the	neural	network	is	trying	to	learn	the	right	function	approximation
to	use	to	map	the	input	layer	to	the	output	layer.

In	the	case	of	supervised	learning	problems,	this	is	pretty	straightforward.	The
input	layer	represents	the	features	that	are	fed	into	the	neural	network,	and	the
output	layer	represents	the	label	assigned	to	each	observation.	During	the
training	process,	the	neural	network	determines	which	weights	across	the	neural
network	help	minimize	the	error	between	its	predicted	label	for	each	observation
and	the	true	label.	In	unsupervised	learning	problems,	the	neural	network	learns
representations	of	the	input	layer	via	the	various	hidden	layers	but	is	not	guided
by	labels.

Neural	networks	are	incredibly	powerful	and	are	capable	of	modeling	complex
nonlinear	relationships	to	a	degree	that	classicial	machine	learning	algorithms
struggle	with.	In	general,	this	is	a	great	characteristic	of	neural	networks,	but
there	is	a	potential	risk.	Because	neural	networks	can	model	such	complex
nonlinear	relationships,	they	are	also	much	more	prone	to	overfitting,	which	we
should	be	aware	of	and	address	when	designing	machine	learning	applications
using	neural	networks.

Although	there	are	multiple	types	of	neural	networks	such	as	recurrent	neural
networks	in	which	data	can	flow	in	any	direction	(used	for	speech	recognition
and	machine	translation)	and	convolutional	neural	networks	(used	for	computer
vision),	we	will	focus	on	the	more	straightforward	feedforward	neural	network
in	which	data	moves	in	just	one	direction:	forward.

We	also	must	perform	a	lot	more	hyperparameter	optimization	to	get	neural
networks	to	perform	well—including	the	choice	of	the	cost	function,	the
algorithm	to	minimize	the	loss,	the	type	of	initialization	for	the	starting	weights,
the	number	of	iterations	to	use	to	train	the	neural	network	(i.e.,	number	of
epochs),	the	number	of	observations	to	feed	in	before	each	weight	update	(i.e.,
batch	size),	and	the	step	size	to	move	the	weights	in	(i.e.,	learning	rate)	during
the	training	process.

1

TensorFlow
Before	we	introduce	autoencoders,	let’s	explore	TensorFlow,	the	primary	library
we	will	use	to	build	neural	networks.	TensorFlow	is	an	open	source	software
library	for	high-performance	numerical	computation	and	was	initially	developed
by	the	Google	Brain	team	for	internal	Google	use.	In	November	2015,	it	was
released	as	open	source	software.

TensorFlow	is	available	across	many	operating	systems	(including	Linux,
macOS,	Windows,	Android,	and	iOS)	and	can	run	on	multiple	CPUs	and	GPUs,
making	the	software	very	scalable	for	fast	performance	and	deployable	to	most
users	across	desktop,	mobile,	web,	and	cloud.

The	beauty	of	TensorFlow	is	that	users	can	define	a	neural	network—or,	more
generally,	a	graph	of	computations—in	Python,	and	can	take	the	neural	network
and	run	it	using	C++	code,	which	is	much	faster	than	Python.

TensorFlow	is	also	able	to	parallelize	the	computations,	breaking	down	the
entire	series	of	operations	into	separate	chunks	and	running	them	in	parallel
across	multiple	CPUs	and	GPUs.	Performance	like	this	is	a	very	important
consideration	for	large-scale	machine	learning	applications	like	those	that
Google	runs	for	its	core	operations	such	as	search.

While	there	are	other	open	source	libraries	capable	of	similar	feats,	TensorFlow
has	become	the	most	popular,	partly	due	to	Google’s	brand.

TensorFlow	example
Before	we	move	ahead,	let’s	build	a	TensorFlow	graph	and	run	a	computation.
We	will	import	TensorFlow,	define	a	few	variables	using	the	TensorFlow	API
(which	resembles	the	Scikit-Learn	API	we’ve	used	in	previous	chapters),	and
then	compute	the	values	for	those	variables:

import tensorflow as tf

b = tf.constant(50)
x = b * 10
y = x + b

with tf.Session() as sess:
 result = y.eval()
 print(result)

2

It	is	important	to	realize	that	there	are	two	phases	here.	First,	we	construct	the
computation	graph,	defining	b,	x,	and	y.	Then,	we	execute	the	graph	by	calling
tf.Session().	Until	we	call	this,	no	computations	are	being	executed	by	the
CPU	and/or	GPU.	Rather,	only	the	instructions	for	the	computations	are	being
stored.	Once	you	execute	this	block	of	code,	you	will	see	the	result	of	“550”	as
expected.

Later	on,	we	will	build	actual	neural	networks	using	TensorFlow.

Keras
Keras	is	an	open	source	software	library	and	provides	a	high-level	API	that	runs
on	top	of	TensorFlow.	It	provides	a	much	more	user-friendly	interface	for
TensorFlow,	allowing	data	scientists	and	researchers	to	experiment	faster	and
more	easily	than	if	they	had	to	work	directly	with	the	TensorFlow	commands.
Keras	was	also	primarily	authored	by	a	Google	engineer,	Francois	Chollet.

When	we	start	building	models	using	TensorFlow,	we	will	work	hands-on	with
Keras	and	explore	its	advantages.

Autoencoder:	The	Encoder	and	the	Decoder
Now	that	we’ve	introduced	neural	networks	and	the	popular	libraries	to	work
with	them	in	Python—TensorFlow	and	Keras—let’s	build	an	autoencoder,	one	of
the	simplest	unsupervised	learning	neural	networks.

An	autoencoder	comprises	two	parts,	an	encoder	and	a	decoder.	The	encoder
converts	the	input	set	of	features	into	a	different	representation—via
representation	learning—and	the	decoder	converts	this	newly	learned
representation	to	the	original	format.

The	core	concept	of	an	autoencoder	is	similar	to	the	concept	of	dimensionality
reduction	we	studied	in	Chapter	3.	Similar	to	dimensionality	reduction,	an
autoencoder	does	not	memorize	the	original	observations	and	features,	which
would	be	what	is	known	as	the	identity	function.	If	it	learned	the	exact	identity
function,	the	autoencoder	would	not	be	useful.	Rather,	autoencoders	must
approximate	the	original	observations	as	closely	as	possible—but	not	exactly—
using	a	newly	learned	representation;	in	other	words,	the	autoencoder	learns	an

approximation	of	the	identity	function.

Since	the	autoencoder	is	constrained,	it	is	forced	to	learn	the	most	salient
properties	of	the	original	data,	capturing	the	underlying	structure	of	the	data;	this
is	similar	to	what	happens	in	dimensionality	reduction.	The	constraint	is	a	very
important	attribute	of	autoencoders—the	constraint	forces	the	autoencoder	to
intelligently	choose	which	important	information	to	capture	and	which	irrelevant
or	less	important	information	to	discard.

Autoencoders	have	been	around	for	decades,	and,	as	you	may	suspect	already,
they	have	been	used	widely	for	dimensionality	reduction	and	automatic	feature
engineering/learning.	Today,	they	are	often	used	to	build	generative	models	such
as	generative	adversarial	networks.

Undercomplete	Autoencoders
In	the	autoencoder,	we	care	most	about	the	encoder	because	this	component	is
the	one	that	learns	a	new	representation	of	the	original	data.	This	new
representation	is	the	new	set	of	features	derived	from	the	original	set	of	features
and	observations.

We	will	refer	to	the	encoder	function	of	the	autoencoder	as	h	=	f(x),	which	takes
in	the	original	observations	x	and	uses	the	newly	learned	representation	captured
in	function	f	to	output	h.	The	decoder	function	that	reconstructs	the	original
observations	using	the	encoder	function	is	r	=	g(h).

As	you	can	see,	the	decoder	function	feeds	in	the	encoder’s	output	h	and
reconstructs	the	observations,	known	as	r,	using	its	reconstruction	function	g.	If
done	correctly,	g(f(x))	will	not	be	exactly	equal	to	x	everywhere	but	will	be	close
enough.

How	do	we	restrict	the	encoder	function	to	approximate	x	so	that	it	is	forced	to
learn	only	the	most	salient	properties	of	x	without	copying	it	exactly?

We	can	constrain	the	encoder	function’s	output,	h,	to	have	fewer	dimensions
than	x.	This	is	known	as	an	undercomplete	autoencoder	since	the	encoder’s
dimensions	are	fewer	than	the	original	input	dimensions.	This	is	again	similar	to
what	happens	in	dimensionality	reduction,	where	we	take	in	the	original	input
dimensions	and	reduce	them	to	a	much	smaller	set.

Constrained	in	this	manner,	the	autoencoder	attempts	to	minimize	a	loss	function
we	define	such	that	the	reconstruction	error—after	the	decoder	reconstructs	the
observations	approximately	using	the	encoder’s	output—is	as	small	as	possible.
It	is	important	to	realize	that	the	hidden	layers	are	where	the	dimensions	are
constrained.	In	other	words,	the	output	of	the	encoder	has	fewer	dimensions	than
the	original	input.	But	the	output	of	the	decoder	is	the	reconstructed	original	data
and,	therefore,	has	the	same	number	of	dimensions	as	the	original	input.

When	the	decoder	is	linear	and	the	loss	function	is	the	mean	squared	error,	an
undercomplete	autoencoder	learns	the	same	sort	of	new	representation	as	PCA,	a
form	of	dimensionality	reduction	we	introduced	in	Chapter	3.	However,	if	the
encoder	and	decoder	functions	are	nonlinear,	the	autoencoder	can	learn	much
more	complex	nonlinear	representations.	This	is	what	we	care	about	most.	But
be	warned—if	the	autoencoder	is	given	too	much	capacity	and	latitude	to	model
complex,	nonlinear	representations,	it	will	simply	memorize/copy	the	original
observations	instead	of	extracting	the	most	salient	information	from	them.
Therefore,	we	must	restrict	the	autoencoder	meaningfully	enough	to	prevent	this
from	happening.

Overcomplete	Autoencoders
If	the	encoder	learns	a	representation	in	a	greater	number	of	dimensions	than	the
original	input	dimensions,	the	autoencoder	is	considered	overcomplete.	Such
autoencoders	simply	copy	the	original	observations	and	are	not	forced	to
efficiently	and	compactly	capture	information	about	the	original	distribution	in	a
way	that	undercomplete	autoencoders	are.	That	being	said,	if	we	employ	some
form	of	regularization,	which	penalizes	the	neural	network	for	learning
unnecessarily	complex	functions,	overcomplete	autoencoders	can	be	used
successfully	for	dimensionality	reduction	and	automatic	feature	engineering.

Compared	to	undercomplete	autoeconders,	regularized	overcomplete
autoencoders	are	harder	to	design	successfully	but	are	potentially	more	powerful
because	they	can	learn	more	complex—but	not	overly	complex—representations
that	better	approximate	the	original	observations	without	copying	them	precisely.

In	a	nutshell,	autoencoders	that	perform	well	are	those	that	learn	new
representations	that	approximate	the	original	obsevations	close	enough	but	not

exactly.	To	do	this,	the	autoencoder	essentially	learns	a	new	probability
distribution.

Dense	vs.	Sparse	Autoencoders
If	you	recall,	in	Chapter	3	we	had	both	dense	(the	normal)	and	sparse	versions	of
dimensionality	reduction	algorithms.	Autoencoders	work	similarly.	So	far,	we’ve
discussed	just	the	normal	autoencoder	that	outputs	a	dense	final	matrix	such	that
a	handful	of	features	have	the	most	salient	information	that	has	been	captured
about	the	original	data.	However,	we	may	instead	want	to	output	a	sparse	final
matrix	such	that	the	information	captured	is	more	well-distributed	across	the
features	that	the	autoencoder	learns.

To	do	this,	we	need	to	include	not	just	a	reconstruction	error	as	part	of	the
autoencoder	but	also	a	sparsity	penalty	so	that	the	autoencoder	must	take	the
sparsity	of	the	final	matrix	into	consideration.	Sparse	autoencoders	are	generally
overcomplete—the	hidden	layers	have	more	units	than	the	number	of	input
features	with	the	caveat	that	only	a	small	fraction	of	the	hidden	units	are	allowed
to	be	active	at	the	same	time.	When	defined	in	this	way,	a	sparse	autoencoder
will	output	a	final	matrix	that	has	many	more	zeros	embedded	throughout	and
the	information	captured	will	be	better	distributed	across	the	features	learned.

For	certain	machine	learning	applications,	sparse	autoencoders	have	better
performance	and	also	learn	somewhat	different	representations	than	the	normal
(dense)	autoencoders	would.	Later,	we	will	work	with	real	examples	to	see	the
difference	between	these	two	types	of	autoencoders.

Denoising	Autoencoder
As	you	know	by	now,	autoencoders	are	capable	of	learning	new	(and	improved)
representations	from	the	original	input	data,	capturing	the	most	salient	elements
but	disregarding	the	noise	in	the	original	data.

In	some	cases,	we	may	want	the	autoencoder	we	design	to	more	aggressively
ignore	the	noise	in	the	data,	especially	if	we	suspect	the	original	data	is
corrupted	to	some	degree.	Imagine	recording	a	conversation	between	two	people
at	a	noisy	coffee	shop	in	the	middle	of	the	day.	We	would	want	to	isolate	the

conversation	(the	signal)	from	the	background	chatter	(the	noise).	Or,	imagine	a
dataset	of	images	that	are	grainy	or	distorted	due	to	low	resolution	or	some
blurring	effect.	We	want	to	isolate	the	core	image	(the	signal)	from	the	distortion
(the	noise).

For	these	problems,	we	can	design	a	denoising	autoencoder	that	receives	the
corrupted	data	as	input	and	is	trained	to	output	the	original,	uncorrupted	data	as
best	as	possible.	Of	course,	while	this	is	not	easy	to	do,	this	is	clearly	a	very
powerful	application	of	autoencoders	to	solve	real-world	problems.

Variational	Autoencoder
So	far,	we	have	discussed	the	use	of	autoencoders	to	learn	new	representations	of
the	original	input	data	(via	the	encoder)	to	minimize	the	reconstruction	error
between	the	newly	reconstructed	data	(via	the	decoder)	and	the	original	input
data.

In	these	examples,	the	encoder	is	of	a	fixed	size,	n,	where	n	is	typically	smaller
than	the	number	of	original	dimensions—in	other	words,	we	train	an
undercomplete	autoencoder.	Or	n	may	be	larger	than	the	number	of	original
dimensions—an	overcomplete	autoencoder—but	constrained	using	a
regularization	penalty,	a	sparsity	penalty,	etc.	But	in	all	these	cases,	the	encoder
outputs	a	single	vector	of	a	fixed	size	n.

An	alternative	autoencoder	known	as	the	variational	autoencoder	has	an	encoder
that	outputs	two	vectors	instead	of	one:	a	vector	of	means,	mu,	and	a	vector	of
standard	deviations,	sigma.	These	two	vectors	form	random	variables	such	that
the	ith	element	of	mu	and	sigma	corresponds	to	the	mean	and	standard	deviation
of	the	ith	random	variable.	By	forming	this	stochastic	output	via	its	encoder,	the
variational	autoencoder	is	able	to	sample	across	a	continuous	space	based	on
what	it	has	learned	from	the	input	data.

The	variational	autoencoder	is	not	confined	to	just	the	examples	it	has	trained	on
but	can	generalize	and	output	new	examples	even	if	it	may	have	never	seen
precisely	similar	ones	before.	This	is	incredibly	powerful	because	now	the
variational	autoencoders	can	generate	new	synthetic	data	that	appears	to	belong
in	the	distribution	the	variational	autoencoder	has	learned	from	the	original	input
data.	Advances	like	this	have	led	to	an	entirely	new	and	trending	field	in

unsupervised	learning	known	as	generative	modeling,	which	includes	generative
adversarial	networks.	With	these	models,	it	is	possible	to	generate	synthetic
images,	speech,	music,	art,	etc.,	opening	up	a	world	of	possibilities	for	AI-
generated	data.

Conclusion
In	this	chapter,	we	introduced	neural	networks	and	the	popular	open	source
libraries,	TensorFlow	and	Keras.	We	also	explored	autoencoders	and	their	ability
to	learn	new	representations	from	original	input	data.	Variations	include	sparse
autoencoders,	denoising	autoencoders,	and	variational	autoencoders,	among
others.

In	Chapter	8,	we	will	build	hands-on	applications	using	the	techniques	we	have
discussed	in	this	chapter.

Before	we	proceed,	let’s	revisit	why	automatic	feature	extraction	is	so	important.
Without	the	ability	to	automatically	extract	features,	data	scientists	and	machine
learning	engineers	would	have	to	design	by	hand	features	that	might	be
important	in	solving	real-world	problems.	This	is	very	time-consuming	and
would	dramatically	limit	progress	in	the	field	of	AI.

In	fact,	until	Geoffrey	Hinton	and	other	researchers	developed	methods	to
automatically	learn	new	features	using	neural	networks—launching	the	deep
learning	revolution	starting	in	2006—problems	involving	computer	vision,
speech	recognition,	machine	translation,	etc.,	remained	largely	intractable.

Once	autoencoders	and	other	variations	of	neural	networks	were	used	to
automatically	extract	features	from	input	data,	a	lot	of	these	problems	became
solvable,	leading	to	some	major	breakthroughs	in	machine	learning	over	the	past
decade.

You	will	see	the	power	of	automatic	feature	extraction	in	the	hands-on
application	of	autoencoders	in	Chapter	8.

1 	This	process	is	known	as	regularization.

2 	For	more	on	TensorFlow,	consult	the	website.

https://www.tensorflow.org/

Chapter	8.	Hands-On
Autoencoder

In	this	chapter,	we	will	build	applications	using	various	versions	of
autoencoders,	including	undercomplete,	overcomplete,	sparse,	denoising,	and
variational	autoencoders.

To	start,	let’s	return	to	the	credit	card	fraud	detection	problem	we	introduced	in
Chapter	3.	For	this	problem,	we	have	284,807	credit	card	transactions,	of	which
only	492	are	fraudulent.	Using	a	supervised	model,	we	achieved	an	average
precision	of	0.82,	which	is	very	impressive.	We	can	find	well	over	80%	of	the
fraud	with	an	over	80%	precision.	Using	an	unsupervised	model,	we	achieved	an
average	precision	of	0.69,	which	is	very	good	considering	we	did	not	use	labels.
We	can	find	over	75%	of	the	fraud	with	an	over	75%	precision.

Let’s	see	how	this	same	problem	can	be	solved	using	an	autoencoder,	which	is
also	an	unsupervised	algorithm	but	one	that	uses	a	neural	network.

Data	Preparation
Let’s	first	load	the	necessary	libaries:

'''Main'''
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp

from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score

'''Algos'''
import lightgbm as lgb

'''TensorFlow and Keras'''
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout
from keras.layers import BatchNormalization, Input, Lambda
from keras import regularizers
from keras.losses import mse, binary_crossentropy

Next,	load	the	dataset	and	prepare	it	for	use.	We	will	create	a	dataX	matrix	with
all	the	PCA	components	and	the	feature	Amount,	but	drop	Class	and	Time.	We
will	store	the	Class	labels	in	the	dataY	matrix.	We	will	also	scale	the	features	in
the	dataX	matrix	so	that	all	the	features	have	a	mean	of	zero	and	standard
deviation	of	one:

data = pd.read_csv('creditcard.csv')
dataX = data.copy().drop(['Class','Time'],axis=1)
dataY = data['Class'].copy()
featuresToScale = dataX.columns
sX = pp.StandardScaler(copy=True, with_mean=True, with_std=True)
dataX.loc[:,featuresToScale] = sX.fit_transform(dataX[featuresToScale])

As	we	did	in	Chapter	3,	we	will	create	a	training	set	with	two-thirds	of	the	data
and	the	labels	and	a	test	set	with	one-third	of	the	data	and	the	labels.

Let’s	store	the	training	set	and	the	test	set	as	X_train_AE	and	X_test_AE,
respectively.	We	will	use	these	in	the	autoencoders	soon:

X_train, X_test, y_train, y_test = \
 train_test_split(dataX, dataY, test_size=0.33, \
 random_state=2018, stratify=dataY)

X_train_AE = X_train.copy()
X_test_AE = X_test.copy()

Let’s	also	use	reuse	the	function	we	introduced	earlier	in	the	book,	called
anomalyScores,	to	calculate	the	reconstruction	error	between	the	original
feature	matrix	and	the	newly	reconstructed	feature	matrix.	The	function	takes	the
sum	of	squared	errors	and	normalizes	them	to	a	range	between	zero	and	one.

This	is	a	crucial	function.	The	transactions	with	errors	close	to	one	are	the	ones
that	are	most	anomalous	(i.e.,	have	the	highest	reconstruction	error)	and,
therefore,	are	most	likely	to	be	fraudulent.	The	transactions	with	errors	close	to
zero	have	the	lowest	reconstruction	error	and	are	most	likely	to	be	normal:

def anomalyScores(originalDF, reducedDF):
 loss = np.sum((np.array(originalDF) - \
 np.array(reducedDF))**2, axis=1)
 loss = pd.Series(data=loss,index=originalDF.index)
 loss = (loss-np.min(loss))/(np.max(loss)-np.min(loss))
 return loss

We	will	also	reuse	the	function	to	plot	the	precision-recall	curve,	the	average
precision,	and	the	ROC	curve.	This	function	is	called	plotResults:

def plotResults(trueLabels, anomalyScores, returnPreds = False):
 preds = pd.concat([trueLabels, anomalyScores], axis=1)
 preds.columns = ['trueLabel', 'anomalyScore']
 precision, recall, thresholds = \
 precision_recall_curve(preds['trueLabel'], \
 preds['anomalyScore'])
 average_precision = average_precision_score(\
 preds['trueLabel'], preds['anomalyScore'])

 plt.step(recall, precision, color='k', alpha=0.7, where='post')
 plt.fill_between(recall, precision, step='post', alpha=0.3, color='k')

 plt.xlabel('Recall')
 plt.ylabel('Precision')
 plt.ylim([0.0, 1.05])
 plt.xlim([0.0, 1.0])

 plt.title('Precision-Recall curve: Average Precision = \
 {0:0.2f}'.format(average_precision))

 fpr, tpr, thresholds = roc_curve(preds['trueLabel'], \
 preds['anomalyScore'])
 areaUnderROC = auc(fpr, tpr)

 plt.figure()

 plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve')
 plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--')
 plt.xlim([0.0, 1.0])
 plt.ylim([0.0, 1.05])
 plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.title('Receiver operating characteristic: Area under the \
 curve = {0:0.2f}'.format(areaUnderROC))
 plt.legend(loc="lower right")
 plt.show()

 if returnPreds==True:
 return preds

The	Components	of	an	Autoencoder
First,	let’s	build	a	very	simple	autoencoder	with	the	input	layer,	a	single	hidden
layer,	and	the	output	layer.	We	will	feed	the	original	feature	matrix	x	into	the
autoencoder—this	is	represented	by	the	input	layer.	Then,	an	activation	function
will	be	applied	to	the	input	layer,	generating	the	hidden	layer.	This	activation
function	is	called	f	and	represents	the	encoder	portion	of	the	autoencoder.	The
hidden	layer	is	called	h	(which	is	equal	to	f(x))	and	represents	the	newly	learned
representation.

Next,	an	activation	function	is	applied	to	the	hidden	layer	(i.e.,	the	newly	learned
representation)	to	reconstruct	the	original	observations.	This	activation	function
is	called	g	and	represents	the	decoder	portion	of	the	autoencoder.	The	output
layer	is	called	r	(which	is	equal	to	g(h))	and	represents	the	newly	reconstructed
observations.	To	calculate	the	reconstruction	error,	we	will	compare	the	newly
constructed	observations	r	with	the	original	ones	x.

Activation	Functions
Before	we	decide	the	number	of	nodes	to	use	in	this	single	hidden	layer
autoencoder,	let’s	discuss	activation	functions.

A	neural	network	learns	the	weights	to	apply	to	the	nodes	at	each	of	the	layers
but	whether	the	nodes	will	be	activated	or	not	(for	use	in	the	next	layer)	is
determined	by	the	activation	function.	In	other	words,	an	activation	function	is
applied	to	the	weighted	input	(plus	bias,	if	any)	at	each	layer.	We	will	call	the

weighted	input	plus	bias	Y.

The	activation	function	takes	in	Y	and	either	activates	(if	Y	is	above	a	certain
threshold)	or	does	not.	If	activated,	the	information	in	a	given	node	is	passed	to
the	next	layer;	otherwise,	it	is	not.	However,	we	do	not	want	simple	binary
activations.	Instead,	we	want	a	range	of	activation	values.	To	do	this,	we	can
choose	a	linear	activation	function	or	a	nonlinear	activation	function.	The	linear
activation	function	is	unbounded.	It	can	generate	activation	values	between
negative	infinity	and	positive	infinity.	Common	nonlinear	activation	functions
include	sigmoid,	hyperbolic	tangent	(or	tanh	for	short),	rectified	linear	unit	(or
ReLu	for	short),	and	softmax:

Sigmoid	function

The	sigmoid	function	is	bounded	and	can	generate	activation	values	between
zero	and	one.

Tanh	function

The	tanh	function	is	also	bounded	and	can	generate	activation	values
between	negative	one	and	positive	one.	Its	gradient	is	steeper	than	that	of	the
sigmoid	function.

ReLu	function

The	ReLu	function	has	an	interesting	property.	If	Y	is	positive,	ReLu	will
return	Y.	Otherwise,	it	will	return	zero.	Therefore,	ReLu	is	unbounded	for
positive	values	of	Y.

Softmax	function

The	softmax	function	is	used	as	the	final	activation	function	in	a	neural
network	for	classification	problems	because	it	normalizes	classification
probabilities	to	values	that	add	up	to	a	probability	of	one.

Of	all	these	functions,	the	linear	activation	function	is	the	simplest	and	least
computationally	expensive.	ReLu	is	the	next	least	computationally	expensive,
followed	by	the	others.

Our	First	Autoencoder

Let’s	start	with	a	two-layer	autoencoder	with	a	linear	activation	function	for	both
the	encoder	and	the	decoder	functions.	Note	that	only	the	number	of	hidden
layers	plus	the	output	layer	count	toward	the	number	of	layers	in	a	neural
network.	Since	we	have	a	single	hidden	layer,	this	is	known	as	a	two-layer	neural
network.

To	build	this	using	TensorFlow	and	Keras,	we	must	first	call	the	Sequential
model	API.	The	Sequential	model	is	a	linear	stack	of	layers,	and	we	will	pass	the
types	of	layers	we	want	into	the	model	before	we	compile	the	model	and	train	on
our	data.

Model one
Two layer complete autoencoder with linear activation

Call neural network API
model = Sequential()

Once	we	call	the	Sequential	model,	we	then	need	to	specify	the	input	shape	by
designating	the	number	of	dimensions,	which	should	match	the	number	of
dimensions	in	the	original	feature	matrix,	dataX.	This	number	is	29.

We	also	need	to	specify	the	activation	function	(also	known	as	the	encoder
function)	applied	to	the	input	layer	and	the	number	of	nodes	we	want	the	hidden
layer	to	have.	We	will	pass	linear	as	the	activation	function.

To	start,	let’s	use	a	complete	autoencoder,	where	the	number	of	nodes	in	the
hidden	layer	equals	the	number	of	nodes	in	the	input	layer,	which	is	29.	All	of
this	is	done	using	a	single	line	of	code:

model.add(Dense(units=29, activation='linear',input_dim=29))

Similarly,	we	need	to	specify	the	activation	function	(also	known	as	the	decoder
function)	applied	to	the	hidden	layer	to	reconstruct	the	observations	and	the
number	of	dimensions	we	want	the	output	layer	to	have.	Since	we	want	the	final
reconstructed	matrix	to	have	the	same	dimensions	as	the	original	matrix,	the
dimension	needs	to	be	29.	And,	we	will	use	a	linear	activation	function	for	the
decoder,	too:

model.add(Dense(units=29, activation='linear'))

1

Next,	we	will	need	to	compile	the	layers	we	have	designed	for	the	neural
network.	This	requires	us	to	select	a	loss	function	(also	known	as	the	objective
function)	to	guide	the	learning	of	the	weights,	an	optimizer	to	set	the	process	by
which	the	weights	are	learned,	and	a	list	of	metrics	to	output	to	help	us	evaluate
the	goodness	of	the	neural	network.

Loss	Function
Let’s	start	with	the	loss	function.	Recall	that	we	are	evaluating	the	model	based
on	the	reconstruction	error	between	the	newly	reconstructed	matrix	of	features
based	on	the	autoencoder	and	the	original	feature	matrix	that	we	feed	into	the
autoencoder.

Therefore,	we	want	to	use	mean	squared	error	as	the	evaluation	metric.	(For	our
custom	evaluation	function,	we	use	sum	of	squared	errors,	which	is	similar.).

Optimizer
Neural	networks	train	for	many	rounds	(known	as	epochs).	In	each	of	these
epochs,	the	neural	network	readjusts	its	learned	weights	to	reduce	its	loss	from
the	previous	epoch.	The	process	for	learning	these	weights	is	set	by	the
optimizer.	We	want	a	process	that	helps	the	neural	network	efficiently	learn	the
optimal	weights	for	the	various	nodes	across	all	the	layers	that	minimizes	the
loss	function	we	have	chosen.

To	learn	the	optimal	weights,	the	neural	network	needs	to	adjust	its	“guess”	for
the	optimal	weights	in	an	intelligent	way.	One	approach	is	to	iteratively	move
the	weights	in	the	direction	that	helps	reduce	the	loss	function	incrementally.	But
an	even	better	approach	is	to	move	the	weights	in	this	direction	but	with	a	degree
of	randomness—in	other	words,	to	move	the	weights	stochastically.

Although	there	is	more	to	this,	this	process	is	known	as	stochastic	gradient
descent	(or	SGD	for	short),	the	most	commonly	used	optimizer	in	training	neural
networks. 	SGD	has	a	single	learning	rate,	known	as	alpha,	for	all	the	weight
updates	that	it	makes,	and	this	learning	rate	does	not	change	during	training.
However,	in	most	cases,	it’s	better	to	adjust	the	learning	rate	over	the	course	of
the	training.	For	example,	in	the	earlier	epochs,	it	makes	more	sense	to	adjust	the
weights	by	a	large	degree—in	other	words,	to	have	a	large	learning	rate	or	alpha.

2

3

In	later	epochs,	when	the	weights	are	more	optimal,	it	makes	more	sense	to
adjust	the	weights	by	a	small	degree	to	delicately	fine-tune	the	weights	than	to
take	massive	steps	in	one	direction	or	another.	Therefore,	an	even	better
optimzer	than	SGD	is	the	Adam	optimization	algorithm,	which	is	derived	from
adaptive	moment	estimation.	The	Adam	optimizer	dynamically	adjusts	the
learning	rate	over	the	course	of	the	training	process,	unlike	SGD,	and	is	the
optimizer	we	will	use.

For	this	optimizer,	we	can	set	the	alpha,	which	sets	the	pace	at	which	weights	are
updated.	Larger	alpha	values	result	in	faster	initial	learning	before	the	learning
rate	is	updated.

Training	the	Model
Finally,	we	need	to	choose	the	evaluation	metric,	which	we	will	set	to	accuracy
to	keep	things	simple:

model.compile(optimizer='adam',
 loss='mean_squared_error',
 metrics=['accuracy'])

Next,	we	need	to	select	the	number	of	epochs	and	the	batch	size	and	then	begin
the	training	process	by	calling	the	method	fit.	The	number	of	epochs	determines
the	number	of	times	the	training	occurs	over	the	entire	dataset	we	pass	into	the
neural	network.	We	will	set	this	to	10	to	start.

The	batch	sets	the	number	of	samples	the	neural	network	trains	on	before
making	the	next	gradient	update.	If	the	batch	is	equal	to	the	total	number	of
observations,	the	neural	network	will	make	a	gradient	update	once	every	epoch.
Otherwise,	it	will	make	updates	multiple	times	per	epoch.	We	will	set	this	to	a
generic	32	samples	to	start.

Into	the	fit	method,	we	will	pass	in	the	initial	input	matrix,	x,	and	the	target
matrix,	y.	In	our	case,	both	x	and	y	will	be	the	original	feature	matrix,
X_train_AE,	because	we	want	to	compare	the	output	of	the	autoencoder—the
reconstructed	feature	matrix—with	the	original	feature	matrix	to	calculate	the
reconstruction	error.

Remember,	this	is	a	purely	unsupervised	solution	so	we	will	not	use	the	y	matrix

4

5

at	all.	We	will	also	validate	our	model	as	we	go	by	testing	the	reconstruction
error	on	the	entire	training	matrix:

num_epochs = 10
batch_size = 32

history = model.fit(x=X_train_AE, y=X_train_AE,
 epochs=num_epochs,
 batch_size=batch_size,
 shuffle=True,
 validation_data=(X_train_AE, X_train_AE),
 verbose=1)

Since	this	a	complete	autoencoder—where	the	hidden	layer	has	the	same	number
of	dimensions	as	the	input	layer—the	loss	is	very	low,	for	both	the	training	and
validation	sets:

Training history of complete autoencoder

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 29s 154us/step - loss: 0.1056
- acc: 0.8728 - val_loss: 0.0013 - val_acc: 0.9903
Epoch 2/10
190820/190820 [==============================] - 27s 140us/step - loss: 0.0012
- acc: 0.9914 - val_loss: 1.0425e-06 - val_acc: 0.9995
Epoch 3/10
190820/190820 [==============================] - 23s 122us/step - loss: 6.6244
e-04 - acc: 0.9949 - val_loss: 5.2491e-04 - val_acc: 0.9913
Epoch 4/10
190820/190820 [==============================] - 23s 119us/step - loss: 0.0016
- acc: 0.9929 - val_loss: 2.2246e-06 - val_acc: 0.9995
Epoch 5/10
190820/190820 [==============================] - 23s 119us/step - loss: 5.7424
e-04 - acc: 0.9943 - val_loss: 9.0811e-05 - val_acc: 0.9970
Epoch 6/10
190820/190820 [==============================] - 22s 118us/step - loss: 5.4950
e-04 - acc: 0.9941 - val_loss: 6.0598e-05 - val_acc: 0.9959
Epoch 7/10
190820/190820 [==============================] - 22s 117us/step - loss: 5.2291
e-04 - acc: 0.9946 - val_loss: 0.0023 - val_acc: 0.9675
Epoch 8/10
190820/190820 [==============================] - 22s 117us/step - loss: 6.5130
e-04 - acc: 0.9932 - val_loss: 4.5059e-04 - val_acc: 0.9945
Epoch 9/10
190820/190820 [==============================] - 23s 122us/step - loss: 4.9077

e-04 - acc: 0.9952 - val_loss: 7.2591e-04 - val_acc: 0.9908
Epoch 10/10
190820/190820 [==============================] - 23s 118us/step - loss: 6.1469
e-04 - acc: 0.9945 - val_loss: 4.4131e-06 - val_acc: 0.9991

This	is	not	optimal—the	autoencoder	has	reconstructed	the	original	feature
matrix	too	precisely,	memorizing	the	inputs.

Recall	that	the	autoencoder	is	meant	to	learn	a	new	representation	that	captures
the	most	salient	information	in	the	original	input	matrix	while	dropping	the	less
relevant	information.	Simply	memorizing	the	inputs—also	known	as	learning	the
identity	function—will	not	result	in	new	and	improved	representation	learning.

Evaluating	on	the	Test	Set
Let’s	use	the	test	set	to	evaluate	just	how	successively	this	autoencoder	can
identify	fraud	in	the	credit	card	transactions	dataset.	We	will	use	the	predict
method	to	do	this:

predictions = model.predict(X_test, verbose=1)
anomalyScoresAE = anomalyScores(X_test, predictions)
preds = plotResults(y_test, anomalyScoresAE, True)

As	seen	in	Figure	8-1,	the	average	precision	is	0.30,	which	is	not	very	good.	The
best	average	precision	using	unsupervised	learning	from	Chapter	4	was	0.69,	and
the	supervised	system	had	an	average	precision	of	0.82.	However,	each	training
process	will	yield	slightly	different	results	for	the	trained	autoencoder,	so	you
may	not	see	the	same	performance	for	your	run.

To	get	a	better	sense	of	how	a	two-layer	complete	autoencoder	performs	on	the
test	set,	let’s	run	this	training	process	ten	separate	times	and	store	the	average
precision	on	the	test	set	for	each	run.	We	will	assess	how	good	this	complete
autoencoder	is	at	capturing	fraud	based	on	the	mean	of	the	average	precision
from	these	10	runs.

Figure	8-1.	Evaluation	metrics	of	complete	autoencoder

To	consolidate	our	work	thus	far,	here	is	the	code	to	simulate	10	runs	from	start
to	finish:

10 runs - We will capture mean of average precision
test_scores = []
for i in range(0,10):
 # Call neural network API
 model = Sequential()

 # Apply linear activation function to input layer
 # Generate hidden layer with 29 nodes, the same as the input layer
 model.add(Dense(units=29, activation='linear',input_dim=29))

 # Apply linear activation function to hidden layer
 # Generate output layer with 29 nodes

 model.add(Dense(units=29, activation='linear'))

 # Compile the model
 model.compile(optimizer='adam',
 loss='mean_squared_error',
 metrics=['accuracy'])

 # Train the model
 num_epochs = 10
 batch_size = 32

 history = model.fit(x=X_train_AE, y=X_train_AE,
 epochs=num_epochs,
 batch_size=batch_size,
 shuffle=True,
 validation_data=(X_train_AE, X_train_AE),
 verbose=1)

 # Evaluate on test set
 predictions = model.predict(X_test, verbose=1)
 anomalyScoresAE = anomalyScores(X_test, predictions)
 preds, avgPrecision = plotResults(y_test, anomalyScoresAE, True)
 test_scores.append(avgPrecision)

print("Mean average precision over 10 runs: ", np.mean(test_scores))
test_scores

The	following	code	summarizes	the	results	for	the	10	runs.	The	mean	of	the
average	precision	is	0.30,	but	the	average	precision	ranges	from	a	low	of	0.02	to
.72.	The	coefficient	of	variation	(defined	as	the	standard	deviation	divided	by	the
mean	over	10	runs)	is	0.88.

Mean average precision over 10 runs: 0.30108318944579776
Coefficient of variation over 10 runs: 0.8755095071789248

[0.25468022666666157,
0.092705950994909,
0.716481644928299,
0.01946589342639965,
0.25623865457838263,
0.33597083510378234,
0.018757053070824415,
0.6188569405068724,
0.6720552647581304,
0.025619070873716072]

Let’s	try	to	improve	our	results	by	building	variations	of	this	autoencoder.

Two-Layer	Undercomplete	Autoencoder	with
Linear	Activation	Function
Let’s	try	an	undercomplete	autoencoder	rather	than	a	complete	one.

Compared	to	the	previous	autoencoder,	the	only	thing	that	changes	is	the	number
of	nodes	in	the	hidden	layer.	Instead	of	setting	this	to	the	number	of	original
dimensions	(29),	we	will	set	the	nodes	to	20.	In	other	words,	this	autoencoder	is
a	constrained	autoencoder.	The	encoder	function	is	forced	to	capture	the
information	in	the	input	layer	with	a	fewer	number	of	nodes,	and	the	decoder	has
to	take	this	new	representation	to	reconstruct	the	original	matrix.

We	should	expect	the	loss	here	to	be	higher	compared	to	that	of	the	complete
autoencoder.	Let’s	run	the	code.	We	will	perform	10	independent	runs	to	test
how	well	the	various	undercomplete	autoencoders	are	at	catching	fraud:

10 runs - We will capture mean of average precision
test_scores = []
for i in range(0,10):
 # Call neural network API
 model = Sequential()

 # Apply linear activation function to input layer
 # Generate hidden layer with 20 nodes
 model.add(Dense(units=20, activation='linear',input_dim=29))

 # Apply linear activation function to hidden layer
 # Generate output layer with 29 nodes
 model.add(Dense(units=29, activation='linear'))

 # Compile the model
 model.compile(optimizer='adam',
 loss='mean_squared_error',
 metrics=['accuracy'])

 # Train the model
 num_epochs = 10
 batch_size = 32

 history = model.fit(x=X_train_AE, y=X_train_AE,
 epochs=num_epochs,

 batch_size=batch_size,
 shuffle=True,
 validation_data=(X_train_AE, X_train_AE),
 verbose=1)

 # Evaluate on test set
 predictions = model.predict(X_test, verbose=1)
 anomalyScoresAE = anomalyScores(X_test, predictions)
 preds, avgPrecision = plotResults(y_test, anomalyScoresAE, True)
 test_scores.append(avgPrecision)

print("Mean average precision over 10 runs: ", np.mean(test_scores))
test_scores

As	the	following	shows,	the	losses	of	the	undercomplete	autoencoder	are
considerably	higher	than	those	of	the	complete	autoencoder.	It	is	clear	that	the
autoencoder	learns	a	representation	that	is	new	and	more	constrained	than	the
original	input	matrix—the	autoencoder	did	not	simply	memorize	the	inputs:

Training history of undercomplete autoencoder with 20 nodes

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 28s 145us/step - loss: 0.3588
- acc: 0.5672 - val_loss: 0.2789 - val_acc: 0.6078
Epoch 2/10
190820/190820 [==============================] - 29s 153us/step - loss: 0.2817
- acc: 0.6032 - val_loss: 0.2757 - val_acc: 0.6115
Epoch 3/10
190820/190820 [==============================] - 28s 147us/step - loss: 0.2793
- acc: 0.6147 - val_loss: 0.2755 - val_acc: 0.6176
Epoch 4/10
190820/190820 [==============================] - 30s 155us/step - loss: 0.2784
- acc: 0.6164 - val_loss: 0.2750 - val_acc: 0.6167
Epoch 5/10
190820/190820 [==============================] - 29s 152us/step - loss: 0.2786
- acc: 0.6188 - val_loss: 0.2746 - val_acc: 0.6126
Epoch 6/10
190820/190820 [==============================] - 29s 151us/step - loss: 0.2776
- acc: 0.6140 - val_loss: 0.2752 - val_acc: 0.6043
Epoch 7/10
190820/190820 [==============================] - 30s 156us/step - loss: 0.2775
- acc: 0.5947 - val_loss: 0.2745 - val_acc: 0.5946
Epoch 8/10
190820/190820 [==============================] - 29s 149us/step - loss: 0.2770
- acc: 0.5903 - val_loss: 0.2740 - val_acc: 0.5882
Epoch 9/10

190820/190820 [==============================] - 29s 153us/step - loss: 0.2768
- acc: 0.5921 - val_loss: 0.2770 - val_acc: 0.5801
Epoch 10/10
190820/190820 [==============================] - 29s 150us/step - loss: 0.2767
- acc: 0.5803 - val_loss: 0.2744 - val_acc: 0.5743
93987/93987[==============================] - 3s 36us/step

This	is	how	an	autoencoder	should	work—it	should	learn	a	new	representation.
Figure	8-2	shows	how	effective	this	new	representation	is	at	identifying	fraud.

Figure	8-2.	Evaluation	metrics	of	undercomplete	autoencoder	with	20	nodes

The	average	precision	is	0.29,	similar	to	that	of	the	complete	autoencoder.

The	following	code	shows	the	distribution	of	average	precisions	across	the	10
runs.	The	mean	of	the	average	precision	is	0.31,	but	the	dispersion	is	very	tight

(as	the	coefficient	of	variation	0.03	indicates).	This	is	a	considerably	more	stable
system	than	the	one	designed	with	a	complete	autoencoder.

Mean average precision over 10 runs: 0.30913783987972737
Coefficient of variation over 10 runs: 0.032251659812254876

[0.2886910204920736,
0.3056142045082387,
0.31658073591381186,
0.30590858583039254,
0.31824197682595556,
0.3136952374067599,
0.30888135217515555,
0.31234000424933206,
0.29695149753706923,
0.3244746838584846]

But	we	are	still	stuck	at	a	fairly	mediocre	average	precision.	Why	did	the
undercomplete	autoencoder	not	perform	better?	It	could	be	that	this
undercomplete	autoencoder	does	not	have	enough	nodes.	Or,	maybe	we	need	to
train	using	more	hidden	layers.	Let’s	experiment	with	these	two	changes,	one	by
one.

Increasing	the	Number	of	Nodes
The	following	code	displays	the	training	losses	when	using	a	two-layer
undercomplete	autocoder	with	27	nodes	instead	of	just	20:

Training history of undercomplete autoencoder with 27 nodes

Train on 190820 samples, validate on 190820 samples

Epoch 1/10
190820/190820 [==============================] - 29s 150us/step - loss: 0.1169
- acc: 0.8224 - val_loss: 0.0368 - val_acc: 0.8798
Epoch 2/10
190820/190820 [==============================] - 29s 154us/step - loss: 0.0388
- acc: 0.8610 - val_loss: 0.0360 - val_acc: 0.8530
Epoch 3/10
190820/190820 [==============================] - 30s 156us/step - loss: 0.0382
- acc: 0.8680 - val_loss: 0.0359 - val_acc: 0.8745
Epoch 4/10
190820/190820 [==============================] - 30s 156us/step - loss: 0.0371
- acc: 0.8811 - val_loss: 0.0353 - val_acc: 0.9021

Epoch 5/10
190820/190820 [==============================] - 30s 155us/step - loss: 0.0373
- acc: 0.9114 - val_loss: 0.0352 - val_acc: 0.9226
Epoch 6/10
190820/190820 [==============================] - 30s 155us/step - loss: 0.0377
- acc: 0.9361 - val_loss: 0.0370 - val_acc: 0.9416
Epoch 7/10
190820/190820 [==============================] - 30s 156us/step - loss: 0.0361
- acc: 0.9448 - val_loss: 0.0358 - val_acc: 0.9378
Epoch 8/10
190820/190820 [==============================] - 30s 156us/step - loss: 0.0354
- acc: 0.9521 - val_loss: 0.0350 - val_acc: 0.9503
Epoch 9/10
190820/190820 [==============================] - 29s 153us/step - loss: 0.0352
- acc: 0.9613 - val_loss: 0.0349 - val_acc: 0.9263
Epoch 10/10
190820/190820 [==============================] - 29s 153us/step - loss: 0.0353
- acc: 0.9566 - val_loss: 0.0343 - val_acc: 0.9477
93987/93987[==============================] - 4s 39us/step

Figure	8-3	displays	the	average	precision,	precision-recall	curve,	and	auROC
curve.

Figure	8-3.	Evaluation	metrics	of	undercomplete	autoencoder	with	27	nodes

The	average	precision	improves	considerably	to	0.70.	This	is	better	than	the
average	precision	of	the	complete	autoencoder	and	better	than	the	best
unsupervised	learning	solution	from	Chapter	4.

The	following	code	summarizes	the	distribution	of	average	precision	across	the
10	runs.	The	mean	of	the	average	precision	is	0.53,	considerably	better	than	the
~0.30	average	precision	earlier.	The	dispersion	of	average	precision	is
reasonably	good,	with	a	coefficient	of	variation	of	0.50.

Mean average precision over 10 runs: 0.5273341559141779
Coefficient of variation over 10 runs: 0.5006880691999009

[0.689799495450694,
0.7092146840717755,

0.7336692377321005,
0.6154173765950426,
0.7068800243349335,
0.35250757724667586,
0.6904117414832501,
0.02335388808244066,
0.690798140588336,
0.061289393556529626]

We	have	a	clear	improvement	over	our	previous	autoencoder-based	anomaly
detection	system.

Adding	More	Hidden	Layers
Let’s	see	if	we	can	improve	our	results	by	adding	an	extra	hidden	layer	to	the
autoencoder.	We	will	continue	to	use	linear	activation	functions	for	now.

NOTE
Experimentation	is	a	major	part	of	discovering	the	best	neural	network	architecture	for	the
problem	you	have	to	solve.	Some	changes	you	make	will	lead	to	better	results,	others	to	worse.
Knowing	how	to	modify	the	neural	network	and	the	hyperparameters	as	part	of	your	search	to
improve	the	solution	is	very	important.

Instead	of	a	single	hidden	layer	with	27	nodes,	we	will	use	one	hidden	layer	with
28	nodes	and	another	with	27	nodes.	This	is	only	a	slight	variation	from	the	one
we	used	previously.	This	is	now	a	three-layer	neural	network	since	we	have	two
hidden	layers	plus	the	output	layer.	The	input	layer	does	not	“count”	toward	this
number.

This	additional	hidden	layer	requires	just	one	additional	line	of	code,	as	shown
here:

Model two
Three layer undercomplete autoencoder with linear activation
With 28 and 27 nodes in the two hidden layers, respectively

model = Sequential()
model.add(Dense(units=28, activation='linear',input_dim=29))
model.add(Dense(units=27, activation='linear'))
model.add(Dense(units=29, activation='linear'))

The	following	code	summarizes	the	distribution	of	average	precisions	across	the
10	runs.	The	mean	of	the	average	precision	is	0.36,	worse	than	the	0.53	we	just
achieved.	The	dispersion	of	average	precision	is	also	worse,	with	a	coefficient	of
variation	of	0.94	(higher	is	worse):

Mean average precision over 10 runs: 0.36075271075596366
Coefficient of variation over 10 runs: 0.9361649046827353

[0.02259626054852924,
0.6984699403560997,
0.011035001202665167,
0.06621450000830197,
0.008916986608776182,
0.705399684020873,
0.6995233144849828,
0.008263068338243631,
0.6904537524978872,
0.6966545994932775]

Nonlinear	Autoencoder
Now	let’s	build	an	undercomplete	autoencoder	using	a	nonlinear	activation
function.	We	will	use	ReLu,	but	you	are	welcome	to	experiment	with	tanh,
sigmoid,	and	the	other	nonlinear	activation	functions.

We	will	include	three	hidden	layers,	with	27,	22,	and	27	nodes,	respectively.
Conceptually,	the	first	two	activation	functions	(applied	on	the	input	and	first
hidden	layer)	perform	the	encoding,	creating	the	second	hidden	layer	with	22
nodes.	Then,	the	next	two	activation	functions	perform	the	decoding,
reconstructing	the	22-node	representation	to	the	original	number	of	dimensions,
29:

model = Sequential()
model.add(Dense(units=27, activation='relu',input_dim=29))
model.add(Dense(units=22, activation='relu'))
model.add(Dense(units=27, activation='relu'))
model.add(Dense(units=29, activation='relu'))

The	following	code	shows	the	losses	from	this	autoencoder,	and	Figure	8-4
shows	the	average	precision,	the	precision-recall	curve,	and	the	auROC	curve:

Training history of undercomplete autoencoder with three hidden layers and ReLu
activation function

Train on 190820 samples, validate on 190820 samples

Epoch 1/10
190820/190820 [==============================] - 32s 169us/step - loss: 0.7010
- acc: 0.5626 - val_loss: 0.6339 - val_acc: 0.6983
Epoch 2/10
190820/190820 [==============================] - 33s 174us/step - loss: 0.6302
- acc: 0.7132 - val_loss: 0.6219 - val_acc: 0.7465
Epoch 3/10
190820/190820 [==============================] - 34s 177us/step - loss: 0.6224
- acc: 0.7367 - val_loss: 0.6198 - val_acc: 0.7528
Epoch 4/10
190820/190820 [==============================] - 34s 179us/step - loss: 0.6227
- acc: 0.7380 - val_loss: 0.6205 - val_acc: 0.7471
Epoch 5/10
190820/190820 [==============================] - 33s 174us/step - loss: 0.6206
- acc: 0.7452 - val_loss: 0.6202 - val_acc: 0.7353
Epoch 6/10
190820/190820 [==============================] - 33s 175us/step - loss: 0.6206
- acc: 0.7458 - val_loss: 0.6192 - val_acc: 0.7485
Epoch 7/10
190820/190820 [==============================] - 33s 174us/step - loss: 0.6199
- acc: 0.7481 - val_loss: 0.6239 - val_acc: 0.7308
Epoch 8/10
190820/190820 [==============================] - 33s 175us/step - loss: 0.6203
- acc: 0.7497 - val_loss: 0.6183 - val_acc: 0.7626
Epoch 9/10
190820/190820 [==============================] - 34s 177us/step - loss: 0.6197
- acc: 0.7491 - val_loss: 0.6188 - val_acc: 0.7531
Epoch 10/10
190820/190820 [==============================] - 34s 177us/step - loss: 0.6201
- acc: 0.7486 - val_loss: 0.6188 - val_acc: 0.7540
93987/93987 [==============================] - 5s 48 us/step

Figure	8-4.	Evaluation	metrics	of	undercomplete	autoencoder	with	three	hidden	layers	and	ReLu	activation
function

The	results	are	considerably	worse.

The	following	code	summarizes	the	distribution	of	average	precisions	across	the
10	runs.	The	mean	of	the	average	precision	is	0.22,	worse	than	the	0.53	we
achieved	earlier.	The	dispersion	of	average	precisions	is	very	tight,	with	a
coefficient	of	variation	of	0.06:

Mean average precision over 10 runs: 0.2232934196381843
Coefficient of variation over 10 runs: 0.060779960264380296

[0.22598829389665595,
0.22616147166925166,
0.22119489753135715,
0.2478548473814437,

0.2251289336369011,
0.2119454446242229,
0.2126914064768752,
0.24581338950742185,
0.20665608837737512,
0.20949942328033827]

These	results	are	much	worse	than	those	from	a	simple	autoencoder	using	a
linear	activation	function.	It	could	be	that—for	this	dataset—a	linear,
undercomplete	autoencoder	is	the	best	solution.

For	other	datasets,	that	may	not	always	be	the	case.	As	always,	experimentation
is	required	to	find	the	optimal	solution.	Change	the	number	of	nodes,	the	number
of	hidden	layers,	and	the	mix	of	activation	functions,	and	see	how	much	better	or
worse	the	solutions	become.

This	type	of	experimentation	is	known	as	hyperparameter	optimization.	You	are
adjusting	the	hyperparameters—the	number	of	nodes,	the	number	of	layers,	and
the	mix	of	activation	functions—in	search	of	the	optimal	solution.

Overcomplete	Autoencoder	with	Linear
Activation
Now	let’s	highlight	the	problem	with	overcomplete	autoencoders.	Overcomplete
autoencoders	have	more	nodes	in	the	hidden	layer	than	either	the	input	or	output
layer.	Because	the	capacity	of	the	neural	network	model	is	so	high,	the
autoencoder	simply	memorizes	the	observations	it	trains	on.

In	other	words,	the	autoencoder	learns	the	identity	function,	which	is	exactly
what	we	want	to	avoid.	The	autoencoder	will	overfit	the	training	data	and	will
perform	very	poorly	in	separating	fraudulent	credit	card	transactions	from
normal	ones.

Recall	that	we	need	the	autoencoder	to	learn	the	salient	aspects	of	the	credit	card
transactions	in	the	training	set	so	that	it	learns	what	the	normal	transactions	look
like—without	memorizing	the	information	in	the	less	normal,	rare	fraudulent
ones.

Only	if	the	autoencoder	is	able	to	lose	some	of	the	information	in	the	training	set
will	it	be	able	to	separate	the	fraudulent	transactions	from	the	normal	ones:

model = Sequential()
model.add(Dense(units=40, activation='linear',input_dim=29))
model.add(Dense(units=29, activation='linear'))

The	following	code	shows	the	losses	from	this	autoencoder,	and	Figure	8-5
displays	the	average	precision,	the	precision-recall	curve,	and	the	auROC	curve:

Training history of overcomplete autoencoder with single hidden layer and
 linear activation function

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 31s 161us/step - loss: 0.0498
- acc: 0.9438 - val_loss: 9.2301e-06 - val_acc: 0.9982
Epoch 2/10
190820/190820 [==============================] - 33s 171us/step - loss: 0.0014
- acc: 0.9925 - val_loss: 0.0019 - val_acc: 0.9909
Epoch 3/10
190820/190820 [==============================] - 33s 172us/step - loss: 7.6469
e-04 - acc: 0.9947 - val_loss: 4.5314e-05 - val_acc: 0.9970
Epoch 4/10
190820/190820 [==============================] - 35s 182us/step - loss: 0.0010
- acc: 0.9930 - val_loss: 0.0039 - val_acc: 0.9859
Epoch 5/10
190820/190820 [==============================] - 32s 166us/step - loss: 0.0012
- acc: 0.9924 - val_loss: 8.5141e-04 - val_acc: 0.9886
Epoch 6/10
190820/190820 [==============================] - 31s 163us/step - loss: 5.0655
e-04 - acc: 0.9955 - val_loss: 8.2359e-04 - val_acc: 0.9910
Epoch 7/10
190820/190820 [==============================] - 30s 156us/step - loss: 7.6046
e-04 - acc: 0.9930 - val_loss: 0.0045 - val_acc: 0.9933
Epoch 8/10
190820/190820 [==============================] - 30s 157us/step - loss: 9.1609
e-04 - acc: 0.9930 - val_loss: 7.3662e-04 - val_acc: 0.9872
Epoch 9/10
190820/190820 [==============================] - 30s 158us/step - loss: 7.6287
e-04 - acc: 0.9929 - val_loss: 2.5671e-04 - val_acc: 0.9940
Epoch 10/10
190820/190820 [==============================] - 30s 157us/step - loss: 7.0697
e-04 - acc: 0.9928 - val_loss: 4.5272e-06 - val_acc: 0.9994
93987/93987[==============================] - 4s 48us/step

Figure	8-5.	Evaluation	metrics	of	overcomplete	autoencoder	with	single	hidden	layer	and	linear	activation
function

As	expected,	the	losses	are	very	low,	and	the	overfit	overcomplete	autoencoder
has	very	poor	performance	in	detecting	the	fraudulent	credit	card	transactions.

The	following	code	summarizes	the	distribution	of	average	precision	across	the
10	runs.	The	mean	of	the	average	precision	is	0.31,	worse	than	the	0.53	we
achieved	earlier.	The	dispersion	of	average	precision	is	not	very	tight,	with	a
coefficient	of	variation	of	0.89:

Mean average precision over 10 runs: 0.3061984081568074
Coefficient of variation over 10 runs: 0.8896921668864564

[0.03394897465567298,
0.14322827274920255,

0.03610123178524601,
0.019735235731640446,
0.012571999125881402,
0.6788921569665146,
0.5411349583727725,
0.388474572258503,
0.7089617645810736,
0.4989349153415674]

Overcomplete	Autoencoder	with	Linear
Activation	and	Dropout
One	way	to	improve	the	overcomplete	autoencoder	solution	is	to	use	a
regularization	technique	to	reduce	the	overfitting.	One	such	technique	is	known
as	dropout.	With	dropout,	we	force	the	autoencoder	to	drop	out	some	defined
percentage	of	units	from	the	layers	in	the	neural	network.

With	this	new	constraint,	the	overcomplete	autoencoder	cannot	simply	memorize
the	credit	card	transactions	in	the	training	set.	Instead,	the	autoencoder	has	to
generalize	a	bit	more.	The	autoencoder	is	forced	to	learn	more	of	the	salient
features	in	the	dataset	and	lose	some	of	the	less	salient	information.

We	will	use	a	dropout	percentage	of	10%,	which	we	will	apply	to	the	hidden
layer.	In	other	words,	10%	of	the	neurons	are	dropped.	The	higher	the	dropout
percentage,	the	stronger	the	regularization.	This	is	done	with	just	a	single
additional	line	of	code.

Let’s	see	if	this	improves	the	results:

model = Sequential()
model.add(Dense(units=40, activation='linear', input_dim=29))
model.add(Dropout(0.10))
model.add(Dense(units=29, activation='linear'))

The	following	code	shows	the	losses	from	this	autoencoder,	and	Figure	8-6
displays	the	average	precision,	the	precision-recall	curve,	and	the	auROC	curve:

Training history of overcomplete autoencoder with single hidden layer,
dropout, and linear activation function

Train on 190820 samples, validate on 190820 samples

Epoch 1/10
190820/190820 [==============================] - 27s 141us/step - loss: 0.1358
- acc: 0.7430 - val_loss: 0.0082 - val_acc: 0.9742
Epoch 2/10
190820/190820 [==============================] - 28s 146us/step - loss: 0.0782
- acc: 0.7849 - val_loss: 0.0094 - val_acc: 0.9689
Epoch 3/10
190820/190820 [==============================] - 28s 149us/step - loss: 0.0753
- acc: 0.7858 - val_loss: 0.0102 - val_acc: 0.9672
Epoch 4/10
190820/190820 [==============================] - 28s 148us/step - loss: 0.0772
- acc: 0.7864 - val_loss: 0.0093 - val_acc: 0.9677
Epoch 5/10
190820/190820 [==============================] - 28s 147us/step - loss: 0.0813
- acc: 0.7843 - val_loss: 0.0108 - val_acc: 0.9631
Epoch 6/10
190820/190820 [==============================] - 28s 149us/step - loss: 0.0756
- acc: 0.7844 - val_loss: 0.0095 - val_acc: 0.9654
Epoch 7/10
190820/190820 [==============================] - 29s 150us/step - loss: 0.0743
- acc: 0.7850 - val_loss: 0.0077 - val_acc: 0.9768
Epoch 8/10
190820/190820 [==============================] - 29s 150us/step - loss: 0.0767
- acc: 0.7840 - val_loss: 0.0070 - val_acc: 0.9759
Epoch 9/10
190820/190820 [==============================] - 29s 150us/step - loss: 0.0762
- acc: 0.7851 - val_loss: 0.0072 - val_acc: 0.9733
Epoch 10/10
190820/190820 [==============================] - 29s 151us/step - loss: 0.0756
- acc: 0.7849 - val_loss: 0.0067 - val_acc: 0.9749
93987/93987 [==============================] - 3s 32us/step

Figure	8-6.	Evaluation	metrics	of	overcomplete	autoencoder	with	single	hidden	layer,	dropout,	and	linear
activation	function

As	expected,	the	losses	are	very	low,	and	the	overfit	overcomplete	autoencoder
has	very	poor	performance	in	detecting	the	fraudulent	credit	card	transactions.

The	following	code	summarizes	the	distribution	of	average	precision	across	the
10	runs.	The	mean	of	the	average	precision	is	0.21,	worse	than	the	0.53	we
achieved	earlier.	The	coefficient	of	variation	is	0.40:

Mean average precision over 10 runs: 0.21150415381770646
Coefficient of variation over 10 runs: 0.40295807771579256

[0.22549974304927337,
0.22451178120391296,
0.17243952488912334,
0.2533716906936315,

0.13251890273915556,
0.1775116247503748,
0.4343283958332979,
0.10469065867732033,
0.19480068075466764,
0.19537213558630712]

Sparse	Overcomplete	Autoencoder	with	Linear
Activation
Another	regularization	technique	is	sparsity.	We	can	force	the	autoencoder	to
take	the	sparsity	of	the	matrix	into	consideration	such	that	the	majority	of	the
autoencoder’s	neurons	are	inactive	most	of	the	time—in	other	words,	they	do	not
fire.	This	makes	it	harder	for	the	autoencoder	to	memorize	the	identity	function
even	when	the	autoencoder	is	overcomplete	because	most	of	the	nodes	cannot
fire	and,	therefore,	cannot	overfit	the	observations	as	easily.

We	will	use	a	single	hidden	layer	overcomplete	autoencoder	with	40	nodes	like
before	but	with	just	the	sparsity	penalty,	not	dropout.

Let’s	see	if	the	results	improve	from	the	0.21	average	precision	we	had	earlier:

model = Sequential()
 model.add(Dense(units=40, activation='linear', \
 activity_regularizer=regularizers.l1(10e-5), input_dim=29))
model.add(Dense(units=29, activation='linear'))

The	following	code	shows	the	losses	from	this	autoencoder,	and	Figure	8-7
displays	the	average	precision,	the	precision-recall	curve,	and	the	auROC	curve:

Training history of sparse overcomplete autoencoder with single hidden layer
and linear activation function

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 27s 142us/step - loss: 0.0985
- acc: 0.9380 - val_loss: 0.0369 - val_acc: 0.9871
Epoch 2/10
190820/190820 [==============================] - 26s 136us/step - loss: 0.0284
- acc: 0.9829 - val_loss: 0.0261 - val_acc: 0.9698
Epoch 3/10
190820/190820 [==============================] - 26s 136us/step - loss: 0.0229

- acc: 0.9816 - val_loss: 0.0169 - val_acc: 0.9952
Epoch 4/10
190820/190820 [==============================] - 26s 137us/step - loss: 0.0201
- acc: 0.9821 - val_loss: 0.0147 - val_acc: 0.9943
Epoch 5/10
190820/190820 [==============================] - 26s 137us/step - loss: 0.0183
- acc: 0.9810 - val_loss: 0.0142 - val_acc: 0.9842
Epoch 6/10
190820/190820 [==============================] - 26s 137us/step - loss: 0.0206
- acc: 0.9774 - val_loss: 0.0158 - val_acc: 0.9906
Epoch 7/10
190820/190820 [==============================] - 26s 136us/step - loss: 0.0169
- acc: 0.9816 - val_loss: 0.0124 - val_acc: 0.9866
Epoch 8/10
190820/190820 [==============================] - 26s 137us/step - loss: 0.0165
- acc: 0.9795 - val_loss: 0.0208 - val_acc: 0.9537
Epoch 9/10
190820/190820 [==============================] - 26s 136us/step - loss: 0.0164
- acc: 0.9801 - val_loss: 0.0105 - val_acc: 0.9965
Epoch 10/10
190820/190820 [==============================] - 27s 140us/step - loss: 0.0167
- acc: 0.9779 - val_loss: 0.0102 - val_acc: 0.9955
93987/93987 [==============================] - 3s 32us/step

Figure	8-7.	Evaluation	metrics	of	sparse	overcomplete	autoencoder	with	single	hidden	layer	and	linear
activation	function

The	following	code	summarizes	the	distribution	of	average	precision	across	the
10	runs.	The	mean	of	the	average	precision	is	0.21,	worse	than	the	0.53	we
achieved	earlier.	The	coefficient	of	variation	is	0.99:

Mean average precision over 10 runs: 0.21373659011504448
Coefficient of variation over 10 runs: 0.9913040763536749

[0.1370972172100049,
0.28328895710699215,
0.6362677613798704,
0.3467265637372019,
0.5197889253491589,
0.01871495737323161,
0.0812609121251577,

0.034749761900336684,
0.04846036143317335,
0.031010483535317393]

Sparse	Overcomplete	Autoencoder	with	Linear
Activation	and	Dropout
Of	course,	we	can	combine	the	regularization	techniques	to	improve	the
solution.	Here	is	a	sparse	overcomplete	autoencoder	with	linear	activation,	40
nodes	in	the	single	hidden	layer,	and	dropout	of	5%:

model = Sequential()
 model.add(Dense(units=40, activation='linear', \
 activity_regularizer=regularizers.l1(10e-5), input_dim=29))
 model.add(Dropout(0.05))
model.add(Dense(units=29, activation='linear'))

The	following	training	data	shows	the	losses	from	this	autoencoder,	and
Figure	8-8	displays	the	average	precision,	the	precision-recall	curve,	and	the
auROC	curve:

Training history of sparse overcomplete autoencoder with single hidden layer,
dropout, and linear activation function

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 31s 162us/step - loss: 0.1477
- acc: 0.8150 - val_loss: 0.0506 - val_acc: 0.9727
Epoch 2/10
190820/190820 [==============================] - 29s 154us/step - loss: 0.0756
- acc: 0.8625 - val_loss: 0.0344 - val_acc: 0.9788
Epoch 3/10
190820/190820 [==============================] - 29s 152us/step - loss: 0.0687
- acc: 0.8612 - val_loss: 0.0291 - val_acc: 0.9790
Epoch 4/10
190820/190820 [==============================] - 29s 154us/step - loss: 0.0644
- acc: 0.8606 - val_loss: 0.0274 - val_acc: 0.9734
Epoch 5/10
190820/190820 [==============================] - 31s 163us/step - loss: 0.0630
- acc: 0.8597 - val_loss: 0.0242 - val_acc: 0.9746
Epoch 6/10
190820/190820 [==============================] - 31s 162us/step - loss: 0.0609
- acc: 0.8600 - val_loss: 0.0220 - val_acc: 0.9800
Epoch 7/10

190820/190820 [==============================] - 30s 156us/step - loss: 0.0624
- acc: 0.8581 - val_loss: 0.0289 - val_acc: 0.9633
Epoch 8/10
190820/190820 [==============================] - 29s 154us/step - loss: 0.0589
- acc: 0.8588 - val_loss: 0.0574 - val_acc: 0.9366
Epoch 9/10
190820/190820 [==============================] - 29s 154us/step - loss: 0.0596
- acc: 0.8571 - val_loss: 0.0206 - val_acc: 0.9752
Epoch 10/10
190820/190820 [==============================] - 31s 165us/step - loss: 0.0593
- acc: 0.8590 - val_loss: 0.0204 - val_acc: 0.9808
93987/93987 [==============================] - 4s 38us/step

Figure	8-8.	Evaluation	metrics	of	sparse	overcomplete	autoencoder	with	single	hidden	layer,	dropout,	and
linear	activation	function

The	following	code	summarizes	the	distribution	of	average	precision	across	the

10	runs.	The	mean	of	the	average	precision	is	0.24,	worse	than	the	0.53	we
achieved	earlier.	The	coefficient	of	variation	is	0.62:

Mean average precision over 10 runs: 0.2426994231628755
Coefifcient of variation over 10 runs: 0.6153219870606188

[0.6078198313533932,
0.20862366991302814,
0.25854513247057875,
0.08496595007072019,
0.26313491674585093,
0.17001322998258625,
0.15338215561753896,
0.1439107390306835,
0.4073422280287587,
0.1292563784156162]

Working	with	Noisy	Datasets
A	common	problem	with	real-world	data	is	noisiness	data	is	often	distorted	in
some	way	because	of	data	quality	issues	from	data	capture,	data	migration,	data
transformation,	etc.	We	need	autoencoders	to	be	robust	enough	against	such
noise	so	that	they	are	not	fooled	and	can	learn	from	the	truly	important
underlying	structure	in	the	data.

To	simulate	this	noise,	let’s	add	a	Gaussian	random	matrix	of	noise	to	our	credit
card	transactions	dataset	and	then	train	an	autoencoder	on	this	noisy	training	set.
Then,	we	will	see	how	well	the	autoencoder	does	in	predicting	fraud	on	the
noisy	test	set:

noise_factor = 0.50
X_train_AE_noisy = X_train_AE.copy() + noise_factor * \
 np.random.normal(loc=0.0, scale=1.0, size=X_train_AE.shape)
X_test_AE_noisy = X_test_AE.copy() + noise_factor * \
 np.random.normal(loc=0.0, scale=1.0, size=X_test_AE.shape)

Denoising	Autoencoder
Compared	to	the	original,	nondistorted	dataset,	the	penalty	for	overfitting	to	the
noisy	dataset	of	credit	card	transactions	is	much	higher.	There	is	enough	noise	in
the	dataset	that	an	autoencoder	that	fits	too	well	to	the	noisy	data	will	have	a

poor	time	detecting	fraudulent	transactions	from	normal	ones.

This	should	make	sense.	We	need	an	autoencoder	that	fits	well	enough	to	the
data	so	that	it	is	able	to	reconstruct	most	of	the	observations	well	enough	but	not
so	well	enough	that	it	accidentally	reconstructs	the	noise,	too.	In	other	words,	we
want	the	autoencoder	to	learn	the	underlying	structure	but	forget	the	noise	in	the
data.

Let’s	try	a	few	options	from	what	has	worked	well	so	far.	First,	we	will	try	a
single	hidden	layer,	27-node	undercomplete	autoencoder	with	linear	activation.
Next,	we	will	try	a	single	hidden	layer,	40-node	sparse	overcomplete
autoencoder	with	dropout.	And,	finally,	we	will	use	an	autoencoder	with	a
nonlinear	activation	function.

Two-Layer	Denoising	Undercomplete	Autoencoder	with
Linear	Activation
On	the	noisy	dataset,	the	single	hidden	layer	autoencoder	with	linear	activation
and	27	nodes	had	an	average	precision	of	0.69.	Let’s	see	how	well	it	does	on	the
noisy	dataset.	This	autoencoder—because	it	is	working	with	a	noisy	dataset	and
trying	to	denoise	it—is	known	as	a	denoising	autoencoder.

The	code	is	similar	to	what	we	had	before	except	now	we	are	applying	it	to	the
noisy	training	and	test	datasets,	X_train_AE_noisy	and	X_test_AE_noisy,
respectively:

for i in range(0,10):
 # Call neural network API
 model = Sequential()

 # Generate hidden layer with 27 nodes using linear activation
 model.add(Dense(units=27, activation='linear', input_dim=29))

 # Generate output layer with 29 nodes
 model.add(Dense(units=29, activation='linear'))

 # Compile the model
 model.compile(optimizer='adam',
 loss='mean_squared_error',
 metrics=['accuracy'])

 # Train the model

 num_epochs = 10
 batch_size = 32

 history = model.fit(x=X_train_AE_noisy, y=X_train_AE_noisy,
 epochs=num_epochs,
 batch_size=batch_size,
 shuffle=True,
 validation_data=(X_train_AE, X_train_AE),
 verbose=1)

 # Evaluate on test set
 predictions = model.predict(X_test_AE_noisy, verbose=1)
 anomalyScoresAE = anomalyScores(X_test, predictions)
 preds, avgPrecision = plotResults(y_test, anomalyScoresAE, True)
 test_scores.append(avgPrecision)
 model.reset_states()

print("Mean average precision over 10 runs: ", np.mean(test_scores))
test_scores

The	following	training	data	shows	the	losses	from	this	autoencoder,	and
Figure	8-9	displays	the	average	precision,	the	precision-recall	curve,	and	the
auROC	curve:

Training history of denoising undercomplete autoencoder with single hidden layer
and linear activation function

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 25s 133us/step - loss: 0.1733
- acc: 0.7756 - val_loss: 0.0356 - val_acc: 0.9123
Epoch 2/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0546
- acc: 0.8793 - val_loss: 0.0354 - val_acc: 0.8973
Epoch 3/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0531
- acc: 0.8764 - val_loss: 0.0350 - val_acc: 0.9399
Epoch 4/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0525
- acc: 0.8879 - val_loss: 0.0342 - val_acc: 0.9573
Epoch 5/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0530
- acc: 0.8910 - val_loss: 0.0347 - val_acc: 0.9503
Epoch 6/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0524
- acc: 0.8889 - val_loss: 0.0350 - val_acc: 0.9138
Epoch 7/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0531

- acc: 0.8845 - val_loss: 0.0343 - val_acc: 0.9280
Epoch 8/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0530
- acc: 0.8798 - val_loss: 0.0339 - val_acc: 0.9507
Epoch 9/10
190820/190820 [==============================] - 24s 126us/step - loss: 0.0526
- acc: 0.8877 - val_loss: 0.0337 - val_acc: 0.9611
Epoch 10/10
190820/190820 [==============================] - 24s 127us/step - loss: 0.0528
- acc: 0.8885 - val_loss: 0.0352 - val_acc: 0.9474
93987/93987 [==============================] - 3s 34us/step

Figure	8-9.	Evaluation	metrics	of	denoising	undercomplete	autoencoder	with	single	hidden	layer	and	linear
activation	function

The	mean	average	precision	is	now	0.28.	You	can	see	just	how	difficult	it	is	for
the	linear	autoencoder	to	denoise	this	noisy	dataset:

Mean average precision over 10 runs: 0.2825997155005206
Coeficient of variation over 10 runs: 1.1765416185187383

[0.6929639885685303,
0.008450118408150287,
0.6970753417267612,
0.011820311633718597,
0.008924124892696377,
0.010639537507746342,
0.6884911855668772,
0.006549332886020607,
0.6805304226634528,
0.02055279115125298]

It	struggles	with	separating	the	true	underlying	structure	in	the	data	from	the
Gaussian	noise	we	added.

Two-Layer	Denoising	Overcomplete	Autoencoder	with
Linear	Activation
Let’s	now	try	a	single	hidden	layer	overcomplete	autoencoder	with	40	nodes,	a
sparsity	regularizer,	and	dropout	of	0.05%.

This	had	an	average	precision	of	0.56	on	the	original	dataset:

model = Sequential()
model.add(Dense(units=40, activation='linear',
 activity_regularizer=regularizers.l1(10e-5),
 input_dim=29))
model.add(Dropout(0.05))
model.add(Dense(units=29, activation='linear'))

The	following	training	data	shows	the	losses	from	this	autoencoder,	and
Figure	8-10	displays	the	average	precision,	the	precision-recall	curve,	and	the
auROC	curve:

Training history of denoising overcomplete autoencoder with dropout and linear
activation function

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 28s 145us/step - loss: 0.1726
- acc: 0.8035 - val_loss: 0.0432 - val_acc: 0.9781
Epoch 2/10

190820/190820 [==============================] - 26s 138us/step - loss: 0.0868
- acc: 0.8490 - val_loss: 0.0307 - val_acc: 0.9775
Epoch 3/10
190820/190820 [==============================] - 26s 138us/step - loss: 0.0809
- acc: 0.8455 - val_loss: 0.0445 - val_acc: 0.9535
Epoch 4/10
190820/190820 [==============================] - 26s 138us/step - loss: 0.0777
- acc: 0.8438 - val_loss: 0.0257 - val_acc: 0.9709
Epoch 5/10
190820/190820 [==============================] - 27s 139us/step - loss: 0.0748
- acc: 0.8434 - val_loss: 0.0219 - val_acc: 0.9787
Epoch 6/10
190820/190820 [==============================] - 26s 138us/step - loss: 0.0746
- acc: 0.8425 - val_loss: 0.0210 - val_acc: 0.9794
Epoch 7/10
190820/190820 [==============================] - 26s 138us/step - loss: 0.0713
- acc: 0.8437 - val_loss: 0.0294 - val_acc: 0.9503
Epoch 8/10
190820/190820 [==============================] - 26s 138us/step - loss: 0.0708
- acc: 0.8426 - val_loss: 0.0276 - val_acc: 0.9606
Epoch 9/10
190820/190820 [==============================] - 26s 139us/step - loss: 0.0704
- acc: 0.8428 - val_loss: 0.0180 - val_acc: 0.9811
Epoch 10/10
190820/190820 [==============================] - 27s 139us/step - loss: 0.0702
- acc: 0.8424 - val_loss: 0.0185 - val_acc: 0.9710
93987/93987 [==============================] - 4s 38us/step

Figure	8-10.	Evaluation	metrics	of	denoising	overcomplete	autoencoder	with	dropout	and	linear	activation
function

The	following	code	summarizes	the	distribution	of	average	precision	across	the
10	runs.	The	mean	of	the	average	precision	is	0.10,	worse	than	the	0.53	we
achieved	earlier.	The	coefficient	of	variation	is	0.83:

Mean average precision over 10 runs: 0.10112931070692295
Coefficient of variation over 10 runs: 0.8343774832756188

[0.08283546387140524,
0.043070120657586454,
0.018901753737287603,
0.02381040174486509,
0.16038446580196433,
0.03461061251209459,
0.17847771715513427,

0.2483282420447288,
0.012981344347664117,
0.20789298519649893]

Two-Layer	Denoising	Overcomplete	Autoencoder	with
ReLu	Activation
Finally,	let’s	see	how	the	same	autoencoder	fares	using	ReLu	as	the	activation
function	instead	of	a	linear	activation	function.	Recall	that	the	nonlinear
activation	function	autoencoder	did	not	perform	quite	as	well	as	the	one	with
linear	activation	on	the	original	dataset:

model = Sequential()
 model.add(Dense(units=40, activation='relu', \
 activity_regularizer=regularizers.l1(10e-5), input_dim=29))
 model.add(Dropout(0.05))
model.add(Dense(units=29, activation='relu'))

The	following	training	data	shows	the	losses	from	this	autoencoder,	and
Figure	8-11	displays	the	average	precision,	the	precision-recall	curve,	and	the
auROC	curve:

Training history of denoising overcomplete autoencoder with dropout and ReLU
activation function"

Train on 190820 samples, validate on 190820 samples
Epoch 1/10
190820/190820 [==============================] - 29s 153us/step - loss: 0.3049
- acc: 0.6454 - val_loss: 0.0841 - val_acc: 0.8873
Epoch 2/10
190820/190820 [==============================] - 27s 143us/step - loss: 0.1806
- acc: 0.7193 - val_loss: 0.0606 - val_acc: 0.9012
Epoch 3/10
190820/190820 [==============================] - 27s 143us/step - loss: 0.1626
- acc: 0.7255 - val_loss: 0.0500 - val_acc: 0.9045
Epoch 4/10
190820/190820 [==============================] - 27s 143us/step - loss: 0.1567
- acc: 0.7294 - val_loss: 0.0445 - val_acc: 0.9116
Epoch 5/10
190820/190820 [==============================] - 27s 143us/step - loss: 0.1484
- acc: 0.7309 - val_loss: 0.0433 - val_acc: 0.9136
Epoch 6/10
190820/190820 [==============================] - 27s 144us/step - loss: 0.1467
- acc: 0.7311 - val_loss: 0.0375 - val_acc: 0.9101

Epoch 7/10
190820/190820 [==============================] - 27s 143us/step - loss: 0.1427
- acc: 0.7335 - val_loss: 0.0384 - val_acc: 0.9013
Epoch 8/10
190820/190820 [==============================] - 27s 143us/step - loss: 0.1397
- acc: 0.7307 - val_loss: 0.0337 - val_acc: 0.9145
Epoch 9/10
190820/190820 [==============================] - 27s 143us/step - loss: 0.1361
- acc: 0.7322 - val_loss: 0.0343 - val_acc: 0.9066
Epoch 10/10
190820/190820 [==============================] - 27s 144us/step - loss: 0.1349
- acc: 0.7331 - val_loss: 0.0325 - val_acc: 0.9107
93987/93987 [==============================] - 4s 41us/step

Figure	8-11.	Evaluation	metrics	of	denoising	overcomplete	autoencoder	with	dropout	and	ReLU	activation
function

The	following	code	summarizes	the	distribution	of	average	precision	across	the

10	runs.	The	mean	of	the	average	precision	is	0.20,	worse	than	the	0.53	we
achieved	earlier.	The	coefficient	of	variation	is	0.55:

Mean average precision over 10 runs: 0.1969608394689088
Coefficient of variation over 10 runs: 0.5566706365802669

[0.22960316854089222,
0.37609633487223315,
0.11429775486529765,
0.10208135698072755,
0.4002384343852861,
0.13317480663248088,
0.15764518571284625,
0.2406315655171392,
0.05080529996343734,
0.1650344872187474]

You	can	experiment	with	the	number	of	nodes,	layers,	degree	of	sparsity,
dropout	percentage,	and	the	activation	functions	to	see	if	you	can	improve	the
results	from	here.

Conclusion
In	this	chapter,	we	returned	to	the	credit	card	fraud	problem	from	earlier	in	the
book	to	develop	a	neural	network-based	unsupervised	fraud	detection	solution.

To	find	the	optimal	architecture	for	our	autoencoder,	we	experimented	with	a
variety	of	autoencoders.	We	tried	complete,	undercomplete,	and	overcomplete
autoencoders	with	either	a	single	or	a	few	hidden	layers.	We	also	used	both
linear	and	nonlinear	activation	functions	and	employed	two	major	types	of
regularization,	sparsity	and	dropout.

We	found	that	a	pretty	simple	two-layer	undercomplete	neural	network	with
linear	activation	worked	best	on	the	original	credit	card	dataset,	but	we	needed	a
sparse	two-layer	overcomplete	autoencoder	with	linear	activation	and	dropout	to
address	the	noise	in	the	noisy	credit	card	dataset.

A	lot	of	our	experiments	were	based	on	trial	and	error—for	each	experiment,	we
adjusted	several	hyperparameters	and	compared	results	with	previous	iterations.
It	is	possible	that	an	even	better	autoencoder-based	fraud	detection	solution
exists,	and	I	encourage	you	to	experiment	on	your	own	to	see	what	you	find.

So	far	in	this	book,	we	have	viewed	supervised	and	unsupervised	as	separate	and
distinct	approaches,	but	in	Chapter	9,	we	will	explore	how	to	employ	both
supervised	and	unsupervised	approaches	jointly	to	develop	a	so-called
semisupervised	solution	that	is	better	than	either	standalone	approach.

1 	Visit	the	official	documentation	for	more	on	the	Keras	Sequential	model.

2 	For	more	on	loss	functions,	refer	to	the	official	Keras	documentation.

3 	Consult	Wikipedia	for	more	on	stochastic	gradient	descent.

4 	For	more	information	on	optimizers,	refer	to	the	documentation.

5 	For	more	on	evaluation	metrics,	refer	to	the	documentation.

http://bit.ly/2FZbUrq
https://keras.io/losses/
http://bit.ly/2G3Ak30
https://keras.io/optimizers/
https://keras.io/metrics/

Chapter	9.	Semisupervised
Learning

Until	now,	we	have	viewed	supervised	learning	and	unsupervised	learning	as
two	separate	and	distinct	branches	of	machine	learning.	Supervised	learning	is
appropriate	when	our	dataset	is	labeled,	and	unsupervised	learning	is	necessary
when	our	dataset	is	unlabeled.

In	the	real	world,	the	distinction	is	not	quite	so	clear.	Datasets	are	usually
partially	labeled,	and	we	want	to	efficiently	label	the	unlabeled	observations
while	leveraging	the	information	in	the	labeled	set.	With	supervised	learning,	we
would	have	to	toss	away	the	majority	of	the	dataset	because	it	is	unlabeled.	With
unsupervised	learning,	we	would	have	the	majority	of	the	data	to	work	with	but
would	not	know	how	to	take	advantage	of	the	few	labels	we	have.

The	field	of	semisupervised	learning	blends	the	benefits	of	both	supervised	and
unsupervised	learning,	taking	advantage	of	the	few	labels	that	are	available	to
uncover	structure	in	a	dataset	and	help	label	the	rest.

We	will	continue	to	use	the	credit	card	transactions	dataset	in	this	chapter	to
showcase	semisupervised	learning.

Data	Preparation
As	before,	let’s	load	in	the	necessary	libraries	and	prepare	the	data.	This	should
be	pretty	familiar	by	now:

'''Main'''
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()

import matplotlib as mpl

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score

'''Algos'''
import lightgbm as lgb

'''TensorFlow and Keras'''
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout
from keras.layers import BatchNormalization, Input, Lambda
from keras import regularizers
from keras.losses import mse, binary_crossentropy

As	before,	we	will	generate	a	training	and	test	set.	But	we	will	drop	90%	of	the
fraudulent	credit	card	transactions	from	the	training	set	to	simulate	how	to	work
with	partially	labeled	datasets.

While	this	may	seem	like	a	very	aggressive	move,	real-world	problems
involving	payment	fraud	have	similarly	low	incidences	of	fraud	(as	little	as	1
fraud	per	10,000	cases).	By	removing	90%	of	the	labels	from	the	training	set,	we
are	simulating	this	type	of	phenomenon:

Load the data
current_path = os.getcwd()
file = '\\datasets\\credit_card_data\\credit_card.csv'
data = pd.read_csv(current_path + file)

dataX = data.copy().drop(['Class','Time'],axis=1)
dataY = data['Class'].copy()

Scale data
featuresToScale = dataX.columns
sX = pp.StandardScaler(copy=True, with_mean=True, with_std=True)
dataX.loc[:,featuresToScale] = sX.fit_transform(dataX[featuresToScale])

Split into train and test
X_train, X_test, y_train, y_test = \
 train_test_split(dataX, dataY, test_size=0.33, \
 random_state=2018, stratify=dataY)

Drop 95% of the labels from the training set
toDrop = y_train[y_train==1].sample(frac=0.90,random_state=2018)
X_train.drop(labels=toDrop.index,inplace=True)
y_train.drop(labels=toDrop.index,inplace=True)

We	will	also	reuse	the	anomalyScores	and	plotResults	functions:

def anomalyScores(originalDF, reducedDF):
 loss = np.sum((np.array(originalDF) - \
 np.array(reducedDF))**2, axis=1)
 loss = pd.Series(data=loss,index=originalDF.index)
 loss = (loss-np.min(loss))/(np.max(loss)-np.min(loss))
 return loss

def plotResults(trueLabels, anomalyScores, returnPreds = False):
 preds = pd.concat([trueLabels, anomalyScores], axis=1)
 preds.columns = ['trueLabel', 'anomalyScore']
 precision, recall, thresholds = \
 precision_recall_curve(preds['trueLabel'], \
 preds['anomalyScore'])
 average_precision = average_precision_score(\
 preds['trueLabel'], preds['anomalyScore'])

 plt.step(recall, precision, color='k', alpha=0.7, where='post')
 plt.fill_between(recall, precision, step='post', alpha=0.3, color='k')

 plt.xlabel('Recall')
 plt.ylabel('Precision')
 plt.ylim([0.0, 1.05])
 plt.xlim([0.0, 1.0])

 plt.title('Precision-Recall curve: Average Precision = \
 {0:0.2f}'.format(average_precision))

 fpr, tpr, thresholds = roc_curve(preds['trueLabel'], \
 preds['anomalyScore'])
 areaUnderROC = auc(fpr, tpr)

 plt.figure()
 plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve')
 plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--')
 plt.xlim([0.0, 1.0])

 plt.ylim([0.0, 1.05])
 plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.title('Receiver operating characteristic: Area under the \
 curve = {0:0.2f}'.format(areaUnderROC))
 plt.legend(loc="lower right")
 plt.show()

 if returnPreds==True:
 return preds, average_precision

Finally,	here’s	a	new	function	called	precisionAnalysis	to	help	us	assess	the
precision	of	our	models	at	a	certain	level	of	recall.	Specifically,	we	will
determine	what	the	model’s	precision	is	to	catch	75%	of	the	fraudulent	credit
card	transactions	in	the	test	set.	The	higher	the	precision,	the	better	the	model.

This	is	a	reasonable	benchmark.	In	other	words,	we	want	to	catch	75%	of	the
fraud	with	as	high	of	a	precision	as	possible.	If	we	do	not	achieve	a	high	enough
precision,	we	will	unnecessarily	reject	good	credit	card	transactions,	potentially
angering	our	customer	base:

def precisionAnalysis(df, column, threshold):
 df.sort_values(by=column, ascending=False, inplace=True)
 threshold_value = threshold*df.trueLabel.sum()
 i = 0
 j = 0
 while i < threshold_value+1:
 if df.iloc[j]["trueLabel"]==1:
 i += 1
 j += 1
 return df, i/j

Supervised	Model
To	benchmark	our	semisupervised	model,	let’s	first	see	how	well	a	supervised
model	and	a	unsupervised	model	do	in	isolation.

We	will	start	with	a	supervised	learning	solution	based	on	light	gradient	boosting
like	the	one	that	performed	best	in	Chapter	2.	We	will	use	k-fold	cross-validation
to	create	five	folds:

k_fold = StratifiedKFold(n_splits=5,shuffle=True,random_state=2018)

Let’s	next	set	the	parameters	for	gradient	boosting:

params_lightGB = {
 'task': 'train',
 'application':'binary',
 'num_class':1,
 'boosting': 'gbdt',
 'objective': 'binary',
 'metric': 'binary_logloss',
 'metric_freq':50,
 'is_training_metric':False,
 'max_depth':4,
 'num_leaves': 31,
 'learning_rate': 0.01,
 'feature_fraction': 1.0,
 'bagging_fraction': 1.0,
 'bagging_freq': 0,
 'bagging_seed': 2018,
 'verbose': 0,
 'num_threads':16
}

Now,	let’s	train	the	algorithm:

trainingScores = []
cvScores = []
predictionsBasedOnKFolds = pd.DataFrame(data=[], index=y_train.index, \
 columns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
 y_train.ravel()):
 X_train_fold, X_cv_fold = X_train.iloc[train_index,:], \
 X_train.iloc[cv_index,:]
 y_train_fold, y_cv_fold = y_train.iloc[train_index], \
 y_train.iloc[cv_index]

 lgb_train = lgb.Dataset(X_train_fold, y_train_fold)
 lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
 gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=2000,
 valid_sets=lgb_eval, early_stopping_rounds=200)

 loglossTraining = log_loss(y_train_fold, gbm.predict(X_train_fold, \
 num_iteration=gbm.best_iteration))
 trainingScores.append(loglossTraining)

 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'] = \
 gbm.predict(X_cv_fold, num_iteration=gbm.best_iteration)
 loglossCV = log_loss(y_cv_fold, \

 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'])
 cvScores.append(loglossCV)

 print('Training Log Loss: ', loglossTraining)
 print('CV Log Loss: ', loglossCV)

loglossLightGBMGradientBoosting = log_loss(y_train, \
 predictionsBasedOnKFolds.loc[:,'prediction'])
print('LightGBM Gradient Boosting Log Loss: ', \
 loglossLightGBMGradientBoosting)

We	will	now	use	this	model	to	predict	the	fraud	on	the	test	set	of	credit	card
transactions.

Figure	9-1	displays	the	results.

Figure	9-1.	Results	of	supervised	model

The	average	precision	on	the	test	based	on	the	precision-recall	curve	is	0.62.	To
catch	75%	of	the	fraud,	we	have	a	precision	of	just	0.5%.

Unsupervised	Model
Now	let’s	build	a	fraud	detection	solution	using	unsupervised	learning.
Specifically,	we	will	build	a	sparse	two-layer	overcomplete	autoencoder	with	a
linear	activation	function.	We	will	have	40	nodes	in	the	hidden	layer	and	a
dropout	of	2%.

However,	we	will	adjust	our	training	set	by	oversampling	the	number	of
fraudulent	cases	we	have.	Oversampling	is	a	technique	used	to	adjust	the	class
distribution	in	a	given	dataset.	We	want	to	add	more	fraudulent	cases	to	our
dataset	so	that	the	autoencoder	we	train	has	an	easier	time	separating	the
normal/nonfraudulent	transactions	from	the	abnormal/fraudulent	ones.

Recall	that	after	having	dropped	90%	of	the	fraudulent	cases	from	the	training
set,	we	have	just	33	fraudulent	cases	left.	We	will	take	the	33	fraudulent	cases,
duplicate	these	100	times,	and	then	append	them	to	the	training	set.	We	will	also
keep	copies	of	the	nonoversampled	training	set	so	we	can	use	them	for	the	rest
of	our	machine	learning	pipeline.

Remember	we	do	not	touch	the	test	set—there	is	no	oversampling	with	the	test
set,	just	the	training	set:

oversample_multiplier = 100

X_train_original = X_train.copy()
y_train_original = y_train.copy()
X_test_original = X_test.copy()
y_test_original = y_test.copy()

X_train_oversampled = X_train.copy()
y_train_oversampled = y_train.copy()
X_train_oversampled = X_train_oversampled.append(\
 [X_train_oversampled[y_train==1]]*oversample_multiplier, \
 ignore_index=False)
y_train_oversampled = y_train_oversampled.append(\
 [y_train_oversampled[y_train==1]]*oversample_multiplier, \
 ignore_index=False)

X_train = X_train_oversampled.copy()

y_train = y_train_oversampled.copy()

Let’s	now	train	our	autoencoder:

model = Sequential()
model.add(Dense(units=40, activation='linear', \
 activity_regularizer=regularizers.l1(10e-5), \
 input_dim=29,name='hidden_layer'))
model.add(Dropout(0.02))
model.add(Dense(units=29, activation='linear'))

model.compile(optimizer='adam',
 loss='mean_squared_error',
 metrics=['accuracy'])

num_epochs = 5
batch_size = 32

history = model.fit(x=X_train, y=X_train,
 epochs=num_epochs,
 batch_size=batch_size,
 shuffle=True,
 validation_split=0.20,
 verbose=1)

predictions = model.predict(X_test, verbose=1)
anomalyScoresAE = anomalyScores(X_test, predictions)
preds, average_precision = plotResults(y_test, anomalyScoresAE, True)

Figure	9-2	displays	the	results.

Figure	9-2.	Results	of	unsupervised	model

The	average	precision	on	the	test	based	on	the	precision-recall	curve	is	0.57.	To
catch	75%	of	the	fraud,	we	have	a	precision	of	just	45%.	While	the	average
precision	of	the	unsupervised	solution	is	similar	to	the	average	precision	of	the
supervised	solution,	the	precision	of	45%	at	75%	recall	is	better.

However,	the	unsupervised	solution	by	itself	is	still	not	great.

Semisupervised	Model
Now,	let’s	take	the	representation	learned	by	the	autoencoder	(the	hidden	layer),
combine	it	with	the	original	training	set,	and	feed	this	into	the	gradient	boosting
algorithm.	This	a	semisupervised	approach,	taking	advantage	of	supervised	and

unsupervised	learning.

To	get	the	hidden	layer,	we	call	the	Model()	class	from	the	Keras	API	and	use
the	get_layer	function:

layer_name = 'hidden_layer'

intermediate_layer_model = Model(inputs=model.input, \
 outputs=model.get_layer(layer_name).output)
intermediate_output_train = intermediate_layer_model.predict(X_train_original)
intermediate_output_test = intermediate_layer_model.predict(X_test_original)

Let’s	store	these	autoencoder	representations	into	DataFrames	and	then	combine
them	with	the	original	training	set:

intermediate_output_trainDF = \
 pd.DataFrame(data=intermediate_output_train,index=X_train_original.index)
intermediate_output_testDF = \
 pd.DataFrame(data=intermediate_output_test,index=X_test_original.index)

X_train = X_train_original.merge(intermediate_output_trainDF, \
 left_index=True,right_index=True)
X_test = X_test_original.merge(intermediate_output_testDF, \
 left_index=True,right_index=True)
y_train = y_train_original.copy()

We	will	now	train	the	gradient	boosting	model	on	this	new	training	set	of	69
features	(29	from	the	original	dataset	and	40	from	the	autoencoder’s
representation):

trainingScores = []
cvScores = []
predictionsBasedOnKFolds = pd.DataFrame(data=[],index=y_train.index, \
 columns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
 y_train.ravel()):
 X_train_fold, X_cv_fold = X_train.iloc[train_index,:], \
 X_train.iloc[cv_index,:]
 y_train_fold, y_cv_fold = y_train.iloc[train_index], \
 y_train.iloc[cv_index]

 lgb_train = lgb.Dataset(X_train_fold, y_train_fold)
 lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
 gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=5000,

 valid_sets=lgb_eval, early_stopping_rounds=200)

 loglossTraining = log_loss(y_train_fold,
 gbm.predict(X_train_fold, \
 num_iteration=gbm.best_iteration))
 trainingScores.append(loglossTraining)

 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'] = \
 gbm.predict(X_cv_fold, num_iteration=gbm.best_iteration)
 loglossCV = log_loss(y_cv_fold, \
 predictionsBasedOnKFolds.loc[X_cv_fold.index,'prediction'])
 cvScores.append(loglossCV)

 print('Training Log Loss: ', loglossTraining)
 print('CV Log Loss: ', loglossCV)

loglossLightGBMGradientBoosting = log_loss(y_train, \
 predictionsBasedOnKFolds.loc[:,'prediction'])
print('LightGBM Gradient Boosting Log Loss: ', \
 loglossLightGBMGradientBoosting)

Figure	9-3	displays	the	results.

Figure	9-3.	Results	of	semisupervised	model

The	average	precision	on	the	test	set	based	on	the	precision-recall	curve	is	0.78.
This	is	a	good	bit	higher	than	both	the	supervised	and	the	unsupervised	models.

To	catch	75%	of	the	fraud,	we	have	a	precision	of	92%.	This	is	a	considerable
improvement.	With	this	level	of	precision,	the	payment	processor	should	feel
comfortable	rejecting	transactions	that	the	model	flags	as	potentially	fraudulent.
Less	than	one	in	ten	will	be	wrong,	and	we	will	catch	approximately	75%	of	the
fraud.

The	Power	of	Supervised	and	Unsupervised
In	this	semisupervised	credit	card	fraud	detection	solution,	both	supervised

learning	and	unsupervised	learning	have	important	roles	to	play.	One	way	to
explore	this	is	by	analyzing	which	features	the	final	gradient	boosting	model
found	most	important.

Let’s	find	and	store	those	feature	importance	values	from	the	model	we	just
trained:

featuresImportance = pd.DataFrame(data=list(gbm.feature_importance()), \
 index=X_train.columns,columns=['featImportance'])
featuresImportance = featuresImportance/featuresImportance.sum()
featuresImportance.sort_values(by='featImportance', \
 ascending=False,inplace=True)
featuresImportance

Table	9-1	shows	some	of	the	most	important	features,	sorted	in	descending	order.

Table	9-1.	Feature
importance	from
semisupervised
model

featImportance

V28 0.047843

Amount 0.037263

21 0.030244

V21 0.029624

V26 0.029469

V12 0.028334

V27 0.028024

6 0.027405

28 0.026941

36 0.024050

5 0.022347

As	you	can	see	here,	some	of	the	top	features	are	features	the	hidden	layer
learned	by	the	autoencoder	(the	non	“V”	features)	while	others	are	the	principal
components	from	the	original	dataset	(the	“V”	features)	as	well	as	the	amount	of
the	transaction.

Conclusion
The	semisupervised	model	trounces	the	performance	of	both	the	standalone
supervised	model	and	the	standalone	unsupervised	model.

We	just	scratched	the	surface	of	what’s	possible	with	semisupervised	learning,
but	this	should	help	reframe	the	conversation	from	debating	between	supervised
and	unsupervised	learning	to	combining	supervised	and	unsupervised	learning	in
the	search	for	an	optimal	applied	solution.

Part	IV.	Deep	Unsupervised
Learning	Using	TensorFlow	and

Keras

Until	now,	we	have	worked	with	only	shallow	neural	networks;	in	other	words,
networks	with	only	a	few	hidden	layers.	Shallow	neural	networks	are	certainly
useful	in	building	machine	learning	systems,	but	the	most	powerful	advances	in
machine	learning	over	the	past	decade	have	come	from	neural	networks	with
many	hidden	layers,	known	as	deep	neural	networks.	This	subfield	of	machine
learning	is	known	as	deep	learning.	Deep	learning	on	large,	labeled	datasets	has
led	to	major	commercial	successes	in	areas	such	as	computer	vision,	object
recognition,	speech	recognition,	and	machine	translation.

We	will	focus	on	deep	learning	on	large,	unlabeled	datsets,	which	is	also
commonly	referred	to	as	deep	unsupervised	learning.	This	field	is	still	very	new,
full	of	potential	but	with	fewer	commerical	successes	to	date	compared	to	the
supervised	variant.	Over	the	next	few	chapters,	we	will	build	deep	unsupervised
learning	systems,	starting	with	the	simplest	building	blocks.

Chapter	10	covers	restricted	Boltzmann	machines,	which	we	will	use	to	build	a
recommender	system	for	movies.	In	Chapter	11,	we	will	stack	restricted
Boltzmann	machines	on	top	of	each	other,	creating	deep	neural	nets	known	as
deep	belief	networks.	In	Chapter	12,	we	will	generate	synthetic	data	using
generative	adversarial	networks,	one	of	the	hottest	areas	of	deep	unsupervised
learning	today.	Then	in	Chapter	13,	we	will	return	to	clustering	but	work	with
time	series	data	this	time.

This	is	a	lot	of	advanced	material,	but	a	lot	of	deep	unsupervised	learning	draws
on	the	fundamental	principles	we	introduced	earlier	in	the	book.

Chapter	10.	Recommender
Systems	Using	Restricted
Boltzmann	Machines

Earlier	in	this	book,	we	used	unsupervised	learning	to	learn	the	underlying
(hidden)	structure	in	unlabeled	data.	Specifically,	we	performed	dimensionality
reduction,	reducing	a	high-dimensional	dataset	to	one	with	much	fewer
dimensions,	and	built	an	anomaly	detection	system.	We	also	performed
clustering,	grouping	objects	together	based	on	how	similar	or	dissimilar	they
were	to	each	other.

Now,	we	will	move	into	generative	unsupervised	models,	which	involve	learning
a	probability	distribution	from	an	original	dataset	and	using	it	to	make	inferences
about	never-before-seen	data.	In	later	chapters,	we	will	use	such	models	to
generate	seemingly	real	data,	which	at	times	is	virtually	indistinguishable	from
the	original	data.

Until	now,	we	have	looked	at	mostly	discriminative	models	that	learn	to	separate
observations	based	on	what	the	algorithms	learn	from	the	data;	these
discriminative	models	do	not	learn	the	probability	distribution	from	the	data.
Discriminative	models	include	supervised	ones	such	as	the	logistic	regression
and	decision	trees	from	Chapter	2	as	well	as	clustering	methods	such	as	k-means
and	hierarchical	clustering	from	Chapter	5.

Let’s	start	with	the	simplest	of	the	generative	unsupervised	models	known	as	the
restricted	Boltzmann	machine.

Boltzmann	Machines
Boltzmann	machines	were	first	invented	in	1985	by	Geoffrey	Hinton	(then	a
professor	at	Carnegie	Mellon	University	and	now	one	of	the	fathers	of	the	deep
learning	movement,	a	professor	at	the	University	of	Toronto,	and	a	machine
learning	researcher	at	Google)	and	Terry	Sejnowski	(who	was	a	professor	at

John	Hopkins	University	at	the	time).

Boltzmann	machines—of	the	unrestricted	type—consist	of	a	neural	network
with	an	input	layer	and	one	or	several	hidden	layers.	The	neurons	or	units	in	the
neural	network	make	stochastic	decisions	about	whether	to	turn	on	or	not	based
on	the	data	fed	in	during	training	and	the	cost	function	the	Boltzmann	machine	is
trying	to	minimize.	With	this	training,	the	Boltzmann	machine	discovers
interesting	features	about	the	data,	which	helps	model	the	complex	underlying
relationships	and	patterns	present	in	the	data.

However,	these	unrestricted	Boltzmann	machines	use	neural	networks	with
neurons	that	are	connected	not	only	to	other	neurons	in	other	layers	but	also	to
neurons	within	the	same	layer.	That,	coupled	with	the	presence	of	many	hidden
layers,	makes	training	an	unrestricted	Boltzmann	machine	very	inefficient.
Unrestricted	Boltzmann	machines	had	little	commercial	success	during	the
1980s	and	1990s	as	a	result.

Restricted	Boltzmann	Machines
In	the	2000s,	Geoffrey	Hinton	and	others	began	to	have	commercial	success	by
using	a	modified	version	of	the	original	unrestricted	Boltzmann	machines.	These
restricted	Boltzmann	machines	(RBMs)	have	an	input	layer	(also	referred	to	as
the	visible	layer)	and	just	a	single	hidden	layer,	and	the	connections	among
neurons	are	restricted	such	that	neurons	are	connected	only	to	the	neurons	in
other	layers	but	not	to	neurons	within	the	same	layer.	In	other	words,	there	are
no	visible-visible	connections	and	no	hidden-hidden	connections.

Geoffrey	Hinton	also	demonstrated	that	such	simple	RBMs	could	be	stacked	on
top	of	each	other	so	that	the	output	of	the	hidden	layer	of	one	RBM	can	be	fed
into	the	input	layer	of	another	RBM.	This	sort	of	RBM	stacking	can	be	repeated
many	times	to	learn	progressively	more	nuanced	hidden	representations	of	the
original	data.	This	network	of	many	RBMs	can	be	viewed	as	one	deep,
multilayered	neural	network	model—and	thus	the	field	of	deep	learning	took	off,
starting	in	2006.

Note	that	RBMs	use	a	stochastic	approach	to	learning	the	underlying	structure	of
data,	whereas	autoencoders,	for	example,	use	a	deterministic	approach.

1

Recommender	Systems
In	this	chapter,	we	will	use	RBMs	to	build	a	recommender	system,	one	of	the
most	successful	applications	of	machine	learning	to	date	and	widely	used	in
industry	to	help	predict	user	preferences	for	movies,	music,	books,	news,	search,
shopping,	digital	advertising,	and	online	dating.

There	are	two	major	categories	of	recommender	systems—collaborative	filtering
recommender	systems	and	content-based	filtering	recommender	systems.
Collaborative	filtering	involves	building	a	recommender	system	from	a	user’s
past	behavior	and	those	of	other	users	to	which	the	user	is	similar	to.	This
recommender	system	can	then	predict	items	that	the	user	may	have	an	interest	in
even	though	the	user	has	never	expressed	explicit	interest.	Movie
recommendations	on	Netflix	rely	on	collaborative	filtering.

Content-based	filtering	involves	learning	the	distinct	properties	of	an	item	to
recommend	additional	items	with	similar	properties.	Music	recommendations	on
Pandora	rely	on	content-based	filtering.

Collaborative	Filtering
Content-based	filtering	is	not	commonly	used	because	it	is	a	rather	difficult	task
to	learn	the	distinct	properties	of	items—this	level	of	understanding	is	very
challenging	for	artificial	machines	to	achieve	currently.	It	is	much	easier	to
collect	and	analyze	a	large	amount	of	information	on	users’	behaviors	and
preferences	and	make	predictions	based	on	this.	Therefore,	collaborative
filtering	is	much	more	widely	used	and	is	the	type	of	recommender	system	we
will	focus	on	here.

Collaborative	filtering	requires	no	knowledge	of	the	underlying	items
themselves.	Rather,	collaborative	filtering	assumes	that	users	that	agreed	in	the
past	will	agree	in	the	future	and	that	user	preferences	remain	stable	over	time.
By	modeling	how	similar	users	are	to	other	users,	collaborative	filtering	can
make	pretty	powerful	recommendations.	Moreover,	collaborative	filtering	does
not	have	to	rely	on	explicit	data	(i.e.,	ratings	that	users	provide).	Rather,	it	can
work	with	implicit	data	such	as	how	long	or	how	often	a	user	views	or	clicks	on
a	particular	item.	For	example,	in	the	past	Netflix	asked	users	to	rate	movies	but
now	uses	implicit	user	behavior	to	make	inferences	about	user	likes	and	dislikes.

However,	collaborative	filtering	has	its	challenges.	First,	it	requires	a	lot	of	user
data	to	make	good	recommendations.	Second,	it	is	a	very	computationally
demanding	task.	Third,	the	datasets	are	generally	very	sparse	since	users	will
have	exhibited	preferences	for	only	a	small	fraction	of	all	the	items	in	the
universe	of	possible	items.	Assuming	we	have	enough	data,	there	are	techniques
we	can	use	to	handle	the	sparsity	of	the	data	and	efficiently	solve	the	problem,
which	we	will	cover	in	this	chapter.

The	Netflix	Prize
In	2006,	Netflix	sponsored	a	three-year-long	competition	to	improve	its	movie
recommender	system.	The	company	offered	a	grand	prize	of	one	million	dollars
to	the	team	that	could	improve	the	accuracy	of	its	existing	recommender	system
by	at	least	10%.	It	also	released	a	dataset	of	over	100	million	movie	ratings.	In
September	2009,	BellKor’s	Pramatic	Chaos	team	won	the	prize,	using	an
ensemble	of	many	different	algorithmic	approaches.

Such	a	high-profile	competition	with	a	rich	dataset	and	meaningful	prize
energized	the	machine	learning	community	and	led	to	substantial	progress	in
recommender	system	research,	which	paved	the	way	for	better	recommender
systems	in	industry	over	the	past	several	years.

In	this	chapter,	we	will	use	a	similar	movie	rating	dataset	to	build	our	own
recommender	system	using	RBMs.

MovieLens	Dataset
Instead	of	the	100	million	ratings	Netflix	dataset,	we	will	use	a	smaller	movie
ratings	dataset	known	as	the	MovieLens	20M	Dataset,	provided	by	GroupLens,	a
research	lab	in	the	Department	of	Computer	Science	and	Engineering	at	the
University	of	Minnesota,	Twin	Cities.	The	data	contains	20,000,263	ratings
across	27,278	movies	created	by	138,493	users	from	January	9,	1995	to	March
31,	2015.	Of	users	who	rated	at	least	20	movies	each,	we	will	select	a	subset	at
random.

This	dataset	is	more	manageable	to	work	with	than	the	100	million	ratings
dataset	from	Netflix.	Because	the	file	size	exceeds	one	hundred	megabytes,	the

file	is	not	accessible	on	GitHub.	You	will	need	to	download	the	file	directly	from
the	MovieLens	website.

Data	Preparation
As	before,	let’s	load	in	the	necessary	libraries:

'''Main'''
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score, mean_squared_error

'''Algos'''
import lightgbm as lgb

'''TensorFlow and Keras'''
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout
from keras.layers import BatchNormalization, Input, Lambda
from keras import regularizers
from keras.losses import mse, binary_crossentropy

Next,	we	will	load	in	the	ratings	dataset	and	convert	the	fields	into	the
appropriate	data	types.	We	have	just	a	few	fields.	The	user	ID,	the	movie	ID,	the
rating	provided	by	the	user	for	the	movie,	and	the	timestamp	of	the	rating

http://bit.ly/2G0ZHCn

provided:

Load the data
current_path = os.getcwd()
file = '\\datasets\\movielens_data\\ratings.csv'
ratingDF = pd.read_csv(current_path + file)

Convert fields into appropriate data types
ratingDF.userId = ratingDF.userId.astype(str).astype(int)
ratingDF.movieId = ratingDF.movieId.astype(str).astype(int)
ratingDF.rating = ratingDF.rating.astype(str).astype(float)
ratingDF.timestamp = ratingDF.timestamp.apply(lambda x: \
 datetime.utcfromtimestamp(x).strftime('%Y-%m-%d %H:%M:%S'))

Table	10-1	shows	a	partial	view	of	the	data.

Table	10-1.	MovieLens	ratings	data

userId movieId rating timestamp

0 1 2 3.5 2005-04-02	23:53:47

1 1 29 3.5 2005-04-02	23:31:16

2 1 32 3.5 2005-04-02	23:33:39

3 1 47 3.5 2005-04-02	23:32:07

4 1 50 3.5 2005-04-02	23:29:40

5 1 112 3.5 2004-09-10	03:09:00

6 1 151 4.0 2004-09-10	03:08:54

7 1 223 4.0 2005-04-02	23:46:13

8 1 253 4.0 2005-04-02	23:35:40

9 1 260 4.0 2005-04-02	23:33:46

10 1 293 4.0 2005-04-02	23:31:43

11 1 296 4.0 2005-04-02	23:32:47

12 1 318 4.0 2005-04-02	23:33:18

13 1 337 3.5 2004-09-10	03:08:29

Let’s	confirm	the	number	of	unique	users,	unique	movies,	and	total	ratings,	and
we	will	also	calculate	the	average	number	of	ratings	provided	by	users:

n_users = ratingDF.userId.unique().shape[0]
n_movies = ratingDF.movieId.unique().shape[0]
n_ratings = len(ratingDF)
avg_ratings_per_user = n_ratings/n_users

print('Number of unique users: ', n_users)
print('Number of unique movies: ', n_movies)
print('Number of total ratings: ', n_ratings)
print('Average number of ratings per user: ', avg_ratings_per_user)

The	data	is	as	we	expected:

Number of unique users: 138493
Number of unique movies: 26744
Number of total ratings: 20000263
Average number of ratings per user: 144.4135299257002

To	reduce	the	complexity	and	size	of	this	dataset,	let’s	focus	on	the	top	one
thousand	most	rated	movies.	This	will	reduce	the	number	of	ratings	from	about
~20	million	to	about	~12.8	million.

movieIndex = ratingDF.groupby("movieId").count().sort_values(by= \
 "rating",ascending=False)[0:1000].index
ratingDFX2 = ratingDF[ratingDF.movieId.isin(movieIndex)]
ratingDFX2.count()

We	will	also	take	a	sample	of	one	thousand	users	at	random	and	filter	the	dataset
for	just	these	users.	This	will	reduce	the	number	of	ratings	from	~12.8	million	to
just	90,213.	This	number	is	sufficient	to	demonstrate	collaborative	filtering:

userIndex = ratingDFX2.groupby("userId").count().sort_values(by= \
 "rating",ascending=False).sample(n=1000, random_state=2018).index
ratingDFX3 = ratingDFX2[ratingDFX2.userId.isin(userIndex)]
ratingDFX3.count()

Let’s	also	reindex	movieID	and	userID	to	a	range	of	1	to	1,000	for	our	reduced
dataset:

movies = ratingDFX3.movieId.unique()
moviesDF = pd.DataFrame(data=movies,columns=['originalMovieId'])
moviesDF['newMovieId'] = moviesDF.index+1

users = ratingDFX3.userId.unique()
usersDF = pd.DataFrame(data=users,columns=['originalUserId'])
usersDF['newUserId'] = usersDF.index+1

ratingDFX3 = ratingDFX3.merge(moviesDF,left_on='movieId', \
 right_on='originalMovieId')
ratingDFX3.drop(labels='originalMovieId', axis=1, inplace=True)

ratingDFX3 = ratingDFX3.merge(usersDF,left_on='userId', \
 right_on='originalUserId')
ratingDFX3.drop(labels='originalUserId', axis=1, inplace=True)

Let’s	calculate	the	number	of	unique	users,	unique	movies,	total	ratings,	and
average	number	of	ratings	per	user	for	our	reduced	dataset:

n_users = ratingDFX3.userId.unique().shape[0]
n_movies = ratingDFX3.movieId.unique().shape[0]
n_ratings = len(ratingDFX3)
avg_ratings_per_user = n_ratings/n_users

print('Number of unique users: ', n_users)
print('Number of unique movies: ', n_movies)
print('Number of total ratings: ', n_ratings)
print('Average number of ratings per user: ', avg_ratings_per_user)

The	results	are	as	expected:

Number of unique users: 1000
Number of unique movies: 1000
Number of total ratings: 90213
Average number of ratings per user: 90.213

Let’s	generate	a	test	set	and	a	validation	set	from	this	reduced	dataset	so	that
each	holdout	set	is	5%	of	the	reduced	dataset:

X_train, X_test = train_test_split(ratingDFX3,
 test_size=0.10, shuffle=True, random_state=2018)

X_validation, X_test = train_test_split(X_test,
 test_size=0.50, shuffle=True, random_state=2018)

The	following	shows	the	sizes	of	the	train,	validation,	and	test	sets:

Size of train set: 81191
Size of validation set: 4511
Size of test set: 4511

Define	the	Cost	Function:	Mean	Squared	Error
Now	we	are	ready	to	work	with	the	data.

First,	let’s	create	a	matrix	m	x	n,	where	m	are	the	users	and	n	are	the	movies.
This	will	be	a	sparsely	populated	matrix	because	users	rate	only	a	fraction	of	the
movies.	For	example,	a	matrix	with	one	thousand	users	and	one	thousand	movies
will	have	only	81,191	ratings	in	the	training	set.	If	each	of	the	one	thousand
users	rated	each	of	the	one	thousand	movies,	we	would	have	a	matrix	with	one
million	ratings,	but	users	rate	only	a	small	subset	of	movies	on	average,	so	we
have	only	81,191	ratings	on	the	training	set.	The	rest	(nearly	92%	of	the	values
in	the	matrix)	will	be	zeros:

Generate ratings matrix for train
ratings_train = np.zeros((n_users, n_movies))
for row in X_train.itertuples():
 ratings_train[row[6]-1, row[5]-1] = row[3]

Calculate sparsity of the train ratings matrix
sparsity = float(len(ratings_train.nonzero()[0]))
sparsity /= (ratings_train.shape[0] * ratings_train.shape[1])
sparsity *= 100
print('Sparsity: {:4.2f}%'.format(sparsity))

We	will	generate	similar	matrices	for	the	validation	set	and	the	test	set,	which
will	be	even	sparser,	of	course:

Generate ratings matrix for validation
ratings_validation = np.zeros((n_users, n_movies))
for row in X_validation.itertuples():
 ratings_validation[row[6]-1, row[5]-1] = row[3]

Generate ratings matrix for test
ratings_test = np.zeros((n_users, n_movies))
for row in X_test.itertuples():
 ratings_test[row[6]-1, row[5]-1] = row[3]

Before	we	build	our	recommender	systems,	let’s	define	the	cost	function	that	we
will	use	to	judge	the	goodness	of	our	model.	We	will	use	mean	squared	error
(MSE),	one	of	the	simplest	cost	functions	in	machine	learning.	MSE	measures
the	averaged	squared	error	between	the	predicted	values	and	the	actual	values.
To	calculate	the	MSE,	we	need	two	vectors	of	size	[n,1],	where	n	is	the	number
of	ratings	we	are	predicting—4,511	for	the	validation	set.	One	vector	has	the
actual	ratings,	and	the	other	vector	has	the	predictions.

Let’s	first	flatten	the	sparse	matrix	with	the	ratings	for	the	validation	set.	This
will	be	the	vector	of	actual	ratings:

actual_validation = ratings_validation[ratings_validation.nonzero()].flatten()

Perform	Baseline	Experiments
As	a	baseline,	let’s	predict	an	average	rating	of	3.5	for	the	validation	set	and
calculate	the	MSE:

pred_validation = np.zeros((len(X_validation),1))
pred_validation[pred_validation==0] = 3.5
pred_validation

mean_squared_error(pred_validation, actual_validation)

The	MSE	of	this	very	naive	prediction	is	1.05.	This	is	our	baseline:

Mean squared error using naive prediction: 1.055420084238528

Let’s	see	if	we	can	improve	our	results	by	predicting	a	user’s	rating	for	a	given
movie	based	on	that	user’s	average	rating	for	all	other	movies:

ratings_validation_prediction = np.zeros((n_users, n_movies))
i = 0
for row in ratings_train:
 ratings_validation_prediction[i][ratings_validation_prediction[i]==0] \
 = np.mean(row[row>0])
 i += 1

pred_validation = ratings_validation_prediction \
 [ratings_validation.nonzero()].flatten()
user_average = mean_squared_error(pred_validation, actual_validation)

print('Mean squared error using user average:', user_average)

The	MSE	improves	to	0.909:

Mean squared error using user average: 0.9090717929472647

Now,	let’s	predict	a	user’s	rating	for	a	given	movie	based	on	the	average	rating
all	other	users	have	given	that	movie:

ratings_validation_prediction = np.zeros((n_users, n_movies)).T
i = 0
for row in ratings_train.T:
 ratings_validation_prediction[i][ratings_validation_prediction[i]==0] \
 = np.mean(row[row>0])
 i += 1

ratings_validation_prediction = ratings_validation_prediction.T
pred_validation = ratings_validation_prediction \
 [ratings_validation.nonzero()].flatten()
movie_average = mean_squared_error(pred_validation, actual_validation)
print('Mean squared error using movie average:', movie_average)

The	MSE	of	this	approach	is	0.914,	similar	to	that	found	using	user	average:

Mean squared error using movie average: 0.9136057106858655

Matrix	Factorization
Before	we	build	a	recommender	system	using	RBMs,	let’s	first	build	one	using
matrix	factorization,	one	of	the	most	successful	and	popular	collaborative
filtering	algorithms	today.	Matrix	factorization	decomposes	the	user-item	matrix
into	a	product	of	two	lower	dimensionality	matrices.	Users	are	represented	in
lower	dimensional	latent	space,	and	so	are	the	items.

Assume	our	user-item	matrix	is	R,	with	m	users	and	n	items.	Matrix	factorization
will	create	two	lower	dimensionality	matrices,	H	and	W.	H	is	an	"m	users”	x	"k
latent	factors”	matrix,	and	W	is	a	"k	latent	factors”	x	"n	items”	matrix.

The	ratings	are	computed	by	matrix	multiplication:	R	=	H__W.

The	number	of	k	latent	factors	determines	the	capacity	of	the	model.	The	higher

the	k,	the	greater	the	capacity	of	the	model.	By	increasing	k,	we	can	improve	the
personalization	of	rating	predictions	for	users,	but,	if	k	is	too	high,	the	model
will	overfit	the	data.

All	of	this	should	be	familiar	to	you.	Matrix	factorization	learns	representations
for	the	users	and	items	in	a	lower	dimensional	space	and	makes	predictions
based	on	the	newly	learned	representations.

One	Latent	Factor
Let’s	start	with	the	simplest	form	of	matrix	factorization—with	just	one	latent
factor.	We	will	use	Keras	to	perform	our	matrix	factorization.

First,	we	need	to	define	the	graph.	The	input	is	the	one-dimensional	vector	of
users	for	the	user	embedding	and	the	one-dimensional	vector	of	movies	for	the
movie	embedding.	We	will	embed	these	input	vectors	into	a	latent	space	of	one
and	then	flatten	them.	To	generate	the	output	vector	product,	we	will	take	the	dot
product	of	the	movie	vector	and	user	vector.	We	will	use	the	Adam	optimizer	to
minimize	our	cost	fuction,	which	is	defined	as	the	mean_squared_error:

n_latent_factors = 1

user_input = Input(shape=[1], name='user')
user_embedding = Embedding(input_dim=n_users + 1, output_dim=n_latent_factors,
 name='user_embedding')(user_input)
user_vec = Flatten(name='flatten_users')(user_embedding)

movie_input = Input(shape=[1], name='movie')
movie_embedding = Embedding(input_dim=n_movies + 1, output_dim=n_latent_factors,
 name='movie_embedding')(movie_input)
movie_vec = Flatten(name='flatten_movies')(movie_embedding)

product = dot([movie_vec, user_vec], axes=1)
model = Model(inputs=[user_input, movie_input], outputs=product)
model.compile('adam', 'mean_squared_error')

Let’s	train	the	model	by	feeding	in	the	user	and	movie	vectors	from	the	training
dataset.	We	will	also	evaluate	the	model	on	the	validation	set	while	we	train.	The
MSE	will	be	calculated	against	the	actual	ratings	we	have.

We	will	train	for	one	hundred	epochs	and	store	the	history	of	the	training	and
validation	results.	Let’s	also	plot	the	results:

history = model.fit(x=[X_train.newUserId, X_train.newMovieId], \
 y=X_train.rating, epochs=100, \
 validation_data=([X_validation.newUserId, \
 X_validation.newMovieId], X_validation.rating), \
 verbose=1)

pd.Series(history.history['val_loss'][10:]).plot(logy=False)
plt.xlabel("Epoch")
plt.ylabel("Validation Error")
print('Minimum MSE: ', min(history.history['val_loss']))

Figure	10-1	shows	the	results.

Figure	10-1.	Plot	of	validation	MSE	using	matrix	factorization	and	one	latent	factor

The	minimum	MSE	using	matrix	factorization	and	one	latent	factor	is	0.796.
This	is	a	better	MSE	than	our	user	average	and	movie	average	approaches	from
earlier.

Let’s	see	if	we	can	do	even	better	by	increasing	the	number	of	latent	factors	(i.e.,
the	capacity	of	the	model).

Three	Latent	Factors
Figure	10-2	displays	the	results	of	using	three	latent	factors.

Figure	10-2.	Plot	of	validation	MSE	using	matrix	factorization	and	three	latent	factors

The	minimum	MSE	is	0.765,	which	is	better	than	the	one	using	one	latent	factor
and	the	best	yet.

Five	Latent	Factors
Let’s	now	build	a	matrix	factorization	model	using	five	latent	factors	(see
Figure	10-3	for	the	results).

Figure	10-3.	Plot	of	validation	MSE	using	matrix	factorization	and	five	latent	factors

The	minimum	MSE	fails	to	improve,	and	there	are	clear	signs	of	overfitting	after
the	first	25	epochs	or	so.	The	validation	error	troughs	and	then	begins	to

increase.	Adding	more	capacity	to	the	matrix	factorization	model	will	not	help
much	more.

Collaborative	Filtering	Using	RBMs
Let’s	turn	back	to	RBMs	again.	Recall	that	RBMs	have	two	layers—the
input/visible	layer	and	the	hidden	layer.	The	neurons	in	each	layer	communicate
with	neurons	in	the	other	layer	but	not	with	neurons	in	the	same	layer.	In	other
words,	there	is	no	intralayer	communication	among	the	neurons—this	is	the
restricted	bit	of	RBMs.

Another	important	feature	of	RBMs	is	that	the	communication	between	layers
happens	in	both	directions—not	just	in	one	direction.	For	example,	with
autoencoders,	the	neurons	communicate	with	the	next	layer,	passing	information
only	in	a	feedforward	way.

With	RBMs,	the	neurons	in	the	visible	layer	communicate	with	the	hidden	layer,
and	then	the	hidden	layer	passes	back	information	to	the	visibile	layer,	going
back	and	forth	several	times.	RBMs	perform	this	communication—the	passes
back	and	forth	between	the	visible	and	hidden	layer—to	develop	a	generative
model	such	that	the	reconstructions	from	the	outputs	of	the	hidden	layer	are
similar	to	the	original	inputs.

In	other	words,	the	RBMs	are	trying	to	create	a	generative	model	that	will	help
predict	whether	a	user	will	like	a	movie	that	the	user	has	never	seen	based	on
how	similar	the	movie	is	to	other	movies	the	user	has	rated	and	based	on	how
similar	the	user	is	to	the	other	users	that	have	rated	that	movie.

The	visible	layer	will	have	X	neurons,	where	X	is	the	number	of	movies	in	the
dataset.	Each	neuron	will	have	a	normalized	rating	value	from	zero	to	one,
where	zero	means	the	user	has	not	seen	the	movie.	The	closer	the	normalized
rating	value	is	to	one,	the	more	the	user	likes	the	movie	represented	by	the
neuron.

The	neurons	in	the	visible	layer	will	communicate	with	the	neurons	in	the	hidden
layer,	which	will	try	to	learn	the	underlying,	latent	features	that	characterize	the
user-movie	preferences.

Note	that	RBMs	are	also	referred	to	as	symmetrical	bipartite,	bidirectional

graphs—symmetrical	because	each	visible	node	is	connected	to	each	hidden
node,	bipartite	because	there	are	two	layers	of	nodes,	and	bidirectional	because
the	communication	happens	in	both	directions.

RBM	Neural	Network	Architecture
For	our	movie-recommender	system,	we	have	an	m	x	n	matrix	with	m	users	and
n	movies.	To	train	the	RBM,	we	pass	along	a	batch	of	k	users	with	their	n	movie
ratings	into	the	neural	network	and	train	for	a	certain	number	of	epochs.

Each	input	x	that	is	passed	into	the	neural	network	represents	a	single	user’s
rating	preferences	for	all	n	movies,	where	n	is	one	thousand	in	our	example.
Therefore,	the	visible	layer	has	n	nodes,	one	for	each	movie.

We	can	specify	the	number	of	nodes	in	the	hidden	layer,	which	will	generally	be
fewer	than	the	nodes	in	the	visible	layer	to	force	the	hidden	layer	to	learn	the
most	salient	aspects	of	the	original	input	as	efficiently	as	possible.

Each	input	v0	is	multiplied	by	its	respective	weight	W.	The	weights	are	learned
by	the	connections	from	the	visible	layer	to	the	hidden	layer.	Then	we	add	a	bias
vector	at	the	hidden	layer	called	hb.	The	bias	ensures	that	at	least	some	of	the
neurons	fire.	This	W*v0+hb	result	is	passed	through	an	activation	function.

After	this,	we	will	take	a	sample	of	the	outputs	generated	via	a	process	known	as
Gibbs	sampling.	In	other	words,	the	activation	of	the	hidden	layer	results	in	final
outputs	that	are	generated	stochastically.	This	level	of	randomness	helps	build	a
better-performing	and	more	robust	generative	model.

Next,	the	output	after	Gibbs	sampling—known	as	h0—is	passed	back	through
the	neural	network	in	the	opposite	direction	in	what	is	called	a	backward	pass.	In
the	backward	pass,	the	activations	in	the	forward	pass	after	Gibbs	sampling	are
fed	into	the	hidden	layer	and	multiplied	by	the	same	weights	W	as	before.	We
then	add	a	new	bias	vector	at	the	visible	layer	called	vb.

This	W_h0+vb	is	passed	through	an	activation	function,	and	then	we	perform
Gibbs	sampling.	The	output	of	this	is	v1,	which	is	then	passed	as	the	new	input
into	the	visible	layer	and	through	the	neural	network	as	another	forward	pass.

The	RBM	goes	through	a	series	of	forward	and	backward	passes	like	this	to
learn	the	optimal	weights	as	it	attempts	to	build	a	robust	generative	model.

RBMs	are	the	first	type	of	generative	learning	model	that	we	have	explored.	By
performing	Gibbs	sampling	and	retraining	weights	via	forward	and	backward
passes,	RBMs	are	trying	to	learn	the	probability	distribution	of	the	original
input.	Specifically,	RBMs	minimize	the	Kullback–Leibler	divergence,	which
measures	how	one	probability	distribution	is	different	from	another;	in	this	case,
RBMs	are	minimizing	the	probability	distribution	of	the	original	input	from	the
probability	distribution	of	the	reconstructed	data.

By	iteratively	readjusting	the	weights	in	the	neural	net,	the	RBM	learns	to
approximate	the	original	data	as	best	as	possible.

With	this	newly	learned	probability	distribution,	RBMs	are	able	to	make
predictions	about	never-before-seen	data.	In	this	case,	the	RBM	we	design	will
attempt	to	predict	ratings	for	movies	that	the	user	has	never	seen	based	on	the
user’s	similarity	to	other	users	and	the	ratings	those	movies	have	received	by	the
other	users.

Build	the	Components	of	the	RBM	Class
First,	we	will	initialize	the	class	with	a	few	parameters;	these	are	the	input	size
of	the	RBM,	the	output	size,	the	learning	rate,	the	number	of	epochs	to	train	for,
and	the	batch	size	during	the	training	process.

We	will	also	create	zero	matrices	for	the	weight	matrix,	the	hidden	bias	vector,
and	the	visible	bias	vector:

Define RBM class
class RBM(object):

 def __init__(self, input_size, output_size,
 learning_rate, epochs, batchsize):
 # Define hyperparameters
 self._input_size = input_size
 self._output_size = output_size
 self.learning_rate = learning_rate
 self.epochs = epochs
 self.batchsize = batchsize

 # Initialize weights and biases using zero matrices
 self.w = np.zeros([input_size, output_size], "float")
 self.hb = np.zeros([output_size], "float")
 self.vb = np.zeros([input_size], "float")

Next,	let’s	define	functions	for	the	forward	pass,	the	backward	pass,	and	the
sampling	of	data	during	each	of	these	passes	back	and	forth.

Here	is	the	forward	pass,	where	h	is	the	hidden	layer	and	v	is	the	visible	layer:

def prob_h_given_v(self, visible, w, hb):
 return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

Here	is	the	backward	pass:

def prob_v_given_h(self, hidden, w, vb):
 return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

Here	is	the	sampling	function:

def sample_prob(self, probs):
 return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))

Now	we	need	a	function	that	performs	that	training.	Since	we	are	using
TensorFlow,	we	first	need	to	create	placeholders	for	the	TensorFlow	graph,
which	we	will	use	when	we	feed	data	into	the	TensorFlow	session.

We	will	have	placeholders	for	the	weights	matrix,	the	hidden	bias	vector,	and	the
visible	bias	vector.	We	will	also	need	to	initialize	the	values	for	these	three	using
zeros.	And,	we	will	need	one	set	to	hold	the	current	values	and	one	set	to	hold
the	previous	values:

_w = tf.placeholder("float", [self._input_size, self._output_size])
_hb = tf.placeholder("float", [self._output_size])
_vb = tf.placeholder("float", [self._input_size])

prv_w = np.zeros([self._input_size, self._output_size], "float")
prv_hb = np.zeros([self._output_size], "float")
prv_vb = np.zeros([self._input_size], "float")

cur_w = np.zeros([self._input_size, self._output_size], "float")
cur_hb = np.zeros([self._output_size], "float")
cur_vb = np.zeros([self._input_size], "float")

Likewise,	we	need	a	placeholder	for	the	visible	layer.	The	hidden	layer	is
derived	from	matrix	multiplication	of	the	visible	layer	and	the	weights	matrix

and	the	matrix	addition	of	the	hidden	bias	vector:

v0 = tf.placeholder("float", [None, self._input_size])
h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))

During	the	backward	pass,	we	take	the	hidden	layer	output,	multiply	it	with	the
transpose	of	the	weights	matrix	used	during	the	forward	pass,	and	add	the	visible
bias	vector.	Note	that	the	weights	matrix	is	the	same	during	both	the	forward	and
the	backward	pass.	Then,	we	perform	the	forward	pass	again:

v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
h1 = self.prob_h_given_v(v1, _w, _hb)

To	update	the	weights,	we	perform	constrastive	divergence.

We	also	define	the	error	as	MSE.

positive_grad = tf.matmul(tf.transpose(v0), h0)
negative_grad = tf.matmul(tf.transpose(v1), h1)

update_w = _w + self.learning_rate * \
 (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

err = tf.reduce_mean(tf.square(v0 - v1))

With	this,	we	are	ready	to	initialize	the	TensorFlow	session	with	the	variables	we
have	just	defined.

Once	we	call	sess.run,	we	can	feed	in	batches	of	data	to	begin	the	training.
During	the	training,	forward	and	backward	passes	will	be	made,	and	the	RBM
will	update	weights	based	on	how	the	generated	data	compares	to	the	original
input.	We	will	print	the	reconstruction	error	from	each	epoch.

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())

 for epoch in range(self.epochs):
 for start, end in zip(range(0, len(X),
 self.batchsize),range(self.batchsize,len(X), self.batchsize)):
 batch = X[start:end]
 cur_w = sess.run(update_w, feed_dict={v0: batch,

2

 _w: prv_w, _hb: prv_hb, _vb: prv_vb})
 cur_hb = sess.run(update_hb, feed_dict={v0: batch,
 _w: prv_w, _hb: prv_hb, _vb: prv_vb})
 cur_vb = sess.run(update_vb, feed_dict={v0: batch,
 _w: prv_w, _hb: prv_hb, _vb: prv_vb})
 prv_w = cur_w
 prv_hb = cur_hb
 prv_vb = cur_vb
 error = sess.run(err, feed_dict={v0: X,
 _w: cur_w, _vb: cur_vb, _hb: cur_hb})
 print ('Epoch: %d' % epoch,'reconstruction error: %f' % error)
 self.w = prv_w
 self.hb = prv_hb
 self.vb = prv_vb

Train	RBM	Recommender	System
To	train	the	RBM,	let’s	create	a	NumPy	array	called	inputX	from
ratings_train	and	convert	these	values	to	float32.	We	will	also	define	the
RBM	to	take	in	a	one	thousand-dimensional	input,	output	a	one	thousand-
dimensional	output,	use	a	learning	rate	of	0.3,	train	for	five	hundred	epochs,	and
use	a	batch	size	of	two	hundred.	These	parameters	are	just	preliminary	parameter
choices;	you	should	be	able	to	find	more	optimal	parameters	with
experimentation,	which	is	encouraged:

Begin the training cycle

Convert inputX into float32
inputX = ratings_train
inputX = inputX.astype(np.float32)

Define the parameters of the RBMs we will train
rbm=RBM(1000,1000,0.3,500,200)

Let’s	begin	training:

rbm.train(inputX)
outputX, reconstructedX, hiddenX = rbm.rbm_output(inputX)

Figure	10-4	displays	the	plot	of	the	reconstruction	errors.

Figure	10-4.	Plot	of	RBM	errors

The	error	terms	generally	decrease	the	longer	we	train.

Now	let’s	take	the	RBM	model	we	developed	to	predict	the	ratings	for	users	in
the	validation	set	(which	has	the	same	users	as	the	training	set):

Predict ratings for validation set
inputValidation = ratings_validation
inputValidation = inputValidation.astype(np.float32)

finalOutput_validation, reconstructedOutput_validation, _ = \
 rbm.rbm_output(inputValidation)

Next,	let’s	convert	the	predictions	into	an	array	and	calculate	the	MSE	against
the	true	validation	ratings:

predictionsArray = reconstructedOutput_validation
pred_validation = \
 predictionsArray[ratings_validation.nonzero()].flatten()
actual_validation = \
 ratings_validation[ratings_validation.nonzero()].flatten()

rbm_prediction = mean_squared_error(pred_validation, actual_validation)
print('Mean squared error using RBM prediction:', rbm_prediction)

The	following	code	displays	the	MSE	on	the	validation	set:

Mean squared error using RBM prediction: 9.331135003325205

This	MSE	is	a	starting	point	and	will	likely	improve	with	greater

experimentation.

Conclusion
In	this	chapter,	we	explored	restricted	Boltzmann	machines	and	used	them	to
build	a	recommender	system	for	movie	ratings.	The	RBM	recommender	we	built
learned	the	probability	distribution	of	ratings	of	movies	for	users	given	their
previous	ratings	and	the	ratings	of	users	to	which	they	were	most	similar	to.	We
then	used	the	learned	probability	distribution	to	predict	ratings	on	never-before-
seen	movies.

In	Chapter	11,	we	will	stack	RBMs	together	to	build	deep	belief	networks	and
use	them	to	perform	even	more	powerful	unsupervised	learning	tasks.

1 	The	most	common	training	algorithm	for	this	class	of	RBMs	is	known	as	the	gradient-based
contrastive	divergence	algorithm.

2 	For	more	on	this	topic,	see	the	paper	“On	Contrastive	Divergence	Learning”.

http://bit.ly/2RukFuX

Chapter	11.	Feature	Detection
Using	Deep	Belief	Networks

In	Chapter	10,	we	explored	restricted	Boltzmann	machines	and	used	them	to
build	a	recommender	system	for	movie	ratings.	In	this	chapter,	we	will	stack
RBMs	together	to	build	deep	belief	networks	(DBNs).	DBNs	were	first
introduced	by	Geoff	Hinton	at	the	University	of	Toronto	in	2006.

RBMs	have	just	two	layers,	a	visible	layer	and	a	hidden	layer;	in	other	words,
RBMs	are	just	shallow	neural	networks.	DBNs	are	made	up	of	multiple	RBMs—
the	hidden	layer	of	one	RBM	serves	as	the	visible	layer	of	the	next	RBM.
Because	they	involve	many	layers,	DBNs	are	deep	neural	networks.	In	fact,	they
are	the	first	type	of	deep	unsupervised	neural	network	we’ve	introduced	so	far.

Shallow	unsupervised	neural	networks,	such	as	RBMs,	cannot	capture	structure
in	complex	data	such	as	images,	sound,	and	text,	but	DBNs	can.	DBNs	have
been	used	to	recognize	and	cluster	images,	video	capture,	sound,	and	text,
although	other	deep	learning	methods	have	surpassed	DBNs	in	performance	over
the	past	decade.

Deep	Belief	Networks	in	Detail
Like	RBMs,	DBNs	can	learn	the	underlying	structure	of	input	and
probabilistically	reconstruct	it.	In	other	words,	DBNs—like	RBMs—are
generative	models.	And,	as	with	RBMs,	the	layers	in	DBNs	have	connections
only	between	layers	but	not	between	units	within	each	layer.

In	the	DBN,	one	layer	is	trained	at	a	time,	starting	with	the	very	first	hidden
layer,	which,	along	with	the	input	layer,	makes	up	the	first	RBM.	Once	this	first
RBM	is	trained,	the	hidden	layer	of	the	first	RBM	serves	as	the	visible	layer	of
the	next	RBM	and	is	used	to	train	the	second	hidden	layer	of	the	DBN.

This	process	continues	until	all	the	layers	of	the	DBN	are	trained.	Except	for	the
first	and	final	layers	of	the	DBN,	each	layer	in	the	DBN	serves	as	both	a	hidden

layer	and	a	visible	layer	of	an	RBM.

The	DBN	is	a	hierarchy	of	representations	and,	like	all	neural	networks,	is	a
form	of	representation	learning.	Note	that	the	DBN	does	not	use	any	labels.
Instead,	the	DBN	is	learning	the	underlying	structure	in	the	input	data	one	layer
at	a	time.

Labels	can	be	used	to	fine-tune	the	last	few	layers	of	the	DBN	but	only	after	the
initial	unsupervised	learning	has	been	completed.	For	example,	if	we	want	the
DBN	to	be	a	classifier,	we	would	perform	unsupervised	learning	first	(a	process
known	as	pre-training)	and	then	use	labels	to	fine-tune	the	DBN	(a	process
called	fine-tuning).

MNIST	Image	Classification
Let’s	build	an	image	classifier	using	DBNs.	We	will	turn	to	the	MNIST	dataset
once	again.

First,	let’s	load	the	necessary	libraries:

'''Main'''
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score, mean_squared_error

'''Algos'''
import lightgbm as lgb

'''TensorFlow and Keras'''
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout
from keras.layers import BatchNormalization, Input, Lambda
from keras.layers import Embedding, Flatten, dot
from keras import regularizers
from keras.losses import mse, binary_crossentropy

We	will	then	load	the	data	and	store	it	in	Pandas	DataFrames.	We	will	also
encode	the	labels	as	one-hot	vectors.	This	is	all	similar	to	what	we	did	when	we
first	introduced	the	MNIST	dataset	earlier	in	the	book:

Load the datasets
current_path = os.getcwd()
file = '\\datasets\\mnist_data\\mnist.pkl.gz'
f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test_set = pickle.load(f, encoding='latin1')
f.close()

X_train, y_train = train_set[0], train_set[1]
X_validation, y_validation = validation_set[0], validation_set[1]
X_test, y_test = test_set[0], test_set[1]

Create Pandas DataFrames from the datasets
train_index = range(0,len(X_train))
validation_index = range(len(X_train),len(X_train)+len(X_validation))
test_index = range(len(X_train)+len(X_validation), \
 len(X_train)+len(X_validation)+len(X_test))

X_train = pd.DataFrame(data=X_train,index=train_index)
y_train = pd.Series(data=y_train,index=train_index)

X_validation = pd.DataFrame(data=X_validation,index=validation_index)
y_validation = pd.Series(data=y_validation,index=validation_index)

X_test = pd.DataFrame(data=X_test,index=test_index)
y_test = pd.Series(data=y_test,index=test_index)

def view_digit(X, y, example):
 label = y.loc[example]
 image = X.loc[example,:].values.reshape([28,28])
 plt.title('Example: %d Label: %d' % (example, label))
 plt.imshow(image, cmap=plt.get_cmap('gray'))
 plt.show()

def one_hot(series):
 label_binarizer = pp.LabelBinarizer()
 label_binarizer.fit(range(max(series)+1))
 return label_binarizer.transform(series)

Create one-hot vectors for the labels
y_train_oneHot = one_hot(y_train)
y_validation_oneHot = one_hot(y_validation)
y_test_oneHot = one_hot(y_test)

Restricted	Boltzmann	Machines
Next,	let’s	define	an	RBM	class	so	we	can	train	several	RBMs	(which	are	the
building	blocks	for	DBNs)	in	quick	succession.

Remember	that	RBMs	have	an	input	layer	(also	referred	to	as	the	visible	layer)
and	a	single	hidden	layer,	and	the	connections	among	neurons	are	restricted	such
that	neurons	are	connected	only	to	the	neurons	in	other	layers	but	not	to	neurons
within	the	same	layer.	Also,	recall	that	communication	between	layers	happens
in	both	directions—not	just	in	one	direction	or	a	feedforward	way,	as	in	the	case
of	autoencoders.

In	an	RBM,	the	neurons	in	the	visible	layer	communicate	with	the	hidden	layer,
the	hidden	layer	generates	data	from	the	probabilistic	model	the	RBM	has
learned,	and	then	the	hidden	layer	passes	this	generated	information	back	to	the
visible	layer.	The	visible	layer	takes	the	generated	data	from	the	hidden	layer,
samples	it,	compares	it	to	the	original	data,	and,	based	on	the	reconstruction
error	between	the	generated	data	sample	and	the	original	data,	sends	new
information	to	the	hidden	layer	to	repeat	the	process	once	again.

By	communicating	in	this	bidirectional	way,	the	RBM	develops	a	generative
model	such	that	the	reconstructions	from	the	output	of	the	hidden	layer	are
similar	to	the	original	input.

Build	the	Components	of	the	RBM	Class
Like	we	did	in	Chapter	10,	let’s	walk	through	the	various	components	of	the	RBM
class.

First,	we	will	initialize	the	class	with	a	few	parameters;	these	are	the	input	size

of	the	RBM,	the	output	size,	the	learning	rate,	the	number	of	epochs	to	train	for,
and	the	batch	size	during	the	training	process.	We	will	also	create	zero	matrices
for	the	weight	matrix,	the	hidden	bias	vector,	and	the	visible	bias	vector:

Define RBM class
class RBM(object):

 def __init__(self, input_size, output_size,
 learning_rate, epochs, batchsize):
 # Define hyperparameters
 self._input_size = input_size
 self._output_size = output_size
 self.learning_rate = learning_rate
 self.epochs = epochs
 self.batchsize = batchsize

 # Initialize weights and biases using zero matrices
 self.w = np.zeros([input_size, output_size], "float")
 self.hb = np.zeros([output_size], "float")
 self.vb = np.zeros([input_size], "float")

Next,	let’s	define	functions	for	the	forward	pass,	the	backward	pass,	and	the
sampling	of	data	during	each	of	these	passes	back	and	forth.

Here	is	the	forward	pass,	where	h	is	the	hidden	layer	and	v	is	the	visible	layer:

def prob_h_given_v(self, visible, w, hb):
 return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

Here	is	the	backward	pass:

def prob_v_given_h(self, hidden, w, vb):
 return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

Here	is	the	sampling	function:

def sample_prob(self, probs):
 return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))

Now	we	need	a	function	that	performs	that	training.	Since	we	are	using
TensorFlow,	we	first	need	to	create	placeholders	for	the	TensorFlow	graph,
which	we	will	use	when	we	feed	data	into	the	TensorFlow	session.

We	will	have	placeholders	for	the	weights	matrix,	the	hidden	bias	vector,	and	the
visible	bias	vector.	We	will	also	need	to	initialize	the	values	for	these	three	using
zeros.	And,	we	will	need	one	set	to	hold	the	current	values	and	one	set	to	hold
the	previous	values:

_w = tf.placeholder("float", [self._input_size, self._output_size])
_hb = tf.placeholder("float", [self._output_size])
_vb = tf.placeholder("float", [self._input_size])

prv_w = np.zeros([self._input_size, self._output_size], "float")
prv_hb = np.zeros([self._output_size], "float")
prv_vb = np.zeros([self._input_size], "float")

cur_w = np.zeros([self._input_size, self._output_size], "float")
cur_hb = np.zeros([self._output_size], "float")
cur_vb = np.zeros([self._input_size], "float")

Likewise,	we	need	a	placeholder	for	the	visible	layer.	The	hidden	layer	is
derived	from	matrix	multiplication	of	the	visible	layer	and	the	weights	matrix
and	the	matrix	addition	of	the	hidden	bias	vector:

v0 = tf.placeholder("float", [None, self._input_size])
h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))

During	the	backward	pass,	we	take	the	hidden	layer	output,	multiply	it	with	the
transpose	of	the	weights	matrix	used	during	the	forward	pass,	and	add	the	visible
bias	vector.	Note	that	the	weights	matrix	is	the	same	weights	matrix	during	both
the	forward	and	the	backward	pass.

Then	we	perform	the	forward	pass	again:

v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
h1 = self.prob_h_given_v(v1, _w, _hb)

To	update	the	weights,	we	perform	constrastive	divergence,	which	we	introduced
in	Chapter	10.	We	also	define	the	error	as	the	MSE:

positive_grad = tf.matmul(tf.transpose(v0), h0)
negative_grad = tf.matmul(tf.transpose(v1), h1)

update_w = _w + self.learning_rate * \
 (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])

update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

err = tf.reduce_mean(tf.square(v0 - v1))

With	this,	we	are	ready	to	initialize	the	TensorFlow	session	with	the	variables	we
have	just	defined.

Once	we	call	sess.run,	we	can	feed	in	batches	of	data	to	begin	the	training.
During	the	training,	forward	and	backward	passes	will	be	made,	and	the	RBM
will	update	weights	based	on	how	the	generated	data	compares	to	the	original
input.	We	will	print	the	reconstruction	error	from	each	epoch:

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())

 for epoch in range(self.epochs):
 for start, end in zip(range(0, len(X), self.batchsize), \
 range(self.batchsize,len(X), self.batchsize)):
 batch = X[start:end]
 cur_w = sess.run(update_w, \
 feed_dict={v0: batch, _w: prv_w, \
 _hb: prv_hb, _vb: prv_vb})
 cur_hb = sess.run(update_hb, \
 feed_dict={v0: batch, _w: prv_w, \
 _hb: prv_hb, _vb: prv_vb})
 cur_vb = sess.run(update_vb, \
 feed_dict={v0: batch, _w: prv_w, \
 _hb: prv_hb, _vb: prv_vb})
 prv_w = cur_w
 prv_hb = cur_hb
 prv_vb = cur_vb
 error = sess.run(err, feed_dict={v0: X, _w: cur_w, \
 _vb: cur_vb, _hb: cur_hb})
 print ('Epoch: %d' % epoch,'reconstruction error: %f' % error)
 self.w = prv_w
 self.hb = prv_hb
 self.vb = prv_vb

Generate	Images	Using	the	RBM	Model
Let’s	also	define	a	function	to	generate	new	images	from	the	generative	model
that	the	RBM	has	learned:

def rbm_output(self, X):

 input_X = tf.constant(X)
 _w = tf.constant(self.w)
 _hb = tf.constant(self.hb)
 _vb = tf.constant(self.vb)
 out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
 hiddenGen = self.sample_prob(self.prob_h_given_v(input_X, _w, _hb))
 visibleGen = self.sample_prob(self.prob_v_given_h(hiddenGen, _w, _vb))
 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 return sess.run(out), sess.run(visibleGen), sess.run(hiddenGen)

We	feed	the	original	matrix	of	images,	called	X,	into	the	function.	We	create
TensorFlow	placeholders	for	the	original	matrix	of	images,	the	weights	matrix,
the	hidden	bias	vector,	and	the	visible	bias	vector.	Then,	we	push	the	input
matrix	to	produce	the	output	of	a	forward	pass	(out),	a	sample	of	the	hidden
layer	(hiddenGen),	and	a	sample	of	the	reconstructed	images	generated	by	the
model	(visibleGen).

View	the	Intermediate	Feature	Detectors
Finally,	let’s	define	a	function	to	show	the	feature	detectors	of	the	hidden	layer:

def show_features(self, shape, suptitle, count=-1):
 maxw = np.amax(self.w.T)
 minw = np.amin(self.w.T)
 count = self._output_size if count == -1 or count > \
 self._output_size else count
 ncols = count if count < 14 else 14
 nrows = count//ncols
 nrows = nrows if nrows > 2 else 3
 fig = plt.figure(figsize=(ncols, nrows), dpi=100)
 grid = Grid(fig, rect=111, nrows_ncols=(nrows, ncols), axes_pad=0.01)

 for i, ax in enumerate(grid):
 x = self.w.T[i] if i<self._input_size else np.zeros(shape)
 x = (x.reshape(1, -1) - minw)/maxw
 ax.imshow(x.reshape(*shape), cmap=mpl.cm.Greys)
 ax.set_axis_off()

 fig.text(0.5,1, suptitle, fontsize=20, horizontalalignment='center')
 fig.tight_layout()
 plt.show()
 return

We	will	use	this	and	the	other	functions	on	the	MNIST	dataset	now.

Train	the	Three	RBMs	for	the	DBN
We	will	now	use	the	MNIST	data	to	train	three	RBMs,	one	at	a	time,	such	that
the	hidden	layer	of	one	RBM	is	used	as	the	visible	layer	of	the	next	RBM.	These
three	RBMs	will	make	up	the	DBN	that	we	are	building	to	perform	image
classification.

First,	let’s	take	the	training	data	and	store	it	as	a	NumPy	array.	Next,	we	will
create	a	list	to	hold	the	RBMs	we	train	called	rbm_list.	Then,	we	will	define
the	hyperparameters	for	the	three	RBMs,	including	the	input	size,	the	output
size,	the	learning	rate,	the	number	of	epochs	to	train	for,	and	the	batch	size	for
training.

All	of	these	can	be	built	using	the	RBM	class	we	defined	earlier.

For	our	DBN,	we	will	use	the	following	RBMs:	the	first	will	take	the	original
784-dimension	input	and	output	a	700-dimension	matrix.	The	next	RBM	will	use
the	700-dimension	matrix	output	of	the	first	RBM	and	output	a	600-dimension
matrix.	Finally,	the	last	RBM	we	train	will	take	the	600-dimension	matrix	and
output	a	500-dimension	matrix.

We	will	train	all	three	RBMs	using	a	learning	rate	of	1.0,	train	for	100	epochs
each,	and	use	a	batch	size	of	two	hundred:

Since we are training, set input as training data
inputX = np.array(X_train)

Create list to hold our RBMs
rbm_list = []

Define the parameters of the RBMs we will train
rbm_list.append(RBM(784,700,1.0,100,200))
rbm_list.append(RBM(700,600,1.0,100,200))
rbm_list.append(RBM(600,500,1.0,100,200))

Now	let’s	train	the	RBMs.	We	will	store	the	trained	RBMs	in	a	list	called
outputList.

Note	that	we	use	the	rbm_output	function	we	defined	earlier	to	produce	the

output	matrix—in	other	words,	the	hidden	layer—for	use	as	the	input/visible
layer	of	the	subsequent	RBM	we	train:

outputList = []
error_list = []
#For each RBM in our list
for i in range(0,len(rbm_list)):
 print('RBM', i+1)
 #Train a new one
 rbm = rbm_list[i]
 err = rbm.train(inputX)
 error_list.append(err)
 #Return the output layer
 outputX, reconstructedX, hiddenX = rbm.rbm_output(inputX)
 outputList.append(outputX)
 inputX = hiddenX

The	errors	of	each	RBM	decline	the	longer	we	train	(see	Figures	11-1,	11-2,	and
11-3).	Note	that	the	RBM	error	reflects	how	similar	the	reconstructed	data	of	a
given	RBM	is	to	the	data	fed	into	the	visible	layer	of	that	very	RBM.

Figure	11-1.	Reconstruction	errors	of	first	RBM

Figure	11-2.	Reconstruction	errors	of	second	RBM

Figure	11-3.	Reconstruction	errors	of	third	RBM

Examine	Feature	Detectors
Now	let’s	view	the	learned	features	from	each	of	the	RBMs	using	the
rbm.show_features	function	we	defined	earlier:

rbm_shapes = [(28,28),(25,24),(25,20)]
for i in range(0,len(rbm_list)):
 rbm = rbm_list[i]
 print(rbm.show_features(rbm_shapes[i],
 "RBM learned features from MNIST", 56))

Figure	11-4	displays	the	learned	features	for	the	various	RBMs.

As	you	can	see,	each	RBM	learns	increasingly	abstract	features	from	the	MNIST
data.	The	features	of	the	first	RBM	vaguely	resemble	digits,	and	the	features	of
the	second	and	the	third	RBMs	are	increasingly	nuanced	and	less	discernible.
This	is	pretty	typical	of	how	feature	detectors	work	on	image	data;	the	deeper
layers	of	the	neural	network	recognize	increasingly	abstract	elements	from	the
original	images.

Figure	11-4.	Learned	features	of	the	RBMs

View	Generated	Images
Before	we	build	the	full	DBN,	let’s	view	some	of	the	generated	images	from	one
of	the	RBMs	we	just	trained.

To	keep	things	simple,	we	will	feed	the	original	MNIST	training	matrix	into	the
first	RBM	we	trained,	which	performs	a	forward	pass	and	a	backward	pass,	then
will	produce	the	generated	images	we	need.	We	will	compare	the	first	ten	images
of	the	MNIST	dataset	with	the	newly	generated	images:

inputX = np.array(X_train)
rbmOne = rbm_list[0]

print('RBM 1')
outputX_rbmOne, reconstructedX_rbmOne, hiddenX_rbmOne =
 rbmOne.rbm_output(inputX)
reconstructedX_rbmOne = pd.DataFrame(data=reconstructedX_rbmOne,
 index=X_train.index)
for j in range(0,10):
 example = j
 view_digit(reconstructedX, y_train, example)
 view_digit(X_train, y_train, example)

Figure	11-5	shows	the	first	image	produced	by	the	RBM	compared	to	the	first
original	image.

Figure	11-5.	First	generated	image	of	the	first	RBM

As	you	can	see,	the	generated	image	is	similar	to	the	original	image — both
display	the	digit	five.

Let’s	view	a	few	more	images	like	this	to	compare	the	RBM-generated	images
with	the	original	ones	(see	Figures	11-6	through	11-9).

Figure	11-6.	Second	generated	image	of	the	first	RBM

Figure	11-7.	Third	generated	image	of	the	first	RBM

Figure	11-8.	Fourth	generated	image	of	the	first	RBM

Figure	11-9.	Fifth	generated	image	of	the	first	RBM

These	digits	are	zero,	four,	one,	and	nine,	respectively,	and	the	generated	images
look	reasonably	similar	to	the	original	images.

The	Full	DBN
Now,	let’s	define	the	DBN	class,	which	will	take	in	the	three	RBMs	we	just
trained	and	add	a	fourth	RBM	that	performs	forward	and	backward	passes	to
refine	the	overall	DBN-based	generative	model.

First,	let’s	define	the	hyperparameters	of	the	class.	These	include	the	original
input	size,	the	input	size	of	the	third	RBM	we	just	trained,	the	final	output	size

we	would	like	to	have	from	the	DBN,	the	learning	rate,	the	number	of	epochs	we
wish	to	train	for,	the	batch	size	for	training,	and	the	three	RBMs	we	just	trained.
Like	before,	we	will	need	to	generate	zero	matrices	for	the	weights,	hidden	bias,
and	visible	bias:

class DBN(object):
 def __init__(self, original_input_size, input_size, output_size,
 learning_rate, epochs, batchsize, rbmOne, rbmTwo, rbmThree):
 # Define hyperparameters
 self._original_input_size = original_input_size
 self._input_size = input_size
 self._output_size = output_size
 self.learning_rate = learning_rate
 self.epochs = epochs
 self.batchsize = batchsize
 self.rbmOne = rbmOne
 self.rbmTwo = rbmTwo
 self.rbmThree = rbmThree

 self.w = np.zeros([input_size, output_size], "float")
 self.hb = np.zeros([output_size], "float")
 self.vb = np.zeros([input_size], "float")

Similar	to	before,	we	will	define	functions	to	perform	the	forward	pass	and	the
backward	pass	and	take	samples	from	each:

def prob_h_given_v(self, visible, w, hb):
 return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

def prob_v_given_h(self, hidden, w, vb):
 return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

def sample_prob(self, probs):
 return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))

For	the	training,	we	need	placeholders	for	the	weights,	hidden	bias,	and	visible
bias.	We	also	need	matrices	for	the	previous	and	current	weights,	hidden	biases,
and	visible	biases:

def train(self, X):
 _w = tf.placeholder("float", [self._input_size, self._output_size])
 _hb = tf.placeholder("float", [self._output_size])
 _vb = tf.placeholder("float", [self._input_size])

 prv_w = np.zeros([self._input_size, self._output_size], "float")
 prv_hb = np.zeros([self._output_size], "float")
 prv_vb = np.zeros([self._input_size], "float")

 cur_w = np.zeros([self._input_size, self._output_size], "float")
 cur_hb = np.zeros([self._output_size], "float")
 cur_vb = np.zeros([self._input_size], "float")

We	will	set	a	placeholder	for	the	visible	layer.

Next,	we	will	take	the	initial	input—the	visible	layer—and	pass	it	through	the
three	RBMs	we	trained	earlier.	This	results	in	the	output	forward,	which	we	will
pass	into	the	fourth	RBM	we	train	as	part	of	this	DBN	class:

v0 = tf.placeholder("float", [None, self._original_input_size])
forwardOne = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(v0, \
 self.rbmOne.w) + self.rbmOne.hb) - tf.random_uniform(\
 tf.shape(tf.nn.sigmoid(tf.matmul(v0, self.rbmOne.w) + \
 self.rbmOne.hb)))))
forwardTwo = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(forwardOne, \
 self.rbmTwo.w) + self.rbmTwo.hb) - tf.random_uniform(\
 tf.shape(tf.nn.sigmoid(tf.matmul(forwardOne, \
 self.rbmTwo.w) + self.rbmTwo.hb)))))
forward = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(forwardTwo, \
 self.rbmThree.w) + self.rbmThree.hb) - \
 tf.random_uniform(tf.shape(tf.nn.sigmoid(tf.matmul(\
 forwardTwo, self.rbmThree.w) + self.rbmThree.hb)))))
h0 = self.sample_prob(self.prob_h_given_v(forward, _w, _hb))
v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
h1 = self.prob_h_given_v(v1, _w, _hb)

We	will	define	the	contrastive	divergence	like	we	did	before:

positive_grad = tf.matmul(tf.transpose(forward), h0)
negative_grad = tf.matmul(tf.transpose(v1), h1)

update_w = _w + self.learning_rate * (positive_grad - negative_grad) / \
 tf.to_float(tf.shape(forward)[0])
update_vb = _vb + self.learning_rate * tf.reduce_mean(forward - v1, 0)
update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

Once	we	generate	a	full	forward	pass	through	this	DBN—which	includes	the
three	RBMs	we	trained	earlier	plus	the	latest	fourth	RBM—we	need	to	send	the
output	of	the	fourth	RBM’s	hidden	layer	back	through	the	entire	DBN.

This	requires	a	backward	pass	through	the	fourth	RBM	as	well	as	a	backward
pass	through	the	first	three.	We	will	also	use	MSE	as	before.	Here	is	how	the
backward	pass	occurs:

backwardOne = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(v1, \
 self.rbmThree.w.T) + self.rbmThree.vb) - \
 tf.random_uniform(tf.shape(tf.nn.sigmoid(\
 tf.matmul(v1, self.rbmThree.w.T) + \
 self.rbmThree.vb)))))
backwardTwo = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(backwardOne, \
 self.rbmTwo.w.T) + self.rbmTwo.vb) - \
 tf.random_uniform(tf.shape(tf.nn.sigmoid(\
 tf.matmul(backwardOne, self.rbmTwo.w.T) + \
 self.rbmTwo.vb)))))
backward = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(backwardTwo, \
 self.rbmOne.w.T) + self.rbmOne.vb) - \
 tf.random_uniform(tf.shape(tf.nn.sigmoid(\
 tf.matmul(backwardTwo, self.rbmOne.w.T) + \
 self.rbmOne.vb)))))

err = tf.reduce_mean(tf.square(v0 - backward))

Here	is	the	actual	training	portion	of	the	DBN	class,	again	very	similar	to	the
RBM	one	earlier:

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())

 for epoch in range(self.epochs):
 for start, end in zip(range(0, len(X), self.batchsize), \
 range(self.batchsize,len(X), self.batchsize)):
 batch = X[start:end]
 cur_w = sess.run(update_w, feed_dict={v0: batch, _w: \
 prv_w, _hb: prv_hb, _vb: prv_vb})
 cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: \
 prv_w, _hb: prv_hb, _vb: prv_vb})
 cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: \
 prv_w, _hb: prv_hb, _vb: prv_vb})
 prv_w = cur_w
 prv_hb = cur_hb
 prv_vb = cur_vb
 error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: \
 cur_vb, _hb: cur_hb})
 print ('Epoch: %d' % epoch,'reconstruction error: %f' % error)
 self.w = prv_w
 self.hb = prv_hb

 self.vb = prv_vb

Let’s	define	functions	to	produce	generated	images	from	the	DBN	and	show
features.	These	are	similar	to	the	RBM	versions	earlier,	but	we	send	the	data
through	all	four	RBMs	in	the	DBN	class	instead	of	just	through	a	single	RBM:

def dbn_output(self, X):

 input_X = tf.constant(X)
 forwardOne = tf.nn.sigmoid(tf.matmul(input_X, self.rbmOne.w) + \
 self.rbmOne.hb)
 forwardTwo = tf.nn.sigmoid(tf.matmul(forwardOne, self.rbmTwo.w) + \
 self.rbmTwo.hb)
 forward = tf.nn.sigmoid(tf.matmul(forwardTwo, self.rbmThree.w) + \
 self.rbmThree.hb)

 _w = tf.constant(self.w)
 _hb = tf.constant(self.hb)
 _vb = tf.constant(self.vb)

 out = tf.nn.sigmoid(tf.matmul(forward, _w) + _hb)
 hiddenGen = self.sample_prob(self.prob_h_given_v(forward, _w, _hb))
 visibleGen = self.sample_prob(self.prob_v_given_h(hiddenGen, _w, _vb))

 backwardTwo = tf.nn.sigmoid(tf.matmul(visibleGen, self.rbmThree.w.T) + \
 self.rbmThree.vb)
 backwardOne = tf.nn.sigmoid(tf.matmul(backwardTwo, self.rbmTwo.w.T) + \
 self.rbmTwo.vb)
 backward = tf.nn.sigmoid(tf.matmul(backwardOne, self.rbmOne.w.T) + \
 self.rbmOne.vb)

 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 return sess.run(out), sess.run(backward)

def show_features(self, shape, suptitle, count=-1):
 maxw = np.amax(self.w.T)
 minw = np.amin(self.w.T)
 count = self._output_size if count == -1 or count > \
 self._output_size else count
 ncols = count if count < 14 else 14
 nrows = count//ncols
 nrows = nrows if nrows > 2 else 3
 fig = plt.figure(figsize=(ncols, nrows), dpi=100)
 grid = Grid(fig, rect=111, nrows_ncols=(nrows, ncols), axes_pad=0.01)

 for i, ax in enumerate(grid):

 x = self.w.T[i] if i<self._input_size else np.zeros(shape)
 x = (x.reshape(1, -1) - minw)/maxw
 ax.imshow(x.reshape(*shape), cmap=mpl.cm.Greys)
 ax.set_axis_off()

 fig.text(0.5,1, suptitle, fontsize=20, horizontalalignment='center')
 fig.tight_layout()
 plt.show()
 return

How	Training	of	a	DBN	Works
Each	of	the	three	RBMs	we	have	trained	already	has	its	own	weights	matrix,
hidden	bias	vector,	and	visible	bias	vector.	During	the	training	of	the	fourth
RBM	as	part	of	the	DBN,	we	will	not	adjust	the	weights	matrix,	hidden	bias
vector,	and	visible	bias	vector	of	those	first	three	RBMs.	Rather,	we	will	use	the
first	three	RBMs	as	fixed	components	of	the	DBN.	We	will	call	upon	the	first
three	RBMs	just	to	do	the	forward	and	backward	passes	(and	use	samples	of	the
data	these	three	generate).

During	the	training	of	the	fourth	RBM	in	the	DBN,	we	will	only	adjust	weights
and	biases	of	the	fourth	RBM.	In	other	words,	the	fourth	RBM	in	the	DBN	takes
the	output	of	the	first	three	RBMs	as	given	and	performs	forward	and	backward
passes	to	learn	a	generative	model	that	minimizes	the	reconstruction	error
between	its	generated	images	and	the	original	images.

Another	way	to	train	the	DBNs	would	be	to	allow	the	DBN	to	learn	and	adjust
weights	for	all	four	RBMs	as	it	performs	forward	and	backward	passes	through
the	entire	network.	However,	training	of	the	DBN	would	be	very
computationally	expensive	(perhaps	not	so	with	computers	of	today	but	certainly
by	the	standards	of	2006,	when	DBNs	were	first	introduced).

That	being	said,	if	we	wish	to	perform	more	nuanced	pretraining,	we	could	allow
the	weights	of	the	individual	RBMs	to	be	adjusted—one	RBM	at	a	time—as	we
perform	batches	of	forward	and	backward	passes	through	the	network.	We	will
not	delve	into	this,	but	I	encourage	you	to	experiment	on	your	own	time.

Train	the	DBN
We	will	now	train	the	DBN.	We	set	the	original	image	dimensions	as	784,	the

dimensions	of	the	third	RBM	output	as	500,	and	the	desired	dimensions	of	the
DBN	as	500.	We	will	use	a	learning	rate	of	1.0,	train	for	50	epochs,	and	use	a
batch	size	of	200.	Finally,	we	will	call	the	first	three	trained	RBMs	as	part	of	the
DBN:

Instantiate DBN Class
dbn = DBN(784, 500, 500, 1.0, 50, 200, rbm_list[0], rbm_list[1], rbm_list[2])

Now,	let’s	train:

inputX = np.array(X_train)
error_list = []
error_list = dbn.train(inputX)

Figure	11-10	displays	the	reconstruction	errors	of	the	DBN	over	the	course	of
the	training.

Figure	11-10.	Reconstruction	errors	of	the	DBN

Figure	11-11	displays	the	learned	features	from	the	last	layer	of	the	DBN — the
hidden	layer	of	the	fourth	RBM.

Figure	11-11.	Learned	features	of	the	fourth	RBM	in	the	DBN

Both	the	reconstruction	errors	and	the	learned	features	look	reasonable	and
similar	to	the	ones	from	the	individual	RBMs	we	analyzed	earlier.

How	Unsupervised	Learning	Helps	Supervised
Learning
So	far,	all	the	work	we	have	done	training	the	RBMs	and	the	DBN	involve
unsupervised	learning.	We	have	not	used	any	labels	for	the	images	at	all.	Instead,
we	have	built	generative	models	by	learning	relevant	latent	features	from	the
original	MNIST	images	provided	in	the	50,000	example	training	set.	These
generative	models	generate	images	that	look	reasonably	similar	to	the	original
images	(minimizing	the	reconstruction	error).

Let’s	take	a	step	back	to	understand	the	usefulness	of	such	a	generative	model.

Recall	that	most	of	the	data	in	the	world	is	unlabeled.	Therefore,	as	powerful	and
effective	as	supervised	learning	is,	we	need	unsupervised	learning	to	help	make
sense	of	all	the	unlabeled	data	that	exists.	Supervised	learning	is	not	enough.

To	demonstrate	the	usefulness	of	unsupervised	learning,	imagine	if	instead	of
50,000	labeled	MNIST	images	in	the	training	set,	we	had	just	a	fraction—let’s
say	we	had	only	5,000	labeled	MNIST	images.	A	supervised	learning-based
image	classifer	that	had	only	5,000	labeled	images	would	not	be	nearly	as
effective	as	a	supervised	learning-based	image	classifier	that	had	50,000	images.
The	more	labeled	data	we	have,	the	better	the	machine	learning	solution.

How	does	unsupervised	learning	help	in	such	a	situation?	One	way	unsupervised
learning	could	help	is	by	generating	new	labeled	examples	to	help	supplement
the	originally	labeled	dataset.	Then,	the	supervised	learning	could	occur	on	a

much	larger	labeled	dataset,	resulting	in	a	better	overall	solution.

Generate	Images	to	Build	a	Better	Image	Classifier
To	simulate	this	benefit	that	unsupervised	learning	is	able	to	provide,	let’s	reduce
our	MNIST	training	dataset	to	just	five	thousand	labeled	examples.	We	will	store
the	first	five	thousand	images	in	a	dataframe	called	inputXReduced.

Then,	from	these	five	thousand	labeled	images,	we	will	generate	new	images
from	the	generative	model	we	just	built	using	a	DBN.	And,	we	will	do	this	20
times	over.	In	other	words,	we	will	generate	five	thousand	new	images	20	times
to	create	a	dataset	that	is	100,000	large,	all	of	which	will	be	labeled.	Technically,
we	are	storing	the	final	hidden	layer	outputs	not	the	reconstructed	images
directly,	although	we	will	store	the	reconstructed	images,	too,	so	we	can	evaluate
them	soon.

We	will	store	these	100,000	outputs	in	a	NumPy	array	called	generatedImages:

Generate images and store them
inputXReduced = X_train.loc[:4999]
for i in range(0,20):
 print("Run ",i)
 finalOutput_DBN, reconstructedOutput_DBN = dbn.dbn_output(inputXReduced)
 if i==0:
 generatedImages = finalOutput_DBN
 else:
 generatedImages = np.append(generatedImages, finalOutput_DBN, axis=0)

We	will	loop	through	the	first	five	thousand	labels	from	the	training	labels,
called	y_train,	20	times	to	generate	an	array	of	labels	called	labels:

Generate a vector of labels for the generated images
for i in range(0,20):
 if i==0:
 labels = y_train.loc[:4999]
 else:
 labels = np.append(labels,y_train.loc[:4999])

Finally,	we	will	generate	the	output	on	the	validation	set,	which	we	will	need	to
evaluate	the	image	classifier	we	will	build	soon:

Generate images based on the validation set
inputValidation = np.array(X_validation)
finalOutput_DBN_validation, reconstructedOutput_DBN_validation = \
 dbn.dbn_output(inputValidation)

Before	we	use	the	data	we	just	generated,	let’s	view	a	few	of	the	reconstructed
images:

View reconstructed images
for i in range(0,10):
 example = i
 reconstructedX = pd.DataFrame(data=reconstructedOutput_DBN, \
 index=X_train[0:5000].index)
 view_digit(reconstructedX, y_train, example)
 view_digit(X_train, y_train, example)

Figure	11-12.	First	generated	image	of	the	DBN

As	you	can	see	in	Figure	11-12,	the	generated	image	is	very	similar	to	the
original	image—both	display	the	digit	five.	Unlike	the	RBM-generated	images
we	saw	earlier,	these	are	more	similar	to	the	original	MNIST	images,	including
the	pixelated	bits.

Let’s	view	a	few	more	images	like	this	to	compare	the	DBN-generated	images
with	the	original	MNIST	ones	(see	Figures	11-13	through	11-16).

Figure	11-13.	Second	generated	image	of	the	DBN

Figure	11-14.	Third	generated	image	of	the	DBN

Figure	11-15.	Fourth	generated	image	of	the	DBN

Figure	11-16.	Fifth	generated	image	of	the	DBN

Also	note	that	the	DBN	model	(as	well	as	the	RBM	models)	is	generative	and
therefore	the	images	are	produced	using	a	stochastic	process.	The	images	are	not
produced	using	a	deterministic	process,	and,	therefore,	the	images	of	a	single
example	vary	from	one	DBN	run	to	another.

To	simulate	this,	we	will	take	the	first	MNIST	image	and	use	the	DBN	to
generate	a	new	one	and	do	this	10	times	over:

Generate the first example 10 times
inputXReduced = X_train.loc[:0]
for i in range(0,10):
 example = 0
 print("Run ",i)
 finalOutput_DBN_fives, reconstructedOutput_DBN_fives = \
 dbn.dbn_output(inputXReduced)
 reconstructedX_fives = pd.DataFrame(data=reconstructedOutput_DBN_fives, \

 index=[0])
 print("Generated")
 view_digit(reconstructedX_fives, y_train.loc[:0], example)

As	you	see	from	Figures	11-17	through	11-21,	all	the	generated	images	display
the	number	five,	but	they	vary	from	image	to	image	even	though	they	all	were
generated	using	the	same	original	MNIST	image.

Figure	11-17.	First	and	second	generated	images	of	the	digit	five

Figure	11-18.	Third	and	fourth	generated	images	of	the	digit	five

Figure	11-19.	Fifth	and	sixth	generated	images	of	the	digit	five

Figure	11-20.	Seventh	and	eighth	generated	images	of	the	digit	five

Figure	11-21.	Ninth	and	tenth	generated	images	of	the	digit	five

Image	Classifier	Using	LightGBM
Now	let’s	build	an	image	classifier	using	a	supervised	learning	algorithm	we
introduced	earlier	in	the	book:	the	gradient	boosting	algorithm	LightGBM.

Supervised	Only
The	first	image	classifier	will	rely	on	just	the	first	five	thousand	labeled	MNIST
images.	This	is	the	reduced	set	from	the	original	50,000	labeled	MNIST	training

set;	we	designed	this	to	simulate	real-world	problems	where	we	have	relatively
few	labeled	examples.	Since	we	covered	gradient	boosting	and	the	LightGBM
algorithm	in	depth	earlier	in	the	book,	we	will	not	go	into	a	lot	of	detail	here.

Let’s	set	the	parameters	for	the	algorithm:

predictionColumns = ['0','1','2','3','4','5','6','7','8','9']

params_lightGB = {
 'task': 'train',
 'application':'binary',
 'num_class':10,
 'boosting': 'gbdt',
 'objective': 'multiclass',
 'metric': 'multi_logloss',
 'metric_freq':50,
 'is_training_metric':False,
 'max_depth':4,
 'num_leaves': 31,
 'learning_rate': 0.1,
 'feature_fraction': 1.0,
 'bagging_fraction': 1.0,
 'bagging_freq': 0,
 'bagging_seed': 2018,
 'verbose': 0,
 'num_threads':16
}

Next,	we	will	train	on	the	5,000	labeled	MNIST	training	set	(the	reduced	set)
and	validate	on	the	10,000	labeled	MNIST	validation	set:

trainingScore = []
validationScore = []
predictionsLightGBM = pd.DataFrame(data=[], \
 index=y_validation.index, \
 columns=predictionColumns)

lgb_train = lgb.Dataset(X_train.loc[:4999], y_train.loc[:4999])
lgb_eval = lgb.Dataset(X_validation, y_validation, reference=lgb_train)
gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=2000,
 valid_sets=lgb_eval, early_stopping_rounds=200)

loglossTraining = log_loss(y_train.loc[:4999], \
 gbm.predict(X_train.loc[:4999], num_iteration=gbm.best_iteration))
trainingScore.append(loglossTraining)

predictionsLightGBM.loc[X_validation.index,predictionColumns] = \
 gbm.predict(X_validation, num_iteration=gbm.best_iteration)
loglossValidation = log_loss(y_validation,
 predictionsLightGBM.loc[X_validation.index,predictionColumns])
validationScore.append(loglossValidation)

print('Training Log Loss: ', loglossTraining)
print('Validation Log Loss: ', loglossValidation)

loglossLightGBM = log_loss(y_validation, predictionsLightGBM)
print('LightGBM Gradient Boosting Log Loss: ', loglossLightGBM)

The	following	code	shows	the	training	and	the	validation	log	loss	from	this
supervised-only	solution:

Training Log Loss: 0.0018646953029132292
Validation Log Loss: 0.19124276982588717

The	following	code	shows	the	overall	accuracy	of	this	supervised-only	image
classification	solution:

predictionsLightGBM_firm = np.argmax(np.array(predictionsLightGBM), axis=1)
accuracyValidation_lightGBM = accuracy_score(np.array(y_validation), \
 predictionsLightGBM_firm)
print("Supervised-Only Accuracy: ", accuracyValidation_lightGBM)

Supervised-Only Accuracy: 0.9439

Unsupervised	and	Supervised	Solution
Now,	instead	of	training	on	the	five	thousand	labeled	MNIST	images,	let’s	train
on	the	100,000	generated	images	from	the	DBN:

Prepare DBN-based DataFrames for LightGBM use
generatedImagesDF = pd.DataFrame(data=generatedImages,index=range(0,100000))
labelsDF = pd.DataFrame(data=labels,index=range(0,100000))

X_train_lgb = pd.DataFrame(data=generatedImagesDF,
 index=generatedImagesDF.index)
X_validation_lgb = pd.DataFrame(data=finalOutput_DBN_validation,
 index=X_validation.index)

Train LightGBM
trainingScore = []

validationScore = []
predictionsDBN = pd.DataFrame(data=[],index=y_validation.index,
 columns=predictionColumns)

lgb_train = lgb.Dataset(X_train_lgb, labels)
lgb_eval = lgb.Dataset(X_validation_lgb, y_validation, reference=lgb_train)
gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=2000,
 valid_sets=lgb_eval, early_stopping_rounds=200)

loglossTraining = log_loss(labelsDF, gbm.predict(X_train_lgb, \
 num_iteration=gbm.best_iteration))
trainingScore.append(loglossTraining)

predictionsDBN.loc[X_validation.index,predictionColumns] = \
 gbm.predict(X_validation_lgb, num_iteration=gbm.best_iteration)
loglossValidation = log_loss(y_validation,
 predictionsDBN.loc[X_validation.index,predictionColumns])
validationScore.append(loglossValidation)

print('Training Log Loss: ', loglossTraining)
print('Validation Log Loss: ', loglossValidation)

loglossDBN = log_loss(y_validation, predictionsDBN)
print('LightGBM Gradient Boosting Log Loss: ', loglossDBN)

The	following	code	displays	the	log	loss	of	this	unsupervised-enchanced	image
classification	solution:

Training Log Loss: 0.004145635328203315
Validation Log Loss: 0.16377638170016542

The	following	code	shows	the	overall	accuracy	of	this	unsupervised-enchanced
image	classification	solution:

DBN-Based Solution Accuracy: 0.9525

As	you	see,	the	solution	improves	by	nearly	one	percentage	point,	which	is
considerable.

Conclusion
In	Chapter	10,	we	introduced	the	first	class	of	generative	models	called	restricted
Boltzmann	machines.	In	this	chapter,	we	built	upon	this	concept	by	introducing

more	advanced	generative	models	known	as	deep	belief	networks,	which	are
comprised	of	multiple	RBMs	stacked	on	top	of	each	other.

We	demonstrated	how	DBNs	work—in	a	purely	unsupervised	manner,	the	DBN
learns	the	underlying	structure	of	data	and	uses	its	learning	to	generate	new
synthetic	data.	Based	on	how	the	new	synthetic	data	compares	to	the	original
data,	the	DBN	improves	its	generative	ability	so	much	so	that	the	synthetic	data
increasingly	resembles	the	original	data.	We	also	showed	how	synthetic	data
generated	by	DBNs	could	supplement	existing	labeled	datasets,	improving	the
performance	of	supervised	learning	models	by	increasing	the	size	of	the	overall
training	set.

The	semisupervised	solution	we	developed	using	DBNs	(unsupervised	learning)
and	gradient	boosting	(supervised	learning)	outperformed	the	purely	supervised
solution	in	the	MNIST	image	classifaction	problem	we	had.

In	Chapter	12,	we	introduce	one	of	the	latest	advances	in	unsupervised	learning
(and	generative	modeling,	more	specifically)	known	as	generative	adversarial
networks.

Chapter	12.	Generative
Adversarial	Networks

We	have	already	explored	two	types	of	generative	models:	RBMs	and	DBNs.	In
this	chapter,	we	will	explore	generative	adversarial	networks	(GANs),	one	of	the
latest	and	most	promising	areas	of	unsupervised	learning	and	generative
modeling.

GANs,	the	Concept
GANs	were	introduced	by	Ian	Goodfellow	and	his	fellow	researchers	at	the
University	of	Montreal	in	2014.	In	GANs,	we	have	two	neural	networks.	One
network	known	as	the	generator	generates	data	based	on	a	model	it	has	created
using	samples	of	real	data	it	has	received	as	input.	The	other	network	known	as
the	discriminator	discriminates	between	the	data	created	by	the	generator	and
data	from	the	true	distribution.

As	a	simple	analogy,	the	generator	is	the	counterfeiter,	and	the	discriminator	is
the	police	trying	to	identify	the	forgery.	The	two	networks	are	locked	in	a	zero-
sum	game.	The	generator	is	trying	to	fool	the	discriminator	into	thinking	the
synthetic	data	comes	from	the	true	distribution,	and	the	discriminator	is	trying	to
call	out	the	synthetic	data	as	fake.

GANs	are	unsupervised	learning	algorithms	because	the	generator	can	learn	the
underlying	structure	of	the	true	distribution	even	when	there	are	no	labels.	The
generator	learns	the	underlying	structure	by	using	a	number	of	parameters
significantly	smaller	than	the	amount	of	data	it	has	trained	on—a	core	concept	of
unsupervised	learning	that	we	have	explored	many	times	in	previous	chapters.
This	constraint	forces	the	generator	to	efficiently	capture	the	most	salient	aspects
of	the	true	data	distribution.	This	is	similar	to	the	representation	learning	that
occurs	in	deep	learning.	Each	hidden	layer	in	the	neutral	network	of	a	generator
captures	a	representation	of	the	underlying	data—starting	very	simply—and
subsequent	layers	pick	up	more	complicated	representations	by	building	on	the

simpler	preceding	layers.

Using	all	these	layers	together,	the	generator	learns	the	underlying	structure	of
the	data	and	attempts	to	create	synthetic	data	that	is	nearly	identical	to	the	true
data.	If	the	generator	has	captured	the	essence	of	the	true	data,	the	synthetic	data
will	appear	real.

The	Power	of	GANs
In	Chapter	11,	we	explored	the	ability	to	use	synthetic	data	from	an	unsupervised
learning	model	(such	as	a	deep	belief	network)	to	improve	the	performance	of	a
supervised	learning	model.	Like	DBNs,	GANs	are	very	good	at	generating
synthetic	data.

If	the	objective	is	to	generate	a	lot	of	new	training	examples	to	help	supplement
existing	training	data—for	example,	to	improve	accuracy	on	an	image
recognition	task—we	can	use	the	generator	to	create	a	lot	of	synthetic	data,	add
the	new	synthetic	data	to	the	original	training	data,	and	then	run	a	supervised
machine	learning	model	on	the	now	much	larger	dataset.

GANs	can	also	excel	at	anomaly	detection.	If	the	objective	is	to	identify
anomalies—for	example,	to	detect	fraud,	hacking,	or	other	suspicious	behavior
—we	can	use	the	discriminator	to	score	each	instance	in	the	real	data.	The
instances	that	the	discriminator	ranks	as	“likely	synthetic”	will	be	the	most
anomalous	instances	and	also	the	ones	most	likely	to	represent	malicious
behavior.

Deep	Convolutional	GANs
In	this	chapter,	we	will	return	to	the	MNIST	dataset	we	used	in	previous	chapters
and	apply	a	version	of	GANs	to	generate	synthetic	data	to	supplement	the
existing	MNIST	dataset.	We	will	then	apply	a	supervised	learning	model	to
perform	image	classification.	This	is	yet	another	version	of	semisupervised
learning.

NOTE

As	a	side	note,	you	should	now	have	a	much	deeper	appreciation	for	semisupervised	learning.
Because	much	of	the	world’s	data	is	unlabeled,	the	ability	of	unsupervised	learning	to
efficiently	help	label	data	by	itself	is	very	powerful.	As	part	of	such	semisupervised	machine
learning	systems,	unsupervised	learning	enhances	the	potential	of	all	successful	commercial
applications	of	supervised	learning	to	date.

Even	outside	of	applications	in	semisupervised	systems,	unsupervised	learning	has	potential	on
a	standalone	basis	because	it	learns	from	data	without	any	labels	and	is	one	of	the	fields	of	AI
that	has	the	greatest	potential	to	help	the	machine	learning	community	move	from	narrow	AI
to	more	AGI	applications.

The	version	of	GANs	we	will	use	is	called	deep	convolutional	generative
adversarial	networks	(DCGANs),	which	were	first	introduced	in	late	2015	by
Alec	Radford,	Luke	Metz,	and	Soumith	Chintala.

DCGANs	are	an	unsupervised	learning	form	of	convolution	neural	networks
(CNNs),	which	are	commonly	used—and	with	great	success—in	supervised
learning	systems	for	computer	vision	and	image	classification.	Before	we	delve
into	DCGANs,	let’s	explore	CNNs	first,	especially	how	they	are	used	for	image
classification	in	supervised	learning	systems.

Convolutional	Neural	Networks
Compared	to	numerical	and	text	data,	images	and	video	are	considerably	more
computationally	expensive	to	work	with.	For	instance,	a	4K	Ultra	HD	image	has
dimensions	of	4096	x	2160	x	3	(26,542,080)	in	total.	Training	a	neural	network
on	images	of	this	resolution	directly	would	require	tens	of	millions	of	neurons
and	result	in	very	long	training	times.

Instead	of	building	a	neural	network	directly	on	the	raw	images,	we	can	take
advantage	of	certain	properties	of	images,	namely	that	pixels	are	related	to	other
pixels	that	are	close	by	but	not	usually	related	to	other	pixels	that	are	far	away.

Convolution	(from	which	convolutional	neural	networks	derive	their	name)	is
the	process	of	filtering	the	image	to	decrease	the	size	of	the	image	without	losing
the	relationships	among	pixels.

On	the	original	image,	we	apply	several	filters	of	a	certain	size,	known	as	the
kernel	size,	and	move	these	filters	with	a	small	step,	known	as	the	stride,	to
derive	the	new	reduced	pixel	output.	After	the	convolution,	we	reduce	the	size	of

1

2

the	representation	further	by	taking	the	max	of	the	pixels	in	the	reduced	pixel
output,	one	small	area	at	a	time.	This	is	known	as	max	pooling.

We	perform	this	convolution	and	max	pooling	several	times	to	reduce	the
complexity	of	the	images.	Then,	we	flatten	the	images	and	use	a	normal	fully
connected	layer	to	perform	image	classification.

Let’s	now	build	a	CNN	and	use	it	to	perform	image	classification	on	the	MNIST
dataset.	First,	we	will	load	the	necessary	libraries:

'''Main'''
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl
from mpl_toolkits.axes_grid1 import Grid

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score, mean_squared_error

'''Algos'''
import lightgbm as lgb

'''TensorFlow and Keras'''
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.layers import LeakyReLU, Reshape, UpSampling2D, Conv2DTranspose
from keras.layers import BatchNormalization, Input, Lambda
from keras.layers import Embedding, Flatten, dot
from keras import regularizers
from keras.losses import mse, binary_crossentropy

from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.optimizers import Adam, RMSprop
from tensorflow.examples.tutorials.mnist import input_data

Next,	we	will	load	the	MNIST	datasets	and	store	the	image	data	in	a	4D	tensor
since	Keras	requires	image	data	in	this	format.	We	will	also	create	one-hot
vectors	from	the	labels	using	the	to_categorical	function	in	Keras.

For	use	later,	we	will	create	Pandas	DataFrames	from	the	data,	too.	And,	let’s
reuse	the	view_digit	function	from	earlier	in	the	book	to	view	the	images:

Load the datasets
current_path = os.getcwd()
file = '\\datasets\\mnist_data\\mnist.pkl.gz'
f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test_set = pickle.load(f, encoding='latin1')
f.close()

X_train, y_train = train_set[0], train_set[1]
X_validation, y_validation = validation_set[0], validation_set[1]
X_test, y_test = test_set[0], test_set[1]

X_train_keras = X_train.reshape(50000,28,28,1)
X_validation_keras = X_validation.reshape(10000,28,28,1)
X_test_keras = X_test.reshape(10000,28,28,1)

y_train_keras = to_categorical(y_train)
y_validation_keras = to_categorical(y_validation)
y_test_keras = to_categorical(y_test)

Create Pandas DataFrames from the datasets
train_index = range(0,len(X_train))
validation_index = range(len(X_train),len(X_train)+len(X_validation))
test_index = range(len(X_train)+len(X_validation),len(X_train)+ \
 len(X_validation)+len(X_test))

X_train = pd.DataFrame(data=X_train,index=train_index)
y_train = pd.Series(data=y_train,index=train_index)

X_validation = pd.DataFrame(data=X_validation,index=validation_index)
y_validation = pd.Series(data=y_validation,index=validation_index)

X_test = pd.DataFrame(data=X_test,index=test_index)
y_test = pd.Series(data=y_test,index=test_index)

def view_digit(X, y, example):

 label = y.loc[example]
 image = X.loc[example,:].values.reshape([28,28])
 plt.title('Example: %d Label: %d' % (example, label))
 plt.imshow(image, cmap=plt.get_cmap('gray'))
 plt.show()

Now	let’s	build	the	CNN.

We	will	call	Sequential()	in	Keras	to	begin	the	model	creation.	Then,	we	will
add	two	convolution	layers,	each	with	32	filters	of	a	kernel	size	of	5	x	5,	a
default	stride	of	1,	and	a	ReLU	activation.	Then,	we	perform	max	pooling	with	a
pooling	window	of	2	x	2	and	a	stride	of	1.	We	also	perform	dropout,	which	you
may	recall	is	a	form	of	regularization	to	reduce	overfitting	of	the	neural	network.
Specifically,	we	will	drop	25%	of	the	input	units.

In	the	next	stage,	we	add	two	convolution	layers	again,	this	time	with	64	filters
of	a	kernel	size	of	3	x	3.	Then,	we	perform	max	pooling	with	a	pooling	window
of	2	x	2	and	a	stride	of	2.	And,	we	follow	this	up	with	a	dropout	layer,	with	a
dropout	percentage	of	25%.

Finally,	we	flatten	the	images,	add	a	regular	neural	network	with	256	hidden
units,	perform	dropout	with	a	dropout	percentage	of	50%,	and	perform	10-class
classification	using	the	softmax	function:

model = Sequential()

model.add(Conv2D(filters = 32, kernel_size = (5,5), padding = 'Same',
 activation ='relu', input_shape = (28,28,1)))
model.add(Conv2D(filters = 32, kernel_size = (5,5), padding = 'Same',
 activation ='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))

model.add(Conv2D(filters = 64, kernel_size = (3,3), padding = 'Same',
 activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size = (3,3), padding = 'Same',
 activation ='relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(256, activation = "relu"))

model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))

For	this	CNN	training,	we	will	use	the	Adam	optimizer	and	minimize	the	cross-
entropy.	We	will	also	store	the	accuracy	of	the	image	classification	as	the
evaluation	metric.

Now	let’s	train	the	model	for	one	hundred	epochs	and	evaluate	the	results	on	the
validation	set:

Train CNN
model.compile(optimizer='adam',
 loss='categorical_crossentropy',
 metrics=['accuracy'])

model.fit(X_train_keras, y_train_keras,
 validation_data=(X_validation_keras, y_validation_keras), \
 epochs=100)

Figure	12-1	displays	the	accuracy	over	the	one	hundred	epochs	of	training.

Figure	12-1.	CNN	results

As	you	can	see,	the	CNN	we	just	trained	has	a	final	accuracy	of	99.55%,	better
than	any	of	the	MNIST	image	classification	solutions	we	have	trained	so	far
throughout	this	book.

DCGANs	Revisited
Let’s	now	turn	back	to	deep	convolutional	generative	adversarial	networks	once
again.	We	will	build	a	generative	model	to	produce	synthetic	MNIST	images	that
are	very	similar	to	the	original	MNIST	ones.

To	produce	near-realistic	yet	synthetic	images,	we	need	to	train	a	generator	that
generates	new	images	from	the	original	MNIST	images	and	a	discriminator	that
judges	whether	those	images	are	believably	similar	to	the	original	ones	or	not
(essentially	performing	a	bullshit	test).

Here	is	another	way	to	think	about	this.	The	original	MNIST	dataset	represents
the	original	data	distribution.	The	generator	learns	from	this	original	distribution
and	generates	new	images	based	off	what	it	has	learned,	and	the	discriminator
attempts	to	determine	whether	the	newly	generated	images	are	virtually
indistinguishable	from	the	original	distribution	or	not.

For	the	generator,	we	will	use	the	architecture	presented	in	the	Radford,	Metz,
and	Chintala	paper	presented	at	the	ICLR	2016	conference,	which	we	referenced
earlier	(Figure	12-2).

Figure	12-2.	DCGAN	generator

The	generator	takes	in	an	initial	noise	vector,	shown	as	a	100	x	1	noise	vector
here	denoted	as	z,	and	then	projects	and	reshapes	it	into	a	1024	x	4	x	4	tensor.
This	project	and	reshape	action	is	the	opposite	of	convolution	and	is	known	as
transposed	convolution	(or	deconvolution	in	some	cases).	In	transposed
convolution,	the	original	process	of	convolution	is	reversed,	mapping	a	reduced

3

tensor	to	a	larger	one.

After	the	initial	transposed	convolution,	the	generator	applies	four	additional
deconvolution	layers	to	map	to	a	final	64	x	3	x	3	tensor.

Here	are	the	various	stages:

100	x	1	→	1024	x	4	x	4	→	512	x	8	x	8	→	256	x	16	x	16	→	128	x	32	x	32	→	64
x	64	x	3

We	will	apply	a	similar	(but	not	exact)	architecture	when	designing	a	DCGAN
on	the	MNIST	dataset.

Generator	of	the	DCGAN
For	the	DCGAN	we	design,	we	will	leverage	work	done	by	Rowel	Atienza	and
build	on	top	of	it. 	We	will	first	create	a	class	called	DCGAN,	which	we	will	use
to	build	the	generator,	discriminator,	discriminator	model,	and	adversarial	model.

Let’s	start	with	the	generator.	We	will	set	several	parameters	for	the	generator,
including	the	dropout	percentage	(default	value	of	0.3),	the	depth	of	the	tensor
(default	value	of	256),	and	the	other	dimensions	(default	value	of	7	x	7).	We	will
also	use	batch	normalization	with	a	default	momentum	value	of	0.8.	The	initial
input	dimensions	are	one	hundred,	and	the	final	output	dimensions	are	28	x	28	x
1.

Recall	that	both	dropout	and	batch	normalization	are	regularizers	to	help	the
neural	network	we	design	avoid	overfitting.

To	build	the	generator,	we	call	the	Sequential()	function	from	Keras.	Then,	we
will	add	a	dense,	fully	connected	neural	network	layer	by	calling	the	Dense()
function.	This	will	have	an	input	dimension	of	100	and	an	output	dimension	of	7
x	7	x	256.	We	will	perform	batch	normalization,	use	the	ReLU	activation
function,	and	perform	dropout:

def generator(self, depth=256, dim=7, dropout=0.3, momentum=0.8, \
 window=5, input_dim=100, output_depth=1):
 if self.G:
 return self.G
 self.G = Sequential()
 self.G.add(Dense(dim*dim*depth, input_dim=input_dim))
 self.G.add(BatchNormalization(momentum=momentum))

3

4

 self.G.add(Activation('relu'))
 self.G.add(Reshape((dim, dim, depth)))
 self.G.add(Dropout(dropout))

Next,	we	will	perform	upsampling	and	transposed	convolution	three	times.	Each
time,	we	will	halve	the	depth	of	the	output	space	from	256	to	128	to	64	to	32
while	increasing	the	other	dimensions.	We	will	maintain	a	convolution	window
of	5	x	5	and	the	default	stride	of	one.	During	each	transposed	convolution,	we
will	perform	batch	normalization	and	use	the	ReLU	activation	function.

Here	is	what	this	looks	like:

100	→	7	x	7	x	256	→	14	x	14	x	128	→	28	x	28	x	64	→	28	x	28	x	32	→	28	x	28
x	1

 self.G.add(UpSampling2D())
 self.G.add(Conv2DTranspose(int(depth/2), window, padding='same'))
 self.G.add(BatchNormalization(momentum=momentum))
 self.G.add(Activation('relu'))

 self.G.add(UpSampling2D())
 self.G.add(Conv2DTranspose(int(depth/4), window, padding='same'))
 self.G.add(BatchNormalization(momentum=momentum))
 self.G.add(Activation('relu'))

 self.G.add(Conv2DTranspose(int(depth/8), window, padding='same'))
 self.G.add(BatchNormalization(momentum=momentum))
 self.G.add(Activation('relu'))

Finally,	the	generator	will	output	a	28	x	28	image,	which	has	the	same
dimensions	as	the	original	MNIST	image:

 self.G.add(Conv2DTranspose(output_depth, window, padding='same'))
 self.G.add(Activation('sigmoid'))
 self.G.summary()
 return self.G

Discriminator	of	the	DCGAN
For	the	discriminator,	we	will	set	the	default	dropout	percentage	to	0.3,	the	depth
as	64,	and	the	alpha	for	the	LeakyReLU	function	as	0.3.

First,	we	will	load	a	28	x	28	x	1	image	and	perform	convolution	using	64

5

channels,	a	filter	of	5	x	5,	and	a	stride	of	two.	We	will	use	LeakyReLU	as	the
activation	function	and	perform	dropout.	We	will	continue	this	process	three
more	times,	doubling	the	depth	of	the	output	space	each	time	while	decreasing
the	other	dimensions.	For	each	convolution,	we	will	use	the	LeakyReLU
activation	function	and	dropout.

Finally,	we	will	flatten	the	images	and	use	the	sigmoid	function	to	output	a
probability.	This	probability	designates	the	discriminator’s	confidence	in	calling
the	input	image	a	fake	(where	0.0	is	fake	and	1.0	is	real).

Here	is	what	this	looks	like:

28	x	28	x	1	→	14	x	14	x	64	→	7	x	7	x	128	→	4	x	4	x	256	→	4	x	4	x	512	→	1

def discriminator(self, depth=64, dropout=0.3, alpha=0.3):
 if self.D:
 return self.D
 self.D = Sequential()
 input_shape = (self.img_rows, self.img_cols, self.channel)
 self.D.add(Conv2D(depth*1, 5, strides=2, input_shape=input_shape,
 padding='same'))
 self.D.add(LeakyReLU(alpha=alpha))
 self.D.add(Dropout(dropout))

 self.D.add(Conv2D(depth*2, 5, strides=2, padding='same'))
 self.D.add(LeakyReLU(alpha=alpha))
 self.D.add(Dropout(dropout))

 self.D.add(Conv2D(depth*4, 5, strides=2, padding='same'))
 self.D.add(LeakyReLU(alpha=alpha))
 self.D.add(Dropout(dropout))

 self.D.add(Conv2D(depth*8, 5, strides=1, padding='same'))
 self.D.add(LeakyReLU(alpha=alpha))
 self.D.add(Dropout(dropout))

 self.D.add(Flatten())
 self.D.add(Dense(1))
 self.D.add(Activation('sigmoid'))
 self.D.summary()
 return self.D

Discriminator	and	Adversarial	Models
Next,	let’s	define	the	discriminator	model	(i.e.,	the	police	detecting	the	fakes)

and	the	adversarial	model	(i.e.,	the	counterfeiter	learning	from	the	police).	For
both	the	adversarial	and	the	discriminator	model,	we	will	use	the	RMSprop
optimizer,	define	the	loss	function	as	binary	cross-entropy,	and	use	accuracy	as
our	reported	metric.

For	the	adversarial	model,	we	use	the	generator	and	discriminator	networks	we
defined	earlier.	For	the	discriminator	model,	we	use	just	the	discriminator
network:

def discriminator_model(self):
 if self.DM:
 return self.DM
 optimizer = RMSprop(lr=0.0002, decay=6e-8)
 self.DM = Sequential()
 self.DM.add(self.discriminator())
 self.DM.compile(loss='binary_crossentropy', \
 optimizer=optimizer, metrics=['accuracy'])
 return self.DM

def adversarial_model(self):
 if self.AM:
 return self.AM
 optimizer = RMSprop(lr=0.0001, decay=3e-8)
 self.AM = Sequential()
 self.AM.add(self.generator())
 self.AM.add(self.discriminator())
 self.AM.compile(loss='binary_crossentropy', \
 optimizer=optimizer, metrics=['accuracy'])
 return self.AM

DCGAN	for	the	MNIST	Dataset
Now	let’s	define	the	DCGAN	for	the	MNIST	dataset.	First,	we	will	initialize	the
MNIST_DCGAN	class	for	the	28	x	28	x	1	MNIST	images	and	use	the	generator,
discriminator	model,	and	adversarial	model	from	earlier:

class MNIST_DCGAN(object):
 def __init__(self, x_train):
 self.img_rows = 28
 self.img_cols = 28
 self.channel = 1

 self.x_train = x_train

 self.DCGAN = DCGAN()
 self.discriminator = self.DCGAN.discriminator_model()
 self.adversarial = self.DCGAN.adversarial_model()
 self.generator = self.DCGAN.generator()

The	train	function	will	train	for	a	default	two	thousand	training	epochs	and	use
a	batch	size	of	256.	In	this	function,	we	will	feed	batches	of	images	into	the
DCGAN	architecture	we	just	defined.	The	generator	will	generate	images,	and
the	discriminator	will	call	out	images	as	real	or	fake.	As	the	generator	and
discriminator	duke	it	out	in	this	adversarial	model,	the	synthetic	images	become
more	and	more	similar	to	the	original	MNIST	images:

def train(self, train_steps=2000, batch_size=256, save_interval=0):
 noise_input = None
 if save_interval>0:
 noise_input = np.random.uniform(-1.0, 1.0, size=[16, 100])
 for i in range(train_steps):
 images_train = self.x_train[np.random.randint(0,
 self.x_train.shape[0], size=batch_size), :, :, :]
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size, 100])
 images_fake = self.generator.predict(noise)
 x = np.concatenate((images_train, images_fake))
 y = np.ones([2*batch_size, 1])
 y[batch_size:, :] = 0

 d_loss = self.discriminator.train_on_batch(x, y)

 y = np.ones([batch_size, 1])
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size, 100])
 a_loss = self.adversarial.train_on_batch(noise, y)
 log_mesg = "%d: [D loss: %f, acc: %f]" % (i, d_loss[0], d_loss[1])
 log_mesg = "%s [A loss: %f, acc: %f]" % (log_mesg, a_loss[0], \
 a_loss[1])
 print(log_mesg)
 if save_interval>0:
 if (i+1)%save_interval==0:
 self.plot_images(save2file=True, \
 samples=noise_input.shape[0],\
 noise=noise_input, step=(i+1))

Let’s	also	define	a	function	to	plot	the	images	generated	by	this	DCGAN	model:

def plot_images(self, save2file=False, fake=True, samples=16, \
 noise=None, step=0):
 filename = 'mnist.png'

 if fake:
 if noise is None:
 noise = np.random.uniform(-1.0, 1.0, size=[samples, 100])
 else:
 filename = "mnist_%d.png" % step
 images = self.generator.predict(noise)
 else:
 i = np.random.randint(0, self.x_train.shape[0], samples)
 images = self.x_train[i, :, :, :]

 plt.figure(figsize=(10,10))
 for i in range(images.shape[0]):
 plt.subplot(4, 4, i+1)
 image = images[i, :, :, :]
 image = np.reshape(image, [self.img_rows, self.img_cols])
 plt.imshow(image, cmap='gray')
 plt.axis('off')
 plt.tight_layout()
 if save2file:
 plt.savefig(filename)
 plt.close('all')
 else:
 plt.show()

MNIST	DCGAN	in	Action
Now	that	we	have	defined	the	MNIST_DCGAN	call,	let’s	call	it	and	begin	the
training	process.	We	will	train	for	10,000	epochs	with	a	batch	size	of	256:

Initialize MNIST_DCGAN and train
mnist_dcgan = MNIST_DCGAN(X_train_keras)
timer = ElapsedTimer()
mnist_dcgan.train(train_steps=10000, batch_size=256, save_interval=500)

The	following	code	displays	the	loss	and	the	accuracy	of	the	discriminator	and
the	adversarial	model:

0: [D loss: 0.692640, acc: 0.527344] [A loss: 1.297974, acc: 0.000000]
1: [D loss: 0.651119, acc: 0.500000] [A loss: 0.920461, acc: 0.000000]
2: [D loss: 0.735192, acc: 0.500000] [A loss: 1.289153, acc: 0.000000]
3: [D loss: 0.556142, acc: 0.947266] [A loss: 1.218020, acc: 0.000000]
4: [D loss: 0.492492, acc: 0.994141] [A loss: 1.306247, acc: 0.000000]
5: [D loss: 0.491894, acc: 0.916016] [A loss: 1.722399, acc: 0.000000]
6: [D loss: 0.607124, acc: 0.527344] [A loss: 1.698651, acc: 0.000000]
7: [D loss: 0.578594, acc: 0.921875] [A loss: 1.042844, acc: 0.000000]

8: [D loss: 0.509973, acc: 0.587891] [A loss: 1.957741, acc: 0.000000]
9: [D loss: 0.538314, acc: 0.896484] [A loss: 1.133667, acc: 0.000000]
10: [D loss: 0.510218, acc: 0.572266] [A loss: 1.855000, acc: 0.000000]
11: [D loss: 0.501239, acc: 0.923828] [A loss: 1.098140, acc: 0.000000]
12: [D loss: 0.509211, acc: 0.519531] [A loss: 1.911793, acc: 0.000000]
13: [D loss: 0.482305, acc: 0.923828] [A loss: 1.187290, acc: 0.000000]
14: [D loss: 0.395886, acc: 0.900391] [A loss: 1.465053, acc: 0.000000]
15: [D loss: 0.346876, acc: 0.992188] [A loss: 1.443823, acc: 0.000000]

The	initial	loss	of	the	discriminator	fluctuates	wildly	but	remains	considerably
above	0.50.	In	other	words,	the	discriminator	is	initially	very	good	at	catching
the	poorly	constructed	counterfeits	from	the	generator.	Then,	as	the	generator
becomes	better	at	creating	counterfeits,	the	discriminator	struggles;	its	accuracy
drops	close	to	0.50:

9985: [D loss: 0.696480, acc: 0.521484] [A loss: 0.955954, acc: 0.125000]
9986: [D loss: 0.716583, acc: 0.472656] [A loss: 0.761385, acc: 0.363281]
9987: [D loss: 0.710941, acc: 0.533203] [A loss: 0.981265, acc: 0.074219]
9988: [D loss: 0.703731, acc: 0.515625] [A loss: 0.679451, acc: 0.558594]
9989: [D loss: 0.722460, acc: 0.492188] [A loss: 0.899768, acc: 0.125000]
9990: [D loss: 0.691914, acc: 0.539062] [A loss: 0.726867, acc: 0.464844]
9991: [D loss: 0.716197, acc: 0.500000] [A loss: 0.932500, acc: 0.144531]
9992: [D loss: 0.689704, acc: 0.548828] [A loss: 0.734389, acc: 0.414062]
9993: [D loss: 0.714405, acc: 0.517578] [A loss: 0.850408, acc: 0.218750]
9994: [D loss: 0.690414, acc: 0.550781] [A loss: 0.766320, acc: 0.355469]
9995: [D loss: 0.709792, acc: 0.511719] [A loss: 0.960070, acc: 0.105469]
9996: [D loss: 0.695851, acc: 0.500000] [A loss: 0.774395, acc: 0.324219]
9997: [D loss: 0.712254, acc: 0.521484] [A loss: 0.853828, acc: 0.183594]
9998: [D loss: 0.702689, acc: 0.529297] [A loss: 0.802785, acc: 0.308594]
9999: [D loss: 0.698032, acc: 0.517578] [A loss: 0.810278, acc: 0.304688]

Synthetic	Image	Generation
Now	that	the	MNIST	DCGAN	has	been	trained,	let’s	use	it	to	generate	a	sample
of	synthetic	images	(Figure	12-3).

Figure	12-3.	Synthetic	images	generated	by	the	MNIST	DCGAN

These	synthetic	images—while	not	entirely	indistinguishable	from	the	real
MNIST	dataset—are	eerily	similar	to	real	digits.	With	more	training	time,	the
MNIST	DCGAN	should	be	capable	of	generating	synthetic	images	that	more
closely	resemble	those	of	the	real	MNIST	dataset	and	could	be	used	to
supplement	the	size	of	that	dataset.

While	our	solution	is	reasonably	good,	there	are	many	ways	to	make	the	MNIST
DCGAN	perform	better.	The	paper	“Improved	Techniques	for	Training	GANs”
and	the	accompanying	code	delves	into	more	advanced	methods	to	improve
GAN	performance.

https://arxiv.org/pdf/1606.03498.pdf
https://github.com/openai/improved-gan

Conclusion
In	this	chapter,	we	explored	deep	convolutional	generative	adversarial	networks,
a	specialized	form	of	generative	adversarial	networks	that	perform	well	on
image	and	computer	vision	datasets.

GANs	are	a	generative	model	with	two	neural	networks	locked	in	a	zero-sum
game.	One	of	the	networks,	the	generator	(i.e.,	the	counterfeiter),	is	generating
synthetic	data	from	real	data,	while	the	other	network,	the	discriminator	(i.e,	the
police),	is	calling	the	counterfeits	fake	or	real. 	This	zero-sum	game	in	which	the
generator	learns	from	the	discriminator	leads	to	an	overall	generative	model	that
generates	pretty	realistic	synthetic	data	and	generally	gets	better	over	time	(i.e.,
as	we	train	for	more	training	epochs).

GANs	are	relatively	new—they	were	first	introduced	by	Ian	Goodfellow	et	al.	in
2014. 	GANs	are	currently	mainly	used	to	perform	anomaly	detection	and
generate	synthetic	data,	but	they	could	have	many	other	applications	in	the	near
future.	The	machine	learning	community	is	barely	scratching	the	surface	with
what	is	possible,	and,	if	you	decide	to	use	GANs	in	applied	machine	learning
systems,	be	ready	to	experiment	a	lot.

In	Chapter	13,	we	will	conclude	this	part	of	the	book	by	exploring	temporal
clustering,	which	is	a	form	of	unsupervised	learning	for	use	with	time	series
data.

1 	For	more	on	DCGANs,	take	a	look	at	the	official	paper	on	the	topic.

2 	For	more	on	convolution	layers,	read	“An	Introduction	to	Different	Types	of	Convolutions	in	Deep
Learning”.

3 	For	more	on	convolution	layers,	check	out	“An	Introduction	to	Different	Types	of	Convolutions	in
Deep	Learning”,	also	referenced	earlier	in	the	chapter.

4 	For	the	original	code	base,	visit	Rowel	Atienza’s	GitHub	page.

5 	LeakyReLU	(https://keras.io/layers/advanced-activations/)	is	an	advanced	activation	function	that	is
similar	to	the	normal	ReLU	but	allows	a	small	gradient	when	the	unit	is	not	active.	It	is	becoming	a
preferred	activation	function	for	image	machine	learning	problems.

6 	For	additional	information,	check	out	the	OpenAI	blog’s	generative	models	post.

7 	For	more	on	this,	take	a	look	at	this	seminal	paper.

8 	For	some	tips	and	tricks,	read	this	post	on	how	to	refine	GANs	and	improve	performance.

6

7

8

https://arxiv.org/abs/1511.06434
http://bit.ly/2GeMQfu
http://bit.ly/2GeMQfu
http://bit.ly/2DLp4G1
https://keras.io/layers/advanced-activations/
https://blog.openai.com/generative-models/
https://arxiv.org/abs/1406.2661
https://github.com/soumith/ganhacks
http://bit.ly/2G2FJHq

Chapter	13.	Time	Series
Clustering

So	far	in	this	book,	we	have	worked	mostly	with	cross-sectional	data,	in	which
we	have	observations	for	entities	at	a	single	point	in	time.	This	includes	the
credit	card	dataset	with	transactions	that	happened	over	two	days	and	the
MNIST	dataset	with	images	of	digits.	For	these	datasets,	we	applied
unsupervised	learning	to	learn	the	underlying	structure	in	the	data	and	to	group
similar	transactions	and	images	together	without	using	any	labels.

Unsupervised	learning	is	also	very	valuable	for	work	with	time	series	data,	in
which	we	have	observations	for	a	single	entity	at	different	time	intervals.	We
need	to	develop	a	solution	that	can	learn	the	underlying	structure	of	data	across
time,	not	just	for	a	particular	moment	in	time.	If	we	develop	such	a	solution,	we
can	identify	similar	time	series	patterns	and	group	them	together.

This	is	very	impactful	in	fields	such	as	finance,	medicine,	robotics,	astronomy,
biology,	meteorology,	etc.,	since	professionals	in	these	fields	spend	a	lot	of	time
analyzing	data	to	classify	current	events	based	on	how	similar	they	are	to	past
events.	By	grouping	current	events	together	with	similar	past	events,	these
professionals	are	able	to	more	confidently	decide	on	the	right	course	of	action	to
take.

In	this	chapter,	we	will	work	on	clustering	time	series	data	based	on	pattern
similarity.	Clustering	time	series	data	is	a	purely	unsupervised	approach	and
does	not	require	annotation	of	data	for	training,	although	annotated	data	is
necessary	for	validating	the	results	as	with	all	other	unsupervised	learning
experiments.

NOTE
There	is	a	third	group	of	data	that	combines	cross-sectional	and	time	series	data.	This	is	known
as	panel	or	longitudinal	data.

ECG	Data
To	make	the	time	series	clustering	problem	more	tangible,	let’s	introduce	a
specific	real-world	problem.	Imagine	we	were	working	in	healthcare	and	had	to
analyze	electrocardiogram	(EKG/ECG)	readings.	ECG	machines	record	the
electrical	activity	of	the	heart	over	a	period	of	time	using	electrodes	placed	over
the	skin.	The	ECG	measures	activity	over	approximately	10	seconds,	and	the
recorded	metrics	help	detect	any	cardiac	problems.

Most	ECG	readings	record	normal	heartbeat	activity,	but	the	abnormal	readings
are	the	ones	healthcare	professionals	must	identify	to	react	preemptively	before
any	adverse	cardiac	event—such	as	cardiac	arrest—occurs.	The	ECG	produces	a
line	graph	with	peaks	and	valleys	so	the	task	of	classifying	a	reading	as	normal
or	abnormal	is	a	straightforward	pattern	recognition	task,	well	suited	for	machine
learning.

Real-world	ECG	readings	are	not	so	cleanly	displayed,	making	classification	of
the	images	into	these	various	buckets	difficult	and	error-prone.

For	example,	variations	in	the	amplitude	of	the	waves	(the	height	of	the	center
line	to	the	peak	or	trough),	the	period	(the	distance	from	one	peak	to	the	next),
the	phase	shift	(horizontal	shifting),	and	the	vertical	shift	are	challenges	for	any
machine-driven	classification	system.

Approach	to	Time	Series	Clustering
Any	approach	to	time	series	clustering	will	require	us	to	handle	these	types	of
distortions.	As	you	may	recall,	clustering	relies	on	distance	measures	to
determine	how	close	in	space	data	is	to	other	data	so	that	similar	data	can	be
grouped	together	into	distinct	and	homogeneous	clusters.

Clustering	time	series	data	works	similarly,	but	we	need	a	distance	measure	that
is	scale-	and	shift-invariant	so	that	similar	time	series	data	is	grouped	together
regardless	of	trivial	differences	in	amplitude,	period,	phase	shift,	and	vertical
shift.

k-Shape

One	of	the	state-of-the-art	approaches	to	time	series	clustering	that	meets	this
criteria	is	k-shape,	which	was	first	introduced	at	ACM	SIGMOD	in	2015	by
John	Paparrizos	and	Luis	Gravano.

k-shape	uses	a	distance	measure	that	is	invariant	to	scaling	and	shifting	to
preserve	the	shapes	of	time	series	sequences	while	comparing	them.	Specifically,
k-shape	uses	a	normalized	version	of	cross-correlation	to	compute	cluster
centroids	and	then,	in	every	iteration,	updates	the	assignment	of	time	series	to
these	clusters.

In	addition	to	being	invariant	to	scaling	and	shifting,	k-shape	is	domain-
independent	and	scalable,	requiring	minimal	parameter	tuning.	Its	iterative
refinement	procedure	scales	linearly	in	the	number	of	sequences.	These
characteristics	have	made	it	one	of	the	most	powerful	time	series	clustering
algorithms	available	today.

By	this	point,	it	should	be	clear	that	k-shape	operates	similarly	to	k-means:	both
algorithms	use	an	iterative	approach	to	assign	data	to	groups	based	on	the
distance	between	the	data	and	the	centroid	of	the	nearest	group.	The	critical
difference	is	in	how	k-shape	calculates	distances—it	uses	shaped-based	distance
that	relies	on	cross-correlations.

Time	Series	Clustering	Using	k-Shape	on
ECGFiveDays
Let’s	build	a	time	series	clustering	model	using	k-shape.

In	this	chapter,	we	will	rely	on	data	from	the	UCR	time	series	collection.
Because	the	file	size	exceeds	one	hundred	megabytes,	it	is	not	accessible	on
GitHub.	You	will	need	to	download	the	files	from	the	UCR	Time	Series	website.

This	is	the	largest	public	collection	of	class-labeled	time	series	datasets,
numbering—85	in	total.	These	datasets	are	from	multiple	domains,	so	we	can
test	how	well	our	solution	does	across	domains.	Each	time	series	belongs	to	only
one	class,	so	we	also	have	labels	to	validate	the	results	of	our	time	series
clustering.

Data	Preparation

1

http://bit.ly/2CXPcfq

Let’s	begin	by	loading	the	necessary	libraries:

'''Main'''
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime
from os import listdir, walk
from os.path import isfile, join

'''Data Viz'''
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl
from mpl_toolkits.axes_grid1 import Grid

%matplotlib inline

'''Data Prep and Model Evaluation'''
from sklearn import preprocessing as pp
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score, mean_squared_error
from keras.utils import to_categorical
from sklearn.metrics import adjusted_rand_score
import random

'''Algos'''
from kshape.core import kshape, zscore
import tslearn
from tslearn.utils import to_time_series_dataset
from tslearn.clustering import KShape, TimeSeriesScalerMeanVariance
from tslearn.clustering import TimeSeriesKMeans
import hdbscan

'''TensorFlow and Keras'''
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.layers import LeakyReLU, Reshape, UpSampling2D, Conv2DTranspose
from keras.layers import BatchNormalization, Input, Lambda
from keras.layers import Embedding, Flatten, dot
from keras import regularizers

from keras.losses import mse, binary_crossentropy
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.optimizers import Adam, RMSprop
from tensorflow.examples.tutorials.mnist import input_data

We	will	use	the	tslearn	package	to	access	the	Python-based	k-shape	algorithm.
tslearn	has	a	similar	framework	as	Scikit-learn	but	is	geared	toward	work	with
time	series	data.

Next,	let’s	load	the	training	and	test	data	from	the	ECGFiveDays	dataset,	which
was	downloaded	from	the	UCR	Time	Series	archive.	The	first	column	in	this
matrix	has	the	class	labels,	while	the	rest	of	the	columns	are	the	values	of	the
time	series	data.	We	will	store	the	data	as	X_train,	y_train,	X_test,	and
y_test:

Load the datasets
current_path = os.getcwd()
file = '\\datasets\\ucr_time_series_data\\'
data_train = np.loadtxt(current_path+file+
 "ECGFiveDays/ECGFiveDays_TRAIN",
 delimiter=",")
X_train = to_time_series_dataset(data_train[:, 1:])
y_train = data_train[:, 0].astype(np.int)

data_test = np.loadtxt(current_path+file+
 "ECGFiveDays/ECGFiveDays_TEST",
 delimiter=",")
X_test = to_time_series_dataset(data_test[:, 1:])
y_test = data_test[:, 0].astype(np.int)

The	following	code	shows	the	number	of	time	series,	the	number	of	unique
classes,	and	the	length	of	each	time	series:

Basic summary statistics
print("Number of time series:", len(data_train))
print("Number of unique classes:", len(np.unique(data_train[:,0])))
print("Time series length:", len(data_train[0,1:]))

Number of time series: 23
Number of unique classes: 2
Time series length: 136

There	are	23	time	series	and	2	unique	classes,	and	each	time	series	has	a	length
of	136.	Figure	13-1	shows	a	few	examples	of	each	class;	now	we	know	what
these	ECG	readings	look	like:

Examples of Class 1.0
for i in range(0,10):
 if data_train[i,0]==1.0:
 print("Plot ",i," Class ",data_train[i,0])
 plt.plot(data_train[i])
 plt.show()

Figure	13-1.	ECGFiveDays	class	1.0—first	two
examples

Figure	13-2.	ECGFiveDays	class	1.0—second	two
examples

Here	is	the	code	to	plot	results	from	Class 2.0:

Examples of Class 2.0
for i in range(0,10):
 if data_train[i,0]==2.0:
 print("Plot ",i," Class ",data_train[i,0])
 plt.plot(data_train[i])
 plt.show()

Figure	13-3.	ECGFiveDays	class	2.0—first	two
examples

Figure	13-4.	ECGFiveDays	class	2.0—second	two
examples

To	the	naked,	untrained	eye,	the	examples	from	class	1.0	and	class	2.0	seem
indistinguishable,	but	these	observations	have	been	annotated	by	domain
experts.	The	plots	are	noisy	with	distortions.	There	are	also	differences	in
amplitude,	period,	phase	shift,	and	vertical	shift	that	make	classification	a
challenge.

Let’s	prepare	the	data	for	the	k-shape	algorithm.	We	will	normalize	the	data	to
have	a	mean	of	zero	and	standard	deviation	of	one:

Prepare the data - Scale
X_train = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X_train)
X_test = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X_test)

Training	and	Evaluation
Next,	we	will	call	the	k-shape	algorithm	and	set	the	number	of	clusters	as	2,	the

max	iterations	to	perform	as	one	hundred,	and	the	number	of	rounds	of	training
as	one	hundred:

Train using k-Shape
ks = KShape(n_clusters=2, max_iter=100, n_init=100,verbose=0)
ks.fit(X_train)

To	measure	the	goodness	of	the	time	series	clustering,	we	will	use	the	adjusted
Rand	index,	a	measure	of	the	similarity	between	two	data	clusterings	adjusted
for	the	chance	grouping	of	elements.	This	is	related	to	the	accuracy	measure.

Intuitively,	the	Rand	index	measures	the	number	of	agreements	in	cluster
assignments	between	the	predicted	clusterings	and	the	true	clusterings.	If	the
model	has	an	adjusted	Rand	index	with	a	value	close	to	0.0,	it	is	purely
randomly	assigning	clusters;	if	the	model	has	an	adjusted	Rand	index	with	a
value	close	to	1.0,	the	predicted	clusterings	match	the	true	clusterings	exactly.

We	will	use	the	Scikit-learn	implementation	of	the	adjusted	Rand	index	called
the	adjusted_rand_score.

Let’s	generate	clustering	predictions	and	then	calculate	the	adjusted	Rand	index:

Make predictions and calculate adjusted Rand index
preds = ks.predict(X_train)
ars = adjusted_rand_score(data_train[:,0],preds)
print("Adjusted Rand Index:", ars)

Based	on	this	run,	the	adjusted	Rand	index	is	0.668.	If	you	perform	this	training
and	prediction	several	times,	you	will	notice	the	adjusted	Rand	index	will	vary	a
bit	but	remains	well	above	0.0	at	all	times:

Adjusted Rand Index: 0.668041237113402

Let’s	predict	on	the	test	set	and	calculate	the	adjusted	Rand	index	for	it:

Make predictions on test set and calculate adjusted Rand index
preds_test = ks.predict(X_test)
ars = adjusted_rand_score(data_test[:,0],preds_test)
print("Adjusted Rand Index on Test Set:", ars)

The	adjusted	Rand	index	is	considerably	lower	on	the	test	set,	barely	above	0.

2

3

The	cluster	predictions	are	nearly	chance	assignments—the	time	series	are	being
grouped	based	on	similarity	with	little	success:

Adjusted Rand Index on Test Set: 0.0006332050676187496

If	we	had	a	much	larger	training	set	to	train	our	k-shape-based	time	series
clustering	model,	we	would	expect	better	performance	on	the	test	set.

Time	Series	Clustering	Using	k-Shape	on
ECG5000
Instead	of	the	ECGFiveDays	dataset,	which	has	only	23	observations	in	the
training	set	and	861	in	the	test	set,	let’s	use	a	much	larger	dataset	of	ECG
readings.	The	ECG5000	dataset	(also	available	on	the	UCR	Time	Series	archive)
has	five	thousand	ECG	readings	(i.e.,	time	series)	in	total	across	the	train	and
test	sets.

Data	Preparation
We	will	load	in	the	datasets	and	make	our	own	train	and	test	split,	with	80%	of
the	five	thousand	readings	in	the	custom	train	set	and	the	remaining	20%	in	the
custom	test	set.	With	this	much	larger	training	set,	we	should	be	able	to	develop
a	time	series	clustering	model	that	has	much	better	performance,	both	on	the
train	set	and,	most	importantly,	on	the	test	set:

Load the datasets
current_path = os.getcwd()
file = '\\datasets\\ucr_time_series_data\\'
data_train = np.loadtxt(current_path+file+
 "ECG5000/ECG5000_TRAIN",
 delimiter=",")

data_test = np.loadtxt(current_path+file+
 "ECG5000/ECG5000_TEST",
 delimiter=",")

data_joined = np.concatenate((data_train,data_test),axis=0)
data_train, data_test = train_test_split(data_joined,
 test_size=0.20, random_state=2019)

X_train = to_time_series_dataset(data_train[:, 1:])
y_train = data_train[:, 0].astype(np.int)
X_test = to_time_series_dataset(data_test[:, 1:])
y_test = data_test[:, 0].astype(np.int)

Let’s	explore	this	dataset:

Summary statistics
print("Number of time series:", len(data_train))
print("Number of unique classes:", len(np.unique(data_train[:,0])))
print("Time series length:", len(data_train[0,1:]))

The	following	code	displays	the	basic	summary	statistics.	There	are	four
thousand	readings	in	the	training	set,	which	are	grouped	into	five	distinct	classes,
and	each	time	series	has	a	length	of	140:

Number of time series: 4000
Number of unique classes: 5
Time series length: 140

Let’s	also	consider	how	many	of	the	readings	belong	to	each	of	these	classes.

Calculate number of readings per class
print("Number of time series in class 1.0:",
 len(data_train[data_train[:,0]==1.0]))
print("Number of time series in class 2.0:",
 len(data_train[data_train[:,0]==2.0]))
print("Number of time series in class 3.0:",
 len(data_train[data_train[:,0]==3.0]))
print("Number of time series in class 4.0:",
 len(data_train[data_train[:,0]==4.0]))
print("Number of time series in class 5.0:",
 len(data_train[data_train[:,0]==5.0]))

The	distribution	is	shown	in	Figure	13-5.	Most	of	the	readings	fall	in	class	1,
followed	by	class	2.	Significantly	fewer	readings	belong	to	clases	3,	4,	and	5.

Let’s	take	the	average	time	series	reading	from	each	class	to	get	a	better	sense	of
how	the	various	classes	look.

Display readings from each class
for j in np.unique(data_train[:,0]):
 dataPlot = data_train[data_train[:,0]==j]

 cnt = len(dataPlot)
 dataPlot = dataPlot[:,1:].mean(axis=0)
 print(" Class ",j," Count ",cnt)
 plt.plot(dataPlot)
 plt.show()

Class	1	(Figure	13-5)	has	a	sharp	trough	followed	by	a	sharp	peak	and
stabilization.	This	is	the	most	common	type	of	reading.

Figure	13-5.	ECG5000	class	1.0

Class	2	(Figure	13-6)	has	a	sharp	trough	followed	by	a	recovery	and	then	an
even	sharper	and	lower	trough	with	a	partial	recovery.	This	is	the	second	most
common	type	of	reading.

Figure	13-6.	ECG5000	class	2.0

Class	3	(Figure	13-7)	has	a	sharp	trough	followed	by	a	recovery	and	then	an
even	sharper	and	lower	trough	with	no	recovery.	There	are	a	few	examples	of
these	in	the	dataset.

Figure	13-7.	ECG5000	class	3.0

Class	4	(Figure	13-8)	has	a	sharp	trough	followed	by	a	recovery	and	then	a
shallow	trough	and	stabilization.	There	are	a	few	examples	of	these	in	the
dataset.

Figure	13-8.	ECG5000	class	4.0

Class	5	(Figure	13-9)	has	a	sharp	trough	followed	by	an	uneven	recovery,	a	peak,
and	then	an	unsteady	decline	to	a	shallow	trough.	There	are	very	few	examples
of	these	in	the	dataset.

Figure	13-9.	ECG5000	class	5.0

Training	and	Evaluation
As	before,	let’s	normalize	the	data	to	have	a	mean	of	zero	and	standard	deviation
of	one.	Then,	we	will	fit	the	k-shape	algorithm,	setting	the	number	of	clusters	to
five	this	time.	Everything	else	remains	the	same:

Prepare data - Scale
X_train = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X_train)
X_test = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X_test)

Train using k-Shape
ks = KShape(n_clusters=5, max_iter=100, n_init=10,verbose=1,random_state=2019)
ks.fit(X_train)

Let’s	evaluate	the	results	on	the	training	set:

Predict on train set and calculate adjusted Rand index
preds = ks.predict(X_train)
ars = adjusted_rand_score(data_train[:,0],preds)
print("Adjusted Rand Index on Training Set:", ars)

The	following	code	shows	the	adjusted	Rand	index	on	the	training	set.	It	is
considerably	stronger	at	0.75:

Adjusted Rand Index on Training Set: 0.7499312374127193

Let’s	evaluate	the	results	on	the	test	set,	too:

Predict on test set and calculate adjusted Rand index
preds_test = ks.predict(X_test)
ars = adjusted_rand_score(data_test[:,0],preds_test)
print("Adjusted Rand Index on Test Set:", ars)

The	adjusted	Rand	index	on	the	test	set	is	much	higher,	too.	It	is	0.72:

Adjusted Rand Index on Test Set: 0.7172302400677499

By	increasing	the	training	set	to	four	thousand	time	series	(from	23),	we	have	a
considerably	better-performing	time	series	clustering	model.

Let’s	explore	the	predicted	clusters	some	more	to	see	just	how	homogeneous
they	are.	For	each	predicted	cluster,	we	will	evaluate	the	distribution	of	true
labels.	If	the	clusters	are	well-defined	and	homogeneous,	most	of	the	readings	in
each	cluster	should	have	the	same	true	label:

Evaluate goodness of the clusters
preds_test = preds_test.reshape(1000,1)
preds_test = np.hstack((preds_test,data_test[:,0].reshape(1000,1)))
preds_test = pd.DataFrame(data=preds_test)
preds_test = preds_test.rename(columns={0: 'prediction', 1: 'actual'})

counter = 0
for i in np.sort(preds_test.prediction.unique()):
 print("Predicted Cluster ", i)
 print(preds_test.actual[preds_test.prediction==i].value_counts())
 print()
 cnt = preds_test.actual[preds_test.prediction==i] \
 .value_counts().iloc[1:].sum()
 counter = counter + cnt
print("Count of Non-Primary Points: ", counter)

The	following	code	displays	the	homogeneity	of	the	clusters:

ECG 5000 k-shape predicted cluster analysis

Predicted Cluster 0.0
 2.0 29
 4.0 2
 1.0 2
 3.0 2

 5.0 1
 Name: actual, dtype: int64

Predicted Cluster 1.0
 2.0 270
 4.0 14
 3.0 8
 1.0 2
 5.0 1
 Name: actual, dtype: int64

Predicted Cluster 2.0
 1.0 553
 4.0 16
 2.0 9
 3.0 7
 Name: actual, dtype: int64

Predicted Cluster 3.0
 2.0 35
 1.0 5
 4.0 5
 5.0 3
 3.0 3
 Name: actual, dtype: int64

Predicted Cluster 4.0
 1.0 30
 4.0 1
 3.0 1
 2.0 1
 Name: actual, dtype: int64

Count of Non-Primary Points: 83

The	majority	of	the	readings	within	each	predicted	cluster	belong	to	just	one	true
label	class.	This	highlights	just	how	well	defined	and	homogeneous	the	k-shape-
derived	clusters	are.

Time	Series	Clustering	Using	k-Means	on
ECG5000
For	the	sake	of	completeness,	let’s	compare	the	results	of	k-shape	with	results
from	k-means.	We	will	use	the	tslearn	library	to	perform	the	training	and

evaluate	using	the	adjusted	Rand	index	as	before.

We	will	set	the	number	of	clusters	as	five,	the	number	of	max	iterations	for	a
single	run	as	one	hundred,	the	number	of	independent	runs	as	one	hundred,	the
metric	distance	as	Euclidean,	and	the	random	state	as	2019:

Train using Time Series k-Means
km = TimeSeriesKMeans(n_clusters=5, max_iter=100, n_init=100, \
 metric="euclidean", verbose=1, random_state=2019)
km.fit(X_train)

Predict on training set and evaluate using adjusted Rand index
preds = km.predict(X_train)
ars = adjusted_rand_score(data_train[:,0],preds)
print("Adjusted Rand Index on Training Set:", ars)

Predict on test set and evaluate using adjusted Rand index
preds_test = km.predict(X_test)
ars = adjusted_rand_score(data_test[:,0],preds_test)
print("Adjusted Rand Index on Test Set:", ars)

The	TimeSeriesKMean	algorithm	runs	even	faster	than	k-shape	using	the
Euclidean	distance	metric.	But	the	results	are	not	as	good:

Adjusted Rand Index of Time Series k-Means on Training Set: 0.5063464656715959

The	adjusted	Rand	index	on	the	training	set	is	0.506:

Adjusted Rand Index of Time Series k-Means on Test Set: 0.4864981997585834

The	adjusted	Rand	index	on	the	test	set	is	0.486.

Time	Series	Clustering	Using	Hierarchical
DBSCAN	on	ECG5000
Finally,	let’s	apply	hierarchical	DBSCAN,	which	we	explored	earlier	in	the	book,
and	evaluate	its	performance.

We	will	run	HDBSCAN	with	its	default	parameters	and	evaluate	performance
using	the	adjusted	Rand	index:

Train model and evaluate on training set
min_cluster_size = 5
min_samples = None
alpha = 1.0
cluster_selection_method = 'eom'
prediction_data = True

hdb = hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, \
 min_samples=min_samples, alpha=alpha, \
 cluster_selection_method=cluster_selection_method, \
 prediction_data=prediction_data)

preds = hdb.fit_predict(X_train.reshape(4000,140))
ars = adjusted_rand_score(data_train[:,0],preds)
print("Adjusted Rand Index on Training Set:", ars)

The	adjusted	Rand	index	on	the	training	set	is	an	impressive	0.769:

Adjusted Rand Index on Training Set using HDBSCAN: 0.7689563655060421

The	adjusted	Rand	index	on	the	training	set	is	an	impressive	0.769.

Let’s	evaluate	on	the	test	set:

Predict on test set and evaluate
preds_test = hdbscan.prediction.approximate_predict(\
 hdb, X_test.reshape(1000,140))
ars = adjusted_rand_score(data_test[:,0],preds_test[0])
print("Adjusted Rand Index on Test Set:", ars)

The	adjusted	Rand	index	on	the	training	set	is	an	equally	impressive	0.720:

Adjusted Rand Index on Test Set using HDBSCAN: 0.7200816245545564

Comparing	the	Time	Series	Clustering
Algorithms
HDBSCAN	and	k-shape	performed	similarly	well	on	the	ECG5000	dataset,
while	k-means	performed	worse.	However,	we	cannot	draw	strong	conclusions
by	evaluating	the	performance	of	these	three	clustering	algorithms	on	a	single
time	series	dataset.

Let’s	run	a	larger	experiment	to	see	how	these	three	clustering	algorithms	stack
up	against	one	another.

First,	we	will	load	all	the	directories	and	files	in	the	UCR	Time	Series
Classification	folder	so	we	can	iterate	through	them	during	the	experiment.
There	are	85	datasets	in	total:

Load the datasets
current_path = os.getcwd()
file = '\\datasets\\ucr_time_series_data\\'

mypath = current_path + file
d = []
f = []
for (dirpath, dirnames, filenames) in walk(mypath):
 for i in dirnames:
 newpath = mypath+"\\"+i+"\\"
 onlyfiles = [f for f in listdir(newpath) if isfile(join(newpath, f))]
 f.extend(onlyfiles)
 d.extend(dirnames)
 break

Next,	let’s	recycle	the	code	for	each	of	the	three	clustering	algorithms	and	use
the	list	of	datasets	we	just	prepared	to	run	a	full	experiment.	We	will	store	the
training	and	test	adjusted	Rand	indices	by	dataset	and	measure	the	time	it	takes
each	clustering	algorithm	to	complete	the	entire	experiment	of	85	datasets.

Full	Run	with	k-Shape
The	first	experiment	uses	k-shape.

k-Shape Experiment
kShapeDF = pd.DataFrame(data=[],index=[v for v in d],
 columns=["Train ARS","Test ARS"])

Train and Evaluate k-Shape
class ElapsedTimer(object):
 def __init__(self):
 self.start_time = time.time()
 def elapsed(self,sec):
 if sec < 60:
 return str(sec) + " sec"
 elif sec < (60 * 60):
 return str(sec / 60) + " min"

 else:
 return str(sec / (60 * 60)) + " hr"
 def elapsed_time(self):
 print("Elapsed: %s " % self.elapsed(time.time() - self.start_time))
 return (time.time() - self.start_time)

timer = ElapsedTimer()
cnt = 0
for i in d:
 cnt += 1
 print("Dataset ", cnt)
 newpath = mypath+"\\"+i+"\\"
 onlyfiles = [f for f in listdir(newpath) if isfile(join(newpath, f))]
 j = onlyfiles[0]
 k = onlyfiles[1]
 data_train = np.loadtxt(newpath+j, delimiter=",")
 data_test = np.loadtxt(newpath+k, delimiter=",")

 data_joined = np.concatenate((data_train,data_test),axis=0)
 data_train, data_test = train_test_split(data_joined,
 test_size=0.20, random_state=2019)

 X_train = to_time_series_dataset(data_train[:, 1:])
 y_train = data_train[:, 0].astype(np.int)
 X_test = to_time_series_dataset(data_test[:, 1:])
 y_test = data_test[:, 0].astype(np.int)

 X_train = TimeSeriesScalerMeanVariance(mu=0., std=1.) \
 .fit_transform(X_train)
 X_test = TimeSeriesScalerMeanVariance(mu=0., std=1.) \
 .fit_transform(X_test)

 classes = len(np.unique(data_train[:,0]))
 ks = KShape(n_clusters=classes, max_iter=10, n_init=3,verbose=0)
 ks.fit(X_train)

 print(i)
 preds = ks.predict(X_train)
 ars = adjusted_rand_score(data_train[:,0],preds)
 print("Adjusted Rand Index on Training Set:", ars)
 kShapeDF.loc[i,"Train ARS"] = ars

 preds_test = ks.predict(X_test)
 ars = adjusted_rand_score(data_test[:,0],preds_test)
 print("Adjusted Rand Index on Test Set:", ars)
 kShapeDF.loc[i,"Test ARS"] = ars

kShapeTime = timer.elapsed_time()

It	takes	approximately	an	hour	to	run	the	k-shape	algorithm.	We’ve	stored	the
adjusted	Rand	indices	and	will	use	these	to	compare	k-shape	with	k-means	and
HBDSCAN	soon.

NOTE
The	time	we	measured	for	k-shape	is	based	on	the	hyperparameters	we	set	for	the	experiment
as	well	as	the	local	hardware	specifications	for	the	machine	on	which	the	experiments	were
run.	Different	hyperparameters	and	hardware	specifications	could	result	in	dramatically
different	experiment	times.

Full	Run	with	k-Means
Next	up	is	k-means:

k-Means Experiment - FULL RUN
Create dataframe
kMeansDF = pd.DataFrame(data=[],index=[v for v in d], \
 columns=["Train ARS","Test ARS"])

Train and Evaluate k-Means
timer = ElapsedTimer()
cnt = 0
for i in d:
 cnt += 1
 print("Dataset ", cnt)
 newpath = mypath+"\\"+i+"\\"
 onlyfiles = [f for f in listdir(newpath) if isfile(join(newpath, f))]
 j = onlyfiles[0]
 k = onlyfiles[1]
 data_train = np.loadtxt(newpath+j, delimiter=",")
 data_test = np.loadtxt(newpath+k, delimiter=",")

 data_joined = np.concatenate((data_train,data_test),axis=0)
 data_train, data_test = train_test_split(data_joined, \
 test_size=0.20, random_state=2019)

 X_train = to_time_series_dataset(data_train[:, 1:])
 y_train = data_train[:, 0].astype(np.int)
 X_test = to_time_series_dataset(data_test[:, 1:])
 y_test = data_test[:, 0].astype(np.int)

 X_train = TimeSeriesScalerMeanVariance(mu=0., std=1.) \
 .fit_transform(X_train)

 X_test = TimeSeriesScalerMeanVariance(mu=0., std=1.) \
 .fit_transform(X_test)

 classes = len(np.unique(data_train[:,0]))
 km = TimeSeriesKMeans(n_clusters=5, max_iter=10, n_init=10, \
 metric="euclidean", verbose=0, random_state=2019)
 km.fit(X_train)

 print(i)
 preds = km.predict(X_train)
 ars = adjusted_rand_score(data_train[:,0],preds)
 print("Adjusted Rand Index on Training Set:", ars)
 kMeansDF.loc[i,"Train ARS"] = ars

 preds_test = km.predict(X_test)
 ars = adjusted_rand_score(data_test[:,0],preds_test)
 print("Adjusted Rand Index on Test Set:", ars)
 kMeansDF.loc[i,"Test ARS"] = ars

kMeansTime = timer.elapsed_time()

It	takes	less	than	five	minutes	for	k-means	to	run	through	all	85	datasets:

Full	Run	with	HDBSCAN
Finally,	we	have	HBDSCAN:

HDBSCAN Experiment - FULL RUN
Create dataframe
hdbscanDF = pd.DataFrame(data=[],index=[v for v in d], \
 columns=["Train ARS","Test ARS"])

Train and Evaluate HDBSCAN
timer = ElapsedTimer()
cnt = 0
for i in d:
 cnt += 1
 print("Dataset ", cnt)
 newpath = mypath+"\\"+i+"\\"
 onlyfiles = [f for f in listdir(newpath) if isfile(join(newpath, f))]
 j = onlyfiles[0]
 k = onlyfiles[1]
 data_train = np.loadtxt(newpath+j, delimiter=",")
 data_test = np.loadtxt(newpath+k, delimiter=",")

 data_joined = np.concatenate((data_train,data_test),axis=0)
 data_train, data_test = train_test_split(data_joined, \

 test_size=0.20, random_state=2019)

 X_train = data_train[:, 1:]
 y_train = data_train[:, 0].astype(np.int)
 X_test = data_test[:, 1:]
 y_test = data_test[:, 0].astype(np.int)

 X_train = TimeSeriesScalerMeanVariance(mu=0., std=1.) \
 .fit_transform(X_train)
 X_test = TimeSeriesScalerMeanVariance(mu=0., std=1.) \
 .fit_transform(X_test)

 classes = len(np.unique(data_train[:,0]))
 min_cluster_size = 5
 min_samples = None
 alpha = 1.0
 cluster_selection_method = 'eom'
 prediction_data = True

 hdb = hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, \
 min_samples=min_samples, alpha=alpha, \
 cluster_selection_method= \
 cluster_selection_method, \
 prediction_data=prediction_data)

 print(i)
 preds = hdb.fit_predict(X_train.reshape(X_train.shape[0], \
 X_train.shape[1]))
 ars = adjusted_rand_score(data_train[:,0],preds)
 print("Adjusted Rand Index on Training Set:", ars)
 hdbscanDF.loc[i,"Train ARS"] = ars

 preds_test = hdbscan.prediction.approximate_predict(hdb,
 X_test.reshape(X_test.shape[0], \
 X_test.shape[1]))
 ars = adjusted_rand_score(data_test[:,0],preds_test[0])
 print("Adjusted Rand Index on Test Set:", ars)
 hdbscanDF.loc[i,"Test ARS"] = ars

hdbscanTime = timer.elapsed_time()

It	takes	less	than	10	minutes	for	HBDSCAN	to	run	through	all	85	datasets.

Comparing	All	Three	Time	Series	Clustering	Approaches
Now	let’s	compare	all	three	clustering	algorithms	to	see	which	fared	the	best.
One	approach	is	to	calculate	the	average	adjusted	Rand	indices	on	the	training

and	test	sets,	respectively,	for	each	of	the	clustering	algorithms.

Here	are	the	scores	for	each	of	the	algorithms:

k-Shape Results

Train ARS 0.165139
Test ARS 0.151103

k-Means Results

Train ARS 0.184789
Test ARS 0.178960

HDBSCAN Results

Train ARS 0.178754
Test ARS 0.158238

The	results	are	fairly	comparable,	with	k-means	having	the	highest	Rand	indices,
followed	closely	by	k-shape	and	HDBSCAN.

To	validate	some	of	these	findings,	let’s	count	how	many	times	each	algorithm
placed	first,	second,	or	third	across	all	the	85	datasets:

Count top place finishes
timeSeriesClusteringDF = pd.DataFrame(data=[],index=kShapeDF.index, \
 columns=["kShapeTest", \
 "kMeansTest", \
 "hdbscanTest"])

timeSeriesClusteringDF.kShapeTest = kShapeDF["Test ARS"]
timeSeriesClusteringDF.kMeansTest = kMeansDF["Test ARS"]
timeSeriesClusteringDF.hdbscanTest = hdbscanDF["Test ARS"]

tscResults = timeSeriesClusteringDF.copy()

for i in range(0,len(tscResults)):
 maxValue = tscResults.iloc[i].max()
 tscResults.iloc[i][tscResults.iloc[i]==maxValue]=1
 minValue = tscResults .iloc[i].min()
 tscResults.iloc[i][tscResults.iloc[i]==minValue]=-1
 medianValue = tscResults.iloc[i].median()
 tscResults.iloc[i][tscResults.iloc[i]==medianValue]=0

Show results

tscResultsDF = pd.DataFrame(data=np.zeros((3,3)), \
 index=["firstPlace","secondPlace","thirdPlace"], \
 columns=["kShape", "kMeans","hdbscan"])
tscResultsDF.loc["firstPlace",:] = tscResults[tscResults==1].count().values
tscResultsDF.loc["secondPlace",:] = tscResults[tscResults==0].count().values
tscResultsDF.loc["thirdPlace",:] = tscResults[tscResults==-1].count().values
tscResultsDF

k-shape	had	the	most	first	place	finishes,	followed	by	HDBSCAN.	k-means	had
the	most	second	place	finishes,	performing	neither	the	best	but	also	not	the	worst
on	the	majority	of	the	datasets	(Table	13-1).

Table	13-1.	Comparison	summary

kShape kMeans hbdscan

firstPlace 31.0 24.0 29.0

secondPlace 19.0 41.0 26.0

thirdPlace 35.0 20.0 30.0

Based	on	this	comparison,	it	is	hard	to	conclude	that	one	algorithm	universally
trounces	all	the	others.	While	k-shape	has	the	most	first	place	finishes,	it	is
considerably	slower	than	the	other	two	algorithms.

And,	k-means	and	HDBSCAN	both	hold	their	own,	winning	first	place	on	a
healthy	number	of	datasets.

Conclusion
In	this	chapter,	we	explored	time	series	data	for	the	first	time	in	the	book	and
demonstrated	the	power	of	unsupervised	learning	to	group	time	series	patterns
based	on	their	similarity	to	one	another	and	without	requiring	any	labels.	We
worked	with	three	clustering	algorithms	in	detail—k-shape,	k-means,	and
HDBSCAN.	While	k-shape	is	regarded	as	the	best	of	the	bunch	today,	the	other
two	algorithms	perform	quite	well,	too.

Most	importantly,	the	results	from	the	85	time	series	datasets	we	worked	with
highlight	the	importance	of	experimentation.	As	with	most	machine	learning,	no

single	algorithm	trounces	all	other	algorithms.	You	must	constantly	expand	your
breadth	of	knowledge	and	experiment	to	see	which	approaches	work	best	for	the
problem	at	hand.	Knowing	what	to	apply	when	is	the	hallmark	of	a	good	data
scientist.

Hopefully	you	will	be	better	equipped	to	solve	more	of	the	problems	you	face
going	forward	with	the	many	different	unsupervised	learning	approaches	you’ve
learned	throughout	this	book.

1 	The	paper	is	publicly	available	here.

2 	For	more	on	the	hyperparameters,	refer	to	the	official	k-shape	documentation.

3 	Consult	Wikipedia	for	more	information	on	the	Rand	index.

http://www.cs.columbia.edu/~jopa/kshape.html
http://bit.ly/2Gfg0L9
https://en.wikipedia.org/wiki/Rand_index

Chapter	14.	Conclusion

Artificial	intelligence	is	in	the	midst	of	a	hype	cycle	not	seen	in	the	tech	world
since	the	advent	of	the	internet	age	20	years	ago. 	However,	that	does	not	mean
the	hype	is	not	warranted	or—to	some	degree—justified.

While	the	AI	and	machine	learning	work	in	prior	decades	was	mostly	theoretical
and	academic	in	nature—with	few	successful	commercial	applications—the
work	in	this	space	over	the	past	decade	has	been	much	more	applied	and
industry-focused,	led	by	the	likes	of	Google,	Facebook,	Amazon,	Microsoft,	and
Apple.

The	focus	on	developing	machine	learning	applications	for	narrowly	defined
tasks	(i.e.,	weak	or	narrow	AI)	rather	than	on	more	ambitious	tasks	(i.e.,	strong
or	AGI)	has	made	the	field	much	more	attractive	to	investors	that	want	to
achieve	good	returns	on	a	shorter	7-	to	10-year	time	frame.	More	attention	and
capital	from	investors,	in	turn,	has	made	the	field	more	successful,	both	in
progress	toward	narrow	AI	as	well	as	in	laying	the	building	blocks	for	strong	AI.

Of	course,	capital	is	not	the	only	catalyst.	The	rise	of	big	data,	the	advancements
in	computer	hardware	(especially	the	rise	of	GPUs,	led	by	Nvidia,	for	training
deep	neural	networks),	and	the	breakthroughs	in	algorithm	research	and
development	have	played	equally	meaningful	roles	in	contributing	to	the	recent
successes	of	AI.

Like	all	hype	cycles,	the	current	cycle	may	lead	to	some	disappointment
eventually,	but	so	far	the	progress	in	the	field	has	astonished	many	in	the	science
community	and	has	captured	the	imagination	of	an	increasingly	mainstream
audience.

Supervised	Learning
To	date,	supervised	learning	has	been	responsibile	for	the	majority	of	the
commercial	successes	in	machine	learning.	These	successes	can	be	broken	down
by	data	type:

1

With	images,	we	have	optical	character	recongition,	image
classification,	and	facial	recognition,	to	name	a	few.	For	example,
Facebook	automatically	tags	faces	in	new	photographs	based	on	how
similar	the	faces	look	to	previously	labeled	faces,	leveraging
Facebook’s	database	of	existing	photographs.

With	video,	we	have	self-driving	cars,	which	are	already	operating	on
roads	across	the	United	States	today.	Major	players	such	as	Google,
Tesla,	and	Uber	have	invested	very	heavily	into	autonomous	vehicles.

With	speech,	we	have	speech	recognition,	fueled	by	assistants	such	as
Siri,	Alexa,	Google	Assistant,	and	Cortana.

With	text,	we	have	the	classic	example	of	email	spam	filtering	but	also
machine	translation	(i.e.,	Google	Translate),	sentiment	analysis,	syntax
analysis,	entity	recognition,	language	detection,	and	question
answering.	On	the	back	of	these	successes,	we	have	seen	a	proliferation
of	chatbots	in	the	past	few	years.

Supervised	learning	also	performs	well	at	time	series	prediction,	which	has	many
applications	in	fields	such	as	finance,	healthcare,	and	ad	tech.	Of	course,
supervised	learning	applications	are	not	restricted	to	working	with	only	one	data
type	at	a	time.	For	example,	video	captioning	systems	combine	image
recognition	with	natural	language	processing	to	apply	machine	learning	on
videos	and	generate	text	captions.

Unsupervised	Learning
Unsupervised	learning	has	not	had	nearly	as	many	successes	to	date	as
supervised	learning	has	had,	but	its	potential	is	immense.	Most	of	the	world’s
data	is	unlabeled.	To	apply	machine	learning	at	scale	to	tasks	that	are	more
ambitious	in	scope	than	the	ones	supervised	learning	has	already	solved,	we	will
need	to	work	with	both	labeled	and	unlabeled	data.

Unsupervised	learning	is	very	good	at	finding	hidden	patterns	by	learning	the
underlying	structure	in	unlabeled	data.	Once	hidden	patterns	are	uncovered,
unsupervised	learning	can	group	the	hidden	patterns	based	on	similarity	such
that	similar	patterns	are	grouped	together.

Once	the	patterns	are	grouped	this	way,	humans	can	sample	a	few	patterns	per
group	and	provide	meaningful	labels.	If	the	groups	are	well-defined	(i.e.,	the
members	are	homogeneous	and	distinctly	different	from	members	in	other
groups),	the	few	labels	that	humans	provide	by	hand	can	be	applied	to	the	other
(yet	unlabeled)	members	of	the	group.	This	process	leads	to	very	fast	and
efficient	labeling	of	previously	unlabeled	data.

In	other	words,	unsupervised	learning	enables	the	successful	application	of
supervised	learning	methods.	This	synergy	between	unsupervised	learning	and
supervised	learning—also	known	as	semisupervised	learning—may	fuel	the	next
wave	in	successful	machine	learning	applications.

Scikit-Learn
These	themes	from	unsupervised	learning	should	be	very	familar	to	you	by	now.
But	let’s	review	everything	we’ve	covered	so	far.

In	Chapter	3,	we	explored	how	to	use	dimensionality	reduction	algorithms	to
reduce	the	dimensionality	of	data	by	learning	the	underlying	structure,	keeping
only	the	most	salient	features,	and	mapping	the	features	into	a	lower	dimensional
space.

Once	the	data	is	mapped	to	a	lower	dimensional	space,	it	becomes	much	easier
to	uncover	the	hidden	patterns	in	the	data.	In	Chapter	4,	we	demonstrated	this	by
building	an	anomaly	detection	system,	separating	normal	credit	card	transactions
from	abnormal	ones.

In	this	lower	dimensional	space,	it	is	also	easier	to	group	similar	points	together;
this	is	known	as	clustering,	which	we	explored	in	Chapter	5.	A	successful
application	of	clustering	is	group	segmentation,	separating	items	based	on	how
similar	they	are	to	one	another	and	how	different	they	are	to	others.	We
performed	this	on	borrowers	filing	loan	applications	in	Chapter	6.	Chapters	3
through	6	concluded	the	unsupervised	learning	using	Scikit-Learn	portion	of	the
book.

In	Chapter	13,	we	expanded	clustering	to	time	series	data	for	the	first	time	and
explored	various	time	series	clustering	methods.	We	performed	many
experiments	and	highlighted	just	how	important	it	is	to	have	a	wide	arsenal	of
machine	learning	methods	available	because	no	one	method	works	best	for	all

datasets.

TensorFlow	and	Keras
Chapters	7	through	12	explored	unsupervised	learning	using	TensorFlow	and
Keras.

First,	we	introduced	neural	networks	and	the	concept	of	representation	learning.
In	Chapter	7,	we	used	autoencoders	to	learn	new,	more	condensed
representations	from	original	data—this	is	yet	another	way	unsupervised
learning	learns	the	underlying	structure	in	data	to	extract	insight.

In	Chapter	8,	we	applied	autoencoders	to	the	credit	card	transaction	dataset	to
build	a	fraud	detection	solution.	And,	very	importantly,	we	combined	an
unsupervised	approach	with	a	supervised	approach	in	Chapter	9	to	improve	the
standalone	unsupervised	learning-based	credit	card	fraud	detection	solution	we
built	in	Chapter	8,	highlighting	the	potential	synergy	between	unsupervised	and
supervised	learning	models.

In	Chapter	10,	we	introduced	generative	models	for	the	first	time,	starting	with
the	restricted	Boltzmann	machine.	We	used	these	to	build	a	movie	recommender
system,	a	very	light	version	of	the	type	of	recommender	systems	used	by	the
likes	of	Netflix	and	Amazon.

In	Chapter	11,	we	moved	from	shallow	to	deep	neural	networks,	and	we	built	a
more	advanced	generative	model	by	stacking	multiple	restricted	Boltzmann
machines	together.	With	this	so-called	deep	belief	network,	we	generated
synthetic	images	of	digits	to	augment	the	existing	MNIST	dataset	and	build	a
better	image	classification	system.	Again,	this	highlights	the	potential	of	using
unsupervised	learning	to	improve	a	supervised	solution.

In	Chapter	12,	we	moved	to	another	class	of	generative	models—the	one	most	in
vogue	today—called	generative	adversarial	networks.	We	used	these	to	generate
more	synthetic	images	of	digits	similar	to	those	in	the	MNIST	image	dataset.

Reinforcement	Learning
In	this	book,	we	did	not	cover	reinforcement	learning	in	any	detail,	but	it	is	yet
another	area	of	machine	learning	that	is	receiving	increased	attention,	especially

after	its	recent	successes	in	fields	such	as	board	and	video	game	playing.

Most	notably,	Google	DeepMind	introduced	its	Go	software	AlphaGo	to	the
world	a	few	years	ago,	and	AlphaGo’s	historic	victory	against	the	then-world
champion	Go	player	Lee	Sedol	in	March	2016—a	feat	many	expected	would
take	another	entire	decade	for	AI	to	achieve—helped	show	the	world	just	how
much	progress	had	been	made	in	the	field	of	AI.

More	recently,	Google	DeepMind	has	blended	reinforcement	learning	with
unsupervised	learning	to	develop	an	even	better	version	of	its	AlphaGo	software.
Called	AlphaGo	Zero,	this	software	does	not	use	data	from	human	games	at	all.

Such	successes	from	marrying	different	branches	of	machine	learning
corroborate	a	major	theme	of	this	book—the	next	wave	of	successes	in	machine
learning	will	be	led	by	finding	ways	to	work	with	unlabeled	data	to	improve
existing	machine	learning	solutions	that	today	rely	heavily	on	labeled	datasets.

Most	Promising	Areas	of	Unsupervised	Learning
Today
We	will	conclude	this	book	with	the	present	and	possible	future	state	of
unsupervised	learning.	Today,	unsupervised	learning	has	several	successful
applications	in	industry;	at	the	top	of	this	list	are	anomaly	detection,
dimensionality	reduction,	clustering,	efficient	labeling	of	unlabeled	datasets,	and
data	augmentation.

Unsupervising	learning	excels	in	identifying	newly	emerging	patterns,	especially
when	future	patterns	look	very	different	from	past	patterns;	in	some	fields,	labels
of	past	patterns	have	limited	value	in	catching	future	patterns	of	interest.	For
example,	anomaly	detection	is	used	for	identifying	fraud	of	all	types—credit
card,	debit	card,	wire,	online,	insurance,	etc.—and	for	flagging	suspicious
transactions	related	to	money	laundering,	terrorist	financing,	and	human
trafficking.

Anomaly	detection	is	also	used	in	cybersecurity	solutions	to	identify	and	stop
cyber-attacks.	Rules-based	systems	struggle	to	catch	new	types	of	cyber-attacks
so	unsupervised,	learning	is	becoming	a	staple	in	this	field.	Anomaly	detection
also	excels	at	highlighting	data	quality	issues;	with	anomaly	detection,	data

analysts	can	pinpoint	and	address	bad	data	capture	much	more	efficiently.

Unsupervised	learning	also	helps	address	one	of	the	major	challenges	in	machine
learning:	the	curse	of	dimensionality.	Data	scientists	typically	have	to	select	a
subset	of	features	to	use	in	analyzing	data	and	in	building	machine	learning
models	because	the	full	set	of	features	is	too	large,	making	computation	difficult
if	not	intractable.	Unsupervised	learning	enables	data	scientists	to	not	only	work
with	the	original	feature	set	but	also	to	supplement	it	with	additional	feature
engineering—without	fear	of	running	into	major	computational	challenges
during	model	building.

Once	the	original	plus	engineered	feature	set	is	ready,	data	scientists	apply
dimensionality	reduction	to	remove	redundant	features	and	keep	the	most
salient,	uncorrelated	ones	for	analysis	and	model	building.	This	type	of	data
compression	is	also	useful	as	a	preprocessing	step	in	supervised	machine
learning	systems	(especially	with	video	and	images).

Unsupervised	learning	also	helps	data	scientists	and	business	people	answer
questions	such	as	which	customers	are	behaving	in	the	most	uncommon	ways
(i.e.,	in	a	way	that	is	very	different	from	the	majority	of	customers).	This	insight
comes	from	clustering	similar	points	together,	helping	analysts	perform	group
segmentation.	Once	distinct	groups	are	identified,	humans	can	explore	what
makes	the	groups	special	and	distinctly	different	from	other	groups.	Insight	from
this	exercise	could	be	applied	to	gain	a	deeper	business	understanding	of	what	is
happening	and	to	improve	corporate	strategy.

Clustering	makes	labeling	unlabeled	data	considerably	more	efficient.	Because
similar	data	is	grouped	together,	a	human	needs	to	label	only	a	few	of	the	points
per	cluster.	Once	a	few	points	within	each	cluster	are	labeled,	the	other	not-yet-
labeled	points	could	adopt	the	labels	from	the	labeled	points.

Finally,	generative	models	can	generate	synthetic	data	to	supplement	existing
datasets.	We	demonstrated	this	with	our	work	on	the	MNIST	dataset.	The	ability
to	create	lots	of	new	synthetic	data—of	many	different	data	types	such	as	images
and	text—is	very	powerful	and	is	just	beginning	to	be	explored	earnestly.

The	Future	of	Unsupervised	Learning

We	are	still	very	early	in	the	current	AI	wave.	Of	course	there	have	been	major
successes	to	date,	but	a	lot	of	the	AI	world	is	built	on	hype	and	promise.	There	is
a	lot	of	potential	that	has	yet	to	be	realized.

The	successes	to	date	have	been	in	mostly	narrowly	defined	tasks	led	by
supervised	learning.	As	the	current	wave	of	AI	matures,	the	hope	is	that	we
move	from	narrow	AI	tasks	(such	as	image	classification,	machine	translation,
speech	recognition,	question-and-answer	bots)	to	more	ambitious	strong	AI
(chatbots	that	can	understand	meaning	in	human	language	and	converse
naturally	in	the	way	a	human	would,	robots	that	make	sense	of	the	physical
world	around	them	and	operate	in	it	without	relying	heavily	on	labeled	data,	self-
driving	cars	that	develop	super-human	driving	performance,	and	AI	that	can
exhibit	human-level	reasoning	and	creativity).

Many	regard	unsupervised	learning	as	the	key	to	developing	AI	of	the	strong
type.	Otherwise,	AI	will	be	shackled	by	the	limits	of	how	much	labeled	data	we
have.

One	thing	humans	excel	in—from	birth—is	learning	to	perform	tasks	without
requiring	many	examples.	For	instance,	a	toddler	is	able	to	differentiate	a	cat
from	a	dog	with	just	a	handful	of	examples.	Today’s	AI	needs	many	more
examples/labels.	Ideally,	the	AI	could	learn	to	separate	images	of	different
classes	(i.e.,	a	cat	vs.	a	dog)	with	as	few	labels	as	possible,	perhaps	as	little	as
one	or	none.	To	perform	this	type	of	one	shot	or	zero	shot	learning	will	require
more	progress	in	the	realm	of	unsupervised	learning.

Also,	most	AI	today	is	not	creative.	It	is	merely	optimizing	pattern	recognition
based	on	labels	it	has	trained	on.	To	build	AI	that	is	intuitive	and	creative,
researchers	will	need	to	build	AI	that	can	make	sense	of	lots	of	unlabeled	data	to
find	patterns	that	even	humans	would	have	not	previously	found.

Fortunately,	there	are	some	promising	signs	that	AI	is	advancing	ever	so
gradually	to	a	stronger	AI	type.

Google	DeepMind’s	AlphaGo	software	is	a	case	in	point.	The	first	version	of
AlphaGo	to	beat	a	human	professional	Go	player	(in	October	2015)	relied	on
data	from	past	Go	games	played	by	humans	and	machine	learning	methods	such
as	reinforcement	learning	(including	the	ability	to	look	many	moves	ahead	and
determine	which	move	improves	the	odds	of	winning	most	significantly).

This	version	of	AlphaGo	was	very	impressive,	beating	one	of	the	world’s	best
Go	players,	Lee	Sedol,	in	a	high-profile	best	of	five	series	in	Seoul,	South	Korea,
in	March	2016.	But	the	latest	version	of	AlphaGo	is	even	more	remarkable.

The	original	AlphaGo	relied	on	data	and	human	expertise.	The	latest	version	of
AlphaGo,	called	AlphaGo	Zero,	learned	how	to	play	and	win	Go	from	scratch,
purely	through	self	play. 	In	other	words,	AlphaGo	Zero	did	not	rely	on	any
human	knowledge	and	achieved	superhuman	performance,	beating	the	previous
AlphaGo	version	one	hundred	to	zero.

Starting	from	knowing	nothing	about	Go,	AlphaGo	Zero	accumulated	thousands
of	years	of	human	knowledge	in	Go	play	in	a	matter	of	days.	But	then	it
progressed	further,	beyond	the	realm	of	human-level	proficiency.	AlphaGo	Zero
discovered	new	knowledge	and	developed	new	unconventional	winning
strategies.

In	other	words,	AlphaGo	exercised	creativity.

If	AI	continues	to	advance,	fueled	by	the	ability	to	learn	from	little	to	no	prior
knowledge	(i.e.,	little	to	no	labeled	data),	we	will	be	able	to	develop	AI	that	is
capable	of	creativity,	reasoning,	and	complex	decision	making,	areas	that	have
so	far	been	the	sole	domain	of	humans.

Final	Words
We	have	just	scratched	the	surface	of	unsupervised	learning	and	its	potential,	but
I	hope	you	have	a	better	appreciation	of	what	unsupervised	learning	is	capable	of
and	how	it	could	be	applied	to	machine	learning	systems	you	design.

At	the	very	least,	you	should	have	a	conceptual	understanding	of	and	hands-on
experience	using	unsupervised	learning	to	uncover	hidden	patterns,	gain	deeper
business	insight,	detect	anomalies,	cluster	groups	based	on	similarity,	perform
automatic	feature	extraction,	and	generate	synthetic	datasets	from	unlabeled
datasets.

The	future	of	AI	is	full	of	promise.	Go	build	it.

1 	According	to	PitchBook,	venture	capital	investors	invested	over	$10.8	billion	in	AI	and	machine

2

3

4

http://bit.ly/2Rwwocm

learning	companies	in	2017,	up	from	$500	million	in	2010	and	nearly	double	the	$5.7	billion	invested
in	2016.

2 	“AlphaGo	Zero:	Learning	from	Scratch”	provides	an	in-depth	introduction	to	AlphaGo	Zero.

3 	For	additional	information,	check	out	the	Nature	article	“Mastering	the	Game	of	Go	Without	Human
Knowledge”.

4 	OpenAI	has	also	had	some	notable	successes	in	applying	unsupervised	learning	for	language
understanding,	both	of	which	are	essential	building	blocks	for	strong	AI.

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270
http://bit.ly/2GfhHrZ

Index

A

activation	functions,	Neural	Networks,	Activation	Functions

Adam	optimization	algorithm,	Optimizer,	One	Latent	Factor,	Convolutional
Neural	Networks

adjusted	Rand	index,	Training	and	Evaluation,	Training	and	Evaluation

agglomerative	clustering,	Hierarchical	clustering

agglomerative	hierarchical	clustering,	Agglomerative	Hierarchical	Clustering

algorithms

Adam	optimization	algorithm,	Optimizer,	One	Latent	Factor,	Convolutional
Neural	Networks

for	clustering,	Clustering	Algorithms,	Clustering	Algorithms

for	dimensionality	reduction,	Dimensionality	Reduction,	Dimensionality
Reduction	Algorithms

k-shape,	k-Shape,	Training	and	Evaluation

linear	regression,	Linear	regression

logistic	regression,	Logistic	regression,	Model	#1:	Logistic	Regression

supervised,	A	Closer	Look	at	Supervised	Algorithms-Neural	Networks

TimeSeriesKMean,	Time	Series	Clustering	Using	k-Means	on	ECG5000

unsupervised,	A	Closer	Look	at	Unsupervised	Algorithms-Sequential	Data
Problems	Using	Unsupervised	Learning

alpha	hyperparameter,	Sparse	PCA,	Optimizer

AlphaGo,	Reinforcement	Learning

AlphaGo	Zero,	Reinforcement	Learning

Anaconda,	Scientific	Libraries:	Anaconda	Distribution	of	Python

anomaly	detection

applications	for,	Unsupervised	Learning	Using	Scikit-Learn

credit	card	fraud	detection,	Credit	Card	Fraud	Detection-Define	Plotting
Function

dictionary	learning,	Dictionary	Learning	Anomaly	Detection-Dictionary
Learning	Anomaly	Detection

fraud	detection	on	test	set,	Fraud	Detection	on	the	Test	Set-Dictionary
Learning	Anomaly	Detection	on	the	Test	Set

Gaussian	random	projection,	Gaussian	Random	Projection	Anomaly
Detection-Gaussian	Random	Projection	Anomaly	Detection

independent	component	analysis	(ICA),	ICA	Anomaly	Detection-ICA
Anomaly	Detection

kernel	PCA,	Kernel	PCA	Anomaly	Detection-Kernel	PCA	Anomaly	Detection

nonlinear,	Nonlinear	Anomaly	Detection

normal	PCA,	Normal	PCA	Anomaly	Detection-Search	for	the	Optimal
Number	of	Principal	Components

overview	of,	Anomaly	Detection

sparse	PCA,	Sparse	PCA	Anomaly	Detection-Sparse	PCA	Anomaly	Detection

sparse	random	projection,	Sparse	Random	Projection	Anomaly	Detection

anomaly	Scores	function,	Define	Anomaly	Score	Function,	Data	Preparation

applied	AI	(artificial	intelligence),	The	Emergence	of	Applied	AI,	Major
Milestones	in	Applied	AI	over	the	Past	20	Years

area	under	the	receiver	operating	characteristic	(auROC),	Receiver	Operating
Characteristic

artificial	intelligence	(AI)

applied	artificial	intelligence,	The	Emergence	of	Applied	AI

commercial	applications	for,	The	Emergence	of	Applied	AI,	Conclusion

critical	developments	in,	AI	Is	Back,	but	Why	Now?

history	of,	A	Brief	History	of	Machine	Learning

major	milestones	in	applied	AI,	Major	Milestones	in	Applied	AI	over	the	Past
20	Years-Major	Milestones	in	Applied	AI	over	the	Past	20	Years

unsupervised	learning	for	unlabeled	data,	Objective	and	Approach

atoms,	Dictionary	Learning

attributions,	Using	Code	Examples

autoencoder	example	project	(see	also	autoencoders)

activation	functions,	Activation	Functions

data	preparation,	Data	Preparation-The	Components	of	an	Autoencoder

denoising	autoencoders,	Denoising	Autoencoder-Two-Layer	Denoising
Overcomplete	Autoencoder	with	ReLu	Activation

noisy	datasets,	Working	with	Noisy	Datasets

nonlinear	autoencoder,	Nonlinear	Autoencoder-Nonlinear	Autoencoder

overcomplete	AE	with	linear	activation,	Overcomplete	Autoencoder	with
Linear	Activation-Overcomplete	Autoencoder	with	Linear	Activation

overcomplete	AE	with	linear	activation	and	dropout,	Overcomplete
Autoencoder	with	Linear	Activation	and	Dropout

overview	of,	The	Components	of	an	Autoencoder

sparse	overcomplete	AE	with	linear	activation,	Sparse	Overcomplete

Autoencoder	with	Linear	Activation-Sparse	Overcomplete	Autoencoder	with
Linear	Activation

sparse	overcomplete	AE	with	linear	activation	and	dropout,	Sparse
Overcomplete	Autoencoder	with	Linear	Activation	and	Dropout-Sparse
Overcomplete	Autoencoder	with	Linear	Activation	and	Dropout

two-layer	AE	with	linear	activation	function,	Our	First	Autoencoder-
Evaluating	on	the	Test	Set

two-layer	undercomplete	AE	with	linear	activation	function,	Two-Layer
Undercomplete	Autoencoder	with	Linear	Activation	Function-Adding	More
Hidden	Layers

autoencoders	(see	also	autoencoder	example	project)

applications	for,	Autoencoder:	The	Encoder	and	the	Decoder

benefits	of,	Conclusion

denoising	autoencoder,	Denoising	Autoencoder

dense	versus	sparse	autoencoders,	Dense	vs.	Sparse	Autoencoders

encoder	and	decoder	in,	Autoencoder:	The	Encoder	and	the	Decoder

neural	networks	and,	Neural	Networks-Keras

overcomplete,	Overcomplete	Autoencoders

overview	of,	Autoencoders,	Autoencoders

undercomplete,	Undercomplete	Autoencoders

variational	autoencoders,	Variational	Autoencoder

automatic	feature	extraction,	importance	of,	Conclusion	(see	also	autoencoders;
feature	extraction)

B

backpropagation,	Unsupervised	Deep	Learning

backward	pass,	RBM	Neural	Network	Architecture

bagging,	Bagging

bias	nodes,	Neural	Networks

binary	classification,	A	Closer	Look	at	Supervised	Algorithms

Boltzmann	machines,	Recommender	Systems	Using	Restricted	Boltzmann
Machines-Restricted	Boltzmann	Machines

boosting,	Boosting

bootstrap	aggregation,	Bagging

C

capacity,	Overcomplete	Autoencoder	with	Linear	Activation

categorical	problems,	A	Closer	Look	at	Supervised	Algorithms

centroids,	k-means,	k-Means

Chintala,	Soumith,	Deep	Convolutional	GANs

class	probabilities,	Logistic	regression

classification	problems,	A	Closer	Look	at	Supervised	Algorithms

clustering

algorithms	for,	k-means-DBSCAN,	Clustering	Algorithms,	Clustering
Algorithms

applications	for,	Clustering

DBSCAN	(density-based	spatial	clustering	of	applications	with	noise),
DBSCAN,	DBSCAN-HDBSCAN

goal	of,	Clustering,	Clustering

hierarchical,	Hierarchical	clustering,	Hierarchical	Clustering-Evaluating	the
Clustering	Results

k-means,	k-means,	k-Means-k-Means	on	the	Original	Dataset

MNIST	digits	database,	MNIST	Digits	Dataset

process	of,	Clustering

code	examples,	obtaining	and	using,	Using	Code	Examples,	Clone	the	Hands-On
Unsupervised	Learning	Git	Repository

coefficient	of	variation,	Evaluating	on	the	Test	Set

collaborative	filtering,	k-nearest	neighbors,	Recommender	Systems,
Collaborative	Filtering	Using	RBMs-Train	RBM	Recommender	System

collinearity,	Linear	regression

comments	and	questions,	How	to	Contact	Us

confusion	matrix,	Confusion	Matrix

contact	information,	How	to	Contact	Us

content-based	filtering,	k-nearest	neighbors,	Recommender	Systems

continuous	variables,	A	Closer	Look	at	Supervised	Algorithms

convolutional	neural	networks	(CNNs),	Neural	Networks,	Deep	Convolutional
GANs-Convolutional	Neural	Networks

cost	function,	Basic	Machine	Learning	Terminology

credit	card	fraud	detection	(see	also	machine	learning	example	project)

data	preparation,	Prepare	the	Data

defining	anomaly	score	function,	Define	Anomaly	Score	Function

defining	evaluation	metrics,	Define	Evaluation	Metrics

defining	plotting	function,	Define	Plotting	Function

shortcomings	of,	Define	Evaluation	Metrics

cross-sectional	data,	Time	Series	Clustering

curse	of	dimensionality,	Curse	of	dimensionality,	Dimensionality	Reduction	(see
also	dimensionality	reduction)

D

data	discrimination,	GANs,	the	Concept

data	drift,	Data	drift

DBSCAN	(density-based	spatial	clustering	of	applications	with	noise),
DBSCAN,	DBSCAN-Applying	DBSCAN	to	Our	Dataset

decision	trees,	Tree-Based	Methods	(see	also	tree-based	methods)

decoders,	Autoencoder:	The	Encoder	and	the	Decoder,	The	Components	of	an
Autoencoder

deconvolution,	DCGANs	Revisited

deep	belief	networks	(DBNs)

benefits	of	generative	models,	How	Unsupervised	Learning	Helps	Supervised
Learning-Image	Classifier	Using	LightGBM

DBN	training,	The	Full	DBN-Train	the	DBN

image	classifier	using	LightGBM,	Image	Classifier	Using	LightGBM-
Unsupervised	and	Supervised	Solution

MNIST	image	classification,	MNIST	Image	Classification

overview	of,	Deep	belief	networks

RBM	training,	Train	the	Three	RBMs	for	the	DBN-View	Generated	Images

restricted	Boltzmann	machines	(RBMs),	Restricted	Boltzmann	Machines-
View	the	Intermediate	Feature	Detectors

structure	and	function	of,	Deep	Belief	Networks	in	Detail

versus	RBMs,	Feature	Detection	Using	Deep	Belief	Networks

deep	convolutional	GANs	(DCGANs),	Deep	Convolutional	GANs,	DCGANs

Revisited-DCGAN	for	the	MNIST	Dataset

deep	neural	networks,	Unsupervised	Deep	Learning,	Deep	Unsupervised
Learning	Using	TensorFlow	and	Keras

dendrograms,	Hierarchical	clustering,	Hierarchical	Clustering,	The	Dendrogram

denoising	autoencoders

goal	of,	Denoising	Autoencoder

overview	of,	Denoising	Autoencoder

two-layer	overcomplete	with	linear	activation,	Two-Layer	Denoising
Overcomplete	Autoencoder	with	Linear	Activation

two-layer	overcomplete	with	ReLu	activation,	Two-Layer	Denoising
Overcomplete	Autoencoder	with	ReLu	Activation

two-layer	undercomplete	with	linear	activation,	Two-Layer	Denoising
Undercomplete	Autoencoder	with	Linear	Activation

dense	encoders,	Dense	vs.	Sparse	Autoencoders

Dense(),	Generator	of	the	DCGAN

dependent	variables,	Basic	Machine	Learning	Terminology

deterministic	approach,	Restricted	Boltzmann	Machines

dictionary	learning,	Dictionary	learning,	Dictionary	Learning,	Dictionary
Learning	Anomaly	Detection-Dictionary	Learning	Anomaly	Detection,
Dictionary	Learning	Anomaly	Detection	on	the	Test	Set

dimensionality	reduction

algorithms	for,	Linear	projection-Latent	Dirichlet	allocation,	Dimensionality
Reduction	Algorithms

dictionary	learning,	Dictionary	Learning

goal	of,	Dimensionality	Reduction,	Latent	Dirichlet	allocation

independent	component	analysis	(ICA),	Independent	Component	Analysis

isometric	mapping	(Isomap),	Isomap

locally	linear	embedding	(LLE),	Locally	Linear	Embedding

MNIST	digits	database,	The	MNIST	Digits	Database-Display	the	images

motivation	for,	The	Motivation	for	Dimensionality	Reduction

multidimensional	scaling,	Multidimensional	Scaling

principal	component	analysis	(PCA),	Principal	Component	Analysis-Kernel
PCA

random	projection,	Random	Projection

singular	value	decomposition	(SVD),	Singular	Value	Decomposition

t-distributed	stochastic	neighbor	embedding,	t-Distributed	Stochastic
Neighbor	Embedding

discrete	prediction	problems,	A	Closer	Look	at	Supervised	Algorithms

discriminative	models,	Recommender	Systems	Using	Restricted	Boltzmann
Machines,	GANs,	the	Concept

dropout,	Overcomplete	Autoencoder	with	Linear	Activation	and	Dropout

E

ECG5000	dataset,	Time	Series	Clustering	Using	k-Shape	on	ECG5000-Time
Series	Clustering	Using	Hierarchical	DBSCAN	on	ECG5000

ECGFiveDays	dataset,	Time	Series	Clustering	Using	k-Shape	on	ECGFiveDays-
Training	and	Evaluation

encoders,	Autoencoder:	The	Encoder	and	the	Decoder,	The	Components	of	an
Autoencoder

ensemble	method,	Bagging

environment	setup,	Environment	Setup-Interactive	Computing	Environment:
Jupyter	Notebook

epochs,	Optimizer

error	rate,	Basic	Machine	Learning	Terminology

Euclidean	distance,	Isomap,	Isomap

evaluation	metrics

confusion	matrix,	Confusion	Matrix

precision-recall	curve,	Precision-Recall	Curve-Precision-Recall	Curve,	Define
Evaluation	Metrics

receiver	operating	characteristic	(ROC),	Receiver	Operating	Characteristic-
Evaluating	the	logistic	regression	model

shortcomings	of,	Define	Evaluation	Metrics

uses	for,	Evaluation	Metrics

experience,	Basic	Machine	Learning	Terminology

explicit	data,	Collaborative	Filtering

exploding	gradient	problem,	Unsupervised	Deep	Learning

F

fastcluster	package,	Clustering	Algorithms,	Agglomerative	Hierarchical
Clustering

fcluster	library,	Evaluating	the	Clustering	Results

feature	detection,	Deep	belief	networks,	View	the	Intermediate	Feature	Detectors
(see	also	deep	belief	networks	(DBNs))

feature	engineering,	Feature	engineering,	Feature	Engineering	and	Feature
Selection

feature	extraction,	Feature	Extraction,	Autoencoders	(see	also	autoencoders)

feature	scaling,	PCA,	the	Concept

feature	selection,	Feature	Engineering	and	Feature	Selection

features,	Basic	Machine	Learning	Terminology

feedforward	networks,	Feature	extraction	using	supervised	training	of
feedforward	networks,	Autoencoders,	Neural	Networks

fine-tuning,	Deep	Belief	Networks	in	Detail

fit	method,	Training	the	Model

fit_inverse_transform	function,	Kernel	PCA	Anomaly	Detection

fit_transform	function,	Sparse	PCA	Anomaly	Detection

forward	pass,	RBM	Neural	Network	Architecture

G

gamma	coefficient,	Kernel	PCA

Gaussian	random	projection,	Gaussian	Random	Projection,	Gaussian	Random
Projection	Anomaly	Detection-Gaussian	Random	Projection	Anomaly	Detection

general	artificial	intelligence,	A	Brief	History	of	Machine	Learning

general	artificial	intelligence	(AGI),	From	Narrow	AI	to	AGI

generalization	error,	Basic	Machine	Learning	Terminology,	Split	into	Training
and	Test	Sets,	Autoencoders

generative	adversarial	networks	(GANs)

benefits	of,	The	Power	of	GANs

concept	of,	GANs,	the	Concept

convolutional	neural	networks	(CNNs),	Deep	Convolutional	GANs-
Convolutional	Neural	Networks

deep	convolutional	GANs	(DCGANs),	Deep	Convolutional	GANs,	DCGANs

Revisited-DCGAN	for	the	MNIST	Dataset

MNIST	DCGAN	operation,	MNIST	DCGAN	in	Action-Synthetic	Image
Generation

overview	of,	Generative	adversarial	networks

generative	learning,	RBM	Neural	Network	Architecture

generative	unsupervised	models,	Recommender	Systems	Using	Restricted
Boltzmann	Machines,	GANs,	the	Concept

geodesic	distance,	Isomap,	Isomap

Gibbs	sampling,	RBM	Neural	Network	Architecture

Git,	Version	Control:	Git

Goodfellow,	Ian,	GANs,	the	Concept

Google	DeepMind,	Reinforcement	Learning

gradient	boosting	machines	(GBMs),	Boosting,	Model	#3:	Gradient	Boosting
Machine	(XGBoost)-Evaluate	the	results

gradient	of	the	error	function,	Unsupervised	Deep	Learning

Gravano,	Luis,	k-Shape

greedy	layer-wise	unsupervised	pretraining,	Unsupervised	pretraining

group	segmentation

analyzing	cluster	homogeneity,	Goodness	of	the	Clusters

applications	for,	Unsupervised	Learning	Using	Scikit-Learn,	Group
Segmentation

HDBSCAN	(hierarchical	DBSCAN),	HDBSCAN	Application

hierarchical	clustering,	Hierarchical	Clustering	Application-Hierarchical
Clustering	Application

k-means	application,	k-Means	Application

Lending	Club	data,	Lending	Club	Data-Designate	Labels	for	Evaluation

overview	of,	Group	segmentation

H

HDBSCAN	(hierarchical	DBSCAN),	HDBSCAN,	HDBSCAN	Application,
Time	Series	Clustering	Using	Hierarchical	DBSCAN	on	ECG5000

hidden	layers,	Neural	Networks

hidden	Markov	models,	Sequential	Data	Problems	Using	Unsupervised	Learning

hierarchical	clustering

agglomerative,	Agglomerative	Hierarchical	Clustering

evaluating	cluster	results,	Evaluating	the	Clustering	Results

group	segmentation,	Hierarchical	Clustering	Application-Hierarchical
Clustering	Application

overview	of,	Hierarchical	clustering,	Hierarchical	Clustering

Z	matrix	(dendrogram),	The	Dendrogram

Hinton,	Geoffrey,	Boltzmann	Machines,	Feature	Detection	Using	Deep	Belief
Networks

holdout	set,	Basic	Machine	Learning	Terminology

hyperbolic	tangent	(tanh)	activation	function,	Neural	Networks,	Activation
Functions

hyperparameter	optimization,	Neural	Networks,	Nonlinear	Autoencoder

I

identity	function,	Autoencoder:	The	Encoder	and	the	Decoder,	Training	the
Model,	Overcomplete	Autoencoder	with	Linear	Activation

implicit	data,	Collaborative	Filtering

incremental	PCA,	Principal	component	analysis	(PCA),	Incremental	PCA

independent	component	analysis	(ICA),	Independent	component	analysis,
Independent	Component	Analysis,	ICA	Anomaly	Detection-ICA	Anomaly
Detection,	ICA	Anomaly	Detection	on	the	Test	Set

independent	variables,	Basic	Machine	Learning	Terminology

inertia,	k-means,	k-Means

input	layers,	Neural	Networks

input	variables,	Basic	Machine	Learning	Terminology

instance-based	learning,	Neighborhood-Based	Methods

interpretability,	Linear	regression

inverse_transform	function,	Sparse	PCA	Anomaly	Detection,	Kernel	PCA
Anomaly	Detection,	Dictionary	Learning	Anomaly	Detection,	ICA	Anomaly
Detection

isometric	mapping	(Isomap),	Isomap,	Isomap

J

Johnson-Lindenstrauss	lemma,	Random	Projection

Jupyter	Notebook

activating,	Interactive	Computing	Environment:	Jupyter	Notebook

resources	for	learning,	Prerequisites

K

k-fold	cross-validation,	Create	k-Fold	Cross-Validation	Sets,	Supervised	Model

k-means	clustering

accuracy	of,	k-Means	Accuracy

evaluating	clustering	results,	Evaluating	the	Clustering	Results

goal	of,	k-Means

group	segmentation,	k-Means	Application

k-means	inertia,	k-Means	Inertia

number	of	principal	components	and,	k-Means	and	the	Number	of	Principal
Components

on	original	dataset,	k-Means	on	the	Original	Dataset

overview	of,	k-means

on	time	series	data,	ECG	Data

k-nearest	neighbors	(KNN),	k-nearest	neighbors

k-shape	algorithm,	k-Shape,	Training	and	Evaluation

Keras

Dense(),	Generator	of	the	DCGAN

installing,	Neural	Networks:	TensorFlow	and	Keras

overview	of,	Keras

role	in	unsupervised	learning,	TensorFlow	and	Keras

Sequential(),	Convolutional	Neural	Networks,	Generator	of	the	DCGAN

to_categorical	function,	Convolutional	Neural	Networks

kernel	PCA,	Principal	component	analysis	(PCA),	Kernel	PCA,	Kernel	PCA
Anomaly	Detection-Kernel	PCA	Anomaly	Detection

kernel	size,	Convolutional	Neural	Networks

Kullback–Leibler	divergence,	t-Distributed	Stochastic	Neighbor	Embedding,
RBM	Neural	Network	Architecture

L

labeled	versus	unlabeled	data,	Objective	and	Approach,	Using	Unsupervised
Learning	to	Improve	Machine	Learning	Solutions

LabelEncoder,	Designate	Labels	for	Evaluation

latent	Dirichlet	allocation	(LDA),	Latent	Dirichlet	allocation

layer	one	predictions,	Stacking

lazy	learners,	Neighborhood-Based	Methods

learned	representation,	Autoencoders

learning	rates,	Optimizer

Lending	Club	data,	Lending	Club	Data

LightGBM

image	classifier	using,	Image	Classifier	Using	LightGBM-Unsupervised	and
Supervised	Solution

installing,	Gradient	Boosting,	Version	Two:	LightGBM

model	creation	and	evaluation,	Model	#4:	Gradient	Boosting	Machine
(LightGBM)-Evaluate	the	results

linear	activation	function,	Neural	Networks,	Activation	Functions

linear	methods

linear	regression	algorithm,	Linear	regression

logistic	regression	algorithm,	Logistic	regression,	Model	#1:	Logistic
Regression-Evaluate	the	results

linear	projection	dimensionality	reduction,	Linear	projection,	Linear	Projection
vs.	Manifold	Learning

locally	linear	embedding	(LLE),	Locally	Linear	Embedding

logistic	regression	algorithm,	Logistic	regression,	Model	#1:	Logistic
Regression-Evaluate	the	results

longitudinal	data,	Time	Series	Clustering

loss	functions,	Undercomplete	Autoencoders,	Our	First	Autoencoder

M

machine	learning	(see	also	machine	learning	example	project)

applied	AI,	The	Emergence	of	Applied	AI

classic	vs.	using	neural	networks,	Neural	Networks

commercial	applications	for,	The	Emergence	of	Applied	AI,	Conclusion

critical	developments	in,	AI	Is	Back,	but	Why	Now?

ecosystem	for,	Unsupervised	Learning	in	the	Machine	Learning	Ecosystem-
Conclusion

history	of,	A	Brief	History	of	Machine	Learning

major	milestones	in	applied	AI,	Major	Milestones	in	Applied	AI	over	the	Past
20	Years-Major	Milestones	in	Applied	AI	over	the	Past	20	Years

reinforcement	learning,	Reinforcement	Learning	Using	Unsupervised
Learning,	Reinforcement	Learning

resources	for	learning,	Prerequisites

unsupervised	learning	for	unlabeled	data,	Objective	and	Approach

machine	learning	example	project	(see	also	machine	learning)

data	preparation,	Data	Preparation-Data	Visualization

ensembles,	Ensembles-Evaluate	the	results

environment	setup,	Environment	Setup-Interactive	Computing	Environment:
Jupyter	Notebook

evaluation	metrics,	Evaluation	Metrics-Evaluating	the	logistic	regression
model

final	model	selection,	Final	Model	Selection

LightGBM	model,	Model	#4:	Gradient	Boosting	Machine	(LightGBM)-
Evaluate	the	results

logistic	regression	model,	Model	#1:	Logistic	Regression-Evaluate	the	results

model	evaluation,	Evaluation	of	the	Four	Models	Using	the	Test	Set-
LightGBM	gradient	boosting

model	preparation,	Model	Preparation

overview	of	data,	Overview	of	the	Data

production	pipeline,	Production	Pipeline

random	forests	model,	Model	#2:	Random	Forests-Evaluate	the	results

XGBoost	model,	Model	#3:	Gradient	Boosting	Machine	(XGBoost)-Evaluate
the	results

manifold	learning,	Manifold	learning,	Linear	Projection	vs.	Manifold	Learning

Markov	models,	Sequential	Data	Problems	Using	Unsupervised	Learning

matrix	factorization,	Matrix	Factorization-Five	Latent	Factors

max	pooling,	Convolutional	Neural	Networks

mean	squared	error	(MSE),	Loss	Function,	Define	the	Cost	Function:	Mean
Squared	Error

Metz,	Luke,	Deep	Convolutional	GANs

MNIST	digits	database,	The	MNIST	Digits	Database-Display	the	images,
MNIST	Digits	Dataset,	MNIST	Image	Classification,	Deep	Convolutional	GANs

model	evaluation,	Evaluation	of	the	Four	Models	Using	the	Test	Set-LightGBM
gradient	boosting

MovieLens	20M	Dataset,	MovieLens	Dataset-Perform	Baseline	Experiments

multi-class	classification,	A	Closer	Look	at	Supervised	Algorithms

multidimensional	scaling,	Multidimensional	Scaling

N

narrow	AI,	AI	Is	Back,	but	Why	Now?,	From	Narrow	AI	to	AGI

neighborhood-based	methods,	Neighborhood-Based	Methods

Netflix-sponsored	competition,	The	Netflix	Prize

neural	networks

activation	functions	and,	Neural	Networks

benefits	and	drawbacks	of,	Neural	Networks

bias	nodes	in,	Neural	Networks

hyperparameter	optimization,	Neural	Networks

Keras	and,	Keras

layers	of,	Neural	Networks

nodes	in,	Neural	Networks

overview	of,	Neural	Networks

shallow	and	deep,	Neural	Networks,	Deep	Unsupervised	Learning	Using
TensorFlow	and	Keras

supervised	and	unsupervised	learning	in,	Neural	Networks

TensorFlow	and,	TensorFlow

neurons,	Neural	Networks

nodes,	Neural	Networks

noise	vector,	DCGANs	Revisited

noisy	datasets,	Working	with	Noisy	Datasets

nonlinear	anomaly	detection,	Nonlinear	Anomaly	Detection

nonlinear	dimensionality	reduction,	Manifold	learning,	Linear	Projection	vs.
Manifold	Learning

nonparametric	methods,	Neighborhood-Based	Methods

normalization,	Generate	summary	statistics

not	a	number	(NaNs),	Identify	nonnumerical	values	by	feature,	Impute	Missing
Values

O

objective	functions,	Our	First	Autoencoder

one	shot	learning,	The	Future	of	Unsupervised	Learning

optimizers,	Our	First	Autoencoder

out-of-sample	error,	Basic	Machine	Learning	Terminology

outliers,	Outliers,	Anomaly	Detection

output	layers,	Neural	Networks

output	variables,	Basic	Machine	Learning	Terminology

overcomplete	autoencoders,	Overcomplete	Autoencoders

overcomplete	dictionaries,	Dictionary	Learning

overfitting,	Overfitting,	A	Closer	Look	at	Supervised	Algorithms

oversampling,	Unsupervised	Model

P

panel	data,	Time	Series	Clustering

Paparrizos,	John,	k-Shape

parallelization,	TensorFlow

partially	labeled	datasets,	Data	Preparation

performance,	Basic	Machine	Learning	Terminology,	Evaluate	the	results

plotResults	function,	Data	Preparation

precision,	Evaluation	Metrics,	Define	Evaluation	Metrics

precision-recall	curve,	Precision-Recall	Curve-Precision-Recall	Curve,	Define
Evaluation	Metrics

precisionAnalysis	function,	Data	Preparation

predict	method,	Evaluating	on	the	Test	Set

predictors,	Basic	Machine	Learning	Terminology

pretraining,	Deep	Belief	Networks	in	Detail

principal	component	analysis	(PCA)

benefits	of,	Visualize	the	separation	of	points	in	space

concept	of,	PCA,	the	Concept

in	practice,	PCA	in	Practice

incremental	PCA,	Incremental	PCA

kernel	PCA,	Kernel	PCA,	Kernel	PCA	Anomaly	Detection-Kernel	PCA
Anomaly	Detection

normal	PCA	anomaly	detection,	Normal	PCA	Anomaly	Detection-Search	for
the	Optimal	Number	of	Principal	Components,	Normal	PCA	Anomaly
Detection	on	the	Test	Set

overview	of,	Principal	component	analysis	(PCA)

sparse	PCA,	Sparse	PCA,	Sparse	PCA	Anomaly	Detection-Sparse	PCA
Anomaly	Detection

probability	distribution,	RBM	Neural	Network	Architecture

project	and	reshape	action,	DCGANs	Revisited

Q

qualitative	problems,	A	Closer	Look	at	Supervised	Algorithms

quantitative	problems,	A	Closer	Look	at	Supervised	Algorithms

questions	and	comments,	How	to	Contact	Us

R

Radford,	Alec,	Deep	Convolutional	GANs

radial	basis	function	(RBF)	kernel,	Kernel	PCA,	Kernel	PCA	Anomaly
Detection

random	forests,	Random	forests,	Model	#2:	Random	Forests-Evaluate	the	results

random	Gaussian	matrix,	Random	projection

random	projection	dimensionality	reduction,	Random	projection,	Random
Projection

random	sparse	matrix,	Random	projection

randomization,	Bagging

recall,	Evaluation	Metrics

receiver	operating	characteristic	(ROC),	Receiver	Operating	Characteristic-
Evaluating	the	logistic	regression	model

recommender	systems,	Clustering,	Recommender	Systems

reconstruction	error,	Dense	vs.	Sparse	Autoencoders

rectified	linear	unit	(ReLU)	activation	function,	Neural	Networks,	Activation
Functions

recurrent	neural	networks,	Neural	Networks

regression	problems,	A	Closer	Look	at	Supervised	Algorithms

regularization,	Overfitting,	Overcomplete	Autoencoders,	Overcomplete

Autoencoder	with	Linear	Activation	and	Dropout

regularized	overcomplete	autoencoders,	Overcomplete	Autoencoders

reinforcement	learning,	Reinforcement	Learning	Using	Unsupervised	Learning,
Reinforcement	Learning

representation	learning,	Autoencoders

response	variables,	Basic	Machine	Learning	Terminology

restricted	Boltzmann	machines	(RBMs)

Boltzmann	machines,	Recommender	Systems	Using	Restricted	Boltzmann
Machines-Restricted	Boltzmann	Machines

collaborative	filtering	using,	Collaborative	Filtering	Using	RBMs-Train	RBM
Recommender	System

matrix	factorization,	Matrix	Factorization-Five	Latent	Factors

MovieLens	20M	Dataset,	MovieLens	Dataset-Perform	Baseline	Experiments

overview	of,	Restricted	Boltzmann	machines

recommender	systems,	Recommender	Systems

versus	DBNs,	Feature	Detection	Using	Deep	Belief	Networks

rules-based	approach,	Rules-Based	vs.	Machine	Learning

S

Scikit-learn

anomaly	detection	using,	PCA	Components	Equal	Number	of	Original
Dimensions-Dictionary	Learning	Anomaly	Detection	on	the	Test	Set

clustering	using,	k-Means-HDBSCAN

fit_transform	function,	Sparse	PCA	Anomaly	Detection,	Kernel	PCA
Anomaly	Detection

group	segmentation,	Designate	Labels	for	Evaluation-Conclusion

inverse_transform	function,	Sparse	PCA	Anomaly	Detection,	Kernel	PCA
Anomaly	Detection,	Dictionary	Learning	Anomaly	Detection,	ICA	Anomaly
Detection

LabelEncoder,	Designate	Labels	for	Evaluation

role	in	unsupervised	learning,	Scikit-Learn

segmented	instances,	Tree-Based	Methods

Sejnowski,	Terry,	Boltzmann	Machines

semisupervised	learning

advantages	of,	Semisupervised	Learning,	Deep	Convolutional	GANs

data	preparation,	Data	Preparation-Data	Preparation

overview	of,	Semisupervised	Learning

power	of	combined	learning,	The	Power	of	Supervised	and	Unsupervised

semisupervised	model,	Semisupervised	Model-Semisupervised	Model

supervised	model,	Supervised	Model-Supervised	Model

unsupervised	model,	Unsupervised	Model-Unsupervised	Model

Sequential	model	API,	Our	First	Autoencoder

Sequential(),	Convolutional	Neural	Networks,	Generator	of	the	DCGAN

sigmoid	activation	function,	Neural	Networks,	Activation	Functions

simple	Markov	models,	Sequential	Data	Problems	Using	Unsupervised	Learning

single	decision	tree,	Single	decision	tree	(see	also	tree-based	methods)

singular	value	decomposition	(SVD),	Singular	value	decomposition	(SVD),
Singular	Value	Decomposition

softmax	activation	function,	Neural	Networks,	Activation	Functions

sparse	autoencoders,	Dense	vs.	Sparse	Autoencoders

sparse	PCA,	Principal	component	analysis	(PCA),	Sparse	PCA,	Sparse	PCA
Anomaly	Detection-Sparse	PCA	Anomaly	Detection

sparse	random	projection,	Sparse	Random	Projection,	Sparse	Random	Projection
Anomaly	Detection

sparsity	penalty,	Dense	vs.	Sparse	Autoencoders,	Sparse	Overcomplete
Autoencoder	with	Linear	Activation

stacking,	Stacking

standardization,	Generate	summary	statistics

stochastic	approach,	Restricted	Boltzmann	Machines

stochastic	gradient	descent	(SGD),	Optimizer

stratified	instances,	Tree-Based	Methods

stride,	Convolutional	Neural	Networks

strong	AI,	A	Brief	History	of	Machine	Learning

superintelligence,	From	Narrow	AI	to	AGI

supervised	learning

definition	of,	Supervised	vs.	Unsupervised

strengths	and	weaknesses	of,	The	Strengths	and	Weaknesses	of	Supervised
Learning

successful	applications	of,	Supervised	Learning

supervised	learning	algorithms

linear	methods,	Linear	Methods

neighborhood-based	methods,	Neighborhood-Based	Methods

neural	networks,	Neural	Networks

overview	of,	A	Closer	Look	at	Supervised	Algorithms

support	vector	machines	(SVMs),	Support	Vector	Machines

tree-based	methods,	Tree-Based	Methods

support	vector	machines	(SVMs),	Support	Vector	Machines

synthetic	data,	The	Power	of	GANs

synthetic	image	generation,	Synthetic	Image	Generation

T

t-distributed	stochastic	neighbor	embedding,	t-distributed	stochastic	neighbor
embedding	(t-SNE),	t-Distributed	Stochastic	Neighbor	Embedding

target	variables,	Basic	Machine	Learning	Terminology

task,	Basic	Machine	Learning	Terminology

TensorFlow

benefits	of,	TensorFlow

development	of,	TensorFlow

example	application,	TensorFlow	example

installing,	Neural	Networks:	TensorFlow	and	Keras

role	in	unsupervised	learning,	TensorFlow	and	Keras

tf.Session(),	TensorFlow	example

terminology,	Basic	Machine	Learning	Terminology

test	set,	Basic	Machine	Learning	Terminology

tf.Session(),	TensorFlow	example

threshold,	Precision-Recall	Curve

time	series	clustering

algorithm	comparison,	Comparing	the	Time	Series	Clustering	Algorithms-
Comparing	All	Three	Time	Series	Clustering	Approaches

applications	for,	Time	Series	Clustering

approach	to,	Approach	to	Time	Series	Clustering

electrocardiogram	(EKG/ECG)	data,	ECG	Data

time	series	data	defined,	Time	Series	Clustering

using	hierarchical	DBSCAN,	Time	Series	Clustering	Using	Hierarchical
DBSCAN	on	ECG5000

using	k-means	on	ECG5000	dataset,	Time	Series	Clustering	Using	k-Means
on	ECG5000

using	k-shape	on	ECG5000	dataset,	Time	Series	Clustering	Using	k-Shape	on
ECG5000-Training	and	Evaluation

using	k-shape	on	ECGFiveDays	dataset,	Time	Series	Clustering	Using	k-
Shape	on	ECGFiveDays-Training	and	Evaluation

TimeSeriesKMean	algorithm,	Time	Series	Clustering	Using	k-Means	on
ECG5000

to_categorical	function,	Convolutional	Neural	Networks

training	instances	or	samples,	Basic	Machine	Learning	Terminology

training	sets,	Basic	Machine	Learning	Terminology

transfer	learning,	Unsupervised	pretraining,	Clustering

transposed	convolution,	DCGANs	Revisited

tree-based	methods

bagging,	Bagging

boosting,	Boosting

goal	of,	Tree-Based	Methods

random	forests,	Random	forests,	Model	#2:	Random	Forests-Evaluate	the
results

single	decision	tree,	Single	decision	tree

tslearn	package,	Data	Preparation,	Time	Series	Clustering	Using	k-Means	on
ECG5000

typographical	conventions,	Conventions	Used	in	This	Book

U

UCR	Time	Series	website,	Time	Series	Clustering	Using	k-Shape	on
ECGFiveDays

undercomplete	autoencoders,	Undercomplete	Autoencoders

undercomplete	dictionaries,	Dictionary	Learning

underfitting,	Overfitting,	A	Closer	Look	at	Supervised	Algorithms

units,	Neural	Networks

unlabeled	versus	labeled	data,	Objective	and	Approach,	Using	Unsupervised
Learning	to	Improve	Machine	Learning	Solutions

unsupervised	deep	learning

feature	detection	using	DBNs,	Feature	Detection	Using	Deep	Belief
Networks-Conclusion

generative	adversarial	networks	(GANs),	Generative	Adversarial	Networks-
Conclusion

overview	of,	Unsupervised	Deep	Learning-Generative	adversarial	networks

recommender	systems	using	RBMs,	Recommender	Systems	Using	Restricted
Boltzmann	Machines-Conclusion

time	series	clustering,	Time	Series	Clustering-Conclusion

unsupervised	learning

approach	to	learning,	Objective	and	Approach

challenges	faced	by,	Using	Unsupervised	Learning	to	Improve	Machine
Learning	Solutions-Data	drift

deep	neural	networks,	Recommender	Systems	Using	Restricted	Boltzmann
Machines-Conclusion

definition	of,	Supervised	vs.	Unsupervised

fundamentals	of,	Fundamentals	of	Unsupervised	Learning-Conclusion

prerequisites	to	learning,	Prerequisites

present	and	possible	future	state	of,	Most	Promising	Areas	of	Unsupervised
Learning	Today-The	Future	of	Unsupervised	Learning

shallow	neural	networks,	Autoencoders-Conclusion

strengths	and	weaknesses	of,	The	Strengths	and	Weaknesses	of	Unsupervised
Learning

successful	applications	of,	Successful	Applications	of	Unsupervised	Learning,
Unsupervised	Learning

topics	covered,	Roadmap

using	scikit_learn,	Unsupervised	Learning	Using	Scikit-Learn-HDBSCAN
Application

unsupervised	learning	algorithms

clustering,	Clustering

dimensionality	reduction,	Dimensionality	Reduction-Latent	Dirichlet
allocation

feature	extraction,	Feature	Extraction

goal	of,	A	Closer	Look	at	Unsupervised	Algorithms

sequential	data	problems,	Sequential	Data	Problems	Using	Unsupervised
Learning

unsupervised	deep	learning,	Unsupervised	Deep	Learning-Generative
adversarial	networks

unsupervised	pretraining,	Unsupervised	pretraining

upsampling,	Generator	of	the	DCGAN

V

validation	sets,	Basic	Machine	Learning	Terminology

value	function,	Basic	Machine	Learning	Terminology

vanishing	gradient	problem,	Unsupervised	Deep	Learning

variational	autoencoders,	Variational	Autoencoder

version	control,	Version	Control:	Git

view_digit	function,	Convolutional	Neural	Networks

visible	layer,	Restricted	Boltzmann	Machines

W

Ward’s	minimum	variance	method,	Agglomerative	Hierarchical	Clustering

weak	AI,	AI	Is	Back,	but	Why	Now?

within-cluster	variation,	k-means,	k-Means

X

XGBoost

installing,	Gradient	Boosting,	Version	One:	XGBoost

model	creation	and	evaluation,	Model	#3:	Gradient	Boosting	Machine
(XGBoost)-Evaluate	the	results

Z

zero	shot	learning,	The	Future	of	Unsupervised	Learning

About	the	Author
Ankur	A.	Patel	is	the	vice	president	of	data	science	at	7Park	Data,	a	Vista
Equity	Partners	portfolio	company.	At	7Park	Data,	Ankur	and	his	data	science
team	use	alternative	data	to	build	data	products	for	hedge	funds	and	corporations
and	develop	machine	learning	as	a	service	(MLaaS)	for	enterprise	clients.
MLaaS	includes	natural	language	processing,	anomaly	detection,	clustering,	and
time	series	prediction.	Prior	to	7Park	Data,	Ankur	led	data	science	efforts	in	New
York	City	for	Israeli	artificial	intelligence	firm	ThetaRay,	one	of	the	world’s
pioneers	in	applied	unsupervised	learning.

Ankur	began	his	career	as	an	analyst	at	J.P.	Morgan,	and	then	became	the	lead
emerging	markets	sovereign	credit	trader	for	Bridgewater	Associates,	the
world’s	largest	global	macro	hedge	fund.	He	later	founded	and	managed	R-
Squared	Macro,	a	machine	learning-based	hedge	fund,	for	five	years.	Ankur	is	a
graduate	of	the	Woodrow	Wilson	School	at	Princeton	University	and	the
recipient	of	the	Lieutenant	John	A.	Larkin	Memorial	Prize.

Colophon
The	animal	on	the	cover	of	Hands-On	Unsupervised	Learning	Using	Python	is	a
common	wombat	(Vombatus	ursinus),	also	known	as	the	coarse-haired	or	bare-
nosed	wombat.	Though	its	scientific	name	includes	ursinus,	which	is	Latin	for
bear,	wombats	are	marsupials	like	koalas	and	kangaroos.	Wild	wombats	are
found	only	on	Australia’s	mainland	and	Tasmania.	They	make	themselves	at
home	in	coastal	forests,	woodlands,	and	grasslands,	where	they	dig	burrows	with
their	claws.

Wombats	have	short,	thick	fur;	short,	thick	legs;	a	bald	snout;	and	small	ears.
Like	all	marsupials,	wombats	have	pouches	for	their	young,	but	the	wombat’s
pouch	faces	backward.	A	joey’s	face	can	peek	out	from	between	its	mother’s
hind	legs.	This	adaptation	prevents	the	messy	burrowing	process	from	showering
a	joey	in	dirt.	When	born,	a	joey	is	bald	and	about	the	size	of	a	jellybean.
Gestation	takes	one	month,	but	the	young	stay	with	their	mothers	for	over	one
year	for	warmth	and	nutrients.

Adult	common	wombats	average	44	pounds	and	3	feet	long.	They	live	about	15
years	in	the	wild	and	produce	offspring	once	every	two	years.	Wombats	use	their
continuously	growing	incisors	to	graze	on	a	variety	of	grasses	and	roots
throughout	the	night.	They	are	a	nocturnal	species,	though	they	will	come	out	to
enjoy	the	sun	during	cold	spells.

It	was	recently	discovered	that	female	wombats	will	nip	at	the	backside	of	male
wombats	when	they	are	ready	to	mate.	A	bite	on	the	rear	doesn’t	hurt	a	wombat
because	the	skin	of	their	posterior	is	tough.	In	fact,	if	a	wombat	finds	itself
pursued	by	a	predator,	it	will	turn	around	or	dive	into	a	burrow,	exposing	this
thickest	end	to	danger.	They	may	walk	with	a	waddle,	but	a	threatened	wombat
can	run	up	to	25	miles	per	hour.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	illustration	is	by	Karen	Montgomery,	based	on	a	black	and	white
engraving	from	Lydekker’s	Royal	Natural	History.	The	cover	fonts	are	Gilroy
Semibold	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading
font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu

http://animals.oreilly.com

Mono.

	Preface
	A Brief History of Machine Learning
	AI Is Back, but Why Now?
	The Emergence of Applied AI
	Major Milestones in Applied AI over the Past 20 Years
	From Narrow AI to AGI
	Objective and Approach
	Prerequisites
	Roadmap
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	I. Fundamentals of Unsupervised Learning
	1. Unsupervised Learning in the Machine Learning Ecosystem
	Basic Machine Learning Terminology
	Rules-Based vs. Machine Learning
	Supervised vs. Unsupervised
	The Strengths and Weaknesses of Supervised Learning
	The Strengths and Weaknesses of Unsupervised Learning

	Using Unsupervised Learning to Improve Machine Learning Solutions
	A Closer Look at Supervised Algorithms
	Linear Methods
	Neighborhood-Based Methods
	Tree-Based Methods
	Support Vector Machines
	Neural Networks

	A Closer Look at Unsupervised Algorithms
	Dimensionality Reduction
	Clustering
	Feature Extraction
	Unsupervised Deep Learning
	Sequential Data Problems Using Unsupervised Learning

	Reinforcement Learning Using Unsupervised Learning
	Semisupervised Learning
	Successful Applications of Unsupervised Learning
	Anomaly Detection

	Conclusion

	2. End-to-End Machine Learning Project
	Environment Setup
	Version Control: Git
	Clone the Hands-On Unsupervised Learning Git Repository
	Scientific Libraries: Anaconda Distribution of Python
	Neural Networks: TensorFlow and Keras
	Gradient Boosting, Version One: XGBoost
	Gradient Boosting, Version Two: LightGBM
	Clustering Algorithms
	Interactive Computing Environment: Jupyter Notebook

	Overview of the Data
	Data Preparation
	Data Acquisition
	Data Exploration
	Generate Feature Matrix and Labels Array
	Feature Engineering and Feature Selection
	Data Visualization

	Model Preparation
	Split into Training and Test Sets
	Select Cost Function
	Create k-Fold Cross-Validation Sets

	Machine Learning Models (Part I)
	Model #1: Logistic Regression

	Evaluation Metrics
	Confusion Matrix
	Precision-Recall Curve
	Receiver Operating Characteristic

	Machine Learning Models (Part II)
	Model #2: Random Forests
	Model #3: Gradient Boosting Machine (XGBoost)
	Model #4: Gradient Boosting Machine (LightGBM)

	Evaluation of the Four Models Using the Test Set
	Ensembles
	Stacking

	Final Model Selection
	Production Pipeline
	Conclusion

	II. Unsupervised Learning Using Scikit-Learn
	3. Dimensionality Reduction
	The Motivation for Dimensionality Reduction
	The MNIST Digits Database

	Dimensionality Reduction Algorithms
	Linear Projection vs. Manifold Learning

	Principal Component Analysis
	PCA, the Concept
	PCA in Practice
	Incremental PCA
	Sparse PCA
	Kernel PCA

	Singular Value Decomposition
	Random Projection
	Gaussian Random Projection
	Sparse Random Projection

	Isomap
	Multidimensional Scaling
	Locally Linear Embedding
	t-Distributed Stochastic Neighbor Embedding
	Other Dimensionality Reduction Methods
	Dictionary Learning
	Independent Component Analysis
	Conclusion

	4. Anomaly Detection
	Credit Card Fraud Detection
	Prepare the Data
	Define Anomaly Score Function
	Define Evaluation Metrics
	Define Plotting Function

	Normal PCA Anomaly Detection
	PCA Components Equal Number of Original Dimensions
	Search for the Optimal Number of Principal Components

	Sparse PCA Anomaly Detection
	Kernel PCA Anomaly Detection
	Gaussian Random Projection Anomaly Detection
	Sparse Random Projection Anomaly Detection
	Nonlinear Anomaly Detection
	Dictionary Learning Anomaly Detection
	ICA Anomaly Detection
	Fraud Detection on the Test Set
	Normal PCA Anomaly Detection on the Test Set
	ICA Anomaly Detection on the Test Set
	Dictionary Learning Anomaly Detection on the Test Set

	Conclusion

	5. Clustering
	MNIST Digits Dataset
	Data Preparation

	Clustering Algorithms
	k-Means
	k-Means Inertia
	Evaluating the Clustering Results
	k-Means Accuracy
	k-Means and the Number of Principal Components
	k-Means on the Original Dataset

	Hierarchical Clustering
	Agglomerative Hierarchical Clustering
	The Dendrogram
	Evaluating the Clustering Results

	DBSCAN
	DBSCAN Algorithm
	Applying DBSCAN to Our Dataset
	HDBSCAN

	Conclusion

	6. Group Segmentation
	Lending Club Data
	Data Preparation
	Transform String Format to Numerical Format
	Impute Missing Values
	Engineer Features
	Select Final Set of Features and Perform Scaling
	Designate Labels for Evaluation

	Goodness of the Clusters
	k-Means Application
	Hierarchical Clustering Application
	HDBSCAN Application
	Conclusion

	III. Unsupervised Learning Using TensorFlow and Keras
	7. Autoencoders
	Neural Networks
	TensorFlow
	Keras

	Autoencoder: The Encoder and the Decoder
	Undercomplete Autoencoders
	Overcomplete Autoencoders
	Dense vs. Sparse Autoencoders
	Denoising Autoencoder
	Variational Autoencoder
	Conclusion

	8. Hands-On Autoencoder
	Data Preparation
	The Components of an Autoencoder
	Activation Functions
	Our First Autoencoder
	Loss Function
	Optimizer
	Training the Model
	Evaluating on the Test Set

	Two-Layer Undercomplete Autoencoder with Linear Activation Function
	Increasing the Number of Nodes
	Adding More Hidden Layers

	Nonlinear Autoencoder
	Overcomplete Autoencoder with Linear Activation
	Overcomplete Autoencoder with Linear Activation and Dropout
	Sparse Overcomplete Autoencoder with Linear Activation
	Sparse Overcomplete Autoencoder with Linear Activation and Dropout
	Working with Noisy Datasets
	Denoising Autoencoder
	Two-Layer Denoising Undercomplete Autoencoder with Linear Activation
	Two-Layer Denoising Overcomplete Autoencoder with Linear Activation
	Two-Layer Denoising Overcomplete Autoencoder with ReLu Activation

	Conclusion

	9. Semisupervised Learning
	Data Preparation
	Supervised Model
	Unsupervised Model
	Semisupervised Model
	The Power of Supervised and Unsupervised
	Conclusion

	IV. Deep Unsupervised Learning Using TensorFlow and Keras
	10. Recommender Systems Using Restricted Boltzmann Machines
	Boltzmann Machines
	Restricted Boltzmann Machines

	Recommender Systems
	Collaborative Filtering
	The Netflix Prize

	MovieLens Dataset
	Data Preparation
	Define the Cost Function: Mean Squared Error
	Perform Baseline Experiments

	Matrix Factorization
	One Latent Factor
	Three Latent Factors
	Five Latent Factors

	Collaborative Filtering Using RBMs
	RBM Neural Network Architecture
	Build the Components of the RBM Class
	Train RBM Recommender System

	Conclusion

	11. Feature Detection Using Deep Belief Networks
	Deep Belief Networks in Detail
	MNIST Image Classification
	Restricted Boltzmann Machines
	Build the Components of the RBM Class
	Generate Images Using the RBM Model
	View the Intermediate Feature Detectors

	Train the Three RBMs for the DBN
	Examine Feature Detectors
	View Generated Images

	The Full DBN
	How Training of a DBN Works
	Train the DBN

	How Unsupervised Learning Helps Supervised Learning
	Generate Images to Build a Better Image Classifier

	Image Classifier Using LightGBM
	Supervised Only
	Unsupervised and Supervised Solution

	Conclusion

	12. Generative Adversarial Networks
	GANs, the Concept
	The Power of GANs

	Deep Convolutional GANs
	Convolutional Neural Networks
	DCGANs Revisited
	Generator of the DCGAN
	Discriminator of the DCGAN
	Discriminator and Adversarial Models
	DCGAN for the MNIST Dataset

	MNIST DCGAN in Action
	Synthetic Image Generation

	Conclusion

	13. Time Series Clustering
	ECG Data
	Approach to Time Series Clustering
	k-Shape

	Time Series Clustering Using k-Shape on ECGFiveDays
	Data Preparation
	Training and Evaluation

	Time Series Clustering Using k-Shape on ECG5000
	Data Preparation
	Training and Evaluation

	Time Series Clustering Using k-Means on ECG5000
	Time Series Clustering Using Hierarchical DBSCAN on ECG5000
	Comparing the Time Series Clustering Algorithms
	Full Run with k-Shape
	Full Run with k-Means
	Full Run with HDBSCAN
	Comparing All Three Time Series Clustering Approaches

	Conclusion

	14. Conclusion
	Supervised Learning
	Unsupervised Learning
	Scikit-Learn
	TensorFlow and Keras

	Reinforcement Learning
	Most Promising Areas of Unsupervised Learning Today
	The Future of Unsupervised Learning
	Final Words

	Index

