

1.	 Preface

a.	 Who	Is	This	Book	For?

b.	 What’s	Not	in	the	Book

c.	 Code	Samples

d.	 Conventions	Used	in	This	Book

e.	 O’Reilly	Online	Learning

f.	 How	to	Contact	Us

g.	 Acknowledgments

2.	 1.	The	Need	for	Machine	Learning	Design	Patterns

a.	 What	Are	Design	Patterns?

b.	 How	to	Use	This	Book

c.	 Machine	Learning	Terminology

i.	 Models	and	Frameworks

ii.	 Data	and	Feature	Engineering

iii.	 The	Machine	Learning	Process

iv.	 Data	and	Model	Tooling

v.	 Roles

d.	 Common	Challenges	in	Machine	Learning

i.	 Data	Quality

ii.	 Reproducibility

iii.	 Data	Drift

iv.	 Scale

v.	 Multiple	Objectives

e.	 Summary

3.	 2.	Data	Representation	Design	Patterns

a.	 Simple	Data	Representations

i.	 Numerical	Inputs

ii.	 Categorical	Inputs

b.	 Design	Pattern	1:	Hashed	Feature

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

c.	 Design	Pattern	2:	Embeddings

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

d.	 Design	Pattern	3:	Feature	Cross

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

e.	 Design	Pattern	4:	Multimodal	Input

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

f.	 Summary

4.	 3.	Problem	Representation	Design	Patterns

a.	 Design	Pattern	5:	Reframing

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

b.	 Design	Pattern	6:	Multilabel

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

c.	 Design	Pattern	7:	Ensembles

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

d.	 Design	Pattern	8:	Cascade

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

e.	 Design	Pattern	9:	Neutral	Class

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

f.	 Design	Pattern	10:	Rebalancing

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

g.	 Summary

5.	 4.	Model	Training	Patterns

a.	 Typical	Training	Loop

i.	 Stochastic	Gradient	Descent

ii.	 Keras	Training	Loop

iii.	 Training	Design	Patterns

b.	 Design	Pattern	11:	Useful	Overfitting

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

c.	 Design	Pattern	12:	Checkpoints

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

d.	 Design	Pattern	13:	Transfer	Learning

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

e.	 Design	Pattern	14:	Distribution	Strategy

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

f.	 Design	Pattern	15:	Hyperparameter	Tuning

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

g.	 Summary

6.	 5.	Design	Patterns	for	Resilient	Serving

a.	 Design	Pattern	16:	Stateless	Serving	Function

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

b.	 Design	Pattern	17:	Batch	Serving

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

c.	 Design	Pattern	18:	Continued	Model	Evaluation

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

d.	 Design	Pattern	19:	Two-Phase	Predictions

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

e.	 Design	Pattern	20:	Keyed	Predictions

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

f.	 Summary

7.	 6.	Reproducibility	Design	Patterns

a.	 Design	Pattern	21:	Transform

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

b.	 Design	Pattern	22:	Repeatable	Splitting

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

c.	 Design	Pattern	23:	Bridged	Schema

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

d.	 Design	Pattern	24:	Windowed	Inference

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

e.	 Design	Pattern	25:	Workflow	Pipeline

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

f.	 Design	Pattern	26:	Feature	Store

i.	 Problem

ii.	 Solution

iii.	 Why	It	Works

iv.	 Trade-Offs	and	Alternatives

g.	 Design	Pattern	27:	Model	Versioning

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

h.	 Summary

8.	 7.	Responsible	AI

a.	 Design	Pattern	28:	Heuristic	Benchmark

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

b.	 Design	Pattern	29:	Explainable	Predictions

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

c.	 Design	Pattern	30:	Fairness	Lens

i.	 Problem

ii.	 Solution

iii.	 Trade-Offs	and	Alternatives

d.	 Summary

9.	 8.	Connected	Patterns

a.	 Patterns	Reference

b.	 Pattern	Interactions

c.	 Patterns	Within	ML	Projects

i.	 ML	Life	Cycle

ii.	 AI	Readiness

d.	 Common	Patterns	by	Use	Case	and	Data	Type

i.	 Natural	Language	Understanding

ii.	 Computer	Vision

iii.	 Predictive	Analytics

iv.	 Recommendation	Systems

v.	 Fraud	and	Anomaly	Detection

10.	 Index

Machine	Learning	Design
Patterns

Solutions	to	Common	Challenges	in	Data
Preparation,	Model	Building,	and	MLOps

Valliappa	Lakshmanan,	Sara	Robinson,	and
Michael	Munn

Machine	Learning	Design	Patterns

by	Valliappa	Lakshmanan,	Sara	Robinson,	and	Michael	Munn

Copyright	©	2021	Valliappa	Lakshmanan,	Sara	Robinson,	and	Michael
Munn.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales
promotional	use.	Online	editions	are	also	available	for	most	titles
(http://oreilly.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Acquisitions	Editor:	Rebecca	Novack Indexer:	nSight,	Inc.

Developmental	Editor:	Corbin	Collins Interior	Designer:	David	Futato

Production	Editor:	Beth	Kelly Cover	Designer:	Karen	Montgomery

Copyeditor:	Charles	Roumeliotis Illustrator:	Kate	Dullea

Proofreader:	Holly	Bauer	Forsyth

October	2020:	First	Edition

Revision	History	for	the	First	Edition

2020-10-15:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781098115784	for

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098115784

release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.
Machine	Learning	Design	Patterns,	the	cover	image,	and	related	trade
dress	are	trademarks	of	O’Reilly	Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	authors,	and	do	not
represent	the	publisher’s	views.	While	the	publisher	and	the	authors	have
used	good	faith	efforts	to	ensure	that	the	information	and	instructions
contained	in	this	work	are	accurate,	the	publisher	and	the	authors	disclaim
all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this
work.	Use	of	the	information	and	instructions	contained	in	this	work	is	at
your	own	risk.	If	any	code	samples	or	other	technology	this	work	contains
or	describes	is	subject	to	open	source	licenses	or	the	intellectual	property
rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-098-11578-4

[LSI]

Preface

Who	Is	This	Book	For?
Introductory	machine	learning	books	usually	focus	on	the	what	and	how	of
machine	learning	(ML).	They	then	explain	the	mathematical	aspects	of
new	methods	from	AI	research	labs	and	teach	how	to	use	AI	frameworks
to	implement	these	methods.	This	book,	on	the	other	hand,	brings	together
hard-earned	experience	around	the	“why”	that	underlies	the	tips	and	tricks
that	experienced	ML	practitioners	employ	when	applying	machine
learning	to	real-world	problems.

We	assume	that	you	have	prior	knowledge	of	machine	learning	and	data
processing.	This	is	not	a	fundamental	textbook	on	machine	learning.
Instead,	this	book	is	for	you	if	you	are	a	data	scientist,	data	engineer,	or
ML	engineer	who	is	looking	for	a	second	book	on	practical	machine
learning.	If	you	already	know	the	basics,	this	book	will	introduce	you	to	a
catalog	of	ideas,	some	of	which	you	(an	ML	practitioner)	may	recognize,
and	give	those	ideas	a	name	so	that	you	can	confidently	reach	for	them.

If	you	are	a	computer	science	student	headed	for	a	job	in	industry,	this
book	will	round	out	your	knowledge	and	prepare	you	for	the	professional
world.	It	will	help	you	learn	how	to	build	high-quality	ML	systems.

What’s	Not	in	the	Book
This	is	a	book	that	is	primarily	for	ML	engineers	in	the	enterprise,	not	ML
scientists	in	academia	or	industry	research	labs.

We	purposefully	do	not	discuss	areas	of	active	research—you	will	find

very	little	here,	for	example,	on	machine	learning	model	architecture
(bidirectional	encoders,	or	the	attention	mechanism,	or	short-circuit	layers,
for	example)	because	we	assume	that	you	will	be	using	a	pre-built	model
architecture	(such	as	ResNet-50	or	GRUCell),	not	writing	your	own	image
classification	or	recurrent	neural	network.

Here	are	some	concrete	examples	of	areas	that	we	intentionally	stay	away
from	because	we	believe	that	these	topics	are	more	appropriate	for	college
courses	and	ML	researchers:

ML	algorithms

We	do	not	cover	the	differences	between	random	forests	and	neural

networks,	for	example.	This	is	covered	in	introductory	machine

learning	textbooks.

Building	blocks

We	do	not	cover	different	types	of	gradient	descent	optimizers	or

activation	functions.	We	recommend	using	Adam	and	ReLU—in	our

experience,	the	potential	for	improvements	in	performance	by	making

different	choices	in	these	sorts	of	things	tends	to	be	minor.

ML	model	architectures

If	you	are	doing	image	classification,	we	recommend	that	you	use	an

off-the-shelf	model	like	ResNet	or	whatever	the	latest	hotness	is	at	the

time	you	are	reading	this.	Leave	the	design	of	new	image	classification

or	text	classification	models	to	researchers	who	specialize	in	this

problem.

Model	layers

You	won’t	find	convolutional	neural	networks	or	recurrent	neural

You	won’t	find	convolutional	neural	networks	or	recurrent	neural

networks	in	this	book.	They	are	doubly	disqualified—first,	for	being	a

building	block	and	second,	for	being	something	you	can	use	off-the-

shelf.

Custom	training	loops

Just	calling	model.fit()	in	Keras	will	fit	the	needs	of

practitioners.

In	this	book,	we	have	tried	to	include	only	common	patterns	of	the	kind
that	machine	learning	engineers	in	enterprises	will	employ	in	their	day-to-
day	work.

As	an	analogy,	consider	data	structures.	While	a	college	course	on	data
structures	will	delve	into	the	implementations	of	different	data	structures,
and	a	researcher	on	data	structures	will	have	to	learn	how	to	formally
represent	their	mathematical	properties,	the	practitioner	can	be	more
pragmatic.	An	enterprise	software	developer	simply	needs	to	know	how	to
work	effectively	with	arrays,	linked	lists,	maps,	sets,	and	trees.	It	is	for	a
pragmatic	practitioner	in	machine	learning	that	this	book	is	written.

Code	Samples
We	provide	code	for	machine	learning	(sometimes	in	Keras/TensorFlow,
and	other	times	in	scikit-learn	or	BigQuery	ML)	and	data	processing	(in
SQL)	as	a	way	to	show	how	the	techniques	we	are	discussing	are
implemented	in	practice.	All	the	code	that	is	referenced	in	the	book	is	part
of	our	GitHub	repository,	where	you	will	find	fully	working	ML	models.
We	strongly	encourage	you	to	try	out	those	code	samples.

https://github.com/GoogleCloudPlatform/ml-design-patterns

The	code	is	secondary	in	importance	to	the	concepts	and	techniques	being
covered.	Our	aim	has	been	that	the	topic	and	principles	should	remain
relevant	regardless	of	changes	to	TensorFlow	or	Keras,	and	we	can	easily
imagine	updating	the	GitHub	repository	to	include	other	ML	frameworks,
for	example,	while	keeping	the	book	text	unchanged.	Therefore,	the	book
should	be	equally	informative	if	your	primary	ML	framework	is	PyTorch
or	even	a	non-Python	framework	like	H20.ai	or	R.	Indeed,	we	welcome
your	contributions	to	the	GitHub	repository	of	implementations	of	one	or
more	of	these	patterns	in	your	favorite	ML	framework.

If	you	have	a	technical	question	or	a	problem	using	the	code	examples,
please	send	email	to	bookquestions@oreilly.com.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example
code	is	offered	with	this	book,	you	may	use	it	in	your	programs	and
documentation.	You	do	not	need	to	contact	us	for	permission	unless
you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing
a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and
quoting	example	code	does	not	require	permission.	Incorporating	a
significant	amount	of	example	code	from	this	book	into	your	product’s
documentation	does	require	permission.

We	appreciate,	but	generally	do	not	require,	attribution.	An	attribution
usually	includes	the	title,	author,	publisher,	and	ISBN.	For	example:
“Machine	Learning	Design	Patterns	by	Valliappa	Lakshmanan,	Sara
Robinson,	and	Michael	Munn	(O’Reilly).	Copyright	2021	Valliappa
Lakshmanan,	Sara	Robinson,	and	Michael	Munn,	978-1-098-11578-4.”	If
you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission

mailto:bookquestions@oreilly.com

given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file
extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to
program	elements	such	as	variable	or	function	names,	databases,	data
types,	environment	variables,	statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the
user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by
values	determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

mailto:permissions@oreilly.com

WARNING
This	element	indicates	a	warning	or	caution.

O’Reilly	Online	Learning

NOTE
For	more	than	40	years,	O’Reilly	Media	has	provided	technology	and	business	training,
knowledge,	and	insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	and	our	online	learning	platform.
O’Reilly’s	online	learning	platform	gives	you	on-demand	access	to	live
training	courses,	in-depth	learning	paths,	interactive	coding	environments,
and	a	vast	collection	of	text	and	video	from	O’Reilly	and	200+	other
publishers.	For	more	information,	visit	http://oreilly.com.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the
publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

http://oreilly.com
http://oreilly.com

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	https://oreil.ly/MLDP.

Email	bookquestions@oreilly.com	to	comment	or	ask	technical	questions
about	this	book.

For	news	and	information	about	our	books	and	courses,	visit
http://oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://youtube.com/oreillymedia

Acknowledgments
A	book	like	this	would	not	be	possible	without	the	generosity	of	numerous
Googlers,	especially	our	colleagues	in	the	Cloud	AI,	Solution	Engineering,
Professional	Services,	and	Developer	Relations	teams.	We	are	grateful	to
them	for	letting	us	observe,	analyze,	and	question	their	solutions	to	the
challenging	problems	they	encountered	in	training,	improving,	and
operationalizing	ML	models.	Thanks	to	our	managers,	Karl	Weinmeister,
Steve	Cellini,	Hamidou	Dia,	Abdul	Razack,	Chris	Hallenbeck,	Patrick
Cole,	Louise	Byrne,	and	Rochana	Golani	for	fostering	the	spirit	of
openness	within	Google,	giving	us	the	freedom	to	catalog	these	patterns,
and	publish	this	book.

https://oreil.ly/MLDP
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Salem	Haykal,	Benoit	Dherin,	and	Khalid	Salama	reviewed	every	pattern
and	every	chapter.	Sal	pointed	out	nuances	we	had	missed,	Benoit
narrowed	down	our	claims,	and	Khalid	pointed	us	to	relevant	research.
This	book	would	be	nowhere	near	as	good	without	your	inputs.	Thank
you!	Amy	Unruh,	Rajesh	Thallam,	Robbie	Haertel,	Zhitao	Li,	Anusha
Ramesh,	Ming	Fang,	Parker	Barnes,	Andrew	Zaldivar,	James	Wexler,
Andrew	Sellergren,	and	David	Kanter	reviewed	parts	of	this	book	that
align	with	their	areas	of	expertise	and	made	numerous	suggestions	on	how
the	near-term	roadmap	would	affect	our	recommendations.	Nitin
Aggarwal	and	Matthew	Yeager	brought	a	reader’s	eye	to	the	manuscript
and	improved	its	clarity.	Special	thanks	to	Rajesh	Thallam	for	prototyping
the	design	of	the	very	last	figure	in	Chapter	8.	Any	errors	that	remain	are
ours,	of	course.

O’Reilly	is	the	publisher	of	choice	for	technical	books,	and	the
professionalism	of	our	team	illustrates	why.	Rebecca	Novak	shepherded
us	through	putting	together	a	compelling	outline,	Kristen	Brown	managed
the	entire	content	development	with	aplomb,	Corbin	Collins	gave	us
helpful	guidance	at	every	stage,	Elizabeth	Kelly	was	a	delight	to	work
with	during	production,	and	Charles	Roumeliotis	brought	a	sharp	eye	to
the	copyediting.	Thanks	for	all	your	help!

Michael:	Thanks	to	my	parents	for	always	believing	in	me	and
encouraging	my	interests,	both	academic	and	otherwise.	You	will	be	able
to	appreciate	as	much	as	I	do	the	surreptitious	cover.	To	Phil,	thank	you
for	patiently	bearing	with	my	less-than-bearable	schedule	while	working
on	this	book.	Now,	I’mma	be	asleep.

Sara:	Jon—you’re	a	big	reason	this	book	exists.	Thank	you	for
encouraging	me	to	write	this,	for	always	knowing	how	to	make	me	laugh,

appreciating	my	weirdness,	and	for	believing	in	me	especially	when	I
didn’t.	To	my	parents,	thank	you	for	being	my	biggest	fans	since	day	one
and	encouraging	my	love	of	technology	and	writing	for	as	long	as	I	can
remember.	To	Ally,	Katie,	Randi,	and	Sophie—thank	you	for	being	a
constant	source	of	light	and	laughter	in	these	uncertain	times.

Lak:	I	took	on	this	book	thinking	I’d	get	to	work	on	it	while	waiting	in
airports.	COVID-19	made	it	so	that	much	of	the	work	was	done	at	home.
Thanks	Abirami,	Sidharth,	and	Sarada	for	all	your	forbearance	as	I
hunkered	down	to	write	yet	again.	More	hikes	on	weekends	now!

The	three	of	us	are	donating	100%	of	the	royalties	from	this	book	to	Girls
Who	Code,	an	organization	whose	mission	is	to	build	a	large	pipeline	of
future	female	engineers.	Diversity,	equity,	and	inclusion	are	particularly
important	in	machine	learning	to	ensure	that	AI	models	don’t	perpetuate
existing	biases	in	human	society.

https://girlswhocode.com

Chapter	1.	The	Need	for
Machine	Learning	Design
Patterns

In	engineering	disciplines,	design	patterns	capture	best	practices	and
solutions	to	commonly	occurring	problems.	They	codify	the	knowledge
and	experience	of	experts	into	advice	that	all	practitioners	can	follow.	This
book	is	a	catalog	of	machine	learning	design	patterns	that	we	have
observed	in	the	course	of	working	with	hundreds	of	machine	learning
teams.

What	Are	Design	Patterns?
The	idea	of	patterns,	and	a	catalog	of	proven	patterns,	was	introduced	in
the	field	of	architecture	by	Christopher	Alexander	and	five	coauthors	in	a
hugely	influential	book	titled	A	Pattern	Language	(Oxford	University
Press,	1977).	In	their	book,	they	catalog	253	patterns,	introducing	them
this	way:

Each	pattern	describes	a	problem	which	occurs	over	and	over	again	in
our	environment,	and	then	describes	the	core	of	the	solution	to	that
problem,	in	such	a	way	that	you	can	use	this	solution	a	million	times
over,	without	ever	doing	it	the	same	way	twice.

…

Each	solution	is	stated	in	such	a	way	that	it	gives	the	essential	field	of
relationships	needed	to	solve	the	problem,	but	in	a	very	general	and
abstract	way—so	that	you	can	solve	the	problem	for	yourself,	in	your

own	way,	by	adapting	it	to	your	preferences,	and	the	local	conditions	at
the	place	where	you	are	making	it.

For	example,	a	couple	of	the	patterns	that	incorporate	human	details	when
building	a	home	are	Light	on	Two	Sides	of	Every	Room	and	Six-Foot
Balcony.	Think	of	your	favorite	room	in	your	home,	and	your	least-
favorite	room.	Does	your	favorite	room	have	windows	on	two	walls?
What	about	your	least-favorite	room?	According	to	Alexander:

Rooms	lit	on	two	sides,	with	natural	light,	create	less	glare	around
people	and	objects;	this	lets	us	see	things	more	intricately;	and	most
important,	it	allows	us	to	read	in	detail	the	minute	expressions	that
flash	across	people’s	faces….

Having	a	name	for	this	pattern	saves	architects	from	having	to	continually
rediscover	this	principle.	Yet	where	and	how	you	get	two	light	sources	in
any	specific	local	condition	is	up	to	the	architect’s	skill.	Similarly,	when
designing	a	balcony,	how	big	should	it	be?	Alexander	recommends	6	feet
by	6	feet	as	being	enough	for	2	(mismatched!)	chairs	and	a	side	table,	and
12	feet	by	12	feet	if	you	want	both	a	covered	sitting	space	and	a	sitting
space	in	the	sun.

Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides	brought
the	idea	to	software	by	cataloging	23	object-oriented	design	patterns	in	a
1994	book	entitled	Design	Patterns:	Elements	of	Reusable	Object-
Oriented	Software	(Addison-Wesley,	1995).	Their	catalog	includes
patterns	such	as	Proxy,	Singleton,	and	Decorator	and	led	to	lasting	impact
on	the	field	of	object-oriented	programming.	In	2005	the	Association	of
Computing	Machinery	(ACM)	awarded	their	annual	Programming
Languages	Achievement	Award	to	the	authors,	recognizing	the	impact	of
their	work	“on	programming	practice	and	programming	language	design.”

Building	production	machine	learning	models	is	increasingly	becoming	an
engineering	discipline,	taking	advantage	of	ML	methods	that	have	been
proven	in	research	settings	and	applying	them	to	business	problems.	As
machine	learning	becomes	more	mainstream,	it	is	important	that
practitioners	take	advantage	of	tried-and-proven	methods	to	address
recurring	problems.

One	benefit	of	our	jobs	in	the	customer-facing	part	of	Google	Cloud	is	that
it	brings	us	in	contact	with	a	wide	variety	of	machine	learning	and	data
science	teams	and	individual	developers	from	around	the	world.	At	the
same	time,	we	each	work	closely	with	internal	Google	teams	solving
cutting-edge	machine	learning	problems.	Finally,	we	have	been	fortunate
to	work	with	the	TensorFlow,	Keras,	BigQuery	ML,	TPU,	and	Cloud	AI
Platform	teams	that	are	driving	the	democratization	of	machine	learning
research	and	infrastructure.	All	this	gives	us	a	rather	unique	perspective
from	which	to	catalog	the	best	practices	we	have	observed	these	teams
carrying	out.

This	book	is	a	catalog	of	design	patterns	or	repeatable	solutions	to
commonly	occurring	problems	in	ML	engineering.	For	example,	the
Transform	pattern	(Chapter	6)	enforces	the	separation	of	inputs,	features,
and	transforms	and	makes	the	transformations	persistent	in	order	to
simplify	moving	an	ML	model	to	production.	Similarly,	Keyed
Predictions,	in	Chapter	5,	is	a	pattern	that	enables	the	large-scale
distribution	of	batch	predictions,	such	as	for	recommendation	models.

For	each	pattern,	we	describe	the	commonly	occurring	problem	that	is
being	addressed	and	then	walk	through	a	variety	of	potential	solutions	to
the	problem,	the	trade-offs	of	these	solutions,	and	recommendations	for
choosing	between	these	solutions.	Implementation	code	for	these	solutions

is	provided	in	SQL	(useful	if	you	are	carrying	out	preprocessing	and	other
ETL	in	Spark	SQL,	BigQuery,	and	so	on),	scikit-learn,	and/or	Keras	with
a	TensorFlow	backend.

How	to	Use	This	Book
This	is	a	catalog	of	patterns	that	we	have	observed	in	practice,	among
multiple	teams.	In	some	cases,	the	underlying	concepts	have	been	known
for	many	years.	We	don’t	claim	to	have	invented	or	discovered	these
patterns.	Instead,	we	hope	to	provide	a	common	frame	of	reference	and	set
of	tools	for	ML	practitioners.	We	will	have	succeeded	if	this	book	gives
you	and	your	team	a	vocabulary	when	talking	about	concepts	that	you
already	incorporate	intuitively	into	your	ML	projects.

We	don’t	expect	you	to	read	this	book	sequentially	(although	you	can!).
Instead,	we	anticipate	that	you	will	skim	through	the	book,	read	a	few
sections	more	deeply	than	others,	reference	the	ideas	in	conversations	with
colleagues,	and	refer	back	to	the	book	when	faced	with	problems	you
remember	reading	about.	If	you	plan	to	skip	around,	we	recommend	that
you	start	with	Chapter	1	and	Chapter	8	before	dipping	into	individual
patterns.

Each	pattern	has	a	brief	problem	statement,	a	canonical	solution,	an
explanation	of	why	the	solution	works,	and	a	many-part	discussion	on
tradeoffs	and	alternatives.	We	recommend	that	you	read	the	discussion
section	with	the	canonical	solution	firmly	in	mind,	so	as	to	compare	and
contrast.	The	pattern	description	will	include	code	snippets	taken	from	the
implementation	of	the	canonical	solution.	The	full	code	can	be	found	in
our	GitHub	repository.	We	strongly	encourage	you	to	peruse	the	code	as
you	read	the	pattern	description.

https://github.com/GoogleCloudPlatform/ml-design-patterns

Machine	Learning	Terminology
Because	machine	learning	practitioners	today	may	have	different	areas	of
primary	expertise—software	engineering,	data	analysis,	DevOps,	or
statistics—there	can	be	subtle	differences	in	the	way	that	different
practitioners	use	certain	terms.	In	this	section,	we	define	terminology	that
we	use	throughout	the	book.

Models	and	Frameworks

At	its	core,	machine	learning	is	a	process	of	building	models	that	learn
from	data.	This	is	in	contrast	to	traditional	programming	where	we	write
explicit	rules	that	tell	programs	how	to	behave.	Machine	learning	models
are	algorithms	that	learn	patterns	from	data.	To	illustrate	this	point,
imagine	we	are	a	moving	company	and	need	to	estimate	moving	costs	for
potential	customers.	In	traditional	programming,	we	might	solve	this	with
an	if	statement:

if	num_bedrooms	==	2	and	num_bathrooms	==	2:

		estimate	=	1500

elif	num_bedrooms	==	3	and	sq_ft	>	2000:

		estimate	=	2500

You	can	imagine	how	this	will	quickly	get	complicated	as	we	add	more
variables	(number	of	large	furniture	items,	amount	of	clothing,	fragile
items,	and	so	on)	and	try	to	handle	edge	cases.	More	to	the	point,	asking
for	all	this	information	ahead	of	time	from	customers	can	cause	them	to
abandon	the	estimation	process.	Instead,	we	can	train	a	machine	learning
model	to	estimate	moving	costs	based	on	past	data	on	previous	households
our	company	has	moved.

Throughout	the	book,	we	primarily	use	feed-forward	neural	network

models	in	our	examples,	but	we’ll	also	reference	linear	regression	models,
decision	trees,	clustering	models,	and	others.	Feed-forward	neural
networks,	which	we	will	commonly	shorten	as	neural	networks,	are	a	type
of	machine	learning	algorithm	whereby	multiple	layers,	each	with	many
neurons,	analyze	and	process	information	and	then	send	that	information
to	the	next	layer,	resulting	in	a	final	layer	that	produces	a	prediction	as
output.	Though	they	are	in	no	way	identical,	neural	networks	are	often
compared	to	the	neurons	in	our	brain	because	of	the	connectivity	between
nodes	and	the	way	they	are	able	to	generalize	and	form	new	predictions
from	the	data	they	process.	Neural	networks	with	more	than	one	hidden
layer	(layers	other	than	the	input	and	output	layer)	are	classified	as	deep
learning	(see	Figure	1-1).

Machine	learning	models,	regardless	of	how	they	are	depicted	visually,	are
mathematical	functions	and	can	therefore	be	implemented	from	scratch
using	a	numerical	software	package.	However,	ML	engineers	in	industry
tend	to	employ	one	of	several	open	source	frameworks	designed	to
provide	intuitive	APIs	for	building	models.	The	majority	of	our	examples
will	use	TensorFlow,	an	open	source	machine	learning	framework	created
by	Google	with	a	focus	on	deep	learning	models.	Within	the	TensorFlow
library,	we’ll	be	using	the	Keras	API	in	our	examples,	which	can	be
imported	through	tensorflow.keras.	Keras	is	a	higher-
level	API	for	building	neural	networks.	While	Keras
supports	many	backends,	we’ll	be	using	its	TensorFlow	backend.	In	other
examples,	we’ll	be	using	scikit-learn,	XGBoost,	and	PyTorch,	which	are
other	popular	open	source	frameworks	that	provide	utilities	for	preparing
your	data,	along	with	APIs	for	building	linear	and	deep	models.	Machine
learning	continues	to	become	more	accessible,	and	one	exciting
development	is	the	availability	of	machine	learning	models	that	can	be
expressed	in	SQL.	We’ll	use	BigQuery	ML	as	an	example	of	this,

especially	in	situations	where	we	want	to	combine	data	preprocessing	and
model	creation.

Figure	1-1.	A	breakdown	of	different	types	of	machine	learning,	with	a	few	examples	of	each.	Note
that	although	it	is	not	included	in	this	diagram,	neural	networks	like	autoencoders	can	also	be	used

for	unsupervised	learning.

Conversely,	neural	networks	with	only	an	input	and	output	layer	are
another	subset	of	machine	learning	known	as	linear	models.	Linear
models	represent	the	patterns	they’ve	learned	from	data	using	a	linear
function.	Decision	trees	are	machine	learning	models	that	use	your	data	to
create	a	subset	of	paths	with	various	branches.	These	branches
approximate	the	results	of	different	outcomes	from	your	data.	Finally,
clustering	models	look	for	similarities	between	different	subsets	of	your
data	and	use	these	identified	patterns	to	group	data	into	clusters.

Machine	learning	problems	(see	Figure	1-1)	can	be	broken	into	two	types:
supervised	and	unsupervised	learning.	Supervised	learning	defines
problems	where	you	know	the	ground	truth	label	for	your	data	in	advance.
For	example,	this	could	include	labeling	an	image	as	“cat”	or	labeling	a
baby	as	being	2.3	kg	at	birth.	You	feed	this	labeled	data	to	your	model	in
hopes	that	it	can	learn	enough	to	label	new	examples.	With	unsupervised
learning,	you	do	not	know	the	labels	for	your	data	in	advance,	and	the
goal	is	to	build	a	model	that	can	find	natural	groupings	of	your	data	(called
clustering),	compress	the	information	content	(dimensionality	reduction),
or	find	association	rules.	The	majority	of	this	book	will	focus	on
supervised	learning	because	the	vast	majority	of	machine	learning	models
used	in	production	are	supervised.

With	supervised	learning,	problems	can	typically	be	defined	as	either
classification	or	regression.	Classification	models	assign	your	input	data	a
label	(or	labels)	from	a	discrete,	predefined	set	of	categories.	Examples	of
classification	problems	include	determining	the	type	of	pet	breed	in	an
image,	tagging	a	document,	or	predicting	whether	or	not	a	transaction	is

fraudulent.	Regression	models	assign	continuous,	numerical	values	to	your
inputs.	Examples	of	regression	models	include	predicting	the	duration	of	a
bike	trip,	a	company’s	future	revenue,	or	the	price	of	a	product.

Data	and	Feature	Engineering

Data	is	at	the	heart	of	any	machine	learning	problem.	When	we	talk	about
datasets,	we’re	referring	to	the	data	used	for	training,	validating,	and
testing	a	machine	learning	model.	The	bulk	of	your	data	will	be	training
data:	the	data	fed	to	your	model	during	the	training	process.	Validation
data	is	data	that	is	held	out	from	your	training	set	and	used	to	evaluate
how	the	model	is	performing	after	each	training	epoch	(or	pass	through	the
training	data).	The	performance	of	the	model	on	the	validation	data	is	used
to	decide	when	to	stop	the	training	run,	and	to	choose	hyperparameters,
such	as	the	number	of	trees	in	a	random	forest	model.	Test	data	is	data	that
is	not	used	in	the	training	process	at	all	and	is	used	to	evaluate	how	the
trained	model	performs.	Performance	reports	of	the	machine	learning
model	must	be	computed	on	the	independent	test	data,	rather	than	the
training	or	validation	tests.	It’s	also	important	that	the	data	be	split	in	such
a	way	that	all	three	datasets	(training,	test,	validation)	have	similar
statistical	properties.

The	data	you	use	to	train	your	model	can	take	many	forms	depending	on
the	model	type.	We	define	structured	data	as	numerical	and	categorical
data.	Numerical	data	includes	integer	and	float	values,	and	categorical	data
includes	data	that	can	be	divided	into	a	finite	set	of	groups,	like	type	of	car
or	education	level.	You	can	also	think	of	structured	data	as	data	you	would
commonly	find	in	a	spreadsheet.	Throughout	the	book,	we’ll	use	the	term
tabular	data	interchangeably	with	structured	data.	Unstructured	data,	on
the	other	hand,	includes	data	that	cannot	be	represented	as	neatly.	This

typically	includes	free-form	text,	images,	video,	and	audio.

Numeric	data	can	often	be	fed	directly	to	a	machine	learning	model,	where
other	data	requires	various	data	preprocessing	before	it’s	ready	to	be	sent
to	a	model.	This	preprocessing	step	typically	includes	scaling	numerical
values,	or	converting	nonnumerical	data	into	a	numerical	format	that	can
be	understood	by	your	model.	Another	term	for	preprocessing	is	feature
engineering.	We’ll	use	these	two	terms	interchangeably	throughout	the
book.

There	are	various	terms	used	to	describe	data	as	it	goes	through	the	feature
engineering	process.	Input	describes	a	single	column	in	your	dataset
before	it	has	been	processed,	and	feature	describes	a	single	column	after	it
has	been	processed.	For	example,	a	timestamp	could	be	your	input,	and
the	feature	would	be	day	of	the	week.	To	convert	the	data	from	timestamp
to	day	of	the	week,	you’ll	need	to	do	some	data	preprocessing.	This
preprocessing	step	can	also	be	referred	to	as	data	transformation.

An	instance	is	an	item	you’d	like	to	send	to	your	model	for	prediction.	An
instance	could	be	a	row	in	your	test	dataset	(without	the	label	column),	an
image	you	want	to	classify,	or	a	text	document	to	send	to	a	sentiment
analysis	model.	Given	a	set	of	features	about	the	instance,	the	model	will
calculate	a	predicted	value.	In	order	to	do	that,	the	model	is	trained	on
training	examples,	which	associate	an	instance	with	a	label.	A	training
example	refers	to	a	single	instance	(row)	of	data	from	your	dataset	that
will	be	fed	to	your	model.	Building	on	the	timestamp	use	case,	a	full
training	example	might	include:	“day	of	week,”	“city,”	and	“type	of	car.”
A	label	is	the	output	column	in	your	dataset—the	item	your	model	is
predicting.	Label	can	refer	both	to	the	target	column	in	your	dataset	(also
called	a	ground	truth	label)	and	the	output	given	by	your	model	(also

called	a	prediction).	A	sample	label	for	the	training	example	outlined
above	could	be	“trip	duration”—in	this	case,	a	float	value	denoting
minutes.

Once	you’ve	assembled	your	dataset	and	determined	the	features	for	your
model,	data	validation	is	the	process	of	computing	statistics	on	your	data,
understanding	your	schema,	and	evaluating	the	dataset	to	identify
problems	like	drift	and	training-serving	skew.	Evaluating	various	statistics
on	your	data	can	help	you	ensure	the	dataset	contains	a	balanced
representation	of	each	feature.	In	cases	where	it’s	not	possible	to	collect
more	data,	understanding	data	balance	will	help	you	design	your	model	to
account	for	this.	Understanding	your	schema	involves	defining	the	data
type	for	each	feature	and	identifying	training	examples	where	certain
values	may	be	incorrect	or	missing.	Finally,	data	validation	can	identify
inconsistencies	that	may	affect	the	quality	of	your	training	and	test	sets.
For	example,	maybe	the	majority	of	your	training	dataset	contains
weekday	examples	while	your	test	set	contains	primarily	weekend
examples.

The	Machine	Learning	Process

The	first	step	in	a	typical	machine	learning	workflow	is	training—the
process	of	passing	training	data	to	a	model	so	that	it	can	learn	to	identify
patterns.	After	training,	the	next	step	in	the	process	is	testing	how	your
model	performs	on	data	outside	of	your	training	set.	This	is	known	as
model	evaluation.	You	might	run	training	and	evaluation	multiple	times,
performing	additional	feature	engineering	and	tweaking	your	model
architecture.	Once	you	are	happy	with	your	model’s	performance	during
evaluation,	you’ll	likely	want	to	serve	your	model	so	that	others	can
access	it	to	make	predictions.	We	use	the	term	serving	to	refer	to	accepting

incoming	requests	and	sending	back	predictions	by	deploying	the	model	as
a	microservice.	The	serving	infrastructure	could	be	in	the	cloud,	on-
premises,	or	on-device.

The	process	of	sending	new	data	to	your	model	and	making	use	of	its
output	is	called	prediction.	This	can	refer	both	to	generating	predictions
from	local	models	that	have	not	yet	been	deployed	as	well	as	getting
predictions	from	deployed	models.	For	deployed	models,	we’ll	refer	both
to	online	and	batch	prediction.	Online	prediction	is	used	when	you	want	to
get	predictions	on	a	few	examples	in	near	real	time.	With	online
prediction,	the	emphasis	is	on	low	latency.	Batch	prediction,	on	the	other
hand,	refers	to	generating	predictions	on	a	large	set	of	data	offline.	Batch
prediction	jobs	take	longer	than	online	prediction	and	are	useful	for
precomputing	predictions	(such	as	in	recommendation	systems)	and	in
analyzing	your	model’s	predictions	across	a	large	sample	of	new	data.

The	word	prediction	is	apt	when	it	comes	to	forecasting	future	values,
such	as	in	predicting	the	duration	of	a	bicycle	ride	or	predicting	whether	a
shopping	cart	will	be	abandoned.	It	is	less	intuitive	in	the	case	of	image
and	text	classification	models.	If	an	ML	model	looks	at	a	text	review	and
outputs	that	the	sentiment	is	positive,	it’s	not	really	a	“prediction”	(there	is
no	future	outcome).	Hence,	you	will	also	see	word	inference	being	used	to
refer	to	predictions.	The	statistical	term	inference	is	being	repurposed
here,	but	it’s	not	really	about	reasoning.

Often,	the	processes	of	collecting	training	data,	feature	engineering,
training,	and	evaluating	your	model	are	handled	separately	from	the
production	pipeline.	When	this	is	the	case,	you’ll	reevaluate	your	solution
whenever	you	decide	you	have	enough	additional	data	to	train	a	new
version	of	your	model.	In	other	situations,	you	may	have	new	data	being

ingested	continuously	and	need	to	process	this	data	immediately	before
sending	it	to	your	model	for	training	or	prediction.	This	is	known	as
streaming.	To	handle	streaming	data,	you’ll	need	a	multistep	solution	for
performing	feature	engineering,	training,	evaluation,	and	predictions.	Such
multistep	solutions	are	called	ML	pipelines.

Data	and	Model	Tooling

There	are	various	Google	Cloud	products	we’ll	be	referencing	that	provide
tooling	for	solving	data	and	machine	learning	problems.	These	products
are	merely	one	option	for	implementing	the	design	patterns	referenced	in
this	book	and	are	not	meant	to	be	an	exhaustive	list.	All	of	the	products
included	here	are	serverless,	allowing	us	to	focus	more	on	implementing
machine	learning	design	patterns	instead	of	the	infrastructure	behind	them.

BigQuery	is	an	enterprise	data	warehouse	designed	for	analyzing	large
datasets	quickly	with	SQL.	We’ll	use	BigQuery	in	our	examples	for	data
collection	and	feature	engineering.	Data	in	BigQuery	is	organized	by
Datasets,	and	a	Dataset	can	have	multiple	Tables.	Many	of	our	examples
will	use	data	from	Google	Cloud	Public	Datasets,	a	set	of	free,	publicly
available	data	hosted	in	BigQuery.	Google	Cloud	Public	Datasets	consists
of	hundreds	of	different	datasets,	including	NOAA	weather	data	since
1929,	Stack	Overflow	questions	and	answers,	open	source	code	from
GitHub,	natality	data,	and	more.	To	build	some	of	the	models	in	our
examples,	we’ll	use	BigQuery	Machine	Learning	(or	BigQuery	ML).
BigQuery	ML	is	a	tool	for	building	models	from	data	stored	in	BigQuery.
With	BigQuery	ML,	we	can	train,	evaluate,	and	generate	predictions	on
our	models	using	SQL.	It	supports	classification	and	regression	models,
along	with	unsupervised	clustering	models.	It’s	also	possible	to	import
previously	trained	TensorFlow	models	to	BigQuery	ML	for	prediction.

https://oreil.ly/7PnVj
https://oreil.ly/AbTaJ
https://oreil.ly/_VjVz

Cloud	AI	Platform	includes	a	variety	of	products	for	training	and	serving
custom	machine	learning	models	on	Google	Cloud.	In	our	examples,	we’ll
be	using	AI	Platform	Training	and	AI	Platform	Prediction.	AI	Platform
Training	provides	infrastructure	for	training	machine	learning	models	on
Google	Cloud.	With	AI	Platform	Prediction,	you	can	deploy	your	trained
models	and	generate	predictions	on	them	using	an	API.	Both	services
support	TensorFlow,	scikit-Learn,	and	XGBoost	models,	along	with
custom	containers	for	models	built	with	other	frameworks.	We’ll	also
reference	Explainable	AI,	a	tool	for	interpreting	the	results	of	your
model’s	predictions,	available	for	models	deployed	to	AI	Platform.

Roles

Within	an	organization,	there	are	many	different	job	roles	relating	to	data
and	machine	learning.	Below	we’ll	define	a	few	common	ones	referenced
frequently	throughout	the	book.	This	book	is	targeted	primarily	at	data
scientists,	data	engineers,	and	ML	engineers,	so	let’s	start	with	those.

A	data	scientist	is	someone	focused	on	collecting,	interpreting,	and
processing	datasets.	They	run	statistical	and	exploratory	analysis	on	data.
As	it	relates	to	machine	learning,	a	data	scientist	may	work	on	data
collection,	feature	engineering,	model	building,	and	more.	Data	scientists
often	work	in	Python	or	R	in	a	notebook	environment,	and	are	usually	the
first	to	build	out	an	organization’s	machine	learning	models.

A	data	engineer	is	focused	on	the	infrastructure	and	workflows	powering
an	organization’s	data.	They	might	help	manage	how	a	company	ingests
data,	data	pipelines,	and	how	data	is	stored	and	transferred.	Data	engineers
implement	infrastructure	and	pipelines	around	data.

Machine	learning	engineers	do	similar	tasks	to	data	engineers,	but	for	ML

https://oreil.ly/90KLs
https://oreil.ly/lDocn

models.	They	take	models	developed	by	data	scientists,	and	manage	the
infrastructure	and	operations	around	training	and	deploying	those	models.
ML	engineers	help	build	production	systems	to	handle	updating	models,
model	versioning,	and	serving	predictions	to	end	users.

The	smaller	the	data	science	team	at	a	company	and	the	more	agile	the
team	is,	the	more	likely	it	is	that	the	same	person	plays	multiple	roles.	If
you	are	in	such	a	situation,	it	is	very	likely	that	you	read	the	above	three
descriptions	and	saw	yourself	partially	in	all	three	categories.	You	might
commonly	start	out	a	machine	learning	project	as	a	data	engineer	and
build	data	pipelines	to	operationalize	the	ingest	of	data.	Then,	you
transition	to	the	data	scientist	role	and	build	the	ML	model(s).	Finally,	you
put	on	the	ML	engineer	hat	and	move	the	model	to	production.	In	larger
organizations,	machine	learning	projects	may	move	through	the	same
phases,	but	different	teams	might	be	involved	in	each	phase.

Research	scientists,	data	analysts,	and	developers	may	also	build	and	use
AI	models,	but	these	job	roles	are	not	a	focus	audience	for	this	book.

Research	scientists	focus	primarily	on	finding	and	developing	new
algorithms	to	advance	the	discipline	of	ML.	This	could	include	a	variety
of	subfields	within	machine	learning,	like	model	architectures,	natural
language	processing,	computer	vision,	hyperparameter	tuning,	model
interpretability,	and	more.	Unlike	the	other	roles	discussed	here,	research
scientists	spend	most	of	their	time	prototyping	and	evaluating	new
approaches	to	ML,	rather	than	building	out	production	ML	systems.

Data	analysts	evaluate	and	gather	insights	from	data,	then	summarize
these	insights	for	other	teams	within	their	organization.	They	tend	to	work
in	SQL	and	spreadsheets,	and	use	business	intelligence	tools	to	create	data

visualizations	to	share	their	findings.	Data	analysts	work	closely	with
product	teams	to	understand	how	their	insights	can	help	address	business
problems	and	create	value.	While	data	analysts	focus	on	identifying	trends
in	existing	data	and	deriving	insights	from	it,	data	scientists	are	concerned
with	using	that	data	to	generate	future	predictions	and	in	automating	or
scaling	out	the	generation	of	insights.	With	the	increasing	democratization
of	machine	learning,	data	analysts	can	upskill	themselves	to	become	data
scientists.

Developers	are	in	charge	of	building	production	systems	that	enable	end
users	to	access	ML	models.	They	are	often	involved	in	designing	the	APIs
that	query	models	and	return	predictions	in	a	user-friendly	format	via	a
web	or	mobile	application.	This	could	involve	models	hosted	in	the	cloud,
or	models	served	on-device.	Developers	utilize	the	model	serving
infrastructure	implemented	by	ML	Engineers	to	build	applications	and
user	interfaces	for	surfacing	predictions	to	model	users.

Figure	1-2	illustrates	how	these	different	roles	work	together	throughout
an	organization’s	machine	learning	model	development	process.

Figure	1-2.	There	are	many	different	job	roles	related	to	data	and	machine	learning,	and	these
roles	collaborate	on	the	ML	workflow,	from	data	ingestion	to	model	serving	and	the	end	user
interface.	For	example,	the	data	engineer	works	on	data	ingestion	and	data	validation	and

collaborates	closely	with	data	scientists.

Common	Challenges	in	Machine	Learning
Why	do	we	need	a	book	about	machine	learning	design	patterns?	The
process	of	building	out	ML	systems	presents	a	variety	of	unique
challenges	that	influence	ML	design.	Understanding	these	challenges	will
help	you,	an	ML	practitioner,	develop	a	frame	of	reference	for	the
solutions	introduced	throughout	the	book.

Data	Quality

Machine	learning	models	are	only	as	reliable	as	the	data	used	to	train
them.	If	you	train	a	machine	learning	model	on	an	incomplete	dataset,	on
data	with	poorly	selected	features,	or	on	data	that	doesn’t	accurately
represent	the	population	using	the	model,	your	model’s	predictions	will	be
a	direct	reflection	of	that	data.	As	a	result,	machine	learning	models	are
often	referred	to	as	“garbage	in,	garbage	out.”	Here	we’ll	highlight	four
important	components	of	data	quality:	accuracy,	completeness,
consistency,	and	timeliness.

Data	accuracy	refers	to	both	your	training	data’s	features	and	the	ground
truth	labels	corresponding	with	those	features.	Understanding	where	your
data	came	from	and	any	potential	errors	in	the	data	collection	process	can
help	ensure	feature	accuracy.	After	your	data	has	been	collected,	it’s
important	to	do	a	thorough	analysis	to	screen	for	typos,	duplicate	entries,
measurement	inconsistencies	in	tabular	data,	missing	features,	and	any
other	errors	that	may	affect	data	quality.	Duplicates	in	your	training
dataset,	for	example,	can	cause	your	model	to	incorrectly	assign	more
weight	to	these	data	points.

Accurate	data	labels	are	just	as	important	as	feature	accuracy.	Your	model
relies	solely	on	the	ground	truth	labels	in	your	training	data	to	update	its
weights	and	minimize	loss.	As	a	result,	incorrectly	labeled	training
examples	can	cause	misleading	model	accuracy.	For	example,	let’s	say
you’re	building	a	sentiment	analysis	model	and	25%	of	your	“positive”
training	examples	have	been	incorrectly	labeled	as	“negative.”	Your
model	will	have	an	inaccurate	picture	of	what	should	be	considered
negative	sentiment,	and	this	will	be	directly	reflected	in	its	predictions.

To	understand	data	completeness,	let’s	say	you’re	training	a	model	to

identify	cat	breeds.	You	train	the	model	on	an	extensive	dataset	of	cat
images,	and	the	resulting	model	is	able	to	classify	images	into	1	of	10
possible	categories	(“Bengal,”	“Siamese,”	and	so	forth)	with	99%
accuracy.	When	you	deploy	your	model	to	production,	however,	you	find
that	in	addition	to	uploading	cat	photos	for	classification,	many	of	your
users	are	uploading	photos	of	dogs	and	are	disappointed	with	the	model’s
results.	Because	the	model	was	trained	only	to	identify	10	different	cat
breeds,	this	is	all	it	knows	how	to	do.	These	10	breed	categories	are,
essentially,	the	model’s	entire	“world	view.”	No	matter	what	you	send	the
model,	you	can	expect	it	to	slot	it	into	one	of	these	10	categories.	It	may
even	do	so	with	high	confidence	for	an	image	that	looks	nothing	like	a	cat.
Additionally,	there’s	no	way	your	model	will	be	able	to	return	“not	a	cat”
if	this	data	and	label	weren’t	included	in	the	training	dataset.

Another	aspect	of	data	completeness	is	ensuring	your	training	data
contains	a	varied	representation	of	each	label.	In	the	cat	breed	detection
example,	if	all	of	your	images	are	close-ups	of	a	cat’s	face,	your	model
won’t	be	able	to	correctly	identify	an	image	of	a	cat	from	the	side,	or	a
full-body	cat	image.	To	look	at	a	tabular	data	example,	if	you	are	building
a	model	to	predict	the	price	of	real	estate	in	a	specific	city	but	only	include
training	examples	of	houses	larger	than	2,000	square	feet,	your	resulting
model	will	perform	poorly	on	smaller	houses.

The	third	aspect	of	data	quality	is	data	consistency.	For	large	datasets,	it’s
common	to	divide	the	work	of	data	collection	and	labeling	among	a	group
of	people.	Developing	a	set	of	standards	for	this	process	can	help	ensure
consistency	across	your	dataset,	since	each	person	involved	in	this	will
inevitably	bring	their	own	biases	to	the	process.	Like	data	completeness,
data	inconsistencies	can	be	found	in	both	data	features	and	labels.	For	an
example	of	inconsistent	features,	let’s	say	you’re	collecting	atmospheric

data	from	temperature	sensors.	If	each	sensor	has	been	calibrated	to
different	standards,	this	will	result	in	inaccurate	and	unreliable	model
predictions.	Inconsistencies	can	also	refer	to	data	format.	If	you’re
capturing	location	data,	some	people	may	write	out	a	full	street	address	as
“Main	Street”	and	others	may	abbreviate	it	as	“Main	St.”	Measurement
units,	like	miles	and	kilometers,	can	also	differ	around	the	world.

In	regards	to	labeling	inconsistencies,	let’s	return	to	the	text	sentiment
example.	In	this	case,	it’s	likely	people	will	not	always	agree	on	what	is
considered	positive	and	negative	when	labeling	training	data.	To	solve
this,	you	can	have	multiple	people	labeling	each	example	in	your	dataset,
then	take	the	most	commonly	applied	label	for	each	item.	Being	aware	of
potential	labeler	bias,	and	implementing	systems	to	account	for	it,	will
ensure	label	consistency	throughout	your	dataset.	We’ll	explore	the
concept	of	bias	in	the	“Design	Pattern	30:	Fairness	Lens”	in	Chapter	7.

Timeliness	in	data	refers	to	the	latency	between	when	an	event	occurred
and	when	it	was	added	to	your	database.	If	you’re	collecting	data	on
application	logs,	for	example,	an	error	log	might	take	a	few	hours	to	show
up	in	your	log	database.	For	a	dataset	recording	credit	card	transactions,	it
might	take	one	day	from	when	the	transaction	occurred	before	it	is
reported	in	your	system.	To	deal	with	timeliness,	it’s	useful	to	record	as
much	information	as	possible	about	a	particular	data	point,	and	make	sure
that	information	is	reflected	when	you	transform	your	data	into	features
for	a	machine	learning	model.	More	specifically,	you	can	keep	track	of	the
timestamp	of	when	an	event	occurred	and	when	it	was	added	to	your
dataset.	Then,	when	performing	feature	engineering,	you	can	account	for
these	differences	accordingly.

Reproducibility

In	traditional	programming,	the	output	of	a	program	is	reproducible	and
guaranteed.	For	example,	if	you	write	a	Python	program	that	reverses	a
string,	you	know	that	an	input	of	the	word	“banana”	will	always	return	an
output	of	“ananab.”	Similarly,	if	there’s	a	bug	in	your	program	causing	it
to	incorrectly	reverse	strings	containing	numbers,	you	could	send	the
program	to	a	colleague	and	expect	them	to	be	able	to	reproduce	the	error
with	the	same	inputs	you	used	(unless	the	bug	has	something	to	do	with
the	program	maintaining	some	incorrect	internal	state,	differences	in
architecture	such	as	floating	point	precision,	or	differences	in	execution
such	as	threading).

Machine	learning	models,	on	the	other	hand,	have	an	inherent	element	of
randomness.	When	training,	ML	model	weights	are	initialized	with
random	values.	These	weights	then	converge	during	training	as	the	model
iterates	and	learns	from	the	data.	Because	of	this,	the	same	model	code
given	the	same	training	data	will	produce	slightly	different	results	across
training	runs.	This	introduces	a	challenge	of	reproducibility.	If	you	train	a
model	to	98.1%	accuracy,	a	repeated	training	run	is	not	guaranteed	to
reach	the	same	result.	This	can	make	it	difficult	to	run	comparisons	across
experiments.

In	order	to	address	this	problem	of	repeatability,	it’s	common	to	set	the
random	seed	value	used	by	your	model	to	ensure	that	the	same
randomness	will	be	applied	each	time	you	run	training.	In	TensorFlow,
you	can	do	this	by	running	tf.random.set_seed(value)	at	the
beginning	of	your	program.

Additionally,	in	scikit-learn,	many	utility	functions	for	shuffling	your	data
also	allow	you	to	set	a	random	seed	value:

from	sklearn.utils	import	shuffle

data	=	shuffle(data,	random_state=value)

Keep	in	mind	that	you’ll	need	to	use	the	same	data	and	the	same	random
seed	when	training	your	model	to	ensure	repeatable,	reproducible	results
across	different	experiments.

Training	an	ML	model	involves	several	artifacts	that	need	to	be	fixed	in
order	to	ensure	reproducibility:	the	data	used,	the	splitting	mechanism
used	to	generate	datasets	for	training	and	validation,	data	preparation	and
model	hyperparameters,	and	variables	like	the	batch	size	and	learning	rate
schedule.

Reproducibility	also	applies	to	machine	learning	framework	dependencies.
In	addition	to	manually	setting	a	random	seed,	frameworks	also	implement
elements	of	randomness	internally	that	are	executed	when	you	call	a
function	to	train	your	model.	If	this	underlying	implementation	changes
between	different	framework	versions,	repeatability	is	not	guaranteed.	As
a	concrete	example,	if	one	version	of	a	framework’s	train()	method
makes	13	calls	to	rand(),	and	a	newer	version	of	the	same	framework
makes	14	calls,	using	different	versions	between	experiments	will	cause
slightly	different	results,	even	with	the	same	data	and	model	code.
Running	ML	workloads	in	containers	and	standardizing	library	versions
can	help	ensure	repeatability.	Chapter	6	introduces	a	series	of	patterns	for
making	ML	processes	reproducible.

Finally,	reproducibility	can	refer	to	a	model’s	training	environment.	Often,
due	to	large	datasets	and	complexity,	many	models	take	a	significant
amount	of	time	to	train.	This	can	be	accelerated	by	employing	distribution
strategies	like	data	or	model	parallelism	(see	Chapter	5).	With	this
acceleration,	however,	comes	an	added	challenge	of	repeatability	when

you	rerun	code	that	makes	use	of	distributed	training.

Data	Drift

While	machine	learning	models	typically	represent	a	static	relationship
between	inputs	and	outputs,	data	can	change	significantly	over	time.	Data
drift	refers	to	the	challenge	of	ensuring	your	machine	learning	models	stay
relevant,	and	that	model	predictions	are	an	accurate	reflection	of	the
environment	in	which	they’re	being	used.

For	example,	let’s	say	you’re	training	a	model	to	classify	news	article
headlines	into	categories	like	“politics,”	“business,”	and	“technology.”	If
you	train	and	evaluate	your	model	on	historical	news	articles	from	the
20th	century,	it	likely	won’t	perform	as	well	on	current	data.	Today,	we
know	that	an	article	with	the	word	“smartphone”	in	the	headline	is
probably	about	technology.	However,	a	model	trained	on	historical	data
would	have	no	knowledge	of	this	word.	To	solve	for	drift,	it’s	important	to
continually	update	your	training	dataset,	retrain	your	model,	and	modify
the	weight	your	model	assigns	to	particular	groups	of	input	data.

To	see	a	less-obvious	example	of	drift,	look	at	the	NOAA	dataset	of
severe	storms	in	BigQuery.	If	we	were	training	a	model	to	predict	the
likelihood	of	a	storm	in	a	given	area,	we	would	need	to	take	into	account
the	way	weather	reporting	has	changed	over	time.	We	can	see	in	Figure	1-
3	that	the	total	number	of	severe	storms	recorded	has	been	steadily
increasing	since	1950.

https://oreil.ly/obzvn
https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/01_need_for_design_patterns/ml_challenges.ipynb

Figure	1-3.	Number	of	severe	storms	reported	in	a	year,	as	recorded	by	NOAA	from	1950	to	2011.

From	this	trend,	we	can	see	that	training	a	model	on	data	before	2000	to
generate	predictions	on	storms	today	would	lead	to	inaccurate	predictions.
In	addition	to	the	total	number	of	reported	storms	increasing,	it’s	also
important	to	consider	other	factors	that	may	have	influenced	the	data	in
Figure	1-3.	For	example,	the	technology	for	observing	storms	has
improved	over	time,	most	dramatically	with	the	introduction	of	weather
radars	in	the	1990s.	In	the	context	of	features,	this	may	mean	that	newer
data	contains	more	information	about	each	storm,	and	that	a	feature
available	in	today’s	data	may	not	have	been	observed	in	1950.	Exploratory
data	analysis	can	help	identify	this	type	of	drift	and	can	inform	the	correct
window	of	data	to	use	for	training.	Section	,	“Design	Pattern	23:	Bridged
Schema”	provides	a	way	to	handle	datasets	in	which	the	availability	of
features	improves	over	time.

Scale

The	challenge	of	scaling	is	present	throughout	many	stages	of	a	typical
machine	learning	workflow.	You’ll	likely	encounter	scaling	challenges	in
data	collection	and	preprocessing,	training,	and	serving.	When	ingesting
and	preparing	data	for	a	machine	learning	model,	the	size	of	the	dataset
will	dictate	the	tooling	required	for	your	solution.	It	is	often	the	job	of	data
engineers	to	build	out	data	pipelines	that	can	scale	to	handle	datasets	with
millions	of	rows.

For	model	training,	ML	engineers	are	responsible	for	determining	the
necessary	infrastructure	for	a	specific	training	job.	Depending	on	the	type
and	size	of	the	dataset,	model	training	can	be	time	consuming	and
computationally	expensive,	requiring	infrastructure	(like	GPUs)	designed
specifically	for	ML	workloads.	Image	models,	for	instance,	typically

require	much	more	training	infrastructure	than	models	trained	entirely	on
tabular	data.

In	the	context	of	model	serving,	the	infrastructure	required	to	support	a
team	of	data	scientists	getting	predictions	from	a	model	prototype	is
entirely	different	from	the	infrastructure	necessary	to	support	a	production
model	getting	millions	of	prediction	requests	every	hour.	Developers	and
ML	engineers	are	typically	responsible	for	handling	the	scaling	challenges
associated	with	model	deployment	and	serving	prediction	requests.

Most	of	the	ML	patterns	in	this	book	are	useful	without	regard	to
organizational	maturity.	However,	several	of	the	patterns	in	Chapters	6
and	7	address	resilience	and	reproducibility	challenges	in	different	ways,
and	the	choice	between	them	will	often	come	down	to	the	use	case	and	the
ability	of	your	organization	to	absorb	complexity.

Multiple	Objectives

Though	there	is	often	a	single	team	responsible	for	building	a	machine
learning	model,	many	teams	across	an	organization	will	make	use	of	the
model	in	some	way.	Inevitably,	these	teams	may	have	different	ideas	of
what	defines	a	successful	model.

To	understand	how	this	may	play	out	in	practice,	let’s	say	you’re	building
a	model	to	identify	defective	products	from	images.	As	a	data	scientist,
your	goal	may	be	to	minimize	your	model’s	cross-entropy	loss.	The
product	manager,	on	the	other	hand,	may	want	to	reduce	the	number	of
defective	products	that	are	misclassified	and	sent	to	customers.	Finally,	the
executive	team’s	goal	might	be	to	increase	revenue	by	30%.	Each	of	these
goals	vary	in	what	they	are	optimizing	for,	and	balancing	these	differing
needs	within	an	organization	can	present	a	challenge.

As	a	data	scientist,	you	could	translate	the	product	team’s	needs	into	the
context	of	your	model	by	saying	false	negatives	are	five	times	more	costly
than	false	positives.	Therefore,	you	should	optimize	for	recall	over
precision	to	satisfy	this	when	designing	your	model.	You	can	then	find	a
balance	between	the	product	team’s	goal	of	optimizing	for	precision	and
your	goal	of	minimizing	the	model’s	loss.

When	defining	the	goals	for	your	model,	it’s	important	to	consider	the
needs	of	different	teams	across	an	organization,	and	how	each	team’s
needs	relate	back	to	the	model.	By	analyzing	what	each	team	is	optimizing
for	before	building	out	your	solution,	you	can	find	areas	of	compromise	in
order	to	optimally	balance	these	multiple	objectives.

Summary
Design	patterns	are	a	way	to	codify	the	knowledge	and	experience	of
experts	into	advice	that	all	practitioners	can	follow.	The	design	patterns	in
this	book	capture	best	practices	and	solutions	to	commonly	occurring
problems	in	designing,	building,	and	deploying	machine	learning	systems.
The	common	challenges	in	machine	learning	tend	to	revolve	around	data
quality,	reproducibility,	data	drift,	scale,	and	having	to	satisfy	multiple
objectives.

We	tend	to	use	different	ML	design	patterns	at	different	stages	of	the	ML
life	cycle.	There	are	patterns	that	are	useful	in	problem	framing	and
assessing	feasibility.	The	majority	of	patterns	address	either	development
or	deployment,	and	quite	a	few	patterns	address	the	interplay	between
these	stages.

Chapter	2.	Data	Representation
Design	Patterns

At	the	heart	of	any	machine	learning	model	is	a	mathematical	function	that
is	defined	to	operate	on	specific	types	of	data	only.	At	the	same	time,	real-
world	machine	learning	models	need	to	operate	on	data	that	may	not	be
directly	pluggable	into	the	mathematical	function.	The	mathematical	core
of	a	decision	tree,	for	example,	operates	on	boolean	variables.	Note	that
we	are	talking	here	about	the	mathematical	core	of	a	decision	tree—
decision	tree	machine	learning	software	will	typically	also	include
functions	to	learn	an	optimal	tree	from	data	and	ways	to	read	in	and
process	different	types	of	numeric	and	categorical	data.	The	mathematical
function	(see	Figure	2-1)	that	underpins	a	decision	tree,	however,	operates
on	boolean	variables	and	uses	operations	such	as	AND	(&&	in	Figure	2-1)
and	OR	(+	in	Figure	2-1).

Figure	2-1.	The	heart	of	a	decision	tree	machine	learning	model	to	predict	whether	or	not	a	baby
requires	intensive	care	is	a	mathematical	model	that	operates	on	boolean	variables.

Suppose	we	have	a	decision	tree	to	predict	whether	a	baby	will	require
intensive	care	(IC)	or	can	be	normally	discharged	(ND),	and	suppose	that
the	decision	tree	takes	as	inputs	two	variables,	x1	and	x2.	The	trained
model	might	look	something	like	Figure	2-1.

It	is	pretty	clear	that	x1	and	x2	need	to	be	boolean	variables	in	order	for
f(x1,	x2)	to	work.	Suppose	that	two	of	the	pieces	of	information	we’d	like
the	model	to	consider	when	classifying	a	baby	as	requiring	intensive	care

or	not	is	the	hospital	that	the	baby	is	born	in	and	the	baby’s	weight.	Can
we	use	the	hospital	that	a	baby	is	born	in	as	an	input	to	the	decision	tree?
No,	because	the	hospital	takes	neither	the	value	True	nor	the	value	False
and	cannot	be	fed	into	the	&&	(AND)	operator.	It’s	mathematically	not
compatible.	Of	course,	we	can	“make”	the	hospital	value	boolean	by
performing	an	operation	such	as:

																x1	=	(hospital	IN	France)

so	that	x1	is	True	when	the	hospital	is	in	France,	and	False	if	not.
Similarly,	a	baby’s	weight	cannot	be	fed	directly	into	the	model,	but	by
performing	an	operation	such	as:

																x1	=	(babyweight	<	3	kg)

we	can	use	the	hospital	or	the	baby	weight	as	an	input	to	the	model.	This
is	an	example	of	how	input	data	(hospital,	a	complex	object	or	baby
weight,	a	floating	point	number)	can	be	represented	in	the	form	(boolean)
expected	by	the	model.	This	is	what	we	mean	by	data	representation.

In	this	book,	we	will	use	the	term	input	to	represent	the	real-world	data	fed
to	the	model	(for	example,	the	baby	weight)	and	the	term	feature	to
represent	the	transformed	data	that	the	model	actually	operates	on	(for
example,	whether	the	baby	weight	is	less	than	3	kilograms).	The	process
of	creating	features	to	represent	the	input	data	is	called	feature
engineering,	and	so	we	can	think	of	feature	engineering	as	a	way	of
selecting	the	data	representation.

Of	course,	rather	than	hardcoding	parameters	such	as	the	threshold	value
of	3	kilograms,	we’d	prefer	the	machine	learning	model	to	learn	how	to
create	each	node	by	selecting	the	input	variable	and	the	threshold.

Decision	trees	are	an	example	of	machine	learning	models	that	are	capable
of	learning	the	data	representation. 	Many	of	the	patterns	that	we	look	at
in	this	chapter	will	involve	similarly	learnable	data	representations.

The	Embeddings	design	pattern	is	the	canonical	example	of	a	data
representation	that	deep	neural	networks	are	capable	of	learning	on	their
own.	In	an	embedding,	the	learned	representation	is	dense	and	lower-
dimensional	than	the	input,	which	could	be	sparse.	The	learning	algorithm
needs	to	extract	the	most	salient	information	from	the	input	and	represent
it	in	a	more	concise	way	in	the	feature.	The	process	of	learning	features	to
represent	the	input	data	is	called	feature	extraction,	and	we	can	think	of
learnable	data	representations	(like	embeddings)	as	automatically
engineered	features.

The	data	representation	doesn’t	even	need	to	be	of	a	single	input	variable
—an	oblique	decision	tree,	for	example,	creates	a	boolean	feature	by
thresholding	a	linear	combination	of	two	or	more	input	variables.	A
decision	tree	where	each	node	can	represent	only	one	input	variable
reduces	to	a	stepwise	linear	function,	whereas	an	oblique	decision	tree
where	each	node	can	represent	a	linear	combination	of	input	variables
reduces	to	a	piecewise	linear	function	(see	Figure	2-2).	Considering	how
many	steps	will	have	to	be	learned	to	adequately	represent	the	line,	the
piecewise	linear	model	is	simpler	and	faster	to	learn.	An	extension	of	this
idea	is	the	Feature	Cross	design	pattern,	which	simplifies	the	learning	of
AND	relationships	between	multivalued	categorical	variables.

1

Figure	2-2.	A	decision	tree	classifier	where	each	node	can	threshold	only	one	input	value	(x1	or
x2)	will	result	in	a	stepwise	linear	boundary	function,	whereas	an	oblique	tree	classifier	where	a
node	can	threshold	a	linear	combination	of	input	variables	will	result	in	a	piecewise	linear

boundary	function.	The	piecewise	linear	function	requires	fewer	nodes	and	can	achieve	greater
accuracy.

The	data	representation	doesn’t	need	to	be	learned	or	fixed—a	hybrid	is
also	possible.	The	Hashed	Feature	design	pattern	is	deterministic,	but
doesn’t	require	a	model	to	know	all	the	potential	values	that	a	particular
input	can	take.

The	data	representations	we	have	looked	at	so	far	are	all	one-to-one.
Although	we	could	represent	input	data	of	different	types	separately	or
represent	each	piece	of	data	as	just	one	feature,	it	can	be	more
advantageous	to	use	Multimodal	Input.	That	is	the	fourth	design	pattern
we	will	explore	in	this	chapter.

Simple	Data	Representations

Before	we	delve	into	learnable	data	representations,	feature	crosses,	and
more,	let’s	look	at	simpler	data	representations.	We	can	think	of	these
simple	data	representations	as	common	idioms	in	machine	learning—not
quite	patterns,	but	commonly	employed	solutions	nevertheless.

Numerical	Inputs

Most	modern,	large-scale	machine	learning	models	(random	forests,
support	vector	machines,	neural	networks)	operate	on	numerical	values,
and	so	if	our	input	is	numeric,	we	can	pass	it	through	to	the	model
unchanged.

WHY	SCALING	IS	DESIRABLE

Often,	because	the	ML	framework	uses	an	optimizer	that	is	tuned	to	work
well	with	numbers	in	the	[–1,	1]	range,	scaling	the	numeric	values	to	lie	in
that	range	can	be	beneficial.

WHY	SCALE	NUMERIC	VALUES	TO	LIE	IN	[–1,	1]?
Gradient	descent	optimizers	require	more	steps	to	converge	as	the	curvature	of	the	loss	function
increases.	This	is	because	the	derivatives	of	features	with	larger	relative	magnitudes	will	tend	to	be	larger
as	well,	and	so	lead	to	abnormal	weight	updates.	The	abnormally	large	weight	updates	will	require	more
steps	to	converge	and	thereby	increase	the	computation	load.

“Centering”	the	data	to	lie	in	the	[–1,	1]	range	makes	the	error	function	more	spherical.	Therefore,	models
trained	with	transformed	data	tend	to	converge	faster	and	are	therefore	faster/cheaper	to	train.	In	addition,
the	[–1,	1]	range	offers	the	highest	floating	point	precision.

A	quick	test	with	one	of	scikit-learn’s	built-in	datasets	can	prove	the	point
(this	is	an	excerpt	from	this	book’s	code	repository):

from	sklearn	import	datasets,	linear_model

diabetes_X,	diabetes_y	=	datasets.load_diabetes(return_X_y=True)

raw	=	diabetes_X[:,	None,	2]

max_raw	=	max(raw)

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/simple_data_representation.ipynb

min_raw	=	min(raw)

scaled	=	(2*raw	-	max_raw	-	min_raw)/(max_raw	-	min_raw)

def	train_raw():

				linear_model.LinearRegression().fit(raw,	diabetes_y)

def	train_scaled():

				linear_model.LinearRegression().fit(scaled,	diabetes_y)

raw_time	=	timeit.timeit(train_raw,	number=1000)

scaled_time	=	timeit.timeit(train_scaled,	number=1000)

When	we	ran	this,	we	got	a	nearly	9%	improvement	on	this	model	which
uses	just	one	input	feature.	Considering	the	number	of	features	in	a	typical
machine	learning	model,	the	savings	can	add	up.

Another	important	reason	for	scaling	is	that	some	machine	learning
algorithms	and	techniques	are	very	sensitive	to	the	relative	magnitudes	of
the	different	features.	For	example,	a	k-means	clustering	algorithm	that
uses	the	Euclidean	distance	as	its	proximity	measure	will	end	up	relying
heavily	on	features	with	larger	magnitudes.	Lack	of	scaling	also	affects	the
efficacy	of	L1	or	L2	regularization	since	the	magnitude	of	weights	for	a
feature	depends	on	the	magnitude	of	values	of	that	feature,	and	so
different	features	will	be	affected	differently	by	regularization.	By	scaling
all	features	to	lie	between	[–1,	1],	we	ensure	that	there	is	not	much	of	a
difference	in	the	relative	magnitudes	of	different	features.

LINEAR	SCALING

Four	forms	of	scaling	are	commonly	employed:

Min-max	scaling

The	numeric	value	is	linearly	scaled	so	that	the	minimum	value	that
the	input	can	take	is	scaled	to	–1	and	the	maximum	possible	value	to	1:

x1_scaled	=	(2*x1	-	max_x1	-	min_x1)/(max_x1	-	min_x1)

The	problem	with	min-max	scaling	is	that	the	maximum	and	minimum
value	(max_x1	and	min_x1)	have	to	be	estimated	from	the	training
dataset,	and	they	are	often	outlier	values.	The	real	data	often	gets
shrunk	to	a	very	narrow	range	in	the	[–1,	1]	band.

Clipping	(in	conjunction	with	min-max	scaling)

Helps	address	the	problem	of	outliers	by	using	“reasonable”	values

instead	of	estimating	the	minimum	and	maximum	from	the	training

dataset.	The	numeric	value	is	linearly	scaled	between	these	two

reasonable	bounds,	then	clipped	to	lie	in	the	range	[–1,	1].	This	has	the

effect	of	treating	outliers	as	–1	or	1.

Z-score	normalization

Addresses	the	problem	of	outliers	without	requiring	prior	knowledge
of	what	the	reasonable	range	is	by	linearly	scaling	the	input	using	the
mean	and	standard	deviation	estimated	over	the	training	dataset:

x1_scaled	=	(x1	-	mean_x1)/stddev_x1

The	name	of	the	method	reflects	the	fact	that	the	scaled	value	has	zero
mean	and	is	normalized	by	the	standard	deviation	so	that	it	has	unit
variance	over	the	training	dataset.	The	scaled	value	is	unbounded,	but
does	lie	between	[–1,	1]	the	majority	of	the	time	(67%,	if	the
underlying	distribution	is	normal).	Values	outside	this	range	get	rarer
the	larger	their	absolute	value	gets,	but	are	still	present.

Winsorizing

Uses	the	empirical	distribution	in	the	training	dataset	to	clip	the	dataset
to	bounds	given	by	the	10th	and	90th	percentile	of	the	data	values	(or
5th	and	95th	percentile,	and	so	forth).	The	winsorized	value	is	min-
max	scaled.

All	the	methods	discussed	so	far	scale	the	data	linearly	(in	the	case	of
clipping	and	winsorizing,	linear	within	the	typical	range).	Min-max	and
clipping	tend	to	work	best	for	uniformly	distributed	data,	and	Z-score
tends	to	work	best	for	normally	distributed	data.	The	impact	of	different
scaling	functions	on	the	mother_age	column	in	the	baby	weight
prediction	example	is	shown	in	Figure	2-3	(see	the	full	code).

DON’T	THROW	AWAY	“OUTLIERS”
Note	that	we	defined	clipping	as	taking	scaled	values	less	than	–1	and	treating	them	as	–1,	and	scaled
values	greater	than	1	and	treating	them	as	1.	We	don’t	simply	discard	such	“outliers”	because	we	expect
that	the	machine	learning	model	will	encounter	outliers	like	this	in	production.	Take,	for	example,	babies
born	to	50-year-old	mothers.	Because	we	don’t	have	enough	older	mothers	in	our	dataset,	clipping	ends	up
treating	all	mothers	older	than	45	(for	example)	as	45.	This	same	treatment	will	be	applied	in	production,
and	therefore,	our	model	will	be	able	to	handle	older	mothers.	The	model	would	not	learn	to	reflect	outliers
if	we	had	simply	thrown	away	all	the	training	examples	of	babies	born	to	mothers	aged	50+!

Another	way	to	think	about	this	is	that	while	it	is	acceptable	to	throw	away	invalid	input,	it	is	not	acceptable
to	throw	away	valid	data.	Thus,	we	would	be	justified	in	throwing	away	rows	where	mother_age	is	negative
because	it’s	probably	a	data	entry	error.	In	production,	validation	of	the	input	form	will	ensure	that	the
admitting	clerk	has	to	reenter	the	mother’s	age.	However,	we	are	not	justified	in	throwing	away	rows	where
mother_age	is	50	because	50	is	a	perfectly	valid	input	and	we	expect	to	encounter	50-year-old	mothers
once	the	model	is	deployed	in	production.

In	Figure	2-3,	note	that	minmax_scaled	gets	the	x	values	into	the	desired
range	of	[–1,	1]	but	continues	to	retain	values	at	the	extreme	ends	of	the
distribution	where	there	are	not	enough	examples.	Clipping	rolls	up	many
of	the	problematic	values,	but	requires	getting	the	clipping	thresholds
exactly	correct—here,	the	slow	decline	in	the	number	of	babies	with
mothers’	ages	above	40	poses	problems	in	setting	a	hard	threshold.
Winsorizing,	similar	to	clipping,	requires	getting	the	percentile	thresholds
exactly	correct.	Z-score	normalization	improves	the	range	(but	does	not
constrain	values	to	be	between	[–1,	1])	and	pushes	the	problematic	values
further	out.	Of	these	three	methods,	zero-norming	works	best	for
mother_age	because	the	raw	age	values	were	somewhat	of	a	bell	curve.
For	other	problems,	min-max	scaling,	clipping,	or	winsorizing	might	be

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/simple_data_representation.ipynb

better.

Figure	2-3.	The	histogram	of	mother_age	in	the	baby	weight	prediction	example	is	shown	in	the
top-left	panel,	and	different	scaling	functions	(see	the	x-axis	label)	are	shown	in	the	remaining

panels.

NONLINEAR	TRANSFORMATIONS

What	if	our	data	is	skewed	and	neither	uniformly	distributed	nor
distributed	like	a	bell	curve?	In	that	case,	it	is	better	to	apply	a	nonlinear
transform	to	the	input	before	scaling	it.	One	common	trick	is	to	take	the
logarithm	of	the	input	value	before	scaling	it.	Other	common
transformations	include	the	sigmoid	and	polynomial	expansions	(square,
square	root,	cube,	cube	root,	and	so	on).	We’ll	know	that	we	have	a	good

transformation	function	if	the	distribution	of	the	transformed	value
becomes	uniform	or	normally	distributed.

Assume	that	we	are	building	a	model	to	predict	the	sales	of	a	nonfiction
book.	One	of	the	inputs	to	the	model	is	the	popularity	of	the	Wikipedia
page	corresponding	to	the	topic.	The	number	of	views	of	pages	in
Wikipedia	is,	however,	highly	skewed	and	occupies	a	large	dynamic	range
(see	the	left	panel	of	Figure	2-4:	the	distribution	is	highly	skewed	toward
rarely	viewed	pages,	but	the	most	common	pages	are	viewed	tens	of
millions	of	times).	By	taking	the	logarithm	of	the	views,	then	taking	the
fourth	root	of	this	log	value	and	scaling	the	result	linearly,	we	obtain
something	that	is	in	the	desired	range	and	somewhat	bell-shaped.	For
details	of	the	code	to	query	the	Wikipedia	data,	apply	these
transformations,	and	generate	this	plot,	refer	to	the	GitHub	repository	for
this	book.

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/simple_data_representation.ipynb

Figure	2-4.	Left	panel:	the	distribution	of	the	number	of	views	of	Wikipedia	pages	is	highly	skewed
and	occupies	a	large	dynamic	range.	The	second	panel	demonstrates	that	problems	can	be

addressed	by	transforming	the	number	of	views	using	the	logarithm,	a	power	function,	and	linear
scaling	in	succession.	The	third	panel	shows	the	effect	of	histogram	equalization	and	the	fourth

panel	shows	the	effect	of	the	Box-Cox	transform.

It	can	be	difficult	to	devise	a	linearizing	function	that	makes	the
distribution	look	like	a	bell	curve.	An	easier	approach	is	to	bucketize	the

number	of	views,	choosing	the	bucket	boundaries	to	fit	the	desired	output
distribution.	A	principled	approach	to	choosing	these	buckets	is	to	do
histogram	equalization,	where	the	bins	of	the	histogram	are	chosen	based
on	quantiles	of	the	raw	distribution,	(see	the	third	panel	of	Figure	2-4).	In
the	ideal	situation,	histogram	equalization	results	in	a	uniform	distribution
(although	not	in	this	case,	because	of	repeated	values	in	the	quantiles).

To	carry	out	histogram	equalization	in	BigQuery,	we	can	do:

ML.BUCKETIZE(num_views,	bins)	AS	bin

where	the	bins	are	obtained	from:

APPROX_QUANTILES(num_views,	100)	AS	bins

See	the	notebook	in	the	code	repository	of	this	book	for	full	details.

Another	method	to	handle	skewed	distributions	is	to	use	a	parametric
transformation	technique	like	the	Box-Cox	transform.	Box-Cox	chooses	its
single	parameter,	lambda,	to	control	the	“heteroscedasticity”	so	that	the
variance	no	longer	depends	on	the	magnitude.	Here,	the	variance	among
rarely	viewed	Wikipedia	pages	will	be	much	smaller	than	the	variance
among	frequently	viewed	pages,	and	Box-Cox	tries	to	equalize	the
variance	across	all	ranges	of	the	number	of	views.	This	can	be	done	using
Python’s	SciPy	package:

traindf['boxcox'],	est_lambda	=	(

				scipy.stats.boxcox(traindf['num_views']))

The	parameter	estimated	over	the	training	dataset	(est_lambda)	is
then	used	to	transform	other	values:

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/simple_data_representation.ipynb

evaldf['boxcox']	=	scipy.stats.boxcox(evaldf['num_views'],	

est_lambda)

ARRAY	OF	NUMBERS

Sometimes,	the	input	data	is	an	array	of	numbers.	If	the	array	is	of	fixed
length,	data	representation	can	be	rather	simple:	flatten	the	array	and	treat
each	position	as	a	separate	feature.	But	often,	the	array	will	be	of	variable
length.	For	example,	one	of	the	inputs	to	the	model	to	predict	the	sales	of	a
nonfiction	book	might	be	the	sales	of	all	previous	books	on	the	topic.	An
example	input	might	be:

[2100,	15200,	230000,	1200,	300,	532100]

Obviously,	the	length	of	this	array	will	vary	in	each	row	because	there	are
different	numbers	of	books	published	on	different	topics.

Common	idioms	to	handle	arrays	of	numbers	include	the	following:

Representing	the	input	array	in	terms	of	its	bulk	statistics.	For
example,	we	might	use	the	length	(that	is,	count	of	previous
books	on	topic),	average,	median,	minimum,	maximum,	and	so
forth.

Representing	the	input	array	in	terms	of	its	empirical	distribution
—i.e.,	by	the	10th/20th/...	percentile,	and	so	on.

If	the	array	is	ordered	in	a	specific	way	(for	example,	in	order	of
time	or	by	size),	representing	the	input	array	by	the	last	three	or
some	other	fixed	number	of	items.	For	arrays	of	length	less	than
three,	the	feature	is	padded	to	a	length	of	three	with	missing
values.

All	these	end	up	representing	the	variable-length	array	of	data	as	a	fixed-
length	feature.	We	could	have	also	formulated	this	problem	as	a	time-

series	forecasting	problem,	as	the	problem	of	forecasting	the	sales	of	the
next	book	on	the	topic	based	on	the	time	history	of	sales	of	previous
books.	By	treating	the	sales	of	previous	books	as	an	array	input,	we	are
assuming	that	the	most	important	factors	in	predicting	a	book’s	sales	are
characteristics	of	the	book	itself	(author,	publisher,	reviews,	and	so	on)
and	not	the	temporal	continuity	of	the	sales	amounts.

Categorical	Inputs

Because	most	modern,	large-scale	machine	learning	models	(random
forests,	support	vector	machines,	neural	networks)	operate	on	numerical
values,	categorical	inputs	have	to	be	represented	as	numbers.

Simply	enumerating	the	possible	values	and	mapping	them	to	an	ordinal
scale	will	work	poorly.	Suppose	that	one	of	the	inputs	to	the	model	that
predicts	the	sales	of	a	nonfiction	book	is	the	language	that	the	book	is
written	in.	We	can’t	simply	create	a	mapping	table	like	this:

Categorical	input Numeric	feature

English 1.0

Chinese 2.0

German 3.0

This	is	because	the	machine	learning	model	will	then	attempt	to
interpolate	between	the	popularity	of	German	and	English	books	to	get	the
popularity	of	the	book	in	Chinese!	Because	there	is	no	ordinal	relationship
between	languages,	we	need	to	use	a	categorical	to	numeric	mapping	that
allows	the	model	to	learn	the	market	for	books	written	in	these	languages
independently.

ONE-HOT	ENCODING

The	simplest	method	of	mapping	categorical	variables	while	ensuring	that
the	variables	are	independent	is	one-hot	encoding.	In	our	example,	the
categorical	input	variable	would	be	converted	into	a	three-element	feature
vector	using	the	following	mapping:

Categorical	input Numeric	feature

English [1.0,	0.0,	0.0]

Chinese [0.0,	1.0,	0.0]

German [0.0,	0.0,	1.0]

One-hot	encoding	requires	us	to	know	the	vocabulary	of	the	categorical
input	beforehand.	Here,	the	vocabulary	consists	of	three	tokens	(English,
Chinese,	and	German),	and	the	length	of	the	resulting	feature	is	the	size	of
this	vocabulary.

DUMMY	CODING	OR	ONE-HOT	ENCODING?
Technically,	a	2-element	feature	vector	is	enough	to	provide	a	unique	mapping	for	a	vocabulary	of	size	3:

Categorical	input Numeric	feature

English [0.0,	0.0]

Chinese [1.0,	0.0]

German [0.0,	1.0]

This	is	called	dummy	coding.	Because	dummy	coding	is	a	more	compact	representation,	it	is	preferred	in
statistical	models	that	perform	better	when	the	inputs	are	linearly	independent.

Modern	machine	learning	algorithms,	though,	don’t	require	their	inputs	to	be	linearly	independent	and	use
methods	such	as	L1	regularization	to	prune	redundant	inputs.	The	additional	degree	of	freedom	allows	the
framework	to	transparently	handle	a	missing	input	in	production	as	all	zeros:

Categorical	input Numeric	feature

Categorical	input Numeric	feature

English [1.0,	0.0,	0.0]

Chinese [0.0,	1.0,	0.0]

German [0.0,	0.0,	1.0]

(missing) [0.0,	0.0,	0.0]

Therefore,	many	machine	learning	frameworks	often	support	only	one-hot	encoding.

In	some	circumstances,	it	can	be	helpful	to	treat	a	numeric	input	as
categorical	and	map	it	to	a	one-hot	encoded	column:

When	the	numeric	input	is	an	index

For	example,	if	we	are	trying	to	predict	traffic	levels	and	one	of	our

inputs	is	the	day	of	the	week,	we	could	treat	the	day	of	the	week	as

numeric	(1,	2,	3,	…,	7),	but	it	is	helpful	to	recognize	that	the	day	of	the

week	here	is	not	a	continuous	scale	but	really	just	an	index.	It	is	better

to	treat	it	as	categorical	(Sunday,	Monday,	…,	Saturday)	because	the

indexing	is	arbitrary.	Should	the	week	start	on	Sunday	(as	in	the	USA),

Monday	(as	in	France),	or	Saturday	(as	in	Egypt)?

When	the	relationship	between	input	and	label	is	not	continuous

What	should	tip	the	scale	toward	treating	day	of	the	week	as	a

categorical	feature	is	that	traffic	levels	on	Friday	are	not	affected	by

those	on	Thursday	and	Saturday.

When	it	is	advantageous	to	bucket	the	numeric	variable

In	most	cities,	traffic	levels	depend	on	whether	it	is	the	weekend,	and

this	can	vary	by	location	(Saturday	and	Sunday	in	most	of	the	world,

Thursday	and	Friday	in	some	Islamic	countries).	It	would	be	helpful	to

then	treat	day	of	the	week	as	a	boolean	feature	(weekend	or	weekday).

Such	a	mapping	where	the	number	of	distinct	inputs	(here,	seven)	is

greater	than	the	number	of	distinct	feature	values	(here,	two)	is	called

bucketing.	Commonly,	bucketing	is	done	in	terms	of	ranges—for

example,	we	might	bucket	mother_age	into	ranges	that	break	at	20,

25,	30,	etc.	and	treat	each	of	these	bins	as	categorical,	but	it	should	be

realized	that	this	loses	the	ordinal	nature	of	mother_age.

When	we	want	to	treat	different	values	of	the	numeric	input	as	being
independent	when	it	comes	to	their	effect	on	the	label

For	example,	the	weight	of	a	baby	depends	on	the	plurality 	of	the

delivery	since	twins	and	triplets	tend	to	weigh	less	than	single	births.

So,	a	lower-weight	baby,	if	part	of	a	triplet,	might	be	healthier	than	a

twin	baby	with	the	same	weight.	In	this	case,	we	might	map	the

plurality	to	a	categorical	variable,	since	a	categorical	variable	allows

the	model	to	learn	independent	tunable	parameters	for	the	different

values	of	plurality.	Of	course,	we	can	do	this	only	if	we	have	enough

examples	of	twins	and	triplets	in	our	dataset.

ARRAY	OF	CATEGORICAL	VARIABLES

Sometimes,	the	input	data	is	an	array	of	categories.	If	the	array	is	of	fixed
length,	we	can	treat	each	array	position	as	a	separate	feature.	But	often,	the
array	will	be	of	variable	length.	For	example,	one	of	the	inputs	to	the
natality	model	might	be	the	type	of	previous	births	to	this	mother:

[Induced,	Induced,	Natural,	Cesarean]

Obviously,	the	length	of	this	array	will	vary	in	each	row	because	there	are

2

different	numbers	of	older	siblings	for	each	baby.

Common	idioms	to	handle	arrays	of	categorical	variables	include	the
following:

Counting	the	number	of	occurrences	of	each	vocabulary	item.	So,
the	representation	for	our	example	would	be	[2,	1,	1]
assuming	that	the	vocabulary	is	Induced,	Natural,	and
Cesarean	(in	that	order).	This	is	now	a	fixed-length	array	of
numbers	that	can	be	flattened	and	used	in	positional	order.	If	we
have	an	array	where	an	item	can	occur	only	once	(for	example,	of
languages	a	person	speaks),	or	if	the	feature	just	indicates
presence	and	not	count	(such	as	whether	the	mother	has	ever	had
a	Cesarean	operation),	then	the	count	at	each	position	is	0	or	1,
and	this	is	called	multi-hot	encoding.

To	avoid	large	numbers,	the	relative	frequency	can	be	used
instead	of	the	count.	The	representation	for	our	example	would	be
[0.5,	0.25,	0.25]	instead	of	[2,	1,	1].	Empty	arrays
(first-born	babies	with	no	previous	siblings)	are	represented	as
[0,	0,	0].	In	natural	language	processing,	the	relative
frequency	of	a	word	overall	is	normalized	by	the	relative
frequency	of	documents	that	contain	the	word	to	yield	TF-IDF
(short	for	term	frequency–inverse	document	frequency).	TF-IDF
reflects	how	unique	a	word	is	to	a	document.

If	the	array	is	ordered	in	a	specific	way	(e.g.,	in	order	of	time),
representing	the	input	array	by	the	last	three	items.	Arrays	shorter
than	three	are	padded	with	missing	values.

Representing	the	array	by	bulk	statistics,	e.g.,	the	length	of	the
array,	the	mode	(most	common	entry),	the	median,	the	10th/20th/
…	percentile,	etc.

Of	these,	the	counting/relative-frequency	idiom	is	the	most	common.	Note
that	both	of	these	are	a	generalization	of	one-hot	encoding—if	the	baby

https://oreil.ly/kNYHr

had	no	older	siblings,	the	representation	would	be	[0,	0,	0],	and	if	the
baby	had	one	older	sibling	who	was	born	in	a	natural	birth,	the
representation	would	be	[0,	1,	0].

Having	seen	simple	data	representations,	let’s	discuss	design	patterns	that
help	with	data	representation.

Design	Pattern	1:	Hashed	Feature
The	Hashed	Feature	design	pattern	addresses	three	possible	problems
associated	with	categorical	features:	incomplete	vocabulary,	model	size
due	to	cardinality,	and	cold	start.	It	does	so	by	grouping	the	categorical
features	and	accepting	the	trade-off	of	collisions	in	the	data	representation.

Problem

One-hot	encoding	a	categorical	input	variable	requires	knowing	the
vocabulary	beforehand.	This	is	not	a	problem	if	the	input	variable	is
something	like	the	language	a	book	is	written	in	or	the	day	of	the	week
that	traffic	level	is	being	predicted.

What	if	the	categorical	variable	in	question	is	something	like	the
hospital_id	of	where	the	baby	is	born	or	the	physician_id	of	the
person	delivering	the	baby?	Categorical	variables	like	these	pose	a	few
problems:

Knowing	the	vocabulary	requires	extracting	it	from	the	training
data.	Due	to	random	sampling,	it	is	possible	that	the	training	data
does	not	contain	all	the	possible	hospitals	or	physicians.	The
vocabulary	might	be	incomplete.

The	categorical	variables	have	high	cardinality.	Instead	of	having

feature	vectors	with	three	languages	or	seven	days,	we	have
feature	vectors	whose	length	is	in	the	thousands	to	millions.	Such
feature	vectors	pose	several	problems	in	practice.	They	involve	so
many	weights	that	the	training	data	may	be	insufficient.	Even	if
we	can	train	the	model,	the	trained	model	will	require	a	lot	of
space	to	store	because	the	entire	vocabulary	is	needed	at	serving
time.	Thus,	we	may	not	be	able	to	deploy	the	model	on	smaller
devices.

After	the	model	is	placed	into	production,	new	hospitals	might	be
built	and	new	physicians	hired.	The	model	will	be	unable	to	make
predictions	for	these,	and	so	a	separate	serving	infrastructure	will
be	required	to	handle	such	cold-start	problems.

TIP
Even	with	simple	representations	like	one-hot	encoding,	it	is	worth	anticipating	the	cold-start
problem	and	explicitly	reserving	all	zeros	for	out-of-vocabulary	inputs.

As	a	concrete	example,	let’s	take	the	problem	of	predicting	the	arrival
delay	of	a	flight.	One	of	the	inputs	to	the	model	is	the	departure	airport.
There	were,	at	the	time	the	dataset	was	collected,	347	airports	in	the
United	States:

SELECT	

			DISTINCT(departure_airport)

FROM	`bigquery-samples.airline_ontime_data.flights`

Some	airports	had	as	few	as	one	to	three	flights	over	the	entire	time
period,	and	so	we	expect	that	the	training	data	vocabulary	will	be
incomplete.	347	is	large	enough	that	the	feature	will	be	quite	sparse,	and	it
is	certainly	the	case	that	new	airports	will	get	built.	All	three	problems
(incomplete	vocabulary,	high	cardinality,	cold	start)	will	exist	if	we	one-

hot	encode	the	departure	airport.

The	airline	dataset,	like	the	natality	dataset	and	nearly	all	the	other
datasets	that	we	use	in	this	book	for	illustration,	is	a	public	dataset	in
BigQuery,	so	you	can	try	the	query	out.	At	the	time	we	are	writing	this,	1
TB/month	of	querying	is	free,	and	there	is	a	sandbox	available	so	that	you
can	use	BigQuery	up	to	this	limit	without	putting	down	a	credit	card.	We
encourage	you	to	bookmark	our	GitHub	repository.	For	example,	see	the
notebook	in	GitHub	for	the	full	code.

Solution

The	Hashed	Feature	design	pattern	represents	a	categorical	input	variable
by	doing	the	following:

1.	 Converting	the	categorical	input	into	a	unique	string.	For	the
departure	airport,	we	can	use	the	three-letter	IATA	code	for	the
airport.

2.	 Invoking	a	deterministic	(no	random	seeds	or	salt)	and	portable
(so	that	the	same	algorithm	can	be	used	in	both	training	and
serving)	hashing	algorithm	on	the	string.

3.	 Taking	the	remainder	when	the	hash	result	is	divided	by	the
desired	number	of	buckets.	Typically,	the	hashing	algorithm
returns	an	integer	that	can	be	negative	and	the	modulo	of	a
negative	integer	is	negative.	So,	the	absolute	value	of	the	result	is
taken.

In	BigQuery	SQL,	these	steps	are	achieved	like	this:

ABS(MOD(FARM_FINGERPRINT(airport),	numbuckets))

The	FARM_FINGERPRINT	function	uses	FarmHash,	a	family	of	hashing

https://oreil.ly/lgcKA
https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/hashed_feature.ipynb
https://oreil.ly/B8nLw

algorithms	that	is	deterministic,	well-distributed,	and	for	which
implementations	are	available	in	a	number	of	programming	languages.

In	TensorFlow,	these	steps	are	implemented	by	the	feature_column
function:

tf.feature_column.categorical_column_with_hash_bucket(

				airport,	num_buckets,	dtype=tf.dtypes.string)

For	example,	Table	2-1	shows	the	FarmHash	of	some	IATA	airport	codes
when	hashed	into	3,	10,	and	1,000	buckets.

Table	2-1.	The	FarmHash	of	some	IATA	airport	codes	when	hashed	
into	different	numbers	of	buckets

Row departure_airport hash3 hash10 hash1000

1 DTW 1 3 543

2 LBB 2 9 709

3 SNA 2 7 587

4 MSO 2 7 737

5 ANC 0 8 508

6 PIT 1 7 267

7 PWM 1 9 309

8 BNA 1 4 744

9 SAF 1 2 892

10 IPL 2 1 591

Why	It	Works

https://github.com/google/farmhash/blob/master/Understanding_Hash_Functions
https://github.com/google/farmhash

Assume	that	we	have	chosen	to	hash	the	airport	code	using	10	buckets
(hash10	in	Table	2-1).	How	does	this	address	the	problems	we	identified?

OUT-OF-VOCABULARY	INPUT

Even	if	an	airport	with	a	handful	of	flights	is	not	part	of	the	training
dataset,	its	hashed	feature	value	will	be	in	the	range	[0–9].	Therefore,
there	is	no	resilience	problem	during	serving—the	unknown	airport	will
get	the	predictions	corresponding	with	other	airports	in	the	hash	bucket.
The	model	will	not	error	out.

If	we	have	347	airports,	an	average	of	35	airports	will	get	the	same	hash
bucket	code	if	we	hash	it	into	10	buckets.	An	airport	that	is	missing	from
the	training	dataset	will	“borrow”	its	characteristics	from	the	other	similar
~35	airports	in	the	hash	bucket.	Of	course,	the	prediction	for	a	missing
airport	won’t	be	accurate	(it	is	unreasonable	to	expect	accurate	predictions
for	unknown	inputs),	but	it	will	be	in	the	right	range.

Choose	the	number	of	hash	buckets	by	balancing	the	need	to	handle	out-
of-vocabulary	inputs	reasonably	and	the	need	to	have	the	model	accurately
reflect	the	categorical	input.	With	10	hash	buckets,	~35	airports	get
commingled.	A	good	rule	of	thumb	is	to	choose	the	number	of	hash
buckets	such	that	each	bucket	gets	about	five	entries.	In	this	case,	that
would	mean	that	70	hash	buckets	is	a	good	compromise.

HIGH	CARDINALITY

It’s	easy	to	see	that	the	high	cardinality	problem	is	addressed	as	long	as	we
choose	a	small	enough	number	of	hash	buckets.	Even	if	we	have	millions
of	airports	or	hospitals	or	physicians,	we	can	hash	them	into	a	few	hundred
buckets,	thus	keeping	the	system’s	memory	and	model	size	requirements
practical.

We	don’t	need	to	store	the	vocabulary	because	the	transformation	code	is
independent	of	the	actual	data	value	and	the	core	of	the	model	only	deals
with	num_buckets	inputs,	not	the	full	vocabulary.

It	is	true	that	hashing	is	lossy—since	we	have	347	airports,	an	average	of
35	airports	will	get	the	same	hash	bucket	code	if	we	hash	it	into	10
buckets.	When	the	alternative	is	to	discard	the	variable	because	it	is	too
wide,	though,	a	lossy	encoding	is	an	acceptable	compromise.

COLD	START

The	cold-start	situation	is	similar	to	the	out-of-vocabulary	situation.	If	a
new	airport	gets	added	to	the	system,	it	will	initially	get	the	predictions
corresponding	to	other	airports	in	the	hash	bucket.	As	an	airport	gets
popular,	there	will	be	more	flights	from	that	airport.	As	long	as	we
periodically	retrain	the	model,	its	predictions	will	start	to	reflect	arrival
delays	from	the	new	airport.	This	is	discussed	in	more	detail	in	the
“Design	Pattern	18:	Continued	Model	Evaluation”	in	Chapter	5.

By	choosing	the	number	of	hash	buckets	such	that	each	bucket	gets	about
five	entries,	we	can	ensure	that	any	bucket	will	have	reasonable	initial
results.

Trade-Offs	and	Alternatives

Most	design	patterns	involve	some	kind	of	a	trade-off,	and	the	Hashed
Feature	design	pattern	is	no	exception.	The	key	trade-off	here	is	that	we
lose	model	accuracy.

BUCKET	COLLISION

The	modulo	part	of	the	Hashed	Feature	implementation	is	a	lossy

operation.	By	choosing	a	hash	bucket	size	of	100,	we	are	choosing	to	have
3–4	airports	share	a	bucket.	We	are	explicitly	compromising	on	the	ability
to	accurately	represent	the	data	(with	a	fixed	vocabulary	and	one-hot
encoding)	in	order	to	handle	out-of-vocabulary	inputs,	cardinality/model
size	constraints,	and	cold-start	problems.	It	is	not	a	free	lunch.	Do	not
choose	Hashed	Feature	if	you	know	the	vocabulary	beforehand,	if	the
vocabulary	size	is	relatively	small	(in	the	thousands	is	acceptable	for	a
dataset	with	millions	of	examples),	and	if	cold	start	is	not	a	concern.

Note	that	we	cannot	simply	increase	the	number	of	buckets	to	an
extremely	high	number	hoping	to	avoid	collisions	altogether.	Even	if	we
raise	the	number	of	buckets	to	100,000	with	only	347	airports,	the
probability	that	at	least	two	airports	share	the	same	hash	bucket	is	45%—
unacceptably	high	(see	Table	2-2).	Therefore,	we	should	use	Hashed
Features	only	if	we	are	willing	to	tolerate	multiple	categorical	inputs
sharing	the	same	hash	bucket	value.

Table	2-2.	The	expected	number	of	entries	per	bucket	and	the	
probability	of	at	least	one	collision	when	IATA	airport	codes	are	
hashed	into	different	numbers	of	buckets

num_hash_buckets entries_per_bucket collision_prob

3 115.666667 1.000000

10 34.700000 1.000000

100 3.470000 1.000000

1000 0.347000 1.000000

10000 0.034700 0.997697

100000 0.003470 0.451739

SKEW

SKEW

The	loss	of	accuracy	is	particularly	acute	when	the	distribution	of	the
categorical	input	is	highly	skewed.	Consider	the	case	of	the	hash	bucket
that	contains	ORD	(Chicago,	one	of	the	busiest	airports	in	the	world).	We
can	find	this	using	the	following:

CREATE	TEMPORARY	FUNCTION	hashed(airport	STRING,	numbuckets	

INT64)	AS	(

			ABS(MOD(FARM_FINGERPRINT(airport),	numbuckets))

);

WITH	airports	AS	(

SELECT	

			departure_airport,	COUNT(1)	AS	num_flights

FROM	`bigquery-samples.airline_ontime_data.flights`

GROUP	BY	departure_airport	

)

SELECT	

			departure_airport,	num_flights

FROM	airports

WHERE	hashed(departure_airport,	100)	=	hashed('ORD',	100)

The	result	shows	that	while	there	are	~3.6	million	flights	from	ORD,	there
are	only	~67,000	flights	from	BTV	(Burlington,	Vermont):

departure_airport num_flights

ORD 3610491

BTV 66555

MCI 597761

This	indicates	that,	for	all	practical	purposes,	the	model	will	impute	the
long	taxi	times	and	weather	delays	that	Chicago	experiences	to	the
municipal	airport	in	Burlington,	Vermont!	The	model	accuracy	for	BTV

and	MCI	(Kansas	City	airport)	will	be	quite	poor	because	there	are	so
many	flights	out	of	Chicago.

AGGREGATE	FEATURE

In	cases	where	the	distribution	of	a	categorical	variable	is	skewed	or
where	the	number	of	buckets	is	so	small	that	bucket	collisions	are
frequent,	we	might	find	it	helpful	to	add	an	aggregate	feature	as	an	input
to	our	model.	For	example,	for	every	airport,	we	could	find	the	probability
of	on-time	flights	in	the	training	dataset	and	add	it	as	a	feature	to	our
model.	This	allows	us	to	avoid	losing	the	information	associated	with
individual	airports	when	we	hash	the	airport	codes.	In	some	cases,	we
might	be	able	to	avoid	using	the	airport	name	as	a	feature	entirely,	since
the	relative	frequency	of	on-time	flights	might	be	sufficient.

HYPERPARAMETER	TUNING

Because	of	the	trade-offs	with	bucket	collision	frequency,	choosing	the
number	of	buckets	can	be	difficult.	It	very	often	depends	on	the	problem
itself.	Therefore,	we	recommend	that	you	treat	the	number	of	buckets	as	a
hyperparameter	that	is	tuned:

-	parameterName:	nbuckets

						type:	INTEGER

						minValue:	10

						maxValue:	20

						scaleType:	UNIT_LINEAR_SCALE

						

Make	sure	that	the	number	of	buckets	remains	within	a	sensible	range	of
the	cardinality	of	the	categorical	variable	being	hashed.

CRYPTOGRAPHIC	HASH

What	makes	the	Hashed	Feature	lossy	is	the	modulo	part	of	the

implementation.	What	if	we	were	to	avoid	the	modulo	altogether?	After
all,	the	farm	fingerprint	has	a	fixed	length	(an	INT64	is	64	bits),	and	so	it
can	be	represented	using	64	feature	values,	each	of	which	is	0	or	1.	This	is
called	binary	encoding.

However,	binary	encoding	does	not	solve	the	problem	of	out-of-
vocabulary	inputs	or	cold	start	(only	the	problem	of	high	cardinality).	In
fact,	the	bitwise	coding	is	a	red	herring.	If	we	don’t	do	a	modulo,	we	can
get	a	unique	representation	by	simply	encoding	the	three	characters	that
form	the	IATA	code	(thus	using	a	feature	of	length	3*26=78).	The
problem	with	this	representation	is	immediately	obvious:	airports	whose
names	start	with	the	letter	O	have	nothing	in	common	when	it	comes	to
their	flight	delay	characteristics—the	encoding	has	created	a	spurious
correlation	between	airports	that	start	with	the	same	letter.	The	same
insight	holds	in	binary	space	as	well.	Because	of	this,	we	do	not
recommend	binary	encoding	of	farm	fingerprint	values.

Binary	encoding	of	an	MD5	hash	will	not	suffer	from	this	spurious
correlation	problem	because	the	output	of	an	MD5	hash	is	uniformly
distributed,	and	so	the	resulting	bits	will	be	uniformly	distributed.
However,	unlike	the	Farm	Fingerprint	algorithm,	the	MD5	hash	is	not
deterministic	and	not	unique—it	is	a	one-way	hash	and	will	have	many
unexpected	collisions.

In	the	Hashed	Feature	design	pattern,	we	have	to	use	a	fingerprint	hashing
algorithm	and	not	a	cryptographic	hashing	algorithm.	This	is	because	the
goal	of	a	fingerprint	function	is	to	produce	a	deterministic	and	unique
value.	If	you	think	about	it,	this	is	a	key	requirement	of	preprocessing
functions	in	machine	learning,	since	we	need	to	apply	the	same	function
during	model	serving	and	get	the	same	hashed	value.	A	fingerprint

function	does	not	produce	a	uniformly	distributed	output.	Cryptographic
algorithms	such	as	MD5	or	SHA1	do	produce	uniformly	distributed
output,	but	they	are	not	deterministic	and	are	purposefully	made	to	be
computationally	expensive.	Therefore,	a	cryptographic	hash	is	not	usable
in	a	feature	engineering	context	where	the	hashed	value	computed	for	a
given	input	during	prediction	has	to	be	the	same	as	the	hash	computed
during	training,	and	where	the	hash	function	should	not	slow	down	the
machine	learning	model.

NOTE
The	reason	that	MD5	is	not	deterministic	is	that	a	“salt”	is	typically	added	to	the	string	to	be
hashed.	The	salt	is	a	random	string	added	to	each	password	to	ensure	that	even	if	two	users
happen	to	use	the	same	password,	the	hashed	value	in	the	database	will	be	different.	This	is
needed	to	thwart	attacks	based	on	“rainbow	tables,”	which	are	attacks	that	rely	on	dictionaries	of
commonly	chosen	passwords	and	that	compare	the	hash	of	the	known	password	against	hashes
in	the	database.	As	computational	power	has	increased,	it	is	possible	to	carry	out	a	brute-force
attack	on	every	possible	salt	as	well,	and	so	modern	cryptographic	implementations	do	their
hashing	in	a	loop	to	increase	the	computational	expense.	Even	if	we	were	to	turn	off	the	salt	and
reduce	the	number	of	iterations	to	one,	the	MD5	hash	is	only	one	way.	It	won’t	be	unique.

The	bottom	line	is	that	we	need	to	use	a	fingerprint	hashing	algorithm,	and
we	need	to	modulo	the	resulting	hash.

ORDER	OF	OPERATIONS

Note	that	we	do	the	modulo	first,	and	then	the	absolute	value:

CREATE	TEMPORARY	FUNCTION	hashed(airport	STRING,	numbuckets	

INT64)	AS	(

			ABS(MOD(FARM_FINGERPRINT(airport),	numbuckets))

);

https://oreil.ly/cv7PS

The	order	of	ABS,	MOD,	and	FARM_FINGERPRINT	in	the	preceding
snippet	is	important	because	the	range	of	INT64	is	not	symmetric.
Specifically,	its	range	is	between	–9,223,372,036,854,775,808
and	9,223,372,036,854,775,807	(both	inclusive).	So,	if	we	were
to	do:

ABS(FARM_FINGERPRINT(airport))

we	would	run	into	a	rare	and	likely	unreproducible	overflow	error	if	the
FARM_FINGERPRINT	operation	happened	to	return	–
9,223,372,036,854,775,808	since	its	absolute	value	can	not	be
represented	using	an	INT64!

EMPTY	HASH	BUCKETS

Although	unlikely,	there	is	a	remote	possibility	that	even	if	we	choose	10
hash	buckets	to	represent	347	airports,	one	of	the	hash	buckets	will	be
empty.	Therefore,	when	using	hashed	feature	columns,	it	may	be
beneficial	to	also	use	L2	regularization	so	that	the	weights	associated	with
an	empty	bucket	will	be	driven	to	near-zero.	This	way,	if	an	out-of-
vocabulary	airport	does	fall	into	an	empty	bucket,	it	will	not	cause	the
model	to	become	numerically	unstable.

Design	Pattern	2:	Embeddings
Embeddings	are	a	learnable	data	representation	that	map	high-cardinality
data	into	a	lower-dimensional	space	in	such	a	way	that	the	information
relevant	to	the	learning	problem	is	preserved.	Embeddings	are	at	the	heart
of	modern-day	machine	learning	and	have	various	incarnations	throughout
the	field.

Problem

https://oreil.ly/xlwAH

Problem

Machine	learning	models	systematically	look	for	patterns	in	data	that
capture	how	the	properties	of	the	model’s	input	features	relate	to	the
output	label.	As	a	result,	the	data	representation	of	the	input	features
directly	affects	the	quality	of	the	final	model.	While	handling	structured,
numeric	input	is	fairly	straightforward,	the	data	needed	to	train	a	machine
learning	model	can	come	in	myriad	varieties,	such	as	categorical	features,
text,	images,	audio,	time	series,	and	many	more.	For	these	data
representations,	we	need	a	meaningful	numeric	value	to	supply	our
machine	learning	model	so	these	features	can	fit	within	the	typical	training
paradigm.	Embeddings	provide	a	way	to	handle	some	of	these	disparate
data	types	in	a	way	that	preserves	similarity	between	items	and	thus
improves	our	model’s	ability	to	learn	those	essential	patterns.

One-hot	encoding	is	a	common	way	to	represent	categorical	input
variables.	For	example,	consider	the	plurality	input	in	the	natality	dataset.
This	is	a	categorical	input	that	has	six	possible	values:	['Single(1)',
'Multiple(2+)',	'Twins(2)',	'Triplets(3)',
'Quadruplets(4)',	'Quintuplets(5)'].	We	can	handle	this
categorical	input	using	a	one-hot	encoding	that	maps	each	potential	input
string	value	to	a	unit	vector	in	R ,	as	shown	in	Table	2-3.

Table	2-3.	An	example	of	one-hot	encoding	categorical	inputs	for	the	
natality	dataset

Plurality One-hot	encoding

Single(1) [1,0,0,0,0,0]

Multiple(2+) [0,1,0,0,0,0]

Twins(2) [0,0,1,0,0,0]

Triplets(3) [0,0,0,1,0,0]

3

6

Triplets(3) [0,0,0,1,0,0]

Quadruplets(4) [0,0,0,0,1,0]

Quintuplets(5) [0,0,0,0,0,1]

When	encoded	in	this	way,	we	need	six	dimensions	to	represent	each	of
the	different	categories.	Six	dimensions	may	not	be	so	bad,	but	what	if	we
had	many,	many	more	categories	to	consider?

For	example,	what	if	our	dataset	consisted	of	customers’	view	history	of
our	video	database	and	our	task	is	to	suggest	a	list	of	new	videos	given
customers’	previous	video	interactions?	In	this	scenario,	the
customer_id	field	could	have	millions	of	unique	entries.	Similarly,	the
video_id	of	previously	watched	videos	could	contain	thousands	of
entries	as	well.	One-hot	encoding	high-cardinality	categorical	features	like
video_ids	or	customer_ids	as	inputs	to	a	machine	learning	model
leads	to	a	sparse	matrix	that	isn’t	well	suited	for	a	number	of	machine
learning	algorithms.

The	second	problem	with	one-hot	encoding	is	that	it	treats	the	categorical
variables	as	being	independent.	However,	the	data	representation	for	twins
should	be	close	to	the	data	representation	for	triplets	and	quite	far	away
from	the	data	representation	for	quintuplets.	A	multiple	is	most	likely	a
twin,	but	could	be	a	triplet.	As	an	example,	Table	2-4	shows	an	alternate
representation	of	the	plurality	column	in	a	lower	dimension	that	captures
this	closeness	relationship.

Table	2-4.	Using	lower	dimensionality	embeddings	to	represent	the	
plurality	column	in	the	natality	dataset.

Plurality Candidate	encoding

Single(1) [1.0,0.0]

Single(1) [1.0,0.0]

Multiple(2+) [0.0,0.6]

Twins(2) [0.0,0.5]

Triplets(3) [0.0,0.7]

Quadruplets(4) [0.0,0.8]

Quintuplets(5) [0.0,0.9]

These	numbers	are	arbitrary	of	course.	But	is	it	possible	to	learn	the	best
possible	representation	of	the	plurality	column	using	just	two	dimensions
for	the	natality	problem?	That	is	the	problem	that	the	Embeddings	design
pattern	solves.

The	same	problem	of	high	cardinality	and	dependent	data	also	occurs	in
images	and	text.	Images	consist	of	thousands	of	pixels,	which	are	not
independent	of	one	another.	Natural	language	text	is	drawn	from	a
vocabulary	in	the	tens	of	thousands	of	words,	and	a	word	like	walk	is
closer	to	the	word	run	than	to	the	word	book.

Solution

The	Embeddings	design	pattern	addresses	the	problem	of	representing
high-cardinality	data	densely	in	a	lower	dimension	by	passing	the	input
data	through	an	embedding	layer	that	has	trainable	weights.	This	will	map
the	high-dimensional,	categorical	input	variable	to	a	real-valued	vector	in
some	low-dimensional	space.	The	weights	to	create	the	dense
representation	are	learned	as	part	of	the	optimization	of	the	model	(see
Figure	2-5).	In	practice,	these	embeddings	end	up	capturing	closeness
relationships	in	the	input	data.

Figure	2-5.	The	weights	of	an	embedding	layer	are	learned	as	parameters	during	training.

TIP
Because	embeddings	capture	closeness	relationships	in	the	input	data	in	a	lower-dimensional
representation,	we	can	use	an	embedding	layer	as	a	replacement	for	clustering	techniques	(e.g.,
customer	segmentation)	and	dimensionality	reduction	methods	like	principal	components
analysis	(PCA).	Embedding	weights	are	determined	in	the	main	model	training	loop,	thus	saving
the	need	to	cluster	or	do	PCA	beforehand.

The	weights	in	the	embedding	layer	would	be	learned	as	part	of	the
gradient	descent	procedure	when	training	the	natality	model.

At	the	end	of	training,	the	weights	of	the	embedding	layer	might	be	such
that	the	encoding	for	the	categorical	variables	is	as	shown	in	Table	2-5.

Table	2-5.	One-hot	and	learned	encodings	for	the	plurality	column	in	
the	natality	dataset

Plurality One-hot	encoding Learned	encoding

Single(1) [1,0,0,0,0,0] [0.4,	0.6]

Multiple(2+) [0,1,0,0,0,0] [0.1,	0.5]

Twins(2) [0,0,1,0,0,0] [-0.1,	0.3]

Triplets(3) [0,0,0,1,0,0] [-0.2,	0.5]

Quadruplets(4) [0,0,0,0,1,0] [-0.4,	0.3]

Quintuplets(5) [0,0,0,0,0,1] [-0.6,	0.5]

The	embedding	maps	a	sparse,	one-hot	encoded	vector	to	a	dense	vector	in
R .

In	TensorFlow,	we	first	construct	a	categorical	feature	column	for	the
feature,	then	wrap	that	in	an	embedding	feature	column.	For	example,	for
our	plurality	feature,	we	would	have:

plurality	=	

tf.feature_column.categorical_column_with_vocabulary_list(

												'plurality',	['Single(1)',	'Multiple(2+)',	

'Twins(2)',	

'Triplets(3)',	'Quadruplets(4)',	'Quintuplets(5)'])

plurality_embed	=	tf.feature_column.embedding_column(plurality,	

dimension=2)

2

The	resulting	feature	column	(plurality_embed)	is	used	as	input	to
the	downstream	nodes	of	the	neural	network	instead	of	the	one-hot
encoded	feature	column	(plurality).

TEXT	EMBEDDINGS

Text	provides	a	natural	setting	where	it	is	advantageous	to	use	an
embedding	layer.	Given	the	cardinality	of	a	vocabulary	(often	on	the	order
of	tens	of	thousands	of	words),	one-hot	encoding	each	word	isn’t	practical.
This	would	create	an	incredibly	large	(high-dimensional)	and	sparse
matrix	for	training.	Also,	we’d	like	similar	words	to	have	embeddings
close	by	and	unrelated	words	to	be	far	away	in	embedding	space.
Therefore,	we	use	a	dense	word	embedding	to	vectorize	the	discrete	text
input	before	passing	to	our	model.

To	implement	a	text	embedding	in	Keras,	we	first	create	a	tokenization	for
each	word	in	our	vocabulary,	as	shown	in	Figure	2-6.	Then	we	use	this
tokenization	to	map	to	an	embedding	layer,	similar	to	how	it	was	done	for
the	plurality	column.

Figure	2-6.	The	tokenizer	creates	a	lookup	table	that	maps	each	word	to	an	index.

The	tokenization	is	a	lookup	table	that	maps	each	word	in	our	vocabulary
to	an	index.	We	can	think	of	this	as	a	one-hot	encoding	of	each	word
where	the	tokenized	index	is	the	location	of	the	nonzero	element	in	the
one-hot	encoding.	This	requires	a	full	pass	over	the	entire	dataset	(let’s
assume	these	consist	of	titles	of	articles)	to	create	the	lookup	table	and
can	be	done	in	Keras.	The	complete	code	can	be	found	in	the	repository
for	this	book:

from	tensorflow.keras.preprocessing.text	import	Tokenizer

tokenizer	=	Tokenizer()

tokenizer.fit_on_texts(titles_df.title)

Here	we	can	use	the	Tokenizer	class	in	the	keras.preprocessing.text
library.	The	call	to	fit_on_texts	creates	a	lookup	table	that	maps
each	of	the	words	found	in	our	titles	to	an	index.	By	calling
tokenizer.index_word,	we	can	examine	this	lookup	table	directly:

tokenizer.index_word

{1:	'the',

	2:	'a',

	3:	'to',

	4:	'for',

	5:	'in',

	6:	'of',

	7:	'and',

	8:	's',

	9:	'on',

	10:	'with',

	11:	'show',

...

We	can	then	invoke	this	mapping	with	the	texts_to_sequences
method	of	our	tokenizer.	This	maps	each	sequence	of	words	in	the	text

4

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/embeddings.ipynb

input	being	represented	(here,	we	assume	that	they	are	titles	of	articles)	to
a	sequence	of	tokens	corresponding	to	each	word	as	in	Figure	2-7:

integerized_titles	=	

tokenizer.texts_to_sequences(titles_df.title)

Figure	2-7.	Using	the	tokenizer,	each	title	is	mapped	to	a	sequence	of	integer	index	values.

The	tokenizer	contains	other	relevant	information	that	we	will	use	later	for
creating	an	embedding	layer.	In	particular,	VOCAB_SIZE	captures	the
number	of	elements	of	the	index	lookup	table	and	MAX_LEN	contains	the
maximum	length	of	the	text	strings	in	the	dataset:

VOCAB_SIZE	=	len(tokenizer.index_word)

MAX_LEN	=	max(len(sequence)	for	sequence	in	integerized_titles)

Before	creating	the	model,	it	is	necessary	to	preprocess	the	titles	in	the
dataset.	We’ll	need	to	pad	the	elements	of	our	title	to	feed	into	the	model.
Keras	has	the	helper	functions	pad_sequence	for	that	on	the	top	of	the
tokenizer	methods.	The	function	create_sequences	takes	both	titles

as	well	as	the	maximum	sentence	length	as	input	and	returns	a	list	of	the
integers	corresponding	to	our	tokens	padded	to	the	sentence	maximum
length:

from	tensorflow.keras.preprocessing.sequence	import	

pad_sequences

def	create_sequences(texts,	max_len=MAX_LEN):

				sequences	=	tokenizer.texts_to_sequences(texts)

				padded_sequences	=	pad_sequences(sequences,

																																					max_len,

																																					padding='post')

				return	padded_sequences

Next,	we’ll	build	a	deep	neural	network	(DNN)	model	in	Keras	that
implements	a	simple	embedding	layer	to	transform	the	word	integers	into
dense	vectors.	The	Keras	Embedding	layer	can	be	thought	of	as	a	map
from	the	integer	indices	of	specific	words	to	dense	vectors	(their
embeddings).	The	dimensionality	of	the	embedding	is	determined	by
output_dim.	The	argument	input_dim	indicates	the	size	of	the
vocabulary,	and	input_shape	indicates	the	length	of	input	sequences.
Since	here	we	have	padded	the	titles	before	passing	to	the	model,	we	set
input_shape=[MAX_LEN]:

model	=	models.Sequential([layers.Embedding(input_dim=VOCAB_SIZE	

+	1,

																																												

output_dim=embed_dim,

																																												input_shape=

[MAX_LEN]),

																											layers.Lambda(lambda	x:	

tf.reduce_mean(x,axis=1)),

																											layers.Dense(N_CLASSES,	

activation='softmax')])

Note	that	we	need	to	put	a	custom	Keras	Lambda	layer	in	between	the

embedding	layer	and	the	dense	softmax	layer	to	average	the	word	vectors
returned	by	the	embedding	layer.	This	is	the	average	that’s	fed	to	the
dense	softmax	layer.	By	doing	so,	we	create	a	model	that	is	simple	but	that
loses	information	about	the	word	order,	creating	a	model	that	sees
sentences	as	a	“bag	of	words.”

IMAGE	EMBEDDINGS

While	text	deals	with	very	sparse	input,	other	data	types,	such	as	images
or	audio,	consist	of	dense,	high-dimensional	vectors,	usually	with	multiple
channels	containing	raw	pixel	or	frequency	information.	In	this	setting,	an
Embedding	captures	a	relevant,	low-dimensional	representation	of	the
input.

For	image	embeddings,	a	complex	convolutional	neural	network—like
Inception	or	ResNet—is	first	trained	on	a	large	image	dataset,	like
ImageNet,	containing	millions	of	images	and	thousands	of	possible
classification	labels.	Then,	the	last	softmax	layer	is	removed	from	the
model.	Without	the	final	softmax	classifier	layer,	the	model	can	be	used	to
extract	a	feature	vector	for	a	given	input.	This	feature	vector	contains	all
the	relevant	information	of	the	image	so	it	is	essentially	a	low-dimensional
embedding	of	the	input	image.

Similarly,	consider	the	task	of	image	captioning,	that	is,	generating	a
textual	caption	of	a	given	image,	shown	in	Figure	2-8.

Figure	2-8.	For	the	image	translation	task,	the	encoder	produces	a	low-dimensional	embedding
representation	of	the	image.

By	training	this	model	architecture	on	a	massive	dataset	of	image/caption
pairs,	the	encoder	learns	an	efficient	vector	representation	for	images.	The
decoder	learns	how	to	translate	this	vector	to	a	text	caption.	In	this	sense,
the	encoder	becomes	an	Image2Vec	embedding	machine.

Why	It	Works

The	embedding	layer	is	just	another	hidden	layer	of	the	neural	network.
The	weights	are	then	associated	to	each	of	the	high-cardinality
dimensions,	and	the	output	is	passed	through	the	rest	of	the	network.
Therefore,	the	weights	to	create	the	embedding	are	learned	through	the
process	of	gradient	descent	just	like	any	other	weights	in	the	neural
network.	This	means	that	the	resulting	vector	embeddings	represent	the
most	efficient	low-dimensional	representation	of	those	feature	values	with
respect	to	the	learning	task.

While	this	improved	embedding	ultimately	aids	the	model,	the
embeddings	themselves	have	inherent	value	and	allow	us	to	gain

additional	insight	into	our	dataset.

Consider	again	the	customer	video	dataset.	By	only	using	one-hot
encoding,	any	two	separate	users,	user_i	and	user_j,	will	have	the	same
similarity	measure.	Similarly,	the	dot	product	or	cosine	similarity	for	any
two	distinct	six-dimensional	one-hot	encodings	of	birth	plurality	would
have	zero	similarity.	This	makes	sense	since	the	one-hot	encoding	is
essentially	telling	our	model	to	treat	any	two	different	birth	pluralities	as
separate	and	unrelated.	For	our	dataset	of	customers	and	video	watches,
we	lose	any	notion	of	similarity	between	customers	or	videos.	But	this
doesn’t	feel	quite	right.	Two	different	customers	or	videos	likely	do	have
similarities	between	them.	The	same	goes	for	birth	plurality.	The
occurrence	of	quadruplets	and	quintuplets	likely	affects	the	birthweight	in
a	statistically	similar	way	as	opposed	to	single	child	birthweights	(see
Figure	2-9).

Figure	2-9.	By	forcing	our	categorical	variable	into	a	lower-dimensional	embedding	space,	we	can
also	learn	relationships	between	the	different	categories.

When	computing	the	similarity	of	plurality	categories	as	one-hot	encoded
vectors,	we	obtain	the	identity	matrix	since	each	category	is	treated	as	a
distinct	feature	(see	Table	2-6).

Table	2-6.	When	features	are	one-hot	encoded,	the	similarity	matrix	is	
just	the	identity	matrix	

Single
(1)

Multiple
(2+)

Twins
(2)

Triplet
s(3)

Quadruple
ts(4)

Quintuplet
s(5)

Single(1) 1 0 0 0 0 0

Multiple(2
+)

- 1 0 0 0 0

Twins(2) - - 1 0 0 0

Twins(2) - - 1 0 0 0

Triplets(3) - - - 1 0 0

Quadruple
ts(4)

- - - - 1 0

Quintuplet
s(5)

- - - - - 1

However,	once	the	plurality	is	embedded	into	two	dimensions,	the
similarity	measure	becomes	nontrivial,	and	important	relationships
between	the	different	categories	emerge	(see	Table	2-7).

Table	2-7.	When	the	features	are	embedded	in	two	dimensions,	the	
similarity	matrix	gives	us	more	information	

Single
(1)

Multiple
(2+)

Twins
(2)

Triplet
s(3)

Quadruple
ts(4)

Quintuplet
s(5)

Single(1) 1 0.92 0.61 0.57 0.06 0.1

Multiple(2
+)

- 1 0.86 0.83 0.43 0.48

Twins(2) - 1 0.99 0.82 0.85

Triplets(3) - 1 0.85 0.88

Quadruple
ts(4)

- 1 0.99

Quintuplet
s(5)

- - - - - 1

Thus,	a	learned	embedding	allows	us	to	extract	inherent	similarities
between	two	separate	categories	and,	given	there	is	a	numeric	vector
representation,	we	can	precisely	quantify	the	similarity	between	two
categorical	features.

This	is	easy	to	visualize	with	the	natality	dataset,	but	the	same	principle
applies	when	dealing	with	customer_ids	embedded	into	20-
dimensional	space.	When	applied	to	our	customer	dataset,	embeddings
allow	us	to	retrieve	similar	customers	to	a	given	customer_id	and
make	suggestions	based	on	similarity,	such	as	which	videos	they	are	likely
to	watch,	as	shown	in	Figure	2-10.	Furthermore,	these	user	and	item
embeddings	can	be	combined	with	other	features	when	training	a	separate
machine	learning	model.	Using	pre-trained	embeddings	in	machine
learning	models	is	referred	to	as	transfer	learning.

Figure	2-10.	By	learning	a	low-dimensional,	dense	embedding	vector	for	each	customer	and	video,
an	embedding-based	model	is	able	to	generalize	well	with	less	of	a	manual	feature	engineering

burden.

Trade-Offs	and	Alternatives

The	main	trade-off	with	using	an	embedding	is	the	compromised
representation	of	the	data.	There	is	a	loss	of	information	involved	in	going
from	a	high-cardinality	representation	to	a	lower-dimensional

representation.	In	return,	we	gain	information	about	closeness	and	context
of	the	items.

CHOOSING	THE	EMBEDDING	DIMENSION

The	exact	dimensionality	of	the	embedding	space	is	something	that	we
choose	as	a	practitioner.	So,	should	we	choose	a	large	or	small	embedding
dimension?	Of	course,	as	with	most	things	in	machine	learning,	there	is	a
trade-off.	The	lossiness	of	the	representation	is	controlled	by	the	size	of
the	embedding	layer.	By	choosing	a	very	small	output	dimension	of	an
embedding	layer,	too	much	information	is	forced	into	a	small	vector	space
and	context	can	be	lost.	On	the	other	hand,	when	the	embedding
dimension	is	too	large,	the	embedding	loses	the	learned	contextual
importance	of	the	features.	At	the	extreme,	we’re	back	to	the	problem
encountered	with	one-hot	encoding.	The	optimal	embedding	dimension	is
often	found	through	experimentation,	similar	to	choosing	the	number	of
neurons	in	a	deep	neural	network	layer.

If	we’re	in	a	hurry,	one	rule	of	thumb	is	to	use	the	fourth	root	of	the	total
number	of	unique	categorical	elements	while	another	is	that	the
embedding	dimension	should	be	approximately	1.6	times	the	square	root
of	the	number	of	unique	elements	in	the	category,	and	no	less	than	600.
For	example,	suppose	we	wanted	to	use	an	embedding	layer	to	encode	a
feature	that	has	625	unique	values.	Using	the	first	rule	of	thumb,	we	would
choose	an	embedding	dimension	for	plurality	of	5,	and	using	the	second
rule	of	thumb,	we’d	choose	40.	If	we	are	doing	hyperparameter	tuning,	it
might	be	worth	searching	within	this	range.

AUTOENCODERS

Training	embeddings	in	a	supervised	way	can	be	hard	because	it	requires	a

https://oreil.ly/ywFco
https://oreil.ly/github-fastai-2-blob-fastai-2-tabular-model-py

lot	of	labeled	data.	For	an	image	classification	model	like	Inception	to	be
able	to	produce	useful	image	embeddings,	it	is	trained	on	ImageNet,
which	has	14	million	labeled	images.	Autoencoders	provide	one	way	to
get	around	this	need	for	a	massive	labeled	dataset.

The	typical	autoencoder	architecture,	shown	in	Figure	2-11,	consists	of	a
bottleneck	layer,	which	is	essentially	an	embedding	layer.	The	portion	of
the	network	before	the	bottleneck	(the	“encoder”)	maps	the	high-
dimensional	input	into	a	lower-dimensional	embedding	layer,	while	the
latter	network	(the	“decoder”)	maps	that	representation	back	to	a	higher
dimension,	typically	the	same	dimension	as	the	original.	The	model	is
typically	trained	on	some	variant	of	a	reconstruction	error,	which	forces
the	model’s	output	to	be	as	similar	as	possible	to	the	input.

Figure	2-11.	When	training	an	autoencoder,	the	feature	and	the	label	are	the	same	and	the	loss	is
the	reconstruction	error.	This	allows	the	autoencoder	to	achieve	nonlinear	dimension	reduction.

Because	the	input	is	the	same	as	the	output,	no	additional	labels	are
needed.	The	encoder	learns	an	optimal	nonlinear	dimension	reduction	of
the	input.	Similar	to	how	PCA	achieves	linear	dimension	reduction,	the
bottleneck	layer	of	an	autoencoder	is	able	to	obtain	nonlinear	dimension
reduction	through	the	embedding.

This	allows	us	to	break	a	hard	machine	learning	problem	into	two	parts.
First,	we	use	all	the	unlabeled	data	we	have	to	go	from	high	cardinality	to
lower	cardinality	by	using	autoencoders	as	an	auxiliary	learning	task.
Then,	we	solve	the	actual	image	classification	problem	for	which	we
typically	have	much	less	labeled	data	using	the	embedding	produced	by
the	auxiliary	autoencoder	task.	This	is	likely	to	boost	model	performance,
because	now	the	model	only	has	to	learn	the	weights	for	the	lower-
dimension	setting	(i.e.,	it	has	to	learn	fewer	weights).

In	addition	to	image	autoencoders,	recent	work	has	focused	on	applying
deep	learning	techniques	for	structured	data.	TabNet	is	a	deep	neural
network	specifically	designed	to	learn	from	tabular	data	and	can	be	trained
in	an	unsupervised	manner.	By	modifying	the	model	to	have	an	encoder-
decoder	structure,	TabNet	works	as	an	autoencoder	on	tabular	data,	which
allows	the	model	to	learn	embeddings	from	structured	data	via	a	feature
transformer.

CONTEXT	LANGUAGE	MODELS

Is	there	an	auxiliary	learning	task	that	works	for	text?	Context	language
models	like	Word2Vec	and	masked	language	models	like	Bidirectional
Encoding	Representations	from	Transformers	(BERT)	change	the	learning
task	to	a	problem	so	that	there	is	no	scarcity	of	labels.

Word2Vec	is	a	well-known	method	for	constructing	an	embedding	using

https://oreil.ly/ywFco

shallow	neural	networks	and	combining	two	techniques—Continuous	Bag
of	Words	(CBOW)	and	a	skip-gram	model—applied	to	a	large	corpus	of
text,	such	as	Wikipedia.	While	the	goal	of	both	models	is	to	learn	the
context	of	a	word	by	mapping	input	word(s)	to	the	target	word(s)	with	an
intermediate	embedding	layer,	an	auxiliary	goal	is	achieved	that	learns
low-dimensional	embeddings	that	best	capture	the	context	of	words.	The
resulting	word	embeddings	learned	through	Word2Vec	capture	the
semantic	relationships	between	words	so	that,	in	the	embedding	space,	the
vector	representations	maintain	meaningful	distance	and	directionality
(Figure	2-12).

Figure	2-12.	Word	embeddings	capture	semantic	relationships.

BERT	is	trained	using	a	masked	language	model	and	next	sentence
prediction.	For	a	masked	language	model,	words	are	randomly	masked

from	text	and	the	model	guesses	what	the	missing	word(s)	are.	Next
sentence	prediction	is	a	classification	task	where	the	model	predicts
whether	or	not	two	sentences	followed	each	other	in	the	original	text.	So
any	corpus	of	text	is	suitable	as	a	labeled	dataset.	BERT	was	initially
trained	on	all	of	the	English	Wikipedia	and	BooksCorpus.	Despite
learning	on	these	auxiliary	tasks,	the	learned	embeddings	from	BERT	or
Word2Vec	have	proven	very	powerful	when	used	on	other	downstream
training	tasks.	The	word	embeddings	learned	by	Word2Vec	are	the	same
regardless	of	the	sentence	where	the	word	appears.	However,	the	BERT
word	embeddings	are	contextual,	meaning	the	embedding	vector	is
different	depending	on	the	context	of	how	the	word	is	used.

A	pre-trained	text	embedding,	like	Word2Vec,	NNLM,	GLoVE,	or	BERT,
can	be	added	to	a	machine	learning	model	to	process	text	features	in
conjunction	with	structured	inputs	and	other	learned	embeddings	from	our
customer	and	video	dataset	(Figure	2-13).

Ultimately,	embeddings	learn	to	preserve	information	relevant	to	the
prescribed	training	task.	In	the	case	of	image	captioning,	the	task	is	to
learn	how	the	context	of	the	elements	of	an	image	relates	to	text.	In	the
autoencoder	architecture,	the	label	is	the	same	as	the	feature,	so	the
dimension	reduction	of	the	bottleneck	attempts	to	learn	everything	with	no
specific	context	of	what	is	important.

Figure	2-13.	A	pre-trained	text	embedding	can	be	added	to	a	model	to	process	text	features.

EMBEDDINGS	IN	A	DATA	WAREHOUSE

Machine	learning	on	structured	data	is	best	carried	out	directly	in	SQL	on
a	data	warehouse.	This	avoids	the	need	to	export	data	out	of	the	warehouse
and	mitigates	problems	with	data	privacy	and	security.

Many	problems,	however,	require	a	mix	of	structured	data	and	natural
language	text	or	image	data.	In	data	warehouses,	natural	language	text
(such	as	reviews)	is	stored	directly	as	columns,	and	images	are	typically
stored	as	URLs	to	files	in	a	cloud	storage	bucket.	In	these	cases,	it
simplifies	later	machine	learning	to	additionally	store	the	embeddings	of
the	text	columns	or	of	the	images	as	array-type	columns.	Doing	so	will
enable	the	easy	incorporation	of	such	unstructured	data	into	machine
learning	models.

To	create	text	embeddings,	we	can	load	a	pre-trained	model	such	as
Swivel	from	TensorFlow	Hub	into	BigQuery.	The	full	code	is	on	GitHub:

CREATE	OR	REPLACE	MODEL	advdata.swivel_text_embed

OPTIONS(model_type='tensorflow',	

model_path='gs://BUCKET/swivel/*')

Then,	use	the	model	to	transform	the	natural	language	text	column	into	an
embedding	array	and	store	the	embedding	lookup	into	a	new	table:

CREATE	OR	REPLACE	TABLE	advdata.comments_embedding	AS

SELECT

		output_0	as	comments_embedding,

		comments

FROM	ML.PREDICT(MODEL	advdata.swivel_text_embed,(

		SELECT	comments,	LOWER(comments)	AS	sentences

		FROM	`bigquery-public-

data.noaa_preliminary_severe_storms.wind_reports`

))

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/%E2%81%A0text_%E2%80%8Bembeddings.ipynb

It	is	now	possible	to	join	against	this	table	to	get	the	text	embedding	for
any	comment.	For	image	embeddings,	we	can	similarly	transform	image
URLs	into	embeddings	and	load	them	into	the	data	warehouse.

Precomputing	features	in	this	manner	is	an	example	of	the	“Design	Pattern
26:	Feature	Store”	(see	Chapter	6).

Design	Pattern	3:	Feature	Cross
The	Feature	Cross	design	pattern	helps	models	learn	relationships	between
inputs	faster	by	explicitly	making	each	combination	of	input	values	a
separate	feature.

Problem

Consider	the	dataset	in	Figure	2-14	and	the	task	of	creating	a	binary
classifier	that	separates	the	+	and	−	labels.

Using	only	the	x_1	and	x_2	coordinates,	it	is	not	possible	to	find	a	linear
boundary	that	separates	the	+	and	−	classes.

This	means	that	to	solve	this	problem,	we	have	to	make	the	model	more
complex,	perhaps	by	adding	more	layers	to	the	model.	However,	a	simpler
solution	exists.

Figure	2-14.	This	dataset	is	not	linearly	separable	using	only	x_1	and	x_2	as	inputs.

Solution

In	machine	learning,	feature	engineering	is	the	process	of	using	domain
knowledge	to	create	new	features	that	aid	the	machine	learning	process
and	increase	the	predictive	power	of	our	model.	One	commonly	used
feature	engineering	technique	is	creating	a	feature	cross.

A	feature	cross	is	a	synthetic	feature	formed	by	concatenating	two	or	more
categorical	features	in	order	to	capture	the	interaction	between	them.	By
joining	two	features	in	this	way,	it	is	possible	to	encode	nonlinearity	into
the	model,	which	can	allow	for	predictive	abilities	beyond	what	each	of
the	features	would	have	been	able	to	provide	individually.	Feature	crosses
provide	a	way	to	have	the	ML	model	learn	relationships	between	the
features	faster.	While	more	complex	models	like	neural	networks	and	trees
can	learn	feature	crosses	on	their	own,	using	feature	crosses	explicitly	can
allow	us	to	get	away	with	training	just	a	linear	model.	Consequently,
feature	crosses	can	speed	up	model	training	(less	expensive)	and	reduce
model	complexity	(less	training	data	is	needed).

To	create	a	feature	column	for	the	dataset	above,	we	can	bucketize	x_1
and	x_2	each	into	two	buckets,	depending	on	their	sign.	This	converts	x_1
and	x_2	into	categorical	features.	Let	A	denote	the	bucket	where	x_1	>=	0
and	B	the	bucket	where	x_1	<	0.	Let	C	denote	the	bucket	where	x_2	>=	0
and	D	the	bucket	where	x_2	<	0	(Figure	2-15).

Figure	2-15.	The	feature	cross	introduces	four	new	boolean	features.

A	feature	cross	of	these	bucketized	features	introduces	four	new	boolean
features	for	our	model:

AC	where	x_1	>=	0	and	x_2	>=	0

BC	where	x_1	<	0	and	x_2	>=	0

AD	where	x_1	>=	0	and	x_2	<	0

BD	where	x_1	<	0	and	x_2	<	0

Each	of	these	four	boolean	features	(AC,	BC,	AD,	and	BD)	would	get	its
own	weight	when	training	the	model.	This	means	we	can	treat	each
quadrant	as	its	own	feature.	Since	the	original	dataset	was	split	perfectly
by	the	buckets	we	created,	a	feature	cross	of	A	and	B	is	able	to	linearly
separate	the	dataset.

But	this	is	just	an	illustration.	What	about	real-world	data?	Consider	a
public	dataset	of	yellow	cab	rides	in	New	York	City	(see	Table	2-8).

Table	2-8.	A	preview	of	the	public	New	York	City	taxi	dataset	in	
BigQuery

pickup_datetim
e

pickup
lon

picku
plat

dropof
flon

dropof
flat

passen
gers

fare_am
ount

2014-05–17
15:15:00	UTC

-73.999
55

40.760
6

-73.999
65

40.725
22

1 31

2013–12-09
15:03:00	UTC

-73.990
95

40.749
772

-73.870
807

40.774
07

1 34.33

2013-04–18
08:48:00	UTC

-73.973
102

40.785
075

-74.011
462

40.708
307

1 29

2009–11-05
06:47:00	UTC

-73.980
313

40.744
282

-74.015
285

40.711
458

1 14.9

2009-05-21
09:47:06	UTC

-73.901
887

40.764
021

-73.901
795

40.763
612

1 12.8

This	dataset	contains	information	on	taxi	rides	in	New	York	City	with

5

features	such	as	the	timestamp	of	pickup,	the	pickup	and	drop-off	latitude
and	longitude,	and	number	of	passengers.	The	label	here	is
fare_amount,	the	cost	of	the	taxi	ride.	Which	feature	crosses	might	be
relevant	for	this	dataset?

There	could	be	many.	Let’s	consider	the	pickup_datetime.	From	this
feature,	we	can	use	information	about	the	ride’s	hour	and	day	of	the	week.
Each	of	these	is	a	categorical	variable,	and	certainly	both	contain
predictive	power	in	determining	the	price	of	a	taxi	ride.	For	this	dataset,	it
makes	sense	to	consider	a	feature	cross	of	day_of_week	and
hour_of_day	since	it’s	reasonable	to	assume	that	taxi	rides	at	5pm	on
Monday	should	be	treated	differently	than	taxi	rides	at	5	p.m.	on	Friday
(see	Table	2-9).

Table	2-9.	A	preview	of	the	data	we’re	using	to	create	a	feature	cross:	
the	day	of	week	and	hour	of	day	columns

day_of_week hour_of_day

Sunday 00

Sunday 01

... ...

Saturday 23

A	feature	cross	of	these	two	features	would	be	a	168-dimensional	one-hot
encoded	vector	(24	hours	×	7	days	=	168)	with	the	example	“Monday	at	5
p.m.”	occupying	a	single	index	denoting	(day_of_week	is	Monday
concatenated	with	hour_of_day	is	17).

While	the	two	features	are	important	on	their	own,	allowing	for	a	feature

cross	of	hour_of_day	and	day_of_week	makes	it	easier	for	a	taxi	fare
prediction	model	to	recognize	that	end-of-the-week	rush	hour	influences
the	taxi	ride	duration	and	thus	the	taxi	fare	in	its	own	way.

FEATURE	CROSS	IN	BIGQUERY	ML

To	create	the	feature	cross	in	BigQuery,	we	can	use	the	function
ML.FEATURE_CROSS	and	pass	in	a	STRUCT	of	the	features
day_of_week	and	hour_of_day:

ML.FEATURE_CROSS(STRUCT(day_of_week,hour_of_week))	AS	day_X_hour

The	STRUCT	clause	creates	an	ordered	pair	of	the	two	features.	If	our
software	framework	doesn’t	support	a	feature	cross	function,	we	can	get
the	same	effect	using	string	concatenation:

CONCAT(CAST(day_of_week	AS	STRING),

							CAST(hour_of_week	AS	STRING))	AS	day_X_hour

A	complete	training	example	for	the	natality	problem	is	shown	below,
with	a	feature	cross	of	the	is_male	and	plurality	columns	used	as	a	feature;
see	the	full	code	in	this	book’s	repository:

CREATE	OR	REPLACE	MODEL	babyweight.natality_model_feat_eng

TRANSFORM(weight_pounds,

				is_male,

				plurality,

				gestation_weeks,						

				mother_age,

				CAST(mother_race	AS	string)	AS	mother_race,

				ML.FEATURE_CROSS(

												STRUCT(

																is_male,

																plurality)

)	AS	gender_X_plurality)

OPTIONS

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/feature_cross.ipynb

		(MODEL_TYPE='linear_reg',

			INPUT_LABEL_COLS=['weight_pounds'],

			DATA_SPLIT_METHOD="NO_SPLIT")	AS				

SELECT

		*

FROM

				babyweight.babyweight_data_train

TIP
TrThe	Transform	pattern	(see	Chapter	6)	is	being	used	here	when	engineering	features	of	the
natality	model.	This	also	allows	the	model	to	“remember”	to	carry	out	the	feature	cross	of	the
input	data	fields	during	prediction.

When	we	have	enough	data,	the	Feature	Cross	pattern	allows	models	to
become	simpler.	On	the	natality	dataset,	the	RMSE	for	the	evaluation	set
for	a	linear	model	with	the	Feature	Cross	pattern	is	1.056.	Alternatively,
training	a	deep	neural	network	in	BigQuery	ML	on	the	same	dataset	with
no	feature	crosses	yields	an	RMSE	of	1.074.	There	is	a	slight
improvement	in	our	performance	despite	using	a	much	simpler	linear
model,	and	the	training	time	is	also	drastically	reduced.

FEATURE	CROSSES	IN	TENSORFLOW

To	implement	a	feature	cross	using	the	features	is_male	and
plurality	in	TensorFlow,	we	use
tf.feature_column.crossed_column.	The	method
crossed_column	takes	two	arguments:	a	list	of	the	feature	keys	to	be
crossed	and	the	hash	bucket	size.	Crossed	features	will	be	hashed
according	to	hash_bucket_size	so	it	should	be	large	enough	to
comfortably	decrease	the	likelihood	of	collisions.	Since	the	is_male
input	can	take	3	values	(True,	False,	Unknown)	and	the	plurality	input	can

take	6	values	(Single(1),	Twins(2),	Triplets(3),	Quadruplets(4),
Quintuplets(5),	Multiple(2+)),	there	are	18	possible	(is_male,
plurality)	pairs.	If	we	set	hash_bucket_size	to	1,000,	we	can
be	85%	sure	there	are	no	collisions.

Finally,	to	use	a	crossed	column	in	a	DNN	model,	we	need	to	wrap	it
either	in	an	indicator_column	or	an	embedding_column
depending	on	whether	we	want	to	one-hot	encode	it	or	represent	it	in	a
lower	dimension	(see	the	“Design	Pattern	2:	Embeddings”	in	this	chapter):

gender_x_plurality	=	fc.crossed_column(["is_male",	"plurality

"],		

																																							hash_bucket_size=1000)

crossed_feature	=	fc.embedding_column(gender_x_plurality,	dim

ension=2)

or

gender_x_plurality	=	fc.crossed_column(["is_male",	"plurality

"],		

																																							hash_bucket_size=1000)

crossed_feature	=	fc.indicator_column(gender_x_plurality)

Why	It	Works

Feature	crosses	provide	a	valuable	means	of	feature	engineering.	They
provide	more	complexity,	more	expressivity,	and	more	capacity	to	simple
models.	Think	again	about	the	crossed	feature	of	is_male	and
plurality	in	the	natality	dataset.	This	Feature	Cross	pattern	allows	the
model	to	treat	twin	males	separately	from	female	twins	and	separately
from	triplet	males	and	separately	from	single	females	and	so	on.	When	we
use	an	indicator_column,	the	model	is	able	to	treat	each	of	the
resulting	crosses	as	an	independent	variable,	essentially	adding	18

additional	binary	categorical	features	to	the	model	(see	Figure	2-16).

Feature	crosses	scale	well	to	massive	data.	While	adding	extra	layers	to	a
deep	neural	network	could	potentially	provide	enough	nonlinearity	to
learn	how	pairs	(is_male,	plurality)	behave,	this	drastically
increases	the	training	time.	On	the	natality	dataset,	we	observed	that	a
linear	model	with	a	feature	cross	trained	in	BigQuery	ML	performs
comparably	with	a	DNN	trained	without	a	feature	cross.	However,	the
linear	model	trains	substantially	faster.

Figure	2-16.	A	feature	cross	between	is_male	and	plurality	creates	an	additional	18	binary	features
in	our	ML	model.

Table	2-10	compares	the	training	time	in	BigQuery	ML	and	evaluation

loss	for	both	a	linear	model	with	a	feature	cross	of	(is_male,
plurality)	and	a	deep	neural	network	without	any	feature	cross.

Table	2-10.	A	comparison	of	BigQuery	ML	training	metrics	for	models	
with	and	without	feature	crosses

Model	type Incl.	feature	cross Training	time	(minutes)
Eval.	loss
(RMSE)

Linear Yes 0.42 1.05

DNN No 48 1.07

A	simple	linear	regression	achieves	comparable	error	on	the	evaluation	set
but	trains	one	hundred	times	faster.	Combining	feature	crosses	with
massive	data	is	an	alternative	strategy	for	learning	complex	relationships
in	training	data.

Trade-Offs	and	Alternatives

While	we	discussed	feature	crosses	as	a	way	of	handling	categorical
variables,	they	can	be	applied,	with	a	bit	of	preprocessing,	to	numerical
features	also.	Feature	crosses	cause	sparsity	in	models	and	are	often	used
along	with	techniques	that	counteract	that	sparsity.

HANDLING	NUMERICAL	FEATURES

We	would	never	want	to	create	a	feature	cross	with	a	continuous	input.
Remember,	if	one	input	takes	m	possible	values	and	another	input	takes	n
possible	values,	then	the	feature	cross	of	the	two	would	result	in	m*n
elements.	A	numeric	input	is	dense,	taking	a	continuum	of	values.	It
would	be	impossible	to	enumerate	all	possible	values	in	a	feature	cross	of
continuous	input	data.

Instead,	if	our	data	is	continuous,	then	we	can	bucketize	the	data	to	make
it	categorical	before	applying	a	feature	cross.	For	example,	latitude	and
longitude	are	continuous	inputs,	and	it	makes	intuitive	sense	to	create	a
feature	cross	using	these	inputs	since	location	is	determined	by	an	ordered
pair	of	latitude	and	longitude.	However,	instead	of	creating	a	feature	cross
using	the	raw	latitude	and	longitude,	we	would	bin	these	continuous
values	and	cross	the	binned_latitude	and	the
binned_longitude:

import	tensorflow.feature_column	as	fc

#	Create	a	bucket	feature	column	for	latitude.

latitude_as_numeric	=	fc.numeric_column("latitude")

lat_bucketized	=	fc.bucketized_column(latitude_as_numeric,

																																						lat_boundaries)

#	Create	a	bucket	feature	column	for	longitude.

longitude_as_numeric	=	fc.numeric_column("longitude")

lon_bucketized	=	fc.bucketized_column(longitude_as_numeric,

																																						lon_boundaries)

#	Create	a	feature	cross	of	latitude	and	longitude

lat_x_lon	=	fc.crossed_column([lat_bucketized,	lon_bucketized],			

																															hash_bucket_size=nbuckets**4)

crossed_feature	=	fc.indicator_column(lat_x_lon)

HANDLING	HIGH	CARDINALITY

Because	the	cardinality	of	resulting	categories	from	a	feature	cross
increases	multiplicatively	with	respect	to	the	cardinality	of	the	input
features,	feature	crosses	lead	to	sparsity	in	our	model	inputs.	Even	with	the
day_of_week	and	hour_of_day	feature	cross,	a	feature	cross	would
be	a	sparse	vector	of	dimension	168	(see	Figure	2-17).

It	can	be	useful	to	pass	a	feature	cross	through	an	Embedding	layer	(see
the	“Design	Pattern	2:	Embeddings”	in	this	chapter)	to	create	a	lower-

dimensional	representation,	as	shown	in	Figure	2-18.

Figure	2-17.	A	feature	cross	of	day_of_week	and	hour_of_day	produces	a	sparse	vector	of
dimension	168.

Figure	2-18.	An	embedding	layer	is	a	useful	way	to	address	the	sparsity	of	a	feature	cross.

Because	the	Embeddings	design	pattern	allows	us	to	capture	closeness
relationships,	passing	the	feature	cross	through	an	embedding	layer	allows
the	model	to	generalize	how	certain	feature	crosses	coming	from	pairs	of
hour	and	day	combinations	affect	the	output	of	the	model.	In	the	example
of	latitude	and	longitude	above,	we	could	have	used	an	embedding	feature

column	in	place	of	the	indicator	column:

crossed_feature	=	fc.embedding_column(lat_x_lon,	dimension=2)

NEED	FOR	REGULARIZATION

When	crossing	two	categorical	features	both	with	large	cardinality,	we
produce	a	cross	feature	with	multiplicative	cardinality.	Naturally,	given
more	categories	for	an	individual	feature,	the	number	of	categories	in	a
feature	cross	can	increase	dramatically.	If	this	gets	to	the	point	where
individual	buckets	have	too	few	items,	it	will	hinder	the	model’s	ability	to
generalize.	Think	of	the	latitude	and	longitude	example.	If	we	were	to	take
very	fine	buckets	for	latitude	and	longitude,	then	a	feature	cross	would	be
so	precise	it	would	allow	the	model	to	memorize	every	point	on	the	map.
However,	if	that	memorization	was	based	on	just	a	handful	of	examples,
the	memorization	would	actually	be	an	overfit.

To	illustrate,	take	the	example	of	predicting	the	taxi	fare	in	New	York
given	the	pickup	and	dropoff	locations	and	the	time	of	pickup:

CREATE	OR	REPLACE	MODEL	mlpatterns.taxi_l2reg

TRANSFORM(

		fare_amount

	,	ML.FEATURE_CROSS(STRUCT(CAST(EXTRACT(DAYOFWEEK	FROM	

pickup_datetime)	

																				AS	STRING)	AS	dayofweek,

																												CAST(EXTRACT(HOUR	FROM	

pickup_datetime)	

																				AS	STRING)	AS	hourofday),	2)	AS	day_hr

		,	CONCAT(

					ML.BUCKETIZE(pickuplon,	GENERATE_ARRAY(-78,	-70,	0.01)),

					ML.BUCKETIZE(pickuplat,	GENERATE_ARRAY(37,	45,	0.01)),

					ML.BUCKETIZE(dropofflon,	GENERATE_ARRAY(-78,	-70,	0.01)),

					ML.BUCKETIZE(dropofflat,	GENERATE_ARRAY(37,	45,	0.01))

)	AS	pickup_and_dropoff

)

6

OPTIONS(input_label_cols=['fare_amount'],	

								model_type='linear_reg',	l2_reg=0.1)	

AS

SELECT	*	FROM	mlpatterns.taxi_data

There	are	two	feature	crosses	here:	one	in	time	(of	day	of	week	and	hour
of	day)	and	the	other	in	space	(of	the	pickup	and	dropoff	locations).	The
location,	in	particular,	is	very	high	cardinality,	and	it	is	likely	that	some	of
the	buckets	will	have	very	few	examples.

For	this	reason,	it	is	advisable	to	pair	feature	crosses	with	L1
regularization,	which	encourages	sparsity	of	features,	or	L2	regularization,
which	limits	overfitting.	This	allows	our	model	to	ignore	the	extraneous
noise	generated	by	the	many	synthetic	features	and	combat	overfitting.
Indeed,	on	this	dataset,	the	regularization	improves	the	RMSE	slightly,	by
0.3%.

As	a	related	point,	when	choosing	which	features	to	combine	for	a	feature
cross,	we	would	not	want	to	cross	two	features	that	are	highly	correlated.
We	can	think	of	a	feature	cross	as	combining	two	features	to	create	an
ordered	pair.	In	fact,	the	term	“cross”	of	“feature	cross”	refers	to	the
Cartesian	product.	If	two	features	are	highly	correlated,	then	the	“span”	of
their	feature	cross	doesn’t	bring	any	new	information	to	the	model.	As	an
extreme	example,	suppose	we	had	two	features,	x_1	and	x_2,	where	x_2	=
5*x_1.	Bucketing	values	for	x_1	and	x_2	by	their	sign	and	creating	a
feature	cross	will	still	produce	four	new	boolean	features.	However,	due	to
the	dependence	of	x_1	and	x_2,	two	of	those	four	features	are	actually
empty,	and	the	other	two	are	precisely	the	two	buckets	created	for	x_1.

Design	Pattern	4:	Multimodal	Input

The	Multimodal	Input	design	pattern	addresses	the	problem	of
representing	different	types	of	data	or	data	that	can	be	expressed	in
complex	ways	by	concatenating	all	the	available	data	representations.

Problem

Typically,	an	input	to	a	model	can	be	represented	as	a	number	or	as	a
category,	an	image,	or	free-form	text.	Many	off-the-shelf	models	are
defined	for	specific	types	of	input	only—a	standard	image	classification
model	such	as	Resnet-50,	for	example,	does	not	have	the	ability	to	handle
inputs	other	than	images.

To	understand	the	need	for	multimodal	inputs,	let’s	say	we’ve	got	a
camera	capturing	footage	at	an	intersection	to	identify	traffic	violations.
We	want	our	model	to	handle	both	image	data	(camera	footage)	and	some
metadata	about	when	the	image	was	captured	(time	of	day,	day	of	week,
weather,	etc.),	as	depicted	in	Figure	2-19.

This	problem	also	occurs	when	training	a	structured	data	model	where	one
of	the	inputs	is	free-form	text.	Unlike	numerical	data,	images	and	text
cannot	be	fed	directly	into	a	model.	As	a	result,	we’ll	need	to	represent
image	and	text	inputs	in	a	way	our	model	can	understand	(usually	using
the	Embeddings	design	pattern),	then	combine	these	inputs	with	other
tabular 	features.	For	example,	we	might	want	to	predict	a	restaurant
patron’s	rating	based	on	their	review	text	and	other	attributes	such	as	what
they	paid	and	whether	it	was	lunch	or	dinner	(see	Figure	2-20).

7

Figure	2-19.	Model	combining	image	and	numerical	features	to	predict	whether	footage	of	an
intersection	depicts	a	traffic	violation.

Figure	2-20.	Model	combining	free-form	text	input	with	tabular	data	to	predict	the	rating	of	a
restaurant	review.

Solution

To	start,	let’s	take	the	example	above	with	text	from	a	restaurant	review
combined	with	tabular	metadata	about	the	meal	referenced	by	the	review.
We’ll	first	combine	the	numerical	and	categorical	features.	There	are	three
possible	options	for	meal_type,	so	we	can	turn	this	into	a	one-hot
encoding	and	will	represent	dinner	as	[0,	0,	1].	With	this	categorical
feature	represented	as	an	array,	we	can	now	combine	it	with	meal_total	by
adding	the	price	of	the	meal	as	the	fourth	element	of	the	array:	[0,	0,
1,	30.5].

The	Embeddings	design	pattern	is	a	common	approach	to	encoding	text
for	machine	learning	models.	If	our	model	had	only	text,	we	could
represent	it	as	an	embedding	layer	using	the	following	tf.keras	code:

from	tensorflow.keras	import	Sequential

from	tensorflow.keras.layers	import	Embedding

model	=	Sequential()

model.add(Embedding(batch_size,	64,	input_length=30))

Here,	we	need	to	flatten	the	embedding 	in	order	to	concatenate	with	the
meal_type	and	meal_total:

model.add(Flatten())

We	could	then	use	a	series	of	Dense	layers	to	transform	that	very	large
array 	into	smaller	ones,	ending	with	our	output	that	is	an	array	of,	say,
three	numbers:

model.add(Dense(3,	activation="relu"))

We	now	need	to	concatenate	these	three	numbers,	which	form	the

8

9

sentence	embedding	of	the	review	with	the	earlier	inputs:	[0,	0,	1,
30.5,	0.75,	-0.82,	0.45].

To	do	this,	we’ll	use	the	Keras	functional	API	and	apply	the	same	steps.
Layers	built	with	the	functional	API	are	callable,	enabling	us	to	chain
them	together	starting	with	an	Input	layer. 	To	make	use	of	this,
we’ll	first	define	both	our	embedding	and	tabular	layers:

embedding_input	=	Input(shape=(30,))

embedding_layer	=	Embedding(batch_size,	64)(embedding_input)

embedding_layer	=	Flatten()(embedding_layer)

embedding_layer	=	Dense(3,	activation='relu')(embedding_layer)

tabular_input	=	Input(shape=(4,))

tabular_layer	=	Dense(32,	activation='relu')(tabular_input)

Note	that	we’ve	defined	the	Input	pieces	of	both	of	these	layers	as	their
own	variables.	This	is	because	we	need	to	pass	Input	layers	when	we	build
a	Model	with	the	functional	API.	Next,	we’ll	create	a	concatenated	layer,
feed	that	into	our	output	layer,	and	finally	create	the	model	by	passing	in
the	original	Input	layers	we	defined	above:

merged_input	=	keras.layers.concatenate([embedding_layer,	

tabular_layer])

merged_dense	=	Dense(16)(merged_input)

output	=	Dense(1)(merged_dense)

model	=	Model(inputs=[embedding_input,	tabular_input],	

outputs=output)

merged_dense	=	Dense(16,	activation='relu')(merged_input)

output	=	Dense(1)(merged_dense)

model	=	Model(inputs=[embedding_input,	tabular_input],	

outputs=output)

Now	we	have	a	single	model	that	accepts	the	multimodal	input.

10

Trade-Offs	and	Alternatives

As	we	just	saw,	the	Multimodal	Input	design	pattern	explores	how	to
represent	different	input	formats	in	the	same	model.	In	addition	to	mixing
different	types	of	data,	we	may	also	want	to	represent	the	same	data	in
different	ways	to	make	it	easier	for	our	model	to	identify	patterns.	For
example,	we	may	have	a	ratings	field	that	is	on	an	ordinal	scale	of	1	star	to
5	stars,	and	treat	that	ratings	field	as	both	numeric	and	categorical.	Here,
we	are	referring	to	multimodal	inputs	as	both:

Combining	different	types	of	data,	like	images	+	metadata

Representing	complex	data	in	multiple	ways

We’ll	start	by	exploring	how	tabular	data	can	be	represented	in	different
ways,	and	then	we’ll	look	at	text	and	image	data.

TABULAR	DATA	MULTIPLE	WAYS

To	see	how	we	can	represent	tabular	data	in	different	ways	for	the	same
model,	let’s	return	to	the	restaurant	review	example.	We’ll	imagine	instead
that	rating	is	an	input	to	our	model	and	we’re	trying	to	predict	the	review’s
usefulness	(how	many	people	liked	the	review).	As	an	input,	the	rating	can
be	represented	both	as	an	integer	value	ranging	from	1	to	5	and	as	a
categorical	feature.	To	represent	rating	categorically,	we	can	bucket	it.	The
way	we	bucket	the	data	is	up	to	us	and	dependent	on	our	dataset	and	use
case.	To	keep	things	simple,	let’s	say	we	want	to	create	two	buckets:
“good”	and	“bad.”	The	“good”	bucket	includes	ratings	of	4	and	5,	and
“bad”	includes	3	and	below.	We	can	then	create	a	boolean	value	to	encode
the	rating	buckets	and	concatenate	both	the	integer	and	boolean	into	a
single	array	(full	code	is	on	GitHub).

Here’s	what	this	might	look	like	for	a	small	dataset	with	three	data	points:

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/mixed_representation.ipynb

rating_data	=	[2,	3,	5]

def	good_or_bad(rating):

		if	rating	>	3:

				return	1

		else:

				return	0

rating_processed	=	[]

for	i	in	rating_data:

		rating_processed.append([i,	good_or_bad(i)])

The	resulting	feature	is	a	two-element	array	consisting	of	the	integer	rating
and	its	boolean	representation:

[[2,	0],	[3,	0],	[5,	1]]

If	we	had	instead	decided	to	create	more	than	two	buckets,	we	would	one-
hot	encode	each	input	and	append	this	one-hot	array	to	the	integer
representation.

The	reason	it’s	useful	to	represent	rating	in	two	ways	is	because	the	value
of	rating	as	measured	by	1	to	5	stars	does	not	necessarily	increase	linearly.
Ratings	of	4	and	5	are	very	similar,	and	ratings	of	1	to	3	most	likely
indicate	that	the	reviewer	was	dissatisfied.	Whether	you	give	something
you	dislike	1,	2,	or	3	stars	is	often	related	to	your	review	tendencies	rather
than	the	review	itself.	Despite	this,	it’s	still	useful	to	keep	the	more
granular	information	present	in	the	star	rating,	which	is	why	we	encode	it
in	two	ways.

Additionally,	consider	features	with	a	larger	range	than	1	to	5,	like	the
distance	between	a	reviewer’s	home	and	a	restaurant.	If	someone	drives
two	hours	to	go	to	a	restaurant,	their	review	may	be	more	critical	than
someone	coming	from	across	the	street.	In	this	case,	we	might	have	outlier

values,	and	so	it	would	make	sense	to	both	threshold	the	numeric	distance
representation	at	something	like	50	km	and	to	include	a	separate
categorical	representation	of	distance.	The	categorical	feature	could	be
bucketed	into	“in	state,”	“in	country,”	and	“foreign.”

MULTIMODAL	REPRESENTATION	OF	TEXT

Both	text	and	images	are	unstructured	and	require	more	transformations
than	tabular	data.	Representing	them	in	various	formats	can	help	our
models	extract	more	patterns.	We’ll	build	on	our	discussion	of	text	models
in	the	preceding	section	by	looking	at	different	approaches	for
representing	text	data.	Then	we’ll	introduce	images	and	dive	into	a	few
options	for	representing	image	data	in	ML	models.

Text	data	multiple	ways

Given	the	complex	nature	of	text	data,	there	are	many	ways	to	extract
meaning	from	it.	The	Embeddings	design	pattern	enables	a	model	to	group
similar	words	together,	identify	relationships	between	words,	and
understand	syntactic	elements	of	text.	While	representing	text	through
word	embeddings	most	closely	mirrors	how	humans	innately	understand
language,	there	are	additional	text	representations	that	can	maximize	our
model’s	ability	to	perform	a	given	prediction	task.	In	this	section,	we’ll
look	at	the	bag	of	words	approach	to	representing	text,	along	with
extracting	tabular	features	from	text.

To	demonstrate	text	data	representation,	we’ll	be	referencing	a	dataset	that
contains	the	text	of	millions	of	questions	and	answers	from	Stack
Overflow, 	along	with	metadata	about	each	post.	For	example,	the
following	query	will	give	us	a	subset	of	questions	tagged	as	either	“keras,”
“matplotlib,”	or	“pandas,”	along	with	the	number	of	answers	each

11

question	received:

SELECT

		title,

		answer_count,

		REPLACE(tags,	"|",	",")	as	tags

FROM

		`bigquery-public-data.stackoverflow.posts_questions`

WHERE

		REGEXP_CONTAINS(tags,	r"(?:keras|matplotlib|pandas)")

The	query	results	in	the	following	output:

R
o
w title

answ
er_co
unt tags

1 Building	a	new	column	in	a	pandas
dataframe	by	matching	string	values	in	a
list

6 python,python-
2.7,pandas,replace,nested-
loops

2 Extracting	specific	selected	columns	to
new	DataFrame	as	a	copy

6 python,pandas,chained-
assignment

3 Where	do	I	call	the	BatchNormalization
function	in	Keras?

7 python,keras,neural-
network,data-science,batch-
normalization

4 Using	Excel	like	solver	in	Python	or
SQL

8 python,sql,numpy,pandas,solv
er

When	representing	text	using	the	bag	of	words	(BOW)	approach,	we
imagine	each	text	input	to	our	model	as	a	bag	of	Scrabble	tiles,	with	each
tile	containing	a	single	word	instead	of	a	letter.	BOW	does	not	preserve
the	order	of	our	text,	but	it	does	detect	the	presence	or	absence	of	certain
words	in	each	piece	of	text	we	send	to	our	model.	This	approach	is	a	type
of	multi-hot	encoding	where	each	text	input	is	converted	into	an	array	of
1s	and	0s.	Each	index	in	this	BOW	array	corresponds	to	a	word	from	our

vocabulary.

HOW	BAG	OF	WORDS	WORKS
The	first	step	in	BOW	encoding	is	choosing	our	vocabulary	size,	which	will	include	the	top	N	most
frequently	occurring	words	in	our	text	corpus.	In	theory,	our	vocabulary	size	could	be	equal	to	the	number
of	unique	words	in	our	entire	dataset.	However,	this	would	lead	to	very	large	input	arrays	of	mostly	zeros,
since	many	words	could	be	unique	to	a	single	question.	Instead,	we’ll	want	to	choose	a	vocabulary	size
small	enough	to	include	key,	recurring	words	that	convey	meaning	for	our	prediction	task,	but	big	enough
that	our	vocabulary	isn’t	limited	to	words	found	in	nearly	every	question	(like	“the,”	“is,”	“and,”	etc.).

Each	input	to	our	model	will	then	be	an	array	the	size	of	our	vocabulary.	This	BOW	representation
therefore	entirely	disregards	words	that	aren’t	included	in	our	vocabulary.	There	isn’t	a	magic	number	or
percentage	for	choosing	vocabulary	size—it’s	helpful	to	try	a	few	and	see	which	performs	best	on	our
model.

To	understand	BOW	encoding,	let’s	first	look	at	a	simplified	example.	For	this	example,	let’s	say	we’re
predicting	the	tag	of	a	Stack	Overflow	question	from	a	list	of	three	possible	tags:	“pandas,”	“keras,”	and
“matplotlib.”	To	keep	things	simple,	assume	our	vocabulary	consists	of	only	the	10	words	listed	below:

dataframe

layer

series

graph

column

plot

color

axes

read_csv

activation

This	list	is	our	word	index,	and	every	input	we	feed	into	our	model	will	be	a	10-element	array	where	each
index	corresponds	with	one	of	the	words	listed	above.	For	example,	a	1	in	the	first	index	of	an	input	array
means	a	particular	question	contains	the	word	dataframe.	To	understand	BOW	encoding	from	the
perspective	of	our	model,	imagine	we’re	learning	a	new	language	and	the	10	words	above	are	the	only
words	we	know.	Every	“prediction”	we	make	will	be	based	solely	on	the	presence	or	absence	of	these	10
words	and	will	disregard	any	words	outside	this	list.

Therefore,	given	question	title,	“How	to	plot	dataframe	bar	graph,”	how	will	we	transform	it	into	a	BOW
representation?	First,	let’s	take	note	of	the	words	in	this	sentence	that	appear	in	our	vocabulary:	plot,
dataframe,	and	graph.	The	other	words	in	this	sentence	will	be	ignored	by	the	bag	of	words	approach.
Using	our	word	index	above,	this	sentence	becomes:

[1	0	0	1	0	1	0	0	0	0]

Note	that	the	1s	in	this	array	correspond	with	the	indices	of	dataframe,	graph,	and	plot,	respectively.	To
summarize,	Figure	2-21	shows	how	we	transformed	our	input	from	raw	text	to	a	BOW-encoded	array
based	on	our	vocabulary.

Keras	has	some	utility	methods	for	encoding	text	as	a	bag	of	words,	so	we	don’t	need	to	write	the	code	for
identifying	the	top	words	from	our	text	corpus	and	encoding	raw	text	into	multi-hot	arrays	from	scratch.

Figure	2-21.	Raw	input	text	→	identifying	words	present	in	this	text	from	our	vocabulary	→
transforming	to	a	multi-hot	BOW	encoding.

Given	that	there	are	two	different	approaches	for	representing	text
(Embedding	and	BOW),	which	approach	should	we	choose	for	a	given
task?	As	with	many	aspects	of	machine	learning,	this	depends	on	our
dataset,	the	nature	of	our	prediction	task,	and	the	type	of	model	we’re
planning	to	use.

Embeddings	add	an	extra	layer	to	our	model	and	provide	extra	information
about	word	meaning	that	is	not	available	from	the	BOW	encoding.
However,	embeddings	require	training	(unless	we	can	use	a	pre-trained
embedding	for	our	problem).	While	a	deep	learning	model	may	achieve
higher	accuracy,	we	can	also	try	using	BOW	encoding	in	a	linear
regression	or	decision-tree	model	using	frameworks	like	scikit-learn	or

XGBoost.	Using	BOW	encoding	with	a	simpler	model	type	can	be	useful
for	fast	prototyping	or	to	verify	that	the	prediction	task	we’ve	chosen	will
work	on	our	dataset.	Unlike	embeddings,	BOW	doesn’t	take	into	account
the	order	or	meaning	of	words	in	a	text	document.	If	either	of	these	are
important	to	our	prediction	task,	embeddings	may	be	the	best	approach.

There	may	also	be	benefits	to	building	a	deep	model	that	combines	both
bag	of	words	and	text	embedding	representations	to	extract	more	patterns
from	our	data.	To	do	this,	we	can	use	the	Multimodal	Input	approach,
except	that	instead	of	concatenating	text	and	tabular	features,	we	can
concatenate	the	Embedding	and	BOW	representations	(see	code	on
GitHub).	Here,	the	shape	of	our	Input	layer	would	be	the	vocabulary	size
of	the	BOW	representation.	Some	benefits	of	representing	text	in	multiple
ways	include:

BOW	encoding	provides	strong	signals	for	the	most	significant
words	present	in	our	vocabulary,	while	embeddings	can	identify
relationships	between	words	in	a	much	larger	vocabulary.

If	we	have	text	that	switches	between	languages,	we	can	build
embeddings	(or	BOW	encodings)	for	each	one	and	concatenate
them.

Embeddings	can	encode	the	frequency	of	words	in	text,	where	the
BOW	treats	the	presence	of	each	word	as	a	boolean	value.	Both
representations	are	valuable.

BOW	encoding	can	identify	patterns	between	reviews	that	all
contain	the	word	“amazing,”	while	an	embedding	can	learn	to
correlate	the	phrase	“not	amazing”	with	a	below-average	review.
Again,	both	of	these	representations	are	valuable.

Extracting	tabular	features	from	text

In	addition	to	encoding	raw	text	data,	there	are	often	other	characteristics

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/mixed_representation.ipynb

of	text	that	can	be	represented	as	tabular	features.	Let’s	say	we	are
building	a	model	to	predict	whether	or	not	a	Stack	Overflow	question	will
get	a	response.	Various	factors	about	the	text	but	unrelated	to	the	exact
words	themselves	may	be	relevant	to	training	a	model	on	this	task.	For
example,	maybe	the	length	of	a	question	or	the	presence	of	a	question
mark	influences	the	likelihood	of	an	answer.	However,	when	we	create	an
embedding,	we	usually	truncate	the	words	to	a	certain	length.	The	actual
length	of	a	question	is	lost	in	that	data	representation.	Similarly,
punctuation	is	often	removed.	We	can	use	the	Multimodal	Input	design
pattern	to	bring	back	this	lost	information	to	the	model.

In	the	following	query,	we’ll	extract	some	tabular	features	from	the
title	field	of	the	Stack	Overflow	dataset	to	predict	whether	or	not	a
question	will	get	an	answer:

SELECT

		LENGTH(title)	AS	title_len,

		ARRAY_LENGTH(SPLIT(title,	"	"))	AS	word_count,

		ENDS_WITH(title,	"?")	AS	ends_with_q_mark,

IF

		(answer_count	>	0,

				1,

				0)	AS	is_answered,

FROM

		`bigquery-public-data.stackoverflow.posts_questions`

This	results	in	the	following:

Row title_len word_count ends_with_q_mark is_answered

1 84 14 true 0

2 104 16 false 0

3 85 19 true 1

4 88 14 false 1

4 88 14 false 1

5 17 3 false 1

In	addition	to	these	features	extracted	directly	from	a	question’s	title,	we
could	also	represent	metadata	about	the	question	as	features.	For	example,
we	could	add	features	representing	the	number	of	tags	the	question	had
and	the	day	of	the	week	it	was	posted.	We	could	then	combine	these
tabular	features	with	our	encoded	text	and	feed	both	representations	into
our	model	using	Keras’s	Concatenate	layer	to	combine	the	BOW-encoded
text	array	with	the	tabular	metadata	describing	our	text.

MULTIMODAL	REPRESENTATION	OF	IMAGES

Similar	to	our	analysis	of	embeddings	and	BOW	encoding	for	text,	there
are	many	ways	to	represent	image	data	when	preparing	it	for	an	ML
model.	Like	raw	text,	images	cannot	be	fed	directly	into	a	model	and	need
to	be	transformed	into	a	numerical	format	that	the	model	can	understand.
We’ll	start	by	discussing	some	common	approaches	to	representing	image
data:	as	pixel	values,	as	sets	of	tiles,	and	as	sets	of	windowed	sequences.
The	Multimodal	Input	design	pattern	provides	a	way	to	use	more	than	one
representation	of	an	image	in	our	model.

Images	as	pixel	values

At	their	core,	images	are	arrays	of	pixel	values.	A	black	and	white	image,
for	example,	contains	pixel	values	ranging	from	0	to	255.	We	could
therefore	represent	a	28×28-pixel	black-and-white	image	in	a	model	as	a
28×28	array	with	integer	values	ranging	from	0	to	255.	In	this	section,
we’ll	be	referencing	the	MNIST	dataset,	a	popular	ML	dataset	that
includes	images	of	handwritten	digits.

With	the	Sequential	API,	we	can	represent	our	MNIST	images	of
pixel	values	using	a	Flatten	layer,	which	flattens	the	image	into	a	one-
dimensional	784	(28	*	28)	element	array:

layers.Flatten(input_shape=(28,	28))

For	color	images,	this	gets	more	complex.	Each	pixel	in	an	RGB	color
image	has	three	values—one	for	red,	green,	and	blue.	If	our	images	in	the
example	above	were	instead	color,	we’d	add	a	third	dimension	to	the
model’s	input_shape	such	that	it	would	be:

layers.Flatten(input_shape=(28,	28,	3))

While	representing	images	as	arrays	of	pixel	values	works	well	for	simple
images	like	the	grayscale	ones	in	the	MNIST	dataset,	it	starts	to	break
down	when	we	introduce	images	with	more	edges	and	shapes	throughout.
When	a	network	is	fed	with	all	of	the	pixels	in	an	image	at	once,	it’s	hard
for	it	to	focus	on	smaller	areas	of	adjacent	pixels	that	contain	important
information.

Images	as	tiled	structures

We	need	a	way	to	represent	more	complex,	real-world	images	that	will
enable	our	model	to	extract	meaningful	details	and	understand	patterns.	If
we	feed	the	network	only	small	pieces	of	an	image	at	a	time,	it’ll	be	more
likely	to	identify	things	like	spatial	gradients	and	edges	present	in
neighboring	pixels.	A	common	model	architecture	for	accomplishing	this
is	a	convolutional	neural	network	(CNN).

CONVOLUTIONAL	NEURAL	NETWORK	LAYERS
Take	a	look	at	Figure	2-22.	In	this	example,	we’ve	got	a	4×4	grid	where	each	square	represents	pixel
values	on	our	image.	We	then	use	max	pooling	to	take	the	largest	value	of	each	grid	and	generate	a

resulting,	smaller	matrix.	By	dividing	our	image	into	a	grid	of	tiles,	our	model	is	able	to	extract	key	insights
from	each	region	of	an	image	at	different	levels	of	granularity.

Figure	2-22.	Max	pooling	on	a	single	4×4	slice	of	image	data.

Figure	2-22	uses	a	kernel	size	of	(2,	2).	Kernel	size	refers	to	the	size	of	each	chunk	of	our	image.	The
number	of	spaces	our	filter	moves	before	creating	its	next	chunk,	also	known	as	stride,	is	2.	Because	our
stride	is	equal	to	the	size	of	our	kernel,	the	chunks	created	do	not	overlap.

While	this	tiling	method	preserves	more	detail	than	representing	images	as	arrays	of	pixel	values,	quite	a
bit	of	information	is	lost	after	each	pooling	step.	In	the	diagram	above,	the	next	pooling	step	would	produce
a	scalar	value	of	8,	taking	our	matrix	from	4	×4	to	a	single	value	in	just	two	steps.	In	a	real-world	image,

you	can	imagine	how	this	might	bias	a	model	to	focus	on	areas	with	dominant	pixel	values	while	losing
important	details	that	may	surround	these	areas.

How	can	we	build	on	this	idea	of	splitting	images	into	smaller	chunks,	while	still	preserving	important
details	in	images?	We’ll	do	this	by	making	these	chunks	overlap.	If	the	example	in	Figure	2-22	had	instead
used	a	stride	of	1,	the	output	would	instead	be	a	3×3	matrix	(Figure	2-23).

Figure	2-23.	Using	overlapping	windows	for	max	pooling	on	a	4×4	pixel	grid.

We	could	then	transform	this	into	a	2×2	grid	(Figure	2-24).

Figure	2-24.	Transforming	the	3×3	grid	into	2×2	with	sliding	windows	and	max	pooling.

We	end	with	a	final	scalar	value	of	127.	While	the	end	value	is	the	same,	you	can	see	how	the	intermediate
steps	preserved	more	detail	from	the	original	matrix.

Keras	provides	convolution	layers	to	build	models	that	split	images	into
smaller,	windowed	chunks.	Let’s	say	we’re	building	a	model	to	classify
28×28	color	images	as	either	“dog”	or	“cat.”	Since	these	images	are	color,
each	image	will	be	represented	as	a	28×28×3-dimensional	array,	since
each	pixel	has	three	color	channels.	Here’s	how	we’d	define	the	inputs	to
this	model	using	a	convolution	layer	and	the	Sequential	API:

Conv2D(filters=16,	kernel_size=3,	activation='relu',	

input_shape=(28,28,3))

In	this	example,	we’re	dividing	our	input	images	into	3×3	chunks	before
passing	them	through	a	max	pooling	layer.	Building	a	model	architecture
that	splits	images	into	chunks	of	sliding	windows	allows	our	model	to
recognize	more	granular	details	in	an	image	like	edges	and	shapes.

Combining	different	image	representations

In	addition,	as	with	the	bag	of	words	and	text	embedding,	it	may	be	useful
to	represent	the	same	image	data	in	multiple	ways.	Again,	we	can
accomplish	this	with	the	Keras	functional	API.

Here’s	how	we’d	combine	our	pixel	values	with	the	sliding	window
representation	using	the	Keras	Concatenate	layer:

#	Define	image	input	layer	(same	shape	for	both	pixel	and	tiled	

#	representation)

image_input	=	Input(shape=(28,28,3))

#	Define	pixel	representation

pixel_layer	=	Flatten()(image_input)

#	Define	tiled	representation

tiled_layer	=	Conv2D(filters=16,	kernel_size=3,	

																					activation='relu')(image_input)

tiled_layer	=	MaxPooling2D()(tiled_layer)

tiled_layer	=	tf.keras.layers.Flatten()(tiled_layer)

#	Concatenate	into	a	single	layer

merged_image_layers	=	keras.layers.concatenate([pixel_layer,	

tiled_layer])

To	define	a	model	that	accepts	that	multimodal	input	representation,	we
can	then	feed	our	concatenated	layer	into	our	output	layer:

merged_dense	=	Dense(16,	activation='relu')(merged_image_layers)

merged_output	=	Dense(1)(merged_dense)

model	=	Model(inputs=image_input,	outputs=merged_output)

Choosing	which	image	representation	to	use	or	whether	to	use	multimodal
representations	depends	largely	on	the	type	of	image	data	we’re	working
with.	In	general,	the	more	detailed	our	images,	the	more	likely	it	is	that
we’ll	want	to	represent	them	as	tiles	or	sliding	windows	of	tiles.	For	the
MNIST	dataset,	representing	images	as	pixel	values	alone	may	suffice.
With	complex	medical	images,	on	the	other	hand,	we	may	see	increased
accuracy	by	combining	multiple	representations.	Why	combine	multiple
image	representations?	Representing	images	as	pixel	values	allows	the
model	to	identify	higher-level	focus	points	in	an	image	like	dominant,
high-contrast	objects.	Tiled	representations,	on	the	other	hand,	help
models	identify	more	granular,	lower-contrast	edges	and	shapes.

Using	images	with	metadata

Earlier	we	discussed	different	types	of	metadata	that	might	be	associated
with	text,	and	how	to	extract	and	represent	this	metadata	as	tabular
features	for	our	model.	We	can	also	apply	this	concept	to	images.	To	do
this,	let’s	return	to	the	example	referenced	in	Figure	2-19	of	a	model	using
footage	of	an	intersection	to	predict	whether	or	not	it	contains	a	traffic
violation.	Our	model	can	extract	many	patterns	from	the	traffic	images	on
their	own,	but	there	may	be	other	data	available	that	could	improve	our
model’s	accuracy.	For	example,	maybe	certain	behavior	(e.g.,	a	right	turn
on	red)	is	not	permitted	during	rush	hour	but	is	OK	at	other	times	of	day.
Or	maybe	drivers	are	more	likely	to	violate	traffic	laws	in	bad	weather.	If
we’re	collecting	image	data	from	multiple	intersections,	knowing	the
location	of	our	image	might	also	be	useful	to	our	model.

We’ve	now	identified	three	additional	tabular	features	that	could	enhance
our	image	model:

Time	of	day

Weather

Location

Next,	let’s	think	about	possible	representations	for	each	of	these	features.
We	could	represent	time	as	an	integer	indicating	the	hour	of	the	day.	This
might	help	us	identify	patterns	associated	with	high-traffic	times	like	rush
hour.	In	the	context	of	this	model,	it	may	be	more	useful	to	know	whether
or	not	it	was	dark	when	the	image	was	taken.	In	this	case,	we	could
represent	time	as	a	boolean	feature.

Weather	can	also	be	represented	in	various	ways,	as	both	numeric	and
categorical	values.	We	could	include	temperature	as	a	feature,	but	in	this
case,	visibility	might	be	more	useful.	Another	option	for	representing
weather	is	through	a	categorical	variable	indicating	the	presence	of	rain	or
snow.

If	we’re	collecting	data	from	many	locations,	we’d	likely	want	to	encode
this	as	a	feature	as	well.	This	would	make	most	sense	as	a	categorical
feature,	and	could	even	be	multiple	features	(city,	country,	state,	etc.)
depending	on	how	many	locations	we’re	collecting	footage	from.

For	this	example,	let’s	say	we’d	like	to	use	the	following	tabular	features:

Time	as	hour	of	the	day	(integer)

Visibility	(float)

Inclement	weather	(categorical:	rain,	snow,	none)

Location	ID	(categorical	with	five	possible	locations)

Here’s	what	a	subset	of	this	dataset	might	look	like	for	the	three	examples:

data	=	{

				'time':	[9,10,2],

				'visibility':	[0.2,	0.5,	0.1],

				'inclement_weather':	[[0,0,1],	[0,0,1],	[1,0,0]],

				'location':	[[0,1,0,0,0],	[0,0,0,1,0],	[1,0,0,0,0]]	

}

We	could	then	combine	these	tabular	features	into	a	single	array	for	each
example,	so	that	our	model’s	input	shape	would	be	10.	The	input	array	for
the	first	example	would	look	like	the	following:

[9,	0.2,	0,	0,	1,	0,	1,	0,	0,	0]

We	could	feed	this	input	into	a	Dense	fully	connected	layer,	and	the	output
of	our	model	would	be	a	single	value	between	0	and	1	indicating	whether
or	not	the	instance	contains	a	traffic	violation.	To	combine	this	with	our
image	data,	we’ll	use	a	similar	approach	to	what	we	discussed	for	text
models.	First,	we’d	define	a	convolution	layer	to	handle	our	image	data,
then	a	Dense	layer	to	handle	our	tabular	data,	and	finally	we’d	concatenate
both	into	a	single	output.

This	approach	is	outlined	in	Figure	2-25.

Figure	2-25.	Concatenating	layers	to	handle	image	and	tabular	metadata	features.

MULTIMODAL	FEATURE	REPRESENTATIONS	AND
MODEL	INTERPRETABILITY

Deep	learning	models	are	inherently	difficult	to	explain.	If	we	build	a
model	that	achieves	99%	accuracy,	we	still	don’t	know	exactly	how	our
model	is	making	predictions	and	consequently,	if	the	way	it’s	making
those	predictions	is	correct.	For	example,	let’s	say	we	train	a	model	on
images	of	petri	dishes	taken	in	a	lab	that	achieves	a	high	accuracy	score.
These	images	also	contain	annotations	from	the	scientist	who	took	the
pictures.	What	we	don’t	know	is	that	the	model	is	incorrectly	using	the
annotations	to	make	its	predictions,	rather	than	the	contents	of	the	petri
dishes.

There	are	several	techniques	for	explaining	image	models	that	can
highlight	the	pixels	that	signaled	a	model’s	prediction.	When	we	combine
multiple	data	representations	in	a	single	model,	however,	these	features
become	dependent	on	one	another.	As	a	result,	it	can	be	difficult	to
explain	how	the	model	is	making	predictions.	Explainability	is	covered	in
Chapter	7.

Summary
In	this	chapter,	we	learned	different	approaches	to	representing	data	for
our	model.	We	started	by	looking	at	how	to	handle	numerical	inputs,	and
how	scaling	these	inputs	can	speed	up	model	training	time	and	improve
accuracy.	Then	we	explored	how	to	do	feature	engineering	on	categorical
inputs,	specifically	with	one-hot	encoding	and	using	arrays	of	categorical
values.

Throughout	the	rest	of	the	chapter,	we	discussed	four	design	patterns	for
representing	data.	The	first	was	the	Hashed	Feature	design	pattern,	which
involves	encoding	categorical	inputs	as	unique	strings.	We	explored	a	few
different	approaches	to	hashing	using	the	airport	dataset	in	BigQuery.	The
second	pattern	we	looked	at	in	this	chapter	was	Embeddings,	a	technique
for	representing	high-cardinality	data	such	as	inputs	with	many	possible
categories	or	text	data.	Embeddings	represent	data	in	multidimensional
space,	where	the	dimension	is	dependent	on	our	data	and	prediction	task.
Next	we	looked	at	Feature	Crosses,	an	approach	that	joins	two	features	to
extract	relationships	that	may	not	have	been	easily	captured	by	encoding
the	features	on	their	own.	Finally,	we	looked	at	Multimodal	Input
representations	by	addressing	the	problem	of	how	to	combine	inputs	of
different	types	into	the	same	model,	and	how	a	single	feature	can	be
represented	multiple	ways.

This	chapter	focused	on	preparing	input	data	for	our	models.	In	the	next
chapter,	we’ll	focus	on	model	output	by	diving	into	different	approaches
for	representing	our	prediction	task.

1 	Here,	the	learned	data	representation	consists	of	baby	weight	as	the	input	variable,	the
less	than	operator,	and	the	threshold	of	3	kg.

2 	If	twins,	the	plurality	is	2.	If	triplets,	the	plurality	is	3.

3 	This	dataset	is	available	in	BigQuery:	bigquery-public-data.samples.natality.

4 	This	dataset	is	available	in	BigQuery:	bigquery-public-data.hacker_news.stories.

5 	The	feature_cross.ipynb	notebook	in	the	book’s	repository	of	this	book	will	help	you	follow
the	discussion	better.

6 	Full	code	is	in	02_data_representation/feature_cross.ipynb	in	the	code	repository	of	this
book.

7 	We	use	the	term	“tabular	data”	to	refer	to	numerical	and	categorical	inputs,	but	not	free-form
text.	You	can	think	of	tabular	data	as	anything	you	might	commonly	find	in	a	spreadsheet.

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/02_data_representation/feature_cross.ipynb

For	example,	values	like	age,	type	of	car,	price,	or	number	of	hours	worked.	Tabular	data
does	not	include	free-form	text	like	descriptions	or	reviews.

8 	When	we	pass	an	encoded	30-word	array	to	our	model,	the	Keras	layer	will	transform	it	into
a	64-dimensional	embedding	representation,	so	we’ll	have	a	[64×30]	matrix	representing	the
review.

9 	The	starting	point	is	an	array	that	is	1,920	numbers.

10 	See	02_data_representation/mixed_representation.ipynb	in	the	code	repository	of	this	book
for	the	full	model	code.

11 	This	dataset	is	available	in	BigQuery:	bigquery-public-data.stackoverflow.posts_questions.

Chapter	3.	Problem
Representation	Design
Patterns

Chapter	2	looked	at	design	patterns	that	catalog	the	myriad	ways	in	which
inputs	to	machine	learning	models	can	be	represented.	This	chapter	looks
at	different	types	of	machine	learning	problems	and	analyzes	how	the
model	architectures	vary	depending	on	the	problem.

The	input	and	the	output	types	are	two	key	factors	impacting	the	model
architecture.	For	instance,	the	output	in	supervised	machine	learning
problems	can	vary	depending	on	whether	the	problem	being	solved	is	a
classification	or	regression	problem.	Special	neural	network	layers	exist
for	specific	types	of	input	data:	convolutional	layers	for	images,	speech,
text,	and	other	data	with	spatiotemporal	correlation,	recurrent	networks	for
sequential	data,	and	so	on.	A	huge	literature	has	arisen	around	special
techniques	such	as	max	pooling,	attention,	and	so	forth	on	these	types	of
layers.	In	addition,	special	classes	of	solutions	have	been	crafted	for
commonly	occurring	problems	like	recommendations	(such	as	matrix
factorization)	or	time-series	forecasting	(for	example,	ARIMA).	Finally,	a
group	of	simpler	models	together	with	common	idioms	can	be	used	to
solve	more	complex	problems—for	example,	text	generation	often
involves	a	classification	model	whose	outputs	are	postprocessed	using	a
beam	search	algorithm.

To	limit	our	discussion	and	stay	away	from	areas	of	active	research,	we

will	ignore	patterns	and	idioms	associated	with	specialized	machine
learning	domains.	Instead,	we	will	focus	on	regression	and	classification
and	examine	patterns	with	problem	representation	in	just	these	two	types
of	ML	models.

The	Reframing	design	pattern	takes	a	solution	that	is	intuitively	a
regression	problem	and	poses	it	as	a	classification	problem	(and	vice
versa).	The	Multilabel	design	pattern	handles	the	case	that	training
examples	can	belong	to	more	than	one	class.	The	Cascade	design	pattern
addresses	situations	where	a	machine	learning	problem	can	be	profitably
broken	into	a	series	(or	cascade)	of	ML	problems.	The	Ensemble	design
pattern	solves	a	problem	by	training	multiple	models	and	aggregating	their
responses.	The	Neutral	Class	design	pattern	looks	at	how	to	handle
situations	where	experts	disagree.	The	Rebalancing	design	pattern
recommends	approaches	to	handle	highly	skewed	or	imbalanced	data.

Design	Pattern	5:	Reframing
The	Reframing	design	pattern	refers	to	changing	the	representation	of	the
output	of	a	machine	learning	problem.	For	example,	we	could	take
something	that	is	intuitively	a	regression	problem	and	instead	pose	it	as	a
classification	problem	(and	vice	versa).

Problem

The	first	step	of	building	any	machine	learning	solution	is	framing	the
problem.	Is	this	a	supervised	learning	problem?	Or	unsupervised?	What
are	the	features?	If	it	is	a	supervised	problem,	what	are	the	labels?	What
amount	of	error	is	acceptable?	Of	course,	the	answers	to	these	questions
must	be	considered	in	context	with	the	training	data,	the	task	at	hand,	and

the	metrics	for	success.

For	example,	suppose	we	wanted	to	build	a	machine	learning	model	to
predict	future	rainfall	amounts	in	a	given	location.	Starting	broadly,	would
this	be	a	regression	or	classification	task?	Well,	since	we’re	trying	to
predict	rainfall	amount	(for	example,	0.3	cm),	it	makes	sense	to	consider
this	as	a	time-series	forecasting	problem:	given	the	current	and	historical
climate	and	weather	patterns,	what	amount	of	rainfall	should	we	expect	in
a	given	area	in	the	next	15	minutes?	Alternately,	because	the	label	(the
amount	of	rainfall)	is	a	real	number,	we	could	build	a	regression	model.
As	we	start	to	develop	and	train	our	model,	we	find	(perhaps	not
surprisingly)	that	weather	prediction	is	harder	than	it	sounds.	Our
predicted	rainfall	amounts	are	all	off	because,	for	the	same	set	of	features,
it	sometimes	rains	0.3	cm	and	other	times	it	rains	0.5	cm.	What	should	we
do	to	improve	our	predictions?	Should	we	add	more	layers	to	our
network?	Or	engineer	more	features?	Perhaps	more	data	will	help?	Maybe
we	need	a	different	loss	function?

Any	of	these	adjustments	could	improve	our	model.	But	wait.	Is
regression	the	only	way	we	can	pose	this	task?	Perhaps	we	can	reframe
our	machine	learning	objective	in	a	way	that	improves	our	task
performance.

Solution

The	core	issue	here	is	that	rainfall	is	probabilistic.	For	the	same	set	of
features,	it	sometimes	rains	0.3	cm	and	other	times	it	rains	0.5	cm.	Yet,
even	if	a	regression	model	were	able	to	learn	the	two	possible	amounts,	it
is	limited	to	predicting	only	a	single	number.

Instead	of	trying	to	predict	the	amount	of	rainfall	as	a	regression	task,	we

can	reframe	our	objective	as	a	classification	problem.	There	are	different
ways	this	can	be	accomplished.	One	approach	is	to	model	a	discrete
probability	distribution,	as	shown	in	Figure	3-1.	Instead	of	predicting
rainfall	as	a	real-valued	output,	we	model	the	output	as	a	multiclass
classification	giving	the	probability	that	the	rainfall	in	the	next	15	minutes
is	within	a	certain	range	of	rainfall	amounts.

Figure	3-1.	Instead	of	predicting	precipitation	as	a	regression	output,	we	can	instead	model

discrete	probability	distribution	using	a	multiclass	classification.

Both	the	regression	approach	and	this	reframed-as-classification	approach
give	a	prediction	of	the	rainfall	for	the	next	15	minutes.	However,	the
classification	approach	allows	the	model	to	capture	the	probability
distribution	of	rainfall	of	different	quantities	instead	of	having	to	choose
the	mean	of	the	distribution.	Modeling	a	distribution	in	this	way	is
advantageous	since	precipitation	does	not	exhibit	the	typical	bell-shaped
curve	of	a	normal	distribution	and	instead	follows	a	Tweedie	distribution,
which	allows	for	a	preponderance	of	points	at	zero.	Indeed,	that’s	the
approach	taken	in	a	Google	Research	paper	that	predicts	precipitation	rates
in	a	given	location	using	a	512-way	categorical	distribution.	Other	reasons
that	modeling	a	distribution	can	be	advantageous	is	when	the	distribution
is	bimodal,	or	even	when	it	is	normal	but	with	a	large	variance.	A	recent
paper	that	beats	all	benchmarks	at	predicting	protein	folding	structure	also
predicts	the	distance	between	amino	acids	as	a	64-way	classification
problem	where	the	distances	are	bucketized	into	64	bins.

Another	reason	to	reframe	a	problem	is	when	the	objective	is	better	in	the
other	type	of	model.	For	example,	suppose	we	are	trying	to	build	a
recommendation	system	for	videos.	A	natural	way	to	frame	this	problem	is
as	a	classification	problem	of	predicting	whether	a	user	is	likely	to	watch	a
certain	video.	This	framing,	however,	can	lead	to	a	recommendation
system	that	prioritizes	click	bait.	It	might	be	better	to	reframe	this	into	a
regression	problem	of	predicting	the	fraction	of	the	video	that	will	be
watched.

Why	It	Works

Changing	the	context	and	reframing	the	task	of	a	problem	can	help	when
building	a	machine	learning	solution.	Instead	of	learning	a	single	real

https://oreil.ly/C8JfK
https://oreil.ly/PGAEw
https://oreil.ly/-Hi3k

number,	we	relax	our	prediction	target	to	be	instead	a	discrete	probability
distribution.	We	lose	a	little	precision	due	to	bucketing,	but	gain	the
expressiveness	of	a	full	probability	density	function	(PDF).	The
discretized	predictions	provided	by	the	classification	model	are	more
adept	at	learning	a	complex	target	than	the	more	rigid	regression	model.

An	added	advantage	of	this	classification	framing	is	that	we	obtain
posterior	probability	distribution	of	our	predicted	values,	which	provides
more	nuanced	information.	For	example,	suppose	the	learned	distribution
is	bimodal.	By	modeling	a	classification	as	a	discrete	probability
distribution,	the	model	is	able	to	capture	the	bimodal	structure	of	the
predictions,	as	Figure	3-2	illustrates.	Whereas,	if	only	predicting	a	single
numeric	value,	this	information	would	be	lost.	Depending	on	the	use	case,
this	could	make	the	task	easier	to	learn	and	substantially	more
advantageous.

Figure	3-2.	Reframing	a	classification	task	to	model	a	probability	distribution	allows	the
predictions	to	capture	bimodal	output.	The	prediction	is	not	limited	to	a	single	value	as	in	a

regression.

CAPTURING	UNCERTAINTY

Let’s	look	again	at	the	natality	dataset	and	the	task	of	predicting	baby
weight.	Since	baby	weight	is	a	positive	real	value,	this	is	intuitively	a
regression	problem.	However,	notice	that	for	a	given	set	of	inputs,
weight_pounds	(the	label)	can	take	many	different	values.	We	see	that
the	distribution	of	babies’	weights	for	a	specific	set	of	input	values	(male
babies	born	to	25-year-old	mothers	at	38	weeks)	approximately	follows	a
normal	distribution	centered	at	about	7.5	pounds.	The	code	to	produce	the
graph	in	Figure	3-3	can	be	found	in	the	repository	for	this	book.

https://github.com/GoogleCloudPlatform/ml-design-patterns/03_problem_representation/reframing.ipynb

Figure	3-3.	Given	a	specific	set	of	inputs	(for	example,	male	babies	born	to	25-year-old	mothers	at
38	weeks)	the	weight_pounds	variable	takes	a	range	of	values,	approximately	following	a	normal

distribution	centered	at	7.5	lbs.

However,	notice	the	width	of	the	distribution—even	though	the
distribution	peaks	at	7.5	pounds,	there	is	a	nontrivial	likelihood	(actually
33%)	that	a	given	baby	is	less	than	6.5	pounds	or	more	than	8.5	pounds!
The	width	of	this	distribution	indicates	the	irreducible	error	inherent	to	the
problem	of	predicting	baby	weight.	Indeed,	the	best	root	mean	square
error	we	can	obtain	on	this	problem,	if	we	frame	it	as	a	regression
problem,	is	the	standard	deviation	of	the	distribution	seen	in	Figure	3-3.

If	we	frame	this	as	a	regression	problem,	we’d	have	to	state	the	prediction
result	as	7.5	+/-	1.0	(or	whatever	the	standard	deviation	is).	Yet,	the	width
of	the	distribution	will	vary	for	different	combinations	of	inputs,	and	so
learning	the	width	is	another	machine	learning	problem	in	and	of	itself.
For	example,	at	the	36th	week,	for	mothers	of	the	same	age,	the	standard
deviation	is	1.16	pounds.	Quantiles	regression,	covered	later	in	the	pattern
discussion,	tries	to	do	exactly	this	but	in	a	nonparametric	way.

TIP
Had	the	distribution	been	multimodal	(with	multiple	peaks),	the	case	for	reframing	the	problem
as	a	classification	would	be	even	stronger.	However,	it	is	helpful	to	realize	that	because	of	the
law	of	large	numbers,	as	long	as	we	capture	all	of	the	relevant	inputs,	many	of	the	distributions
we	will	encounter	on	large	datasets	will	be	bell-shaped,	although	other	distributions	are	possible.
The	wider	the	bell	curve,	and	the	more	this	width	varies	at	different	values	of	inputs,	the	more
important	it	is	to	capture	uncertainty	and	the	stronger	the	case	for	reframing	the	regression
problem	as	a	classification	one.

By	reframing	the	problem,	we	train	the	model	as	a	multiclass	classification
that	learns	a	discrete	probability	distribution	for	the	given	training

examples.	These	discretized	predictions	are	more	flexible	in	terms	of
capturing	uncertainty	and	better	able	to	approximate	the	complex	target
than	a	regression	model.	At	inference	time,	the	model	then	predicts	a
collection	of	probabilities	corresponding	to	these	potential	outputs.	That
is,	we	obtain	a	discrete	PDF	giving	the	relative	likelihood	of	any	specific
weight.	Of	course,	care	has	to	be	taken	here—classification	models	can	be
hugely	uncalibrated	(such	as	the	model	being	overly	confident	and
wrong).

CHANGING	THE	OBJECTIVE

In	some	scenarios,	reframing	a	classification	task	as	a	regression	could	be
beneficial.	For	example,	suppose	we	had	a	large	movie	database	with
customer	ratings	on	a	scale	from	1	to	5,	for	all	movies	that	the	user	had
watched	and	rated.	Our	task	is	to	build	a	machine	learning	model	that	will
be	used	to	serve	recommendations	to	our	users.

Viewed	as	a	classification	task,	we	could	consider	building	a	model	that
takes	as	input	a	user_id,	along	with	that	user’s	previous	video	watches
and	ratings,	and	predicts	which	movie	from	our	database	to	recommend
next.	However,	it	is	possible	to	reframe	this	problem	as	a	regression.
Instead	of	the	model	having	a	categorical	output	corresponding	to	a	movie
in	our	database,	our	model	could	instead	carry	out	multitask	learning,	with
the	model	learning	a	number	of	key	characteristics	(such	as	income,
customer	segment,	and	so	on)	of	users	who	are	likely	to	watch	a	given
movie.

Reframed	as	a	regression	task,	the	model	now	predicts	the	user-space
representation	for	a	given	movie.	To	serve	recommendations,	we	choose
the	set	of	movies	that	are	closest	to	the	known	characteristics	of	a	user.	In
this	way,	instead	of	the	model	providing	the	probability	that	a	user	will

like	a	movie	as	in	a	classification,	we	would	get	a	cluster	of	movies	that
have	been	watched	by	users	like	this	user.

By	reframing	the	classification	problem	of	recommending	movies	to	be	a
regression	of	user	characteristics,	we	gain	the	ability	to	easily	adapt	our
recommendation	model	to	recommend	trending	videos,	or	classic	movies,
or	documentaries	without	having	to	train	a	separate	classification	model
each	time.

This	type	of	model	approach	is	also	useful	when	the	numerical
representation	has	an	intuitive	interpretation;	for	example,	a	latitude	and
longitude	pair	can	be	used	instead	of	urban	area	predictions.	Suppose	we
wanted	to	predict	which	city	will	experience	the	next	viral	outbreak	or
which	New	York	neighborhood	will	have	a	real	estate	pricing	surge.	It
could	be	easier	to	predict	the	latitude	and	longitude	and	choose	the	city	or
neighborhood	closest	to	that	location,	rather	than	predicting	the	city	or
neighborhood	itself.

Trade-Offs	and	Alternatives

There	is	rarely	just	one	way	to	frame	a	problem,	and	it	is	helpful	to	be
aware	of	any	trade-offs	or	alternatives	of	a	given	implementation.	For
example,	bucketizing	the	output	values	of	a	regression	is	an	approach	to
reframing	the	problem	as	a	classification	task.	Another	approach	is
multitask	learning	that	combines	both	tasks	(classification	and	regression)
into	a	single	model	using	multiple	prediction	heads.	With	any	reframing
technique,	being	aware	of	data	limitations	or	the	risk	of	introducing	label
bias	is	important.

BUCKETIZED	OUTPUTS

The	typical	approach	to	reframing	a	regression	task	as	a	classification	is	to
bucketize	the	output	values.	For	example,	if	our	model	is	to	be	used	to
indicate	when	a	baby	might	need	critical	care	upon	birth,	the	categories	in
Table	3-1	could	be	sufficient.

Table	3-1.	Bucketized	outputs	for	baby	weight

Category Description

High	birth	weight More	than	8.8	lbs

Average	birth	weight Between	5.5	lbs	and	8.8	lbs

Low	birth	weight Between	3.31	lbs	and	5.5	lbs

Very	low	birth	weight Less	than	3.31	lbs

Our	regression	model	now	becomes	a	multiclass	classification.	Intuitively,
it	is	easier	to	predict	one	out	of	four	possible	categorical	cases	than	to
predict	a	single	value	from	the	continuum	of	real	numbers—just	as	it
would	be	easier	to	predict	a	binary	0	versus	1	target	for
is_underweight	instead	of	four	separate	categories	high_weight
versus	avg_weight	versus	low_weight	versus
very_low_weight.	By	using	categorical	outputs,	our	model	is
incentivized	less	for	getting	arbitrarily	close	to	the	actual	output	value
since	we’ve	essentially	changed	the	output	label	to	a	range	of	values
instead	of	a	single	real	number.

In	the	notebook	accompanying	this	section,	we	train	both	a	regression	and
a	multiclass	classification	model.	The	regression	model	achieves	an
RMSE	of	1.3	on	the	validation	set	while	the	classification	model	has	an
accuracy	of	67%.	Comparing	these	two	models	is	difficult	since	one
evaluation	metric	is	RMSE	and	the	other	is	accuracy.	In	the	end,	the

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/reframing.ipynb

design	decision	is	governed	by	the	use	case.	If	medical	decisions	are	based
on	bucketed	values,	then	our	model	should	be	a	classification	using	those
buckets.	However,	if	a	more	precise	prediction	of	baby	weight	is	needed,
then	it	makes	sense	to	use	the	regression	model.

OTHER	WAYS	OF	CAPTURING	UNCERTAINTY

There	are	other	ways	to	capture	uncertainty	in	regression.	A	simple
approach	is	to	carry	out	quantile	regression.	For	example,	instead	of
predicting	just	the	mean,	we	can	estimate	the	conditional	10th,	20th,	30th,
…,	90th	percentile	of	what	needs	to	be	predicted.	Quantile	regression	is	an
extension	of	linear	regression.	Reframing,	on	the	other	hand,	can	work
with	more	complex	machine	learning	models.

Another,	more	sophisticated	approach	is	to	use	a	framework	like
TensorFlow	Probability	to	carry	out	regression.	However,	we	have	to
explicitly	model	the	distribution	of	the	output.	For	example,	if	the	output
is	expected	to	be	normally	distributed	around	a	mean	that’s	dependent	on
the	inputs,	the	model’s	output	layer	would	be:

tfp.layers.DistributionLambda(lambda	t:	tfd.Normal(loc=t,	

scale=1))

On	the	other	hand,	if	we	know	the	variance	increases	with	the	mean,	we
might	be	able	to	model	it	using	the	lambda	function.	Reframing,	on	the
other	hand,	doesn’t	require	us	to	model	the	posterior	distribution.

TIP
When	training	any	machine	learning	model,	the	data	is	key.	More	complex	relationships
typically	require	more	training	data	examples	to	find	those	elusive	patterns.	With	that	in	mind,	it
is	important	to	consider	how	data	requirements	compare	for	regression	or	classification	models.
A	common	rule	of	thumb	for	classification	tasks	is	that	we	should	have	10	times	the	number	of

https://oreil.ly/AEtLG

model	features	for	each	label	category.	For	a	regression	model,	the	rule	of	thumb	is	50	times	the
number	of	model	features.	Of	course,	these	numbers	are	just	rough	heuristics	and	not	precise.
However,	the	intuition	is	that	regression	tasks	typically	require	more	training	examples.
Furthermore,	this	need	for	massive	data	only	increases	with	the	complexity	of	the	task.	Thus,
there	could	be	data	limitations	that	should	be	considered	when	considering	the	type	of	model
used	or,	in	the	case	of	classification,	the	number	of	label	categories.

PRECISION	OF	PREDICTIONS

When	thinking	of	reframing	a	regression	model	as	a	multiclass
classification,	the	width	of	the	bins	for	the	output	label	governs	the
precision	of	the	classification	model.	In	the	case	of	our	baby	weight
example,	if	we	needed	more	precise	information	from	the	discrete
probability	density	function,	we	would	need	to	increase	the	number	of	bins
of	our	categorical	model.	Figure	3-4	shows	how	the	discrete	probability
distributions	would	look	as	either	a	4-way	or	10-way	classification.

Figure	3-4.	The	precision	of	the	multiclass	classification	is	controlled	by	the	width	of	the	bins	for
the	label.

The	sharpness	of	the	PDF	indicates	the	precision	of	the	task	as	a
regression.	A	sharper	PDF	indicates	a	smaller	standard	deviation	of	the
output	distribution	while	a	wider	PDF	indicates	a	larger	standard	deviation
and	thus	more	variance.	For	a	very	sharp	density	function,	it’s	better	to
stick	with	a	regression	model	(see	Figure	3-5).

Figure	3-5.	The	precision	of	the	regression	is	indicated	by	the	sharpness	of	the	probability	density
function	for	a	fixed	set	of	input	values.

RESTRICTING	THE	PREDICTION	RANGE

Another	reason	to	reframe	the	problem	is	when	it	is	essential	to	restrict	the
range	of	the	prediction	output.	Let’s	say,	for	example,	that	realistic	output
values	for	a	regression	problem	are	in	the	range	[3,	20].	If	we	train	a

regression	model	where	the	output	layer	is	a	linear	activation	function,
there	is	always	the	possibility	that	the	model	predictions	will	fall	outside
this	range.	One	way	to	limit	the	range	of	the	output	is	to	reframe	the
problem.

Make	the	activation	function	of	the	last-but-one	layer	a	sigmoid	function
(which	is	typically	associated	with	classification)	so	that	it	is	in	the	range
[0,1]	and	have	the	last	layer	scale	these	values	to	the	desired	range:

MIN_Y	=		3

MAX_Y	=	20

input_size	=	10

inputs	=	keras.layers.Input(shape=(input_size,))

h1	=	keras.layers.Dense(20,	'relu')(inputs)

h2	=	keras.layers.Dense(1,	'sigmoid')(h1)		#	0-1	range

output	=	keras.layers.Lambda(

													lambda	y	:	(y*(MAX_Y-MIN_Y)	+	MIN_Y))(h2)	#	scaled

model	=	keras.Model(inputs,	output)

We	can	verify	(see	the	notebook	on	GitHub	for	full	code)	that	this	model
now	emits	numbers	in	the	range	[3,	20].	Note	that	because	the	output	is	a
sigmoid,	the	model	will	never	actually	hit	the	minimum	and	maximum	of
the	range,	and	only	get	quite	close	to	it.	When	we	trained	the	model	above
on	some	random	data,	we	got	values	in	the	range	[3.03,	19.99].

LABEL	BIAS

Recommendation	systems	like	matrix	factorization	can	be	reframed	in	the
context	of	neural	networks,	both	as	a	regression	or	classification.	One
advantage	to	this	change	of	context	is	that	a	neural	network	framed	as	a
regression	or	classification	model	can	incorporate	many	more	additional
features	outside	of	just	the	user	and	item	embeddings	learned	in	matrix
factorization.	So	it	can	be	an	appealing	alternative.

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/reframing.ipynb

However,	it	is	important	to	consider	the	nature	of	the	target	label	when
reframing	the	problem.	For	example,	suppose	we	reframed	our
recommendation	model	to	a	classification	task	that	predicts	the	likelihood
a	user	will	click	on	a	certain	video	thumbnail.	This	seems	like	a	reasonable
reframing	since	our	goal	is	to	provide	content	a	user	will	select	and	watch.
But	be	careful.	This	change	of	label	is	not	actually	in	line	with	our
prediction	task.	By	optimizing	for	user	clicks,	our	model	will	inadvertently
promote	click	bait	and	not	actually	recommend	content	of	use	to	the	user.

Instead,	a	more	advantageous	label	would	be	video	watch	time,	reframing
our	recommendation	as	a	regression	instead.	Or	perhaps	we	can	modify
the	classification	objective	to	predict	the	likelihood	that	a	user	will	watch
at	least	half	the	video	clip.	There	is	often	more	than	one	suitable	approach,
and	it	is	important	to	consider	the	problem	holistically	when	framing	a
solution.

WARNING
Be	careful	when	changing	the	label	and	training	task	of	your	machine	learning	model,	as	it	can
inadvertently	introduce	label	bias	into	your	solution.	Consider	again	the	example	of	video
recommendation	we	discussed	in	“Why	It	Works”.

MULTITASK	LEARNING

One	alternative	to	reframing	is	multitask	learning.	Instead	of	trying	to
choose	between	regression	or	classification,	do	both!	Generally	speaking,
multitask	learning	refers	to	any	machine	learning	model	in	which	more
than	one	loss	function	is	optimized.	This	can	be	accomplished	in	many
different	ways,	but	the	two	most	common	forms	of	multi	task	learning	in
neural	networks	is	through	hard	parameter	sharing	and	soft	parameter

sharing.

Parameter	sharing	refers	to	the	parameters	of	the	neural	network	being
shared	between	the	different	output	tasks,	such	as	regression	and
classification.	Hard	parameter	sharing	occurs	when	the	hidden	layers	of
the	model	are	shared	between	all	the	output	tasks.	In	soft	parameter
sharing,	each	label	has	its	own	neural	network	with	its	own	parameters,
and	the	parameters	of	the	different	models	are	encouraged	to	be	similar
through	some	form	of	regularization.	Figure	3-6	shows	the	typical
architecture	for	hard	parameter	sharing	and	soft	parameter	sharing.

Figure	3-6.	Two	common	implementations	of	multitask	learning	are	through	hard	parameter
sharing	and	soft	parameter	sharing.

In	this	context,	we	could	have	two	heads	to	our	model:	one	to	predict	a

regression	output	and	another	to	predict	classification	output.	For
example,	this	paper	trains	a	computer	vision	model	using	a	classification
output	of	softmax	probabilities	together	with	a	regression	output	to	predict
bounding	boxes.	They	show	that	this	approach	achieves	better
performance	than	related	work	that	trains	networks	separately	for	the
classification	and	localization	tasks.	The	idea	is	that	through	parameter
sharing,	the	tasks	are	learned	simultaneously	and	the	gradient	updates
from	the	two	loss	functions	inform	both	outputs	and	result	in	a	more
generalizable	model.

Design	Pattern	6:	Multilabel
The	Multilabel	design	pattern	refers	to	problems	where	we	can	assign
more	than	one	label	to	a	given	training	example.	For	neural	networks,	this
design	requires	changing	the	activation	function	used	in	the	final	output
layer	of	the	model	and	choosing	how	our	application	will	parse	model
output.	Note	that	this	is	different	from	multiclass	classification	problems,
where	a	single	example	is	assigned	exactly	one	label	from	a	group	of
many	(>	1)	possible	classes.	You	may	also	hear	the	Multilabel	design
pattern	referred	to	as	multilabel,	multiclass	classification	since	it	involves
choosing	more	than	one	label	from	a	group	of	more	than	one	possible
class.	When	discussing	this	pattern,	we’ll	focus	primarily	on	neural
networks.

Problem

Often,	model	prediction	tasks	involve	applying	a	single	classification	to	a
given	training	example.	This	prediction	is	determined	from	N	possible
classes	where	N	is	greater	than	1.	In	this	case,	it’s	common	to	use	softmax
as	the	activation	function	for	the	output	layer.	Using	softmax,	the	output	of

https://oreil.ly/sIjsF

our	model	is	an	N-element	array,	where	the	sum	of	all	the	values	adds	up
to	1.	Each	value	indicates	the	probability	that	a	particular	training	example
is	associated	with	the	class	at	that	index.

For	example,	if	our	model	is	classifying	images	as	cats,	dogs,	or	rabbits,
the	softmax	output	might	look	like	this	for	a	given	image:	[.89,	.02,
.09].	This	means	our	model	is	predicting	an	89%	chance	the	image	is	a
cat,	2%	chance	it’s	a	dog,	and	9%	chance	it’s	a	rabbit.	Because	each	image
can	have	only	one	possible	label	in	this	scenario,	we	can	take	the	argmax
(index	of	the	highest	probability)	to	determine	our	model’s	predicted	class.
The	less-common	scenario	is	when	each	training	example	can	be	assigned
more	than	one	label,	which	is	what	this	pattern	addresses.

The	Multilabel	design	pattern	exists	for	models	trained	on	all	data
modalities.	For	image	classification,	in	the	earlier	cat,	dog,	rabbit	example,
we	could	instead	use	training	images	that	each	depicted	multiple	animals,
and	could	therefore	have	multiple	labels.	For	text	models,	we	can	imagine
a	few	scenarios	where	text	can	be	labeled	with	multiple	tags.	Using	the
dataset	of	Stack	Overflow	questions	on	BigQuery	as	an	example,	we	could
build	a	model	to	predict	the	tags	associated	with	a	particular	question.	As
an	example,	the	question	“How	do	I	plot	a	pandas	DataFrame?”	could	be
tagged	as	“Python,”	“pandas,”	and	“visualization.”	Another	multilabel	text
classification	example	is	a	model	that	identifies	toxic	comments.	For	this
model,	we	might	want	to	flag	comments	with	multiple	toxicity	labels.	A
comment	could	therefore	be	labeled	both	“hateful”	and	“obscene.”

This	design	pattern	can	also	apply	to	tabular	datasets.	Imagine	a	healthcare
dataset	with	various	physical	characteristics	for	each	patient,	like	height,
weight,	age,	blood	pressure,	and	more.	This	data	could	be	used	to	predict
the	presence	of	multiple	conditions.	For	example,	a	patient	could	show

risk	of	both	heart	disease	and	diabetes.

Solution

The	solution	for	building	models	that	can	assign	more	than	one	label	to	a
given	training	example	is	to	use	the	sigmoid	activation	function	in	our
final	output	layer.	Rather	than	generating	an	array	where	all	values	sum	to
1	(as	in	softmax),	each	individual	value	in	a	sigmoid	array	is	a	float
between	0	and	1.	That	is	to	say,	when	implementing	the	Multilabel	design
pattern,	our	label	needs	to	be	multi-hot	encoded.	The	length	of	the	multi-
hot	array	corresponds	with	the	number	of	classes	in	our	model,	and	each
output	in	this	label	array	will	be	a	sigmoid	value.

Building	on	the	image	example	above,	let’s	say	our	training	dataset
included	images	with	more	than	one	animal.	The	sigmoid	output	for	an
image	that	contained	a	cat	and	a	dog	but	not	a	rabbit	might	look	like	the
following:	[.92,	.85,	.11].	This	output	means	the	model	is	92%
confident	the	image	contains	a	cat,	85%	confident	it	contains	a	dog,	and
11%	confident	it	contains	a	rabbit.

A	version	of	this	model	for	28×28-pixel	images	with	sigmoid	output	might
look	like	this,	using	the	Keras	Sequential	API:

model	=	keras.Sequential([

				keras.layers.Flatten(input_shape=(28,	28)),

				keras.layers.Dense(128,	activation='relu'),

				keras.layers.Dense(3,	activation='sigmoid')

])

The	main	difference	in	output	between	the	sigmoid	model	here	and	the
softmax	example	in	the	Problem	section	is	that	the	softmax	array	is
guaranteed	to	contain	three	values	that	sum	to	1,	whereas	the	sigmoid

output	will	contain	three	values,	each	between	0	and	1.

SIGMOID	VERSUS	SOFTMAX	ACTIVATION
Sigmoid	is	a	nonlinear,	continuous,	and	differentiable	activation	function	that	takes	the	outputs	of	each
neuron	in	the	previous	layer	in	the	ML	model	and	squashes	the	value	of	those	outputs	between	0	and	1.
Figure	3-7	shows	what	the	sigmoid	function	looks	like.

Figure	3-7.	A	sigmoid	function.

While	sigmoid	takes	a	single	value	as	input	and	provides	a	single	value	as	output,	softmax	takes	an	array
of	values	as	input	and	transforms	it	into	an	array	of	probabilities	that	sum	to	1.	The	input	to	the	softmax
function	could	be	the	output	of	N	sigmoids.

In	a	multiclass	classification	problem	where	each	example	can	only	have	one	label,	use	softmax	as	the	last
layer	to	get	a	probability	distribution.	In	the	Multilabel	pattern,	it’s	acceptable	for	the	output	array	to	not	sum
to	1	since	we’re	evaluating	the	probability	of	each	individual	label.

Following	are	sample	sigmoid	and	softmax	output	arrays:

sigmoid	=	[.8,	.9,	.2,	.5]

softmax	=	[.7,	.1,	.15,	.05]

Trade-Offs	and	Alternatives

There	are	several	special	cases	to	consider	when	following	the	Multilabel
design	pattern	and	using	sigmoid	output.	Next,	we’ll	explore	how	to
structure	models	that	have	two	possible	label	classes,	how	to	make	sense

of	sigmoid	results,	and	other	important	considerations	for	Multilabel
models.

SIGMOID	OUTPUT	FOR	MODELS	WITH	TWO	CLASSES

There	are	two	types	of	models	where	the	output	can	belong	to	two
possible	classes:

Each	training	example	can	be	assigned	only	one	class.	This	is	also
called	binary	classification	and	is	a	special	type	of	multiclass
classification	problem.

Some	training	examples	could	belong	to	both	classes.	This	is	a
type	of	multilabel	classification	problem.

Figure	3-8	shows	the	distinction	between	these	classifications.

Figure	3-8.	Understanding	the	distinction	between	multiclass,	multilabel,	and	binary	classification
problems.

The	first	case	(binary	classification)	is	unique	in	that	it	is	the	only	type	of
single-label	classification	problem	where	we	would	consider	using
sigmoid	as	our	activation	function.	For	nearly	any	other	multiclass
classification	problem	(for	example,	classifying	text	into	one	of	five
possible	categories),	we	would	use	softmax.	However,	when	we	only	have
two	classes,	softmax	is	redundant.	Take	for	example	a	model	that	predicts

whether	or	not	a	specific	transaction	is	fraudulent.	Had	we	used	a	softmax
output	in	this	example,	here’s	what	a	fraudulent	model	prediction	might
look	like:

[.02,	.98]

In	this	example,	the	first	index	corresponds	with	“not	fraudulent”	and	the
second	index	corresponds	with	“fraudulent.”	This	is	redundant	because	we
could	also	represent	this	with	a	single	scalar	value,	and	thus	use	a	sigmoid
output.	The	same	prediction	could	be	represented	as	simply	.98.	Because
each	input	can	only	be	assigned	a	single	class,	we	can	infer	from	this
output	of	.98	that	the	model	has	predicted	a	98%	chance	of	fraud	and	a
2%	chance	of	nonfraud.

Therefore,	for	binary	classification	models,	it	is	optimal	to	use	an	output
shape	of	1	with	a	sigmoid	activation	function.	Models	with	a	single	output
node	are	also	more	efficient,	since	they	will	have	fewer	trainable
parameters	and	will	likely	train	faster.	Here	is	what	the	output	layer	of	a
binary	classification	model	would	look	like:

keras.layers.Dense(1,	activation='sigmoid')

For	the	second	case	where	a	training	example	could	belong	to	both
possible	classes	and	fits	into	the	Multilabel	design	pattern,	we’ll	also	want
to	use	sigmoid,	this	time	with	a	two-element	output:

keras.layers.Dense(2,	activation='sigmoid')

WHICH	LOSS	FUNCTION	SHOULD	WE	USE?

Now	that	we	know	when	to	use	sigmoid	as	an	activation	function	in	our
model,	how	should	we	choose	which	loss	function	to	use	with	it?	For	the

binary	classification	case	where	our	model	has	a	one-element	output,	use
binary	cross-entropy	loss.	In	Keras,	we	provide	a	loss	function	when	we
compile	our	model:

model.compile(loss='binary_crossentropy',	optimizer='adam',	

		metrics=['accuracy'])

Interestingly,	we	also	use	binary	cross-entropy	loss	for	multilabel	models
with	sigmoid	output.	This	is	because,	as	shown	in	Figure	3-9,	a	multilabel
problem	with	three	classes	is	essentially	three	smaller	binary	classification
problems.

Figure	3-9.	Understanding	the	Multilabel	pattern	by	breaking	down	the	problem	into	smaller
binary	classification	tasks.

PARSING	SIGMOID	RESULTS

To	extract	the	predicted	label	for	a	model	with	softmax	output,	we	can
simply	take	the	argmax	(highest	value	index)	of	the	output	array	to	get	the
predicted	class.	Parsing	sigmoid	outputs	is	less	straightforward.	Instead	of
taking	the	class	with	the	highest	predicted	probability,	we	need	to	evaluate
the	probability	of	each	class	in	our	output	layer	and	consider	the
probability	threshold	for	our	use	case.	Both	of	these	choices	are	largely
dependent	on	the	end	user	application	of	our	model.

NOTE
By	threshold,	we’re	referring	to	the	probability	we’re	comfortable	with	for	confirming	an	input
belongs	to	a	particular	class.	For	example,	if	we’re	building	a	model	to	classify	different	types	of
animals	in	images,	we	might	be	comfortable	saying	an	image	has	a	cat	even	if	the	model	is	only
80%	confident	the	image	contains	a	cat.	Alternatively,	if	we’re	building	a	model	that’s	making
healthcare	predictions,	we’ll	likely	want	the	model	to	be	closer	to	99%	confident	before
confirming	a	specific	medical	condition	is	present	or	not.	While	thresholding	is	something	we’ll
need	to	consider	for	any	type	of	classification	model,	it’s	especially	relevant	to	the	Multilabel
design	pattern	since	we’ll	need	to	determine	thresholds	for	each	class	and	they	may	be	different.

To	look	at	a	specific	example,	let’s	take	the	Stack	Overflow	dataset	in
BigQuery	and	use	it	to	build	a	model	that	predicts	the	tags	associated	with
a	Stack	Overflow	question	given	its	title.	We’ll	limit	our	dataset	to
questions	that	contain	only	five	tags	to	keep	things	simple:

SELECT

		title,

		REPLACE(tags,	"|",	",")	as	tags

FROM

		`bigquery-public-data.stackoverflow.posts_questions`

WHERE

		REGEXP_CONTAINS(tags,	

r"(?:keras|tensorflow|matplotlib|pandas|scikit-learn)")

The	output	layer	of	our	model	would	look	like	the	following	(full	code	for

this	section	is	available	in	the	GitHub	repository):

keras.layers.Dense(5,	activation='sigmoid')

Let’s	take	the	Stack	Overflow	question	“What	is	the	definition	of	a	non-
trainable	parameter?”	as	an	input	example.	Assuming	our	output	indices
correspond	with	the	order	of	tags	in	our	query,	an	output	for	that	question
might	look	like	this:

[.95,	.83,	.02,	.08,	.65]

Our	model	is	95%	confident	this	question	should	be	tagged	Keras,	and
83%	confident	it	should	be	tagged	TensorFlow.	When	evaluating	model
predictions,	we’ll	need	to	iterate	over	every	element	in	the	output	array
and	determine	how	we	want	to	display	those	results	to	our	end	users.	If
80%	is	our	threshold	for	all	tags,	we’d	show	Keras	and	TensorFlow
associated	with	this	question.	Alternatively,	maybe	we	want	to	encourage
users	to	add	as	many	tags	as	possible	and	we	want	to	show	options	for	any
tag	with	prediction	confidence	above	50%.

For	examples	like	this	one,	where	the	goal	is	primarily	to	suggest	possible
tags	with	less	emphasis	on	getting	the	tag	exactly	right,	a	typical	rule	of
thumb	is	to	use	n_specific_tag	/	n_total_examples	as	a
threshold	for	each	class.	Here,	n_specific_tag	is	the	number	of
examples	with	one	tag	in	the	dataset	(for	example,	“pandas”),	and
n_total_examples	is	the	total	number	of	examples	in	the	training	set
across	all	tags.	This	ensures	that	the	model	is	doing	better	than	guessing	a
certain	label	based	on	its	occurrence	in	the	training	dataset.

TIP
For	a	more	precise	approach	to	thresholding,	consider	using	S-Cut	or	optimizing	for	your

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/multilabel.ipynb

model’s	F-measure.	Details	on	both	can	be	found	in	this	paper.	Calibrating	the	per-label
probabilities	is	often	helpful	as	well,	especially	when	there	are	thousands	of	labels	and	you	want
to	consider	the	top	K	of	them	(this	is	common	in	search	and	ranking	problems).

As	you’ve	seen,	multilabel	models	provide	more	flexibility	in	how	we
parse	predictions	and	require	us	to	think	carefully	about	the	output	for
each	class.

DATASET	CONSIDERATIONS

When	dealing	with	single-label	classification	tasks,	we	can	ensure	our
dataset	is	balanced	by	aiming	for	a	relatively	equal	number	of	training
examples	for	each	class.	Building	a	balanced	dataset	is	more	nuanced	for
the	Multilabel	design	pattern.

Taking	the	Stack	Overflow	dataset	example,	there	will	likely	be	many
questions	tagged	as	both	TensorFlow	and	Keras.	But	there	will	also
be	questions	about	Keras	that	have	nothing	to	do	with	TensorFlow.
Similarly,	we	might	see	questions	about	plotting	data	that	is	tagged	with
both	matplotlib	and	pandas,	and	questions	about	data	preprocessing
that	are	tagged	both	pandas	and	scikit-learn.	In	order	for	our
model	to	learn	what	is	unique	to	each	tag,	we’ll	want	to	ensure	the	training
dataset	consists	of	varied	combinations	of	each	tag.	If	the	majority	of
matplotlib	questions	in	our	dataset	are	also	tagged	pandas,	the
model	won’t	learn	to	classify	matplotlib	on	its	own.	To	account	for
this,	think	about	the	different	relationships	between	labels	that	might	be
present	in	our	model	and	count	the	number	of	training	examples	that
belong	to	each	overlapping	combination	of	labels.

When	exploriing	relationships	between	labels	in	our	dataset,	we	may	also

https://oreil.ly/oyR57

encounter	hierarchical	labels.	ImageNet,	the	popular	image	classification
dataset,	contains	thousands	of	labeled	images	and	is	often	used	as	a
starting	point	for	transfer	learning	on	image	models.	All	of	the	labels	used
in	ImageNet	are	hierarchical,	meaning	all	images	have	at	least	one	label,
and	many	images	have	more	specific	labels	that	are	part	of	a	hierarchy.
Here’s	an	example	of	one	label	hierarchy	in	ImageNet:

animal	→	invertebrate	→	arthropod	→	arachnid	→	spider

Depending	on	the	size	and	nature	of	the	dataset,	there	are	two	common
approaches	for	handling	hierarchical	labels:

Use	a	flat	approach	and	put	every	label	in	the	same	output	array
regardless	of	hierarchy,	making	sure	you	have	enough	examples
of	each	“leaf	node”	label.

Use	the	Cascade	design	pattern.	Build	one	model	to	identify
higher-level	labels.	Based	on	the	high-level	classification,	send
the	example	to	a	separate	model	for	a	more	specific	classification
task.	For	example,	we	might	have	an	initial	model	that	labels
images	as	“Plant,”	“Animal,”	or	“Person.”	Depending	on	which
labels	the	first	model	applies,	we’ll	send	the	image	to	different
model(s)	to	apply	more	granular	labels	like	“succulent”	or
“barbary	lion.”

The	flat	approach	is	more	straightforward	than	following	the	Cascade
design	pattern	since	it	only	requires	one	model.	However,	this	might	cause
the	model	to	lose	information	about	more	detailed	label	classes	since	there
will	naturally	be	more	training	examples	with	the	higher-level	labels	in
our	dataset.

INPUTS	WITH	OVERLAPPING	LABELS

The	Multilabel	design	pattern	is	also	useful	in	cases	where	input	data

https://oreil.ly/0VXtc

occasionally	has	overlapping	labels.	Let’s	take	an	image	model	that’s
classifying	clothing	items	for	a	catalog	as	an	example.	If	we	have	multiple
people	labeling	each	image	in	the	training	dataset,	one	labeler	may	label
an	image	of	a	skirt	as	“maxi	skirt,”	while	another	identifies	it	as	“pleated
skirt.”	Both	are	correct.	However,	if	we	build	a	multiclass	classification
model	on	this	data,	passing	it	multiple	examples	of	the	same	image	with
different	labels,	we’ll	likely	encounter	situations	where	the	model	labels
similar	images	differently	when	making	predictions.	Ideally,	we	want	a
model	that	labels	this	image	as	both	“maxi	skirt”	and	“pleated	skirt”	as
seen	in	Figure	3-10,	rather	than	sometimes	predicting	only	one	of	these
labels.

Figure	3-10.	Using	input	from	multiple	labelers	to	create	overlapping	labels	in	cases	where
multiple	descriptions	of	an	item	are	correct.

The	Multilabel	design	pattern	solves	this	by	allowing	us	to	associate	both
overlapping	labels	with	an	image.	In	cases	with	overlapping	labels	where
we	have	multiple	labelers	evaluating	each	image	in	our	training	dataset,
we	can	choose	the	maximum	number	of	labels	we’d	like	labelers	to	assign
to	a	given	image,	then	take	the	most	commonly	chosen	tags	to	associate
with	an	image	during	training.	The	threshold	for	“most	commonly	chosen
tags”	will	depend	on	our	prediction	task	and	the	number	of	human	labelers
we	have.	For	example,	if	we	have	5	labelers	evaluating	every	image	and
20	possible	tags	for	each	image,	we	might	encourage	labelers	to	give	each
image	3	tags.	From	this	list	of	15	label	“votes”	per	image,	we	could	then
choose	the	2	to	3	with	the	most	votes	from	the	labelers.	When	evaluating
this	model,	we	need	to	take	note	of	the	average	prediction	confidence	the
model	returns	for	each	label	and	use	this	to	iteratively	improve	our	dataset
and	label	quality.

ONE	VERSUS	REST

Another	technique	for	handling	Multilabel	classification	is	to	train
multiple	binary	classifiers	instead	of	one	multilabel	model.	This	approach
is	called	one	versus	rest.	In	the	case	of	the	Stack	Overflow	example	where
we	want	to	tag	questions	as	TensorFlow,	Python,	and	pandas,	we’d	train
an	individual	classifier	for	each	of	these	three	tags:	Python	or	not,
TensorFlow	or	not,	and	so	forth.	Then	we’d	choose	a	confidence	threshold
and	tag	the	original	input	question	with	tags	from	each	binary	classifier
above	some	threshold.

The	benefit	of	one	versus	rest	is	that	we	can	use	it	with	model
architectures	that	can	only	do	binary	classification,	like	SVMs.	It	may	also
help	with	rare	categories	since	the	model	will	be	performing	only	one

classification	task	at	a	time	on	each	input,	and	it	is	possible	to	apply	the
Rebalancing	design	pattern.	The	disadvantage	of	this	approach	is	the
added	complexity	of	training	many	different	classifiers,	requiring	us	to
build	our	application	in	a	way	that	generates	predictions	from	each	of
these	models	rather	than	having	just	one.

To	summarize,	use	the	Multilabel	design	pattern	when	your	data	falls	into
any	of	the	following	classification	scenarios:

A	single	training	example	can	be	associated	with	mutually
exclusive	labels.

A	single	training	example	can	have	many	hierarchical	labels.

Labelers	describe	the	same	item	in	different	ways,	and	each
interpretation	is	accurate.

When	implementing	a	multilabel	model,	ensure	combinations	of
overlapping	labels	are	well	represented	in	your	dataset,	and	consider	the
threshold	values	you’re	willing	to	accept	for	each	possible	label	in	your
model.	Using	a	sigmoid	output	layer	is	the	most	common	approach	for
building	models	that	can	handle	multilabel	classification.	Additionally,
sigmoid	output	can	also	be	applied	to	binary	classification	tasks	where	a
training	example	can	have	only	one	out	of	two	possible	labels.

Design	Pattern	7:	Ensembles
The	Ensembles	design	pattern	refers	to	techniques	in	machine	learning
that	combine	multiple	machine	learning	models	and	aggregate	their	results
to	make	predictions.	Ensembles	can	be	an	effective	means	to	improve
performance	and	produce	predictions	that	are	better	than	any	single	model.

Problem

Problem

Suppose	we’ve	trained	our	baby	weight	prediction	model,	engineering
special	features	and	adding	additional	layers	to	our	neural	network	so	that
the	error	on	our	training	set	is	nearly	zero.	Excellent,	you	say!	However,
when	we	look	to	use	our	model	in	production	at	the	hospital	or	evaluate
performance	on	the	hold	out	test	set,	our	predictions	are	all	wrong.	What
happened?	And,	more	importantly,	how	can	we	fix	it?

No	machine	learning	model	is	perfect.	To	better	understand	where	and
how	our	model	is	wrong,	the	error	of	an	ML	model	can	be	broken	down
into	three	parts:	the	irreducible	error,	the	error	due	to	bias,	and	the	error
due	to	variance.	The	irreducible	error	is	the	inherent	error	in	the	model
resulting	from	noise	in	the	dataset,	the	framing	of	the	problem,	or	bad
training	examples,	like	measurement	errors	or	confounding	factors.	Just	as
the	name	implies,	we	can’t	do	much	about	irreducible	error.

The	other	two,	the	bias	and	the	variance,	are	referred	to	as	the	reducible
error,	and	here	is	where	we	can	influence	our	model’s	performance.	In
short,	the	bias	is	the	model’s	inability	to	learn	enough	about	the
relationship	between	the	model’s	features	and	labels,	while	the	variance
captures	the	model’s	inability	to	generalize	on	new,	unseen	examples.	A
model	with	high	bias	oversimplifies	the	relationship	and	is	said	to	be
underfit.	A	model	with	high	variance	has	learned	too	much	about	the
training	data	and	is	said	to	be	overfit.	Of	course,	the	goal	of	any	ML	model
is	to	have	low	bias	and	low	variance,	but	in	practice,	it	is	hard	to	achieve
both.	This	is	known	as	the	bias–variance	trade-off.	We	can’t	have	our	cake
and	eat	it	too.	For	example,	increasing	model	complexity	decreases	bias
but	increases	variance,	while	decreasing	model	complexity	decreases
variance	but	introduces	more	bias.

Recent	work	suggests	that	when	using	modern	machine	learning
techniques	such	as	large	neural	networks	with	high	capacity,	this	behavior
is	valid	only	up	to	a	point.	In	observed	experiments,	there	is	an
“interpolation	threshold”	beyond	which	very	high	capacity	models	are
able	to	achieve	zero	training	error	as	well	as	low	error	on	unseen	data.	Of
course,	we	need	much	larger	datasets	in	order	to	avoid	overfitting	on	high-
capacity	models.

Is	there	a	way	to	mitigate	this	bias–variance	trade-off	on	small-	and
medium-scale	problems?

Solution

Ensemble	methods	are	meta-algorithms	that	combine	several	machine
learning	models	as	a	technique	to	decrease	the	bias	and/or	variance	and
improve	model	performance.	Generally	speaking,	the	idea	is	that
combining	multiple	models	helps	to	improve	the	machine	learning	results.
By	building	several	models	with	different	inductive	biases	and
aggregating	their	outputs,	we	hope	to	get	a	model	with	better	performance.
In	this	section,	we’ll	discuss	some	commonly	used	ensemble	methods,
including	bagging,	boosting,	and	stacking.

BAGGING

Bagging	(short	for	bootstrap	aggregating)	is	a	type	of	parallel	ensembling
method	and	is	used	to	address	high	variance	in	machine	learning	models.
The	bootstrap	part	of	bagging	refers	to	the	datasets	used	for	training	the
ensemble	members.	Specifically,	if	there	are	k	submodels,	then	there	are	k
separate	datasets	used	for	training	each	submodel	of	the	ensemble.	Each
dataset	is	constructed	by	randomly	sampling	(with	replacement)	from	the
original	training	dataset.	This	means	there	is	a	high	probability	that	any	of

https://oreil.ly/PxUvs

the	k	datasets	will	be	missing	some	training	examples,	but	also	any	dataset
will	likely	have	repeated	training	examples.	The	aggregation	takes	place
on	the	output	of	the	multiple	ensemble	model	members—either	an	average
in	the	case	of	a	regression	task	or	a	majority	vote	in	the	case	of
classification.

A	good	example	of	a	bagging	ensemble	method	is	the	random	forest:
multiple	decision	trees	are	trained	on	randomly	sampled	subsets	of	the
entire	training	data,	then	the	tree	predictions	are	aggregated	to	produce	a
prediction,	as	shown	in	Figure	3-11.

Figure	3-11.	Bagging	is	good	for	decreasing	variance	in	machine	learning	model	output.

Popular	machine	learning	libraries	have	implementations	of	bagging
methods.	For	example,	to	implement	a	random	Forest	regression	in	scikit-
learn	to	predict	baby	weight	from	our	natality	dataset:

from	sklearn.ensemble	import	RandomForestRegressor

#	Create	the	model	with	50	trees

RF_model	=	RandomForestRegressor(n_estimators=50,

																																	max_features='sqrt',

																																	n_jobs=-1,	verbose	=	1)

#	Fit	on	training	data

RF_model.fit(X_train,	Y_train)

Model	averaging	as	seen	in	bagging	is	a	powerful	and	reliable	method	for
reducing	model	variance.	As	we’ll	see,	different	ensemble	methods
combine	multiple	submodels	in	different	ways,	sometimes	using	different
models,	different	algorithms,	or	even	different	objective	functions.	With
bagging,	the	model	and	algorithms	are	the	same.	For	example,	with
random	forest,	the	submodels	are	all	short	decision	trees.

BOOSTING

Boosting	is	another	Ensemble	technique.	However,	unlike	bagging,
boosting	ultimately	constructs	an	ensemble	model	with	more	capacity	than
the	individual	member	models.	For	this	reason,	boosting	provides	a	more
effective	means	of	reducing	bias	than	variance.	The	idea	behind	boosting
is	to	iteratively	build	an	ensemble	of	models	where	each	successive	model
focuses	on	learning	the	examples	the	previous	model	got	wrong.	In	short,
boosting	iteratively	improves	upon	a	sequence	of	weak	learners	taking	a
weighted	average	to	ultimately	yield	a	strong	learner.

At	the	start	of	the	boosting	procedure,	a	simple	base	model	f_0	is
selected.	For	a	regression	task,	the	base	model	could	just	be	the	average
target	value:	f_0	=	np.mean(Y_train).	For	the	first	iteration	step,
the	residuals	delta_1	are	measured	and	approximated	via	a	separate
model.	This	residual	model	can	be	anything,	but	typically	it	isn’t	very
sophisticated;	we’d	often	use	a	weak	learner	like	a	decision	tree.	The
approximation	provided	by	the	residual	model	is	then	added	to	the	current
prediction,	and	the	process	continues.

After	many	iterations,	the	residuals	tend	toward	zero	and	the	prediction
gets	better	and	better	at	modeling	the	original	training	dataset.	Notice	that
in	Figure	3-12	the	residuals	for	each	element	of	the	dataset	decrease	with
each	successive	iteration.

Figure	3-12.	Boosting	converts	weak	learners	into	strong	learners	by	iteratively	improving	the
model	prediction.

Some	of	the	more	well-known	boosting	algorithms	are	AdaBoost,
Gradient	Boosting	Machines,	and	XGBoost,	and	they	have	easy-to-use
implementations	in	popular	machine	learning	frameworks	like	scikit-learn
or	TensorFlow.

The	implementation	in	scikit-learn	is	also	straightforward:

from	sklearn.ensemble	import	GradientBoostingRegressor

#	Create	the	Gradient	Boosting	regressor

GB_model	=	GradientBoostingRegressor(n_estimators=1,

																																					max_depth=1,

																																					learning_rate=1,

																																					criterion='mse')

#	Fit	on	training	data

GB_model.fit(X_train,	Y_train)

STACKING

Stacking	is	an	ensemble	method	that	combines	the	outputs	of	a	collection
of	models	to	make	a	prediction.	The	initial	models,	which	are	typically	of
different	model	types,	are	trained	to	completion	on	the	full	training
dataset.	Then,	a	secondary	meta-model	is	trained	using	the	initial	model
outputs	as	features.	This	second	meta-model	learns	how	to	best	combine
the	outcomes	of	the	initial	models	to	decrease	the	training	error	and	can	be
any	type	of	machine	learning	model.

To	implement	a	stacking	ensemble,	we	first	train	all	the	members	of	the
ensemble	on	the	training	dataset.	The	following	code	calls	a	function,
fit_model,	that	takes	as	arguments	a	model	and	the	training	dataset
inputs	X_train	and	label	Y_train.	This	way	members	is	a	list
containing	all	the	trained	models	in	our	ensemble.	The	full	code	for	this
example	can	be	found	in	the	code	repository	for	this	book:

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_prob%E2%81%A0lem_representation/ensemble_methods.ipynb

members	=	[model_1,	model_2,	model_3]

#	fit	and	save	models

n_members	=	len(members)

for	i	in	range(n_members):

				#	fit	model

				model	=	fit_model(members[i])

				#	save	model

				filename	=	'models/model_'	+	str(i	+	1)	+	'.h5'

				model.save(filename,	save_format='tf')

				print('Saved	{}\n'.format(filename))

These	submodels	are	incorporated	into	a	larger	stacking	ensemble	model
as	individual	inputs.	Since	these	input	models	are	trained	alongside	the
secondary	ensemble	model,	we	fix	the	weights	of	these	input	models.	This
can	be	done	by	setting	layer.trainable	to	False	for	the	ensemble
member	models:

for	i	in	range(n_members):

				model	=	members[i]

				for	layer	in	model.layers:

								#	make	not	trainable

								layer.trainable	=	False

								#	rename	to	avoid	'unique	layer	name'	issue

								layer._name	=	'ensemble_'	+	str(i+1)	+	'_'	+	layer.name

We	create	the	ensemble	model	stitching	together	the	components	using	the
Keras	functional	API:

member_inputs	=	[model.input	for	model	in	members]

#	concatenate	merge	output	from	each	model

member_outputs	=	[model.output	for	model	in	members]

merge	=	layers.concatenate(member_outputs)

hidden	=	layers.Dense(10,	activation='relu')(merge)

ensemble_output	=	layers.Dense(1,	activation='relu')(hidden)

ensemble_model	=	Model(inputs=member_inputs,	

outputs=ensemble_output)

#	plot	graph	of	ensemble

tf.keras.utils.plot_model(ensemble_model,	show_shapes=True,	

																										to_file='ensemble_graph.png')

#	compile

ensemble_model.compile(loss='mse',	optimizer='adam',	metrics=

['mse'])

In	this	example,	the	secondary	model	is	a	dense	neural	network	with	two
hidden	layers.	Through	training,	this	network	learns	how	to	best	combine
the	results	of	the	ensemble	members	when	making	predictions.

Why	It	Works

Model	averaging	methods	like	bagging	work	because	typically	the
individual	models	that	make	up	the	ensemble	model	will	not	all	make	the
same	errors	on	the	test	set.	In	an	ideal	situation,	each	individual	model	is
off	by	a	random	amount,	so	when	their	results	are	averaged,	the	random
errors	cancel	out,	and	the	prediction	is	closer	to	the	correct	answer.	In
short,	there	is	wisdom	in	the	crowd.

Boosting	works	well	because	the	model	is	punished	more	and	more
according	to	the	residuals	at	each	iteration	step.	With	each	iteration,	the
ensemble	model	is	encouraged	to	get	better	and	better	at	predicting	those
hard-to-predict	examples.	Stacking	works	because	it	combines	the	best	of
both	bagging	and	boosting.	The	secondary	model	can	be	thought	of	as	a
more	sophisticated	version	of	model	averaging.

BAGGING

More	precisely,	suppose	we’ve	trained	k	neural	network	regression	models
and	average	their	results	to	create	an	ensemble	model.	If	each	model	has
error	error_i	on	each	example,	where	error_i	is	drawn	from	a	zero-

mean	multivariate	normal	distribution	with	variance	var	and	covariance
cov,	then	the	ensemble	predictor	will	have	an	error:

ensemble_error	=	1./k	*	np.sum([error_1,	error_2,...,error_k])

If	the	errors	error_i	are	perfectly	correlated	so	that	cov	=	var,	then
the	mean	square	error	of	the	ensemble	model	reduces	to	var.	In	this	case,
model	averaging	doesn’t	help	at	all.	On	the	other	extreme,	if	the	errors
error_i	are	perfectly	uncorrelated,	then	cov	=	0	and	the	mean	square
error	of	the	ensemble	model	is	var/k.	So,	the	expected	square	error
decreases	linearly	with	the	number	k	of	models	in	the	ensemble. 	To
summarize,	on	average,	the	ensemble	will	perform	at	least	as	well	as	any
of	the	individual	models	in	the	ensemble.	Furthermore,	if	the	models	in	the
ensemble	make	independent	errors	(for	example,	cov	=	0),	then	the
ensemble	will	perform	significantly	better.	Ultimately,	the	key	to	success
with	bagging	is	model	diversity.

This	also	explains	why	bagging	is	typically	less	effective	for	more	stable
learners	like	k-nearest	neighbors	(kNN),	naive	Bayes,	linear	models,	or
support	vector	machines	(SVMs)	since	the	size	of	the	training	set	is
reduced	through	bootstrapping.	Even	when	using	the	same	training	data,
neural	networks	can	reach	a	variety	of	solutions	due	to	random	weight
initializations	or	random	mini-batch	selection	or	different
hyperparameters,	creating	models	whose	errors	are	partially	independent.
Thus,	model	averaging	can	even	benefit	neural	networks	trained	on	the
same	dataset.	In	fact,	one	recommended	solution	to	fix	the	high	variance
of	neural	networks	is	to	train	multiple	models	and	aggregate	their
predictions.

BOOSTING

1

The	boosting	algorithm	works	by	iteratively	improving	the	model	to
reduce	the	prediction	error.	Each	new	weak	learner	corrects	for	the
mistakes	of	the	previous	prediction	by	modeling	the	residuals	delta_i
of	each	step.	The	final	prediction	is	the	sum	of	the	outputs	from	the	base
learner	and	each	of	the	successive	weak	learners,	as	shown	in	Figure	3-13.

Figure	3-13.	Boosting	iteratively	builds	a	strong	learner	from	a	sequence	of	weak	learners	that
model	the	residual	error	of	the	previous	iteration.

Thus,	the	resulting	ensemble	model	becomes	successively	more	and	more
complex,	having	more	capacity	than	any	one	of	its	members.	This	also
explains	why	boosting	is	particularly	good	for	combating	high	bias.
Recall,	the	bias	is	related	to	the	model’s	tendency	to	be	underfit.	By
iteratively	focusing	on	the	hard-to-predict	examples,	boosting	effectively
decreases	the	bias	of	the	resulting	model.

STACKING

Stacking	can	be	thought	of	as	an	extension	of	simple	model	averaging
where	we	train	k	models	to	completion	on	the	training	dataset,	then
average	the	results	to	determine	a	prediction.	Simple	model	averaging	is
similar	to	bagging,	but	the	models	in	the	ensemble	could	be	of	different
types,	while	for	bagging,	the	models	are	of	the	same	type.	More	generally,

we	could	modify	the	averaging	step	to	take	a	weighted	average,	for
example,	to	give	more	weight	to	one	model	in	our	ensemble	over	the
others,	as	shown	in	Figure	3-14.

Figure	3-14.	The	simplest	form	of	model	averaging	averages	the	outputs	of	two	or	more	different
machine	learning	models.	Alternatively,	the	average	could	be	replaced	with	a	weighted	average

where	the	weight	might	be	based	on	the	relative	accuracy	of	the	models.

You	can	think	of	stacking	as	a	more	advanced	version	of	model	averaging,
where	instead	of	taking	an	average	or	weighted	average,	we	train	a	second
machine	learning	model	on	the	outputs	to	learn	how	best	to	combine	the
results	to	the	models	in	our	ensemble	to	produce	a	prediction	as	shown	in
Figure	3-15.	This	provides	all	the	benefits	of	decreasing	variance	as	with
bagging	techniques	but	also	controls	for	high	bias.

Figure	3-15.	Stacking	is	an	ensemble	learning	technique	that	combines	the	outputs	of	several
different	ML	models	as	the	input	to	a	secondary	ML	model	that	makes	predictions.

Trade-Offs	and	Alternatives

Ensemble	methods	have	become	quite	popular	in	modern	machine
learning	and	have	played	a	large	part	in	winning	well-known	challenges,
perhaps	most	notably	the	Netflix	Prize.	There	is	also	a	lot	of	theoretical
evidence	to	back	up	the	success	demonstrated	on	these	real-world
challenges.

INCREASED	TRAINING	AND	DESIGN	TIME

One	downside	to	ensemble	learning	is	increased	training	and	design	time.
For	example,	for	a	stacked	ensemble	model,	choosing	the	ensemble
member	models	can	require	its	own	level	of	expertise	and	poses	its	own
questions:	Is	it	best	to	reuse	the	same	architectures	or	encourage	diversity?
If	we	do	use	different	architectures,	which	ones	should	we	use?	And	how
many?	Instead	of	developing	a	single	ML	model	(which	can	be	a	lot	of
work	on	its	own!),	we	are	now	developing	k	models.	We’ve	introduced	an
additional	amount	of	overhead	in	our	model	development,	not	to	mention
maintenance,	inference	complexity,	and	resource	usage	if	the	ensemble
model	is	to	go	into	production.	This	can	quickly	become	impractical	as	the

https://oreil.ly/ybZ28

number	of	models	in	the	ensemble	increases.

Popular	machine	learning	libraries,	like	scikit-learn	and	TensorFlow,
provide	easy-to-use	implementations	for	many	common	bagging	and
boosting	methods,	like	random	forest,	AdaBoost,	gradient	boosting,	and
XGBoost.	However,	we	should	carefully	consider	whether	the	increased
overhead	associated	with	an	ensemble	method	is	worth	it.	Always
compare	accuracy	and	resource	usage	against	a	linear	or	DNN	model.
Note	that	distilling	(see	“Design	Pattern	11:	Useful	Overfitting”)	an
ensemble	of	neural	networks	can	often	reduce	complexity	and	improve
performance.

DROPOUT	AS	BAGGING

Techniques	like	dropout	provide	a	powerful	and	effective	alternative.
Dropout	is	known	as	a	regularization	technique	in	deep	learning	but	can	be
also	understood	as	an	approximation	to	bagging.	Dropout	in	a	neural
network	randomly	(with	a	prescribed	probability)	“turns	off”	neurons	of
the	network	for	each	mini-batch	of	training,	essentially	evaluating	a
bagged	ensemble	of	exponentially	many	neural	networks.	That	being	said,
training	a	neural	network	with	dropout	is	not	exactly	the	same	as	bagging.
There	are	two	notable	differences.	First,	in	the	case	of	bagging,	the	models
are	independent,	while	when	training	with	dropout,	the	models	share
parameters.	Second,	in	bagging,	the	models	are	trained	to	convergence	on
their	respective	training	set.	However,	when	training	with	dropout,	the
ensemble	member	models	would	only	be	trained	for	a	single	training	step
because	different	nodes	are	dropped	out	in	each	iteration	of	the	training
loop.

DECREASED	MODEL	INTERPRETABILITY

Another	point	to	keep	in	mind	is	model	interpretability.	Already	in	deep
learning,	effectively	explaining	why	our	model	makes	the	predictions	it
does	can	be	difficult.	This	problem	is	compounded	with	ensemble	models.
Consider,	for	example,	decision	trees	versus	the	random	forest.	A	decision
tree	ultimately	learns	boundary	values	for	each	feature	that	guide	a	single
instance	to	the	model’s	final	prediction.	As	such,	it	is	easy	to	explain	why
a	decision	tree	makes	the	predictions	it	did.	The	random	forest,	being	an
ensemble	of	many	decision	trees,	loses	this	level	of	local	interpretability.

CHOOSING	THE	RIGHT	TOOL	FOR	THE	PROBLEM

It’s	also	important	to	keep	in	mind	the	bias–variance	trade-off.	Some
ensemble	techniques	are	better	at	addressing	bias	or	variance	than	others
(Table	3-2).	In	particular,	boosting	is	adapted	for	addressing	high	bias,
while	bagging	is	useful	for	correcting	high	variance.	That	being	said,	as
we	saw	in	the	section	on	“Bagging”,	combining	two	models	with	highly
correlated	errors	will	do	nothing	to	help	lower	the	variance.	In	short,	using
the	wrong	ensemble	method	for	our	problem	won’t	necessarily	improve
performance;	it	will	just	add	unnecessary	overhead.

Table	3-2.	A	summary	of	the	trade-off	between	bias	and	variance

Problem Ensemble	solution

High	bias	(underfitting) Boosting

High	variance	(overfitting) Bagging

OTHER	ENSEMBLE	METHODS

We’ve	discussed	some	of	the	more	common	ensemble	techniques	in
machine	learning.	The	list	discussed	earlier	is	by	no	means	exhaustive	and
there	are	different	algorithms	that	fit	with	these	broad	categories.	There

are	also	other	ensemble	techniques,	including	many	that	incorporate	a
Bayesian	approach	or	that	combine	neural	architecture	search	and
reinforcement	learning,	like	Google’s	AdaNet	or	AutoML	techniques.	In
short,	the	Ensemble	design	pattern	encompasses	techniques	that	combine
multiple	machine	learning	models	to	improve	overall	model	performance
and	can	be	particularly	useful	when	addressing	common	training	issues
like	high	bias	or	high	variance.

Design	Pattern	8:	Cascade
The	Cascade	design	pattern	addresses	situations	where	a	machine	learning
problem	can	be	profitably	broken	into	a	series	of	ML	problems.	Such	a
cascade	often	requires	careful	design	of	the	ML	experiment.

Problem

What	happens	if	we	need	to	predict	a	value	during	both	usual	and	unusual
activity?	The	model	will	learn	to	ignore	the	unusual	activity	because	it	is
rare.	If	the	unusual	activity	is	also	associated	with	abnormal	values,	then
trainability	suffers.

For	example,	suppose	we	are	trying	to	train	a	model	to	predict	the
likelihood	that	a	customer	will	return	an	item	that	they	have	purchased.	If
we	train	a	single	model,	the	resellers’	return	behavior	will	be	lost	because
there	are	millions	of	retail	buyers	(and	retail	transactions)	and	only	a	few
thousand	resellers.	We	don’t	really	know	at	the	time	that	a	purchase	is
being	made	whether	this	is	a	retail	buyer	or	a	reseller.	However,	by
monitoring	other	marketplaces,	we	have	identified	when	items	bought
from	us	are	subsequently	being	resold,	and	so	our	training	dataset	has	a
label	that	identifies	a	purchase	as	having	been	done	by	a	reseller.

One	way	to	solve	this	problem	is	to	overweight	the	reseller	instances	when
training	the	model.	This	is	suboptimal	because	we	need	to	get	the	more
common	retail	buyer	use	case	as	correct	as	possible.	We	do	not	want	to
trade	off	a	lower	accuracy	on	the	retail	buyer	use	case	for	a	higher
accuracy	on	the	reseller	use	case.	However,	retail	buyers	and	resellers
behave	very	differently;	for	example,	while	retail	buyers	return	items
within	a	week	or	so,	resellers	return	items	only	if	they	are	unable	to	sell
them,	and	so	the	returns	may	take	place	after	several	months.	The	business
decision	of	stocking	inventory	is	different	for	likely	returns	from	retail
buyers	versus	resellers.	Therefore,	it	is	necessary	to	get	both	types	of
returns	as	accurate	as	possible.	Simply	overweighting	the	reseller
instances	will	not	work.

An	intuitive	way	to	address	this	problem	is	by	using	the	Cascade	design
pattern.	We	break	the	problem	into	four	parts:

1.	 Predicting	whether	a	specific	transaction	is	by	a	reseller

2.	 Training	one	model	on	sales	to	retail	buyers

3.	 Training	the	second	model	on	sales	to	resellers

4.	 In	production,	combining	the	output	of	the	three	separate	models
to	predict	return	likelihood	for	every	item	purchased	and	the
probability	that	the	transaction	is	by	a	reseller

This	allows	for	the	possibility	of	different	decisions	on	items	likely	to	be
returned	depending	on	the	type	of	buyer	and	ensures	that	the	models	in
steps	2	and	3	are	as	accurate	as	possible	on	their	segment	of	the	training
data.	Each	of	these	models	is	relatively	easy	to	train.	The	first	is	simply	a
classifier,	and	if	the	unusual	activity	is	extremely	rare,	we	can	use	the
Rebalancing	pattern	to	address	it.	The	next	two	models	are	essentially
classification	models	trained	on	different	segments	of	the	training	data.

The	combination	is	deterministic	since	we	choose	which	model	to	run
based	on	whether	the	activity	belonged	to	a	reseller.

The	problem	comes	during	prediction.	At	prediction	time,	we	don’t	have
true	labels,	just	the	output	of	the	first	classification	model.	Based	on	the
output	of	the	first	model,	we	will	have	to	determine	which	of	the	two	sales
models	we	invoke.	The	problem	is	that	we	are	training	on	labels,	but	at
inference	time,	we	will	have	to	make	decisions	based	on	predictions.	And
predictions	have	errors.	So,	the	second	and	third	models	will	be	required
to	make	predictions	on	data	that	they	might	have	never	seen	during
training.

As	an	extreme	example,	assume	that	the	address	that	resellers	provide	is
always	in	an	industrial	area	of	the	city,	whereas	retail	buyers	can	live
anywhere.	If	the	first	(classification)	model	makes	a	mistake	and	a	retail
buyer	is	wrongly	identified	as	a	reseller,	the	cancellation	prediction	model
that	is	invoked	will	not	have	the	neighborhood	where	the	customer	lives	in
its	vocabulary.

How	do	we	train	a	cascade	of	models	where	the	output	of	one	model	is	an
input	to	the	following	model	or	determines	the	selection	of	subsequent
models?

Solution

Any	machine	learning	problem	where	the	output	of	the	one	model	is	an
input	to	the	following	model	or	determines	the	selection	of	subsequent
models	is	called	a	cascade.	Special	care	has	to	be	taken	when	training	a
cascade	of	ML	models.

For	example,	a	machine	learning	problem	that	sometimes	involves	unusual

circumstances	can	be	solved	by	treating	it	as	a	cascade	of	four	machine
learning	problems:

1.	 A	classification	model	to	identify	the	circumstance

2.	 One	model	trained	on	unusual	circumstances

3.	 A	separate	model	trained	on	typical	circumstances

4.	 A	model	to	combine	the	output	of	the	two	separate	models,
because	the	output	is	a	probabilistic	combination	of	the	two
outputs

This	appears,	at	first	glance,	to	be	a	specific	case	of	the	Ensemble	design
pattern,	but	is	considered	separately	because	of	the	special	experiment
design	required	when	doing	a	cascade.

As	an	example,	assume	that,	in	order	to	estimate	the	cost	of	stocking
bicycles	at	stations,	we	wish	to	predict	the	distance	between	rental	and
return	stations	for	bicycles	in	San	Francisco.	The	goal	of	the	model,	in
other	words,	is	to	predict	the	distance	we	need	to	transport	the	bicycle
back	to	the	rental	location	given	features	such	as	the	time	of	day	the	rental
starts,	where	the	bicycle	is	being	rented	from,	whether	the	renter	is	a
subscriber	or	not,	etc.	The	problem	is	that	rentals	that	are	longer	than	four
hours	involve	extremely	different	renter	behavior	than	shorter	rentals,	and
the	stocking	algorithm	requires	both	outputs	(the	probability	that	the	rental
is	longer	than	four	hours	and	the	likely	distance	the	bicycle	needs	to	be
transported).	However,	only	a	very	small	fraction	of	rentals	involve	such
abnormal	trips.

One	way	to	solve	this	problem	is	to	train	a	classification	model	to	first
classify	trips	based	on	whether	they	are	Long	or	Typical	(the	full	code	is
in	the	code	repository	of	this	book):

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/cascade.ipynb

								CREATE	OR	REPLACE	MODEL	mlpatterns.classify_trips

								TRANSFORM(

										trip_type,

										EXTRACT	(HOUR	FROM	start_date)	AS	start_hour,

										EXTRACT	(DAYOFWEEK	FROM	start_date)	AS	day_of_week,

										start_station_name,

										subscriber_type,

										...

)

								OPTIONS(model_type='logistic_reg',	

																auto_class_weights=True,

																input_label_cols=['trip_type'])	AS

								SELECT

										start_date,	start_station_name,	subscriber_type,	...

										IF(duration_sec	>	3600*4,	'Long',	'Typical')	AS	

trip_type

								FROM	`bigquery-public-

data.san_francisco_bikeshare.bikeshare_trips`

It	can	be	tempting	to	simply	split	the	training	dataset	into	two	parts	based
on	the	actual	duration	of	the	rental	and	train	the	next	two	models,	one	on
Long	rentals	and	the	other	on	Typical	rentals.	The	problem	is	that	the
classification	model	just	discussed	will	have	errors.	Indeed,	evaluating	the
model	on	a	held-out	portion	of	the	San	Francisco	bicycle	data	shows	that
the	accuracy	of	the	model	is	only	around	75%	(see	Figure	3-16).	Given
this,	training	a	model	on	a	perfect	split	of	the	data	will	lead	to	tears.

Figure	3-16.	The	accuracy	of	a	classification	model	to	predict	atypical	behavior	is	unlikely	to	be
100%.

Instead,	after	training	this	classification	model,	we	need	to	use	the
predictions	of	this	model	to	create	the	training	dataset	for	the	next	set	of
models.	For	example,	we	could	create	the	training	dataset	for	the	model	to
predict	the	distance	of	Typical	rentals	using:

								CREATE	OR	REPLACE	TABLE	mlpatterns.Typical_trips	AS

								SELECT	

										*	EXCEPT(predicted_trip_type_probs,	

predicted_trip_type)

								FROM

								ML.PREDICT(MODEL	mlpatterns.classify_trips,

										(SELECT

										start_date,	start_station_name,	subscriber_type,	...,

										ST_Distance(start_station_geom,	end_station_geom)	AS	

distance

										FROM	`bigquery-public-

data.san_francisco_bikeshare.bikeshare_trips`)

)

								WHERE	predicted_trip_type	=	'Typical'	AND	distance	IS	

NOT	NULL

Then,	we	should	use	this	dataset	to	train	the	model	to	predict	distances:

								CREATE	OR	REPLACE	MODEL	

mlpatterns.predict_distance_Typical

								TRANSFORM(

										distance,

										EXTRACT	(HOUR	FROM	start_date)	AS	start_hour,

										EXTRACT	(DAYOFWEEK	FROM	start_date)	AS	day_of_week,

										start_station_name,

										subscriber_type,

										...

)

								OPTIONS(model_type='linear_reg',	input_label_cols=

['distance'])	AS

								SELECT

										*

								FROM	

										mlpatterns.Typical_trips

Finally,	our	evaluation,	prediction,	etc.	should	take	into	account	that	we
need	to	use	three	trained	models,	not	just	one.	This	is	what	we	term	the
Cascade	design	pattern.

In	practice,	it	can	become	hard	to	keep	a	Cascade	workflow	straight.
Rather	than	train	the	models	individually,	it	is	better	to	automate	the	entire
workflow	using	the	Workflow	Pipelines	pattern	(Chapter	6)	as	shown	in
Figure	3-17.	The	key	is	to	ensure	that	training	datasets	for	the	two
downstream	models	are	created	each	time	the	experiment	is	run	based	on
the	predictions	of	upstream	models.

Although	we	introduced	the	Cascade	pattern	as	a	way	of	predicting	a	value
during	both	usual	and	unusual	activity,	the	Cascade	pattern’s	solution	is

capable	of	addressing	a	more	general	situation.	The	pipeline	framework
allows	us	to	handle	any	situation	where	a	machine	learning	problem	can
be	profitably	broken	into	a	series	(or	cascade)	of	ML	problems.	Whenever
the	output	of	a	machine	learning	model	needs	to	be	fed	as	the	input	to
another	model,	the	second	model	needs	to	be	trained	on	the	predictions	of
the	first	model.	In	all	such	situations,	a	formal	pipeline	experimentation
framework	will	be	helpful.

Figure	3-17.	A	pipeline	to	train	the	cascade	of	models	as	a	single	job.

Kubeflow	Pipelines	provides	such	a	framework.	Because	it	works	with
containers,	the	underlying	machine	learning	models	and	glue	code	can	be
written	in	nearly	any	programming	or	scripting	language.	Here,	we	will
wrap	the	BigQuery	SQL	models	above	into	Python	functions	using	the
BigQuery	client	library.	We	could	use	TensorFlow	or	scikit-learn	or	even
R	to	implement	individual	components.

The	pipeline	code	using	Kubeflow	Pipelines	can	be	expressed	quite	simply
as	the	following	(the	full	code	can	be	found	in	the	code	repository	of	this
book):

@dsl.pipeline(

				name='Cascade	pipeline	on	SF	bikeshare',

				description='Cascade	pipeline	on	SF	bikeshare'

)

def	cascade_pipeline(

				project_id	=	PROJECT_ID

):

				ddlop	=	comp.func_to_container_op(run_bigquery_ddl,	

																				packages_to_install=['google-cloud-

bigquery'])

								

				c1	=	train_classification_model(ddlop,	PROJECT_ID)

				c1_model_name	=	c1.outputs['created_table']

				

				c2a_input	=	create_training_data(ddlop,	

																			PROJECT_ID,	c1_model_name,	'Typical')

				c2b_input	=	create_training_data(ddlop,	

																			PROJECT_ID,	c1_model_name,	'Long')

				

				c3a_model	=	train_distance_model(ddlop,	

																			PROJECT_ID,	

c2a_input.outputs['created_table'],	'Typical')

				c3b_model	=	train_distance_model(ddlop,	

																			PROJECT_ID,	

c2b_input.outputs['created_table'],	'Long')

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/cascade.ipynb

				

				...

The	entire	pipeline	can	be	submitted	for	running,	and	different	runs	of	the
experiment	tracked	using	the	Pipelines	framework.

TIP
If	we	are	using	TFX	as	our	pipeline	framework	(we	can	run	TFX	on	Kubeflow	Pipelines),	then	it
is	not	necessary	to	deploy	the	upstream	models	in	order	to	use	their	output	predictions	in
downstream	models.	Instead,	we	can	use	the	TensorFlow	Transform	method
tft.apply_saved_model	as	part	of	our	preprocessing	operations.	The	Transform	design
pattern	is	discussed	in	Chapter	6.

Use	of	a	pipeline-experiment	framework	is	strongly	suggested	whenever
we	will	have	chained	ML	models.	Such	a	framework	will	ensure	that
downstream	models	are	retrained	whenever	upstream	models	are	revised
and	that	we	have	a	history	of	all	the	previous	training	runs.

Trade-Offs	and	Alternatives

Don’t	go	overboard	with	the	Cascade	design	pattern—unlike	many	of	the
design	patterns	we	cover	in	this	book,	Cascade	is	not	necessarily	a	best
practice.	It	adds	quite	a	bit	of	complexity	to	your	machine	learning
workflows	and	may	actually	result	in	poorer	performance.	Note	that	a
pipeline-experiment	framework	is	definitely	best	practice,	but	as	much	as
possible,	try	to	limit	a	pipeline	to	a	single	machine	learning	problem
(ingest,	preprocessing,	data	validation,	transformation,	training,
evaluation,	and	deployment).	Avoid	having,	as	in	the	Cascade	pattern,
multiple	machine	learning	models	in	the	same	pipeline.

DETERMINISTIC	INPUTS

Splitting	an	ML	problem	is	usually	a	bad	idea,	since	an	ML	model
can/should	learn	combinations	of	multiple	factors.	For	example:

If	a	condition	can	be	known	deterministically	from	the	input
(holiday	shopping	versus	weekday	shopping),	we	should	just	add
the	condition	as	one	more	input	to	the	model.

If	the	condition	involves	an	extrema	in	just	one	input	(some
customers	who	live	nearby	versus	far	away,	with	the	meaning	of
near/far	needing	to	be	learned	from	the	data),	we	can	use	Mixed
Input	Representation	to	handle	it.

The	Cascade	design	pattern	addresses	an	unusual	scenario	for	which	we
do	not	have	a	categorical	input,	and	for	which	extreme	values	need	to	be
learned	from	multiple	inputs.

SINGLE	MODEL

The	Cascade	design	pattern	should	not	be	used	for	common	scenarios
where	a	single	model	will	suffice.	For	example,	suppose	we	are	trying	to
learn	a	customer’s	propensity	to	buy.	We	may	think	we	need	to	learn
different	models	for	people	who	have	been	comparison	shopping	versus
those	who	aren’t.	We	don’t	really	know	who	has	been	comparison
shopping,	but	we	can	make	an	educated	guess	based	on	the	number	of
visits,	how	long	the	item	has	been	in	the	cart,	and	so	on.	This	problem
does	not	need	the	Cascade	design	pattern	because	it	is	common	enough	(a
large	fraction	of	customers	will	be	comparison	shopping)	that	the	machine
learning	model	should	be	able	to	learn	it	implicitly	in	the	course	of
training.	For	common	scenarios,	train	a	single	model.

INTERNAL	CONSISTENCY

The	Cascade	is	needed	when	we	need	to	maintain	internal	consistency
amongst	the	predictions	of	multiple	models.	Note	that	we	are	trying	to	do

more	than	just	predict	the	unusual	activity.	We	are	trying	to	predict
returns,	considering	that	there	will	be	some	reseller	activity	also.	If	the
task	is	only	to	predict	whether	or	not	a	sale	is	by	a	reseller,	we’d	use	the
Rebalancing	pattern.	The	reason	to	use	Cascade	is	that	the	imbalanced
label	output	is	needed	as	an	input	to	subsequent	models	and	is	useful	in
and	of	itself.

Similarly,	suppose	that	the	reason	we	are	training	the	model	to	predict	a
customer’s	propensity	to	buy	is	to	make	a	discounted	offer.	Whether	or
not	we	make	the	discounted	offer,	and	the	amount	of	discount,	will	very
often	depend	on	whether	this	customer	is	comparison	shopping	or	not.
Given	this,	we	need	internal	consistency	between	the	two	models	(the
model	for	comparison	shoppers	and	the	model	for	propensity	to	buy).	In
this	case,	the	Cascade	design	pattern	might	be	needed.

PRE-TRAINED	MODELS

The	Cascade	is	also	needed	when	we	wish	to	reuse	the	output	of	a	pre-
trained	model	as	an	input	into	our	model.	For	example,	let’s	say	we	are
building	a	model	to	detect	authorized	entrants	to	a	building	so	that	we	can
automatically	open	the	gate.	One	of	the	inputs	to	our	model	might	be	the
license	plate	of	the	vehicle.	Instead	of	using	the	security	photo	directly	in
our	model,	we	might	find	it	simpler	to	use	the	output	of	an	optical
character	recognition	(OCR)	model.	It	is	critical	that	we	recognize	that
OCR	systems	will	have	errors,	and	so	we	should	not	train	our	model	with
perfect	license	plate	information.	Instead,	we	should	train	the	model	on	the
actual	output	of	the	OCR	system.	Indeed,	because	different	OCR	models
will	behave	differently	and	have	different	errors,	it	is	necessary	to	retrain
the	model	if	we	change	the	vendor	of	our	OCR	system.

TIP

TIP
A	common	scenario	of	using	a	pre-trained	model	as	the	first	step	of	a	pipeline	is	using	an	object-
detection	model	followed	by	a	fine-grained	image	classification	model.	For	example,	the	object-
detection	model	might	find	all	handbags	in	the	image,	an	intermediate	step	might	crop	the	image
to	the	bounding	boxes	of	the	detected	objects,	and	the	subsequent	model	might	identify	the	type
of	handbag.	We	recommend	using	a	Cascade	so	that	the	entire	pipeline	can	be	retrained
whenever	the	object-detection	model	is	updated	(such	as	with	a	new	version	of	the	API).

REFRAMING	INSTEAD	OF	CASCADE

Note	that	in	our	example	problem,	we	were	trying	to	predict	the	likelihood
that	an	item	would	be	returned,	and	so	this	was	a	classification	problem.
Suppose	instead	we	wish	to	predict	hourly	sales	amounts.	Most	of	the
time,	we	will	serve	just	retail	buyers,	but	once	in	a	while	(perhaps	four	or
five	times	a	year),	we	will	have	a	wholesale	buyer.

This	is	notionally	a	regression	problem	of	predicting	daily	sales	amounts
where	we	have	a	confounding	factor	in	the	form	of	wholesale	buyers.
Reframing	the	regression	problem	to	be	a	classification	problem	of
different	sales	amounts	might	be	a	better	approach.	Although	it	will
involve	training	a	classification	model	for	each	sales	amount	bucket,	it
avoids	the	need	to	get	the	retail	versus	wholesale	classification	correct.

REGRESSION	IN	RARE	SITUATIONS

The	Cascade	design	pattern	can	be	helpful	when	carrying	out	regression
when	some	values	are	much	more	common	than	others.	For	example,	we
might	want	to	predict	the	quantity	of	rainfall	from	a	satellite	image.	It
might	be	the	case	that	on	99%	of	the	pixels,	it	doesn’t	rain.	In	such	a	case,
it	can	be	helpful	to	create	a	stacked	classification	model	followed	by	a
regression	model:

1.	 First,	predict	whether	or	not	it	is	going	to	rain.

2.	 For	pixels	where	the	model	predicts	rain	is	not	likely,	predict	a
rainfall	amount	of	zero.

3.	 Train	a	regression	model	to	predict	the	rainfall	amount	on	pixels
where	the	model	predicts	that	rain	is	likely.

It	is	critical	to	realize	that	the	classification	model	is	not	perfect,	and	so
the	regression	model	has	to	be	trained	on	the	pixels	that	the	classification
model	predicts	as	likely	to	be	raining	(and	not	just	on	pixels	that
correspond	to	rain	in	the	labeled	dataset).	For	complementary	solutions	to
this	problem,	also	see	the	discussions	on	“Design	Pattern	10:	Rebalancing
”	and	“Design	Pattern	5:	Reframing	”.

Design	Pattern	9:	Neutral	Class
In	many	classification	situations,	creating	a	neutral	class	can	be	helpful.
For	example,	instead	of	training	a	binary	classifier	that	outputs	the
probability	of	an	event,	train	a	three-class	classifier	that	outputs	disjoint
probabilities	for	Yes,	No,	and	Maybe.	Disjoint	here	means	that	the	classes
do	not	overlap.	A	training	pattern	can	belong	to	only	one	class,	and	so
there	is	no	overlap	between	Yes	and	Maybe,	for	example.	The	Maybe	in
this	case	is	the	neutral	class.

Problem

Imagine	that	we	are	trying	to	create	a	model	that	provides	guidance	on
pain	relievers.	There	are	two	choices,	ibuprofen	and	acetaminophen, 	and
it	turns	out	in	our	historical	dataset	that	acetaminophen	tends	to	be
prescribed	preferentially	to	patients	at	risk	of	stomach	problems,	and
ibuprofen	tends	to	be	prescribed	preferentially	to	patients	at	risk	of	liver
damage.	Beyond	that,	things	tend	to	be	quite	random;	some	physicians

2

default	to	acetaminophen	and	others	to	ibuprofen.

Training	a	binary	classifier	on	such	a	dataset	will	lead	to	poor	accuracy
because	the	model	will	need	to	get	the	essentially	arbitrary	cases	correct.

Solution

Imagine	a	different	scenario.	Suppose	the	electronic	record	that	captures
the	doctor’s	prescriptions	also	asks	them	whether	the	alternate	pain
medication	would	be	acceptable.	If	the	doctor	prescribes	acetaminophen,
the	application	asks	the	doctor	whether	the	patient	can	use	ibuprofen	if
they	already	have	it	in	their	medicine	cabinet.

Based	on	the	answer	to	the	second	question,	we	have	a	neutral	class.	The
prescription	might	still	be	written	as	“acetaminophen,”	but	the	record
captures	that	the	doctor	was	neutral	for	this	patient.	Note	that	this
fundamentally	requires	us	to	design	the	data	collection	appropriately—we
cannot	manufacture	a	neutral	class	after	the	fact.	We	have	to	correctly
design	the	machine	learning	problem.	Correct	design,	in	this	case,	starts
with	how	we	pose	the	problem	in	the	first	place.

If	all	we	have	is	a	historical	dataset,	we	would	need	to	get	a	labeling
service	involved.	We	could	ask	the	human	labelers	to	validate	the	doctor’s
original	choice	and	answer	the	question	of	whether	an	alternate	pain
medication	would	be	acceptable.

Why	It	Works

We	can	explore	the	mechanism	by	which	this	works	by	simulating	the
mechanism	involved	with	a	synthetic	dataset.	Then,	we	will	show	that
something	akin	to	this	also	happens	in	the	real	world	with	marginal	cases.

https://oreil.ly/OSZsi

SYNTHETIC	DATA

Let’s	create	a	synthetic	dataset	of	length	N	where	10%	of	the	data
represents	patients	with	a	history	of	jaundice.	Since	they	are	at	risk	of	liver
damage,	their	correct	prescription	is	ibuprofen	(the	full	code	is	in	GitHub):

				jaundice[0:N//10]	=	True

				prescription[0:N//10]	=	'ibuprofen'

Another	10%	of	the	data	will	represent	patients	with	a	history	of	stomach
ulcers;	since	they	are	at	risk	of	stomach	damage,	their	correct	prescription
is	acetaminophen:

				ulcers[(9*N)//10:]	=	True

				prescription[(9*N)//10:]	=	'acetaminophen'

The	remaining	patients	will	be	arbitrarily	assigned	to	either	medication.
Naturally,	this	random	assignment	will	cause	the	overall	accuracy	of	a
model	trained	on	just	two	classes	to	be	low.	In	fact,	we	can	calculate	the
upper	bound	on	the	accuracy.	Because	80%	of	the	training	examples	have
random	labels,	the	best	that	the	model	can	do	is	to	guess	half	of	them
correctly.	So,	the	accuracy	on	that	subset	of	the	training	examples	will	be
40%.	The	remaining	20%	of	the	training	examples	have	systematic	labels,
and	an	ideal	model	will	learn	this,	so	we	expect	that	overall	accuracy	can
be	at	best	60%.

Indeed,	training	a	model	using	scikit-learn	as	follows,	we	get	an	accuracy
of	0.56:

				ntrain	=	8*len(df)//10	#	80%	of	data	for	training

				lm	=	linear_model.LogisticRegression()

				lm	=	lm.fit(df.loc[:ntrain-1,	['jaundice',	'ulcers']],	

																df[label][:ntrain])

				acc	=	lm.score(df.loc[ntrain:,	['jaundice',	'ulcers']],	

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/neutral.ipynb

																df[label][ntrain:])

If	we	create	three	classes,	and	put	all	the	randomly	assigned	prescriptions
into	that	class,	we	get,	as	expected,	perfect	(100%)	accuracy.	The	purpose
of	the	synthetic	data	was	to	illustrate	that,	provided	there	is	random
assignment	at	work,	the	Neutral	Class	design	pattern	can	help	us	avoid
losing	model	accuracy	because	of	arbitrarily	labeled	data.

IN	THE	REAL	WORLD

In	real-world	situations,	things	may	not	be	precisely	random	as	in	the
synthetic	dataset,	but	the	arbitrary	assignment	paradigm	still	holds.	For
example,	one	minute	after	a	baby	is	born,	the	baby	is	assigned	an	“Apgar
score,”	a	number	between	1	and	10,	with	10	being	a	baby	that	has	come
through	the	birthing	process	perfectly.

Consider	a	model	that	is	trained	to	predict	whether	or	not	a	baby	will	come
through	the	birthing	process	healthily,	or	will	require	immediate	attention
(the	full	code	is	on	GitHub):

CREATE	OR	REPLACE	MODEL	mlpatterns.neutral_2classes

OPTIONS(model_type='logistic_reg',	input_label_cols=['health'])	

AS

SELECT	

		IF(apgar_1min	>=	9,	'Healthy',	'NeedsAttention')	AS	health,

		plurality,

		mother_age,

		gestation_weeks,

		ever_born

FROM	`bigquery-public-data.samples.natality`

WHERE	apgar_1min	<=	10

We	are	thresholding	the	Apgar	score	at	9	and	treating	babies	whose	Apgar
score	is	9	or	10	as	healthy,	and	babies	whose	Apgar	score	is	8	or	lower	as

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/neutral.ipynb

requiring	attention.	The	accuracy	of	this	binary	classification	model	when
trained	on	the	natality	dataset	and	evaluated	on	held-out	data	is	0.56.

Yet,	assigning	an	Apgar	score	involves	a	number	of	relatively	subjective
assessments,	and	whether	a	baby	is	assigned	8	or	9	often	reduces	to
matters	of	physician	preference.	Such	babies	are	neither	perfectly	healthy,
nor	do	they	need	serious	medical	intervention.	What	if	we	create	a	neutral
class	to	hold	these	“marginal”	scores?	This	requires	creating	three	classes,
with	an	Apgar	score	of	10	defined	as	healthy,	scores	of	8	to	9	defined	as
neutral,	and	lower	scores	defined	as	requiring	attention:

CREATE	OR	REPLACE	MODEL	mlpatterns.neutral_3classes

OPTIONS(model_type='logistic_reg',	input_label_cols=['health'])	

AS

SELECT	

		IF(apgar_1min	=	10,	'Healthy',

					IF(apgar_1min	>=	8,	'Neutral',	'NeedsAttention'))	AS	

health,

		plurality,

		mother_age,

		gestation_weeks,

		ever_born

FROM	`bigquery-public-data.samples.natality`

WHERE	apgar_1min	<=	10

This	model	achieves	an	accuracy	of	0.79	on	a	held-out	evaluation	dataset,
much	higher	than	the	0.56	that	was	achieved	with	two	classes.

Trade-Offs	and	Alternatives

The	Neutral	Class	design	pattern	is	one	to	keep	in	mind	at	the	beginning	of
a	machine	learning	problem.	Collect	the	right	data,	and	we	can	avoid	a	lot
of	sticky	problems	down	the	line.	Here	are	a	few	situations	where	having	a
neutral	class	can	be	helpful.

WHEN	HUMAN	EXPERTS	DISAGREE

The	neutral	class	is	helpful	in	dealing	with	disagreements	among	human
experts.	Suppose	we	have	human	labelers	to	whom	we	show	patient
history	and	ask	them	what	medication	they	would	prescribe.	We	might
have	a	clear	signal	for	acetaminophen	in	some	cases,	a	clear	signal	for
ibuprofen	in	other	cases,	and	a	huge	swath	of	cases	for	which	human
labelers	disagree.	The	neutral	class	provides	a	way	to	deal	with	such	cases.

In	the	case	of	human	labeling	(unlike	with	the	historical	dataset	of	actual
doctor	actions	where	a	patient	was	seen	by	only	one	doctor),	every	pattern
is	labeled	by	multiple	experts.	Therefore,	we	know	a	priori	which	cases
humans	disagree	about.	It	might	seem	far	simpler	to	simply	discard	such
cases,	and	simply	train	a	binary	classifier.	After	all,	it	doesn’t	matter	what
the	model	does	on	the	neutral	cases.	This	has	two	problems:

1.	 False	confidence	tends	to	affect	the	acceptance	of	the	model	by
human	experts.	A	model	that	outputs	a	neutral	determination	is
often	more	acceptable	to	experts	than	a	model	that	is	wrongly
confident	in	cases	where	the	human	expert	would	have	chosen	the
alternative.

2.	 If	we	are	training	a	cascade	of	models,	then	downstream	models
will	be	extremely	sensitive	to	the	neutral	classes.	If	we	continue
to	improve	this	model,	downstream	models	could	change
dramatically	from	version	to	version.

Another	alternative	is	to	use	the	agreement	among	human	labelers	as	the
weight	of	a	pattern	during	training.	Thus,	if	5	experts	agree	on	a	diagnosis,
the	training	pattern	gets	a	weight	of	1,	while	if	the	experts	are	split	3	to	2,
the	weight	of	the	pattern	might	be	only	0.6.	This	allows	us	to	train	a	binary
classifier,	but	overweight	the	classifier	toward	the	“sure”	cases.	The
drawback	to	this	approach	is	that	when	the	probability	output	by	the	model

is	0.5,	it	is	unclear	whether	it	is	because	this	reflects	a	situation	where
there	was	insufficient	training	data,	or	whether	it	is	a	situation	where
human	experts	disagree.	Using	a	neutral	class	to	capture	areas	of
disagreement	allows	us	to	disambiguate	the	two	situations.

CUSTOMER	SATISFACTION

The	need	for	a	neutral	class	also	arises	with	models	that	attempt	to	predict
customer	satisfaction.	If	the	training	data	consists	of	survey	responses
where	customers	grade	their	experience	on	a	scale	of	1	to	10,	it	might	be
helpful	to	bucket	the	ratings	into	three	categories:	1	to	4	as	bad,	8	to	10	as
good,	and	5	to	7	is	neutral.	If,	instead,	we	attempt	to	train	a	binary
classifier	by	thresholding	at	6,	the	model	will	spend	too	much	effort	trying
to	get	essentially	neutral	responses	correct.

AS	A	WAY	TO	IMPROVE	EMBEDDINGS

Suppose	we	are	creating	a	pricing	model	for	flights	and	wish	to	predict
whether	or	not	a	customer	will	buy	a	flight	at	a	certain	price.	To	do	this,
we	can	look	at	historical	transactions	of	flight	purchases	and	abandoned
shopping	carts.	However,	suppose	many	of	our	transactions	also	include
purchases	by	consolidators	and	travel	agents—these	are	people	who	have
contracted	fares,	and	so	the	fares	for	them	were	not	actually	set
dynamically.	In	other	words,	they	don’t	pay	the	currently	displayed	price.

We	could	throw	away	all	the	nondynamic	purchases	and	train	the	model
only	on	customers	who	made	the	decision	to	buy	or	not	buy	based	on	the
price	being	displayed.	However,	such	a	model	will	miss	all	the
information	held	in	the	destinations	that	the	consolidator	or	travel	agent
was	interested	in	at	various	times—this	will	affect	things	like	how	airports
and	hotels	are	embedded.	One	way	to	retain	that	information	while	not

affecting	the	pricing	decision	is	to	use	a	neutral	class	for	these
transactions.

REFRAMING	WITH	NEUTRAL	CLASS

Suppose	we	are	training	an	automated	trading	system	that	makes	trades
based	on	whether	it	expects	a	security	to	go	up	or	down	in	price.	Because
of	stock	market	volatility	and	the	speed	with	which	new	information	is
reflected	in	stock	prices,	trying	to	trade	on	small	predicted	ups	and	downs
is	likely	to	lead	to	high	trading	costs	and	poor	profits	over	time.

In	such	cases,	it	is	helpful	to	consider	what	the	end	goal	is.	The	end	goal
of	the	ML	model	is	not	to	predict	whether	a	stock	will	go	up	or	down.	We
will	be	unable	to	buy	every	stock	that	we	predict	will	go	up,	and	unable	to
sell	stocks	that	we	don’t	hold.

The	better	strategy	might	be	to	buy	call	options 	for	the	10	stocks	that	are
most	likely	to	go	up	more	than	5%	over	the	next	6	months,	and	buy	put
options	for	stocks	that	are	most	likely	to	go	down	more	than	5%	over	the
next	6	months.

The	solution,	then,	is	to	create	a	training	dataset	consisting	of	three
classes:

Stocks	that	went	up	more	than	5%—call.

Stocks	that	went	down	more	than	5%—put.

The	remaining	stocks	are	in	the	neutral	category.

Rather	than	train	a	regression	model	on	how	much	stocks	will	go	up,	we
can	now	train	a	classification	model	with	these	three	classes	and	pick	the
most	confident	predictions	from	our	model.

3

Design	Pattern	10:	Rebalancing
The	Rebalancing	design	pattern	provides	various	approaches	for	handling
datasets	that	are	inherently	imbalanced.	By	this	we	mean	datasets	where
one	label	makes	up	the	majority	of	the	dataset,	leaving	far	fewer	examples
of	other	labels.

This	design	pattern	does	not	address	scenarios	where	a	dataset	lacks
representation	for	a	specific	population	or	real-world	environment.	Cases
like	this	can	often	only	be	solved	by	additional	data	collection.	The
Rebalancing	design	pattern	primarily	addresses	how	to	build	models	with
datasets	where	few	examples	exist	for	a	specific	class	or	classes.

Problem

Machine	learning	models	learn	best	when	they	are	given	a	similar	number
of	examples	for	each	label	class	in	a	dataset.	Many	real-world	problems,
however,	are	not	so	neatly	balanced.	Take	for	example	a	fraud	detection
use	case,	where	you	are	building	a	model	to	identify	fraudulent	credit	card
transactions.	Fraudulent	transactions	are	much	rarer	than	regular
transactions,	and	as	such,	there	is	less	data	on	fraud	cases	available	to	train
a	model.	The	same	is	true	for	other	problems	like	detecting	whether
someone	will	default	on	a	loan,	identifying	defective	products,	predicting
the	presence	of	a	disease	given	medical	images,	filtering	spam	emails,
flagging	error	logs	in	a	software	application,	and	more.

Imbalanced	datasets	apply	to	many	types	of	models,	including	binary
classification,	multiclass	classification,	multilabel	classification,	and
regression.	In	regression	cases,	imbalanced	datasets	refer	to	data	with
outlier	values	that	are	either	much	higher	or	lower	than	the	median	in	your
dataset.

A	common	pitfall	in	training	models	with	imbalanced	label	classes	is
relying	on	misleading	accuracy	values	for	model	evaluation.	If	we	train	a
fraud	detection	model	and	only	5%	of	our	dataset	contains	fraudulent
transactions,	chances	are	our	model	will	train	to	95%	accuracy	without
any	modifications	to	the	dataset	or	underlying	model	architecture.	While
this	95%	accuracy	number	is	technically	correct,	there’s	a	good	chance	the
model	is	guessing	the	majority	class	(in	this	case,	nonfraud)	for	each
example.	As	such,	it’s	not	learning	anything	about	how	to	distinguish	the
minority	class	from	other	examples	in	our	dataset.

To	avoid	leaning	too	much	on	this	misleading	accuracy	value,	it’s	worth
looking	at	the	model’s	confusion	matrix	to	see	accuracy	for	each	class.
The	confusion	matrix	for	a	poorly	performing	model	trained	on	an
imbalanced	dataset	often	looks	something	like	Figure	3-18.

Figure	3-18.	Confusion	matrix	for	a	model	trained	on	an	imbalanced	dataset	without	dataset	or
model	adjustments.

In	this	example,	the	model	correctly	guesses	the	majority	class	95%	of	the
time,	but	only	guesses	the	minority	class	correctly	12%	of	the	time.
Typically,	the	confusion	matrix	for	a	high	performing	model	has
percentages	close	to	100	down	the	diagonal.

Solution

First,	since	accuracy	can	be	misleading	on	imbalanced	datasets,	it’s
important	to	choose	an	appropriate	evaluation	metric	when	building	our
model.	Then,	there	are	various	techniques	we	can	employ	for	handling
inherently	imbalanced	datasets	at	both	the	dataset	and	model	level.
Downsampling	changes	the	balance	of	our	underlying	dataset,	while

weighting	changes	how	our	model	handles	certain	classes.	Upsampling
duplicates	examples	from	our	minority	class,	and	often	involves	applying
augmentations	to	generate	additional	samples.	We’ll	also	look	at
approaches	for	reframing	the	problem:	changing	it	to	a	regression	task,
analyzing	our	model’s	error	values	for	each	example,	or	clustering.

CHOOSING	AN	EVALUATION	METRIC

For	imbalanced	datasets	like	the	one	in	our	fraud	detection	example,	it’s
best	to	use	metrics	like	precision,	recall,	or	F-measure	to	get	a	complete
picture	of	how	our	model	is	performing.	Precision	measures	the
percentage	of	positive	classifications	that	were	correct	out	of	all	positive
predictions	made	by	the	model.	Conversely,	recall	measures	the
proportion	of	actual	positive	examples	that	were	identified	correctly	by	the
model.	The	biggest	difference	between	these	two	metrics	is	the
denominator	used	to	calculate	them.	For	precision,	the	denominator	is	the
total	number	of	positive	class	predictions	made	by	our	model.	For	recall,	it
is	the	number	of	actual	positive	class	examples	present	in	our	dataset.

A	perfect	model	would	have	both	precision	and	recall	of	1.0,	but	in
practice,	these	two	measures	are	often	at	odds	with	each	other.	The	F-
measure	is	a	metric	that	ranges	from	0	to	1	and	takes	both	precision	and
recall	into	account.	It	is	calculated	as:

2	*	(precision	*	recall	/	(precision	+	recall))

Let’s	return	to	the	fraud	detection	use	case	to	see	how	each	of	these
metrics	plays	out	in	practice.	For	this	example,	let’s	say	our	test	set
contains	a	total	of	1,000	examples,	50	of	which	should	be	labeled	as
fraudulent	transactions.	For	these	examples,	our	model	predicts	930/950
nonfraudulent	examples	correctly,	and	15/50	fraudulent	examples

correctly.	We	can	visualize	these	results	in	Figure	3-19.

Figure	3-19.	Sample	predictions	for	a	fraud	detection	model.

In	this	case,	our	model’s	precision	is	15/35	(42%),	recall	is	15/50	(30%),
and	F-measure	is	35%.	These	do	a	much	better	job	capturing	our	model’s
inability	to	correctly	identify	fraudulent	transactions	compared	to
accuracy,	which	is	945/1000	(94.5%).	Therefore,	for	models	trained	on
imbalanced	datasets,	metrics	other	than	accuracy	are	preferred.	In	fact,
accuracy	may	even	go	down	when	optimizing	for	these	metrics,	but	that	is
OK	since	precision,	recall,	and	F-score	are	a	better	indication	of	model
performance	in	this	case.

Note	that,	when	evaluating	models	trained	on	imbalanced	datasets,	we

need	to	use	unsampled	data	when	calculating	success	metrics.	This	means
that	no	matter	how	we	modify	our	dataset	for	training	per	the	solutions
we’ll	outline	below,	we	should	leave	our	test	set	as	is	so	that	it	provides	an
accurate	representation	of	the	original	dataset.	In	other	words,	our	test	set
should	have	roughly	the	same	class	balance	as	the	original	dataset.	For	the
example	above,	that	would	be	5%	fraud/95%	nonfraud.

If	we	are	looking	for	a	metric	that	captures	the	performance	of	the	model
across	all	thresholds,	average	precision-recall	is	a	more	informative	metric
than	area	under	the	ROC	curve	(AUC)	for	model	evaluation.	This	is
because	average	precision-recall	places	more	emphasis	on	how	many
predictions	the	model	got	right	out	of	the	total	number	it	assigned	to	the
positive	class.	This	gives	more	weight	to	the	positive	class,	which	is
important	for	imbalanced	datasets.	The	AUC,	on	the	other	hand,	treats
both	classes	equally	and	is	less	sensitive	to	model	improvements,	which
isn’t	optimal	in	situations	with	imbalanced	data.

DOWNSAMPLING

Downsampling	is	a	solution	for	handling	imbalanced	datasets	by	changing
the	underlying	dataset,	rather	than	the	model.	With	downsampling,	we
decrease	the	number	of	examples	from	the	majority	class	used	during
model	training.	To	see	how	this	works,	let’s	take	a	look	at	the	synthetic
fraud	detection	dataset	on	Kaggle. 	Each	example	in	the	dataset	contains
various	information	about	the	transaction,	including	the	transaction	type,
the	amount	of	the	transaction,	and	the	account	balance	both	before	and
after	the	transaction	took	place.	The	dataset	contains	6.3	million	examples,
only	8,000	of	which	are	fraudulent	transactions.	That’s	a	mere	0.1%	of	the
entire	dataset.

While	a	large	dataset	can	often	improve	a	model’s	ability	to	identify

4

https://oreil.ly/5iJX2
https://oreil.ly/WqUM-

patterns,	it’s	less	helpful	when	the	data	is	significantly	imbalanced.	If	we
train	a	model	on	this	entire	dataset	(6.3M	rows)	without	any
modifications,	chances	are	we’ll	see	a	misleading	accuracy	of	99.9%	as	a
result	of	the	model	randomly	guessing	the	nonfraudulent	class	each	time.
We	can	solve	for	this	by	removing	a	large	chunk	of	the	majority	class
from	the	dataset.

We’ll	take	all	8,000	of	the	fraudulent	examples	and	set	them	aside	to	use
when	training	the	model.	Then,	we’ll	take	a	small,	random	sample	of	the
nonfraudulent	transactions.	We’ll	then	combine	with	our	8,000	fraudulent
examples,	reshuffle	the	data,	and	use	this	new,	smaller	dataset	to	train	a
model.	Here’s	how	we	could	implement	this	with	pandas:

data	=	pd.read_csv('fraud_data.csv')

#	Split	into	separate	dataframes	for	fraud	/	not	fraud

fraud	=	data[data['isFraud']	==	1]

not_fraud	=	data[data['isFraud']	==	0]

#	Take	a	random	sample	of	non	fraud	rows

not_fraud_sample	=	not_fraud.sample(random_state=2,	frac=.005)

#	Put	it	back	together	and	shuffle

df	=	pd.concat([not_fraud_sample,fraud])

df	=	shuffle(df,	random_state=2)

Following	this,	our	dataset	would	contain	25%	fraudulent	transactions,
much	more	balanced	than	the	original	dataset	with	only	0.1%	in	the
minority	class.	It’s	worth	experimenting	with	the	exact	balance	used	when
downsampling.	Here	we	used	a	25/75	split,	but	different	problems	might
require	closer	to	a	50/50	split	to	achieve	decent	accuracy.

Downsampling	is	usually	combined	with	the	Ensemble	pattern,	following
these	steps:

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/03_problem_representation/rebalancing.ipynb

1.	 Downsample	the	majority	class	and	use	all	the	instances	of	the
minority	class.

2.	 Train	a	model	and	add	it	to	the	ensemble.

3.	 Repeat.

During	inference,	take	the	median	output	of	the	ensemble	models.

We	discussed	a	classification	example	here,	but	downsampling	can	also	be
applied	to	regression	models	where	we’re	predicting	a	numerical	value.	In
this	case,	taking	a	random	sample	of	majority	class	samples	will	be	more
nuanced	since	the	majority	“class”	in	our	data	includes	a	range	of	values
rather	than	a	single	label.

WEIGHTED	CLASSES

Another	approach	to	handling	imbalanced	datasets	is	to	change	the	weight
our	model	gives	to	examples	from	each	class.	Note	that	this	is	a	different
use	of	the	term	“weight”	than	the	weights	(or	parameters)	learned	by	our
model	during	training,	which	you	cannot	set	manually.	By	weighting
classes,	we	tell	our	model	to	treat	specific	label	classes	with	more
importance	during	training.	We’ll	want	our	model	to	assign	more	weight
to	examples	from	the	minority	class.	Exactly	how	much	importance	your
model	should	give	to	certain	examples	is	up	to	you,	and	is	a	parameter	you
can	experiment	with.

In	Keras,	we	can	pass	a	class_weights	parameter	to	our	model	when
we	train	it	with	fit().	The	parameter	class_weights	is	a	dict,
mapping	each	class	to	the	weight	Keras	should	assign	to	examples	from
that	class.	But	how	should	we	determine	the	exact	weights	for	each	class?
The	class	weight	values	should	relate	to	the	balance	of	each	class	in	our
dataset.	For	example,	if	the	minority	class	accounts	for	only	0.1%	of	the

dataset,	a	reasonable	conclusion	is	that	our	model	should	treat	examples
from	that	class	with	1000×	more	weight	than	the	majority	class.	In
practice,	it’s	common	to	divide	this	weight	value	by	2	for	each	class	so
that	the	average	weight	of	an	example	is	1.0.	Therefore,	given	a	dataset
with	0.1%	of	values	representing	the	minority	class,	we	could	calculate	the
class	weights	with	the	following	code:

num_minority_examples	=	1

num_majority_examples	=	999

total_examples	=	num_minority_examples	+	num_majority_examples

minority_class_weight	=	

1/(num_minority_examples/total_examples)/2

majority_class_weight	=	

1/(num_majority_examples/total_examples)/2

#	Pass	the	weights	to	Keras	in	a	dict

#	The	key	is	the	index	of	each	class

keras_class_weights	=	{0:	majority_class_weight,	1:	

minority_class_weight}

We’d	then	pass	these	weights	to	our	model	during	training:

model.fit(

				train_data,

				train_labels,	

				class_weight=keras_class_weights

)

In	BigQuery	ML,	we	can	set	AUTO_CLASS_WEIGHTS	=	True	in	the
OPTIONS	block	when	creating	our	model	to	have	different	classes
weighted	based	on	their	frequency	of	occurrence	in	the	training	data.

While	it	can	be	helpful	to	follow	a	heuristic	of	class	balance	for	setting
class	weights,	the	business	application	of	a	model	might	also	dictate	the
class	weights	we	choose	to	assign.	For	example,	let’s	say	we	have	a	model

classifying	images	of	defective	products.	If	the	cost	of	shipping	a	defective
product	is	10	times	that	of	incorrectly	classifying	a	normal	product,	we
would	choose	10	as	the	weight	for	our	minority	class.

OUTPUT	LAYER	BIAS
In	conjunction	with	assigning	class	weights,	it	is	also	helpful	to	initialize	the	model’s	output	layer	with	a	bias
to	account	for	dataset	imbalance.	Why	would	we	want	to	manually	set	the	initial	bias	for	our	output	layer?
When	we	have	imbalanced	datasets,	setting	the	output	bias	will	help	our	model	converge	faster.	This	is
because	the	bias	of	the	last	(prediction)	layer	of	a	trained	model	will	output,	on	average,	the	log	of	the	ratio
of	minority	to	majority	examples	in	the	dataset.	By	setting	the	bias,	the	model	already	starts	out	at	the
“correct”	value	without	having	to	discover	it	through	gradient	descent.

By	default,	Keras	uses	a	bias	of	zero.	This	corresponds	with	the	bias	we’d	want	to	use	for	a	perfectly
balanced	dataset	where	log(1/1)	=	0.	To	calculate	the	correct	bias	while	taking	our	dataset	balance
into	account,	use:

	bias	=	log(num_minority_examples	/	num_majority_examples)

UPSAMPLING

Another	common	technique	for	handling	imbalanced	datasets	is
upsampling.	With	upsampling,	we	overrepresent	our	minority	class	by
both	replicating	minority	class	examples	and	generating	additional,
synthetic	examples.	This	is	often	done	in	combination	with	downsampling
the	majority	class.	This	approach—combining	downsampling	and
upsampling—was	proposed	in	2002	and	referred	to	as	Synthetic	Minority
Over-sampling	Technique	(SMOTE).	SMOTE	provides	an	algorithm	that
constructs	these	synthetic	examples	by	analyzing	the	feature	space	of
minority	class	examples	in	the	dataset	and	then	generates	similar	examples
within	this	feature	space	using	a	nearest	neighbors	approach.	Depending
on	how	many	similar	data	points	we	choose	to	consider	at	once	(also
referred	to	as	the	number	of	nearest	neighbors),	the	SMOTE	approach
randomly	generates	a	new	minority	class	example	between	these	points.

https://oreil.ly/CFJPz

Let’s	look	at	the	Pima	Indian	Diabetes	Dataset	to	see	how	this	works	at	a
high	level.	34%	of	this	dataset	contains	examples	of	patients	who	had
diabetes,	so	we’ll	consider	this	our	minority	class.	Table	3-3	shows	a
subset	of	columns	for	two	minority	class	examples.

Table	3-3.	A	subset	of	features	for	two	training	examples	from	the	
minority	class	(has	diabetes)	in	the	Pima	Indian	Diabetes	Dataset

Glucose BloodPressure SkinThickness BMI

148 72 35 33.6

183 64 0 23.3

A	new,	synthetic	example	based	on	these	two	actual	examples	from	the
dataset	might	look	like	Table	3-4,	calculating	by	the	midpoint	between
each	of	these	column	values.

Table	3-4.	A	synthetic	example	generated	from	the	two	minority	
training	examples	using	the	SMOTE	approach

Glucose BloodPressure SkinThickness BMI

165.5 68 17.5 28.4

The	SMOTE	technique	refers	primarily	to	tabular	data,	but	similar	logic
can	be	applied	to	image	datasets.	For	example,	if	we’re	building	a	model
to	distinguish	between	Bengal	and	Siamese	cats	and	only	10%	of	our
dataset	contains	images	of	Bengals,	we	can	generate	additional	variations
of	the	Bengal	cats	in	our	dataset	through	image	augmentation	using	the
Keras	ImageDataGenerator	class.	With	a	few	parameters,	this	class
will	generate	multiple	variations	of	the	same	image	by	rotating,	cropping,
adjusting	brightness,	and	more.

https://oreil.ly/ljqnc

Trade-Offs	and	Alternatives

There	are	a	few	other	alternative	solutions	for	building	models	with
inherently	imbalanced	datasets,	including	reframing	the	problem	and
handling	cases	of	anomaly	detection.	We’ll	also	explore	several	important
considerations	for	imbalanced	datasets:	overall	dataset	size,	the	optimal
model	architectures	for	different	problem	types,	and	explaining	minority
class	prediction.

REFRAMING	AND	CASCADE

Reframing	the	problem	is	another	approach	for	handling	imbalanced
datasets.	First,	we	might	consider	switching	the	problem	from
classification	to	regression	or	vice	versa	utilizing	the	techniques	described
in	the	Reframing	design	pattern	section	and	training	a	cascade	of	models.
For	example,	let’s	say	we	have	a	regression	problem	where	the	majority	of
our	training	data	falls	within	a	certain	range,	with	a	few	outliers.
Assuming	we	care	about	predicting	outlier	values,	we	could	convert	this	to
a	classification	problem	by	bucketing	the	majority	of	the	data	in	one
bucket	and	the	outliers	in	another.

Imagine	we’re	building	a	model	to	predict	baby	weight	using	the
BigQuery	natality	dataset.	Using	pandas,	we	can	create	a	histogram	of	a
sample	of	the	baby	weight	data	to	see	the	weight	distribution:

%%bigquerydf

SELECT

		weight_pounds

FROM

		`bigquery-public-data.samples.natality`

LIMIT	10000

df.plot(kind='hist')

Figure	3-20	shows	the	resulting	histogram.

Figure	3-20.	A	histogram	depicting	the	distribution	of	baby	weight	for	10,000	examples	in	the
BigQuery	natality	dataset.

If	we	count	the	number	of	babies	weighing	3	lbs	in	the	entire	dataset,	there
are	approximately	96,000	(.06%	of	the	data).	Babies	weighing	12	lbs	make
up	only	.05%	of	the	dataset.	To	get	good	regression	performance	over	the
entire	range,	we	can	combine	downsampling	with	the	Reframing	and
Cascade	design	patterns.	First,	we’ll	split	the	data	into	three	buckets:
“underweight,”	“average,”	and	“overweight.”	We	can	do	that	with	the
following	query:

SELECT

		CASE

				WHEN	weight_pounds	<	5.5	THEN	"underweight"

				WHEN	weight_pounds	>	9.5	THEN	"overweight"

		ELSE

		"average"

END

		AS	weight,

		COUNT(*)	AS	num_examples,

		round(count(*)	/	sum(count(*))	over(),	4)	as	

percent_of_dataset

FROM

		`bigquery-public-data.samples.natality`

GROUP	BY

		1

Table	3-5	shows	the	results.

Table	3-5.	The	percentage	of	each	weight	class	present	in	the	natality	
dataset

weight num_examples percent_of_dataset

Average 123781044 0.8981

Underweight 9649724 0.07

Overweight 4395995 0.0319

For	demo	purposes,	we’ll	take	100,000	examples	from	each	class	to	train	a
model	on	an	updated,	balanced	dataset:

SELECT

		is_male,

		gestation_weeks,

		mother_age,

		weight_pounds,

		weight

FROM	(

		SELECT

				*,

				ROW_NUMBER()	OVER	(PARTITION	BY	weight	ORDER	BY	RAND())	AS	

row_num

		FROM	(

				SELECT

						is_male,

						gestation_weeks,

						mother_age,

						weight_pounds,

						CASE

								WHEN	weight_pounds	<	5.5	THEN	"underweight"

								WHEN	weight_pounds	>	9.5	THEN	"overweight"

						ELSE

						"average"

				END

						AS	weight,

				FROM

						`bigquery-public-data.samples.natality`

				LIMIT

						4000000))

WHERE

		row_num	<	100000

We	can	save	the	results	of	that	query	to	a	table,	and	with	a	more	balanced
dataset,	we	can	now	train	a	classification	model	to	label	babies	as
“underweight,”	“average,”	or	“overweight”:

CREATE	OR	REPLACE	MODEL

		`project.dataset.baby_weight_classification`	

OPTIONS(model_type='logistic_reg',

				input_label_cols=['weight'])	AS

SELECT

		is_male,

		weight_pounds,

		mother_age,

		gestation_weeks,

		weight

FROM

		`project.dataset.baby_weight`

Another	approach	is	to	use	the	Cascade	pattern,	training	three	separate
regression	models	for	each	class.	Then,	we	can	use	our	multidesign	pattern

solution	by	passing	our	initial	classification	model	an	example	and	using
the	result	of	that	classification	to	decide	which	regression	model	to	send
the	example	to	for	numeric	prediction.

ANOMALY	DETECTION

There	are	two	approaches	to	handling	regression	models	for	imbalanced
datasets:

Use	the	model’s	error	on	a	prediction	as	a	signal.

Cluster	incoming	data	and	compare	the	distance	of	each	new	data
point	to	existing	clusters.

To	better	understand	each	solution,	let’s	say	we’re	training	a	model	on
data	collected	by	a	sensor	to	predict	temperature	in	the	future.	In	this	case,
we’d	need	the	model	output	to	be	a	numerical	value.

For	the	first	approach—using	error	as	a	signal—after	training	a	model,	we
would	then	compare	the	model’s	predicted	value	with	the	actual	value	for
the	current	point	in	time.	If	there	was	a	significant	difference	between	the
predicted	and	actual	current	value,	we	could	flag	the	incoming	data	point
as	an	anomaly.	Of	course,	this	requires	a	model	trained	with	good
accuracy	on	enough	historical	data	to	rely	on	its	quality	for	future
predictions.	The	main	caveat	for	this	approach	is	that	it	requires	us	to	have
new	data	readily	available,	so	that	we	can	compare	the	incoming	data	with
the	model’s	prediction.	As	a	result,	it	works	best	for	problems	involving
streaming	or	time-series	data.

In	the	second	approach—clustering	data—we	start	by	building	a	model
with	a	clustering	algorithm,	a	modeling	technique	that	organizes	our	data
into	clusters.	Clustering	is	an	unsupervised	learning	method,	meaning	it

looks	for	patterns	in	the	dataset	without	any	knowledge	of	ground	truth
labels.	A	common	clustering	algorithm	is	k-means,	which	we	can
implement	with	BigQuery	ML.	The	following	shows	how	to	train	a	k-
means	model	on	the	BigQuery	natality	dataset	using	three	features:

CREATE	OR	REPLACE	MODEL

		`project-name.dataset-name.baby_weight`	

OPTIONS(model_type='kmeans',

				num_clusters=4)	AS

SELECT

		weight_pounds,

		mother_age,

		gestation_weeks

FROM

		`bigquery-public-data.samples.natality`

LIMIT	10000

The	resulting	model	will	cluster	our	data	into	four	groups.	Once	the	model
has	been	created,	we	can	then	generate	predictions	on	new	data	and	look	at
that	prediction’s	distance	from	existing	clusters.	If	the	distance	is	high,	we
can	flag	the	data	point	as	an	anomaly.	To	generate	a	cluster	prediction	on
our	model,	we	can	run	the	following	query,	passing	it	a	made-up	average
example	from	the	dataset:

SELECT

		*

FROM

		ML.PREDICT	(MODEL	`project-name.dataset-name.baby_weight`,

				(

				SELECT

						7.0	as	weight_pounds,

						28	as	mother_age,

						40	as	gestation_weeks	

)

)

The	query	results	in	Table	3-6	show	us	the	distance	between	this	data

point	and	the	model’s	generated	clusters,	called	centroids.

Table	3-6.	The	distance	between	our	average	weight	example	data	
point	and	each	of	the	clusters	generated	by	our	k-means	model	

CENTR
OID_ID

NEAREST_CENTROIDS_DISTAN
CE.CENTROID_ID

NEAREST_CENTROIDS_DIST
ANCE.DISTANCE

4 4 0.29998627812137374

1 1.2370167418282159

2 1.376651161584178

3 1.6853517159990536

This	example	clearly	fits	into	centroid	4,	as	seen	by	the	small	distance
(.29).

We	can	compare	this	to	the	results	we	get	if	we	send	an	outlier,
underweight	example	to	the	model,	as	shown	in	Table	3-7.

Table	3-7.	The	distance	between	our	underweight	example	data	point	
and	each	of	the	clusters	generated	by	our	k-means	model

CENTR
OID_ID

NEAREST_CENTROIDS_DISTAN
CE.CENTROID_ID

NEAREST_CENTROIDS_DIST
ANCE.DISTANCE

3 3 3.061985789261998

4 3.3124603501734966

2 4.330205096751425

1 4.658614918595627

Here,	the	distance	between	this	example	and	each	centroid	is	quite	large.

We	could	then	use	these	high-distance	values	to	conclude	that	this	data
point	might	be	an	anomaly.	This	unsupervised	clustering	approach	is
especially	useful	if	we	don’t	know	the	labels	for	our	data	in	advance.	Once
we’ve	generated	cluster	predictions	on	enough	examples,	we	could	then
build	a	supervised	learning	model	using	the	predicted	clusters	as	labels.

NUMBER	OF	MINORITY	CLASS	EXAMPLES	AVAILABLE

While	the	minority	class	in	our	first	fraud	detection	example	only	made	up
0.1%	of	the	data,	the	dataset	was	large	enough	that	we	still	had	8,000
fraudulent	data	points	to	work	with.	For	datasets	with	even	fewer
examples	of	the	minority	class,	downsampling	may	make	the	resulting
dataset	too	small	for	a	model	to	learn	from.	There	isn’t	a	hard-and-fast	rule
for	determining	how	many	examples	is	too	few	to	use	downsampling,
since	it	largely	depends	on	our	problem	and	model	architecture.	A	general
rule	of	thumb	is	that	if	you	only	have	hundreds	of	examples	of	the
minority	class,	you	might	want	to	consider	a	solution	other	than
downsampling	for	handling	dataset	imbalance.

It’s	also	worth	noting	that	the	natural	effect	of	removing	a	subset	of	our
majority	class	is	losing	some	information	stored	in	those	examples.	This
might	slightly	decrease	our	model’s	ability	to	identify	the	majority	class,
but	often	the	benefits	of	downsampling	still	outweigh	this.

COMBINING	DIFFERENT	TECHNIQUES

The	downsampling	and	class	weight	techniques	described	above	can	be
combined	for	optimal	results.	To	do	this,	we	start	by	downsampling	our
data	until	we	find	a	balance	that	works	for	our	use	case.	Then,	based	on
the	label	ratios	for	the	rebalanced	dataset,	use	the	method	described	in	the
weighted	classes	section	to	pass	new	weights	to	our	model.	Combining

these	approaches	can	be	especially	useful	when	we	have	an	anomaly
detection	problem	and	care	most	about	predictions	for	our	minority	class.
For	example,	if	we’re	building	a	fraud	detection	model,	we’re	likely	much
more	concerned	about	the	transactions	our	model	flags	as	“fraud”	rather
than	the	ones	it	flags	as	“nonfraud.”	Additionally,	as	mentioned	by
SMOTE,	the	approach	of	generating	synthetic	examples	from	the	minority
class	is	often	combined	with	removing	a	random	sample	of	examples	from
the	minority	class.

Downsampling	is	also	often	combined	with	the	Ensemble	design	pattern.
Using	this	approach,	instead	of	entirely	removing	a	random	sample	of	our
majority	class,	we	use	different	subsets	of	it	to	train	multiple	models	and
then	ensemble	those	models.	To	illustrate	this,	let’s	say	we	have	a	dataset
with	100	minority	class	examples	and	1,000	majority	examples.	Rather
than	removing	900	examples	from	our	majority	class	to	perfectly	balance
the	dataset,	we’d	randomly	split	the	majority	examples	into	10	groups	with
100	examples	each.	We’d	then	train	10	classifiers,	each	with	the	same	100
examples	from	our	minority	class	and	100	different,	randomly	selected
values	from	our	majority	class.	The	bagging	technique	illustrated	in
Figure	3-11	would	work	well	for	this	approach.

In	addition	to	combining	these	data-centric	approaches,	we	can	also	adjust
the	threshold	for	our	classifier	to	optimize	for	precision	or	recall
depending	on	our	use	case.	If	we	care	more	that	our	model	is	correct
whenever	it	makes	a	positive	class	prediction,	we’d	optimize	our
prediction	threshold	for	recall.	This	can	apply	in	any	situation	where	we
want	to	avoid	false	positives.	Alternatively,	if	it	is	more	costly	to	miss	a
potential	positive	classification	even	when	we	might	get	it	wrong,	we
optimize	our	model	for	recall.

CHOOSING	A	MODEL	ARCHITECTURE

CHOOSING	A	MODEL	ARCHITECTURE

Depending	on	our	prediction	task,	there	are	different	model	architectures
to	consider	when	solving	problems	with	the	Rebalancing	design	pattern.	If
we’re	working	with	tabular	data	and	building	a	classification	model	for
anomaly	detection,	research	has	shown	that	decision	tree	models	perform
well	on	these	types	of	tasks.	Tree-based	models	also	work	well	on
problems	involving	small	and	imbalanced	datasets.	XGBoost,	scikit-learn,
and	TensorFlow	all	have	methods	for	implementing	decision	tree	models.

We	can	implement	a	binary	classifier	in	XGBoost	with	the	following
code:

#	Build	the	model

model	=	xgb.XGBClassifier(

				objective='binary:logistic'

)

#	Train	the	model

model.fit(

				train_data,	

				train_labels

)

We	can	use	downsampling	and	class	weights	in	each	of	these	frameworks
to	further	optimize	our	model	using	the	Rebalancing	design	pattern.	For
example,	to	add	weighted	classes	to	our	XGBClassifier	above,	we’d
add	a	scale_pos_weight	parameter,	calculated	based	on	the	balance
of	classes	in	our	dataset.

If	we’re	detecting	anomalies	in	time-series	data,	long	short-term	memory
(LSTM)	models	work	well	for	identifying	patterns	present	in	sequences.
Clustering	models	are	also	an	option	for	tabular	data	with	imbalanced
classes.	For	imbalanced	datasets	with	image	input,	use	deep	learning
architectures	with	downsampling,	weighted	classes,	upsampling,	or	a

https://oreil.ly/EnAab

combination	of	these	techniques.	For	text	data,	however,	generating
synthetic	data	is	less	straightforward,	and	it’s	best	to	rely	on
downsampling	and	weighted	classes.

Regardless	of	the	data	modality	we’re	working	with,	it’s	useful	to
experiment	with	different	model	architectures	to	see	which	performs	best
on	our	imbalanced	data.

IMPORTANCE	OF	EXPLAINABILITY

When	building	models	for	flagging	rare	occurrences	in	data	such	as
anomalies,	it’s	especially	important	to	understand	how	our	model	is
making	predictions.	This	can	both	verify	that	the	model	is	picking	up	on
the	correct	signals	to	make	its	predictions	and	help	explain	the	model’s
behavior	to	end	users.	There	are	a	few	tools	available	to	help	us	interpret
models	and	explain	predictions,	including	the	open	source	framework
SHAP,	the	What-If	Tool,	and	Explainable	AI	on	Google	Cloud.

Model	explanations	can	take	many	forms,	one	of	which	is	called
attribution	values.	Attribution	values	tell	us	how	much	each	feature	in	our
model	influenced	the	model’s	prediction.	Positive	attribution	values	mean
a	particular	feature	pushed	our	model’s	prediction	up,	and	negative
attribution	values	mean	the	feature	pushed	our	model’s	prediction	down.
The	higher	the	absolute	value	of	an	attribution,	the	bigger	impact	it	had	on
our	model’s	prediction.	In	image	and	text	models,	attributions	can	show
you	the	pixels	or	words	that	signaled	your	model’s	prediction	most.	For
tabular	models,	attributions	provide	numerical	values	for	each	feature,
indicating	its	overall	effect	on	the	model’s	prediction.

After	training	a	TensorFlow	model	on	the	synthetic	fraud	detection	dataset
from	Kaggle	and	deploying	it	to	Explainable	AI	on	Google	Cloud,	let’s

https://oreil.ly/2ai2k
https://github.com/slundberg/shap
https://oreil.ly/Vf3D-
https://oreil.ly/lDocn

take	a	look	at	some	examples	of	instance-level	attributions.	In	Figure	3-21,
we	see	two	example	transactions	that	our	model	correctly	identified	as
fraud,	along	with	their	feature	attributions.

In	the	first	example	where	the	model	predicted	a	99%	chance	of	fraud,	the
old	balance	at	the	origin	account	before	the	transaction	was	made	was	the
biggest	indicator	of	fraud.	In	the	second	example,	our	model	was	89%
confident	in	its	prediction	of	fraud	with	the	amount	of	the	transaction
identified	as	the	biggest	signal	of	fraud.	However,	the	balance	at	the	origin
account	made	our	model	less	confident	in	its	prediction	of	fraud	and
explains	why	the	prediction	confidence	is	slightly	lower	by	10	percentage
points.

Explanations	are	important	for	any	type	of	machine	learning	model,	but
we	can	see	how	they	are	especially	useful	for	models	following	the
Rebalancing	design	pattern.	When	dealing	with	imbalanced	data,	it’s
important	to	look	beyond	our	model’s	accuracy	and	error	metrics	to	verify
that	it’s	picking	up	on	meaningful	signals	in	our	data.

Figure	3-21.	Feature	attributions	from	Explainable	AI	for	two	correctly	classified	fraudulent
transactions.

Summary
This	chapter	looked	at	different	ways	to	represent	a	prediction	task
through	the	lens	of	model	architecture	and	model	output.	Thinking	about
how	you’ll	apply	your	model	can	guide	your	decision	on	the	type	of	model
to	build,	and	how	to	format	your	output	for	prediction.	With	this	in	mind,

we	started	with	the	Reframing	design	pattern,	which	explores	changing
your	problem	from	a	regression	task	to	a	classification	task	(or	vice	versa)
to	improve	the	quality	of	your	model.	You	can	do	this	by	reformatting	the
label	column	in	your	data.	Next	we	explored	the	Multilabel	design	pattern,
which	addresses	cases	where	an	input	to	your	model	can	be	associated
with	more	than	one	label.	To	handle	this	case,	use	the	sigmoid	activation
function	on	your	output	layer	with	binary	cross	entropy	loss.

Whereas	the	Reframing	and	Multilabel	patterns	focus	on	formatting	model
output,	the	Ensemble	design	pattern	addresses	model	architecture	and
includes	various	methods	for	combining	multiple	models	to	improve	upon
machine	learning	results	from	a	single	model.	Specifically,	the	Ensemble
pattern	includes	bagging,	boosting,	and	stacking—all	different	techniques
for	aggregating	multiple	models	into	one	ML	system.	The	Cascade	design
pattern	is	also	a	model-level	approach,	and	involves	breaking	a	machine
learning	problem	into	several	smaller	problems.	Unlike	ensemble	models,
the	Cascade	pattern	requires	outputs	from	an	initial	model	to	be	inputs	into
downstream	models.	Because	of	the	complexity	cascade	models	can
create,	you	should	only	use	them	when	you	have	a	scenario	where	the
initial	classification	labels	are	disparate	and	equally	important.

Next,	we	looked	at	the	Neutral	Class	design	pattern,	which	addresses
problem	representation	at	the	output	level.	This	pattern	improves	a	binary
classifier	by	adding	a	third	“neutral”	class.	This	is	useful	in	cases	where
you	want	to	capture	arbitrary	or	less-polarizing	classifications	that	don’t
fall	into	either	of	the	distinct	binary	categories.	Finally,	the	Rebalancing
design	pattern	provides	solutions	for	cases	where	you	have	an	inherently
imbalanced	dataset.	This	pattern	proposes	using	downsampling,	weighted
classes,	or	specific	reframing	techniques	to	solve	for	datasets	with
imbalanced	label	classes.

Chapters	2	and	3	focused	on	the	initial	steps	for	structuring	your	machine
learning	problem,	specifically	formatting	input	data,	model	architecture
options,	and	model	output	representation.	In	the	next	chapter,	we’ll
navigate	the	next	step	in	the	machine	learning	workflow—design	patterns
for	training	models.

1 	For	the	explicit	computation	of	these	values,	see	Ian	Goodfellow,	Yoshua	Bengio,	and	Aaron
Courville,	Deep	Learning	(Cambridge,	MA:	MIT	Press,	2016),	Ch.	7.

2 	This	is	just	an	example	being	used	for	illustrative	purposes;	please	don’t	take	this	as	medical
advice!

3 	See	https://oreil.ly/kDndF	for	a	primer	on	call	and	put	options.

4 	The	dataset	was	generated	based	on	the	PaySim	research	proposed	in	this	paper:	EdgarLopez-
Rojas	,	Ahmad	Elmir,	and	Stefan	Axelsson,	“PaySim:	A	financial	mobile	money	simulator
for	fraud	detection,”	28th	European	Modeling	and	Simulation	Symposium,	EMSS,	Larnaca,
Cyprus	(2016):	249–255.

https://oreil.ly/kDndF

Chapter	4.	Model	Training
Patterns

Machine	learning	models	are	usually	trained	iteratively,	and	this	iterative
process	is	informally	called	the	training	loop.	In	this	chapter,	we	discuss
what	the	typical	training	loop	looks	like,	and	catalog	a	number	of
situations	in	which	you	might	want	to	do	something	different.

Typical	Training	Loop
Machine	learning	models	can	be	trained	using	different	types	of
optimization.	Decision	trees	are	often	built	node	by	node	based	on	an
information	gain	measure.	In	genetic	algorithms,	the	model	parameters	are
represented	as	genes,	and	the	optimization	method	involves	techniques
that	are	based	on	evolutionary	theory.	However,	the	most	common
approach	to	determining	the	parameters	of	machine	learning	models	is
gradient	descent.

Stochastic	Gradient	Descent

On	large	datasets,	gradient	descent	is	applied	to	mini-batches	of	the	input
data	to	train	everything	from	linear	models	and	boosted	trees	to	deep
neural	networks	(DNNs)	and	support	vector	machines	(SVMs).	This	is
called	stochastic	gradient	descent	(SGD),	and	extensions	of	SGD	(such	as
Adam	and	Adagrad)	are	the	de	facto	optimizers	used	in	modern-day
machine	learning	frameworks.

Because	SGD	requires	training	to	take	place	iteratively	on	small	batches
of	the	training	dataset,	training	a	machine	learning	model	happens	in	a
loop.	SGD	finds	a	minimum,	but	is	not	a	closed-form	solution,	and	so	we
have	to	detect	whether	the	model	convergence	has	happened.	Because	of
this,	the	error	(called	the	loss)	on	the	training	dataset	has	to	be	monitored.
Overfitting	can	happen	if	the	model	complexity	is	higher	than	can	be
afforded	by	the	size	and	coverage	of	the	dataset.	Unfortunately,	you
cannot	know	whether	the	model	complexity	is	too	high	for	a	particular
dataset	until	you	actually	train	that	model	on	that	dataset.	Therefore,
evaluation	needs	to	be	done	within	the	training	loop,	and	error	metrics	on
a	withheld	split	of	the	training	data,	called	the	validation	dataset,	have	to
be	monitored	as	well.	Because	the	training	and	validation	datasets	have
been	used	in	the	training	loop,	it	is	necessary	to	withhold	yet	another	split
of	the	training	dataset,	called	the	testing	dataset,	to	report	the	actual	error
metrics	that	could	be	expected	on	new	and	unseen	data.	This	evaluation	is
carried	out	at	the	end.

Keras	Training	Loop

The	typical	training	loop	in	Keras	looks	like	this:

model	=	keras.Model(...)

model.compile(optimizer=keras.optimizers.Adam(),

														loss=keras.losses.categorical_crossentropy(),

														metrics=['accuracy'])

history	=	model.fit(x_train,	y_train,

																				batch_size=64,

																				epochs=3,

																				validation_data=(x_val,	y_val))

results	=	model.evaluate(x_test,	y_test,	batch_size=128))

model.save(...)

Here,	the	model	uses	the	Adam	optimizer	to	carry	out	SGD	on	the	cross

entropy	over	the	training	dataset	and	reports	out	the	final	accuracy
obtained	on	the	testing	dataset.	The	model	fitting	loops	over	the	training
dataset	three	times	(each	traversal	over	the	training	dataset	is	termed	an
epoch)	with	the	model	seeing	batches	consisting	of	64	training	examples
at	a	time.	At	the	end	of	every	epoch,	the	error	metrics	are	calculated	on	the
validation	dataset	and	added	to	the	history.	At	the	end	of	the	fitting	loop,
the	model	is	evaluated	on	the	testing	dataset,	saved,	and	potentially
deployed	for	serving,	as	shown	in	Figure	4-1.

Figure	4-1.	A	typical	training	loop	consisting	of	three	epochs.	Each	epoch	is	processed	in	chunks	of
batch_size	examples.	At	the	end	of	the	third	epoch,	the	model	is	evaluated	on	the	testing	dataset,

and	saved	for	potential	deployment	as	a	web	service.

Instead	of	using	the	prebuilt	fit()	function,	we	could	also	write	a
custom	training	loop	that	iterates	over	the	batches	explicitly,	but	we	will
not	need	to	do	this	for	any	of	the	design	patterns	discussed	in	this	chapter.

Training	Design	Patterns

The	design	patterns	covered	in	this	chapter	all	have	to	do	with	modifying
the	typical	training	loop	in	some	way.	In	Useful	Overfitting,	we	forgo	the
use	of	a	validation	or	testing	dataset	because	we	want	to	intentionally
overfit	on	the	training	dataset.	In	Checkpoints,	we	store	the	full	state	of	the
model	periodically,	so	that	we	have	access	to	partially	trained	models.

When	we	use	checkpoints,	we	usually	also	use	virtual	epochs,	wherein	we
decide	to	carry	out	the	inner	loop	of	the	fit()	function,	not	on	the	full
training	dataset	but	on	a	fixed	number	of	training	examples.	In	Transfer
Learning,	we	take	part	of	a	previously	trained	model,	freeze	the	weights,
and	incorporate	these	nontrainable	layers	into	a	new	model	that	solves	the
same	problem,	but	on	a	smaller	dataset.	In	Distribution	Strategy,	the
training	loop	is	carried	out	at	scale	over	multiple	workers,	often	with
caching,	hardware	acceleration,	and	parallelization.	Finally,	in
Hyperparameter	Tuning,	the	training	loop	is	itself	inserted	into	an
optimization	method	to	find	the	optimal	set	of	model	hyperparameters.

Design	Pattern	11:	Useful	Overfitting
Useful	Overfitting	is	a	design	pattern	where	we	forgo	the	use	of
generalization	mechanisms	because	we	want	to	intentionally	overfit	on	the
training	dataset.	In	situations	where	overfitting	can	be	beneficial,	this
design	pattern	recommends	that	we	carry	out	machine	learning	without
regularization,	dropout,	or	a	validation	dataset	for	early	stopping.

Problem

The	goal	of	a	machine	learning	model	is	to	generalize	and	make	reliable
predictions	on	new,	unseen	data.	If	your	model	overfits	the	training	data
(for	example,	it	continues	to	decrease	the	training	error	beyond	the	point	at
which	validation	error	starts	to	increase),	then	its	ability	to	generalize
suffers	and	so	do	your	future	predictions.	Introductory	machine	learning
textbooks	advise	avoiding	overfitting	by	using	early	stopping	and
regularization	techniques.

Consider,	however,	a	situation	of	simulating	the	behavior	of	physical	or

dynamical	systems	like	those	found	in	climate	science,	computational
biology,	or	computational	finance.	In	such	systems,	the	time	dependence
of	observations	can	be	described	by	a	mathematical	function	or	set	of
partial	differential	equations	(PDEs).	Although	the	equations	that	govern
many	of	these	systems	can	be	formally	expressed,	they	don’t	have	a
closed-form	solution.	Instead,	classical	numerical	methods	have	been
developed	to	approximate	solutions	to	these	systems.	Unfortunately,	for
many	real-world	applications,	these	methods	can	be	too	slow	to	be	used	in
practice.

Consider	the	situation	shown	in	Figure	4-2.	Observations	collected	from
the	physical	environment	are	used	as	inputs	(or	initial	starting	conditions)
for	a	physics-based	model	that	carries	out	iterative,	numerical	calculations
to	calculate	the	precise	state	of	the	system.	Suppose	all	the	observations
have	a	finite	number	of	possibilities	(for	example,	temperature	will	be
between	60°C	and	80°C	in	increments	of	0.01°C).	It	is	then	possible	to
create	a	training	dataset	for	the	machine	learning	system	consisting	of	the
complete	input	space	and	calculate	the	labels	using	the	physical	model.

Figure	4-2.	One	situation	when	it	is	acceptable	to	overfit	is	when	the	entire	domain	space	of
observations	can	be	tabulated	and	a	physical	model	capable	of	computing	the	precise	solution	is

available.

The	ML	model	needs	to	learn	this	precisely	calculated	and	nonoverlapping
lookup	table	of	inputs	to	outputs.	Splitting	such	a	dataset	into	a	training
dataset	and	an	evaluation	dataset	is	counterproductive	because	we	would
then	be	expecting	the	model	to	learn	parts	of	the	input	space	it	will	not
have	seen	in	the	training	dataset.

Solution

In	this	scenario,	there	is	no	“unseen”	data	that	needs	to	be	generalized	to,
since	all	possible	inputs	have	been	tabulated.	When	building	a	machine
learning	model	to	learn	such	a	physics	model	or	dynamical	system,	there
is	no	such	thing	as	overfitting.	The	basic	machine	learning	training
paradigm	is	slightly	different.	Here,	there	is	some	physical	phenomenon
that	you	are	trying	to	learn	that	is	governed	by	an	underlying	PDE	or
system	of	PDEs.	Machine	learning	merely	provides	a	data-driven
approach	to	approximate	the	precise	solution,	and	concepts	like	overfitting
must	be	reevaluated.

For	example,	a	ray-tracing	approach	is	used	to	simulate	the	satellite
imagery	that	would	result	from	the	output	of	numerical	weather	prediction
models.	This	involves	calculating	how	much	of	a	solar	ray	gets	absorbed
by	the	predicted	hydrometeors	(rain,	snow,	hail,	ice	pellets,	and	so	on)	at
each	atmospheric	level.	There	is	a	finite	number	of	possible	hydrometeor
types	and	a	finite	number	of	heights	that	the	numerical	model	predicts.	So
the	ray-tracing	model	has	to	apply	optical	equations	to	a	large	but	finite	set
of	inputs.

The	equations	of	radiative	transfer	govern	the	complex	dynamical	system
of	how	electromagnetic	radiation	propagates	in	the	atmosphere,	and
forward	radiative	transfer	models	are	an	effective	means	of	inferring	the

future	state	of	satellite	images.	However,	classical	numerical	methods	to
compute	the	solutions	to	these	equations	can	take	tremendous
computational	effort	and	are	too	slow	to	use	in	practice.

Enter	machine	learning.	It	is	possible	to	use	machine	learning	to	build	a
model	that	approximates	solutions	to	the	forward	radiative	transfer	model
(see	Figure	4-3).	This	ML	approximation	can	be	made	close	enough	to	the
solution	of	the	model	that	was	originally	achieved	by	using	more	classical
methods.	The	advantage	is	that	inference	using	the	learned	ML
approximation	(which	needs	to	just	calculate	a	closed	formula)	takes	only
a	fraction	of	the	time	required	to	carry	out	ray	tracing	(which	would
require	numerical	methods).	At	the	same	time,	the	training	dataset	is	too
large	(multiple	terabytes)	and	too	unwieldy	to	use	as	a	lookup	table	in
production.

https://oreil.ly/IkYKm

Figure	4-3.	Architecture	for	using	a	neural	network	to	model	the	solution	of	a	partial	differential
equation	to	solve	for	I(r,t,n).

There	is	an	important	difference	between	training	an	ML	model	to
approximate	the	solution	to	a	dynamical	system	like	this	and	training	an
ML	model	to	predict	baby	weight	based	on	natality	data	collected	over	the
years.	Namely,	the	dynamical	system	is	a	set	of	equations	governed	by	the
laws	of	electromagnetic	radiation—there	is	no	unobserved	variable,	no
noise,	and	no	statistical	variability.	For	a	given	set	of	inputs,	there	is	only
one	precisely	calculable	output.	There	is	no	overlap	between	different
examples	in	the	training	dataset.	For	this	reason,	we	can	toss	out	concerns
about	generalization.	We	want	our	ML	model	to	fit	the	training	data	as
perfectly	as	possible,	to	“overfit.”

This	is	counter	to	the	typical	approach	of	training	an	ML	model	where
considerations	of	bias,	variance,	and	generalization	error	play	an	important
role.	Traditional	training	says	that	it	is	possible	for	a	model	to	learn	the
training	data	“too	well,”	and	that	training	your	model	so	that	the	train	loss
function	is	equal	to	zero	is	more	of	a	red	flag	than	cause	for	celebration.
Overfitting	of	the	training	dataset	in	this	way	causes	the	model	to	give
misguided	predictions	on	new,	unseen	data	points.	The	difference	here	is
that	we	know	in	advance	there	won’t	be	unseen	data,	thus	the	model	is
approximating	a	solution	to	a	PDE	over	the	full	input	spectrum.	If	your
neural	network	is	able	to	learn	a	set	of	parameters	where	the	loss	function
is	zero,	then	that	parameter	set	determines	the	actual	solution	of	the	PDE
in	question.

Why	It	Works

If	all	possible	inputs	can	be	tabulated,	then	as	shown	by	the	dotted	curve
in	Figure	4-4,	an	overfit	model	will	still	make	the	same	predictions	as	the
“true”	model	if	all	possible	input	points	are	trained	for.	So	overfitting	is
not	a	concern.	We	have	to	take	care	that	inferences	are	made	on	rounded-
off	values	of	the	inputs,	with	the	rounding	determined	by	the	resolution
with	which	the	input	space	was	gridded.

Figure	4-4.	Overfitting	is	not	a	concern	if	all	possible	input	points	are	trained	for	because
predictions	are	the	same	with	both	curves.

Is	it	possible	to	find	a	model	function	that	gets	arbitrarily	close	to	the	true
labels?	One	bit	of	intuition	as	to	why	this	works	comes	from	the	Uniform
Approximation	Theorem	of	deep	learning,	which,	loosely	put,	states	that
any	function	(and	its	derivatives)	can	be	approximated	by	a	neural
network	with	at	least	one	hidden	layer	and	any	“squashing”	activation
function,	like	sigmoid.	This	means	that	no	matter	what	function	we	are
given,	so	long	as	it’s	relatively	well	behaved,	there	exists	a	neural	network
with	just	one	hidden	layer	that	approximates	that	function	as	closely	as	we
want.1

Deep	learning	approaches	to	solving	differential	equations	or	complex
dynamical	systems	aim	to	represent	a	function	defined	implicitly	by	a
differential	equation,	or	system	of	equations,	using	a	neural	network.

Overfitting	is	useful	when	the	following	two	conditions	are	met:

There	is	no	noise,	so	the	labels	are	accurate	for	all	instances.

You	have	the	complete	dataset	at	your	disposal	(you	have	all	the
examples	there	are).	In	this	case,	overfitting	becomes
interpolating	the	dataset.

Trade-Offs	and	Alternatives

We	introduced	overfitting	as	being	useful	when	the	set	of	inputs	can	be
exhaustively	listed	and	the	accurate	label	for	each	set	of	inputs	can	be
calculated.	If	the	full	input	space	can	be	tabulated,	overfitting	is	not	a
concern	because	there	is	no	unseen	data.	However,	the	Useful	Overfitting
design	pattern	is	useful	beyond	this	narrow	use	case.	In	many	real-world
situations,	even	if	one	or	more	of	these	conditions	has	to	be	relaxed,	the
concept	that	overfitting	can	be	useful	remains	valid.

INTERPOLATION	AND	CHAOS	THEORY

The	machine	learning	model	essentially	functions	as	an	approximation	to	a
lookup	table	of	inputs	to	outputs.	If	the	lookup	table	is	small,	just	use	it	as
a	lookup	table!	There	is	no	need	to	approximate	it	by	a	machine	learning
model.	An	ML	approximation	is	useful	in	situations	where	the	lookup
table	will	be	too	large	to	effectively	use.	It	is	when	the	lookup	table	is	too
unwieldy	that	it	becomes	better	to	treat	it	as	the	training	dataset	for	a
machine	learning	model	that	approximates	the	lookup	table.

Note	that	we	assumed	that	the	observations	would	have	a	finite	number	of

possibilities.	For	example,	we	posited	that	temperature	would	be	measured
in	0.01°C	increments	and	lie	between	60°C	and	80°C.	This	will	be	the
case	if	the	observations	are	made	by	digital	instruments.	If	this	is	not	the
case,	the	ML	model	is	needed	to	interpolate	between	entries	in	the	lookup
table.

Machine	learning	models	interpolate	by	weighting	unseen	values	by	the
distance	of	these	unseen	values	from	training	examples.	Such	interpolation
works	only	if	the	underlying	system	is	not	chaotic.	In	chaotic	systems,
even	if	the	system	is	deterministic,	small	differences	in	initial	conditions
can	lead	to	dramatically	different	outcomes.	Nevertheless,	in	practice,
each	specific	chaotic	phenomenon	has	a	specific	resolution	threshold
beyond	which	it	is	possible	for	models	to	forecast	it	over	short	time
periods.	Therefore,	provided	the	lookup	table	is	fine-grained	enough	and
the	limits	of	resolvability	are	understood,	useful	approximations	can
result.

MONTE	CARLO	METHODS

In	reality,	tabulating	all	possible	inputs	might	not	be	possible,	and	you
might	take	a	Monte	Carlo	approach	of	sampling	the	input	space	to	create
the	set	of	inputs,	especially	where	not	all	possible	combinations	of	inputs
are	physically	possible.

In	such	cases,	overfitting	is	technically	possible	(see	Figure	4-5,	where	the
unfilled	circles	are	approximated	by	wrong	estimates	shown	by	crossed
circles).

https://oreil.ly/F-drU
https://oreil.ly/pTgS9

Figure	4-5.	If	the	input	space	is	sampled,	not	tabulated,	then	you	need	to	take	care	to	limit	model
complexity.

However,	even	here,	you	can	see	that	the	ML	model	will	be	interpolating
between	known	answers.	The	calculation	is	always	deterministic,	and	it	is
only	the	input	points	that	are	subject	to	random	selection.	Therefore,	these
known	answers	do	not	contain	noise,	and	because	there	are	no	unobserved
variables,	errors	at	unsampled	points	will	be	strictly	bounded	by	the	model
complexity.	Here,	the	overfitting	danger	comes	from	model	complexity
and	not	from	fitting	to	noise.	Overfitting	is	not	as	much	of	a	concern	when
the	size	of	the	dataset	is	larger	than	the	number	of	free	parameters.
Therefore,	using	a	combination	of	low-complexity	models	and	mild
regularization	provides	a	practical	way	to	avoid	unacceptable	overfitting
in	the	case	of	Monte	Carlo	selection	of	the	input	space.

DATA-DRIVEN	DISCRETIZATIONS

Although	deriving	a	closed-form	solution	is	possible	for	some	PDEs,
determining	solutions	using	numerical	methods	is	more	common.
Numerical	methods	of	PDEs	are	already	a	deep	field	of	research,	and	there
are	many	books,	courses,	and	journals	devoted	to	the	subject.	One
common	approach	is	to	use	finite	difference	methods,	similar	to	Runge-
Kutta	methods,	for	solving	ordinary	differential	equations.	This	is
typically	done	by	discretizing	the	differential	operator	of	the	PDE	and
finding	a	solution	to	the	discrete	problem	on	a	spatio-temporal	grid	of	the
original	domain.	However,	when	the	dimension	of	the	problem	becomes
large,	this	mesh-based	approach	fails	dramatically	due	to	the	curse	of
dimensionality	because	the	mesh	spacing	of	the	grid	must	be	small	enough
to	capture	the	smallest	feature	size	of	the	solution.	So,	to	achieve	10×
higher	resolution	of	an	image	requires	10,000×	more	compute	power,
because	the	mesh	grid	must	be	scaled	in	four	dimensions	accounting	for
space	and	time.

However,	it	is	possible	to	use	machine	learning	(rather	than	Monte	Carlo
methods)	to	select	the	sampling	points	to	create	data-driven	discretizations
of	PDEs.	In	the	paper	"Learning	data-driven	discretizations	for	PDEs,”
Bar-Sinai	et	al.	demonstrate	the	effectiveness	of	this	approach.	The
authors	use	a	low-resolution	grid	of	fixed	points	to	approximate	a	solution
via	a	piecewise	polynomial	interpolation	using	standard	finite-difference
methods	as	well	as	one	obtained	from	a	neural	network.	The	solution
obtained	from	the	neural	network	vastly	outperforms	the	numeric
simulation	in	minimizing	the	absolute	error,	in	some	places	achieving	a
10 	order	of	magnitude	improvement.	While	increasing	the	resolution
requires	substantially	more	compute	power	using	finite-difference
methods,	the	neural	network	is	able	to	maintain	high	performance	with
only	marginal	additional	cost.	Techniques	like	the	Deep	Galerkin	Method
can	then	use	deep	learning	to	provide	a	mesh-free	approximation	of	the

2

https://oreil.ly/RJWVQ
https://oreil.ly/wcl_n
https://msp.org/apde
https://oreil.ly/TxHD-
https://oreil.ly/djDkK

solution	to	the	given	PDE.	In	this	way,	solving	the	PDE	is	reduced	to	a
chained	optimization	problem	(see	“Design	Pattern	8:	Cascade	”).

DEEP	GALERKIN	METHOD
The	Deep	Galerkin	Method	is	a	deep	learning	algorithm	for	solving	partial	differential	equations.	The
algorithm	is	similar	in	spirit	to	Galerkin	methods	used	in	the	field	of	numeric	analysis,	where	the	solution	is
approximated	using	a	neural	network	instead	of	a	linear	combination	of	basis	functions.

UNBOUNDED	DOMAINS

The	Monte	Carlo	and	data-driven	discretization	methods	both	assume	that
sampling	the	entire	input	space,	even	if	imperfectly,	is	possible.	That’s
why	the	ML	model	was	treated	as	an	interpolation	between	known	points.

Generalization	and	the	concern	of	overfitting	become	difficult	to	ignore
whenever	we	are	unable	to	sample	points	in	the	full	domain	of	the
function—for	example,	for	functions	with	unbounded	domains	or
projections	along	a	time	axis	into	the	future.	In	these	settings,	it	is
important	to	consider	overfitting,	underfitting,	and	generalization	error.	In
fact,	it’s	been	shown	that	although	techniques	like	the	Deep	Galerkin
Method	do	well	on	regions	that	are	well	sampled,	a	function	that	is	learned
this	way	does	not	generalize	well	on	regions	outside	the	domain	that	were
not	sampled	in	the	training	phase.	This	can	be	problematic	for	using	ML	to
solve	PDEs	that	are	defined	on	unbounded	domains,	since	it	would	be
impossible	to	capture	a	representative	sample	for	training.

DISTILLING	KNOWLEDGE	OF	NEURAL	NETWORK

Another	situation	where	overfitting	is	warranted	is	in	distilling,	or
transferring	knowledge,	from	a	large	machine	learning	model	into	a
smaller	one.	Knowledge	distillation	is	useful	when	the	learning	capacity	of

https://oreil.ly/rQy4d

the	large	model	is	not	fully	utilized.	If	that	is	the	case,	the	computational
complexity	of	the	large	model	may	not	be	necessary.	However,	it	is	also
the	case	that	training	smaller	models	is	harder.	While	the	smaller	model
has	enough	capacity	to	represent	the	knowledge,	it	may	not	have	enough
capacity	to	learn	the	knowledge	efficiently.

The	solution	is	to	train	the	smaller	model	on	a	large	amount	of	generated
data	that	is	labeled	by	the	larger	model.	The	smaller	model	learns	the	soft
output	of	the	larger	model,	instead	of	actual	labels	on	real	data.	This	is	a
simpler	problem	that	can	be	learned	by	the	smaller	model.	As	with
approximating	a	numerical	function	by	a	machine	learning	model,	the	aim
is	for	the	smaller	model	to	faithfully	represent	the	predictions	of	the	larger
machine	learning	model.	This	second	training	step	can	employ	Useful
Overfitting.

OVERFITTING	A	BATCH

In	practice,	training	neural	networks	requires	a	lot	of	experimentation,	and
a	practitioner	must	make	many	choices,	from	the	size	and	architecture	of
the	network	to	the	choice	of	the	learning	rate,	weight	initializations,	or
other	hyperparameters.

Overfitting	on	a	small	batch	is	a	good	sanity	check	both	for	the	model
code	as	well	as	the	data	input	pipeline.	Just	because	the	model	compiles
and	the	code	runs	without	errors	doesn’t	mean	you’ve	computed	what	you
think	you	have	or	that	the	training	objective	is	configured	correctly.	A
complex	enough	model	should	be	able	to	overfit	on	a	small	enough	batch
of	data,	assuming	everything	is	set	up	correctly.	So,	if	you’re	not	able	to
overfit	a	small	batch	with	any	model,	it’s	worth	rechecking	your	model
code,	input	pipeline,	and	loss	function	for	any	errors	or	simple	bugs.
Overfitting	on	a	batch	is	a	useful	technique	when	training	and

https://oreil.ly/AcLtu

troubleshooting	neural	networks.

TIP
Overfitting	goes	beyond	just	a	batch.	From	a	more	holistic	perspective,	overfitting	follows	the
general	advice	commonly	given	with	regards	to	deep	learning	and	regularization.	The	best	fitting
model	is	a	large	model	that	has	been	properly	regularized.	In	short,	if	your	deep	neural	network
isn’t	capable	of	overfitting	your	training	dataset,	you	should	be	using	a	bigger	one.	Then,	once
you	have	a	large	model	that	overfits	the	training	set,	you	can	apply	regularization	to	improve	the
validation	accuracy,	even	though	training	accuracy	may	decrease.

You	can	test	your	Keras	model	code	in	this	way	using	the
tf.data.Dataset	you’ve	written	for	your	input	pipeline.	For
example,	if	your	training	data	input	pipeline	is	called	trainds,	we’ll	use
batch()	to	pull	a	single	batch	of	data.	You	can	find	the	full	code	for	this
example	in	the	repository	accompanying	this	book:

BATCH_SIZE	=	256

single_batch	=	trainds.batch(BATCH_SIZE).take(1)

Then,	when	training	the	model,	instead	of	calling	the	full	trainds
dataset	inside	the	fit()	method,	use	the	single	batch	that	we	created:

model.fit(single_batch.repeat(),

										validation_data=evalds,

										…)

Note	that	we	apply	repeat()	so	that	we	won’t	run	out	of	data	when
training	on	that	single	batch.	This	ensures	that	we	take	the	one	batch	over
and	over	again	while	training.	Everything	else	(the	validation	dataset,
model	code,	engineered	features,	and	so	on)	remains	the	same.

TIP

https://oreil.ly/A7DFC
https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/04_hacking_training_loop/distribution_strategies.ipynb

TIP
Rather	than	choose	an	arbitrary	sample	of	the	training	dataset,	we	recommend	that	you	overfit
on	a	small	dataset,	each	of	whose	examples	has	been	carefully	verified	to	have	correct	labels.
Design	your	neural	network	architecture	such	that	it	is	able	to	learn	this	batch	of	data	precisely
and	get	to	zero	loss.	Then	take	the	same	network	and	train	it	on	the	full	training	dataset.

Design	Pattern	12:	Checkpoints
In	Checkpoints,	we	store	the	full	state	of	the	model	periodically	so	that	we
have	partially	trained	models	available.	These	partially	trained	models	can
serve	as	the	final	model	(in	the	case	of	early	stopping)	or	as	the	starting
points	for	continued	training	(in	the	cases	of	machine	failure	and	fine-
tuning).

Problem

The	more	complex	a	model	is	(for	example,	the	more	layers	and	nodes	a
neural	network	has),	the	larger	the	dataset	that	is	needed	to	train	it
effectively.	This	is	because	more	complex	models	tend	to	have	more
tunable	parameters.	As	model	sizes	increase,	the	time	it	takes	to	fit	one
batch	of	examples	also	increases.	As	the	data	size	increases	(and	assuming
batch	sizes	are	fixed),	the	number	of	batches	also	increases.	Therefore,	in
terms	of	computational	complexity,	this	double	whammy	means	that
training	will	take	a	long	time.

At	the	time	of	writing,	training	an	English-to-German	translation	model	on
a	state-of-the-art	tensor	processing	unit	(TPU)	pod	on	a	relatively	small
dataset	takes	about	two	hours.	On	real	datasets	of	the	sort	used	to	train
smart	devices,	the	training	can	take	several	days.

https://oreil.ly/vDRve

When	we	have	training	that	takes	this	long,	the	chances	of	machine	failure
are	uncomfortably	high.	If	there	is	a	problem,	we’d	like	to	be	able	to
resume	from	an	intermediate	point,	instead	of	from	the	very	beginning.

Solution

At	the	end	of	every	epoch,	we	can	save	the	model	state.	Then,	if	the
training	loop	is	interrupted	for	any	reason,	we	can	go	back	to	the	saved
model	state	and	restart.	However,	when	doing	this,	we	have	to	make	sure
to	save	the	intermediate	model	state,	not	just	the	model.	What	does	that
mean?

Once	training	is	complete,	we	save	or	export	the	model	so	that	we	can
deploy	it	for	inference.	An	exported	model	does	not	contain	the	entire
model	state,	just	the	information	necessary	to	create	the	prediction
function.	For	a	decision	tree,	for	example,	this	would	be	the	final	rules	for
each	intermediate	node	and	the	predicted	value	for	each	of	the	leaf	nodes.
For	a	linear	model,	this	would	be	the	final	values	of	the	weights	and
biases.	For	a	fully	connected	neural	network,	we’d	also	need	to	add	the
activation	functions	and	the	weights	of	the	hidden	connections.

What	data	on	model	state	do	we	need	when	restoring	from	a	checkpoint
that	an	exported	model	does	not	contain?	An	exported	model	does	not
contain	which	epoch	and	batch	number	the	model	is	currently	processing,
which	is	obviously	important	in	order	to	resume	training.	But	there	is
more	information	that	a	model	training	loop	can	contain.	In	order	to	carry
out	gradient	descent	effectively,	the	optimizer	might	be	changing	the
learning	rate	on	a	schedule.	This	learning	rate	state	is	not	present	in	an
exported	model.	Additionally,	there	might	be	stochastic	behavior	in	the
model,	such	as	dropout.	This	is	not	captured	in	the	exported	model	state

either.	Models	like	recurrent	neural	networks	incorporate	history	of
previous	input	values.	In	general,	the	full	model	state	can	be	many	times
the	size	of	the	exported	model.

Saving	the	full	model	state	so	that	model	training	can	resume	from	a	point
is	called	checkpointing,	and	the	saved	model	files	are	called	checkpoints.
How	often	should	we	checkpoint?	The	model	state	changes	after	every
batch	because	of	gradient	descent.	So,	technically,	if	we	don’t	want	to	lose
any	work,	we	should	checkpoint	after	every	batch.	However,	checkpoints
are	huge	and	this	I/O	would	add	considerable	overhead.	Instead,	model
frameworks	typically	provide	the	option	to	checkpoint	at	the	end	of	every
epoch.	This	is	a	reasonable	tradeoff	between	never	checkpointing	and
checkpointing	after	every	batch.

To	checkpoint	a	model	in	Keras,	provide	a	callback	to	the	fit()	method:

checkpoint_path	=	'{}/checkpoints/taxi'.format(OUTDIR)

cp_callback	=	

tf.keras.callbacks.ModelCheckpoint(checkpoint_path,	

																																																	

save_weights_only=False,

																																																	verbose=1)

history	=	model.fit(x_train,	y_train,

																				batch_size=64,

																				epochs=3,

																				validation_data=(x_val,	y_val),	

																				verbose=2,	

																				callbacks=[cp_callback])

With	checkpointing	added,	the	training	looping	becomes	what	is	shown	in
Figure	4-6.

Figure	4-6.	Checkpointing	saves	the	full	model	state	at	the	end	of	every	epoch.

CHECKPOINTS	IN	PYTORCH
At	the	time	of	writing,	PyTorch	doesn’t	support	checkpoints	directly.	However,	it	does	support	externalizing
the	state	of	most	objects.	To	implement	checkpoints	in	PyTorch,	ask	for	the	epoch,	model	state,	optimizer
state,	and	any	other	information	needed	to	resume	training	to	be	serialized	along	with	the	model:

torch.save({

												'epoch':	epoch,

												'model_state_dict':	model.state_dict(),

												'optimizer_state_dict':	optimizer.state_dict(),

												'loss':	loss,

												…

												},	PATH)

When	loading	from	a	checkpoint,	you	need	to	create	the	necessary	classes	and	then	load	them	from	the
checkpoint:

model	=	...

optimizer	=	...

checkpoint	=	torch.load(PATH)

model.load_state_dict(checkpoint['model_state_dict'])

optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

epoch	=	checkpoint['epoch']

loss	=	checkpoint['loss']

This	is	lower	level	than	TensorFlow	but	provides	the	flexibility	of	storing	multiple	models	in	a	checkpoint
and	choosing	which	parts	of	the	model	state	to	load	or	not	load.

Why	It	Works

TensorFlow	and	Keras	automatically	resume	training	from	a	checkpoint	if
checkpoints	are	found	in	the	output	path.	To	start	training	from	scratch,
therefore,	you	have	to	start	from	a	new	output	directory	(or	delete	previous
checkpoints	from	the	output	directory).	This	works	because	enterprise-
grade	machine	learning	frameworks	honor	the	presence	of	checkpoint
files.

Even	though	checkpoints	are	designed	primarily	to	support	resilience,	the
availability	of	partially	trained	models	opens	up	a	number	of	other	use
cases.	This	is	because	the	partially	trained	models	are	usually	more
generalizable	than	the	models	created	in	later	iterations.	A	good	intuition
of	why	this	occurs	can	be	obtained	from	the	TensorFlow	playground,	as
shown	in	Figure	4-7.

https://oreil.ly/sRjkN

Figure	4-7.	Starting	point	of	the	spiral	classification	problem.	You	can	get	to	this	setup	by	opening
up	this	link	in	a	web	browser.

In	the	playground,	we	are	trying	to	build	a	classifier	to	distinguish
between	blue	dots	and	orange	dots	(if	you	are	reading	this	in	the	print
book,	please	do	follow	along	by	navigating	to	the	link	in	a	web	browser).
The	two	input	features	are	x 	and	x ,	which	are	the	coordinates	of	the
points.	Based	on	these	features,	the	model	needs	to	output	the	probability
that	the	point	is	blue.	The	model	starts	with	random	weights	and	the

1 2

https://oreil.ly/ISg9X

background	of	the	dots	shows	the	model	prediction	for	each	coordinate
point.	As	you	can	see,	because	the	weights	are	random,	the	probability
tends	to	hover	near	the	center	value	for	all	the	pixels.

Starting	the	training	by	clicking	on	the	arrow	at	the	top	left	of	the	image,
we	see	the	model	slowly	start	to	learn	with	successive	epochs,	as	shown	in
Figure	4-8.

Figure	4-8.	What	the	model	learns	as	training	progresses.	The	graphs	at	the	top	are	the	training
loss	and	validation	error,	while	the	images	show	how	the	model	at	that	stage	would	predict	the

color	of	a	point	at	each	coordinate	in	the	grid.

We	see	the	first	hint	of	learning	in	Figure	4-8(b),	and	see	that	the	model
has	learned	the	high-level	view	of	the	data	by	Figure	4-8(c).	From	then	on,
the	model	is	adjusting	the	boundaries	to	get	more	and	more	of	the	blue
points	into	the	center	region	while	keeping	the	orange	points	out.	This
helps,	but	only	up	to	point.	By	the	time	we	get	to	Figure	4-8(e),	the
adjustment	of	weights	is	starting	to	reflect	random	perturbations	in	the
training	data,	and	these	are	counterproductive	on	the	validation	dataset.

We	can	therefore	break	the	training	into	three	phases.	In	the	first	phase,
between	stages	(a)	and	(c),	the	model	is	learning	high-level	organization	of
the	data.	In	the	second	phase,	between	stages	and	(c)	and	(e),	the	model	is
learning	the	details.	By	the	time	we	get	to	the	third	phase,	stage	(f),	the

model	is	overfitting.	A	partially	trained	model	from	the	end	of	phase	1	or
from	phase	2	has	some	advantages	precisely	because	it	has	learned	the
high-level	organization	but	is	not	caught	up	in	the	details.

Trade-Offs	and	Alternatives

Besides	providing	resilience,	saving	intermediate	checkpoints	also	allows
us	to	implement	early	stopping	and	fine-tuning	capabilities.

EARLY	STOPPING

In	general,	the	longer	you	train,	the	lower	the	loss	on	the	training	dataset.
However,	at	some	point,	the	error	on	the	validation	dataset	might	stop
decreasing.	If	you	are	starting	to	overfit	to	the	training	dataset,	the
validation	error	might	even	start	to	increase,	as	shown	in	Figure	4-9.

Figure	4-9.	Typically,	the	training	loss	continues	to	drop	the	longer	you	train,	but	once	overfitting
starts,	the	validation	error	on	a	withheld	dataset	starts	to	go	up.

In	such	cases,	it	can	be	helpful	to	look	at	the	validation	error	at	the	end	of
every	epoch	and	stop	the	training	process	when	the	validation	error	is

more	than	that	of	the	previous	epoch.	In	Figure	4-9,	this	will	be	at	the	end
of	the	fourth	epoch,	shown	by	the	thick	dashed	line.	This	is	called	early
stopping.

TIP
Had	we	been	checkpointing	at	the	end	of	every	batch,	we	might	have	been	able	to	capture	the
true	minimum,	which	might	have	been	a	bit	before	or	after	the	epoch	boundary.	See	the
discussion	on	virtual	epochs	in	this	section	for	a	more	frequent	way	to	checkpoint.

If	we	are	checkpointing	much	more	frequently,	it	can	be	helpful	if	early	stopping	isn’t	overly
sensitive	to	small	perturbations	in	the	validation	error.	Instead,	we	can	apply	early	stopping	only
after	the	validation	error	doesn’t	improve	for	more	than	N	checkpoints.

Checkpoint	selection

While	early	stopping	can	be	implemented	by	stopping	the	training	as	soon
as	the	validation	error	starts	to	increase,	we	recommend	training	longer
and	choosing	the	optimal	run	as	a	postprocessing	step.	The	reason	we
suggest	training	well	into	phase	3	(see	the	preceding	“Why	It	Works”
section	for	an	explanation	of	the	three	phases	of	the	training	loop)	is	that	it
is	not	uncommon	for	the	validation	error	to	increase	for	a	bit	and	then	start
to	drop	again.	This	is	usually	because	the	training	initially	focuses	on
more	common	scenarios	(phase	1),	then	starts	to	home	in	on	the	rarer
situations	(phase	2).	Because	rare	situations	may	be	imperfectly	sampled
between	the	training	and	validation	datasets,	occasional	increases	in	the
validation	error	during	the	training	run	are	to	be	expected	in	phase	2.	In
addition,	there	are	situations	endemic	to	big	models	where	deep	double
descent	is	expected,	and	so	it	is	essential	to	train	a	bit	longer	just	in	case.

In	our	example,	instead	of	exporting	the	model	at	the	end	of	the	training

https://oreil.ly/Kya8h

run,	we	will	load	up	the	fourth	checkpoint	and	export	our	final	model	from
there	instead.	This	is	called	checkpoint	selection,	and	in	TensorFlow,	it
can	be	achieved	using	BestExporter.

Regularization

Instead	of	using	early	stopping	or	checkpoint	selection,	it	can	be	helpful	to
try	to	add	L2	regularization	to	your	model	so	that	the	validation	error	does
not	increase	and	the	model	never	gets	into	phase	3.	Instead,	both	the
training	loss	and	the	validation	error	should	plateau,	as	shown	in	Figure	4-
10.	We	term	such	a	training	loop	(where	both	training	and	validation
metrics	reach	a	plateau)	a	well-behaved	training	loop.

https://oreil.ly/UpN1a

Figure	4-10.	In	the	ideal	situation,	validation	error	does	not	increase.	Instead,	both	the	training
loss	and	validation	error	plateau.

If	early	stopping	is	not	carried	out,	and	only	the	training	loss	is	used	to
decide	convergence,	then	we	can	avoid	having	to	set	aside	a	separate

testing	dataset.	Even	if	we	are	not	doing	early	stopping,	displaying	the
progress	of	the	model	training	can	be	helpful,	particularly	if	the	model
takes	a	long	time	to	train.	Although	the	performance	and	progress	of	the
model	training	is	normally	monitored	on	the	validation	dataset	during	the
training	loop,	it	is	for	visualization	purposes	only.	Since	we	don’t	have	to
take	any	action	based	on	metrics	being	displayed,	we	can	carry	out
visualization	on	the	test	dataset.

The	reason	that	using	regularization	might	be	better	than	early	stopping	is
that	regularization	allows	you	to	use	the	entire	dataset	to	change	the
weights	of	the	model,	whereas	early	stopping	requires	you	to	waste	10%
to	20%	of	your	dataset	purely	to	decide	when	to	stop	training.	Other
methods	to	limit	overfitting	(such	as	dropout	and	using	models	with	lower
complexity)	are	also	good	alternatives	to	early	stopping.	In	addition,
recent	research	indicates	that	double	descent	happens	in	a	variety	of
machine	learning	problems,	and	therefore	it	is	better	to	train	longer	rather
than	risk	a	suboptimal	solution	by	stopping	early.

Two	splits

Isn’t	the	advice	in	the	regularization	section	in	conflict	with	the	advice	in
the	previous	sections	on	early	stopping	or	checkpoint	selection?	Not
really.

We	recommend	that	you	split	your	data	into	two	parts:	a	training	dataset
and	an	evaluation	dataset.	The	evaluation	dataset	plays	the	part	of	the	test
dataset	during	experimentation	(where	there	is	no	validation	dataset)	and
plays	the	part	of	the	validation	dataset	in	production	(where	there	is	no	test
dataset).

The	larger	your	training	dataset,	the	more	complex	a	model	you	can	use,

https://oreil.ly/FJ_iy

and	the	more	accurate	a	model	you	can	get.	Using	regularization	rather
than	early	stopping	or	checkpoint	selection	allows	you	to	use	a	larger
training	dataset.	In	the	experimentation	phase	(when	you	are	exploring
different	model	architectures,	training	techniques,	and	hyperparameters),
we	recommend	that	you	turn	off	early	stopping	and	train	with	larger
models	(see	also	“Design	Pattern	11:	Useful	Overfitting”).	This	is	to
ensure	that	the	model	has	enough	capacity	to	learn	the	predictive	patterns.
During	this	process,	monitor	error	convergence	on	the	training	split.	At	the
end	of	experimentation,	you	can	use	the	evaluation	dataset	to	diagnose
how	well	your	model	does	on	data	it	has	not	encountered	during	training.

When	training	the	model	to	deploy	in	production,	you	will	need	to	prepare
to	be	able	to	do	continuous	evaluation	and	model	retraining.	Turn	on	early
stopping	or	checkpoint	selection	and	monitor	the	error	metric	on	the
evaluation	dataset.	Choose	between	early	stopping	and	checkpoint
selection	depending	on	whether	you	need	to	control	cost	(in	which	case,
you	would	choose	early	stopping)	or	want	to	prioritize	model	accuracy	(in
which	case,	you	would	choose	checkpoint	selection).

FINE-TUNING

In	a	well-behaved	training	loop,	gradient	descent	behaves	such	that	you
get	to	the	neighborhood	of	the	optimal	error	quickly	on	the	basis	of	the
majority	of	your	data,	then	slowly	converge	toward	the	lowest	error	by
optimizing	on	the	corner	cases.

Now,	imagine	that	you	need	to	periodically	retrain	the	model	on	fresh
data.	You	typically	want	to	emphasize	the	fresh	data,	not	the	corner	cases
from	last	month.	You	are	often	better	off	resuming	your	training,	not	from
the	last	checkpoint,	but	the	checkpoint	marked	by	the	blue	line	in
Figure	4-11.	This	corresponds	to	the	start	of	phase	2	in	our	discussion	of

the	phases	of	model	training	described	earlier	in	“Why	It	Works”.	This
helps	ensure	that	you	have	a	general	method	that	you	are	able	to	then	fine-
tune	for	a	few	epochs	on	just	the	fresh	data.

When	you	resume	from	the	checkpoint	marked	by	the	thick	dashed
vertical	line,	you	will	be	on	the	fourth	epoch,	and	so	the	learning	rate	will
be	quite	low.	Therefore,	the	fresh	data	will	not	dramatically	change	the
model.	However,	the	model	will	behave	optimally	(in	the	context	of	the
larger	model)	on	the	fresh	data	because	you	will	have	sharpened	it	on	this
smaller	dataset.	This	is	called	fine-tuning.	Fine-tuning	is	also	discussed	in
“Design	Pattern	13:	Transfer	Learning”.

Figure	4-11.	Resume	from	a	checkpoint	from	before	the	training	loss	starts	to	plateau.	Train	only
on	fresh	data	for	subsequent	iterations.

WARNING
Fine-tuning	only	works	as	long	as	you	are	not	changing	the	model	architecture.

It	is	not	necessary	to	always	start	from	an	earlier	checkpoint.	In	some
cases,	the	final	checkpoint	(that	is	used	to	serve	the	model)	can	be	used	as
a	warm	start	for	another	model	training	iteration.	Still,	starting	from	an
earlier	checkpoint	tends	to	provide	better	generalization.

REDEFINING	AN	EPOCH

Machine	learning	tutorials	often	have	code	like	this:

model.fit(X_train,	y_train,	

										batch_size=100,	

										epochs=15)

This	code	assumes	that	you	have	a	dataset	that	fits	in	memory,	and
consequently	that	your	model	can	iterate	through	15	epochs	without
running	the	risk	of	machine	failure.	Both	these	assumptions	are
unreasonable—ML	datasets	range	into	terabytes,	and	when	training	can
last	hours,	the	chances	of	machine	failure	are	high.

To	make	the	preceding	code	more	resilient,	supply	a	TensorFlow	dataset
(not	just	a	NumPy	array)	because	the	TensorFlow	dataset	is	an	out-of-
memory	dataset.	It	provides	iteration	capability	and	lazy	loading.	The	code
is	now	as	follows:

cp_callback	=	tf.keras.callbacks.ModelCheckpoint(...)

history	=	model.fit(trainds,	

																				validation_data=evalds,

																				epochs=15,	

																				batch_size=128,

																				callbacks=[cp_callback])

However,	using	epochs	on	large	datasets	remains	a	bad	idea.	Epochs	may
be	easy	to	understand,	but	the	use	of	epochs	leads	to	bad	effects	in	real-
world	ML	models.	To	see	why,	imagine	that	you	have	a	training	dataset

https://oreil.ly/EKJ4V

with	one	million	examples.	It	can	be	tempting	to	simply	go	through	this
dataset	15	times	(for	example)	by	setting	the	number	of	epochs	to	15.
There	are	several	problems	with	this:

The	number	of	epochs	is	an	integer,	but	the	difference	in	training
time	between	processing	the	dataset	14.3	times	and	15	times	can
be	hours.	If	the	model	has	converged	after	having	seen	14.3
million	examples,	you	might	want	to	exit	and	not	waste	the
computational	resources	necessary	to	process	0.7	million	more
examples.

You	checkpoint	once	per	epoch,	and	waiting	one	million
examples	between	checkpoints	might	be	way	too	long.	For
resilience,	you	might	want	to	checkpoint	more	often.

Datasets	grow	over	time.	If	you	get	100,000	more	examples	and
you	train	the	model	and	get	a	higher	error,	is	it	because	you	need
to	do	an	early	stop,	or	is	the	new	data	corrupt	in	some	way?	You
can’t	tell	because	the	prior	training	was	on	15	million	examples
and	the	new	one	is	on	16.5	million	examples.

In	distributed,	parameter-server	training	(see	“Design	Pattern	14:
Distribution	Strategy”)	with	data	parallelism	and	proper	shuffling,
the	concept	of	an	epoch	is	not	clear	anymore.	Because	of
potentially	straggling	workers,	you	can	only	instruct	the	system	to
train	on	some	number	of	mini-batches.

Steps	per	epoch

Instead	of	training	for	15	epochs,	we	might	decide	to	train	for	143,000
steps	where	the	batch_size	is	100:

NUM_STEPS	=	143000

BATCH_SIZE	=	100

NUM_CHECKPOINTS	=	15

cp_callback	=	tf.keras.callbacks.ModelCheckpoint(...)

history	=	model.fit(trainds,	

																				validation_data=evalds,

																				epochs=NUM_CHECKPOINTS,

																				steps_per_epoch=NUM_STEPS	//	

NUM_CHECKPOINTS,	

																				batch_size=BATCH_SIZE,

																				callbacks=[cp_callback])

Each	step	involves	weight	updates	based	on	a	single	mini-batch	of	data,
and	this	allows	us	to	stop	at	14.3	epochs.	This	gives	us	much	more
granularity,	but	we	have	to	define	an	“epoch”	as	1/15th	of	the	total	number
of	steps:

steps_per_epoch=NUM_STEPS	//	NUM_CHECKPOINTS,	

This	is	so	that	we	get	the	right	number	of	checkpoints.	It	works	as	long	as
we	make	sure	to	repeat	the	trainds	infinitely:

trainds	=	trainds.repeat()

The	repeat()	is	needed	because	we	no	longer	set	num_epochs,	so	the
number	of	epochs	defaults	to	one.	Without	the	repeat(),	the	model	will
exit	once	the	training	patterns	are	exhausted	after	reading	the	dataset	once.

Retraining	with	more	data

What	happens	when	we	get	100,000	more	examples?	Easy!	We	add	it	to
our	data	warehouse	but	do	not	update	the	code.	Our	code	will	still	want	to
process	143,000	steps,	and	it	will	get	to	process	that	much	data,	except
that	10%	of	the	examples	it	sees	are	newer.	If	the	model	converges,	great.
If	it	doesn’t,	we	know	that	these	new	data	points	are	the	issue	because	we
are	not	training	longer	than	we	were	before.	By	keeping	the	number	of
steps	constant,	we	have	been	able	to	separate	out	the	effects	of	new	data
from	training	on	more	data.

Once	we	have	trained	for	143,000	steps,	we	restart	the	training	and	run	it	a
bit	longer	(say,	10,000	steps),	and	as	long	as	the	model	continues	to
converge,	we	keep	training	it	longer.	Then,	we	update	the	number	143,000
in	the	code	above	(in	reality,	it	will	be	a	parameter	to	the	code)	to	reflect
the	new	number	of	steps.

This	all	works	fine,	until	you	want	to	do	hyperparameter	tuning.	When
you	do	hyperparameter	tuning,	you	will	want	to	want	to	change	the	batch
size.	Unfortunately,	if	you	change	the	batch	size	to	50,	you	will	find
yourself	training	for	half	the	time	because	we	are	training	for	143,000
steps,	and	each	step	is	only	half	as	long	as	before.	Obviously,	this	is	no
good.

Virtual	epochs

The	answer	is	to	keep	the	total	number	of	training	examples	shown	to	the
model	(not	number	of	steps;	see	Figure	4-12)	constant:

NUM_TRAINING_EXAMPLES	=	1000	*	1000

STOP_POINT	=	14.3

TOTAL_TRAINING_EXAMPLES	=	int(STOP_POINT	*	

NUM_TRAINING_EXAMPLES)

BATCH_SIZE	=	100

NUM_CHECKPOINTS	=	15

steps_per_epoch	=	(TOTAL_TRAINING_EXAMPLES	//	

																			(BATCH_SIZE*NUM_CHECKPOINTS))

cp_callback	=	tf.keras.callbacks.ModelCheckpoint(...)

history	=	model.fit(trainds,	

																				validation_data=evalds,

																				epochs=NUM_CHECKPOINTS,

																				steps_per_epoch=steps_per_epoch,	

																				batch_size=BATCH_SIZE,

																				callbacks=[cp_callback])

Figure	4-12.	Defining	a	virtual	epoch	in	terms	of	the	desired	number	of	steps	between	checkpoints.

When	you	get	more	data,	first	train	it	with	the	old	settings,	then	increase
the	number	of	examples	to	reflect	the	new	data,	and	finally	change	the
STOP_POINT	to	reflect	the	number	of	times	you	have	to	traverse	the	data
to	attain	convergence.

This	is	now	safe	even	with	hyperparameter	tuning	(discussed	later	in	this
chapter)	and	retains	all	the	advantages	of	keeping	the	number	of	steps
constant.

Design	Pattern	13:	Transfer	Learning
In	Transfer	Learning,	we	take	part	of	a	previously	trained	model,	freeze
the	weights,	and	incorporate	these	nontrainable	layers	into	a	new	model
that	solves	a	similar	problem,	but	on	a	smaller	dataset.

Problem

Training	custom	ML	models	on	unstructured	data	requires	extremely	large
datasets,	which	are	not	always	readily	available.	Consider	the	case	of	a
model	identifying	whether	an	x-ray	of	an	arm	contains	a	broken	bone.	To
achieve	high	accuracy,	you’ll	need	hundreds	of	thousands	of	images,	if	not
more.	Before	your	model	learns	what	a	broken	bone	looks	like,	it	needs	to
first	learn	to	make	sense	of	the	pixels,	edges,	and	shapes	that	are	part	of
the	images	in	your	dataset.	The	same	is	true	for	models	trained	on	text
data.	Let’s	say	we’re	building	a	model	that	takes	descriptions	of	patient
symptoms	and	predicts	the	possible	conditions	associated	with	those
symptoms.	In	addition	to	learning	which	words	differentiate	a	cold	from
pneumonia,	the	model	also	needs	to	learn	basic	language	semantics	and
how	the	sequence	of	words	creates	meaning.	For	example,	the	model
would	need	to	not	only	learn	to	detect	the	presence	of	the	word	fever,	but
that	the	sequence	no	fever	carries	a	very	different	meaning	than	high	fever.

To	see	just	how	much	data	is	required	to	train	high-accuracy	models,	we
can	look	at	ImageNet,	a	database	of	over	14	million	labeled	images.
ImageNet	is	frequently	used	as	a	benchmark	for	evaluating	machine
learning	frameworks	on	various	hardware.	As	an	example,	the	MLPerf
benchmark	suite	uses	ImageNet	to	compare	the	time	it	took	for	various
ML	frameworks	running	on	different	hardware	to	reach	75.9%
classification	accuracy.	In	the	v0.7	MLPerf	Training	results,	a	TensorFlow
model	running	on	a	Google	TPU	v3	took	around	30	seconds	to	reach	this
target	accuracy. 	With	more	training	time,	models	can	reach	even	higher
accuracy	on	ImageNet.	However,	this	is	largely	due	to	ImageNet’s	size.
Most	organizations	with	specialized	prediction	problems	don’t	have	nearly
as	much	data	available.

Because	use	cases	like	the	image	and	text	examples	described	above
involve	particularly	specialized	data	domains,	it’s	also	not	possible	to	use

2

https://oreil.ly/t6583
https://oreil.ly/hDPiJ

a	general-purpose	model	to	successfully	identify	bone	fractures	or
diagnose	diseases.	A	model	that	is	trained	on	ImageNet	might	be	able	to
label	an	x-ray	image	as	x-ray	or	medical	imaging	but	is	unlikely	to	be	able
to	label	it	as	a	broken	femur.	Because	such	models	are	often	trained	on	a
wide	variety	of	high-level	label	categories,	we	wouldn’t	expect	them	to
understand	conditions	present	in	the	images	that	are	specific	to	our	dataset.
To	handle	this,	we	need	a	solution	that	allows	us	to	build	a	custom	model
using	only	the	data	we	have	available	and	with	the	labels	that	we	care
about.

Solution

With	the	Transfer	Learning	design	pattern,	we	can	take	a	model	that	has
been	trained	on	the	same	type	of	data	for	a	similar	task	and	apply	it	to	a
specialized	task	using	our	own	custom	data.	By	“same	type	of	data,”	we
mean	the	same	data	modality—images,	text,	and	so	forth.	Beyond	just	the
broad	category	like	images,	it	is	also	ideal	to	use	a	model	that	has	been
pre-trained	on	the	same	types	of	images.	For	example,	use	a	model	that
has	been	pre-trained	on	photographs	if	you	are	going	to	use	it	for
photograph	classification	and	a	model	that	has	been	pre-trained	on
remotely	sensed	imagery	if	you	are	going	to	use	it	to	classify	satellite
images.	By	similar	task,	we’re	referring	to	the	problem	being	solved.	To
do	transfer	learning	for	image	classification,	for	example,	it	is	better	to
start	with	a	model	that	has	been	trained	for	image	classification,	rather
than	object	detection.

Continuing	with	the	example,	let’s	say	we’re	building	a	binary	classifier	to
determine	whether	an	image	of	an	x-ray	contains	a	broken	bone.	We	only
have	200	images	of	each	class:	broken	and	not	broken.	This	isn’t	enough
to	train	a	high-quality	model	from	scratch,	but	it	is	sufficient	for	transfer

learning.	To	solve	this	with	transfer	learning,	we’ll	need	to	find	a	model
that	has	already	been	trained	on	a	large	dataset	to	do	image	classification.
We’ll	then	remove	the	last	layer	from	that	model,	freeze	the	weights	of
that	model,	and	continue	training	using	our	400	x-ray	images.	We’d
ideally	find	a	model	trained	on	a	dataset	with	similar	images	to	our	x-rays,
like	images	taken	in	a	lab	or	another	controlled	condition.	However,	we
can	still	utilize	transfer	learning	if	the	datasets	are	different,	so	long	as	the
prediction	task	is	the	same.	In	this	case	we’re	doing	image	classification.

You	can	use	transfer	learning	for	many	prediction	tasks	in	addition	to
image	classification,	so	long	as	there	is	an	existing	pre-trained	model	that
matches	the	task	you’d	like	to	perform	on	your	dataset.	For	example,
transfer	learning	is	also	frequently	applied	in	image	object	detection,
image	style	transfer,	image	generation,	text	classification,	machine
translation,	and	more.

NOTE
Transfer	learning	works	because	it	lets	us	stand	on	the	shoulders	of	giants,	utilizing	models	that
have	already	been	trained	on	extremely	large,	labeled	datasets.	We’re	able	to	use	transfer
learning	thanks	to	years	of	research	and	work	others	have	put	into	creating	these	datasets	for	us,
which	has	advanced	the	state-of-the-art	in	transfer	learning.	One	example	of	such	a	dataset	is	the
ImageNet	project,	started	in	2006	by	Fei-Fei	Li	and	published	in	2009.	ImageNet 	has	been
essential	to	the	development	of	transfer	learning	and	paved	the	way	for	other	large	datasets	like
COCO	and	Open	Images.

The	idea	behind	transfer	learning	is	that	you	can	utilize	the	weights	and
layers	from	a	model	trained	in	the	same	domain	as	your	prediction	task.	In
most	deep	learning	models,	the	final	layer	contains	the	classification	label
or	output	specific	to	your	prediction	task.	With	transfer	learning,	we
remove	this	layer,	freeze	the	model’s	trained	weights,	and	replace	the	final

3

https://oreil.ly/mXt77
https://oreil.ly/QN9KU

layer	with	the	output	for	our	specialized	prediction	task	before	continuing
to	train.	We	can	see	how	this	works	in	Figure	4-13.

Typically,	the	penultimate	layer	of	the	model	(the	layer	before	the	model’s
output	layer)	is	chosen	as	the	bottleneck	layer.	Next,	we’ll	explain	the
bottleneck	layer,	along	with	different	ways	to	implement	transfer	learning
in	TensorFlow.

Figure	4-13.	Transfer	learning	involves	training	a	model	on	a	large	dataset.	The	“top”	of	the
model	(typically,	just	the	output	layer)	is	removed	and	the	remaining	layers	have	their	weights

frozen.	The	last	layer	of	the	remaining	model	is	called	the	bottleneck	layer.

BOTTLENECK	LAYER

In	relation	to	an	entire	model,	the	bottleneck	layer	represents	the	input
(typically	an	image	or	text	document)	in	the	lowest-dimensionality	space.
More	specifically,	when	we	feed	data	into	our	model,	the	first	layers	see
this	data	nearly	in	its	original	form.	To	see	how	this	works,	let’s	continue
with	a	medical	imaging	example,	but	this	time	we’ll	build	a	model	with	a
colorectal	histology	dataset	to	classify	the	histology	images	into	one	of
eight	categories.

To	explore	the	model	we	are	going	to	use	for	transfer	learning,	let’s	load
the	VGG	model	architecture	pre-trained	on	the	ImageNet	dataset:

vgg_model_withtop	=	tf.keras.applications.VGG19(

				include_top=True,	

				weights='imagenet',	

)

Notice	that	we’ve	set	include_top=True,	which	means	we’re	loading
the	full	VGG	model,	including	the	output	layer.	For	ImageNet,	the	model
classifies	images	into	1,000	different	classes,	so	the	output	layer	is	a
1,000-element	array.	Let’s	look	at	the	output	of	model.summary()	to
understand	which	layer	will	be	used	as	the	bottleneck.	For	brevity,	we’ve
left	out	some	of	the	middle	layers	here:

Model:	"vgg19"

__

_

Layer	(type)																	Output	Shape														Param	#			

==

=

input_3	(InputLayer)									[(None,	224,	224,	3)]					0										

https://oreil.ly/QfOU_
https://oreil.ly/r4HHq

__

_

block1_conv1	(Conv2D)								(None,	224,	224,	64)						1792					

...more	layers	here...

__

_

block5_conv3	(Conv2D)								(None,	14,	14,	512)							2359808				

__

_

block5_conv4	(Conv2D)								(None,	14,	14,	512)							2359808				

__

_

block5_pool	(MaxPooling2D)			(None,	7,	7,	512)									0										

__

_

flatten	(Flatten)												(None,	25088)													0										

__

_

fc1	(Dense)																		(None,	4096)														102764544		

__

_

fc2	(Dense)																		(None,	4096)														16781312			

__

_

predictions	(Dense)										(None,	1000)														4097000				

==

=

Total	params:	143,667,240

Trainable	params:	143,667,240

Non-trainable	params:	0

__

_

As	you	can	see,	the	VGG	model	accepts	images	as	a	224×224×3-pixel
array.	This	128-element	array	is	then	passed	through	successive	layers
(each	of	which	may	change	the	dimensionality	of	the	array)	until	it	is
flattened	into	a	25,088×1-dimensional	array	in	the	layer	called	flatten.
Finally,	it	is	fed	into	the	output	layer,	which	returns	a	1,000-element	array
(for	each	class	in	ImageNet).	In	this	example,	we’ll	choose	the
block5_pool	layer	as	the	bottleneck	layer	when	we	adapt	this	model	to
be	trained	on	our	medical	histology	images.	The	bottleneck	layer	produces

a	7×7×512-dimensional	array,	which	is	a	low-dimensional	representation
of	the	input	image.	It	has	retained	enough	of	the	information	from	the
input	image	to	be	able	to	classify	it.	When	we	apply	this	model	to	our
medical	image	classification	task,	we	hope	that	the	information	distillation
will	be	sufficient	to	successfully	carry	out	classification	on	our	dataset.

The	histology	dataset	comes	with	images	as	(150,150,3)	dimensional
arrays.	This	150×150×3	representation	is	the	highest	dimensionality.	To
use	the	VGG	model	with	our	image	data,	we	can	load	it	with	the
following:

vgg_model	=	tf.keras.applications.VGG19(

				include_top=False,	

				weights='imagenet',	

				input_shape=((150,150,3))

)

vgg_model.trainable	=	False

By	setting	include_top=False,	we’re	specifying	that	the	last	layer	of
VGG	we	want	to	load	is	the	bottleneck	layer.	The	input_shape	we
passed	in	matches	the	input	shape	of	our	histology	images.	A	summary	of
the	last	few	layers	of	this	updated	VGG	model	looks	like	the	following:

block5_conv3	(Conv2D)								(None,	9,	9,	512)									2359808			

__

_

block5_conv4	(Conv2D)								(None,	9,	9,	512)									2359808			

__

_

block5_pool	(MaxPooling2D)			(None,	4,	4,	512)									0									

==

=

Total	params:	20,024,384

Trainable	params:	0

Non-trainable	params:	20,024,384

__

_

The	last	layer	is	now	our	bottleneck	layer.	You	may	notice	that	the	size	of
block5_pool	is	(4,4,512),	whereas	before,	it	was	(7,7,512).	This	is
because	we	instantiated	VGG	with	an	input_shape	parameter	to
account	for	the	size	of	the	images	in	our	dataset.	It’s	also	worth	noting	that
setting	include_top=False	is	hardcoded	to	use	block5_pool	as
the	bottleneck	layer,	but	if	you	want	to	customize	this,	you	can	load	the
full	model	and	delete	any	additional	layers	you	don’t	want	to	use.

Before	this	model	is	ready	to	be	trained,	we’ll	need	to	add	a	few	layers	on
top,	specific	to	our	data	and	classification	task.	It’s	also	important	to	note
that	because	we’ve	set	trainable=False,	there	are	0	trainable
parameters	in	the	current	model.

TIP
As	a	general	rule	of	thumb,	the	bottleneck	layer	is	typically	the	last,	lowest-dimensionality,
flattened	layer	before	a	flattening	operation.

Because	they	both	represent	features	in	reduced	dimensionality,	bottleneck
layers	are	conceptually	similar	to	embeddings.	For	example,	in	an
autoencoder	model	with	an	encoder-decoder	architecture,	the	bottleneck
layer	is	an	embedding.	In	this	case,	the	bottleneck	serves	as	the	middle
layer	of	the	model,	mapping	the	original	input	data	to	a	lower-
dimensionality	representation,	which	the	decoder	(the	second	half	of	the
network)	uses	to	map	the	input	back	to	its	original,	higher-dimensional
representation.	To	see	a	diagram	of	the	bottleneck	layer	in	an	autoencoder,
refer	to	Figure	2-13	in	Chapter	2.

An	embedding	layer	is	essentially	a	lookup	table	of	weights,	mapping	a

particular	feature	to	some	dimension	in	vector	space.	The	main	difference
is	that	the	weights	in	an	embedding	layer	can	be	trained,	whereas	all	the
layers	leading	up	to	and	including	the	bottleneck	layer	have	their	weights
frozen.	In	other	words,	the	entire	network	up	to	and	including	the
bottleneck	layer	is	nontrainable,	and	the	weights	in	the	layers	after	the
bottleneck	are	the	only	trainable	layers	in	the	model.

NOTE
It’s	also	worth	noting	that	pre-trained	embeddings	can	be	used	in	the	Transfer	Learning	design
pattern.	When	you	build	a	model	that	includes	an	embedding	layer,	you	can	either	utilize	an
existing	(pre-trained)	embedding	lookup,	or	train	your	own	embedding	layer	from	scratch.

To	summarize,	transfer	learning	is	a	solution	you	can	employ	to	solve	a
similar	problem	on	a	smaller	dataset.	Transfer	learning	always	makes	use
of	a	bottleneck	layer	with	nontrainable,	frozen	weights.	Embeddings	are	a
type	of	data	representation.	Ultimately,	it	comes	down	to	purpose.	If	the
purpose	is	to	train	a	similar	model,	you	would	use	transfer	learning.
Consequently,	if	the	purpose	is	to	represent	an	input	image	more
concisely,	you	would	use	an	embedding.	The	code	might	be	exactly	the
same.

IMPLEMENTING	TRANSFER	LEARNING

You	can	implement	transfer	learning	in	Keras	using	one	of	these	two
methods:

Loading	a	pre-trained	model	on	your	own,	removing	the	layers
after	the	bottleneck,	and	adding	a	new	final	layer	with	your	own
data	and	labels

Using	a	pre-trained	TensorFlow	Hub	module	as	the	foundation

https://tfhub.dev

for	your	transfer	learning	task

Let’s	start	by	looking	at	how	to	load	and	use	a	pre-trained	model	on	your
own.	For	this,	we’ll	build	on	the	VGG	model	example	we	introduced
earlier.	Note	that	VGG	is	a	model	architecture,	whereas	ImageNet	is	the
data	it	was	trained	on.	Together,	these	make	up	the	pre-trained	model
we’ll	be	using	for	transfer	learning.	Here,	we’re	using	transfer	learning	to
classify	colorectal	histology	images.	Whereas	the	original	ImageNet
dataset	contains	1,000	labels,	our	resulting	model	will	only	return	8
possible	classes	that	we’ll	specify,	as	opposed	to	the	thousands	of	labels
present	in	ImageNet.

NOTE
Loading	a	pre-trained	model	and	using	it	to	get	classifications	on	the	original	labels	that	model
was	trained	on	is	not	transfer	learning.	Transfer	learning	is	going	one	step	further,	replacing	the
final	layers	of	the	model	with	your	own	prediction	task.

The	VGG	model	we’ve	loaded	will	be	our	base	model.	We’ll	need	to	add
a	few	layers	to	flatten	the	output	of	our	bottleneck	layer	and	feed	this
flattened	output	into	an	8-element	softmax	array:

global_avg_layer	=	tf.keras.layers.GlobalAveragePooling2D()

feature_batch_avg	=	global_avg_layer(feature_batch)

prediction_layer	=	tf.keras.layers.Dense(8,	

activation='softmax')

prediction_batch	=	prediction_layer(feature_batch_avg)

Finally,	we	can	use	the	Sequential,	API	to	create	our	new	transfer
learning	model	as	a	stack	of	layers:

histology_model	=	keras.Sequential([

		vgg_model,

		global_avg_layer,

		prediction_layer

])

Let’s	take	note	of	the	output	of	model.summary()	on	our	transfer
learning	model:

__

_

Layer	(type)																	Output	Shape														Param	#			

==

=

vgg19	(Model)																(None,	4,	4,	512)									20024384		

__

_

global_average_pooling2d	(Gl	(None,	512)															0									

__

_

dense	(Dense)																(None,	8)																	4104						

==

=

Total	params:	20,028,488

Trainable	params:	4,104

Non-trainable	params:	20,024,384

__

_

The	important	piece	here	is	that	the	only	trainable	parameters	are	the	ones
after	our	bottleneck	layer.	In	this	example,	the	bottleneck	layer	is	the
feature	vectors	from	the	VGG	model.	After	compiling	this	model,	we	can
train	it	using	our	dataset	of	histology	images.

PRE-TRAINED	EMBEDDINGS

While	we	can	load	a	pre-trained	model	on	our	own,	we	can	also
implement	transfer	learning	by	making	use	of	the	many	pre-trained	models
available	in	TF	Hub,	a	library	of	pre-trained	models	(called	modules).
These	modules	span	a	variety	of	data	domains	and	use	cases,	including
classification,	object	detection,	machine	translation,	and	more.	In

TensorFlow,	you	can	load	these	modules	as	a	layer,	then	add	your	own
classification	layer	on	top.

To	see	how	TF	Hub	works,	let’s	build	a	model	that	classifies	movie
reviews	as	either	positive	or	negative.	First,	we’ll	load	a	pre-trained
embedding	model	trained	on	a	large	corpus	of	news	articles.	We	can
instantiate	this	model	as	a	hub.KerasLayer:

hub_layer	=	hub.KerasLayer(

				"https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1",

				input_shape=[],	dtype=tf.string,	trainable=True)

We	can	stack	additional	layers	on	top	of	this	to	build	our	classifier:

model	=	keras.Sequential([

		hub_layer,

		keras.layers.Dense(32,	activation='relu'),

		keras.layers.Dense(1,	activation='sigmoid')																											

])

We	can	now	train	this	model,	passing	it	our	own	text	dataset	as	input.	The
resulting	prediction	will	be	a	1-element	array	indicating	whether	our
model	thinks	the	given	text	is	positive	or	negative.

Why	It	Works

To	understand	why	transfer	learning	works,	let’s	first	look	at	an	analogy.
When	children	are	learning	their	first	language,	they	are	exposed	to	many
examples	and	corrected	if	they	misidentify	something.	For	example,	the
first	time	they	learn	to	identify	a	cat,	they’ll	see	their	parents	point	to	the
cat	and	say	the	word	cat,	and	this	repetition	strengthens	pathways	in	their
brain.	Similarly,	they	are	corrected	when	they	say	cat	referring	to	an
animal	that	is	not	a	cat.	When	the	child	then	learns	how	to	identify	a	dog,

they	don’t	need	to	start	from	scratch.	They	can	use	a	similar	recognition
process	to	the	one	they	used	for	the	cat	but	apply	it	to	a	slightly	different
task.	In	this	way,	the	child	has	built	a	foundation	for	learning.	In	addition
to	learning	new	things,	they	have	also	learned	how	to	learn	new	things.
Applying	these	learning	methods	to	different	domains	is	roughly	how
transfer	learning	works,	too.

How	does	this	play	out	in	neural	networks?	In	a	typical	convolutional
neural	network	(CNN),	the	learning	is	hierarchical.	The	first	layers	learn
to	recognize	edges	and	shapes	present	in	an	image.	In	the	cat	example,	this
might	mean	that	the	model	can	identify	areas	in	an	image	where	the	edge
of	the	cat’s	body	meets	the	background.	The	next	layers	in	the	model
begin	to	understand	groups	of	edges—perhaps	that	there	are	two	edges
that	meet	toward	the	top-left	corner	of	the	image.	A	CNN’s	final	layers
can	then	piece	together	these	groups	of	edges,	developing	an
understanding	of	different	features	in	the	image.	In	the	cat	example,	the
model	might	be	able	to	identify	two	triangular	shapes	toward	the	top	of	the
image	and	two	oval	shapes	below	them.	As	humans,	we	know	that	these
triangular	shapes	are	ears	and	the	oval	shapes	are	eyes.

We	can	visualize	this	process	in	Figure	4-14,	from	research	by	Zeiler	and
Fergus	on	deconstructing	CNNs	to	understand	the	different	features	that
were	activated	throughout	each	layer	of	the	model.	For	each	layer	in	a
five-layer	CNN,	this	shows	an	image’s	feature	map	for	a	given	layer
alongside	the	actual	image.	This	lets	us	see	how	the	model’s	perception	of
an	image	progresses	as	it	moves	throughout	the	network.	Layers	1	and	2
recognize	only	edges,	layer	3	begins	to	recognize	objects,	and	layers	4	and
5	can	understand	focal	points	within	the	entire	image.

Remember,	though,	that	to	our	model,	these	are	simply	groupings	of	pixel

https://oreil.ly/VzRV_

values.	It	doesn’t	know	that	the	triangular	and	oval	shapes	are	ears	and
eyes—it	only	knows	to	associate	specific	groupings	of	features	with	the
labels	it	has	been	trained	on.	In	this	way,	the	model’s	process	of	learning
what	groupings	of	features	make	up	a	cat	isn’t	much	different	from
learning	the	groups	of	features	that	are	part	of	other	objects,	like	a	table,	a
mountain,	or	even	a	celebrity.	To	a	model,	these	are	all	just	different
combinations	of	pixel	values,	edges,	and	shapes.

Figure	4-14.	Research	from	Zeiler	and	Fergus	(2013)	in	deconstructing	CNNs	helps	us	visualize
how	a	CNN	sees	images	at	each	layer	of	the	network.

Trade-Offs	and	Alternatives

So	far,	we	haven’t	discussed	methods	of	modifying	the	weights	of	our
original	model	when	implementing	transfer	learning.	Here,	we’ll	examine
two	approaches	for	this:	feature	extraction	and	fine-tuning.	We’ll	also
discuss	why	transfer	learning	is	primarily	focused	on	image	and	text
models	and	look	at	the	relationship	between	text	sentence	embeddings	and
transfer	learning.

FINE-TUNING	VERSUS	FEATURE	EXTRACTION

Feature	extraction	describes	an	approach	to	transfer	learning	where	you
freeze	the	weights	of	all	layers	before	the	bottleneck	layer	and	train	the
following	layers	on	your	own	data	and	labels.	Another	option	is	instead
fine-tuning	the	weights	of	the	pre-trained	model’s	layers.	With	fine-tuning,
you	can	either	update	the	weights	of	each	layer	in	the	pre-trained	model,
or	just	a	few	of	the	layers	right	before	the	bottleneck.	Training	a	transfer
learning	model	using	fine-tuning	typically	takes	longer	than	feature
extraction.	You’ll	notice	in	our	text	classification	example	above,	we	set
trainable=True	when	initializing	our	TF	Hub	layer.	This	is	an
example	of	fine-tuning.

When	fine-tuning,	it’s	common	to	leave	the	weights	of	the	model’s	initial
layers	frozen	since	these	layers	have	been	trained	to	recognize	basic
features	that	are	often	common	across	many	types	of	images.	To	fine-tune
a	MobileNet	model,	for	example,	we’d	set	trainable=False	only	for
a	subset	of	layers	in	the	model,	rather	than	making	every	layer	non-
trainable.	For	example,	to	fine-tune	after	the	100th	layer,	we	could	run:

base_model	=	tf.keras.applications.MobileNetV2(input_shape=

(160,160,3),

																																															

include_top=False,

																																															

weights='imagenet')

for	layer	in	base_model.layers[:100]:

		layer.trainable	=		False

One	recommended	approach	to	determining	how	many	layers	to	freeze	is
known	as	progressive	fine-tuning,	and	it	involves	iteratively	unfreezing
layers	after	every	training	run	to	find	the	ideal	number	of	layers	to	fine-
tune.	This	works	best	and	is	most	efficient	if	you	keep	your	learning	rate
low	(0.001	is	common)	and	the	number	of	training	iterations	relatively
small.	To	implement	progressive	fine-tuning,	start	by	unfreezing	only	the
last	layer	of	your	transferred	model	(the	layer	closest	to	the	output)	and
calculate	your	model’s	loss	after	training.	Then,	one	by	one,	unfreeze
more	layers	until	you	reach	the	Input	layer	or	until	the	loss	starts	to
plateau.	Use	this	to	inform	the	number	of	layers	to	fine-tune.

How	should	you	determine	whether	to	fine-tune	or	freeze	all	layers	of
your	pre-trained	model?	Typically,	when	you’ve	got	a	small	dataset,	it’s
best	to	use	the	pre-trained	model	as	a	feature	extractor	rather	than	fine-
tuning.	If	you’re	retraining	the	weights	of	a	model	that	was	likely	trained
on	thousands	or	millions	of	examples,	fine-tuning	can	cause	the	updated
model	to	overfit	to	your	small	dataset	and	lose	the	more	general
information	learned	from	those	millions	of	examples.	Although	it	depends
on	your	data	and	prediction	task,	when	we	say	“small	dataset”	here,	we’re
referring	to	datasets	with	hundreds	or	a	few	thousand	training	examples.

Another	factor	to	take	into	account	when	deciding	whether	to	fine-tune	is
how	similar	your	prediction	task	is	to	that	of	the	original	pre-trained	model

https://oreil.ly/fAv1S

you’re	using.	When	the	prediction	task	is	similar	or	a	continuation	of	the
previous	training,	as	it	was	in	our	movie	review	sentiment	analysis	model,
fine-tuning	can	produce	higher-accuracy	results.	When	the	task	is	different
or	the	datasets	are	significantly	different,	it’s	best	to	freeze	all	the	layers	of
the	pre-trained	model	instead	of	fine-tuning	them.	Table	4-1	summarizes
the	key	points.

Table	4-1.	Criteria	to	help	choose	between	feature	extraction	and	fine-
tuning

Criterion

Feature
extractio
n Fine-tuning

How	large	is	the	dataset? Small Large

Is	your	prediction	task	the	same	as
that	of	the	pre-trained	model?

Different
tasks

Same	task,	or	similar	task	with
same	class	distribution	of	labels

Budget	for	training	time	and
computational	cost

Low High

In	our	text	example,	the	pre-trained	model	was	trained	on	a	corpus	of	news
text	but	our	use	case	was	sentiment	analysis.	Because	these	tasks	are
different,	we	should	use	the	original	model	as	a	feature	extractor	rather
than	fine-tune	it.	An	example	of	different	prediction	tasks	in	an	image
domain	might	be	using	our	MobileNet	model	trained	on	ImageNet	as	a
basis	for	doing	transfer	learning	on	a	dataset	of	medical	images.	Although
both	tasks	involve	image	classification,	the	nature	of	the	images	in	each
dataset	are	very	different.

FOCUS	ON	IMAGE	AND	TEXT	MODELS

You	may	have	noticed	that	all	of	the	examples	in	this	section	focused	on
image	and	text	data.	This	is	because	transfer	learning	is	primarily	for	cases

4

where	you	can	apply	a	similar	task	to	the	same	data	domain.	Models
trained	with	tabular	data,	however,	cover	a	potentially	infinite	number	of
possible	prediction	tasks	and	data	types.	You	could	train	a	model	on
tabular	data	to	predict	how	you	should	price	tickets	to	your	event,	whether
or	not	someone	is	likely	to	default	on	loan,	your	company’s	revenue	next
quarter,	the	duration	of	a	taxi	trip,	and	so	forth.	The	specific	data	for	these
tasks	is	also	incredibly	varied,	with	the	ticket	problem	depending	on
information	about	artists	and	venues,	the	loan	problem	on	personal
income,	and	the	taxi	duration	on	urban	traffic	patterns.	For	these	reasons,
there	are	inherent	challenges	in	transferring	the	learnings	from	one	tabular
model	to	another.

Although	transfer	learning	is	not	yet	as	common	on	tabular	data	as	it	is	for
image	and	text	domains,	a	new	model	architecture	called	TabNet	presents
novel	research	in	this	area.	Most	tabular	models	require	significant	feature
engineering	when	compared	with	image	and	text	models.	TabNet	employs
a	technique	that	first	uses	unsupervised	learning	to	learn	representations
for	tabular	features,	and	then	fine-tunes	these	learned	representations	to
produce	predictions.	In	this	way,	TabNet	automates	feature	engineering
for	tabular	models.

EMBEDDINGS	OF	WORDS	VERSUS	SENTENCES

In	our	discussion	of	text	embeddings	so	far,	we’ve	referred	mostly	to	word
embeddings.	Another	type	of	text	embedding	is	sentence	embeddings.
Where	word	embeddings	represent	individual	words	in	a	vector	space,
sentence	embeddings	represent	entire	sentences.	Consequently,	word
embeddings	are	context	agnostic.	Let’s	see	how	this	plays	out	with	the
following	sentence:

“I’ve	left	you	fresh	baked	cookies	on	the	left	side	of	the	kitchen	counter.”

https://oreil.ly/HI5Xl

Notice	that	the	word	left	appears	twice	in	that	sentence,	first	as	a	verb	and
then	as	an	adjective.	If	we	were	to	generate	word	embeddings	for	this
sentence,	we’d	get	a	separate	array	for	each	word.	With	word	embeddings,
the	array	for	both	instances	of	the	word	left	would	be	the	same.	Using
sentence-level	embeddings,	however,	we’d	get	a	single	vector	to	represent
the	entire	sentence.	There	are	several	approaches	for	generating	sentence
embeddings—from	averaging	a	sentence’s	word	embeddings	to	training	a
supervised	learning	model	on	a	large	corpus	of	text	to	generate	the
embeddings.

How	does	this	relate	to	transfer	learning?	The	latter	method—training	a
supervised	learning	model	to	generate	sentence-level	embeddings—is
actually	a	form	of	transfer	learning.	This	is	the	approach	used	by	Google’s
Universal	Sentence	Encoder	(available	in	TF	Hub)	and	BERT.	These
methods	differ	from	word	embeddings	in	that	they	go	beyond	simply
providing	a	weight	lookup	for	individual	words.	Instead,	they	have	been
built	by	training	a	model	on	a	large	dataset	of	varied	text	to	understand	the
meaning	conveyed	by	sequences	of	words.	In	this	way,	they	are	designed
to	be	transferred	to	different	natural	language	tasks	and	can	thus	be	used	to
build	models	that	implement	transfer	learning.

Design	Pattern	14:	Distribution	Strategy
In	Distribution	Strategy,	the	training	loop	is	carried	out	at	scale	over
multiple	workers,	often	with	caching,	hardware	acceleration,	and
parallelization.

Problem

These	days,	it’s	common	for	large	neural	networks	to	have	millions	of

https://oreil.ly/Y0Ry9
https://oreil.ly/l_gQf

parameters	and	be	trained	on	massive	amounts	of	data.	In	fact,	it’s	been
shown	that	increasing	the	scale	of	deep	learning,	with	respect	to	the
number	of	training	examples,	the	number	of	model	parameters,	or	both,
drastically	improves	model	performance.	However,	as	the	size	of	models
and	data	increases,	the	computation	and	memory	demands	increase
proportionally,	making	the	time	it	takes	to	train	these	models	one	of	the
biggest	problems	of	deep	learning.

GPUs	provide	a	substantial	computational	boost	and	bring	the	training
time	of	modestly	sized	deep	neural	networks	within	reach.	However,	for
very	large	models	trained	on	massive	amounts	of	data,	individual	GPUs
aren’t	enough	to	make	the	training	time	tractible.	For	example,	at	the	time
of	writing,	training	ResNet-50	on	the	benchmark	ImageNet	dataset	for	90
epochs	on	a	single	NVIDIA	M40	GPU	requires	10 	single	precision
operations	and	takes	14	days.	As	AI	is	being	used	more	and	more	to	solve
problems	within	complex	domains,	and	open	source	libraries	like
Tensorflow	and	PyTorch	make	building	deep	learning	models	more
accessible,	large	neural	networks	comparable	to	ResNet-50	have	become
the	norm.

This	is	a	problem.	If	it	takes	two	weeks	to	train	your	neural	network,	then
you	have	to	wait	two	weeks	before	you	can	iterate	on	new	ideas	or
experiment	with	tweaking	the	settings.	Furthermore,	for	some	complex
problems	like	medical	imaging,	autonomous	driving,	or	language
translation,	it’s	not	always	feasible	to	break	the	problem	down	into	smaller
components	or	work	with	only	a	subset	of	the	data.	It’s	only	with	the	full
scale	of	the	data	that	you	can	assess	whether	things	work	or	not.

Training	time	translates	quite	literally	to	money.	In	the	world	of	serverless
machine	learning,	rather	than	buying	your	own	expensive	GPU,	it	is

18

possible	to	submit	training	jobs	via	a	cloud	service	where	you	are	charged
for	training	time.	The	cost	of	training	a	model,	whether	it	is	to	pay	for	a
GPU	or	to	pay	for	a	serverless	training	service,	quickly	adds	up.

Is	there	a	way	to	speed	up	the	training	of	these	large	neural	networks?

Solution

One	way	to	accelerate	training	is	through	distribution	strategies	in	the
training	loop.	There	are	different	distribution	techniques,	but	the	common
idea	is	to	split	the	effort	of	training	the	model	across	multiple	machines.
There	are	two	ways	this	can	be	done:	data	parallelism	and	model
parallelism.	In	data	parallelism,	computation	is	split	across	different
machines	and	different	workers	train	on	different	subsets	of	the	training
data.	In	model	parallelism,	the	model	is	split	and	different	workers	carry
out	the	computation	for	different	parts	of	the	model.	In	this	section,	we’ll
focus	on	data	parallelism	and	show	implementations	in	TensorFlow	using
the	tf.distribute.Strategy	library.	We’ll	discuss	model
parallelism	in	“Trade-Offs	and	Alternatives”.

To	implement	data	parallelism,	there	must	be	a	method	in	place	for
different	workers	to	compute	gradients	and	share	that	information	to	make
updates	to	the	model	parameters.	This	ensures	that	all	workers	are
consistent	and	each	gradient	step	works	to	train	the	model.	Broadly
speaking,	data	parallelism	can	be	carried	out	either	synchronously	or
asynchronously.

SYNCHRONOUS	TRAINING

In	synchronous	training,	the	workers	train	on	different	slices	of	input	data
in	parallel	and	the	gradient	values	are	aggregated	at	the	end	of	each

training	step.	This	is	performed	via	an	all-reduce	algorithm.	This	means
that	each	worker,	typically	a	GPU,	has	a	copy	of	the	model	on	device	and,
for	a	single	stochastic	gradient	descent	(SGD)	step,	a	mini-batch	of	data	is
split	among	each	of	the	separate	workers.	Each	device	performs	a	forward
pass	with	their	portion	of	the	mini-batch	and	computes	gradients	for	each
parameter	of	the	model.	These	locally	computed	gradients	are	then
collected	from	each	device	and	aggregated	(for	example,	averaged)	to
produce	a	single	gradient	update	for	each	parameter.	A	central	server
holds	the	most	current	copy	of	the	model	parameters	and	performs	the
gradient	step	according	to	the	gradients	received	from	the	multiple
workers.	Once	the	model	parameters	are	updated	according	to	this
aggregated	gradient	step,	the	new	model	is	sent	back	to	the	workers	along
with	another	split	of	the	next	mini-batch,	and	the	process	repeats.
Figure	4-15	shows	a	typical	all-reduce	architecture	for	synchronous	data
distribution.

As	with	any	parallelism	strategy,	this	introduces	additional	overhead	to
manage	timing	and	communication	between	workers.	Large	models	could
cause	I/O	bottlenecks	as	data	is	passed	from	the	CPU	to	the	GPU	during
training,	and	slow	networks	could	also	cause	delays.

In	TensorFlow,	tf.distribute.MirroredStrategy	supports
synchronous	distributed	training	across	multiple	GPUs	on	the	same
machine.	Each	model	parameter	is	mirrored	across	all	workers	and	stored
as	a	single	conceptual	variable	called	MirroredVariable.	During	the
all-reduce	step,	all	gradient	tensors	are	made	available	on	each	device.
This	helps	to	significantly	reduce	the	overhead	of	synchronization.	There
are	also	various	other	implementations	for	the	all-reduce	algorithm
available,	many	of	which	use	NVIDIA	NCCL.

https://oreil.ly/HX4NE

Figure	4-15.	In	synchronous	training,	each	worker	holds	a	copy	of	the	model	and	computes
gradients	using	a	slice	of	the	training	data	mini-batch.

To	implement	this	mirrored	strategy	in	Keras,	you	first	create	an	instance
of	the	mirrored	distribution	strategy,	then	move	the	creation	and	compiling
of	the	model	inside	the	scope	of	that	instance.	The	following	code	shows
how	to	use	MirroredStrategy	when	training	a	three-layer	neural
network:

mirrored_strategy	=	tf.distribute.MirroredStrategy()

with	mirrored_strategy.scope():

				model	=	tf.keras.Sequential([tf.keras.layers.Dense(32,	

input_shape=(5,)),

																																	tf.keras.layers.Dense(16,	

activation='relu'),

																																	tf.keras.layers.Dense(1)])

				model.compile(loss='mse',	optimizer='sgd')

By	creating	the	model	inside	this	scope,	the	parameters	of	the	model	are
created	as	mirrored	variables	instead	of	regular	variables.	When	it	comes
to	fitting	the	model	on	the	dataset,	everything	is	performed	exactly	the
same	as	before.	The	model	code	stays	the	same!	Wrapping	the	model	code

in	the	distribution	strategy	scope	is	all	you	need	to	do	to	enable	distributed
training.	The	MirroredStrategy	handles	replicating	the	model
parameters	on	the	available	GPUs,	aggregating	gradients,	and	more.	To
train	or	evaluate	the	model,	we	just	call	fit()	or	evaluate()	as
usual:

model.fit(train_dataset,	epochs=2)

model.evaluate(train_dataset)

During	training,	each	batch	of	the	input	data	is	divided	equally	among	the
multiple	workers.	For	example,	if	you	are	using	two	GPUs,	then	a	batch
size	of	10	will	be	split	among	the	2	GPUs,	with	each	receiving	5	training
examples	each	step.	There	are	also	other	synchronous	distribution
strategies	within	Keras,	such	as	CentralStorageStrategy	and
MultiWorkerMirroredStrategy.
MultiWorkerMirroredStrategy	enables	the	distribution	to	be
spread	not	just	on	GPUs	on	a	single	machine,	but	on	multiple	machines.	In
CentralStorageStrategy,	the	model	variables	are	not	mirrored;
instead,	they	are	placed	on	the	CPU	and	operations	are	replicated	across
all	local	GPUs.	So	the	variable	updates	only	happen	in	one	place.

When	choosing	between	different	distribution	strategies,	the	best	option
depends	on	your	computer	topology	and	how	fast	the	CPUs	and	GPUs	can
communicate	with	one	another.	Table	4-2	summarizes	how	the	different
strategies	described	here	compare	on	these	criteria.

Table	4-2.	Choosing	between	distribution	strategies	depends	on	your	
computer	topology	and	how	fast	the	CPUs	and	GPUs	can	
communicate	with	one	another

Faster	CPU-GPU
connection

Faster	GPU-GPU
connection

One	machine	with	multiple
GPUs

CentralStorageStrat

egy

MirroredStrategy

Multiple	machines	with	
multiple	GPUs

MultiWorkerMirrored

Strategy

MultiWorkerMirrored

Strategy

DISTRIBUTED	DATA	PARALLELISM	IN	PYTORCH
In	PyTorch,	the	code	always	uses	DistributedDataParallel	whether	you	have	one	GPU	or	multiple
GPUs	and	whether	the	model	is	run	on	one	machine	or	multiple	machines.	Instead,	how	and	where	you
start	the	processes	and	how	you	wire	up	sampling,	data	loading,	and	so	on	determines	the	distribution
strategy.

First,	we	initialize	the	process	and	wait	for	other	processes	to	start	and	set	up	communication	using:

				torch.distributed.init_process_group(backend="nccl")

Second,	specify	the	device	number	by	obtaining	a	rank	from	the	command	line.	Rank	=	0	is	the	master
process,	and	1,2,3,...	are	the	workers:

				device	=	torch.device("cuda:{}".format(local_rank))

The	model	is	created	as	normal	in	each	of	the	processes,	but	is	sent	to	this	device.	A	distributed	version	of
the	model	that	will	process	its	shard	of	batch	is	created	using	DistributedDataParallel:

				model	=	model.to(device)

				ddp_model	=	DistributedDataParallel(model,	device_ids=[local_rank],

																																								output_device=local_rank)

The	data	itself	is	sharded	using	a	DistributedSampler,	and	each	batch	of	data	is	also	sent	to	the
device:

				sampler	=	DistributedSampler(dataset=trainds)

				loader	=	DataLoader(dataset=trainds,	batch_size=batch_size,

																								sampler=sampler,	num_workers=4)

				...

				for	data	in	train_loader:

								features,	labels	=	data[0].to(device),	data[1].to(device)

When	a	PyTorch	trainer	is	launched,	it	is	told	the	total	number	of	nodes	and	its	own	rank:

python	-m	torch.distributed.launch	--nproc_per_node=4	\

							--nnodes=16	--node_rank=3	--master_addr="192.168.0.1"	\

							--master_port=1234	my_pytorch.py

If	the	number	of	nodes	is	one,	we	have	the	equivalent	of	TensorFlow’s	MirroredStrategy,	and	if	the
number	of	nodes	is	more	than	one,	we	have	the	equivalent	of	TensorFlow’s
MultiWorkerMirroredStrategy.	If	the	number	of	processes	per	node	and	number	of	nodes	are	both
one,	then	we	have	a	OneDeviceStrategy.	Optimized	communication	for	all	these	cases	is	provided	if
supported	by	the	backend	(NCCL,	in	this	case)	passed	into	init_process_group.

ASYNCHRONOUS	TRAINING

In	asynchronous	training,	the	workers	train	on	different	slices	of	the	input
data	independently,	and	the	model	weights	and	parameters	are	updated
asynchronously,	typically	through	a	parameter	server	architecture.	This
means	that	no	one	worker	waits	for	updates	to	the	model	from	any	of	the
other	workers.	In	the	parameter-server	architecture,	there	is	a	single
parameter	server	that	manages	the	current	values	of	the	model	weights,	as
in	Figure	4-16.

As	with	synchronous	training,	a	mini-batch	of	data	is	split	among	each	of
the	separate	workers	for	each	SGD	step.	Each	device	performs	a	forward
pass	with	their	portion	of	the	mini-batch	and	computes	gradients	for	each
parameter	of	the	model.	Those	gradients	are	sent	to	the	parameter	server,
which	performs	the	parameter	update	and	then	sends	the	new	model
parameters	back	to	the	worker	with	another	split	of	the	next	mini-batch.

The	key	difference	between	synchronous	and	asynchronous	training	is	that
the	parameter	server	does	not	do	an	all-reduce.	Instead,	it	computes	the
new	model	parameters	periodically	based	on	whichever	gradient	updates	it
received	since	the	last	computation.	Typically,	asynchronous	distribution
achieves	higher	throughput	than	synchronous	training	because	a	slow
worker	doesn’t	block	the	progression	of	training	steps.	If	a	single	worker
fails,	the	training	continues	as	planned	with	the	other	workers	while	that
worker	reboots.	As	a	result,	some	splits	of	the	mini-batch	may	be	lost
during	training,	making	it	too	difficult	to	accurately	keep	track	of	how

https://oreil.ly/Wkk5B

many	epochs	of	data	have	been	processed.	This	is	another	reason	why	we
typically	specify	virtual	epochs	when	training	large	distributed	jobs
instead	of	epochs;	see	“Design	Pattern	12:	Checkpoints”	for	a	discussion
of	virtual	epochs.

Figure	4-16.	In	asynchronous	training,	each	worker	performs	a	gradient	descent	step	with	a	split	of
the	mini-batch.	No	one	worker	waits	for	updates	to	the	model	from	any	of	the	other	workers.

In	addition,	since	there	is	no	synchronization	between	the	weight	updates,

it	is	possible	that	one	worker	updates	the	model	weights	based	on	stale
model	state.	However,	in	practice,	this	doesn’t	seem	to	be	a	problem.
Typically,	large	neural	networks	are	trained	for	multiple	epochs,	and	these
small	discrepancies	become	negligible	in	the	end.

In	Keras,	ParameterServerStrategy	implements	asynchronous
parameter	server	training	on	multiple	machines.	When	using	this
distribution,	some	machines	are	designated	as	workers	and	some	are	held
as	parameter	servers.	The	parameter	servers	hold	each	variable	of	the
model,	and	computation	is	performed	on	the	workers,	typically	GPUs.

The	implementation	is	similar	to	that	of	other	distribution	strategies	in
Keras.	For	example,	in	your	code,	you	would	just	replace
MirroredStrategy()	with	ParameterServerStrategy().

TIP
Another	distribution	strategy	supported	in	Keras	worth	mentioning	is	OneDeviceStrategy.
This	strategy	will	place	any	variables	created	in	its	scope	on	the	specified	device.	This	strategy
is	particularly	useful	as	a	way	to	test	your	code	before	switching	to	other	strategies	that	actually
distribute	to	multiple	devices/machines.

Synchronous	and	asynchronous	training	each	have	their	advantages,	and
disadvantages	and	choosing	between	the	two	often	comes	down	to
hardware	and	network	limitations.

Synchronous	training	is	particularly	vulnerable	to	slow	devices	or	poor
network	connection	because	training	will	stall	waiting	for	updates	from	all
workers.	This	means	synchronous	distribution	is	preferable	when	all
devices	are	on	a	single	host	and	there	are	fast	devices	(for	example,	TPUs

or	GPUs)	with	strong	links.	On	the	other	hand,	asynchronous	distribution
is	preferable	if	there	are	many	low-power	or	unreliable	workers.	If	a	single
worker	fails	or	stalls	in	returning	a	gradient	update,	it	won’t	stall	the
training	loop.	The	only	limitation	is	I/O	constraints.

Why	It	Works

Large,	complex	neural	networks	require	massive	amounts	of	training	data
to	be	effective.	Distributed	training	schemes	drastically	increase	the
throughput	of	data	processed	by	these	models	and	can	effectively	decrease
training	times	from	weeks	to	hours.	Sharing	resources	between	workers
and	parameter	server	tasks	leads	to	a	dramatic	increase	in	data	throughput.
Figure	4-17	compares	the	throughput	of	training	data,	in	this	case	images,
with	different	distribution	setups. 	Most	notable	is	that	throughput
increases	with	the	number	of	worker	nodes	and,	even	though	parameter
servers	perform	tasks	not	related	to	the	computation	done	on	the	GPU’s
workers,	splitting	the	workload	among	more	machines	is	the	most
advantageous	strategy.

In	addition,	data	parallelization	decreases	time	to	convergence	during
training.	In	a	similar	study,	it	was	shown	that	increasing	workers	leads	to
minimum	loss	much	faster. 	Figure	4-18	compares	the	time	to	minimum
for	different	distribution	strategies.	As	the	number	of	workers	increases,
the	time	to	minimum	training	loss	dramatically	decreases,	showing	nearly
a	5×	speed	up	with	8	workers	as	opposed	to	just	1.

5

6

Figure	4-17.	Comparison	of	throughput	between	different	distribution	setups.	Here,	2W1PS
indicates	two	workers	and	one	parameter	server.

Figure	4-18.	As	the	number	of	GPUs	increases,	the	time	to	convergence	during	training	decreases.

Trade-Offs	and	Alternatives

In	addition	to	data	parallelism,	there	are	other	aspects	of	distribution	to
consider,	such	as	model	parallelism,	other	training	accelerators—(such	as
TPUs)	and	other	considerations	(such	as	I/O	limitations	and	batch	size).

MODEL	PARALLELISM

In	some	cases,	the	neural	network	is	so	large	it	cannot	fit	in	the	memory	of
a	single	device;	for	example,	Google’s	Neural	Machine	Translation	has
billions	of	parameters.	In	order	to	train	models	this	big,	they	must	be	split
up	over	multiple	devices, 	as	shown	in	Figure	4-19.	This	is	called	model
parallelism.	By	partitioning	parts	of	a	network	and	their	associated
computations	across	multiple	cores,	the	computation	and	memory
workload	is	distributed	across	multiple	devices.	Each	device	operates	over
the	same	mini-batch	of	data	during	training,	but	carries	out	computations
related	only	to	their	separate	components	of	the	model.

7

https://oreil.ly/xL4Cu

Figure	4-19.	Model	parallelism	partitions	the	model	over	multiple	devices.

MODEL	PARALLELISM	OR	DATA	PARALLELISM?
A	priori,	neither	scheme	is	better	than	the	other.	Each	has	its	own	benefits.	Typically,	the	model
architecture	determines	whether	it	is	better	to	use	data	parallelism	or	model	parallelism.

In	particular,	model	parallelism	improves	efficiency	when	the	amount	of	computation	per	neuron	activity	is

high,	such	as	in	wide	models	with	many	fully	connected	layers.	This	is	because	it	is	the	neuron	value	that
is	being	communicated	between	different	components	of	the	model.	Outside	of	the	training	paradigm,
model	parallelism	provides	an	added	benefit	for	serving	very	large	models	where	low	latency	is	needed.
Distributing	the	computation	of	a	large	model	across	multiple	devices	can	vastly	reduce	the	overall
computation	time	when	making	online	predictions.

On	the	other	hand,	data	parallelism	is	more	efficient	when	the	amount	of	computation	per	weight	is	high,
such	as	when	there	are	convolutional	layers	involved.	This	is	because	it	is	the	model	weights	(and	their
gradient	updates)	that	are	being	passed	between	different	workers.

Depending	on	the	scale	of	your	model	and	problem,	it	may	be	necessary	to	exploit	both.	Mesh	TensorFlow
is	a	library	optimized	for	distributed	deep	learning	that	combines	synchronous	data	parallelism	with	model
parallelism.	It	is	implemented	as	a	layer	over	TensorFlow	and	allows	tensors	to	be	easily	split	across
different	dimensions.	Splitting	across	the	batch	layer	is	synonymous	with	data	parallelism,	while	splitting
over	any	other	dimension—for	example,	a	dimension	representing	the	size	of	a	hidden	layer—achieves
model	parallelism.

ASICS	FOR	BETTER	PERFORMANCE	AT	LOWER	COST

Another	way	to	speed	up	the	training	process	is	by	accelerating	the
underlying	hardware,	such	as	by	using	application-specific	integrated
circuits	(ASICs).	In	machine	learning,	this	refers	to	hardware	components
designed	specifically	to	optimize	performance	on	the	types	of	large	matrix
computations	at	the	heart	of	the	training	loop.	TPUs	in	Google	Cloud	are
ASICs	that	can	be	used	for	both	model	training	and	making	predictions.
Similarly,	Microsoft	Azure	offers	the	Azure	FPGA	(field-programmable
gate	array),	which	is	also	a	custom	machine	learning	chip	like	the	ASIC
except	that	it	can	be	reconfigured	over	time.	These	chips	are	able	to	vastly
minimize	the	time	to	accuracy	when	training	large,	complex	neural
network	models.	A	model	that	takes	two	weeks	to	train	on	GPUs	can
converge	in	hours	on	TPUs.

There	are	other	advantages	to	using	custom	machine	learning	chips.	For
example,	as	accelerators	(GPUs,	FPGAs,	TPUs,	and	so	on)	have	gotten
faster,	I/O	has	become	a	significant	bottleneck	in	ML	training.	Many
training	processes	waste	cycles	waiting	to	read	and	move	data	to	the
accelerator	and	waiting	for	gradient	updates	to	carry	out	all-reduce.	TPU

https://oreil.ly/svS4q
https://github.com/tensorflow/mesh

pods	have	high-speed	interconnect,	so	we	tend	to	not	worry	about
communication	overhead	within	a	pod	(a	pod	consists	of	thousands	of
TPUs).	In	addition,	there	is	lots	of	memory	available	on-disk,	which
means	that	it	is	possible	to	preemptively	fetch	data	and	make	less-frequent
calls	to	the	CPU.	As	a	result,	you	should	use	much	higher	batch	sizes	to
take	full	advantage	of	high-memory,	high-interconnect	chips	like	TPUs.

In	terms	of	distributed	training,	TPUStrategy	allows	you	to	run
distributed	training	jobs	on	TPUs.	Under	the	hood,	TPUStrategy	is	the
same	as	MirroredStrategy	although	TPUs	have	their	own
implementation	of	the	all-reduce	algorithm.

Using	TPUStrategy	is	similar	to	using	the	other	distribution	strategies
in	TensorFlow.	One	difference	is	you	must	first	set	up	a
TPUClusterResolver,	which	points	to	the	location	of	the	TPUs.
TPUs	are	currently	available	to	use	for	free	in	Google	Colab,	and	there
you	don’t	need	to	specify	any	arguments	for	tpu_address:

cluster_resolver	=	

tf.distribute.cluster_resolver.TPUClusterResolver(

				tpu=tpu_address)

tf.config.experimental_connect_to_cluster(cluster_resolver)

tf.tpu.experimental.initialize_tpu_system(cluster_resolver)

tpu_strategy	=	

tf.distribute.experimental.TPUStrategy(cluster_resolver)

CHOOSING	A	BATCH	SIZE

Another	important	factor	to	consider	is	batch	size.	Particular	to
synchronous	data	parallelism,	when	the	model	is	particularly	large,	it’s
better	to	decrease	the	total	number	of	training	iterations	because	each
training	step	requires	the	updated	model	to	be	shared	among	different
workers,	causing	a	slowdown	for	transfer	time.	Thus,	it’s	important	to

increase	the	mini-batch	size	as	much	as	possible	so	that	the	same
performance	can	be	met	with	fewer	steps.

However,	it	has	been	shown	that	very	large	batch	sizes	adversely	affect
the	rate	at	which	stochastic	gradient	descent	converges	as	well	as	the
quality	of	the	final	solution. 	Figure	4-20	shows	that	increasing	the	batch
size	alone	ultimately	causes	the	top-1	validation	error	to	increase.	In	fact,
they	argue	that	linearly	scaling	the	learning	rate	as	a	function	of	the	large
batch	size	is	necessary	to	maintain	a	low	validation	error	while	decreasing
the	time	of	distributed	training.

8

https://oreil.ly/FOtIX

Figure	4-20.	Large	batch	sizes	have	been	shown	to	adversely	affect	the	quality	of	the	final	trained
model.

Thus,	setting	the	mini-batch	size	in	the	context	of	distributed	training	is	a
complex	optimization	space	of	its	own,	as	it	affects	both	statistical
accuracy	(generalization)	and	hardware	efficiency	(utilization)	of	the
model.	Related	work,	focusing	on	this	optimization,	introduces	a	layerwise
adaptive	large	batch	optimization	technique	called	LAMB,	which	has	been
able	to	reduce	BERT	training	time	from	3	days	to	just	76	minutes.

MINIMIZING	I/O	WAITS

https://oreil.ly/yeALI

MINIMIZING	I/O	WAITS

GPUs	and	TPUs	can	process	data	much	faster	than	CPUs,	and	when	using
distributed	strategies	with	multiple	accelerators,	I/O	pipelines	can	struggle
to	keep	up,	creating	a	bottleneck	to	more	efficient	training.	Specifically,
before	a	training	step	finishes,	the	data	for	the	next	step	is	not	available	for
processing.	This	is	shown	in	Figure	4-21.	The	CPU	handles	the	input
pipeline:	reading	data	from	storage,	preprocessing,	and	sending	to	the
accelerator	for	computation.	As	distributed	strategies	speed	up	training,
more	than	ever	it	becomes	necessary	to	have	efficient	input	pipelines	to
fully	utilize	the	computing	power	available.

This	can	be	achieved	in	a	number	of	ways,	including	using	optimized	file
formats	like	TFRecords	and	building	data	pipelines	using	the	TensorFlow
tf.data	API.	The	tf.data	API	makes	it	possible	to	handle	large
amounts	of	data	and	has	built-in	transformations	useful	for	creating
flexible,	efficient	pipelines.	For	example,
tf.data.Dataset.prefetch	overlaps	the	preprocessing	and	model
execution	of	a	training	step	so	that	while	the	model	is	executing	training
step	N,	the	input	pipeline	is	reading	and	preparing	data	for	training	step	N
+	1,	as	shown	in	Figure	4-22.

Figure	4-21.	With	distributed	training	on	multiple	GPU/TPUs	available,	it	is	necessary	to	have
efficient	input	pipelines.

Figure	4-22.	Prefetching	overlaps	preprocessing	and	model	execution,	so	that	while	the	model	is
executing	one	training	step,	the	input	pipeline	is	reading	and	preparing	data	for	the	next.

Design	Pattern	15:	Hyperparameter	Tuning
In	Hyperparameter	Tuning,	the	training	loop	is	itself	inserted	into	an
optimization	method	to	find	the	optimal	set	of	model	hyperparameters.

Problem

In	machine	learning,	model	training	involves	finding	the	optimal	set	of
breakpoints	(in	the	case	of	decision	trees),	weights	(in	the	case	of	neural
networks),	or	support	vectors	(in	the	case	of	support	vector	machines).	We
term	these	model	parameters.	However,	in	order	to	carry	out	model
training	and	find	the	optimal	model	parameters,	we	often	have	to	hardcode
a	variety	of	things.	For	example,	we	might	decide	that	the	maximum	depth
of	a	tree	will	be	5	(in	the	case	of	decision	trees),	or	that	the	activation
function	will	be	ReLU	(for	neural	networks)	or	choose	the	set	of	kernels
that	we	will	employ	(in	SVMs).	These	parameters	are	called
hyperparameters.

Model	parameters	refer	to	the	weights	and	biases	learned	by	your	model.
You	do	not	have	direct	control	over	model	parameters,	since	they	are
largely	a	function	of	your	training	data,	model	architecture,	and	many
other	factors.	In	other	words,	you	cannot	manually	set	model	parameters.
Your	model’s	weights	are	initialized	with	random	values	and	then
optimized	by	your	model	as	it	goes	through	training	iterations.
Hyperparameters,	on	the	other	hand,	refer	to	any	parameters	that	you,	as	a
model	builder,	can	control.	They	include	values	like	learning	rate,	number
of	epochs,	number	of	layers	in	your	model,	and	more.

MANUAL	TUNING

Because	you	can	manually	select	the	values	for	different	hyperparameters,
your	first	instinct	might	be	a	trial-and-error	approach	to	finding	the
optimal	combination	of	hyperparameter	values.	This	might	work	for
models	that	train	in	seconds	or	minutes,	but	it	can	quickly	get	expensive
on	larger	models	that	require	significant	training	time	and	infrastructure.
Imagine	you	are	training	an	image	classification	model	that	takes	hours	to
train	on	GPUs.	You	settle	on	a	few	hyperparameter	values	to	try	and	then
wait	for	the	results	of	the	first	training	run.	Based	on	these	results,	you
tweak	the	hyperparameters,	train	the	model	again,	compare	the	results
with	the	first	run,	and	then	settle	on	the	best	hyperparameter	values	by
looking	at	the	training	run	with	the	best	metrics.

There	are	a	few	problems	with	this	approach.	First,	you’ve	spent	nearly	a
day	and	many	compute	hours	on	this	task.	Second,	there’s	no	way	of
knowing	if	you’ve	arrived	at	the	optimal	combination	of	hyperparameter
values.	You’ve	only	tried	two	different	combinations,	and	because	you
changed	multiple	values	at	once,	you	don’t	know	which	parameter	had	the
biggest	influence	on	performance.	Even	with	additional	trials,	using	this
approach	will	quickly	use	up	your	time	and	compute	resources	and	may

not	yield	the	most	optimal	hyperparameter	values.

NOTE
We’re	using	the	term	trial	here	to	refer	to	a	single	training	run	with	a	set	of	hyperparameter
values.

GRID	SEARCH	AND	COMBINATORIAL	EXPLOSION

A	more	structured	version	of	the	trial-and-error	approach	described	earlier
is	known	as	grid	search.	When	implementing	hyperparameter	tuning	with
grid	search,	we	choose	a	list	of	possible	values	we’d	like	to	try	for	each
hyperparameter	we	want	to	optimize.	For	example,	in	scikit-learn’s
RandomForestRegressor()	model,	let’s	say	we	want	to	try	the
following	combination	of	values	for	the	model’s	max_depth	and
n_estimators	hyperparameters:

grid_values	=	{

		'max_depth':	[5,	10,	100],

		'n_estimators':	[100,	150,	200]

}

Using	grid	search,	we’d	try	every	combination	of	the	specified	values,
then	use	the	combination	that	yielded	the	best	evaluation	metric	on	our
model.	Let’s	see	how	this	works	on	a	random	forest	model	trained	on	the
Boston	housing	dataset,	which	comes	pre-installed	with	scikit-learn.	The
model	will	predict	the	price	of	a	house	based	on	a	number	of	factors.	We
can	run	grid	search	by	creating	an	instance	of	the	GridSearchCV	class,
and	training	the	model	passing	it	the	values	we	defined	earlier:

from	sklearn.ensemble	import	RandomForestRegressor

from	sklearn.datasets	import	load_boston

X,	y	=	load_boston(return_X_y=True)

housing_model	=	RandomForestRegressor()

grid_search_housing	=	GridSearchCV(

			housing_model,	param_grid=grid_vals,	scoring='max_error')

grid_search_housing.fit(X,	y)

Note	that	the	scoring	parameter	here	is	the	metric	we	want	to	optimize.	In
the	case	of	this	regression	model,	we	want	to	use	the	combination	of
hyperparameters	that	results	in	the	lowest	error	for	our	model.	To	get	the
best	combination	of	values	from	the	grid	search,	we	can	run
grid_search_housing.best_params_.	This	returns	the
following:

{'max_depth':	100,	'n_estimators':	150}

We’d	want	to	compare	this	to	the	error	we’d	get	training	a	random	forest
regressor	model	without	hyperparameter	tuning,	using	scikit-learn’s
default	values	for	these	parameters.	This	grid	search	approach	works	OK
on	the	small	example	we’ve	defined	above,	but	with	more	complex
models,	we’d	likely	want	to	optimize	more	than	two	hyperparameters,
each	with	a	wide	range	of	possible	values.	Eventually,	grid	search	will
lead	to	combinatorial	explosion—as	we	add	additional	hyperparameters
and	values	to	our	grid	of	options,	the	number	of	possible	combinations	we
need	to	try	and	the	time	required	to	try	them	all	increases	significantly.

Another	problem	with	this	approach	is	that	no	logic	is	being	applied	when
choosing	different	combinations.	Grid	search	is	essentially	a	brute	force
solution,	trying	every	possible	combination	of	values.	Let’s	say	that	after	a
certain	max_depth	value,	our	model’s	error	increases.	The	grid	search
algorithm	doesn’t	learn	from	previous	trials,	so	it	wouldn’t	know	to	stop
trying	max_depth	values	after	a	certain	threshold.	It	will	simply	try

every	value	you	provide	no	matter	the	results.

NOTE
scikit-learn	supports	an	alternative	to	grid	search	called	RandomizedSearchCV	that
implements	random	search.	Instead	of	trying	every	possible	combination	of	hyperparameters
from	a	set,	you	determine	the	number	of	times	you’d	like	to	randomly	sample	values	for	each
hyperparameter.	To	implement	random	search	in	scikit-learn,	we’d	create	an	instance	of
RandomizedSearchCV	and	pass	it	a	dict	similar	to	grid_values	above,	specifying
ranges	instead	of	specific	values.	Random	search	runs	faster	than	grid	search	since	it	doesn’t	try
every	combination	in	your	set	of	possible	values,	but	it	is	very	likely	that	the	optimal	set	of
hyperparameters	will	not	be	among	the	ones	randomly	selected.

For	robust	hyperparameter	tuning,	we	need	a	solution	that	scales	and
learns	from	previous	trials	to	find	an	optimal	combination	of
hyperparameter	values.

Solution

The	keras-tuner	library	implements	Bayesian	optimization	to	do
hyperparameter	search	directly	in	Keras.	To	use	keras-tuner,	we
define	our	model	inside	a	function	that	takes	a	hyperparameter	argument,
here	called	hp.	We	can	then	use	hp	throughout	the	function	wherever	we
want	to	include	a	hyperparameter,	specifying	the	hyperparameter’s	name,
data	type,	the	value	range	we’d	like	to	search,	and	how	much	to	increment
it	each	time	we	try	a	new	one.

Instead	of	hardcoding	the	hyperparameter	value	when	we	define	a	layer	in
our	Keras	model,	we	define	it	using	a	hyperparameter	variable.	Here,	we
want	to	tune	the	number	of	neurons	in	the	first	hidden	layer	of	our	neural
network:

keras.layers.Dense(hp.Int('first_hidden',	32,	256,	step=32),	

activation='relu')

first_hidden	is	the	name	we’ve	given	this	hyperparameter,	32	is	the
minimum	value	we’ve	defined	for	it,	256	is	the	maximum,	and	32	is	the
amount	we	should	increment	this	value	by	within	the	range	we’ve	defined.
If	we	were	building	an	MNIST	classification	model,	the	full	function	that
we’d	pass	to	keras-tuner	might	look	like	the	following:

def	build_model(hp):

	model	=	keras.Sequential([

		keras.layers.Flatten(input_shape=(28,	28)),

		keras.layers.Dense(

				hp.Int('first_hidden',	32,	256,	step=32),	

activation='relu'),

		keras.layers.Dense(

				hp.Int('second_hidden',	32,	256,	step=32),	

activation='relu'),

		keras.layers.Dense(10,	activation='softmax')

])

	model.compile(

			optimizer=tf.keras.optimizers.Adam(

					hp.Float('learning_rate',	.005,	.01,	sampling='log')),

			loss='sparse_categorical_crossentropy',	

			metrics=['accuracy'])

		

	return	model

The	keras-tuner	library	supports	many	different	optimization
algorithms.	Here,	we’ll	instantiate	our	tuner	with	Bayesian	optimization
and	optimize	for	validation	accuracy:

import	kerastuner	as	kt

tuner	=	kt.BayesianOptimization(

				build_model,

				objective='val_accuracy',

				max_trials=10

)

The	code	to	run	the	tuning	job	looks	similar	to	training	our	model	with
fit().	As	this	runs,	we’ll	be	able	to	see	the	values	for	the	three
hyperparameters	that	were	selected	for	each	trial.	When	the	job	completes,
we	can	see	the	hyperparameter	combination	that	resulted	in	the	best	trial.
In	Figure	4-23,	we	can	see	the	example	output	for	a	single	trial	run	using
keras-tuner.

Figure	4-23.	Output	for	one	trial	run	of	hyperparameter	tuning	with	keras-tuner.	At	the	top,	we	can
see	the	hyperparameters	selected	by	the	tuner,	and	in	the	summary	section,	we	see	the	resulting

optimization	metric.

In	addition	to	the	examples	shown	here,	there	is	additional	functionality
provided	by	keras-tuner	that	we	haven’t	covered.	You	can	use	it	to
experiment	with	different	numbers	of	layers	for	your	model	by	defining	an
hp.Int()	parameter	within	a	loop,	and	you	can	also	provide	a	fixed	set
of	values	for	a	hyperparameter	instead	of	a	range.	For	more	complex
models,	this	hp.Choice()	parameter	could	be	used	to	experiment	with
different	types	of	layers,	like	BasicLSTMCell	and	BasicRNNCell.
keras-tuner	runs	in	any	environment	where	you	can	train	a	Keras
model.

Why	It	Works

Although	grid	and	random	search	are	more	efficient	than	a	trial-and-error
approach	to	hyperparameter	tuning,	they	quickly	become	expensive	for
models	requiring	significant	training	time	or	having	a	large
hyperparameter	search	space.

Since	both	machine	learning	models	themselves	and	the	process	of
hyperparameter	search	are	optimization	problems,	it	would	follow	that	we
would	be	able	to	use	an	approach	that	learns	to	find	the	optimal
hyperparameter	combination	within	a	given	range	of	possible	values	just
like	our	models	learn	from	training	data.

We	can	think	of	hyperparameter	tuning	as	an	outer	optimization	loop	(see
Figure	4-24)	where	the	inner	loop	consists	of	typical	model	training.	Even
though	we	depict	neural	networks	as	the	model	whose	parameters	are
being	optimized,	this	solution	is	applicable	to	other	types	of	machine
learning	models.	Also,	although	the	more	common	use	case	is	to	choose	a

single	best	model	from	all	potential	hyperparameters,	in	some	cases,	the
hyperparameter	framework	can	be	used	to	generate	a	family	of	models
that	can	act	as	an	ensemble	(see	the	discussion	of	the	Ensembles	pattern	in
Chapter	3).

Figure	4-24.	Hyperparameter	tuning	can	be	thought	of	as	an	outer	optimization	loop.

NONLINEAR	OPTIMIZATION

The	hyperparameters	that	need	to	be	tuned	fall	into	two	groups:	those
related	to	model	architecture	and	those	related	to	model	training.	Model
architecture	hyperparameters,	like	the	number	of	layers	in	your	model	or
the	number	of	neurons	per	layer,	control	the	mathematical	function	that
underlies	the	machine	learning	model.	Parameters	related	to	model
training,	like	the	number	of	epochs,	learning	rate,	and	batch	size,	control
the	training	loop	and	often	have	to	do	with	the	way	that	the	gradient
descent	optimizer	works.	Taking	both	these	types	of	parameters	into
consideration,	it	is	clear	that	the	overall	model	function	with	respect	to
these	hyperparameters	is,	in	general,	not	differentiable.

The	inner	training	loop	is	differentiable,	and	the	search	for	optimal
parameters	can	be	carried	out	through	stochastic	gradient	descent.	A	single
step	of	a	machine	learning	model	trained	through	stochastic	gradient	might
take	only	a	few	milliseconds.	On	the	other	hand,	a	single	trial	in	the
hyperparameter	tuning	problem	involves	training	a	complete	model	on	the
training	dataset	and	might	take	several	hours.	Moreover,	the	optimization
problem	for	the	hyperparameters	will	have	to	be	solved	through	nonlinear
optimization	methods	that	apply	to	nondifferentiable	problems.

Once	we	decide	that	we	are	going	to	use	nonlinear	optimization	methods,
our	choice	of	metric	becomes	wider.	This	metric	will	be	evaluated	on	the
validation	dataset	and	does	not	have	to	be	the	same	as	the	training	loss.
For	a	classification	model,	your	optimization	metric	might	be	accuracy,
and	you’d	therefore	want	to	find	the	combination	of	hyperparameters	that
leads	to	the	highest	model	accuracy	even	if	the	loss	is	binary	cross
entropy.	For	a	regression	model,	you	might	want	to	optimize	median

absolute	error	even	if	the	loss	is	squared	error.	In	that	case,	you’d	want	to
find	the	hyperparameters	that	yield	the	lowest	mean	squared	error.	This
metric	can	even	be	chosen	based	on	business	goals.	For	example,	we
might	choose	to	maximize	expected	revenue	or	minimize	losses	due	to
fraud.

BAYESIAN	OPTIMIZATION

Bayesian	optimization	is	a	technique	for	optimizing	black-box	functions,
originally	developed	in	the	1970s	by	Jonas	Mockus.	The	technique	has
been	applied	to	many	domains	and	was	first	applied	to	hyperparameter
tuning	in	2012.	Here,	we’ll	focus	on	Bayesian	optimization	as	it	relates	to
hyperparameter	tuning.	In	this	context,	a	machine	learning	model	is	our
black-box	function,	since	ML	models	produce	a	set	of	outputs	from	inputs
we	provide	without	requiring	us	to	know	the	internal	details	of	the	model
itself.	The	process	of	training	our	ML	model	is	referred	to	as	calling	the
objective	function.

The	goal	of	Bayesian	optimization	is	to	directly	train	our	model	as	few
times	as	possible	since	doing	so	is	costly.	Remember	that	each	time	we	try
a	new	combination	of	hyperparameters	on	our	model,	we	need	to	run
through	our	model’s	entire	training	cycle.	This	might	seem	trivial	with	a
small	model	like	the	scikit-learn	one	we	trained	above,	but	for	many
production	models,	the	training	process	requires	significant	infrastructure
and	time.

Instead	of	training	our	model	each	time	we	try	a	new	combination	of
hyperparameters,	Bayesian	optimization	defines	a	new	function	that
emulates	our	model	but	is	much	cheaper	to	run.	This	is	referred	to	as	the
surrogate	function—the	inputs	to	this	function	are	your	hyperparameter
values	and	the	output	is	your	optimization	metric.	The	surrogate	function

https://oreil.ly/Ak24H
https://oreil.ly/KkGlG

is	called	much	more	frequently	than	the	objective	function,	with	the	goal
of	finding	an	optimal	combination	of	hyperparameters	before	completing	a
training	run	on	your	model.	With	this	approach,	more	compute	time	is
spent	choosing	the	hyperparameters	for	each	trial	as	compared	with	grid
search.	However,	because	this	is	significantly	cheaper	than	running	our
objective	function	each	time	we	try	different	hyperparameters,	the
Bayesian	approach	of	using	a	surrogate	function	is	preferred.	Common
approaches	to	generate	the	surrogate	function	include	a	Gaussian	process
or	a	tree-structured	Parzen	estimator.

So	far,	we’ve	touched	on	the	different	pieces	of	Bayesian	optimization,
but	how	do	they	work	together?	First,	we	must	choose	the
hyperparameters	we	want	to	optimize	and	define	a	range	of	values	for
each	hyperparameter.	This	part	of	the	process	is	manual	and	will	define
the	space	in	which	our	algorithm	will	search	for	optimal	values.	We’ll	also
need	to	define	our	objective	function,	which	is	the	code	that	calls	our
model	training	process.	From	there,	Bayesian	optimization	develops	a
surrogate	function	to	simulate	our	model	training	process	and	uses	that
function	to	determine	the	best	combination	of	hyperparameters	to	run	on
our	model.	It	is	only	once	this	surrogate	arrives	at	what	it	thinks	is	a	good
combination	of	hyperparameters	that	we	do	a	full	training	run	(trial)	on
our	model.	The	results	of	this	are	then	fed	back	to	the	surrogate	function
and	the	process	is	repeated	for	the	number	of	trials	we’ve	specified.

Trade-Offs	and	Alternatives

Genetic	algorithms	are	an	alternative	to	Bayesian	methods	for
hyperparameter	tuning,	but	they	tend	to	require	many	more	model	training
runs	than	Bayesian	methods.	We’ll	also	show	you	how	to	use	a	managed
service	for	hyperparameter	tuning	optimization	on	models	built	with	a

https://oreil.ly/-Srjj
https://oreil.ly/UqxDd

variety	of	ML	frameworks.

FULLY	MANAGED	HYPERPARAMETER	TUNING

The	keras-tuner	approach	may	not	scale	to	large	machine	learning
problems	because	we’d	like	the	trials	to	happen	in	parallel,	and	the
likelihood	of	machine	error	and	other	failure	increases	as	the	time	for
model	training	stretches	into	the	hours.	Hence,	a	fully	managed,	resilient
approach	that	provides	black-box	optimization	is	useful	for
hyperparameter	tuning.	An	example	of	a	managed	service	that	implements
Bayesian	optimization	is	the	hyperparameter	tuning	service	provided	by
Google	Cloud	AI	Platform.	This	service	is	based	on	Vizier,	the	black-box
optimization	tool	used	internally	at	Google.

The	underlying	concepts	of	the	Cloud	service	work	similarly	to	keras-
tuner:	you	specify	each	hyperparameter’s	name,	type,	range,	and	scale,
and	these	values	are	referenced	in	your	model	training	code.	We’ll	show
you	how	to	run	hyperparameter	tuning	in	AI	Platform	using	a	PyTorch
model	trained	on	the	BigQuery	natality	dataset	to	predict	a	baby’s	birth
weight.

The	first	step	is	to	create	a	config.yaml	file	specifying	the	hyperparameters
you	want	the	job	to	optimize,	along	with	some	other	metadata	on	your	job.
One	benefit	of	using	the	Cloud	service	is	that	you	can	scale	your	tuning
job	by	running	it	on	GPUs	or	TPUs	and	spreading	it	across	multiple
parameter	servers.	In	this	config	file,	you	also	specify	the	total	number	of
hyperparameter	trials	you	want	to	run	and	how	many	of	these	trials	you
want	to	run	in	parallel.	The	more	you	run	in	parallel,	the	faster	your	job
will	run.	However,	the	benefit	of	running	fewer	trials	in	parallel	is	that	the
service	will	be	able	to	learn	from	the	results	of	each	completed	trial	to
optimize	the	next	ones.

https://oreil.ly/MO8FZ
https://oreil.ly/tScQa

For	our	model,	a	sample	config	file	that	makes	use	of	GPUs	might	look
like	the	following.	In	this	example,	we’ll	tune	three	hyperparameters—our
model’s	learning	rate,	the	optimizer’s	momentum	value,	and	the	number
of	neurons	in	our	model’s	hidden	layer.	We	also	specify	our	optimization
metric.	In	this	example,	our	goal	will	be	to	minimize	our	model’s	loss	on
our	validation	set:

trainingInput:

		scaleTier:	BASIC_GPU

		parameterServerType:	large_model

		workerCount:	9

		parameterServerCount:	3

		hyperparameters:

				goal:	MINIMIZE

				maxTrials:	10

				maxParallelTrials:	5

				hyperparameterMetricTag:	val_error

				enableTrialEarlyStopping:	TRUE

				params:

				-	parameterName:	lr

						type:	DOUBLE

						minValue:	0.0001

						maxValue:	0.1

						scaleType:	UNIT_LINEAR_SCALE

				-	parameterName:	momentum

						type:	DOUBLE

						minValue:	0.0

						maxValue:	1.0

						scaleType:	UNIT_LINEAR_SCALE

				-	parameterName:	hidden-layer-size

						type:	INTEGER

						minValue:	8

						maxValue:	32

						scaleType:	UNIT_LINEAR_SCALE

NOTE
Instead	of	using	a	config	file	to	define	these	values,	you	can	also	do	this	using	the	AI	Platform
Python	API.

https://oreil.ly/8mHPQ

In	order	to	do	this,	we’ll	need	to	add	an	argument	parser	to	our	code	that
will	specify	the	arguments	we	defined	in	the	file	above,	then	refer	to	these
hyperparameters	where	they	appear	throughout	our	model	code.

Next,	we’ll	build	our	model	using	PyTorch’s	nn.Sequential	API	with
the	SGD	optimizer.	Since	our	model	predicts	baby	weight	as	a	float,	this
will	be	a	regression	model.	We	specify	each	of	our	hyperparameters	using
the	args	variable,	which	contains	the	variables	defined	in	our	argument
parser:

import	torch.nn	as	nn

model	=	nn.Sequential(nn.Linear(num_features,	

args.hidden_layer_size),

																						nn.ReLU(),

																						nn.Linear(args.hidden_layer_size,	1))

optimizer	=	torch.optim.SGD(model.parameters(),	lr=args.lr,	

																												momentum=args.momentum)

At	the	end	of	our	model	training	code,	we’ll	create	an	instance	of
HyperTune(),	and	tell	it	the	metric	we’re	trying	to	optimize.	This	will
report	the	resulting	value	of	our	optimization	metric	after	each	training
run.	It’s	important	that	whichever	optimization	metric	we	choose	is
calculated	on	our	test	or	validation	datasets,	and	not	our	training	dataset:

import	hypertune

hpt	=	hypertune.HyperTune()

val_mse	=	0

num_batches	=	0

criterion	=	nn.MSELoss()

with	torch.no_grad():

				for	i,	(data,	label)	in	enumerate(validation_dataloader):

								num_batches	+=	1

								y_pred	=	model(data)

								mse	=	criterion(y_pred,	label.view(-1,1))

								val_mse	+=	mse.item()

				avg_val_mse	=	(val_mse	/	num_batches)

hpt.report_hyperparameter_tuning_metric(

				hyperparameter_metric_tag='val_mse',

				metric_value=avg_val_mse,

				global_step=epochs								

)

Once	we’ve	submitted	our	training	job	to	AI	Platform,	we	can	monitor
logs	in	the	Cloud	console.	After	each	trial	completes,	you’ll	be	able	to	see
the	values	chosen	for	each	hyperparameter	and	the	resulting	value	of	your
optimization	metric,	as	seen	in	Figure	4-25.

Figure	4-25.	A	sample	of	the	HyperTune	summary	in	the	AI	Platform	console.	This	is	for	a	PyTorch
model	optimizing	three	model	parameters,	with	the	goal	of	minimizing	mean	squared	error	on	the

validation	dataset.

By	default,	AI	Platform	Training	will	use	Bayesian	optimization	for	your
tuning	job,	but	you	can	also	specify	if	you’d	like	to	use	grid	or	random
search	algorithms	instead.	The	Cloud	service	also	optimizes	your
hyperparameter	search	across	training	jobs.	If	we	run	another	training	job
similar	to	the	one	above,	but	with	a	few	tweaks	to	our	hyperparameters
and	search	space,	it’ll	use	the	results	of	our	last	job	to	efficiently	choose

values	for	the	next	set	of	trials.

We’ve	shown	a	PyTorch	example	here,	but	you	can	use	AI	Platform
Training	for	hyperparameter	tuning	in	any	machine	learning	framework	by
packaging	your	training	code	and	providing	a	setup.py	file	that	installs	any
library	dependencies.

GENETIC	ALGORITHMS

We’ve	explored	various	algorithms	for	hyperparameter	optimization:
manual	search,	grid	search,	random	search,	and	Bayesian	optimization.
Another	less-common	alternative	is	a	genetic	algorithm,	which	is	roughly
based	on	Charles	Darwin’s	evolutionary	theory	of	natural	selection.	This
theory,	also	known	as	“survival	of	the	fittest,”	posits	that	the	highest-
performing	(“fittest”)	members	of	a	population	will	survive	and	pass	their
genes	to	future	generations,	while	less-fit	members	will	not.	Genetic
algorithms	have	been	applied	to	different	types	of	optimization	problems,
including	hyperparameter	tuning.

As	it	relates	to	hyperparameter	search,	a	genetic	approach	works	by	first
defining	a	fitness	function.	This	function	measures	the	quality	of	a
particular	trial,	and	can	typically	be	defined	by	your	model’s	optimization
metric	(accuracy,	error,	and	so	on).	After	defining	your	fitness	function,
you	randomly	select	a	few	combinations	of	hyperparameters	from	your
search	space	and	run	a	trial	for	each	of	those	combinations.	You	then	take
the	hyperparameters	from	the	trials	that	performed	best,	and	use	those
values	to	define	your	new	search	space.	This	search	space	becomes	your
new	“population,”	and	you	use	it	to	generate	new	combinations	of	values
to	use	in	your	next	set	of	trials.	You	continue	this	process,	narrowing
down	the	number	of	trials	you	run	until	you’ve	arrived	at	a	result	that
satisfies	your	requirements.

Because	they	use	the	results	of	previous	trials	to	improve,	genetic
algorithms	are	“smarter”	than	manual,	grid,	and	random	search.	However,
when	the	hyperparameter	search	space	is	large,	the	complexity	of	genetic
algorithms	increases.	Rather	than	using	a	surrogate	function	as	a	proxy	for
model	training	like	in	Bayesian	optimization,	genetic	algorithms	require
training	your	model	for	each	possible	combination	of	hyperparameter
values.	Additionally,	at	the	time	of	writing,	genetic	algorithms	are	less
common	and	there	are	fewer	ML	frameworks	that	support	them	out	of	the
box	for	hyperparameter	tuning.

Summary
This	chapter	focused	on	design	patterns	that	modify	the	typical	SGD
training	loop	of	machine	learning.	We	started	with	looking	at	the	Useful
Overfitting	pattern,	which	covered	situations	where	overfitting	is
beneficial.	For	example,	when	using	data-driven	methods	like	machine
learning	to	approximate	solutions	to	complex	dynamical	systems	or	PDEs
where	the	full	input	space	can	be	covered,	overfitting	on	the	training	set	is
the	goal.	Overfitting	is	also	useful	as	a	technique	when	developing	and
debugging	ML	model	architectures.	Next,	we	covered	model	Checkpoints
and	how	to	use	them	when	training	ML	models.	In	this	design	pattern,	we
save	the	full	state	of	the	model	periodically	during	training.	These
checkpoints	can	be	used	as	the	final	model,	as	in	the	case	of	early
stopping,	or	used	as	the	starting	points	in	the	case	of	training	failures	or
fine-tuning.

The	Transfer	Learning	design	pattern	covered	reusing	parts	of	a
previously	trained	model.	Transfer	learning	is	a	useful	way	to	leverage	the
learned	feature	extraction	layers	of	the	pre-trained	model	when	your	own
dataset	is	limited.	It	can	also	be	used	to	fine-tune	a	pre-trained	model	that

was	trained	on	a	large	generic	dataset	to	your	more	specialized	dataset.
We	then	discussed	the	Distribution	Strategy	design	pattern.	Training	large,
complex	neural	networks	can	take	a	considerable	amount	of	time.
Distribution	strategies	offer	various	ways	in	which	the	training	loop	can	be
modified	to	be	carried	out	at	scale	over	multiple	workers,	using
parallelization	and	hardware	accelerators.

Lastly,	the	Hyperparameter	Tuning	design	pattern	discussed	how	the	SGD
training	loop	itself	can	be	optimized	with	respect	to	model
hyperparameters.	We	saw	some	useful	libraries	that	can	be	used	to
implement	hyperparameter	tuning	for	models	created	with	Keras	and
PyTorch.

The	next	chapter	looks	at	design	patterns	related	to	resilience	(to	large
numbers	of	requests,	spiky	traffic,	or	change	management)	when	placing
models	into	production.

1 	It	may,	of	course,	not	be	the	case	that	we	can	learn	the	network	using	gradient	descent	just
because	there	exists	such	a	neural	network	(this	is	why	changing	the	model	architecture	by
adding	layers	helps—it	makes	the	loss	landscape	more	amenable	to	SGD).

2 	MLPerf	v0.7	Training	Closed	ResNet.	Retrieved	from	www.mlperf.org	23	September	2020,
entry	0.7-67.	MLPerf	name	and	logo	are	trademarks.	See	www.mlperf.org	for	more
information.

3 	Jia	Deng	et	al.,“ImageNet:	A	Large-Scale	Hierarchical	Image	Database,”	IEEE	Computer
Society	Conference	on	Computer	Vision	and	Pattern	Recognition	(CVPR)	(2009):	248–255.

4 	For	more	information,	see	“CS231n	Convolutional	Neural	Networks	for	Visual	Recognition.”

5 	Victor	Campos	et	al.,	“Distributed	training	strategies	for	a	computer	vision	deep	learning
algorithm	on	a	distributed	GPU	cluster,”	International	Conference	on	Computational
Science,	ICCS	2017,	June	12–14,	2017.

6 	Ibid.

7 	Jeffrey	Dean	et	al.	“Large	Scale	Distributed	Deep	Networks,”	NIPS	Proceedings	(2012).

https://oreil.ly/Wio_D
https://oreil.ly/w109T

8 	Priya	Goyal	et	al.,	“Accurate,	Large	Minibatch	SGD:	Training	ImageNet	in	1	Hour”	(2017),
arXiv:1706.02677v2	[cs.CV].

Chapter	5.	Design	Patterns	for
Resilient	Serving

The	purpose	of	a	machine	learning	model	is	to	use	it	to	make	inferences
on	data	it	hasn’t	seen	during	training.	Therefore,	once	a	model	has	been
trained,	it	is	typically	deployed	into	a	production	environment	and	used	to
make	predictions	in	response	to	incoming	requests.	Software	that	is
deployed	into	production	environments	is	expected	to	be	resilient	and
require	little	in	the	way	of	human	intervention	to	keep	it	running.	The
design	patterns	in	this	chapter	solve	problems	associated	with	resilience
under	different	circumstances	as	it	relates	to	production	ML	models.

The	Stateless	Serving	Function	design	pattern	allows	the	serving
infrastructure	to	scale	and	handle	thousands	or	even	millions	of	prediction
requests	per	second.	The	Batch	Serving	design	pattern	allows	the	serving
infrastructure	to	asynchronously	handle	occasional	or	periodic	requests	for
millions	to	billions	of	predictions.	These	patterns	are	useful	beyond
resilience	in	that	they	reduce	coupling	between	creators	and	users	of
machine	learning	models.

The	Continued	Model	Evaluation	design	pattern	handles	the	common
problem	of	detecting	when	a	deployed	model	is	no	longer	fit-for-purpose.
The	Two-Phase	Predictions	design	pattern	provides	a	way	to	address	the
problem	of	keeping	models	sophisticated	and	performant	when	they	have
to	be	deployed	onto	distributed	devices.	The	Keyed	Predictions	design
pattern	is	a	necessity	to	scalably	implement	several	of	the	design	patterns
discussed	in	this	chapter.

Design	Pattern	16:	Stateless	Serving
Function
The	Stateless	Serving	Function	design	pattern	makes	it	possible	for	a
production	ML	system	to	synchronously	handle	thousands	to	millions	of
prediction	requests	per	second.	The	production	ML	system	is	designed
around	a	stateless	function	that	captures	the	architecture	and	weights	of	a
trained	model.

STATELESS	FUNCTIONS
A	stateless	function	is	a	function	whose	outputs	are	determined	purely	by	its	inputs.	This	function,	for
example,	is	stateless:

def	stateless_fn(x):

				return	3*x	+	15

Another	way	to	think	of	a	stateless	function	is	as	an	immutable	object,	where	the	weights	and	biases	are
stored	as	constants:

class	Stateless:

				def	__init__(self):

								self.weight	=	3

								self.bias	=	15

				def	__call__(self,	x):

								return	self.weight*x	+	self.bias

A	function	that	maintains	a	counter	of	the	number	of	times	it	has	been	invoked	and	returns	a	different	value
depending	on	whether	the	counter	is	odd	or	even	is	an	example	of	a	function	that	is	stateful,	not	stateless:

class	State:

				def	__init__(self):

								self.counter	=	0

				def	__call__(self,	x):

								self.counter	+=	1

								if	self.counter	%	2	==	0:

												return	3*x	+	15

								else:

												return	3*x	-	15

Invoking	stateless_fn(3)	or	Stateless()(3)	always	returns	24,	whereas

a	=	State()

and	then	invoking

a(3)

returns	a	value	that	rocks	between	−6	and	24.	The	counter	in	this	case	is	the	state	of	the	function,	and	the
output	depends	on	both	the	input	(x)	and	the	state	(counter).	The	state	is	typically	maintained	using
class	variables	(as	in	our	example)	or	using	global	variables.

Because	stateless	components	don’t	have	any	state,	they	can	be	shared	by	multiple	clients.	Servers
typically	create	an	instance	pool	of	stateless	components	and	use	them	to	service	client	requests	as	they
come	in.	On	the	other	hand,	stateful	components	will	need	to	represent	each	client’s	conversational	state.
The	life	cycle	of	stateless	components	needs	to	be	managed	by	the	server.	For	example,	they	need	to	be
initialized	on	the	first	request	and	destroyed	when	the	client	terminates	or	times	out.	Because	of	these
factors,	stateless	components	are	highly	scalable,	whereas	stateful	components	are	expensive	and	difficult
to	manage.	When	designing	enterprise	applications,	architects	are	careful	to	minimize	the	number	of
stateful	components.	Web	applications,	for	example,	are	often	designed	to	work	based	on	REST	APIs,	and
these	involve	transfer	of	state	from	the	client	to	the	server	with	each	call.

In	a	machine	learning	model,	there	is	a	lot	of	state	captured	during	training.	Things	like	the	epoch	number
and	learning	rate	are	part	of	a	model’s	state	and	have	to	be	remembered	because	typically,	the	learning
rate	is	decayed	with	each	successive	epoch.	By	saying	that	the	model	has	to	be	exported	as	a	stateless
function,	we	are	requiring	the	model	framework	creators	to	keep	track	of	these	stateful	variables	and	not
include	them	in	the	exported	file.

When	stateless	functions	are	used,	it	simplifies	the	server	code	and	makes	it	more	scalable	but	can	make
client	code	more	complicated.	For	example,	some	model	functions	are	inherently	stateful.	A	spelling
correction	model	that	takes	a	word	and	returns	the	corrected	form	will	need	to	be	stateful	because	it	has	to
know	the	previous	few	words	in	order	to	correct	a	word	like	“there”	to	“their”	depending	on	the	context.
Models	that	operate	on	sequences	maintain	history	using	special	structures	like	recurrent	neural	network
units.	In	such	cases,	needing	to	export	the	model	as	a	stateless	function	requires	changing	the	input	from	a
single	word	to,	for	example,	a	sentence.	This	means	clients	of	a	spelling	correction	model	will	need	to
manage	the	state	(to	collect	a	sequence	of	words	and	break	them	up	into	sentences)	and	send	it	along
with	every	request.	The	resulting	client-side	complexity	is	most	visible	when	the	spell-checking	client	has	to
go	back	and	change	a	previous	word	because	of	context	that	gets	added	later.

Problem

Let’s	take	a	text	classification	model	that	uses,	as	its	training	data,	movie
reviews	from	the	Internet	Movie	Database	(IMDb).	For	the	initial	layer	of
the	model,	we	will	use	a	pre-trained	embedding	that	maps	text	to	20-
dimensional	embedding	vectors	(for	the	full	code,	see	the
serving_function.ipynb	notebook	in	the	GitHub	repository	for	this	book):

model	=	tf.keras.Sequential()

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/05_resilience/serving_function.ipynb

embedding	=	(

								"https://tfhub.dev/google/tf2-preview/gnews-swivel-

20dim-with-oov/1")

hub_layer	=	hub.KerasLayer(embedding,	input_shape=[],	

																											dtype=tf.string,	trainable=True,	

name='full_text')

model.add(hub_layer)

model.add(tf.keras.layers.Dense(16,	activation='relu',	

name='h1_dense'))

model.add(tf.keras.layers.Dense(1,	

name='positive_review_logits'))

The	embedding	layer	is	obtained	from	TensorFlow	Hub	and	marked	as
being	trainable	so	that	we	can	carry	out	fine-tuning	(see	“Design	Pattern
13:	Transfer	Learning”	in	Chapter	4)	on	the	vocabulary	found	in	IMDb
reviews.	The	subsequent	layers	are	that	of	a	simple	neural	network	with
one	hidden	layer	and	an	output	logits	layer.	This	model	can	then	be	trained
on	the	dataset	of	movie	reviews	to	learn	to	predict	whether	or	not	a	review
is	positive	or	negative.

Once	the	model	has	been	trained,	we	can	use	it	to	carry	out	inferences	on
how	positive	a	review	is:

review1	=	'The	film	is	based	on	a	prize-winning	novel.'

review2	=	'The	film	is	fast	moving	and	has	several	great	action	

scenes.'

review3	=	'The	film	was	very	boring.	I	walked	out	half-way.'

logits	=	model.predict(x=tf.constant([review1,	review2,	

review3]))

The	result	is	a	2D	array	that	might	be	something	like:

[[0.6965847]

	[1.61773]

	[-0.7543597]]

There	are	several	problems	with	carrying	out	inferences	by	calling

model.predict()	on	an	in-memory	object	(or	a	trainable	object
loaded	into	memory)	as	described	in	the	preceding	code	snippet:

We	have	to	load	the	entire	Keras	model	into	memory.	The	text
embedding	layer,	which	was	set	up	to	be	trainable,	can	be	quite
large	because	it	needs	to	store	embeddings	for	the	full	vocabulary
of	English	words.	Deep	learning	models	with	many	layers	can
also	be	quite	large.

The	preceding	architecture	imposes	limits	on	the	latency	that	can
be	achieved	because	calls	to	the	predict()	method	have	to	be
sent	one	by	one.

Even	though	the	data	scientist’s	programming	language	of	choice
is	Python,	model	inference	is	likely	to	be	invoked	by	programs
written	by	developers	who	prefer	other	languages,	or	on	mobile
platforms	like	Android	or	iOS	that	require	different	languages.

The	model	input	and	output	that	is	most	effective	for	training	may
not	be	user	friendly.	In	our	example,	the	model	output	was	logits
because	it	is	better	for	gradient	descent.	This	is	why	the	second
number	in	the	output	array	is	greater	than	1.	What	clients	will
typically	want	is	the	sigmoid	of	this	so	that	the	output	range	is	0
to1	and	can	be	interpreted	in	a	more	user-friendly	format	as	a
probability.	We	will	want	to	carry	out	this	postprocessing	on	the
server	so	that	the	client	code	is	as	simple	as	possible.	Similarly,
the	model	may	have	been	trained	from	compressed,	binary
records,	whereas	during	production,	we	might	want	to	be	able	to
handle	self-descriptive	input	formats	like	JSON.

Solution

The	solution	consists	of	the	following	steps:

1.	 Export	the	model	into	a	format	that	captures	the	mathematical
core	of	the	model	and	is	programming	language	agnostic.

https://oreil.ly/qCWdH

2.	 In	the	production	system,	the	formula	consisting	of	the	“forward”
calculations	of	the	model	is	restored	as	a	stateless	function.

3.	 The	stateless	function	is	deployed	into	a	framework	that	provides
a	REST	endpoint.

MODEL	EXPORT

The	first	step	of	the	solution	is	to	export	the	model	into	a	format
(TensorFlow	uses	SavedModel,	but	ONNX	is	another	choice)	that
captures	the	mathematical	core	of	the	model.	The	entire	model	state
(learning	rate,	dropout,	short-circuit,	etc.)	doesn’t	need	to	be	saved—just
the	mathematical	formula	required	to	compute	the	output	from	the	inputs.
Typically,	the	trained	weight	values	are	constants	in	the	mathematical
formula.

In	Keras,	this	is	accomplished	by:

model.save('export/mymodel')

The	SavedModel	format	relies	on	protocol	buffers	for	a	platform-neutral,
efficient	restoration	mechanism.	In	other	words,	the	model.save()
method	writes	the	model	as	a	protocol	buffer	(with	the	extension	.pb)	and
externalizes	the	trained	weights,	vocabularies,	and	so	on	into	other	files	in
a	standard	directory	structure:

export/.../variables/variables.data-00000-of-00001

export/.../assets/tokens.txt

export/.../saved_model.pb

INFERENCE	IN	PYTHON

In	a	production	system,	the	model’s	formula	is	restored	from	the	protocol
buffer	and	other	associated	files	as	a	stateless	function	that	conforms	to	a
specific	model	signature	with	input	and	output	variable	names	and	data

https://oreil.ly/9TjS3
https://onnx.ai
https://oreil.ly/g3Vjc

types.

We	can	use	the	TensorFlow	saved_model_cli	tool	to	examine	the
exported	files	to	determine	the	signature	of	the	stateless	function	that	we
can	use	in	serving:

saved_model_cli	show	--dir	${export_path}	\

					--tag_set	serve	--signature_def	serving_default

This	outputs:

The	given	SavedModel	SignatureDef	contains	the	following

input(s):

		inputs['full_text_input']	tensor_info:

						dtype:	DT_STRING

						shape:	(-1)

						name:	serving_default_full_text_input:0

The	given	SavedModel	SignatureDef	contains	the	following

output(s):

		outputs['positive_review_logits']	tensor_info:

						dtype:	DT_FLOAT

						shape:	(-1,	1)

						name:	StatefulPartitionedCall_2:0

Method	name	is:	tensorflow/serving/predict

	

The	signature	specifies	that	the	prediction	method	takes	a	one-element
array	as	input	(called	full_text_input)	that	is	a	string,	and	outputs
one	floating	point	number	whose	name	is
positive_review_logits.	These	names	come	from	the	names	that
we	assigned	to	the	Keras	layers:

hub_layer	=	hub.KerasLayer(...,	name='full_text')

...

model.add(tf.keras.layers.Dense(1,	

name='positive_review_logits'))

Here	is	how	we	can	obtain	the	serving	function	and	use	it	for	inference:

serving_fn	=	tf.keras.models.load_model(export_path).	\

																					signatures['serving_default']

outputs	=	serving_fn(full_text_input=

																					tf.constant([review1,	review2,	review3]))

logit	=	outputs['positive_review_logits']

Note	how	we	are	using	the	input	and	output	names	from	the	serving
function	in	the	code.

CREATE	WEB	ENDPOINT

The	code	above	can	be	put	into	a	web	application	or	serverless	framework
such	as	Google	App	Engine,	Heroku,	AWS	Lambda,	Azure	Functions,
Google	Cloud	Functions,	Cloud	Run,	and	so	on.	What	all	these
frameworks	have	in	common	is	that	they	allow	the	developer	to	specify	a
function	that	needs	to	be	executed.	The	frameworks	take	care	of
autoscaling	the	infrastructure	so	as	to	handle	large	numbers	of	prediction
requests	per	second	at	low	latency.

For	example,	we	can	invoke	the	serving	function	from	within	Cloud
Functions	as	follows:

serving_fn	=	None

def	handler(request):

				global	serving_fn

				if	serving_fn	is	None:

								serving_fn	=	(tf.keras.models.load_model(export_path)

																														.signatures['serving_default'])

				request_json	=	request.get_json(silent=True)

				if	request_json	and	'review'	in	request_json:

								review	=	request_json['review']

								outputs	=	

serving_fn(full_text_input=tf.constant([review]))

								return	outputs['positive_review_logits']	

Note	that	we	should	be	careful	to	define	the	serving	function	as	a	global

variable	(or	a	singleton	class)	so	that	it	isn’t	reloaded	in	response	to	every
request.	In	practice,	the	serving	function	will	be	reloaded	from	the	export
path	(on	Google	Cloud	Storage)	only	in	the	case	of	cold	starts.

Why	It	Works

The	approach	of	exporting	a	model	to	a	stateless	function	and	deploying
the	stateless	function	in	a	web	application	framework	works	because	web
application	frameworks	offer	autoscaling,	can	be	fully	managed,	and	are
language	neutral.	They	are	also	familiar	to	software	and	business
development	teams	who	may	not	have	experience	with	machine	learning.
This	also	has	benefits	for	agile	development—an	ML	engineer	or	data
scientist	can	independently	change	the	model,	and	all	the	application
developer	needs	to	do	is	change	the	endpoint	they	are	accessing.

AUTOSCALING

Scaling	web	endpoints	to	millions	of	requests	per	second	is	a	well-
understood	engineering	problem.	Rather	than	building	services	unique	to
machine	learning,	we	can	rely	on	the	decades	of	engineering	work	that	has
gone	into	building	resilient	web	applications	and	web	servers.	Cloud
providers	know	how	to	autoscale	web	endpoints	efficiently,	with	minimal
warmup	times.

We	don’t	even	need	to	write	the	serving	system	ourselves.	Most	modern
enterprise	machine	learning	frameworks	come	with	a	serving	subsystem.
For	example,	TensorFlow	provides	TensorFlow	Serving	and	PyTorch
provides	TorchServe.	If	we	use	these	serving	subsystems,	we	can	simply
provide	the	exported	file	and	the	software	takes	care	of	creating	a	web
endpoint.

FULLY	MANAGED

Cloud	platforms	abstract	away	the	managing	and	installation	of
components	like	TensorFlow	Serving	as	well.	Thus,	on	Google	Cloud,
deploying	the	serving	function	as	a	REST	API	is	as	simple	as	running	this
command-line	program	providing	the	location	of	the	SavedModel	output:

gcloud	ai-platform	versions	create	${MODEL_VERSION}	\

							--model	${MODEL_NAME}	--origin	${MODEL_LOCATION}	\

							--runtime-version	$TFVERSION

In	Amazon’s	SageMaker,	deployment	of	a	TensorFlow	SavedModel	is
similarly	simple,	and	achieved	using:

model	=	Model(model_data=MODEL_LOCATION,	role='SomeRole')

predictor	=	model.deploy(initial_instance_count=1,

																									instance_type='ml.c5.xlarge')

With	a	REST	endpoint	in	place,	we	can	send	a	prediction	request	as	a
JSON	with	the	form:

{"instances":

		[

						{"reviews":	"The	film	is	based	on	a	prize-winning	

novel."},

						{"reviews":	"The	film	is	fast	moving	and	has	several	great	

action	scenes."},

						{"reviews":	"The	film	was	very	boring.	I	walked	out	half-

way."}

]

}

We	get	back	the	predicted	values	also	wrapped	in	a	JSON	structure:

{"predictions":	[{	"positive_review_logits":	

[0.6965846419334412]},

																	{"positive_review_logits":	

[1.6177300214767456]},

																	{"positive_review_logits":	

[-0.754359781742096]}]}

TIP
By	allowing	clients	to	send	JSON	requests	with	multiple	instances	in	the	request,	called
batching,	we	are	allowing	clients	to	trade	off	the	higher	throughput	associated	with	fewer
network	calls	against	the	increased	parallelization	if	they	send	more	requests	with	fewer
instances	per	request.

Besides	batching,	there	are	other	knobs	and	levers	to	improve	performance	or	lower	cost.	Using
a	machine	with	more	powerful	GPUs,	for	example,	typically	helps	to	improve	the	performance
of	deep	learning	models.	Choosing	a	machine	with	multiple	accelerators	and/or	threads	helps
improve	the	number	of	requests	per	second.	Using	an	autoscaling	cluster	of	machines	can	help
lower	cost	on	spiky	workloads.	These	kinds	of	tweaks	are	often	done	by	the	ML/DevOps	team;
some	are	ML-specific,	some	are	not.

LANGUAGE-NEUTRAL

Every	modern	programming	language	can	speak	REST,	and	a	discovery
service	is	provided	to	autogenerate	the	necessary	HTTP	stubs.	Thus,
Python	clients	can	invoke	the	REST	API	as	follows.	Note	that	there	is
nothing	framework	specific	in	the	code	below.	Because	the	cloud	service
abstracts	the	specifics	of	our	ML	model,	we	don’t	need	to	provide	any
references	to	Keras	or	TensorFlow:

credentials	=	GoogleCredentials.get_application_default()

api	=	discovery.build("ml",	"v1",	credentials	=	credentials,

												discoveryServiceUrl	=	

"https://storage.googleapis.com/cloud-

ml/discovery/ml_v1_discovery.json")

request_data	=	{"instances":

	[

		{"reviews":	"The	film	is	based	on	a	prize-winning	novel."},

		{"reviews":	"The	film	is	fast	moving	and	has	several	great	

action	scenes."},

		{"reviews":	"The	film	was	very	boring.	I	walked	out	half-

way."}

]

}

parent	=	"projects/{}/models/imdb".format("PROJECT",	"v1")

response	=	api.projects().predict(body	=	request_data,	

																																		name	=	parent).execute()

The	equivalent	of	the	above	code	can	be	written	in	many	languages	(we
show	Python	because	we	assume	you	are	somewhat	familiar	with	it).	At
the	time	that	this	book	is	being	written,	developers	can	access	the
Discovery	API	from	Java,	PHP,	.NET,	JavaScript,	Objective-C,	Dart,
Ruby,	Node.js,	and	Go.

POWERFUL	ECOSYSTEM

Because	web	application	frameworks	are	so	widely	used,	there	is	a	lot	of
tooling	available	to	measure,	monitor,	and	manage	web	applications.	If	we
deploy	the	ML	model	to	a	web	application	framework,	the	model	can	be
monitored	and	throttled	using	tools	that	software	reliability	engineers
(SREs),	IT	administrators,	and	DevOps	personnel	are	familiar	with.	They
do	not	have	to	know	anything	about	machine	learning.

Similarly,	your	business	development	colleagues	know	how	to	meter	and
monetize	web	applications	using	API	gateways.	They	can	carry	over	that
knowledge	and	apply	it	to	metering	and	monetizing	machine	learning
models.

Trade-Offs	and	Alternatives

As	the	joke	by	David	Wheeler	goes,	the	solution	to	any	problem	in
computer	science	is	to	add	an	extra	level	of	indirection.	Introduction	of	an
exported	stateless	function	specification	provides	that	extra	level	of

https://oreil.ly/zCZir
https://oreil.ly/uskud

indirection.	The	Stateless	Serving	Function	design	pattern	allows	us	to
change	the	serving	signature	to	provide	extra	functionality,	like	additional
pre-	and	postprocessing,	beyond	what	the	ML	model	does.	In	fact,	it	is
possible	to	use	this	design	pattern	to	provide	multiple	endpoints	for	a
model.	This	design	pattern	can	also	help	with	creating	low-latency,	online
prediction	for	models	that	are	trained	on	systems,	such	as	data
warehouses,	that	are	typically	associated	with	long-running	queries.

CUSTOM	SERVING	FUNCTION

The	output	layer	of	our	text	classification	model	is	a	Dense	layer	whose
output	is	in	the	range	(-∞,∞):

model.add(tf.keras.layers.Dense(1,	

name='positive_review_logits'))

Our	loss	function	takes	this	into	account:

model.compile(optimizer='adam',

														loss=tf.keras.losses.BinaryCrossentropy(

																						from_logits=True),

														metrics=['accuracy'])

When	we	use	the	model	for	prediction,	the	model	naturally	returns	what	it
was	trained	to	predict	and	outputs	the	logits.	What	clients	expect,
however,	is	the	probability	that	the	review	is	positive.	To	solve	this,	we
need	to	return	the	sigmoid	output	of	the	model.

We	can	do	this	by	writing	a	custom	serving	function	and	exporting	it
instead.	Here	is	a	custom	serving	function	in	Keras	that	adds	a	probability
and	returns	a	dictionary	that	contains	both	the	logits	and	the	probabilities
for	each	of	the	reviews	provided	as	input:

@tf.function(input_signature=[tf.TensorSpec([None],	

																														dtype=tf.string)])

def	add_prob(reviews):

				logits	=	model(reviews,	training=False)	#	call	model

				probs	=	tf.sigmoid(logits)

				return	{

								'positive_review_logits'	:	logits,

								'positive_review_probability'	:	probs

				}

We	can	then	export	the	above	function	as	the	serving	default:

model.save(export_path,	

											signatures={'serving_default':	add_prob})

The	add_prob	method	definition	is	saved	in	the	export_path	and	will	be
invoked	in	response	to	a	client	request.

The	serving	signature	of	the	exported	model	reflects	the	new	input	name
(note	the	name	of	the	input	parameter	to	add_prob)	and	the	output
dictionary	keys	and	data	types:

The	given	SavedModel	SignatureDef	contains	the	following	

input(s):

		inputs['reviews']	tensor_info:

						dtype:	DT_STRING

						shape:	(-1)

						name:	serving_default_reviews:0

The	given	SavedModel	SignatureDef	contains	the	following	

output(s):

		outputs['positive_review_logits']	tensor_info:

						dtype:	DT_FLOAT

						shape:	(-1,	1)

						name:	StatefulPartitionedCall_2:0

		outputs['positive_review_probability']	tensor_info:

						dtype:	DT_FLOAT

						shape:	(-1,	1)

						name:	StatefulPartitionedCall_2:1

Method	name	is:	tensorflow/serving/predict

When	this	model	is	deployed	and	used	for	inference,	the	output	JSON
contains	both	the	logits	and	the	probability:

{'predictions':	[

			{'positive_review_probability':	[0.6674301028251648],	

				'positive_review_logits':	[0.6965846419334412]},	

			{'positive_review_probability':	[0.8344818353652954],

				'positive_review_logits':	[1.6177300214767456]},	

			{'positive_review_probability':	[0.31987208127975464],	

				'positive_review_logits':	[-0.754359781742096]}

]}

Note	that	add_prob	is	a	function	that	we	write.	In	this	case,	we	did	a	bit
of	postprocessing	of	the	output.	However,	we	could	have	done	pretty
much	any	(stateless)	thing	that	we	wanted	inside	that	function.

MULTIPLE	SIGNATURES

It	is	quite	common	for	models	to	support	multiple	objectives	or	clients
who	have	different	needs.	While	outputting	a	dictionary	can	allow
different	clients	to	pull	out	whatever	they	want,	this	may	not	be	ideal	in
some	cases.	For	example,	the	function	we	had	to	invoke	to	get	a
probability	from	the	logits	was	simply	tf.sigmoid().	This	is	pretty
inexpensive,	and	there	is	no	problem	with	computing	it	even	for	clients
who	will	discard	it.	On	the	other	hand,	if	the	function	had	been	expensive,
computing	it	for	clients	who	don’t	need	the	value	can	add	considerable
overhead.

If	a	small	number	of	clients	require	a	very	expensive	operation,	it	is
helpful	to	provide	multiple	serving	signatures	and	have	the	client	inform
the	serving	framework	which	signature	to	invoke.	This	is	done	by
specifying	a	name	other	than	serving_default	when	the	model	is

exported.	For	example,	we	might	write	out	two	signatures	using:

model.save(export_path,	signatures={

								'serving_default':	func1,

								'expensive_result':	func2,

			})

Then,	the	input	JSON	request	includes	the	signature	name	to	choose	which
serving	endpoint	of	the	model	is	desired:

{

		"signature_name":	"expensive_result",

			{"instances":	…}

}

ONLINE	PREDICTION

Because	the	exported	serving	function	is	ultimately	just	a	file	format,	it
can	be	used	to	provide	online	prediction	capabilities	when	the	original
machine	learning	training	framework	does	not	natively	support	online
predictions.

For	example,	we	can	train	a	model	to	infer	whether	or	not	a	baby	will
require	attention	by	training	a	logistic	regression	model	on	the	natality
dataset:

CREATE	OR	REPLACE	MODEL	

	mlpatterns.neutral_3classes	OPTIONS(model_type='logistic_reg',	

		input_label_cols=['health'])	AS

SELECT	

IF

	(apgar_1min	=	10,	

		'Healthy',

	IF

		(apgar_1min	>=	8,	

			'Neutral',	

			'NeedsAttention'))	AS	health,

	plurality,

	mother_age,

	gestation_weeks,

	ever_born

FROM	

	`bigquery-public-data.samples.natality`

WHERE	

	apgar_1min	<=	10

Once	the	model	is	trained,	we	can	carry	out	prediction	using	SQL:

SELECT	*	FROM	ML.PREDICT(MODEL	mlpatterns.neutral_3classes,

				(SELECT	

					2	AS	plurality,

					32	AS	mother_age,

					41	AS	gestation_weeks,

					1	AS	ever_born

)

)

However,	BigQuery	is	primarily	for	distributed	data	processing.	While	it
was	great	for	training	the	ML	model	on	gigabytes	of	data,	using	such	a
system	to	carry	out	inference	on	a	single	row	is	not	the	best	fit—latencies
can	be	as	high	as	a	second	or	two.	Rather,	the	ML.PREDICT	functionality
is	more	appropriate	for	batch	serving.

In	order	to	carry	out	online	prediction,	we	can	ask	BigQuery	to	export	the
model	as	a	TensorFlow	SavedModel:

bq	extract	-m	--destination_format=ML_TF_SAVED_MODEL	\

					mlpatterns.neutral_3classes		

gs://${BUCKET}/export/baby_health

Now,	we	can	deploy	the	SavedModel	into	a	serving	framework	like	Cloud
AI	Platform	that	supports	SavedModel	to	get	the	benefits	of	low-latency,
autoscaled	ML	model	serving.	See	the	notebook	in	GitHub	for	the
complete	code.

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/05_resilience/serving_function.ipynb

Even	if	this	ability	to	export	the	model	as	a	SavedModel	did	not	exist,	we
could	have	extracted	the	weights,	written	a	mathematical	model	to	carry
out	the	linear	model,	containerized	it,	and	deployed	the	container	image
into	a	serving	platform.

PREDICTION	LIBRARY

Instead	of	deploying	the	serving	function	as	a	microservice	that	can	be
invoked	via	a	REST	API,	it	is	possible	to	implement	the	prediction	code	as
a	library	function.	The	library	function	would	load	the	exported	model	the
first	time	it	is	called,	invoke	model.predict()	with	the	provided
input,	and	return	the	result.	Application	developers	who	need	to	predict
with	the	library	can	then	include	the	library	with	their	applications.

A	library	function	is	a	better	alternative	than	a	microservice	if	the	model
cannot	be	called	over	a	network	either	because	of	physical	reasons	(there
is	no	network	connectivity)	or	because	of	performance	constraints.	The
library	function	approach	also	places	the	computational	burden	on	the
client,	and	this	might	be	preferable	from	a	budgetary	standpoint.	Using	the
library	approach	with	TensorFlow.js	can	avoid	cross-site	problems
when	there	is	a	desire	to	have	the	model	running	in	a	browser.

The	main	drawback	of	the	library	approach	is	that	maintenance	and
updates	of	the	model	are	difficult—all	the	client	code	that	uses	the	model
will	have	to	be	updated	to	use	the	new	version	of	the	library.	The	more
commonly	a	model	is	updated,	the	more	attractive	a	microservices
approach	becomes.	A	secondary	drawback	is	that	the	library	approach	is
restricted	to	programming	languages	for	which	libraries	are	written,
whereas	the	REST	API	approach	opens	up	the	model	to	applications
written	in	pretty	much	any	modern	programming	language.

The	library	developer	should	take	care	to	employ	a	threadpool	and	use
parallelization	to	support	the	necessary	throughput.	However,	there	is
usually	a	limit	to	the	scalability	achievable	with	this	approach.

Design	Pattern	17:	Batch	Serving
The	Batch	Serving	design	pattern	uses	software	infrastructure	commonly
used	for	distributed	data	processing	to	carry	out	inference	on	a	large
number	of	instances	all	at	once.

Problem

Commonly,	predictions	are	carried	one	at	a	time	and	on	demand.	Whether
or	not	a	credit	card	transaction	is	fraudulent	is	determined	at	the	time	a
payment	is	being	processed.	Whether	or	not	a	baby	requires	intensive	care
is	determined	when	the	baby	is	examined	immediately	after	birth.
Therefore,	when	you	deploy	a	model	into	an	ML	serving	framework,	it	is
set	up	to	process	one	instance,	or	at	most	a	few	thousands	of	instances,
embedded	in	a	single	request.

The	serving	framework	is	architected	to	process	an	individual	request
synchronously	and	as	quickly	as	possible,	as	discussed	in	“Design	Pattern
16:	Stateless	Serving	Function”.	The	serving	infrastructure	is	usually
designed	as	a	microservice	that	offloads	the	heavy	computation	(such	as
with	deep	convolutional	neural	networks)	to	high-performance	hardware
such	as	tensor	processing	units	(TPUs)	or	graphics	processing	units
(GPUs)	and	minimizes	the	inefficiency	associated	with	multiple	software
layers.

However,	there	are	circumstances	where	predictions	need	to	be	carried	out
asynchronously	over	large	volumes	of	data.	For	example,	determining

whether	to	reorder	a	stock-keeping	unit	(SKU)	might	be	an	operation	that
is	carried	out	hourly,	not	every	time	the	SKU	is	bought	at	the	cash	register.
Music	services	might	create	personalized	daily	playlists	for	every	one	of
their	users	and	push	them	out	to	those	users.	The	personalized	playlist	is
not	created	on-demand	in	response	to	every	interaction	that	the	user	makes
with	the	music	software.	Because	of	this,	the	ML	model	needs	to	make
predictions	for	millions	of	instances	at	a	time,	not	one	instance	at	a	time.

Attempting	to	take	a	software	endpoint	that	is	designed	to	handle	one
request	at	a	time	and	sending	it	millions	of	SKUs	or	billions	of	users	will
overwhelm	the	ML	model.

Solution

The	Batch	Serving	design	pattern	uses	a	distributed	data	processing
infrastructure	(MapReduce,	Apache	Spark,	BigQuery,	Apache	Beam,	and
so	on)	to	carry	out	ML	inference	on	a	large	number	of	instances
asynchronously.

In	the	discussion	on	the	Stateless	Serving	Function	design	pattern,	we
trained	a	text	classification	model	to	output	whether	a	review	was	positive
or	negative.	Let’s	say	that	we	want	to	apply	this	model	to	every	complaint
that	has	ever	been	made	to	the	United	States	Consumer	Finance	Protection
Bureau	(CFPB).

We	can	load	the	Keras	model	into	BigQuery	as	follows	(complete	code	is
available	in	a	notebook	in	GitHub):

CREATE	OR	REPLACE	MODEL	mlpatterns.imdb_sentiment

OPTIONS(model_type='tensorflow',	model_path='gs://.../*')

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/05_resilience/batch_serving.ipynb

Where	normally,	one	would	train	a	model	using	data	in	BigQuery,	here	we
are	simply	loading	an	externally	trained	model.	Having	done	that,	though,
it	is	possible	to	use	BigQuery	to	carry	out	ML	predictions.	For	example,
the	SQL	query.

SELECT	*	FROM	ML.PREDICT(MODEL	mlpatterns.imdb_sentiment,

		(SELECT	'This	was	very	well	done.'	AS	reviews)

)

returns	a	positive_review_probability	of	0.82.

Using	a	distributed	data	processing	system	like	BigQuery	to	carry	out	one-
off	predictions	is	not	very	efficient.	However,	what	if	we	want	to	apply	the
machine	learning	model	to	every	complaint	in	the	CFPB	database? 	We
can	simply	adapt	the	query	above,	making	sure	to	alias	the
consumer_complaint_narrative	column	in	the	inner	SELECT	as
the	reviews	to	be	assessed:

SELECT	*	FROM	ML.PREDICT(MODEL	mlpatterns.imdb_sentiment,

		(SELECT	consumer_complaint_narrative	AS	reviews	

			FROM	`bigquery-public-

data`.cfpb_complaints.complaint_database

			WHERE	consumer_complaint_narrative	IS	NOT	NULL

)

)

The	database	has	more	than	1.5	million	complaints,	but	they	get	processed
in	about	30	seconds,	proving	the	benefits	of	using	a	distributed	data
processing	framework.

Why	It	Works

The	Stateless	Serving	Function	design	pattern	is	set	up	for	low-latency
serving	to	support	thousands	of	simultaneous	queries.	Using	such	a

1

framework	for	occasional	or	periodic	processing	of	millions	of	items	can
get	quite	expensive.	If	these	requests	are	not	latency-sensitive,	it	is	more
cost	effective	to	use	a	distributed	data	processing	architecture	to	invoke
machine	learning	models	on	millions	of	items.	The	reason	is	that	invoking
an	ML	model	on	millions	of	items	is	an	embarrassingly	parallel	problem
—it	is	possible	to	take	the	million	items,	break	them	down	into	1,000
groups	of	1,000	items	each,	send	each	group	of	items	to	a	machine,	then
combine	the	results.	The	result	of	the	machine	learning	model	on	item
number	2,000	is	completely	independent	of	the	result	of	the	machine
learning	model	on	item	number	3,000,	and	so	it	is	possible	to	divide	up	the
work	and	conquer	it.

Take,	for	example,	the	query	to	find	the	five	most	positive	complaints:

WITH	all_complaints	AS	(

SELECT	*	FROM	ML.PREDICT(MODEL	mlpatterns.imdb_sentiment,

		(SELECT	consumer_complaint_narrative	AS	reviews	

			FROM	`bigquery-public-

data`.cfpb_complaints.complaint_database

			WHERE	consumer_complaint_narrative	IS	NOT	NULL

)

)

)

SELECT	*	FROM	all_complaints	

ORDER	BY	positive_review_probability	DESC	LIMIT	5

Looking	at	the	execution	details	in	the	BigQuery	web	console,	we	see	that
the	entire	query	took	35	seconds	(see	the	box	marked	#1	in	Figure	5-1).

Figure	5-1.	The	first	two	steps	of	a	query	to	find	the	five	most	“positive”	complaints	in	the
Consumer	Financial	Protection	Bureau	dataset	of	consumer	complaints.

The	first	step	(see	box	#2	in	Figure	5-1)	reads	the
consumer_complaint_narrative	column	from	the	BigQuery
public	dataset	where	the	complaint	narrative	is	not	NULL.	From	the
number	of	rows	highlighted	in	box	#3,	we	learn	that	this	involves	reading
1,582,045	values.	The	output	of	this	step	is	written	into	10	shards	(see	box
#4	of	Figure	5-1).

The	second	step	reads	the	data	from	this	shard	(note	the	$12:shard	in
the	query),	but	also	obtains	the	file_path	and	file_contents	of
the	machine	learning	model	imdb_sentiment	and	applies	the	model	to
the	data	in	each	shard.	The	way	MapReduce	works	is	that	each	shard	is
processed	by	a	worker,	so	the	fact	that	there	are	10	shards	indicates	that
the	second	step	is	being	done	by	10	workers.	The	original	1.5	million	rows
would	have	been	stored	over	many	files,	and	so	the	first	step	was	likely	to
have	been	processed	by	as	many	workers	as	the	number	of	files	that
comprised	that	dataset.

The	remaining	steps	are	shown	in	Figure	5-2.

Figure	5-2.	Third	and	subsequent	steps	of	the	query	to	find	the	five	most	“positive”	complaints.

The	third	step	sorts	the	dataset	in	descending	order	and	takes	five.	This	is
done	on	each	worker,	so	each	of	the	10	workers	finds	the	5	most	positive
complaints	in	“their”	shard.	The	remaining	steps	retrieve	and	format	the
remaining	bits	of	data	and	write	them	to	the	output.

The	final	step	(not	shown)	takes	the	50	complaints,	sorts	them,	and	selects
the	5	that	form	the	actual	result.	The	ability	to	separate	work	in	this	way
across	many	workers	is	what	enables	BigQuery	to	carry	out	the	entire
operation	on	1.5	million	complaint	documents	in	35	seconds.

Trade-Offs	and	Alternatives

The	Batch	Serving	design	pattern	depends	on	the	ability	to	split	a	task
across	multiple	workers.	So,	it	is	not	restricted	to	data	warehouses	or	even
to	SQL.	Any	MapReduce	framework	will	work.	However,	SQL	data
warehouses	tend	to	be	the	easiest	and	are	often	the	default	choice,
especially	when	the	data	is	structured	in	nature.

Even	though	batch	serving	is	used	when	latency	is	not	a	concern,	it	is
possible	to	incorporate	precomputed	results	and	periodic	refreshing	to	use
this	in	scenarios	where	the	space	of	possible	prediction	inputs	is	limited.

BATCH	AND	STREAM	PIPELINES

Frameworks	like	Apache	Spark	or	Apache	Beam	are	useful	when	the	input
needs	preprocessing	before	it	can	be	supplied	to	the	model,	if	the	machine
learning	model	outputs	require	postprocessing,	or	if	either	the
preprocessing	or	postprocessing	are	hard	to	express	in	SQL.	If	the	inputs
to	the	model	are	images,	audio,	or	video,	then	SQL	is	not	an	option	and	it
is	necessary	to	use	a	data	processing	framework	that	can	handle
unstructured	data.	These	frameworks	can	also	take	advantage	of
accelerated	hardware	like	TPUs	and	GPUs	to	carry	out	preprocessing	of
the	images.

Another	reason	to	use	a	framework	like	Apache	Beam	is	if	the	client	code
needs	to	maintain	state.	A	common	reason	that	the	client	needs	to	maintain

state	is	if	one	of	the	inputs	to	the	ML	model	is	a	time-windowed	average.
In	that	case,	the	client	code	has	to	carry	out	moving	averages	of	the
incoming	stream	of	data	and	supply	the	moving	average	to	the	ML	model.

Imagine	that	we	are	building	a	comment	moderation	system	and	we	wish
to	reject	people	who	comment	more	than	two	times	a	day	about	a	specific
person.	For	example,	the	first	two	times	that	a	commenter	writes
something	about	President	Obama,	we	will	let	it	go	but	block	all	attempts
by	that	commenter	to	mention	President	Obama	for	the	rest	of	the	day.
This	is	an	example	of	postprocessing	that	needs	to	maintain	state	because
we	need	a	counter	of	the	number	of	times	that	each	commenter	has
mentioned	a	particular	celebrity.	Moreover,	this	counter	needs	to	be	over	a
rotating	time	period	of	24	hours.

We	can	do	this	using	a	distributed	data	processing	framework	that	can
maintain	state.	Enter	Apache	Beam.	Invoking	an	ML	model	to	identify
mentions	of	a	celebrity	and	tying	them	to	a	canonical	knowledge	graph	(so
that	a	mention	of	Obama	and	a	mention	of	President	Obama	both	tie	to
en.wikipedia.org/wiki/Barack_Obama)	from	Apache	Beam	can	be
accomplished	using	the	following	(see	this	notebook	in	GitHub	for
complete	code):

	|	beam.Map(lambda	x	:	nlp.Document(x,	type='PLAIN_TEXT'))

	|	nlp.AnnotateText(features)

	|	beam.Map(parse_nlp_result)

where	parse_nlp_result	parses	the	JSON	request	that	goes	through
the	AnnotateText	transform	which,	beneath	the	covers,	invokes	an
NLP	API.

CACHED	RESULTS	OF	BATCH	SERVING

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/05_resilience/nlp_api.ipynb

We	discussed	batch	serving	as	a	way	to	invoke	a	model	over	millions	of
items	when	the	model	is	normally	served	online	using	the	Stateless
Serving	Function	design	pattern.	Of	course,	it	is	possible	for	batch	serving
to	work	even	if	the	model	does	not	support	online	serving.	What	matters	is
that	the	machine	learning	framework	doing	inference	is	capable	of	taking
advantage	of	embarrassingly	parallel	processing.

Recommendation	engines,	for	example,	need	to	fill	out	a	sparse	matrix
consisting	of	every	user–item	pair.	A	typical	business	might	have	10
million	all-time	users	and	10,000	items	in	the	product	catalog.	In	order	to
make	a	recommendation	for	a	user,	recommendation	scores	have	to	be
computed	for	each	of	the	10,000	items,	ranked,	and	the	top	5	presented	to
the	user.	This	is	not	feasible	to	do	in	near	real	time	off	a	serving	function.
Yet,	the	near	real-time	requirement	means	that	simply	using	batch	serving
will	not	work	either.

In	such	cases,	use	batch	serving	to	precompute	recommendations	for	all	10
million	users:

SELECT

		*

FROM

		ML.RECOMMEND(MODEL	mlpatterns.recommendation_model)

Store	it	in	a	relational	database	such	as	MySQL,	Datastore,	or	Cloud
Spanner	(there	are	pre-built	transfer	services	and	Dataflow	templates	that
can	do	this).	When	any	user	visits,	the	recommendations	for	that	user	are
pulled	from	the	database	and	served	immediately	and	at	very	low	latency.

In	the	background,	the	recommendations	are	refreshed	periodically.	For
example,	we	might	retrain	the	recommendation	model	hourly	based	on	the
latest	actions	on	the	website.	We	can	then	carry	out	inference	for	just	those

https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/master/src/main/java/com/google/cloud/teleport/templates/BigQueryToDatastore.java

users	who	visited	in	the	last	hour:

SELECT

		*

FROM

		ML.RECOMMEND(MODEL	mlpatterns.recommendation_model,

				(

				SELECT	DISTINCT

						visitorId

				FROM

						mlpatterns.analytics_session_data

				WHERE

						visitTime	>	TIME_DIFF(CURRENT_TIME(),	1	HOUR)

))

We	can	then	update	the	corresponding	rows	in	the	relational	database	used
for	serving.

LAMBDA	ARCHITECTURE

A	production	ML	system	that	supports	both	online	serving	and	batch
serving	is	called	a	Lambda	architecture—such	a	production	ML	system
allows	ML	practitioners	to	trade-off	between	latency	(via	the	Stateless
Serving	Function	pattern)	and	throughput	(via	the	Batch	Serving	pattern).

NOTE
AWS	Lambda,	in	spite	of	its	name,	is	not	a	Lambda	architecture.	It	is	a	serverless	framework	for
scaling	stateless	functions,	similar	to	Google	Cloud	Functions	or	Azure	Functions.

Typically,	a	Lambda	architecture	is	supported	by	having	separate	systems
for	online	serving	and	batch	serving.	In	Google	Cloud,	for	example,	the
online	serving	infrastructure	is	provided	by	Cloud	AI	Platform	Predictions
and	the	batch	serving	infrastructure	is	provided	by	BigQuery	and	Cloud
Dataflow	(Cloud	AI	Platform	Predictions	provides	a	convenient	interface

https://oreil.ly/jLZ46
https://oreil.ly/RqPan

so	that	users	don’t	have	to	explicitly	use	Dataflow).	It	is	possible	to	take	a
TensorFlow	model	and	import	it	into	BigQuery	for	batch	serving.	It	is	also
possible	to	take	a	trained	BigQuery	ML	model	and	export	it	as	a
TensorFlow	SavedModel	for	online	serving.	This	two-way	compatibility
enables	users	of	Google	Cloud	to	hit	any	point	in	the	spectrum	of	latency–
hroughput	trade-off.

Design	Pattern	18:	Continued	Model
Evaluation
The	Continued	Model	Evaluation	design	pattern	handles	the	common
problem	of	needing	to	detect	and	take	action	when	a	deployed	model	is	no
longer	fit-for-purpose.

Problem

So,	you’ve	trained	your	model.	You	collected	the	raw	data,	cleaned	it	up,
engineered	features,	created	embedding	layers,	tuned	hyperparameters,	the
whole	shebang.	You’re	able	to	achieve	96%	accuracy	on	your	hold-out
test	set.	Amazing!	You’ve	even	gone	through	the	painstaking	process	of
deploying	your	model,	taking	it	from	a	Jupyter	notebook	to	a	machine
learning	model	in	production,	and	are	serving	predictions	via	a	REST	API.
Congratulations,	you’ve	done	it.	You’re	finished!

Well,	not	quite.	Deployment	is	not	the	end	of	a	machine	learning	model’s
life	cycle.	How	do	you	know	that	your	model	is	working	as	expected	in
the	wild?	What	if	there	are	unexpected	changes	in	the	incoming	data?	Or
the	model	no	longer	produces	accurate	or	useful	predictions?	How	will
these	changes	be	detected?

The	world	is	dynamic,	but	developing	a	machine	learning	model	usually
creates	a	static	model	from	historical	data.	This	means	that	once	the	model
goes	into	production,	it	can	start	to	degrade	and	its	predictions	can	grow
increasingly	unreliable.	Two	of	the	main	reasons	models	degrade	over
time	are	concept	drift	and	data	drift.

Concept	drift	occurs	whenever	the	relationship	between	the	model	inputs
and	target	have	changed.	This	often	happens	because	the	underlying
assumptions	of	your	model	have	changed,	such	as	models	trained	to	learn
adversarial	or	competitive	behavior	like	fraud	detection,	spam	filters,
stock	market	trading,	online	ad	bidding,	or	cybersecurity.	In	these
scenarios,	a	predictive	model	aims	to	identify	patterns	that	are
characteristic	of	desired	(or	undesired)	activity,	while	the	adversary	learns
to	adapt	and	may	modify	their	behavior	as	circumstances	change.	Think
for	example	of	a	model	developed	to	detect	credit	card	fraud.	The	way
people	use	credit	cards	has	changed	over	time	and	thus	the	common
characteristics	of	credit	card	fraud	have	also	changed.	For	instance,	when
“Chip	and	Pin”	technology	was	introduced,	fraudulent	transactions	began
to	move	more	online.	As	fraudulent	behavior	adapted,	the	performance	of
a	model	that	had	been	developed	before	this	technology	would	suddenly
begin	to	suffer	and	model	predictions	would	be	less	accurate.

Another	reason	for	a	model’s	performance	to	degrade	over	time	is	data
drift.	We	introduced	the	problem	of	data	drift	in	“Common	Challenges	in
Machine	Learning”	in	Chapter	1.	Data	drift	refers	to	any	change	that	has
occurred	to	the	data	being	fed	to	your	model	for	prediction	as	compared	to
the	data	that	was	used	for	training.	Data	drift	can	occur	for	a	number	of
reasons:	the	input	data	schema	changes	at	the	source	(for	example,	fields
are	added	or	deleted	upstream),	feature	distributions	change	over	time	(for
example,	a	hospital	might	start	to	see	more	younger	adults	because	a	ski

resort	opened	nearby),	or	the	meaning	of	the	data	changes	even	if	the
structure/schema	hasn’t	(for	example,	whether	a	patient	is	considered
“overweight”	may	change	over	time).	Software	updates	could	introduce
new	bugs	or	the	business	scenario	changes	and	creates	a	new	product	label
previously	not	available	in	the	training	data.	ETL	pipelines	for	building,
training,	and	predicting	with	ML	models	can	be	brittle	and	opaque,	and
any	of	these	changes	would	have	drastic	effects	on	the	performance	of
your	model.

Model	deployment	is	a	continuous	process,	and	to	solve	for	concept	drift
or	data	drift,	it	is	necessary	to	update	your	training	dataset	and	retrain	your
model	with	fresh	data	to	improve	predictions.	But	how	do	you	know	when
retraining	is	necessary?	And	how	often	should	you	retrain?	Data
preprocessing	and	model	training	can	be	costly	both	in	time	and	money
and	each	step	of	the	model	development	cycle	adds	additional	overhead	of
development,	monitoring,	and	maintenance.

Solution

The	most	direct	way	to	identify	model	deterioration	is	to	continuously
monitor	your	model’s	predictive	performance	over	time,	and	assess	that
performance	with	the	same	evaluation	metrics	you	used	during
development.	This	kind	of	continuous	model	evaluation	and	monitoring	is
how	we	determine	whether	the	model,	or	any	changes	we’ve	made	to	the
model,	are	working	as	they	should.

CONCEPT

Continuous	evaluation	of	this	kind	requires	access	to	the	raw	prediction
request	data	and	the	predictions	the	model	generated	as	well	as	the	ground
truth,	all	in	the	same	place.	Google	Cloud	AI	Platform	provides	the	ability

to	configure	the	deployed	model	version	so	that	the	online	prediction	input
and	output	are	regularly	sampled	and	saved	to	a	table	in	BigQuery.	In
order	to	keep	the	service	performant	to	a	large	number	of	requests	per
second,	we	can	customize	how	much	data	is	sampled	by	specifying	a
percentage	of	the	number	of	input	requests.	In	order	to	measure
performance	metrics,	it	is	necessary	to	combine	this	saved	sample	of
predictions	against	the	ground	truth.

In	most	situations,	it	may	take	time	before	the	ground	truth	labels	become
available.	For	example,	for	a	churn	model,	it	may	not	be	known	until	the
next	subscription	cycle	which	customers	have	discontinued	their	service.
Or,	for	a	financial	forecasting	model,	the	true	revenue	isn’t	known	until
after	that	quarter’s	close	and	earnings	report.	In	either	of	these	cases,
evaluation	cannot	take	place	until	ground	truth	data	is	available.

To	see	how	continuous	evaluation	works,	we’ll	deploy	a	text	classification
model	trained	on	the	HackerNews	dataset	to	Google	Cloud	AI	Platform.
The	full	code	for	this	example	can	be	found	in	the	continuous	evaluation
notebook	in	the	repository	accompanying	this	book.

DEPLOYING	THE	MODEL

The	input	for	our	training	dataset	is	an	article	title	and	its	associated	label
is	the	news	source	where	the	article	originated,	either	nytimes,
techcrunch,	or	github.	As	news	trends	evolve	over	time,	the	words
associated	with	a	New	York	Times	headline	will	change.	Similarly,
releases	of	new	technology	products	will	affect	the	words	to	be	found	in
TechCrunch.	Continuous	evaluation	allows	us	to	monitor	model
predictions	to	track	how	those	trends	affect	our	model	performance	and
kick	off	retraining	if	necessary.

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/05_resilience/continuous_eval.ipynb

Suppose	that	the	model	is	exported	with	a	custom	serving	input	function
as	described	in	“Design	Pattern	16:	Stateless	Serving	Function”:

@tf.function(input_signature=[tf.TensorSpec([None],	

dtype=tf.string)])

def	source_name(text):

				labels	=	tf.constant(['github',	'nytimes',	

'techcrunch'],dtype=tf.string)

				probs	=	txtcls_model(text,	training=False)

				indices	=	tf.argmax(probs,	axis=1)

				pred_source	=	tf.gather(params=labels,	indices=indices)

				pred_confidence	=	tf.reduce_max(probs,	axis=1)

				return	{'source':	pred_source,

												'confidence':	pred_confidence}

After	deploying	this	model,	when	we	make	an	online	prediction,	the
model	will	return	the	predicted	news	source	as	a	string	value	and	a
numeric	score	of	that	prediction	label	related	to	how	confident	the	model
is.	For	example,	we	can	create	an	online	prediction	by	writing	an	input
JSON	example	to	a	file	called	input.json	to	send	for	prediction:

%%writefile	input.json

{"text":	

"YouTube	introduces	Video	Chapters	to	make	it	easier	to	navigate	

longer	videos"}

This	returns	the	following	prediction	output:

CONFIDENCE		SOURCE

0.918685				techcrunch

SAVING	PREDICTIONS

Once	the	model	is	deployed,	we	can	set	up	a	job	to	save	a	sample	of	the
prediction	requests—the	reason	to	save	a	sample,	rather	than	all	requests,
is	to	avoid	unnecessarily	slowing	down	the	serving	system.	We	can	do	this

in	the	Continuous	Evaluation	section	of	the	Google	Cloud	AI	Platform
(CAIP)	console	by	specifying	the	LabelKey	(the	column	that	is	the
output	of	the	model,	which	in	our	case	will	be	source	since	we	are
predicting	the	source	of	the	article),	a	ScoreKey	in	the	prediction
outputs	(a	numeric	value,	which	in	our	case	is	confidence),	and	a	table
in	BigQuery	where	a	portion	of	the	online	prediction	requests	are	stored.
In	our	example	code,	the	table	is	called	txtcls_eval.swivel.	Once
this	has	been	configured,	whenever	online	predictions	are	made,	CAIP
streams	the	model	name,	the	model	version,	the	timestamp	of	the
prediction	request,	the	raw	prediction	input,	and	the	model’s	output	to	the
specified	BigQuery	table,	as	shown	in	Table	5-1.

Table	5-1.	A	proportion	of	the	online	prediction	requests	and	the	raw	
prediction	output	is	saved	to	a	table	in	BigQuery

R
o
w

m
o
d
el

m
od
el_
ve
rsi
on time raw_data raw_prediction

g
r
o
u
n
dt
r
ut
h

1 tx
tc
ls

swi
vel

2020-
06-10
01:40:
32
UTC

{"instances”:	[{"text”:
“Astronauts	Dock	With
Space	Station	After	Historic
SpaceX	Launch"}]}

{"predictions”:
[{"source”:	“github”,
“confidence”:
0.9994275569915771
}]}

n
ul
l

2 tx
tc
ls

swi
vel

2020-
06-10
01:37:
46
UTC

{"instances”:	[{"text”:
“Senate	Confirms	First
Black	Air	Force	Chief"}]}

{"predictions”:
[{"source”:	“nytimes”,
“confidence”:
0.9989787340164185
}]}

n
ul
l

3 tx
tc
ls

swi
vel

2020-
06-09
21:21:
47

{"instances”:	[{"text”:	“A
native	Mac	app	wrapper	for
WhatsApp	Web"}]}

{"predictions”:
[{"source”:	“github”,
“confidence”:
0.745254397392273}]

n
ul
l

47
UTC

0.745254397392273}]
}

CAPTURING	GROUND	TRUTH

It	is	also	necessary	to	capture	the	ground	truth	for	each	of	the	instances
sent	to	the	model	for	prediction.	This	can	be	done	in	a	number	of	ways
depending	on	the	use	case	and	data	availability.	One	approach	would	be	to
use	a	human	labeling	service—all	instances	sent	to	the	model	for
prediction,	or	maybe	just	the	ones	for	which	the	model	has	marginal
confidence,	are	sent	out	for	human	annotation.	Most	cloud	providers	offer
some	form	of	a	human	labeling	service	to	enable	labeling	instances	at
scale	in	this	way.

Ground	truth	labels	can	also	be	derived	from	how	users	interact	with	the
model	and	its	predictions.	By	having	users	take	a	specific	action,	it	is
possible	to	obtain	implicit	feedback	for	a	model’s	prediction	or	to	produce
a	ground	truth	label.	For	example,	when	a	user	chooses	one	of	the
proposed	alternate	routes	in	Google	Maps,	the	chosen	route	serves	as	an
implicit	ground	truth.	More	explicitly,	when	a	user	rates	a	recommended
movie,	this	is	a	clear	indication	of	the	ground	truth	for	a	model	that	is	built
to	predict	user	ratings	in	order	to	surface	recommendations.	Similarly,	if
the	model	allows	the	user	to	change	the	prediction,	for	example,	as	in
medical	settings	when	a	doctor	is	able	to	change	a	model’s	suggested
diagnosis,	this	provides	a	clear	signal	for	the	ground	truth.

WARNING
It	is	important	to	keep	in	mind	how	the	feedback	loop	of	model	predictions	and	capturing
ground	truth	might	affect	training	data	down	the	road.	For	example,	suppose	you’ve	built	a
model	to	predict	when	a	shopping	cart	will	be	abandoned.	You	can	even	check	the	status	of	the
cart	at	routine	intervals	to	create	ground	truth	labels	for	model	evaluation.	However,	if	your
model	suggests	a	user	will	abandon	their	shopping	cart	and	you	offer	them	free	shipping	or	some

discount	to	influence	their	behavior,	then	you’ll	never	know	if	the	original	model	prediction	was
correct.	In	short,	you’ve	violated	the	assumptions	of	the	model	evaluation	design	and	will	need
to	determine	ground	truth	labels	some	other	way.	This	task	of	estimating	a	particular	outcome
under	a	different	scenario	is	referred	to	as	counterfactual	reasoning	and	often	arises	in	use	cases
like	fraud	detection,	medicine,	and	advertising	where	a	model’s	predictions	likely	lead	to	some
intervention	that	can	obscure	learning	the	actual	ground	truth	for	that	example.

EVALUATING	MODEL	PERFORMANCE

Initially,	the	groundtruth	column	of	the	txtcls_eval.swivel
table	in	BigQuery	is	left	empty.	We	can	provide	the	ground	truth	labels
once	they	are	available	by	updating	the	value	directly	with	a	SQL
command.	Of	course,	we	should	make	sure	the	ground	truth	is	available
before	we	run	an	evaluation	job.	Note	that	the	ground	truth	adheres	to	the
same	JSON	structure	as	the	prediction	output	from	the	model:

UPDATE	

	txtcls_eval.swivel

SET	

	groundtruth	=	'{"predictions":	[{"source":	"techcrunch"}]}'

WHERE

	raw_data	=	'{"instances":

[{"text":	"YouTube	introduces	Video	Chapters	to	help	navigate	

longer

videos"}]}'

				

To	update	more	rows,	we’d	use	a	MERGE	statement	instead	of	an
UPDATE.	Once	the	ground	truth	has	been	added	to	the	table,	it’s	possible
to	easily	examine	the	text	input	and	your	model’s	prediction	and	compare
with	the	ground	truth	as	in	Table	5-2:

SELECT

		model,

		model_version,

		time,

		REGEXP_EXTRACT(raw_data,	r'.*"text":	"(.*)"')	AS	text,

		REGEXP_EXTRACT(raw_prediction,	r'.*"source":	"(.*?)"')	AS	

prediction,

		REGEXP_EXTRACT(raw_prediction,	r'.*"confidence":	(0.\d{2}).*')	

AS	confidence,

		REGEXP_EXTRACT(groundtruth,	r'.*"source":	"(.*?)"')	AS	

groundtruth,

FROM

		txtcls_eval.swivel

Table	5-2.	Once	ground	truth	is	available,	it	can	be	added	to	the	
original	BigQuery	table	and	the	performance	of	the	model	can	be	
evaluated

R
o
w

m
o
d
el

mod
el_v
ersio
n time text

pr
ed
ict
io
n

co
nfi
de
nc
e

gro
un
dtr
uth

1 tx
tc
ls

swive
l

2020-06-
10
01:38:13
UTC

A	native	Mac	app	wrapper	for
WhatsApp	Web

git
hu
b

0.7
7

gith
ub

2 tx
tc
ls

swive
l

2020-06-
10
01:37:46
UTC

Senate	Confirms	First	Black	Air
Force	Chief

nyt
im
es

0.9
9

nyti
mes

3 tx
tc
ls

swive
l

2020-06-
10
01:40:32
UTC

Astronauts	Dock	With	Space
Station	After	Historic	SpaceX
Launch

git
hu
b

0.9
9

nyti
mes

4 tx
tc
ls

swive
l

2020-06-
09
21:21:44
UTC

YouTube	introduces	Video
Chapters	to	make	it	easier	to
navigate	longer	videos

tec
hcr
un
ch

0.7
7

tech
crun
ch

With	this	information	accessible	in	BigQuery,	we	can	load	the	evaluation
table	into	a	dataframe,	df_evals,	and	directly	compute	evaluation

metrics	for	this	model	version.	Since	this	is	a	multiclass	classification,	we
can	compute	the	precision,	recall,	and	F1-score	for	each	class.	We	can	also
create	a	confusion	matrix,	which	helps	to	analyze	where	model	predictions
within	certain	categorical	labels	may	suffer.	Figure	5-3	shows	the
confusion	matrix	comparing	this	model’s	predictions	with	the	ground
truth.

Figure	5-3.	A	confusion	matrix	shows	all	pairs	of	ground	truth	labels	and	predictions	so	you	can
explore	your	model	performance	within	different	classes.

CONTINUOUS	EVALUATION

We	should	make	sure	the	output	table	also	captures	the	model	version	and
the	timestamp	of	prediction	requests	so	that	we	can	use	the	same	table	for

continuous	evaluation	of	two	different	model	versions	for	comparing
metrics	between	the	models.	For	example,	if	we	deploy	a	newer	version	of
our	model,	called	swivel_v2,	that	is	trained	on	more	recent	data	or	has
different	hyperparameters,	we	can	compare	their	performance	by	slicing
the	evaluation	dataframe	according	to	the	model	version:

df_v1	=	df_evals[df_evals.version	==	"swivel"]

df_v2	=	df_evals[df_evals.version	==	"swivel_v2"]

Similarly,	we	can	create	evaluation	slices	in	time,	focusing	only	on	model
predictions	within	the	last	month	or	the	last	week:

today	=	pd.Timestamp.now(tz='UTC')

one_month_ago	=	today	-	pd.DateOffset(months=1)

one_week_ago	=	today	-	pd.DateOffset(weeks=1)

df_prev_month	=	df_evals[df_evals.time	>=	one_month_ago]

df_prev_week	=	df_evals[df_evals.time	>=	one_week_ago]

To	carry	out	the	above	evaluations	continuously,	the	notebook	(or	a
containerized	form)	can	be	scheduled.	We	can	set	it	up	to	trigger	a	model
retraining	if	the	evaluation	metric	falls	below	some	threshold.

Why	It	Works

When	developing	machine	learning	models,	there	is	an	implicit
assumption	that	the	train,	validation,	and	test	data	come	from	the	same
distribution,	as	shown	in	Figure	5-4.	When	we	deploy	models	to
production,	this	assumption	implies	that	future	data	will	be	similar	to	past
data.	However,	once	the	model	is	in	production	“in	the	wild,”	this	static
assumption	on	the	data	may	no	longer	be	valid.	In	fact,	many	production
ML	systems	encounter	rapidly	changing,	nonstationary	data,	and	models
become	stale	over	time,	which	negatively	impacts	the	quality	of

predictions.

Figure	5-4.	When	developing	a	machine	learning	model,	the	train,	validation,	and	test	data	come
from	the	same	data	distribution.	However,	once	the	model	is	deployed,	that	distribution	can

change,	severely	affecting	model	performance.

Continuous	model	evaluation	provides	a	framework	to	evaluate	a
deployed	model’s	performance	exclusively	on	new	data.	This	allows	us	to
detect	model	staleness	as	early	as	possible.	This	information	helps
determine	how	frequently	to	retrain	a	model	or	when	to	replace	it	with	a
new	version	entirely.

By	capturing	prediction	inputs	and	outputs	and	comparing	with	ground

truth,	it’s	possible	to	quantifiably	track	model	performance	or	measure
how	different	model	versions	perform	with	A/B	testing	in	the	current
environment,	without	regard	to	how	the	versions	performed	in	the	past.

Trade-Offs	and	Alternatives

The	goal	of	continuous	evaluation	is	to	provide	a	means	to	monitor	model
performance	and	keep	models	in	production	fresh.	In	this	way,	continuous
evaluation	provides	a	trigger	for	when	to	retrain	the	model.	In	this	case,	it
is	important	to	consider	tolerance	thresholds	for	model	performance,	the
trade-offs	they	pose,	and	the	role	of	scheduled	retraining.	There	are	also
techniques	and	tools,	like	TFX,	to	help	detect	data	and	concept	drift
preemptively	by	monitoring	input	data	distributions	directly.

TRIGGERS	FOR	RETRAINING

Model	performance	will	usually	degrade	over	time.	Continuous	evaluation
allows	you	to	measure	precisely	how	much	in	a	structured	way	and
provides	a	trigger	to	retrain	the	model.	So,	does	that	mean	you	should
retrain	your	model	as	soon	as	performance	starts	to	dip?	It	depends.	The
answer	to	this	question	is	heavily	tied	to	the	business	use	case	and	should
be	discussed	alongside	evaluation	metrics	and	model	assessment.
Depending	on	the	complexity	of	the	model	and	ETL	pipelines,	the	cost	of
retraining	could	be	expensive.	The	trade-off	to	consider	is	what	amount	of
deterioration	of	performance	is	acceptable	in	relation	to	this	cost.

SERVERLESS	TRIGGERS
Cloud	Functions,	AWS	Lambda,	and	Azure	Functions	provide	serverless	ways	to	automate	retraining	via
triggers.	The	trigger	type	determines	how	and	when	your	function	executes.	These	triggers	could	be
messages	published	to	a	message	queue,	a	change	notification	from	a	cloud	storage	bucket	indicating	a
new	file	has	been	added,	changes	to	data	in	a	database,	or	even	an	HTTPS	request.	Once	the	event	has
fired,	the	function	code	is	executed.

In	the	context	of	retraining,	the	cloud	event	trigger	would	be	a	significant	change	or	dip	in	model	accuracy.

The	function,	or	action	taken,	would	be	to	invoke	the	training	pipeline	to	retrain	the	model	and	deploy	the
new	version.	“Design	Pattern	25:	Workflow	Pipeline”	describes	how	this	can	be	accomplished.	Workflow
pipelines	containerize	and	orchestrate	the	end-to-end	machine	learning	workflow	from	data	collection	and
validation	to	model	building,	training,	and	deployment.	Once	the	new	model	version	has	been	deployed,	it
can	then	be	compared	against	the	current	version	to	determine	if	it	should	be	replaced.

The	threshold	itself	could	be	set	as	an	absolute	value;	for	example,	model
retraining	occurs	once	model	accuracy	falls	below	95%.	Or	the	threshold
could	be	set	as	a	rate	of	change	of	performance,	for	example,	once
performance	begins	to	experience	a	downward	trajectory.	Whichever
approach,	the	philosophy	for	choosing	the	threshold	is	similar	to	that	for
checkpointing	models	during	training.	With	a	higher,	more	sensitive
threshold,	models	in	production	remain	fresh,	but	there	is	a	higher	cost	for
frequent	retraining	as	well	as	technical	overhead	of	maintaining	and
switching	between	different	model	versions.	With	a	lower	threshold,
training	costs	decrease	but	models	in	production	are	more	stale.	Figure	5-5
shows	this	trade-off	between	the	performance	threshold	and	how	it	affects
the	number	of	model	retraining	jobs.

If	the	model	retraining	pipeline	is	automatically	triggered	by	such	a
threshold,	it	is	important	to	track	and	validate	the	triggers	as	well.	Not
knowing	when	your	model	has	been	retrained	inevitably	leads	to	issues.
Even	if	the	process	is	automated,	you	should	always	have	control	of	the
retraining	of	your	model	to	better	understand	and	debug	the	model	in	the
production.

Figure	5-5.	Setting	a	higher	threshold	for	model	performance	ensures	a	higher-quality	model	in
production	but	will	require	more	frequent	retraining	jobs,	which	can	be	costly.

SCHEDULED	RETRAINING

Continuous	evaluation	provides	a	crucial	signal	for	knowing	when	it’s
necessary	to	retrain	your	model.	This	process	of	retraining	is	often	carried
out	by	fine-tuning	the	previous	model	using	any	newly	collected	training
data.	Where	continued	evaluation	may	happen	every	day,	scheduled
retraining	jobs	may	occur	only	every	week	or	every	month	(Figure	5-6).

Once	a	new	version	of	the	model	is	trained,	its	performance	is	compared
against	the	current	model	version.	The	updated	model	is	deployed	as	a
replacement	only	if	it	outperforms	the	previous	model	with	respect	to	a
test	set	of	current	data.

Figure	5-6.	Continuous	evaluation	provides	model	evaluation	each	day	as	new	data	is	collected.
Periodic	retraining	and	model	comparison	provides	evaluation	at	discrete	time	points.

So	how	often	should	you	schedule	retraining?	The	timeline	for	retraining
will	depend	on	the	business	use	case,	prevalence	of	new	data,	and	the	cost
(in	time	and	money)	of	executing	the	retraining	pipeline.	Sometimes,	the
time	horizon	of	the	model	naturally	determines	when	to	schedule
retraining	jobs.	For	example,	if	the	goal	of	the	model	is	to	predict	next
quarter’s	earnings,	since	you	will	get	new	ground	truth	labels	only	once
each	quarter,	it	doesn’t	make	sense	to	train	more	frequently	than	that.
However,	if	the	volume	and	occurrence	of	new	data	is	high,	then	it	would
be	beneficial	to	retrain	more	frequently.	The	most	extreme	version	of	this
is	online	machine	learning.	Some	machine	learning	applications,	such	as
ad	placement	or	newsfeed	recommendation,	require	online,	real-time
decision,	and	can	continuously	improve	performance	by	retraining	and
updating	parameter	weights	with	each	new	training	example.

In	general,	the	optimal	time	frame	is	something	you	as	a	practitioner	will
determine	through	experience	and	experimentation.	If	you	are	trying	to
model	a	rapidly	moving	task,	such	as	adversary	or	competitive	behavior,
then	it	makes	sense	to	set	a	more	frequent	retraining	schedule.	If	the
problem	is	fairly	static,	like	predicting	a	baby’s	birth	weight,	then	less
frequent	retrainings	should	suffice.

In	either	case,	it	is	helpful	to	have	an	automated	pipeline	set	up	that	can
execute	the	full	retraining	process	with	a	single	API	call.	Tools	like	Cloud

https://oreil.ly/Mj-DA

Composer/Apache	Airflow	and	AI	Platform	Pipelines	are	useful	to	create,
schedule,	and	monitor	ML	workflows	from	preprocessing	raw	data	and
training	to	hyperparameter	tuning	and	deployment.	We	discuss	this	further
in	the	next	chapter	in	“Design	Pattern	25:	Workflow	Pipeline”.

DATA	VALIDATION	WITH	TFX

Data	distributions	can	change	over	time,	as	shown	in	Figure	5-7.	For
example,	consider	the	natality	birth	weight	dataset.	As	medicine	and
societal	standards	change	over	time,	the	relationship	between	model
features,	such	as	the	mother’s	age	or	the	number	of	gestation	weeks,
change	with	respect	to	the	model	label,	the	weight	of	the	baby.	This	data
drift	negatively	impacts	the	model’s	ability	to	generalize	to	new	data.	In
short,	your	model	has	gone	stale,	and	it	needs	to	be	retrained	on	fresh	data.

Figure	5-7.	Data	distributions	can	change	over	time.	Data	drift	refers	to	any	change	that	has
occurred	to	the	data	being	fed	to	your	model	for	prediction	as	compared	to	the	data	used	for

training.

While	continuous	evaluation	provides	a	post	hoc	way	of	monitoring	a
deployed	model,	it	is	also	valuable	to	monitor	the	new	data	that	is	received
during	serving	and	preemptively	identify	changes	in	data	distributions.

TFX’s	Data	Validation	is	a	useful	tool	to	accomplish	this.	TFX	is	an	end-
to-end	platform	for	deploying	machine	learning	models	open	sourced	by
Google.	The	Data	Validation	library	can	be	used	to	compare	the	data

https://oreil.ly/RP2e9

examples	used	in	training	with	those	collected	during	serving.	Validity
checks	detect	anomalies	in	the	data,	training-serving	skew,	or	data	drift.
TensorFlow	Data	Validation	creates	data	visualizations	using	Facets,	an
open	source	visualization	tool	for	machine	learning.	The	Facets	Overview
gives	a	high-level	look	at	the	distributions	of	values	across	various
features	and	can	uncover	several	common	and	uncommon	issues	like
unexpected	feature	values,	missing	feature	values,	and	training-serving
skew.

ESTIMATING	RETRAINING	INTERVAL

A	useful	and	relatively	cheap	tactic	to	understand	how	data	and	concept
drift	affect	your	model	is	to	train	a	model	using	only	stale	data	and	assess
the	performance	of	that	model	on	more	current	data	(Figure	5-8).	This
mimics	the	continued	model	evaluation	process	in	an	offline	environment.
That	is,	collect	data	from	six	months	or	a	year	ago	and	go	through	the
usual	model	development	workflow,	generating	features,	optimizing
hyperparameters,	and	capturing	relevant	evaluation	metrics.	Then,
compare	those	evaluation	metrics	against	the	model	predictions	for	more
recent	data	collected	from	only	a	month	prior.	How	much	worse	does	your
stale	model	perform	on	the	current	data?	This	gives	a	good	estimate	of	the
rate	at	which	a	model’s	performance	falls	off	over	time	and	how	often	it
might	be	necessary	to	retrain.

https://oreil.ly/NE-SQ

Figure	5-8.	Training	a	model	on	stale	data	and	evaluating	on	current	data	mimics	the	continued
model	evaluation	process	in	an	offline	environment.

Design	Pattern	19:	Two-Phase	Predictions
The	Two-Phase	Predictions	design	pattern	provides	a	way	to	address	the
problem	of	keeping	large,	complex	models	performant	when	they	have	to
be	deployed	on	distributed	devices	by	splitting	the	use	cases	into	two
phases,	with	only	the	simpler	phase	being	carried	out	on	the	edge.

Problem

When	deploying	machine	learning	models,	we	cannot	always	rely	on	end
users	having	reliable	internet	connections.	In	such	situations,	models	are
deployed	at	the	edge—meaning	they	are	loaded	on	a	user’s	device	and
don’t	require	an	internet	connection	to	generate	predictions.	Given	device
constraints,	models	deployed	on	the	edge	typically	need	to	be	smaller	than
models	deployed	in	the	cloud,	and	consequently	require	balancing	trade-
offs	between	model	complexity	and	size,	update	frequency,	accuracy,	and
low	latency.

There	are	various	scenarios	where	we’d	want	our	model	deployed	on	an
edge	device.	One	example	is	a	fitness	tracking	device,	where	a	model
makes	recommendations	for	users	based	on	their	activity,	tracked	through
accelerometer	and	gyroscope	movement.	It’s	likely	that	a	user	could	be
exercising	in	a	remote	outdoor	area	without	connectivity.	In	these	cases,
we’d	still	want	our	application	to	work.	Another	example	is	an
environmental	application	that	uses	temperature	and	other	environmental
data	to	make	predictions	on	future	trends.	In	both	of	these	examples,	even
if	we	have	internet	connectivity,	it	may	be	slow	and	expensive	to
continuously	generate	predictions	from	a	model	deployed	in	the	cloud.

To	convert	a	trained	model	into	a	format	that	works	on	edge	devices,
models	often	go	through	a	process	known	as	quantization,	where	learned
model	weights	are	represented	with	fewer	bytes.	TensorFlow,	for	example,
uses	a	format	called	TensorFlow	Lite	to	convert	saved	models	into	a
smaller	format	optimized	for	serving	at	the	edge.	In	addition	to
quantization,	models	intended	for	edge	devices	may	also	start	out	smaller
to	fit	into	stringent	memory	and	processor	constraints.

Quantization	and	other	techniques	employed	by	TF	Lite	significantly
reduce	the	size	and	prediction	latency	of	resulting	ML	models,	but	with
that	may	come	reduced	model	accuracy.	Additionally,	since	we	can’t
consistently	rely	on	edge	devices	having	connectivity,	deploying	new
model	versions	to	these	devices	in	a	timely	manner	also	presents	a
challenge.

We	can	see	how	these	trade-offs	play	out	in	practice	by	looking	at	the
options	for	training	edge	models	in	Cloud	AutoML	Vision	in	Figure	5-9.

https://oreil.ly/UaMq7
https://oreil.ly/MWsQH

Figure	5-9.	Making	trade-offs	between	accuracy,	model	size,	and	latency	for	models	deployed	at
the	edge	in	Cloud	AutoML	Vision.

To	account	for	these	trade-offs,	we	need	a	solution	that	balances	the
reduced	size	and	latency	of	edge	models	against	the	added	sophistication
and	accuracy	of	cloud	models.

Solution

With	the	Two-Phase	Predictions	design	pattern,	we	split	our	problem	into
two	parts.	We	start	with	a	smaller,	cheaper	model	that	can	be	deployed	on-
device.	Because	this	model	typically	has	a	simpler	task,	it	can	accomplish
this	task	on-device	with	relatively	high	accuracy.	This	is	followed	by	a
second,	more	complex	model	deployed	in	the	cloud	and	triggered	only
when	needed.	Of	course,	this	design	pattern	requires	you	to	have	a

problem	that	can	be	split	into	two	parts	with	varying	levels	of	complexity.
One	example	of	such	a	problem	is	smart	devices	like	Google	Home,	which
are	activated	by	a	wake	word	and	can	then	answer	questions	and	respond
to	commands	related	to	setting	alarms,	reading	the	news,	and	interacting
with	integrated	devices	like	lights	and	thermostats.	Google	Home,	for
example,	is	activated	by	saying	“OK	Google”	or	“Hey	Google.”	Once	the
device	recognizes	a	wake	word,	users	can	ask	more	complex	questions
like,	“Can	you	schedule	a	meeting	with	Sara	at	10	a.m.?”

This	problem	can	be	broken	into	two	distinct	parts:	an	initial	model	that
listens	for	a	wake	word,	and	a	more	complex	model	that	can	understand
and	respond	to	any	other	user	query.	Both	models	will	perform	audio
recognition.	The	first	model,	however,	will	only	need	to	perform	binary
classification:	does	the	sound	it	just	heard	match	the	wake	word	or	not?
Although	this	model	is	simpler	in	complexity,	it	needs	to	be	constantly
running,	which	will	be	expensive	if	it’s	deployed	to	the	cloud.	The	second
model	will	require	audio	recognition	and	natural	language	understanding
in	order	to	parse	the	user’s	query.	This	model	only	needs	to	run	when	a
user	asks	a	question,	but	places	more	emphasis	on	high	accuracy.	The
Two-Phase	Predictions	pattern	can	solve	this	by	deploying	the	wake	word
model	on-device	and	the	more	complex	model	in	the	cloud.

In	addition	to	this	smart	device	use	case,	there	are	many	other	situations
where	the	Two-Phase	Predictions	pattern	can	be	employed.	Let’s	say	you
work	on	a	factory	floor	where	many	different	machines	are	running	at	a
given	time.	When	a	machine	stops	working	correctly,	it	typically	makes	a
noise	that	can	be	associated	with	a	malfunction.	There	are	different	noises
corresponding	with	each	distinct	machine	and	the	different	ways	a
machine	could	be	broken.	Ideally,	you	can	build	a	model	to	flag
problematic	noises	and	identify	what	they	mean.	With	Two-Phase

https://oreil.ly/3ROKg

Predictions,	you	could	build	one	offline	model	to	detect	anomalous
sounds.	A	second	cloud	model	could	then	be	used	to	identify	whether	the
usual	sound	is	indicative	of	some	malfunctioning	condition.

You	could	also	use	the	Two-Phase	Predictions	pattern	for	an	image-based
scenario.	Let’s	say	you	have	cameras	deployed	in	the	wild	to	identify	and
track	endangered	species.	You	can	have	one	model	on	the	device	that
detects	whether	the	latest	image	captured	contains	an	endangered	animal.
If	it	does,	this	image	can	then	be	sent	to	a	cloud	model	that	determines	the
specific	type	of	animal	in	the	image.

To	illustrate	the	Two-Phase	Predictions	pattern,	let’s	employ	a	general-
purpose	audio	recognition	dataset	from	Kaggle.	The	dataset	contains
around	9,000	audio	samples	of	familiar	sounds	with	a	total	of	41	label
categories,	including	“cello,”	“knock,”	“telephone,”	“trumpet,”	and	more.
The	first	phase	of	our	solution	will	be	a	model	that	predicts	whether	or	not
the	given	sound	is	a	musical	instrument.	Then,	for	sounds	that	the	first
model	predicts	are	an	instrument,	we’ll	get	a	prediction	from	a	model
deployed	in	the	cloud	to	predict	the	specific	instrument	from	a	total	of	18
possible	options.	Figure	5-10	shows	the	two-phased	flow	for	this	example.

https://oreil.ly/I89Pr

Figure	5-10.	Using	the	Two-Phase	Predictions	pattern	to	identify	instrument	sounds.

To	build	each	of	these	models,	we’ll	convert	the	audio	data	to
spectrograms,	which	are	visual	representations	of	sound.	This	will	allow
us	to	use	common	image	model	architectures	along	with	the	Transfer
Learning	design	pattern	to	solve	this	problem.	See	Figure	5-11	for	a
spectrogram	of	a	saxophone	audio	clip	from	our	dataset.

Figure	5-11.	The	image	representation	(spectrogram)	of	a	saxophone	audio	clip	from	our	training
dataset.	Code	for	converting	.wav	files	to	spectrograms	can	be	found	in	the	GitHub	repository.

PHASE	1:	BUILDING	THE	OFFLINE	MODEL

The	first	model	in	our	Two-Phase	Predictions	solution	should	be	small
enough	that	it	can	be	loaded	on	a	mobile	device	for	quick	inference
without	relying	on	internet	connectivity.	Building	on	the	instrument
example	introduced	above,	we’ll	provide	an	example	of	the	first	prediction
phase	by	building	a	binary	classification	model	optimized	for	on-device
inference.

The	original	sound	dataset	has	41	labels	for	different	types	of	audio	clips.
Our	first	model	will	only	have	two	labels:	“instrument”	or	“not
instrument.”	We’ll	build	our	model	using	the	MobileNetV2	model

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/05_resilience/audio_to_spectro.ipynb
https://oreil.ly/zvbzR

architecture	trained	on	the	ImageNet	dataset.	MobileNetV2	is	available
directly	in	Keras	and	is	an	architecture	optimized	for	models	that	will	be
served	on-device.	For	our	model,	we’ll	freeze	the	MobileNetV2	weights
and	load	it	without	the	top	so	that	we	can	add	our	own	binary	classification
output	layer:

mobilenet	=	tf.keras.applications.MobileNetV2(

				input_shape=((128,128,3)),	

				include_top=False,

				weights='imagenet'

)

mobilenet.trainable	=	False

If	we	organize	our	spectrogram	images	into	directories	with	the
corresponding	label	name,	we	can	use	Keras’s	ImageDataGenerator
class	to	create	our	training	and	validation	datasets:

train_data_gen	=	image_generator.flow_from_directory(

						directory=data_dir,

						batch_size=32,

						shuffle=True,

						target_size=(128,128),

						classes	=	['not_instrument','instrument'],

						class_mode='binary')

With	our	training	and	validation	datasets	ready,	we	can	train	the	model	as
we	normally	would.	The	typical	approach	for	exporting	trained	models	for
serving	is	to	use	TensorFlow’s	model.save()	method.	However,
remember	that	this	model	will	be	served	on-device,	and	as	a	result	we
want	to	keep	it	as	small	as	possible.	To	build	a	model	that	fits	these
requirements,	we’ll	use	TensorFlow	Lite,	a	library	optimized	for	building
and	serving	models	directly	on	mobile	and	embedded	devices	that	may	not
have	reliable	internet	connectivity.	TF	Lite	has	some	built-in	utilities	for
quantizing	models	both	during	and	after	training.

https://oreil.ly/dyx93

To	prepare	the	trained	model	for	edge	serving,	we	use	TF	Lite	to	export	it
in	an	optimized	format:

converter	=	tf.lite.TFLiteConverter.from_keras_model(model)

converter.optimizations	=	[tf.lite.Optimize.DEFAULT]

tflite_model	=	converter.convert()

open('converted_model.tflite',	'wb').write(tflite_model)

This	is	the	fastest	way	to	quantize	a	model	after	training.	Using	the	TF
Lite	optimization	defaults,	it	will	reduce	our	model’s	weights	to	their	8-bit
representation.	It	will	also	quantize	inputs	at	inference	time	when	we	make
predictions	on	our	model.	By	running	the	code	above,	the	resulting
exported	TF	Lite	model	is	one-fourth	the	size	it	would	have	been	if	we	had
exported	it	without	quantization.

TIP
To	further	optimize	your	model	for	offline	inference,	you	can	also	quantize	your	model’s
weights	during	training	or	quantize	all	of	your	model’s	math	operations	in	addition	to	weights.
At	the	time	of	writing,	quantization-optimized	training	for	TensorFlow	2	models	is	on	the
roadmap.

To	generate	a	prediction	on	a	TF	Lite	model,	you	use	the	TF	Lite
interpreter,	which	is	optimized	for	low	latency.	You’ll	likely	want	to	load
your	model	on	an	Android	or	iOS	device	and	generate	predictions	directly
from	your	application	code.	There	are	APIs	for	both	platforms,	but	we’ll
show	the	Python	code	for	generating	predictions	here	so	that	you	can	run
it	from	the	same	notebook	where	you	created	your	model.	First,	we	create
an	instance	of	TF	Lite’s	interpreter	and	get	details	on	the	input	and	output
format	it’s	expecting:

interpreter	=	

https://oreil.ly/RuONn

tf.lite.Interpreter(model_path="converted_model.tflite")

interpreter.allocate_tensors()

input_details	=	interpreter.get_input_details()

output_details	=	interpreter.get_output_details()

For	the	MobileNetV2	binary	classification	model	we	trained	above,
input_details	looks	like	the	following:

[{'dtype':	numpy.float32,

		'index':	0,

		'name':	'mobilenetv2_1.00_128_input',

		'quantization':	(0.0,	0),

		'quantization_parameters':	{'quantized_dimension':	0,

		'scales':	array([],	dtype=float32),

		'zero_points':	array([],	dtype=int32)},

		'shape':	array([1,	128,	128,			3],	dtype=int32),

		'shape_signature':	array([1,	128,	128,			3],	dtype=int32),

		'sparsity_parameters':	{}}]

We’ll	then	pass	the	first	image	from	our	validation	batch	to	the	loaded	TF
Lite	model	for	prediction,	invoke	the	interpreter,	and	get	the	output:

input_data	=	np.array([image_batch[21]],	dtype=np.float32)

interpreter.set_tensor(input_details[0]['index'],	input_data)

interpreter.invoke()

output_data	=	interpreter.get_tensor(output_details[0]['index'])

print(output_data)

The	resulting	output	is	a	sigmoid	array	with	a	single	value	in	the	[0,1]
range	indicating	whether	or	not	the	given	input	sound	is	an	instrument.

TIP
Depending	on	how	costly	it	is	to	call	your	cloud	model,	you	can	change	what	metric	you’re
optimizing	for	when	you	train	the	on-device	model.	For	example,	you	might	choose	to	optimize

for	precision	over	recall	if	you	care	more	about	avoiding	false	positives.

With	our	model	now	working	on-device,	we	can	get	fast	predictions
without	having	to	rely	on	internet	connectivity.	If	the	model	is	confident
that	a	given	sound	is	not	an	instrument,	we	can	stop	here.	If	the	model
predicts	“instrument,”	it’s	time	to	proceed	by	sending	the	audio	clip	to	a
more	complex	cloud-hosted	model.

WHAT	MODELS	ARE	SUITABLE	ON	THE	EDGE?
How	should	you	determine	whether	a	model	is	a	good	fit	for	the	edge?	There	are	a	few	considerations
related	to	model	size,	complexity,	and	available	hardware.	As	a	general	rule	of	thumb,	smaller,	less
complex	models	are	better	optimized	for	running	on-device.	This	is	because	edge	models	are	constrained
by	the	available	device	storage.	Often,	when	models	are	scaled	down—through	quantization	or	other
techniques—this	is	done	at	the	expense	of	accuracy.	As	such,	models	with	a	simpler	prediction	task	and
model	architecture	are	the	best	fit	for	edge	devices.	By	“simpler,”	we	mean	trade-offs	like	favoring	binary
classification	over	multiclass	or	choosing	a	less	complex	model	architecture	(like	a	decision	tree	or	linear
regression	model)	when	possible.

When	you	need	to	deploy	models	to	the	edge	while	still	adhering	to	certain	model	size	and	complexity
constraints,	it’s	worth	looking	at	edge	hardware	designed	specifically	with	ML	inference	in	mind.	For
example,	the	Coral	Edge	TPU	board	provides	a	custom	ASIC	optimized	for	high-performance,	offline	ML
inference	on	TensorFlow	Lite	models.	Similarly,	NVIDIA	offers	the	Jetson	Nano	for	edge-optimized,	low-
power	ML	inference.	The	hardware	support	for	ML	inference	is	rapidly	evolving	as	embedded,	on-device
ML	becomes	more	common.

PHASE	2:	BUILDING	THE	CLOUD	MODEL

Since	our	cloud-hosted	model	doesn’t	need	to	be	optimized	for	inference
without	a	network	connection,	we	can	follow	a	more	traditional	approach
for	training,	exporting,	and	deploying	this	model.	Depending	on	your
Two-Phase	Prediction	use	case,	this	second	model	could	take	many
different	forms.	In	the	Google	Home	example,	phase	2	might	include
multiple	models:	one	that	converts	a	speaker’s	audio	input	to	text,	and	a
second	one	that	performs	NLP	to	understand	the	text	and	route	the	user’s
query.	If	the	user	asks	for	something	more	complex,	there	could	even	be	a

https://oreil.ly/N2NOs
https://oreil.ly/GUOQc

third	model	to	provide	a	recommendation	based	on	user	preferences	or
past	activity.

In	our	instrument	example,	the	second	phase	of	our	solution	will	be	a
multiclass	model	that	classifies	sounds	into	one	of	18	possible	instrument
categories.	Since	this	model	doesn’t	need	to	be	deployed	on-device,	we
can	use	a	larger	model	architecture	like	VGG	as	a	starting	point	and	then
follow	the	Transfer	Learning	design	pattern	outlined	in	Chapter	4.

We’ll	load	VGG	trained	on	the	ImageNet	dataset,	specify	the	size	of	our
spectrogram	images	in	the	input_shape	parameter,	and	freeze	the
model’s	weights	before	adding	our	own	softmax	classification	output
layer:

vgg_model	=	tf.keras.applications.VGG19(

				include_top=False,	

				weights='imagenet',	

				input_shape=((128,128,3))

)

vgg_model.trainable	=	False

Our	output	will	be	an	18-element	array	of	softmax	probabilities:

prediction_layer	=	tf.keras.layers.Dense(18,	

activation='softmax')

We’ll	limit	our	dataset	to	only	the	audio	clips	of	instruments,	then
transform	the	instrument	labels	to	18-element	one-hot	vectors.	We	can	use
the	same	image_generator	approach	above	to	feed	our	images	to	our
model	for	training.	Instead	of	exporting	this	as	a	TF	Lite	model,	we	can
use	model.save()	to	export	our	model	for	serving.

To	demonstrate	deploying	the	phase	2	model	to	the	cloud,	we’ll	use	Cloud
AI	Platform	Prediction.	We’ll	need	to	upload	our	saved	model	assets	to	a
Cloud	Storage	bucket,	then	deploy	the	model	by	specifying	the	framework
and	pointing	AI	Platform	Prediction	to	our	storage	bucket.

TIP
You	can	use	any	cloud-based	custom	model	deployment	tool	for	the	second	phase	of	the	Two-
Phase	Predictions	design	pattern.	In	addition	to	Google	Cloud’s	AI	Platform	Prediction,	AWS
SageMaker	and	Azure	Machine	Learning	both	offer	services	for	deploying	custom	models.

When	we	export	our	model	as	a	TensorFlow	SavedModel,	we	can	pass	a
Cloud	Storage	bucket	URL	directly	to	the	save	model	method:

model.save('gs://your_storage_bucket/path')

This	will	export	our	model	in	the	TF	SavedModel	format	and	upload	it	to
our	Cloud	Storage	bucket.

In	AI	Platform,	a	model	resource	contains	different	versions	of	your
model.	Each	model	can	have	hundreds	of	versions.	We’ll	first	create	the
model	resource	using	gcloud,	the	Google	Cloud	CLI:

gcloud	ai-platform	models	create	instrument_classification

There	are	a	few	ways	to	deploy	your	model.	We’ll	use	gcloud	and	point
AI	Platform	at	the	storage	subdirectory	that	contains	our	saved	model
assets:

gcloud	ai-platform	versions	create	v1	\

		--model	instrument_classification	\

		--origin	'gs://your_storage_bucket/path/model_timestamp'	\

		--runtime-version=2.1	\

https://oreil.ly/P5Cn9
https://oreil.ly/zIHey
https://oreil.ly/dCxHE

		--framework='tensorflow'	\

		--python-version=3.7

We	can	now	make	prediction	requests	to	our	model	via	the	AI	Platform
Prediction	API,	which	supports	online	and	batch	prediction.	Online
prediction	lets	us	get	predictions	in	near	real	time	on	a	few	examples	at
once.	If	we	have	hundreds	or	thousands	of	examples	we	want	to	send	for
prediction,	we	can	create	a	batch	prediction	job	that	will	run
asynchronously	in	the	background	and	output	the	prediction	results	to	a
file	when	complete.

To	handle	cases	where	the	device	calling	our	model	may	not	always	be
connected	to	the	internet,	we	could	store	audio	clips	for	instrument
prediction	on	the	device	while	it	is	offline.	When	it	regains	connectivity,
we	could	then	send	these	clips	to	the	cloud-hosted	model	for	prediction.

Trade-Offs	and	Alternatives

While	the	Two-Phase	Predictions	pattern	works	for	many	cases,	there	are
situations	where	your	end	users	may	have	very	little	internet	connectivity
and	you	therefore	cannot	rely	on	being	able	to	call	a	cloud-hosted	model.
In	this	section,	we’ll	discuss	two	offline-only	alternatives,	a	scenario
where	a	client	needs	to	make	many	prediction	requests	at	a	time,	and
suggestions	on	how	to	run	continuous	evaluation	for	offline	models.

STANDALONE	SINGLE-PHASE	MODEL

Sometimes,	the	end	users	of	your	model	may	have	little	to	no	internet
connectivity.	Even	though	these	users’	devices	won’t	be	able	to	reliably
access	a	cloud	model,	it’s	still	important	to	give	them	a	way	to	access	your
application.	For	this	case,	rather	than	relying	on	a	two-phase	prediction
flow,	you	can	make	your	first	model	robust	enough	that	it	can	be	self-

sufficient.

To	do	this,	we	can	create	a	smaller	version	of	our	complex	model,	and
give	users	the	option	to	download	this	simpler,	smaller	model	for	use
when	they	are	offline.	These	offline	models	may	not	be	quite	as	accurate
as	their	larger	online	counterparts,	but	this	solution	is	infinitely	better	than
having	no	offline	support	at	all.	To	build	more	complex	models	designed
for	offline	inference,	it’s	best	to	use	a	tool	that	allows	you	to	quantize	your
model’s	weights	and	other	math	operations	both	during	and	after	training.
This	is	known	as	quantization	aware	training.

One	example	of	an	application	that	provides	a	simpler	offline	model	is
Google	Translate.	Google	Translate	is	a	robust,	online	translation	service
available	in	hundreds	of	languages.	However,	there	are	many	scenarios
where	you’d	need	to	use	a	translation	service	without	internet	access.	To
handle	this,	Google	translate	lets	you	download	offline	translations	in	over
50	different	languages.	These	offline	models	are	small,	around	40	to	50
megabytes,	and	come	close	in	accuracy	to	the	more	complex	online
versions.	Figure	5-12	shows	a	quality	comparison	of	on-device	and	online
translation	models.

https://oreil.ly/ABd8r
https://oreil.ly/uEWAM

Figure	5-12.	A	comparison	of	on-device	phrase-based	and	(newer)	neural-machine	translation
models	and	online	neural	machine	translation	(source:	The	Keyword).

Another	example	of	a	standalone	single-phase	model	is	Google	Bolo,	a
speech-based	language	learning	app	for	children.	The	app	works	entirely
offline	and	was	developed	with	the	intention	of	helping	populations	where
reliable	internet	access	is	not	always	available.

OFFLINE	SUPPORT	FOR	SPECIFIC	USE	CASES

Another	solution	for	making	your	application	work	for	users	with	minimal
internet	connectivity	is	to	make	only	certain	parts	of	your	app	available
offline.	This	could	involve	enabling	a	few	common	features	offline	or
caching	the	results	of	an	ML	model’s	prediction	for	later	use	offline.	With
this	alternative,	we’re	still	employing	two	prediction	phases,	but	we’re
limiting	the	use	cases	covered	by	our	offline	model.	In	this	approach,	the
app	works	sufficiently	offline,	but	provides	full	functionality	when	it
regains	connectivity.

https://oreil.ly/S_woM
https://oreil.ly/zTy79

Google	Maps,	for	example,	lets	you	download	maps	and	directions	in
advance.	To	avoid	having	directions	take	up	too	much	space	on	a	mobile
device,	only	driving	directions	might	be	made	available	offline	(not
walking	or	biking).	Another	example	could	be	a	fitness	application	that
tracks	your	steps	and	makes	recommendations	for	future	activity.	Let’s
say	the	most	common	use	of	this	app	is	checking	how	many	steps	you
have	walked	on	the	current	day.	To	support	this	use	case	offline,	we	could
sync	the	fitness	tracker’s	data	to	a	user’s	device	over	Bluetooth	to	enable
checking	the	current	day’s	fitness	status	offline.	To	optimize	our	app’s
performance,	we	might	decide	to	make	fitness	history	and
recommendations	only	available	online.

We	could	further	build	upon	this	by	storing	the	user’s	queries	while	their
device	is	offline	and	sending	them	to	a	cloud	model	when	they	regain
connectivity	to	provide	more	detailed	results.	Additionally,	we	could	even
provide	a	basic	recommendation	model	available	offline,	with	the
intention	of	complementing	this	with	improved	results	when	the	app	is
able	to	send	the	user’s	queries	to	a	cloud-hosted	model.	With	this	solution,
the	user	still	gets	some	functionality	when	they	aren’t	connected.	When
they	come	back	online,	they	can	then	benefit	from	a	full-featured	app	and
robust	ML	model.

HANDLING	MANY	PREDICTIONS	IN	NEAR	REAL	TIME

In	other	cases,	end	users	of	your	ML	model	may	have	reliable	connectivity
but	might	need	to	make	hundreds	or	even	thousands	of	predictions	to	your
model	at	once.	If	you	only	have	a	cloud-hosted	model	and	each	prediction
requires	an	API	call	to	a	hosted	service,	getting	prediction	responses	on
thousands	of	examples	at	once	will	take	too	much	time.

To	understand	this,	let’s	say	we	have	embedded	devices	deployed	in

various	areas	throughout	a	user’s	house.	These	devices	are	capturing	data
on	temperature,	air	pressure,	and	air	quality.	We	have	a	model	deployed	in
the	cloud	for	detecting	anomalies	from	this	sensor	data.	Because	the
sensors	are	continuously	collecting	new	data,	it	would	be	inefficient	and
expensive	to	send	every	incoming	data	point	to	our	cloud	model.	Instead,
we	can	have	a	model	deployed	directly	on	the	sensors	to	identify	possible
anomaly	candidates	from	incoming	data.	We	can	then	send	only	the
potential	anomalies	to	our	cloud	model	for	consolidated	verification,
taking	sensor	readings	from	all	the	locations	into	account.	This	is	a
variation	of	the	Two-Phase	Predictions	pattern	described	earlier,	the	main
difference	being	that	both	the	offline	and	cloud	models	perform	the	same
prediction	task	but	with	different	inputs.	In	this	case,	models	also	end	up
throttling	the	number	of	prediction	requests	sent	to	the	cloud	model	at	one
time.

CONTINUOUS	EVALUATION	FOR	OFFLINE	MODELS

How	can	we	ensure	our	on-device	models	stay	up	to	date	and	don’t	suffer
from	data	drift?	There	are	a	few	options	for	performing	continuous
evaluation	on	models	that	do	not	have	network	connectivity.	First,	we
could	save	a	subset	of	predictions	that	are	received	on-device.	We	could
then	periodically	evaluate	our	model’s	performance	on	these	examples	and
determine	if	the	model	needs	retraining.	In	the	case	of	our	two-phase
model,	it’s	important	we	do	this	evaluation	regularly	since	it’s	likely	that
many	calls	to	our	on-device	model	will	not	go	onto	the	second-phase
cloud	model.	Another	option	is	to	create	a	replica	of	our	on-device	model
to	run	online,	only	for	continuous	evaluation	purposes.	This	solution	is
preferred	if	our	offline	and	cloud	models	are	running	similar	prediction
tasks,	like	in	the	translation	case	mentioned	previously.

Design	Pattern	20:	Keyed	Predictions

Design	Pattern	20:	Keyed	Predictions
Normally,	you	train	your	model	on	the	same	set	of	input	features	that	the
model	will	be	supplied	in	real	time	when	it	is	deployed.	In	many
situations,	however,	it	can	be	advantageous	for	your	model	to	also	pass
through	a	client-supplied	key.	This	is	called	the	Keyed	Predictions	design
pattern,	and	it	is	a	necessity	to	scalably	implement	several	of	the	design
patterns	discussed	in	this	chapter.

Problem

If	your	model	is	deployed	as	a	web	service	and	accepts	a	single	input,	then
it	is	quite	clear	which	output	corresponds	to	which	input.	But	what	if	your
model	accepts	a	file	with	a	million	inputs	and	sends	back	a	file	with	a
million	output	predictions?

You	might	think	that	it	should	be	obvious	that	the	first	output	instance
corresponds	to	the	first	input	instance,	the	second	output	instance	to	the
second	input	instance,	etc.	However,	with	a	1:1	relationship,	it	is
necessary	for	each	server	node	to	process	the	full	set	of	inputs	serially.	It
would	be	much	more	advantageous	if	you	use	a	distributed	data
processing	system	and	farm	out	instances	to	multiple	machines,	collect	all
the	resulting	outputs,	and	send	them	back.	The	problem	with	this	approach
is	that	the	outputs	are	going	to	be	jumbled.	Requiring	that	the	outputs	be
ordered	the	same	way	poses	scalability	challenges,	and	providing	the
outputs	in	an	unordered	manner	requires	the	clients	to	somehow	know
which	output	corresponds	to	which	input.

This	same	problem	occurs	if	your	online	serving	system	accepts	an	array
of	instances	as	discussed	in	the	Stateless	Serving	Function	pattern.	The
problem	is	that	processing	a	large	number	of	instances	locally	will	lead	to

hot	spots.	Server	nodes	that	receive	only	a	few	requests	will	be	able	to
keep	up,	but	any	server	node	that	receives	a	particularly	large	array	will
start	to	fall	behind.	These	hot	spots	will	force	you	to	make	your	server
machines	more	powerful	than	they	need	to	be.	Therefore,	many	online
serving	systems	will	impose	a	limit	on	the	number	of	instances	that	can	be
sent	in	one	request.	If	there	is	no	such	limit,	or	if	the	model	is	so
computationally	expensive	that	requests	with	fewer	instances	than	this
limit	can	overload	the	server,	you	will	run	into	the	problem	of	hot	spots.
Therefore,	any	solution	to	the	batch	serving	problem	will	also	address	the
problem	of	hot	spots	in	online	serving.

Solution

The	solution	is	to	use	pass-through	keys.	Have	the	client	supply	a	key
associated	with	each	input.	For	example	(see	Figure	5-13),	suppose	your
model	is	trained	with	three	inputs	(a,	b,	c),	shown	on	the	left,	to	produce
the	output	d,	shown	on	the	right.	Make	your	clients	supply	(k,	a,	b,	c)	to
your	model	where	k	is	a	key	with	a	unique	identifier.	The	key	could	be	as
simple	as	numbering	the	input	instances	1,	2,	3,	…,	etc.	Your	model	will
then	return	(k,	d),	and	so	the	client	will	be	able	to	figure	out	which	output
instance	corresponds	to	which	input	instance.

Figure	5-13.	The	client	supplies	a	unique	key	with	each	input	instance.	The	serving	system	attaches

those	keys	to	the	corresponding	prediction.	This	allows	the	client	to	retrieve	the	correct	prediction
for	each	input	even	if	outputs	are	out	of	order.

HOW	TO	PASS	THROUGH	KEYS	IN	KERAS

In	order	to	get	your	Keras	model	to	pass	through	keys,	supply	a	serving
signature	when	exporting	the	model.

For	example,	this	is	the	code	to	take	a	model	that	would	otherwise	take
four	inputs	(is_male,	mother_age,	plurality,	and
gestation_weeks)	and	have	it	also	take	a	key	that	it	will	pass	through
to	the	output	along	with	the	original	output	of	the	model	(the
babyweight):

#	Serving	function	that	passes	through	keys

@tf.function(input_signature=[{

				'is_male':	tf.TensorSpec([None,],	dtype=tf.string,	

name='is_male'),

				'mother_age':	tf.TensorSpec([None,],	dtype=tf.float32,	

name='mother_age'),

				'plurality':	tf.TensorSpec([None,],	dtype=tf.string,	

name='plurality'),

				'gestation_weeks':	tf.TensorSpec([None,],	dtype=tf.float32,	

name='gestation_weeks'),

				'key':	tf.TensorSpec([None,],	dtype=tf.string,	name='key')

}])

def	keyed_prediction(inputs):

				feats	=	inputs.copy()

				key	=	feats.pop('key')	#	get	the	key	from	input

				output	=	model(feats)	#	invoke	model

				return	{'key':	key,	'babyweight':	output}

				

This	model	is	then	saved	as	discussed	in	the	Stateless	Serving	Function
design	pattern:

model.save(EXPORT_PATH,	

											signatures={'serving_default':	keyed_prediction})

											

ADDING	KEYED	PREDICTION	CAPABILITY	TO	AN
EXISTING	MODEL

Note	that	the	code	above	works	even	if	the	original	model	was	not	saved
with	a	serving	function.	Simply	load	the	model	using
tf.saved_model.load(),	attach	a	serving	function,	and	use	the
code	snippet	above,	as	shown	in	Figure	5-14.

Figure	5-14.	Load	a	SavedModel,	attach	a	nondefault	serving	function,	and	save	it.

When	doing	so,	it	is	preferable	to	provide	a	serving	function	that	replicates
the	older,	no-key	behavior:

#	Serving	function	that	does	not	require	a	key

@tf.function(input_signature=[{

				'is_male':	tf.TensorSpec([None,],	dtype=tf.string,	

name='is_male'),

				'mother_age':	tf.TensorSpec([None,],		dtype=tf.float32,	

name='mother_age'),

				'plurality':	tf.TensorSpec([None,],	dtype=tf.string,	

name='plurality'),

				'gestation_weeks':	tf.TensorSpec([None,],	dtype=tf.float32,	

name='gestation_weeks')

}])

def	nokey_prediction(inputs):

				output	=	model(inputs)	#	invoke	model

				return	{'babyweight':	output}

				

Use	the	previous	behavior	as	the	default	and	add	the
keyed_prediction	as	a	new	serving	function:

model.save(EXPORT_PATH,	

											signatures={'serving_default':	nokey_prediction,

																							'keyed_prediction':	keyed_prediction

})

Trade-Offs	and	Alternatives

Why	can’t	the	server	just	assign	keys	to	the	inputs	it	receives?	For	online
prediction,	it	is	possible	for	servers	to	assign	unique	request	IDs	that	lack
any	semantic	information.	For	batch	prediction,	the	problem	is	that	the
inputs	need	to	be	associated	with	the	outputs,	so	the	server	assigning	a
unique	ID	is	not	enough	since	it	can’t	be	joined	back	to	the	inputs.	What
the	server	has	to	do	is	to	assign	keys	to	the	inputs	it	receives	before	it
invokes	the	model,	use	the	keys	to	order	the	outputs,	and	then	remove	the
keys	before	sending	along	the	outputs.	The	problem	is	that	ordering	is
computationally	very	expensive	in	distributed	data	processing.

In	addition,	there	are	a	couple	of	other	situations	where	client-supplied
keys	are	useful—asynchronous	serving	and	evaluation.	Given	these	two
situations,	it	is	preferable	that	what	constitutes	a	key	becomes	use	case
specific	and	needs	to	be	identifiable.	Therefore,	asking	clients	to	supply	a
key	makes	the	solution	simpler.

ASYNCHRONOUS	SERVING

Many	production	machine	learning	models	these	days	are	neural	networks,
and	neural	networks	involve	matrix	multiplications.	Matrix	multiplication
on	hardware	like	GPUs	and	TPUs	is	more	efficient	if	you	can	ensure	that
the	matrices	are	within	certain	size	ranges	and/or	multiples	of	a	certain
number.	It	can,	therefore,	be	helpful	to	accumulate	requests	(up	to	a
maximum	latency	of	course)	and	handle	the	incoming	requests	in	chunks.
Since	the	chunks	will	consist	of	interleaved	requests	from	multiple	clients,
the	key,	in	this	case,	needs	to	have	some	sort	of	client	identifier	as	well.

CONTINUOUS	EVALUATION

If	you	are	doing	continuous	evaluation,	it	can	be	helpful	to	log	metadata
about	the	prediction	requests	so	that	you	can	monitor	whether	performance
drops	across	the	board,	or	only	in	specific	situations.	Such	slicing	is	made
much	easier	if	the	key	identifies	the	situation	in	question.	For	example,
suppose	that	we	need	to	apply	a	Fairness	Lens	(see	Chapter	7)	to	ensure
that	our	model’s	performance	is	fair	across	different	customer	segments
(age	of	customer	and/or	race	of	customer,	for	example).	The	model	will
not	use	the	customer	segment	as	an	input,	but	we	need	to	evaluate	the
performance	of	the	model	sliced	by	the	customer	segment.	In	such	cases,
having	the	customer	segment(s)	be	embedded	in	the	key	(an	example	key
might	be	35-Black-Male-34324323)	makes	slicing	easier.

An	alternate	solution	is	to	have	the	model	ignore	unrecognized	inputs	and
send	back	not	just	the	prediction	outputs	but	also	all	inputs,	including	the
unrecognized	ones.	This	allows	the	client	to	match	inputs	to	outputs,	but	is
more	expensive	in	terms	of	bandwidth	and	client-side	computation.

Because	high-performance	servers	will	support	multiple	clients,	be	backed
by	a	cluster,	and	batch	up	requests	to	gain	performance	benefits,	it’s	better
to	plan	ahead	for	this—ask	that	clients	supply	keys	with	every	prediction
and	for	clients	to	specify	keys	that	will	not	cause	a	collision	with	other
clients.

Summary
In	this	chapter,	we	looked	at	techniques	for	operationalizing	machine
learning	models	to	ensure	they	are	resilient	and	can	scale	to	handle
production	load.	Each	resilience	pattern	we	discussed	relates	to	the
deployment	and	serving	steps	in	a	typical	ML	workflow.

We	started	this	chapter	by	looking	at	how	to	encapsulate	your	trained
machine	learning	model	as	a	stateless	function	using	the	Stateless	Serving
Function	design	pattern.	A	serving	function	decouples	your	model’s
training	and	deployment	environments	by	defining	a	function	that
performs	inference	on	an	exported	version	of	your	model,	and	is	deployed
to	a	REST	endpoint.	Not	all	production	models	require	immediate
prediction	results,	as	there	are	situations	where	you	need	to	send	a	large
batch	of	data	to	your	model	for	prediction	but	don’t	need	results	right
away.	We	saw	how	the	Batch	Serving	design	pattern	solves	this	by
utilizing	distributed	data	processing	infrastructure	designed	to	run	many
model	prediction	requests	asynchronously	as	a	background	job,	with
output	written	to	a	specified	location.

Next,	with	the	Continued	Model	Evaluation	design	pattern,	we	looked	at
an	approach	to	verifying	that	your	deployed	model	is	still	performing	well
on	new	data.	This	pattern	addresses	the	problems	of	data	and	concept	drift
by	regularly	evaluating	your	model	and	using	these	results	to	determine	if
retraining	is	necessary.	In	the	Two-Phase	Predictions	design	pattern,	we
solved	for	specific	use	cases	where	models	need	to	be	deployed	at	the
edge.	When	you	can	break	a	problem	into	two	logical	parts,	this	pattern
first	creates	a	simpler	model	that	can	be	deployed	on-device.	This	edge
model	is	connected	to	a	more	complex	model	hosted	in	the	cloud.	Finally,
in	the	Keyed	Prediction	design	pattern,	we	discussed	why	it	can	be
beneficial	to	supply	a	unique	key	with	each	example	when	making
prediction	requests.	This	ensures	that	your	client	associates	each
prediction	output	with	the	correct	input	example.

In	the	next	chapter,	we’ll	look	at	reproducibility	patterns.	These	patterns
address	challenges	associated	with	the	inherent	randomness	present	in
many	aspects	of	machine	learning	and	focus	on	enabling	reliable,
consistent	results	each	time	a	machine	learning	process	runs.

1 	Curious	what	a	“positive”	complaint	looks	like?	Here	you	go:
“I	get	phone	calls	morning	XXXX	and	night.	I	have	told	them	to	stop	so	many	calls	but	they
still	call	even	on	Sunday	in	the	morning.	I	had	two	calls	in	a	row	on	a	Sunday	morning	from
XXXX	XXXX.	I	received	nine	calls	on	Saturday.	I	receive	about	nine	during	the	week	day
every	day	as	well.
The	only	hint	that	the	complainer	is	unhappy	is	that	they	have	asked	the	callers	to	stop.
Otherwise,	the	rest	of	the	statements	might	well	be	about	someone	bragging	about	how
popular	they	are!”

Chapter	6.	Reproducibility
Design	Patterns

Software	best	practices	such	as	unit	testing	assume	that	if	we	run	a	piece
of	code,	it	produces	deterministic	output:

def	sigmoid(x):

				return	1.0	/	(1	+	np.exp(-x))

				

class	TestSigmoid(unittest.TestCase):

				def	test_zero(self):

								self.assertAlmostEqual(sigmoid(0),	0.5)

				def	test_neginf(self):

								self.assertAlmostEqual(sigmoid(float("-inf")),	0)

								

				def	test_inf(self):

								self.assertAlmostEqual(sigmoid(float("inf")),	1)

This	sort	of	reproducibility	is	difficult	in	machine	learning.	During
training,	machine	learning	models	are	initialized	with	random	values	and
then	adjusted	based	on	training	data.	A	simple	k-means	algorithm
implemented	by	scikit-learn	requires	setting	the	random_state	in	order
to	ensure	the	algorithm	returns	the	same	results	each	time:

def	cluster_kmeans(X):

				from	sklearn	import	cluster

				k_means	=	cluster.KMeans(n_clusters=10,	random_state=10)

				labels	=	k_means.fit(X).labels_[::]

				return	labels

Beyond	the	random	seed,	there	are	many	other	artifacts	that	need	to	be

fixed	in	order	to	ensure	reproducibility	during	training.	In	addition,
machine	learning	consists	of	different	stages,	such	as	training,
deployment,	and	retraining.	It	is	often	important	that	some	things	are
reproducible	across	these	stages	as	well.

In	this	chapter,	we’ll	look	at	design	patterns	that	address	different	aspects
of	reproducibility.	The	Transform	design	pattern	captures	data	preparation
dependencies	from	the	model	training	pipeline	to	reproduce	them	during
serving.	Repeatable	Splitting	captures	the	way	data	is	split	among	training,
validation,	and	test	datasets	to	ensure	that	a	training	example	that	is	used
in	training	is	never	used	for	evaluation	or	testing	even	as	the	dataset
grows.	The	Bridged	Schema	design	pattern	looks	at	how	to	ensure
reproducibility	when	the	training	dataset	is	a	hybrid	of	data	conforming	to
different	schema.	The	Workflow	Pipeline	design	pattern	captures	all	the
steps	in	the	machine	learning	process	to	ensure	that	as	the	model	is
retrained,	parts	of	the	pipeline	can	be	reused.	The	Feature	Store	design
pattern	addresses	reproducibility	and	reusability	of	features	across
different	machine	learning	jobs.	The	Windowed	Inference	design	pattern
ensures	that	features	that	are	calculated	in	a	dynamic,	time-dependent	way
can	be	correctly	repeated	between	training	and	serving.	Versioning	of	data
and	models	is	a	prerequisite	to	handle	many	of	the	design	patterns	in	this
chapter.

Design	Pattern	21:	Transform
The	Transform	design	pattern	makes	moving	an	ML	model	to	production
much	easier	by	keeping	inputs,	features,	and	transforms	carefully	separate.

Problem

The	problem	is	that	the	inputs	to	a	machine	learning	model	are	not	the
features	that	the	machine	learning	model	uses	in	its	computations.	In	a	text
classification	model,	for	example,	the	inputs	are	the	raw	text	documents
and	the	features	are	the	numerical	embedding	representations	of	this	text.
When	we	train	a	machine	learning	model,	we	train	it	with	features	that	are
extracted	from	the	raw	inputs.	Take	this	model	that	is	trained	to	predict	the
duration	of	bicycle	rides	in	London	using	BigQuery	ML:

CREATE	OR	REPLACE	MODEL	ch09eu.bicycle_model

OPTIONS(input_label_cols=['duration'],	

								model_type='linear_reg')

AS

SELECT	

	duration

	,	start_station_name

	,	CAST(EXTRACT(dayofweek	from	start_date)	AS	STRING)

	as	dayofweek

	,	CAST(EXTRACT(hour	from	start_date)	AS	STRING)

	as	hourofday

FROM	

	`bigquery-public-data.london_bicycles.cycle_hire`

This	model	has	three	features	(start_station_name,	dayofweek,
and	hourofday)	computed	from	two	inputs,	start_station_name
and	start_date,	as	shown	in	Figure	6-1.

Figure	6-1.	The	model	has	three	features	computed	from	two	inputs.

But	the	SQL	code	above	mixes	up	the	inputs	and	features	and	doesn’t
keep	track	of	the	transformations	that	were	carried	out.	This	comes	back	to
bite	when	we	try	to	predict	with	this	model.	Because	the	model	was
trained	on	three	features,	this	is	what	the	prediction	signature	has	to	look
like:

SELECT	*	FROM	ML.PREDICT(MODEL	ch09eu.bicycle_model,(

			'Kings	Cross'	AS	start_station_name

	,	'3'	as	dayofweek

	,	'18'	as	hourofday

))

Note	that,	at	inference	time,	we	have	to	know	what	features	the	model	was
trained	on,	how	they	should	be	interpreted,	and	the	details	of	the
transformations	that	were	applied.	We	have	to	know	that	we	need	to	send
in	'3'	for	dayofweek.	That	'3'	…is	that	Tuesday	or	Wednesday?
Depends	on	which	library	was	used	by	the	model,	or	what	we	consider	the
start	of	a	week!

Training-serving	skew,	caused	by	differences	in	any	of	these	factors
between	the	training	and	serving	environments,	is	one	of	the	key	reasons
why	productionization	of	ML	models	is	so	hard.

Solution

The	solution	is	to	explicitly	capture	the	transformations	applied	to	convert
the	model	inputs	into	features.	In	BigQuery	ML,	this	is	done	using	the
TRANSFORM	clause.	Using	TRANSFORM	ensures	that	these
transformations	are	automatically	applied	during	ML.PREDICT.

Given	the	support	for	TRANSFORM,	the	model	above	should	be	rewritten
as:

CREATE	OR	REPLACE	MODEL	ch09eu.bicycle_model

OPTIONS(input_label_cols=['duration'],	

								model_type='linear_reg')

TRANSFORM(

	SELECT	*	EXCEPT(start_date)

	,	CAST(EXTRACT(dayofweek	from	start_date)	AS	STRING)

	as	dayofweek	--	feature1

	,	CAST(EXTRACT(hour	from	start_date)	AS	STRING)

	as	hourofday	–-	feature2

)

AS

SELECT	

	duration,	start_station_name,	start_date	--	inputs

FROM	

	`bigquery-public-data.london_bicycles.cycle_hire`

Notice	how	we	have	clearly	separated	out	the	inputs	(in	the	SELECT
clause)	from	the	features	(in	the	TRANSFORM	clause).	Now,	prediction	is
much	easier.	We	can	simply	send	to	the	model	the	station	name	and	a
timestamp	(the	inputs):

SELECT	*	FROM	ML.PREDICT(MODEL	ch09eu.bicycle_model,(

			'Kings	Cross'	AS	start_station_name

	,	CURRENT_TIMESTAMP()	as	start_date

))

The	model	will	then	take	care	of	carrying	out	the	appropriate
transformations	to	create	the	necessary	features.	It	does	so	by	capturing
both	the	transformation	logic	and	artifacts	(such	as	scaling	constants,
embedding	coefficients,	lookup	tables,	and	so	on)	to	carry	out	the
transformation.

As	long	as	we	carefully	use	only	the	raw	inputs	in	the	SELECT	statement
and	put	all	subsequent	processing	of	the	input	in	the	TRANSFORM	clause,
BigQuery	ML	will	automatically	apply	these	transformations	during
prediction.

Trade-Offs	and	Alternatives

The	solution	described	above	works	because	BigQuery	ML	keeps	track	of
the	transformation	logic	and	artifacts	for	us,	saves	them	in	the	model
graph,	and	automatically	applies	the	transformations	during	prediction.

If	we	are	using	a	framework	where	support	for	the	Transform	design
pattern	is	not	built	in,	we	should	design	our	model	architecture	in	such	a
way	that	the	transformations	carried	out	during	training	are	easy	to
reproduce	during	serving.	We	can	do	this	by	making	sure	to	save	the
transformations	in	the	model	graph	or	by	creating	a	repository	of
transformed	features	(“Design	Pattern	26:	Feature	Store”).

TRANSFORMATIONS	IN	TENSORFLOW	AND	KERAS

Assume	that	we	are	training	an	ML	model	to	estimate	taxi	fare	in	New
York	and	have	six	inputs	(pickup	latitude,	pickup	longitude,	dropoff

latitude,	dropoff	longitude,	passenger	count,	and	pickup	time).
TensorFlow	supports	the	concept	of	feature	columns,	which	are	saved	in
the	model	graph.	However,	the	API	is	designed	assuming	that	the	raw
inputs	are	the	same	as	the	features.

Let’s	say	that	we	want	to	scale	the	latitudes	and	longitudes	(see	“Simple
Data	Representations”	in	Chapter	2	for	details),	create	a	transformed
feature	that	is	the	Euclidean	distance,	and	extract	the	hour	of	day	from	the
timestamp.	We	have	to	carefully	design	the	model	graph	(see	Figure	6-2),
keeping	the	Transform	concept	firmly	in	mind.	As	we	walk	through	the
code	below,	notice	how	we	set	things	up	so	that	we	clearly	design	three
separate	layers	in	our	Keras	model—the	Inputs	layer,	the	Transform	layer,
and	a	DenseFeatures	layer.

Figure	6-2.	The	model	graph	for	the	taxi	fare	estimation	problem	in	Keras.

First,	make	every	input	to	the	Keras	model	an	Input	layer	(the	full	code
is	in	a	notebook	on	GitHub):

inputs	=	{

								colname	:	tf.keras.layers.Input(

																				name=colname,	shape=(),	dtype='float32')

											for	colname	in	['pickup_longitude',	

'pickup_latitude',	

																											'dropoff_longitude',	

'dropoff_latitude']

}

In	Figure	6-2,	these	are	the	boxes	marked	dropoff_latitude,
dropoff_longitude,	and	so	on.

Second,	maintain	a	dictionary	of	transformed	features,	and	make	every
transformation	either	a	Keras	Preprocessing	layer	or	a	Lambda	layer.
Here,	we	scale	the	inputs	using	Lambda	layers:

transformed	=	{}

for	lon_col	in	['pickup_longitude',	'dropoff_longitude']:

												transformed[lon_col]	=	tf.keras.layers.Lambda(

																lambda	x:	(x+78)/8.0,	

																name='scale_{}'.format(lon_col)

)(inputs[lon_col])

for	lat_col	in	['pickup_latitude',	'dropoff_latitude']:

												transformed[lat_col]	=	tf.keras.layers.Lambda(

																lambda	x:	(x-37)/8.0,	

																name='scale_{}'.format(lat_col)

)(inputs[lat_col])

In	Figure	6-2,	these	are	the	boxes	marked
scale_dropoff_latitude,	scale_dropoff_longitude,	and
so	on.

https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/quests/serverlessml/06_feateng_keras/solution/taxifare_fc.ipynb

We	will	also	have	one	Lambda	layer	for	the	Euclidean	distance,	which	is
computed	from	four	of	the	Input	layers	(see	Figure	6-2):

def	euclidean(params):

				lon1,	lat1,	lon2,	lat2	=	params

				londiff	=	lon2	-	lon1

				latdiff	=	lat2	-	lat1

				return	tf.sqrt(londiff*londiff	+	latdiff*latdiff)

transformed['euclidean']	=	tf.keras.layers.Lambda(euclidean,	

name='euclidean')([

												inputs['pickup_longitude'],

												inputs['pickup_latitude'],

												inputs['dropoff_longitude'],

												inputs['dropoff_latitude']

])

Similarly,	the	column	to	create	the	hour	of	day	from	the	timestamp	is	a
Lambda	layer:

transformed['hourofday']	=	tf.keras.layers.Lambda(

												lambda	x:	tf.strings.to_number(tf.strings.substr(x,	

11,	2),	

																																											

out_type=tf.dtypes.int32),

												name='hourofday'

)(inputs['pickup_datetime'])

Third,	all	these	transformed	layers	will	be	concatenated	into	a
DenseFeatures	layer:

dnn_inputs	=	

tf.keras.layers.DenseFeatures(feature_columns.values())

(transformed)

Because	the	constructor	for	DenseFeatures	requires	a	set	of	feature
columns,	we	will	have	to	specify	how	to	take	each	of	the	transformed
values	and	convert	them	into	an	input	to	the	neural	network.	We	might	use

them	as	is,	one-hot	encode	them,	or	choose	to	bucketize	the	numbers.	For
simplicity,	let’s	just	use	them	all	as	is:

feature_columns	=	{

								colname:	tf.feature_column.numeric_column(colname)

											for	colname	in	['pickup_longitude',	

'pickup_latitude',	

																											'dropoff_longitude',	

'dropoff_latitude']

}

feature_columns['euclidean']	=	\

															tf.feature_column.numeric_column('euclidean')

Once	we	have	a	DenseFeatures	input	layer,	we	can	build	the	rest	of
our	Keras	model	as	usual:

h1	=	tf.keras.layers.Dense(32,	activation='relu',	name='h1')

(dnn_inputs)

h2	=	tf.keras.layers.Dense(8,	activation='relu',	name='h2')(h1)

output	=	tf.keras.layers.Dense(1,	name='fare')(h2)

model	=	tf.keras.models.Model(inputs,	output)

model.compile(optimizer='adam',	loss='mse',	metrics=['mse'])

The	complete	example	is	on	GitHub.

Notice	how	we	set	things	up	so	that	the	first	layer	of	the	Keras	model	was
Inputs.	The	second	layer	was	the	Transform	layer.	The	third	layer
was	the	DenseFeatures	layer	that	combined	them.	After	this	sequence
of	layers,	the	usual	model	architecture	starts.	Because	the	Transform
layer	is	part	of	the	model	graph,	the	usual	Serving	Function	and	Batch
Serving	solutions	(see	Chapter	5)	will	work	as	is.

EFFICIENT	TRANSFORMATIONS	WITH	TF.TRANSFORM

One	drawback	to	the	above	approach	is	that	the	transformations	will	be

https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/quests/serverlessml/06_feateng_keras/solution/taxifare_fc.ipynb

carried	out	during	each	iteration	of	training.	This	is	not	such	a	big	deal	if
all	we	are	doing	is	scaling	by	known	constants.	But	what	if	our
transformations	are	more	computationally	expensive?	What	if	we	want	to
scale	using	the	mean	and	variance,	in	which	case,	we	need	to	pass	through
all	the	data	first	to	compute	these	variables?

TIP
It	is	helpful	to	differentiate	between	instance-level	transformations	that	can	be	part	of	the	model
directly	(where	the	only	drawback	is	applying	them	on	each	training	iteration)	and	dataset-level
transformations,	where	we	need	a	full	pass	to	compute	overall	statistics	or	the	vocabulary	of	a
categorical	variable.	Such	dataset-level	transformations	cannot	be	part	of	the	model	and	have	to
be	applied	as	a	scalable	preprocessing	step,	which	produces	the	Transform,	capturing	the	logic
and	the	artifacts	(mean,	variance,	vocabulary,	and	so	on)	to	be	attached	to	the	model.	For
dataset-level	transformations,	use	tf.transform.

The	tf.transform	library	(which	is	part	of	TensorFlow	Extended)
provides	an	efficient	way	of	carrying	out	transformations	over	a
preprocessing	pass	through	the	data	and	saving	the	resulting	features	and
transformation	artifacts	so	that	the	transformations	can	be	applied	by
TensorFlow	Serving	during	prediction	time.

The	first	step	is	to	define	the	transformation	function.	For	example,	to
scale	all	the	inputs	to	be	zero	mean	and	unit	variance	and	bucketize	them,
we	would	create	this	preprocessing	function	(see	the	full	code	on	GitHub):

def	preprocessing_fn(inputs):

		outputs	=	{}

		for	key	in	...:

						outputs[key	+	'_z']	=	tft.scale_to_z_score(inputs[key])

						outputs[key	+	'_bkt']	=	tft.bucketize(inputs[key],	5)

		return	outputs

https://oreil.ly/OznI3
https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils_native_keras.py

Before	training,	the	raw	data	is	read	and	transformed	using	the	prior
function	in	Apache	Beam:

						transformed_dataset,	transform_fn	=	(raw_dataset	|

										

beam_impl.AnalyzeAndTransformDataset(preprocessing_fn))

						transformed_data,	transformed_metadata	=	

transformed_dataset

The	transformed	data	is	then	written	out	in	a	format	suitable	for	reading	by
the	training	pipeline:

						transformed_data	|	tfrecordio.WriteToTFRecord(

										PATH_TO_TFT_ARTIFACTS,

										coder=example_proto_coder.ExampleProtoCoder(

														transformed_metadata.schema))

The	Beam	pipeline	also	stores	the	preprocessing	function	that	needs	to	be
run,	along	with	any	artifacts	the	function	needs,	into	an	artifact	in
TensorFlow	graph	format.	In	the	case	above,	for	example,	this	artifact
would	include	the	mean	and	variance	for	scaling	the	numbers,	and	the
bucket	boundaries	for	bucketizing	numbers.	The	training	function	reads
transformed	data	and,	therefore,	the	transformations	do	not	have	to	be
repeated	within	the	training	loop.

The	serving	function	needs	to	load	in	these	artifacts	and	create	a
Transform	layer:

tf_transform_output	=	

tft.TFTransformOutput(PATH_TO_TFT_ARTIFACTS)

tf_transform_layer	=	

tf_transform_output.transform_features_layer()

Then,	the	serving	function	can	apply	the	Transform	layer	to	the	parsed
input	features	and	invoke	the	model	with	the	transformed	data	to	calculate

the	model	output:

		@tf.function

		def	serve_tf_examples_fn(serialized_tf_examples):

				feature_spec	=	tf_transform_output.raw_feature_spec()

				feature_spec.pop(_LABEL_KEY)

				parsed_features	=	

tf.io.parse_example(serialized_tf_examples,	feature_spec)

				transformed_features	=	tf_transform_layer(parsed_features)

				return	model(transformed_features)

In	this	way,	we	are	making	sure	to	insert	the	transformations	into	the
model	graph	for	serving.	At	the	same	time,	because	the	model	training
happens	on	the	transformed	data,	our	training	loop	does	not	have	to	carry
out	these	transformations	during	each	epoch.

TEXT	AND	IMAGE	TRANSFORMATIONS

In	text	models,	it	is	common	to	preprocess	input	text	(such	as	to	remove
punctuation,	stop	words,	capitalization,	stemming,	and	so	on)	before
providing	the	cleaned	text	as	a	feature	to	the	model.	Other	common
feature	engineering	on	text	inputs	includes	tokenization	and	regular
expression	matching.	It	is	essential	that	the	same	cleanup	or	extraction
steps	be	carried	out	at	inference	time.

The	need	to	capture	transformations	is	important	even	if	there	is	no
explicit	feature	engineering	as	when	using	deep	learning	with	images.
Image	models	usually	have	an	Input	layer	that	accepts	images	of	a	specific
size.	Image	inputs	of	a	different	size	will	have	to	be	cropped,	padded,	or
resampled	to	this	fixed	size	before	being	fed	into	the	model.	Other
common	transformations	in	image	models	include	color	manipulations
(gamma	correction,	grayscale	conversion,	and	so	on)	and	orientation
correction.	It	is	essential	that	such	transformations	be	identical	between

what	was	carried	out	on	the	training	dataset	and	what	will	be	carried	out
during	inference.	The	Transform	pattern	helps	ensure	this	reproducibility.

With	image	models,	there	are	some	transformations	(such	as	data
augmentation	by	random	cropping	and	zooming)	that	are	applied	only
during	training.	These	transformations	do	not	need	to	be	captured	during
inference.	Such	transformations	will	not	be	part	of	the	Transform	pattern.

ALTERNATE	PATTERN	APPROACHES

An	alternative	approach	to	solving	the	training-serving	skew	problem	is	to
employ	the	Feature	Store	pattern.	The	feature	store	comprises	a
coordinated	computation	engine	and	repository	of	transformed	feature
data.	The	computation	engine	supports	low-latency	access	for	inference
and	batch	creation	of	transformed	features	while	the	data	repository
provides	quick	access	to	transformed	features	for	model	training.	The
advantage	of	a	feature	store	is	there	is	no	requirement	for	the
transformation	operations	to	fit	into	the	model	graph.	For	example,	as	long
as	the	feature	store	supports	Java,	the	preprocessing	operations	could	be
carried	out	in	Java	while	the	model	itself	could	be	written	in	PyTorch.	The
disadvantage	of	a	feature	store	is	that	it	makes	the	model	dependent	on	the
feature	store	and	makes	the	serving	infrastructure	much	more	complex.

Another	way	to	separate	out	the	programming	language	and	framework
used	for	transformation	of	the	features	from	the	language	used	to	write	the
model	is	to	carry	out	the	preprocessing	in	containers	and	use	these	custom
containers	as	part	of	both	the	training	and	serving.	This	is	discussed	in
“Design	Pattern	25:	Workflow	Pipeline”	and	is	adopted	in	practice	by
Kubeflow	Serving.

Design	Pattern	22:	Repeatable	Splitting

Design	Pattern	22:	Repeatable	Splitting
To	ensure	that	sampling	is	repeatable	and	reproducible,	it	is	necessary	to
use	a	well-distributed	column	and	a	deterministic	hash	function	to	split	the
available	data	into	training,	validation,	and	test	datasets.

Problem

Many	machine	learning	tutorials	will	suggest	splitting	data	randomly	into
training,	validation,	and	test	datasets	using	code	similar	to	the	following:

df	=	pd.DataFrame(...)

rnd	=	np.random.rand(len(df))

train	=	df[rnd	<	0.8]

valid	=	df[rnd	>=	0.8	&	rnd	<	0.9]

test		=	df[rnd	>=	0.9]

Unfortunately,	this	approach	fails	in	many	real-world	situations.	The
reason	is	that	it	is	rare	that	the	rows	are	independent.	For	example,	if	we
are	training	a	model	to	predict	flight	delays,	the	arrival	delays	of	flights	on
the	same	day	will	be	highly	correlated	with	one	another.	This	leads	to
leakage	of	information	between	the	training	and	testing	dataset	when	some
of	the	flights	on	any	particular	day	are	in	the	training	dataset	and	some
other	flights	on	the	same	day	are	in	the	testing	dataset.	This	leakage	due	to
correlated	rows	is	a	frequently	occurring	problem,	and	one	that	we	have	to
avoid	when	doing	machine	learning.

In	addition,	the	rand	function	orders	data	differently	each	time	it	is	run,
so	if	we	run	the	program	again,	we	will	get	a	different	80%	of	rows.	This
can	play	havoc	if	we	are	experimenting	with	different	machine	learning
models	with	the	goal	of	choosing	the	best	one—we	need	to	compare	the
model	performance	on	the	same	test	dataset.	In	order	to	address	this,	we
need	to	set	the	random	seed	in	advance	or	store	the	data	after	it	is	split.

Hardcoding	how	the	data	is	to	be	split	is	not	a	good	idea	because,	when
carrying	out	techniques	like	jackknifing,	bootstrapping,	cross-validation,
and	hyperparameter	tuning,	we	will	need	to	change	this	data	split	and	do
so	in	a	way	that	allows	us	to	do	individual	trials.

For	machine	learning,	we	want	lightweight,	repeatable	splitting	of	the	data
that	works	regardless	of	programming	language	or	random	seeds.	We	also
want	to	ensure	that	correlated	rows	fall	into	the	same	split.	For	example,
we	do	not	want	flights	on	January	2,	2019	in	the	test	dataset	if	flights	on
that	day	are	in	the	training	dataset.

Solution

First,	we	identify	a	column	that	captures	the	correlation	relationship
between	rows.	In	our	airline	delay	dataset,	this	is	the	date	column.	Then,
we	use	the	last	few	digits	of	a	hash	function	on	that	column	to	split	the
data.	For	the	airline	delay	problem,	we	can	use	the	Farm	Fingerprint
hashing	algorithm	on	the	date	column	to	split	the	available	data	into
training,	validation,	and	testing	datasets.

TIP
For	more	on	the	Farm	Fingerprint	algorithm,	support	for	other	frameworks	and	languages,	and
the	relationship	between	hashing	and	cryptography,	please	see	“Design	Pattern	1:	Hashed
Feature”	in	Chapter	2.	In	particular,	open	source	wrappers	of	the	Farm	Hash	algorithm	are
available	in	a	number	of	languages	(including	Python),	and	so	this	pattern	can	be	applied	even	if
data	is	not	in	a	data	warehouse	that	supports	a	repeatable	hash	out	of	the	box.

Here	is	how	to	split	the	dataset	based	on	the	hash	of	the	date	column:

SELECT

https://github.com/google/farmhash
https://oreil.ly/526Dc

		airline,

		departure_airport,

		departure_schedule,

		arrival_airport,

		arrival_delay

FROM

		`bigquery-samples`.airline_ontime_data.flights

WHERE

		ABS(MOD(FARM_FINGERPRINT(date),	10))	<	8	--	80%	for	TRAIN

To	split	on	the	date	column,	we	compute	its	hash	using	the
FARM_FINGERPRINT	function	and	then	use	the	modulo	function	to	find
an	arbitrary	80%	subset	of	the	rows.	This	is	now	repeatable—because	the
FARM_FINGERPRINT	function	returns	the	same	value	any	time	it	is
invoked	on	a	specific	date,	we	can	be	sure	we	will	get	the	same	80%	of
data	each	time.	As	a	result,	all	the	flights	on	any	given	date	will	belong	to
the	same	split—train,	validation,	or	test.	This	is	repeatable	regardless	of
the	random	seed.

If	we	want	to	split	our	data	by	arrival_airport	(so	that	80%	of
airports	are	in	the	training	dataset,	perhaps	because	we	are	trying	to
predict	something	about	airport	amenities),	we	would	compute	the	hash	on
arrival_airport	instead	of	date.

It	is	also	straightforward	to	get	the	validation	data:	change	the	<	8	in	the
query	above	to	=8,	and	for	testing	data,	change	it	to	=9.	This	way,	we	get
10%	of	samples	in	validation	and	10%	in	testing.

What	are	the	considerations	for	choosing	the	column	to	split	on?	The
date	column	has	to	have	several	characteristics	for	us	to	be	able	to	use	it
as	the	splitting	column:

Rows	at	the	same	date	tend	to	be	correlated—again,	this	is	the

key	reason	why	we	want	to	ensure	that	all	rows	on	the	same	date
are	in	the	same	split.

date	is	not	an	input	to	the	model	even	though	it	is	used	as	a
criteria	for	splitting.	Features	extracted	from	date	such	as	day	of
week	or	hour	of	day	can	be	inputs,	but	we	can’t	use	an	actual
input	as	the	field	with	which	to	split	because	the	trained	model
will	not	have	seen	20%	of	the	possible	input	values	for	the	date
column	if	we	use	80%	of	the	data	for	training.

There	have	to	be	enough	date	values.	Since	we	are	computing
the	hash	and	finding	the	modulo	with	respect	to	10,	we	need	at
least	10	unique	hash	values.	The	more	unique	values	we	have,	the
better.	To	be	safe,	a	rule	of	thumb	is	to	shoot	for	3–5×	the
denominator	for	the	modulo,	so	in	this	case,	we	want	40	or	so
unique	dates.

The	label	has	to	be	well	distributed	among	the	dates.	If	it	turns
out	that	all	the	delays	happened	on	January	1	and	there	were	no
delays	the	rest	of	the	year,	this	wouldn’t	work	since	the	split
datasets	will	be	skewed.	To	be	safe,	look	at	a	graph	and	make
sure	that	all	three	splits	have	a	similar	distribution	of	labels.	To	be
extra	safe,	ensure	that	the	distributions	of	label	by	departure	delay
and	other	input	values	are	similar	across	the	three	datasets.

TIP
We	can	automate	checking	whether	the	label	distributions	are	similar	across	the	three	datasets	by
using	the	Kolomogorov–Smirnov	test:	just	plot	the	cumulative	distribution	functions	of	the	label
in	the	three	datasets	and	find	the	maximum	distance	between	each	pair.	The	smaller	the
maximum	distance,	the	better	the	split.

Trade-Offs	and	Alternatives

Let’s	look	at	a	couple	of	variants	of	how	we	might	do	repeatable	splitting

and	discuss	the	pros	and	cons	of	each.	Let’s	also	examine	how	to	extend
this	idea	to	do	repeatable	sampling,	not	just	splitting.

SINGLE	QUERY

We	don’t	need	three	separate	queries	to	generate	training,	validation,	and
test	splits.	We	can	do	it	in	a	single	query	as	follows:

CREATE	OR	REPLACE	TABLE	mydataset.mytable	AS

SELECT

		airline,

		departure_airport,

		departure_schedule,

		arrival_airport,

		arrival_delay,

		CASE(ABS(MOD(FARM_FINGERPRINT(date),	10)))

						WHEN	9	THEN	'test'

						WHEN	8	THEN	'validation'

						ELSE	'training'	END	AS	split_col

FROM

		`bigquery-samples`.airline_ontime_data.flights

We	can	then	use	the	split_col	column	to	decide	which	of	three
datasets	any	particular	row	falls	in.	Using	a	single	query	decreases
computational	time	but	requires	creating	a	new	table	or	modifying	the
source	table	to	add	the	extra	split_col	column.

RANDOM	SPLIT

What	if	the	rows	are	not	correlated?	In	that	case,	we	want	a	random,
repeatable	split	but	do	not	have	a	natural	column	to	split	by.	We	can	hash
the	entire	row	of	data	by	converting	it	to	a	string	and	hashing	that	string:

SELECT

		airline,

		departure_airport,

		departure_schedule,

		arrival_airport,

		arrival_delay

FROM

		`bigquery-samples`.airline_ontime_data.flights	f

WHERE

		ABS(MOD(FARM_FINGERPRINT(TO_JSON_STRING(f),	10))	<	8

Note	that	if	we	have	duplicate	rows,	they	will	always	end	up	in	the	same
split.	This	might	be	exactly	what	we	desire.	If	not,	then	we	will	have	to
add	a	unique	ID	column	to	the	SELECT	query.

SPLIT	ON	MULTIPLE	COLUMNS

We	have	talked	about	a	single	column	that	captures	the	correlation
between	rows.	What	if	it	is	a	combination	of	columns	that	capture	when
two	rows	are	correlated?	In	such	cases,	simply	concatenate	the	fields	(this
is	a	feature	cross)	before	computing	the	hash.	For	example,	suppose	we
only	wish	to	ensure	that	flights	from	the	same	airport	on	the	same	day	do
not	show	up	in	different	splits.	In	that	case,	we’d	do	the	following:

SELECT

		airline,

		departure_airport,

		departure_schedule,

		arrival_airport,

		arrival_delay

FROM

		`bigquery-samples`.airline_ontime_data.flights

WHERE

		ABS(MOD(FARM_FINGERPRINT(CONCAT(date,	arrival_airport)),	10))	

<	8

If	we	split	on	a	feature	cross	of	multiple	columns,	we	can	use
arrival_airport	as	one	of	the	inputs	to	the	model,	since	there	will
be	examples	of	any	particular	airport	in	both	the	training	and	test	sets.	On
the	other	hand,	if	we	had	split	only	on	arrival_airport,	then	the

training	and	test	sets	will	have	a	mutually	exclusive	set	of	arrival	airports
and,	therefore,	arrival_airport	cannot	be	an	input	to	the	model.

REPEATABLE	SAMPLING

The	basic	solution	is	good	if	we	want	80%	of	the	entire	dataset	as	training,
but	what	if	we	want	to	play	around	with	a	smaller	dataset	than	what	we
have	in	BigQuery?	This	is	common	for	local	development.	The	flights
dataset	is	70	million	rows,	and	perhaps	what	we	want	is	a	smaller	dataset
of	one	million	flights.	How	would	we	pick	1	in	70	flights,	and	then	80%	of
those	as	training?

What	we	cannot	do	is	something	along	the	lines	of:

SELECT

			date,

			airline,

			departure_airport,

			departure_schedule,

			arrival_airport,

			arrival_delay

	FROM

			`bigquery-samples`.airline_ontime_data.flights

	WHERE

		ABS(MOD(FARM_FINGERPRINT(date),	70))	=	0

		AND	ABS(MOD(FARM_FINGERPRINT(date),	10))	<	8

We	cannot	pick	1	in	70	rows	and	then	pick	8	in	10.	If	we	are	picking
numbers	that	are	divisible	by	70,	of	course	they	are	also	going	to	be
divisible	by	10!	That	second	modulo	operation	is	useless.

Here’s	a	better	solution:

SELECT

			date,

			airline,

			departure_airport,

			departure_schedule,

			arrival_airport,

			arrival_delay

	FROM

			`bigquery-samples`.airline_ontime_data.flights

	WHERE

		ABS(MOD(FARM_FINGERPRINT(date),	70))	=	0

		AND	ABS(MOD(FARM_FINGERPRINT(date),	700))	<	560

In	this	query,	the	700	is	70*10	and	560	is	70*8.	The	first	modulo
operation	picks	1	in	70	rows	and	the	second	modulo	operation	picks	8	in
10	of	those	rows.

For	validation	data,	you’d	replace	<	560	by	the	appropriate	range:

ABS(MOD(FARM_FINGERPRINT(date),	70))	=	0

AND	ABS(MOD(FARM_FINGERPRINT(date),	700))	BETWEEN	560	AND	629	

In	the	preceding	code,	our	one	million	flights	come	from	only	1/70th	of
the	days	in	the	dataset.	This	may	be	precisely	what	we	want—for	example,
we	may	be	modeling	the	full	spectrum	of	flights	on	a	particular	day	when
experimenting	with	the	smaller	dataset.	However,	if	what	we	want	is
1/70th	of	the	flights	on	any	particular	day,	we’d	have	to	use	RAND()	and
save	the	result	as	a	new	table	for	repeatability.	From	this	smaller	table,	we
can	sample	80%	of	dates	using	FARM_FINGERPRINT().	Because	this
new	table	is	only	one	million	rows	and	only	for	experimentation,	the
duplication	may	be	acceptable.

SEQUENTIAL	SPLIT

In	the	case	of	time-series	models,	a	common	approach	is	to	use	sequential
splits	of	data.	For	example,	to	train	a	demand	forecasting	model	where	we
train	a	model	on	the	past	45	days	of	data	to	predict	demand	over	the	next

14	days,	we’d	train	the	model	(full	code)	by	pulling	the	necessary	data:

CREATE	OR	REPLACE	MODEL	ch09eu.numrentals_forecast

OPTIONS(model_type='ARIMA',

								time_series_data_col='numrentals',

								time_series_timestamp_col='date')	AS

SELECT

			CAST(EXTRACT(date	from	start_date)	AS	TIMESTAMP)	AS	date

			,	COUNT(*)	AS	numrentals

FROM

		`bigquery-public-data`.london_bicycles.cycle_hire

GROUP	BY	date

HAVING	date	BETWEEN	

DATE_SUB(CURRENT_DATE(),	INTERVAL	45	DAY)	AND	CURRENT_DATE()

Such	a	sequential	split	of	data	is	also	necessary	in	fast-moving
environments	even	if	the	goal	is	not	to	predict	the	future	value	of	a	time
series.	For	example,	in	a	fraud-detection	model,	bad	actors	adapt	quickly
to	the	fraud	algorithm,	and	the	model	has	to	therefore	be	continually
retrained	on	the	latest	data	to	predict	future	fraud.	It	is	not	sufficient	to
generate	the	evaluation	data	from	a	random	split	of	the	historical	dataset
because	the	goal	is	to	predict	behavior	that	the	bad	actors	will	exhibit	in
the	future.	The	indirect	goal	is	the	same	as	that	of	a	time-series	model	in
that	a	good	model	will	be	able	to	train	on	historical	data	and	predict	future
fraud.	The	data	has	to	be	split	sequentially	in	terms	of	time	to	correctly
evaluate	this.	For	example	(full	code):

def	read_dataset(client,	row_restriction,	batch_size=2048):

				...

				bqsession	=	client.read_session(

								...

								row_restriction=row_restriction)

				dataset	=	bqsession.parallel_read_rows()

				return	(dataset.prefetch(1).map(features_and_labels)

															.shuffle(batch_size*10).batch(batch_size))

client	=	BigQueryClient()

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/blogs/bqml_arima/bqml_arima.ipynb
https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/blogs/bigquery_datascience/bigquery_tensorflow.ipynb

train_df	=	read_dataset(client,	'Time	<=	144803',	2048)

eval_df	=	read_dataset(client,	'Time	>	144803',	2048)

Another	instance	where	a	sequential	split	of	data	is	needed	is	when	there
are	high	correlations	between	successive	times.	For	example,	in	weather
forecasting,	the	weather	on	consecutive	days	is	highly	correlated.
Therefore,	it	is	not	reasonable	to	put	October	12	in	the	training	dataset	and
October	13	in	the	testing	dataset	because	there	will	be	considerable
leakage	(imagine,	for	example,	that	there	is	a	hurricane	on	October	12).
Further,	weather	is	highly	seasonal,	and	so	it	is	necessary	to	have	days
from	all	seasons	in	all	three	splits.	One	way	to	properly	evaluate	the
performance	of	a	forecasting	model	is	to	use	a	sequential	split	but	take
seasonality	into	account	by	using	the	first	20	days	of	every	month	in	the
training	dataset,	the	next	5	days	in	the	validation	dataset,	and	the	last	5
days	in	the	testing	dataset.

In	all	these	instances,	repeatable	splitting	requires	only	that	we	place	the
logic	used	to	create	the	split	into	version	control	and	ensure	that	the	model
version	is	updated	whenever	this	logic	is	changed.

STRATIFIED	SPLIT

The	example	above	of	how	weather	patterns	are	different	between
different	seasons	is	an	example	of	a	situation	where	the	splitting	needs	to
happen	after	the	dataset	is	stratified.	We	needed	to	ensure	that	there	were
examples	of	all	seasons	in	each	split,	and	so	we	stratified	the	dataset	in
terms	of	months	before	carrying	out	the	split.	We	used	the	first	20	days	of
every	month	in	the	training	dataset,	the	next	5	days	in	the	validation
dataset,	and	the	last	5	days	in	the	testing	dataset.	Had	we	not	been
concerned	with	the	correlation	between	successive	days,	we	could	have
randomly	split	the	dates	within	each	month.

The	larger	the	dataset,	the	less	concerned	we	have	to	be	with	stratification.
On	very	large	datasets,	the	odds	are	very	high	that	the	feature	values	will
be	well	distributed	among	all	the	splits.	Therefore,	in	large-scale	machine
learning,	the	need	to	stratify	happens	quite	commonly	only	in	the	case	of
skewed	datasets.	For	example,	in	the	flights	dataset,	less	than	1%	of	flights
take	off	before	6	a.m.,	and	so	the	number	of	flights	that	meet	this	criterion
may	be	quite	small.	If	it	is	critical	for	our	business	use	case	to	get	the
behavior	of	these	flights	correct,	we	should	stratify	the	dataset	based	on
departure	hour	and	split	each	stratification	evenly.

The	departure	time	was	an	example	of	a	skewed	feature.	In	an	imbalanced
classification	problem	(such	as	fraud	detection,	where	the	number	of	fraud
examples	is	quite	small),	we	might	want	to	stratify	the	dataset	by	the	label
and	split	each	stratification	evenly.	This	is	also	important	if	we	have	a
multilabel	problem	and	some	of	the	labels	are	rarer	than	others.	These	are
discussed	in	“Design	Pattern	10:	Rebalancing	”	in	Chapter	3.

UNSTRUCTURED	DATA

Although	we	have	focused	in	this	section	on	structured	data,	the	same
principles	apply	to	unstructured	data	such	as	images,	video,	audio,	or	free-
form	text	as	well.	Just	use	the	metadata	to	carry	out	the	split.	For	example,
if	videos	taken	on	the	same	day	are	correlated,	use	a	video’s	capture	date
from	its	metadata	to	split	the	videos	among	independent	datasets.
Similarly,	if	text	reviews	from	the	same	person	tend	to	be	correlated,	use
the	Farm	Fingerprint	of	the	user_id	of	the	reviewer	to	repeatedly	split
reviews	among	the	datasets.	If	the	metadata	is	not	available	or	there	is	no
correlation	between	instances,	encode	the	image	or	video	using	Base64
encoding	and	compute	the	fingerprint	of	the	encoding.

A	natural	way	to	split	text	datasets	might	be	to	use	the	hash	of	the	text

itself	for	splitting.	However,	this	is	akin	to	a	random	split	and	does	not
address	the	problem	of	correlations	between	reviews.	For	example,	if	a
person	uses	the	word	“stunning”	a	lot	in	their	negative	reviews	or	if	a
person	rates	all	Star	Wars	movies	as	bad,	their	reviews	are	correlated.
Similarly,	a	natural	way	to	split	image	or	audio	datasets	might	be	to	use
the	hash	of	the	filename	for	splitting,	but	it	does	not	address	the	problem
of	correlations	between	images	or	videos.	It	is	worth	thinking	carefully
about	the	best	way	to	split	a	dataset.	In	our	experience,	many	problems
with	poor	performance	of	ML	can	be	addressed	by	designing	the	data	split
(and	data	collection)	with	potential	correlations	in	mind.

When	computing	embeddings	or	pre-training	autoencoders,	we	should
make	sure	to	first	split	the	data	and	perform	these	pre-computations	on	the
training	dataset	only.	Because	of	this,	splitting	should	not	be	done	on	the
embeddings	of	the	images,	videos,	or	text	unless	these	embeddings	were
created	on	a	completely	separate	dataset.

Design	Pattern	23:	Bridged	Schema
The	Bridged	Schema	design	pattern	provides	ways	to	adapt	the	data	used
to	train	a	model	from	its	older,	original	data	schema	to	newer,	better	data.
This	pattern	is	useful	because	when	an	input	provider	makes
improvements	to	their	data	feed,	it	often	takes	time	for	enough	data	of	the
improved	schema	to	be	collected	for	us	to	adequately	train	a	replacement
model.	The	Bridged	Schema	pattern	allows	us	to	use	as	much	of	the	newer
data	as	is	available,	but	augment	it	with	some	of	the	older	data	to	improve
model	accuracy.

Problem

Consider	a	point-of-sale	application	that	suggests	how	much	to	tip	a
delivery	person.	The	application	might	use	a	machine	learning	model	that
predicts	the	tip	amount,	taking	into	account	the	order	amount,	delivery
time,	delivery	distance,	and	so	on.	Such	a	model	would	be	trained	on	the
actual	tips	added	by	customers.

Assume	that	one	of	the	inputs	to	the	model	is	the	payment	type.	In	the
historical	data,	this	has	been	recorded	as	“cash”	or	“card.”	However,	let’s
say	the	payment	system	has	been	upgraded	and	it	now	provides	more
detail	on	the	type	of	card	(gift	card,	debit	card,	credit	card)	that	was	used.
This	is	extremely	useful	information	because	the	tipping	behavior	varies
between	the	three	types	of	cards.

At	prediction	time,	the	newer	information	will	always	be	available	since
we	are	always	predicting	tip	amounts	on	transactions	conducted	after	the
payment	system	upgrade.	Because	the	new	information	is	extremely
valuable,	and	it	is	already	available	in	production	to	the	prediction	system,
we	would	like	to	use	it	in	the	model	as	soon	as	possible.

We	cannot	train	a	new	model	exclusively	on	the	newer	data	because	the
quantity	of	new	data	will	be	quite	small,	limited	as	it	is	to	transactions
after	the	payment	system	upgrade.	Because	the	quality	of	an	ML	model	is
highly	dependent	on	the	amount	of	data	used	to	train	it,	it	is	likely	that	a
model	trained	with	only	the	new	data	is	going	to	fare	poorly.

Solution

The	solution	is	to	bridge	the	schema	of	the	old	data	to	match	the	new	data.
Then,	we	train	an	ML	model	using	as	much	of	the	new	data	as	is	available
and	augment	it	with	the	older	data.	There	are	two	questions	to	answer.
First,	how	will	we	square	the	fact	that	the	older	data	has	only	two

categories	for	payment	type,	whereas	the	new	data	has	four	categories?
Second,	how	will	the	augmentation	be	done	to	create	datasets	for	training,
validation,	and	testing?

BRIDGED	SCHEMA

Consider	the	case	where	the	older	data	has	two	categories	(cash	and	card).
In	the	new	schema,	the	card	category	is	now	much	more	granular	(gift
card,	debit	card,	credit	card).	What	we	do	know	is	that	a	transaction	coded
as	“card”	in	the	old	data	would	have	been	one	of	these	types	but	the	actual
type	was	not	recorded.	It’s	possible	to	bridge	the	schema	probabilistically
or	statically.	The	static	method	is	what	we	recommend,	but	it	is	easier	to
understand	if	we	walk	through	the	probabilistic	method	first.

Probabilistic	method

Imagine	that	we	estimate	from	the	newer	training	data	that	of	the	card
transactions,	10%	are	gift	cards,	30%	are	debit	cards,	and	60%	are	credit
cards.	Each	time	an	older	training	example	is	loaded	into	the	trainer
program,	we	could	choose	the	card	type	by	generating	a	uniformly
distributed	random	number	in	the	range	[0,	100)	and	choosing	a	gift	card
when	the	random	number	is	less	than	10,	a	debit	card	if	it	is	in	[10,	40),
and	a	credit	card	otherwise.	Provided	we	train	for	enough	epochs,	any
training	example	would	be	presented	as	all	three	categories,	but
proportional	to	the	actual	frequency	of	occurrence.	The	newer	training
examples,	of	course,	would	always	have	the	actually	recorded	category.

The	justification	for	the	probabilistic	approach	is	that	we	treat	each	older
example	as	having	happened	hundreds	of	times.	As	the	trainer	goes
through	the	data,	in	each	epoch,	we	simulate	one	of	those	instances.	In	the
simulation,	we	expect	that	10%	of	the	time	that	a	card	was	used,	the

transaction	would	have	occurred	with	a	gift	card.	That’s	why	we	pick	“gift
card”	for	the	value	of	the	categorical	input	10%	of	the	time.	This	is,	of
course,	simplistic—just	because	gift	cards	are	used	10%	of	the	time
overall,	it	is	not	the	case	that	gift	cards	will	be	used	10%	of	the	time	for
any	specific	transaction.	As	an	extreme	example,	maybe	taxi	companies
disallow	use	of	gift	cards	on	airport	trips,	and	so	a	gift	card	is	not	even	a
legal	value	for	some	historical	examples.	However,	in	the	absence	of	any
extra	information,	we	will	assume	that	the	frequency	distribution	is	the
same	for	all	the	historical	examples.

Static	method

Categorical	variables	are	usually	one-hot	encoded.	If	we	follow	the
probabilistic	approach	above	and	train	long	enough,	the	average	one-hot
encoded	value	presented	to	the	training	program	of	a	“card”	in	the	older
data	will	be	[0,	0.1,	0.3,	0.6].	The	first	0	corresponds	to	the	cash	category.
The	second	number	is	0.1	because	10%	of	the	time,	on	card	transactions,
this	number	will	be	1	and	it	will	be	zero	in	all	other	cases.	Similarly,	we
have	0.3	for	debit	cards	and	0.6	for	credit	cards.

To	bridge	the	older	data	into	the	newer	schema,	we	can	transform	the
older	categorical	data	into	this	representation	where	we	insert	the	a	priori
probability	of	the	new	classes	as	estimated	from	the	training	data.	The
newer	data,	on	the	other	hand,	will	have	[0,	0,	1,	0]	for	a	transaction	that	is
known	to	have	been	paid	by	a	debit	card.

We	recommend	the	static	method	over	the	probabilistic	method	because	it
is	effectively	what	happens	if	the	probabilistic	method	runs	for	long
enough.	It	is	also	much	simpler	to	implement	since	every	card	payment
from	the	old	data	will	have	the	exact	same	value	(the	4-element	array	[0,
0.1,	0.3,	0.6]).	We	can	update	the	older	data	in	one	line	of	code,	rather

than	writing	a	script	to	generate	random	numbers	as	in	the	probabilistic
method.	It	is	also	computationally	much	less	expensive.

AUGMENTED	DATA

In	order	to	maximize	use	of	the	newer	data,	make	sure	to	use	only	two
splits	of	the	data,	which	is	discussed	in	“Design	Pattern	12:	Checkpoints”
in	Chapter	4.	Let’s	say	that	we	have	1	million	examples	available	with	the
old	schema,	but	only	5,000	examples	available	with	the	new	schema.	How
should	we	create	the	training	and	evaluation	datasets?

Let’s	take	the	evaluation	dataset	first.	It	is	important	to	realize	that	the
purpose	of	training	an	ML	model	is	to	make	predictions	on	unseen	data.
The	unseen	data	in	our	case	will	be	exclusively	data	that	matches	the	new
schema.	Therefore,	we	need	to	set	aside	a	sufficient	number	of	examples
from	the	new	data	to	adequately	evaluate	generalization	performance.
Perhaps	we	need	2,000	examples	in	our	evaluation	dataset	in	order	to	be
confident	that	the	model	will	perform	well	in	production.	The	evaluation
dataset	will	not	contain	any	older	examples	that	have	been	bridged	to
match	the	newer	schema.

How	do	we	know	whether	we	need	1,000	examples	in	the	evaluation
dataset	or	2,000?	To	estimate	this	number,	compute	the	evaluation	metric
of	the	current	production	model	(which	was	trained	on	the	old	schema)	on
subsets	of	its	evaluation	dataset	and	determine	how	large	the	subset	has	to
be	before	the	evaluation	metric	is	consistent.

Computing	the	evaluation	metric	on	different	subsets	could	be	done	as
follows	(as	usual,	the	full	code	is	on	GitHub	in	the	code	repository	for	this
book):

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/bridging_schema.ipynb

for	subset_size	in	range(100,	5000,	100):

				sizes.append(subset_size)

				#	compute	variability	of	the	eval	metric

				#	at	this	subset	size	over	25	tries

				scores	=	[]

				for	x	in	range(1,	25):

								indices	=	np.random.choice(N_eval,	

																											size=subset_size,	replace=False)

								scores.append(

												model.score(df_eval[indices],	

																								df_old.loc[N_train+indices,	'tip'])

)

				score_mean.append(np.mean(scores))

				score_stddev.append(np.std(scores))

In	the	code	above,	we	are	trying	out	evaluation	sizes	of	100,	200,	…,
5,000.	At	each	subset	size,	we	are	evaluating	the	model	25	times,	each
time	on	a	different,	randomly	sampled	subset	of	the	full	evaluation	set.
Because	this	is	the	evaluation	set	of	the	current	production	model	(which
we	were	able	to	train	with	one	million	examples),	the	evaluation	dataset
here	might	hold	hundreds	of	thousands	of	examples.	We	can	then	compute
the	standard	deviation	of	the	evaluation	metric	over	the	25	subsets,	repeat
this	on	different	evaluation	sizes,	and	graph	this	standard	deviation	against
the	evaluation	size.	The	resulting	graph	will	be	something	like	Figure	6-3.

Figure	6-3.	Determine	the	number	of	evaluation	examples	needed	by	evaluating	the	production
model	on	subsets	of	varying	sizes	and	tracking	the	variability	of	the	evaluation	metric	by	the	size	of

the	subset.	Here,	the	standard	deviation	starts	to	plateau	at	around	2,000	examples.

From	Figure	6-3,	we	see	that	the	number	of	evaluation	examples	needs	to
be	at	least	2,000,	and	is	ideally	3,000	or	more.	Let’s	assume	for	the	rest	of
this	discussion	that	we	choose	to	evaluate	on	2,500	examples.

The	training	set	would	contain	the	remaining	2,500	new	examples	(the
amount	of	new	data	available	after	withholding	2,500	for	evaluation)
augmented	by	some	number	of	older	examples	that	have	been	bridged	to

match	the	new	schema.	How	do	we	know	how	many	older	examples	we
need?	We	don’t.	This	is	a	hyperparameter	that	we	will	have	to	tune.	For
example,	on	the	tip	problem,	using	grid	search,	we	see	from	Figure	6-4
(the	notebook	on	GitHub	has	the	full	details)	that	the	evaluation	metric
drops	steeply	until	20,000	examples	and	then	starts	to	plateau.

Figure	6-4.	Determine	the	number	of	older	examples	to	bridge	by	carrying	out	hyperparameter
tuning.	In	this	case,	it	is	apparent	that	there	are	diminishing	returns	after	20,000	bridged	examples.

For	best	results,	we	should	choose	the	smallest	number	of	older	examples
that	we	can	get	away	with—ideally,	over	time,	as	the	number	of	new

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/bridging_schema.ipynb

examples	grows,	we’ll	rely	less	and	less	on	bridged	examples.	At	some
point,	we’ll	be	able	to	get	rid	of	the	older	examples	altogether.

It	is	worth	noting	that,	on	this	problem,	bridging	does	bring	benefits
because	when	we	use	no	bridged	examples,	the	evaluation	metric	is	worse.
If	this	is	not	the	case,	then	the	imputation	method	(the	method	of	choosing
the	static	value	used	for	bridging)	needs	to	be	reexamined.	We	suggest	an
alternate	imputation	method	(Cascade)	in	the	next	section.

WARNING
It	is	extremely	important	to	compare	the	performance	of	the	newer	model	trained	on	bridged
examples	against	the	older,	unchanged	model	on	the	evaluation	dataset.	It	might	be	the	case	that
the	new	information	does	not	yet	have	adequate	value.

Because	we	will	be	using	the	evaluation	dataset	to	test	whether	or	not	the	bridged	model	has
value,	it	is	critical	that	the	evaluation	dataset	not	be	used	during	training	or	hyperparameter
tuning.	So,	techniques	like	early	stopping	or	checkpoint	selection	must	be	avoided.	Instead,	use
regularization	to	control	overfitting.	The	training	loss	will	have	to	serve	as	the	hyperparameter
tuning	metric.	See	the	discussion	of	the	Checkpoints	design	pattern	in	Chapter	4	for	more	details
on	how	to	conserve	data	by	using	only	two	splits.

Trade-Offs	and	Alternatives

Let’s	look	at	a	commonly	proposed	approach	that	doesn’t	work,	a	complex
alternative	to	bridging,	and	an	extension	of	the	solution	to	a	similar
problem.

UNION	SCHEMA

It	can	be	tempting	to	simply	create	a	union	of	the	older	and	newer
schemas.	For	example,	we	could	define	the	schema	for	the	payment	type
as	having	five	possible	values:	cash,	card,	gift	card,	debit	card,	and	credit

card.	This	will	make	both	the	historical	data	and	the	newer	data	valid	and
is	the	approach	that	we	would	take	in	data	warehousing	to	deal	with
changes	like	this.	This	way,	the	old	data	and	the	new	data	are	valid	as	is
and	without	any	changes.

The	backward-compatible,	union-of-schemas	approach	doesn’t	work	for
machine	learning	though.

At	prediction	time,	we	will	never	get	the	value	“card”	for	the	payment
type	because	the	input	providers	have	all	been	upgraded.	Effectively,	all
those	training	instances	will	have	been	for	nought.	For	reproducibility
(this	is	the	reason	that	this	pattern	is	classified	as	a	reproducibility
pattern),	we	need	to	bridge	the	older	schema	into	the	newer	schema	and
can’t	do	a	union	of	the	two	schemas.

CASCADE	METHOD

Imputation	in	statistics	is	a	set	of	techniques	that	can	be	used	to	replace
missing	data	by	some	valid	value.	A	common	imputation	technique	is	to
replace	a	NULL	value	by	the	mean	value	of	that	column	in	the	training
data.	Why	do	we	choose	the	mean?	Because,	in	the	absence	of	any	more
information	and	assuming	that	the	values	are	normally	distributed,	the
most	likely	value	is	the	mean.

The	static	method	discussed	in	the	main	solution,	of	assigning	a	priori
frequencies,	is	also	an	imputation	method.	We	assume	that	the	categorical
variable	is	distributed	according	to	a	frequency	chart	(that	we	estimate
from	the	training	data)	and	impute	the	mean	one-hot	encoded	value
(according	to	that	frequency	distribution)	to	the	“missing”	categorical
variable.

Do	we	know	any	other	way	to	estimate	unknown	values	given	some
examples?	Of	course!	Machine	learning.	What	we	can	do	is	to	train	a
cascade	of	models	(see	“Design	Pattern	8:	Cascade	”	in	Chapter	3).	The
first	model	uses	whatever	new	examples	we	have	to	train	a	machine
learning	model	to	predict	the	card	type.	If	the	original	tips	model	had	five
inputs,	this	model	will	have	four	inputs.	The	fifth	input	(the	payment	type)
will	be	the	label	for	this	model.	Then,	the	output	of	the	first	model	will	be
used	to	train	the	second	model.

In	practice,	the	Cascade	pattern	adds	too	much	complexity	for	something
that	is	meant	to	be	a	temporary	workaround	until	you	have	enough	new
data.	The	static	method	is	effectively	the	simplest	machine	learning	model
—it’s	the	model	we	would	get	if	we	had	uninformative	inputs.	We
recommend	the	static	approach	and	to	use	Cascade	only	if	the	static
method	doesn’t	do	well	enough.

HANDLING	NEW	FEATURES

Another	situation	where	bridging	might	be	needed	is	when	the	input
provider	adds	extra	information	to	the	input	feed.	For	example,	in	our	taxi
fare	example,	we	may	start	receiving	data	on	whether	the	taxi’s	wipers	are
on	or	whether	the	vehicle	is	moving.	From	this	data,	we	can	craft	a	feature
on	whether	it	was	raining	at	the	time	the	taxi	trip	started,	the	fraction	of
the	trip	time	that	the	taxi	is	idle,	and	so	on.

If	we	have	new	input	features	we	want	to	start	using	immediately,	we
should	bridge	the	older	data	(where	this	new	feature	will	be	missing)	by
imputing	a	value	for	the	new	feature.	Recommended	choices	for	the
imputation	value	are:

The	mean	value	of	the	feature	if	the	feature	is	numeric	and

normally	distributed

The	median	value	of	the	feature	if	the	feature	is	numeric	and
skewed	or	has	lots	of	outliers

The	median	value	of	the	feature	if	the	feature	is	categorical	and
sortable

The	mode	of	the	feature	if	the	feature	is	categorical	and	not
sortable

The	frequency	of	the	feature	being	true	if	it	is	boolean

If	the	feature	is	whether	or	not	it	was	raining,	it	is	boolean,	and	so	the
imputed	value	would	be	something	like	0.02	if	it	rains	2%	of	the	time	in
the	training	dataset.	If	the	feature	is	the	proportion	of	idle	minutes,	we
could	use	the	median	value.	The	Cascade	pattern	approach	remains	viable
for	all	these	cases,	but	a	static	imputation	is	simpler	and	often	sufficient.

HANDLING	PRECISION	INCREASES

When	the	input	provider	increases	the	precision	of	their	data	stream,
follow	the	bridging	approach	to	create	a	training	dataset	that	consists	of
the	higher-resolution	data,	augmented	with	some	of	the	older	data.

For	floating-point	values,	it	is	not	necessary	to	explicitly	bridge	the	older
data	to	match	the	newer	data’s	precision.	To	see	why,	consider	the	case
where	some	data	was	originally	provided	to	one	decimal	place	(e.g.,	3.5	or
4.2)	but	is	now	being	provided	to	two	decimal	places	(e.g.,	3.48	or	4.23).
If	we	assume	that	3.5	in	the	older	data	consists	of	values	that	would	be
uniformly	distributed 	in	[3.45,	3.55]	in	the	newer	data,	the	statically
imputed	value	would	be	3.5,	which	is	precisely	the	value	that	is	stored	in
the	older	data.

For	categorical	values—for	example,	if	the	older	data	stored	the	location

1

as	a	state	or	provincial	code	and	the	newer	data	provided	the	county	or
district	code—use	the	frequency	distribution	of	counties	within	states	as
described	in	the	main	solution	to	carry	out	static	imputation.

Design	Pattern	24:	Windowed	Inference
The	Windowed	Inference	design	pattern	handles	models	that	require	an
ongoing	sequence	of	instances	in	order	to	run	inference.	This	pattern
works	by	externalizing	the	model	state	and	invoking	the	model	from	a
stream	analytics	pipeline.	This	pattern	is	also	useful	when	a	machine
learning	model	requires	features	that	need	to	be	computed	from	aggregates
over	time	windows.	By	externalizing	the	state	to	a	stream	pipeline,	the
Windowed	Inference	design	pattern	ensures	that	features	calculated	in	a
dynamic,	time-dependent	way	can	be	correctly	repeated	between	training
and	serving.	It	is	a	way	of	avoiding	training–serving	skew	in	the	case	of
temporal	aggregate	features.

Problem

Take	a	look	at	the	arrival	delays	at	Dallas	Fort	Worth	(DFW)	airport
depicted	for	a	couple	of	days	in	May	2010	in	Figure	6-5	(the	full	notebook
is	on	GitHub).

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/stateful_stream.ipynb

Figure	6-5.	Arrival	delays	at	Dallas	Fort	Worth	(DFW)	airport	on	May	10–11,	2010.	Abnormal
arrival	delays	are	marked	with	a	dot.

The	arrival	delays	exhibit	considerable	variability,	but	it	is	still	possible	to
note	unusually	large	arrival	delays	(marked	by	a	dot).	Note	that	the
definition	of	“unusual”	varies	by	context.	Early	in	the	morning	(left	corner
of	the	plot),	most	flights	are	on	time,	so	even	the	small	spike	is	anomalous.
By	the	middle	of	the	day	(after	12	p.m.	on	May	10),	variability	picks	up
and	25-minute	delays	are	quite	common,	but	a	75-minute	delay	is	still
unusual.

Whether	or	not	a	specific	delay	is	anomalous	depends	on	a	time	context,
for	example,	on	the	arrival	delays	observed	over	the	past	two	hours.	To
determine	that	a	delay	is	anomalous	requires	that	we	first	sort	the
dataframe	based	on	the	time	(as	in	the	graph	in	Figure	6-5	and	shown
below	in	pandas):

df	=	

df.sort_values(by='scheduled_time').set_index('scheduled_time')

Then,	we	need	to	apply	an	anomaly	detection	function	to	sliding	windows

of	two	hours:

df['delay'].rolling('2h').apply(is_anomaly,	raw=False)

The	anomaly	detection	function,	is_anomaly,	can	be	quite
sophisticated,	but	let’s	take	the	simple	case	of	discarding	extrema	and
calling	a	data	value	an	anomaly	if	it	is	more	than	four	standard	deviations
from	the	mean	in	the	two-hour	window:

def	is_anomaly(d):

				outcome	=	d[-1]	#	the	last	item

				

				#	discard	min	&	max	value	&	current	(last)	item

				xarr	=	d.drop(index=[d.idxmin(),	d.idxmax(),	d.index[-1]])					

				prediction	=	xarr.mean()

				acceptable_deviation	=	4	*	xarr.std()

				return	np.abs(outcome	-	prediction)	>	acceptable_deviation

This	works	on	historical	(training)	data	because	the	entire	dataframe	is	at
hand.	Of	course,	when	running	inference	on	our	production	model,	we	will
not	have	the	entire	dataframe.	In	production,	we	will	be	receiving	flight
arrival	information	one	by	one,	as	each	flight	arrives.	So,	all	that	we	will
have	is	a	single	delay	value	at	a	timestamp:

2010-02-03	08:45:00,19.0

Given	that	the	flight	above	(at	08:45	on	February	3)	is	19	minutes	late,	is
that	unusual	or	not?	Commonly,	to	carry	out	ML	inference	on	a	flight,	we
only	need	the	features	of	that	flight.	In	this	case,	however,	the	model
requires	information	about	all	flights	to	DFW	airport	between	06:45	and
08:45:

2010-02-03	06:45:00,?

2010-02-03	06:?:00,?

...

2010-02-03	08:45:00,19.0

It	is	not	possible	to	carry	out	inference	one	flight	at	a	time.	We	need	to
somehow	provide	the	model	information	about	all	the	previous	flights.

How	do	we	carry	out	inference	when	the	model	requires	not	just	one
instance,	but	a	sequence	of	instances?

Solution

The	solution	is	to	carry	out	stateful	stream	processing—that	is,	stream
processing	that	keeps	track	of	the	model	state	through	time:

A	sliding	window	is	applied	to	flight	arrival	data.	The	sliding
window	will	be	over	2	hours,	but	the	window	can	be	closed	more
often,	such	as	every	10	minutes.	In	such	a	case,	aggregate	values
will	be	calculated	every	10	minutes	over	the	previous	2	hours.

The	internal	model	state	(this	could	be	the	list	of	flights)	is
updated	with	flight	information	every	time	a	new	flight	arrives,
thus	building	a	2-hour	historical	record	of	flight	data.

Every	time	the	window	is	closed	(every	10	minutes	in	our
example),	a	time-series	ML	model	is	trained	on	the	2-hour	list	of
flights.	This	model	is	then	used	to	predict	future	flight	delays	and
the	confidence	bounds	of	such	predictions.

The	time-series	model	parameters	are	externalized	into	a	state
variable.	We	could	use	a	time-series	model	such	as	autoregressive
integrated	moving	average	(ARIMA)	or	long	short-term	memory
(LSTMs),	in	which	case,	the	model	parameters	would	be	the
ARIMA	model	coefficients	or	the	LSTM	model	weights.	To	keep
the	code	understandable,	we	will	use	a	zero-order	regression
model, 	and	so	our	model	parameters	will	be	the	average	flight
delay	and	the	variance	of	the	flight	delays	over	the	two-hour
window.

2

When	a	flight	arrives,	its	arrival	delay	can	be	classified	as
anomalous	or	not	using	the	externalized	model	state—it	is	not
necessary	to	have	the	full	list	of	flights	over	the	past	2	hours.

We	can	use	Apache	Beam	for	streaming	pipelines	because	then,	the	same
code	will	work	on	both	the	historical	data	and	on	newly	arriving	data.	In
Apache	Beam,	the	sliding	window	is	set	up	as	follows	(full	code	is	on
GitHub):

windowed	=	(data

								|	'window'	>>	beam.WindowInto(

																beam.window.SlidingWindows(2	*	60	*	60,	10*60))

The	model	is	updated	by	combining	all	the	flight	data	collected	over	the
past	two	hours	and	passing	it	to	a	function	that	we	call	ModelFn:

model_state	=	(windowed	

								|	'model'	>>	beam.transforms.CombineGlobally(ModelFn()))

ModelFn	updates	the	internal	model	state	with	flight	information.	Here,
the	internal	model	state	will	consist	of	a	pandas	dataframe	that	is	updated
with	the	flights	in	the	window:

class	ModelFn(beam.CombineFn):

				def	create_accumulator(self):

								return	pd.DataFrame()

				def	add_input(self,	df,	window):

								return	df.append(window,	ignore_index=True)

Every	time	the	window	is	closed,	the	output	is	extracted.	The	output	here
(we	refer	to	it	as	externalized	model	state)	consists	of	the	model
parameters:

				def	extract_output(self,	df):

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/find_anomalies_model.py

								if	len(df)	<	1:

												return	{}

								orig	=	df['delay'].values

								xarr	=	np.delete(orig,	[np.argmin(orig),	

np.argmax(orig)])

								return	{

												'prediction':	np.mean(xarr),

												'acceptable_deviation':	4	*	np.std(xarr)

								}

The	externalized	model	state	gets	updated	every	10	minutes	based	on	a	2-
hour	rolling	window:

Window	close	time prediction acceptable_deviation

2010-05-10T06:35:00 -2.8421052631578947 10.48412597725367

2010-05-10T06:45:00 -2.6818181818181817 12.083729926046008

2010-05-10T06:55:00 -2.9615384615384617 11.765962341537781

The	code	to	extract	the	model	parameters	shown	above	is	similar	to	that	of
the	pandas	case,	but	it	is	done	within	a	Beam	pipeline.	This	allows	the
code	to	work	in	streaming,	but	the	model	state	is	available	only	within	the
context	of	the	sliding	window.	In	order	to	carry	out	inference	on	every
arriving	flight,	we	need	to	externalize	the	model	state	(similar	to	how	we
export	the	model	weights	out	to	a	file	in	the	Stateless	Serving	Function
pattern	to	decouple	it	from	the	context	of	the	training	program	where	these
weights	are	computed):

model_external	=	beam.pvalue.AsSingleton(model_state)

This	externalized	state	can	be	used	to	detect	whether	or	not	a	given	flight
is	an	anomaly:

def	is_anomaly(flight,	model_external_state):

				result	=	flight.copy()

				error	=	flight['delay']	-	model_external_state['prediction']

				tolerance	=	model_external_state['acceptable_deviation']

				result['is_anomaly']	=	np.abs(error)	>	tolerance

				return	result

The	is_anomaly	function	is	then	applied	to	every	item	in	the	last	pane
of	the	sliding	window:

anomalies	=	(windowed	

								|	'latest_slice'	>>	beam.FlatMap(is_latest_slice)

								|	'find_anomaly'	>>	beam.Map(is_anomaly,	

model_external))

Trade-Offs	and	Alternatives

The	solution	suggested	above	is	computationally	efficient	in	the	case	of
high-throughput	data	streams	but	can	be	improved	further	if	the	ML	model
parameters	can	be	updated	online.	This	pattern	is	also	applicable	to
stateful	ML	models	such	as	recurrent	neural	networks	and	when	a	stateless
model	requires	stateful	input	features.

REDUCE	COMPUTATIONAL	OVERHEAD

In	the	Problem	section,	we	used	the	following	pandas	code:

dfw['delay'].rolling('2h').apply(is_anomaly,	raw=False);

Whereas,	in	the	Solution	section,	the	Beam	code	was	as	follows:

windowed	=	(data

								|	'window'	>>	beam.WindowInto(

																beam.window.SlidingWindows(2	*	60	*	60,	10*60))

model_state	=	(windowed	

								|	'model'	>>	beam.transforms.CombineGlobally(ModelFn()))

There	are	meaningful	differences	between	the	rolling	window	in	pandas
and	the	sliding	window	in	Apache	Beam	because	of	how	often	the
is_anomaly	function	is	called	and	how	often	the	model	parameters
(mean	and	standard	deviation)	need	to	be	computed.	These	are	discussed
below.

Per	element	versus	over	a	time	interval

In	the	pandas	code,	the	is_anomaly	function	is	being	called	on	every
instance	in	the	dataset.	The	anomaly	detection	code	computes	the	model
parameters	and	applies	it	immediately	to	the	last	item	in	the	window.	In
the	Beam	pipeline,	the	model	state	is	also	created	on	every	sliding
window,	but	the	sliding	window	in	this	case	is	based	on	time.	Therefore,
the	model	parameters	are	computed	just	once	every	10	minutes.

The	anomaly	detection	itself	is	carried	out	on	every	instance:

anomalies	=	(windowed	

								|	'latest_slice'	>>	beam.FlatMap(is_latest_slice)

								|	'find_anomaly'	>>	beam.Map(is_anomaly,	

model_external))

Notice	that	this	carefully	separates	out	computationally	expensive	training
from	computationally	cheap	inference.	The	computationally	expensive
part	is	carried	out	only	once	every	10	minutes	while	allowing	every
instance	to	be	classified	as	being	an	anomaly	or	not.

High-throughput	data	streams

Data	volumes	keep	increasing,	and	much	of	that	increase	in	data	volume	is
due	to	real-time	data.	Consequently,	this	pattern	has	to	be	applied	to	high-
throughput	data	streams—streams	where	the	number	of	elements	can	be	in
excess	of	thousands	of	items	per	second.	Think,	for	example,	of

clickstreams	from	websites	or	streams	of	machine	activity	from
computers,	wearable	devices,	or	cars.

The	suggested	solution	using	a	streaming	pipeline	is	advantageous	in	that
it	avoids	retraining	the	model	at	every	instance,	something	that	the	pandas
code	in	the	Problem	statement	does.	However,	the	suggested	solution
gives	back	those	gains	by	creating	an	in-memory	dataframe	of	all	the
records	received.	If	we	receive	5,000	items	a	second,	then	the	in-memory
dataframe	over	10	minutes	will	contain	3	million	records.	Because	there
are	12	sliding	windows	that	will	need	to	be	maintained	at	any	point	in	time
(10-minute	windows,	each	over	2	hours),	the	memory	requirements	can
become	considerable.

Storing	all	the	received	records	in	order	to	compute	the	model	parameters
at	the	end	of	the	window	can	become	problematic.	When	the	data	stream
is	high	throughput,	it	becomes	important	to	be	able	to	update	the	model
parameters	with	each	element.	This	can	be	done	by	changing	the
ModelFn	as	follows	(full	code	is	on	GitHub):

class	OnlineModelFn(beam.CombineFn):

				...

				def	add_input(self,	inmem_state,	input_dict):

								(sum,	sumsq,	count)	=	inmem_state

								input	=	input_dict['delay']

								return	(sum	+	input,	sumsq	+	input*input,	count	+	1)

				def	extract_output(self,	inmem_state):

								(sum,	sumsq,	count)	=	inmem_state

								...

												mean	=	sum	/	count

												variance	=	(sumsq	/	count)	-	mean*mean

												stddev	=	np.sqrt(variance)	if	variance	>	0	else	0

												return	{

																'prediction':	mean,

																'acceptable_deviation':	4	*	stddev

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/find_anomalies_model.py

												}

								...

The	key	difference	is	that	the	only	thing	held	in	memory	are	three	floating
point	numbers	(sum,	sum ,	count)	required	to	extract	the	output	model
state,	not	the	entire	dataframe	of	received	instances.	Updating	the	model
parameters	one	instance	at	a	time	is	called	an	online	update	and	is
something	that	can	be	done	only	if	the	model	training	doesn’t	require
iteration	over	the	entire	dataset.	Therefore,	in	the	above	implementation,
the	variance	is	computed	by	maintaining	a	sum	of	x 	so	that	we	don’t	need
a	second	pass	through	the	data	after	computing	the	mean.

STREAMING	SQL

If	our	infrastructure	consists	of	a	high-performance	SQL	database	that	is
capable	of	processing	streaming	data,	it	is	possible	to	implement	the
Windowed	Inference	pattern	in	an	alternative	way	by	using	an	aggregation
window	(full	code	is	on	GitHub).

We	pull	out	the	flight	data	from	BigQuery:

WITH	data	AS	(

		SELECT	

				PARSE_DATETIME('%Y-%m-%d-%H%M',

																			CONCAT(CAST(date	AS	STRING),	

																			'-',	FORMAT('%04d',	arrival_schedule))

)	AS	scheduled_arrival_time,

					arrival_delay

		FROM	`bigquery-samples.airline_ontime_data.flights`

		WHERE	arrival_airport	=	'DFW'	AND	SUBSTR(date,	0,	7)	=	'2010-

05'

),

Then,	we	create	the	model_state	by	computing	the	model	parameters
over	a	time	window	specified	as	two	hours	preceding	to	one	second

2

2

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/find_anomalies_model.py

preceding:

model_state	AS	(

		SELECT

				scheduled_arrival_time,

				arrival_delay,

				AVG(arrival_delay)	OVER	(time_window)	AS	prediction,

				4*STDDEV(arrival_delay)	OVER	(time_window)	AS	

acceptable_deviation

		FROM	data

		WINDOW	time_window	AS	

				(ORDER	BY	UNIX_SECONDS(TIMESTAMP(scheduled_arrival_time))

					RANGE	BETWEEN	7200	PRECEDING	AND	1	PRECEDING)

)

Finally,	we	apply	the	anomaly	detection	algorithm	to	each	instance:

SELECT	

		*,

		(ABS(arrival_delay	-	prediction)	>	acceptable_deviation)	AS	

is_anomaly	

FROM	model_state

The	result	looks	like	Table	6-1,	with	the	arrival	delay	of	54	minutes
marked	as	an	anomaly	given	that	all	the	previous	flights	arrived	early.

Table	6-1.	The	result	of	a	BigQuery	query	determining	whether	
incoming	flight	data	is	an	anomaly

scheduled_arrival_
time

arrival_del
ay

predicti
on

acceptable_devia
tion

is_anom
aly

2010-05-01T05:45:00 -18.0 -8.25 62.51399843235114 false

2010-05-01T06:00:00 -13.0 -10.2 56.87881855313100
5

false

2010-05-01T06:35:00 -1.0 -10.666 51.0790237442599 false

2010-05-01T06:45:00 -9.0 -9.28576 48.86521793473886 false

2010-05-01T07:00:00 54.0 -9.25 45.24220532707422 true

Unlike	the	Apache	Beam	solution,	the	efficiency	of	distributed	SQL	will
allow	us	to	calculate	the	2-hour	time	window	centered	on	each	instance
(instead	of	at	a	resolution	of	10-minute	windows).	However,	the	drawback
is	that	BigQuery	tends	to	have	relatively	high	latency	(on	the	order	of
seconds),	and	so	it	cannot	be	used	for	real-time	control	applications.

SEQUENCE	MODELS

The	Windowed	Inference	pattern	of	passing	a	sliding	window	of	previous
instances	to	an	inference	function	is	useful	beyond	anomaly	detection	or
even	time-series	models.	Specifically,	it	is	useful	in	any	class	of	models,
such	as	Sequence	models,	that	require	a	historical	state.	For	example,	a
translation	model	needs	to	see	several	successive	words	before	it	can	carry
out	the	translation	so	that	the	translation	takes	into	account	the	context	of
the	word.	After	all,	the	translation	of	the	words	“left,”	“Chicago,”	and
“road”	vary	between	the	sentences	“I	left	Chicago	by	road”	and	“Turn	left
on	Chicago	Road.”

For	performance	reasons,	the	translation	model	will	be	set	up	to	be
stateless	and	require	the	user	to	provide	the	context.	For	example,	if	the
model	is	stateless,	instances	of	the	model	can	be	autoscaled	in	response	to
increased	traffic,	and	can	be	invoked	in	parallel	to	obtain	faster
translations.	Thus,	the	translation	of	the	famous	soliloquy	from
Shakespeare’s	Hamlet	into	German	might	follow	these	steps,	picking	off
in	the	middle	where	the	bolded	word	is	the	one	to	be	translated:

Input	(9	words,	4	on	either	side) Output

The	undiscovered	country,	from	whose	bourn	No	traveller	returns dessen

undiscovered	country,	from	whose	bourn	No	traveller	returns,	puzzles Bourn

undiscovered	country,	from	whose	bourn	No	traveller	returns,	puzzles Bourn

country,	from	whose	bourn	No	traveller	returns,	puzzles	the Kein

from	whose	bourn	No	traveller	returns,	puzzles	the	will, Reisender

The	client,	therefore,	will	need	a	streaming	pipeline.	The	pipeline	could
take	the	input	English	text,	tokenize	it,	send	along	nine	tokens	at	a	time,
collect	the	outputs,	and	concatenate	them	into	German	sentences	and
paragraphs.

Most	sequence	models,	such	as	recurrent	neural	networks	and	LSTMs,
require	streaming	pipelines	for	high-performance	inference.

STATEFUL	FEATURES

The	Windowed	Inference	pattern	can	be	useful	if	an	input	feature	to	the
model	requires	state,	even	if	the	model	itself	is	stateless.	For	example,
suppose	we	are	training	a	model	to	predict	arrival	delays,	and	one	of	the
inputs	to	the	model	is	the	departure	delay.	We	might	want	to	include,	as	an
input	to	the	model,	the	average	departure	delay	of	flights	from	that	airport
in	the	past	two	hours.

During	training,	we	can	create	the	dataset	using	a	SQL	window	function:

WITH	data	AS	(

		SELECT	

					SAFE.PARSE_DATETIME('%Y-%m-%d-%H%M',

																			CONCAT(CAST(date	AS	STRING),	'-',	

																			FORMAT('%04d',	departure_schedule))

)	AS	scheduled_depart_time,

					arrival_delay,

					departure_delay,

					departure_airport

		FROM	`bigquery-samples.airline_ontime_data.flights`

		WHERE	arrival_airport	=	'DFW'

),

		SELECT

				*	EXCEPT(scheduled_depart_time),

				EXTRACT(hour	from	scheduled_depart_time)	AS	hour_of_day,

				AVG(departure_delay)	OVER	(depart_time_window)	AS	

avg_depart_delay

		FROM	data

		WINDOW	depart_time_window	AS	

				(PARTITION	BY	departure_airport	ORDER	BY	

					UNIX_SECONDS(TIMESTAMP(scheduled_depart_time))

					RANGE	BETWEEN	7200	PRECEDING	AND	1	PRECEDING)

The	training	dataset	now	includes	the	average	delay	as	just	another
feature:

Ro
w

arrival_de
lay

departure_d
elay

departure_air
port

hour_of_
day

avg_depart_d
elay

1 -3.0 -7.0 LFT 8 -4.0

2 56.0 50.0 LFT 8 41.0

3 -14.0 -9.0 LFT 8 5.0

4 -3.0 0.0 LFT 8 -2.0

During	inference,	though,	we	will	need	a	streaming	pipeline	to	compute
this	average	departure	delay	so	that	we	can	supply	it	to	the	model.	To	limit
training–serving	skew,	it	is	preferable	to	use	the	same	SQL	in	a	tumbling
window	function	in	a	streaming	pipeline,	rather	than	trying	to	translate	the
SQL	into	Scala,	Python,	or	Java.

BATCHING	PREDICTION	REQUESTS

Another	scenario	where	we	might	want	to	use	Windowed	Inference	even
if	the	model	is	stateless	is	when	the	model	is	deployed	on	the	cloud,	but

the	client	is	embedded	into	a	device	or	on-premises.	In	such	cases,	the
network	latency	of	sending	inference	requests	one	by	one	to	a	cloud-
deployed	model	might	be	overwhelming.	In	this	situation,	“Design	Pattern
19:	Two-Phase	Predictions”	from	Chapter	5	can	be	used	where	the	first
phase	uses	a	pipeline	to	collect	a	number	of	requests	and	the	second	phase
sends	it	to	the	service	in	one	batch.

This	is	suitable	only	for	latency-tolerant	use	cases.	If	we	are	collecting
input	instances	over	five	minutes,	then	the	client	will	have	to	be	tolerant	of
up	to	five	minutes	delay	in	getting	back	the	predictions.

Design	Pattern	25:	Workflow	Pipeline
In	the	Workflow	Pipeline	design	pattern,	we	address	the	problem	of
creating	an	end-to-end	reproducible	pipeline	by	containerizing	and
orchestrating	the	steps	in	our	machine	learning	process.	The
containerization	might	be	done	explicitly,	or	using	a	framework	that
simplifies	the	process.

Problem

An	individual	data	scientist	may	be	able	to	run	data	preprocessing,
training,	and	model	deployment	steps	from	end	to	end	(depicted	in
Figure	6-6)	within	a	single	script	or	notebook.	However,	as	each	step	in	an
ML	process	becomes	more	complex,	and	more	people	within	an
organization	want	to	contribute	to	this	code	base,	running	these	steps	from
a	single	notebook	will	not	scale.

Figure	6-6.	The	steps	in	a	typical	end-to-end	ML	workflow.	This	is	not	meant	to	be	all
encompassing,	but	captures	the	most	common	steps	in	the	ML	development	process.

In	traditional	programming,	monolithic	applications	are	described	as	those
where	all	of	the	application’s	logic	is	handled	by	a	single	program.	To	test
a	small	feature	in	a	monolithic	app,	we	must	run	the	entire	program.	The
same	goes	for	deploying	or	debugging	monolithic	applications.	Deploying
a	small	bug	fix	for	one	piece	of	the	program	requires	deploying	the	entire
application,	which	can	quickly	become	unwieldy.	When	the	entire
codebase	is	inextricably	linked,	it	becomes	difficult	for	individual
developers	to	debug	errors	and	work	independently	on	different	parts	of
the	application.	In	recent	years,	monolithic	apps	have	been	replaced	in
favor	of	a	microservices	architecture	where	individual	pieces	of	business
logic	are	built	and	deployed	as	isolated	(micro)	packages	of	code.	With
microservices,	a	large	application	is	split	into	smaller,	more	manageable
parts	so	that	developers	can	build,	debug,	and	deploy	pieces	of	an
application	independently.

This	monolith-versus-microservice	discussion	provides	a	good	analogy	for
scaling	ML	workflows,	enabling	collaboration,	and	ensuring	ML	steps	are
reproducible	and	reusable	across	different	workflows.	When	someone	is
building	an	ML	model	on	their	own,	a	“monolithic”	approach	may	be
faster	to	iterate	on.	It	also	often	works	because	one	person	is	actively
involved	in	developing	and	maintaining	each	piece:	data	gathering	and

preprocessing,	model	development,	training,	and	deployment.	However,
when	scaling	this	workflow,	different	people	or	groups	in	an	organization
might	be	responsible	for	different	steps.	To	scale	the	ML	workflow,	we
need	a	way	for	the	team	building	out	the	model	to	run	trials	independently
of	the	data	preprocessing	step.	We’ll	also	need	to	track	the	performance
for	each	step	of	the	pipeline	and	manage	the	output	files	generated	by	each
part	of	the	process.

Additionally,	when	initial	development	for	each	step	is	complete,	we’ll
want	to	schedule	operations	like	retraining,	or	create	event-triggered
pipeline	runs	that	are	invoked	in	response	to	changes	in	your	environment,
like	new	training	data	being	added	to	a	bucket.	In	such	cases,	it’ll	be
necessary	for	the	solution	to	allow	us	to	run	the	entire	workflow	from	end
to	end	in	one	call	while	still	being	able	to	track	output	and	trace	errors
from	individual	steps.

Solution

To	handle	the	problems	that	come	with	scaling	machine	learning
processes,	we	can	make	each	step	in	our	ML	workflow	a	separate,
containerized	service.	Containers	guarantee	that	we’ll	be	able	to	run	the
same	code	in	different	environments,	and	that	we’ll	see	consistent
behavior	between	runs.	These	individual	containerized	steps	together	are
then	chained	together	to	make	a	pipeline	that	can	be	run	with	a	REST	API
call.	Because	pipeline	steps	run	in	containers,	we	can	run	them	on	a
development	laptop,	with	on-premises	infrastructure,	or	with	a	hosted
cloud	service.	This	pipeline	workflow	allows	team	members	to	build	out
pipeline	steps	independently.	Containers	also	provide	a	reproducible	way
to	run	an	entire	pipeline	end	to	end,	since	they	guarantee	consistency
among	library	dependency	versions	and	runtime	environments.

Additionally,	because	containerizing	pipeline	steps	allows	for	a	separation
of	concerns,	individual	steps	can	use	different	runtimes	and	language
versions.

There	are	many	tools	for	creating	pipelines	with	both	on-premise	and
cloud	options	available,	including	Cloud	AI	Platform	Pipelines,
TensorFlow	Extended	(TFX),	Kubeflow	Pipelines	(KFP),	MLflow,	and
Apache	Airflow.	To	demonstrate	the	Workflow	Pipeline	design	pattern
here,	we’ll	define	our	pipeline	with	TFX	and	run	it	on	Cloud	AI	Platform
Pipelines,	a	hosted	service	for	running	ML	pipelines	on	Google	Cloud
using	Google	Kubernetes	Engine	(GKE)	as	the	underlying	container
infrastructure.

Steps	in	TFX	pipelines	are	known	as	components,	and	both	pre-built	and
customizable	components	are	available.	Typically,	the	first	component	in
a	TFX	pipeline	is	one	that	ingests	data	from	an	external	source.	This	is
referred	to	as	an	ExampleGen	component	where	example	refers	to	the
machine	learning	terminology	for	a	labeled	instance	used	for	training.
ExampleGen	components	allow	you	to	source	data	from	CSV	files,
TFRecords,	BigQuery,	or	a	custom	source.	The
BigQueryExampleGen	component,	for	example,	lets	us	connect	data
stored	in	BigQuery	to	our	pipeline	by	specifying	a	query	that	will	fetch	the
data.	Then	it	will	store	that	data	as	TFRecords	in	a	GCS	bucket	so	that	it
can	be	used	by	the	next	component.	This	is	a	component	we	customize	by
passing	it	a	query.	These	ExampleGen	components	address	the	data
collection	phase	of	an	ML	workflow	outlined	in	Figure	6-6.

The	next	step	of	this	workflow	is	data	validation.	Once	we’ve	ingested
data,	we	can	pass	it	to	other	components	for	transformation	or	analysis
before	training	a	model.	The	StatisticsGen	component	takes	data

https://oreil.ly/nJo1p
https://oreil.ly/OznI3
https://oreil.ly/BoegQ
https://mlflow.org
https://oreil.ly/63_GG
https://oreil.ly/Sjx9F
https://oreil.ly/kX1QY

ingested	from	an	ExampleGen	step	and	generates	summary	statistics	on
the	provided	data.	The	SchemaGen	outputs	the	inferred	schema	from	our
ingested	data.	Utilizing	the	output	of	SchemaGen,	the
ExampleValidator	performs	anomaly	detection	on	our	dataset	and
checks	for	signs	of	data	drift	or	potential	training–serving	skew. 	The
Transform	component	also	takes	output	from	SchemaGen	and	is
where	we	perform	feature	engineering	to	transform	our	data	input	into	the
right	format	for	our	model.	This	could	include	converting	free-form	text
inputs	into	embeddings,	normalizing	numeric	inputs,	and	more.

Once	our	data	is	ready	to	be	fed	into	a	model,	we	can	pass	it	to	the
Trainer	component.	When	we	set	up	our	Trainer	component,	we
point	to	a	function	that	defines	our	model	code,	and	we	can	specify	where
we’d	like	to	train	the	model.	Here,	we’ll	show	how	to	use	Cloud	AI
Platform	Training	from	this	component.	Finally,	the	Pusher	component
handles	model	deployment.	There	are	many	other	pre-built	components
provided	by	TFX—we’ve	only	included	a	few	here	that	we’ll	use	in	our
sample	pipeline.

For	this	example,	we’ll	use	the	NOAA	hurricane	dataset	in	BigQuery	to
build	a	model	that	infers	the	SSHS	code 	for	a	hurricane.	We’ll	keep	the
features,	components,	and	model	code	relatively	short	in	order	to	focus	on
the	pipeline	tooling.	The	steps	of	our	pipeline	are	outlined	below,	and
roughly	follow	the	workflow	outlined	in	Figure	6-6:

1.	 Data	collection:	run	a	query	to	get	the	hurricane	data	from
BigQuery.

2.	 Data	validation:	use	the	ExampleValidator	component	to
identify	anomalies	and	check	for	data	drift.

3.	 Data	analysis	and	preprocessing:	generate	some	statistics	on	the

3

4

https://oreil.ly/QpBlu
https://oreil.ly/UD7Uh
https://oreil.ly/xsJYT
https://oreil.ly/XFtR_
https://oreil.ly/qP8GU
https://oreil.ly/gHv_z

data	and	define	the	schema.

4.	 Model	training:	train	a	tf.keras	model	on	AI	Platform.

5.	 Model	deployment:	deploy	the	trained	model	to	AI	Platform
Prediction.

When	our	pipeline	is	complete,	we’ll	be	able	to	invoke	the	entire	process
outlined	above	with	a	single	API	call.	Let’s	start	by	discussing	the
scaffolding	for	a	typical	TFX	pipeline	and	the	process	for	running	it	on	AI
Platform.

BUILDING	THE	TFX	PIPELINE

We’ll	use	the	tfx	command-line	tools	to	create	and	invoke	our	pipeline.
New	invocations	of	a	pipeline	are	known	as	runs,	which	are	distinct	from
updates	we	make	to	the	pipeline	itself,	like	adding	a	new	component.	We
can	do	both	with	the	TFX	CLI.	We	can	define	the	scaffolding	for	our
pipeline	in	a	single	Python	script,	which	has	two	key	parts:

An	instance	of	tfx.orchestration.pipeline	where	we	define	our
pipeline	and	the	components	it	includes.

An	instance	of	kubeflow_dag_runner	from	the	tfx	library.	We’ll
use	this	to	create	and	run	our	pipeline.	In	addition	to	the
Kubeflow	runner,	there’s	also	an	API	for	running	TFX	pipelines
with	Apache	Beam,	which	we	could	use	to	run	our	pipeline
locally.

Our	pipeline	(see	full	code	in	GitHub)	will	have	the	five	steps	or
components	defined	above,	and	we	can	define	our	pipeline	with	the
following:

pipeline.Pipeline(

						pipeline_name='huricane_prediction',

						pipeline_root='path/to/pipeline/code',

5

https://oreil.ly/62kf3
https://oreil.ly/62kf3
https://oreil.ly/62kf3
https://oreil.ly/hn0vF
https://github.com/GoogleCloudPlatform/ml-design-patterns/tree/master/06_reproducibility/workflow_pipeline

						components=[

										bigquery_gen,	statistics_gen,	schema_gen,	train,	

model_pusher

]

)

To	use	the	BigQueryExampleGen	component	provided	by	TFX,	we
provide	the	query	that	will	fetch	our	data.	We	can	define	this	component
in	one	line	of	code,	where	query	is	our	BigQuery	SQL	query	as	a	string:

bigquery_gen	=	BigQueryExampleGen(query=query)

Another	benefit	of	using	pipelines	is	that	it	provides	tooling	to	keep	track
of	the	input,	output	artifacts,	and	logs	for	each	component.	The	output	of
the	statistics_gen	component,	for	example,	is	a	summary	of	our
dataset,	which	we	can	see	in	Figure	6-7.	statistics_gen	is	a	pre-built
component	available	in	TFX	that	uses	TF	Data	Validation	to	generate
summary	statistics	on	our	dataset.

https://oreil.ly/wvq9n

Figure	6-7.	The	output	artifact	from	the	statistics_gen	component	in	a	TFX	pipeline.

RUNNING	THE	PIPELINE	ON	CLOUD	AI	PLATFORM

We	can	run	the	TFX	pipeline	on	Cloud	AI	Platform	Pipelines,	which	will
manage	low-level	details	of	the	infrastructure	for	us.	To	deploy	a	pipeline
to	AI	Platform,	we	package	our	pipeline	code	as	a	Docker	container	and
host	it	on	Google	Container	Registry	(GCR). 	Once	our	containerized
pipeline	code	has	been	pushed	to	GCR,	we’ll	create	the	pipeline	using	the
TFX	CLI:

tfx	pipeline	create		\

--pipeline-path=kubeflow_dag_runner.py	\

--endpoint='your-pipelines-dashboard-url'	\

6

https://oreil.ly/rdXeb
https://oreil.ly/m5wqD

--build-target-image='gcr.io/your-pipeline-container-url'

In	the	command	above,	endpoint	corresponds	with	the	URL	of	our	AI
Platform	Pipelines	dashboard.	When	that	completes,	we’ll	see	the	pipeline
we	just	created	in	our	pipelines	dashboard.	The	create	command	creates
a	pipeline	resource	that	we	can	invoke	by	creating	a	run:

tfx	run	create	--pipeline-name='your-pipeline-name'	--

endpoint='pipeline-url'

After	running	this	command,	we’ll	be	able	to	see	a	graph	that	updates	in
real	time	as	our	pipeline	moves	through	each	step.	From	the	Pipelines
dashboard,	we	can	further	examine	individual	steps	to	see	any	artifacts
they	generate,	metadata,	and	more.	We	can	see	an	example	of	the	output
for	an	individual	step	in	Figure	6-8.

We	could	train	our	model	directly	in	our	containerized	pipeline	on	GKE,
but	TFX	provides	a	utility	for	using	Cloud	AI	Platform	Training	as	part	of
our	process.	TFX	also	has	an	extension	for	deploying	our	trained	model	to
AI	Platform	Prediction.	We’ll	utilize	both	of	these	integrations	in	our
pipeline.	AI	Platform	Training	lets	us	take	advantage	of	specialized
hardware	for	training	our	models,	such	as	GPUs	or	TPUs,	in	a	cost-
effective	way.	It	also	provides	an	option	to	use	distributed	training,	which
can	accelerate	training	time	and	minimize	training	cost.	We	can	track
individual	training	jobs	and	their	output	within	the	AI	Platform	console.

Figure	6-8.	Output	of	the	schema_gen	component	for	an	ML	pipeline.	The	top	menu	bar	shows	the
data	available	for	each	individual	pipeline	step.

TIP
One	advantage	of	building	a	pipeline	with	TFX	or	Kubeflow	Pipelines	is	that	we	are	not	locked
into	Google	Cloud.	We	can	run	the	same	code	we’re	demonstrating	here	with	Google’s	AI
Platform	Pipelines	on	Azure	ML	Pipelines,	Amazon	SageMaker,	or	on-premises.

https://oreil.ly/A5Rxe
https://oreil.ly/H3p3Y

To	implement	a	training	step	in	TFX,	we’ll	use	the	Trainer	component
and	pass	it	information	on	the	training	data	to	use	as	model	input,	along
with	our	model	training	code.	TFX	provides	an	extension	for	running	the
training	step	on	AI	Platform	that	we	can	use	by	importing
tfx.extensions.google_cloud_ai_platform.trainer	and
providing	details	on	our	AI	Platform	training	configuration.	This	includes
our	project	name,	region,	and	GCR	location	of	the	container	with	training
code.

Similarly,	TFX	also	has	an	AI	Platform	Pusher	component	for
deploying	trained	models	to	AI	Platform	Prediction.	In	order	to	use	the
Pusher	component	with	AI	Platform,	we	provide	details	on	the	name
and	version	of	our	model,	along	with	a	serving	function	that	tells	AI
Platform	the	format	of	input	data	it	should	expect	for	our	model.	With
that,	we	have	a	complete	pipeline	that	ingests	data,	analyzes	it,	runs	data
transformation,	and	finally	trains	and	deploys	the	model	using	AI
Platform.

Why	It	Works

Without	running	our	ML	code	as	a	pipeline,	it	would	be	difficult	for	others
to	reliably	reproduce	our	work.	They’d	need	to	take	our	preprocessing,
model	development,	training,	and	serving	code	and	try	to	replicate	the
same	environment	where	we	ran	it	while	taking	into	account	library
dependencies,	authentication,	and	more.	If	there	is	logic	controlling	the
selection	of	downstream	components	based	on	the	output	of	upstream
components,	that	logic	will	also	have	to	be	reliably	replicated.	The
Workflow	Pipeline	design	pattern	lets	others	run	and	monitor	our	entire
ML	workflow	from	end	to	end	in	both	on-premises	and	cloud
environments,	while	still	being	able	to	debug	the	output	of	individual

https://oreil.ly/TGKcP
https://oreil.ly/wS6lc
https://oreil.ly/bJavO

steps.	Containerizing	each	step	of	the	pipeline	ensures	that	others	will	be
able	to	reproduce	both	the	environment	we	used	to	build	it	and	the	entire
workflow	captured	in	the	pipeline.	This	also	allows	us	to	potentially
reproduce	the	environment	months	later	to	support	regulatory	needs.	With
TFX	and	AI	Platform	Pipelines,	the	dashboard	also	gives	us	a	UI	for
tracking	the	output	artifacts	produced	from	every	pipeline	execution.	This
is	discussed	further	in	“Trade-Offs	and	Alternatives”.

Additionally,	with	each	pipeline	component	in	its	own	container,	different
team	members	can	build	and	test	separate	pieces	of	a	pipeline	in	parallel.
This	allows	for	faster	development	and	minimizes	the	risks	associated
with	a	more	monolithic	ML	process	where	steps	are	inextricably	linked	to
one	another.	The	package	dependencies	and	code	required	to	build	out	the
data	preprocessing	step,	for	example,	may	be	significantly	different	than
those	for	model	deployment.	By	building	these	steps	as	part	of	a	pipeline,
each	piece	can	be	built	in	a	separate	container	with	its	own	dependencies
and	incorporated	into	a	larger	pipeline	when	completed.

To	summarize,	the	Workflow	Pipeline	pattern	gives	us	the	benefits	that
come	with	a	directed	acyclic	graph	(DAG),	along	with	the	pre-built
components	that	come	with	pipeline	frameworks	like	TFX.	Because	the
pipeline	is	a	DAG,	we	have	the	option	of	executing	individual	steps	or
running	an	entire	pipeline	from	end	to	end.	This	also	gives	us	logging	and
monitoring	for	each	step	of	the	pipeline	across	different	runs,	and	allows
for	tracking	artifacts	from	each	step	and	pipeline	execution	in	a	centralized
place.	Pre-built	components	provide	standalone,	ready-to-use	steps	for
common	components	of	ML	workflows,	including	training,	evaluation,
and	inference.	These	components	run	as	individual	containers	wherever
we	choose	to	run	our	pipeline.

Trade-Offs	and	Alternatives

Trade-Offs	and	Alternatives

The	main	alternative	to	using	a	pipeline	framework	is	to	run	the	steps	of
our	ML	workflow	using	a	makeshift	approach	for	keeping	track	of	the
notebooks	and	output	associated	with	each	step.	Of	course,	there	is	some
overhead	involved	in	converting	the	different	pieces	of	our	ML	workflow
into	an	organized	pipeline.	In	this	section,	we’ll	look	at	some	variations
and	extensions	of	the	Workflow	Pipeline	design	pattern:	creating
containers	manually,	automating	a	pipeline	with	tools	for	continuous
integration	and	continuous	delivery	(CI/CD),	processes	for	moving	from	a
development	to	production	workflow	pipeline,	and	alternative	tools	for
building	and	orchestrating	pipelines.	We’ll	also	explore	how	to	use
pipelines	for	metadata	tracking.

CREATING	CUSTOM	COMPONENTS

Instead	of	using	pre-built	or	customizable	TFX	components	to	construct
our	pipeline,	we	can	define	our	own	containers	to	use	as	components,	or
convert	a	Python	function	to	a	component.

To	use	the	container-based	components	provided	by	TFX,	we	use	the
create_container_component	method,	passing	it	the	inputs	and
outputs	for	our	component	and	a	base	Docker	image	along	with	any
entrypoint	commands	for	the	container.	For	example,	the	following
container-based	component	invokes	the	command-line	tool	bq	to
download	a	BigQuery	dataset:

component	=	create_container_component(

				name='DownloadBQData',

				parameters={

								'dataset_name':	string,

								'storage_location':	string

				},

https://oreil.ly/5ryEn

				image='google/cloud-sdk:278.0.0',

,

				command=[

								'bq',	'extract',	'--compression=csv',	'--

field_delimiter=,',

								InputValuePlaceholder('dataset_name'),

								InputValuePlaceholder('storage_location'),

]

)

It’s	best	to	use	a	base	image	that	already	has	most	of	the	dependencies	we
need.	We’re	using	the	Google	Cloud	SDK	image,	which	provides	us	the
bq	command-line	tool.

It	is	also	possible	to	convert	a	custom	Python	function	into	a	TFX
component	using	the	@component	decorator.	To	demonstrate	it,	let’s	say
we	have	a	step	for	preparing	resources	used	throughout	our	pipeline	where
we	create	a	Cloud	Storage	bucket.	We	can	define	this	custom	step	using
the	following	code:

from	google.cloud	import	storage

client	=	storage.Client(project="your-cloud-project")

@component

def	CreateBucketComponent(

				bucket_name:	Parameter[string]	=	'your-bucket-name',

)	->	OutputDict(bucket_info=string):

		client.create_bucket('gs://'	+	bucket_name)

		bucket_info	=	storage_client.get_bucket('gs://'	+	bucket_name)

		return	{

				'bucket_info':	bucket_info

		}

We	can	then	add	this	component	to	our	pipeline	definition:

create_bucket	=	CreateBucketComponent(

				bucket_name='my-bucket')

INTEGRATING	CI/CD	WITH	PIPELINES

In	addition	to	invoking	pipelines	via	the	dashboard	or	programmatically
via	the	CLI	or	API,	chances	are	we’ll	want	to	automate	runs	of	our
pipeline	as	we	productionize	the	model.	For	example,	we	may	want	to
invoke	our	pipeline	whenever	a	certain	amount	of	new	training	data	is
available.	Or	we	might	want	to	trigger	a	pipeline	run	when	the	source	code
for	the	pipeline	changes.	Adding	CI/CD	to	our	Workflow	Pipeline	can
help	connect	trigger	events	to	pipeline	runs.

There	are	many	managed	services	available	for	setting	up	triggers	to	run	a
pipeline	when	we	want	to	retrain	a	model	on	new	data.	We	could	use	a
managed	scheduling	service	to	invoke	our	pipeline	on	a	schedule.
Alternatively,	we	could	use	a	serverless	event-based	service	like	Cloud
Functions	to	invoke	our	pipeline	when	new	data	is	added	to	a	storage
location.	In	our	function,	we	could	specify	conditions—like	a	threshold	for
the	amount	of	new	data	added	to	necessitate	retraining—for	creating	a
new	pipeline	run.	Once	enough	new	training	data	is	available,	we	can
instantiate	a	pipeline	run	for	retraining	and	redeploying	the	model	as
demonstrated	in	Figure	6-9.

https://oreil.ly/rVyzX

Figure	6-9.	A	CI/CD	workflow	using	Cloud	Functions	to	invoke	a	pipeline	when	enough	new	data
is	added	to	a	storage	location.

If	we	want	to	trigger	our	pipeline	based	on	changes	to	source	code,	a
managed	CI/CD	service	like	Cloud	Build	can	help.	When	Cloud	Build
executes	our	code,	it	is	run	as	a	series	of	containerized	steps.	This
approach	fits	well	within	the	context	of	pipelines.	We	can	connect	Cloud
Build	to	GitHub	Actions	or	GitLab	Triggers	on	the	repository	where	our
pipeline	code	is	located.	When	the	code	is	committed,	Cloud	Build	will
then	build	the	containers	associated	with	our	pipeline	based	on	the	new
code	and	create	a	run.

APACHE	AIRFLOW	AND	KUBEFLOW	PIPELINES

https://oreil.ly/kz8Aa
https://oreil.ly/G2Xwv
https://oreil.ly/m_dYr

In	addition	to	TFX,	Apache	Airflow	and	Kubeflow	Pipelines	are	both
alternatives	for	implementing	the	Workflow	Pipeline	pattern.	Like	TFX,
both	Airflow	and	KFP	treat	pipelines	as	a	DAG	where	the	workflow	for
each	step	is	defined	in	a	Python	script.	They	then	take	this	script	and
provide	APIs	to	handle	scheduling	and	orchestrating	the	graph	on	the
specified	infrastructure.	Both	Airflow	and	KFP	are	open	source	and	can
therefore	run	on-premises	or	in	the	cloud.

It’s	common	to	use	Airflow	for	data	engineering,	so	it’s	worth	considering
for	an	organization’s	data	ETL	tasks.	However,	while	Airflow	provides
robust	tooling	for	running	jobs,	it	was	built	as	a	general-purpose	solution
and	wasn’t	designed	with	ML	workloads	in	mind.	KFP,	on	the	other	hand,
was	designed	specifically	for	ML	and	operates	at	a	lower	level	than	TFX,
providing	more	flexibility	in	how	pipeline	steps	are	defined.	While	TFX
implements	its	own	approach	to	orchestration,	KFP	lets	us	choose	how	to
orchestrate	our	pipelines	through	its	API.	The	relationship	between	TFX,
KFP,	and	Kubeflow	is	summarized	in	Figure	6-10.

https://oreil.ly/rQlqK
https://oreil.ly/e_7zJ

Figure	6-10.	The	relationship	between	TFX,	Kubeflow	Pipelines,	Kubeflow,	and	underlying
infrastructure.	TFX	operates	at	the	highest	level	on	top	of	Kubeflow	Pipelines,	with	pre-built

components	offering	specific	approaches	to	common	workflow	steps.	Kubeflow	Pipelines	provides
an	API	for	defining	and	orchestrating	an	ML	pipeline,	providing	more	flexibility	in	how	each	step
is	implemented.	Both	TFX	and	KFP	run	on	Kubeflow,	a	platform	for	running	container-based	ML
workloads	on	Kubernetes.	All	of	the	tools	in	this	diagram	are	open	source,	so	the	underlying
infrastructure	where	pipelines	run	is	up	to	the	user—some	options	include	GKE,	Anthos,	Azure,

AWS,	or	on-premises.

DEVELOPMENT	VERSUS	PRODUCTION	PIPELINES

The	way	a	pipeline	is	invoked	often	changes	as	we	move	from
development	to	production.	We’ll	likely	want	to	build	and	prototype	our
pipeline	from	a	notebook,	where	we	can	re-invoke	our	pipeline	by	running
a	notebook	cell,	debug	errors,	and	update	code	all	from	the	same
environment.	Once	we’re	ready	to	productionize,	we	can	move	our
component	code	and	pipeline	definition	to	a	single	script.	With	our
pipeline	defined	in	a	script,	we’ll	be	able	to	schedule	runs	and	make	it
easier	for	others	in	our	organization	to	invoke	the	pipeline	in	a
reproducible	way.	One	tool	available	for	productionizing	pipelines	is	Kale,
which	takes	Jupyter	notebook	code	and	converts	it	into	a	script	using	the
Kubeflow	Pipelines	API.

A	production	pipeline	also	allows	for	orchestration	of	an	ML	workflow.
By	orchestration,	we	mean	adding	logic	to	our	pipeline	to	determine	which
steps	will	be	executed,	and	what	the	outcome	of	those	steps	will	be.	For
example,	we	might	decide	we	only	want	to	deploy	models	to	production
that	have	95%	accuracy	or	higher.	When	newly	available	data	triggers	a
pipeline	run	and	trains	an	updated	model,	we	can	add	logic	to	check	the
output	of	our	evaluation	component	to	execute	the	deployment	component
if	the	accuracy	is	above	our	threshold,	or	end	the	pipeline	run	if	not.	Both
Airflow	and	Kubeflow	Pipelines,	discussed	previously	in	this	section,
provide	APIs	for	pipeline	orchestration.

LINEAGE	TRACKING	IN	ML	PIPELINES

https://github.com/kubeflow-kale/kale

LINEAGE	TRACKING	IN	ML	PIPELINES

One	additional	feature	of	pipelines	is	using	them	for	tracking	model
metadata	and	artifacts,	also	known	as	lineage	tracking.	Each	time	we
invoke	a	pipeline,	a	series	of	artifacts	is	generated.	These	artifacts	could
include	dataset	summaries,	exported	models,	model	evaluation	results,
metadata	on	specific	pipeline	invocations,	and	more.	Lineage	tracking	lets
us	visualize	the	history	of	our	model	versions	along	with	other	associated
model	artifacts.	In	AI	Platform	Pipelines,	for	example,	we	can	use	the
pipelines	dashboard	to	see	which	data	a	model	version	was	trained	on,
broken	down	both	by	data	schema	and	date.	Figure	6-11	shows	the
Lineage	Explorer	dashboard	for	a	TFX	pipeline	running	on	AI	Platform.
This	allows	us	to	track	the	input	and	output	artifacts	associated	with	a
particular	model.

Figure	6-11.	The	Lineage	Explorer	section	of	the	AI	Platform	Pipelines	dashboard	for	a	TFX
pipeline.

One	benefit	of	using	lineage	tracking	to	manage	artifacts	generated	during
our	pipeline	run	is	that	it	supports	both	cloud-based	and	on-premises
environments.	This	gives	us	flexibility	in	where	models	are	trained	and
deployed,	and	where	model	metadata	is	stored.	Lineage	tracking	is	also	an
important	aspect	of	making	ML	pipelines	reproducible,	since	it	allows	for
comparisons	between	metadata	and	artifacts	from	different	pipeline	runs.

Design	Pattern	26:	Feature	Store
The	Feature	Store	design	pattern	simplifies	the	management	and	reuse	of
features	across	projects	by	decoupling	the	feature	creation	process	from
the	development	of	models	using	those	features.

Problem

Good	feature	engineering	is	crucial	for	the	success	of	many	machine
learning	solutions.	However,	it	is	also	one	of	the	most	time-consuming
parts	of	model	development.	Some	features	require	significant	domain
knowledge	to	calculate	correctly,	and	changes	in	the	business	strategy	can
affect	how	a	feature	should	be	computed.	To	ensure	such	features	are
computed	in	a	consistent	way,	it’s	better	for	these	features	to	be	under	the
control	of	domain	experts	rather	than	ML	engineers.	Some	input	fields
might	allow	for	different	choices	of	data	representations	(see	Chapter	2)	to
make	them	more	amenable	for	machine	learning.	An	ML	engineer	or	data
scientist	will	typically	experiment	with	multiple	different	transformations
to	determine	which	are	helpful	and	which	aren’t,	before	deciding	which
features	will	be	used	in	the	final	model.	Many	times,	the	data	used	for	the
ML	model	isn’t	drawn	from	a	single	source.	Some	data	may	come	from	a
data	warehouse,	some	data	may	sit	in	a	storage	bucket	as	unstructured
data,	and	other	data	may	be	collected	in	real	time	through	streaming.	The

structure	of	the	data	may	also	vary	between	each	of	these	sources,
requiring	each	input	to	have	its	own	feature	engineering	steps	before	it	can
be	fed	into	a	model.	This	development	is	often	done	on	a	VM	or	personal
machine,	causing	the	feature	creation	to	be	tied	to	the	software
environment	where	the	model	is	built,	and	the	more	complex	the	model
gets,	the	more	complicated	these	data	pipelines	become.

An	ad	hoc	approach	where	features	are	created	as	needed	by	ML	projects
may	work	for	one-off	model	development	and	training,	but	as
organizations	scale,	this	method	of	feature	engineering	becomes
impractical	and	significant	problems	arise:

Ad	hoc	features	aren’t	easily	reused.	Features	are	re-created	over
and	over	again,	either	by	individual	users	or	within	teams,	or
never	leave	the	pipelines	(or	notebooks)	in	which	they	are
created.	This	is	particularly	problematic	for	higher-level	features
that	are	complex	to	calculate.	This	could	be	because	they	are
derived	through	expensive	processes,	such	as	pre-trained	user	or
catalog	item	embeddings.	Other	times,	it	could	be	because	the
features	are	captured	from	upstream	processes	such	as	business
priorities,	availability	of	contracting,	or	market	segmentations.
Another	source	of	complexity	is	when	higher-level	features,	such
as	the	number	of	orders	by	a	customer	in	the	past	month,	involve
aggregations	over	time.	Effort	and	time	are	wasted	creating	the
same	features	from	scratch	for	each	new	project.

Data	governance	is	made	difficult	if	each	ML	project	computes
features	from	sensitive	data	differently.

Ad	hoc	features	aren’t	easily	shared	between	teams	or	across
projects.	In	many	organizations,	the	same	raw	data	is	used	by
multiple	teams,	but	separate	teams	may	define	features	differently
and	there	is	no	easy	access	to	feature	documentation.	This	also
hinders	effective	cross-collaboration	of	teams,	leading	to	siloed

work	and	unnecessarily	duplicated	effort.

Ad	hoc	features	used	for	training	and	serving	are	inconsistent—
i.e.,	training–serving	skew.	Training	is	typically	done	using
historical	data	with	batch	features	that	are	created	offline.
However,	serving	is	typically	carried	out	online.	If	the	feature
pipeline	for	training	differs	at	all	from	the	pipeline	used	in
production	for	serving	(for	example,	different	libraries,
preprocessing	code,	or	languages),	then	we	run	the	risk	of
training–serving	skew.

Productionizing	features	is	difficult.	When	moving	to	production,
there	is	no	standardized	framework	to	serve	features	for	online
ML	models	and	to	serve	batch	features	for	offline	model	training.
Models	are	trained	offline	using	features	created	in	batch
processes,	but	when	served	in	production,	these	features	are	often
created	with	an	emphasis	on	low	latency	and	less	on	high
throughput.	The	framework	for	feature	generation	and	storage	is
not	flexible	to	handle	both	of	these	scenarios.

In	short,	the	ad	hoc	approach	to	feature	engineering	slows	model
development	and	leads	to	duplicated	effort	and	work	stream	inefficiency.
Furthermore,	feature	creation	is	inconsistent	between	training	and
inference,	running	the	risk	of	training–serving	skew	or	data	leakage	by
accidentally	introducing	label	information	into	the	model	input	pipeline.

Solution

The	solution	is	to	create	a	shared	feature	store,	a	centralized	location	to
store	and	document	feature	datasets	that	will	be	used	in	building	machine
learning	models	and	can	be	shared	across	projects	and	teams.	The	feature
store	acts	as	the	interface	between	the	data	engineer’s	pipelines	for	feature
creation	and	the	data	scientist’s	workflow	building	models	using	those
features	(Figure	6-12).	This	way,	there	is	a	central	repository	to	house
precomputed	features,	which	speeds	development	time	and	aids	in	feature

discovery.	This	also	allows	the	basic	software	engineering	principles	of
versioning,	documentation,	and	access	control	to	be	applied	to	the	features
that	are	created.

A	typical	feature	store	is	built	with	two	key	design	characteristics:	tooling
to	process	large	feature	data	sets	quickly,	and	a	way	to	store	features	that
supports	both	low-latency	access	(for	inference)	and	large	batch	access
(for	model	training).	There	is	also	a	metadata	layer	that	simplifies
documentation	and	versioning	of	different	feature	sets	and	an	API	that
manages	loading	and	retrieving	feature	data.

Figure	6-12.	A	feature	store	provides	a	bridge	between	raw	data	sources	and	model	training	and
serving.

The	typical	workflow	of	a	data	or	ML	engineer	is	to	read	raw	data
(structured	or	streaming)	from	a	data	source,	apply	various
transformations	on	the	data	using	their	favorite	processing	framework,	and
store	the	transformed	feature	within	the	feature	store.	Rather	than	creating
feature	pipelines	to	support	a	single	ML	model,	the	Feature	Store	pattern

decouples	feature	engineering	from	model	development.	In	particular,
tools	like	Apache	Beam,	Flink,	or	Spark	are	often	used	when	building	a
feature	store	since	they	can	handle	processing	data	in	batch	as	well	as
streaming.	This	also	reduces	the	incidence	of	training–serving	skew,	since
the	feature	data	is	populated	by	the	same	feature	creation	pipelines.

After	features	are	created,	they	are	housed	in	a	data	store	to	be	retrieved
for	training	and	serving.	For	serving	feature	retrieval,	speed	is	optimized.
A	model	in	production	backing	some	online	application	may	need	to
produce	real-time	predictions	within	milliseconds,	making	low	latency
essential.	However,	for	training,	higher	latency	is	not	a	problem.	Instead
the	emphasis	is	on	high	throughput	since	historical	features	are	pulled	in
large	batches	for	training.	A	feature	store	addresses	both	these	use	cases
by	using	different	data	stores	for	online	and	offline	feature	access.	For
example,	a	feature	store	may	use	Cassandra	or	Redis	as	a	data	store	for
online	feature	retrieval,	and	Hive	or	BigQuery	for	fetching	historical,	large
batch	feature	sets.

In	the	end,	a	typical	feature	store	will	house	many	different	feature	sets
containing	features	created	from	myriad	raw	data	sources.	The	metadata
layer	is	built	in	to	document	feature	sets	and	provide	a	registry	for	easy
feature	discovery	and	cross	collaboration	among	teams.

FEAST

As	an	example	of	this	pattern	in	action,	consider	Feast,	which	is	an	open
source	feature	store	for	machine	learning	developed	by	Google	Cloud	and
Gojek.	It	is	built	around	Google	Cloud	services	using	Big	Query	for
offline	model	training	and	Redis	for	low-latency,	online	serving	(Figure	6-
13).	Apache	Beam	is	used	for	feature	creation,	which	allows	for	consistent
data	pipelines	for	both	batch	and	streaming.

https://github.com/feast-dev
https://oreil.ly/PszIn
https://oreil.ly/ecJou

Figure	6-13.	High-level	architecture	of	the	Feast	feature	store.	Feast	is	built	around	Google
BigQuery,	Redis,	and	Apache	Beam.

To	see	how	this	works	in	practice,	we’ll	use	a	public	BigQuery	dataset
containing	information	about	taxi	rides	in	New	York	City. 	Each	row	of
the	table	contains	a	timestamp	of	the	pickup,	the	pickup	latitude	and
longitude,	the	dropoff	latitude	and	longitude,	the	number	of	passengers,
and	the	cost	of	the	taxi	ride.	The	goal	of	the	ML	model	will	be	to	predict
the	cost	of	the	taxi	ride,	denoted	fare_amount,	using	these
characteristics.

This	model	benefits	from	engineering	additional	features	from	the	raw
data.	For	example,	since	taxi	rides	are	based	on	the	distance	and	duration
of	the	trip,	pre-computing	the	distance	between	the	pickup	and	dropoff	is	a
useful	feature.	Once	this	feature	is	computed	on	the	dataset,	we	can	store	it
within	a	feature	set	for	future	use.

Adding	feature	data	to	Feast

Data	is	stored	in	Feast	using	FeatureSets.	A	FeatureSet	contains
the	data	schema	and	data	source	information,	whether	it	is	coming	from	a
pandas	dataframe	or	a	streaming	Kafka	topic.	FeatureSets	are	how
Feast	knows	where	to	source	the	data	it	needs	for	a	feature,	how	to	ingest
it,	and	some	basic	characteristics	about	the	data	types.	Groups	of	features
can	be	ingested	and	stored	together,	and	feature	sets	provide	efficient
storage	and	logical	namespacing	of	data	within	these	stores.

Once	our	feature	set	is	registered,	Feast	will	start	an	Apache	Beam	job	to
populate	the	feature	store	with	data	from	the	source.	A	feature	set	is	used
to	generate	both	offline	and	online	feature	stores,	which	ensures
developers	train	and	serve	their	model	with	the	same	data.	Feast	ensures
that	the	source	data	complies	with	the	expected	schema	of	the	feature	set.

7

There	are	four	steps	to	ingest	feature	data	into	Feast,	as	shown	in	Figure	6-
14.

Figure	6-14.	There	are	four	steps	to	ingesting	feature	data	into	Feast:	create	a	FeatureSet,	add
entities	and	features,	register	the	FeatureSet,	and	ingest	feature	data	into	the	FeatureSet.

The	four	steps	are	as	follows:

1.	 Create	a	FeatureSet.	The	feature	set	specifies	the	entities,
features,	and	source.

2.	 Add	entities	and	features	to	the	FeatureSet.

3.	 Register	the	FeatureSet.	This	creates	a	named	feature	set
within	Feast.	The	feature	set	contains	no	feature	data.

4.	 Load	feature	data	into	the	FeatureSet.

A	notebook	with	the	full	code	for	this	example	can	be	found	in	the
repository	accompanying	this	book.

Creating	a	FeatureSet

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/feature_store.ipynb

We	connect	to	a	Feast	deployment	by	setting	up	a	client	with	the	Python
SDK:

from	feast	import	Client,	FeatureSet,	Entity,	ValueType

#	Connect	to	an	existing	Feast	deployment

client	=	Client(core_url='localhost:6565')

We	can	check	that	the	client	is	connected	by	printing	the	existing	feature
sets	with	the	command	client.list_feature_sets().	If	this	is	a
new	deployment,	this	will	return	an	empty	list.	To	create	a	new	feature	set,
call	the	class	FeatureSet	and	specify	the	feature	set’s	name:

#	Create	a	feature	set

taxi_fs	=	FeatureSet("taxi_rides")

Adding	entities	and	features	to	the	FeatureSet

In	the	context	of	Feast,	FeatureSets	consist	of	entities	and	features.
Entities	are	used	as	keys	to	look	up	feature	values	and	are	used	to	join
features	between	different	feature	sets	when	creating	datasets	for	training
or	serving.	The	entity	serves	as	an	identifier	for	whatever	relevant
characteristic	you	have	in	the	dataset.	It	is	an	object	that	can	be	modeled
and	store	information.	In	the	context	of	a	ride-hailing	or	food	delivery
service,	a	relevant	entity	could	be	customer_id,	order_id,
driver_id,	or	restaurant_id.	In	the	context	of	a	churn	model,	an
entity	could	be	a	customer_id	or	segment_id.	Here,	the	entity	is	the
taxi_id,	a	unique	identifier	for	the	taxi	vendor	of	each	trip.

At	this	stage,	the	feature	set	we	created	called	taxi_rides	contains	no
entities	or	features.	We	can	use	the	Feast	core	client	to	specify	these	from
a	pandas	dataframe	that	contains	the	raw	data	inputs	and	entities	as	shown
in	Table	6-2.

Table	6-2.	The	taxi	ride	dataset	contains	information	about	taxi	rides	
in	New	York.	The	entity	is	the	taxi_id,	a	unique	identifier	for	the	taxi	
vendor	of	each	trip

R
o
w

pickup_dateti
me

picku
p_lat

picku
p_lon

dropo
ff_lat

dropof
f_lon

num_
pass

tax
i_i
d

fare
_am
t

1 2020-05-31
11:29:48	UTC

40.787
403

-73.95
5848

40.723
042

-73.993
106

2 0 15.3

2 2011-04-06
14:30:00	UTC

40.645
343

-73.77
6698

40.714
89

-73.987
242

2 0 45.0

3 2020-04-24
13:11:06	UTC

40.650
105

-73.78
5373

40.638
858

-73.967
8

2 2 32.1

4 2020-02-20
09:07:00	UTC

40.762
365

-73.92
5733

40.740
118

-73.986
487

2 1 21.3

DEFINING	STREAMING	DATA	SOURCES	WHEN	CREATING	A	FEATURE
SET

Users	can	define	streaming	data	sources	when	creating	a	feature	set.	Once	a	feature	set	is	registered	with
a	source,	Feast	will	automatically	start	to	populate	its	stores	with	data	from	this	source.	This	is	an	example
of	a	feature	set	with	a	user-provided	source	that	retrieves	streaming	data	from	a	Kafka	topic:

feature_set	=	FeatureSet(

				name="stream_feature",

				entities=[

								Entity("taxi_id",	ValueType.INT64)

],

				features=[

								Feature("traffic_last_5min",	ValueType.INT64)

],

				source=KafkaSource(

								brokers="mybroker:9092",

								topic="my_feature_topic"

)

)

The	pickup_datetime	timestamp	here	is	important	since	it	is

necessary	to	retrieve	batch	features	and	is	used	to	ensure	time-correct	joins
for	batch	features.	To	create	an	additional	feature,	such	as	the	Euclidean
distance,	load	the	dataset	into	a	pandas	dataframe	and	compute	the	feature:

#	Load	dataframe

taxi_df	=	pd.read_csv("taxi-train.csv")

#	Engineer	features,	Euclidean	distance

taxi_df['euclid_dist']	=	taxi_df.apply(compute_dist,	axis=1)

We	can	add	entities	and	features	to	the	feature	set	with	.add(...).
Alternatively,	the	method	.infer_fields_from_df(...)	will
create	the	entities	and	features	for	our	FeatureSet	directly	from	the
pandas	dataframe.	We	simply	specify	the	column	name	that	represents	the
entity.	The	schema	and	data	types	for	the	features	of	the	FeatureSet
are	then	inferred	from	the	dataframe:

#	Infer	the	features	of	the	feature	set	from	the	pandas	

DataFrame

				taxi_fs.infer_fields_from_df(taxi_df,	

															entities=[Entity(name='taxi_id',	

dtype=ValueType.INT64)],

replace_existing_features=True)

Registering	the	FeatureSet

Once	the	FeatureSet	is	created,	we	can	register	it	with	Feast	using
client.apply(taxi_fs).	To	confirm	that	the	feature	set	was
correctly	registered	or	to	explore	the	contents	of	another	feature	set,	we
can	retrieve	it	using	.get_feature_set(...):

print(client.get_feature_set("taxi_rides"))

This	returns	a	JSON	object	containing	the	data	schema	for	the
taxi_rides	feature	set:

{

		"spec":	{

				"name":	"taxi_rides",

				"entities":	[

						{

								"name":	"key",

								"valueType":	"INT64"

						}

],

				"features":	[

						{

								"name":	"dropoff_lon",

								"valueType":	"DOUBLE"

						},

						{

								"name":	"pickup_lon",

								"valueType":	"DOUBLE"

						},

						...

				...

],

				}

}

Ingesting	feature	data	into	the	FeatureSet

Once	we	are	happy	with	our	schema,	we	can	ingest	the	dataframe	feature
data	into	Feast	using	.ingest(...).	We’ll	specify	the	FeatureSet,
called	taxi_fs,	and	the	dataframe	from	which	to	populate	the	feature
data,	called	taxi_df.

#	Load	feature	data	into	Feast	for	this	specific	feature	set

client.ingest(taxi_fs,	taxi_df)

Progress	during	this	ingestion	step	is	printed	to	the	screen	showing	that
we’ve	ingested	28,247	rows	into	the	taxi_rides	feature	set	within
Feast:

100%|██████████|28247/28247	[00:02<00:00,	2771.19rows/s]

Ingestion	complete!

Ingestion	statistics:

Success:	28247/28247	rows	ingested

At	this	stage,	calling	client.list_feature_sets()	will	now	list
the	feature	set	taxi_rides	we	just	created	and	return
[default/taxi_rides].	Here,	default	refers	to	the	project	scope
of	the	feature	set	within	Feast.	This	can	be	changed	when	instantiating	the
feature	set	to	keep	certain	feature	sets	within	project	access.

WARNING
Datasets	may	change	over	time,	causing	feature	sets	to	change	as	well.	In	Feast,	once	a	feature
set	is	created,	there	are	only	a	few	changes	that	can	be	made.	For	example,	the	following
changes	are	allowed:

Adding	new	features.

Removing	existing	features.	(Note	that	features	are	tombstoned	and	remain	on	record,
so	they	are	not	removed	completely.	This	will	affect	new	features	being	able	to	take	the
names	of	previously	deleted	features.)

Changing	features’	schemas.

Changing	the	feature	set’s	source	or	the	max_age	of	the	feature	set	examples.

The	following	changes	are	not	allowed:

Changes	to	the	feature	set	name.

Changes	to	entities.

Changes	to	names	of	existing	features.

RETRIEVING	DATA	FROM	FEAST

Once	a	feature	set	has	been	sourced	with	features,	we	can	retrieve
historical	or	online	features.	Users	and	production	systems	retrieve	feature
data	through	a	Feast	serving	data	access	layer.	Since	Feast	supports	both

offline	and	online	store	types,	it’s	common	to	have	Feast	deployments	for
both,	as	shown	in	Figure	6-15.	The	same	feature	data	is	contained	within
the	two	feature	stores,	ensuring	consistency	between	training	and	serving.

Figure	6-15.	Feature	data	can	be	retrieved	either	offline,	using	historical	features	for	model
training,	or	online,	for	serving.

These	deployments	are	accessed	via	a	separate	online	and	batch	client:

_feast_online_client	=	Client(serving_url='localhost:6566')

_feast_batch_client	=	Client(serving_url='localhost:6567',

																													core_url='localhost:6565')

Batch	serving

For	training	a	model,	historical	feature	retrieval	is	backed	by	BigQuery
and	accessed	using	.get_batch_features(...)	with	the	batch
serving	client.	In	this	case,	we	provide	Feast	with	a	pandas	dataframe
containing	the	entities	and	timestamps	that	feature	data	will	be	joined	to.
This	allows	Feast	to	produce	a	point-in-time	correct	dataset	based	on	the
features	that	have	been	requested:

#	Create	a	entity	df	of	all	entities	and	timestamps

entity_df	=	pd.DataFrame(

				{

								"datetime":	taxi_df.datetime,

								"taxi_id":	taxi_df.taxi_id,

				}

)

To	retrieve	historical	features,	the	features	in	the	feature	set	are	referenced
by	the	feature	set	name	and	the	feature	name,	separated	by	a	colon—for
example,	taxi_rides:pickup_lat:

				FS_NAME	=	taxi_rides

model_features	=	['pickup_lat',

																					'pickup_lon',

																					'dropoff_lat',

																					'dropoff_lon',

																					'num_pass',

																					'euclid_dist']

				label	=	'fare_amt'

				features	=	model_features	+	[label]

#	Retrieve	training	dataset	from	Feast

dataset	=	_feast_batch_client.get_batch_features(

				feature_refs=[FS_NAME	+	":"	+	feature	for	feature	in	

features],

				entity_rows=entity_df).to_dataframe()

The	dataframe	dataset	now	contains	all	features	and	the	label	for	our
model,	pulled	directly	from	the	feature	store.

Online	serving

For	online	serving,	Feast	only	stores	the	latest	entity	values,	as	opposed	to
historical	serving	where	all	historical	values	are	stored.	Online	serving
with	Feast	is	built	to	be	very	low	latency,	and	Feast	provides	a	gRPC	API
backed	by	Redis.	To	retrieve	online	features,	for	example,	when	making
online	predictions	with	the	trained	model,	we	use
.get_online_features(...)	specifying	the	features	we	want	to
capture	and	the	entity:

#	retrieve	online	features	for	a	single	taxi_id

online_features	=	_feast_online_client.get_online_features(

				feature_refs=["taxi_rides:pickup_lat",

"taxi_rides:pickup_lon",

				"taxi_rides:dropoff_lat",							

"taxi_rides:dropoff_lon",

																					"taxi_rides:num_pass",

"taxi_rides:euclid_dist"],

				entity_rows=[

								GetOnlineFeaturesRequest.EntityRow(

												fields={

																"taxi_id":	Value(

																				int64_val=5)

												}

)

]

)

This	saves	online_features	as	a	list	of	maps	where	each	item	in	the

https://redis.io

list	contains	the	latest	feature	values	for	the	provided	entity,	here,
taxi_id	=	5:

field_values	{

		fields	{

				key:	"taxi_id"

				value	{

						int64_val:	5

				}

		}

		fields	{

				key:	"taxi_rides:dropoff_lat"

				value	{

						double_val:	40.78923797607422

				}

		}

		fields	{

				key:	"taxi_rides:dropoff_lon"

				value	{

						double_val:	-73.96871948242188

				}

		…

To	make	an	online	prediction	for	this	example,	we	pass	the	field	values
from	the	object	returned	in	online_features	as	a	pandas	dataframe
called	predict_df	to	model.predict:

predict_df	=	pd.DataFrame.from_dict(online_features_dict)

model.predict(predict_df)

Why	It	Works

Feature	stores	work	because	they	decouple	feature	engineering	from
feature	usage,	allowing	feature	development	and	creation	to	occur
independently	from	the	consumption	of	features	during	model
development.	As	features	are	added	to	the	feature	store,	they	become

available	immediately	for	both	training	and	serving	and	are	stored	in	a
single	location.	This	ensures	consistency	between	model	training	and
serving.

For	example,	a	model	served	as	a	customer-facing	application	may	receive
only	10	input	values	from	a	client,	but	those	10	inputs	may	need	to	be
transformed	into	many	more	features	via	feature	engineering	before	being
sent	to	a	model.	Those	engineered	features	are	maintained	within	the
feature	store.	It	is	crucial	that	the	pipeline	for	retrieving	features	during
development	is	the	same	as	when	serving	the	model.	A	feature	store
ensures	that	consistency	(Figure	6-16).

Feast	accomplishes	this	by	using	Beam	on	the	backend	for	feature
ingestion	pipelines	that	write	feature	values	into	the	feature	sets,	and	uses
Redis	and	BigQuery	for	online	and	offline	(respectively)	feature	retrieval
(Figure	6-17). 	As	with	any	feature	store,	the	ingestion	pipeline	also
handles	partial	failure	or	race	conditions	that	might	cause	some	data	to	be
in	one	storage	but	not	the	other.

8

Figure	6-16.	A	feature	store	ensures	the	feature	engineering	pipelines	are	consistent	between
model	training	and	serving.	See	also	https://docs.feast.dev/.

https://docs.feast.dev/

Figure	6-17.	Feast	uses	Beam	on	the	backend	for	feature	ingestion	and	Redis	and	BigQuery	for
online	and	offline	feature	retrieval.

Different	systems	may	produce	data	at	different	rates,	and	a	feature	store
is	flexible	enough	to	handle	those	different	cadences,	both	for	ingestion
and	during	retrieval	(Figure	6-18).	For	example,	sensor	data	could	be
produced	in	real	time,	arriving	every	second,	or	there	could	be	a	monthly
file	that	is	generated	from	an	external	system	reporting	a	summary	of	the
last	month’s	transactions.	Each	of	these	need	to	be	processed	and	ingested
into	the	feature	store.	By	the	same	token,	there	may	be	different	time
horizons	for	retrieving	data	from	the	feature	store.	For	example,	a	user-
facing	online	application	may	operate	at	very	low	latency	using	up-to-the-
second	features,	whereas	when	training	the	model,	features	are	pulled
offline	as	a	larger	batch	but	with	higher	latency.

Figure	6-18.	The	Feature	Store	design	pattern	can	handle	both	the	requirements	of	data	being
highly	scalable	for	large	batches	during	training	and	extremely	low	latency	for	serving	online

applications.

There	is	no	single	database	that	can	handle	both	scaling	to	potentially
terabytes	of	data	and	extremely	low	latency	on	the	order	of	milliseconds.
The	feature	store	achieves	this	with	separate	online	and	offline	feature
stores	and	ensures	that	features	are	handled	in	a	consistent	fashion	in	both
scenarios.

Lastly,	a	feature	store	acts	as	a	version-controlled	repository	for	feature

datasets,	allowing	the	same	CI/CD	practices	of	code	and	model
development	to	be	applied	to	the	feature	engineering	process.	This	means
that	new	ML	projects	start	with	a	process	of	feature	selection	from	a
catalog	instead	of	having	to	do	feature	engineering	from	scratch,	allowing
organizations	to	achieve	an	economies-of-scale	effect—as	new	features
are	created	and	added	to	the	feature	store,	it	becomes	easier	and	faster	to
build	new	models	that	reuse	those	features.

Trade-Offs	and	Alternatives

The	Feast	framework	that	we	discussed	is	built	on	Google	BigQuery,
Redis,	and	Apache	Beam.	However,	there	are	feature	stores	that	rely	on
other	tools	and	tech	stacks.	And,	although	a	feature	store	is	the
recommended	way	to	manage	features	at	scale,	tf.transform	provides
an	alternative	solution	that	addresses	the	issue	of	training–serving	skew,
but	not	feature	reusability.	There	are	also	some	alternative	uses	of	a
feature	store	that	we	have	not	yet	detailed,	such	as	how	a	feature	store
handles	data	from	different	sources	and	data	arriving	at	different	cadences.

ALTERNATIVE	IMPLEMENTATIONS

Many	large	technology	companies,	like	Uber,	LinkedIn,	Airbnb,	Netflix,
and	Comcast,	host	their	own	version	of	a	feature	store,	though	the
architectures	and	tools	vary.	Uber’s	Michelangelo	Palette	is	built	around
Spark/Scala	using	Hive	for	offline	feature	creation	and	Cassandra	for
online	features.	Hopsworks	provides	another	open	source	feature	store
alternative	to	Feast	and	is	built	around	dataframes	using	Spark	and	pandas
with	Hive	for	offline	and	MySQL	Cluster	for	online	feature	access.	Airbnb
built	their	own	feature	store	as	part	of	their	production	ML	framework
called	Zipline.	It	uses	Spark	and	Flink	for	feature	engineering	jobs	and
Hive	for	feature	storage.

Whichever	tech	stack	is	used,	the	primary	components	of	the	feature	store
are	the	same:

A	tool	to	process	large	feature	engineering	jobs	quickly,	such	as
Spark,	Flink	or	Beam.

A	storage	component	for	housing	the	feature	sets	that	are	created,
such	as	Hive,	cloud	storage	(Amazon	S3,	Google	Cloud	Storage),
BigQuery,	Redis,	BigTable,	and/or	Cassandra.	The	combination
that	Feast	uses	(BigQuery	and	Redis)	is	optimized	for	offline
versus	online	(low-latency)	feature	retrieval.

A	metadata	layer	to	record	feature	version	information,
documentation,	and	feature	registry	to	simplify	discovery	and
sharing	of	feature	sets.

An	API	for	ingesting	and	retrieving	features	to/from	the	feature
store.

TRANSFORM	DESIGN	PATTERN

If	feature	engineering	code	is	not	the	same	during	training	and	inference,
there	is	a	risk	that	the	two	code	sources	will	not	be	consistent.	This	leads
to	training–serving	skew,	and	model	predictions	may	not	be	reliable	since
the	features	may	not	be	the	same.	Feature	stores	get	around	this	problem
by	having	their	feature	engineering	jobs	write	feature	data	to	both	an
online	and	an	offline	database.	And,	while	a	feature	store	itself	doesn’t
perform	the	feature	transformations,	it	provides	a	way	to	separate	the
upstream	feature	engineering	steps	from	model	serving	and	provide	point
in	time	correctness.

The	Transform	design	pattern	discussed	in	this	chapter	also	provides	a
way	to	keep	feature	transformations	separate	and	reproducible.	For
example,	tf.transform	can	be	used	to	preprocess	data	using	exactly
the	same	code	for	both	training	a	model	and	serving	predictions	in

production,	thus	eliminating	training–serving	skew.	This	ensures	that
training	and	serving	feature	engineering	pipelines	are	consistent.

However,	the	feature	store	provides	an	added	advantage	of	feature
reusability	that	tf.transform	does	not	have.	Although
tf.transform	pipelines	ensure	reproducibility,	the	features	are	created
and	developed	only	for	that	model	and	are	not	easily	shared	or	reused	by
other	models	and	pipelines.

On	the	other	hand,	tf.transform	takes	special	care	to	ensure	that
feature	creation	during	serving	is	carried	out	on	accelerated	hardware,
since	it	is	part	of	the	serving	graph.	Feature	stores	typically	do	not	provide
this	capability	today.

Design	Pattern	27:	Model	Versioning
In	the	Model	Versioning	design	pattern,	backward	compatibility	is
achieved	by	deploying	a	changed	model	as	a	microservice	with	a	different
REST	endpoint.	This	is	a	necessary	prerequisite	for	many	of	the	other
patterns	discussed	in	this	chapter.

Problem

As	we’ve	seen	with	data	drift	(introduced	in	Chapter	1),	models	can
become	stale	over	time	and	need	to	be	updated	regularly	to	make	sure	they
reflect	an	organization’s	changing	goals,	and	the	environment	associated
with	their	training	data.	Deploying	model	updates	to	production	will
inevitably	affect	the	way	models	behave	on	new	data,	which	presents	a
challenge—we	need	an	approach	for	keeping	production	models	up	to	date
while	still	ensuring	backward	compatibility	for	existing	model	users.

Updates	to	an	existing	model	might	include	changing	a	model’s
architecture	in	order	to	improve	accuracy,	or	retraining	a	model	on	more
recent	data	to	address	drift.	While	these	types	of	changes	likely	won’t
require	a	different	model	output	format,	they	will	affect	the	prediction
results	users	get	from	a	model.	As	an	example,	let’s	imagine	we’re
building	a	model	that	predicts	the	genre	of	a	book	from	its	description	and
uses	the	predicted	genres	to	make	recommendations	to	users.	We	trained
our	initial	model	on	a	dataset	of	older	classic	books,	but	now	have	access
to	new	data	on	thousands	of	more	recent	books	to	use	for	training.
Training	on	this	updated	dataset	improves	our	overall	model	accuracy,	but
slightly	reduces	accuracy	on	older	“classic”	books.	To	handle	this,	we’ll
need	a	solution	that	lets	users	choose	an	older	version	of	our	model	if	they
prefer.

Alternatively,	our	model’s	end	users	might	start	to	require	more
information	on	how	the	model	is	arriving	at	a	specific	prediction.	In	a
medical	use	case,	a	doctor	might	need	to	see	the	regions	in	an	x-ray	that
caused	a	model	to	predict	the	presence	of	disease	rather	than	rely	solely	on
the	predicted	label.	In	this	case,	the	response	from	a	deployed	model
would	need	to	be	updated	to	include	these	highlighted	regions.	This
process	is	known	as	explainability	and	is	discussed	further	in	Chapter	7.

When	we	deploy	updates	to	our	model,	we’ll	also	likely	want	a	way	to
track	how	the	model	is	performing	in	production	and	compare	this	with
previous	iterations.	We	may	also	want	a	way	to	test	a	new	model	with
only	a	subset	of	our	users.	Both	performance	monitoring	and	split	testing,
along	with	other	possible	model	changes,	will	be	difficult	to	solve	by
replacing	a	single	production	model	each	time	we	make	updates.	Doing
this	will	break	applications	that	are	relying	on	our	model	output	to	match	a
specific	format.	To	handle	this,	we’ll	need	a	solution	that	allows	us	to

continuously	update	our	model	without	breaking	existing	users.

Solution

To	gracefully	handle	updates	to	a	model,	deploy	multiple	model	versions
with	different	REST	endpoints.	This	ensures	backward	compatibility—by
keeping	multiple	versions	of	a	model	deployed	at	a	given	time,	those	users
relying	on	older	versions	will	still	be	able	to	use	the	service.	Versioning
also	allows	for	fine-grained	performance	monitoring	and	analytics
tracking	across	versions.	We	can	compare	accuracy	and	usage	statistics,
and	use	this	to	determine	when	to	take	a	particular	version	offline.	If	we
have	a	model	update	that	we	want	to	test	with	only	a	small	subset	of	users,
the	Model	Versioning	design	pattern	makes	it	possible	to	perform	A/B
testing.

Additionally,	with	model	versioning,	each	deployed	version	of	our	model
is	a	microservice—thus	decoupling	changes	to	our	model	from	our
application	frontend.	To	add	support	for	a	new	version,	our	team’s
application	developers	only	need	to	change	the	name	of	the	API	endpoint
pointing	to	the	model.	Of	course,	if	a	new	model	version	introduces
changes	to	the	model’s	response	format,	we’ll	need	to	make	changes	to
our	app	to	accommodate	this,	but	the	model	and	application	code	are	still
separate.	Data	scientists	or	ML	engineers	can	therefore	deploy	and	test	a
new	model	version	on	our	own	without	worrying	about	breaking	our
production	app.

TYPES	OF	MODEL	USERS

When	we	refer	to	“end	users”	of	our	model,	this	includes	two	different
groups	of	people.	If	we’re	making	our	model	API	endpoint	available	to
application	developers	outside	our	organization,	these	developers	can	be

thought	of	as	one	type	of	model	user.	They	are	building	applications	that
rely	on	our	model	for	serving	predictions	to	others.	The	backward
compatibility	benefit	that	comes	with	model	versioning	is	most	important
for	these	users.	If	the	format	of	our	model’s	response	changes,	application
developers	may	want	to	use	an	older	model	version	until	they’ve	updated
their	application	code	to	support	the	latest	response	format.

The	other	group	of	end	users	refers	to	those	using	an	application	that	calls
our	deployed	model.	This	could	be	a	doctor	relying	on	our	model	to
predict	the	presence	of	disease	in	an	image,	someone	using	our	book
recommendation	app,	our	organization’s	business	unit	analyzing	the
output	of	a	revenue	prediction	model	we	built,	and	more.	This	group	of
users	is	less	likely	to	run	into	backward	compatibility	issues,	but	may	want
the	option	to	choose	when	to	start	using	a	new	feature	in	our	app.	Also,	if
we	can	break	users	into	distinct	groups	(i.e.,	based	on	their	app	usage),	we
can	serve	each	group	different	model	versions	based	on	their	preferences.

MODEL	VERSIONING	WITH	A	MANAGED	SERVICE

To	demonstrate	versioning,	we’ll	build	a	model	that	predicts	flight	delays
and	deploy	this	model	to	Cloud	AI	Platform	Prediction.	Because	we
looked	at	TensorFlow’s	SavedModel	in	previous	chapters,	we’ll	use	an
XGBoost	model	here.

Once	we’ve	trained	our	model,	we	can	export	it	to	get	it	ready	for	serving:

model.save_model('model.bst')

To	deploy	this	model	to	AI	Platform,	we	need	to	create	a	model	version
that	will	point	to	this	model.bst	in	a	Cloud	Storage	Bucket.

https://oreil.ly/-GAVQ

In	AI	Platform,	a	model	resource	can	have	many	versions	associated	with
it.	To	create	a	new	version	using	the	gcloud	CLI,	we’ll	run	the	following
in	a	Terminal:

gcloud	ai-platform	versions	create	'v1'	\

		--model	'flight_delay_prediction'	\

		--origin	gs://your-gcs-bucket	\

		--runtime-version=1.15	\

		--framework	'XGBOOST'	\

		--python-version=3.7

With	this	model	deployed,	it’s	now	accessible	via	the	endpoint
/models/flight_delay_predictions/versions/v1	in	an	HTTPS	URL	tied	to
our	project.	Since	this	is	the	only	version	we’ve	deployed	so	far,	it’s
considered	the	default.	This	means	that	if	we	don’t	specify	a	version	in	our
API	request,	the	prediction	service	will	use	v1.	Now	we	can	make
predictions	to	our	deployed	model	by	sending	it	examples	in	the	format
our	model	expects—in	this	case,	a	110-element	array	of	dummy-coded
airport	codes	(for	the	full	code,	see	the	notebook	on	GitHub).	The	model
returns	sigmoid	output,	a	float	value	between	0	and	1	indicating	the
likelihood	a	given	flight	was	delayed	more	than	30	minutes.

To	make	a	prediction	request	to	our	deployed	model,	we’ll	use	the
following	gcloud	command,	where	input.json	is	a	file	with	our	newline
delimited	examples	to	send	for	prediction:

gcloud	ai-platform	predict	--model	'flight_delay_prediction'	

--version	'v1'	

--json-request	'input.json'

If	we	send	five	examples	for	prediction,	we’ll	get	a	five-element	array
back	corresponding	with	the	sigmoid	output	for	each	test	example,	like	the
following:

[0.019,	0.998,	0.213,	0.002,	0.004]

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/06_reproducibility/model_versioning.ipynb

Now	that	we	have	a	working	model	in	production,	let’s	imagine	that	our
data	science	team	decides	to	change	the	model	from	XGBoost	to
TensorFlow	since	it	results	in	improved	accuracy	and	gives	them	access	to
additional	tooling	in	the	TensorFlow	ecosystem.	The	model	has	the	same
input	and	output	format,	but	its	architecture	and	exported	asset	format	has
changed.	Instead	of	a	.bst	file,	our	model	is	now	in	the	TensorFlow
SavedModel	format.	Ideally	we	can	keep	our	underlying	model	assets
separate	from	our	application	frontend—this	will	allow	application
developers	to	focus	on	our	application’s	functionality,	rather	than	a	change
in	model	formatting	that	won’t	affect	the	way	end	users	interact	with	the
model.	This	is	where	model	versioning	can	help.	We’ll	deploy	our
TensorFlow	model	as	a	second	version	under	the	same
flight_delay_prediction	model	resource.	End	users	can	upgrade
to	the	new	version	for	improved	performance	simply	by	changing	the
version	name	in	the	API	endpoint.

To	deploy	our	second	version,	we’ll	export	the	model	and	copy	it	to	a	new
subdirectory	in	the	bucket	we	used	previously.	We	can	use	the	same
deploy	command	as	above,	replacing	the	version	name	with	v2	and
pointing	to	the	Cloud	Storage	location	of	the	new	model.	As	shown	in
Figure	6-19,	we’re	now	able	to	see	both	deployed	versions	in	our	Cloud
console.

Figure	6-19.	The	dashboard	for	managing	models	and	versions	in	the	Cloud	AI	Platform	console.

Notice	that	we’ve	also	set	v2	as	the	new	default	version,	so	that	if	users
don’t	specify	a	version,	they’ll	get	a	response	from	v2.	Since	the	input	and
output	format	of	our	model	are	the	same,	clients	can	upgrade	without
worrying	about	breaking	changes.

TIP
Both	Azure	and	AWS	have	similar	model	versioning	services	available.	On	Azure,	model
deployment	and	versioning	is	available	with	Azure	Machine	Learning.	In	AWS,	these	services
are	available	in	SageMaker.

An	ML	engineer	deploying	a	new	version	of	a	model	as	an	ML	model
endpoint	may	want	to	use	an	API	gateway	such	as	Apigee	that	determines
which	model	version	to	call.	There	are	various	reasons	for	doing	this,
including	split	testing	a	new	version.	For	split	testing,	maybe	they	want	to
test	a	model	update	with	a	randomly	selected	group	of	10%	of	application
users	to	track	how	it	affects	their	overall	engagement	with	the	app.	The

https://oreil.ly/Q7NWh
https://oreil.ly/r98Ve

API	gateway	determines	which	deployed	model	version	to	call	given	a
user’s	ID	or	IP	address.

With	multiple	model	versions	deployed,	AI	Platform	allows	for
performance	monitoring	and	analytics	across	versions.	This	lets	us	trace
errors	to	a	specific	version,	monitor	traffic,	and	combine	this	with
additional	data	we’re	collecting	in	our	application.

VERSIONING	TO	HANDLE	NEWLY	AVAILABLE	DATA
In	addition	to	handling	changes	to	our	model	itself,	another	reason	to	use	versioning	is	when	new	training
data	becomes	available.	Assuming	this	new	data	follows	the	same	schema	used	to	train	the	original	model,
it’s	important	to	keep	track	of	when	the	data	was	captured	for	each	newly	trained	version.	One	approach	to
tracking	this	is	to	encode	the	timestamp	range	of	each	training	dataset	in	the	name	of	a	model	version.	For
example,	if	the	latest	version	of	a	model	is	trained	on	data	from	2019,	we	could	name	the	version
v20190101_20191231.

We	can	use	this	approach	in	combination	with	“Design	Pattern	18:	Continued	Model	Evaluation”
(discussed	in	Chapter	5)	to	determine	when	to	take	older	model	versions	offline,	or	how	far	back	training
data	should	go.	Continuous	evaluation	might	help	us	determine	that	our	model	performs	best	when	trained
on	data	from	the	past	two	years.	This	could	then	inform	the	versions	we	decide	to	remove,	and	how	much
data	to	use	when	training	newer	versions.

Trade-Offs	and	Alternatives

While	we	recommend	the	Model	Versioning	design	pattern	over
maintaining	a	single	model	version,	there	are	a	few	implementation
alternatives	to	the	solution	outlined	above.	Here,	we’ll	look	at	other
serverless	and	open	source	tooling	for	this	pattern	and	the	approach	of
creating	multiple	serving	functions.	We’ll	also	discuss	when	to	create	an
entirely	new	model	resource	instead	of	a	version.

OTHER	SERVERLESS	VERSIONING	TOOLS

We	used	a	managed	service	specifically	designed	for	versioning	ML
models,	but	we	could	achieve	similar	results	with	other	serverless

offerings.	Under	the	hood,	each	model	version	is	a	stateless	function	with
a	specified	input	and	output	format,	deployed	behind	a	REST	endpoint.
We	could	therefore	use	a	service	like	Cloud	Run,	for	example,	to	build
and	deploy	each	version	in	a	separate	container.	Each	container	has	a
unique	URL	and	can	be	invoked	by	an	API	request.	This	approach	gives
us	more	flexibility	in	how	to	configure	the	deployed	model	environment,
letting	us	add	functionality	like	server-side	preprocessing	for	model
inputs.	In	our	flight	example	above,	we	may	not	want	to	require	clients	to
one-hot	encode	categorical	values.	Instead,	we	could	let	clients	pass	the
categorical	values	as	strings,	and	handle	preprocessing	in	our	container.

Why	would	we	use	a	managed	ML	service	like	AI	Platform	Prediction
instead	of	a	more	generalized	serverless	tool?	Since	AI	Platform	was	built
specifically	for	ML	model	deployment,	it	has	built-in	support	for
deploying	models	with	GPUs	optimized	for	ML.	It	also	handles
dependency	management.	When	we	deployed	our	XGBoost	model	above,
we	didn’t	need	to	worry	about	installing	the	correct	XGBoost	version	or
other	library	dependencies.

TENSORFLOW	SERVING

Instead	of	using	Cloud	AI	Platform	or	another	cloud-based	serverless
offering	for	model	versioning,	we	could	use	an	open	source	tool	like
TensorFlow	Serving.	The	recommended	approach	for	implementing
TensorFlow	Serving	is	to	use	a	Docker	container	via	the	latest
tensorflow/serving	Docker	image.	With	Docker,	we	could	then
serve	the	model	using	whichever	hardware	we’d	like,	including	GPUs.
The	TensorFlow	Serving	API	has	built-in	support	for	model	versioning,
following	a	similar	approach	to	the	one	discussed	in	the	Solution	section.
In	addition	to	TensorFlow	Serving,	there	are	also	other	open	source	model
serving	options,	including	Seldon	and	MLFlow.

https://oreil.ly/KERBV
https://oreil.ly/NzDA9
https://oreil.ly/G0_Z7
https://oreil.ly/Cddpi
https://mlflow.org

MULTIPLE	SERVING	FUNCTIONS

Another	alternative	to	deploying	multiple	versions	is	to	define	multiple
serving	functions	for	a	single	version	of	an	exported	model.	“Design
Pattern	16:	Stateless	Serving	Function”	(introduced	in	Chapter	5)
explained	how	to	export	a	trained	model	as	a	stateless	function	for	serving
in	production.	This	is	especially	useful	when	model	inputs	require
preprocessing	to	transform	data	sent	by	the	client	into	the	format	the
model	expects.

To	handle	requirements	for	different	groups	of	model	end	users,	we	can
define	multiple	serving	functions	when	we	export	our	model.	These
serving	functions	are	part	of	one	exported	model	version,	and	this	model	is
deployed	to	a	single	REST	endpoint.	In	TensorFlow,	serving	functions	are
implemented	using	model	signatures,	which	define	the	input	and	output
format	a	model	is	expecting.	We	can	define	multiple	serving	functions
using	the	@tf.function	decorator	and	pass	each	function	an	input
signature.

In	the	application	code	where	we	invoke	our	deployed	model,	we	would
determine	which	serving	function	to	use	based	on	the	data	sent	from	the
client.	For	example,	a	request	such	as:

{"signature_name":	"get_genre",	"instances":	…	}

would	be	sent	to	the	exported	signature	called	get_genre,	whereas	a
request	like:

{"signature_name":	"get_genre_with_explanation",	"instances":	…	

}

would	be	sent	to	the	exported	signature	called
get_genre_with_explanation.

Deploying	multiple	signatures	can,	therefore,	solve	the	backward
compatibility	problem.	However,	there	is	a	significant	difference—there	is
only	one	model,	and	when	that	model	is	deployed,	all	the	signatures	are
simultaneously	updated.	In	our	original	example	of	changing	the	model
from	providing	just	one	genre	to	providing	multiple	genres,	the	model
architecture	changed.	The	multiple-signature	approach	wouldn’t	work
with	that	example	since	we	have	two	different	models.	The	multiple-
signature	solution	is	also	not	appropriate	when	we	wish	to	keep	different
versions	of	the	model	separate	and	deprecate	the	older	version	over	time.

Using	multiple	signatures	is	better	than	using	multiple	versions	if	you
wish	to	maintain	both	model	signatures	going	forward.	In	the	scenario
where	there	are	some	clients	who	simply	want	the	best	answer	and	other
clients	who	want	both	the	best	answer	and	an	explanation,	there	is	an
added	benefit	to	updating	all	the	signatures	with	a	newer	model	instead	of
having	to	update	versions	one	by	one	every	time	the	model	is	retrained
and	redeployed.

What	are	some	scenarios	where	we	might	want	to	maintain	both	versions
of	the	model?	With	a	text	classification	model,	we	may	have	some	clients
that	need	to	send	raw	text	to	the	model,	and	others	that	are	able	to
transform	raw	text	into	matrices	before	getting	a	prediction.	Based	on	the
request	data	from	the	client,	the	model	framework	can	determine	which
serving	function	to	use.	Passing	text	embedding	matrices	to	a	model	is	less
expensive	than	preprocessing	raw	text,	so	this	is	an	example	where
multiple	serving	functions	could	reduce	server-side	processing	time.	It’s
also	worth	noting	that	we	can	have	multiple	serving	functions	with

multiple	model	versions,	though	there	is	a	risk	that	this	could	create	too
much	complexity.

NEW	MODELS	VERSUS	NEW	MODEL	VERSIONS

Sometimes	it	can	be	difficult	to	decide	whether	to	create	another	model
version	or	an	entirely	new	model	resource.	We	recommend	creating	a	new
model	when	a	model’s	prediction	task	changes.	A	new	prediction	task
typically	results	in	a	different	model	output	format,	and	changing	this
could	result	in	breaking	existing	clients.	If	we’re	unsure	about	whether	to
use	a	new	version	or	model,	we	can	think	about	whether	we	want	existing
clients	to	upgrade.	If	the	answer	is	yes,	chances	are	we	have	improved	the
model	without	changing	the	prediction	task,	and	creating	a	new	version
will	suffice.	If	we’ve	changed	the	model	in	a	way	that	would	require	users
to	decide	whether	they	want	the	update,	we’ll	likely	want	to	create	a	new
model	resource.

To	see	this	in	practice,	let’s	return	to	our	flight	prediction	model	to	see	an
example.	The	current	model	has	defined	what	it	considers	a	delay	(30+
minutes	late),	but	our	end	users	may	have	different	opinions	on	this.	Some
users	think	just	15	minutes	late	counts	as	delayed,	whereas	others	think	a
flight	is	only	delayed	if	it’s	over	an	hour	late.	Let’s	imagine	that	we’d	now
like	our	users	to	be	able	to	incorporate	their	own	definition	of	delayed
rather	than	use	ours.	In	this	case	we’d	use	“Design	Pattern	5:	Reframing	”
(discussed	in	Chapter	3)	to	change	this	to	a	regression	model.	The	input
format	to	this	model	is	the	same,	but	the	output	is	now	a	numerical	value
representing	the	delay	prediction.

The	way	our	model	users	parse	this	response	will	obviously	be	different
than	the	first	version.	With	our	latest	regression	model,	app	developers
might	choose	to	display	the	predicted	delay	when	users	search	for	flights,

replacing	something	like	“This	flight	is	usually	delayed	more	than	30
minutes”	from	the	first	version.	In	this	scenario,	the	best	solution	is	to
create	a	new	model	resource,	perhaps	called
flight_model_regression,	to	reflect	the	changes.	This	way,	app
developers	can	choose	which	to	use,	and	we	can	continue	to	make
performance	updates	to	each	model	by	deploying	new	versions.

Summary
This	chapter	focused	on	design	patterns	that	address	different	aspects	of
reproducibility.	Starting	with	the	Transform	design,	we	saw	how	this
pattern	is	used	to	ensure	reproducibility	of	the	data	preparation
dependencies	between	the	model	training	pipeline	and	the	model	serving
pipeline.	This	is	achieved	by	explicitly	capturing	the	transformations
applied	to	convert	the	model	inputs	into	the	model	features.	The
Repeatable	Splitting	design	pattern	captures	the	way	data	is	split	among
training,	validation,	and	test	datasets	to	ensure	that	an	example	used	in
training	is	never	used	for	evaluation	or	testing	even	as	the	dataset	grows.

The	Bridged	Schema	design	pattern	looks	at	how	to	ensure	reproducibility
when	a	training	dataset	is	a	hybrid	of	newer	data	and	older	data	with	a
different	schema.	This	allows	for	combining	two	datasets	with	different
schemas	in	a	consistent	way	for	training.	Next,	we	discussed	the
Windowed	Inference	design	pattern,	which	ensures	that	when	features	are
calculated	in	a	dynamic,	time-dependent	way,	they	can	be	correctly
repeated	between	training	and	serving.	This	design	pattern	is	particularly
useful	when	machine	learning	models	require	features	that	are	computed
from	aggregates	over	time	windows.

The	Workflow	Pipeline	design	pattern	addresses	the	problem	of	creating

an	end-to-end	reproducible	pipeline	by	containerizing	and	orchestrating
the	steps	in	our	machine	learning	workflow.	Next,	we	saw	how	the
Feature	Store	design	pattern	can	be	used	to	address	reproducibility	and
reusability	of	features	across	different	machine	learning	jobs.	Lastly,	we
looked	at	the	Model	Versioning	design	pattern,	where	backward
compatibility	is	achieved	by	deploying	a	changed	model	as	a	microservice
with	a	different	REST	endpoint.

In	the	next	chapter,	we	look	into	design	patterns	that	help	carry	out	AI
responsibly.

1 	Note	that	the	overall	probability	distribution	function	doesn’t	need	to	be	uniform—all	that	we
require	is	that	the	original	bins	are	narrow	enough	for	us	to	be	able	to	approximate	the
probability	distribution	function	by	a	staircase	function.	Where	this	assumption	fails	is	when
we	have	a	highly	skewed	distribution	that	was	inadequately	sampled	in	the	older	data.	In
such	cases,	it	is	possible	that	3.46	is	more	likely	than	3.54,	and	this	would	need	to	be
reflected	in	the	bridged	dataset.

2 	In	other	words,	we	are	computing	the	average.

3 	For	more	on	data	validation,	see	“Design	Pattern	30:	Fairness	Lens”	in	Chapter	7,
Responsible	AI.

4 	SSHS	stands	for	Saffir–Simpson	Hurricane	Scale,	and	is	a	scale	from	1	to	5	used	to	measure
the	strength	and	severity	of	a	hurricane.	Note	that	the	ML	model	does	not	forecast	the
severity	of	the	hurricane	at	a	later	time.	Instead,	it	simply	learns	the	wind	speed	thresholds
used	in	the	Saffir–Simpson	scale.

5 	While	deployment	is	the	last	step	in	our	example	pipeline,	production	pipelines	often	include
more	steps,	such	as	storing	the	model	in	a	shared	repository	or	executing	a	separate	serving
pipeline	that	does	CI/CD	and	testing.

6 	Note	that	in	order	to	run	TFX	pipelines	on	AI	Platform,	you	currently	need	to	host	your	code
on	GCR	and	can’t	use	another	container	registry	service	like	DockerHub.

7 	The	data	is	available	in	the	BigQuery	table:	bigquery-public-
data.new_york_taxi_trips.tlc_yellow_trips_2016.

8 	See	the	Gojek	blog,	“Feast:	Bridging	ML	Models	and	Data.”

https://oreil.ly/62kf3
https://oreil.ly/YVta5

Chapter	7.	Responsible	AI

Until	this	point,	we’ve	focused	on	patterns	designed	to	help	data	and
engineering	teams	prepare,	build,	train,	and	scale	models	for	production
use.	These	patterns	mainly	addressed	teams	directly	involved	in	the	ML
model	development	process.	Once	a	model	is	in	production,	its	impact
extends	far	beyond	the	teams	who	built	it.	In	this	chapter,	we’ll	discuss	the
other	stakeholders	of	a	model,	both	those	within	and	outside	of	an
organization.	Stakeholders	could	include	executives	whose	business
objectives	dictate	a	model’s	goals,	the	end	users	of	a	model,	auditors,	and
compliance	regulators.

There	are	several	groups	of	model	stakeholders	we’ll	be	referring	to	in	this
chapter:

Model	builders

Data	scientists	and	ML	researchers	directly	involved	in	building	ML

models.

ML	engineers

Members	of	ML	Ops	teams	directly	involved	in	deploying	ML

models.

Business	decision	makers

Decide	whether	or	not	to	incorporate	the	ML	model	into	their	business

processes	or	customer-facing	applications	and	will	need	to	evaluate

whether	the	model	is	fit	for	this	purpose.

End	users	of	ML	systems

Make	use	of	predictions	from	an	ML	model.	There	are	many	different

types	of	model	end	users:	customers,	employees,	and	hybrids	of	these.

Examples	include	a	customer	getting	a	movie	recommendation	from	a

model,	an	employee	on	a	factory	floor	using	a	visual	inspection	model

to	determine	whether	a	product	is	broken,	or	a	medical	practitioner

using	a	model	to	aid	in	patient	diagnosis.

Regulatory	and	compliance	agencies

People	and	organizations	who	need	an	executive-level	summary	of

how	a	model	is	making	decisions	from	a	regulatory	compliance

perspective.	This	could	include	financial	auditors,	government

agencies,	or	governance	teams	within	an	organization.

Throughout	this	chapter,	we’ll	look	at	patterns	that	address	a	model’s
impact	on	individuals	and	groups	outside	the	team	and	organization
building	a	model.	The	Heuristic	Benchmark	design	pattern	provides	a	way
of	putting	the	model’s	performance	in	a	context	that	end	users	and
decision	makers	can	understand.	The	Explainable	Predictions	pattern
provides	approaches	to	improving	trust	in	ML	systems	by	fostering	an
understanding	of	the	signals	a	model	is	using	to	make	predictions.	The
Fairness	Lens	design	pattern	aims	to	ensure	that	models	behave	equitably
across	different	subsets	of	users	and	prediction	scenarios.

Taken	together,	the	patterns	in	this	chapter	fall	under	the	practice	of
Responsible	AI.	This	is	an	area	of	active	research	and	is	concerned	with
the	best	ways	to	build	fairness,	interpretability,	privacy,	and	security	into
AI	systems.	Recommended	practices	for	responsible	AI	include
employing	a	human-centered	design	approach	by	engaging	with	a	diverse

https://oreil.ly/MlJkM

set	of	users	and	use-case	scenarios	throughout	project	development,
understanding	the	limitations	of	datasets	and	models,	and	continuing	to
monitor	and	update	ML	systems	after	deployment.	Responsible	AI
patterns	are	not	limited	to	the	three	that	we	discuss	in	this	chapter—many
of	the	patterns	in	earlier	chapters	(like	Continuous	Evaluation,	Repeatable
Splitting,	and	Neutral	Class,	to	name	a	few)	provide	methods	to
implement	these	recommended	practices	and	attain	the	goal	of	building
fairness,	interpretability,	privacy,	and	security	into	AI	systems.

Design	Pattern	28:	Heuristic	Benchmark
The	Heuristic	Benchmark	pattern	compares	an	ML	model	against	a
simple,	easy-to-understand	heuristic	in	order	to	explain	the	model’s
performance	to	business	decision	makers.

Problem

Suppose	a	bicycle	rental	agency	wishes	to	use	the	expected	duration	of
rentals	to	build	a	dynamic	pricing	solution.	After	training	an	ML	model	to
predict	the	duration	of	a	bicycle’s	rental	period,	they	evaluate	the	model
on	a	test	dataset	and	determine	that	the	mean	absolute	error	(MAE)	of	the
trained	ML	model	is	1,200	seconds.	When	they	present	this	model	to	the
business	decision	makers,	they	will	likely	be	asked:	“Is	an	MAE	of	1,200
seconds	good	or	bad?”	This	is	a	question	we	need	to	be	ready	to	handle
whenever	we	develop	a	model	and	present	it	to	business	stakeholders.	If
we	train	an	image	classification	model	on	items	in	a	product	catalog	and
the	mean	average	precision	(MAP)	is	95%,	we	can	expect	to	be	asked:	“Is
a	MAP	of	95%	good	or	bad?”

It	is	no	good	to	wave	our	hands	and	say	that	this	depends	on	the	problem.

Of	course,	it	does.	So,	what	is	a	good	MAE	for	the	bicycle	rental	problem
in	New	York	City?	How	about	in	London?	What	is	a	good	MAP	for	the
product	catalog	image	classification	task?

Model	performance	is	typically	stated	in	terms	of	cold,	hard	numbers	that
are	difficult	for	end	users	to	put	into	context.	Explaining	the	formula	for
MAP,	MAE,	and	so	on	does	not	provide	the	intuition	that	business
decision	makers	are	asking	for.

Solution

If	this	is	the	second	ML	model	being	developed	for	a	task,	an	easy	answer
is	to	compare	the	model’s	performance	against	the	currently	operational
version.	It	is	quite	easy	to	say	that	the	MAE	is	now	30	seconds	lower	or
that	the	MAP	is	1%	higher.	This	works	even	if	the	current	production
workflow	doesn’t	use	ML.	As	long	as	this	task	is	already	being	performed
in	production	and	evaluation	metrics	are	being	collected,	we	can	compare
the	performance	of	our	new	ML	model	against	the	current	production
methodology.

But	what	if	there	is	no	current	production	methodology	in	place,	and	we
are	building	the	very	first	model	for	a	green-field	task?	In	such	cases,	the
solution	is	to	create	a	simple	benchmark	for	the	sole	purpose	of	comparing
against	our	newly	developed	ML	model.	We	call	this	a	heuristic
benchmark.

A	good	heuristic	benchmark	should	be	intuitively	easy	to	understand	and
relatively	trivial	to	compute.	If	we	find	ourselves	defending	or	debugging
the	algorithm	used	by	the	benchmark,	we	should	search	for	a	simpler,
more	understandable	one.	Good	examples	of	a	heuristic	benchmark	are
constants,	rules	of	thumb,	or	bulk	statistics	(such	as	the	mean,	median,	or

mode).	Avoid	the	temptation	to	train	even	a	simple	machine	learning
model,	such	as	a	linear	regression,	on	a	dataset	and	use	that	as	a
benchmark—linear	regression	is	likely	not	intuitive	enough,	especially
once	we	start	to	include	categorical	variables,	more	than	a	handful	of
inputs,	or	engineered	features.

WARNING
Do	not	use	a	heuristic	benchmark	if	there	is	already	an	operational	practice	in	place.	Instead,	we
should	compare	our	model	against	that	existing	standard.	The	existing	operational	practice	does
not	need	to	use	ML—it	is	simply	whatever	technique	is	currently	being	used	to	solve	the
problem.

Examples	of	good	heuristic	benchmarks	and	situations	where	we	might
employ	them	are	shown	in	Table	7-1.	Example	code	for	the
implementations	of	these	heuristic	benchmarks	is	in	the	GitHub	repository
of	this	book.

Table	7-1.	Heuristic	benchmarks	for	a	few	selected	scenarios	(see	
code	in	GitHub)

Scenario
Heuristic
benchmark

Example
task

Implementation	for
example	task

Regression	
problem	where	
features	and	
interactions	
between	features	
are	not	well	
understood	by	the	
business.

Mean	or	median	value
of	the	label	value	over
the	training	data.
Choose	the	median	if
there	are	a	lot	of
outliers.

Time	interval
before	a
question	on
Stack
Overflow	is
answered.

Predict	that	it	will	take
2,120	seconds	always.
2,120	seconds	is	the
median	time	to	first
answer	over	the	entire
training	dataset.

Binary	
classification	
problem	where	
features	and	

Overall	fraction	of
positives	in	the	training
data.

Whether	or	not
an	accepted
answer	in
Stack

Predict	0.36	as	the
output	probability	for
all	answers.
0.36	is	the	fraction	of

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/07_responsible_ai/heuristic_benchmark.ipynb
https://oreil.ly/WoESU

features	and	
interactions	
between	features	
are	not	well	
understood	by	the	
business.

Stack
Overflow	will
be	edited.

0.36	is	the	fraction	of
accepted	answers
overall	that	are	edited.

Multilabel	
classification	
problem	where	
features	and	
interactions	
between	features	
are	not	well	
understood	by	the	
business.

Distribution	of	the	label
value	over	the	training
data.

Country	from
which	a	Stack
Overflow
question	will
be	answered.

Predict	0.03	for	France,
0.08	for	India,	and	so
on.
These	are	the	fractions
of	answers	written	by
people	from	France,
India,	and	so	on.

Regression
problem	where
there	is	a	single,
very	important,
numeric	feature.

Linear	regression	based	
on	what	is,	intuitively,	
the	single	most	
important	feature.

Predict	taxi
fare	amount
given	pickup
and	dropoff
locations.
The	distance
between	the
two	points	is,
intuitively,	a
key	feature.

Fare	=	$4.64	per
kilometer.
The	$4.64	is	computed
from	the	training	data
over	all	trips.

Regression
problem	with	one
or	two	important
features.	The
features	could	be
numeric	or
categorical	but
should	be
commonly	used
heuristics.

Lookup	table	where	the
rows	and	columns
correspond	to	the	key
features	(discretized	if
necessary)	and	the
prediction	for	each	cell
is	the	average	label	in
that	cell	estimated	over
the	training	data.

Predict
duration	of
bicycle	rental.
Here,	the	two
key	features
are	the	station
that	the
bicycle	is
being	rented
from	and
whether	or	not
it	is	peak	hours
for
commuting.

Lookup	table	of
average	rental	duration
from	each	station	based
on	peak	hour	versus
nonpeak	hour.

Classification
problem	with	one
or	two	important
features.	The
features	could	be
numeric	or
categorical.

As	above,	except	that
the	prediction	for	each
cell	is	the	distribution
of	labels	in	that	cell.
If	the	goal	is	to	predict
a	single	class,	compute
the	mode	of	the	label	in

Predict
whether	a
Stack
Overflow
question	will
get	answered
within	one

For	each	tag,	compute
the	fraction	of
questions	that	are
answered	within	one
day.

categorical. the	mode	of	the	label	in
each	cell.

within	one
day.
The	most
important
feature	here	is
the	primary
tag.

Regression
problem	that
involves
predicting	the
future	value	of	a
time	series.

Persistence	or	linear
trend.	Take	seasonality
into	account.	For	annual
data,	compare	against
the	same
day/week/quarter	of
previous	year.

Predict	weekly
sales	volume

Predict	that	next	
week’s	sales	=	s 	
where	s 	is	the	sales	
this	week.
(or)
Next	week’s	sales	=	s 	
+	(s 	-	s)	where	s 	is	
last	week’s	sales.
(or)
Next	week’s	sales	=	s
	where	s 	is	the	

sales	of	the	
corresponding	week	
last	year.
Avoid	the	temptation	to	
combine	the	three	
options	since	the	value	
of	the	relative	weights	
is	not	intuitive.

Classification
problem	currently
being	solved	by
human	experts.
This	is	common
for	image,	video,
and	text	tasks	and
includes
scenarios	where	it
is	cost-prohibitive
to	routinely	solve
the	problem	with
human	experts.

Performance	of	human
experts.

Detecting	eye
disease	from
retinal	scans.

Have	three	or	more
physicians	examine
each	image.	Treat	the
decision	of	a	majority
of	physicians	as	being
correct,	and	look	at	the
percentile	ranking	of
the	ML	model	among
human	experts.

Preventive	or
predictive
maintenance.

Perform	maintenance
on	a	fixed	schedule.

Preventive
maintenance
of	a	car.

Bring	cars	in	for
maintenance	once
every	three	months.
The	three	months	is	the
median	time	to	failure
of	cars	from	the	last
service	date.

0
0

0
0 -1 -1

-
1y -1y

Anomaly
detection.

99th	percentile	value
estimated	from	the
training	dataset.

Identify	a
denial	of
service	(DoS)
attack	from
network
traffic.

Find	the	99th	percentile
of	the	number	of
requests	per	minute	in
the	historical	data.	If
over	any	one-minute
period,	the	number	of
requests	exceeds	this
number,	flag	it	as	a
DoS	attack.

Recommendation
model.

Recommend	the	most
popular	item	in	the
category	of	the
customer’s	last
purchase.

Recommend
movies	to
users.

If	a	user	just	saw	(and	
liked)	Inception	(a	sci-
fi	movie),	recommend	
Icarus	to	them	(the	
most	popular	sci-fi	
movie	they	haven’t	yet	
watched).

Many	of	the	scenarios	in	Table	7-1	refer	to	“important	features.”	These	are
important	features	in	the	sense	that	they	are	widely	accepted	within	the
business	as	having	a	well-understood	impact	on	the	prediction	problem.	In
particular,	these	are	not	features	ascertained	using	feature	importance
methods	on	your	training	dataset.	As	an	example,	it’s	well	accepted	within
the	taxicab	industry	that	the	most	important	determinant	of	a	taxi	fare	is
distance,	and	that	longer	trips	cost	more.	That’s	what	makes	distance	an
important	feature,	not	the	outcome	of	a	feature	importance	study.

Trade-Offs	and	Alternatives

We	will	often	find	that	a	heuristic	benchmark	is	useful	beyond	the	primary
purpose	of	explaining	model	performance.	In	some	cases,	the	heuristic
benchmark	might	require	special	data	collection.	Finally,	there	are
instances	where	a	heuristic	benchmark	may	be	insufficient	because	the
comparison	itself	needs	context.

DEVELOPMENT	CHECK

It	is	often	the	case	that	a	heuristic	benchmark	proves	useful	beyond
explaining	the	performance	of	ML	models.	During	development,	it	can
also	help	with	diagnosing	problems	with	a	particular	model	approach.

For	example,	say	that	we	are	building	a	model	to	predict	the	duration	of
rentals	and	our	benchmark	is	a	lookup	table	of	average	rental	duration
given	the	station	name	and	whether	or	not	it	is	peak	commute	hour:

CREATE	TEMPORARY	FUNCTION	is_peak_hour(start_date	TIMESTAMP)	AS

				EXTRACT(DAYOFWEEK	FROM	start_date)	BETWEEN	2	AND	6	--	

weekday

				AND	(

							EXTRACT(HOUR	FROM	start_date)	BETWEEN	6	AND	10

							OR

							EXTRACT(HOUR	FROM	start_date)	BETWEEN	15	AND	18)

;

SELECT	

			start_station_name,

			is_peak_hour(start_date)	AS	is_peak,

			AVG(duration)	AS	predicted_duration,

FROM	`bigquery-public-data.london_bicycles.cycle_hire`

GROUP	BY	1,	2

As	we	develop	our	model,	it	is	a	good	idea	to	compare	the	performance	of
our	ML	model	against	this	benchmark.	In	order	to	do	this,	we	will	be
evaluating	model	performance	on	different	stratifications	of	the	evaluation
dataset.	Here,	the	evaluation	dataset	will	be	stratified	by
start_station_name	and	is_peak.	By	doing	so,	we	can	easily
diagnose	whether	our	model	is	overemphasizing	the	busy,	popular	stations
and	ignoring	infrequent	stations	in	the	training	data.	If	that	is	happening,
we	can	experiment	with	increasing	model	complexity	or	balancing	the
dataset	to	overweight	less	popular	stations.

HUMAN	EXPERTS

We	recommended	that	in	classification	problems	like	diagnosing	eye
disease—where	the	work	is	carried	out	by	human	experts—that	the
benchmark	would	involve	a	panel	of	such	experts.	By	having	three	or
more	physicians	examine	each	image,	it	is	possible	to	identify	the	extent
to	which	human	physicians	make	errors	and	compare	the	error	rate	of	the
model	against	that	of	human	experts.	In	the	case	of	such	image
classification	problems,	this	is	a	natural	extension	of	the	labeling	phase
because	the	labels	for	eye	disease	are	created	through	human	labeling.

It	is	sometimes	advantageous	to	use	human	experts	even	if	we	have	actual
ground	truth.	For	example,	when	building	a	model	to	predict	the	cost	of
auto	repair	after	an	accident,	we	can	look	at	historical	data	and	find	the
actual	cost	of	the	repair.	We	will	not	typically	use	human	experts	for	this
problem	because	the	ground	truth	is	directly	available	from	the	historical
dataset.	However,	for	the	purposes	of	communicating	the	benchmark,	it
can	be	helpful	to	have	insurance	agents	assess	the	cars	for	a	damage
estimate,	and	compare	our	model’s	estimates	to	those	of	the	agents.

Using	human	experts	need	not	be	limited	to	unstructured	data	as	with	eye
disease	or	damage	cost	estimation.	For	example,	if	we	are	building	a
model	to	predict	whether	or	not	a	loan	will	get	refinanced	within	a	year,
the	data	will	be	tabular	and	the	ground	truth	will	be	available	in	the
historical	data.	However,	even	in	this	case,	we	might	ask	human	experts	to
identify	loans	that	will	get	refinanced	for	the	purposes	of	communicating
how	often	loan	agents	in	the	field	would	get	it	right.

UTILITY	VALUE

Even	if	we	have	an	operational	model	or	excellent	heuristic	to	compare
against,	we	will	still	have	to	explain	the	impact	of	the	improvement	that
our	model	offers.	Communicating	that	the	MAE	is	30	seconds	lower	or

that	the	MAP	is	1%	higher	might	not	be	enough.	The	next	question	might
very	well	be,	“Is	a	1%	improvement	good?	Is	it	worth	the	hassle	of	putting
an	ML	model	into	production	rather	than	the	simple	heuristic	rule?”

If	you	can,	it	is	important	to	translate	the	improvement	in	model
performance	into	the	model’s	utility	value.	This	value	could	be	monetary,
but	it	could	also	correspond	with	other	measures	of	utility,	like	better
search	results,	earlier	disease	detection,	or	less	waste	resulting	from
improved	manufacturing	efficiency.	This	utility	value	is	useful	in	deciding
whether	or	not	to	deploy	this	model,	since	deploying	or	changing	a
production	model	always	carries	a	certain	cost	in	terms	of	reliability	and
error	budgets.	For	example,	if	the	image	classification	model	is	used	to
pre-fill	an	order	form,	we	can	calculate	that	a	1%	improvement	will
translate	to	20	fewer	abandoned	orders	per	day,	and	is	therefore	worth	a
certain	amount	of	money.	If	this	is	more	than	the	threshold	set	by	our	Site
Reliability	Engineering	team,	we’d	deploy	the	model.

In	our	bicycle	rental	problem,	it	might	be	possible	to	measure	the	impact
on	the	business	by	using	this	model.	For	example,	we	might	be	able	to
calculate	the	increased	availability	of	bicycles	or	the	increased	profits
based	on	using	the	model	in	a	dynamic	pricing	solution.

Design	Pattern	29:	Explainable	Predictions
The	Explainable	Predictions	design	pattern	increases	user	trust	in	ML
systems	by	providing	users	with	an	understanding	of	how	and	why	models
make	certain	predictions.	While	models	such	as	decision	trees	are
interpretable	by	design,	the	architecture	of	deep	neural	networks	makes
them	inherently	difficult	to	explain.	For	all	models,	it	is	useful	to	be	able
to	interpret	predictions	in	order	to	understand	the	combinations	of	features

influencing	model	behavior.

Problem

When	evaluating	a	machine	learning	model	to	determine	whether	it’s
ready	for	production,	metrics	like	accuracy,	precision,	recall,	and	mean
squared	error	only	tell	one	piece	of	the	story.	They	provide	data	on	how
correct	a	model’s	predictions	are	relative	to	ground	truth	values	in	the	test
set,	but	they	carry	no	insight	on	why	a	model	arrived	at	those	predictions.
In	many	ML	scenarios,	users	may	be	hesitant	to	accept	a	model’s
prediction	at	face	value.

To	understand	this,	let’s	look	at	a	model	that	predicts	the	severity	of
diabetic	retinopathy	(DR)	from	an	image	of	a	retina. 	The	model	returns	a
softmax	output,	indicating	the	probability	that	an	individual	image	belongs
to	1	of	5	categories	denoting	the	severity	of	DR	in	the	image—ranging
from	1	(no	DR	present)	to	5	(proliferative	DR,	the	worst	form).	Let’s
imagine	that	for	a	given	image,	the	model	returns	95%	confidence	that	the
image	contains	proliferative	DR.	This	may	seem	like	a	high-confidence,
accurate	result,	but	if	a	medical	professional	is	relying	solely	on	this
model	output	to	provide	a	patient	diagnosis,	they	still	have	no	insight	into
how	the	model	arrived	at	this	prediction.	Maybe	the	model	identified	the
correct	regions	in	the	image	that	are	indicative	of	DR,	but	there’s	also	a
chance	the	model’s	prediction	is	based	on	pixels	in	the	image	that	show	no
indication	of	the	disease.	As	an	example,	maybe	some	images	in	the
dataset	contain	doctor	notes	or	annotations.	The	model	could	be
incorrectly	using	the	presence	of	an	annotation	to	make	its	prediction,
rather	than	the	diseased	areas	in	the	image. 	In	the	model’s	current	form,
there	is	no	way	to	attribute	the	prediction	to	regions	in	an	image,	making	it
difficult	for	the	doctor	to	trust	the	model.

1

2

https://oreil.ly/5W-2n

Medical	imaging	is	just	one	example—there	are	many	industries,
scenarios,	and	model	types	where	a	lack	of	insight	into	a	model’s
decision-making	process	can	lead	to	problems	with	user	trust.	If	an	ML
model	is	used	to	predict	an	individual’s	credit	score	or	other	financial
health	metric,	people	will	likely	want	to	know	why	they	received	a
particular	score.	Was	it	a	late	payment?	Too	many	lines	of	credit?	Short
credit	history?	Maybe	the	model	is	relying	solely	on	demographic	data	to
make	its	predictions,	and	subsequently	introducing	bias	into	the	model
without	our	knowledge.	With	only	the	score,	there	is	no	way	to	know	how
the	model	arrived	at	its	prediction.

In	addition	to	model	end	users,	another	group	of	stakeholders	are	those
involved	with	regulatory	and	compliance	standards	for	ML	models,	since
models	in	certain	industries	may	require	auditing	or	additional
transparency.	Stakeholders	involved	in	auditing	models	will	likely	need	a
higher-level	summary	of	how	the	model	is	arriving	at	its	predictions	in
order	to	justify	its	use	and	impact.	Metrics	like	accuracy	are	not	useful	in
this	case—without	insight	into	why	a	model	makes	the	predictions	it	does,
its	use	may	become	problematic.

Finally,	as	data	scientists	and	ML	engineers,	we	can	only	improve	our
model	quality	to	a	certain	degree	without	an	understanding	of	the	features
it’s	relying	on	to	make	predictions.	We	need	a	way	to	verify	that	models
are	performing	in	the	way	we	expect.	For	example,	let’s	say	we	are
training	a	model	on	tabular	data	to	predict	whether	a	flight	will	be	delayed.
The	model	is	trained	on	20	features.	Under	the	hood,	maybe	it’s	relying
only	on	2	of	those	20	features,	and	if	we	removed	the	rest,	we	could
significantly	improve	our	system’s	performance.	Or	maybe	each	of	those
20	features	is	necessary	to	achieve	the	degree	of	accuracy	we	need.
Without	more	details	on	what	the	model	is	using,	it’s	difficult	to	know.

Solution

To	handle	the	inherent	unknowns	in	ML,	we	need	a	way	to	understand
how	models	work	under	the	hood.	Techniques	for	understanding	and
communicating	how	and	why	an	ML	model	makes	predictions	is	an	area
of	active	research.	Also	called	interpretability	or	model	understanding,
explainability	is	a	new	and	rapidly	evolving	field	within	ML,	and	can	take
a	variety	of	forms	depending	on	a	model’s	architecture	and	the	type	of
data	it	is	trained	on.	Explainability	can	also	help	reveal	bias	in	ML
models,	which	we	cover	when	discussing	the	Fairness	Lens	pattern	in	this
chapter.	Here,	we’ll	focus	on	explaining	deep	neural	networks	using
feature	attributions.	To	understand	this	in	context,	first	we’ll	look	at
explainability	for	models	with	less	complex	architectures.

Simpler	models	like	decision	trees	are	more	straightforward	to	explain
than	deep	models	since	they	are	often	interpretable	by	design.	This	means
that	their	learned	weights	provide	direct	insight	into	how	the	model	is
making	predictions.	If	we	have	a	linear	regression	model	with
independent,	numeric	input	features,	the	weights	may	sometimes	be
interpretable.	Take	for	example	a	linear	regression	model	that	predicts	fuel
efficiency	of	a	car. 	In	scikit-learn,	we	can	get	the	learned	coefficients	of	a
linear	regression	model	with	the	following:

model	=	LinearRegression().fit(x_train,	y_train)

coefficients	=	model.coef_

The	resulting	coefficients	for	each	feature	in	our	model	are	shown	in
Figure	7-1.

3

https://oreil.ly/V9GT5

Figure	7-1.	The	learned	coefficients	from	our	linear	regression	fuel	efficiency	model,	which
predicts	a	car’s	miles	per	gallon.	We	used	get_dummies()	from	pandas	to	convert	the	origin	feature

to	a	boolean	column	since	it	is	categorical.

The	coefficients	show	us	the	relationship	between	each	feature	and	the
model’s	output,	predicted	miles	per	gallon	(MPG).	For	example,	from
these	coefficients,	we	can	conclude	that	for	each	additional	cylinder	in	a
car,	our	model’s	predicted	MPG	will	decrease.	Our	model	has	also	learned
that	as	new	cars	are	introduced	(denoted	by	the	“model	year”	feature),
they	often	have	higher	fuel	efficiency.	We	can	learn	much	more	about	the
relationships	between	our	model’s	features	and	output	from	these
coefficients	than	we	could	from	the	learned	weights	of	a	hidden	layer	in	a
deep	neural	network.	This	is	why	models	like	the	one	demonstrated	above
are	often	referred	to	as	interpretable	by	design.

WARNING
While	it’s	tempting	to	assign	significant	meaning	to	the	learned	weights	in	linear	regression	or
decision	tree	models,	we	must	be	extremely	cautious	when	doing	so.	The	conclusions	we	drew
earlier	are	still	correct	(i.e.,	inverse	relationship	between	number	of	cylinders	and	fuel
efficiency),	but	we	cannot	conclude	from	the	magnitude	of	coefficients,	for	example,	that	the
categorical	origin	feature	or	the	number	of	cylinders	are	more	important	to	our	model	than
horsepower	or	weight.	First,	each	of	these	features	is	represented	in	a	different	unit.	One

cylinder	bears	no	equivalence	to	one	pound—the	cars	in	this	dataset	have	a	maximum	of	8
cylinders,	but	weigh	over	3,000	pounds.	Additionally,	origin	is	a	categorical	feature	represented
with	dummy	values,	so	each	origin	value	can	only	be	0	or	1.	The	coefficients	also	don’t	tell	us
anything	about	the	relationship	between	features	in	our	model.	More	cylinders	are	often
correlated	with	more	horsepower,	but	we	can’t	conclude	this	from	the	learned	weights.

When	models	are	more	complex,	we	use	post	hoc	explainability	methods
to	approximate	the	relationships	between	a	model’s	features	and	its	output.
Typically,	post	hoc	methods	perform	this	analysis	without	relying	on
model	internals	like	learned	weights.	This	is	an	area	of	ongoing	research,
and	there	are	a	variety	of	proposed	explanation	methods,	along	with
tooling	for	adding	these	methods	to	your	ML	workflow.	The	type	of
explanation	methods	we’ll	discuss	are	known	as	feature	attributions.
These	methods	aim	to	attribute	a	model’s	output—whether	it	be	an	image,
classification,	or	numerical	value—to	its	features,	by	assigning	attribution
values	to	each	feature	indicating	how	much	that	feature	contributed	to	the
output.	There	are	two	types	of	feature	attributions:

Instance-level

Feature	attributions	that	explain	a	model’s	output	for	an	individual

prediction.	For	example,	in	a	model	predicting	whether	someone

should	be	approved	for	a	line	of	credit,	an	instance-level	feature

attribution	would	provide	insight	into	why	a	specific	person’s

application	was	denied.	In	an	image	model,	an	instance-level

attribution	might	highlight	the	pixels	in	an	image	that	caused	it	to

predict	it	contained	a	cat.

Global

Global	feature	attributions	analyze	the	model’s	behavior	across	an

aggregate	to	draw	conclusions	about	how	the	model	is	behaving	as	a

4

aggregate	to	draw	conclusions	about	how	the	model	is	behaving	as	a

whole.	Typically	this	is	done	by	averaging	instance-level	feature

attributions	from	a	test	dataset.	In	a	model	predicting	whether	a	flight

will	be	delayed,	global	attributions	might	tell	us	that	overall,	extreme

weather	is	the	most	significant	feature	when	predicting	delays.

The	two	feature	attribution	methods	we’ll	explore 	are	outlined	in	Table	7-
2	and	provide	different	approaches	that	can	be	used	for	both	instance-level
and	global	explanations.

Table	7-2.	Descriptions	of	different	explanation	methods	and	links	to	
their	research	papers

Nam
e Description

Pap
er

Samp
led
Shapl
ey

Based	on	the	concept	of	Shapley	Value, 	this	approach	determines	a	
feature’s	marginal	contribution	by	calculating	how	much	adding	and	
removing	that	feature	affects	a	prediction,	analyzed	over	multiple	
combinations	of	feature	values.

http
s://o
reil.l
y/ub
EjW

Integr
ated
Gradi
ents
(IG)

Using	a	predefined	model	baseline,	IG	calculates	the	derivatives
(gradients)	along	the	path	from	this	baseline	to	a	specific	input.

http
s://o
reil.l
y/sy
8f8

a 	The	Shapley	Value	was	introduced	in	a	paper	by	Lloyd	Shapley	in	1951,	and	is	based	
on	concepts	from	game	theory.

While	we	could	implement	these	approaches	from	scratch,	there	is	tooling
designed	to	simplify	the	process	of	getting	feature	attributions.	The
available	open	source	and	cloud-based	explainability	tools	let	us	focus	on
debugging,	improving,	and	summarizing	our	models.

5

a

https://oreil.ly/ubEjW
https://oreil.ly/sy8f8
https://oreil.ly/xCrqU

MODEL	BASELINE

In	order	to	use	these	tools,	we	first	need	to	understand	the	concept	of	a
baseline	as	it	applies	to	explaining	models	with	feature	attributions.	The
goal	of	any	explainability	method	is	to	answer	the	question,	“Why	did	the
model	predict	X?”	Feature	attributions	attempt	to	do	this	by	providing
numerical	values	for	each	feature	indicating	how	much	that	feature
contributed	to	the	final	output.	Take	for	example	a	model	predicting
whether	a	patient	has	heart	disease	given	some	demographic	and	health
data.	For	a	single	example	in	our	test	dataset,	let’s	imagine	that	the
attribution	value	for	a	patient’s	cholesterol	feature	is	0.4,	and	the
attribution	for	their	blood	pressure	is	−0.2.	Without	context,	these
attribution	values	don’t	mean	much,	and	our	first	question	will	likely	be,
“0.4	and	−0.2	relative	to	what?”	That	“what”	is	the	model’s	baseline.

Whenever	we	get	feature	attribution	values,	they	are	all	relative	to	a
predefined	baseline	prediction	value	for	our	model.	Baseline	predictions
can	either	be	informative	or	uninformative.	Uninformative	baselines
typically	compare	against	some	average	case	across	a	training	dataset.	In
an	image	model,	an	uninformative	baseline	could	be	a	solid	black	or	white
image.	In	a	text	model,	an	uninformative	baseline	could	be	0	values	for	the
model’s	embedding	matrices	or	stop	words	like	“the,”	“is,”	or	“and.”	In	a
model	with	numerical	inputs,	a	common	approach	to	choosing	a	baseline
is	to	generate	a	prediction	using	the	median	value	for	each	feature	in	the
model.

DETERMINING	BASELINES
The	way	we	think	about	a	baseline	will	differ	depending	on	whether	our	model	is	performing	a	regression
or	classification	task.	For	a	regression	task,	a	model	will	have	exactly	one	numerical	baseline	prediction
value.	In	our	car	mileage	example,	let’s	imagine	we	decide	to	use	the	median	approach	for	calculating	our
baseline.	The	median	for	the	eight	features	in	our	dataset	is	the	following	array:

[151.0,	93.5,	2803.5,	15.5,	76.0,	1.0,	0.0,	0.0]

[151.0,	93.5,	2803.5,	15.5,	76.0,	1.0,	0.0,	0.0]

When	we	send	this	to	our	model,	the	predicted	MPG	is	22.9.	Consequently,	for	every	prediction	we	make
to	this	model,	we’ll	use	22.9	MPG	as	the	baseline	to	compare	predictions.

Let’s	now	imagine	that	we	follow	the	Reframing	pattern	to	change	this	from	a	regression	to	a	classification
problem.	To	do	this,	we’ll	define	“low,”	“medium,”	and	“high”	buckets	for	fuel	efficiency,	and	our	model	will
therefore	output	a	three-element	softmax	array	indicating	the	probability	a	given	car	corresponds	with	each
class.	Taking	the	same	median	baseline	input	as	above,	our	classification	model	now	returns	the	following
as	our	baseline	prediction:

[0.1,	0.7,	0.2]

With	this,	we	now	have	a	different	baseline	prediction	value	for	each	class.	Let’s	say	we	generate	a	new
prediction	on	an	example	from	our	test	set,	and	our	model	outputs	the	following	array,	predicting	a	90%
probability	that	this	car	has	“low”	fuel	efficiency:

[0.9,	0.06,	0.04]

The	resulting	feature	attribution	values	should	explain	why	the	model	predicted	0.9	compared	to	the
baseline	prediction	value	of	0.1	for	the	“low”	class.	We	can	also	look	at	feature	attribution	values	for	the
other	classes	to	understand,	for	example,	why	our	model	predicted	the	same	car	had	a	6%	chance	of
belonging	to	our	“medium”	fuel	efficiency	class.

Figure	7-2	shows	instance-level	feature	attributions	for	a	model	that
predicts	the	duration	of	a	bike	trip.	The	uninformative	baseline	for	this
model	is	a	trip	duration	of	13.6	minutes,	which	we	get	by	generating	a
prediction	using	the	median	value	for	each	feature	in	our	dataset.	When	a
model’s	prediction	is	less	than	the	baseline	prediction	value,	we	should
expect	most	attribution	values	to	be	negative,	and	vice	versa.	In	this
example,	we	get	a	predicted	duration	of	10.71,	which	is	less	than	the
model’s	baseline,	and	explains	why	many	of	the	attribution	values	are
negative.	We	can	determine	the	most	important	features	by	taking	the
absolute	value	of	the	feature	attributions.	In	this	example,	the	trip’s
distance	was	the	most	important	feature,	causing	our	model’s	prediction	to
decrease	2.4	minutes	from	the	baseline.	Additionally,	as	a	sanity	check,
we	should	ensure	that	the	feature	attribution	values	roughly	add	up	to	the
difference	between	the	current	prediction	and	the	baseline	prediction.

Figure	7-2.	The	feature	attribution	values	for	a	single	example	in	a	model	predicting	bike	trip
duration.	The	model’s	baseline,	calculated	using	the	median	of	each	feature	value,	is	13.6	minutes,

and	the	attribution	values	show	how	much	each	feature	influenced	the	prediction.

Informative	baselines,	on	the	other	hand,	compare	a	model’s	prediction
with	a	specific	alternative	scenario.	In	a	model	identifying	fraudulent
transactions,	an	informative	baseline	might	answer	the	question,	“Why
was	this	transaction	flagged	as	fraud	instead	of	nonfraudulent?”	Instead	of
using	the	median	feature	values	across	the	entire	training	dataset	to
calculate	the	baseline,	we	would	take	the	median	of	only	the	nonfraudulent
values.	In	an	image	model,	maybe	the	training	images	contain	a	significant
portion	of	solid	black	and	white	pixels,	and	using	these	as	a	baseline
would	result	in	inaccurate	predictions.	In	this	case,	we’d	need	to	come	up
with	a	different	informative	baseline	image.

HEURISTIC	BENCHMARKS	AND	MODEL	BASELINES
How	do	model	baselines	relate	to	the	Heuristic	Benchmark	design	pattern?	A	heuristic	benchmark	is	meant
to	be	a	starting	point	for	summarizing	a	model	at	a	global	level,	often	before	implementing	explainability.
When	using	explainability,	the	type	of	baseline	we	choose	(informative	or	uninformative)	and	the	way	we
calculate	it	is	up	to	us.	The	techniques	outlined	in	the	Heuristic	Benchmark	pattern	could	also	be	used	to
determine	a	model’s	baseline	for	use	with	an	explainability	method.

Both	heuristic	benchmarks	and	model	baselines	provide	a	framework	for	answering	the	question,	“Why	did
the	model	do	X	as	compared	to	Y?”	Heuristic	benchmarks	are	a	first	step	in	model	analysis,	and	represent
one	possible	approach	for	calculating	a	baseline.	When	we	use	the	term	baseline	in	this	section,	we’re
referring	specifically	to	the	value	used	as	a	point	of	reference	in	explainability	methods.

SHAP

The	open	source	library	SHAP	provides	a	Python	API	for	getting	feature
attributions	on	many	types	of	models,	and	is	based	on	the	concept	of
Shapley	Value	introduced	in	Table	7-2.	To	determine	feature	attribution
values,	SHAP	calculates	how	much	adding	or	removing	each	feature
contributes	to	a	model’s	prediction	output.	It	performs	this	analysis	across
many	different	combinations	of	feature	values	and	model	output.

SHAP	is	framework-agnostic	and	works	with	models	trained	on	image,
text,	or	tabular	data.	To	see	how	SHAP	works	in	practice,	we’ll	use	the
fuel	efficiency	dataset	referenced	previously.	This	time,	we’ll	build	a	deep
model	with	the	Keras	Sequential	API:

model	=	tf.keras.Sequential([

		tf.keras.layers.Dense(16,	input_shape=(len(x_train.iloc[0])),

		tf.keras.layers.Dense(16,	activation='relu'),

		tf.keras.layers.Dense(1)																

])

To	use	SHAP,	we’ll	first	create	a	DeepExplainer	object	by	passing	it
our	model	and	a	subset	of	examples	from	our	training	set.	Then	we’ll	get
the	attribution	values	for	the	first	10	examples	in	our	test	set:

https://github.com/slundberg/shap

import	shap

explainer	=	shap.DeepExplainer(model,	x_train[:100])

attribution_values	=	explainer.shap_values(x_test.values[:10])

SHAP	has	some	built-in	visualization	methods	that	make	it	easier	to
understand	the	resulting	attribution	values.	We’ll	use	SHAP’s
force_plot()	method	to	plot	the	attribution	values	for	the	first
example	in	our	test	set	with	the	following	code:

shap.force_plot(

		explainer.expected_value[0],

		shap_values[0][0,:],	

		x_test.iloc[0,:]

)

In	the	code	above,	explainer.expected_value	is	our	model’s
baseline.	SHAP	calculates	the	baseline	as	the	mean	of	the	model’s	output
across	the	dataset	we	passed	when	we	created	the	explainer	(in	this	case,
x_train[:100]),	though	we	could	also	pass	our	own	baseline	value	to
force_plot.	The	ground	truth	value	for	this	example	is	14	miles	per
gallon,	and	our	model	predicts	13.16.	Our	explanation	will	therefore
explain	our	model’s	prediction	of	13.16	with	feature	attribution	values.	In
this	case,	the	attribution	values	are	relative	to	the	model’s	baseline	of
24.16	MPG.	The	attribution	values	should	therefore	add	up	to	roughly	11,
the	difference	between	the	model’s	baseline	and	the	prediction	for	this
example.	We	can	identify	the	most	important	features	by	looking	at	the
ones	with	the	highest	absolute	value.	Figure	7-3	shows	the	resulting	plot
for	this	example’s	attribution	values.

Figure	7-3.	The	feature	attribution	values	for	one	example	from	our	fuel	efficiency	prediction
model.	In	this	case,	the	car’s	weight	is	the	most	significant	indicator	of	MPG	with	a	feature

attribution	value	of	roughly	6.	Had	our	model’s	prediction	been	above	the	baseline	of	24.16,	we
would	instead	see	mostly	negative	attribution	values.

For	this	example,	the	most	important	indicator	of	fuel	efficiency	is	weight,
pushing	our	model’s	prediction	down	by	about	6	MPG	from	the	baseline.
This	is	followed	by	horsepower,	displacement,	and	then	the	car’s	model
year.	We	can	get	a	summary	(or	global	explanation)	of	the	feature
attribution	values	for	the	first	10	examples	from	our	test	set	with	the
following:

shap.summary_plot(

		shap_values,	

		feature_names=data.columns.tolist(),	

		class_names=['MPG']

)

This	results	in	the	summary	plot	shown	in	Figure	7-4.

In	practice,	we’d	have	a	larger	dataset	and	would	want	to	calculate	global-
level	attributions	on	more	examples.	We	could	then	use	this	analysis	to
summarize	the	behavior	on	our	model	to	other	stakeholders	within	and
outside	our	organization.

Figure	7-4.	An	example	of	global-level	feature	attributions	for	the	fuel	efficiency	model,	calculated
on	the	first	10	examples	from	the	test	dataset.

EXPLANATIONS	FROM	DEPLOYED	MODELS

SHAP	provides	an	intuitive	API	for	getting	attributions	in	Python,
typically	used	in	a	script	or	notebook	environment.	This	works	well	during

model	development,	but	there	are	scenarios	where	you’d	want	to	get
explanations	on	a	deployed	model	in	addition	to	the	model’s	prediction
output.	In	this	case,	cloud-based	explainability	tools	are	the	best	option.
Here,	we’ll	demonstrate	how	to	get	feature	attributions	on	a	deployed
model	using	Google	Cloud’s	Explainable	AI.	At	the	time	of	this	writing,
Explainable	AI	works	with	custom	TensorFlow	models	and	tabular	data
models	built	with	AutoML.

We’ll	deploy	an	image	model	to	AI	Platform	to	show	explanations,	but	we
could	also	use	Explainable	AI	with	TensorFlow	models	trained	on	tabular
or	text	data.	To	start,	we’ll	deploy	a	TensorFlow	Hub	model	trained	on	the
ImageNet	dataset.	So	that	we	can	focus	on	the	task	of	getting	explanations,
we	won’t	do	any	transfer	learning	on	the	model	and	will	use	ImageNet’s
original	1,000	label	classes:

model	=	tf.keras.Sequential([

				hub.KerasLayer(".../mobilenet_v2/classification/2",	

															input_shape=(224,224,3)),

				tf.keras.layers.Softmax()

])

To	deploy	a	model	to	AI	Platform	with	explanations,	we	first	need	to
create	a	metadata	file	that	will	be	used	by	the	explanation	service	to
calculate	feature	attributions.	This	metadata	is	provided	in	a	JSON	file	and
includes	information	on	the	baseline	we’d	like	to	use	and	the	parts	of	the
model	we	want	to	explain.	To	simplify	this	process,	Explainable	AI
provides	an	SDK	that	will	generate	metadata	via	the	following	code:

from	explainable_ai_sdk.metadata.tf.v2	import	

SavedModelMetadataBuilder

model_dir	=	'path/to/savedmodel/dir'

model_builder	=	SavedModelMetadataBuilder(model_dir)

https://oreil.ly/lDocn
https://oreil.ly/Ws8jx

model_builder.set_image_metadata('input_tensor_name')

model_builder.save_metadata(model_dir)

This	code	didn’t	specify	a	model	baseline,	which	means	it’ll	use	the
default	(for	image	models,	this	is	a	black	and	white	image).	We	can
optionally	add	an	input_baselines	parameter	to
set_image_metadata	to	specify	a	custom	baseline.	Running	the
save_metadata	method	above	creates	an	explanation_metadata.json
file	in	a	model	directory	(the	full	code	is	in	the	GitHub	repository).

When	using	this	SDK	via	AI	Platform	Notebooks,	we	also	have	the	option
to	generate	explanations	locally	within	a	notebook	instance	without
deploying	our	model	to	the	cloud.	We	can	do	this	via	the
load_model_from_local_path	method.

With	our	exported	model	and	the	explanation_metadata.json	file	in	a
Storage	bucket,	we’re	ready	to	create	a	new	model	version.	When	we	do
this,	we	specify	the	explanation	method	we’d	like	to	use.

To	deploy	our	model	to	AI	Platform,	we	can	copy	our	model	directory	to	a
Cloud	Storage	bucket	and	use	the	gcloud	CLI	to	create	a	model	version.
AI	Platform	has	three	possible	explanation	methods	to	choose	from:

Integrated	Gradients	(IG)

This	implements	the	method	introduced	in	the	IG	paper	and	works

with	any	differentiable	TensorFlow	model—image,	text,	or	tabular.

For	image	models	deployed	on	AI	Platform,	IG	returns	an	image	with

highlighted	pixels,	indicating	the	regions	that	signaled	the	models

prediction.

Sampled	Shapley

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/07_stakeholder_management/explainability.ipynb
https://oreil.ly/FJhMd

Sampled	Shapley

Based	on	the	Sampled	Shapley	paper,	this	uses	an	approach	similar	to

the	open	source	SHAP	library.	On	AI	Platform,	we	can	use	this

method	with	tabular	and	text	TensorFlow	models.	Because	IG	works

only	with	differentiable	models,	AutoML	Tables	uses	Sampled

Shapley	to	calculate	feature	attributions	for	all	models.

XRAI

This	approach	is	built	upon	IG	and	applies	smoothing	to	return	region-

based	attributions.	XRAI	works	only	with	image	models	deployed	on

AI	Platform.

In	our	gcloud	command,	we	specify	the	explanation	method	we’d	like	to
use	along	with	the	number	of	integral	steps	or	paths	we	want	the	method
to	use	when	computing	attribution	values. 	The	steps	parameter
refers	to	the	number	of	feature	combinations	sampled	for	each	output.	In
general,	increasing	this	number	will	improve	explanation	accuracy:

!gcloud	beta	ai-platform	versions	create	$VERSION_NAME	\

--model	$MODEL_NAME	\

--origin	$GCS_VERSION_LOCATION	\

--runtime-version	2.1	\

--framework	TENSORFLOW	\

--python-version	3.7	\

--machine-type	n1-standard-4	\

--explanation-method	xrai	\

--num-integral-steps	25

Once	the	model	is	deployed,	we	can	get	explanations	using	the
Explainable	AI	SDK:

model	=	explainable_ai_sdk.load_model_from_ai_platform(

		GCP_PROJECT,	

		MODEL_NAME,	

		VERSION_NAME

6

https://oreil.ly/EAS8T
https://oreil.ly/niGVQ

)

request	=	model.explain([test_img])

#	Print	image	with	pixel	attributions

request[0].visualize_attributions()

In	Figure	7-5,	we	can	see	a	comparison	of	the	IG	and	XRAI	explanations
returned	from	Explainable	AI	for	our	ImageNet	model.	The	highlighted
pixel	regions	show	the	pixels	that	contributed	most	to	our	model’s
prediction	of	“husky.”

Typically,	IG	is	recommended	for	“non-natural”	images	like	those	taken
in	a	medical,	factory,	or	lab	environment.	XRAI	usually	works	best	for
images	taken	in	natural	environments	like	the	one	of	this	husky.	To
understand	why	IG	is	preferred	for	non-natural	images,	see	the	IG
attributions	for	the	diabetic	retinopathy	image	in	Figure	7-6.	In	cases	like
this	medical	one,	it	helps	to	see	attributions	at	a	fine-grained,	pixel	level.
In	the	dog	image,	on	the	other	hand,	knowing	the	exact	pixels	that	caused
our	model	to	predict	“husky”	is	less	important,	and	XRAI	gives	us	a
higher-level	summary	of	the	important	regions.

Figure	7-5.	The	feature	attributions	returned	from	Explainable	AI	for	an	ImageNet	model	deployed
to	AI	Platform.	On	the	left	is	the	original	image.	The	IG	attributions	are	shown	in	the	middle,	and
the	XRAI	attributions	are	shown	on	the	right.	The	key	below	shows	what	the	regions	in	XRAI
correspond	to—lighter	regions	are	the	most	important,	and	darker	areas	represent	the	least

important	regions.

Figure	7-6.	As	part	of	a	study	by	Rory	Sayres	and	colleagues	in	2019,	different	groups	of
ophthalmologists	were	asked	to	evaluate	the	degree	of	DR	on	an	image	in	three	scenarios:	the
image	by	itself	without	model	predictions,	the	image	with	model	predictions,	and	the	image	with

https://oreil.ly/Xp_vp

predictions	and	pixel	attributions	(shown	here).	We	can	see	how	pixel	attributions	can	help
increase	confidence	in	the	model’s	prediction.

TIP
Explainable	AI	also	works	in	AutoML	Tables,	a	tool	for	training	and	deploying	tabular	data
models.	AutoML	Tables	handles	data	preprocessing	and	selects	the	best	model	for	our	data,
which	means	we	don’t	need	to	write	any	model	code.	Feature	attributions	through	Explainable
AI	are	enabled	by	default	for	models	trained	in	AutoML	Tables,	and	both	global	and	instance-
level	explanations	are	provided.

Trade-Offs	and	Alternatives

While	explanations	provide	important	insight	into	how	a	model	is	making
decisions,	they	are	only	as	good	as	the	model’s	training	data,	the	quality	of
your	model,	and	the	chosen	baseline.	In	this	section,	we’ll	discuss	some
limitations	of	explainability,	along	with	some	alternatives	to	feature
attributions.

DATA	SELECTION	BIAS

It’s	often	said	that	machine	learning	is	“garbage	in,	garbage	out.”	In	other
words,	a	model	is	only	as	good	as	the	data	used	to	train	it.	If	we	train	an
image	model	to	identify	10	different	cat	breeds,	those	10	cat	breeds	are	all
it	knows.	If	we	show	the	model	an	image	of	a	dog,	all	it	can	do	is	try	to
classify	the	dog	into	1	of	the	10	cat	categories	it’s	been	trained	on.	It	might
even	do	so	with	high	confidence.	That	is	to	say,	models	are	a	direct
representation	of	their	training	data.

If	we	don’t	catch	data	imbalances	before	training	a	model,	explainability
methods	like	feature	attributions	can	help	bring	data	selection	bias	to	light.
As	an	example,	say	we’re	building	a	model	to	predict	the	type	of	boat

https://oreil.ly/CSQly

present	in	an	image.	Let’s	say	it	correctly	labels	an	image	from	our	test	set
as	“kayak,”	but	using	feature	attributions,	we	find	that	the	model	is	relying
on	the	boat’s	paddle	to	predict	“kayak”	rather	than	the	shape	of	the	boat.
This	is	a	signal	that	our	dataset	might	not	have	enough	variation	in
training	images	for	each	class—we’ll	likely	need	to	go	back	and	add	more
images	of	kayaks	at	different	angles,	both	with	and	without	paddles.

COUNTERFACTUAL	ANALYSIS	AND	EXAMPLE-BASED
EXPLANATIONS

In	addition	to	feature	attributions—described	in	the	Solution	section—
there	are	many	other	approaches	to	explaining	the	output	of	ML	models.
This	section	is	not	meant	to	provide	an	exhaustive	list	of	all	explainability
techniques,	as	this	area	is	quickly	evolving.	Here,	we	will	briefly	describe
two	other	approaches:	counterfactual	analysis	and	example-based
explanations.

Counterfactual	analysis	is	an	instance-level	explainability	technique	that
refers	to	finding	examples	from	our	dataset	with	similar	features	that
resulted	in	different	predictions	from	our	model.	One	way	to	do	this	is
through	the	What-If	Tool,	an	open	source	tool	for	evaluating	and
visualizing	the	output	of	ML	models.	We’ll	provide	a	more	in-depth
overview	of	the	What-If	Tool	in	the	Fairness	Lens	design	pattern—here,
we’ll	focus	specifically	on	its	counterfactual	analysis	functionality.	When
visualizing	data	points	from	our	test	set	in	the	What-If	Tool,	we	have	the
option	to	show	the	nearest	counterfactual	data	point	to	the	one	we’re
selecting.	Doing	this	will	let	us	compare	feature	values	and	model
predictions	for	these	two	data	points,	which	can	help	us	better	understand
the	features	our	model	is	relying	on	most.	In	Figure	7-7,	we	see	a
counterfactual	comparison	for	two	data	points	from	a	mortgage
application	dataset.	In	bold,	we	see	the	features	where	these	two	data

https://oreil.ly/Vf3D-

points	are	different,	and	at	the	bottom,	we	can	see	the	model	output	for
each.

Example-based	explanations	compare	new	examples	and	their
corresponding	predictions	to	similar	examples	from	our	training	dataset.
This	type	of	explanation	is	especially	useful	for	understanding	how	our
training	dataset	affects	model	behavior.	Example-based	explanations	work
best	on	image	or	text	data,	and	can	be	more	intuitive	than	feature
attributions	or	counterfactual	analysis	since	they	map	a	model’s	prediction
directly	to	the	data	used	for	training.

Figure	7-7.	Counterfactual	analysis	in	the	What-If	Tool	for	two	data	points	from	a	US	mortgage
application	dataset.	Differences	between	the	two	data	points	are	bolded.	More	information	on	this

dataset	can	be	found	in	the	discussion	of	the	Fairness	Lens	pattern	in	this	chapter.

To	better	understand	this	approach,	let’s	look	at	the	game	Quick,	Draw!
The	game	asks	players	to	draw	an	item,	and	guesses	what	they	are	drawing
in	real	time,	using	a	deep	neural	network	trained	on	thousands	of	drawings
by	others.	After	players	finish	a	drawing,	they	can	see	how	the	neural
network	arrived	at	its	prediction	by	looking	at	examples	from	the	training
dataset.	In	Figure	7-8,	we	can	see	the	example-based	explanations	for	a
drawing	of	french	fries	that	the	model	successfully	recognized.

7

https://oreil.ly/-QsHl

Figure	7-8.	Example-based	explanations	from	the	game	Quick,	Draw!	showing	how	the	model
correctly	predicted	“french	fries”	for	the	given	drawing	through	examples	from	the	training

dataset.

LIMITATIONS	OF	EXPLANATIONS

Explainability	represents	a	significant	improvement	in	understanding	and
interpreting	models,	but	we	should	be	cautious	about	placing	too	much
trust	in	our	model’s	explanations,	or	assuming	they	provide	perfect	insight
into	a	model.	Explanations	in	any	form	are	a	direct	reflection	of	our
training	data,	model,	and	selected	baseline.	That	is	to	say,	we	can’t	expect
our	explanations	to	be	high	quality	if	our	training	dataset	is	an	inaccurate
representation	of	the	groups	reflected	by	our	model,	or	if	the	baseline
we’ve	chosen	doesn’t	work	well	for	the	problem	we’re	solving.

Additionally,	the	relationship	that	explanations	can	identify	between	a
model’s	features	and	output	is	representative	only	of	our	data	and	model,
and	not	necessarily	the	environment	outside	this	context.	As	an	example,
let’s	say	we	train	a	model	to	identify	fraudulent	credit	card	transactions
and	it	finds,	as	a	global-level	feature	attribution,	that	a	transaction’s
amount	is	the	feature	most	indicative	of	fraud.	Following	this,	it	would	be
incorrect	to	conclude	that	amount	is	always	the	biggest	indicator	of	credit
card	fraud—this	is	only	the	case	within	the	context	of	our	training	dataset,
model,	and	specified	baseline	value.

We	can	think	of	explanations	as	an	important	addition	to	accuracy,	error,
and	other	metrics	used	to	evaluate	ML	models.	They	provide	useful
insight	into	a	model’s	quality	and	potential	bias,	but	should	not	be	the	sole
determinant	of	a	high-quality	model.	We	recommend	using	explanations
as	one	piece	of	model	evaluation	criteria	in	addition	to	data	and	model
evaluation,	and	many	of	the	other	patterns	outlined	in	this	and	previous
chapters.

Design	Pattern	30:	Fairness	Lens
The	Fairness	Lens	design	pattern	suggests	the	use	of	preprocessing	and
postprocessing	techniques	to	ensure	that	model	predictions	are	fair	and
equitable	for	different	groups	of	users	and	scenarios.	Fairness	in	machine
learning	is	a	continuously	evolving	area	of	research,	and	there	is	no	single
catch-all	solution	or	definition	to	making	a	model	“fair.”	Evaluating	an
entire	end-to-end	ML	workflow—from	data	collection	to	model
deployment—through	a	fairness	lens	is	essential	to	building	successful,
high-quality	models.

Problem

With	the	word	“machine”	in	its	name,	it’s	easy	to	assume	that	ML	models
can’t	be	biased.	After	all,	models	are	the	result	of	patterns	learned	by	a
computer,	right?	The	problem	with	this	thinking	is	that	the	datasets	models
learn	from	are	created	by	humans,	not	machines,	and	humans	are	full	of
bias.	This	inherent	human	bias	is	inevitable,	but	is	not	necessarily	always
bad.	Take	for	example	a	dataset	used	to	train	a	financial	fraud	detection
model—this	data	will	likely	be	heavily	imbalanced	with	very	few
fraudulent	examples,	since	fraud	is	relatively	rare	in	most	cases.	This	is	an
example	of	naturally	occurring	bias,	as	it	is	a	reflection	of	the	statistical
properties	of	the	original	dataset.	Bias	becomes	harmful	when	it	affects
different	groups	of	people	differently.	This	is	known	as	problematic	bias,
and	it’s	what	we’ll	be	focusing	on	throughout	this	section.	If	this	type	of
bias	is	not	accounted	for,	it	can	find	its	way	into	models,	creating	adverse
effects	as	production	models	directly	reflect	the	bias	present	in	the	data.

Problematic	bias	is	present	even	in	situations	where	you	may	not	expect	it.
As	an	example,	imagine	we’re	building	a	model	to	identify	different	types
of	clothing	and	accessories.	We’ve	been	tasked	with	collecting	all	of	the

shoe	images	for	the	training	dataset.	When	we	think	about	shoes,	we	take
note	of	the	first	thing	that	comes	to	mind.	Is	it	a	tennis	shoe?	Loafer?	Flip
flop?	What	about	a	stiletto?	Let’s	imagine	that	we	live	in	a	climate	that	is
warm	year-round	and	most	of	the	people	we	know	wear	sandals	all	the
time.	When	we	think	of	a	shoe,	a	sandal	is	the	first	thing	that	comes	to
mind.	As	a	result,	we	collect	a	diverse	representation	of	sandal	images
with	different	types	of	straps,	sole	thicknesses,	colors,	and	more.	We
contribute	these	to	the	larger	clothing	dataset,	and	when	we	test	the	model
on	a	test	set	of	images	of	our	friend’s	shoes,	it	reaches	95%	accuracy	on
the	“shoe”	label.	The	model	looks	promising,	but	problems	arise	when	our
colleagues	from	different	locations	test	the	model	on	images	of	their	heels
and	sneakers.	For	their	images,	the	label	“shoe”	is	not	returned	at	all.

This	shoe	example	demonstrates	bias	in	the	training	data	distribution,	and
although	it	may	seem	oversimplified,	this	type	of	bias	occurs	frequently	in
production	settings.	Data	distribution	bias	happens	when	the	data	we
collect	doesn’t	accurately	reflect	the	entire	population	who	will	use	our
model.	If	our	dataset	is	human-centered,	this	type	of	bias	can	be	especially
evident	if	our	dataset	fails	to	include	an	equal	representation	of	ages,
races,	genders,	religions,	sexual	orientations,	and	other	identity
characteristics.

Even	when	our	dataset	does	appear	balanced	with	respect	to	these	identity
characteristics,	it	is	still	subject	to	bias	in	the	way	these	groups	are
represented	in	the	data.	Suppose	we	are	training	a	sentiment	analysis
model	to	classify	restaurant	reviews	on	a	scale	of	1	(extremely	negative)	to
5	(extremely	positive).	We’ve	taken	care	to	get	a	balanced	representation
of	different	types	of	restaurants	in	the	data.	However,	it	turns	out	that	the
majority	of	reviews	for	seafood	restaurants	are	positive,	whereas	most	of
the	vegetarian	restaurant	reviews	are	negative.	This	data	representation

8

bias	will	be	directly	represented	by	our	model.	Whenever	new	reviews	are
added	for	vegetarian	restaurants,	they’ll	have	a	much	higher	chance	of
being	classified	as	negative,	which	could	then	influence	someone’s
likelihood	to	visit	one	of	these	restaurants	in	the	future.	This	is	also	known
as	reporting	bias,	since	the	dataset	(here,	the	“reported”	data)	doesn’t
accurately	reflect	the	real	world.

A	common	fallacy	when	dealing	with	data	bias	issues	is	that	removing	the
areas	of	bias	from	a	dataset	will	fix	the	problem.	Let’s	say	we’re	building
a	model	to	predict	the	likelihood	someone	will	default	on	a	loan.	If	we
find	the	model	is	treating	people	of	different	races	unfairly,	we	might
assume	this	could	be	fixed	by	simply	removing	race	as	a	feature	from	the
dataset.	The	problem	with	this	is	that,	due	to	systemic	bias,	characteristics
like	race	and	gender	are	often	reflected	implicitly	in	other	features	like	zip
code	or	income.	This	is	known	as	implicit	or	proxy	bias.	Removing
obvious	features	with	potential	bias	like	race	and	gender	can	often	be
worse	than	leaving	them	in,	since	it	makes	it	harder	to	identify	and	correct
instances	of	bias	in	the	model.

When	collecting	and	preparing	data,	another	area	where	bias	can	be
introduced	is	in	the	way	the	data	is	labeled.	Teams	often	outsource
labeling	of	large	datasets,	but	it’s	important	to	take	care	in	understanding
how	labelers	can	introduce	bias	to	a	dataset,	especially	if	the	labeling	is
subjective.	This	is	known	as	experimenter	bias.	Imagine	we’re	building	a
sentiment	analysis	model,	and	we	have	outsourced	the	labeling	to	a	group
of	20	people—it’s	their	job	to	label	each	piece	of	text	on	a	scale	from	1
(negative)	to	5	(positive).	This	type	of	analysis	is	extremely	subjective	and
can	be	influenced	by	one’s	culture,	upbringing,	and	many	other	factors.
Before	using	this	data	to	train	our	model,	we	should	ensure	this	group	of
20	labelers	reflects	a	diverse	population.

In	addition	to	data,	bias	can	also	be	introduced	during	model	training	by
the	objective	function	we	choose.	For	example,	if	we	optimize	our	model
for	overall	accuracy,	this	may	not	accurately	reflect	model	performance
across	all	slices	of	data.	In	cases	where	datasets	are	inherently	imbalanced,
using	accuracy	as	our	only	metric	may	miss	cases	where	our	model	is
underperforming	or	making	unfair	decisions	on	minority	classes	in	our
data.

Throughout	this	book,	we’ve	seen	that	ML	has	the	power	to	improve
productivity,	add	business	value,	and	automate	tasks	that	were	previously
manual.	As	data	scientists	and	ML	engineers,	we	have	a	shared
responsibility	to	ensure	the	models	we	build	don’t	have	adverse	effects	on
the	populations	that	use	them.

Solution

To	handle	problematic	bias	in	machine	learning,	we	need	solutions	both
for	identifying	areas	of	harmful	bias	in	data	before	training	a	model,	and
evaluating	our	trained	model	through	a	fairness	lens.	The	Fairness	Lens
design	pattern	provides	approaches	for	building	datasets	and	models	that
treat	all	groups	of	users	equally.	We’ll	demonstrate	techniques	for	both
types	of	analysis	using	the	What-If	Tool,	an	open	source	tool	for	dataset
and	model	evaluation	that	can	be	run	from	many	Python	notebook
environments.

TIP
Before	proceeding	with	the	tools	outlined	in	this	section,	it’s	worth	analyzing	both	the	dataset
and	prediction	task	to	determine	whether	there	is	potential	for	problematic	bias.	This	requires
looking	closer	at	who	will	be	impacted	by	a	model,	and	how	those	groups	will	be	impacted.	If
problematic	bias	seems	likely,	the	technical	approaches	outlined	in	this	section	provide	a	good
starting	point	for	mitigating	this	type	of	bias.	If,	on	the	other	hand,	the	skew	in	the	dataset

https://oreil.ly/Sk36z

contains	naturally	occurring	bias	that	will	not	have	adverse	effects	on	different	groups	of	people,
“Design	Pattern	10:	Rebalancing	”	in	Chapter	3	provides	solutions	for	handling	data	that	is
inherently	imbalanced.

Throughout	this	section,	we’ll	be	referencing	a	public	dataset	of	US
mortgage	applications.	Loan	agencies	in	the	US	are	required	to	report
information	on	an	individual	application,	like	the	type	of	loan,	the
applicant’s	income,	the	agency	handling	the	loan,	and	the	status	of	the
application.	We	will	train	a	loan	application	approval	model	on	this
dataset	in	order	to	demonstrate	different	aspects	of	fairness.	To	our
knowledge,	this	dataset	is	not	used	as	is	by	any	loan	agency	to	train	ML
models,	and	so	the	fairness	red	flags	we	raise	are	only	hypothetical.

We’ve	created	a	subset	of	this	dataset	and	done	some	preprocessing	to	turn
this	into	a	binary	classification	problem—whether	an	application	was
approved	or	denied.	In	Figure	7-9,	we	can	see	a	preview	of	the	dataset.

https://oreil.ly/azFUV

Figure	7-9.	A	preview	of	a	few	columns	from	the	US	mortgage	application	dataset	referenced
throughout	this	section.

BEFORE	TRAINING

Because	ML	models	are	a	direct	representation	of	the	data	used	to	train
them,	it’s	possible	to	mitigate	a	significant	amount	of	bias	before	building
or	training	a	model	by	performing	thorough	data	analysis,	and	using	the
results	of	this	analysis	to	adjust	our	data.	In	this	phase,	focus	on
identifying	data	collection	or	data	representation	bias,	outlined	in	the
Problem	section.	Table	7-3	shows	some	questions	to	consider	for	each
type	of	bias	depending	on	data	type.

Table	7-3.	Descriptions	of	different	types	of	data	bias

Definition Considerations	for	analysis

Definition Considerations	for	analysis

D
at
a
di
str
ib
ut
io
n
bi
as

Data	that	doesn’t
contain	an	equal
representation	of	all
possible	groups	that
will	use	the	model
in	production

	

Does	the	data	contain	a	balanced	set	of	examples	
across	all	relevant	demographic	slices	(gender,	age,	
race,	religion,	etc.)?
	

Does	each	label	in	the	data	contain	a	balanced	split	
of	all	possible	variations	of	this	label?	(E.g.,	the	
shoe	example	in	the	Problem	section.)

D
at
a
re
pr
es
en
tat
io
n
bi
as

Data	that	is	well
balanced,	but
doesn’t	represent
different	slices	of
data	equally

	

For	classification	models,	are	labels	balanced	
across	relevant	features?	For	example,	in	a	dataset	
intended	for	credit	worthiness	prediction,	does	the	
data	contain	an	equal	representation	across	gender,	
race,	and	other	identity	characteristics	of	people	
marked	as	unlikely	to	pay	back	a	loan?
	

Is	there	bias	in	the	way	different	demographic	
groups	are	represented	in	the	data?	This	is	
especially	relevant	for	models	predicting	sentiment	
or	a	rating	value.
	

Is	there	subjective	bias	introduced	by	data	labelers?

Once	we’ve	examined	our	data	and	corrected	for	bias,	we	should	take
these	same	considerations	into	account	when	splitting	our	data	into
training,	test,	and	validation	sets.	That	is	to	say,	once	our	full	dataset	is
balanced,	it’s	essential	that	our	train,	test,	and	validation	splits	maintain
the	same	balance.	Returning	to	our	shoe	image	example,	let’s	imagine
we’ve	improved	our	dataset	to	include	varied	images	of	10	types	of	shoes.
The	training	set	should	contain	a	similar	percentage	of	each	type	of	shoe
as	the	test	and	validation	sets.	This	will	ensure	that	our	model	reflects	and
is	being	evaluated	on	real-world	scenarios.

To	see	what	this	dataset	analysis	looks	like	in	practice,	we’ll	use	the	What-
If	Tool	on	the	mortgage	dataset	introduced	above.	This	will	let	us
visualize	the	current	balance	of	our	data	across	various	slices.	The	What-If
Tool	works	both	with	and	without	a	model.	Since	we	haven’t	built	our
model	yet,	we	can	initialize	the	What-If	Tool	widget	by	passing	it	only	our
data:

config_builder	=	WitConfigBuilder(test_examples,	column_names)

WitWidget(config_builder)

In	Figure	7-10,	we	can	see	what	the	tool	looks	like	when	it	loads	when
passed	1,000	examples	from	our	dataset.	The	first	tab	is	called	the
“Datapoint	editor,”	which	provides	an	overview	of	our	data	and	lets	us
inspect	individual	examples.	In	this	visualization,	our	data	points	are
colored	by	the	label—whether	or	not	a	mortgage	application	was
approved.	An	individual	example	is	also	highlighted,	and	we	can	see	the
feature	values	associated	with	it.

Figure	7-10.	The	What-If	Tool’s	“Datapoint	editor,”	where	we	can	see	how	our	data	is	split	by
label	class	and	inspect	features	for	individual	examples	from	our	dataset.

There	are	many	options	for	customizing	the	visualization	in	the	Datapoint
editor,	and	doing	this	can	help	us	understand	how	our	dataset	is	split
across	different	slices.	Keeping	the	same	color-coding	by	label,	if	we
select	the	agency_code	column	from	the	Binning	|	Y-Axis	drop-down,
the	tool	now	shows	a	chart	of	how	balanced	our	data	is	with	regard	to	the
agency	underwriting	each	application’s	loan.	This	is	shown	in	Figure	7-11.
Assuming	these	1,000	datapoints	are	a	good	representation	of	the	rest	of
our	dataset,	there	are	a	few	instances	of	potential	bias	revealed	in	Figure	7-
11:

Data	representation	bias

The	percentage	of	HUD	applications	not	approved	is	higher	than	other

agencies	represented	in	our	data.	A	model	will	likely	learn	this,

causing	it	to	predict	“not	approved”	more	frequently	for	applications

originating	through	HUD.

Data	collection	bias

We	may	not	have	enough	data	on	loans	originating	from	FRS,	OCC,

FDIC,	or	NCUA	to	accurately	use	agency_code	as	a	feature	in	our

model.	We	should	make	sure	the	percentage	of	applications	for	each

agency	in	our	dataset	reflects	real-world	trends.	For	example,	if	a

similar	number	of	loans	go	through	FRS	and	HUD,	we	should	have	an

equal	number	of	examples	for	each	of	those	agencies	in	our	dataset.

Figure	7-11.	A	subset	of	the	US	mortgage	dataset,	binned	by	the	agency_code	column	in	the
dataset.

We	can	repeat	this	analysis	across	other	columns	in	our	data	and	use	our
conclusions	to	add	examples	and	improve	our	data.	There	are	many	other
options	for	creating	custom	visualizations	in	the	What-If	Tool—see	the
full	code	on	GitHub	for	more	ideas.

Another	way	to	understand	our	data	using	the	What-If	Tool	is	through	the
Features	tab,	shown	in	Figure	7-12.	This	shows	how	our	data	is	balanced
across	each	column	in	our	dataset.	From	this	we	can	see	where	we	need	to
add	or	remove	data,	or	change	our	prediction	task. 	For	example,	maybe
we	want	to	limit	our	model	to	making	predictions	only	on	refinancing	or
home	purchase	loans	since	there	may	not	be	enough	data	available	for
other	possible	values	in	the	loan_purpose	column.

9

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/07_responsible_ai/fairness.ipynb

Figure	7-12.	The	Features	tab	in	the	What-If	Tool,	which	shows	histograms	of	how	a	dataset	is
balanced	for	each	column.

Once	we’ve	refined	our	dataset	and	prediction	task,	we	can	consider
anything	else	we	might	want	to	optimize	during	model	training.	For
example,	maybe	we	care	most	about	our	model’s	accuracy	on	applications
it	predicts	as	“approved.”	During	model	training,	we’d	want	to	optimize
for	AUC	(or	another	metric)	on	the	“approved”	class	in	this	binary
classification	model.

TIP
If	we’ve	done	all	we	can	to	eliminate	data	collection	bias	and	find	that	there	is	not	enough	data
available	for	a	specific	class,	we	can	follow	“Design	Pattern	10:	Rebalancing	”	in	Chapter	3.
This	pattern	discusses	techniques	for	building	models	to	handle	imbalanced	data.

BIAS	IN	OTHER	FORMS	OF	DATA
Although	we’ve	shown	a	tabular	dataset	here,	bias	is	equally	common	in	other	types	of	data.	The	Civil
Comments	dataset	provided	by	Jigsaw	provides	a	good	example	of	areas	where	we	might	find	bias	in	text
data.	This	dataset	labels	comments	according	to	their	toxicity	(ranging	from	0	to	1),	and	has	been	used	to
build	models	for	flagging	toxic	online	comments.	Each	comment	in	the	dataset	is	tagged	as	to	whether	one
of	a	collection	of	identity	attributes	is	present,	like	the	mention	of	a	religion,	race,	or	sexual	orientation.	If
we	plan	to	use	this	data	to	train	a	model,	it’s	important	that	we	look	out	for	data	representation	bias.	That	is
to	say,	the	identity	terms	in	a	comment	should	not	influence	that	comment’s	toxicity,	and	any	such	bias
should	be	accounted	for	before	training	a	model.

Take	the	following	made-up	comment	as	an	example:	“Mint	chip	is	their	best	ice	cream	flavor,	hands
down.”	If	we	were	to	replace	“Mint	chip”	with	“Rocky	road,”	the	comment	should	be	labeled	with	the	same
toxicity	score	(ideally	0).	Similarly,	if	the	comment	were	instead,	“Mint	chip	is	the	worst.	If	you	like	this	flavor
you’re	an	idiot,”	we’d	expect	a	higher	toxicity	score,	and	that	score	should	be	the	same	any	time	we
replace	“Mint	chip”	with	a	different	flavor	name.	We’ve	used	ice	cream	in	this	example,	but	it’s	easy	to
imagine	how	this	would	play	out	with	more	controversial	identity	terms,	especially	in	a	human-centered
dataset—a	concept	known	as	counterfactual	fairness.

AFTER	TRAINING

Even	with	rigorous	data	analysis,	bias	may	find	its	way	into	a	trained

https://oreil.ly/xaocx

model.	This	can	happen	as	a	result	of	a	model’s	architecture,	optimization
metrics,	or	data	bias	that	wasn’t	identified	before	training.	To	solve	for
this,	it’s	important	to	evaluate	our	model	from	a	fairness	perspective	and
dig	deeper	into	metrics	other	than	overall	model	accuracy.	The	goal	of	this
post-training	analysis	is	to	understand	the	trade-offs	between	model
accuracy	and	the	effects	a	model’s	predictions	will	have	on	different
groups.

The	What-If	Tool	is	one	such	option	for	post-model	analysis.	To
demonstrate	how	to	use	it	on	a	trained	model,	we’ll	build	on	our	mortgage
dataset	example.	Based	on	our	previous	analysis,	we’ve	refined	the	dataset
to	only	include	loans	for	the	purpose	of	refinancing	or	home	purchases,
and	trained	an	XGBoost	model	to	predict	whether	or	not	an	application
will	be	approved.	Because	we’re	using	XGBoost,	we	converted	all
categorical	features	into	boolean	columns	using	the	pandas
get_dummies()	method.

We’ll	make	a	few	additions	to	our	What-If	Tool	initialization	code	above,
this	time	passing	in	a	function	that	calls	our	trained	model,	along	with
configs	specifying	our	label	column	and	the	name	for	each	label:

def	custom_fn(examples):

		df	=	pd.DataFrame(examples,	columns=columns)

		preds	=	bst.predict_proba(df)

		return	preds

config_builder	=	(WitConfigBuilder(test_examples,	columns)

		.set_custom_predict_fn(custom_fn)

		.set_target_feature('mortgage_status')

		.set_label_vocab(['denied',	'approved']))

WitWidget(config_builder,	height=800)

Now	that	we’ve	passed	the	tool	our	model,	the	resulting	visualization

10

shown	in	Figure	7-13	plots	our	test	datapoints	according	to	our	model’s
prediction	confidence	indicated	on	the	y-axis.

Figure	7-13.	The	What-If	Tool’s	Datapoint	editor	for	a	binary	classification	model.	The	y-axis	is
the	model’s	prediction	output	for	each	datapoint,	ranging	from	0	(denied)	to	1	(approved).

The	What-If	Tool’s	Performance	&	Fairness	tab	lets	us	evaluate	our
model’s	fairness	across	different	data	slices.	By	selecting	one	of	our
model’s	features	to	“Slice	by,”	we	can	compare	our	model’s	results	for
different	values	of	this	feature.	In	Figure	7-14,	we’ve	sliced	by	the
agency_code_HUD	feature—a	boolean	value	indicating	whether	an
application	was	underwritten	by	HUD	(0	for	non-HUD	loans,	1	for	HUD
loans).

Figure	7-14.	The	What-If	Tool	Performance	&	Fairness	tab,	showing	our	XGBoost	model
performance	across	different	feature	values.

From	these	Performance	&	Fairness	charts,	we	can	see:

Our	model’s	accuracy	on	loans	supervised	by	HUD	is
significantly	higher—94%	compared	to	85%.

According	to	the	confusion	matrix,	non-HUD	loans	are	approved
at	a	higher	rate—72%	compared	to	55%.	This	is	likely	due	to	the
data	representation	bias	identified	in	the	previous	section	(we
purposely	left	the	dataset	this	way	to	show	how	models	can
amplify	data	bias).

There	are	a	few	ways	to	act	on	these	insights,	as	shown	in	the
“Optimization	strategy”	box	in	Figure	7-14.	These	optimization	methods
involve	changing	our	model’s	classification	threshold—the	threshold	at
which	a	model	will	output	a	positive	classification.	In	the	context	of	this
model,	what	confidence	threshold	are	we	OK	with	to	mark	an	application
as	“approved”?	If	our	model	is	more	than	60%	confident	an	application
should	be	approved,	should	we	approve	it?	Or	are	we	only	OK	approving
applications	when	our	model	is	more	than	98%	confident?	This	decision	is
largely	dependent	on	a	model’s	context	and	prediction	task.	If	we’re
predicting	whether	or	not	an	image	contains	a	cat,	we	may	be	OK
returning	the	label	“cat”	even	when	our	model	is	only	60%	confident.
However,	if	we	have	a	model	that	predicts	whether	or	not	a	medical	image
contains	a	disease,	we’d	likely	want	our	threshold	to	be	much	higher.

The	What-If	Tool	helps	us	choose	a	threshold	based	on	various
optimizations.	Optimizing	for	“Demographic	parity,”	for	example,	would
ensure	that	our	model	approves	the	same	percentage	of	applications	for
both	HUD	and	non-HUD	loans. 	Alternatively,	using	an	equality	of
opportunity 	fairness	metric	will	ensure	that	datapoints	from	both	the

11

12

HUD	and	non-HUD	slice	with	a	ground	truth	value	of	“approved”	in	the
test	dataset	are	given	an	equal	chance	of	being	predicted	“approved”	by
the	model.

Note	that	changing	a	model’s	prediction	threshold	is	only	one	way	to	act
on	fairness	evaluation	metrics.	There	are	many	other	approaches,
including	rebalancing	training	data,	retraining	a	model	to	optimize	for	a
different	metric,	and	more.

TIP
The	What-If	Tool	is	model	agnostic	and	can	be	used	for	any	type	of	model	regardless	of
architecture	or	framework.	It	works	with	models	loaded	within	a	notebook	or	in	TensorBoard,
models	served	via	TensorFlow	Serving,	and	models	deployed	to	Cloud	AI	Platform	Prediction.
The	What-If	Tool	team	also	created	a	tool	for	text-based	models	called	the	Language
Interpretability	Tool	(LIT).

Another	important	consideration	for	post-training	evaluation	is	testing	our
model	on	a	balanced	set	of	examples.	If	there	are	particular	slices	of	our
data	that	we	anticipate	will	be	problematic	for	our	model—like	inputs	that
could	be	affected	by	data	collection	or	representation	bias—we	should
ensure	our	test	set	includes	enough	of	these	cases.	After	splitting	our	data,
we’ll	use	the	same	type	of	analysis	we	employed	in	the	“Before	training”
part	of	this	section	on	each	split	of	our	data:	training,	validation,	and	test.

As	seen	from	this	analysis,	there	is	no	one-size-fits-all	solution	or
evaluation	metric	for	model	fairness.	It	is	a	continuous,	iterative	process
that	should	be	employed	throughout	an	ML	workflow—from	data
collection	to	deployed	model.

Trade-Offs	and	Alternatives

https://oreil.ly/xWV4_
https://oreil.ly/CZ60B

Trade-Offs	and	Alternatives

There	are	many	ways	to	approach	model	fairness	in	addition	to	the	pre-
and	post-training	techniques	discussed	in	the	Solution	section.	Here,	we’ll
introduce	a	few	alternative	tools	and	processes	for	achieving	fair	models.
ML	fairness	is	a	rapidly	evolving	area	of	research—the	tools	included	in
this	section	aren’t	meant	to	provide	an	exhaustive	list,	but	rather	a	few
techniques	and	tools	currently	available	for	improving	model	fairness.
We’ll	also	discuss	the	differences	between	the	Fairness	Lens	and
Explainable	Predictions	design	patterns,	as	they	are	related	and	often	used
together.

FAIRNESS	INDICATORS

Fairness	Indicators	(FI)	are	a	suite	of	open	source	tools	designed	to	help	in
understanding	a	dataset’s	distribution	before	training,	and	evaluating
model	performance	using	fairness	metrics.	The	tools	included	in	FI	are
TensorFlow	Data	Validation	(TFDV)	and	TensorFlow	Model	Analysis
(TFMA).	Fairness	Indicators	are	most	often	used	as	components	in	TFX
pipelines	(see	“Design	Pattern	25:	Workflow	Pipeline”	in	Chapter	6	for
more	details)	or	via	TensorBoard.	With	TFX,	there	are	two	pre-built
components	that	utilize	Fairness	Indicator	tools:

ExampleValidator	for	data	analysis,	detecting	drift,	and	training–
serving	skew	with	TFDV.

Evaluator	uses	the	TFMA	library	to	evaluate	a	model	across
subsets	of	a	dataset.	An	example	of	an	interactive	visualization
generated	from	TFMA	is	shown	in	Figure	7-15.	This	looks	at	one
feature	in	the	data	(height)	and	breaks	down	the	model’s	false
negative	rate	for	each	possible	categorical	value	of	that	feature.

https://github.com/tensorflow/fairness-indicators

Figure	7-15.	Comparing	a	model’s	false	negative	rate	over	different	subsets	of	data.

From	the	Fairness	Indicators	Python	package,	TFMA	can	also	be	used	as	a
standalone	tool	that	works	with	both	TensorFlow	and	non-TensorFlow
models.

AUTOMATING	DATA	EVALUATION

The	fairness	evaluation	methods	we	discussed	in	the	Solution	section
focused	on	manual,	interactive	data	and	model	analysis.	This	type	of
analysis	is	important,	especially	in	the	initial	phases	of	model
development.	As	we	operationalize	our	model	and	shift	our	focus	to
maintaining	and	improving	it,	finding	ways	to	automate	fairness
evaluation	will	improve	efficiency	and	ensure	that	fairness	is	integrated
throughout	our	ML	process.	We	can	do	this	through	“Design	Pattern	18:
Continued	Model	Evaluation”	discussed	in	Chapter	5,	or	with	“Design
Pattern	25:	Workflow	Pipeline”	in	Chapter	6	using	components	like	those
provided	by	TFX	for	data	analysis	and	model	evaluation.

ALLOW	AND	DISALLOW	LISTS

When	we	can’t	find	a	way	to	fix	inherent	bias	in	our	data	or	model
directly,	it’s	possible	to	hardcode	rules	on	top	of	our	production	model
using	allow	and	disallow	lists.	This	applies	mostly	to	classification	or
generative	models,	when	there	are	labels	or	words	we	don’t	want	our
model	to	return.	As	an	example,	gendered	words	such	as	“man”	and
“woman”	were	removed	from	Google	Cloud	Vision	API’s	label	detection
feature.	Because	gender	cannot	be	determined	by	appearance	alone,	it
would	have	reinforced	unfair	biases	to	return	these	labels	when	the
model’s	prediction	is	based	solely	on	visual	features.	Instead,	the	Vision
API	returns	“person.”	Similarly,	the	Smart	Compose	feature	in	Gmail
avoids	the	use	of	gendered	pronouns	when	completing	sentences	such	as
“I	am	meeting	an	investor	next	week.	Do	you	want	to	meet	___?”

https://oreil.ly/pYM1j
https://oreil.ly/WY2vp
https://oreil.ly/dtMhK

These	allow	and	disallow	lists	can	be	applied	in	one	of	two	phases	in	an
ML	workflow:

Data	collection

When	training	a	model	from	scratch	or	using	the	Transfer	Learning

design	pattern	to	add	our	own	classification	layer,	we	can	define	our

model’s	label	set	in	the	data	collection	phase,	before	a	model	has	been

trained.

After	training

If	we’re	relying	on	a	pre-trained	model	for	predictions,	and	are	using

the	same	labels	from	that	model,	an	allow	and	disallow	list	can	be

implemented	in	production—after	the	model	returns	a	prediction	but

before	those	labels	are	surfaced	to	end	users.	This	could	also	apply	to

text	generation	models,	where	we	don’t	have	complete	control	of	all

possible	model	outputs.

DATA	AUGMENTATION

In	addition	to	the	data	distribution	and	representation	solutions	discussed
earlier,	another	approach	to	minimizing	model	bias	is	to	perform	data
augmentation.	Using	this	approach,	data	is	changed	before	training	with
the	goal	of	removing	potential	sources	of	bias.	One	specific	type	of	data
augmentation	is	known	as	ablation,	and	is	especially	applicable	in	text
models.	In	a	text	sentiment	analysis	model,	for	example,	we	could	remove
identity	terms	from	text	to	ensure	they	don’t	influence	our	model’s
predictions.	Building	on	the	ice	cream	example	we	used	earlier	in	this
section,	the	sentence	“Mint	chip	is	their	best	ice	cream	flavor”	would
become	“BLANK	is	their	best	ice	cream	flavor”	after	applying	ablation.

We’d	then	replace	all	other	words	throughout	the	dataset	that	we	didn’t
want	to	influence	the	model’s	sentiment	prediction	with	the	same	word
(we	used	BLANK	here,	but	anything	not	present	in	the	rest	of	the	text	data
will	work).	Note	that	while	this	ablation	technique	works	well	for	many
text	models,	it’s	important	to	be	careful	when	removing	areas	of	bias	from
tabular	datasets,	as	mentioned	in	the	Problem	section.

Another	data	augmentation	approach	involves	generating	new	data,	and	it
was	used	by	Google	Translate	to	minimize	gender	bias	when	translating
text	to	and	from	gender-neutral	and	gender-specific	languages.	The
solution	involved	rewriting	translation	data	such	that	when	applicable,	a
provided	translation	would	be	offered	in	both	the	feminine	and	masculine
form.	For	example,	the	gender-neutral	English	sentence	“We	are	doctors”
would	yield	two	results	when	being	translated	to	Spanish,	as	seen	in
Figure	7-16.	In	Spanish,	the	word	“we”	can	have	both	a	feminine	and
masculine	form.

https://oreil.ly/3Rkdr

Figure	7-16.	When	translating	a	gender-neutral	word	in	one	language	(here,	the	word	“we”	in
English)	to	a	language	where	that	word	is	gender-specific,	Google	Translate	now	provides	multiple

translations	to	minimize	gender	bias.

MODEL	CARDS

Originally	introduced	in	a	research	paper,	Model	Cards	provide	a
framework	for	reporting	a	model’s	capabilities	and	limitations.	The	goal
of	Model	Cards	is	to	improve	model	transparency	by	providing	details	on
scenarios	where	a	model	should	and	should	not	be	used,	since	mitigating

https://oreil.ly/OAIcs

problematic	bias	only	works	if	a	model	is	used	in	the	way	it	was	intended.
In	this	way,	Model	Cards	encourage	accountability	for	using	a	model	in
the	correct	context.

The	first	Model	Cards	released	provide	summaries	and	fairness	metrics	for
the	Face	Detection	and	Object	Detection	features	in	Google	Cloud’s
Vision	API.	To	generate	Model	Cards	for	our	own	ML	models,
TensorFlow	provides	a	Model	Card	Toolkit	(MCT)	that	can	be	run	as	a
standalone	Python	library	or	as	part	of	a	TFX	pipeline.	The	toolkit	reads
exported	model	assets	and	generates	a	series	of	charts	with	various
performance	and	fairness	metrics.

FAIRNESS	VERSUS	EXPLAINABILITY

The	concepts	of	fairness	and	explainability	in	ML	are	sometimes	confused
since	they	are	often	used	together	and	are	both	part	of	the	larger	initiative
of	Responsible	AI.	Fairness	applies	specifically	to	identifying	and
removing	bias	from	models,	and	explainability	is	one	approach	for
diagnosing	the	presence	of	bias.	For	example,	applying	explainability	to	a
sentiment	analysis	model	might	reveal	that	the	model	is	relying	on	identity
terms	to	make	its	prediction	when	it	should	instead	be	using	words	like
“worst,”	“amazing,”	or	“not.”

Explainability	can	also	be	used	outside	the	context	of	fairness	to	reveal
things	like	why	a	model	is	flagging	particular	fraudulent	transactions,	or
the	pixels	that	caused	a	model	to	predict	“diseased”	in	a	medical	image.
Explainability,	therefore,	is	a	method	for	improving	model	transparency.
Sometimes	transparency	can	reveal	areas	where	a	model	is	treating	certain
groups	unfairly,	but	it	can	also	provide	higher-level	insight	into	a	model’s
decision-making	process.

https://oreil.ly/OwiJY
https://github.com/tensorflow/model-card-toolkit

Summary
While	Peter	Parker	may	not	have	been	referring	to	machine	learning	when
he	said,	“With	great	power	comes	great	responsibility,”	the	quote	certainly
applies	here.	ML	has	the	power	to	disrupt	industries,	improve
productivity,	and	generate	new	insights	from	data.	With	this	potential,	it’s
especially	important	that	we	understand	how	our	models	will	impact
different	groups	of	stakeholders.	Model	stakeholders	could	include
varying	demographic	slices	of	model	users,	regulatory	groups,	a	data
science	team,	or	business	teams	within	an	organization.

The	Responsible	AI	patterns	outlined	in	this	chapter	are	an	essential	part
of	every	ML	workflow—they	can	help	us	better	understand	the	predictions
generated	by	our	models	and	catch	potential	adverse	behavior	before
models	go	to	production.	Starting	with	the	Heuristic	Benchmark	pattern,
we	looked	at	how	to	identify	an	initial	metric	for	model	evaluation.	This
metric	is	useful	as	a	comparison	point	for	understanding	subsequent	model
versions	and	summarizing	model	behavior	for	business	decision	makers.
In	the	Explainable	Predictions	pattern,	we	demonstrated	how	to	use
feature	attributions	to	see	which	features	were	most	important	in	signaling
a	model’s	prediction.	Feature	attributions	are	one	type	of	explainability
method	and	can	be	used	for	both	evaluating	the	prediction	on	a	single
example	or	over	a	group	of	test	inputs.	Finally,	the	Fairness	Lens	design
pattern	presented	tools	and	metrics	for	ensuring	a	model’s	predictions	treat
all	groups	of	users	in	a	way	that	is	fair,	equitable,	and	unbiased.

1 	DR	is	an	eye	condition	affecting	millions	of	people	around	the	world.	It	can	lead	to	blindness,
but	if	caught	early,	it	can	be	successfully	treated.	To	learn	more	and	find	the	dataset,	see	here.

2 	Explanations	were	used	to	identify	and	correct	for	annotations	present	in	radiology	images	in
this	study.

https://oreil.ly/ix21h
https://oreil.ly/qowNO

3 	The	model	discussed	here	is	trained	on	a	public	UCI	dataset.

4 	The	scikit-learn	documentation	goes	into	more	detail	on	how	to	correctly	interpret	the	learned
weights	in	linear	models.

5 	We’re	focusing	on	these	two	explainability	methods	since	they	are	widely	used	and	cover	a
variety	of	model	types,	but	there	are	many	other	methods	and	frameworks	not	included	in
this	analysis,	such	as	LIME	and	ELI5.

6 	For	more	details	on	these	explanation	methods	and	their	implementation,	see	the	Explainable
AI	whitepaper.

7 	For	more	details	on	Quick,	Draw!	and	example-based	explanations,	see	this	paper.

8 	For	a	more	detailed	look	on	how	race	and	gender	bias	can	find	their	way	into	image
classification	models,	see	Joy	Buolamwini	and	Timmit	Gebru,	“Gender	Shades:
Intersectional	Accuracy	Disparities	in	Commercial	Gender	Classification”,	Proceedings	of
Machine	Learning	Research	81	(2018):	1-15.

9 	To	learn	more	about	changing	a	prediction	task,	see	“Design	Pattern	5:	Reframing	”	and
“Design	Pattern	9:	Neutral	Class	”	in	Chapter	3.

10 	There	are	many	more	pre-training	optimizations	that	could	be	made	on	this	dataset.	We’ve
chosen	just	one	here	as	a	demo	of	what’s	possible.

11 	This	article	provides	more	detail	on	the	What-If	Tool’s	options	for	fairness	optimization
strategies.

12 	More	details	on	equality	of	opportunity	as	a	fairness	metric	can	be	found	here.

https://oreil.ly/cNixp
https://oreil.ly/DAmIm
https://oreil.ly/0c4uB
https://github.com/TeamHG-Memex/eli5
https://oreil.ly/PYn8P
https://oreil.ly/Yvexy
https://oreil.ly/1zw3e
https://oreil.ly/wFx_W
https://oreil.ly/larIS

Chapter	8.	Connected	Patterns

We	set	out	to	create	a	catalog	of	machine	learning	design	patterns,
solutions	to	recurring	problems	when	designing,	training,	and	deploying
machine	learning	models	and	pipelines.	In	this	chapter,	we	provide	a	quick
reference	to	this	inventory	of	patterns.

We	organized	the	patterns	in	the	book	in	terms	of	where	they	would	be
used	in	a	typical	ML	workflow.	Thus,	we	had	a	chapter	on	input
representation	and	another	on	model	selection.	We	then	discussed	patterns
that	modify	the	typical	training	loop	and	make	inference	more	resilient.
We	ended	with	patterns	that	promote	a	responsible	use	of	ML	systems.
This	is	akin	to	organizing	a	recipe	book	with	separate	sections	on
appetizers,	soups,	entrees,	and	desserts.	Such	an	organization,	however,
can	make	it	hard	to	determine	when	to	choose	which	soup	and	what
desserts	go	well	with	some	entree.	Therefore,	in	this	chapter,	we	also	draw
out	how	the	patterns	are	related	to	one	another.	Finally,	we	also	put
together	“meal	plans”	by	discussing	how	the	patterns	interact	for	common
categories	of	ML	tasks.

Patterns	Reference
We’ve	discussed	a	lot	of	different	design	patterns	and	how	they	can	be
used	to	address	common	challenges	that	arise	in	machine	learning.	Here	is
a	summary.

De
si
gn

Cha
pter

gn
pa
tte
rn Problem	solved Solution

Data
Repr
esen
tatio
n

Ha
sh
ed
Fe
atu
re

Problems	associated	with
categorical	features	such	as
incomplete	vocabulary,	model
size	due	to	cardinality,	and	cold
start.

Bucket	a	deterministic	and	portable
hash	of	string	representation	and	accept
the	trade-off	of	collisions	in	the	data
representation.

E
mb
ed
din
gs

High-cardinality	features	where
closeness	relationships	are
important	to	preserve.

Learn	a	data	representation	that	maps
high-cardinality	data	into	a	lower-
dimensional	space	in	such	a	way	that
the	information	relevant	to	the	learning
problem	is	preserved.

Fe
atu
re
Cr
oss

Model	complexity	insufficient	to
learn	feature	relationships.

Help	models	learn	relationships
between	inputs	faster	by	explicitly
making	each	combination	of	input
values	a	separate	feature.

M
ult
im
od
al
In
put

How	to	choose	between	several
potential	data	representations.

Concatenate	all	the	available	data
representations.

Prob
lem
Repr
esen
tatio
n

Re
fra
mi
ng

Several	problems	including
confidence	for	numerical
prediction,	ordinal	categories,
restricting	prediction	range,	and
multitask	learning.

Change	the	representation	of	the	output
of	a	machine	learning	problem;	for
example,	representing	a	regression
problem	as	a	classification	(and	vice
versa).

M
ult
ila
bel

More	than	one	label	applies	to	a
given	training	example.

Encode	the	label	using	a	multi-hot	
array,	and	use	k	sigmoids	as	the	output	
layer.

En
se
mb
les

Bias–variance	trade-off	on
small-	and	medium-scale
problems.

Combine	multiple	machine	learning
models	and	aggregate	their	results	to
make	predictions.

Ca
sca

Maintainability	or	drift	issues
when	a	machine	learning

Treat	an	ML	system	as	a	unified
workflow	for	the	purposes	of	training,

sca
de

when	a	machine	learning
problem	is	broken	into	a	series
of	ML	problems.

workflow	for	the	purposes	of	training,
evaluation,	and	prediction.

Ne
utr
al
Cl
ass

The	class	label	for	some	subset
of	examples	is	essentially
arbitrary.

Introduce	an	additional	label	for	a
classification	model,	disjoint	from	the
current	labels.

Re
bal
an
cin
g

Heavily	imbalanced	data. Downsample,	upsample,	or	use	a
weighted	loss	function	depending	on
different	considerations.

Patte
rns
That
Mod
ify
Mod
el
Trai
ning

Us
efu
l
Ov
erf
itti
ng

Using	machine	learning	methods
to	learn	a	physics-based	model
or	dynamical	system.

Forgo	the	usual	generalization
techniques	in	order	to	intentionally
overfit	on	the	training	dataset.

Ch
ec
kp
oin
ts

Lost	progress	during	long-
running	training	jobs	due	to
machine	failure.

Store	the	full	state	of	the	model
periodically,	so	that	partially	trained
models	are	available	and	can	be	used	to
resume	training	from	an	intermediate
point,	instead	of	starting	from	scratch.

Tr
an
sfe
r
Le
arn
ing

Lack	of	large	datasets	that	are
needed	to	train	complex	machine
learning	models.

Take	part	of	a	previously	trained
model,	freeze	the	weights,	and	use
these	nontrainable	layers	in	a	new
model	that	solves	a	similar	problem.

Di
stri
but
ion
Str
ate
gy

Training	large	neural	networks
can	take	a	very	long	time,	which
slows	experimentation.

Carry	the	training	loop	out	at	scale	over
multiple	workers,	taking	advantage	of
caching,	hardware	acceleration,	and
parallelization.

Hy
per
par
am

How	to	determine	the	optimal
hyperparameters	of	a	machine
learning	model.

Insert	the	training	loop	into	an
optimization	method	to	find	the
optimal	set	of	model	hyperparameters.

am
ete
r
Tu
nin
g

Resi
lienc
e

Sta
tel
ess
Se
rvi
ng
Fu
nct
ion

Production	ML	system	must	be
able	to	synchronously	handle
thousands	to	millions	of
prediction	requests	per	second.

Export	the	machine	learning	model	as	a
stateless	function	so	that	it	can	be
shared	by	multiple	clients	in	a	scalable
way.

Ba
tch
Se
rvi
ng

Carrying	out	model	predictions
over	large	volumes	of	data	using
an	endpoint	that	is	designed	to
handle	requests	one	at	a	time
will	overwhelm	the	model.

Use	software	infrastructure	commonly
used	for	distributed	data	processing	to
carry	out	inference	asynchronously	on
a	large	number	of	instances	at	once.

Co
nti
nu
ed
M
od
el
Ev
alu
ati
on

Model	performance	of	deployed
models	degrades	over	time	either
due	to	data	drift,	concept	drift	or
other	changes	to	the	pipelines
which	feed	data	to	the	model.

Detect	when	a	deployed	model	is	no
longer	fit-for-purpose	by	continually
monitoring	model	predictions	and
evaluating	model	performance.

T
wo
-
Ph
ase
Pr
edi
cti
on
s

Large,	complex	models	must	be
kept	performant	when	they	are
deployed	at	the	edge	or	on
distributed	devices.

Split	the	use	case	into	two	phases	with
only	the	simpler	phase	being	carried
out	on	the	edge.

Ke
ye
d
Pr

How	to	map	the	model
predictions	that	are	returned	to
the	corresponding	model	input
when	submitting	large	prediction

Allow	the	model	to	pass	through	a
client-supported	key	during	prediction
that	can	be	used	to	join	model	inputs	to
model	predictions.

Pr
edi
cti
on
s

when	submitting	large	prediction
jobs.

model	predictions.

Repr
oduc
ibilit
y

Tr
an
sfo
rm

The	inputs	to	a	model	must	be
transformed	to	create	the
features	the	model	expects	and
that	process	must	be	consistent
between	training	and	serving.

Explicitly	capture	and	store	the
transformations	applied	to	convert	the
model	inputs	into	features.

Re
pe
ata
ble
Sp
litt
ing

When	creating	data	splits,	it’s
important	to	have	a	method	that
is	lightweight	and	repeatable
regardless	of	the	programming
language	or	random	seeds.

Identify	a	column	that	captures	the
correlation	relationship	between	rows
and	use	the	Farm	Fingerprint	hashing
algorithm	to	split	the	available	data
into	training,	validation,	and	testing
datasets.

Bri
dg
ed
Sc
he
ma

As	new	data	becomes	available,
any	changes	to	the	data	schema
could	prevent	using	both	the	new
and	old	data	for	retraining.

Adapt	the	data	from	its	older,	original
data	schema	to	match	the	schema	of	the
newer,	better	data.

Wi
nd
ow
ed
Inf
ere
nc
e

Some	models	require	an	ongoing
sequence	of	instances	to	run
inference,	or	features	must	be
aggregated	across	a	time	window
in	such	a	way	that	avoids
training–serving	skew.

Externalize	the	model	state	and	invoke
the	model	from	a	stream	analytics
pipeline	to	ensure	that	features
calculated	in	a	dynamic,	time-
dependent	way	can	be	correctly
repeated	between	training	and	serving.

W
or
kfl
ow
Pi
pel
ine

When	scaling	the	ML	workflow,
run	trials	independently	and
track	performance	for	each	step
of	the	pipeline.

Make	each	step	of	the	ML	workflow	a
separate,	containerized	service	that	can
be	chained	together	to	make	a	pipeline
that	can	be	run	with	a	single	REST	API
call

Fe
atu
re
St
ore

The	ad	hoc	approach	to	feature
engineering	slows	model
development	and	leads	to
duplicated	effort	between	teams
as	well	as	work	stream
inefficiency.

Create	a	feature	store,	a	centralized
location	to	store	and	document	feature
datasets	that	will	be	used	in	building
machine	learning	models	and	can	be
shared	across	projects	and	teams.

inefficiency.

M
od
el
Ve
rsi
oni
ng

It	is	difficult	to	carry	out
performance	monitoring	and
split	test	model	changes	while
having	a	single	model	in
production	or	to	update	models
without	breaking	existing	users.

Deploy	a	changed	model	as	a
microservice	with	a	different	REST
endpoint	to	achieve	backward
compatibility	for	deployed	models.

Resp
onsi
ble
AI

He
uri
sti
c
Be
nc
hm
ark

Explaining	model	performance
using	complicated	evaluation
metrics	does	not	provide	the
intuition	that	business	decision
makers	need.

Compare	an	ML	model	against	a
simple,	easy-to-understand	heuristic.

Ex
pla
ina
ble
Pr
edi
cti
on
s

Sometimes	it	is	necessary	to
know	why	a	model	makes
certain	predictions	either	for
debugging	or	for	regulatory	and
compliance	standards.

Apply	model	explainability	techniques
to	understand	how	and	why	models
make	predictions	and	improve	user
trust	in	ML	systems.

Fai
rne
ss
Le
ns

Bias	can	cause	machine	learning
models	to	not	treat	all	users
equally	and	can	have	adverse
effects	on	some	populations.

Use	tools	to	identify	bias	in	datasets
before	training	and	evaluate	trained
models	through	a	fairness	lens	to
ensure	model	predictions	are	equitable
across	different	groups	of	users	and
different	scenarios.

Pattern	Interactions
Design	patterns	don’t	exist	in	isolation.	Many	of	them	are	closely	related
to	one	another	either	directly	or	indirectly	and	often	complement	one
another.	The	interaction	diagram	in	Figure	8-1	summarizes	the
interdependencies	and	some	relationships	between	different	design
patterns.	If	you	find	yourself	using	a	pattern,	you	might	benefit	from

thinking	how	you	could	incorporate	other	patterns	that	are	related	to	it.

Here,	we’ll	highlight	some	of	the	ways	in	which	these	patterns	are	related
and	how	they	can	be	used	together	when	developing	a	full	solution.	For
example,	when	working	with	categorical	features,	the	Hashed	Feature
design	pattern	may	be	combined	with	the	Embeddings	design	pattern.
These	two	patterns	work	together	to	address	high-cardinality	model	inputs,
such	as	working	with	text.	In	TensorFlow,	this	is	demonstrated	by
wrapping	a	categorical_column_with_hash_bucket	feature
column	with	an	embedding	feature	column	to	convert	the	sparse,
categorical	text	input	to	a	dense	representation:

import	tensorflow.feature_column	as	fc

keywords	=	fc.categorical_column_with_hash_bucket("keywords",	

			hash_bucket_size=10K)

keywords_embedded	=	fc.embedding_column(keywords,	

num_buckets=16)

We	saw	when	discussing	Embeddings	that	this	technique	is	recommended
when	using	the	Feature	Cross	design	pattern.	Hashed	Features	go	hand	in
hand	with	the	Repeatable	Splitting	design	pattern	since	the	Farm
Fingerprint	hashing	algorithm	can	be	used	for	data	splitting.	And,	when
using	the	Hashed	Features	or	Embeddings	design	pattern,	it’s	common	to
turn	to	concepts	within	Hyperparameter	Tuning	to	determine	the	optimal
number	of	hash	buckets	or	the	right	embedding	dimension	to	use.

Figure	8-1.	Many	of	the	patterns	discussed	in	this	book	are	related	or	can	be	used	together.	This
image	is	available	in	the	GitHub	repository	for	this	book.

In	fact,	the	Hyperparameter	Tuning	design	is	a	common	part	of	the
machine	learning	workflow	and	is	often	used	in	conjunction	with	other
patterns.	For	example,	we	might	use	hyperparameter	tuning	to	determine
the	number	of	older	examples	to	use	if	we’re	implementing	the	Bridged
Schema	pattern.	And,	when	using	hyperparameter	tuning,	it’s	important	to
keep	in	mind	how	we’ve	set	up	model	Checkpoints	using	virtual	epochs
and	Distributed	Training.	Meanwhile,	the	Checkpoints	design	pattern
naturally	connects	to	Transfer	Learning	since	earlier	model	checkpoints
are	often	used	during	fine-tuning.

Embeddings	show	up	throughout	machine	learning,	so	there	are	many
ways	in	which	the	Embeddings	design	pattern	interacts	with	other
patterns.	Perhaps	the	most	notable	is	Transfer	Learning	since	the	output
generated	from	the	intermediate	layers	of	a	pre-trained	model	are
essentially	learned	feature	embeddings.	We	also	saw	how	incorporating
the	Neutral	Class	design	pattern	in	a	classification	model,	either	naturally
or	through	the	Reframing	pattern,	can	improve	those	learned	embeddings.
Further	downstream,	if	those	embeddings	are	used	as	features	for	a	model,
it	could	be	advantageous	to	save	them	using	the	Feature	Store	pattern	so
they	can	be	easily	accessed	and	versioned.	Or,	in	the	case	of	Transfer
Learning,	the	pre-trained	model	output	could	be	viewed	as	the	initial
output	of	a	Cascade	pattern.

We	also	saw	how	the	Rebalancing	pattern	could	be	approached	by
combining	two	other	design	patterns:	Reframing	and	Cascade.	Reframing
would	allow	us	to	represent	the	imbalanced	dataset	as	a	classification	of
either	“normal”	or	“outlier.”	The	output	of	that	model	would	then	be
passed	to	a	secondary	regression	model,	which	is	optimized	for	prediction

https://github.com/GoogleCloudPlatform/ml-design-patterns

on	either	data	distribution.	These	patterns	will	likely	also	lead	to	the
Explainable	Predictions	pattern,	since	when	dealing	with	imbalanced	data,
it	is	especially	important	to	verify	that	the	model	is	picking	up	on	the	right
signals	for	prediction.	In	fact,	it’s	encouraged	to	consider	the	Explainable
Predictions	pattern	when	building	a	solution	involving	a	cascade	of
multiple	models,	since	this	can	limit	model	explainability.	This	trade-off
of	model	explainability	shows	up	again	with	the	Ensemble	and
Multimodel	Input	patterns	since	these	techniques	also	don’t	lend
themselves	well	to	some	explainability	methods.

The	Cascade	design	pattern	might	also	be	helpful	when	using	the	Bridged
Schema	pattern	and	could	be	used	as	an	alternative	pattern	by	having	a
preliminary	model	that	imputes	missing	values	of	the	secondary	schema.
These	two	patterns	might	then	be	combined	to	save	the	resulting	feature
set	for	later	use	as	described	in	the	Feature	Store	pattern.	This	is	another
example	which	highlights	the	versatility	of	the	Feature	Store	pattern	and
how	it	is	often	combined	with	other	design	patterns.	For	example,	a
feature	store	provides	a	convenient	way	to	maintain	and	utilize	streaming
model	features	that	may	arise	through	the	Windowed	Inference	pattern.
Feature	stores	also	work	hand	in	hand	with	managing	different	datasets
that	might	arise	in	the	Reframing	pattern,	and	provide	a	reusable	version
of	the	techniques	that	arise	when	using	the	Transform	pattern.	The	feature
versioning	capability	as	discussed	in	the	Feature	Store	pattern	also	plays	a
role	with	the	Model	Versioning	design	pattern.

The	Model	Versioning	pattern,	on	the	other	hand,	is	closely	related	to	the
Stateless	Serving	Function	and	Continued	Model	Evaluation	patterns.	In
Continued	Model	Evaluation,	different	model	versions	may	be	used	when
assessing	how	a	model’s	performance	has	degraded	over	time.	Similarly,
the	different	model	signatures	of	the	serving	function	provide	an	easy

means	of	creating	different	model	versions.	This	approach	to	model
versioning	via	the	Stateless	Serving	Function	pattern	can	be	connected
back	to	the	Reframing	pattern	where	two	different	model	versions	could
provide	their	own	REST	API	endpoints	for	the	two	different	model	output
representations.

We	also	discussed	how,	when	using	the	Continued	Model	Evaluation
pattern,	it’s	often	advantageous	to	explore	solutions	presented	in	the
Workflow	Pipeline	pattern	as	well,	both	to	set	up	triggers	that	will	initiate
the	retraining	pipeline	as	well	as	maintain	lineage	tracking	for	various
model	versions	that	are	created.	Continued	Model	Evaluation	is	also
closely	connected	to	the	Keyed	Predictions	pattern	since	this	can	provide	a
mechanism	for	easily	joining	ground	truth	to	the	model	prediction	outputs.
In	the	same	way,	the	Keyed	Predictions	pattern	is	also	intertwined	with	the
Batch	Serving	pattern.	By	the	same	token,	the	Batch	Serving	pattern	is
often	used	in	conjunction	with	the	Stateless	Serving	Function	pattern	to
carry	out	prediction	jobs	at	scale	which,	in	turn,	relies	on	the	Transform
pattern	under	the	hood	to	maintain	consistency	between	training	and
serving.

Patterns	Within	ML	Projects
Machine	learning	systems	enable	teams	within	an	organization	to	build,
deploy,	and	maintain	machine	learning	solutions	at	scale.	They	provide	a
platform	for	automating	and	accelerating	all	stages	of	the	ML	life	cycle,
from	managing	data,	to	training	models,	evaluating	performance,
deploying	models,	serving	predictions,	and	monitoring	performance.	The
patterns	we	have	discussed	in	this	book	show	up	throughout	any	machine
learning	project.	In	this	section,	we’ll	describe	the	stages	of	the	ML	life
cycle	and	where	many	of	these	patterns	are	likely	to	arise.

ML	Life	Cycle

Building	a	machine	learning	solution	is	a	cyclical	process	that	begins	with
a	clear	understanding	of	the	business	goals	and	ultimately	leads	to	having
a	machine	learning	model	in	production	that	benefits	that	goal.	This	high-
level	overview	of	the	ML	life	cycle	(see	Figure	8-2)	provides	a	useful
roadmap	designed	to	enable	ML	to	bring	value	to	businesses.	Each	of	the
stages	is	equally	important,	and	failure	to	complete	any	one	of	these	steps
increases	the	risk	in	later	stages	of	producing	misleading	insights	or
models	of	no	value.

Figure	8-2.	The	ML	life	cycle	begins	with	defining	the	business	use	case	and	ultimately	leads	to
having	a	machine	learning	model	in	production	that	benefits	that	goal.

The	ML	life	cycle	consists	of	three	stages,	as	shown	in	Figure	8-2:
discovery,	development,	and	deployment.	There	is	a	canonical	order	to	the
individual	steps	of	each	stage.	However,	these	steps	are	completed	in	an
iterative	manner	and	earlier	steps	may	be	revisited	depending	on	the
outcomes	and	insights	gathered	from	later	stages.

DISCOVERY

DISCOVERY

Machine	learning	exists	as	a	tool	to	solve	a	problem.	The	discovery	stage
of	an	ML	project	begins	with	defining	the	business	use	case	(Step	1	of
Figure	8-2).	This	is	a	crucial	time	for	business	leaders	and	ML
practitioners	to	align	on	the	specifics	of	the	problem	and	develop	an
understanding	of	what	ML	can	and	cannot	do	to	achieve	that	goal.

It	is	important	to	keep	sight	of	the	business	value	through	each	stage	of	the
life	cycle.	Many	choices	and	design	decisions	must	be	made	throughout
the	various	stages,	and	often	there	is	no	single	“right”	answer.	Rather,	the
best	option	is	determined	by	how	the	model	will	be	used	in	support	of	the
business	goal.	While	a	feasible	goal	for	a	research	project	could	be	to	eke
out	0.1%	more	accuracy	on	a	benchmark	dataset,	this	is	not	acceptable	in
industry.	For	a	production	model	built	for	a	corporate	organization,
success	is	governed	by	factors	more	closely	tied	to	the	business,	like
improving	customer	retention,	optimizing	business	processes,	increasing
customer	engagement,	or	decreasing	churn	rates.	There	could	also	be
indirect	factors	related	to	the	business	use	case	that	influence	development
choices,	like	speed	of	inference,	model	size,	or	model	interpretability.	Any
machine	learning	project	should	begin	with	a	thorough	understanding	of
the	business	opportunity	and	how	a	machine	learning	model	can	make	a
tangible	improvement	on	current	operations.

A	successful	discovery	stage	requires	collaboration	between	the	business
domain	experts	as	well	as	machine	learning	experts	to	assess	the	viability
of	an	ML	approach.	It	is	crucial	to	have	someone	who	understands	the
business	and	the	data	collaborating	with	teams	that	understand	the
technical	challenges	and	the	engineering	effort	that	would	be	involved.	If
the	overall	investment	of	development	resources	outweighs	the	value	to
the	organization,	then	it	is	not	a	worthwhile	solution.	It	is	possible	that	the

technical	overhead	and	cost	of	resources	for	productionization	exceed	the
benefit	provided	by	a	model	that	ultimately	improves	churn	prediction	by
only	0.1%.	Or	maybe	not.	If	an	organization’s	customer	base	has	1	billion
people,	then	0.1%	is	still	1	million	happier	customers.

During	the	discovery	phase,	it	is	important	to	outline	the	business
objectives	and	scope	for	the	task.	This	is	also	the	time	to	determine	which
metrics	will	be	used	to	measure	or	define	success.	Success	can	look
different	for	different	organizations,	or	even	within	different	groups	of	the
same	organization.	See,	for	example,	the	discussion	on	multiple	objectives
in	“Common	Challenges	in	Machine	Learning”	in	Chapter	1.	Creating
well-defined	metrics	and	key	performance	indicators	(KPIs)	at	the	onset	of
an	ML	project	can	help	to	ensure	everyone	is	aligned	on	the	common	goal.
Ideally	there	is	already	some	procedure	in	place	that	provides	a	convenient
baseline	against	which	to	measure	future	progress.	This	could	be	a	model
already	in	production,	or	even	just	a	rules-based	heuristic	that	is	currently
in	use.	Machine	learning	is	not	the	answer	to	all	problems,	and	sometimes
a	rule-based	heuristic	is	hard	to	beat.	Development	shouldn’t	be	done	for
development’s	sake.	A	baseline	model,	no	matter	how	simple,	is	helpful	to
guide	design	decisions	down	the	road	and	understand	how	each	design
choice	moves	the	needle	on	that	predetermined	evaluation	metric.	In
Chapter	7,	we	discussed	the	role	of	a	Heuristic	Benchmark	as	well	as	other
topics	related	to	Responsible	AI	that	often	come	up	when	communicating
the	impact	and	influence	of	machine	learning	with	business	stakeholders.

Of	course,	these	conversations	should	also	take	place	in	the	context	of	the
data.	A	business	deep	dive	should	go	hand	in	hand	with	a	deep	dive	of
data	exploration	(Step	2	of	Figure	8-2).	As	beneficial	as	a	solution	might
be,	if	quality	data	is	not	available,	then	there	is	no	project.	Or	perhaps	the
data	exists,	but	because	of	data	privacy	reasons,	it	cannot	be	used	or	must

be	scrubbed	of	relevant	information	needed	for	the	model.	In	any	case,	the
viability	of	a	project	and	the	potential	for	success	all	rely	on	the	data.
Thus,	it	is	essential	to	have	data	stewards	within	the	organization	involved
in	these	conversations	early.

The	data	guides	the	process	and	it’s	important	to	understand	the	quality	of
the	data	that	is	available.	What	are	the	distributions	of	the	key	features?
How	many	missing	values	are	there?	How	will	missing	values	be	handled?
Are	there	outliers?	Are	any	input	values	highly	correlated?	What	features
exist	in	the	input	data	and	which	features	should	be	engineered?	Many
machine	learning	models	require	a	massive	dataset	for	training.	Is	there
enough	data?	How	can	we	augment	the	dataset?	Is	there	bias	in	the
dataset?	These	are	important	questions,	and	they	only	touch	the	surface.
One	possible	decision	at	this	stage	is	that	more	data,	or	data	of	a	specific
scenario,	needs	to	be	collected	before	the	project	can	proceed.

Data	exploration	is	a	key	step	in	answering	the	question	of	whether	data	of
sufficient	quality	exists.	Conversation	alone	is	rarely	a	substitute	for
getting	your	hands	dirty	and	experimenting	with	the	data.	Visualization
plays	an	important	role	during	this	step.	Density	plots	and	histograms	are
helpful	to	understand	the	spread	of	different	input	values.	Box	plots	can
help	to	identify	outliers.	Scatter	plots	are	useful	for	discovering	and
describing	bivariate	relationships.	Percentiles	can	help	identify	the	range
for	numeric	data.	Averages,	medians,	and	standard	deviations	can	help	to
describe	central	tendency.	These	techniques	and	others	can	help	determine
which	features	are	likely	to	benefit	the	model	as	well	as	further
understanding	of	which	data	transformations	will	be	needed	to	prepare	the
data	for	modeling.

Within	the	discovery	stage,	it	can	be	helpful	to	do	a	few	modeling

experiments	to	see	if	there	really	is	“signal	in	the	noise.”	At	this	point,	it
could	be	beneficial	to	perform	a	machine	learning	feasibility	study	(Step
3).	Just	as	it	sounds,	this	is	typically	a	short	technical	sprint	spanning	only
a	few	weeks	whose	goal	is	to	assess	the	viability	of	the	data	for	solving	the
problem.	This	provides	a	chance	to	explore	options	for	framing	the
machine	learning	problem,	experiment	with	algorithm	selection,	and	learn
which	feature	engineering	steps	would	be	most	beneficial.	The	feasibility
study	step	in	the	discovery	stage	is	also	a	good	point	at	which	to	create	a
Heuristic	Benchmark	(see	Chapter	7).

DEVELOPMENT

After	agreeing	on	key	evaluation	metrics	and	business	KPIs,	the
development	stage	of	the	machine	learning	life	cycle	begins.	The	details	of
developing	an	ML	model	are	covered	in	detail	in	many	machine	learning
resources.	Here,	we	highlight	the	key	components.

During	the	development	stage,	we	begin	by	building	data	pipelines	and
engineering	features	(Step	4	of	Figure	8-2)	to	process	the	data	inputs	that
will	be	fed	to	the	model.	The	data	collected	in	real-world	applications	can
have	many	issues	such	as	missing	values,	invalid	examples,	or	duplicate
data	points.	Data	pipelines	are	needed	to	preprocess	these	data	inputs	so
that	they	can	be	used	by	the	model.	Feature	engineering	is	the	process	of
transforming	raw	input	data	into	features	that	are	more	closely	aligned
with	the	model’s	learning	objective	and	expressed	in	a	format	that	can	be
fed	to	the	model	for	training.	Feature	engineering	techniques	can	involve
bucketizing	inputs,	converting	between	data	formats,	tokenizing	and
stemming	text,	creating	categorical	features	or	one-hot	encoding,	hashing
inputs,	creating	feature	crosses	and	feature	embeddings,	and	many	others.
Chapter	2	of	this	book	discusses	Data	Representation	design	patterns	and
covers	many	data	aspects	that	arise	during	this	stage	of	the	ML	life	cycle.

Chapter	5	and	Chapter	6	describe	patterns	related	to	resilience	and
reproducibility	in	ML	systems,	which	help	in	building	data	pipelines.

This	step	may	also	involve	engineering	the	labels	for	the	problem	and
design	decisions	related	to	how	the	problem	is	represented.	For	example,
for	time-series	problems,	this	may	involve	creating	feature	windows	and
experimenting	with	lag	times	and	the	size	of	label	intervals.	Or	perhaps
it’s	helpful	to	reframe	a	regression	problem	as	a	classification	and	change
the	representation	of	the	labels	entirely.	Or	maybe	it	is	necessary	to
employ	rebalancing	techniques,	if	the	distribution	of	output	classes	is
overrepresented	by	a	single	class.	Chapter	3	of	this	book	is	focused	on
problem	representation	and	addresses	these	and	other	important	design
patterns	that	are	related	to	problem	framing.

The	next	step	(Step	5	in	Figure	8-2)	of	the	development	stage	is	focused
on	building	the	ML	model.	During	this	development	step,	it	is	crucial	to
adhere	to	best	practices	of	capturing	ML	workflows	in	a	pipeline:	see
“Design	Pattern	25:	Workflow	Pipeline”	in	Chapter	6.	This	includes
creating	repeatable	splits	for	training/validation/test	sets	before	any	model
development	has	begun	to	ensure	there	is	no	data	leakage.	Different	model
algorithms	or	combinations	of	algorithms	may	be	trained	to	assess	their
performance	on	the	validation	set	and	to	examine	the	quality	of	their
predictions.	Parameter	and	hyperparameters	are	tuned,	regularization
techniques	are	employed,	and	edge	cases	are	explored.	The	typical	ML
model	training	loop	is	described	in	detail	at	the	beginning	of	Chapter	4
where	we	also	address	useful	design	patterns	for	changing	the	training
loop	to	attain	specific	objectives.

Many	steps	of	the	ML	life	cycle	are	iterative,	and	this	is	particularly	true
during	model	development.	Many	times,	after	some	experimentation,	it

may	be	necessary	to	revisit	the	data,	business	objectives,	and	KPIs.	New
data	insights	are	gleaned	during	the	model	development	stage	and	these
insights	can	shed	additional	light	on	what	is	possible	(and	what	is	not
possible).	It	is	not	uncommon	to	spend	a	long	time	in	the	model
development	phase,	particularly	when	developing	a	custom	model.
Chapter	6	addresses	many	other	reproducibility	design	patterns	that
address	challenges	that	arise	during	this	iterative	phase	of	model
development.

Throughout	development	of	the	model,	each	new	adjustment	or	approach
is	measured	against	the	evaluation	metrics	that	were	set	in	the	discovery
stage.	Hence,	successful	execution	of	the	discovery	stage	is	crucial,	and	it
is	necessary	to	have	alignment	on	the	decisions	made	during	that	stage.
Ultimately,	model	development	culminates	in	a	final	evaluation	step	(Step
6	of	Figure	8-2).	At	this	point,	model	development	ceases	and	the	model
performance	is	assessed	against	those	predetermined	evaluation	metrics.

One	of	the	key	outcomes	of	the	development	stage	is	to	interpret	and
present	results	(Step	7	of	Figure	8-2)	to	the	stakeholders	and	regulatory
groups	within	the	business.	This	high-level	evaluation	is	crucial	and
necessary	to	communicate	the	value	of	the	development	stage	to
management.	This	step	is	focused	on	creating	numbers	and	visuals	for
initial	reports	that	will	be	brought	to	stakeholders	within	the	organization.
Chapter	7	discusses	some	of	the	common	design	patterns	that	ensure	AI	is
being	used	responsibly	and	can	help	with	stakeholder	management.
Typically,	this	is	a	key	decision	point	in	determining	if	further	resources
will	be	devoted	to	the	final	stage	of	the	life	cycle,	machine	learning
productionization	and	deployment.

DEPLOYMENT

Assuming	successful	completion	of	the	model	development	and	evidence
of	promising	results,	the	next	stage	is	focused	on	productionization	of	the
model,	with	the	first	step	(Step	8	in	Figure	8-2)	being	to	plan	for
deployment.

Training	a	machine	learning	model	requires	a	substantial	amount	of	work,
but	to	fully	realize	the	value	of	that	effort,	the	model	must	run	in
production	to	support	the	business	efforts	it	was	designed	to	improve.
There	are	several	approaches	that	achieve	this	goal	and	deployment	can
look	different	among	different	organizations	depending	on	the	use	case.
For	example,	productionized	ML	assets	could	take	the	form	of	interactive
dashboards,	static	notebooks,	code	that	is	wrapped	in	a	reusable	library,	or
web	services	endpoints.

There	are	many	considerations	and	design	decisions	for	productionizing
models.	As	before,	many	of	the	decisions	that	are	made	during	the
discovery	stage	guide	this	step	as	well.	How	should	model	retraining	be
managed?	Will	input	data	need	to	stream	in?	Should	training	happen	on
new	batches	of	data	or	in	real	time?	What	about	model	inference?	Should
we	plan	for	one-off	batch	inference	jobs	each	week	or	do	we	need	to
support	real-time	prediction?	Are	there	special	throughput	or	latency
issues	to	consider?	Is	there	a	need	to	handle	spiky	workloads?	Is	low
latency	a	priority?	Is	network	connectivity	an	issue?	The	design	patterns	in
Chapter	5	touch	on	some	of	the	issues	that	arise	when	operationalizing	an
ML	model.

These	are	important	considerations,	and	this	final	stage	tends	to	be	the
largest	hurdle	for	many	businesses,	as	it	can	require	strong	coordination
among	different	parts	of	the	organization	and	integration	of	a	variety	of
technical	components.	This	difficulty	is	also	in	part	due	to	the	fact	that

productionization	requires	integrating	a	new	process,	one	that	relies	on	the
machine	learning	model,	into	an	existing	system.	This	can	involve	dealing
with	legacy	systems	that	were	developed	to	support	a	single	approach,	or
there	could	be	complex	change	control	and	production	processes	to
navigate	within	the	organization.	Also,	many	times,	existing	systems	do
not	have	a	mechanism	for	supporting	predictions	coming	from	a	machine
learning	model,	so	new	applications	and	workflows	must	be	developed.	It
is	important	to	anticipate	these	challenges,	and	developing	a
comprehensive	solution	requires	significant	investment	from	the	business
operations	side	to	make	the	transition	as	easy	as	possible	and	increase	the
speed	to	market.

The	next	step	of	the	deployment	stage	is	to	operationalize	the	model	(Step
9	in	Figure	8-2).	This	field	of	the	practice	is	typically	referred	to	as
MLOps	(ML	Operations)	and	covers	aspects	related	to	automating,
monitoring,	testing,	managing,	and	maintaining	machine	learning	models
in	production.	It	is	a	necessary	component	for	any	company	hoping	to
scale	the	number	of	machine	learning–driven	applications	within	their
organization.

One	of	the	key	characteristics	of	operationalized	models	is	automated
workflow	pipelines.	The	development	stage	of	the	ML	life	cycle	is	a
multistep	process.	Building	pipelines	to	automate	these	steps	enables	more
efficient	workflows	and	repeatable	processes	that	improve	future	model
development,	and	allows	for	increased	agility	in	solving	problems	that
arise.	Today,	open	source	tools	like	Kubeflow	provide	this	functionality
and	many	large	software	companies	have	developed	their	own	end-to-end
ML	platforms,	like	Uber’s	Michelangelo	or	Google’s	TFX,	which	are	also
open	source.

https://oreil.ly/I_cJf
https://oreil.ly/se4G9
https://oreil.ly/OznI3

Successful	operationalization	incorporates	components	of	continuous
integration	and	continuous	delivery	(CI/CD)	that	are	the	familiar	best
practices	of	software	development.	These	CI/CD	practices	are	focused	on
reliability,	reproducibility,	speed,	security,	and	version	control	within	code
development.	ML/AI	workflows	benefit	from	the	same	considerations,
though	there	are	some	notable	differences.	For	example,	in	addition	to	the
code	that	is	used	to	develop	the	model,	it	is	important	to	apply	these
CI/CD	principles	to	the	data,	including	data	cleaning,	versioning,	and
orchestration	of	data	pipelines.

The	final	step	to	be	considered	in	the	deployment	stage	is	to	monitor	and
maintain	the	model.	Once	the	model	has	been	operationalized	and	is	in
production,	it’s	necessary	to	monitor	the	model’s	performance.	Over	time,
data	distributions	change,	causing	the	model	to	become	stale.	This	model
staleness	(see	Figure	8-3)	can	occur	for	many	reasons,	from	changes	in
customer	behavior	to	shifts	in	the	environment.	For	this	reason,	it	is
important	to	have	in	place	mechanisms	to	efficiently	monitor	the	machine
learning	model	and	all	the	various	components	that	contribute	to	its
performance,	from	data	collection	to	the	quality	of	the	predictions	during
serving.	The	discussion	of	“Design	Pattern	18:	Continued	Model
Evaluation”	in	Chapter	5	covers	this	common	problem	and	its	solution	in
detail.

Figure	8-3.	Model	staleness	can	occur	for	many	reasons.	Retraining	models	periodically	can	help
to	improve	their	performance	over	time.

For	example,	it	is	important	to	monitor	the	distribution	of	feature	values	to
compare	against	the	distributions	that	were	used	during	the	development
steps.	It	is	also	important	to	monitor	the	distribution	of	label	values	to
ensure	that	some	data	drift	hasn’t	caused	an	imbalance	or	shift	in	label
distribution.	Oftentimes,	a	machine	learning	model	relies	on	data	collected
from	an	outside	source.	Perhaps	our	model	relies	on	a	third-party	traffic
API	to	predict	wait	times	for	car	pickups	or	uses	data	from	a	weather	API
as	input	to	a	model	that	predicts	flight	delays.	These	APIs	are	not	managed
by	our	team.	If	that	API	fails	or	its	output	format	changes	in	a	significant
way,	it	will	have	consequences	for	our	production	model.	In	this	case,	it	is
important	to	set	up	monitoring	to	check	for	changes	in	these	upstream	data
sources.	Lastly,	it	is	important	to	set	up	systems	to	monitor	prediction
distributions	and,	when	possible,	measure	the	quality	of	those	predictions
in	the	production	environment.

Upon	completion	of	the	monitoring	step,	it	can	be	beneficial	to	revisit	the

business	use	case	and	objectively,	accurately	assess	how	the	machine
learning	model	has	influenced	business	performance.	Likely,	this	will	lead
to	new	insights	and	the	start	of	new	ML	projects,	and	the	life	cycle	begins
again.

AI	Readiness

We	find	that	different	organizations	working	on	building	machine	learning
solutions	are	at	different	stages	of	AI	Readiness.	According	to	a	white
paper	published	by	Google	Cloud,	a	company’s	maturity	in	incorporating
AI	into	the	business	can	typically	be	characterized	into	three	phases:
tactical,	strategic,	and	transformational.	Machine	learning	tools	in	these
three	phases	go	from	involving	primarily	manual	development	in	the
tactical	phase,	to	using	pipelines	in	the	strategic	phase,	to	being	fully
automated	in	the	transformational	phase.

TACTICAL	PHASE:	MANUAL	DEVELOPMENT

The	tactical	phase	of	AI	Readiness	is	often	seen	in	organizations	just
beginning	to	explore	the	potential	for	AI	to	deliver,	with	focus	on	short-
term	projects.	Here,	the	AI/ML	use	cases	tend	to	be	more	narrow,	focusing
more	on	proofs	of	concept	or	prototypes;	a	direct	link	to	the	business	goals
may	not	always	be	clear.	In	this	stage,	organizations	recognize	the	promise
of	advanced	analytics	work,	but	the	execution	is	driven	primarily	by
individual	contributors	or	outsourced	entirely	to	partners;	access	to	large-
scale,	quality	datasets	within	the	organization	can	be	difficult.

Typically,	in	this	phase,	there	is	no	process	to	scale	solutions	consistently,
and	the	ML	tools	used	(see	Figure	8-4)	are	developed	on	an	ad	hoc	basis.
Data	is	warehoused	offline	or	in	isolated	data	islands	and	accessed
manually	for	data	exploration	and	analysis.	There	are	no	tools	in	place	to

https://oreil.ly/5GljC

automate	the	various	phases	of	the	ML	development	cycle	and	there	is
little	attention	paid	to	developing	repeatable	processes	of	the	workflow.
This	makes	it	difficult	to	share	assets	within	members	of	the	organization,
and	there	is	no	dedicated	hardware	for	development.

The	extent	of	MLOps	is	limited	to	a	repository	of	trained	models,	and
there	is	little	distinction	between	testing	and	production	environments
where	the	final	model	may	be	deployed	as	an	API-based	solution.

Figure	8-4.	Manual	development	of	AI	models.	Figure	adapted	from	Google	Cloud	documentation.

STRATEGIC	PHASE:	UTILIZING	PIPELINES

Organizations	in	the	strategic	phase	have	aligned	AI	efforts	with	business
objectives	and	priorities,	and	ML	is	seen	as	a	pivotal	accelerator	for	the
business.	As	such,	there	is	often	senior	executive	sponsorship	and
dedicated	budget	for	ML	projects	that	are	executed	by	skilled	teams	and
strategic	partners.	There	is	infrastructure	in	place	for	these	teams	to	easily

https://oreil.ly/aC1HP

share	assets	and	develop	ML	systems	that	leverage	both	ready-to-use	and
custom	models.	There	is	a	clear	distinction	between	development	and
production	environments.

Teams	typically	already	have	skills	in	data	wrangling	with	expertise	in
descriptive	and	predictive	analytics.	Data	is	stored	in	an	enterprise	data
warehouse,	and	there	is	a	unified	model	for	centralized	data	and	ML	asset
management.	The	development	of	ML	models	occurs	as	an	orchestrated
experiment.	The	ML	assets	and	source	code	for	these	pipelines	is	stored	in
a	centralized	source	repository	and	easily	shared	among	members	of	the
organization.

The	data	pipelines	for	developing	ML	models	are	automated	utilizing	a
fully	managed,	serverless	data	service	for	ingestion	and	processing	and	are
either	scheduled	or	event	driven.	Additionally,	the	ML	workflow	for
training,	evaluation,	and	batch	prediction	is	managed	by	an	automated
pipeline	so	that	the	stages	of	the	ML	life	cycle,	from	data	validation	and
preparation	to	model	training	and	validation	(see	Figure	8-5),	are	executed
by	a	performance	monitoring	trigger.	These	models	are	stored	in	a
centralized	trained	models	registry	and	able	to	be	deployed	automatically
based	on	predetermined	model	validation	metrics.

There	may	be	several	ML	systems	deployed	and	maintained	in	production
with	logging,	performance	monitoring,	and	notifications	in	place.	The	ML
systems	leverage	a	model	API	that	is	capable	of	handling	real-time	data
streams	both	for	inference	and	to	collect	data	that	is	fed	into	the	automated
ML	pipeline	to	refresh	the	model	for	later	training.

Figure	8-5.	Pipelines	phase	of	AI	development.	Figure	adapted	from	Google	Cloud	documentation.

TRANSFORMATIONAL	PHASE:	FULLY	AUTOMATED
PROCESSES

Organizations	in	the	transformational	phase	of	AI	Readiness	are	actively
using	AI	to	stimulate	innovation,	support	agility,	and	cultivate	a	culture
where	experimentation	and	learning	is	ongoing.	Strategic	partnerships	are
used	to	innovate,	co-create,	and	augment	technical	resources	within	the
company.	Many	of	the	design	patterns	related	to	reproducibility	and
resilience	in	Chapters	5	and	6	arise	in	this	phase	of	AI	Readiness.

In	this	phase,	it	is	common	to	have	product-specific	AI	teams	embedded
into	the	broader	product	teams	and	supported	by	the	advanced	analytics
team.	In	this	way,	ML	expertise	is	able	to	diffuse	across	various	lines	of
business	within	the	organization.	The	established	common	patterns	and
best	practices	as	well	as	standard	tools	and	libraries	for	accelerating	ML
projects	are	shared	easily	among	different	groups	within	the	organization.

Datasets	are	stored	in	a	platform	that	is	accessible	to	all	teams,	making	it
easy	to	discover,	share,	and	reuse	datasets	and	ML	assets.	There	are
standardized	ML	feature	stores,	and	collaborations	across	the	entire
organization	are	encouraged.	Fully	automated	organizations	operate	an
integrated	ML	experimentation	and	production	platform	where	models	are
built	and	deployed	and	ML	practices	are	accessible	to	everyone	in	the
organization.	That	platform	is	supported	by	scalable	and	serverless
computation	for	batch	and	online	data	ingestion	and	processing.
Specialized	ML	accelerators	such	as	GPUs	and	TPUs	are	available	on
demand	and	there	are	orchestrated	experiments	for	end-to-end	data	and
ML	pipelines.

The	development	and	production	environments	are	similar	to	the	pipeline

https://oreil.ly/sMNo7

stage	(see	Figure	8-6)	but	have	incorporated	CI/CD	practices	into	each	of
the	various	stages	of	their	ML	workflow	as	well.	These	CI/CD	best
practices	focus	on	reliability,	reproducibility,	and	version	control	for	the
code	to	produce	the	ML	models	as	well	as	the	data	and	the	data	pipelines
and	their	orchestration.	This	allows	for	building,	testing,	and	packaging	of
various	pipeline	components.	Model	versioning	is	maintained	by	an	ML
Model	Registry	that	also	stores	necessary	ML	metadata	and	artifacts.

Figure	8-6.	Fully	automated	processes	support	AI	development.	Figure	adapted	from	Google
Cloud	documentation.

Common	Patterns	by	Use	Case	and	Data
Type
Many	of	the	design	patterns	discussed	in	this	book	are	utilized	throughout
the	course	of	any	machine	learning	development	cycle	and	will	likely	be
used	regardless	of	the	production	use	case—for	example,	Hyperparameter
Tuning,	Heuristic	Benchmark,	Repeatable	Splitting,	Model	Versioning,
Distributed	Training,	Workflow	Pipelines,	or	Checkpoints.	Other	design
patterns,	you	might	find,	are	particularly	useful	for	certain	scenarios.	Here,
we’ll	group	together	commonly	used	design	patterns	according	to	popular
machine	learning	use	cases.

Natural	Language	Understanding

Natural	language	understanding	(NLU)	is	a	branch	of	AI	that	focuses	on
training	a	machine	to	understand	the	meaning	behind	text	and	language.
NLU	is	used	by	speech	agents	like	Amazon’s	Alexa,	Apple’s	Siri,	and
Google’s	Assistant	to	understand	sentences	like,	“What	is	the	weather
forecast	this	weekend?”	There	are	many	use	cases	that	fall	under	the
umbrella	of	NLU	and	it	can	be	applied	to	a	lot	of	processes,	such	as	text
classification	(email	filtering),	entity	extraction,	question	answering,
speech	recognition,	text	summarization,	and	sentiment	analysis.

Embeddings

Hashed	Feature

Neutral	Class

Multimodal	Input

https://oreil.ly/VX31C

Transfer	Learning

Two-Phase	Predictions

Cascade

Windowed	Inference

Computer	Vision

Computer	vision	is	the	broad	parent	name	for	AI	that	trains	machines	to
understand	visual	input,	such	as	images,	videos,	icons,	and	anything	where
pixels	might	be	involved.	Computer	vision	models	aim	to	automate	any
task	that	might	rely	on	human	vision,	from	using	an	MRI	to	detect	lung
cancer	to	self-driving	cars.	Some	classical	applications	of	computer	vision
are	image	classification,	video	motion	analysis,	image	segmentation,	and
image	denoising.

Reframing

Neutral	Class

Multimodal	Input

Transfer	Learning

Embeddings

Multilabel

Cascade

Two-Phase	Predictions

Predictive	Analytics

Predictive	modeling	uses	historical	data	to	find	patterns	and	determine	the
likelihood	of	a	certain	event	occurring	in	the	future.	Predictive	models	can
be	found	across	many	different	industry	domains.	For	example,	businesses

might	use	predictive	models	to	forecast	revenue	more	accurately	or
anticipate	future	demand	for	products.	In	medicine,	predictive	models
might	be	used	to	assess	the	risk	of	a	patient	developing	a	chronic	disease
or	predict	when	a	patient	might	not	show	up	for	a	scheduled	appointment.
Other	examples	include	energy	forecasting,	customer	churn	prediction,
financial	modeling,	weather	prediction,	and	predictive	maintenance.

Feature	Store

Feature	Cross

Embeddings

Ensemble

Transform

Reframing

Cascade

Multilabel

Neutral	Class

Windowed	Inference

Batch	Serving

IoT	analytics	is	also	a	broad	category	that	sits	within	predictive	analytics.
IoT	models	rely	on	data	collected	by	internet-connected	sensors	called	IoT
devices.	Consider	a	commercial	aircraft	that	has	thousands	of	sensors	on	it
collecting	more	than	2	TB	of	data	per	day.	Machine	learning	of	IoT	sensor
device	data	can	provide	predictive	models	to	warn	against	equipment
failure	before	it	happens.

Feature	Store

Transform

Reframing

Hashed	Feature

Cascade

Neutral	Class

Two-Phase	Predictions

Stateless	Serving	Function

Windowed	Inference

Recommendation	Systems

Recommender	systems	are	one	of	the	most	widespread	applications	of
machine	learning	in	business	and	they	often	arise	whenever	users	interact
with	items.	Recommender	systems	capture	features	of	past	behavior	and
similar	users	and	recommend	items	most	relevant	for	a	given	user.	Think
of	how	YouTube	will	recommend	a	series	of	videos	for	you	to	watch
based	on	your	watch	history,	or	Amazon	may	recommend	purchases	based
on	items	in	your	shopping	cart.	Recommendation	systems	are	popular
throughout	many	businesses,	particularly	for	product	recommendation,
personalized	and	dynamic	marketing,	and	streaming	video	or	music
platforms.

Embeddings

Ensemble

Multilabel

Transfer	Learning

Feature	Store

Hashed	Feature

Reframing

Transform

Windowed	Inference

Two-Phase	Predictions

Neutral	Class

Multimodal	Input

Batch	Serving

Fraud	and	Anomaly	Detection

Many	financial	institutions	use	machine	learning	for	fraud	detection	to
keep	their	consumers’	accounts	safe.	These	machine	learning	models	are
trained	to	flag	transactions	that	appear	fraudulent	based	on	certain
characteristics	or	patterns	that	have	been	learned	in	the	data.

More	broadly,	anomaly	detection	is	a	technique	used	to	find	abnormal
behavior	or	outlier	elements	in	a	dataset.	Anomalies	can	arise	as	spikes	or
dips	that	deviate	from	the	normal	patterns,	or	they	can	be	longer-term
abnormal	trends.	Anomaly	detection	shows	up	through	many	different	use
cases	in	machine	learning	and	might	even	be	used	in	conjunction	with	a
separate	use	case.	For	example,	consider	a	machine	learning	model	that
identifies	anomalous	train	tracks	based	on	images.

Rebalancing

Feature	Cross

Embeddings

Ensemble

Two-Phase	Predictions

Transform

Feature	Store

Cascade

Neutral	Class

Reframing

Index

A

ablation,	Data	augmentation

AdaBoost,	Boosting,	Increased	training	and	design	time

AdaNet,	Other	ensemble	methods

AI	Platform	Notebooks,	Explanations	from	deployed	models

AI	Platform	Pipelines,	Scheduled	retraining	,	Running	the	pipeline	on
Cloud	AI	Platform

AI	Platform	Prediction,	Data	and	Model	Tooling,	Running	the	pipeline	on
Cloud	AI	Platform,	Other	serverless	versioning	tools,	After	training

AI	Platform	pusher	component,	Running	the	pipeline	on	Cloud	AI
Platform

AI	Platform	Training,	Data	and	Model	Tooling,	Fully	managed
hyperparameter	tuning

AI	readiness,	AI	Readiness-Transformational	phase:	Fully	automated
processes

Alexander,	Christopher,	What	Are	Design	Patterns?-What	Are	Design
Patterns?

all-reduce	algorithm,	Synchronous	training

anomaly	detection,	Anomaly	detection-Choosing	a	model	architecture,
Handling	many	predictions	in	near	real	time,	Fraud	and	Anomaly
Detection

Apache	Airflow,	Solution,	Apache	Airflow	and	Kubeflow	Pipelines

Apache	Beam,	Batch	and	stream	pipelines,	Efficient	transformations	with
tf.transform,	Solution-Reduce	computational	overhead,	Solution,
Alternative	implementations

Apache	Flink,	Solution,	Alternative	implementations

Apache	Spark,	Batch	and	stream	pipelines,	Solution,	Alternative
implementations

Apigee,	Model	versioning	with	a	managed	service

application-specific	integrated	circuit	(see	ASIC)

ARIMA,	Problem	Representation	Design	Patterns,	Solution

arrays,	Array	of	numbers-Array	of	numbers

ASIC,	ASICs	for	better	performance	at	lower	cost,	Phase	1:	Building	the
offline	model

asynchronous	serving,	Asynchronous	serving

asynchronous	training,	Asynchronous	training-Asynchronous	training

attribution	values,	Importance	of	explainability

autoencoders,	Autoencoders-Context	language	models

AutoML	Tables,	Explanations	from	deployed	models

AutoML	technique,	Other	ensemble	methods

autoregressive	integrated	moving	average	(see	ARIMA)

AWS	Lambda,	Create	web	endpoint,	Lambda	architecture,	Triggers	for
retraining,	Model	versioning	with	a	managed	service

Azure,	ASICs	for	better	performance	at	lower	cost,	Model	versioning	with
a	managed	service

Azure	Functions,	Create	web	endpoint,	Triggers	for	retraining

Azure	Machine	Learning,	Model	versioning	with	a	managed	service

Azure	ML	Pipelines,	Running	the	pipeline	on	Cloud	AI	Platform

B

bag	of	words	approach	(see	BOW	encoding)

bagging,	Bagging-Bagging,	Why	It	Works-Bagging,	Choosing	the	right
tool	for	the	problem

baseline,	Model	baseline-Explanations	from	deployed	models

(see	also	informative	baseline,	uninformative	baseline)

batch	prediction,	The	Machine	Learning	Process,	Phase	2:	Building	the
cloud	model,	Trade-Offs	and	Alternatives

batch	serving,	Cached	results	of	batch	serving-Lambda	architecture

Batch	Serving	design	pattern,	Design	Patterns	for	Resilient	Serving,
Design	Pattern	17:	Batch	Serving-Lambda	architecture,	Pattern
Interactions

batch	size,	Choosing	a	batch	size-Choosing	a	batch	size

batching,	Fully	managed

Bayesian	optimization,	Bayesian	optimization-Bayesian	optimization

beam	search	algorithm,	Problem	Representation	Design	Patterns

BERT,	Context	language	models-Context	language	models,	Embeddings
of	words	versus	sentences,	Choosing	a	batch	size

bias

data,	Data	selection	bias,	Problem,	Before	training-Allow	and
disallow	lists

(see	also	data	collection	bias,	data	distribution	bias,	data
representation	bias,	experimenter	bias,	implicit	bias,	problematic
bias,	proxy	bias,	reporting	bias)

human,	Data	Quality-Data	Quality,	Problem

(see	also	implicit	bias,	problematic	bias,	proxy	bias,)

model,	Images	as	tiled	structures,	Solution,	Boosting,	Weighted
classes,	Problem,	Limitations	of	explanations,	Problem-Before
training,	Data	augmentation-Fairness	versus	explainability

(see	also	label	bias)

unfair,	Allow	and	disallow	lists

bias-variance	tradeoff,	Problem,	Choosing	the	right	tool	for	the	problem

Bidirectional	Encoding	Representations	from	Transformers	(see	BERT)

BigQuery

about,	What	Are	Design	Patterns?,	Data	and	Model	Tooling

features	of,	Why	It	Works,	Lambda	architecture,	Solution,
Alternative	implementations

performance	of,	Streaming	SQL

uses	of,	Problem,	Embeddings	in	a	data	warehouse,	Solution-
Solution,	Problem,	Parsing	sigmoid	results,	Solution,	Solution

BigQuery	Machine	Learning	(see	BigQuery	ML)

BigQuery	ML

about,	Data	and	Model	Tooling

features	of,	Weighted	classes,	Solution-Trade-Offs	and	Alternatives

performance	of,	Why	It	Works

uses	of,	Feature	cross	in	BigQuery	ML-Feature	cross	in	BigQuery
ML,	Anomaly	detection,	Problem

BigQueryExampleGen	component,	Solution,	Building	the	TFX	pipeline

BigTable,	Alternative	implementations

binary	classification,	Sigmoid	output	for	models	with	two	classes-One
versus	rest,	Solution

binary	classifier,	One	versus	rest,	Design	Pattern	9:	Neutral	Class	,	When
human	experts	disagree,	Why	It	Works

binary	encoding,	Cryptographic	hash

boolean	variables,	Data	Representation	Design	Patterns

boosting,	Boosting-Boosting,	Why	It	Works,	Boosting,	Choosing	the	right
tool	for	the	problem

bootstrap	aggregating	(see	bagging)

bottleneck	layer,	Solution-Implementing	transfer	learning

BOW	encoding,	Text	data	multiple	ways-Text	data	multiple	ways

Box-Cox	transform,	Nonlinear	transformations

Bridged	Schema	design	pattern,	Reproducibility	Design	Patterns,	Design
Pattern	23:	Bridged	Schema-Handling	precision	increases,	Pattern
Interactions,	Pattern	Interactions

bucketing,	One-hot	encoding

C

CAIP	(see	Cloud	AI	Platform)

capacity,	Problem,	Two	splits

Cartesian	product,	Need	for	regularization

cascade,	Solution,	Reframing	and	Cascade-Reframing	and	Cascade,
Cascade	method

Cascade	design	pattern,	Problem	Representation	Design	Patterns,	Dataset
considerations,	Design	Pattern	8:	Cascade	-Regression	in	rare	situations,
Cascade	method,	Pattern	Interactions-Pattern	Interactions

Cassandra,	Solution,	Alternative	implementations

categorical	data,	Data	and	Feature	Engineering

categorical	inputs,	Categorical	Inputs-Array	of	categorical	variables

CBOW,	Context	language	models

CentralStorageStrategy,	Synchronous	training

centroid,	Anomaly	detection-Anomaly	detection

chaos	theory,	Interpolation	and	chaos	theory

checkpoint	selection,	Regularization-Two	splits

checkpointing,	Solution

checkpoints,	Solution-Checkpoint	selection

Checkpoints	design	pattern,	Design	Pattern	12:	Checkpoints-Virtual
epochs,	Pattern	Interactions

CI/CD,	Trade-Offs	and	Alternatives,	Integrating	CI/CD	with	pipelines-
Integrating	CI/CD	with	pipelines,	Why	It	Works,	Deployment,
Transformational	phase:	Fully	automated	processes

Civil	Comments	dataset,	Before	training

classification	models,	Models	and	Frameworks

classification	threshold,	After	training

clipping,	Linear	scaling-Linear	scaling

closeness	relationships,	Problem-Solution,	Handling	high	cardinality

Cloud	AI	Platform,	What	Are	Design	Patterns?,	Data	and	Model	Tooling,
Concept,	Saving	predictions

Cloud	AI	Platform	Pipelines,	Solution,	Running	the	pipeline	on	Cloud	AI
Platform

Cloud	AI	Platform	Predictions,	Lambda	architecture

Cloud	AI	Platform	Training,	Solution,	Running	the	pipeline	on	Cloud	AI
Platform

Cloud	Build,	Integrating	CI/CD	with	pipelines

Cloud	Composer/Apache	Airflow,	Scheduled	retraining

Cloud	Dataflow,	Lambda	architecture

Cloud	Functions,	Triggers	for	retraining,	Integrating	CI/CD	with	pipelines

Cloud	Run,	Create	web	endpoint,	Other	serverless	versioning	tools

Cloud	Spanner,	Cached	results	of	batch	serving

clustering,	Models	and	Frameworks

clustering	models,	Models	and	Frameworks

CNN,	Images	as	tiled	structures,	Why	It	Works-Why	It	Works

cold	start,	Problem,	Cold	start

combinatorial	explosion,	Grid	search	and	combinatorial	explosion

completeness,	Data	Quality

components,	definition	of,	Solution

computer	vision,	Computer	Vision

concept	drift,	Problem,	Estimating	retraining	interval

confidence,	Inputs	with	overlapping	labels,	When	human	experts	disagree,
Saving	predictions

confusion	matrix,	Problem,	Evaluating	model	performance

consistency,	Data	Quality-Data	Quality

containers,	Design	Pattern	25:	Workflow	Pipeline,	Solution,	Why	It
Works

context	language	models,	Context	language	models-Context	language

models

(see	also	BERT,	Word2Vec)

Continued	Model	Evaluation	design	pattern,	Design	Patterns	for	Resilient
Serving,	Design	Pattern	18:	Continued	Model	Evaluation-Estimating
retraining	interval,	Model	versioning	with	a	managed	service,	Responsible
AI,	Automating	data	evaluation,	Pattern	Interactions

Continuous	Bag	of	Words	(see	CBOW)

continuous	evaluation,	Continuous	evaluation-Continuous	evaluation

continuous	integration	and	continuous	delivery	(see	CI/CD)

convolutional	neural	network	(see	CNN)

Coral	Edge	TPU,	Phase	1:	Building	the	offline	model

counterfactual	analysis,	Counterfactual	analysis	and	example-based
explanations-Counterfactual	analysis	and	example-based	explanations

counterfactual	reasoning,	Capturing	ground	truth

cryptographic	algorithms,	Cryptographic	hash

custom	serving	function,	Custom	serving	function

D

DAG,	Why	It	Works,	Apache	Airflow	and	Kubeflow	Pipelines

Darwin,	Charles,	Genetic	algorithms

data	accuracy,	Data	Quality

data	analysts,	Roles

data	augmentation,	Data	augmentation

data	collection	bias,	Before	training,	Before	training

data	distribution	bias,	Problem

data	drift,	Data	Drift-Data	Drift,	Problem,	Estimating	retraining	interval,
Continuous	evaluation	for	offline	models,	Problem

data	engineers,	Roles,	Scale,	Solution

data	parallelism,	Solution-Solution,	Synchronous	training,	Why	It	Works,
Model	parallelism

data	preprocessing,	Data	and	Feature	Engineering

(see	also	data	transformation,	feature	engineering)

data	representation,	Data	Representation	Design	Patterns-Data
Representation	Design	Patterns

data	representation	bias,	Before	training

data	scientists

role	of,	Roles,	Multiple	Objectives-Multiple	Objectives,	Why	It
Works,	Problem

tasks	of,	Problem,	Problem,	Solution

data	transformation,	Data	and	Feature	Engineering

data	validation,	Data	and	Feature	Engineering,	Data	validation	with	TFX

data	warehouses,	Embeddings	in	a	data	warehouse-Embeddings	in	a	data
warehouse

dataset-level	transformations,	Efficient	transformations	with	tf.transform

datasets,	definition	of,	Data	and	Feature	Engineering

Datastore,	Cached	results	of	batch	serving

decision	trees,	Models	and	Frameworks,	Data	Representation	Design
Patterns-Data	Representation	Design	Patterns,	Decreased	model
interpretability,	Choosing	a	model	architecture,	Typical	Training	Loop,
Solution

Deep	Galerkin	Method,	Data-driven	discretizations-Unbounded	domains

deep	learning,	Models	and	Frameworks-Models	and	Frameworks,
Multimodal	feature	representations	and	model	interpretability

deep	neural	network	(see	DNN	model)

default,	definition	of,	Model	versioning	with	a	managed	service

Dense	layers,	Solution,	Using	images	with	metadata

design	patterns,	definition	of,	What	Are	Design	Patterns?-What	Are
Design	Patterns?

Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	What
Are	Design	Patterns?

developers,	Roles,	Scale

dimensionality	reduction,	Models	and	Frameworks

directed	acyclic	graph	(see	DAG)

discrete	probability	distribution,	Solution,	Why	It	Works,	Capturing
uncertainty

distributed	data	processing	infrastructure,	Solution

DistributedDataParallel,	Synchronous	training

Distribution	Strategy	design	pattern,	Design	Pattern	14:	Distribution
Strategy-Minimizing	I/O	waits

DNN	model,	Text	embeddings,	Feature	crosses	in	TensorFlow,	Increased
training	and	design	time,	Stochastic	Gradient	Descent

Docker	container,	Running	the	pipeline	on	Cloud	AI	Platform,
TensorFlow	Serving

downsampling,	Solution,	Downsampling-Weighted	classes,	Number	of
minority	class	examples	available-Combining	different	techniques

dropout	technique,	Dropout	as	bagging

dummy	coding,	One-hot	encoding

E

early	stopping,	Early	stopping

edge,	Problem-Problem,	Phase	1:	Building	the	offline	model

Embedding	design	pattern,	Data	Representation	Design	Patterns-Data
Representation	Design	Patterns,	Design	Pattern	2:	Embeddings-
Embeddings	in	a	data	warehouse,	Problem-Solution,	Text	data	multiple
ways,	Pattern	Interactions-Pattern	Interactions

embeddings,	Bottleneck	layer

(see	also	bottleneck	layer)

embeddings,	as	similarity,	Why	It	Works

Ensemble	design	pattern,	Problem	Representation	Design	Patterns-
Problem	Representation	Design	Patterns,	Design	Pattern	7:	Ensembles-
Other	ensemble	methods,	Solution,	Combining	different	techniques,
Pattern	Interactions

ensemble	methods,	Solution

(see	also	bagging,	boosting,	stacking)

epochs

training,	Data	and	Feature	Engineering,	Early	stopping

using,	Keras	Training	Loop,	Solution,	Redefining	an	epoch-
Retraining	with	more	data

virtual,	Virtual	epochs,	Asynchronous	training,	Pattern	Interactions

evaluation,	definition	of,	The	Machine	Learning	Process

example-based	explanation,	Counterfactual	analysis	and	example-based
explanations-Counterfactual	analysis	and	example-based	explanations

ExampleGen	components,	Solution-Solution

ExampleValidator,	Solution

experimenter	bias,	Problem

explainability,	Problem,	Solution,	Solution,	Explanations	from	deployed
models,	Fairness	versus	explainability-Fairness	versus	explainability,
Pattern	Interactions

(see	also	deep	learning,	post	hoc	explainability	method)

Explainable	AI,	Data	and	Model	Tooling,	Importance	of	explainability,
Explanations	from	deployed	models,	Explanations	from	deployed	models

Explainable	Predictions	design	pattern,	Responsible	AI,	Design	Pattern
29:	Explainable	Predictions-Limitations	of	explanations,	Pattern
Interactions

exported	model,	Solution

F

Facets,	Data	validation	with	TFX

Fairness	Indicators,	Fairness	Indicators

Fairness	Lens	design	pattern,	Responsible	AI,	Design	Pattern	30:	Fairness
Lens-Fairness	versus	explainability

Farm	Fingerprint	hashing	algorithm,	Solution,	Repeatable	sampling,
Unstructured	data

FarmHash,	Solution

Feast,	Feast-Alternative	implementations

feature	attributions,	Solution-Counterfactual	analysis	and	example-based
explanations

feature	columns,	Solution,	Empty	hash	buckets,	Solution,	Transformations
in	TensorFlow	and	Keras-Transformations	in	TensorFlow	and	Keras

Feature	Cross	design	pattern,	Data	Representation	Design	Patterns,	Design

Pattern	3:	Feature	Cross-Need	for	regularization,	Pattern	Interactions

feature	cross,	cardinality,	Need	for	regularization

feature	engineering,	Data	and	Feature	Engineering,	Data	Representation
Design	Patterns,	Text	and	image	transformations,	Problem,	Discovery

(see	also	data	preprocessing)

feature	extraction,	Data	Representation	Design	Patterns,	Trade-Offs	and
Alternatives-Fine-tuning	versus	feature	extraction,	Solution

Feature	Store	design	pattern,	Reproducibility	Design	Patterns,	Alternate
pattern	approaches,	Design	Pattern	26:	Feature	Store-Transform	design
pattern,	Pattern	Interactions-Pattern	Interactions

feature,	definition	of,	Data	and	Feature	Engineering,	Data	Representation
Design	Patterns

FeatureSet,	Adding	feature	data	to	Feast-Ingesting	feature	data	into	the
FeatureSet

feed-forward	neural	networks	(see	neural	networks)

field-programmable	gate	array	(FPGA),	ASICs	for	better	performance	at
lower	cost

fine-tuning,	Fine-tuning,	Fine-tuning	versus	feature	extraction-Fine-tuning
versus	feature	extraction,	Scheduled	retraining

(see	also	progressive	fine-tuning)

fingerprint	hashing	algorithm,	Cryptographic	hash

fitness	function,	Genetic	algorithms

flat	approach,	Dataset	considerations

Flatten	layer,	Images	as	pixel	values

FPGA	(field-programmable	gate	array),	ASICs	for	better	performance	at
lower	cost

fraud	detection,	Problem-Downsampling,	Number	of	minority	class
examples	available,	Problem,	Capturing	ground	truth,	Sequential	split,
Stratified	split

G

Gamma,	Erich,	What	Are	Design	Patterns?

Gaussian	process,	Bayesian	optimization

genetic	algorithms,	Trade-Offs	and	Alternatives,	Genetic	algorithms-
Genetic	algorithms

GitHub	Actions,	Integrating	CI/CD	with	pipelines

GitLab	Triggers,	Integrating	CI/CD	with	pipelines

GKE,	Solution,	Running	the	pipeline	on	Cloud	AI	Platform

GLoVE,	Context	language	models

Google	App	Engine,	Create	web	endpoint

Google	Bolo,	Standalone	single-phase	model

Google	Cloud	Functions,	Create	web	endpoint

Google	Cloud	Public	Datasets,	Data	and	Model	Tooling

Google	Container	Registry,	Running	the	pipeline	on	Cloud	AI	Platform

Google	Kubernetes	Engine	(see	GKE)

Google	Translate,	Standalone	single-phase	model

GPU,	Problem,	Problem-Synchronous	training,	ASICs	for	better
performance	at	lower	cost,	Minimizing	I/O	waits,	Problem,	Running	the
pipeline	on	Cloud	AI	Platform,	Transformational	phase:	Fully	automated
processes

Gradient	Boosting	Machines,	Boosting

gradient	descent	(see	SGD)

graphics	processing	unit	(see	GPU)

grid	search,	Grid	search	and	combinatorial	explosion-Grid	search	and
combinatorial	explosion,	Why	It	Works

Grid-SearchCV,	Grid	search	and	combinatorial	explosion

ground	truth	label,	Data	and	Feature	Engineering,	Data	Quality,	Capturing
ground	truth-Why	It	Works

H

hash	buckets

collisions,	Bucket	collision

empty,	Empty	hash	buckets

heuristic	to	choose	numbers,	Out-of-vocabulary	input

Hashed	Feature	design	pattern,	Data	Representation	Design	Patterns,
Design	Pattern	1:	Hashed	Feature-Empty	hash	buckets,	Pattern
Interactions

Helm,	Richard,	What	Are	Design	Patterns?

Heroku,	Create	web	endpoint

heuristic	benchmark	,	Solution-Development	check,	Model	baseline,
Discovery

Heuristic	Benchmark	design	pattern,	Responsible	AI-Utility	value

hidden	layers,	Models	and	Frameworks

high	cardinality,	Problem,	High	cardinality,	Problem

histogram	equalization,	Nonlinear	transformations

Hive,	Solution,	Alternative	implementations

Hopsworks,	Alternative	implementations

hyperparameter	tuning,	Hyperparameter	tuning,	Retraining	with	more	data

Hyperparameter	Tuning	design	pattern,	Design	Pattern	15:
Hyperparameter	Tuning-Genetic	algorithms,	Pattern	Interactions

hyperparameters,	Data	and	Feature	Engineering,	Problem

I

idioms,	Simple	Data	Representations,	Array	of	numbers,	Array	of
categorical	variables

IG,	Explanations	from	deployed	models,	Explanations	from	deployed
models

image	embeddings,	Image	embeddings

ImageDataGenerator,	Phase	1:	Building	the	offline	model

ImageNet,	Image	embeddings,	Autoencoders,	Dataset	considerations,
Problem,	Solution,	Bottleneck	layer

implicit	bias,	Problem

imputation,	Augmented	data-Handling	precision	increases

Inception,	Image	embeddings

inference,	The	Machine	Learning	Process,	Solution

(see	also	ML	approximation)

informative	baseline,	Model	baseline-Model	baseline

input,	definition	of,	Data	and	Feature	Engineering,	Data	Representation
Design	Patterns

instance,	definition	of,	Data	and	Feature	Engineering

instance-level	transformations,	Efficient	transformations	with	tf.transform

integrated	gradients	(see	IG)

interpretability	(see	explainability)

interpretable	by	design,	Solution

IoT	analytics,	Predictive	Analytics

irreducible	error,	Problem

J

Jetson	Nano,	Phase	1:	Building	the	offline	model

Johnson,	Ralph,	What	Are	Design	Patterns?

JSON,	Fully	managed

K

k-nearest	neighbors	(kNN),	Bagging

Kaggle,	Solution

Kale,	Development	versus	production	pipelines

Keras

about,	What	Are	Design	Patterns?,	Models	and	Frameworks,
Weighted	classes

features	of,	Weighted	classes,	Why	It	Works,	Implementing	transfer
learning	,	Synchronous	training,	Solution,	Phase	1:	Building	the
offline	model

uses	of,	Text	embeddings-Text	embeddings,	Solution-Solution,
Extracting	tabular	features	from	text,	Images	as	tiled	structures,
Which	loss	function	should	we	use?,	Transformations	in	TensorFlow
and	Keras-Transformations	in	TensorFlow	and	Keras

Keras	ImageDataGenerator,	Upsampling

Keras	Sequential	API,	Solution

Keras	Training	Loop,	Keras	Training	Loop

kernel	size,	Images	as	tiled	structures

key	performance	indicator	(see	KPI)

Keyed	Predictions	design	pattern,	What	Are	Design	Patterns?,	Design
Patterns	for	Resilient	Serving,	Design	Pattern	20:	Keyed	Predictions-
Continuous	evaluation,	Pattern	Interactions

keys,	Design	Pattern	20:	Keyed	Predictions-Continuous	evaluation

KFP	(see	Kubeflow	Pipelines)

kNN	(k-nearest	neighbors),	Bagging

KPI	,	Discovery-Development

Kubeflow	Pipelines,	Solution,	Solution,	Running	the	pipeline	on	Cloud	AI
Platform,	Apache	Airflow	and	Kubeflow	Pipelines

L

label	bias,	Label	bias

label,	definition	of,	Data	and	Feature	Engineering

(see	also	ground	truth	label,	prediction)

labeling,	Data	Quality,	Solution,	Capturing	ground	truth,	Human	experts,
Problem

labels,	overlapping,	Inputs	with	overlapping	labels-One	versus	rest

LAMB,	Choosing	a	batch	size

Lambda	architecture,	Lambda	architecture

Language	Interpretability	Tool,	After	training

library	function,	Prediction	library

Light	on	Two	Sides	of	Every	Room	pattern,	What	Are	Design	Patterns?-
What	Are	Design	Patterns?

lineage	tracking,	Lineage	tracking	in	ML	pipelines

linear	models,	Models	and	Frameworks,	Solution

long	short-term	memory	model	(see	LSTM)

low	latency,	The	Machine	Learning	Process,	Trade-Offs	and	Alternatives-
Trade-Offs	and	Alternatives,	Why	It	Works,	Phase	1:	Building	the	offline
model,	Problem-Feast,	Why	It	Works

LSTM,	Choosing	a	model	architecture,	Solution,	Sequence	models

M

machine	learning	engineers	(see	ML	engineers)

machine	learning	feasibility	study,	Discovery

machine	learning	framework,	Reproducibility

machine	learning	life	cycle	(see	ML	life	cycle)

machine	learning	models,	Models	and	Frameworks

machine	learning	problems	(see	supervised	learning;	unsupervised
learning)

machine	learning,	definition	of,	Models	and	Frameworks

MAE	(mean	absolute	error),	Problem

MAP	(mean	average	precision),	Problem

MapReduce,	Why	It	Works

matrix	factorization,	Problem	Representation	Design	Patterns

MD5	hash,	Cryptographic	hash

mean	absolute	error	(MAE),	Problem

mean	average	precision	(MAP),	Problem

Mesh	TensorFlow,	Model	parallelism

mesh-free	approximation,	Data-driven	discretizations

microservices	architecture,	Problem

min-max	scaling,	Linear	scaling-Linear	scaling

Mirrored	Variable,	Synchronous	training

MirroredStrategy,	Synchronous	training,	Synchronous	training

Mixed	Input	Representation,	Deterministic	inputs

ML	approximation,	Solution,	Interpolation	and	chaos	theory

ML	engineers

role	of,	Roles,	Scale,	Why	It	Works,	Responsible	AI,	Problem

tasks	of,	Problem,	Solution,	Solution,	Model	versioning	with	a
managed	service

ML	life	cycle,	ML	Life	Cycle-Discovery,	Development-Deployment

ML	Operations	(see	MLOps)

ML	pipelines,	The	Machine	Learning	Process

ML	researchers,	Responsible	AI

MLflow,	Solution

MLOps,	Deployment,	Tactical	phase:	Manual	development

MNIST	dataset,	Images	as	pixel	values,	Combining	different	image
representations

MobileNetV2,	Phase	1:	Building	the	offline	model,	Phase	1:	Building	the
offline	model

Mockus,	Jonas,	Bayesian	optimization

model	builders,	Responsible	AI

(see	also	data	scientists,	ML	researchers)

Model	Card	Toolkit,	Model	Cards

Model	Cards,	Model	Cards

model	evaluation,	The	Machine	Learning	Process,	Problem,	Lineage
tracking	in	ML	pipelines,	Limitations	of	explanations,	Solution

(see	also	Continued	Model	Evaluation	design	pattern)

model	parallelism,	Solution,	Model	parallelism-Model	parallelism

model	parameters,	Problem-Problem

model	understanding	(see	explainability)

Model	Versioning	design	pattern,	Reproducibility	Design	Patterns,	Design
Pattern	27:	Model	Versioning-New	models	versus	new	model	versions,
Pattern	Interactions

model,	pre-trained,	Implementing	transfer	learning	-Pre-trained
embeddings,	Fine-tuning	versus	feature	extraction,	Responsible	AI,
Pattern	Interactions

model,	text	classification,	Problem,	Custom	serving	function,	Problem,
Multiple	serving	functions

monolithic	applications,	Problem

Monte	Carlo	approach,	Monte	Carlo	methods-Unbounded	domains

multi-hot	encoding,	Array	of	categorical	variables

multiclass	classification	problems,	Design	Pattern	6:	Multilabel

multilabel	classification,	Sigmoid	output	for	models	with	two	classes-
Parsing	sigmoid	results,	Solution

Multilabel	design	pattern,	Problem	Representation	Design	Patterns,
Design	Pattern	6:	Multilabel	-One	versus	rest

multilabel,	multiclass	classification	(see	Multilabel	design	pattern)

Multimodal	Input	design	pattern,	Design	Pattern	4:	Multimodal	Input-
Multimodal	feature	representations	and	model	interpretability,	Pattern
Interactions

multimodal	inputs,	definition	of,	Trade-Offs	and	Alternatives

MultiWorkerMirroredStrategy,	Synchronous	training,	Synchronous
training

MySQL,	Cached	results	of	batch	serving

MySQL	Cluster,	Alternative	implementations

N

naive	Bayes,	Bagging

natural	language	understanding	(NLU),	Natural	Language	Understanding

Netflix	Prize,	Trade-Offs	and	Alternatives

Neural	Machine	Translation,	Model	parallelism

neural	networks,	Models	and	Frameworks,	Data-driven	discretizations

Neutral	Class	design	pattern,	Problem	Representation	Design	Patterns,
Design	Pattern	9:	Neutral	Class	-Reframing	with	neutral	class,
Responsible	AI,	Pattern	Interactions

NLU	(natural	language	understanding),	Natural	Language	Understanding

NNLM,	Context	language	models

nonlinear	transformations,	Nonlinear	transformations-Nonlinear
transformations

numerical	data,	Data	and	Feature	Engineering-Data	and	Feature
Engineering

O

objective	function,	Bayesian	optimization

OCR	(optical	character	recognition),	Pre-trained	models

one	versus	rest	approach,	One	versus	rest

one-hot	encoding,	One-hot	encoding-One-hot	encoding,	Problem-
Problem,	Choosing	the	embedding	dimension,	Static	method

OneDeviceStrategy,	Synchronous	training,	Asynchronous	training

online	machine	learning,	Scheduled	retraining

online	prediction,	The	Machine	Learning	Process,	Trade-Offs	and
Alternatives

online	update,	High-throughput	data	streams

ONNX,	Model	export

optical	character	recognition	(OCR),	Pre-trained	models

orchestration,	definition	of,	Development	versus	production	pipelines

outliers,	Linear	scaling

output	layer	bias,	Weighted	classes

overfit	model,	Problem,	Problem

(see	also	physics-based	model)

overfitting,	Overfitting	a	batch-Overfitting	a	batch

P

parameter	server	architecture,	Asynchronous	training

parameter	sharing,	Multitask	learning-Multitask	learning

ParameterServerStrategy,	Asynchronous	training

partial	differential	equation	(see	PDE)

Parzen	estimator,	Bayesian	optimization

Pattern	Language,	A,	What	Are	Design	Patterns?

PCA,	Solution,	Autoencoders

PDE,	Problem-Solution,	Data-driven	discretizations,	Unbounded	domains

PDF,	Why	It	Works,	Capturing	uncertainty,	Precision	of	predictions

physics-based	model,	Problem

pipeline,	Solution

pixel	values,	Images	as	pixel	values

post	hoc	explainability	method,	Solution

posterior	probability	distribution,	Why	It	Works

precision,	Choosing	an	evaluation	metric

prediction,	Data	and	Feature	Engineering,	Problem,	Problem

(see	also	batch	prediction,	inference,	online	prediction)

predictive	modeling,	Predictive	Analytics

principal	components	analysis	(see	PCA)

probability	density	function	(see	PDF)

problematic	bias,	Problem-Solution

productionizing	models,	Deployment

progressive	fine-tuning,	Fine-tuning	versus	feature	extraction

proxy	bias,	Problem

Pusher	component,	Solution

PyTorch,	Solution,	Problem,	Synchronous	training,	Fully	managed
hyperparameter	tuning

Q

Q

quantile	regression,	Capturing	uncertainty,	Other	ways	of	capturing
uncertainty

quantization,	Problem,	Phase	1:	Building	the	offline	model,	Phase	1:
Building	the	offline	model

quantization	aware	training,	Standalone	single-phase	model

R

random	forest,	Decreased	model	interpretability,	Grid	search	and
combinatorial	explosion

random	search,	Grid	search	and	combinatorial	explosion,	Why	It	Works

random	seed,	Problem-Solution

RandomForestRegressor,	Grid	search	and	combinatorial	explosion

RandomizedSearchCV,	Grid	search	and	combinatorial	explosion

ratings,	representation	of,	Tabular	data	multiple	ways

ray-tracing	model,	Solution

Rebalancing	design	pattern,	Problem,	Internal	consistency,	Design	Pattern
10:	Rebalancing	-Importance	of	explainability,	Before	training,	Pattern
Interactions

recall,	Choosing	an	evaluation	metric

recommendation	systems

reframing	as	regression,	Changing	the	objective

uses	for,	Solution,	Label	bias,	Recommendation	Systems

Redis,	Solution,	Alternative	implementations

reducible	error,	Problem

reframing	,	Solution,	Reframing	and	Cascade-Reframing	and	Cascade

Reframing	design	pattern,	Problem	Representation	Design	Patterns-
Multitask	learning,	Model	baseline,	Pattern	Interactions-Pattern
Interactions

regression	models,	Models	and	Frameworks,	Solution

regularization,	Dropout	as	bagging,	Design	Pattern	11:	Useful	Overfitting,
Monte	Carlo	methods,	Overfitting	a	batch,	Regularization-Two	splits,
Augmented	data

relative	frequency,	Array	of	categorical	variables

repeatability,	Reproducibility

Repeatable	Splitting	design	pattern,	Reproducibility	Design	Patterns,
Design	Pattern	22:	Repeatable	Splitting-Unstructured	data,	Responsible
AI,	Pattern	Interactions,	Development

reporting	bias,	Problem

reproducibility,	Reproducibility-Reproducibility

research	scientists,	Roles

ResNet,	Image	embeddings

responsible	AI,	Responsible	AI,	Fairness	versus	explainability,
Development

REST	API,	for	model	serving,	Prediction	library

retraining	trigger,	Triggers	for	retraining

roles,	Roles-Roles

roles,	impact	of	team	size,	Roles

Runge-Kutta	methods,	Data-driven	discretizations

runs,	definition	of,	Building	the	TFX	pipeline

S

S

SageMaker,	Fully	managed,	Running	the	pipeline	on	Cloud	AI	Platform,
Model	versioning	with	a	managed	service

salt,	Cryptographic	hash

Sampled	Shapley,	Explanations	from	deployed	models

SavedModel,	Model	export,	Online	prediction,	Lambda	architecture

(see	also	saved_model_cli)

saved_model_cli,	Inference	in	Python

scaling,	Scale,	Why	scaling	is	desirable-Why	scaling	is	desirable

SchemaGen,	Solution

scikit-learn,	Reproducibility,	Why	scaling	is	desirable,	Text	data	multiple
ways,	Increased	training	and	design	time,	Choosing	a	model	architecture,
Grid	search	and	combinatorial	explosion,	Grid	search	and	combinatorial
explosion

sentence	embeddings,	Embeddings	of	words	versus	sentences

Sequential	API,	Images	as	pixel	values,	Images	as	tiled	structures

serverless,	Data	and	Model	Tooling,	Trade-Offs	and	Alternatives

serverless	triggers,	Triggers	for	retraining

serving,	definition	of,	The	Machine	Learning	Process

SGD,	Stochastic	Gradient	Descent-Keras	Training	Loop,	Synchronous
training

SHAP,	Importance	of	explainability,	SHAP-Explanations	from	deployed
models

Shapley	Value,	Solution,	SHAP

sigmoid,	Sigmoid	output	for	models	with	two	classes,	One	versus	rest-One

versus	rest

(see	also	sigmoid	activation)

sigmoid	activation,	Solution-Parsing	sigmoid	results

Six-Foot	Balcony	pattern,	What	Are	Design	Patterns?-What	Are	Design
Patterns?

skip-gram	model,	Context	language	models

Smart	Compose,	Allow	and	disallow	lists

SMOTE,	Upsampling-Upsampling,	Combining	different	techniques

softmax,	Text	embeddings,	Multitask	learning,	Sigmoid	output	for	models
with	two	classes

(see	also	softmax	activation)

softmax	activation,	Solution

software	reliability	engineer	(SRE),	Powerful	ecosystem

spurious	correlation,	Cryptographic	hash

SRE	(software	reliability	engineer),	Powerful	ecosystem

Stack	Overflow,	Text	data	multiple	ways-Text	data	multiple	ways,
Extracting	tabular	features	from	text,	Problem,	Parsing	sigmoid	results

stacking,	Stacking-Stacking,	Stacking-Stacking

stakeholders,	Responsible	AI,	Problem

stateful	stream	processing,	Solution

stateful	vs.	stateless	components,	Design	Pattern	16:	Stateless	Serving
Function-Design	Pattern	16:	Stateless	Serving	Function

stateless	functions,	Design	Pattern	16:	Stateless	Serving	Function-Design
Pattern	16:	Stateless	Serving	Function

Stateless	Serving	Function	design	pattern,	Design	Patterns	for	Resilient

Serving-Prediction	library,	Multiple	serving	functions,	Pattern	Interactions

StatisticsGen	component,	Solution

stochastic	gradient	descent	(see	SGD)

stratified	split,	Stratified	split

streaming,	definition	of,	The	Machine	Learning	Process

structured	data,	Data	and	Feature	Engineering

(see	also	categorical	data,	numerical	data,	tabular	data)

supervised	learning,	Models	and	Frameworks

support	vector	machine	(see	SVM)

surrogate	function,	Bayesian	optimization

survival	of	the	fittest	theory,	Genetic	algorithms

SVM,	Bagging,	Stochastic	Gradient	Descent

Swivel,	Embeddings	in	a	data	warehouse

synchronous	training,	Synchronous	training-Asynchronous	training

Synthetic	Minority	Over-sampling	Technique	(see	SMOTE)

T

TabNet,	Autoencoders,	Focus	on	image	and	text	models

tabular	data

about,	Data	and	Feature	Engineering

(see	also	structured	data)

applications	for,	Problem,	Focus	on	image	and	text	models-Focus	on
image	and	text	models

representation	of,	Tabular	data	multiple	ways-Tabular	data	multiple

ways

tensor	processing	unit	(see	TPU)

TensorBoard,	After	training

TensorFlow

about,	What	Are	Design	Patterns?,	Models	and	Frameworks,
Increased	training	and	design	time

features	of,	Choosing	a	model	architecture,	Why	It	Works,
Checkpoint	selection,	Problem,	Synchronous	training,
Transformations	in	TensorFlow	and	Keras,	Explanations	from
deployed	models

uses	of,	Reproducibility,	Solution,	Solution,	Feature	crosses	in
TensorFlow

TensorFlow	Data	Validation,	Data	validation	with	TFX,	Fairness
Indicators

TensorFlow	dataset,	Redefining	an	epoch

TensorFlow	Extended,	Efficient	transformations	with	tf.transform,
Solution

TensorFlow	hub,	Embeddings	in	a	data	warehouse,	Implementing	transfer
learning	,	Pre-trained	embeddings,	Explanations	from	deployed	models

Tensorflow	Lite,	Problem,	Phase	1:	Building	the	offline	model

TensorFlow	Lite,	Problem

TensorFlow	Model	Analysis	(see	TFMA)

TensorFlow	Probability,	Other	ways	of	capturing	uncertainty

TensorFlow	Serving,	Autoscaling,	Efficient	transformations	with
tf.transform,	TensorFlow	Serving,	After	training

TensorFlow	Transform	method,	Solution

(see	also	Transform	design	pattern)

test	data,	Data	and	Feature	Engineering,	Stochastic	Gradient	Descent,
Problem,	Sequential	split

testing	dataset	(see	test	data)

text	embeddings,	Text	embeddings-Text	embeddings

TF	Hub	(see	TensorFlow	hub)

TF	Lite	Interpreter,	Phase	1:	Building	the	offline	model-Phase	1:	Building
the	offline	model

TFMA,	Fairness	Indicators-Fairness	Indicators

TFX,	Data	validation	with	TFX,	Solution-Integrating	CI/CD	with
pipelines,	Fairness	Indicators

threshold	selection,	Parsing	sigmoid	results

threshold,	definition	of,	Parsing	sigmoid	results

time-windowed	average,	Batch	and	stream	pipelines

timeliness,	Data	Quality

tokenization,	Text	embeddings-Text	embeddings

TorchServe,	Autoscaling

TPAClusterResolver,	ASICs	for	better	performance	at	lower	cost

TPU

about,	What	Are	Design	Patterns?,	Minimizing	I/O	waits,
Transformational	phase:	Fully	automated	processes

features	of,	Problem,	Running	the	pipeline	on	Cloud	AI	Platform

uses	of,	ASICs	for	better	performance	at	lower	cost,	Problem

TPUStrategy,	ASICs	for	better	performance	at	lower	cost

Trainer	component,	Solution,	Running	the	pipeline	on	Cloud	AI	Platform

training	data,	Data	and	Feature	Engineering

training	examples,	Data	and	Feature	Engineering

training	loop,	Model	Training	Patterns	-Training	Design	Patterns,
Solution,	Regularization

(see	also	well-behaved	training	loop)

training,	definition	of,	The	Machine	Learning	Process

training,	synchronous	vs.	asynchronous,	Asynchronous	training-
Asynchronous	training

training-serving	skew,	Problem,	Alternate	pattern	approaches,	Transform
design	pattern

Transfer	Learning	design	pattern,	Design	Pattern	13:	Transfer	Learning-
Embeddings	of	words	versus	sentences,	Allow	and	disallow	lists,	Pattern
Interactions-Pattern	Interactions

Transform	component,	Solution

Transform	design	pattern,	What	Are	Design	Patterns?,	Feature	cross	in
BigQuery	ML,	Reproducibility	Design	Patterns-Alternate	pattern
approaches,	Transform	design	pattern,	Pattern	Interactions

trials,	definition	of,	Manual	tuning

Tweedie	distribution,	Solution

Two-Phase	Predictions	design	pattern,	Design	Patterns	for	Resilient
Serving,	Design	Pattern	19:	Two-Phase	Predictions-Continuous	evaluation
for	offline	models,	Batching	prediction	requests

U

underfit	model,	Problem

Uniform	Approximation	Theorem,	Why	It	Works-Why	It	Works

uninformative	baseline,	Model	baseline-Model	baseline

Universal	Sentence	Encoder,	Embeddings	of	words	versus	sentences

unsampled	data,	Choosing	an	evaluation	metric

unstructured	data,	Data	and	Feature	Engineering,	Unstructured	data

unsupervised	learning,	Models	and	Frameworks,	Anomaly	detection

upsampling,	Solution,	Upsampling-Upsampling

Useful	Overfitting	design	pattern,	Training	Design	Patterns-Overfitting	a
batch

V

validation	data,	Data	and	Feature	Engineering,	Stochastic	Gradient
Descent

validation	dataset	(see	validation	data)

VGG,	Bottleneck	layer	-Implementing	transfer	learning	,	Phase	2:
Building	the	cloud	model

Vision	API,	Allow	and	disallow	lists,	Model	Cards

Vlissides,	John,	What	Are	Design	Patterns?

vocabulary,	One-hot	encoding-Problem,	Out-of-vocabulary	input-Bucket
collision,	Text	embeddings,	Text	data	multiple	ways-Text	data	multiple
ways

W

well-behaved	training	loop,	Regularization,	Fine-tuning

What-If	Tool,	Importance	of	explainability,	Counterfactual	analysis	and
example-based	explanations,	Before	training-After	training

Wheeler,	David,	Trade-Offs	and	Alternatives

Windowed	Inference	design	pattern,	Reproducibility	Design	Patterns,
Design	Pattern	24:	Windowed	Inference-Batching	prediction	requests

winsorizing,	Linear	scaling-Linear	scaling

word	index,	Text	data	multiple	ways

Word2Vec,	Context	language	models-Context	language	models

Workflow	Pipeline	design	pattern,	Solution-Solution,	Triggers	for
retraining,	Reproducibility	Design	Patterns,	Design	Pattern	25:	Workflow
Pipeline-Lineage	tracking	in	ML	pipelines,	Automating	data	evaluation,
Pattern	Interactions

X

XGBoost,	Text	data	multiple	ways,	Boosting,	Increased	training	and
design	time,	Choosing	a	model	architecture,	Other	serverless	versioning
tools

XRAI,	Explanations	from	deployed	models,	Explanations	from	deployed
models

Z

z-score	normalization,	Linear	scaling-Linear	scaling

About	the	Authors

Valliappa	(Lak)	Lakshmanan	is	Global	Head	for	Data	Analytics	and	AI
Solutions	on	Google	Cloud.	His	team	builds	software	solutions	for
business	problems	using	Google	Cloud’s	data	analytics	and	machine
learning	products.	He	founded	Google’s	Advanced	Solutions	Lab	ML
Immersion	program.	Before	Google,	Lak	was	a	Director	of	Data	Science
at	Climate	Corporation	and	a	Research	Scientist	at	NOAA.

Sara	Robinson	is	a	Developer	Advocate	on	Google’s	Cloud	Platform
team,	focusing	on	machine	learning.	She	inspires	developers	and	data
scientists	to	integrate	ML	into	their	applications	through	demos,	online
content,	and	events.	Sara	has	a	bachelor’s	degree	from	Brandeis
University.	Before	Google,	she	was	a	Developer	Advocate	on	the	Firebase
team.

Michael	Munn	is	an	ML	Solutions	Engineer	at	Google	where	he	works
with	customers	of	Google	Cloud	on	helping	them	design,	implement,	and
deploy	machine	learning	models.	He	also	teaches	an	ML	Immersion
Program	at	the	Advanced	Solutions	Lab.	Michael	has	a	PhD	in
mathematics	from	the	City	University	of	New	York.	Before	joining
Google,	he	worked	as	a	research	professor.

Colophon

The	animal	on	the	cover	of	Machine	Learning	Design	Patterns	is	a
sunbittern	(Eurypyga	helias),	a	bird	found	in	tropical	regions	of	the
Americas,	from	Guatemala	to	Brazil.	The	sunbittern’s	closest	living
relative	is	the	kagu,	a	bird	found	only	in	New	Caledonia,	an	archipelago	in
the	southwest	Pacific	Ocean.

Sunbitterns	are	cryptic,	meaning	their	coloration	of	subtle	black,	gray,	and
brown	patterns	acts	as	camouflage	in	their	environment.	Their	flight
feathers	are	red,	yellow,	and	black,	and	with	their	wings	fully	spread,	these
feathers	look	like	eyespots.	These	spots	are	shown	in	courtship	and	threat
displays	and	used	to	startle	predators.	The	birds	have	powder	down,	a
specialized	down	found	in	only	a	few	types	of	birds.

Male	and	female	sunbitterns	take	turns	incubating	eggs	and	feeding	their
chicks.	The	diet	consists	of	a	wide	range	of	animals,	including	insects,
crustaceans,	fish,	and	amphibians.	Although	only	observed	in	captive
sunbitterns,	the	birds	have	been	seen	fishing	with	lures	to	attract	prey
within	striking	distance.

The	sunbittern’s	conservation	status	is	least	concern.	Many	of	the	animals
on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the	world.

The	cover	illustration	is	by	Karen	Montgomery,	based	on	a	black	and
white	engraving	from	Elements	of	Ornithology.	The	cover	fonts	are	Gilroy
Semibold	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the
heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton
Maag’s	Ubuntu	Mono.

	Preface
	Who Is This Book For?
	What’s Not in the Book
	Code Samples
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. The Need for Machine Learning Design Patterns
	What Are Design Patterns?
	How to Use This Book
	Machine Learning Terminology
	Models and Frameworks
	Data and Feature Engineering
	The Machine Learning Process
	Data and Model Tooling
	Roles

	Common Challenges in Machine Learning
	Data Quality
	Reproducibility
	Data Drift
	Scale
	Multiple Objectives

	Summary

	2. Data Representation Design Patterns
	Simple Data Representations
	Numerical Inputs
	Categorical Inputs

	Design Pattern 1: Hashed Feature
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 2: Embeddings
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 3: Feature Cross
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 4: Multimodal Input
	Problem
	Solution
	Trade-Offs and Alternatives

	Summary

	3. Problem Representation Design Patterns
	Design Pattern 5: Reframing
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 6: Multilabel
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 7: Ensembles
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 8: Cascade
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 9: Neutral Class
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 10: Rebalancing
	Problem
	Solution
	Trade-Offs and Alternatives

	Summary

	4. Model Training Patterns
	Typical Training Loop
	Stochastic Gradient Descent
	Keras Training Loop
	Training Design Patterns

	Design Pattern 11: Useful Overfitting
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 12: Checkpoints
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 13: Transfer Learning
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 14: Distribution Strategy
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 15: Hyperparameter Tuning
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Summary

	5. Design Patterns for Resilient Serving
	Design Pattern 16: Stateless Serving Function
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 17: Batch Serving
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 18: Continued Model Evaluation
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 19: Two-Phase Predictions
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 20: Keyed Predictions
	Problem
	Solution
	Trade-Offs and Alternatives

	Summary

	6. Reproducibility Design Patterns
	Design Pattern 21: Transform
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 22: Repeatable Splitting
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 23: Bridged Schema
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 24: Windowed Inference
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 25: Workflow Pipeline
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 26: Feature Store
	Problem
	Solution
	Why It Works
	Trade-Offs and Alternatives

	Design Pattern 27: Model Versioning
	Problem
	Solution
	Trade-Offs and Alternatives

	Summary

	7. Responsible AI
	Design Pattern 28: Heuristic Benchmark
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 29: Explainable Predictions
	Problem
	Solution
	Trade-Offs and Alternatives

	Design Pattern 30: Fairness Lens
	Problem
	Solution
	Trade-Offs and Alternatives

	Summary

	8. Connected Patterns
	Patterns Reference
	Pattern Interactions
	Patterns Within ML Projects
	ML Life Cycle
	AI Readiness

	Common Patterns by Use Case and Data Type
	Natural Language Understanding
	Computer Vision
	Predictive Analytics
	Recommendation Systems
	Fraud and Anomaly Detection

	Index

