Preface

Introduction and Goals

For years, | have been joking with my students that | would teach probability with the
same level of excitement even if | were woken up in the middle of the night and asked
to teach it. Years later, as a new father, | started writing this book when it became clear
to me that | would not be sleeping at night for the foreseeable future.

This book is intended for undergraduate and first-year graduate-level courses in
probability, statistics, and random processes. My goal has been to provide a clear and
intuitive approach to these topics while maintaining an acceptable level of
mathematical accuracy.

| have been teaching two courses on this subject for several years at the University of
Massachusetts Amherst. While one of these courses is an undergraduate course
taken by juniors, the other is a graduate-level course taken by our first-year Masters
and PhD students.

My goal throughout this process has been to write a textbook that has the flexibility to
be used in both courses while sacrificing neither the quality nor the presentational
needs of either course. To achieve such a goal, | have tried to minimize the
dependency between different sections of the book. In particular, when a small part
from a different section of the book is useful elsewhere within the text, | have repeated
said part rather than simply referring to it. My reasoning for doing so is twofold. Firstly,
this format should make it easier for students to read the book and, secondly, this
format should allow instructors the flexibility to select individual sections from the book
more easily.

Additionally, | wanted the book to be easy to read and accessible as a self-study
reference. It was also imperative that the book be available to anyone in the world, and
as such the book in its entirety can be found online at www.probabilitycourse.com.

The book contains a large number of solved exercises. In addition to the examples
found within the text, there is a set of solved problems at the end of each section.
Detailed and step-by-step solutions to these problems are provided to help students



learn problem-solving techniques. The solutions to the end-of-chapter problems,
however, are available only to instructors.

Lastly, throughout the book, some examples of applications—such as engineering,
finance, everyday life, etc.—are provided to aid in motivating the subject. These
examples have been worded to be understandable to all students. As such, some
technical issues have been left out.

Coverage

After a brief review of set theory and other required mathematical concepts, the text
covers topics as follows:

e Chapters 1 and 2: basic concepts such as random experiments, probability
axioms, conditional probability, law of total probability, Bayes' rule, and counting
methods;

o Chapters 3 through 6: single and multiple random variables (discrete,
continuous, and mixed), as well as moment-generating functions, characteristics
functions, random vectors, and inequalities;

e Chapter 7: limit theorems and convergence;

e Chapters 8 and 9: Bayesian and classical statistics;

o Chapters 10: Introduction to random processes, processing of random signals;

o Chapter 11: Poisson processes, discrete-time Markov chains, continuous-time
Markov chains, and Brownian motion;

o Chapter 12: basic methods of generating random variables and simulating
probabilistic systems (using MATLAB);

o Chapter 13: basic methods of generating random variables and simulating
probabilistic systems (using R);

o Chapter 14: recursive methods;

All chapters are available at www.probabilitycourse.com. Chapters 12 through 14 are
available as PDFs and are downloadable from the textbook website. Chapters 12 and
13 cover the same material. The difference is that the codes in chapter 12 are
provided in MATLAB while the codes in Chapter 13 are provided in R. The reason for
this again is to give flexibility to instructors and students to choose whichever they
prefer. Nevertheless, students who are unfamiliar with MATLAB and R should still be
able to understand the algorithms.

Required Background


http://www.probabilitycourse.com/

The majority of the text does not require any previous knowledge apart from a one-
semester course in calculus. The exceptions to this statement are as follows:

e Sections 5.2 (Two Continuous Random Variables) and 6.1 (Methods for More
Than Two Random Variables) both require a light introduction to double integrals
and partial derivatives;

e Section 6.1.5 (Random Vectors) uses a few concepts from linear algebra;

e Section 10.2 (Processing of Random Signals) requires familiarity with the Fourier
transform.
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1.0 Introduction

In this chapter we provide some basic concepts and definitions. We begin with a brief
discussion of what probability is. Then we review some mathematical foundations that
are needed for developing probability theory. Next we discuss the concept of random

experiments and the axioms of probability. We then introduce discrete and continuous
probability models. Finally, we discuss conditional probability.




1.1.0 Introduction: What Is Probability?

Randomness and uncertainty exist in our daily lives as well as in every discipline in
science, engineering, and technology. Probability theory, the subject of the first part of
this book, is a mathematical framework that allows us to describe and analyze random
phenomena in the world around us. By random phenomena, we mean events or
experiments whose outcomes we can't predict with certainty.

Let's consider a couple of specific applications of probability in order to get some
intuition. First, let's think more carefully about what we mean by the terms
"randomness" and "probability” in the context of one of the simplest possible random
experiments: flipping a fair coin.

One way of thinking about "randomness" is that it's a way of expressing what we don't
know. Perhaps if we knew more about the force | flipped the coin with, the initial
orientation of the coin, the impact point between my finger and the coin, the turbulence
in the air, the surface smoothness of the table the coin lands on, the material
characteristics of the coin and the table, and so on, we would be able to definitively
say whether the coin would come up heads or tails. However, in the absence of all that
information, we cannot predict the outcome of the coin flip. When we say that
something is random, we are saying that our knowledge about the outcome is limited,
SO we can't be certain what will happen.

Since the coin is fair, if we don't know anything about how it was flipped, the probability
that it will come up heads is 50%, or % What exactly do we mean by this? There are
two common interpretations of the word "probability.” One is in terms of relative
frequency. In other words, if we flip the coin a very large number of times, it will come
up heads about % of the time. As the number of coin flips increases, the proportion
that come up heads will tend to get closer and closer to % In fact, this intuitive
understanding of probability is a special case of the law of large humbers, which we
will state and prove formally in later chapters of the book.

A second interpretation of probability is that it is a quantification of our degree of
subjective personal belief that something will happen. To get a sense of what we
mean by this, it may be helpful to consider a second example: predicting the weather.



When we think about the chances that it will rain today, we consider things like
whether there are clouds in the sky and the humidity. However, the beliefs that we
form based on these factors may vary from person to person - different people may
make different estimates of the probability that it will rain. Often these two
interpretations of probability coincide - for instance, we may base our personal beliefs
about the chance that it will rain on an assessment of the relative frequency of rain on
days with conditions like today.

The beauty of probability theory is that it is applicable regardless of the interpretation
of probability that we use (i.e., in terms of long-run frequency or degree of belief).
Probability theory provides a solid framework to study random phenomena. It starts by
assuming axioms of probability, and then building the entire theory using
mathematical arguments.

Before delving into studying probability theory, let us briefly look at an example
showing how probability theory has been applied in a real life system.




1.1.1 Example: Communication Systems

Communication systems play a central role in our lives. Everyday, we use our cell
phones, access the internet, use our TV remote controls, and so on. Each of these
systems relies on transferring information from one place to another. For example,
when you talk on the phone, what you say is converted to a sequence of 0's or 1's
called information bits. These information bits are then transmitted by your cell phone
antenna to a nearby cell tower as shown in Figure 1.1.

Cell Tower

Received Sequence:
010110

|

error

O

Transmitted Sequence:
010010

Fig.1.1 - Transmission of data from a cell phone to a cell tower.

The problem that communication engineers must consider is that the transmission is
always affected by noise. That is, some of the bits received at the cell tower are
incorrect. For example, your cell phone may transmit the sequence ” 010010 - - ,”
while the sequence ” 010110 - - - ” might be received at the cell tower. In this case, the
fourth bit is incorrect. Errors like this could affect the quality of the audio in your phone
conversation.
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The noise in the transmission is a random phenomenon. Before sending the
transmission we do not know which bits will be affected. It is as if someone tosses a
(biased) coin for each bit and decides whether or not that bit will be received in error.
Probability theory is used extensively in the design of modern communication systems
in order to understand the behavior of noise in these systems and take measures to
correct the errors.

This example shows just one application of probability. You can pick almost any
discipline and find many applications in which probability is used as a major tool.
Randomness is prevalent everywhere, and probability theory has proven to be a
powerful way to understand and manage its effects.




1.2 Review of Set Theory

Probability theory uses the language of sets. As we will see later, probability is defined
and calculated for sets. Thus, here we briefly review some basic concepts from set
theory that are used in this book. We discuss set notations, definitions, and operations
(such as intersections and unions). We then introduce countable and uncountable
sets. Finally, we briefly discuss functions. This section may seem somewhat
theoretical and thus less interesting than the rest of the book, but it lays the foundation
for what is to come.

A set is a collection of some items (elements). We often use capital letters to denote a
set. To define a set we can simply list all the elements in curly brackets, for example to
define a set A that consists of the two elements & and <>, we write A = {&, {}. To say

that > belongs to A, we write ) € A, where "€" is pronounced "belongs to." To say that
an element does not belong to a set, we use ¢. For example, we may write O ¢ A.

A set is a collection of things (elements).

Note that ordering_does not matter, so the two sets {&, ¢} and {{, &} are equal. We
often work with sets of numbers. Some important sets are given the following example.

Example 1.1
The following sets are used in this book:

e The set of natural numbers, N = {1,2,3,---}.

e The set of integers, Z = {---,-3,-2,-1,0,1,2,3,---}.

e The set of rational numbers Q.

e The set of real numbers R.

» Closed intervals on the real line. For example, |2, 3] is the set of all real numbers
z suchthat2 <z < 3.

e Open intervals on the real line. For example (—1, 3) is the set of all real numbers
z such that -1 < z < 3.

o Similarly, [1,2) is the set of all real numbers z such that 1 <z < 2.
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e The set of complex numbers C is the set of numbers in the form of a + bi, where
a,be R,and i = /1.

We can also define a set by mathematically stating the properties satisfied by the
elements in the set. In particular, we may write

A = {x|x satisfies some property}

or
A = {z : z satisfies some property}

The symbols ” | ” and ”:” are pronounced "such that."

Example 1.2
Here are some examples of sets defined by stating the properties satisfied by the
elements:

If the set C'is defined as C = {z|z € Z,—2 < z < 10}, then C = {-2,-1,0,---,9}.
If the set D is defined as D = {z?|x € N}, then D = {1,4,9,16,---}.
The set of rational numbers can be defined as Q = {%|a,b € Z,b # 0}.

For real numbers a and b, where a < b, we can write (a,b] ={z € R | a < z < b}.
C={a+bi|abcR,i=+—1}.

Set A is a subset of set B if every element of A is also an element of B. We write
A C B, where "C" indicates "subset.” Equivalently, we say B is a superset of A, or
BD A.

Example 1.3
Here are some examples of sets and their subsets:

e IfE={1,4} and C = {1,4,9}, then E C C.
e N CZ.
e QCR.




Two sets are equal if they have the exact same elements. Thus, A = B if and only if
A C Band B C A. For example, {1,2,3} = {3,2,1}, and {a,a,b} = {a,b}. The set with
no elements, i.e., § = {} is the null set or the empty set. For any set A4, () C A.

The universal set is the set of all things that we could possibly consider in the context
we are studying. Thus every set A is a subset of the universal set. In this book, we
often denote the universal set by S (As we will see, in the language of probability
theory, the universal set is called the sample space.) For example, if we are discussing
rolling of a die, our universal set may be defined as S = {1,2,3,4,5,6}, or if we are
discussing tossing of a coin once, our universal set might be S = {H, T} (H for heads
and T for tails).




1.2.1 Venn Diagrams

Venn diagrams are very useful in visualizing relation between sets. In a Venn diagram
any set is depicted by a closed region. Figure 1.2 shows an example of a Venn
diagram. In this figure, the big rectangle shows the universal set S. The shaded area

shows another set A.

Fig.1.2 - Venn Diagram.

Figure 1.3 shows two sets A and B, where B C A.
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Fig.1.3 - Venn Diagram for two sets A and B, where B C A.




1.2.2 Set Operations

The union of two sets is a set containing all elements that are in A or in B (possibly
both). For example, {1,2} U {2,3} = {1,2,3}. Thus, we can write z € (AU B) if and
only if (x € A) or (z € B). Note that AU B = BU A. In Figure 1.4, the union of sets A
and B is shown by the shaded area in the Venn diagram.

Fig.1.4 - The shaded area shows the set BU A.

Similarly we can define the union of three or more sets. In particular, if
A1, Ay, As,- -+, A, are n sets, their union A; U A, U As--- U A, is a set containing all
elements that are in at least one of the sets. We can write this union more compactly

by

For example, if A1 = {a,b,c}, A2 = {c,h}, As = {a,d}, then
U, 4i = A1 U A2 U A3 = {a,b, ¢, h,d}. We can similarly define the union of infinitely
many sets A; U Ay UA3 U ---.

The intersection of two sets A and B, denoted by A N B, consists of all elements that
are both in A and B. For example, {1,2} N {2,3} = {2}. In Figure 1.5, the intersection
of sets A and B is shown by the shaded area using a Venn diagram.
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Fig.1.5 - The shaded area shows the set BN A.

More generally, for sets A, Aa, As, - - -, their intersection (), A4; is defined as the set
consisting of the elements that are in all A;'s. Figure 1.6 shows the intersection of
three sets.

'
\/

Fig.1.6 - The shaded area shows the set AN BN C.

The complement of a set A, denoted by A¢ or 4, is the set of all elements that are in
the universal set S but are not in A. In Figure 1.7, A is shown by the shaded area
using a Venn diagram.



Fig.1.7 - The shaded area shows the set A = A°.

The difference (subtraction) is defined as follows. The set A — B consists of
elements that are in A but not in B. For example if A ={1,2,3} and B = {3,5}, then
A — B={1,2}. In Figure 1.8, A — B is shown by the shaded area using a Venn
diagram. Note that A — B = AN B-.

Fig.1.8 - The shaded area shows the set A — B.

Two sets A and B are mutually exclusive or disjoint if they do not have any shared
elements; i.e., their intersection is the empty set, A N B = (). More generally, several



sets are called disjoint if they are pairwise disjoint, i.e., no two of them share a
common elements. Figure 1.9 shows three disjoint sets.

Fig.1.9 - Sets A, B, and C are disjoint.

If the earth's surface is our sample space, we might want to partition it to the different
continents. Similarly, a country can be partitioned to different provinces. In general, a
collection of nonempty sets A;, As,- - - is a partition of a set A if they are disjoint and
their union is A. In Figure 1.10, the sets A;, A, A3 and A4 form a partition of the
universal set S.

Fig.1.10 - The collection of sets A1, A2, A3 and Ay is a partition of S.



Here are some rules that are often useful when working with sets. We will see
examples of their usage shortly.

Theorem 1.1: De Morgan's law
For any sets A;, As, ---, A,, we have

° (AlUAzUAgU---An)C:AiﬂAgﬂAg---ﬂAz;
o (ALNA;NAgN - A = A5 U ASU AS - U AS,.

Theorem 1.2: Distributive law
For any sets A, B, and C' we have

e AN(BUC)=(ANB)U(ANOQ);
e« AUBNC)=(AuB)N(AUCQ).

Example 1.4
If the universal set is given by S = {1,2,3,4,5,6}, and A = {1, 2},
B ={2,4,5},C = {1,5,6} are three sets, find the following sets:

a. AUB

b. AnB

c. A

d. B

e. Check De Morgan's law by finding (A U B)¢ and A° N B°.

f. Check the distributive law by finding AN (BU C)and (AN B)U (AN C).

Solution

a. AU B = {1,2,4,5}.

b. An B = {2}.

c.A= {3,4,5,6} (Z consists of elements that are in S but not in A).
d. B ={1,3,6}.

e. We have

(AU B)" =1{1,2,4,5}° = {3,6},



which is the same as
A°N B ={3,4,5,6} N {1,3,6} = {3,6}.
f. We have
AN(BUC) ={1,2} n{1,2,4,5,6} = {1,2},
which is the same as

(ANB)U(ANC)={2}uU {1} = {1,2}.

A Cartesian product of two sets A and B, written as A x B, is the set containing
ordered pairs from A and B. That is, if C = A x B, then each element of C'is of the
form (z,y), where z € Aand y € B:

A x B={(z,y)|z € Aand y € B}.
For example, if A ={1,2,3} and B = {H, T}, then
Ax B={(1,H),(1,T),(2,H),(2,T),(3,H),(3,T)}-

Note that here the pairs are ordered, so for example, (1, H) # (H,1). Thus A x Bis
not the same as B x A.

If you have two finite sets A and B, where A has M elements and B has N elements,
then A x Bhas M x N elements. This rule is called the multiplication principle and
is very useful in counting the numbers of elements in sets. The number of elements in
a set is denoted by |A|, so here we write |[A| = M,|B| = N, and |[A x B| = M N. In the
above example, |A| = 3,|B| = 2, thus |A x B| = 3 x 2 = 6. We can similarly define the
Cartesian product of n sets Ay, As,---, A, as

Ap X Ay x A3 x -+ x A, ={(z1,29, - ,2,)|x; € Ajand 2y € Ay and ---z, € A,}.
The multiplication principle states that for finite sets A;, Aa,---, Ay, if
|A1| = My, |Az| = Ma,-- -, |An| = M,
then
|A; x A X A3 X +-+ X Ay |= My X My X M3 X -+ X M,.
An important example of sets obtained using a Cartesian product is R", where n is a

natural number. For n = 2, we have
R2=R xR



= {(z,y)|z € R,y € R}.

Thus, R? is the set consisting of all points in the two-dimensional plane. Similarly,
R® =R xR x R and so on.




1.2.3 Cardinality: Countable and Uncountable Sets

Here we need to talk about cardinality of a set, which is basically the size of the set.
The cardinality of a set is denoted by |A|. We first discuss cardinality for finite sets and
then talk about infinite sets.

Finite Sets:

Consider a set A. If A has only a finite number of elements, its cardinality is simply the
number of elements in A. For example, if A ={2,4,6,8,10}, then |A| = 5. Before
discussing infinite sets, which is the main discussion of this section, we would like to
talk about a very useful rule: the inclusion-exclusion principle. For two finite sets A
and B, we have

|AU B| = |A|+|B|—|AN B|.

To see this, note that when we add |A| and |B|, we are counting the elements in

|A N B| twice, thus by subtracting it from |A| + | B|, we obtain the number of elements in
|A U B, (you can refer to Figure 1.16 in Problem 2 to see this pictorially). We can
extend the same idea to three or more sets.

Inclusion-exclusion principle:

1. |AUB|=|A|+|B|-|AN B,

2. |AUBUC|=|A|+|B|+|C|-|AnB|—|ANC|—|BNC|+|ANnBNC|.

Generally, for n finite sets A;, A2, As,-- -, A,, we can write



http://www.probabilitycourse.com/videos/chapter1/video1_2.php
file:///home/casper/Desktop/book/1_2_5_solved1.php#problem2

n

Ja

i=1

=D 1A =) JAin 4]
1=1

i<j

+ Y JANANA— o (D" AN N A

i<j<k

Example 1.5
In a party,

there are 10 people with white shirts and 8 people with red shirts;

4 people have black shoes and white shirts;

3 people have black shoes and red shirts;

the total number of people with white or red shirts or black shoes is 21.

How many people have black shoes?

Solution

Let W, R, and B, be the number of people with white shirts, red shirts, and black
shoes respectively. Then, here is the summary of the available information:

W] =10
IR| =8
[WnB|l=4
|[RNB|=3
WU BU R| = 21.

Also, it is reasonable to assume that W and R are disjoint, [IW N R| = 0. Thus by
applying the inclusion-exclusion principle we obtain
[WURUB| =21
=|W|+|R|+|B|—|[WNR|—|WnNB|—|RNB|+|WnRN B|
=10+8+|B|—0—-4—-3+0.

Thus

B| = 10.



Note that another way to solve this problem is using a Venn diagram as shown in

Figure 1.11.
S
B
10 8
21=10+8+x=2=3
= [Bl=44+2x+3=10
Fig.1.11 - Inclusion-exclusion Venn diagram.

Infinite Sets:

What if A is an infinite set? It turns out we need to distinguish between two types of
infinite sets, where one type is significantly "larger” than the other. In particular, one
type is called countable, while the other is called uncountable. Sets such as N and Z
are called countable, but "bigger"” sets such as R are called uncountable. The
difference between the two types is that you can list the elements of a countable set A,
i.e., you can write A = {ay,as,---}, but you cannot list the elements in an uncountable
set. For example, you can write

b N:{1a2a37"'}’
e Z=1{0,1,-1,2,-2,3,-3,---}.

The fact that you can list the elements of a countably infinite set means that the set
can be put in one-to-one correspondence with natural numbers N. On the other hand,
you cannot list the elements in R, so it is an uncountable set. To be precise, here is the
definition.



Definition 1.1
Set A is called countable if one of the following is true

a. if it is a finite set, |A |< oo; or

b. it can be put in one-to-one correspondence with natural numbers N, in which
case the set is said to be countably infinite.
A set is called uncountable if it is not countable.

Here is a simple guideline for deciding whether a set is countable or not. As far as
applied probability is concerned, this guideline should be sufficient for most cases.

e N,7Z,Q, and any of their subsets are countable.
» Any set containing an interval on the real line such as [a, b], (a, b}, [a,b), Or
(a,b), where a < b is uncountable.

The above rule is usually sufficient for the purpose of this book. However, to make the
argument more concrete, here we provide some useful results that help us prove if a
set is countable or not. If you are less interested in proofs, you may decide to skip
them.

Theorem 1.3
Any subset of a countable set is countable.
Any superset of an uncountable set is uncountable.

Proof

The intuition behind this theorem is the following: If a set is countable, then any
"smaller” set should also be countable, so a subset of a countable set should be
countable as well. To provide a proof, we can argue in the following way.

Let A be a countable set and B C A. If A is a finite set, then |B| < |A| < oo, thus Bis
countable. If A is countably infinite, then we can list the elements in A, then by
removing the elements in the list that are not in B, we can obtain a list for B, thus B is
countable.



The second part of the theorem can be proved using the first part. Assume B is
uncountable. If B C A and A is countable, by the first part of the theorem B is also a
countable set which is a contradiction.

Theorem 1.4
If A1, As,- - is a list of countable sets, then the set | J, A; = A1 U A2 U A3 --- is also
countable.

Proof
It suffices to create a list of elements in | J, A;. Since each 4; is countable we can list
its elements: A; = {a;1,ai2,---}. Thus, we have

Al - {a117a127' - '}1
A2 - {a217a227’ ° '}a

As ={as1,a32, -},

Now we need to make a list that contains all the above lists. This can be done in
different ways. One way to do this is to use the ordering shown in Figure 1.12 to make
a list. Here, we can write

UAi = {a11,a12, a1, 031, 22, 013,014, - -} (1.1)
i



aiy — ai2 aiz — Qa4
v a v /"
a1 a2 a23 24
S
as31 as2 ass a34
v
a41 42 a43 44
S
as1 as52 as53 54

Fig.1.12 - Ordering to make a list.

We have been able to create a list that contains all the elements in |, A;, so this set is
countable.

Theorem 1.5
If A and B are countable, then A x B is also countable.

Proof

The proof of this theorem is very similar to the previous theorem. Since A and B are
countable, we can write

A= {alaa27a37' : '}a

B = {b1,b2,b3,--}.

Now, we create a list containing all elements in A x B = {(a;,b;)[i,j = 1,2,3,---}. The
idea is exactly the same as before. Figure 1.13 shows one possible ordering.



(al’bl) - (al?bQ) (albe) — (al,b4)

v e v
(az,b1) (az,b2) (az, bs) (az,by) ---
2 a v
(a3, b1) (a3, ba) (az, bs) (az,be) -+~
v
(aq,b1) (a4, b2) (aq,b3) (ag,by) ---

J

Fig.1.13 - Ordering to make a list.

The above arguments can be repeated for any set C'in the form of
¢ = UH{ais},
i

where indices ¢ and j belong to some countable sets. Thus, any set in this form is
countable. For example, a consequence of this is that the set of rational numbers Q is
countable. This is because we can write

o=U UL

iez jen J

The above theorems confirm that sets such as N, Z, Q and their subsets are countable.
However, as we mentioned, intervals in R are uncountable. Thus, you can never
provide a list in the form of {a1,a2,as,- - -} that contains all the elements in, say, [0,1].
This fact can be proved using a so-called diagonal argument, and we omit the proof
here as it is not instrumental for the rest of the book.




1.2.4 Functions

We often need the concept of functions in probability. A function f is a rule that takes
an input from a specific set, called the domain, and produces an output from another
set, called co-domain. Thus, a function maps elements from the domain set to
elements in the co-domain with the property that each input is mapped to exactly one
output. For a function f, if z is an element in the domain, then the function value (the
output of the function) is shown by f(z). If A is the domain and B is the co-domain for
the function f, we use the following notation:

f:A— B.

Example 1.6

« Consider the function f: R — R, defined as f(z) = z?. This function takes any
real number z and outputs z2. For example, f(2) = 4.

» Consider the function g : {H,T} — {0,1}, defined as g(H) = 0 and ¢g(T') = 1. This
function can only take two possible inputs H or T', where H is mappedto 0 and T
is mapped to 1.

The output of a function f : A — B always belongs to the co-domain B. However, not
all values in the co-domain are always covered by the function. In the above example,
f : R — R, the function value is always a positive number f(z) = 2 > 0. We define the
range of a function as the set containing all the possible values of f(z). Thus, the
range of a function is always a subset of its co-domain. For the above function

f(z) = 22, the range of f is given by

Range(f) =R" = {z € R|z > 0}.

Figure 1.14 pictorially shows a function, its domain, co-domain, and range. The figure
shows that an element z in the domain is mapped to f(z) in the range.


http://www.probabilitycourse.com/videos/chapter1/video1_2.php

Domain

Co-domain

Fig.1.14 - Function f : A — B, the range is always a subset of the co-
domain.




1.2.5 Solved Problems:
Review of Set Theory

Problem 1
Let A, B, C be three sets as shown in the following Venn diagram. For each of the
following sets, draw a Venn diagram and shade the area representing the given set.

a AuUBUC
b.AnBNnC
c.Au(BNQO)
d A—(BnCQC)
e. AU (BNC)*

Solution

Figure 1.15 shows Venn diagrams for these sets.



A B A B
C C
AUBUC ANBNC
S
A B A B
C c
AU(BNC) A—(BNnC)
S
A B
C
AU(BNnC)¢

Fig.1.15 - Venn diagrams for different sets.

Problem 2
Using Venn diagrams, verify the following identities.

a A=(ANB)U(A - B)
b. If A and B are finite sets, we have

|AUB| =|A|+ |B|— |AN B

Solution




Figure 1.16 pictorially verifies the given identities. Note that in the second identity, we
show the number of elements in each set by the corresponding shaded area.

A B A B A B

|AU B |An B

@) [®

1] |B|

Fig.1.16 - Venn diagrams for some identities.

Problem 3
Let S = {1,2,3}. Write all the possible partitions of S.

Solution

Remember that a partition of S is a collection of nonempty sets that are disjoint and
their union is S. There are 5 possible partitions for S = {1, 2, 3}:

1. {1},{2},{3};



2. {1,2},{3};
3. {1,3},{2};
4. {2,3},{1};
5. {1,2,3}.

Problem 4
Determine whether each of the following sets is countable or uncountable.

a A={zeQ—100 < z < 100}
b. B={(z,y)|lr € N,y € Z}

c. C=(0,0.1]

d. D= {-|n € N}

Solution

a A= {xcQ —100 <z <100} is countable since it is a subset of a countable
set, A C Q.

b. B={(z,y)|x € N,y € Z} is countable because it is the Cartesian product of two
countable sets, i.e., B=N x Z.

c. C = (0,.1] is uncountable since it is an interval of the form (a,b], where a < b.

d D= {%|n € N} is countable since it is in one-to-one correspondence with the
set of natural numbers. In particular, you can list all the elements in the set D,

1 1
D={1,3,% -}

Problem 5
Find the range of the function f : R — R defined as f(z) = sin(z).

Solution

For any real value z, —1 < sin(z) < 1. Also, all values in [-1,1] are covered by sin(z).
Thus, Range(f) = [-1,1].




1.3.1 Random Experiments

Before rolling a die you do not know the result. This is an example of a random
experiment. In particular, a random experiment is a process by which we observe
something uncertain. After the experiment, the result of the random experiment is
known. An outcome is a result of a random experiment. The set of all possible
outcomes is called the sample space. Thus in the context of a random experiment,
the sample space is our universal set. Here are some examples of random
experiments and their sample spaces:

» Random experiment: toss a coin; sample space: S = {heads, tails} or as we
usually write it, { H,T}.

» Random experiment: roll a die; sample space: S = {1,2,3,4,5,6}.

o Random experiment: observe the number of iPhones sold by an Apple store in
Boston in 2015; sample space: S = {0,1,2,3,---}.

¢ Random experiment: observe the number of goals in a soccer match; sample
space: S ={0,1,2,3,---}.

When we repeat a random experiment several times, we call each one of them a trial.
Thus, a trial is a particular performance of a random experiment. In the example of
tossing a coin, each trial will result in either heads or tails. Note that the sample space
is defined based on how you define your random experiment. For example,

Example 1.7
We toss a coin three times and observe the sequence of heads/tails. The sample
space here may be defined as

S={(H,H,H),(H,HT),HTH),(T,HH),HTT),THT),TTH),TTT)}

Our goal is to assign probability to certain events. For example, suppose that we
would like to know the probability that the outcome of rolling a fair die is an even
number. In this case, our event is the set E = {2,4,6}. If the result of our random
experiment belongs to the set F, we say that the event E has occurred. Thus an event
is a collection of possible outcomes. In other words, an event is a subset of the sample
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space to which we assign a probability. Although we have not yet discussed how to
find the probability of an event, you might be able to guess that the probability of
{2,4,6} is 50 percent which is the same as % in the probability theory convention.

Outcome: A result of a random experiment.
Sample Space: The set of all possible outcomes.
Event: A subset of the sample space.

Union and Intersection: If A and B are events, then AU B and AN B are also events.
By remembering the definition of union and intersection, we observe that A U B occurs
if A or B occur. Similarly, A N B occurs if both A and B occur. Similarly, if

A, Ay, -+, A, are events, then the event A; U A, U As--- U A, occurs if at least one
of Ay, As,---, A, occurs. The event A; N A2 N As---N A, occurs if all of A1, As,---, A,
occur. It can be helpful to remember that the key words "or" and "at least" correspond
to unions and the key words "and" and "all of" correspond to intersections.




1.3.2 Probability

We assign a probability measure P(A) to an event A. This is a value between 0 and 1
that shows how likely the event is. If P(A) is close to 0, it is very unlikely that the event
A occurs. On the other hand, if P(A) is close to 1, A is very likely to occur. The main
subject of probability theory is to develop tools and techniques to calculate
probabilities of different events. Probability theory is based on some axioms that act as
the foundation for the theory, so let us state and explain these axioms.

Axioms of Probability:

e Axiom 1: For any event A, P(A) > 0.
» Axiom 2: Probability of the sample space S is P(S) = 1.

o Axiom 3: If Ay, Ay, As,- - - are disjoint events, then
P(A1 U A, UA3---) ZP(A1)+P(A2)+P(A3)—|—-'-

Let us take a few moments and make sure we understand each axiom thoroughly. The
first axiom states that probability cannot be negative. The smallest value for P(A) is
zero and if P(A) = 0, then the event A will never happen. The second axiom states
that the probability of the whole sample space is equal to one, i.e., 100 percent. The
reason for this is that the sample space S contains all possible outcomes of our
random experiment. Thus, the outcome of each trial always belongs to S, i.e., the
event S always occurs and P(S) = 1. In the example of rolling a die, S ={1,2,3,4,5,6}
, and since the outcome is always among the numbers 1 through 6, P(S) = 1.

The third axiom is probably the most interesting one. The basic idea is that if some
events are disjoint (i.e., there is no overlap between them), then the probability of their
union must be the summations of their probabilities. Another way to think about this is
to imagine the probability of a set as the area of that set in the Venn diagram. If
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several sets are disjoint such as the ones shown Figure 1.9, then the total area of their
union is the sum of individual areas. The following example illustrates the idea behind
the third axiom.

Example 1.8

In a presidential election, there are four candidates. Call them A, B, C, and D. Based
on our polling analysis, we estimate that A has a 20 percent chance of winning the
election, while B has a 40 percent chance of winning. What is the probability that A or
B win the election?

Solution

Notice that the events that {A wins}, {B wins}, {C wins}, and {D wins} are disjoint
since more than one of them cannot occur at the same time. For example, if A wins,
then B cannot win. From the third axiom of probability, the probability of the union of
two disjoint events is the summation of individual probabilities. Therefore,
P(A wins or B wins) = P({A wins} U {B wins})
= P({A wins}) + P({B wins})

=02+04
=0.6

In summary, if A; and A, are disjoint events, then P(A; U As) = P(A:) + P(Az). The
same argument is true when you have n disjoint events A, As,---, Ay:

P(Al UA2 UA3 UAn) :P(A1)+P(A2)++P(An), ifAl,AQ,"',An are d15301nt

In fact, the third axiom goes beyond that and states that the same is true even for a
countably infinite number of disjoint events. We will see more examples of how we use
the third axiom shortly.

As we have seen, when working with events, intersection means "and”, and union
means “or". The probability of intersection of A and B, P(A N B), is sometimes shown
by P(A,B) or P(AB).


file:///home/casper/Desktop/book/1_2_2_set_operations.php#figure9

Notation:

« P(AN B) = P(Aand B) = P(4, B),

« P(AUB) = P(Aor B).




1.3.3 Finding Probabilities

Suppose that we are given a random experiment with a sample space S. To find the
probability of an event, there are usually two steps: first, we use the specific
information that we have about the random experiment. Second, we use the
probability axioms. Let's look at an example. Although this is a simple example and
you might be tempted to write the answer without following the steps, we encourage
you to follow the steps.

Example 1.9
You roll a fair die. What is the probability of £ = {1,5}?

Solution

Let's first use the specific information that we have about the random experiment. The
problem states that the die is fair, which means that all six possible outcomes are
equally likely, i.e.,

P({1}) = P({2}) = - = P({6}).

Now we can use the axioms of probability. In particular, since the events
{1},{2},---,{6} are disjoint we can write
1=P(S)

:p<{1}u{2}u---u{6}>

= P({1}) + P({2}) + - -- + P({6})
= 6P({1}).

Thus,
P({(1}) = P{2}) = -+ = P({8}) = <
Again since {1} and {5} are disjoint, we have

P(B) = P({1,5}) = P({1}) + P({5}) = = = -
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It is worth noting that we often write P(1) instead of P({1}) to simplify the notation, but
we should emphasize that probability is defined for sets (events) not for individual
outcomes. Thus, when we write P(2) = % what we really mean is that P({2}) = %

We will see that the two steps explained above can be used to find probabilities for
much more complicated events and random experiments. Let us now practice using
the axioms by proving some useful facts.

Example 1.10
Using the axioms of probability, prove the following:

a. For any event A, P(A°) =1 — P(A).
b. The probability of the empty set is zero, i.e., P(0) = 0.
c. For any event A4, P(A) < 1.

d. P(A— B) =P(A) — P(AN B).
e. P(AU B) = P(A) + P(B) — P(An B), (inclusion-exclusion principle for n = 2).
f. If A C Bthen P(A) < P(B).

Solution

a. This states that the probability that A does not occur is 1 — P(A). To prove it
using the axioms, we can write
1= P(S) (axiom 2)
= P(AU A°) (definition of compliment)
= P(A) + P(A°)

b. Since § = S¢, we can use part (a) to see that P()) =1 — P(S) = 0. Note that this
makes sense as by definition: an event happens if the outcome of the random
experiment belongs to that event. Since the empty set does not have any
element, the outcome of the experiment never belongs to the empty set.

c. From part (a), P(A) = 1 — P(A°) and since P(A°) > 0 (the first axiom), we have
P(A) <1.

d. We show that P(A) = P(AN B) + P(A — B). Note that the two sets AN B and
A — B are disjoint and their union is A (Figure 1.17). Thus, by the third axiom of



probability

P(A)=P((AnB)U(A—- B)) (since A= (AN B)U (A — B))
=P(ANB)+ P(A-B) (since AN Band A — B are disjoint).
S
A B
/ N
A—-B ANB
= AN B¢

Fig.1.17 - P(A) = P(AN B) + P(A — B).

Note that since A — B = A N B¢, we have shown
P(A) = P(AN B) + P(AN B°).

Note also that the two sets B and B¢ form a partition of the sample space (since
they are disjoint and their union is the whole sample space). This is a simple
form of law of total probability that we will discuss shortly and is a very useful rule
in finding probability of some events.

e. Note that A and B — A are disjoint sets and their union is A U B. Thus,
P(AUB)=P(AU (B—A))

P(A)+ P(B—A)
P(A) + P(B) — P(AN B) (by part (d))

f. Note that A C B means that whenever A occurs B occurs, too. Thus intuitively
we expect that P(A) < P(B). Again the proof is similar as before. If A C B, then
AN B=A. Thus,



P(B) = P(AN B) + P(B— A) (by part (d))
— P(A) + P(B - A)
> P(A) (by axiom 1)

Example 1.11
Suppose we have the following information:

1. There is a 60 percent chance that it will rain today.
2. There is a 50 percent chance that it will rain tomorrow.
3. There is a 30 percent chance that it does not rain either day.

Find the following probabilities:

a. The probability that it will rain today or tomorrow.

b. The probability that it will rain today and tomorrow.

c. The probability that it will rain today but not tomorrow.

d. The probability that it either will rain today or tomorrow, but not both.

Solution

An important step in solving problems like this is to correctly convert them to
probability language. This is especially useful when the problems become complex.
For this problem, let's define A as the event that it will rain today, and B as the event
that it will rain tomorrow. Then, let's summarize the available information:

P(A) =026,
P(B) = 0.5,
3P( N B =03

Now that we have summarized the information, we should be able to use them
alongside probability rules to find the requested probabilities:

a. The probability that it will rain today or tomorrow: this is P(A U B). To find this we
notice that

P(AUB)=1— P<(A U B)C> by Example 1.10



=1— P(A°N B°) by De Morgan’s Law
=1-0.3
=0.7

b. The probability that it will rain today and tomorrow: this is P(A N B). To find this
we note that

P(ANB)=P(A)+ P(B)— P(AUB) by Example 1.10
=06+0.5—-0.7
=04

c. The probability that it will rain today but not tomorrow: this is P(A N B°).

P(AN B°) = P(A— B)

= P(A)— P(AN B) by Example 1.10
=06-04
=0.2

d. The probability that it either will rain today or tomorrow but not both: this is
P(A — B) + P(B — A). We have already found P(A — B) = .2. Similarly, we can

find P(B — A):
P(B—A)=P(B)—P(BNA) by Example 1.10
=05-04
=0.1
Thus,

P(A-B)+P(B—A)=02+01=0.3

In this problem, it is stated that there is a 50 percent chance that it will rain tomorrow.
You might have heard this information from news on the TV. A more interesting
guestion is how the number 50 is obtained. This is an example of a real-life problem in
which tools from probability and statistics are used. As you read more chapters from
the book, you will learn many of these tools that are frequently used in practice.

Inclusion-Exclusion Principle:

The formula P(A U B) = P(A) + P(B) — P(A N B) that we proved in Example 1.10 is a
simple form of the inclusion-exclusion principle. We can extend it to the union of three
or more sets.



Inclusion-exclusion principle:

e P(AUB)=P(A)+ P(B)— P(AN B),

e« PLAUBUC) =P(A)+ P(B)+ P(C)—
—P(ANB)—P(ANnC)—P(BNC)+P(ANBNCQC)

Generally for n events Ap, As,---, A, we have

P(UL4) = S PUA) - £, P 4)

+Zi<j<k P(A;NA;NAL)— -+ + (=™t P(ﬂ?1 Ai)




1.3.4 Discrete Probability Models

Here, we will distinguish between two different types of sample spaces, discrete and
continuous. We will discuss the difference more in detail later on, when we discuss
random variables. The basic idea is that in discrete probability models we can
compute the probability of events by adding all the corresponding outcomes, while in
continuous probability models we need to use integration instead of summation.

Consider a sample space S. If S is a countable set, this refers to a discrete probability
model. In this case, since S is countable, we can list all the elements in S:

S = {81,82,83,"'}.

If A C Sis an event, then A is also countable, and by the third axiom of probability we
can write

P(4) = P(|J{s;}) = ) _ P(s;)-
s;€A

SjEA

Thus in a countable sample space, to find probability of an event, all we need to do is
sum the probability of individual elements in that set.

Example 1.12
| play a gambling game in which | will win k — 2 dollars with probability lk forany ke N

ok
, that is,

« with probability -, I lose 1 dollar;
« with probability 7, | win 0 dollar;
o with probability % | win 1 dollar;
¢ with probability % | win 2 dollars;
« with probability -, I win 3 dollars;

What is the probability that | win more than or equal to 1 dollar and less than 4 dollars?
What is the probability that | win more than 2 dollars?
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Solution

In this problem, the random experiment is the gambling game and the outcomes are
the amount in dollars that | win (lose). Thus we may write

S={-1,0,1,2,3,4,5,---}.
As we see this is an infinite but countable set. The problem also states that

1
2k+2

P(k) = P({k}) = forke S.

First, let's check that this is a valid probability measure. To do so, we should check if
all probabilities add up to one, i.e., P(S) = 1. We have

P(S) = 22171 P(k)

00 1
= Zk:—l 2k+2
— % + % + % 4o (geometric sum)
=1.

Now let's solve the problem. Let's define A as the event that | win more than or equal
to 1 dollar and less than 4 dollars, and B as the event that | win more than 2 dollars.
Thus,

A=1{1,2,3},B={3,4,5,--}.

Then
P(A) = P(1) + P(2) + P(3)
1 1 1
=35 T TR
7
32
~ 0.219
Similarly,
P(B) = P(3)+ P(4) + P(5) + P(6) + - - -
1 1 1 1 :
— s tatmtmt (geometric sum)
1
~ 16
=0.0625

Note that another way to find P(B) is to write



Note: Here we have used the geometric series sum formula. In particular, for any
a,r € R, we have

n—1
1 _ 7,
a+ax+ax2+a:p3+---+amn_1:Zamk:a ’ (1.3)
i 1—=zx
Moreover, if |z| < 1, then we have
> 1
a+a$+am2+aa:3+...:2aa:k:a (1.4)
par 11—z

Finite Sample Spaces with Equally Likely Outcomes:
An important special case of discrete probability models is when we have a finite
sample space S, where each outcome is equally likely, i.e.,

S ={s1,82, -+,sn}, where P(s;) = P(s;) foralli,j € {1,2,---,N}.

Rolling a fair die is an instance of such a probability model. Since all outcomes are
equally likely, we must have

1
P(s;) = N foralli € {1,2,---,N}.

In such a model, if A is any event with cardinality |A| = M, we can write

A
P(A):ZP(sj):Z%:%:%.

S]'GA s]'EA

Thus, finding probability of A reduces to a counting problem in which we need to count
how many elements are in A and S.




Example 1.13

I roll a fair die twice and obtain two numbers: X; = result of the first roll, and X, =
result of the second roll. Write down the sample space S, and assuming that all
outcomes are equally likely (because the die is fair), find the probability of the event A
defined as the event that X; + X» = 8.

Solution

The sample space S can be written as

§={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4), (5,5), (5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}.

As we see there are |S| = 36 elements in S. To find probability of A, all we need to do
is find M = |A|. In particular, A is defined as

A= {(Xl,X2)|X1 + Xy =8,X1,X, € {1,2, e ,6}}
= {(2’6)’ (375)’ (4a4)7 (5’3)a (672)}'

Thus, |[A| =5, which means that

pay— A 5

TS| 36
A very common mistake is not distinguishing between, say (2,6) and (6,2). It is
important to note that these are two different outcomes: (2,6) means that the first roll is
a 2 and the second roll is a 6, while (6,2) means that the first roll is a 6 and the second
roll is a 2. Note that it is very common to write P(X; + X, = 8) when referring to P(A)
as defined above. In fact, X; and X, are examples of random variables that will be
discussed in detail later on.




In a finite sample space S, where all outcomes are equally likely, the probability of
any event A can be found by

Al
P(A) = —.
S|
The formula P(A) = % suggests that it is important to be able to count elements in

se
im

ts. If sets are small, this is an easy task; however, if the sets are large and defined
plicitly, this could be a difficult job. That is why we discuss counting methods later

on.




1.3.5 Continuous Probability Models

Consider a scenario where your sample space S is, for example, [0,1]. This is an
uncountable set; we cannot list the elements in the set. At this time, we have not yet
developed the tools needed to deal with continuous probability models, but we can
provide some intuition by looking at a simple example.

Example 1.14

Your friend tells you that she will stop by your house sometime after or equal to 1 p.m.
and before 2 p.m., but she cannot give you any more information as her schedule is
quite hectic. Your friend is very dependable, so you are sure that she will stop by your
house, but other than that we have no information about the arrival time. Thus, we
assume that the arrival time is completely random in the 1 p.m. and 2 p.m. interval. (As
we will see, in the language of probability theory, we say that the arrival time is
"uniformly” distributed on the [1,2) interval). Let T' be the arrival time.

a. What is the sample space S?

b. What is the probability of P(1.5)? Why?

c. What is the probability of T' € [1,1.5)?

d. Forl <a<b<2 whatis Pla<T <b)=P(a,b])?

Solution

a. Since any real number in [1,2) is a possible outcome, the sample space is
indeed S = [1,2).

b. Now, let's look at P(1.5). A reasonable guess would be P(1.5) = 0. But can we
provide a reason for that? Let us divide the [1,2) interval to 2N + 1 equal-length
and disjoint intervals,

1 1 2 N N+1
1,1+ m)’[H v Lt 2N+1)""’[1+W+1’1+ 2N+1)"
See Figure 1.18. Here, N could be any positive integer.

2N )
2N+177/°

..,[1+
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2N+1 equal-length intervals

® } 1 I 2 } 3 } 2N o
1 Itovm 1o 1taomm L+ oy 2

Fig.1.18 - Dividing the interval [1,2) to 2N + 1 equal-length intervals.

The only information that we have is that the arrival time is "uniform" on the [1, 2)
interval. Therefore, all of the above intervals should have the same probability,
and since their union is S we conclude that

1 1 2
P([L1+ ))=P([1+ 1 )) =
( 2N +1 > ( 2N+1  2N+1
N N+1
—p(1+ FERE.ES RN
< 2N +1 2N +1 >

(1 2N ) _ 1
T [+2N+1’) TN +1°

In particular, by defining Ay = [1 + g 1+ 2%111 ) , we conclude that
N N+1 1
P(Ay) =P [1 1 ) _ _
(4w) ( TNt T o ) 2N +1

Now note that for any positive integer N, 1.5 € Ay. Thus, {1.5} C An, SO

1

_— forall N € N.
2N +1

P(1.5) < P(Ay) =

Note that as N becomes large, P(Ay) approaches 0. Since P(1.5) cannot be
negative, we conclude that P(1.5) = 0. Similarly, we can argue that P(x) = 0 for
allz € [1,2).

. Next, we find P([1,1.5)). This is the first half of the entire sample space S = [1,2)
and because of uniformity, its probability must be 0.5. In other words,
P([1,1.5)) = P([1.5,2)) (by uniformity),
P([1,1.5)) + P([1.5,2)) = P(S) = 1.



Thus
1
P([1,1.5)) = P([1.5,2)) = 5
d. The same uniformity argument suggests that all intervals in [1,2) with the same

length must have the same probability. In particular, the probability of an interval
is proportional to its length. For example, since

[1,1.5) = [1,1.25) U [1.25,1.5).
Thus, we conclude
P([1,1.5)) = P([1,1.25)) + P([1.25,1.5))
=2P([1,1.25)).

And finally, since P([1,2)) = 1, we conclude

P(la,b]) =b — a, for1<a<b<2.

The above example was a somewhat simple situation in which we have a continuous
sample space. In reality, the probability might not be uniform, so we need to develop
tools that help us deal with general distributions of probabilities. These tools will be
introduced in the coming chapters.

Discussion: You might ask why P(z) = 0 for all z € [1,2), but at the same time, the
outcome of the experiment is always a number in [1,2)? We can answer this question
from different points of view. From a mathematical point of view, we can explain this
issue by using the following analogy: consider a line segment of length one. This line
segment consists of points of length zero. Nevertheless, these zero-length points as a
whole constitute a line segment of length one. From a practical point of view, we can
provide the following explanation: our observed outcome is not all real values in [1, 2).
That is, if we are observing time, our measurement might be accurate up to minutes,
or seconds, or milliseconds, etc. Our continuous probability model is a limit of a
discrete probability model, when the precision becomes infinitely accurate. Thus, in
reality we are always interested in the probability of some intervals rather than a
specific point z. For example, when we say, "What is the probability that your friend



shows up at 1: 32 p.m.?", what we may mean is, "What is the probability that your
friend shows up between 1 : 32 : 00 p.m. and 1 : 32 : 59 p.m.?" This probability is
nonzero as it refers to an interval with a one-minute length. Thus, in some sense, a
continuous probability model can be looked at as the "limit" of a discrete space.
Remembering from calculus, we note that integrals are defined as the limits of sums.
That is why we use integrals to find probabilities for continuous probability models, as
we will see later.




1.3.6 Solved Problems:
Random Experiments and Probabilities

Problem 1
Consider a sample space S and three events A, B, and C. For each of the following
events draw a Venn diagram representation as well as a set expression.

a. Among A, B, and C, only A occurs.

b. At least one of the events A, B, or C occurs.
c. A or C occurs, but not B.

d. At most two of the events A, B, or C occur.

Solution

a. Among A, B, and C, only Aoccurs: A—B—-C=A—(BUCQC).

b. At least one of the events A, B, or C occurs: AU BU C.

c. A or C occurs, but not B: (AU C) — B.

d. At most two of the events A, B, or C occur: (AN BN C)° = A°U B°UC°.

The Venn diagrams are shown in Figure 1.19.



A B A B
C C
A-B-C AUBUC
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Fig.1.19 - Venn diagrams for solved problem 1.

Problem 2
Write the sample space S for the following random experiments.

a. We toss a coin until we see two consecutive tails. We record the total number of
coin tosses.

b. A bag contains 4 balls: one is red, one is blue, one is white, and one is green.
We choose two distinct balls and record their color in order.

c. A customer arrives at a bank and waits in the line. We observe T, which is the
total time (in hours) that the customer waits in the line. The bank has a strict
policy that no customer waits more than 20 minutes under any circumstances.

Solution

Remember that the sample space is the set of all possible outcomes. Usually, when
you have a random experiment, there are different ways to define the sample space S
depending on what you observe as the outcome. In this problem, for each experiment



it is stated what outcomes we observe in order to help you write down the sample
space S.

a. We toss a coin until we see two consecutive tails. We record the total number of
coin tosses: Here, the total number of coin tosses is a natural number larger than
or equal to 2. The sample space is

S =1{2,34,--}

b. A bag contains 4 balls: one is red, one is blue, one is white, and one is green.
We choose two distinct balls and record their color in order: The sample space
can be written as

S = {(R’ B)’ (B> R)’ (R7 W)> (W’ R)> (R’ G)7 (G’R)’
(B,W),(W,B),(B,G),(G,B),(W,G),(G,W)}.

c. A customer arrives at a bank and waits in the line. We observe T'...: In theory T
can be any real number between 0 and % = 20 minutes. Thus,
1

s=[03] ={zeRp<z <<}

Problem 3
Let A, B, and C be three events in the sample space S. Suppose we know

« P(4) =3,
« P(B)=3,
« P(AUB) =2

Answer the following questions:

a. Find P(AN B).

b. Do A, B, and C form a partition of S?
c. Find P(C — (AU B)).

d. If P(C N (AU B)) = =, find P(C).

51

Solution




As before, it is always useful to draw a Venn diagram; however, here we provide the
solution without using a Venn diagram.

a. Using the inclusion-exclusion principle, we have
P(AUB) =P(A)+ P(B) — P(AN B).

Thus,

b. No, since AN B # 0.
c. We can write

—(AUB) = (Cu AUB) — (AU B)
=9 -

(AU B)
= (AU B)".
Thus
P(C—(AUB)) :P((AUB)C)
=1—-P(AUB)
d. We have
P(C) = P(CN (AUB))+ P(C — (AU B)) = %+ % _ %
Problem 4

| roll a fair die twice and obtain two numbers X; = result of the first roll, and X, =
result of the second roll. Find the probability of the following events:

a. A defined as "X; < X,";
b. B defined as "You observe a 6 at least once".



Solution

As we saw before, the sample space S has 36 elements.

a. We have
4={(1,2),(1,3),(1,4),(1,5), (1,6), (2,3),(2,4),(2,5),
(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}.
Then, we obtain

WA 155
S| 36 127

b. We have
B ={(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),(1,6),(2,6), (3,6),(4,6), (5,6) }.
We obtain

B |B| 1

P(B)_m_%.

Problem 5

You purchase a certain product. The manual states that the lifetime T' of the product,
defined as the amount of time (in years) the product works properly until it breaks
down, satisfies

t
P(T>t)=e€ 5 forallt > 0.

For example, the probability that the product lasts more than (or equal to) 2 years is
2
P(T>2)=e 5 =0.6703.

a. This is an example of a continuous probability model. Write down the sample
space S.

b. Check that the statement in the manual makes sense by finding P(T" > 0) and
lim; oo P(T > t).

c. Also check that if t; < 2, then P(T > ¢1) > P(T > t»). Why does this need to be
true?



d. Find the probability that the product breaks down within three years of the
purchase time.

e. Find the probability that the product breaks down in the second year, i.e., find
P(1<T<2).

Solution

a. The sample space S is the set of all possible outcomes. Here, the possible
outcomes are the possible values for T' which can be any real number larger
than or equal to zero. Thus

S =10,00).

b. We have

0
5

P(T>0)=¢ 7 =1,

lim P(T >t)=e ® =0,

t—o00

which is what we expect. In particular, T' is always larger than or equal to zero,
thus we expect P(T > 0) = 1. Also, since the product will eventually fail at some
point, we expect that P(T > t) approaches zero as ¢ goes to infinity.

f1 t9
c. First note that if t; < t,,then P(T >t;)=e 5 >e 5 = P(T > t,) (since

f(z) = e is an increasing function). Here we have two events, A4 is the event
that T > ¢, and B is the event that T' > t,. That is,

A = [t1,00), B = [ta,00).
Since Bis a subset of A, B C A, we must have P(B) < P(A), thus
P(A)=P(T >t;) > P(T > t3) = P(B).

d. The probability that the product breaks down within three years of the purchase
time is
3
P(T<3)=1-P(T>3)=1—-¢ 5 ~04512
e. Note that if A C B, then

P(B— A) = P(B) — P(BN A)
= P(B) — P(A) (since A C B).



Choosing A = [1,00) and B = [2,00), we can write

PA<T<2) =PT>1)—P(T >?2)

Problem 6

| first saw this question in a math contest many years ago: You get a stick and break it
randomly into three pieces. What is the probability that you can make a triangle using
the three pieces? You can assume the break points are chosen completely at random,
i.e. if the length of the original stick is 1 unit, and z, y, z are the lengths of the three
pieces, then (z,y, z) are uniformly chosen from the set

{(z,9,2) € R’lz +y +2=1,2,y,2 > 0}.

Solution

This is again a problem on a continuous probability space. The basic idea is pretty
simple. First, we need to identify the sample space S. In this case the sample space is
going to be a two-dimensional set. Second, we need to identify the set A that contains
the favorable outcomes (the set of (z,y, z) in S that form a triangle). And finally, since
the space is uniform, we will divide area of set A by the area of S to obtain P(A).

First, we need to find the sets S and A. This is basically a geometry problem. The two
sets, S and A, are shown in Figure 1.20.



z
Sample Space

Fig.1.20 - The sample space and set A for Problem 6.

Note that in R®, z 4+ y + z = 1 represents a plane that goes through the points
(1,0,0),(0,1,0),(0,0,1). To find the sample space S, note that

S ={(z,y,2) € R®|lz +y+2z=1,z,y,2 > 0}, thus S is the part of the plane that is
shown in Figure 1.20.

To find the set A, note that we need (z, y, 2) to satisfy the triangle inequality
T+y>z,
Yy+z>a,

r+z>y.

Note that since = + y + z = 1, we can equivalently write the three equations as

<

Y

z <

<
A
N el

Thus, we conclude that the set A is the area shown in Figure 20. In particular, we note

that the set S consists of four triangles with equal areas. Therefore, its area is four
times the area of A, and we have

_ AreaofA 1

P(A) = ———~ = .
(4) Area of S 4




1.4.0 Conditional Probability

In this section, we discuss one of the most fundamental concepts in probability theory.
Here is the question: as you obtain additional information, how should you update
probabilities of events? For example, suppose that in a certain city, 23 percent of the
days are rainy. Thus, if you pick a random day, the probability that it rains that day is 23
percent:

P(R) = 0.23, where R is the event that it rains on the randomly chosen day.

Now suppose that | pick a random day, but | also tell you that it is cloudy on the
chosen day. Now that you have this extra piece of information, how do you update the
chance that it rains on that day? In other words, what is the probability that it rains
given that it is cloudy? If C'is the event that it is cloudy, then we write this as P(R|C),
the conditional probability of R given that C' has occurred. It is reasonable to assume
that in this example, P(R|C) should be larger than the original P(R), which is called
the prior probability of R. But what exactly should P(R|C) be? Before providing a
general formula, let's look at a simple example.

Example 1.15

| roll a fair die. Let A be the event that the outcome is an odd number, i.e., A = {1, 3,5}
. Also let B be the event that the outcome is less than or equal to 3, i.e., B = {1, 2,3}.
What is the probability of A, P(A)? What is the probability of A given B, P(A|B)?

Solution

This is a finite sample space, so

Al HL3sY 1

PA) = 15 - 5

Now, let's find the conditional probability of A given that B occurred. If we know B has
occurred, the outcome must be among {1,2,3}. For A to also happen the outcome
must be in AN B = {1,3}. Since all die rolls are equally likely, we argue that P(A|B)
must be equal to


http://www.probabilitycourse.com/videos/chapter1/video1_5.php

Now let's see how we can generalize the above example. We can rewrite the
calculation by dividing the numerator and denominator by |S| in the following way

| AN B
P(AIB |AN B| S| P(AN B)
= B B P(B
15|

Although the above calculation has been done for a finite sample space with equally
likely outcomes, it turns out the resulting formula is quite general and can be applied in
any setting. Below, we formally provide the formula and then explain the intuition
behind it.

If A and B are two events in a sample space S, then the conditional probability
of A given B is defined as

P(A|B) = %, when P(B) > 0.

Here is the intuition behind the formula. When we know that B has occurred, every
outcome that is outside B should be discarded. Thus, our sample space is reduced to
the set B, Figure 1.21. Now the only way that A can happen is when the outcome

belongs to the set A N B. We divide P(A N B) by P(B), so that the conditional
P(BNB)
=1.

probability of the new sample space becomes 1, i.e., P(B|B) = &)

Note that conditional probability of P(A|B) is undefined when P(B) = 0. That is okay
because if P(B) = 0, it means that the event B never occurs so it does not make
sense to talk about the probability of A given B.



N\
ANB
P(A|B) = %

Fig. 1.21 - Venn diagram for conditional probability, P(A|B).

It is important to note that conditional probability itself is a probability measure, so it
satisfies probability axioms. In particular,

e Axiom 1: For any event A, P(A|B) > 0.
e Axiom 2: Conditional probability of B given Bis 1, i.e., P(B|B) = 1.
o Axiom 3: If A;, Ay, As,- - - are disjoint events, then

P(A1 UAyU As---|B) = P(A1|B) + P(A2|B) + P(As3|B) + - - - .

In fact, all rules that we have learned so far can be extended to conditional probability.
For example, the formulas given in Example 1.10 can be rewritten:

Example 1.16
For three events, A, B, and C, with P(C) > 0, we have

e P(A|C) =1 — P(A[C);

. P(0[C) = 0;

e P(A[C) <1;

e P(A— B|C) = P(A|C) — P(AN B|C);

e P(AUB|C) = P(A|C)+ P(B|C) — P(An B|C);
» if A C Bthen P(A|C) < P(B|C).
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Let's look at some special cases of conditional probability:
e When A and B are disjoint: In this case AN B = (), so

P(ANB)
P(B)
20

~ P(B)
- 0.

P(A|B) =

This makes sense. In particular, since A and B are disjoint they cannot both
occur at the same time. Thus, given that B has occurred, the probability of A
must be zero.

e When B is a subset of A: If B C A, then whenever B happens, A also happens.
Thus, given that B occurred, we expect that probability of A be one. In this case
ANB=B0B,so

_ P(4nB)
- P(B)
P(B)

- P(B)
= 1.

P(A|B)

e When A is a subset of B: In thiscase AN B = A, so

P(ANB)
P(4|B) = 2

_ P4

P(B)’

Example 1.17

| roll a fair die twice and obtain two numbers X; = result of the first roll and X, = result
of the second roll. Given that | know X; + X» = 7, what is the probability that X; =4 or
Xy =47

Solution




Let A be the event that X; = 4 or Xs = 4 and B be the event that X; + Xy = 7. We are
interested in P(A|B), so we can use

P(AN B)

P(A|B) = B

We note that
A={(41),(4,2),(4,3),(4,4),(4,5),(4,6),(1,4),(2,4), (3,4), (4,4), (5,4), (6,4)},
B={(6,1),(5,2),(4,3),(3,4),(2,5), (1,6)},
AN B=1{(4,3),(3,4)}.
We conclude

P(AN B)

P(A|B) = B

Let's look at a famous probability problem, called the two-child problem. Many versions
of this problem have been discussed [1] in the literature and we will review a few of
them in this chapter. We suggest that you try to guess the answers before solving the
problem using probability formulas.

Example 1.18

Consider a family that has two children. We are interested in the children's genders.
Our sample space is S = {(G,G), (G, B),(B,G), (B, B)}. Also assume that all four
possible outcomes are equally likely.

a. What is the probability that both children are girls given that the first child is a
girl?

b. We ask the father: "Do you have at least one daughter?" He responds "Yes!"
Given this extra information, what is the probability that both children are girls? In
other words, what is the probability that both children are girls given that we
know at least one of them is a girl?


http://www.probabilitycourse.com/bibliography.php#wiki-two-child

Solution

Let A be the event that both children are girls, i.e., A = {(G,G)}. Let B be the event
that the first child is a girl, i.e., B = {(G, G), (G, B)}. Finally, let C be the event that at
least one of the children is a girl, i.e., C = {(G,G), (G, B),(B,G)}. Since the outcomes
are equally likely, we can write

P(4) = 1,
PB) =2 =2,
P(O)=2

a. What is the probability that both children are girls given that the first child is a
girl? This is P(A|B), thus we can write

P(ANB)
P(B)
= % (since A C B)

P(A|B) =

b. What is the probability that both children are girls given that we know at least one
of them is a girl? This is P(A|C), thus we can write

P(ANC)
P(C)
P(4)

= % (since A C C)

P(A|C) =

o 1
=3-

»lw'uq»—t

Discussion: Asked to guess the answers in the above example, many people would
guess that both P(A|B) and P(A|C) should be 50 percent. However, as we see P(A|B)
is 50 percent, while P(A|C) is only 33 percent. This is an example where the answers
might seem counterintuitive. To understand the results of this problem, it is helpful to



note that the event B is a subset of the event C. In fact, it is strictly smaller: it does not
include the element (B, G), while C has that element. Thus the set C has more
outcomes that are not in A than B, which means that P(A|C) should be smaller than
P(A|B).

It is often useful to think of probability as percentages. For example, to better
understand the results of this problem, let us imagine that there are 4000 families that
have two children. Since the outcomes (G, G), (G, B),(B,G), and (B, B) are equally
likely, we will have roughly 1000 families associated with each outcome as shown in
Figure 1.22. To find probability P(A|C), we are performing the following experiment:
we choose a random family from the families with at least one daughter. These are the
families shown in the box. From these families, there are 1000 families with two girls
and there are 2000 families with exactly one girl. Thus, the probability of choosing a
family with two girls is <.

1000, GG
1000 __ 1
4000
1000, BG
1000, BB

Fig.1.22 - An example to help the understanding of P(A|C) in Example
1.18.

Chain rule for conditional probability:
Let us write the formula for conditional probability in the following format

P(AN B) = P(A)P(B|A) = P(B)P(A|B) (1.5)

This format is particularly useful in situations when we know the conditional probability,
but we are interested in the probability of the intersection. We can interpret this
formula using a tree diagram such as the one shown in Figure 1.23. In this figure, we
obtain the probability at each point by multiplying probabilities on the branches leading
to that point. This type of diagram can be very useful for some problems.



x P(B|A)

P(AN B)
x P(A) Pl4)—
PE)  panpe
1
PBA) pgenp)
xP(A) (49)—
DPENA)  pacn pe)
Fig.1.23 - A tree diagram.
Now we can extend this formula to three or more events:
P(ANBNC)=P(ANn(BNC)) =P(A)P(BNC|A) (1.6)
From Equation 1.5,
P(BN C) = P(B)P(C|B).
Conditioning both sides on A, we obtain
P(BN C|A) = P(B|A)P(C|A, B) (1.7)

Combining Equation 1.6 and 1.7 we obtain the following chain rule:
P(ANnBNC)=P(A)P(B|A)P(C|A, B).

The point here is understanding how you can derive these formulas and trying to have
intuition about them rather than memorizing them. You can extend the tree in Figure

1.22 to this case. Here the tree will have eight leaves. A general statement of the chain
rule for n events is as follows:

Chain rule for conditional probability:

P(AyNnAyn---NA,) = P(A;)P(Ay|A;)P(A3|Ay, Ay) - - P(Ap A1 Ay -+ Ay)

Example 1.19
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In a factory there are 100 units of a certain product, 5 of which are defective. We pick
three units from the 100 units at random. What is the probability that none of them are
defective?

Solution

Let us define A; as the event that the ith chosen unit is not defective, for i =1,2,3. We
are interested in P(A; N A2 N As). Note that

95

P(41) = 75

Given that the first chosen item was good, the second item will be chosen from 94
good units and 5 defective units, thus

94
P(A5]A)) = —.
(42l41) = o
Given that the first and second chosen items were okay, the third item will be chosen
from 93 good units and 5 defective units, thus

93
P(A3]|Az,Ap) = 98

Thus, we have

P(A; N Ay N A) = P(A;)P(Ay|A1)P(A3] Az, Ay)
95 9493
~ 100 99 98
= 0.8560

As we will see later on, another way to solve this problem is to use counting
arguments.




1.4.1 Independence

Let A be the event that it rains tomorrow, and suppose that P(A) = % Also suppose

1

that | toss a fair coin; let B be the event that it lands heads up. We have P(B) = 5.

Now | ask you, what is P(A|B)? What is your guess? You probably guessed that
P(A|B) = P(A) = % You are right! The result of my coin toss does not have anything
to do with tomorrow's weather. Thus, no matter if B happens or not, the probability of
A should not change. This is an example of two independent events. Two events are
independent if one does not convey any information about the other. Let us now
provide a formal definition of independence.

Two events A and B are independent if P(A N B) = P(A)P(B).

Now, let's first reconcile this definition with what we mentioned earlier, P(A|B) = P(A).
If two events are independent, then P(AN B) = P(A)P(B), so

P(ANB)
P(B)
P(A)P(B)

P(A|B) =

Thus, if two events A and B are independent and P(B) # 0, then P(A|B) = P(A). To
summarize, we can say "independence means we can multiply the probabilities of
events to obtain the probability of their intersection”, or equivalently, "independence
means that conditional probability of one event given another is the same as the
original (prior) probability".

Sometimes the independence of two events is quite clear because the two events
seem not to have any physical interaction with each other (such as the two events
discussed above). At other times, it is not as clear and we need to check if they satisfy
the independence condition. Let's look at an example.
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Example 1.20

| pick a random number from {1,2,3,---,10}, and call it N. Suppose that all outcomes
are equally likely. Let A be the event that N is less than 7, and let B be the event that
N is an even number. Are A and B independent?

Solution

We have A = {1,2,3,4,5,6}, B={2,4,6,8,10}, and AN B ={2,4,6}. Then

P(A) = 0.6,
P(B) =025,
P(ANB) =03

Therefore, P(AN B) = P(A)P(B), so A and B are independent. This means that
knowing that B has occurred does not change our belief about the probability of A. In
this problem the two events are about the same random number, but they are still
independent because they satisfy the definition.

The definition of independence can be extended to the case of three or more events.

Three events A, B, and C are independent if all of the following conditions hold
P(AN B) = P(A)P(B),

A

B

(
P(ANC) = P(A)P(C),
P(BN C) = P(B)P(

0),
P(AnBNC)=P(A)P(B)P(C).

Note that all four of the stated conditions must hold for three events to be independent.
In particular, you can find situations in which three of them hold, but the fourth one
does not. In general, for n events A4, A,,---, A,, to be independent we must have

P(A; N Aj) = P(A;)P(4,), for all distinct ¢,5 € {1,2,---,n};



P(Al NAsNAs---N An) = P(Al)P(AQ)P(Ag) cee P(An)

This might look like a difficult definition, but we can usually argue that the events are
independent in a much easier way. For example, we might be able to justify
independence by looking at the way the random experiment is performed. A simple
example of an independent event is when you toss a coin repeatedly. In such an
experiment, the results of any subset of the coin tosses do not have any impact on the
other ones.

Example 1.21
| toss a coin repeatedly until | observe the first tails at which point | stop. Let X be the
total number of coin tosses. Find P(X = 5).

Solution

Here, the outcome of the random experiment is a number X. The goal is to find

P(A) = P(5). But what does X = 5 mean? It means that the first 4 coin tosses result in
heads and the fifth one results in tails. Thus the problem is to find the probability of the
sequence HHHHT when tossing a coin five times. Note that HHHHT is a shorthand
for the event "(The first coin toss results in heads) and (The second coin toss results in
heads) and (The third coin toss results in heads) and (The fourth coin toss results in
heads) and (The fifth coin toss results in tails).” Since all the coin tosses are
independent, we can write

P(HHHHT) = P(H)P(H)P(H)P(H)P(T)

Discussion: Some people find it more understandable if you look at the problem in the
following way. | never stop tossing the coin. So the outcome of this experiment is
always an infinite sequence of heads or tails. The value X (which we are interested in)
is just a function of the beginning part of the sequence until you observe a tails. If you
think about the problem this way, you should not worry about the stopping time. For



this problem it might not make a big difference conceptually, but for some similar
problems this way of thinking might be beneficial.

We have seen that two events A and B are independent if P(A N B) = P(A)P(B). In
the next two results, we examine what independence can tell us about other set
operations such as compliments and unions.

Lemma 1.1
If A and B are independent then

e A and B¢ are independent,
e A° and B are independent,
e A°and B¢ are independent.

Proof
We prove the first one as the others can be concluded from the first one immediately.
We have

Thus, A and B¢ are independent.

Sometimes we are interested in the probability of the union of several independent
events A;, As,---, A,. For independent events, we know how to find the probability of
intersection easily, but not the union. It is helpful in these cases to use De Morgan's
Law:

AjUAU---UA, =(A5NASN---NAp)°
Thus we can write

P(AiUAU---UA,) =1-P(ASNASN -+ N AS)
=1—(1—P(4A1))(1— P(42)) - (1 - P(An)).



If Ay, As,---, A, are independent then

P(AjUAU---UA,) =1—(1-P(4))(1—P(Ay))--- (1 - P(4,)).

Example 1.22
1

Suppose that the probability of being killed in a single flight is p. = YmT based on

available statistics. Assume that different flights are independent. If a businessman
takes 20 flights per year, what is the probability that he is killed in a plane crash within
the next 20 years? (Let's assume that he will not die because of another reason within
the next 20 years.)

Solution

The total number of flights that he will take during the next 20 years is
N =20 x 20 = 400. Let p, be the probability that he survives a given single flight. Then
we have

ps =1 — pe.

Since these flights are independent, the probability that he will survive all N = 400
flights is

P(Survive N flights) = p, x p; X -+ x p, = pY = (1 —p,)V.
Let A be the event that the businessman is killed in a plane crash within the next 20
years. Then

1
P(A)=1—-(1-p)" =9.9995 x 10° ~ 10000

Warning! One common mistake is to confuse independence and being_disjoint. These
are completely different concepts. When two events A and B are disjoint it means that
if one of them occurs, the other one cannot occur, i.e., AN B = (. Thus, event A
usually gives a lot of information about event B which means that they cannot be
independent. Let's make it precise.




Lemma 1.2
Consider two events A and B, with P(A) # 0 and P(B) # 0. If A and B are disjoint,
then they are not independent.

Proof
Since A and B are disjoint, we have

P(AN B) = 0 # P(A)P(B).

Thus, A and B are not independent. [

Table 1.1 summarizes the two concepts of disjointness and independence.

Concept Meaning Formulas
Disioint A and B cannot occur at the ANB=1,
) same time P(AUB) =P(A)+ P(B)
A does not give any P(A|B) = P(A), P(B|A) = P(B)
Independent || ;. ormation about B P(AN B) = P(A)P(B)

Table 1.1: Differences between disjointness and independence.

Example 1.23 (A similar problem is given in [6])

Two basketball players play a game in which they alternately shoot a basketball at a
hoop. The first one to make a basket wins the game. On each shot, Player 1 (the one
who shoots first) has probability p; of success, while Player 2 has probability p, of
success (assume 0 < p1,p2 < 1). The shots are assumed to be independent.

a. Find P(W1), the probability that Player 1 wins the game.
b. For what values of p; and p is this a fair game, i.e., each player has a 50 percent
chance of winning the game?

Solution
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In this game, the event W; can happen in many different ways. We calculate the
probability of each of these ways and then add them up to find the total probability of
winning. In particular, Player 1 may win on her first shot, or her second shot, and so
on. Define A; as the event that Player 1 wins on her i'th shot. What is the probability of
A;? A; happens if Player 1 is unsuccessful at her first ¢ — 1 shots and successful at her
ith shot, while Player 2 is unsuccessful at her first i — 1 shots. Since different shots are
independent, we obtain

P(Al) = D1,
P(Az) = (1 —p1)(1 —p2)p1,

P(A3) = (1 —p1)(1 —p2)(1 — p1)(1 — p2)p1,

P(A) = [(1—p)(1 —p2)] " 1,

Note that A;, A,, A3, - - - are disjoint events, because if one of them occurs the other
one cannot occur. The event that Player 1 wins is the union of the A;'s, and since the
A;'s are disjoint, we have

P(W))=P(A,UAy,UA3U--")
= P(4;) + P(4y) + P(A3) + -

=p1+ (1 —p1)(1 —p2)p1 + [(1 —p1)(1 —pz)}2p1 +--

=pi |1+ (L—p)(A —py) +[(1—p1)(X —po)]* +---

Note that since 0 < p;,p, < 1, forz = (1 —p;)(1 — p;) we have 0 < z < 1. Thus, using
the geometric sum formula (3", , az* = a%x for |z| < 1), we obtain

P(W ) — pl = pl
V1o -p)(1—py) pLtp2—pip

It is always a good idea to look at limit cases to check our answer. For example, if we
plug in p1 = 0,p2 # 0, we obtain P(WW;) = 0, which is what we expect. Similarly, if we let
p2 = 0,p1 # 0, we obtain P(W;) = 1, which again makes sense.

Now, to make this a fair game (in the sense that P(1W;) = .5), we have

i — 05

P(W;) = —
(W) D1+ D2 — P1P2

and we obtain



D2
1+py

b1 =

Note that this means that p; < p2, which makes sense intuitively. Since Player 1 has
the advantage of starting the game, she should have a smaller success rate so that
the whole game is fair.




1.4.2 Law of Total Probability

Let us start this section by asking a very simple question: In a certain country there are
three provinces, call them By, By, and Bs (i.e., the country is partitioned into three
disjoint sets By, Bs, and Bs). We are interested in the total forest area in the country.
Suppose that we know that the forest area in By, Bs, and Bz are 100km?, 50km?, and
150km?, respectively. What is the total forest area in the country? If your answer is

100km? + 50km? + 150km> = 300km?,

you are right. That is, you can simply add forest areas in each province (partition) to
obtain the forest area in the whole country. This is the idea behind the law of total
probability, in which the area of forest is replaced by probability of an event A. In
particular, if you want to find P(A), you can look at a partition of S, and add the amount
of probability of A that falls in each partition. We have already seen the special case
where the partition is B and B¢ we saw that for any two events A and B,

P(A)=P(ANB)+ P(AN B°)

and using the definition of conditional probability, P(A N B) = P(A|B)P(B), we can
write
P(A) = P(A|B)P(B) + P(A|B°)P(B").

We can state a more general version of this formula which applies to a general
partition of the sample space S.

Law of Total Probability:
If B;,B,y, Bs,--- is a partition of the sample space S, then for any event A we have

P(4) = Y (AN B) = Y P(A|B)P(B))

Using a Venn diagram, we can pictorially see the idea behind the law of total
probability. In Figure 1.24, we have

Ay :AﬂBl,
AQZAQBQ,
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A3:AﬂBg.

As it can be seen from the figure, A;, As, and A3 form a partition of the set A, and thus
by the third axiom of probability

P(A) = P(A;) + P(Ay) + P(As3).

S S

-

AN

Fig.1.24 - Law of total probability.

Here is a proof of the law of total probability using probability axioms:

Proof
Since By, B2, Bs, - - - is a partition of the sample space S, we can write

S =U;B;
A=ANS
= AN (U, B)
=U,(4N By) by the distributive law (Theorem 1.2).

Now note that the sets A N B; are disjoint (since the B;'s are disjoint). Thus, by the
third probability axiom,

P(A) = P< Uin Bi)> = Z P(ANB;) = Z P(A|B;)P(B;).

i




Here is a typical scenario in which we use the law of total probability. We are
interested in finding the probability of an event A, but we don't know how to find P(A)
directly. Instead, we know the conditional probability of A given some events B;, where
the B;'s form a partition of the sample space. Thus, we will be able to find P(A) using
the law of total probability, P(A) = . P(A|B;)P(B;).

Example 1.24
| have three bags that each contain 100 marbles:

e Bag 1 has 75 red and 25 blue marbles;
e Bag 2 has 60 red and 40 blue marbles;
e Bag 3 has 45 red and 55 blue marbles.

| choose one of the bags at random and then pick a marble from the chosen bag, also
at random. What is the probability that the chosen marble is red?

Solution

Let R be the event that the chosen marble is red. Let B; be the event that | choose
Bag i. We already know that

P(R|B;) = 0.75,
P(R|B;) = 0.60,
P(R|B;) = 0.45

We choose our partition as B, Bs, Bs. Note that this is a valid partition because, firstly,
the B;'s are disjoint (only one of them can happen), and secondly, because their union
is the entire sample space as one the bags will be chosen for sure, i.e.,

P(B; U By U Bs) = 1. Using the law of total probability, we can write

P(R) = P(R|B,)P(B1) + P(R|B:)P(B:) + P(R|Bs)P(B;)
= (0.75)5 + (0.60)5 + (0.45)
= 0.60




1.4.3 Bayes' Rule

Now we are ready to state one of the most useful results in conditional probability:
Bayes' rule. Suppose that we know P(A|B), but we are interested in the probability
P(B|A). Using the definition of conditional probability, we have

P(A|B)P(B) = P(AN B) = P(B|A)P(A).
Dividing by P(A), we obtain

P(A|B)P(B)
PBA) = ———,
P(4)
which is the famous Bayes' rule. Often, in order to find P(A) in Bayes' formula we
need to use the law of total probability, so sometimes Bayes' rule is stated as

P(A|B;)P(B))
P(Bj|4) = :
>.; P(A|B;)P(B;)
where By, Bs, - - -, B, form a partition of the sample space.

Bayes' Rule

» For any two events A and B, where P(A) # 0, we have

P(A|B)P(B)

P(B|A) = )

e If By, B2, Bs,--- form a patrtition of the sample space S, and A is any event
with P(A) # 0, we have

gl — _DAIB)P(B)
B = paB)PB)

Example 1.25
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In Example 1.24, suppose we observe that the chosen marble is red. What is the
probability that Bag 1 was chosen?

Solution

Here we know P(R|B;) but we are interested in P(B:|R), so this is a scenario in which
we can use Bayes' rule. We have

_ P(R|By)P(By)

P(B|R) = O

O.75><%

0.6

12~

P(R) was obtained using the law of total probability in Example 1.24, thus we did not
have to recompute it here. Also, note that P(B;|R) = % > % This makes sense
intuitively because bag 1 is the bag with the highest number of red marbles. Thus if the

chosen marble is red, it is more likely that bag 1 was chosen.

Example 1.26 (False positive paradox [5])

A certain disease affects about 1 out of 10,000 people. There is a test to check
whether the person has the disease. The test is quite accurate. In particular, we know
that

« the probability that the test result is positive (suggesting the person has the
disease), given that the person does not have the disease, is only 2 percent;

 the probability that the test result is negative (suggesting the person does not
have the disease), given that the person has the disease, is only 1 percent.

A random person gets tested for the disease and the result comes back positive. What
is the probability that the person has the disease?

Solution

Let D be the event that the person has the disease, and let T be the event that the test
result is positive. We know

1

P(D) = ,
(D) 10,000
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P(T|D°) = 0.02,
P(T*|D) = 0.01

What we want to compute is P(D|T). Again, we use Bayes' rule:
P(T|D)P(D)
P(DIT) = P(T|D)P(D)+P(T|D¢)P(De)
(1-0.01)x0.0001
" (1-0.01)x0.000140.02x (1—0.0001)
= 0.0049

This means that there is less than half a percent chance that the person has the
disease.

Discussion: This might seem somewhat counterintuitive as we know the test is quite
accurate. The point is that the disease is also very rare. Thus, there are two competing
forces here, and since the rareness of the disease (1 out of 10,000) is stronger than
the accuracy of the test (98 or 99 percent), there is still good chance that the person
does not have the disease.

Another way to think about this problem is illustrated in the tree diagram in Figure
1.25. Suppose 1 million people get tested for the disease. Out of the one million
people, about 100 of them have the disease, while the other 999,900 do not have the
disease. Out of the 100 people who have the disease 100 x .99 = 99 people will have
positive test results. However, out of the people who do not have the disease
999,900 x .02 = 19998 people will have positive test results. Thus in total there are
19998 + 99 people with positive test results, and only 99 of them actually have the
disease. Therefore, the probability that a person from the "positive test result" group
actually have the disease is

99

= —————— =0.0049
19998 + 99

P(DIT)



100 1 tested negative

X 10,1000 D(100)]

%20
% tested positive

1,000, 000 —

x 98
100 979,902 tested negative
9,999

X
L1990 pe(999,900) —|

X2
100 @ tested positive

Fig.1.25 - Tree diagram for Example 1.26.




1.4.4 Conditional Independence

As we mentioned earlier, almost any concept that is defined for probability can also be
extended to conditional probability. Remember that two events A and B are
independent if

P(AN B) =P(A)P(B), orequivalently, P(A|B) = P(A).

We can extend this concept to conditionally independent events. In particular,

Definition 1.2
Two events A and B are conditionally independent given an event C with P(C) > 0
if

P(AN B|C) = P(A|C)P(B|C) (1.8)
Recall that from the definition of conditional probability,

P(AN B)
P(A|B) = “pB)

if P(B) > 0. By conditioning on C, we obtain

P(AN B|C)

P(A|B,C) = PEC)

if P(B|C), P(C) # 0. If A and B are conditionally independent given C, we obtain
__ P(AnB|O)
P(A|B,C) = FEC)
__ P(AlO)P(B|C)
- P(BO)

= P(A[C).

Thus, if A and B are conditionally independent given C, then
P(A|B,C) = P(A|C) (1.9)

Thus, Equations 1.8 and 1.9 are equivalent statements of the definition of conditional
independence. Now let's look at an example.
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Example 1.27
A box contains two coins: a regular coin and one fake two-headed coin (P(H) = 1). |
choose a coin at random and toss it twice. Define the following events.

e A= First coin toss results in an H.
e B= Second coin toss results in an H.
¢ C=Coin 1 (regular) has been selected.

Find P(A|C), P(B|C),P(An B|C),P(A),P(B),and P(AnN B). Note that A and B are
NOT independent, but they are conditionally independent given C.

Solution

We have P(A|C) = P(B|C) = % Also, given that Coin 1 is selected, we have

P(ANB|C) = % % = % To find P(A), P(B), and P(A N B), we use the law of total
probability:

P(A) = P(A|C)P(C) + P(A|C?)P(C*)

Similarly, P(B) = % For P(AnN B), we have

P(AnN B) = P(An B|C)P(C) + P(AnN B|C®)P(C°)
= P(A|C)P(B|C)P(C) + P(A|C°)P(B|C®)P(C")

—

As we see, P(AN B) = % # P(A)P(B) = 1% which means that A and B are not
independent. We can also justify this intuitively. For example, if we know A has
occurred (i.e., the first coin toss has resulted in heads), we would guess that it is more
likely that we have chosen Coin 2 than Coin 1. This in turn increases the conditional
probability that B occurs. This suggests that A and B are not independent. On the

other hand, given C (Coin 1 is selected), A and B are independent.



One important lesson here is that, generally speaking, conditional independence
neither implies (nor is it implied by) independence. Thus, we can have two events that
are conditionally independent but they are not unconditionally independent (such as A
and B above). Also, we can have two events that are independent but not conditionally
independent, given an event C. Here is a simple example regarding this case.
Consider rolling a die and let

A={1,2},
B ={2,4,6},
C={1,4}.

Then, we have

P(ANB) = % = P(A)P(B).
Thus, A and B are independent. But we have
1 1
P(A|C) = -, P(B|C) = -;
2 2
P(AN B|C) = P({2}|C) = 0.
Thus
P(AN B|C) # P(A|C)P(B|C),

which means A and B are not conditionally independent given C.




1.4.5 Solved Problems:
Conditional Probability

In die and coin problems, unless stated otherwise, it is assumed coins and dice are fair
and repeated trials are independent.

Problem 1

You purchase a certain product. The manual states that the lifetime T' of the product,
defined as the amount of time (in years) the product works properly until it breaks
down, satisfies

t
P(T>t)=e 5, forallt > 0.

For example, the probability that the product lasts more than (or equal to) 2 years is
2

P(T >2)=e 5 =0.6703. | purchase the product and use it for two years without any
problems. What is the probability that it breaks down in the third year?

Solution

Let A be the event that a purchased product breaks down in the third year. Also, let B
be the event that a purchased product does not break down in the first two years. We
are interested in P(A|B). We have

We also have

Finally, since A C B, we have AN B = A. Therefore,

P(A|B)
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Problem 2
You toss a fair coin three times:

a. What is the probability of three heads, HHH?

b. What is the probability that you observe exactly one heads?

c. Given that you have observed at least one heads, what is the probability that you
observe at least two heads?

Solution

We assume that the coin tosses are independent.

a. P(HHH) = P(H) - P(H) - P(H) = 0.5° = .

b. To find the probability of exactly one heads, we can write

P(One heads) = P(HTT UTHT UTTH)
— P(HTT) + P(THT) + P(TTH)

®|w |~
|
| —

c. Given that you have observed at least one heads, what is the probability that you
observe at least two heads? Let A; be the event that you observe at least one
heads, and A» be the event that you observe at least two heads. Then

A1 =S —{TTT}, and P(4;) = g;

4
A, = {HHT, HTH,THH,HHH}, and P(4;) = .

Thus, we can write



Problem 3
For three events A, B, and C, we know that

A and C are independent,

B and C are independent,

A and B are disjoint,
P(AUC)=2,P(BUC)=3,P(AUBUC) =1

Find P(A), P(B), and P(C).

Solution

We can use the Venn diagram in Figure 1.26 to better visualize the events in this
problem. We assume P(A) = a, P(B) = b, and P(C) = c. Note that the assumptions
about independence and disjointness of sets are already included in the figure.

() A\

C
P(A) =a, P(B) = b, P(C) = ¢

Fig.1.26 - Venn diagram for Problem 3.



Now we can write

2
P(AUC):a+c—ac:§;
3
P(BUC’):b+c—bc:Z;
11
P(AUBUC):a—H)—Fc—ac—bc:E.

By subtracting the third equation from the sum of the first and second equations, we
immediately obtain ¢ = % which then gives a = é and b = %

Problem 4
Let Cy,C,,---,C)y be a partition of the sample space S, and A and B be two events.
Suppose we know that

e A and B are conditionally independent given C;, for all ¢ € {1,2,---, M},
e Bisindependent of all C;'s.

Prove that A and B are independent.

Solution

Since the C;'s form a partition of the sample space, we can apply the law of total
probability for AN B:

P(AN B) =Y., P(AN B|C))P(C))
= >, P(A|C:)P(B|C:)P(C;)
= >, P(A|C:)P(B)P(C;)

= P(B) Y11, P(A|C:)P(C;)
= P(B)P(A) (law of total probability).

Problem 5



In my town, it's rainy one third of the days. Given that it is rainy, there will be heavy
traffic with probability % and given that it is not rainy, there will be heavy traffic with
probability % If it's rainy and there is heavy traffic, | arrive late for work with probability
%. On the other hand, the probability of being late is reduced to % if it is not rainy and

there is no heavy traffic. In other situations (rainy and no traffic, not rainy and traffic)
the probability of being late is 0.25. You pick a random day.

a. What is the probability that it's not raining and there is heavy traffic and | am not
late?

b. What is the probability that | am late?

c. Given that | arrived late at work, what is the probability that it rained that day?

Solution

Let R be the event that it's rainy, T' be the event that there is heavy traffic, and L be
the event that | am late for work. As it is seen from the problem statement, we are
given conditional probabilities in a chain format. Thus, it is useful to draw a tree
diagram. Figure 1.27 shows a tree diagram for this problem. In this figure, each leaf in
the tree corresponds to a single outcome in the sample space. We can calculate the

probabilities of each outcome in the sample space by multiplying the probabilities on
the edges of the tree that lead to the corresponding outcome.

1

RT

Wi

RT*®

1
2
1
2
1
1
3
1
1
1

1 RTL—P(RTL)=2%x1x1=%
: RCT‘| 3
4

Wi
%
S
=
il

pac}
=
.
D
I

wirn
X

1

s ® RTL—PRTL)=2x3xl=1L
RCT¢~| 7
8

Fig.1.27 - Tree diagram for Problem 5.

a. The probability that it's not raining and there is heavy traffic and | am not late can
be found using the tree diagram which is in fact applying the chain rule:



P(R°N TN L) = P(R°)P(T|R°)P(L°|R° N T)

b. The probability that | am late can be found from the tree. All we need to do is
sum the probabilities of the outcomes that correspond to me being late. In fact,
we are using the law of total probability here.

P(L) = P(R,T,L) + P(R,T¢,L) + P(R*,T,L) + P(R°,T¢, L)
1 1 1 1
T TuTu T
11
3

P(RNL) 11

P(L) 48"
and we can find P(R N L) similarly by adding the probabilities of the outcomes
that belong to RN L. In particular,

c. We can find P(R|L) using P(R|L) = . We have already found P(L) =

P(RN L) = P(R,T,L) + P(R,T¢ L)

1 1
SRR
1
=<
Thus, we obtain
P(RNL)
P(R|L) = F=79)
1 48

Problem 6
A box contains three coins: two regular coins and one fake two-headed coin (P(H) =1

),

¢ You pick a coin at random and toss it. What is the probability that it lands heads
up?

e You pick a coin at random and toss it, and get heads. What is the probability that
it is the two-headed coin?



Solution

This is another typical problem for which the law of total probability is useful. Let C; be
the event that you choose a regular coin, and let C> be the event that you choose the
two-headed coin. Note that C; and C; form a partition of the sample space. We
already know that

P(H|Cy) = 0.5,
P(H|Cy) = 1.

a. Thus, we can use the law of total probability to write

P(H) = P(H|C,)P(C1) + P(H|C>)P(C,)
+1.1

w|

|

w| o po| =

b. Now, for the second part of the problem, we are interested in P(C>|H). We use
Bayes' rule

P(H|Cy)P(Cy)

P(Gy|H) = =i

[
| =

w|w|

| =

Problem 7

Here is another variation of the family-with-two-children problem [1] [7]. A family has
two children. We ask the father, "Do you have at least one daughter named Lilia?" He
replies, "Yes!" What is the probability that both children are girls? In other words, we
want to find the probability that both children are girls, given that the family has at least
one daughter named Lilia. Here you can assume that if a child is a girl, her name will
be Lilia with probability o < 1 independently from other children's names. If the child is
a boy, his name will not be Lilia. Compare your result with the second part of Example
1.18.
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Solution

Here we have four possibilities, GG = (girl, girl), GB, BG, BB, and
P(GG) = P(GB) = P(BG) = P(BB) = % Let also L be the event that the family has
at least one child named Lilia. We have
P(L|BB) =0,
P(L|BG) = P(L|GB) = a,
P(LIGG) = a(1 —a) + (1 — a)a+o® = 2a — a’.

We can use Bayes' rule to find P(GG|L):

P(L|GG)P(GG)
B P(LIGG)P(GG)
~  P(L|GG)P(GG)+P(L|GB)P(GB)+P(L|BG)P(BG)+P(L|BB)P(BB)

o)L
(2a a)4

1 1 1 1
@a—a%z+az+az+az

2—a'x
4—a ~

|~

Let's compare the result with part (b) of Example 1.18. Amazingly, we notice that the
extra information about the name of the child increases the conditional probability of
GG from % to about % How can we explain this intuitively? Here is one way to look at
the problem. In part (b) of Example 1.18, we know that the family has at least one girl.
Thus, the sample space reduces to three equally likely outcomes: GG, G B, BG, thus
the conditional probability of GG is one third in this case. On the other hand, in this
problem, the available information is that the event L has occurred. The conditional
sample space here still is GG, G B, BG, but these events are not equally likely
anymore. A family with two girls is more likely to name at least one of them Lilia than a
family who has only one girl (P(L|BG) = P(L|GB) = a, P(L|GG) = 2a — o?), thus in
this case the conditional probability of GG is higher. We would like to mention here
that these problems are confusing and counterintuitive to most people. So, do not be
disappointed if they seem confusing to you. We seek several goals by including such
problems.

First, we would like to emphasize that we should not rely too much on our intuition
when solving probability problems. Intuition is useful, but at the end, we must use laws
of probability to solve problems. Second, after obtaining counterintuitive results, you



are encouraged to think deeply about them to explain your confusion. This thinking
process can be very helpful to improve our understanding of probability. Finally, |
personally think these paradoxical-looking problems make probability more interesting.

Problem 8

If you are not yet confused, let's look at another family-with-two-children problem! |
know that a family has two children. | see one of the children in the mall and notice
that she is a girl. What is the probability that both children are girls? Again compare
your result with the second part of Example 1.18. Note: Let's agree on what precisely
the problem statement means. Here is a more precise statement of the problem: "A
family has two children. We choose one of them at random and find out that she is a
girl. What is the probability that both children are girls?"

Solution

Here again, we have four possibilities, GG = (girl, girl), GB, BG, BB, and
P(GG) = P(GB) = P(BG) = P(BB) = % Now, let G, be the event that a randomly
chosen child is a girl. Then we have

P(G,|GG) =1,
P(G,|GB) = P(G,|BG) = %

We can use Bayes' rule to find P(GG|G,.):

P(G,|GG)P(GG)
P(G,|GG)P(GG)
P(G,|GG)P(GG)+P(G,|GB)P(GB)+P(G,|BG)P(BG)+P(G,|BB)P(BB)

1
l'Z

N
N
+
°
A =

+

N
Jr
o] =
N

o= =

So the answer again is different from the second part of Example 1.18. This is
surprising to most people. The two problem statements look very similar but the
answers are completely different. This is again similar to the previous problem (please
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read the explanation there). The conditional sample space here still is GG, GB, BG,
but the point here is that these are not equally likely as in Example 1.18. The
probability that a randomly chosen child from a family with two girls is a girl is one,
while this probability for a family who has only one girl is % Thus, intuitively, the
conditional probability of the outcome GG in this case is higher than GB and BG, and
thus this conditional probability must be larger than one third.

Problem 9

Okay, another family-with-two-children problem. Just kidding! This problem has
nothing to do with the two previous problems. | toss a coin repeatedly. The coin is
unfair and P(H) = p. The game ends the first time that two consecutive heads (H H) or
two consecutive tails (T'T) are observed. | win if HH is observed and lose if TT is
observed. For example if the outcome is HTTHTT , | lose. On the other hand, if the
outcome is THTHTHH , | win. Find the probability that | win.

Solution

Let W be the event that | win. We can write down the set W by listing all the different
sequences that result in my winning. It is cleaner if we divide W into two parts
depending on the result of the first coin toss,

W ={HH,HTHH,HTHTHH,---}YU{THH,THTHH, THTHTHH,- - -}.

Letg=1—p. Then

W = P{HH,HTHH,HTHTHH,--}) + P{THH,THTHH,THTHTHH,- - -})
=p’ +p°q+p'¢’ +- - +pPa+ P’ +p’ + -

(1 +pg+ (pg)* + (pg)* +---) +p*q(1 +pg + (pg)* + (pa)* +---)

(

1+q)(1+pg+ (pg)* + (pg)* +--)

e p2
—= p2
p*(1+q)

,  Using the geometric series formula
1-pgq

p?(2-p)

1-ptp?




1.5.0 End of Chapter Problems

Problem 1
Suppose that the universal set S is defined as S = {1,2,---,10} and A = {1, 2,3},
B={XeS§:2<X<T},and C={7,8,9,10}.

a. Find AU B.

b. Find (AU C) — B.

c. Find AU (B - O).

d. Do A, B, and C form a partition of S?

Problem 2

When working with real numbers, our universal set is R. Find each of the following
sets.

o o T @

Problem 3
For each of the following Venn diagrams, write the set denoted by the shaded area.

a.






Problem 4



A coin is tossed twice. Let S be the set of all possible pairs that can be observed, i.e.,
S={H,T} x{H,T} ={(H,H),(H,T),(T,H),(T,T)}. Write the following sets by
listing their elements.

a. A: The first coin toss results in head.
b. B: At least one tail is observed.
c. C: The two coin tosses result in different outcomes.

Problem 5*
Let A ={1,2,---,100}. For any i € N, Define A; as the set of numbers in A that are
divisible by i. For example:

A, ={2,4,6,---,100},

As = {3,6,9,---,99}.

a. Find |A2|,|A3|,|A4|,|A5|.
b. Find |A2 U Az U A5|.

Problem 6
Suppose that A4;, Ay, A3 form a partition of the universal set S. Let B be an arbitrary
set. Assume that we know

|B N A1| = 10,
|BN As| = 20,
Find |B.
Problem 7

Determine whether each of the following sets is countable or uncountable.

a A=1{1,2,---,10"}
b. B={a+bv2| a,bc Q}
c.C={(X,Y)eR? z*+9®<1}.




Problem 8*
Let A, = [O, E) —{zcR| 0<z< %}, forn =2,3,---. Define

n

A=|JAn=A1UAUA;- -

n=1

Find A.

Problem 9*
Let A, = [0,%) ={zeR| 0<z< %}forn:1,2,-~-. Define

A:ﬁAn:Almfhﬁ---

n=1

Find A.

Problem 10*

In this problem our goal is to show that sets that are not in the form of intervals may
also be uncountable. In particular, consider the set A defined as the set of all subsets
of N:

A={B:BcCN).
We usually denote this set by 4 = 2.

a. Show that 2" is in one-to-one correspondence with the set of all (infinite) binary
sequences:

C= {bl,bz,b3,- .- ’ b; € {0,1}}.
b. Show that C'is in one-to-one correspondence with [0, 1].

From (a) and (b) we conclude that the set 2 is uncountable.

Problem 11**
Show the set [0,1) is uncountable. That is you can never provide a list in the form of
{ai,ay,as,- -} that contains all the elements in [0,1).




Problem 12
Recall that
{H, T} ={H,T} x {H,T} x {H, T}

={(H,H,H),(H,H,T),---,(T,T,T)}.

Consider the following function
f : {HaT}g — NU {O}a

defined as

f(z) = the number of H’s in «.
For example,

F(HTH) = 2.

a. Determine the domain and co-domain for f.
b. Find range of f:Range(f).
c. If we know f(z) = 2, what can we say about z?

Problem 13
Two teams A and B play a soccer match, and we are interested in the winner. The
sample space can be defined as

S = {a,b,d},

where a shows the outcome that A wins, b shows the outcome that B wins, and d
shows the outcome that they draw. Suppose we know that:

(1) the probability that A wins is P(a) = P({a}) = 0.5;

(2) the probability of a draw is P(d) = P({d}) = 0.25.

a. Find the probability that B wins.
b. Find the probability that B wins or a draw occurs.

Problem 14*
Let A and B be two events such that

P(A) =0.4,P(B) =0.7,P(AU B) = 0.9



a. Find P
b. Find P
c. Find P
d. Find P
e. Find P
f. Find P

AN B).
A°N B).
A - B).
A° — B).
A°U B).
AN (BU A9)).

s e e e N

Problem 15*
| roll a fair die twice and obtain two numbers: X; = result of the first roll, Xs = result of
the second roll.

a. Find the probability that X, = 4.
b. Find the probability that X; + X5 = 7.
c. Find the probability that X; # 2 and X, > 4.

Problem 16
Consider a random experiment with a sample space

S ={1,2,3,---}.

Suppose that we know:

C

P(K) = PR = —,

for k=1,2,---,

where ¢ is a constant number.

a. Find c.
b. Find P({2,4,6}).
c. Find P({3,4,5,---}).

Problem 17

Four teams A, B, C, and D compete in a tournament, and exactly one of them will win
the tournament. Teams A and B have the same chance of winning the tournament.
Team C'is twice as likely to win the tournament as team D. The probability that either
team A or team C wins the tournament is 0.6. Find the probabilities of each team
winning the tournament.




Problem 18
Let T be the time needed to complete a job at a certain factory. By using the historical
data, we know that

%ﬁ for 0<t<4
1 for t>4

ngﬂz{

a. Find the probability that the job is completed in less than one hour, i.e., find
P(T <1).

b. Find the probability that the job needs more than 2 hours.

c. Find the probability that 1 < T < 3.

Problem 19*
You choose a point (A4, B) uniformly at random in the unit square {(z,y) : z,y € [0,1]}.

N

(4, B)

HV

0 A 1

What is the probability that the equation
AX*+X+B=0

has real solutions?



Problem 20** (continuity of probability)

a. Let Ay, A», As,- - - be a sequence of increasing events, that is

A CAy CA3C---
Show that
<U A; ) lim P(A,)
n—00
b. Using part(a), show that if A1, A2, - - is a decreasing sequence of events, i.e.,
A D Ay DA?,D"'
Then

Problem 21** (continuity of probability)
For any sequence of events A;, Az, As, - - -, prove

-l

Problem 22
Suppose that, of all the customers at a coffee shop,

e 70% purchase a cup of coffee;
e 40% purchase a piece of cake;
e 20% purchase both a cup of coffee and a piece of cake.

Given that a randomly chosen customer has purchased a piece of cake, what is the
probability that he/she has also purchased a cup of coffee?




Problem 23
Let A, B, and C be three events with probabilities given below:

B A

/0.1\

a. Find P
b. Find P
c. Find P
d. Find P

A|B).

C|B).

B|AU C).

B|A,C) = P(B|JANC).

—~~ A~

Problem 24
A real number X is selected uniformly at random in the continuous interval [0, 10]. (For
example, X could be 3.87.)

a. Find P(2 < X <5).
b. Find P (X < 2|X <5).
c. Find P(3 < X <8|X > 4).

Problem 25
A professor thinks students who live on campus are more likely to get As in the
probability course. To check this theory, the professor combines the data from the past



few years:

a. 600 students have taken the course,

b. 120 students have gotten A4s,

C. 200 students lived on campus,

d. 80 students lived off campus and got A4s.

Does this data suggest that "getting an A" and "living on campus" are dependent or
independent?

Problem 26
| roll a die n times, n € N. Find the probability that numbers 1 and 6 are both observed
at least once.

Problem 27

Consider a communication system. At any given time, the communication channel is in
good condition with probability 0.8, and is in bad condition with probability 0.2. An error
occurs in a transmission with probability 0.1 if the channel is in good condition, and
with probability 0.3 if the channel is in bad condition. Let G be the event that the
channel is in good condition and E be the event that there is an error in transmission.

a. Complete the following tree diagram:

P(E|GQ) P(GN E)
P(G)
P(G) P(EC|G) P(G N E°)
1
P(GC) P(E|G®) P(G° N E)
P(G°)
P(E®|G®) P(Gc N E®)

b. Using the tree find P(E).
c. Using the tree find P(G|E°).



Problem 28*

In a factory there are 100 units of a certain product, 5 of which are defective. We pick
three units from the 100 units at random. What is the probability that exactly one of
them is defective?

Problem 29 Reliability

Real-life systems often are composed of several components. For example, a system
may consist of two components that are connected in parallel as shown in Figure 1.28.
When the system's components are connected in parallel, the system works if at least
one of the components is functional. The components might also be connected in
series as shown in Figure 1.28. When the system's components are connected in
series, the system works if all of the components are functional.

Ch

— Cy —

Fig.1.28 - In left figure, Components C; and C; are connected in parallel.
The system is functional if at least one of the C; and C; is functional. In
right figure, Components C; and C, are connected in series. The system is
functional only if both C; and C; are functional.



For each of the following systems, find the probability that the system is functional.
Assume that component k is functional with probability P, independent of other
components.

a.







Problem 30
You choose a point (X,Y) uniformly at random in the unit square

S={(z,y) cR*:0<x<1,0<y<1}.

Let A be the event {(z,y) € S: |z —y| < %} and B be the event {(z,y) € S:y > z}.

a. Show sets A and B in the x-y plane.
b. Find P(A) and P(B).
c. Are A and B independent?

Problem 31

One way to design a spam filter is to look at the words in an email. In particular, some
words are more frequent in spam emails. Suppose that we have the following
information:

e 50% of emails are spam;
e 1% of spam emails contain the word "refinance";
e 0.001% of non-spam emails contain the word "refinance".

Suppose that an email is checked and found to contain the word "refinance". What is
the probability that the email is spam?

Problem 32*
You would like to go from point A to point B in Figure 1.28. There are 5 bridges on
different branches of the river as shown in Figure 1.29.



River River

Bridge3

Fig.1.29 - Problem 32.

Bridge ¢ is open with probability P;, ¢ =1,2,3,4,5. Let A be the event that there is a
path from A to B and let By be the event that & bridge is open.

a. Find P(A).
b. Find P(Bs|A).

Problem 33* (The Monty Hall Problem)

You are in a game show, and the host gives you the choice of three doors. Behind one
door is a car and behind the others are goats. You pick a door, say Door 1. The host
who knows what is behind the doors opens a different door and reveals a goat (the
host can always open such a door because there is only one door behind which is a
car). The host then asks you: "Do you want to switch?" The question is, is it to your
advantage to switch your choice?

1 2 Goat

Problem 34


http://en.wikipedia.org/wiki/Monty_Hall_problem

| toss a fair die twice, and obtain two numbers X and Y. Let A be the event that X = 2,
B be the eventthat X +Y =7, and C be the eventthat Y = 3.

a. Are A and B independent?
b. Are A and C independent?
c. Are B and C independent?
d. Are A, B, and C are independent?

Problem 35*

You and | play the following game: | toss a coin repeatedly. The coin is unfair and
P(H) = p. The game ends the first time that two consecutive heads (HH) or two
consecutive tails (TT) are observed. | win if (HH) is observed and you win if (TT) is
observed. Given that | won the game, find the probability that the first coin toss
resulted in head?

Problem 36*

A box contains two coins: a regular coin and one fake two-headed coin (P(H)=1). |
choose a coin at random and toss it n times. If the first n coin tosses result in heads,
what is the probability that the (n + 1) coin toss will also result in heads?

Problem 37*

A family has n children, n > 2. We ask the father: "Do you have at least one
daughter?" He responds "Yes!" Given this extra information, what is the probability that
all n children are girls? In other words, what is the probability that all of their children
are girls, given that at least one of them is a girl?

Problem 38*

A family has n children, n > 2. We ask from the father, "Do you have at least one
daughter named Lilia?" He replies, "Yes!" What is the probability that all of their
children are girls? In other words, we want to find the probability that all n children are
girls, given that the family has at least one daughter named Lilia. Here you can
assume that if a child is a girl, her name will be Lilia with probability o < 1
independently from other children's names. If the child is a boy, his name will not be
Lilia.




Problem 39*
A family has n children. We pick one of them at random and find out that she is a girl.
What is the probability that all their children are girls?




2.1 Counting

Remember that for a finite sample space S with equally likely outcomes, the probability
of an event A is given by

pay- 4 _M

= W =
Thus, finding probability of A reduces to a counting problem in which we need to
count how many elements are in A and S. In this section, we will discuss ways to
count the number of elements in a set in an efficient manner. Counting is an area of its
own and there are books on this subject alone. Here we provide a basic introduction to
the material that is usually needed in probability. AImost everything that we need about
counting is the result of the multiplication principle. We previously saw the
multiplication principle when we were talking about Cartesian products. Here we look
at it from a different perspective. Let us look at a simple example.

Example 2.1

Suppose that | want to purchase a tablet computer. | can choose either a large or a
small screen; a 64GB, 128GB, or 256GB storage capacity, and a black or white cover.
How many different options do | have?

Solution

Here are the options:

L-64-B
L-64-W
L-128-B
L-128-W
L-256-B
L-256-W
S-64-B
S-64-W

. S-128-B
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10. S-128-W
11. S-256-B
12. S-256-W

Thus, there are 12 possible options. The multiplication principle states that we can
simply multiply the number of options in each category (screen size, memory, color) to
get the total number of possibilities, i.e., the answer is 2 x 3 x 2 = 12.

Here is a formal statement of the multiplication principle.

Multiplication Principle

Suppose that we perform r experiments such that the kth experiment has ny,
possible outcomes, for k = 1,2,- - -,r. Then there are a total of

ni X ng X ng X -+ X n, possible outcomes for the sequence of r experiments.

Example 2.2

I need to choose a password for a computer account. The rule is that the password
must consist of two lowercase letters (a to z) followed by one capital letter (A to Z)
followed by four digits (0,1, ---,9). For example, the following is a valid password

ejT3018

o Find the total number of possible passwords, N.

» A hacker has been able to write a program that randomly and independently
generates 10® passwords according to the above rule. Note that the same
password could be generated more than once. If one of the randomly chosen
passwords matches my password, then he can access my account information.
What is the probability that he is successful in accessing my account
information?

Solution

To choose a password, | need to first choose a lowercase letter, then another
lowercase letter, then one capital letter, and then 4 digits. There are 26 lowercase



letters, 26 capital letters, and 10 digits. Thus, by the multiplication principle, the total
number of possible valid passwords is

N =26 x 26 x 26 x 10 x 10 x 10 x 10 = 26° x 10*

Let G; denote the event that the hacker's ith guess matches mine, fori =1,2,---,10°.
The probability that the ith randomly chosen password matches mine is

Now let p,.... b€ the probability that the hacker is successful, that is at least one of the
randomly chosen passwords matches mine. Recall that "at least” means union:

Phack = P( U Gz)

Note that the events G; are independent since the guesses are independently
generated, but they are not disjoint since multiple guesses could be correct if the
hacker's program generates the same password. Therefore in this case it is easier to
work with intersections than unions, so we will find the probability of the complement

event first:
P<UiGi) =P<ﬂiG?>
= Hf\i L P(GS) (by independence)
. 108
(1-4)
Therefore,
. 108
Phack =1 — <]_ — N)
. 108
=1- (1 N 263><104)
= 0.4339
Example 2.3

Let A be a set with |A| =n < co. How many distinct subsets does A have?



Solution

Let's assume A = {a1,a2,as,---,an}. We can look at this problem in the following way.
To choose a subset B, we perform the following experiment. First we decide whether
or not a; € B (two choices), then we decide whether or not a; € B (two choices), then
we decide whether or not as € B (two choices), ..., and finally we decide whether or
not a, € B (two choices). By the multiplication principle, the total number of subsets is
then given by 2 x 2 x 2 x --- x 2 = 2", To check our answer, let's assume A = {1,2}.
Then our formula states that there are 4 possible subsets. Indeed, the subsets are

1L.{}=0

2. {1}

3. {2}

4. {1,2}

Here, we would like to provide some general terminology for the counting problems
that show up in probability to make sure that the language that we use is precise and
clear.

e Sampling: sampling from a set means choosing an element from that set. We
often draw a sample at random from a given set in which each element of the
set has equal chance of being chosen.

o With or without replacement: usually we draw multiple samples from a set. If
we put each object back after each draw, we call this sampling with
replacement. In this case a single object can be possibly chosen multiple times.
For example, if A = {a1,a2,as,a4} and we pick 3 elements with replacement, a
possible choice might be (a3, a1,a3). Thus "with replacement” means "repetition
is allowed." On the other hand, if repetition is not allowed, we call it sampling
without replacement.

e Ordered or unordered: If ordering matters (i.e.: a1, a2, a3 # az,as,a1), this is
called ordered sampling. Otherwise, it is called unordered.

Thus when we talk about sampling from sets, we can talk about four possibilities.

¢ ordered sampling with replacement
o ordered sampling without replacement



e unordered sampling without replacement
e unordered sampling with replacement

We will discuss each of these in detail and indeed will provide a formula for each. The
formulas will be summarized at the end in Table 2.1. Nevertheless, the best approach
here is to understand how to derive these formulas. You do not actually need to
memorize them if you understand the way they are obtained.
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2.1.1 Ordered Sampling with Replacement

Here we have a set with n elements (e.g.: A = {1,2,3,---.n}), and we want to draw k
samples from the set such that ordering matters and repetition is allowed. For
example, if A = {1,2,3} and k = 2, there are 9 different possibilities:

1. (1,1);
2. (1,2);
3. (1,3);
4. (2,1);
. (2,2);
. (2,3);
. (3,1);
. (3,2);
. (3,3).

ol
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In general, we can argue that there are k positions in the chosen list: (Position 1,
Position 2, ..., Position k). There are n options for each position. Thus, when ordering
matters and repetition is allowed, the total number of ways to choose k objects from a
set with n elements is

nxXnx...xn=nk

Note that this is a special case of the multiplication principle where there are k
"experiments" and each experiment has n possible outcomes.
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2.1.2 Ordered Sampling without Replacement: .
Permutations

Consider the same setting as above, but now repetition is not allowed. For example, if
A ={1,2,3} and k = 2, there are 6 different possibilities:

1. (1,2);
2. (1,3);
3. (2,1);
4. (2,3);
5. (3,1);
6. (3,2).

In general, we can argue that there are k positions in the chosen list: (Position 1,
Position 2, ..., Position k). There are n options for the first position, (n — 1) options for
the second position (since one element has already been allocated to the first position
and cannot be chosen here), (n — 2) options for the third position, ... (n —k+1)
options for the kth position. Thus, when ordering matters and repetition is not allowed,
the total number of ways to choose k objects from a set with n elements is

nx(n-—1)x...x(n—-k+1).

Any of the chosen lists in the above setting (choose & elements, ordered and no
repetition) is called a k-permutation of the elements in set A. We use the following
notation to show the number of k-permutations of an n-element set:

P'=nx(n-1)x...x(n —k+1).

Note that if k is larger than n, then P* = 0. This makes sense, since if k > n there is
no way to choose k distinct elements from an n-element set. Let's look at a very
famous problem, called the birthday problem, or the birthday paradox.

Example 2.4

If k£ people are at a party, what is the probability that at least two of them have the
same birthday? Suppose that there are n = 365 days in a year and all days are equally
likely to be the birthday of a specific person.
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Solution

Let A be the event that at least two people have the same birthday. First note that if

k > n, then P(A) = 1; so, let's focus on the more interesting case where k < n. Again,
the phrase "at least" suggests that it might be easier to find the probability of the
complement event, P(A°). This is the event that no two people have the same
birthday, and we have

A

A) = :
P(4) =1 5

Thus, to solve the problem it suffices to find |A¢| and |S|. Let's first find |S|. What is the
total number of possible sequences of birthdays of k£ people? Well, there are n = 365
choices for the first person, n = 365 choices for the second person,... n = 365 choices
for the kth person. Thus there are

nk

possibilities. This is, in fact, an ordered sampling with replacement problem, and as we
have discussed, the answer should be n* (here we draw k samples, birthdays, from
the set {1,2,...,n = 365}). Now let's find |A¢|. If no birthdays are the same, this is
similar to finding |S| with the difference that repetition is not allowed, so we have

Al =P =nx(n—-1)x...x(n —k+1).

You can see this directly by noting that there are n = 365 choices for the first person,
n — 1 = 364 choices for the second person,..., n — k + 1 choices for the kth person.

Thus the probability of A can be found as
4|

P(4) =1 - —
Pn
=1-—.

Discussion: The reason this is called a paradox is that P(A) is numerically different
from what most people expect. For example, if there are k=23 people in the party, what
do you guess is the probability that at least two of them have the same birthday, P(A)?
The answer is .5073, which is much higher than what most people guess. The
probability crosses 99 percent when the number of peoples reaches 57. But why is the
probability higher than what we expect?



It is important to note that in the birthday problem, neither of the two people are
chosen beforehand. To better answer this question, let us look at a different problem: |
am in a party with k£ — 1 people. What is the probability that at least one person in the
party has the same birthday as mine? Well, we need to choose the birthdays of £ — 1
people, the total number of ways to do this is n*~!. The total number of ways to
choose the birthdays so that no one has my birthday is (n — 1)*~. Thus, the
probability that at least one person has the same birthday as mine is

P(B)=1— (n—l)k—1.

n

Now, if k = 23, this probability is only P(B) = 0.0586, which is much smaller than the
corresponding P(A) = 0.5073. The reason is that event B is looking only at the case
where one person in the party has the same birthday as me. This is a much smaller
event than event A which looks at all possible pairs of people. Thus, P(A) is much
larger than P(B). We might guess that the value of P(A) is much lower than it actually
is, because we might confuse it with P(B).

Permutations of n elements: An n-permutation of n elements is just called a
permutation of those elements. In this case, k = n and we have
Pl=nx(n—-1)x...x(n—n+1)
=nx(n—1)x...x1,

which is denoted by n!, pronounced "n factorial". Thus n! is simply the total number of
permutations of n elements, i.e., the total number of ways you can order n different
objects. To make our formulas consistent, we define 0! = 1.

Example 2.5

Shuffle a deck of 52 cards. How many outcomes are possible? (In other words, how
many different ways can you order 52 distinct cards? How many different permutations
of 52 distinct cards exist?) The answer is 52!.

Now, using the definition of n!, we can rewrite the formula for P* as

S
P (n—k)



The number of k-permutations of n distinguishable objects is given by

|
Pk”:L, for0 <k <n.
(n —k)!

Note: There are several different common notations that are used to show the number
of k-permutations of an n-element set including P, ;,, P(n, k),nPk, etc. In this book, we
always use P.
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2.1.3 Unordered Sampling without Replacement:
Combinations

Here we have a set with n elements, e.g., A = {1,2,3,....n} and we want to draw k
samples from the set such that ordering does not matter and repetition is not allowed.
Thus, we basically want to choose a k-element subset of A, which we also call a k-
combination of the set A. For example if A = {1,2,3} and k = 2, there are 3 different
possibilities:

1. {1,2};
2. {1,3});
3. {2,3}).

We show the number of k-element subsets of A by

n

i)
This is read "n choose k." A typical scenario here is that we have a group of n people,
and we would like to choose k of them to serve on a committee. A simple way to find
(%) is to compare it with P;*. Note that the difference between the two is ordering. In

fact, for any k-element subset of A ={1,2,3,....n}, we can order the elements in k!
ways, thus we can write

Therefore,

Note that if k is an integer larger than n, then (}) = 0. This makes sense, since if k > n
there is no way to choose k distinct elements from an n-element set.
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The number of k-combinations of an n-element set is given by

|
(n) :L, for0 <k<n.
k kl(n — k)!

(7) is also called the binomial coefficient. This is because the coefficients in the
binomial theorem are given by (Z) In particular, the binomial theorem states that for an
integer n > 0, we have

n n

n __ kin—k

(a+b) —Z <k>a b " .
k=0

Note: There are several different common notations that are used to show the number

of k-combinations of an n-element set including C, x, C(n, k), C}},nCk, etc. In this book,

we always use (}).

Example 2.6
I choose 3 cards from the standard deck of cards. What is the probability that these
cards contain at least one ace?

Solution

Again the phrase "at least" suggests that it might be easier to first find P(A°), the
probability that there is no ace. Here the sample space contains all possible ways to
choose 3 cards from 52 cards, thus
52
- (3)

There are 52 — 4 = 48 non-ace cards, so we have

a-(2)

Thus



Example 2.7
How many distinct sequences can we make using 3 letter "A"s and 5 letter "B"s?
(AAABBBBB, AABABBBB, etc.)

Solution

You can think of this problem in the following way. You have 3 + 5 = 8 positions to fill
with letters A or B. From these 8 positions, you need to choose 3 of them for As.
Whatever is left will be filled with Bs. Thus the total number of ways is

8

3/
Now, you could have equivalently chosen the locations for Bs, so the answer would
have been

Thus, we conclude that

The same argument can be repeated for general n and k to conclude

()= (")

You can check this identity directly algebraically, but the way we showed it here is
interesting in the sense that you do not need any algebra. This is sometimes a very
effective way of proving some identities of binomial coefficients. This is proof by
combinatorial interpretation. The basic idea is that you count the same thing twice,
each time using a different method and then conclude that the resulting formulas must
be equal. Let us look at some other examples.

Example 2.8



Show the following identities for non-negative integers k£ and m and n, using
combinatorial interpretation arguments.

1. We have ) () =2".

2. For0 <k <n,we have (k1) = () + ().

3. We have (") = ( )(;";) (Vandermonde's identity).

Solution

1. To show this identity, we count the total number of subsets of an n-element set A
. We have already seen that this is equal to 2" in Example 2.3. Another way to
count the number of subsets is to first count the subsets with 0 elements, and
then add the number of subsets with 1 element, and then add the number of
subsets with 2 elements, etc. But we know that the number of k-element subsets
of Ais (}), thus we have

on
(2.1)
= ZZ:O (Z)

We can also prove this identity algebraically, using the binomial theorem,
(a+b)" =1, (D" *. If we leta =b =1, we obtain 2" =Y~} (7).

2. To show this identity, let's assume that we have an arbitrary set A with n + 1
distinct elements:

A= {a17a2’a3>---aan7an+1}'

We would like to choose a k + 1-element subset B. We know that we can do this
in (ZLI) ways (the right hand side of the identity). Another way to count the
number of k + 1-element subsets B is to divide them into two non-overlapping
categories based on whether or not they contain a,:. In particular, if a1 ¢ B,
then we need to choose k + 1 elements from {a1, a2, as,...,a,} which we can do
in (,1,) different ways. If, on the other hand, a.,1 € B, then we need to choose
another k elements from {a;, as,as,...,a,} to complete B and we can do this in
(7) different ways. Thus, we have shown that the total number of k 4 1-element
subsets of an n + 1-element set is equal to (,;) + (})-

3. Here we assume that we have a set A that has m + n elements:

A = {al,aQ,a3,...,am,bl,bz,...,bn}.
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We would like to count the number of k-element subsets of A. This is (mzn)

Another way to do this is first choose i elements from {ai,a2,as,...,a,} and then
k — i elements from {by,by,...,b,}. This can be done in () (,",) number of ways.

But ¢ can be any number from 0 to k, so we conclude (") = >F, (™M) ()

Let us now provide another interpretation of (Z) Suppose that we have a group of n
people and we would like to divide them two groups A and B such that group A
consists of k& people and group B consists of n — k people. To do this, we just simply
need to choose k people and put them in group A, and whoever is left will be in group
B. Thus, the total number of ways to do this is (7).

The total number of ways to divide n distinct objects into two groups A and B
such that group A consists of k objects and group B consists of n — k objects is

(3)-

Note: For the special case when n = 2k and we do not particularly care about group
names A and B, the number of ways to do this division is %(2) to avoid double
counting. For example, if 22 players want to play a soccer game and we need to divide
them into two groups of 11 players, there will be %@f) ways to do this. The reason for
this is that, if we label the players 1 to 22, then the two choices

A=1{1,2,3,...,11} and B = {12,13,14,...,22},
A={12,13,14,...,22} and B = {1,2,3,...,11}

are essentially the same.

For example, we can solve Example 2.7 in the following way: We have 8 blank
positions to be filled with letters "A" or "B." We need to divide them into two groups A
and B such that group A consists of three blank positions and group B consists of 5
blank spaces. The elements in group A show the positions of "A"s and the elements in
group B show the positions of "B"s. Therefore the total number of possibilities is (g)

Bernoulli Trials and Binomial Distribution:

Now, we are ready to discuss an important class of random experiments that appear
frequently in practice. First, we define Bernoulli trials and then discuss the binomial
distribution. A Bernoulli Trial is a random experiment that has two possible outcomes
which we can label as "success" and "failure," such as
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e You toss a coin. The possible outcomes are "heads" and "tails." You can define
"heads" as success and "tails" as "failure" here.
e You take a pass-fail test. The possible outcomes are "pass" and "fail."

We usually denote the probability of success by p and probability of failure by g =1 —p
. If we have an experiment in which we perform n independent Bernoulli trials and
count the total number of successes, we call it a binomial experiment. For example,
you may toss a coin n times repeatedly and be interested in the total number of heads.

Example 2.9
Suppose that | have a coin for which P(H) = p and P(T) =1 — p. | toss the coin 5
times.

a. What is the probability that the outcome is THHHH?

b. What is the probability that the outcome is HTHHH?

c. What is the probability that the outcome is HHTHH?

d. What is the probability that | will observe exactly four heads and one tails?

e. What is the probability that | will observe exactly three heads and two tails?

f. If | toss the coin n times, what is the probability that | observe exactly k heads
and n — k tails?

Solution

a. To find the probability of the event A = {THHHH}, we note that A is the
intersection of 5 independent events: A = first coin toss is tails, and the next four
coin tosses result in heads. Since the individual coin tosses are independent, we

obtain
P(THHHH) = p(T) x p(H) x p(H) x p(H) x p(H)
=(1-p)p*.
b. Similarly,
P(HTHHH) = p(H) x p(T) x p(H) x p(H) x p(H)
= (1 -p)p*.
c. Similarly,



d. Let B be the event that | observe exactly one tails and four heads. Then

B={THHHH,HTHHH, HHTHH, HHHTH, HHHHT).

Thus

P(B) = P(THHHH) + P(HTHHH) + P(HHTHH) + P(HHHTH) + P(HHHHT)
=1 -pp*+1—-pp'+ 1 -p)p*'+ (1 —-pp*+(1—p)p’
= 5p*(1 —p).

e. Let C be the event that | observe exactly three heads and two tails. Then

C ={TTHHH,THTHH,THHHTH,... HHHTT}.

Thus
P(C) = P(TTHHH) + P(THTHH) + P(THHTH)+... +P(HHHTT)
=1 -p)p*+ (1 —-p)?p®+ (1 -p)p*+...+(1 —p)*p?
=|Clp*(1 — p)*.

But what is |C|? Luckily, we know how to find |C|. This is the total number of
distinct sequences that you can create using two tails and three heads. This is
exactly the same as Example 2.7. The idea is that we have 5 positions to fill with
letters H or T. From these 5 positions, you need to choose 3 of them for Hs.
Whatever is left is going to be filled with Ts. Thus the total number of elements in
Cis (3), and

PO) = (3)a -

f. Finally, we can repeat the same argument when we toss the coin n times and
obtain

P(k heads and n — k tails) = (Z) PP —p)" k.

Note that here, instead of writing P(k heads and n — k tails), we can just write
P(k heads).
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Binomial Formula:
For n independent Bernoulli trials where each trial has success probability p, the
probability of £ successes is given by

Multinomial Coefficients:

The interpretation of the binomial coefficient (’;) as the number of ways to divide n
objects into two groups of size k and n — k has the advantage of being generalizable
to dividing objects into more than two groups.

Example 2.10

Ten people have a potluck. Five people will be selected to bring a main dish, three
people will bring drinks, and two people will bring dessert. How many ways they can
be divided into these three groups?

Solution

We can solve this problem in the following way. First, we can choose 5 people for the
main dish. This can be done in (150) ways. From the remaining 5 people, we then
choose 3 people for drinks, and finally the remaining 2 people will bring desert. Thus,
by the multiplication principle, the total number of ways is given by

10\ /5\/2\ 100 5 2 10!
5/)\3/\2/) 5151 3121 2100 513121

This argument can be generalized for the case when we have n people and would like
to divide them to r groups. The number of ways in this case is given by the
multinomial coefficients. In particular, if n = ny + ny+...+n,, where all n; > 0 are
integers, then the number of ways to divide n distinct objects to r distinct groups of
sizes ny,ng,...,n, IS given by



n n!
N1,M2,y ..., Ty nilna!...n,!

We can also state the general format of the binomial theorem, which is called the
multinomial theorem:

(¢ +@o + -+ 2,)" = Z < " " )m?lmgz...xfr (2.2)
) T,

ni+ng+- - +n,=n ny,Ng,y ...

Finally, the binomial formula for Bernoulli trials can also be extended to the case where
each trial has more than two possible outcomes.

Example 2.11
I roll a die 18 times. What is the probability that each number appears exactly 3 times?

Solution

First of all, each sequence of outcomes in which each number appears 3 times has
probability

1\° 1\ 1\ 1\ 1\ 1\

=] xX|{=| X(=)| X|[=) xX|=) x|=

(5) <(5) <) (&) ~ (&) - (5)

How many distinct sequences are there with three 1's, three 2's, ..., and three 6's?
Each sequence has 18 positions which we need to fill with the digits. To obtain a
sequence, we need to choose three positions for 1's, three positions for 2's, ..., and
three positions for 6's. The number of ways to do this is given by the multinomial
coefficient

18 B 18!
3,3,3,3,3,3/ 313131313131

Thus the total probability is




We now state the general form of the multinomial formula. Suppose that an
experiment has r possible outcomes, so the sample space is given by

S ={81,82,---,8,}

Also suppose that P(s;) = p; fori =1,2,...,r. Then for n = n; + na+...+n,
independent trials of this experiment, the probability that each s; appears n; times is
given by

|
n niy no n n: ny N2 n
( >p1 p2...p/:—' ' Py Dy - P
nN1,N2y...,Nyp niyng:...Nyp.




2.1.4 Unordered Sampling with Replacement

Among the four possibilities we listed for ordered/unordered sampling with/without
replacement, unordered sampling with replacement is the most challenging one.
Suppose that we want to sample from the set A = {a1,a2,...,a,} ktimes such that
repetition is allowed and ordering does not matter. For example, if A = {1,2,3} and
k = 2, then there are 6 different ways of doing this

o 1.1;
e 1,2;
e 1,3;
o 2,2;
o 2,3;
e 3,3;

How can we get the number 6 without actually listing all the possibilities? One way to
think about this is to note that any of the pairs in the above list can be represented by
the number of 1's, 2's and 3's it contains. That is, if z; is the number of ones, z; is the
number of twos, and z3 is the number of threes, we can equivalently represent each
pair by a vector (z1,z2,z3), i.e.,

e 11— (:1:1,1:2,363) (2,0 0),
e 1.2 = (x1,22,23) = (1,1,0);
e 1,3 — (z1,22,23) = (1,0,1);
e 2,2 — (z1,22,23) = (0,2,0);
e 2,3 = (z1,22,23) = (0,1,1);
e 3,3 = (x1,22,23) = (0,0,2).

Note that here z; > 0 are integers and x; + xz2 + 3 = 2. Thus, we can claim that the
number of ways we can sample two elements from the set A = {1, 2,3} such that
ordering does not matter and repetition is allowed is the same as solutions to the
following equation

z1 + x2 + z3 = 2, where z; € {0,1,2}.

This is an interesting observation and in fact using the same argument we can make
the following statement for general k and n.
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Lemma 2.1

The total number of distinct £ samples from an n-element set such that repetition is
allowed and ordering does not matter is the same as the number of distinct solutions
to the equation

z, + xy+. ..+, =k, where z; € {0,1,2,3,...}.

So far we have seen the number of unordered k-samples from an n element set is the
same as the number of solutions to the above equation. But how do we find the
number of solutions to that equation?

Theorem 2.1
The number of distinct solutions to the equation

z1 + x2+...+xy, =k, where z; € {0,1,2,3,...} (2.3)

n+k—1 n+k—1
k n—1 '
Proof

Let us first define the following simple mapping in which we replace an integer x; > 0
with z; vertical lines, i.e.,

is equal to

1— |
2 — |
3=l

Now suppose we have a solution to the Equation 2.3. We can replace the z;'s by their
equivalent vertical lines. Thus, for example if we have

T, + Ty + 3 + 4 =3+ 0+ 2+ 1, we can equivalently write ||| + +|| + |. Thus, we claim
that for each solution to the Equation 2.3, we have unique representation using vertical
lines (') and plus signs ('+'). Indeed, each solution can be represented by k vertical
lines (since the z; sum to k) and n — 1 plus signs. Now, this is exactly the same as
Example 2.7: how many distinct sequences you can make using k vertical lines (|) and
n — 1 plus signs (+)? The answer as we have seen is

()=l
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Example 2.12

Ten passengers get on an airport shuttle at the airport. The shuttle has a route that
includes 5 hotels, and each passenger gets off the shuttle at his/her hotel. The driver
records how many passengers leave the shuttle at each hotel. How many different
possibilities exist?

Solution

Let z; be the number of passengers that get off the shuttle at Hotel . Then we have
x1 + Ty + x3 + x4 + x5 = 10, where z; € {0,1,2,3,...}.

Thus, the number of solutions is

(Cr)-C3)-6)

Let's summarize the formulas for the four categories of sampling. Assuming that we
have a set with n elements, and we want to draw k samples from the set, then the total
number of ways we can do this is given by the following table.

ordered sampling with replacement nk

ordered sampling without replacement B! = (,:—'k),
unordered sampling without replacement (Z) = #lk),
unordered sampling with replacement ("

Table 2.1: Counting results for different sampling methods.




2.1.5 Solved Problems:
Combinatorics

Problem 1
Let A and B be two finite sets, with |A| = m and |B| = n. How many distinct functions
(mappings) can you define fromset AtosetB, f: A — B?

Solution

We can solve this problem using the multiplication principle. Let
A= {alaa’27a3a cee ’am}’
B = {b1,b2,b3,...,b,}.

Note that to define a mapping from A to B, we have n options for f(a,), i.e.,
f(ay) € B={by,by,bs,...,b,}. Similarly we have n options for f(a,), and so on. Thus
by the multiplication principle, the total number of distinct functions f: A — B is

Problem 2

A function is said to be one-to-one if for all z; # z,, we have f(z{) # f(z3).
Equivalently, we can say a function is one-to-one if whenever f(z;) = f(z3), then

r; = z5. Let A and B be two finite sets, with |A| = m and |B| = n. How many distinct
one-to-one functions (mappings) can you define from set Atoset B, f: A — B?

Solution

Again let

A = {al,a/2,a/3a""a’m}’

B — {bl,bz,b3,...,bn}.



To define a one-to-one mapping from A to B, we have n options for f(a:), i.e.,
f(a1) € B ={b1,ba,b3,...,b,}. Given f(a1), we have n — 1 options for f(az), and so on.
Thus by the multiplication principle, the total number of distinct functions f: A — B, is

n-(n—1)-(n—2)---(n—m+1) =P}

Thus, in other words, choosing a one-to-one function from A to B is equivalent to
choosing an m-permutation from the n-element set B (ordered sampling without
replacement) and as we have seen there are P,, ways to do that.

Problem 3

An urn contains 30 red balls and 70 green balls. What is the probability of getting
exactly k£ red balls in a sample of size 20 if the sampling is done with replacement
(repetition allowed)? Assume 0 < k < 20.

Solution

Here any time we take a sample from the urn we put it back before the next sample
(sampling with replacement). Thus in this experiment each time we sample, the

probability of choosing a red ball is % and we repeat this in 20 independent trials.
This is exactly the binomial experiment. Thus, using the binomial formula we obtain

P(k red balls) = <2£> (0.3)%(0.7)20*,

Problem 4

An urn consists of 30 red balls and 70 green balls. What is the probability of getting
exactly k£ red balls in a sample of size 20 if the sampling is done without replacement
(repetition not allowed)?

Solution

A
s
find |A| and |S|. First, note that |S| = (). Next, to find |A|, we need to find out in how

Let A be the event (set) of getting exactly & red balls. To find P(A) we need to



many ways we can choose k red balls and 20 — k green balls. Using the multiplication

principle, we have
30 70
= (1))

OGN

(30)

Thus, we have

Problem 5
Assume that there are k people in a room and we know that:

k = 5 with probability %;
k = 10 with probability };
k = 15 with probability .

a. What is the probability that at least two of them have been born in the same
month? Assume that all months are equally likely.

b. Given that we already know there are at least two people that celebrate their
birthday in the same month, what is the probability that £ = 10?

Solution

a. The first part of the problem is very similar to the birthday problem, one
difference here is that here n = 12 instead of 365. Let A, be the event that at
least two people out of k people have birthdays in the same month. We have

12
P(4)=1-— 1—;,fork€ {2,3,4,...,12}

Note that P(A4;) = 1 for k > 12. Let A be the event that at least two people in the
room were born in the same month. Using the law of total probability, we have

P(A) = 1 P(45) + 1 P(A10) + 3 P(A15)

1 B’ 1 Pl 1



b. The second part of the problem asks for P(k = 10|A). We can use Bayes' rule to

write
B _ P(AJk=10)P(k=10)
P(k=10|A) = )
_ P(A1)
T 4P(4)
Pg
T 1210
- P12 pl2
(171"’?”(17121—1%)%
Problem 6

How many distinct solutions does the following equation have?
1 + x2 + 3 + x4 = 100, such that
z1 € {1,2,3..},z2 € {2,3,4,.. },z3,24 € {0,1,2,3,... }.

Solution

We already know that in general the number of solutions to the equation

z, + xo+. ..+, =k, where z; € {0,1,2,3,...}

n+k—-1\ (n+k-1
k n n—1 )
We need to convert the restrictions in this problem to match this general form. We are
given that z; € {1,2,3..}, so if we define

is equal to

y1 =1 — 1,

then y; € {0,1,2,3,...}. Similarly define y, = zy — 2, s0 y, € {0,1,2,3,...}. Now the
guestion becomes equivalent to finding the number of solutions to the equation

Y1 +1 +y2 +2 + T3+ x4 = 1007 Whereyl,yg,wg,m4 € {0a1a2737"'}a
or equivalently, the number of solutions to the equation
Y1 +y2 + 3 + x4 = 97, where y1,y2, 3,24 € {0, 1,2,3,... }

As we know, this is equal to



(7))

Problem 7 (The matching problem)

Here is a famous problem: N guests arrive at a party. Each person is wearing a hat.
We collect all hats and then randomly redistribute the hats, giving each person one of
the N hats randomly. What is the probability that at least one person receives his/her
own hat?

Hint: Use the inclusion-exclusion principle.

Solution

Let A; be the event that i'th person receives his/her own hat. Then we are interested in
finding P(E), where E = A; U A, U A3U...UAy. To find P(E), we use the inclusion-
exclusion principle. We have

P(B) = P(Uiil Ai) =SV P(A) — S P(AN A))

+ gk icjer PATN AN AL) — oo+ (-1 P(ﬂf\il Ai) :

Note that there is complete symmetry here, that is, we can write

P(A;) = P(Ay) = P(4;) =...= P(Ay);
P(A;NAy) =PA;NA3)=...=P(A;,NA)) =
P(AiNAsNA3)=PAiNANA) =...=P(A2NAsNA5) =
Thus, we have
N
) P(A;) = NP(A);

i=1

Y PA;NA4) = @7) P(A; N Ay);

i,j1i<j

N
Y PANANA) = (3>P(AmAmA3);

ik i<j<k



Therefore, we have
P(E) = NP(A;) — (5)P(A1 N 4,)
+(§)P(A1 N Ay N Az)—...+(=1)NLP(A; N Ay N As...NAy) (2.5)

Now, we only need to find P(A:), P(A1 N Az), P(A:1 N Ay N As3), etc. to finish solving
the problem. To find P(A;), we have

A

Here, the sample space S consists of all possible permutations of N objects (hats).
Thus, we have

S| = N

On the other hand, A; consists of all possible permutations of N — 1 objects (because
the first object is fixed). Thus

4] = (N —1)!
Therefore, we have

|A1‘ (N—l)! 1
PAI="gr=" =W

Similarly, we have

|A1 ﬂA2| = (N—Q)!

Thus,
ANA N —2)!
P(AlﬂAQ):yl 2\:( '): ]{I
|| N Py_,
Similarly,
AiNANA N —3)! 1
P(AlﬂA2ﬂA3)=| ! 2 3’ :( ) = ;
S| NT Ry,
ATNANAsNA N —4)! 1
P(AmA2mA3mA4):‘ 1NANANA ) ;
Ei N! P,

Thus, using Equation 2.5 we have



P(E) = N. % — (J;r) : valyz + (];) : ]]Vlvg —...+(—1)N1% (2.6)

By simplifying a little bit, we obtain

11 N 1
P(E)=1- 51 +§—....+(—1) T
We are done. It is interesting to note what happens when N becomes large. To see
that, we should remember the Taylor series expansion of €*. In particular,

PR N
e = +1!+2!+3'+
Letting z = —1, we have
. 1 1 1
e =1——+ = ——+...
12t 3!

Thus, we conclude that as N becomes large, P(E) approaches 1 — %




2.2.0 End of Chapter Problems

Problem 1

A coffee shop has 4 different types of coffee. You can order your coffee in a small,
medium, or large cup. You can also choose whether you want to add cream, sugar, or
milk (any combination is possible, for example, you can choose to add all three). In
how many ways can you order your coffee?

Problem 2
Eight committee members are meeting in a room that has twelve chairs. In how many
ways can they sit in the chairs?

Problem 3
There are 20 black cell phones and 30 white cell phones in a store. An employee takes
10 phones at random. Find the probability that

a. there will be exactly 4 black cell phones among the chosen phones;
b. there will be less than 3 black cell phones among the chosen phones.

Problem 4
Five cards are dealt from a shuffled deck. What is the probability that the dealt hand
contains

a. exactly one ace;
b. at least one ace?

Problem 5
Five cards are dealt from a shuffled deck. What is the probability that the dealt hand
contains exactly two aces, given that we know it contains at least one ace?




Problem 6

The 52 cards in a shuffled deck are dealt equally among four players, call them A, B,
C, and D. If A and B have exactly 7 spades, what is the probability that C has exactly 4
spades?

Problem 7
There are 50 students in a class and the professor chooses 15 students at random.
What is the probability that you or your friend Joe are among the chosen students?

Problem 8
In how many ways can you arrange the letters in the word "Massachusetts"?

Problem 9
You have a biased coin for which P(H) = p. You toss the coin 20 times. What is the
probability that

a. you observe 8 heads and 12 tails;
b. you observe more than 8 heads and more than 8 tails?

Problem 10

A wireless sensor grid consists of 21 x 11 = 231 sensor nodes that are located at
points (¢, 5) in the plane such that € {0,1,---,20} and j € {0,1,2,---,10} as shown in
Figure 2.1. The sensor node located at point (0,0) needs to send a message to a node
located at (20,10). The messages are sent to the destination by going from each
sensor to a neighboring sensor located above or to the right. That is, we assume that
each node located at point (¢, ) will only send messages to the nodes located at

(¢ +1,45) or (¢,5 + 1). How many different paths do exist for sending the message from
node (0,0) to node (20,10)?
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Fig.2.1 - Figure for Problem 10.

Problem 11

In Problem 10, assume that all the appropriate paths are equally likely. What is the
probability that the sensor located at point (10, 5) receives the message? That is, what
is the probability that a randomly chosen path from (0,0) to (20, 10) goes through the
point (10,5)?

Problem 12*

In Problem 10, assume that if a sensor has a choice, it will send the message to the
above sensor with probability p, and will send the message to the sensor to the right
with probability p, =1 — p,. What is the probability that the sensor located at point
(10,5) receives the message?

Problem 13
There are two coins in a bag. For Coin 1, P(H) = 3 and for Coin 2, P(H) = 5. Your

friend chooses one of the coins at random and tosses it 5 times.

a. What is the probability of observing at least 3 heads?
b. * You ask your friend: "Did you observe at least three heads?". Your friend
replies, "Yes." What is the probability that Coin 2 had been chosen?

Problem 14



There are 15 people in a party, including Hannah and Sarah. We divide the 15 people
into 3 groups, where each group has 5 people. What is the probability that Hannah
and Sarah are in the same group?

Problem 15
You roll a die 5 times. What is the probability that at least one value is observed more
than once?

Problem 16

I have 10 red and 10 blue cards. | shuffle the cards and then label the cards based on
their orders: | write the number one on the first card, the number two on the second
card, and so on. What is the probability that

a. All red cards are assigned numbers less than or equal to 157
b. Exactly 8 red cards are assigned numbers less than or equal to 15?

Problem 17

| have two bags. Bag 1 contains 10 blue marbles, while Bag 2 contains 15 blue
marbles. | pick one of the bags at random, and throw 6 red marbles in it. Then | shake
the bag and choose 5 marbles (without replacement) at random from the bag. If there
are exactly 2 red marbles among the 5 chosen marbles, what is the probability that |
have chosen Bag 1?

Problem 18

In a communication system, packets are transmitted from a sender to a receiver. Each
packet is received with no error with probability p independently from other packets
(with probability 1 — p the packet is lost). The receiver can decode the message as
soon as it receives k packets with no error. Find the probability that the sender sends
exactly n packets until the receiver can decode the message successfully.

Problem 19
How many distinct solutions does the following equation have such that all z; € N?

1+ x2 + x3 + x4 + x5 = 100



Problem 20
How many distinct solutions does the following equation have?

1 + x2 + 3 + x4 = 100, such that
z1 €{0,1,2,---,10},z9,23,24 € {0,1,2,3,...}.

Problem 21*

For this problem suppose that the x;'s must be non-negative integers, i.e.,

z; € {0,1,2,---} for s = 1,2,3. How many distinct solutions does the following equation
have such that at least one of the z;'s is larger than 40?

1 + 22 + x3 = 100



3.1.1 Random Variables

In general, to analyze random experiments, we usually focus on some numerical
aspects of the experiment. For example, in a soccer game we may be interested in the
number of goals, shots, shots on goal, corners kicks, fouls, etc. If we consider an
entire soccer match as a random experiment, then each of these numerical results
gives some information about the outcome of the random experiment. These are
examples of random variables. In a nutshell, a random variable is a real-valued
variable whose value is determined by an underlying random experiment.

Let's look at an example.

Example 3.1
| toss a coin five times. This is a random experiment and the sample space can be
written as

S={TTTTT,TTTTH,... HHHHH}.

Note that here the sample space § has 2° = 32 elements. Suppose that in this
experiment, we are interested in the number of heads. We can define a random
variable X whose value is the number of observed heads. The value of X will be one
of 0,1,2,3,4 or 5 depending on the outcome of the random experiment.

In essence, a random variable is a real-valued function that assigns a numerical value
to each possible outcome of the random experiment. For example, the random
variable X defined above assigns the value 0 to the outcome TTTTT, the value 2 to
the outcome THTHT, and so on. Hence, the random variable X is a function from the
sample space S={TTTTT,TTTTH, --- HHHHH} to the real numbers (for this
particular random variable, the values are always integers between 0 and 5).



Random Variables:
A random variable X is a function from the sample space to the real
numbers.

X:S—-R

We usually show random variables by capital letters such as X, Y, and Z. Since a
random variable is a function, we can talk about its range. The range of a random
variable X, shown by Range(X) or Ry, is the set of possible values for X. In the
above example, Range(X) = Rx = {0,1,2,3,4,5}.

The range of a random variable X, shown by Range(X) or Ry, is the set of
possible values of X.

Example 3.2
Find the range for each of the following random variables.

1. 1 toss a coin 100 times. Let X be the number of heads | observe.

2. | toss a coin until the first heads appears. Let Y be the total number of coin
tosses.

3. The random variable T is defined as the time (in hours) from now until the next
earthquake occurs in a certain city.

Solution

1. The random variable X can take any integer from 0 to 100, so

Rx =4{0,1,2,...,100}.
2. The random variable Y can take any positive integer, so Ry = {1,2,3,...} =N.
3. The random variable T' can in theory get any positive real number, so

Ry =[0,00).







3.1.2 Discrete Random Variables

There are two important classes of random variables that we discuss in this book:
discrete random variables and continuous random variables. We will discuss discrete
random variables in this chapter and continuous random variables in Chapter 4. There
will be a third class of random variables that are called mixed random variables. Mixed
random variables, as the name suggests, can be thought of as mixture of discrete and
continuous random variables. We will discuss mixed random variables in Chapter 4 as
well.

Remember that a set A is countable if either

e Ais afinite set such as {1,2,3,4}, or
e it can be put in one-to-one correspondence with natural numbers (in this case
the set is said to be countably infinite)

In particular, as we discussed in Chapter 1, sets such as N, Z,Q and their subsets are
countable, while sets such as nonempty 