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Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mikexcohen/LinAlg4DataScience.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

xi
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This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Practical Linear Alge‐
bra for Data Science by Mike X. Cohen (O’Reilly). Copyright 2022 Syncxpress BV,
978-1-098-12061-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/practical-linear-algebra.
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1 LOL, I was 42 when I wrote this book.

Email bookquestions@oreilly.com with comments or technical questions about this book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
I have a confession: I really dislike writing acknolwedgments sections. It’s not because
I lack gratitude or believe that I have no one to thank—quite the opposite: I have
too many people to thank, and I don’t know where to begin, who to list by name,
and who to leave out. Shall I thank my parents for their role in shaping me into the
kind of person who wrote this book? Perhaps their parents for shaping my parents? I
remember my fourth-grade teacher telling me I should be a writer when I grow up.
(I don’t remember her name and I’m not sure when I will grow up, but perhaps she
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CHAPTER 1

Introduction

What Is Linear Algebra and Why Learn It?
Linear algebra has an interesting history in mathematics, dating back to the 17th
century in the West and much earlier in China. Matrices—the spreadsheets of num‐
bers at the heart of linear algebra—were used to provide a compact notation for
storing sets of numbers like geometric coordinates (this was Descartes’s original use
of matrices) and systems of equations (pioneered by Gauss). In the 20th century,
matrices and vectors were used for multivariate mathematics including calculus,
differential equations, physics, and economics.

But most people didn’t need to care about matrices until fairly recently. Here’s the
thing: computers are extremely efficient at working with matrices. And so, modern
computing gave rise to modern linear algebra. Modern linear algebra is computa‐
tional, whereas traditional linear algebra is abstract. Modern linear algebra is best
learned through code and applications in graphics, statistics, data science, AI, and
numerical simulations, whereas traditional linear algebra is learned through proofs
and pondering infinite-dimensional vector spaces. Modern linear algebra provides
the structural beams that support nearly every algorithm implemented on computers,
whereas traditional linear algebra is often intellectual fodder for advanced mathemat‐
ics university students.

Welcome to modern linear algebra.

Should you learn linear algebra? That depends on whether you want to understand
algorithms and procedures, or simply apply methods that others have developed. I
don’t mean to disparage the latter—there is nothing intrinsically wrong with using
tools you don’t understand (I am writing this on a laptop that I can use but could
not build from scratch). But given that you are reading a book with this title in the
O’Reilly book collection, I guess you either (1) want to know how algorithms work or

1



1 Apologies for the shameless self-promotion; I promise that’s the only time in this book I’ll subject you to such
an indulgence.

(2) want to develop or adapt computational methods. So yes, you should learn linear
algebra, and you should learn the modern version of it.

About This Book
The purpose of this book is to teach you modern linear algebra. But this is not about
memorizing some key equations and slugging through abstract proofs; the purpose is
to teach you how to think about matrices, vectors, and operations acting upon them.
You will develop a geometric intuition for why linear algebra is the way it is. And
you will understand how to implement linear algebra concepts in Python code, with a
focus on applications in machine learning and data science.

Many traditional linear algebra textbooks avoid numerical examples in the interest
of generalizations, expect you to derive difficult proofs on your own, and teach
myriad concepts that have little or no relevance to application or implementation in
computers. I do not write these as criticisms—abstract linear algebra is beautiful and
elegant. But if your goal is to use linear algebra (and mathematics more generally) as
a tool for understanding data, statistics, deep learning, image processing, etc., then
traditional linear algebra textbooks may seem like a frustrating waste of time that
leave you confused and concerned about your potential in a technical field.

This book is written with self-studying learners in mind. Perhaps you have a degree
in math, engineering, or physics, but need to learn how to implement linear alge‐
bra in code. Or perhaps you didn’t study math at university and now realize the
importance of linear algebra for your studies or work. Either way, this book is
a self-contained resource; it is not solely a supplement for a lecture-based course
(though it could be used for that purpose).

If you were nodding your head in agreement while reading the past three paragraphs,
then this book is definitely for you.

If you would like to take a deeper dive into linear algebra, with more proofs and
explorations, then there are several excellent texts that you can consider, including
my own Linear Algebra: Theory, Intuition, Code (Sincxpress BV).1

Prerequisites
I have tried to write this book for enthusiastic learners with minimal formal back‐
ground. That said, nothing is ever learned truly from from scratch.

2 | Chapter 1: Introduction



Math
You need to be comfortable with high-school math. Just basic algebra and geometry;
nothing fancy.

Absolutely zero calculus is required for this book (though differential calculus is
important for applications where linear algebra is often used, such as deep learning
and optimization).

But most importantly, you need to be comfortable thinking about math, looking at
equations and graphics, and embracing the intellectual challenge that comes with
studying math.

Attitude
Linear algebra is a branch of mathematics, ergo this is a mathematics book. Learning
math, especially as an adult, requires some patience, dedication, and an assertive
attitude. Get a cup of coffee, take a deep breath, put your phone in a different room,
and dive in.

There will be a voice in the back of your head telling you that you are too old
or too stupid to learn advanced mathematics. Sometimes that voice is louder and
sometimes softer, but it’s always there. And it’s not just you—everyone has it. You
cannot suppress or destroy that voice; don’t even bother trying. Just accept that a bit
of insecurity and self-doubt is part of being human. Each time that voice speaks up is
a challenge for you to prove it wrong.

Coding
This book is focused on linear algbera applications in code. I wrote this book for
Python, because Python is currently the most widely used language in data science,
machine learning, and related fields. If you prefer other languages like MATLAB, R,
C, or Julia, then I hope you find it straightforward to translate the Python code.

I’ve tried to make the Python code as simple as possible, while still being relevant
for applications. Chapter 16 provides a basic introduction to Python programming.
Should you go through that chapter? That depends on your level of Python skills:

Intermediate/advanced (>1 year coding experience)
Skip Chapter 16 entirely, or perhaps skim it to get a sense of the kind of code that
will appear in the rest of the book.

Some knowledge (<1 year experience)
Please work through the chapter in case there is material that is new or that you
need to refresh. But you should be able to get through it rather briskly.

Prerequisites | 3



Total beginner
Go through the chapter in detail. Please understand that this book is not a
complete Python tutorial, so if you find yourself struggling with the code in
the content chapters, you might want to put this book down, work through a
dedicated Python course or book, then come back to this book.

Mathematical Proofs Versus Intuition from Coding
The purpose of studying math is, well, to understand math. How do you understand
math? Let us count the ways:

Rigorous proofs
A proof in mathematics is a sequence of statements showing that a set of assump‐
tions leads to a logical conclusion. Proofs are unquestionably important in pure
mathematics.

Visualizations and examples
Clearly written explanations, diagrams, and numerical examples help you gain
intuition for concepts and operations in linear algebra. Most examples are done
in 2D or 3D for easy visualization, but the principles also apply to higher
dimensions.

The difference between these is that formal mathematical proofs provide rigor
but rarely intuition, whereas visualizations and examples provide lasting intuition
through hands-on experience but can risk inaccuracies based on specific examples
that do not generalize.

Proofs of important claims are included, but I focus more on building intuition
through explanations, visualizations, and code examples.

And this brings me to mathematical intuition from coding (what I sometimes call
“soft proofs”). Here’s the idea: you assume that Python (and libraries such as NumPy
and SciPy) correctly implements the low-level number crunching, while you focus on
the principles by exploring many numerical examples in code.

A quick example: we will “soft-prove” the commutivity principle of multiplication,
which states that a × b = b × a:

a = np.random.randn()
b = np.random.randn()
a*b - b*a

This code generates two random numbers and tests the hypothesis that swapping the
order of multiplication has no impact on the result. The third line of would print
out 0.0 if the commutivity principle is true. If you run this code multiple times and
always get 0.0, then you have gained intuition for commutivity by seeing the same
result in many different numerical examples.
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To be clear: intuition from code is no substitute for a rigorous mathematical proof.
The point is that “soft proofs” allow you to understand mathematical concepts
without having to worry about the details of abstract mathematical syntax and
arguments. This is particularly advantageous to coders who lack an advanced mathe‐
matics background.

The bottom line is that you can learn a lot of math with a bit of coding.

Code, Printed in the Book and Downloadable Online
You can read this book without looking at code or solving code exercises. That’s fine,
and you will certainly learn something. But don’t be disappointed if your knowledge
is superficial and fleeting. If you really want to understand linear algebra, you need to
solve problems. That’s why this book comes with code demonstrations and exercises
for each mathematical concept.

Important code is printed directly in the book. I want you to read the text and
equations, look at the graphs, and see the code at the same time. That will allow you to
link concepts and equations to code.

But printing code in a book can take up a lot of space, and hand-copying code on
your computer is tedious. Therefore, only the key code lines are printed in the book
pages; the online code contains additional code, comments, graphics embellishments,
and so on. The online code also contains solutions to the coding exercises (all of
them, not only the odd-numbered problems!). You should definitely download the
code and go through it while working through the book.

All the code can be obtained from the GitHub site https://github.com/mikexcohen
/LinAlg4DataScience. You can clone this repository or simply download the entire
repository as a ZIP file (you do not need to register, log in, or pay to download the
code).

I wrote the code using Jupyter notebook in Google’s Colab environment. I chose to
use Jupyter because it’s a friendly and easy-to-use environment. That said, I encour‐
age you to use whichever Python IDE you prefer. The online code is also provided as
raw .py files for convenience.

Code Exercises
Math is not a spectator sport. Most math books have countless paper-and-pencil
problems to work through (and let’s be honest: no one does all of them). But this
book is all about applied linear algebra, and no one applies linear algebra on paper!
Instead, you apply linear algebra in code. Therefore, in lieu of hand-worked problems
and tedious proofs “left as an exercise to the reader” (as math textbook authors love
to write), this book has lots of code exercises.
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The code exercises vary in difficulty. If you are new to Python and to linear algebra,
you might find some exercises really challenging. If you get stuck, here’s a suggestion:
have a quick glance at my solution for inspiration, then put it away so you can’t see
my code, and continue working on your own code.

When comparing your solution to mine, keep in mind that there are many ways to
solve problems in Python. Ariving at the correct answer is important; the steps you
take to get there are often a matter of personal coding style.

How to Use This Book (for Teachers and Self Learners)
There are three environments in which this book is useful:

Self-learner
I have tried to make this book accessible to readers who want to learn linear
algebra on their own, outside a formal classroom environment. No additional
resources or online lectures are necessary, although of course there are myriad
other books, websites, YouTube videos, and online courses that students might
find helpful.

Primary textbook in a data science class
This book can be used as a primary textbook in a course on the math underlying
data science, machine learning, AI, and related topics. There are 14 content chap‐
ters (excluding this introduction and the Python appendix), and students could
be expected to work though one to two chapters per week. Because students have
access to the solutions to all exercises, instructors may wish to supplement the
book exercises with additional problem sets.

Secondary textbook in a math-focused linear algebra course
This book could also be used as a supplement in a mathematics course with
a strong focus on proofs. In this case, the lectures would focus on theory and
rigorous proofs while this book could be referenced for translating the concepts
into code with an eye towards applications in data science and machine learning.
As I wrote above, instructors may wish to provide supplementary exercises
because the solutions to all the book exercises are available online.
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CHAPTER 2

Vectors, Part 1

Vectors provide the foundations upon which all of linear algebra (and therefore, the
rest of this book) is built.

By the end of this chapter, you will know all about vectors: what they are, what they
do, how to interpret them, and how to create and work with them in Python. You will
understand the most important operations acting on vectors, including vector algebra
and the dot product. Finally, you will learn about vector decompositions, which is
one of the main goals of linear algebra.

Creating and Visualizing Vectors in NumPy
In linear algebra, a vector is an ordered list of numbers. (In abstract linear alge‐
bra, vectors may contain other mathematical objects including functions; however,
because this book is focused on applications, we will only consider vectors compris‐
ing numbers.)

Vectors have several important characteristics. The first two we will start with are:

Dimensionality
The number of numbers in the vector

Orientation
Whether the vector is in column orientation (standing up tall) or row orientation
(laying flat and wide)

Dimensionality is often indicated using a fancy-looking ℝN , where the ℝ indicates
real-valued numbers (cf. ℂ for complex-valued numbers) and the N  indicates the
dimensionality. For example, a vector with two elements is said to be a member of ℝ2.
That special ℝ character is made using latex code, but you can also write R2, R2, or R^2.
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Equation 2-1 shows a few examples of vectors; please determine their dimensionality
and orientation before reading the subsequent paragraph.

Equation 2-1. Examples of column vectors and row vectors

x =

1
4
5
6

, y =
.3
−7

, z = 1 4 5 6

Here are the answers: x is a 4D column vector, y is a 2D column vector, and z is a 4D
row vector. You can also write, e.g., x ∈ ℝ4, where the ∈ symbol means “is contained
in the set of.”

Are x and z the same vector? Technically they are different, even though they have the
same elements in the same order. See “Does Vector Orientation Matter?” on page 9
for more discussion.

You will learn, in this book and throughout your adventures integrating math and
coding, that there are differences between math “on the chalkboard” versus imple‐
mented in code. Some discrepancies are minor and inconsequential, while others
cause confusion and errors. Let me now introduce you to a terminological difference
between math and coding.

I wrote earlier that the dimensionality of a vector is the number of elements in that
vector. However, in Python, the dimensionality of a vector or matrix is the number
of geometric dimensions used to print out a numerical object. For example, all of the
vectors shown above are considered “two-dimensional arrays” in Python, regardless
of the number of elements contained in the vectors (which is the mathematical
dimensionality). A list of numbers without a particular orientation is considered a
1D array in Python, regardless of the number of elements (that array will be printed
out as a row, but, as you’ll see later, it is treated differently from row vectors). The
mathematical dimensionality—the number of elements in the vector—is called the
length or the shape of the vector in Python.

This inconsistent and sometimes conflicting terminology can be confusing. Indeed,
terminology is often a sticky issue at the intersection of different disciplines (in this
case, mathematics and computer science). But don’t worry, you’ll get the hang of it
with some experience.

When referring to vectors, it is common to use lowercase bolded Roman letters, like v
for “vector v.” Some texts use italics (v) or print an arrow on top (v ).

Linear algebra convention is to assume that vectors are in column orientation unless
otherwise specified. Row vectors are written as wT. The T indicates the transpose
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operation, which you’ll learn more about later; for now, suffice it to say that the
transpose operation transforms a column vector into a row vector.

Does Vector Orientation Matter?

Do you really need to worry about whether vectors are column- or
row-oriented, or orientationless 1D arrays? Sometimes yes, some‐
times no. When using vectors to store data, orientation usually
doesn’t matter. But some operations in Python can give errors
or unexpected results if the orientation is wrong. Therefore, vec‐
tor orientation is important to understand, because spending 30
minutes debugging code only to realize that a row vector needs to
be a column vector is guaranteed to give you a headache.

Vectors in Python can be represented using several data types. The list type may
seem like the simplest way to represent a vector—and it is for for some applications.
But many linear algebra operations won’t work on Python lists. Therefore, most of
the time it’s best to create vectors as NumPy arrays. The following code shows four
ways of creating a vector:

asList  = [1,2,3]
asArray = np.array([1,2,3]) # 1D array
rowVec  = np.array([ [1,2,3] ]) # row
colVec  = np.array([ [1],[2],[3] ]) # column

The variable asArray is an orientationless array, meaning it is neither a row nor a
column vector but simply a 1D list of numbers in NumPy. Orientation in NumPy is
given by brackets: the outermost brackets group all of the numbers together into one
object. Then, each additional set of brackets indicates a row: a row vector (variable
rowVec) has all numbers in one row, while a column vector (variable colVec) has
multiple rows, with each row containing one number.

We can explore these orientations by examining the shapes of the variables (inspect‐
ing variable shapes is often very useful while coding):

print(f'asList:  {np.shape(asList)}')
print(f'asArray: {asArray.shape}')
print(f'rowVec:  {rowVec.shape}')
print(f'colVec:  {colVec.shape}')

Here’s what the output looks like:

asList:  (3,)
asArray: (3,)
rowVec:  (1, 3)
colVec:  (3, 1)
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The output shows that the 1D array asArray is of size (3), whereas the orientation-
endowed vectors are 2D arrays and are stored as size (1,3) or (3,1) depending on the
orientation. Dimensions are always listed as (rows,columns).

Geometry of Vectors
Ordered list of numbers is the algebraic interpretation of a vector; the geometric inter‐
pretation of a vector is a straight line with a specific length (also called magnitude)
and direction (also called angle; it is computed relative to the positive x-axis). The two
points of a vector are called the tail (where it starts) and the head (where it ends); the
head often has an arrow tip to disambiguate from the tail.

You may think that a vector encodes a geometric coordinate, but vectors and coordi‐
nates are actually different things. They are, however, concordant when the vector
starts at the origin. This is called the standard position and is illustrated in Figure 2-1.

Figure 2-1. All arrows express the same vector. A vector in standard position has its tail
at the origin and its head at the concordant geometric coordinate.

Conceptualizing vectors either geometrically or algebraically facilitates intuition in
different applications, but these are simply two sides of the same coin. For example,
the geometric interpretation of a vector is useful in physics and engineering (e.g.,
representing physical forces), and the algebraic interpretation of a vector is useful in
data science (e.g., storing sales data over time). Oftentimes, linear algebra concepts
are learned geometrically in 2D graphs, and then are expanded to higher dimensions
using algebra.
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Operations on Vectors
Vectors are like nouns; they are the characters in our linear algebra story. The fun in
linear algebra comes from the verbs—the actions that breathe life into the characters.
Those actions are called operations.

Some linear algebra operations are simple and intuitive and work exactly how you’d
expect (e.g., addition), whereas others are more involved and require entire chapters
to explain (e.g., singular value decomposition). Let’s begin with simple operations.

Adding Two Vectors
To add two vectors, simply add each corresponding element. Equation 2-2 shows an
example:

Equation 2-2. Adding two vectors
4
5
6

+
10
20
30

=
14
25
36

As you might have guessed, vector addition is defined only for two vectors that have
the same dimensionality; it is not possible to add, e.g., a vector in ℝ3 with a vector in
ℝ5.

Vector subtraction is also what you’d expect: subtract the two vectors element-wise.
Equation 2-3 shows an example:

Equation 2-3. Subtracting two vectors
4
5
6

−
10
20
30

=
−6

−15
−24
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Adding vectors is straightforward in Python:

v = np.array([4,5,6])
w = np.array([10,20,30])
u = np.array([0,3,6,9])
vPlusW = v+w
uPlusW = u+w # error! dimensions mismatched!

Does vector orientation matter for addition? Consider Equation 2-4:

Equation 2-4. Can you add a row vector to a column vector?
4
5
6

+ 10 20 30 = ?

You might think that there is no difference between this example and the one shown
earlier—after all, both vectors have three elements. Let’s see what Python does:

v = np.array([[4,5,6]]) # row vector
w = np.array([[10,20,30]]).T # column vector
v+w

>> array([[14, 15, 16],
          [24, 25, 26],
          [34, 35, 36]])

The result may seem confusing and inconsistent with the definition of vector addi‐
tion given earlier. In fact, Python is implementing an operation called broadcasting.
You will learn more about broadcasting later in this chapter, but I encourage you to
spend a moment pondering the result and thinking about how it arose from adding
a row and a column vector. Regardless, this example shows that orientation is indeed
important: two vectors can be added together only if they have the same dimensionality
and the same orientation.

Geometry of Vector Addition and Subtraction
To add two vectors geometrically, place the vectors such that the tail of one vector
is at the head of the other vector. The summed vector traverses from the tail of the
first vector to the head of the second (graph A in Figure 2-2). You can extend this
procedure to sum any number of vectors: simply stack all the vectors tail-to-head,
and then the sum is the line that goes from the first tail to the final head.
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Figure 2-2. The sum and difference of two vectors

Subtracting vectors geometrically is slightly different but equally straightforward: line
up the two vectors such that their tails are at the same coordinate (this is easily
accomplished by having both vectors in standard position); the difference vector is
the line that goes from the head of the “negative” vector to the head of the “positive”
vector (graph B in Figure 2-2).

Do not underestimate the importance of the geometry of vector subtraction: it is the
basis for orthogonal vector decomposition, which in turn is the basis for linear least
squares, which is one of the most important applications of linear algebra in science
and engineering.

Vector-Scalar Multiplication
A scalar in linear algebra is a number on its own, not embedded in a vector or matrix.
Scalars are typically indicated using lowercase Greek letters such as α or λ. Therefore,
vector-scalar multiplication is indicated as, for example, βu.

Vector-scalar multiplication is very simple: multiply each vector element by the scalar.
One numerical example (Equation 2-5) will suffice for understanding:

Equation 2-5. Vector-scalar multiplication (or: scalar-vector multiplication)

λ = 4, w =
9
4
1

, λw =
36
16
4
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1 a*s throws an error, because list repetition can only be done using integers; it’s not possible to repeat a list
2.72 times!

The Zeros Vector
A vector of all zeros is called the zeros vector, indicated using a boldfaced zero, 0, and
is a special vector in linear algebra. In fact, using the zeros vector to solve a problem is
often called the trivial solution and is excluded. Linear algebra is full of statements like
“find a nonzeros vector that can solve…” or “find a nontrivial solution to….”

I wrote earlier that the data type of a variable storing a vector is sometimes important
and sometimes unimportant. Vector-scalar multiplication is an example where data
type matters:

s = 2
a = [3,4,5] # as list
b = np.array(a) # as np array
print(a*s)
print(b*s)

>> [ 3, 4, 5, 3, 4, 5 ]
>> [ 6 8 10 ]

The code creates a scalar (variable s) and a vector as a list (variable a), then converts
that into a NumPy array (variable b). The asterisk is overloaded in Python, meaning
its behavior depends on the variable type: scalar multiplying a list repeats the list
s times (in this case, twice), which is definitely not the linear algebra operation of
scalar-vector multiplication. When the vector is stored as a NumPy array, however,
the asterisk is interpreted as element-wise multiplication. (Here’s a small exercise
for you: what happens if you set s = 2.0, and why?1) Both of these operations
(list repetition and vector-scalar multiplication) are used in real-world coding, so be
mindful of the distinction.

Scalar-Vector Addition
Adding a scalar to a vector is not formally defined in linear algebra: they are two
separate kinds of mathematical objects and cannot be combined. However, numerical
processing programs like Python will allow adding scalars to vectors, and the opera‐
tion is comparable to scalar-vector multiplication: the scalar is added to each vector
element. The following code illustrates the idea:

s = 2
v = np.array([3,6])
s+v
>> [5 8]
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The geometry of vector-scalar multiplication
Why are scalars called “scalars”? That comes from the geometric interpretation.
Scalars scale vectors without changing their direction. There are four effects of
vector-scalar multiplication that depend on whether the scalar is greater than 1,
between 0 and 1, exactly 0, or negative. Figure 2-3 illustrates the concept.

Figure 2-3. The same vector (black arrow) multiplied by different scalars σ (gray line;
shifted slightly for visibility)

I wrote earlier that scalars do not change the direction of the vector. But the figure
shows that the vector direction flips when the scalar is negative (that is, its angle
rotates by 180°. That might seem a contradiction, but there is an interpretation of
vectors as pointing along an infinitely long line that passes through the origin and
goes to infinity in both directions (in the next chapter, I’ll call this a “one-dimensional
subspace”). In that sense, the “rotated” vector still points along the same infinite
line and thus the negative scalar does not change the direction. This interpretation
is important for matrix spaces, eigenvectors, and singular vectors, all of which are
introduced in later chapters.

Vector-scalar multiplication in combination with vector addition leads directly to
vector averaging. Averaging vectors is the same as averaging numbers: sum and divide
by the number of numbers. So, to average two vectors, add them and then scalar
multiply by .5. In general, to average N vectors, sum them and scalar multiply the
result by 1/N.

Transpose
You already learned about the transpose operation: it converts column vectors into
row vectors, and vice versa. Let me provide a slightly more formal definition that will
generalize to transposing matrices (a topic in Chapter 5).
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A matrix has rows and columns; therefore, each matrix element has a (row,column)
index. The transpose operation simply swaps those indices. This is formalized in
Equation 2-6:

Equation 2-6. The transpose operation

mi, j
T = mj, i

Vectors have either one row or one column, depending on their orientation. For
example, a 6D row vector has i = 1 and j indices from 1 to 6, whereas a 6D column
vector has i indices from 1 to 6 and j = 1. So swapping the i,j indices swaps the rows
and columns.

Here’s an important rule: transposing twice returns the vector to its original orien‐
tation. In other words, vTT = v. That may seem obvious and trivial, but it is the
keystone of several important proofs in data science and machine learning, including
creating symmetric covariance matrices as the data matrix times its transpose (which
in turn is the reason why a principal components analysis is an orthogonal rotation of
the data space…don’t worry, that sentence will make sense later in the book!).

Vector Broadcasting in Python
Broadcasting is an operation that exists only in modern computer-based linear alge‐
bra; this is not a procedure you would find in a traditional linear algebra textbook.

Broadcasting essentially means to repeat an operation multiple times between one
vector and each element of another vector. Consider the following series of equations:

1 1 + 10 20
2 2 + 10 20
3 3 + 10 20

Notice the patterns in the vectors. We can implement this set of equations compactly
by condensing those patterns into vectors [1 2 3] and [10 20], and then broadcasting
the addition. Here’s how it looks in Python:

v = np.array([[1,2,3]]).T # col vector
w = np.array([[10,20]])   # row vector
v + w # addition with broadcasting

>> array([[11, 21],
          [12, 22],
          [13, 23]])
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2 Python still broadcasts, but the result is a 3 × 2 matrix instead of a 2 × 3 matrix.

Here again you can see the importance of orientation in linear algebra operations: try
running the code above, changing v into a row vector and w into a column vector.2

Because broadcasting allows for efficient and compact computations, it is used often
in numerical coding. You’ll see several examples of broadcasting in this book, includ‐
ing in the section on k-means clustering (Chapter 4).

Vector Magnitude and Unit Vectors
The magnitude of a vector—also called the geometric length or the norm—is the
distance from tail to head of a vector, and is computed using the standard Euclidean
distance formula: the square root of the sum of squared vector elements (see Equa‐
tion 2-7). Vector magnitude is indicated using double-vertical bars around the vector:
∥ v ∥.

Equation 2-7. The norm of a vector

∥ v ∥ = ∑i = 1
n

vi
2

Some applications use squared magnitudes (written ∥ v ∥2), in which case the square
root term on the right-hand side drops out.

Before showing the Python code, let me explain some more terminological discrep‐
ancies between “chalkboard” linear algebra and Python linear algebra. In mathemat‐
ics, the dimensionality of a vector is the number of elements in that vector, while the
length is a geometric distance; in Python, the function len() (where len is short for
length) returns the dimensionality of an array, while the function np.norm() returns
the geometric length (magnitude). In this book, I will use the term magnitude (or
geometric length) instead of length to avoid confusion:

v = np.array([1,2,3,7,8,9])
v_dim = len(v)  # math dimensionality
v_mag = np.linalg.norm(v) # math magnitude, length, or norm

There are some applications where we want a vector that has a geometric length of
one, which is called a unit vector. Example applications include orthogonal matrices,
rotation matrices, eigenvectors, and singular vectors.

A unit vector is defined as ∥ v ∥ = 1.

Needless to say, lots of vectors are not unit vectors. (I’m tempted to write “most
vectors are not unit vectors,” but there is an infinite number of unit vectors and
nonunit vectors, although the set of infinite nonunit vectors is larger than the set of
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3 The zeros vector has a length of 0 but no associated unit vector, because it has no direction and because it is
impossible to scale the zeros vector to have nonzero length.

infinite unit vectors.) Fortunately, any nonunit vector has an associated unit vector.
That means that we can create a unit vector in the same direction as a nonunit vector.
Creating an associated unit vector is easy; you simply scalar multiply by the reciprocal
of the vector norm (Equation 2-8):

Equation 2-8. Creating a unit vector

v = 1
∥ v ∥

v

You can see the common convention for indicating unit vectors (v) in the same
direction as their parent vector v. Figure 2-4 illustrates these cases.

Figure 2-4. A unit vector (gray arrow) can be crafted from a nonunit vector (black
arrow); both vectors have the same angle but different magnitudes

Actually, the claim that “any nonunit vector has an associated unit vector” is not
entirely true. There is a vector that has nonunit length and yet has no associated unit
vector. Can you guess which vector it is?3

I’m not showing Python code to create unit vectors here, because that’s one of the
exercises at the end of this chapter.

The Vector Dot Product
The dot product (also sometimes called the inner product) is one of the most impor‐
tant operations in all of linear algebra. It is the basic computational building block
from which many operations and algorithms are built, including convolution, corre‐
lation, the Fourier transform, matrix multiplication, linear feature extraction, signal
filtering, and so on.
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There are several ways to indicate the dot product between two vectors. I will mostly
use the common notation aTb for reasons that will become clear after learning about
matrix multiplication. In other contexts you might see a · b or a,b .

The dot product is a single number that provides information about the relationship
between two vectors. Let’s first focus on the algorithm to compute the dot product,
and then I’ll discuss how to interpret it.

To compute the dot product, you multiply the corresponding elements of the two
vectors, and then sum over all the individual products. In other words: element-wise
multiplication and sum. In Equation 2-9, a and b are vectors, and ai indicates the ith
element of a.

Equation 2-9. Dot product formula

δ = ∑
i = 1

n
aibi

You can tell from the formula that the dot product is valid only between two vectors
of the same dimensionality. Equation 2-10 shows a numerical example:

Equation 2-10. Example dot product calculation
1 2 3 4 · 5 6 7 8 = 1 × 5 + 2 × 6 + 3 × 7 + 4 × 8

= 5 + 12 + 21 + 32
= 70

Irritations of Indexing

Standard mathematical notation, and some math-oriented numeri‐
cal processing programs like MATLAB and Julia, start indexing at
1 and stop at N, whereas some programming languages like Python
and Java start indexing at 0 and stop at N − 1. We need not debate
the merits and limitations of each convention—though I do some‐
times wonder how many bugs this inconsistency has introduced
into human civilization—but it is important to be mindful of this
difference when translating formulas into Python code.

There are multiple ways to implement the dot product in Python; the most straight‐
forward way is to the use the np.dot() function:

v = np.array([1,2,3,4])
w = np.array([5,6,7,8])
np.dot(v,w)
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Note About np.dot()

The function np.dot() does not actually implement the vector dot
product; it implements matrix multiplication, which is a collection
of dot products. This will make more sense after learning about
the rules and mechanisms of matrix multiplication (Chapter 5). If
you want to explore this now, you can modify the previous code
to endow both vectors with orientations (row versus column). You
will discover that the output is the dot product only when the first
input is a row vector and the second input is a column vector.

Here is an interesting property of the dot product: scalar multiplying one vector
scales the dot product by the same amount. We can explore this by expanding the
previous code:

s = 10
np.dot(s*v,w)

The dot product of v and w is 70, and the dot product using s*v (which, in math
notation, would be written as σvTw) is 700. Now try it with a negative scalar, e.g., s =
-1. You’ll see that the dot product magnitude is preserved but the sign is reversed. Of
course, when s = 0 then the dot product is zero.

Now you know how to compute the dot product. What does the dot product mean
and how do we interpret it?

The dot product can be interpreted as a measure of similarity or mapping between
two vectors. Imagine that you collected height and weight data from 20 people, and
you stored those data in two vectors. You would certainly expect those variables to
be related to each other (taller people tend to weigh more), and therefore you could
expect the dot product between those two vectors to be large. On the other hand,
the magnitude of the dot product depends on the scale of the data, which means the
dot product between data measured in grams and centimeters would be larger than
the dot product between data measured in pounds and feet. This arbitrary scaling,
however, can be eliminated with a normalization factor. In fact, the normalized dot
product between two variables is called the Pearson correlation coefficient, and it is
one of the most important analyses in data science. More on this in Chapter 4!

The Dot Product Is Distributive
The distributive property of mathematics is that a b + c = ab + ac. Translated into
vectors and the vector dot product, it means that:

aT b + c = aTb + aTc
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In words, you would say that the dot product of a vector sum equals the sum of the
vector dot products.

The following Python code illustrates the distributivity property:

a = np.array([ 0,1,2 ])
b = np.array([ 3,5,8 ])
c = np.array([ 13,21,34 ])

# the dot product is distributive
res1 = np.dot( a, b+c )
res2 = np.dot( a,b ) + np.dot( a,c )

The two outcomes res1 and res2 are the same (with these vectors, the answer is 110),
which illustrates the distributivity of the dot product. Notice how the mathematical
formula is translated into Python code; translating formulas into code is an important
skill in math-oriented coding.

Geometry of the Dot Product
There is also a geometric definition of the dot product, which is the product of
the magnitudes of the two vectors, scaled by the cosine of the angle between them
(Equation 2-11).

Equation 2-11. Geometric definition of the vector dot product

α = cos θv,w ∥ v ∥ ∥ w ∥

Equation 2-9 and Equation 2-11 are mathematically equivalent but expressed in
different forms. The proof of their equivalence is an interesting exercise in mathemat‐
ical analysis, but would take about a page of text and relies on first proving other
principles including the Law of Cosines. That proof is not relevant for this book and
so is omitted.

Notice that vector magnitudes are strictly positive quantities (except for the zeros
vector, which has ∥ 0 ∥ = 0), while the cosine of an angle can range between −1
and +1. This means that the sign of the dot product is determined entirely by
the geometric relationship between the two vectors. Figure 2-5 shows five cases of
the dot product sign, depending on the angle between the two vectors (in 2D for
visualization, but the principle holds for higher dimensions).
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Figure 2-5. The sign of the dot product between two vectors reveals the geometric
relationship between those vectors

Memorize This: Orthogonal Vectors Have a Zero Dot Product

Some math teachers insist that you shouldn’t memorize formulas
and terms, and instead should understand procedures and proofs.
But let’s be honest: memorization is an important and inescapable
part of learning mathematics. Fortunately, linear algebra isn’t exces‐
sively memorization-heavy, but there are a few things you’ll simply
need to commit to memory.
Here is one: orthogonal vectors have a dot product of zero (that
claim goes both ways—when the dot product is zero, then the
two vectors are orthogonal). So, the following statements are equiv‐
alent: two vectors are orthogonal; two vectors have a dot product of
zero; two vectors meet at a 90° angle. Repeat that equivalence until
it’s permanently etched into your brain.

Other Vector Multiplications
The dot product is perhaps the most important, and most frequently used, way to
multiply vectors. But there are several other ways to multiply vectors.

Hadamard Multiplication
This is just a fancy term for element-wise multiplication. To implement Hadamard
multiplication, each corresponding element in the two vectors is multiplied. The
product is a vector of the same dimensionality as the two multiplicands. For example:

5
4
8
2

⊙

1
0
.5

−1

=

5
0
4

−2
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4 The error is that the two vectors have different dimensionalities, which shows that Hadamard multiplication
is defined only for two vectors of equal dimensionality. You can fix the problem by removing one number
from a or adding one number to b.

In Python, the asterisk indicates element-wise multiplication for two vectors or
matrices:

a = np.array([5,4,8,2])
b = np.array([1,0,.5])
a*b

Try running that code in Python and…uh oh! Python will give an error. Find and
fix the bug. What have you learned about Hadamard multiplication from that error?
Check the footnote for the answer.4

Hadamard multiplication is a convenient way to organize multiple scalar multiplica‐
tions. For example, imagine you have data on the number of widgets sold in different
shops and the price per widget at each shop. You could represent each variable as
a vector, and then Hadamard-multiply those vectors to compute the widget revenue
per shop (this is different from the total revenue across all shops, which would be
computed as the dot product).

Outer Product
The outer product is a way to create a matrix from a column vector and a row vector.
Each row in the outer product matrix is the row vector scalar multiplied by the corre‐
sponding element in the column vector. We could also say that each column in the
product matrix is the column vector scalar multiplied by the corresponding element
in the row vector. In Chapter 6, I’ll call this a “rank-1 matrix,” but don’t worry about
the term for now; instead, focus on the pattern illustrated in the following example:

a

b

c

d e =
ad ae

bd be

cd ce

Using Letters in Linear Algebra
In middle school algebra, you learned that using letters as abstract placeholders for
numbers allows you to understand math at a deeper level than arithmetic. Same
concept in linear algebra: teachers sometimes use letters inside matrices in place
of numbers when that facilitates comprehension. You can think of the letters as
variables.
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The outer product is quite different from the dot product: it produces a matrix
instead of a scalar, and the two vectors in an outer product can have different
dimensionalities, whereas the two vectors in a dot product must have the same
dimensionality.

The outer product is indicated as vwT (remember that we assume vectors are in
column orientation; therefore, the outer product involves multiplying a column by a
row). Note the subtle but important difference between notation for the dot product
(vTw) and the outer product (vwT). This might seem strange and confusing now,
but I promise it will make perfect sense after learning about matrix multiplication in
Chapter 5.

The outer product is similar to broadcasting, but they are not the same: broadcasting
is a general coding operation that is used to expand vectors in arithmetic operations
such as addition, multiplication, and division; the outer product is a specific mathe‐
matical procedure for multiplying two vectors.

NumPy can compute the outer product via the function np.outer() or the function
np.dot() if the two input vectors are in, respectively, column and row orientation.

Cross and Triple Products
There are a few other ways to multiply vectors such as the cross product or triple
product. Those methods are used in geometry and physics, but don’t come up often
enough in tech-related applications to spend any time on in this book. I mention
them here only so you have passing familiarity with the names.

Orthogonal Vector Decomposition
To “decompose” a vector or matrix means to break up that matrix into multiple
simpler pieces. Decompositions are used to reveal information that is “hidden” in a
matrix, to make the matrix easier to work with, or for data compression. It is no
understatement to write that much of linear algebra (in the abstract and in practice)
involves matrix decompositions. Matrix decompositions are a big deal.

Let me introduce the concept of a decomposition using two simple examples with
scalars:

• We can decompose the number 42.01 into two pieces: 42 and .01. Perhaps .01•
is noise to be ignored, or perhaps the goal is to compress the data (the integer
42 requires less memory than the floating-point 42.01). Regardless of the moti‐
vation, the decomposition involves representing one mathematical object as the
sum of simpler objects (42 = 42 + .01).
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• We can decompose the number 42 into the product of prime numbers 2, 3, and•
7. This decomposition is called prime factorization and has many applications in
numerical processing and cryptography. This example involves products instead
of sums, but the point is the same: decompose one mathematical object into
smaller, simpler pieces.

In this section, we will begin exploring a simple yet important decomposition, which
is to break up a vector into two separate vectors, one of which is orthogonal to
a reference vector while the other is parallel to that reference vector. Orthogonal
vector decomposition directly leads to the Gram-Schmidt procedure and QR decom‐
position, which is used frequently when solving inverse problems in statistics.

Let’s begin with a picture so you can visualize the goal of the decomposition. Fig‐
ure 2-6 illustrates the situation: we have two vectors a and b in standard position,
and our goal is find the point on a that is as close as possible to the head of b. We
could also express this as an optimization problem: project vector b onto vector a
such that the projection distance is minimized. Of course, that point on a will be a
scaled version of a; in other words, βa. So now our goal is to find the scalar β. (The
connection to orthogonal vector decomposition will soon be clear.)

Figure 2-6. To project a point at the head of b onto a vector a with minimum distance,
we need a formula to compute β such that the length of the projection vector b − βa  is
minimized

Importantly, we can use vector subtraction to define the line from b to βa. We
could give this line its own letter, e.g., vector c, but the subtraction is necessary for
discovering the solution.
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The key insight that leads to the solution to this problem is that the point on a that is
closest to the head of b is found by drawing a line from b that meets a at a right angle.
The intuition here is to imagine a triangle formed by the origin, the head of b, and
βa; the length of the line from b to βa gets longer as the angle ∡βa gets smaller than
90∘ or larger than 90∘.

Putting this together, we have deduced that b − βa  is orthogonal to βa, which is
the same thing as saying that those vectors are perpendicular. And that means that
the dot product between them must be zero. Let’s transform those words into an
equation:

aT b − βa = 0

From here, we can apply some algebra to solve for β (note the application of the
distributive property of dot products), which is shown in Equation 2-12:

Equation 2-12. Solving the orthogonal projection problem

aTb − βaTa = 0

βaTa = aTb

β = a
Tb

aTa

This is quite beautiful: we began with a simple geometric picture, explored the impli‐
cations of the geometry, expressed those implications as a formula, and then applied
a bit of algebra. And the upshot is that we discovered a formula for projecting a point
onto a line with minimum distance. This is called orthogonal projection, and it is the
basis for many applications in statistics and machine learning, including the famous
least squares formula for solving linear models (you’ll see orthogonal projections in
Chapters 9, 10, and 11).

I can imagine that you’re super curious to see what the Python code would look like
to implement this formula. But you’re going to have to write that code yourself in
Exercise 2-8 at the end of this chapter. If you can’t wait until the end of the chapter,
feel free to solve that exercise now, and then continue learning about orthogonal
decomposition.

You might be wondering how this is related to orthogonal vector decomposition, i.e.,
the title of this section. The minimum distance projection is the necessary grounding,
and you’re now ready to learn the decomposition.

As usual, we start with the setup and the goal. We begin with two vectors, which I’ll
call the “target vector” and the “reference vector.” Our goal is to decompose the target
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vector into two other vectors such that (1) those two vectors sum to the target vector,
and (2) one vector is orthogonal to the reference vector while the other is parallel to
the reference vector. The situation is illustrated in Figure 2-7.

Before starting with the math, let’s get our terms straight: I will call the target vector
t and the reference vector r. Then, the two vectors formed from the target vector will
be called the perpendicular component, indicated as t ⊥ r, and the parallel component,
indicated as t ∥ r.

Figure 2-7. Illustration of orthogonal vector decomposition: decompose vector t into the
sum of two other vectors that are orthogonal and parallel to vector r

We begin by defining the parallel component. What is a vector that is parallel to r?
Well, any scaled version of r is obviously parallel to r. So, we find t ∥ r simply by
applying the orthogonal projection formula that we just discovered (Equation 2-13):

Equation 2-13. Computing the parallel component of t with respect to r

t ∥ r = r t
Tr

rTr

Note the subtle difference to Equation 2-12: there we only computed the scalar β;
here we want to compute the scaled vector βr.

That’s the parallel component. How do we find the perpendicular component? That
one is easier, because we already know that the two vector components must sum to
the original target vector. Thus:

t = t ⊥ r + t ∥ r
t ⊥ r = t − t ∥ r

In other words, we subtract off the parallel component from the original vector, and
the residual is our perpendicular component.
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But is that perpendicular component really orthogonal to the reference vector? Yes, it
is! To prove it, you show that the dot product between the perpendicular component
and the reference vector is zero:

t ⊥ r
T
r = 0

t − r t
Tr

rTr

T
r = 0

Working through the algebra of this proof is straightforward but tedious, so I’ve
omitted it. Instead, you’ll work on building intuition using Python code in the
exercises.

I hope you enjoyed learning about orthogonal vector decomposition. Note again the
general principle: we break apart one mathematical object into a combination of
other objects. The details of the decomposition depend on our constraints (in this
case, orthogonal and parallel to a reference vector), which means that different con‐
straints (that is, different goals of the analysis) can lead to different decompositions of
the same vector.

Summary
The beauty of linear algebra is that even the most sophisticated and computationally
intense operations on matrices are made up of simple operations, most of which
can be understood with geometric intuition. Do not underestimate the importance
of studying simple operations on vectors, because what you learned in this chapter
will form the basis for the rest of the book—and the rest of your career as an
applied linear algebratician (which is what you really are if you do anything with data
science, machine learning, AI, deep learning, image processing, computational vision,
statistics, blah blah blah).

Here are the most important take-home messages of this chapter:

• A vector is an ordered list of numbers that is placed in a column or in a row. The•
number of elements in a vector is called its dimensionality, and a vector can be
represented as a line in a geometric space with the number of axes equal to the
dimensionality.

• Several arithmetic operations (addition, subtraction, and Hadamard multiplica‐•
tion) on vectors work element-wise.

• The dot product is a single number that encodes the relationship between two•
vectors of the same dimensionality, and is computed as element-wise multiplica‐
tion and sum.
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• The dot product is zero for vectors that are orthogonal, which geometrically•
means that the vectors meet at a right angle.

• Orthogonal vector decomposition involves breaking up a vector into the sum•
of two other vectors that are orthogonal and parallel to a reference vector. The
formula for this decomposition can be rederived from the geometry, but you
should remember the phrase “mapping over magnitude” as the concept that that
formula expresses.

Code Exercises
I hope you don’t see these exercises as tedious work that you need to do. Instead,
these exercises are opportunities to polish your math and coding skills, and to make
sure that you really understand the material in this chapter.

I also want you to see these exercises as a springboard to continue exploring linear
algebra using Python. Change the code to use different numbers, different dimen‐
sionalities, different orientations, etc. Write your own code to test other concepts
mentioned in the chapter. Most importantly: have fun and embrace the learning
experience.

As a reminder: the solutions to all the exercises can be viewed or downloaded from
https://github.com/mikexcohen/LA4DataScience.

Exercise 2-1.

The online code repository is “missing” code to create Figure 2-2. (It’s not really
missing—I moved it into the solution to this exercise.) So, your goal here is to write
your own code to produce Figure 2-2.

Exercise 2-2.

Write an algorithm that computes the norm of a vector by translating Equation
2-7 into code. Confirm, using random vectors with different dimensionalities and
orientations, that you get the same result as np.linalg.norm(). This exercise is
designed to give you more experience with indexing NumPy arrays and translating
formulas into code; in practice, it’s often easier to use np.linalg.norm().

Exercise 2-3.

Create a Python function that will take a vector as input and output a unit vector in
the same direction. What happens when you input the zeros vector?
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Exercise 2-4.

You know how to create unit vectors; what if you want to create a vector of any
arbitrary magnitude? Write a Python function that will take a vector and a desired
magnitude as inputs and will return a vector in the same direction but with a
magnitude corresponding to the second input.

Exercise 2-5.

Write a for loop to transpose a row vector into a column vector without using a
built-in function or method such as np.transpose() or v.T. This exercise will help
you create and index orientation-endowed vectors.

Exercise 2-6.

Here is an interesting fact: you can compute the squared norm of a vector as the dot
product of that vector with itself. Look back to Equation 2-8 to convince yourself of
this equivalence. Then confirm it using Python.

Exercise 2-7.

Write code to demonstrate that the dot product is commutative. Commutative means
that a × b = b × a, which, for the vector dot product, means that aTb = bTa. After
demonstrating this in code, use equation Equation 2-9 to understand why the dot
product is commutative.

Exercise 2-8.

Write code to produce Figure 2-6. (Note that your solution doesn’t need to look
exactly like the figure, as long as the key elements are present.)

Exercise 2-9.

Implement orthogonal vector decomposition. Start with two random-number vectors
t and r, and reproduce Figure 2-8 (note that your plot will look somewhat different
due to random numbers). Next, confirm that the two components sum to t and that
t ⊥ r and t ∥ r are orthogonal.
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Figure 2-8. Exercise 9

Exercise 2-10.

An important skill in coding is finding bugs. Let’s say there is a bug in your code
such that the denominator in the projection scalar of Equation 2-13 is tTt instead of
rTr (an easy mistake to make, speaking from personal experience while writing this
chapter!). Implement this bug to check whether it really deviates from the accurate
code. What can you do to check whether the result is correct or incorrect? (In coding,
confirming code with known results is called sanity-checking.)

Code Exercises | 31





CHAPTER 3

Vectors, Part 2

The previous chapter laid the groundwork for understanding vectors and basic
operations acting on vectors. Now you will expand the horizons of your linear
algebra knowledge by learning about a set of interrelated concepts including linear
independence, subspaces, and bases. Each of these topics is crucially important for
understanding operations on matrices.

Some of the topics here may seem abstract and disconnected from applications, but
there is a very short path between them, e.g., vector subspaces and fitting statistical
models to data. The applications in data science come later, so please keep focusing
on the fundamentals so that the advanced topics are easier to understand.

Vector Sets
We can start the chapter with something easy: a collection of vectors is called a set.
You can imagine putting a bunch of vectors into a bag to carry around. Vector sets
are indicated using capital italics letters, like S or V. Mathematically, we can describe
sets as the following:

V = v1, . . . , vn

Imagine, for example, a dataset of the number of Covid-19 positive cases, hospitaliza‐
tions, and deaths from one hundred countries; you could store the data from each
country in a three-element vector, and create a vector set containing one hundred
vectors.

Vector sets can contain a finite or an infinite number of vectors. Vector sets with
an infinite number of vectors may sound like a uselessly silly abstraction, but vector

33



1 As shown in Chapters 2 and 16, list-integer multiplication repeats the list instead of scalar multiplying it.

subspaces are infinite vector sets and have major implications for fitting statistical
models to data.

Vector sets can also be empty, and are indicated as V = {}. You’ll encounter empty
vector sets when you learn about matrix spaces.

Linear Weighted Combination
A linear weighted combination is a way of mixing information from multiple variables,
with some variables contributing more than others. This fundamental operation
is also sometimes called linear mixture or weighted combination (the linear part is
assumed). Sometimes, the term coefficient is used instead of weight.

Linear weighted combination simply means scalar-vector multiplication and addi‐
tion: take some set of vectors, multiply each vector by a scalar, and add them to
produce a single vector (Equation 3-1).

Equation 3-1. Linear weighted combination

w = λ1v1 + λ2v2 + . . . + λnvn

It is assumed that all vectors vi have the same dimensionality; otherwise, the addition
is invalid. The λs can be any real number, including zero.

Technically, you could rewrite Equation 3-1 for subtracting vectors, but because
subtraction can be handled by setting a λi to be negative, it’s easier to discuss linear
weighted combinations in terms of summation.

Equation 3-2 shows an example to help make it more concrete:

Equation 3-2. Linear weighted combination

λ1 = 1, λ2 = 2, λ3 = − 3, v1 =
4
5
1

, v2 =
−4

0
−4

, v3 =
1
3
2

w = λ1v1 + λ2v2 + λ3v3 =
−7
−4

−13

Linear weighted combinations are easy to implement, as the following code demon‐
strates. In Python, the data type is important; test what happens when the vectors are
lists instead of NumPy arrays:1
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l1 = 1
l2 = 2
l3 = -3
v1 = np.array([4,5,1])
v2 = np.array([-4,0,-4])
v3 = np.array([1,3,2])
l1*v1 + l2*v2 + l3*v3

Storing each vector and each coefficient as separate variables is tedious and does
not scale up to larger problems. Therefore, in practice, linear weighted combinations
are implemented via the compact and scalable matrix-vector multiplication method,
which you’ll learn about in Chapter 5; for now, the focus is on the concept and coding
implementation.

Linear weighted combinations have several applications. Three of those include:

• The predicted data from a statistical model are created by taking the lin‐•
ear weighted combination of regressors (predictor variables) and coefficients
(scalars) that are computed via the least squares algorithm, which you’ll learn
about in Chapters 11 and 12.

• In dimension-reduction procedures such as principal components analysis, each•
component (sometimes called factor or mode) is derived as a linear weighted
combination of the data channels, with the weights (the coefficients) selected to
maximize the variance of the component (along with some other constraints that
you’ll learn about in Chapter 15).

• Artificial neural networks (the architecture and algorithm that powers deep•
learning) involve two operations: linear weighted combination of the input data,
followed by a nonlinear transformation. The weights are learned by minimizing a
cost function, which is typically the difference between the model prediction and
the real-world target variable.

The concept of a linear weighted combination is the mechanism of creating vector
subspaces and matrix spaces, and is central to linear independence. Indeed, linear
weighted combination and the dot product are two of the most important elementary
building blocks from which many advanced linear algebra computations are built.

Linear Independence
A set of vectors is linearly dependent if at least one vector in the set can be expressed
as a linear weighted combination of other vectors in that set. And thus, a set of
vectors is linearly independent if no vector can be expressed as a linear weighted
combination of other vectors in the set.
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Following are two vector sets. Before reading the text, try to determine whether
each set is dependent or independent. (The term linear independence is sometimes
shortened to independence when the linear part is implied.)

V =
1
3

,
2
7

S =
1
3

,
2
6

Vector set V is linearly indepedent: it is impossible to express one vector in the set as
a linear multiple of the other vector in the set. That is to say, if we call the vectors in
the set v1 and v2, then there is no possible scalar λ for which v1 = λv2.

How about set S? This one is dependent, because we can use linear weighted combi‐
nations of some vectors in the set to obtain other vectors in the set. There is an
infinite number of such combinations, two of which are s1 = .5*s*2 and s2 = 2*s*1.

Let’s try another example. Again, the question is whether set T is linearly independent
or linearly dependent:

T =

8
−4
14

6

,

4
6
0
3

,

14
2
4
7

,

13
2
9
8

Wow, this one is a lot harder to figure out than the previous two examples. It turns
out that this is a linearly dependent set (for example, the sum of the first three vectors
equals twice the fourth vector). But I wouldn’t expect you to be able to figure that out
just from visual inspection.

So how do you determine linear independence in practice? The way to determine
linear independence is to create a matrix from the vector set, compute the rank of
the matrix, and compare the rank to the smaller of the number of rows or columns.
That sentence may not make sense to you now, because you haven’t yet learned about
matrix rank. Therefore, focus your attention now on the concept that a set of vectors
is linearly dependent if at least one vector in the set can be expressed as a linear
weighted combination of the other vectors in the set, and a set of vectors is linearly
independent if no vector can be expressed as a combination of other vectors.

Independent Sets
Independence is a property of a set of vectors. That is, a set of vectors can be linearly
independent or linearly dependent; independence is not a property of an individual
vector within a set.

36 | Chapter 3: Vectors, Part 2



2 This equation is an application of linear weighted combination!

The Math of Linear Independence
Now that you understand the concept, I want to make sure you also understand the
formal mathematical definition of linear dependence, which is expressed in Equation
3-3.

Equation 3-3. Linear dependence2

0 = λ1v1 + λ2v2 + . . . + λnvn, λ ∈ ℝ

This equation says that linear dependence means that we can define some linear
weighted combination of the vectors in the set to produce the zeros vector. If you
can find some λs that make the equation true, then the set of vectors is linearly
dependent. Conversely, if there is no possible way to linearly combine the vectors to
produce the zeros vector, then the set is linearly independent.

That might initially be unintuitive. Why do we care about the zeros vector when
the question is whether we can express at least one vector in the set as a weighted
combination of other vectors in the set? Perhaps you’d prefer rewriting the definition
of linear dependence as the following:

λ1v1 = λ2v2 + . . . + λnvn, λ ∈ ℝ

Why not start with that equation instead of putting the zeros vector on the left-hand
side? Setting the equation to zero helps reinforce the principle that the entire set is
dependent or independent; no individual vector has the privileged position of being
the “dependent vector” (see “Independent Sets” on page 36). In other words, when it
comes to independence, vector sets are purely egalitarian.

But wait a minute. Careful inspection of Equation 3-3 reveals a trivial solution: set
all λ’s to zero, and the equation reads 0 = 0, regardless of the vectors in the set. But,
as I wrote in Chapter 2, trivial solutions involving zeros are often ignored in linear
algebra. So we add the constraint that at least one λ ≠ 0.

This constraint can be incorporated into the equation by dividing through by one of
the scalars; keep in mind that v1 and λ1 can refer to any vector/scalar pair in the set:

0 = v1 + . . . +
λn
λ1
vn, λ ∈ ℝ, λ1 ≠ 0
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Independence and the Zeros Vector
Simply put, any vector set that includes the zeros vector is automatically a linearly
dependent set. Here’s why: any scalar multiple of the zeros vector is still the zeros
vector, so the definition of linear dependence is always satisfied. You can see this in
the following equation:

λ00 = 0v1 + 0v2 + 0vn

As long as λ0 ≠ 0, we have a nontrivial solution, and the set fits with the definition of
linear dependence.

What About Nonlinear Independence?

“But Mike,” I imagine you protesting, “isn’t life, the universe, and
everything nonlinear?” I suppose it would be an interesting exercise
to count the total number of linear versus nonlinear interactions
in the universe and see which sum is larger. But linear algebra is
all about, well, linear operations. If you can express one vector as
a nonlinear (but not linear) combination of other vectors, then
those vectors still form a linearly independent set. The reason for
the linearity constraint is that we want to express transformations
as matrix multiplication, which is a linear operation. That’s not to
throw shade on nonlinear operations—in my imaginary conversa‐
tion, you have eloquently articulated that a purely linear universe
would be rather dull and predictable. But we don’t need to explain
the entire universe using linear algebra; we need linear algebra only
for the linear parts. (It’s also worth mentioning that many nonlin‐
ear systems can be well approximated using linear functions.)

Subspace and Span
When I introduced linear weighted combinations, I gave examples with specific
numerical values for the weights (e.g., λ1 = 1, λ3 = − 3). A subspace is the same idea
but using the infinity of possible ways to linearly combine the vectors in the set.

That is, for some (finite) set of vectors, the infinite number of ways to linearly
combine them—using the same vectors but different numerical values for the weights
—creates a vector subspace. And the mechanism of combining all possible linear
weighted combinations is called the span of the vector set. Let’s work through a few
examples. We’ll start with a simple example of a vector set containing one vector:

V =
1
3
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The span of this vector set is the infinity of vectors that can be created as linear
combinations of the vectors in the set. For a set with one vector, that simply means all
possible scaled versions of that vector. Figure 3-1 shows the vector and the subspace it
spans. Consider that any vector in the gray dashed line can be formed as some scaled
version of the vector.

Figure 3-1. A vector (black) and the subspace it spans (gray)

Our next example is a set of two vectors in ℝ3:

V =
1
0
2

,
−1
1
2

The vectors are in ℝ3, so they are graphically represented in a 3D axis. But the
subspace that they span is a 2D plane in that 3D space (Figure 3-2). That plane passes
through the origin, because scaling both vectors by zero gives the zeros vector.

Figure 3-2. Two vectors (black) and the subspace they span (gray)
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The first example had one vector and its span was a 1D subspace, and the second
example had two vectors and their span was a 2D subspace. There seems to be a
pattern emerging—but looks can be deceiving. Consider the next example:

V =
1
1
1

,
2
2
2

Two vectors in ℝ3, but the subspace that they span is still only a 1D subspace—a line
(Figure 3-3). Why is that? It’s because one vector in the set is already in the span of
the other vector. Thus, in terms of span, one of the two vectors is redundant.

Figure 3-3. The 1D subspace (gray) spanned by two vectors (black)

So then, what is the relationship between the dimensionality of the spanned subspace
and the number of vectors in the set? You might have guessed that it has something to
do with linear independence.

The dimensionality of the subspace spanned by a set of vectors is the smallest number
of vectors that forms a linearly independent set. If a vector set is linearly independent,
then the dimensionality of the subspace spanned by the vectors in that set equals
the number of vectors in that set. If the set is dependent, then the dimensionality of
the subspace spanned by those vectors is necessarily less than the number of vectors
in that set. Exactly how much smaller is another matter—to know the relationship
between the number of vectors in a set and the dimensionality of their spanning
subspace, you need to understand matrix rank, which you’ll learn about in Chapter 6.

The formal definition of a vector subspace is a subset that is closed under addition
and scalar multiplication, and includes the origin of the space. That means that any
linear weighted combination of vectors in the subspace must also be in the same
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subspace, including setting all weights to zero to produce the zeros vector at the
origin of the space.

Please don’t lose sleep meditating on what it means to be “closed under addition
and scalar multiplication”; just remember that a vector subspace is created from all
possible linear combinations of a set of vectors.

What’s the Difference Between Subspace and Span?
Many students are confused about the difference between span and subspace. That’s
understandable, because they are highly related concepts and often refer to the same
thing. I will explain the difference between them, but don’t stress about the subtle‐
ties—span and subspace so often refer to identical mathematical objects that using the
terms interchangeably is usually correct.

I find that thinking of span as a verb and subspace as a noun helps understand their
distinction: a set of vectors spans, and the result of their spanning is a subspace. Now
consider that a subspace can be a smaller portion of a larger space, as you saw in
Figure 3-3. Putting these together: span is the mechanism of creating a subspace. (On
the other hand, when you use span as a noun, then span and subspace refer to the
same infinite vector set.)

Basis
How far apart are Amsterdam and Tenerife? Approximately 2,000. What does “2,000”
mean? That number makes sense only if we attach a basis unit. A basis is like a ruler
for measuring a space.

In this example, the unit is mile. So our basis measurement for Dutch-Spanish
distance is 1 mile. We could, of course, use different measurement units, like nano‐
meters or light-years, but I think we can agree that mile is a convenient basis for
distance at that scale. What about the length that your fingernail grows in one day—
should we still use miles? Technically we can, but I think we can agree that millimeter
is a more convenient basis unit. To be clear: the amount that your fingernail has
grown in the past 24 hours is the same, regardless of whether you measure it in
nanometers, miles, or light-years. But different units are more or less convenient for
different problems.

Back to linear algebra: a basis is a set of rulers that you use to describe the informa‐
tion in the matrix (e.g., data). Like with the previous examples, you can describe the
same data using different rulers, but some rulers are more convenient than others for
solving certain problems.
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The most common basis set is the Cartesian axis: the familiar XY plane that you’ve
used since elementary school. We can write out the basis sets for the 2D and 3D
Cartesian graphs as follows:

S2 =
1
0

,
0
1

S3 =
1
0
0

,
0
1
0

,
0
0
1

Notice that the Cartesian basis sets comprise vectors that are mutually orthgonal and
unit length. Those are great properties to have, and that’s why the Cartesian basis sets
are so ubiquitous (indeed, they are called the standard basis set).

But those are not the only basis sets. The following set is a different basis set for ℝ2.

T =
3
1

,
−3

1

Basis set S2 and T both span the same subspace (all of ℝ2). Why would you prefer
T over S? Imagine we want to describe data points p and q in Figure 3-4. We can
describe those data points as their relationship to the origin—that is, their coordi‐
nates—using basis S or basis T.

In basis S, those two coordinates are p = (3, 1) and q = (−6, 2). In linear algebra, we
say that the points are expressed as the linear combinations of the basis vectors. In
this case, that combination is 3s1 + 1s2 for point p, and −6s1 + 2s2 for point q.

Now let’s describe those points in basis T. As coordinates, we have p = (1, 0) and q =
(0, 2). And in terms of basis vectors, we have 1t1 + 0t2 for point p and 0t1 + 2t2 for
point q (in other words, p = t1 and q=2t2). Again, the data points p and q are the same
regardless of the basis set, but T provided a compact and orthogonal description.

Bases are extremely important in data science and machine learning. In fact, many
problems in applied linear algebra can be conceptualized as finding the best set
of basis vectors to describe some subspace. You’ve probably heard of the following
terms: dimension reduction, feature extraction, principal components analysis, inde‐
pendent components analysis, factor analysis, singular value decomposition, linear
discriminant analysis, image approximation, data compression. Believe it or not, all
of those analyses are essentially ways of identifying optimal basis vectors for a specific
problem.
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Figure 3-4. The same points (p and q) can be described by basis set S (black solid lines)
or T (black dashed lines)

Consider Figure 3-5: this is a dataset of two variables (each dot represents a data
point). The figure actually shows three distinct bases: the “standard basis set” cor‐
responding to the x = 0 and y = 0 lines, and basis sets defined via a principal
components analysis (PCA; left plot) and via an independent components analysis
(ICA; right plot). Which of these basis sets provides the “best” way of describing the
data? You might be tempted to say that the basis vectors computed from the ICA are
the best. The truth is more complicated (as it tends to be): no basis set is intrinsically
better or worse; different basis sets can be more or less helpful for specific problems
based on the goals of the analysis, the features of the data, constraints imposed by the
analyses, and so on.
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3 A general truism in science.

Figure 3-5. A 2D dataset using different basis vectors (black lines)

Definition of Basis
Once you understand the concept of a basis and basis set, the formal definition is
straightforward. In fact, basis is simply the combination of span and independence: a
set of vectors can be a basis for some subspace if it (1) spans that subspace and (2) is
an independent set of vectors.

The basis needs to span a subspace for it to be used as a basis for that subspace,
because you cannot describe something that you cannot measure.3 Figure 3-6 shows
an example of a point outside of a 1D subspace. A basis vector for that subspace
cannot measure the point r. The black vector is still a valid basis vector for the
subspace it spans, but it does not form a basis for any subspace beyond what it spans.
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4 Because it is a linearly dependent set.

Figure 3-6. A basis set can measure only what is contained inside its span

So a basis needs to span the space that it is used for. That’s clear. But why does a basis
set require linear independence? The reason is that any given vector in the subspace
must have a unique coordinate using that basis. Let’s imagine describing point p from
Figure 3-4 using the following vector set:

U =
0
1

,
0
2

,
1
0

U is a perfectly valid vector set, but it is definitely not a basis set. Why not?4

What linear weighted combination describes point p in set U? Well, the coefficients
for the linear weighted combination of the three vectors in U could be (3, 0, 1) or
(0, 1.5, 1) or…a bajillion other possibilities. That’s confusing, and so mathematicians
decided that a vector must have unique coordinates within a basis set. Linear inde‐
pendence guarantees uniqueness.

To be clear, point p (or any other point) can be described using an infinite number of
basis sets. So the measurement is not unique in terms of the plethora of possible basis
sets. But within a basis set, a point is defined by exactly one linear weighted combina‐
tion. It’s the same thing with my distance analogy at the beginning of this section:
we can measure the distance from Amsterdam to Tenerife using many different
measurement units, but that distance has only one value per measurement unit. The
distance is not simultaneously 3,200 miles and 2,000 miles, but it is simultaneously
3,200 kilometers and 2,000 miles. (Note for nerds: I’m approximating here, OK?)
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Summary
Congratulations on finishing another chapter! (Well, almost finished: there are cod‐
ing exercises to solve.) The point of this chapter was to bring your foundational
knowledge about vectors to the next level. Below is a list of key points, but please
remember that underlying all of these points is a very small number of elementary
principles, primarily linear weighted combinations of vectors:

• A vector set is a collection of vectors. There can be a finite or an infinite number•
of vectors in a set.

• Linear weighted combination means to scalar multiply and add vectors in a set.•
Linear weighted combination is one of the single most important concepts in
linear algebra.

• A set of vectors is linearly dependent if a vector in the set can be expressed as•
a linear weighted combination of other vectors in the set. And the set is linearly
independent if there is no such linear weighted combination.

• A subspace is the infinite set of all possible linear weighted combinations of a set•
of vectors.

• A basis is a ruler for measuring a space. A vector set can be a basis for a subspace•
if it (1) spans that subspace and (2) is linearly independent. A major goal in data
science is to discover the best basis set to describe datasets or to solve problems.

Code Exercises
Exercise 3-1.

Rewrite the code for linear weighted combination, but put the scalars in a list and the
vectors as elements in a list (thus, you will have two lists, one of scalars and one of
NumPy arrays). Then use a for loop to implement the linear weighted combination
operation. Initialize the output vector using np.zeros(). Confirm that you get the
same result as in the previous code.

Exercise 3-2.

Although the method of looping through lists in the previous exercise is not as
efficient as matrix-vector multiplication, it is more scalable than without a for loop.
You can explore this by adding additional scalars and vectors as elements in the lists.
What happens if the new added vector is in ℝ4 instead of ℝ3? And what happens if
you have more scalars than vectors?
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Exercise 3-3.

In this exercise, you will draw random points in subspaces. This will help reinforce
the idea that subspaces comprise any linear weighted combination of the spanning
vectors. Define a vector set containing one vector [1, 3]. Then create 100 numbers
drawn randomly from a uniform distribution between −4 and +4. Those are your
random scalars. Multiply the random scalars by the basis vector to create 100 random
points in the subspace. Plot those points.

Next, repeat the procedure but using two vectors in ℝ3: [3, 5, 1] and [0, 2, 2]. Note
that you need 100 × 2 random scalars for 100 points and two vectors. The resulting
random dots will be on a plane. Figure 3-7 shows what the results will look like (it’s
not clear from the figure that the points lie on a plane, but you’ll see this when you
drag the plot around on your screen).

I recommend using the plotly library to draw the dots, so you can click-drag the 3D
axis around. Here’s a hint for getting it to work:

import plotly.graph_objects as go
fig = go.Figure( data=[go.Scatter3d(
                     x=points[:,0], y=points[:,1], z=points[:,2],
                     mode='markers' )])
fig.show()

Finally, repeat the ℝ3 case but setting the second vector to be 1/2 times the first.

Figure 3-7. Exercise 3-3
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CHAPTER 4

Vector Applications

While working through the previous two chapters, you may have felt that some of
the material was esoteric and abstract. Perhaps you felt that the challenge of learning
linear algebra wouldn’t pay off in understanding real-world applications in data
science and machine learning.

I hope that this chapter dispels you of these doubts. In this chapter, you will learn
how vectors and vector operations are used in data science analyses. And you will be
able to extend this knowledge by working through the exercises.

Correlation and Cosine Similarity
Correlation is one of the most fundamental and important analysis methods in statis‐
tics and machine learning. A correlation coefficient is a single number that quantifies
the linear relationship between two variables. Correlation coefficients range from
−1 to +1, with −1 indicating a perfect negative relationship, +1 a perfect positive rela‐
tionships, and 0 indicating no linear relationship. Figure 4-1 shows a few examples of
pairs of variables and their correlation coefficients.
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Figure 4-1. Examples of data exhibiting positive correlation, negative correlation, and
zero correlation. The lower-right panel illustrates that correlation is a linear measure;
nonlinear relationships between variables can exist even if their correlation is zero.

In Chapter 2, I mentioned that the dot product is involved in the correlation coeffi‐
cient, and that the magnitude of the dot product is related to the magnitude of the
numerical values in the data (remember the discussion about using grams versus
pounds for measuring weight). Therefore, the correlation coefficient requires some
normalizations to be in the expected range of −1 to +1. Those two normalizations are:

Mean center each variable
Mean centering means to subtract the average value from each data value.

Divide the dot product by the product of the vector norms
This divisive normalization cancels the measurement units and scales the maxi‐
mum possible correlation magnitude to |1|.
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Equation 4-1 shows the full formula for the Pearson correlation coefficient.

Equation 4-1. Formula for Pearson correlation coefficient

ρ =
∑i = 1
n xi − x yi − y

∑i = 1
n xi − x 2 ∑i = 1

n yi − y 2

It may not be obvious that the correlation is simply three dot products. Equation 4-2
shows this same formula rewritten using the linear algebra dot-product notation. In
this equation, x is the mean-centered version of x (that is, variable x with normaliza‐
tion #1 applied).

Equation 4-2. The Pearson correlation expressed in the parlance of linear algebra

ρ = xTy
∥ x ∥ ∥ y ∥

So there you go: the famous and widely used Pearson correlation coefficient is
simply the dot product between two variables, normalized by the magnitudes of the
variables. (By the way, you can also see from this formula that if the variables are unit
normed such that ∥ x ∥ = ∥ y ∥ = 1, then their correlation equals their dot product.
(Recall from Exercise 2-6 that ∥ x ∥ = xTx.)

Correlation is not the only way to assess similarity between two variables. Another
method is called cosine similarity. The formula for cosine similarity is simply the
geometric formula for the dot product (Equation 2-11), solved for the cosine term:

cos θx, y = α
∥ x ∥ ∥ y ∥

where α is the dot product between x and y.

It may seem like correlation and cosine similarity are exactly the same formula.
However, remember that Equation 4-1 is the full formula, whereas Equation 4-2 is
a simplification under the assumption that the variables have already been mean
centered. Thus, cosine similarity does not involve the first normalization factor.

Correlation Versus Cosine Similarity
What does it mean for two variables to be “related”? Pearson correlation and cosine
similarity can give different results for the same data because they start from different
assumptions. In the eyes of Pearson, the variables [0, 1, 2, 3] and [100, 101, 102, 103]
are perfectly correlated (ρ = 1) because changes in one variable are exactly mirrored
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in the other variable; it doesn’t matter that one variable has larger numerical values.
However, the cosine similarity between those variables is .808—they are not in the
same numerical scale and are therefore not perfectly related. Neither measure is
incorrect nor better than the other; it is simply the case that different statistical meth‐
ods make different assumptions about data, and those assumptions have implications
for the results—and for proper interpretation. You’ll have the opportunity to explore
this in Exercise 4-2.

From this section, you can understand why the Pearson correlation and cosine
similarity reflects the linear relationship between two variables: they are based on the
dot product, and the dot product is a linear operation.

There are four coding exercises associated with this section, which appear at the end
of the chapter. You can choose whether you want to solve those exercises before
reading the next section, or continue reading the rest of the chapter and then work
through the exercises. (My personal recommendation is the former, but you are the
master of your linear algebra destiny!)

Time Series Filtering and Feature Detection
The dot product is also used in time series filtering. Filtering is essentially a feature-
detection method, whereby a template—called a kernel in the parlance of filtering—is
matched against portions of a time series signal, and the result of filtering is another
time series that indicates how much the characteristics of the signal match the charac‐
teristics of the kernel. Kernels are carefully constructed to optimize certain criteria,
such as smooth fluctuations, sharp edges, particular waveform shapes, and so on.

The mechanism of filtering is to compute the dot product between the kernel and
the time series signal. But filtering usually requires local feature detection, and the
kernel is typically much shorter than the entire time series. Therefore, we compute
the dot product between the kernel and a short snippet of the data of the same
length as the kernel. This procedure produces one time point in the filtered signal
(Figure 4-2), and then the kernel is moved one time step to the right to compute the
dot product with a different (overlapping) signal segment. Formally, this procedure is
called convolution and involves a few additional steps that I’m omitting to focus on
the application of the dot product in signal processing.
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Figure 4-2. Illustration of time series filtering

Temporal filtering is a major topic in science and engineering. Indeed, without
temporal filtering there would be no music, radio, telecommunications, satellites, etc.
And yet, the mathematical heart that keeps your music pumping is the vector dot
product.

In the exercises at the end of the chapter, you will discover how dot products are used
to detect features (edges) and to smooth time series data.

k-Means Clustering
k-means clustering is an unsupervised method of classifying multivariate data into a
relatively small number of groups, or categories, based on minimizing distance to the
group center.

k-means clustering is an important analysis method in machine learning, and there
are sophisticated variants of k-means clustering. Here we will implement a simple
version of k-means, with the goal of seeing how concepts about vectors (in particular:
vectors, vector norms, and broadcasting) are used in the k-means algorithm.
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1 Reminder: Euclidean distance is the square root of the sum of squared distances from the data observation to
the centroid.

Here is a brief description of the algorithm that we will write:

1. Initialize k centroids as random points in the data space. Each centroid is a class,1.
or category, and the next steps will assign each data observation to each class. (A
centroid is a center generalized to any number of dimensions.)

2. Compute the Euclidean distance between each data observation and each2.
centroid.1

3. Assign each data observation to the group with the closest centroid.3.
4. Update each centroid as the average of all data observations assigned to that4.

centroid.
5. Repeat steps 2–4 until a convergence criteria is satisfied, or for N iterations.5.

If you are comfortable with Python coding and would like to implement this algo‐
rithm, then I encourage you to do that before continuing. Next, we will work through
the math and code for each of these steps, with a particular focus on using vectors
and broadcasting in NumPy. We will also test the algorithm using randomly gener‐
ated 2D data to confirm that our code is correct.

Let’s start with step 1: initialize k random cluster centroids. k is a parameter of
k-means clustering; in real data, it is difficult to determine the optimal k, but here
we will fix k = 3. There are several ways to initialize random cluster centroids;
to keep things simple, I will randomly select k data samples to be centroids. The
data are contained in variable data (this variable is 150 × 2, corresponding to 150
observations and 2 features) and visualized in the upper-left panel of Figure 4-3 (the
online code shows how to generate these data):

k = 3
ridx = np.random.choice(range(len(data)),k,replace=False)
centroids = data[ridx,:] # data matrix is samples by features

Now for step 2: compute the distance between each data observation and each cluster
centroid. Here is where we use linear algebra concepts you learned in the previous
chapters. For one data observation and centroid, Euclidean distance is computed as

δi, j = di
x − cjx

2
+ di

y − cj
y 2

where δi, j indicates the distance from data observation i to centroid j, dx
i is feature x

of the ith data observation, and cx
j is the x-axis coordinate of centroid j.
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You might think that this step needs to be implemented using a double for loop:
one loop over k centroids and a second loop over N data observations (you might
even think of a third for loop over data features). However, we can use vectors and
broadcasting to make this operation compact and efficient. This is an example of how
linear algebra often looks different in equations compared to in code:

dists = np.zeros((data.shape[0],k))
for ci in range(k):
  dists[:,ci] = np.sum((data-centroids[ci,:])**2,axis=1)

Let’s think about the sizes of these variables: data is 150 × 2 (observations by features)
and centroids[ci,:] is 1 × 2 (cluster ci by features). Formally, it is not possible
to subtract these two vectors. However, Python will implement broadcasting by
repeating the cluster centroids 150 times, thus subtracting the centroid from each
data observation. The exponent operation ** is applied element-wise, and the axis=1
input tells Python to sum across the columns (separately per row). So, the output of
np.sum() will be a 150 × 1 array that encodes the Euclidean distance of each point to
centroid ci.

Take a moment to compare the code to the distance formula. Are they really the
same? In fact, they are not: the square root in Euclidean distance is missing from the
code. So is the code wrong? Think about this for a moment; I’ll discuss the answer
later.

Step 3 is to assign each data observation to the group with minimum distance. This
step is quite compact in Python, and can be implemented using one function:

groupidx = np.argmin(dists,axis=1)

Note the difference between np.min, which returns the minimum value, versus
np.argmin, which returns the index at which the minimum occurs.

We can now return to the inconsistency between the distance formula and its code
implementation. For our k-means algorithm, we use distance to assign each data
point to its closest centroid. Distance and squared distance are monotonically related,
so both metrics give the same answer. Adding the square root operation increases
code complexity and computation time with no impact on the results, so it can simply
be omitted.

Step 4 is to recompute the centroids as the mean of all data points within the class.
Here we can loop over the k clusters, and use Python indexing to find all data points
assigned to each cluster:

for ki in range(k):
  centroids[ki,:] = [ np.mean(data[groupidx==ki,0]),
                      np.mean(data[groupidx==ki,1])  ]
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Finally, Step 5 is to put the previous steps into a loop that iterates until a good
solution is obtained. In production-level k-means algorithms, the iterations continue
until a stopping criteria is reached, e.g., that the cluster centroids are no longer
moving around. For simplicity, here we will iterate three times (an arbitrary number
selected to make the plot visually balanced).

The four panels in Figure 4-3 show the initial random cluster centroids (iteration 0),
and their updated locations after each of three iterations.

If you study clustering algorithms, you will learn sophisticated methods for centroid
initialization and stopping criteria, as well as quantitative methods to select an appro‐
priate k parameter. Nonetheless, all k-means methods are essentially extensions of the
above algorithm, and linear algebra is at the heart of their implementations.

Figure 4-3. k-means
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Code Exercises
Correlation Exercises

Exercise 4-1.

Write a Python function that takes two vectors as input and provides two numbers as
output: the Pearson correlation coefficient and the cosine similarity value. Write code
that follows the formulas presented in this chapter; don’t simply call np.corrcoef and
spatial.distance.cosine. Check that the two output values are identical when the
variables are already mean centered and different when the variables are not mean
centered.

Exercise 4-2.

Let’s continue exploring the difference between correlation and cosine similarity.
Create a variable containing the integers 0 through 3, and a second variable equaling
the first variable plus some offset. You will then create a simulation in which you
systematically vary that offset between −50 and +50 (that is, the first iteration of the
simulation will have the second variable equal to [−50, −49, −48, −47]). In a for
loop, compute the correlation and cosine similarity between the two variables and
store these results. Then make a line plot showing how the correlation and cosine
similarity are affected by the mean offset. You should be able to reproduce Figure 4-4.

Figure 4-4. Results of Exercise 4-2
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Exercise 4-3.

There are several Python functions to compute the Pearson correlation coefficient.
One of them is called pearsonr and is located in the stats module of the SciPy
library. Open the source code for this file (hint: ??functionname) and make sure you
understand how the Python implementation maps onto the formulas introduced in
this chapter.

Exercise 4-4.

Why do you ever need to code your own functions when they already exist in Python?
Part of the reason is that writing your own functions has huge educational value,
because you see that (in this case) the correlation is a simple computation and not some
incredibly sophisticated black-box algorithm that only a computer-science PhD could
understand. But another reason is that built-in functions are sometimes slower because
of myriad input checks, dealing with additional input options, converting data types,
etc. This increases usability but at the expense of computation time.

Your goal in this exercise is to determine whether your own bare-bones correla‐
tion function is faster than NumPy’s corrcoef function. Modify the function from
Exercise 4-2 to compute only the correlation coefficient. Then, in a for loop over
1,000 iterations, generate two variables of 500 random numbers and compute the
correlation between them. Time the for loop. Then repeat but using np.corrcoef.
In my tests, the custom function was about 33% faster than np.corrcoef. In these
toy examples, the differences are measured in milliseconds, but if you are running
billions of correlations with large datasets, those milliseconds really add up! (Note
that writing your own functions without input checks has the risk of input errors that
would be caught by np.corrcoef.) (Also note that the speed advantage breaks down
for larger vectors. Try it!)

Filtering and Feature Detection Exercises

Exercise 4-5.

Let’s build an edge detector. The kernel for an edge detector is very simple: [−1 +1].
The dot product of that kernel with a snippet of a time series signal with constant
value (e.g., [10 10]) is 0. But that dot product is large when the signal has a steep
change (e.g., [1 10] would produce a dot product of 9). The signal we’ll work with is
a plateau function. Graphs A and B in Figure 4-5 show the kernel and the signal. The
first step in this exercise is to write code that creates these two time series.
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Figure 4-5. Results of Exercise 4-5

Next, write a for loop over the time points in the signal. At each time point, compute
the dot product between the kernel and a segment of the time series data that has
the same length as the kernel. You should produce a plot that looks like graph C in
Figure 4-5. (Focus more on the result than on the aesthetics.) Notice that our edge
detector returned 0 when the signal was flat, +1 when the signal jumped up, and −1
when the signal jumped down.

Feel free to continue exploring this code. For example, does anything change if you
pad the kernel with zeros ([0 −1 1 0])? What about if you flip the kernel to be [1 −1]?
How about if the kernel is asymmetric ([−1 2])?

Exercise 4-6.

Now we will repeat the same procedure but with a different signal and kernel. The
goal will be to smooth a rugged time series. The time series will be 100 random
numbers generated from a Gaussian distribution (also called a normal distribution).
The kernel will be a bell-shaped function that approximates a Gaussian function,
defined as the numbers [0, .1, .3, .8, 1, .8, .3, .1, 0] but scaled so that the sum over
the kernel is 1. Your kernel should match graph A in Figure 4-6, although your signal
won’t look exactly like graph B due to random numbers.

Copy and adapt the code from the previous exercise to compute the sliding time ser‐
ies of dot products—the signal filtered by the Gaussian kernel. Warning: be mindful
of the indexing in the for loop. Graph C in Figure 4-6 shows an example result. You
can see that the filtered signal is a smoothed version of the original signal. This is also
called low-pass filtering.
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Figure 4-6. Results of Exercise 4-6

Exercise 4-7.

Replace the 1 in the center of the kernel with −1 and mean center the kernel.
Then rerun the filtering and plotting code. What is the result? It actually accentu‐
ates the sharp features! In fact, this kernel is now a high-pass filter, meaning it
dampens the smooth (low-frequency) features and highlights the rapidly changing
(high-frequency) features.

k-Means Exercises

Exercise 4-8.

One way to determine an optimal k is to repeat the clustering multiple times (each
time using randomly initialized cluster centroids) and assess whether the final clus‐
tering is the same or different. Without generating new data, rerun the k-means code
several times using k = 3 to see whether the resulting clusters are similar (this is a
qualitative assessment based on visual inspection). Do the final cluster assignments
generally seem similar even though the centroids are randomly selected?

Exercise 4-9.

Repeat the multiple clusterings using k = 2 and k = 4. What do you think of these
results?
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CHAPTER 5

Matrices, Part 1

A matrix is a vector taken to the next level. Matrices are highly versatile mathematical
objects. They can store sets of equations, geometric transformations, the positions
of particles over time, financial records, and myriad other things. In data science,
matrices are sometimes called data tables, in which rows correspond to observations
(e.g., customers) and columns correspond to features (e.g., purchases).

This and the following two chapters will take your knowledge about linear algebra to
the next level. Get a cup of coffee and put on your thinking cap. Your brain will be
bigger by the end of the chapter.

Creating and Visualizing Matrices in NumPy
Depending on the context, matrices can be conceptualized as a set of column vectors
stacked next to each other (e.g., a data table of observations-by-features), as a set of
row vectors layered on top of each other (e.g., multisensor data in which each row is a
time series from a different channel), or as an ordered collection of individual matrix
elements (e.g., an image in which each matrix element encodes pixel intensity value).

Visualizing, Indexing, and Slicing Matrices
Small matrices can simply be printed out in full, like the following examples:

1 2
π 4
6 7

,
−6 1/3

e4.3 −1.4
6/5 0

But that’s not scalable, and matrices that you work with in practice can be large,
perhaps containing billions of elements. Therefore, larger matrices can be visualized
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as images. The numerical value of each element of the matrix maps onto a color
in the image. In most cases, the maps are pseudo-colored because the mapping of
numerical value onto color is arbitrary. Figure 5-1 shows some examples of matrices
visualized as images using the Python library matplotlib.

Figure 5-1. Three matrices, visualized as images

Matrices are indicated using bold-faced capital letters, like matrix A or M. The size
of a matrix is indicated using (row, column) convention. For example, the following
matrix is 3 × 5 because it has three rows and five columns:

1 3 5 7 9
0 2 4 6 8
1 4 7 8 9

You can refer to specific elements of a matrix by indexing the row and column posi‐
tion: the element in the 3rd row and 4th column of matrix A is indicated as a3, 4 (and
in the previous example matrix, a3, 4 = 8). Important reminder: math uses 1-based
indexing whereas Python uses 0-based indexing. Thus, element a3, 4 is indexed in
Python as A[2,3].

Extracting a subset of rows or columns of a matrix is done through slicing. If you
are new to Python, you can consult Chapter 16 for an introduction to slicing lists
and NumPy arrays. To extract a section out of a matrix, you specify the start and
end rows and columns, and that the slicing goes in steps of 1. The online code walks
you through the procedure, and the following code shows an example of extracting a
submatrix from rows 2–4 and columns 1–5 of a larger matrix:

A = np.arange(60).reshape(6,10)
sub = A[1:4:1,0:5:1]

And here are the full and submatrices:

Original matrix:
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
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1 There are more special matrices that you will learn about later in the book, but this list is enough to get
started.

 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]]

Submatrix:
[[10 11 12 13 14]
 [20 21 22 23 24]
 [30 31 32 33 34]]

Special Matrices
There is an infinite number of matrices, because there is an infinite number of ways
of organizing numbers into a matrix. But matrices can be described using a relatively
small number of characteristics, which creates “families” or categories of matrices.
These categories are important to know, because they appear in certain operations or
have certain useful properties.

Some categories of matrices are used so frequently that they have dedicated NumPy
functions to create them. Following is a list of some common special matrices and
Python code to create them;1 you can see what they look like in Figure 5-2:

Random numbers matrix
This is a matrix that contains numbers drawn at random from some distribu‐
tion, typically Gaussian (a.k.a. normal). Random-numbers matrices are great for
exploring linear algebra in code, because they are quickly and easily created with
any size and rank (matrix rank is a concept you’ll learn about in Chapter 16).

There are several ways to create random matrices in NumPy, depending on
which distribution you want to draw numbers from. In this book, we’ll mostly
use Gaussian-distributed numbers:

Mrows = 4 # shape 0
Ncols = 6 # shape 1
A = np.random.randn(Mrows,Ncols)

Square versus nonsquare
A square matrix has the same number of rows as columns; in other words, the
matrix is in ℝN × N . A nonsquare matrix, also sometimes called a rectangular
matrix, has a different number of rows and columns. You can create square and
rectangular matrices from random numbers by adjusting the shape parameters in
the previous code.

Rectangular matrices are called tall if they have more rows than columns and
wide if they have more columns than rows.
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Diagonal
The diagonal of a matrix is the elements starting at the top-left and going down
to the bottom-right. A diagonal matrix has zeros on all the off-diagonal elements;
the diagonal elements may also contain zeros, but they are the only elements that
may contain nonzero values.

The NumPy function np.diag() has two behaviors depending on the inputs:
input a matrix and np.diag will return the diagonal elements as a vector; input
a vector and np.diag will return a matrix with those vector elements on the
diagonal. (Note: extracting the diagonal elements of a matrix is not called “diago‐
nalizing a matrix”; that is a separate operation introduced in Chapter 13.)

Triangular
A triangular matrix contains all zeros either above or below the main diagonal.
The matrix is called upper triangular if the nonzero elements are above the
diagonal and lower triangular if the nonzero elements are below the diagonal.

NumPy has dedicated functions to extract the upper (np.triu()) or lower
(np.tril()) triangle of a matrix.

Identity
The identity matrix is one of the most important special matrices. It is the equiva‐
lent of the number 1, in that any matrix or vector times the identity matrix is that
same matrix or vector. The identity matrix is a square diagonal matrix with all
diagonal elements having a value of 1. It is indicated using the letter I. You might
see a subscript to indicate its size (e.g., I5 is the 5 × 5 identity matrix); if not, then
you can infer the size from context (e.g., to make the equation consistent).

You can create an identity matrix in Python using np.eye().

Zeros
The zeros matrix is comparable to the zeros vector: it is the matrix of all zeros.
Like the zeros vector, it is indicated using a bold-faced zero: 0. It can be a bit
confusing to have the same symbol indicate both a vector and a matrix, but this
kind of overloading is common in math and science notation.

The zeros matrix is created using the np.zeros() function.
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Figure 5-2. Some special matrices. Numbers and grayscale values indicate the matrix
value at each element.

Matrix Math: Addition, Scalar Multiplication, Hadamard
Multiplication
Mathematical operations on matrices fall into two categories: intuitive and unintui‐
tive. In general, the intuitive operations can be expressed as element-wise procedures
whereas the unintuitive operations take longer to explain and a bit of practice to
understand. Let’s start with the intuitive operations.

Addition and Subtraction
You add two matrices by adding their corresponding elements. Here’s an example:

2 3 4
1 2 4

+
0 3 1

−1 −4 2
=

2 + 0 3 + 3 4 + 1
1 − 1 2 − 4 4 + 2

=
2 6 5
0 −2 6

As you might guess from the example, matrix addition is defined only between two
matrices of the same size.
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“Shifting” a Matrix
As with vectors, it is not formally possible to add a scalar to a matrix, as in λ + A.
Python allows such an operation (e.g., 3+np.eye(2)), which involves broadcast-
adding the scalar to each element of the matrix. That is a convenient computation,
but it is not formally a linear algebra operation.

But there is a linear-algebra way to add a scalar to a square matrix, and that is
called shifting a matrix. It works by adding a constant value to the diagonal, which is
implemented by adding a scalar multiplied identity matrix:

A + λI

Here’s a numerical example:

4 5 1
0 1 11
4 9 7

+ 6
1 0 0
0 1 0
0 0 1

=
10 5 1
0 7 11
4 9 13

Shifting in Python is straightforward:

A = np.array([ [4,5,1],[0,1,11],[4,9,7] ])
s = 6
A + s # NOT shifting!
A + s*np.eye(len(A)) # shifting

Notice that only the diagonal elements change; the rest of the matrix is unadulterated
by shifting. In practice, one shifts a relatively small amount to preserve as much
information as possible in the matrix while benefiting from the effects of shifting,
including increasing the numerical stability of the matrix (you’ll learn later in the
book why that happens).

Exactly how much to shift is a matter of ongoing research in multiple areas of
machine learning, statistics, deep learning, control engineering, etc. For example, is
shifting by λ = 6 a little or a lot? How about λ = .001? Obviously, these numbers are
“big” or “small” relative to the numerical values in the matrix. Therefore, in practice,
λ is usually set to be some fraction of a matrix-defined quantity such as the norm or
the average of the eigenvalues. You’ll get to explore this in later chapters.

“Shifting” a matrix has two primary (extremely important!) applications: it is the
mechanism of finding the eigenvalues of a matrix, and it is the mechanism of regula‐
rizing matrices when fitting models to data.
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Scalar and Hadamard Multiplications
These two types of multiplication work the same for matrices as they do for vectors,
which is to say, element-wise.

Scalar-matrix multiplication means to multiply each element in the matrix by the
same scalar. Here is an example using a matrix comprising letters instead of numbers:

γ
a b

c d
= γa γb

γc γd

Likewise, Hadamard multiplication involves multiplying two matrices element-wise
(hence the alternative terminology element-wise multiplication). Here is an example:

2 3
4 5

⊙
a b

c d
=

2a 3b
4c 5d

In NumPy, Hadamard multiplication can be implemented using the np.multiply()
function. But it’s often easier to implement using an asterisk between the two matri‐
ces: A*B. This can cause some confusion, because standard matrix multiplication
(next section) is indicated using an @ symbol. That’s a subtle but important difference!
(This will be particularly confusing for readers coming to Python from MATLAB,
where * indicates matrix multiplication.)

A = np.random.randn(3,4)
B = np.random.randn(3,4)

A*B # Hadamard multiplication
np.multiply(A,B) # also Hadamard
A@B # NOT Hadamard!

Hadamard multiplication does have some applications in linear algebra, for example,
when computing the matrix inverse. However, it is most often used in applications
as a convenient way to store many individual multiplications. That’s similar to how
vector Hadamard multiplication is often used, as discussed in Chapter 2.

Standard Matrix Multiplication
Now we get to the unintuitive way to multiply matrices. To be clear, standard matrix
multiplication is not particularly difficult; it’s just different from what you might
expect. Rather than operating element-wise, standard matrix multiplication operates
row/column-wise. In fact, standard matrix multiplication reduces to a systematic
collection of dot products between rows of one matrix and columns of the other
matrix. (This form of multiplication is formally simply called matrix multiplication;
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I’ve added the term standard to help disambiguate from Hadamard and scalar
multiplications.)

But before I get into the details of how to multiply two matrices, I will first explain
how to determine whether two matrices can be multiplied. As you’ll learn, two
matrices can be multiplied only if their sizes are concordant.

Rules for Matrix Multiplication Validity
You know that matrix sizes are written out as M × N—rows by columns. Two matri‐
ces multiplying each other can have different sizes, so let’s refer to the size of the
second matrix as N × K . When we write out the two multiplicand matrices with
their sizes underneath, we can refer to the “inner” dimensions N  and the “outer”
dimensions M  and K .

Here’s the important point: matrix multiplication is valid only when the “inner” dimen‐
sions match, and the size of the product matrix is defined by the “outer” dimensions. See
Figure 5-3.

Figure 5-3. Matrix multiplication validity, visualized. Memorize this picture.

More formally, matrix multiplication is valid when the number of columns in the left
matrix equals the number of rows in the right matrix, and the size of the product
matrix is defined by the number of rows in the left matrix and the number of
columns in the right matrix. I find the “inner/outer” rubric easier to remember.

You can already see that matrix multiplication does not obey the commutative law:
AB may be valid while BA is invalid. Even if both multiplications are valid (for
example, if both matrices are square), they may produce different results. That is, if
C = AB and D = BA, then in general C ≠ D (they are equal in some special cases, but
we cannot generally assume equality).
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Note the notation: Hadamard multiplication is indicated using a dotted-circle
(A ⊙ B) whereas matrix multiplication is indicated as two matrices side-by-side
without any symbol between them (AB).

Now it’s time to learn about the mechanics and interpretation of matrix
multiplication.

Matrix Multiplication
The reason why matrix multiplication is valid only if the number of columns in the
left matrix matches the number of rows in the right matrix is that the (i,j)th element
in the product matrix is the dot product between the ith row of the left matrix and the
jth column in the right matrix.

Equation 5-1 shows an example of matrix multiplication, using the same two matrices
that we used for Hadamard multiplication. Make sure you understand how each
element in the product matrix is computed as dot products of corresponding rows
and columns of the left-hand side matrices.

Equation 5-1. Example of matrix multiplication. Parentheses added to facilitate
visual grouping.

2 3
4 5

a b

c d
=

2a + 3c 2b + 3d
4a + 5c 4b + 5d

If you are struggling to remember how matrix multiplication works, Figure 5-4 shows
a mnemonic trick for drawing out the multiplication with your fingers.

Figure 5-4. Finger movements for matrix multiplication

How do you interpret matrix multiplication? Remember that the dot product is a
number that encodes the relationship between two vectors. So, the result of matrix
multiplication is a matrix that stores all the pairwise linear relationships between
rows of the left matrix and columns of the right matrix. That is a beautiful thing,
and is the basis for computing covariance and correlation matrices, the general linear
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model (used in statistics analyses including ANOVAs and regressions), singular-value
decomposition, and countless other applications.

Matrix-Vector Multiplication
In a purely mechanical sense, matrix-vector multiplication is nothing special and
does not deserve its own subsection: mutliplying a matrix and a vector is simply
matrix multiplication where one “matrix” is a vector.

But matrix-vector multiplication does have many applications in data science,
machine learning, and computer graphics, so it’s worth spending some time on. Let’s
start with the basics:

• A matrix can be right-multiplied by a column vector but not a row vector, and it•
can be left-multiplied by a row vector but not a column vector. In other words,
Av and vTA are valid, but AvT and vA are invalid.
That is clear from inspecting matrix sizes: an M × N  matrix can be premultiplied
by a 1 ×M  matrix (a.k.a. a row vector) or postmultiplied by an N × 1 matrix
(a.k.a. a column vector).

• The result of matrix-vector multiplication is always a vector, and the orientation•
of that vector depends on the orientation of the multiplicand vector: premultiply‐
ing a matrix by a row vector produces another row vector, while postmultiplying
a matrix by a column vector produces another column vector. Again, this is
obvious when you think about matrix sizes, but it’s worth pointing out.

Matrix-vector multiplication has several applications. In statistics, the model-
predicted data values are obtained by multiplying the design matrix by the regression
coefficients, which is written out as Xβ. In principal components analysis, a vector of
“feature-importance” weights is identified that maximizes variance in dataset Y, and
is written out as YTY v (that feature-importance vector v is called an eigenvector).
In multivariate signal processing, a reduced-dimensional component is obtained by
applying a spatial filter to multichannel time series data S, and is written out as wTS.
In geometry and computer graphics, a set of image coordinates can be transformed
using a mathematical transformation matrix, and is written out as Tp, where T is the
transformation matrix and p is the set of geometric coordinates.

There are so many more examples of how matrix-vector multiplication is used in
applied linear algebra, and you will see several of these examples later in the book.
Matrix-vector multiplication is also the basis for matrix spaces, which is an important
topic that you’ll learn about later in the next chapter.

For now, I want to focus on two specific interpretations of matrix-vector multiplica‐
tion: as a means to implement linear weighted combinations of vectors, and as the
mechanism of implementing geometric transformations.
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2 Put the coefficients into a row vector and premultiply.

Linear weighted combinations
In the previous chapter, we calculated linear weighted combinations by having sepa‐
rate scalars and vectors, and then multiplying them individually. But you are now
smarter than when you started the previous chapter, and so you are now ready
to learn a better, more compact, and more scalable method for computing linear
weighted combinations: put the individual vectors into a matrix, and put the weights
into corresponding elements of a vector. Then multiply. Here’s a numerical example:

4
3
0
6

+ 3
1
2
5

3 1
0 2
6 5

4
3

Please take a moment to work through the multiplication, and make sure you under‐
stand how the linear weighted combination of the two vectors can be implemented
as a matrix-vector multiplication. The key insight is that each element in the vector
scalar multiplies the corresponding column in the matrix, and then the weighted
column vectors are summed to obtain the product.

This example involved linear weighted combinations of column vectors; what would
you change to compute linear weighted combinations of row vectors?2

Geometric transforms
When we think of a vector as a geometric line, then matrix-vector multiplication
becomes a way of rotating and scaling that vector (remember that scalar-vector
multiplication can scale but not rotate).

Let’s start with a 2D case for easy visualization. Here are our matrix and vectors:

M  = np.array([ [2,3],[2,1] ])
x  = np.array([ [1,1.5] ]).T
Mx = M@x

Notice that I created x as a row vector and then transposed it into a column vector;
that reduced the number of square brackets to type.

Graph A in Figure 5-5 visualizes these two vectors. You can see that the matrix
M both rotated and stretched the original vector. Let’s try a different vector with
the same matrix. Actually, just for fun, let’s use the same vector elements but with
swapped positions (thus, vector v = [1.5,1]).

Now a strange thing happens in graph B (Figure 5-5): the matrix-vector product is
no longer rotated into a different direction. The matrix still scaled the vector, but its
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direction was preserved. In other words, the matrix-vector multiplication acted as if
it were scalar-vector multiplication. That is not a random event: in fact, vector v is
an eigenvector of matrix M, and the amount by which M stretched v is its eigenvalue.
That’s such an incredibly important phenomenon that it deserves its own chapter
(Chapter 13), but I just couldn’t resist introducing you to the concept now.

Figure 5-5. Examples of matrix-vector multiplication

Segues to advanced topics aside, the main point of these demonstrations is that one
of the functions of matrix-vector multiplication is for a matrix to house a transforma‐
tion that, when applied to a vector, can rotate and stretch that vector.

Matrix Operations: Transpose
You learned about the transpose operation on vectors in Chapter 2. The principle is
the same with matrices: swap the rows and columns. And just like with vectors, the
transpose is indicated with a superscripted T (thus, CT is the transpose of C). And
double-transposing a matrix returns the original matrix (CTT = C).

The formal mathematical definition of the transpose operation is printed in Equation
5-2 (essentially repeated from the previous chapter), but I think it’s just as easy to
remember that transposing swaps rows and columns.

Equation 5-2. Definition of the transpose operation

ai, j
T = aj, i
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3 Nothing. NumPy will return the same 1D array without altering it, and without giving a warning or error.

Here’s an example:

3 0 4
9 8 3

T
=

3 9
0 8
4 3

There are a few ways to transpose matrices in Python, using a function and a method
acting on NumPy arrays:

A = np.array([ [3,4,5],[1,2,3] ])
A_T1 = A.T # as method
A_T2 = np.transpose(A) # as function

The matrix in this example uses a 2D NumPy array; what do you think will happen
if you apply the transpose method to a vector encoded as a 1D array? Try it and find
out!3

Dot and Outer Product Notation
Now that you know about the transpose operation and about the rules for matrix
multiplication validity, we can return to the notation of the vector dot product. For
two-column vectors of M × 1, transposing the first vector and not the second gives
two “matrices” of sizes 1 ×M  and M × 1. The “inner” dimensions match and the
“outer” dimensions tell us that the product will be 1 × 1, a.k.a. a scalar. That is the
reason why the dot product is indicated as aTb.

Same reasoning for the outer product: multiplying a column vector by a row vector
has sizes M × 1 and 1 × N . The “inner” dimensions match, and the size of the result
will be M × N .

Matrix Operations: LIVE EVIL (Order of Operations)
LIVE EVIL is a palindrome (a palindrome is a word or phrase that is spelled the same
forwards and backwards) and a cute mnemonic for remembering how transposing
affects the order of multiplied matrices. Basically, the rule is that the transpose of
multiplied matrices is the same as the individual matrices transposed and multiplied,
but reversed in order. In Equation 5-3, L, I, V, and E are all matrices, and you can
assume that their sizes match to make multiplication valid.

Equation 5-3. Example of the LIVE EVIL rule

LIVE
T = ETVTITLT
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Needless to say, this rule applies for multiplying any number of matrices, not just
four, and not just with these “randomly selected” letters.

This does seem like a strange rule, but it’s the only way to make transposing multi‐
plied matrices work. You’ll have the opportunity to test this yourself in Exercise 5-7 at
the end of this chapter. If you like, you may skip to that exercise before moving on.

Symmetric Matrices
Symmetric matrices have lots of special properties that make them great to work
with. They also tend to be numerically stable and thus convenient for computer
algorithms. You’ll learn about the special properties of symmetric matrices as you
work through this book; here I will focus on what symmetric matrices are and how to
create them from nonsymmetric matrices.

What does it mean for a matrix to be symmetric? It means that the corresponding
rows and columns are equal. And that means that when you swap the rows and
columns, nothing happens to the matrix. And that in turn means that a symmetric
matrix equals its transpose. In math terms, a matrix A is symmetric if AT = A.

Check out the symmetric matrix in Equation 5-4.

Equation 5-4. A symmetric matrix; note that each row equals its corresponding
column

a e f g

e b ℎ i

f ℎ c j

g i j d

Can a nonsquare matrix be symmetric? Nope! The reason is that if a matrix is of size
M × N , then its transpose is of size N ×M . Those two matrices could not be equal
unless M = N , which means the matrix is square.

Creating Symmetric Matrices from Nonsymmetric Matrices
This may be surprising at first, but multiplying any matrix—even a nonsquare and
nonsymmetric matrix—by its transpose will produce a square symmetric matrix. In
other words, ATA is square symmetric, as is AAT. (If you lack the time, patience, or
keyboard skills to format the superscripted T, you can write AtA and AAt or A′A and
AA′.)

Let’s prove this claim rigorously before seeing an example. On the one hand, we don’t
actually need to prove separately that ATA is square and symmetric, because the latter

74 | Chapter 5: Matrices, Part 1



implies the former. But proving squareness is straightforward and a good exercise in
linear algebra proofs (which tend to be shorter and easier than, e.g., calculus proofs).

The proof is obtained simply by considering the matrix sizes: if A is M × N , then
ATA is N ×M M × N , which means the product matrix is of size N × N . You can
work through the same logic for AAT.

Now to prove symmetry. Recall that the definition of a symmetric matrix is one that
equals its transpose. So let’s transpose ATA, do some algebra, and see what happens.
Make sure you can follow each step here; the proof relies on the LIVE EVIL rule:

ATA
T

= ATATT = ATA

Taking the first and final terms, we get ATA
T

= ATA . The matrix equals its
transpose, hence it is symmetric.

Now repeat the proof on your own using AAT. Spoiler alert! You’ll come to the same
conclusion. But writing out the proof will help you internalize the concept.

So AAT and ATA are both square symmetric. But they are not the same matrix! In
fact, if A is nonsquare, then the two matrix products are not even the same size.

ATA is called the multiplicative method for creating symmetric matrices. There is also
an additive method, which is valid when the matrix is square but nonsymmetric. This
method has some interesting properties but doesn’t have a lot of application value, so
I won’t focus on it. Exercise 5-9 walks you through the algorithm; if you’re up for a
challenge, you can try to discover that algorithm on your own before looking at the
exercise.

Summary
This chapter is the first of a three-chapter series on matrices. Here you learned the
groundwork from which all matrix operations are based. In summary:

• Matrices are spreadsheets of numbers. In different applications, it is useful to•
conceptualize them as a set of column vectors, a set of row vectors, or an
arrangement of individual values. Regardless, visualizing matrices as images is
often insightful, or at least pleasant to look at.

• There are several categories of special matrices. Being familiar with the properties•
of the types of matrices will help you understand matrix equations and advanced
applications.
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4 LIVE EVIL is a cute mnemonic, not a recommendation for how to behave in society!

• Some arithmetic operations work element-wise, like addition, scalar multiplica‐•
tion, and Hadamard multiplication.

• “Shifting” a matrix means adding a constant to the diagonal elements (without•
changing the off-diagonal elements). Shifting has several applications in machine
learning, primarily for finding eigenvalues and regularizing statistical models.

• Matrix multiplication involves dot products between rows of the left matrix and•
columns of the right matrix. The product matrix is an organized collection of
mappings between row-column pairs. Memorize the rule for matrix multiplica‐
tion validity: M × N N × K = M × K .

• LIVE EVIL:4 The transpose of multiplied matrices equals the individual matrices•
transposed and multiplied with their order reversed.

• Symmetric matrices are mirrored across the diagonal, which means that each•
row equals its corresponding columns, and are defined as A = AT. Symmetric
matrices have many interesting and useful properties that make them great to
work with in applications.

• You can create a symmetric matrix from any matrix by multiplying that matrix•
by its transpose. The resulting matrix ATA is central to statistical models and the
singular value decomposition.

Code Exercises
Exercise 5-1.

This exercise will help you gain familiarity with indexing matrix elements. Create a
3 × 4 matrix using np.arange(12).reshape(3,4). Then write Python code to extract
the element in the second row, fourth column. Use softcoding so that you can select
different row/column indices. Print out a message like the following:

The matrix element at index (2,4) is 7.

Exercise 5-2.

This and the following exercise focus on slicing matrices to obtain submatrices. Start
by creating matrix C in Figure 5-6, and use Python slicing to extract the submatrix
comprising the first five rows and five columns. Let’s call this matrix C1. Try to
reproduce Figure 5-6, but if you are struggling with the Python visualization coding,
then just focus on extracting the submatrix correctly.
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Figure 5-6. Visualization of Exercise 5-2

Exercise 5-3.

Expand this code to extract the other four 5 × 5 blocks. Then create a new matrix
with those blocks reorganized according to Figure 5-7.

Figure 5-7. Visualization of Exercise 5-3

Exercise 5-4.

Implement matrix addition element-wise using two for loops over rows and col‐
umns. What happens when you try to add two matrices with mismatching sizes? This
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exercise will help you think about breaking down a matrix into rows, columns, and
individual elements.

Exercise 5-5.

Matrix addition and scalar multiplication obey the mathematical laws of commutivity
and distributivity. That means that the following equations give the same results
(assume that the matrices A and B are the same size and that σ is some scalar):

σ A + B = σA + σB = Aσ + Bσ

Rather than proving this mathematically, you are going to demonstrate it through
coding. In Python, create two random-numbers matrices of size 3 × 4 and a random
scalar. Then implement the three expressions in the previous equation. You’ll need to
figure out a way to confirm that the three results are equal. Keep in mind that tiny
computer precision errors in the range of 10−15 should be ignored.

Exercise 5-6.

Code matrix multiplication using for loops. Confirm your results against using the
numpy @ operator. This exercise will help you solidify your understanding of matrix
multiplication, but in practice, it’s always better to use @ instead of writing out a
double for loop.

Exercise 5-7.

Confirm the LIVE EVIL rule using the following five steps: (1) Create four matrices
of random numbers, setting the sizes to be L ∈ ℝ2 × 6, I ∈ ℝ6 × 3, V ∈ ℝ3 × 5, and
E ∈ ℝ5 × 2. (2) Multiply the four matrices and transpose the product. (3) Transpose
each matrix individually and multiply them without reversing their order. (4) Trans‐
pose each matrix individually and multiply them reversing their order according to
the LIVE EVIL rule. Check whether the result of step 2 matches the results of step 3
and step 4. (5) Repeat the previous steps but using all square matrices.

Exercise 5-8.

In this exercise, you will write a Python function that checks whether a matrix is
symmetric. It should take a matrix as input, and should output a boolean True if
the matrix is symmetric or False if the matrix is nonsymmetric. Keep in mind that
small computer rounding/precision errors can make “equal” matrices appear unequal.
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Therefore, you will need to test for equality with some reasonable tolerance. Test the
function on symmetric and nonsymmetric matrices.

Exercise 5-9.

I mentioned that there is an additive method for creating a symmetric matrix from a
nonsymmetric square matrix. The method is quite simple: average the matrix with its
transpose. Implement this algorithm in Python and confirm that the result really is
symmetric. (Hint: you can use the function you wrote in the previous exercise!)

Exercise 5-10.

Repeat the second part of Exercise 3-3 (the two vectors in ℝ3), but use matrix-vector
multiplication instead of vector-scalar multiplication. That is, compute As instead of
σ1v1 + σ2v2.

Exercise 5-11.

Diagonal matrices have many interesting properties that make them useful to work
with. In this exercise, you will learn about two of those properties:

• Premultiplying by a diagonal matrix scales the rows of the right matrix by the•
corresponding diagonal elements.

• Postmultiplying by a diagonal matrix scales the columns of the left matrix by the•
corresponding diagonal elements.

This fact is used in several applications, including computing correlation matrices
(Chapter 7) and diagonalizing a matrix (Chapters 13 and 14).

Let’s explore an implication of this property. Start by creating three 4 × 4 matrices: a
matrix of all ones (hint: np.ones()); a diagonal matrix where the diagonal elements
are 1, 4, 9, and 16; and a diagonal matrix equal to the square root of the previous
diagonal matrix.

Next, print out the pre- and postmultiplied ones matrix by the first diagonal matrix.
You’ll get the following results:

# Pre-multiply by diagonal:
[[ 1.  1.  1.  1.]
 [ 4.  4.  4.  4.]
 [ 9.  9.  9.  9.]
 [16. 16. 16. 16.]]

# Post-multiply by diagonal:
[[ 1.  4.  9. 16.]
 [ 1.  4.  9. 16.]
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 [ 1.  4.  9. 16.]
 [ 1.  4.  9. 16.]]

Finally, premultiply and postmultiply the ones matrix by the square root of the
diagonal matrix. You’ll get the following:

# Pre- and post-multiply by sqrt-diagonal:
[[ 1.  2.  3.  4.]
 [ 2.  4.  6.  8.]
 [ 3.  6.  9. 12.]
 [ 4.  8. 12. 16.]]

Notice that the rows and the columns are scaled such that the (i,j)th element in the
matrix is multiplied by the product of the ith and jth diagonal elements. (In fact,
we’ve created a multiplication table!)

Exercise 5-12.

Another fun fact: matrix multiplication is the same thing as Hadamard multiplication
for two diagonal matrices. Figure out why this is using paper and pencil with two
3 × 3 diagonal matrices, and then illustrate it in Python code.
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1 The internet claims this is a real word; let’s see if I can get it past the O’Reilly editors.

CHAPTER 6

Matrices, Part 2

Matrix multiplication is one of the most wonderful gifts that mathematicians have
bestowed upon us. But to move from elementary to advanced linear algebra—and
then to understand and develop data science algorithms—you need to do more than
just multiply matrices.

We begin this chapter with discussions of matrix norms and matrix spaces. Matrix
norms are essentially an extension of vector norms, and matrix spaces are essentially
an extension of vector subspaces (which in turn are nothing more than linear weigh‐
ted combinations). So you already have the necessary background knowledge for this
chapter.

Concepts like linear independence, rank, and determinant will allow you to transition
from understanding elementary concepts like transpose and multiplication to under‐
standing advanced topics like inverse, eigenvalues, and singular values. And those
advanced topics unlock the power of linear algebra for applications in data science.
Therefore, this chapter is a waypoint in your transformation from linear algebra
newbie to linear algebra knowbie.1

Matrices seem like such simple things—just a spreadsheet of numbers. But you’ve
already seen in the previous chapters that there is more to matrices than meets the
eye. So, take a deep and calming breath and dive right in.
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Matrix Norms
You learned about vector norms in Chapter 2: the norm of a vector is its Euclidean
geometric length, which is computed as the square root of the sum of the squared
vector elements.

Matrix norms are a little more complicated. For one thing, there is no “the matrix
norm”; there are multiple distinct norms that can be computed from a matrix. Matrix
norms are somewhat similar to vector norms in that each norm provides one number
that characterizes a matrix, and that the norm is indicated using double-vertical lines,
as in the norm of matrix A is indicated as ∥ A ∥.

But different matrix norms have different meanings. The myriad of matrix norms can
be broadly divided into two families: element-wise (also sometimes called entry-wise)
and induced. Element-wise norms are computed based on the individual elements of
the matrix, and thus these norms can be interpreted to reflect the magnitudes of the
elements in the matrix.

Induced norms can be interpreted in the following way: one of the functions of a
matrix is to encode a transformation of a vector; the induced norm of a matrix is a
measure of how much that transformation scales (stretches or shrinks) that vector.
This interpretation will make more sense in Chapter 7 when you learn about using
matrices for geometric transformations, and in Chapter 14 when you learn about the
singular value decomposition.

In this chapter, I will introduce you to element-wise norms. I’ll start with the Eucli‐
dean norm, which is actually a direct extension of the vector norm to matrices. The
Euclidean norm is also called the Frobenius norm, and is computed as the square root
of the sum of all matrix elements squared (Equation 6-1).

Equation 6-1. The Frobenius norm

∥ A ∥ F = ∑i = 1
M ∑j = 1

N
aij

2

The indices i and j correspond to the M rows and N columns. Also note the sub‐
scripted F indicating the Frobenius norm.

The Frobenius norm is also called the ℓ2 norm (the ℓ is a fancy-looking letter L). And
the ℓ2 norm gets its name from the general formula for element-wise p-norms (notice
that you get the Frobenius norm when p = 2):

∥ A ∥ p = ∑
i = 1

M

∑
j = 1

N
aij

p
1/p
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Matrix norms have several applications in machine learning and statistical analysis.
One of the important applications is in regularization, which aims to improve model
fitting and increase generalization of models to unseen data (you’ll see examples of
this later in the book). The basic idea of regularization is to add a matrix norm as
a cost function to a minimization algorithm. That norm will help prevent model
parameters from becoming too large (ℓ2 reguarlization, also called ridge regression) or
encouraging sparse solutions (ℓ1 regularization, also called lasso regression). In fact,
modern deep learning architectures rely on matrix norms to achieve such impressive
performance at solving computer vision problems.

Another application of the Frobenius norm is computing a measure of “matrix
distance.” The distance between a matrix and itself is 0, and the distance between
two distinct matrices increases as the numerical values in those matrices become
increasingly dissimilar. Frobenius matrix distance is computed simply by replacing
matrix A with matrix C = A − B in Equation 6-1.

This distance can be used as an optimization criterion in machine learning algo‐
rithms, for example, to reduce the data storage size of an image while minimizing the
Frobenius distance between the reduced and original matrices. Exercise 6-2 will guide
you through a simple minimization example.

Matrix Trace and Frobenius Norm
The trace of a matrix is the sum of its diagonal elements, indicated as tr A , and
exists only for square matrices. Both of the following matrices have the same trace
(14):

4 5 6
0 1 4
9 9 9

,
0 0 0
0 8 0
1 2 6

Trace has some interesting properties. For example, the trace of a matrix equals the
sum of its eigenvalues and therefore is a measure of the “volume” of its eigenspace.
Many properties of the trace are less relevant for data science applications, but here is
one interesting exception:

∥ A ∥ F = ∑i = 1
M ∑j = 1

N
aij

2 = tr ATA

In other words, the Frobenius norm can be calculated as the square root of the trace
of the matrix times its transpose. The reason why this works is that each diagonal
element of the matrix ATA is defined by the dot product of each row with itself.
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Exercise 6-3 will help you explore the trace method of computing the Frobenius
norm.

Matrix Spaces (Column, Row, Nulls)
The concept of matrix spaces is central to many topics in abstract and applied
linear algebra. Fortunately, matrix spaces are conceptually straightforward, and are
essentially just linear weighted combinations of different features of a matrix.

Column Space
Remember that a linear weighted combination of vectors involves scalar multiplying
and summing a set of vectors. Two modifications to this concept will extend linear
weighted combination to the column space of a matrix. First, we conceptualize a
matrix as a set of column vectors. Second, we consider the infinity of real-valued
scalars instead of working with a specific set of scalars. An infinite number of scalars
gives an infinite number of ways to combine a set of vectors. That resulting infinite
set of vectors is called the column space of a matrix.

Let’s make this concrete with some numerical examples. We’ll start simple—a matrix
that has only one column (which is actually the same thing as a column vector).
Its column space—all possible linear weighted combinations of that column—can be
expressed like this:

C
1
3

= λ
1
3

, λ ∈ ℝ

The C A  indicates the column space of matrix A, and the ∈ symbol means “is a
member of ” or “is contained in.” In this context, it means that λ can be any possible
real-valued number.

What does this mathematical expression mean? It means that the column space is
the set of all possible scaled versions of the column vector [1 3]. Let’s consider a few
specific cases. Is the vector [1 3] in the column space? Yes, because you can express
that vector as the matrix times λ = 1. How about [−2 −6]? Also yes, because you can
express that vector as the matrix times λ = − 2. How about [1 4]? The answer here is
no: vector [1 4] is not in the column space of the matrix, because there is simply no
scalar that can multiply the matrix to produce that vector.

What does the column space look like? For a matrix with one column, the column
space is a line that passes through the origin, in the direction of the column vector,
and stretches out to infinity in both directions. (Technically, the line doesn’t stretch
out to literal infinity, because infinity is not a real number. But that line is arbitrarily
long—much longer than our limited human minds can possibly fathom—so for all
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intents and purposes, we can speak of that line as being infinitely long.) Figure 6-1
shows a picture of the column space for this matrix.

Figure 6-1. Visualization of the column space of a matrix with one column. This column
space is a 1D subspace.

Now let’s consider a matrix with more columns. We’ll keep the column dimensional‐
ity to two so we can visualize it on a 2D graph. Here’s our matrix and its column
space:

C
1 1
3 2

= λ1
1
3

+ λ2
1
2

, λ ∈ ℝ

We have two columns, so we allow for two distinct λs (they’re both real-valued
numbers but can be different from each other). Now the question is, what is the set
of all vectors that can be reached by some linear combination of these two column
vectors?

The answer is: all vectors in ℝ2. For example, the vector [−4 3] can be obtained by
scaling the two columns by, respectively, 11 and −15. How did I come up with those
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scalar values? I used the least squares projection method, which you’ll learn about in
Chapter 11. For now, you can focus on the concept that these two columns can be
appropriately weighted to reach any point in ℝ2.

Graph A in Figure 6-2 shows the two matrix columns. I didn’t draw the column space
of the matrix because it is the entirety of the axis.

Figure 6-2. More examples of column spaces

One more example in ℝ2. Here’s our new matrix for consideration:

C
1 2
3 6

= λ1
1
3

+ λ2
2
6

, λ ∈ ℝ

What is the dimensionality of its column space? Is it possible to reach any point in ℝ2

by some linear weighted combination of the two columns?

The answer to the second question is no. And if you don’t believe me, try to find
a linear weighted combination of the two columns that produces vector [3 5]. It is
simply impossible. In fact, the two columns are collinear (graph B in Figure 6-2),
because one is already a scaled version of the other. That means that the column
space of this 2 × 2 matrix is still just a line—a 1D subspace.

The take-home message here is that having N columns in a matrix does not guarantee
that the column space will be N-D. The dimensionality of the column space equals the
number of columns only if the columns form a linearly independent set. (Remember
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from Chapter 3 that linear independence means a set of vectors in which no vector can
be expressed as a linear weighted combination of other vectors in that set.)

One final example of column spaces, to see what happens when we move into 3D.
Here’s our matrix and its column space:

C

3 0
5 2
1 2

= λ1

1
5
1

+ λ2

0
2
2

, λ ∈ ℝ

Now there are two columns in ℝ3. Those two columns are linearly independent,
meaning you cannot express one as a scaled version of the other. So the column space
of this matrix is 2D, but it’s a 2D plane that is embedded in ℝ3 (Figure 6-3).

The column space of this matrix is an infinite 2D plane, but that plane is merely an
infinitesimal slice of 3D. You can think of it like an infinitely thin piece of paper that
spans the universe.

Figure 6-3. The 2D column space of a matrix embedded in 3D. The two thick lines depict
the two columns of the matrix.

There are many vectors on that plane (i.e., many vectors that can be obtained as a
linear combination of the two column vectors), but many more vectors that are not
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on the plane. In other words, there are vectors in the column space of the matrix, and
there are vectors outside the column space of the matrix.

How do you know if a vector is in the column space of a matrix? That is not at all
a trivial question—in fact, that question is the foundation of the linear least squares
method, and words cannot do justice to the importance of least squares in applied
math and engineering. So how do you figure out if a vector is in the column space?
In the examples so far, we just used some guessing, arithmetic, and visualization. The
point of that approach was to instill intuition, but those are obviously not scalable
methods for higher dimensions and for more complicated problems.

Quantitative methods to determine whether a vector is in the column space of a
matrix rely on the concept of matrix rank, which you’ll learn about later in this
chapter. Until then, focus on the intuition that the columns of a matrix carve out
a vector subspace, which may include the entire M-dimensional space or may be
some smaller-dimensional subspace; and that an important question is whether some
other vector is inside that subspace (meaning that vector can be expressed as a linear
weighted combination of the columns of the matrix).

Row Space
Once you understand the column space of a matrix, the row space is really easy
to understand. In fact, the row space of a matrix is the exact same concept but we
consider all possible weighted combinations of the rows instead of the columns.

Row space is indicated as R A . And because the transpose operation swaps rows and
columns, you can also write that the row space of a matrix is the column space of
the matrix transposed, in other words, R A = C AT . There are a few differences
between the row and column spaces of a matrix; for example, the row space (but not
the column space) is invariant to row-reduction operations. But that is beyond the
scope of this chapter.

Because the row space equals the column space of the matrix transpose, these two
matrix spaces are identical for symmetric matrices.

Null Spaces
The null space is subtly but importantly different from the column space. The column
space can be succintly summarized as the following equation:

Ax = b

This can be translated into English as “Can we find some set of coefficients in x such
that the weighted combination of columns in A produce vector b?” If the answer is
yes, then b ∈ C A  and vector x tells us how to weight the columns of A to get to b.
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The null space, in contrast, can be succintly summarized as the following equation:

Ay = 0

This can be translated into English as “Can we find some set of coefficients in y such
that the weighted combination of columns in A produces the zeros vector 0?”

A moment’s inspection will reveal an answer that works for every possible matrix A:
set y = 0! Obviously, multiplying all the columns by 0s will sum to the zeros vector.
But that is a trivial solution, and we exclude it. Therefore, the question becomes “Can
we find a set of weights—not all of which are 0—that produces the zeros vector?” Any
vector y that can satisfy this equation is in the null space of A, which we write as
N A .

Let’s start with a simple example. Before reading the following text, see if you can find
such a vector y:

1 −1
−2 2

Did you come up with a vector? Mine is [7.34, 7.34]. I’m willing to wager a Vegas-
sized bet that you did not come up with the same vector. You might have come up
with [1, 1] or perhaps [−1, −1]. Maybe [2, 2]?

I think you see where this is going—there is an infinite number of vectors y that
satisfy Ay = 0 for that specific matrix A. And all of those vectors can be expressed as
some scaled version of any of these choices. Thus, the null space of this matrix can be
expressed as:

N A = λ
1
1

, λ ∈ ℝ

Here’s another example matrix. Again, try to find a set of coefficients such that the
weighted sum of the columns produces the zeros vector (that is, find y in Ay = 0):

1 −1
−2 3

I’m willing to place an even larger bet that you couldn’t find such a vector. But it’s
not because I don’t believe you could (I have a very high opinion of my readers!);
it’s because this matrix has no null space. Formally, we say that the null space of this
matrix is the empty set: N A = .
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Look back at the two example matrices in this subsection. You’ll notice that the first
matrix contains columns that can be formed as scaled versions of other columns,
whereas the second matrix contains columns that form an independent set. That’s no
coincidence: there is a tight relationship between the dimensionality of the null space
and the linear independence of the columns in a matrix. The exact nature of that
relationship is given by the rank-nullity theorem, which you’ll learn about in the next
chapter. But they key point is this: the null space is empty when the columns of the
matrix form a linearly independent set.

At the risk of redundancy, I will repeat this important point: full-rank and full
column-rank matrices have empty null spaces, whereas reduced-rank matrices have
nonempty (nontrivial) null spaces.

The Python SciPy library contains a function to compute the null space of a matrix.
Let’s confirm our results using code:

A = np.array([ [1,-1],[-2,2] ])
B = np.array([ [1,-1],[-2,3] ])

print( scipy.linalg.null_space(A) )
print( scipy.linalg.null_space(B) )

Here’s the output:

[[0.70710678]
 [0.70710678]]

[]

The second output ([]) is the empty set. Why did Python choose 0.70710678 as
numerical values for the null space of A? Wouldn’t it be easier to read if Python
chose 1? Given the infinity of possible vectors, Python returned a unit vector (you can
mentally compute the norm of that vector knowing that 1/2 ≈ . 7071). Unit vectors
are convenient to work with and have several nice properties, including numerical
stability. Therefore, computer algorithms will often return unit vectors as bases for
subspaces. You’ll see this again with eigenvectors and singular vectors.

What does the null space look like? Figure 6-4 shows the row vectors and null space
for matrix A.

Why did I plot the row vectors instead of the column vectors? It turns out that the
row space is orthogonal to the null space. That’s not for some bizarre esoteric reason;
instead, it’s written right into the definition of the null space as Ay = 0. Rewriting
that equation for each row of the matrix (ai) leads to the expression aiy = 0; in other
words, the dot product between each row and the null space vector is 0.
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Figure 6-4. Visualization of the null space of a matrix

Why all the fuss about null spaces? It may seem odd to care about vectors that can
multiply a matrix to produce the zeros vector. But the null space is the keystone of
finding eigenvectors and singular vectors, as you will learn in Chapter 13.

Final thought for this section: every matrix has four associated subspaces; you’ve
learned about three (column, row, null). The fourth subspace is called the right null
space, and is the null space of the rows. It’s often written as the null space of the
matrix transpose: N AT . A traditional mathematics curriculum would now spend
several weeks exploring the intricacies and relationships across the four subspaces.
Matrix subspaces are worth studying for their fascinating beauty and perfection, but
that’s a level of depth to which we will not plunge.

Rank
Rank is a number associated with a matrix. It is related to the dimensionalities of
matrix subspaces, and has important implications for matrix operations, including
inverting matrices and determining the number of solutions to a system of equations.
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As with other topics in this book, there are rich and detailed theories of matrix
rank, but here I will focus on what you need to know for data science and related
applications.

I will begin by listing a few properties of rank. In no specific order of importance:

• Rank is a nonnegative integer, so a matrix can have a rank of 0, 1, 2, …, but not•
−2 or 3.14.

• Every matrix has one unique rank; a matrix cannot simultaneously have multiple•
distinct ranks. (This also means that rank is a feature of the matrix, not of the
rows or the columns.)

• The rank of a matrix is indicated using r A  or rank A . Also appropriate is “A•
is a rank-r matrix.”

• The maximum possible rank of a matrix is the smaller of its row or column•
count. In other words, the maximum possible rank is min{M,N}.

• A matrix with its maximum possible rank is called “full-rank.” A matrix with•
rank r < min{M,N} is variously called “reduced-rank,” “rank-deficient,” or
“singular.”

• Scalar multiplication does not affect the matrix rank (with the exception of 0,•
which transforms the matrix into the zeros matrix with a rank of 0).

There are several equivalent interpretations and definitions of matrix rank. Those
include:

• The largest number of columns (or rows) that form a linearly independent set.•
• The dimensionality of the column space (which is the same as the dimensionality•

of the row space).
• The number of dimensions containing information in the matrix. This is not the•

same as the total number of columns or rows in the matrix, because of possible
linear dependencies.

• The number of nonzero singular values of the matrix.•

It may seem surprising that the definition of rank is the same for the columns and
the rows: is the dimensionality really the same for the column space and the row
space, even for a nonsquare matrix? Yes it is. There are various proofs of this, many
of which are either fairly involved or rely on the singular value decomposition, so I
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2 If you are already familiar with the SVD, then the short version is that the SVD of A and AT swap row and
column spaces, but the number of nonzero singular values remains the same.

won’t include a formal proof in this chapter.2 But I will show an example of the row
and column spaces of a nonsquare matrix as an illustration.

Here is our matrix:

1 1 −4
2 −2 2

The column space of the matrix is in ℝ2 while the row space is in ℝ3, so those
two spaces need to be drawn in different graphs (Figure 6-5). The three columns do
not form a linearly independent set (any one column can be described as a linear
combination of the other two), but they do span all of ℝ2. Therefore, the column
space of the matrix is 2D. The two rows do form a linearly independent set, and the
subspace they span is a 2D plane in ℝ3.

To be clear: the column space and row space of the matrix are different. But the
dimensionality of those matrix spaces is the same. And that dimensionality is the rank
of the matrix. So this matrix has a rank of 2.

Figure 6-5. The column and row spaces have different spans but the same
dimensionalities
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3 r(A) = 1, r(B) = 1, r(C) = 2, r(D) = 3, r(E) = 1, r(F) = 0

Following are some matrices. Although I haven’t yet taught you how to compute rank,
try to guess the rank of each matrix based on the previous descriptions. The answers
are in the footnote.3

A =
1
2
4

, B =
1 3
2 6
4 12

, C =
1 3.1
2 6
4 12

, D =
1 3 2
6 6 1
4 2 0

, E =
1 1 1
1 1 1
1 1 1

, F =
0 0 0
0 0 0
0 0 0

I hope you managed to figure out the ranks, or at least weren’t shocked to see the
answers in the footnote.

Needless to say, visual inspection and some intuition is not a scalable method for
computing rank in practice. There are several methods to compute rank. For exam‐
ple, in Chapter 10 you’ll learn that you can compute the rank by row reducing a
matrix to its echelon form and counting the number of pivots. Computer programs
like Python compute rank by counting the number of nonzero singular values of the
matrix. You’ll learn about that in Chapter 14.

For now, I would like you to focus on the idea that the rank corresponds to the largest
number of columns that can form a linearly independent set, which also corresponds
to the dimensionality of the column space of the matrix. (You can replace “column”
with “row” in the previous sentence and it will be equally accurate.)

Ranks of Special Matrices
Some special matrices have ranks that are easy to compute or that are worth learning
about:

Vectors
All vectors have a rank of 1. That’s because vectors—by definition—have only
one column (or row) of information; the subspace they span is 1D. The only
exception is the zeros vector.

Zeros matrices
The zeros matrix of any size (including the zeros vector) has a rank of 0.

Identity matrices
The rank of the identity matrix equals the number of rows (which equals the
number of columns). In other words, r IN = N . In fact, the identity matrix is
simply a special case of a diagonal matrix.
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4 The Infinite Improbability Drive is a technology that allows the Heart of Gold spaceship to traverse impossible
distances in space. If you don’t know what I’m talking about, then you haven’t read Hitchhiker’s Guide to the
Galaxy by Douglas Adams. And if you haven’t read that book, then you’re really missing out on one of the
greatest, most thought-provoking, and funniest intellectual achievements of the 20th century.

Diagonal matrices
The rank of a diagonal matrix equals the number of nonzero diagonal elements.
This is because each row contains maximum one nonzero element, and it is
impossible to create a nonzero number through weighted combinations of zeros.
This property becomes useful when solving systems of equations and interpret‐
ing the singular value decomposition.

Triangular matrices
A triangular matrix is full rank only if there are nonzero values in all diagonal
elements. A triangular matrix with at least one zero in the diagonal will be
reduced rank (the exact rank will depend on the numerical values in the matrix).

Random matrices
The rank of a random matrix is impossible to know a priori, because it depends
on the distribution of numbers from which the elements in the matrix were
drawn and on the probability of drawing each number. For example, a 2 × 2
matrix populated with either 0s or 1s could have a rank of 0 if the individual
elements all equal 0. Or it could have a rank of 2, e.g., if the identity matrix is
randomly selected.

But there is a way to create random matrices with guaranteed maximum possible
rank. This is done by drawing floating-point numbers at random, e.g., from a
Gaussian or uniform distribution. A 64-bit computer can represent 264 numbers.
Drawing a few dozen or hundred from that set to put in a matrix means that the
likelihood of linear dependencies in the columns of the matrix is astronomically
unlikely. So unlikely, in fact, that it could power the Infinite Improbability Drive
of the Heart of Gold.4

The point is that matrices created via, e.g., np.random.randn() will have the
maximum possible rank. This is useful for using Python to learn linear algebra,
because you can create a matrix with any arbitrary rank (subject to constraints
discussed earlier). Exercise 6-5 will guide you through the process.

Rank-1 matrices
A rank-1 matrix has—you guessed it—a rank of 1. This means that there is
actually only one column’s worth of information (alternatively: there is only one
row’s worth of information) in the matrix, and all other columns (or rows) are
simply linear multiples. You saw a few examples of rank-1 matrices earlier in this
chapter. Here are a few more:
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−2 −4 −4
−1 −2 −2

0 0 0
,

2 1
0 0
2 1
4 2

,
12 4 4 12 4
6 2 2 6 2
9 3 3 9 3

Rank-1 matrices can be square, tall, or wide; regardless of the size, each column is
a scaled copy of the first column (or each row is a scaled copy of the first row).

How does one create a rank-1 matrix? Actually, you already learned how in
Chapter 2 (although I only briefly mentioned it; you are forgiven for forgetting).
The answer is by taking the outer product between two nonzeros vectors. For
example, the third matrix above is the outer product of [4 2 3]T and [3 1 1 3 1].

Rank-1 matrices are important in eigendecomposition and the singular value
decomposition. You’ll encounter many rank-1 matrices in later chapters in this
book—and in your adventures in applied linear algebra.

Rank of Added and Multiplied Matrices
If you know the ranks of matrices A and B, do you automatically know the rank of
A + B or AB?

The answer is no, you don’t. But, the ranks of the two individual matrices provide
upper bounds for the maximum possible rank. Here are the rules:

rank A + B ≤ rank A + rank B

rank AB ≤ min rank A , rank B

I don’t recommend memorizing these rules. But I do recommend memorizing the
following:

• You cannot know the exact rank of a summed or product matrix based on•
knowing the ranks of the individual matrices (with a few exceptions, e.g., the
zeros matrix); instead, the individual matrices provide upper bounds for the rank
of the summed or product matrix.

• The rank of a summed matrix could be greater than the ranks of the individual•
matrices.
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5 This rule explains why the outer product always produces a rank-1 matrix.

• The rank of a product matrix cannot be greater than the largest rank of the•
multiplying matrices.5

In Exercise 6-6, you will have the opportunity to illustrate these two rules using
random matrices of various ranks.

Rank of Shifted Matrices
Simply put: shifted matrices have full rank. In fact, one of the primary goals of
shifting a square matrix is to increase its rank from r < M to r = M.

An obvious example is shifting the zeros matrix by the identity matrix. The rank of
the resulting sum 0 + I is a full-rank matrix.

Here’s another, slightly less obvious, example:

1 3 2
5 7 2
2 2 0

+ .01
1 0 0
0 1 0
0 0 1

=
1.01 3 2

5 7.01 2
2 2 .01

The leftmost matrix has a rank of 2; notice that the third column equals the second
minus the first. But the rank of the summed matrix is 3: the third column can no
longer be produced by some linear combination of the first two. And yet, the infor‐
mation in the matrix has hardly changed; indeed, the Pearson correlation between
the elements in the original and shifted matrix is ρ = 0.999997222233796. This has
significant implications: for example, the rank-2 matrix cannot be inverted whereas
the shifted matrix can. (You’ll learn why in Chapter 8.)
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Theory and Practice

Understanding Singular Values Before Understanding Singular Values

It is impossible to learn mathematics in a purely monotonic fash‐
ion, meaning you fully understand concept a before fully learning
about concept b and so on. A complete understanding of matrix
rank requires knowing about the singular value decomposition
(SVD), but the SVD doesn’t make sense until you know about rank.
It’s a bit of a catch-22. This is part of what makes math frustrating
to learn. The good news is that pages in this book continue to exist
after you read them, so if the following discussion isn’t completely
sensible, come back after learning about the SVD.
Briefly: every M × N  matrix has a set of min{M,N} nonnegative
singular values that encode the “importance” or “spaciousness” of
different directions in the column and row spaces of the matrix.
Directions with a singular value of 0 are in one of the null spaces.

In abstract linear algebra, the rank is a rock-solid concept. Each matrix has exactly
one rank, and that’s the end of the story.

In practice, however, computing the matrix rank entails some uncertainty. Arguably,
computers don’t even compute the rank; they estimate it to a reasonable degree of
accuracy. I wrote earlier that rank can be computed as the number of nonzero singu‐
lar values. But that’s not what Python does. Following are two key lines excerpted
from np.linalg.matrix_rank() (I’ve dropped a few arguments to focus on the main
point):

S = svd(M)
return count_nonzero(S > tol)

M is the matrix in question, S is a vector of singular values, and tol is a tolerance
threshold. This means that NumPy is not actually counting nonzero singular values;
it is counting singular values that are larger than some threshold. The exact threshold
value depends on the numerical values in the matrix, but is generally around 10 to 12
orders of magnitude smaller than the matrix elements.

This means that NumPy makes a decision about what numbers are small enough
to be considered “effectively zero.” I am certainly not criticizing NumPy—this is the
right thing to do! (Other numerical processing programs like MATLAB and Julia
compute rank in the same way.)

But why do this? Why not simply count the nonzero singular values? The answer
is that the tolerance absorbs small numerical inaccuracies that may arise due to
computer rounding error. Having a tolerance also allows for ignoring tiny amounts
of noise that might, for example, contaminate the data-acquisition sensors. This idea
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is used in data cleaning, compression, and dimension reduction. Figure 6-6 illustrates
the concept.

Figure 6-6. A 3 × 3 matrix representing a 2D plane may be considered rank-3 in the
presence of a small amount of noise. The rightmost diagram shows the perspective of
looking directly across the surface of the plane.

Rank Applications
There are many applications of matrix rank. In this section, I will introduce two of
them.

In the Column Space?
In Chapter 4, you learned about the column space of a matrix, and you learned that
an important question in linear algebra is whether a vector is in the column space
of a matrix (which can be mathematically written as v ∈ C A ?). I also wrote that
answering the question in a rigorous and scalable way depends on understanding
matrix rank.

Before telling you the algorithm for determining whether v ∈ C A , I need to briefly
introduce a procedure called augmenting a matrix.

To augment a matrix means to add extra columns to the right-hand side of the
matrix. You start with the “base” M × N  matrix and the “extra” M × K  matrix. The
augmented matrix is of size M × N + K . Augmenting two matrices is valid as long
as they have the same number of rows (they can have a different number of columns).
You’ll see augmented matrices here in this section, and again in Chapter 10 when
solving systems of equations.

Following is an example that illustrates the procedure:

4 5 6
0 1 2
9 9 4

⊔

1
2
3

=
4 5 6 1
0 1 2 2
9 9 4 3
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With that prerequisite tangent out the way, here is the algorithm for determining
whether a vector is in the column space of a matrix:

1. Augment the matrix with the vector. Let’s call the original matrix A and the1.
augmented matrix A.

2. Compute the ranks of the two matrices.2.
3. Compare the two ranks. There will be one of two possible outcomes:3.

a. rank A = rank A  Vector v is in the column space of matrix A.a.
b. rank A < rank A  Vector v is not in the column space of matrix A.b.

What is the logic behind this test? If v ∈ C A , then v can be expressed as some
linear weighted combination of the columns of A (the columns of the augmented
matrix A form a linearly dependent set). In terms of span, vector v is redundant in A.
Hence, the rank stays the same.

Conversely, if v ∉ C A , then v cannot be expressed as a linear weighted combina‐
tion of the columns of A, which means that v has added new information into A. And
that means that the rank will increase by 1.

Determining whether a vector is in the column space of a matrix is not merely some
esoteric academic exercise; it is part of the reasoning behind linear least squares
modeling, which is the math that underlies ANOVAs, regressions, and general linear
models. You’ll learn more about this in Chapters 10 and 11, but the basic idea is that
we develop a model of how the world works and then translate that model into a
matrix, which is called the design matrix. The data we measure from the world are
stored in a vector. If that data vector is in the column space of the design matrix,
then we have perfectly modeled the world. In nearly all cases, the data vector is not
in the column space, and therefore we determine whether it is close enough to be
considered statistically significant. Obviously, I will go into much greater detail in
later chapters, but I’m foreshadowing here to keep up your enthusiasm for learning.

Linear Independence of a Vector Set
Now that you know about matrix rank, you are ready to understand an algorithm for
determining whether a set of vectors is linearly independent. If you’d like to come up
with such an algorithm on your own, then feel free to do so now before reading the
rest of this section.

The algorithm is straightforward: put the vectors into a matrix, compute the rank of
the matrix, and then compare that rank to the maximum possible rank of that matrix
(remember that this is min{M,N}; for convenience of discussion I will assume that we
have a tall matrix). The possible outcomes are:
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• r = M: The vector set is linearly independent.•
• r < M: The vector set is linearly dependent.•

The reasoning behind this algorithm should be clear: if the rank is smaller than the
number of columns, then at least one column can be described as a linear combina‐
tion of other columns, which is the definition of linear dependence. If the rank equals
the number of columns, then each column contributes unique information to the
matrix, which means that no column can be described as a linear combination of
other columns.

There is a more general point I’d like to make here: many operations and applications
in linear algebra are actually quite simple and sensible, but they require a significant
amount of background knowledge to understand. That’s a good thing: the more linear
algebra you know, the easier linear algebra becomes.

On the other hand, that statement is not universally true: there are operations in
linear algebra that are so mind-numbingly tedious and complicated that I cannot
bring myself to describe them in full detail in this book. Segue to the next section…

Determinant
The determinant is a number associated with a square matrix. In abstract linear alge‐
bra, the determinant is a keystone quantity in several operations, including the matrix
inverse. But computing the determinant in practice can be numerically unstable for
large matrices, due to underflow and overflow issues. You’ll see an illustration of this
in the exercises.

Nonetheless, you cannot understand the matrix inverse or eigendecomposition
without understanding the determinant.

The two most important properties of the determinant—and the two most important
take-home messages of this section—are (1) it is defined only for square matrices and
(2) it is zero for singular (reduced-rank) matrices.

The determinant is notated as det A  or A  (note the single vertical lines instead of
the double vertical lines that indicate the matrix norm). The Greek capital delta Δ is
used when you don’t need to refer to a specific matrix.

But what is the determinant? What does it mean, and how do we interpret it?
The determinant has a geometric interpretation, which is related to how much the
matrix stretches vectors during matrix-vector multiplication (recall from the previous
chapter that matrix-vector multiplication is a mechanism of applying geometric
transforms to a coordinate expressed as a vector). A negative determinant means that
one axis is rotated during the transformation.
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However, in data-science-related applications, the determinant is used algebraically;
these geometric explanations are not very insightful for how we use the determinant
to find eigenvalues or invert a data covariance matrix. Therefore, suffice it to say
that the determinant is a crucial step in advanced topics like the matrix inverse,
eigendecomposition, and singular value decomposition, and that you might save
yourself some stress and sleepless nights by simply accepting that the determinant is a
tool in our toolbox without worrying so much about what it means.

Computing the Determinant
Computing the determinant is time-consuming and tedious. If I live a thousand years
and never hand-calculate the determinant of a 5 × 5 matrix, I will have lived a rich,
full, meaningful life. That said, there is a shortcut for computing the determinant of a
2 × 2 matrix, which is shown in Equation 6-2.

Equation 6-2. Computing the determinant of a 2 × 2 matrix

det
a b

c d
= a b

c d
= ad − bc

You can see from this equation that the determinant is not limited to integers or
positive values. Depending on the numerical values in the matrix, the determinant
can be −1223729358 or +.00000002 or any other number. (For a real-valued matrix,
the determinant will always be a real number.)

Calculating the determinant is really simple, right? It’s just the product of the diagonal
minus the product of the off-diagonal. For many matrices, you can compute the
determinant in your head. The determinant is even simpler for a 1 × 1 matrix: it’s
simply the absolute value of that number.

You might now be doubting my claim that the determinant is numerically unstable.

The thing is that the shortcut for computing the determinant of a 2 × 2 matrix doesn’t
scale up to larger matrices. There is a “shortcut” for 3 × 3 matrices, but it isn’t really a
shortcut; it’s a visual mnemonic. I won’t show it here, but I will write out the upshot:

a b c

d e f

g ℎ i

= aei + bfg + cdℎ − ceg − bdi − afℎ
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Once you get to 4 × 4 matrices, the determinant becomes a real hassle to compute,
unless the matrix has many carefully placed zeros. But I know you’re curious, so
Equation 6-3 shows the determinant of a 4 × 4 matrix.

Equation 6-3. Yeah, good luck with that

a b c d

e f g ℎ

i j k l

m n o p

=
afkp − aflo − agjp + agln + aℎjo − aℎkn − bekp + belo

+bgip − bglm − bℎio + bℎkm + cejp − celn − c fip + c flm
+cℎin − cℎjm − dejo + dekn + d fio − d fkm − dgin + dgjm

I’m not even going to show the full procedure for computing the determinant of
any size matrix, because, let’s be honest: you are reading this book because you’re
interested in applied linear algebra; it’s important to understand how to use the
determinant, not the full formula for computing it.

Anyway, the point is that if you ever need to compute the determinant, you use
np.linalg.det() or scipy.linalg.det().

Determinant with Linear Dependencies
The second take-home message about determinants is that they are zero for any
reduced-rank matrix. We can explore this with a 2 × 2 matrix. Remember that any
reduced-rank matrix has at least one column that can be expressed as a linear
combination of other columns:

a λa

c λc
= acλ − aλc = 0

Here’s the determinant of a 3 × 3 singular matrix:

a b λa

d e λd

g ℎ λg

= aeλg + bλdg + λadℎ − λaeg − bdλg − aλdℎ = 0

This concept generalizes to larger matrices. Thus, all reduced-rank matrices have a
determinant of 0. The actual rank doesn’t matter; if r < M, then Δ = 0. All full-rank
matrices have a nonzero determinant.

I’ve already written that I think geometric interpretations of the determinant have
limited value to understanding why the determinant is important in data science. But
Δ = 0 does have a nice geometric meaning: a matrix with Δ = 0 is a transformation
in which at least one dimension gets flattened to have surface area but no volume.
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You can imagine squashing a ball down to an infinitely thin disk. You will see a visual
example of this in the next chapter (“Geometric Transformations via Matrix-Vector
Multiplication” on page 116).

The Characteristic Polynomial
The equation for the determinant of a 2 × 2 matrix has five quantities: the four
elements in the matrix and the determinant value. We can write them out in an
equation as ad − bc = Δ. One of the great things about equations is that you can move
quantities around and solve for different variables. Consider Equation 6-4; assume
that a, b, c, and Δ are known, and λ is some unknown quantity.

Equation 6-4. Using the determinant to find a missing matrix element

a b

c λ
aλ − bc = Δ

A bit of middle-school algebra will enable you to solve for λ in terms of the other
quantities. The solution itself is unimportant; the point is that if we know the determi‐
nant of a matrix, we can solve for unknown variables inside the matrix.

Here’s a numerical example:

2 7
4 λ

= 4 2λ − 28 = 4 2λ = 32 λ = 16

Now let’s take this one step further:

λ 1
3 λ

= 1 λ
2 − 3 = 1 λ

2 = 4 λ = ± 2

The same unknown λ was on the diagonal, which produced a second-order polyno‐
mial equation, and that produced two solutions. That’s no coincidence: the funda‐
mental theorem of algebra tells us that an nth order polynomial has exactly n roots
(though some may be complex valued).

Here is the key point that I’m working towards: combining matrix shifting with
the determinant is called the characteristic polynomial of the matrix, as shown in
Equation 6-5.

Equation 6-5. The characteristic polynomial of the matrix

det A − λI = Δ
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Why is it called a polynomial? Because the shifted M ×M  matrix has an λM  term,
and therefore has M  solutions. Here’s what it looks like for 2 × 2 and 3 × 3 matrices:

a − λ b

c d − λ
= 0 λ

2 − a + d λ + ad − bc = 0

a − λ b c

d e − λ f

g ℎ i − λ
= 0

−λ3 + a + e + i λ2

+ − ae + bd − ai + cg − ei + fℎ λ
+aei − afℎ − bdi + bfg + cdℎ − ceg = 0

Please don’t ask me to show you the characteristic polynomial for a 4 × 4 matrix.
Trust me, it will have a λ4 term.

Let’s return to the 2 × 2 case, this time using numbers instead of letters. The matrix
below is full rank, meaning that its determinant is not 0 (it is Δ = −8), but I’m
going to assume that it has a determinant of 0 after being shifted by some scalar λ;
the question is, what values of λ will make this matrix reduced-rank? Let’s use the
characteristic polynomial to find out:

det
1 3
3 1

− λI = 0

1 − λ 3
3 1 − λ

= 0 1 − λ 2 − 9 = 0

After some algebra (which I encourage you to work through), the two solutions are
λ = −2, 4. What do these numbers mean? To find out, let’s plug them back into the
shifted matrix:

λ = −2
3 3
3 3

λ = 4
−3 3

3 −3

Clearly, both matrices are rank-1. Furthermore, both matrices have nontrivial null
spaces, meaning you can find some nonzeros vector y such that A − λI y = 0. I’m
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6 Any scaled version of [1 −1] and [1 1].

sure you can find a vector for each of those λs on your own! But just in case you want
to confirm your correct answer, check the footnote.6

The characteristic polynomial is, to use a technical term, super awesome. For one
thing, it provides the remarkable insight that every square matrix can be expressed
as an equation. And not just any equation—an equation that directly links matrices
to the fundamental theorem of algebra. And if that isn’t cool enough, the solutions
to the characteristic polynomial set to Δ = 0 are the eigenvalues of the matrix (that’s
the λs we found above). I know that you have to wait until Chapter 13 to understand
what eigenvalues are and why they are important, but you can sleep well tonight
knowing that today you learned how to uncover the eigenvalues of a matrix.

Summary
The goal of this chapter was to expand your knowledge of matrices to include several
important concepts: norms, spaces, rank, and determinant. If this were a book on
abstract linear algebra, this chapter could easily have been a hundred-plus pages.
But I tried to focus the discussion on what you’ll need to know for linear algebra
applications in data science and AI. You’ll discover more about matrix spaces in
later chapters (in particular, least squares fitting in Chapter 11 and the singular value
decomposition in Chapter 14). In the meantime, here is a list of the most important
points in this chapter:

• There are many kinds of matrix norms, which can be broadly classified into•
element-wise and induced. The former reflects the magnitudes of the elements
in the matrix while the latter reflects the geometric-transformative effect of the
matrix on vectors.

• The most commonly used element-wise norm is called the Frobenius norm•
(a.k.a. the Euclidean norm or the ℓ2 norm) and is computed as the square root of
the sum of squared elements.

• The trace of a matrix is the sum of the diagonal elements.•
• There are four matrix spaces (column, row, null, left-null), and they are defined•

as the set of linear weighted combinations of different features of the matrix.
• The column space of the matrix comprises all linear weighted combinations of•

the columns in the matrix and is written as C A .
• An important question in linear algebra is whether some vector b is in the•

column space of a matrix; if it is, then there is some vector x such that Ax = b.
Answering that question forms the basis for many statistical model fitting
algorithms.
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• The row space of a matrix is the set of linear weighted combintions of the rows of•
the matrix and is indicated as R A  or C AT .

• The null space of a matrix is the set of vectors that linearly combines the columns•
to produce the zeros vector—in other words, any vector y that solves the equa‐
tion Ay = 0. The trivial solution of y = 0 is excluded. The null space is important
for finding eigenvectors, among other applications.

• Rank is a nonnegative integer associated with a matrix. Rank reflects the largest•
number of columns (or rows) that can form a linearly independent set. Matrices
with a rank smaller than the maximum possible are called reduced-rank or
singular.

• Shifting a square matrix by adding a constant to the diagonal ensures full-rank.•
• One (of many) applications of rank is to determine whether a vector is in the•

column space of a matrix, which works by comparing the rank of the matrix to
the rank of the vector-augmented matrix.

• The determinant is a number associated with a square matrix (there is no deter‐•
minant for rectangular matrices). It is tedious to compute, but the most impor‐
tant thing to know about the determinant is that it is zero for all reduced-rank
matrices and nonzero for all full-rank matrices.

• The characteristic polynomial transforms a square matrix, shifted by λ, into an•
equation that equals the determinant. Knowing the determinant allows you to
solve for λ. I’ve only briefly hinted at why that is so important, but trust me: it’s
important. (Or don’t trust me and see for yourself in Chapter 13.)

Code Exercises
Exercise 6-1.

The norm of a matrix is related to the scale of the numerical values in the matrix. In
this exercise, you will create an experiment to demonstrate this. In each of 10 experi‐
ment iterations, create a 10 × 10 random numbers matrix and compute its Frobenius
norm. Then repeat this experiment 40 times, each time scalar multiplying the matrix
by a different scalar that ranges between 0 and 50. The result of the experiment
will be a 40 × 10 matrix of norms. Figure 6-7 shows the resulting norms, averaged
over the 10 experiment iterations. This experiment also illustrates two additional
properties of matrix norms: they are strictly nonnegative and can equal 0 only for the
zeros matrix.
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Figure 6-7. Solution to Exercise 6-1

Exercise 6-2.

In this exercise, you will write an algorithm that finds a scalar that brings the
Frobenius distance between two matrices to 1. Start by writing a Python function
that takes two matrices (of the same size) as input and returns the Frobenius distance
between them. Then create two N × N  random numbers matrices (I used N = 7 in
the solutions code, but you can use any other size). Create a variable s = 1 that
scalar multiplies both matrices. Compute the Frobenius distance between the scaled
matrices. As long as that distance remains above 1, set the scalar to be .9 times itself
and recompute the distance between the scaled matrices. This should be done in
a while loop. When the Frobenius distance gets below 1, quit the while loop and
report the number of iterations (which corresponds to the number of times that the
scalar s was multiplied by .9) and the scalar value.

Exercise 6-3.

Demonstrate that the trace method and the Euclidean formula produce the same
result (the Frobenius norm). Does the trace formula work only for ATA, or do you
get the same result for AAT?
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7 All of these exercises are fun, but some more than others.

Exercise 6-4.

This will be a fun exercise,7 because you’ll get to incorporate material from this and
the previous chapters. You will explore the impact of shifting a matrix on the norm
of that matrix. Start by creating a 10 × 10 random matrix and compute its Frobenius
norm. Then code the following steps inside a for loop: (1) shift the matrix by a
fraction of the norm, (2) compute the percent change in norm from the original,
(3) compute the Frobenius distance between the shifted and original matrices, and
(4) compute the correlation coefficient between the elements in the matrices (hint:
correlate the vectorized matrices using np.flatten()). The fraction of the norm that
you shift by should range from 0 to 1 in 30 linearly spaced steps. Make sure that at
each iteration of the loop, you use the original matrix, not the shifted matrix from the
previous iteration. You should get a plot that looks like Figure 6-8.

Figure 6-8. Solution to Exercise 6-4

Exercise 6-5.

I will now show you how to create random matrices with arbitrary rank (subject
to the constraints about matrix sizes, etc.). To create an M × N  matrix with rank r,
multiply a random M × r matrix with an r × N  matrix. Implement this in Python and
confirm that the rank is indeed r. What happens if you set r > min{M,N}, and why
does that happen?

Exercise 6-6.

Demonstrate the addition rule of matrix rank (r(A + B) ≤ r(A) + r(B)) by creating
three pairs of rank-1 matrices that have a sum with (1) rank-0, (2) rank-1, and (3)
rank-2. Then repeat this exercise using matrix multiplication instead of addition.
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Exercise 6-7.

Put the code from Exercise 6-5 into a Python function that takes parameters M and
r as input and provides a random M ×M  rank-r matrix as output. In a double for
loop, create pairs of 20 × 20 matrices with individual ranks varying from 2 to 15. Add
and multiply those matrices, and store the ranks of those resulting matrices. Those
ranks can be organized into a matrix and visualized as a function of the ranks of the
individual matrices (Figure 6-9).

Figure 6-9. Results of Exercise 6-7

Exercise 6-8.

Interestingly, the matrices A, AT, ATA, and AAT all have the same rank. Write code
to demonstrate this, using random matrices of various sizes, shapes (square, tall,
wide), and ranks.

Exercise 6-9.

The goal of this exercise is to answer the question v ∈ C A ? Create a rank-3 matrix
A ∈ ℝ4 × 3 and vector v ∈ ℝ4 using numbers randomly drawn from a normal distri‐
bution. Follow the algorithm described earlier to determine whether the vector is in
the column space of the matrix. Rerun the code multiple times to see whether you
find a consistent pattern. Next, use a A ∈ ℝ4 × 4 rank-4 matrix. I’m willing to bet one
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8 n.b. I don’t have that many bitcoins, ¯\_(ツ)_/¯.

9 Because the column space of a full-rank matrix spans all of ℝM , and therefore all vectors in ℝM  are
necessarily in the column space.

million bitcoins8 that you always find that v ∈ C A  when A is a 4 × 4 random matrix
(assuming no coding mistakes). What makes me confident about your answer?9

For an extra challenge, put this code into a function that returns True or False
depending on the outcome of the test, and that raises an exception (that is, a useful
error message) if the size of the vector does not match for matrix augmentation.

Exercise 6-10.

Remember that the determinant of a reduced-rank matrix is—in theory—zero. In this
exercise, you will put this theory to the test. Implement the following steps: (1) Create
a square random matrix. (2) Reduce the rank of the matrix. Previously you’ve done
this by multiplying rectangular matrices; here, set one column to be a multiple of
another column. (3) Compute the determinant and store its absolute value.

Run these three steps in a double for loop: one loop over matrix sizes ranging
from 3 × 3 to 30 × 30 and a second loop that repeats the three steps one hundred
times (repeating an experiment is useful when simulating noise data). Finally, plot
the determinant, averaged over the one hundred repeats, in a line plot as a function
of the number of elements in the matrix. Linear algebra theory predicts that that
line (that is, the determinants of all the reduced-rank matrices) is zero, regardless of
the matrix size. Figure 6-10 shows otherwise, reflecting the computational difficulties
with accurately computing the determinant. I log transformed the data for increased
visibility; you should inspect the plot using log scaling and linear scaling.

Figure 6-10. Results of Exercise 6-10
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CHAPTER 7

Matrix Applications

I hope that now, after the past two theory-heavy chapters, you feel like you just
finished an intense workout at the gym: exhausted but energized. This chapter should
feel like a bike ride through the hills in the countryside: effortful at times but offering
a fresh and inspiring perspective.

The applications in this chapter are loosely built off of those in Chapter 4. I did this to
have some common threads that bind the chapters on vectors and on matrices. And
because I want you to see that although the concepts and applications become more
complex as you progress in linear algebra, the foundations are still built on the same
simple principles such as linear weighted combinations and the dot product.

Multivariate Data Covariance Matrices
In Chapter 4, you learned how to compute the Pearson correlation coefficient as the
vector dot product between two data variables, divided by the product of the vector
norms. That formula was for two variables (e.g., height and weight); what if you have
multiple variables (e.g., height, weight, age, weekly exercise…)?

You could imagine writing a double for loop over all of the variables, and applying
the bivariate correlation formula to all pairs of variables. But that is cumbersome and
inelegant, and therefore antithetical to the spirit of linear algebra. The purpose of
this section is to show you how to compute covariance and correlation matrices from
multivariate datasets.

Let’s start with covariance. Covariance is simply the numerator of the correlation
equation—in other words, the dot product between two mean-centered variables.
Covariance is interpreted in the same way as correlation (positive when variables
move together, negative when variables move apart, zero when the variables have no

113



linear relationship), except that covariance retains the scale of the data, and therefore
is not bound by ±1.

Covariance also has a normalization factor of n − 1, where n is the number of data
points. That normalization prevents the covariance from growing larger as you sum
more data values together (analogous to dividing by N to transform a sum into an
average). Here is the equation for covariance:

ca, b = n − 1 −1 ∑
i = 1

n
xi − x yi − y

As in Chapter 4, if we call x to be the mean-centered variable x, then covariance is
simply xTy/ n − 1 .

The key insight to implementing this formula for multiple variables is that matrix
multiplication is an organized collection of dot products between rows of the left
matrix and columns of the right matrix.

So here’s what we do: create a matrix in which each column corresponds to each
variable (a variable is a data feature). Let’s call that matrix X. Now, the multiplication
XX is not sensible (and probably not even valid, because data matrices tend to be
tall, thus M > N). But if we were to transpose the first matrix, then the rows of
XT correspond to the columns of X. Therefore, the matrix product XTX encodes all
of the pair-wise covariances (assuming the columns are mean centered, and when
dividing by n − 1). In other words, the (i,j)th element in the covariance matrix is the
dot product between data features i and j.

The matrix equation for a covariance matrix is elegant and compact:

C = XTX
1

n − 1

Matrix C is symmetric. That comes from the proof in Chapter 5 that any matrix times
its transpose is square symmetric, but it also makes sense statistically: covariance and
correlation are symmetric, meaning that, for example, the correlation between height
and weight is the same as the correlation between weight and height.

What are the diagonal elements of C? Those contain the covariances of each variable
with itself, which in statistics is called the variance, and quantifies the dispersion
around the mean (variance is the squared standard deviation).
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Among Police Departments,” European Journal of Operational Research 141 (2002): 660–678.

Why Transpose the Left Matrix?
There is nothing special about transposing the left matrix. If your data matrix is
organized as features-by-observations, then its covariance matrix is XXT. If you are
ever uncertain about whether to transpose the left or right matrix, think about how
to apply the rules for matrix multiplication to produce a features-by-features matrix.
Covariance matrices are always features-by-features.

The example in the online code creates a covariance matrix from a publicly available
dataset on crime statistics. The dataset includes over a hundred features about social,
economic, educational, and housing information in various communities around the
US.1 The goal of the dataset is to use these features to predict levels of crime, but here
we will use it to inspect covariance and correlation matrices.

After importing and some light data processing (explained in the online code), we
have a data matrix called dataMat. The following code shows how to compute the
covariance matrix:

datamean = np.mean(dataMat,axis=0) # vector of feature means
dataMatM = dataMat - datamean      # mean-center using broadcasting
covMat   = dataMatM.T @ dataMatM   # data matrix times its transpose
covMat  /= (dataMatM.shape[0]-1)   # divide by N-1

Figure 7-1 shows an image of the covariance matrix. First of all: it looks neat, doesn’t
it? I work with multivariate datasets in my “day job” as a neuroscience professor, and
ogling covariance matrices has never failed to put a smile on my face.

In this matrix, light colors indicate variables that covary positively (e.g., percentage
of divorced males versus number of people in poverty), dark colors indicate variables
that covary negatively (e.g., percentage of divorced males versus median income),
and gray colors indicate variables that are unrelated to each other.

As you learned in Chapter 4, computing a correlation from a covariance simply
involves scaling by the norms of the vectors. This can be translated into a matrix
equation, which will allow you to compute the data correlation matrix without for
loops. Exercise 7-1 and Exercise 7-2 will walk you through the procedure. As I wrote
in Chapter 4, I encourage you to work through those exercises before continuing to
the next section.
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Figure 7-1. A data covariance matrix

Final note: NumPy has functions to compute covariance and correlation matrices
(respectively, np.cov() and np.corrcoef()). In practice, it’s more convenient to use
those functions than to write out the code yourself. But—as always in this book—I
want you to understand the math and mechanisms that those functions implement.
Hence, for these exercises you should implement the covariance as a direct transla‐
tion of the formulas instead of calling NumPy functions.

Geometric Transformations via Matrix-Vector
Multiplication
I mentioned in Chapter 5 that one of the purposes of matrix-vector multiplication is
to apply a geometric transform to a set of coordinates. In this section, you will see this
in 2D static images and in animations. Along the way, you’ll learn about pure rotation
matrices and about creating data animations in Python.

A “pure rotation matrix” rotates a vector while preserving its length. You can think
about the hands of an analog clock: as time ticks by, the hands rotate but do not
change in length. A 2D rotation matrix can be expressed as:
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T =
cos θ sin θ

−sin θ cos θ

A pure rotation matrix is an example of an orthogonal matrix. I will write more
about orthogonal matrices in the next chapter, but I would like to point out that the
columns of T are orthogonal (their dot product is cos(θ)sin(θ) − sin(θ)cos(θ)) and are
unit vectors (recall the trig identity that cos2(θ) + sin2(θ) = 1.)

To use this transformation matrix, set θ to some angle of clockwise rotation, and then
muliply matrix T by a 2 × N  matrix of geometric points, where each column in that
matrix contains the (X,Y) coordinates for each of N data points. For example, setting
θ = 0 does not change the points’ locations (this is because θ = 0 means T = I);
setting θ = π/2 rotates the points by 90∘ around the origin.

As a simple example, consider a set of points aligned in a vertical line and the effect of
multiplying those coordinates by T. In Figure 7-2, I set θ = π/5.

Figure 7-2. Twirling points around the origin through a pure rotation matrix

Before continuing with this section, please inspect the online code that generates this
figure. Make sure you understand how the math I wrote above is translated into code,
and take a moment to experiment with different rotation angles. You can also try
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2 Swap the minus signs in the sine functions.

to figure out how to make the rotation counterclockwise instead of clockwise; the
answer is in the footnote.2

Let’s make our investigations of rotations more exciting by using “impure” rotations
(that is, stretching and rotating, not only rotating) and by animating the transforma‐
tions. In particular, we will smoothly adjust the transformation matrix at each frame
of a movie.

There are several ways to create animations in Python; the method I’ll use here
involves defining a Python function that creates the figure content on each movie
frame, then calling a matplotlib routine to run that function on each iteration of the
movie.

I call this movie The Wobbly Circle. Circles are defined by a set of cos θ  and sin θ
points, for a vector of θ angles that range from 0 to 2π.

I set the transformation matrix to the following:

T =
1 1 − φ
0 1

Why did I pick these specific values, and how do you interpret a transformation
matrix? In general, the diagonal elements scale the x-axis and y-axis coordinates,
while the off-diagonal elements stretch both axes. The exact values in the matrix
above were selected by playing around with the numbers until I found something that
I thought looked neat. Later on, and in the exercises, you will have the opportunity to
explore the effects of changing the transformation matrix.

Over the course of the movie, the value of φ will smoothly transition from 1 to 0 and
back to 1, following the formula φ = x2, −1 ≤ x ≤ 1. Note that T = I when φ = 1.

The Python code for a data animation can be separated into three parts. The first part
is to set up the figure:

theta  = np.linspace(0,2*np.pi,100)
points = np.vstack((np.sin(theta),np.cos(theta)))

fig,ax = plt.subplots(1,figsize=(12,6))
plth,  = ax.plot(np.cos(x),np.sin(x),'ko')

The output of ax.plot is a variable plth, which is a handle, or a pointer, to the
plot object. That handle allows us to update the locations of the dots rather than
redrawing the figure from scratch on each frame.

The second part is to define the function that updates the axis on each frame:
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def aframe(ph):

  # create and apply the transform matrix
  T = np.array([ [1,1-ph],[0,1] ])
  P = T@points

  # update the dots' location
  plth.set_xdata(P[0,:])
  plth.set_ydata(P[1,:])

  return plth

Finally, we define our transform parameter φ and call the matplotlib function that
creates the animation:

phi = np.linspace(-1,1-1/40,40)**2
animation.FuncAnimation(fig, aframe, phi,
                interval=100, repeat=True)

Figure 7-3 show one frame of the movie, and you can watch the entire video by
running the code. Admittedly, this movie is unlikely to win any awards, but it does
show how matrix multiplication is used in animations. The graphics in CGI movies
and video games are slightly more complicated because they use mathematical objects
called quaternions, which are vectors in ℝ4 that allow for rotations and translations
in 3D. But the principle—multiply a matrix of geometric coordinates by a transfor‐
mation matrix—is exactly the same.

Geometric Transformations via Matrix-Vector Multiplication | 119



3 Set the lower-right element to −1.

Figure 7-3. A frame of the movie The Wobbly Circle

Before working through the exercises for this section, I encourage you to spend
some time playing around with the code for this section. In particular, change the
transformation matrix by setting one of the diagonal elements to .5 or 2, change
the lower-left off-diagonal element instead of (or in addition to) the upper-right
off-diagonal element, parameterize one of the diagonal elements instead of the off-
diagonal element, and so on. And here’s a question: can you figure out how to get the
circle to wobble to the left instead of to the right? The answer is in the footnote.3

Image Feature Detection
In this section, I will introduce you to image filtering, which is a mechanism for
image feature detection. Image filtering is actually an extension of time series filter‐
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ing, so having gone through Chapter 4 will benefit you here. Recall that to filter or
detect features in a time series signal, you design a kernel, and then create a time
series of dot products between the kernel and overlapping segments of the signal.

Image filtering works the same way except in 2D instead of 1D. We design a 2D
kernel, and then create a new image comprising “dot products” between the kernel
and overlapping windows of the image.

I wrote “dot products” in apology quotes because the operation here is not formally
the same as the vector dot product. The computation is the same—element-wise
multiplication and sum—however, the operation takes place between two matrices,
so the implementation is Hadamard multiplication and sum over all matrix elements.
Graph A in Figure 7-4 illustrates the procedure. There are additional details of
convolution—for example, padding the image so that the result is the same size—that
you would learn about in an image-processing book. Here I’d like you to focus on
the linear algebra aspects, in particular, the idea that the dot product quantifies the
relationship between two vectors (or matrices), which can be used for filtering and
feature detection.

Figure 7-4. Mechanism of image convolution
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Before moving on to the analysis, I will briefly explain how a 2D Gaussian kernel is
created. A 2D Gaussian is given by the following equation:

G = exp − X 2 +Y 2 /σ

A few notes about that equation: exp stands for the natural exponential (the constant
e = 2.71828…), and exp(x) is used instead of ex when the exponential term is long.
The X and Y are 2D grids of x,y coordinates on which to evaluate the function.
Finally, σ is a parameter of the function that is often called the “shape” or “width”:
smaller values make the Gaussian narrower, while larger values make the Gaussian
wider. For now, I will fix that parameter to certain values, and you’ll get to explore the
implications of changing that parameter in Exercise 7-6.

Here’s how that formula translates into code:

Y,X    = np.meshgrid(np.linspace(-3,3,21),np.linspace(-3,3,21))
kernel = np.exp( -(X**2+Y**2) / 20 )
kernel = kernel / np.sum(kernel) # normalize

The X and Y grids go from −3 to +3 in 21 steps. The width parameter is hard
coded to 20. The third line normalizes the values in the kernel so that the sum over
the entire kernel is 1. That preserves the original scale of the data. When properly
normalized, each step of convolution—and therefore, each pixel in the filtered image
—becomes a weighted average of the surrounding pixels, with the weights defined by
the Gaussian.

Back to the task at hand: we will smooth a random-numbers matrix, similar to how
we smoothed a random-numbers time series in Chapter 4. You can see the random-
numbers matrix, the Gaussian kernel, and the result of convolution in Figure 7-4.

The following Python code shows how image convolution is implemented. Again,
think back to the time series convolution in Chapter 4 to appreciate that the idea is
the same but with an extra dimension necessitating an extra for loop:

for rowi in range(halfKr,imgN-halfKr):   # loop over rows
  for coli in range(halfKr,imgN-halfKr): # loop over cols

    # cut out a piece of the image
    pieceOfImg = imagePad[ rowi-halfKr:rowi+halfKr+1:1,
                           coli-halfKr:coli+halfKr+1:1 ]

    # dot product: Hadamard multiply and sum
    dotprod = np.sum( pieceOfImg*kernel )

    # store the result for this pixel
    convoutput[rowi,coli] = dotprod
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Implementing convolution as a double for loop is actually computationally ineffi‐
cient. It turns out that convolution can be implemented faster and with less code
in the frequency domain. This is thanks to the convolution theorem, which states
that convolution in the time (or space) domain is equal to multiplication in the
frequency domain. A full exposition of the convolution theorem is outside the scope
of this book; I mention it here to justify the recommendation that you use SciPy’s
convolve2d function instead of the double for loop implementation, particularly for
large images.

Let’s try smoothing a real picture. We’ll use a picture of the Stedelijk Museum in
Amsterdam, which I lovingly call “the bathtub from outer space.” This image is a 3D
matrix because it has rows, columns, and depth—the depth contains pixel intensity
values from the red, green, and blue color channels. This picture is stored as a
matrix in ℝ1675 × 3000 × 3. Formally, that’s called a tensor because it is a cube, not a
spreadsheet, of numbers.

For now, we will reduce it to a 2D matrix by converting to grayscale. That simplifies
the computations, although it is not necessary. In Exercise 7-5, you will figure out
how to smooth the 3D image. Figure 7-5 shows the grayscale image before and after
applying the Gaussian smoothing kernel.

Figure 7-5. A picture of the bathtub museum, before and after a respectable smoothing

Both of these examples used a Gaussian kernel. How many other kernels are avail‐
able? An infinite number! In Exercise 7-7, you will test two other kernels that are
used to identify vertical and horizontal lines. Those feature detectors are common in
image processing (and are used by the neurons in your brain to detect edges in the
patterns of light that hit your retina).

Image convolution kernels are a major topic in computer vision. In fact, the incred‐
ible performance of convolutional neural networks (the deep learning architecture
optimized for computer vision) is entirely due to the network’s ability to craft optimal
filter kernels through learning.
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Summary
I’ll keep this simple: the point is that—yet again—incredibly important and sophisti‐
cated methods in data science and machine learning are built on simple linear algebra
principles.

Code Exercises
Covariance and Correlation Matrices Exercises

Exercise 7-1.

In this exercise, you will transform the covariance matrix into a correlation matrix.
The procedure involves dividing each matrix element (that is, the covariance between
each pair of variables) by the product of the variances of those two variables.

This is implemented by pre- and postmultiplying the covariance matrix by a diagonal
matrix containing inverted standard deviations of each variable (standard deviation
is the square root of variance). The standard deviations are inverted because we
need to divide by the variances although we will multiply matrices. The reason for
pre- and postmultiplying by standard deviations is the special property of pre- and
postmultiplying by a diagonal matrix, which was explained in Exercise 5-11.

Equation 7-1 shows the formula.

Exercise 7-1. Correlation from covariance

R = SCS

C is the covariance matrix, and S is a diagonal matrix of reciprocated standard
deviations per variable (that is, the ith diagonal is 1/σi where σi is the standard
deviation of variable i).

Your goal in this exercise is to compute the correlation matrix from the covariance
matrix, by translating Equation 7-1 into Python code. You can then reproduce
Figure 7-6.
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Figure 7-6. Solution to Exercise 7-1

Exercise 7-2.

NumPy has a function np.corrcoef() that returns a correlation matrix, given an
input data matrix. Use this function to reproduce the correlation matrix you created
in the previous exercise. Show both matrices, and their difference, in a figure like
Figure 7-7 to confirm that they are the same.

Figure 7-7. Solution to Exercise 7-2. Note the difference in color scaling.

Next, inspect the source code of np.corrcoef() by evaluating ??np.corrcoef().
NumPy uses a slightly different implementation of broadcast dividing by the standard
deviations instead of pre- and postmultiplying by a diagonal matrix of inverted
standard deviations, but you should be able to understand how their code implemen‐
tation matches the math and the Python code you wrote in the previous exercise.
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Geometric Transformations Exercises

Exercise 7-3.

The goal of this exercise is to show points in a circle before and after applying
a transformation, similar to how I showed the line before and after rotation in
Figure 7-2. Use the following transformation matrix and then create a graph that
looks like Figure 7-8:

T =
1 .5
0 .5

Figure 7-8. Solution to Exercise 7-3

Exercise 7-4.

Now for another movie. I call this one The Coiling DNA. Figure 7-9 shows one
frame of the movie. The procedure is the same as for The Wobbly Circle—set up a
figure, create a Python function that applies a transformation matrix to a matrix of
coordinates, and tell matplotlib to create an animation using that function. Use the
following transformation matrix:
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4 Hint: smooth each color channel separately.

T =
1 − φ/3 0

0 φ

−1 ≤ φ ≤ 1

Figure 7-9. Solution to Exercise 7-4

Image Feature Detection Exercises

Exercise 7-5.

Smooth the 3D bathtub picture (if you need a hint, check the footnote4).

The output of the convolve2d function has a data type float64 (you can see this
yourself by typing variableName.dtype). However, plt.imshow will give a warning
about clipping numerical values, and the picture won’t render properly. Therefore,
you’ll need to convert the result of convolution to uint8.

Exercise 7-6.

You don’t need to use the same kernel for each color channel. Change the width
parameter of the Gaussian for each channel according to the values shown in Fig‐
ure 7-10. The effect on the image is subtle, but the different blurs of the different
colors give it a bit of a 3D look, as if you are looking at a red-blue anaglyph without
the glasses.
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Figure 7-10. Kernels used per color channel in Exercise 7-6

Exercise 7-7.

Technically, image smoothing is feature extraction, because it involves extracting
the smooth features of the signal while dampening the sharp features. Here we will
change the filter kernels to solve other image feature detection problems: identifying
horizontal and vertical lines.

The two kernels are shown in Figure 7-11, as are their effects on the image. You
can handcraft the two kernels based on their visual appearance; they are 3 × 3 and
comprise only the numbers −1, 0, and +1. Convolve those kernels with the 2D
grayscale picture to create the feature maps shown in Figure 7-11.

Figure 7-11. Results of Exercise 7-7
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CHAPTER 8

Matrix Inverse

We are moving toward solving matrix equations. Matrix equations are like regular
equations (e.g., solve for x in 4x = 8) but…they have matrices. By this point in the
book, you are well aware that things get complicated when matrices get involved.
Nonetheless, we must embrace that complexity, because solving matrix equations is a
huge part of data science.

The matrix inverse is central to solving matrix equations in practical applications,
including fitting statistical models to data (think of general linear models and regres‐
sion). By the end of this chapter, you will understand what the matrix inverse is, when
it can and cannot be computed, how to compute it, and how to interpret it.

The Matrix Inverse
The inverse of matrix A is another matrix A−1 (pronounced “A inverse”) that multi‐
plies A to produce the identity matrix. In other words, A−1A = I. That is how you
“cancel” a matrix. Another conceptualization is that we want to linearly transform
a matrix into the identity matrix; the matrix inverse contains that linear transforma‐
tion, and matrix multiplication is the mechanism of applying that transformation to
the matrix.

But why do we even need to invert matrices? We need to “cancel” a matrix in order to
solve problems that can be expressed in the form Ax = b, where A and b are known
quantities and we want to solve for x. The solution has the following general form:
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Ax = b

A−1Ax = A−1b

Ix = A−1b

x = A−1b

That seems really straightforward, but computing the inverse is deceptively difficult,
as you will soon learn.

Types of Inverses and Conditions for Invertibility
“Invert the matrix” sounds like it should always work. Who wouldn’t want to invert
a matrix whenever it’s convenient? Unfortunately, life is not always so simple: not all
matrices can be inverted.

There are three different kinds of inverses that have different conditions for inverti‐
bility. They are introduced here; details are in subsequent sections:

Full inverse
This means A−1A = AA−1 = I. There are two conditions for a matrix to have
a full inverse: (1) square and (2) full-rank. Every square full-rank matrix has
an inverse, and every matrix that has a full inverse is square and full-rank. By
the way, I’m using the term full inverse here to distinguish it from the next two
possibilities; you would typically refer to the full inverse simply as the inverse.

One-sided inverse
A one-sided inverse can transform a rectangular matrix into the identity matrix,
but it works only for one multiplication order. In particular, a tall matrix T can
have a left-inverse, meaning LT = I but TL ≠ I. And a wide matrix W can have a
right-inverse, meaning that WR = I but RW ≠ I.

A nonsquare matrix has a one-sided inverse only if it has the maximum possible
rank. That is, a tall matrix has a left-inverse if it is rank-N (full column rank)
while a wide matrix has a right-inverse if it is rank-M (full row rank).

Pseudoinverse
Every matrix has a pseudoinverse, regardless of its shape and rank. If the matrix
is square full-rank, then its pseudoinverse equals its full inverse. Likewise, if the
matrix is nonsquare and has its maximum possible rank, then the pseudoinverse
equals its left-inverse (for a tall matrix) or its right-inverse (for a wide matrix).
But a reduced-rank matrix still has a pseudoinverse, in which case the pseudoin‐
verse transforms the singular matrix into another matrix that is close but not
equal to the identity matrix.

130 | Chapter 8: Matrix Inverse



Matrices that do not have a full or one-sided inverse are called singular or noninverti‐
ble. That is the same thing as labeling a matrix reduced-rank or rank-deficient.

Computing the Inverse
The matrix inverse sounds great! How do we compute it? Let’s start by thinking about
how to compute the scalar inverse: you simply invert (take the reciprocal of) the
number. For example, the inverse of the number 3 is 1/3, which is the same thing as
3−1. Then, 3 × 3−1 = 1.

Based on this reasoning, you might guess that the matrix inverse works the same way:
invert each matrix element. Let’s try:

a b

c d

−1
=

1/a 1/b
1/c 1/d

Unfortunately, this does not produce the desired outcome, which is readily demon‐
strated by multiplying the original matrix by the matrix of individually inverted
elements:

a b

c d

1/a 1/b
1/c 1/d

=
1 + b/c a/b + b/d
c/a + d/c 1 + c/b

That is a valid multiplication, but it does not produce the identity matrix, which
means that the matrix with individual elements inverted is not the matrix inverse.

There is an algorithm for computing the matrix of any invertible matrix. It’s long and
tedious (this is why we have computers do the number crunching for us!), but there
are a few shortcuts for special matrices.

Inverse of a 2 × 2 Matrix
To invert a 2 × 2 matrix, swap the diagonal elements, multiply the off-diagonal ele‐
ments by −1, and divide by the determinant. That algorithm will produce a matrix
that transforms the original matrix into the identity matrix.
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Observe:

A = a b

c d

A−1 = 1
ad − bc

d −b
−c a

AA−1 = a b

c d

1
ad − bc

d −b
−c a

= 1
ad − bc

ad − bc 0
0 ad − bc

=
1 0
0 1

Let’s work through a numerical example:

1 4
2 7

7 −4
−2 1

1
7 − 8 =

7 − 8 −4 + 4
14 − 14 −8 + 7

1
−1 =

1 0
0 1

That worked out nicely.

Computing the inverse in Python is easy:

A = np.array([ [1,4],[2,7] ])
Ainv = np.linalg.inv(A)
A@Ainv

You can confirm that A@Ainv gives the identity matrix, as does Ainv@A. Of course,
A*Ainv does not give the identity matrix, because * is for Hadamard (element-wise)
multiplication.

The matrix, its inverse, and their product are visualized in Figure 8-1.

Figure 8-1. Inverse of a 2 × 2 matrix
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Let’s try another example:

1 4
2 8

8 −4
−2 1

1
0 =

8 − 8 −4 + 4
16 − 16 −8 + 8

1
0 = ???

There are several problems with this example. The matrix multiplication gives us 0
instead of ΔI. But there is a bigger problem—the determinant is zero! Mathematicians
have been warning us for ages that we cannot divide by zero. Let’s not start doing it
now.

What’s different about the second example? It is a reduced-rank matrix (rank = 1).
This shows a numerical example that reduced-rank matrices are not invertible.

What does Python do in this case? Let’s find out:

A = np.array([ [1,4],[2,8] ])
Ainv = np.linalg.inv(A)
A@Ainv

Python won’t even try to calculate the result like I did. Instead, it gives an error with
the following message:

LinAlgError: Singular matrix

Reduced-rank matrices do not have an inverse, and programs like Python won’t even
try to calculate one. However, this matrix does have a pseudoinverse. I’ll get back to
that in a few sections.

Inverse of a Diagonal Matrix
There is also a shortcut to compute the inverse of a square diagonal matrix. The
insight that leads to this shortcut is that the product of two diagonal matrices is sim‐
ply the diagonal elements scalar multiplied (discovered in Exercise 5-12). Consider
the example below; before continuing with the text, try to figure out the shortcut for
the inverse of a diagonal matrix:

2 0 0
0 3 0
0 0 4

b 0 0
0 c 0
0 0 d

=
2b 0 0
0 3c 0
0 0 4d

Have you figured out the trick for computing the inverse of a diagonal matrix? The
trick is that you simply invert each diagonal element, while ignoring the off-diagonal
zeros. That’s clear in the previous example by setting b = 1/2, c = 1/3, and d = 1/4.
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What happens when you have a diagonal matrix with a zero on the diagonal? You
cannot invert that element because you’ll have 1/0. So a diagonal matrix with at least
one zero on the diagonal has no inverse. (Also remember from Chapter 6 that a
diagonal matrix is full-rank only if all diagonal elements are nonzero.)

The inverse of a diagonal matrix is important because it directly leads to the formula
for computing the pseudoinverse. More on this later.

Inverting Any Square Full-Rank Matrix
To be honest, I debated whether to include this section. The full algorithm for
inverting an invertible matrix is long and tedious, and you will never need to use it in
applications (instead, you will use np.linalg.inv or other functions that call inv).

On the other hand, implementing the algorithm in Python is an excellent opportunity
for you to practice your skills of translating an algorithm, described in equations and
English, into Python code. Therefore, I will explain how the algorithm works here
without showing any code. I encourage you to code the algorithm in Python as you
read this section, and you can check your solution against mine in Exercise 8-2 in the
online code.

The algorithm to compute the inverse involves four intermediate matrices, called the
minors, grid, cofactors, and adjugate matrices:

The minors matrix
This matrix comprises determinants of submatrices. Each element mi, j of the
minors matrix is the determinant of the submatrix created by excluding the ith
row and the jth column. Figure 8-2 shows an overview of the procedure for a
3 × 3 matrix.

Figure 8-2. Computing the minors matrix (gray shaded areas are removed to create each
submatrix)
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The grid matrix
The grid matrix is a checkerboard of alternating +1s and −1s. It is computed
using the following formula:

gi, j = − 1i + j

Be careful with the indexing and exponentiating when implementing that for‐
mula in Python. You should inspect the matrix carefully to make sure it is a
checkerboard of alternating signs, with +1 in the top-left element.

The cofactors matrix
The cofactors matrix is the Hadamard multiplication of the minors matrix with
the grid matrix.

Adjugate matrix
This is the transpose of the cofactors matrix, scalar multiplied by the inverse of
the determinant of the original matrix (the matrix you are computing the inverse
of, not the cofactors matrix).

The adjugate matrix is the inverse of the original matrix.

Figure 8-3 shows the four intermediate matrices, the inverse returned by
np.linalg.inv, and the identity matrix resulting from the multiplication of the
original matrix with its inverse computed according to the procedure previously
described. The original matrix was a random-numbers matrix.

Figure 8-3. Visualizations of inverse-producing matrices for a random-numbers matrix
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One-Sided Inverses
A tall matrix does not have a full inverse. That is, for matrix T of size M > N, there is
no tall matrix T−1 such that TT−1 = T−1T = I.

But there is a matrix L such that LT = I. Our goal now is to find that matrix. We
start by making matrix T square. How do we make a nonsquare matrix into a square
matrix? Of course you know the answer—we multiply it by its transpose.

Here’s the next question: should we compute TTT or TTT? Both are square…but TTT
is full-rank if T is full column-rank. And why is that important? You guessed it—all
square full-rank matrices have an inverse. Before presenting the derivation of the
left-inverse, let’s demonstrate in Python that a tall matrix times its transpose has a full
inverse:

T = np.random.randint(-10,11,size=(40,4))
TtT = T.T @ T
TtT_inv = np.linalg.inv(TtT)
TtT_inv @ TtT

You can confirm in code that the final line produces the identity matrix (within
machine-precision error).

Let me translate that Python code into a mathematical equation:

TTT
−1
TTT = I

From the code and formula, you can see that because TTT is not the same matrix as
T, TTT

−1
 is not the inverse of T.

But—and here is the key insight—we’re looking for a matrix that left-multiplies T
to produce the identity matrix; we don’t actually care what other matrices need
to multiply to produce that matrix. So let’s break apart and regroup the matrix
multiplications:

L = TTT
−1
TT

LT = I

That matrix L is the left-inverse of matrix T.

Now we can finish the Python code to compute the left-inverse and confirm that it
conforms to our specification. Left-multiply the original tall matrix to produce the
identity matrix:
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L = TtT_inv @ T.T # the left-inverse
L@T # produces the identity matrix

You can also confirm in Python that TL (that is, right-multiplying by the left-inverse)
is not the identity matrix. That’s why the left-inverse is a one-sided inverse.

Figure 8-4 illustrates a tall matrix, its left-inverse, and the two ways of multiplying
the left-inverse by the matrix. Note that the left-inverse is not a square matrix and
that postmultiplying by the left-inverse gives a result that is definitely not the identity
matrix.

Figure 8-4. The left-inverse, visualized

The left-inverse is extremely important. In fact, once you learn about fitting statistical
models to data and the least squares solution, you’ll see the left-inverse all over the
place. It is no hyperbole to state that the left-inverse is one of the most important
contributions of linear algebra to modern human civilization.
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1 Because TTT is reduced-rank and thus cannot be inverted.

One final note about the left-inverse, which was implicit in this discussion: the
left-inverse is defined only for tall matrices that have full column-rank. A matrix of
size M > N with rank r < N does not have a left-inverse. Why is that? The answer is in
the footnote.1

Now you know how to compute the left-inverse. What about the right-inverse? I
refuse to teach you how to compute it! That’s not because it’s secret knowledge that
I’m keeping from you, and it’s certainly not because I don’t like you. Instead, it’s
because I want you to challenge yourself to derive the math of the right-inverse and
demonstrate it in code using Python. Exercise 8-4 has a few hints if you need them, or
you can try to figure it out now before continuing to the next section.

The Inverse Is Unique
The matrix inverse is unique, meaning that if a matrix has an inverse, it has exactly
one inverse. There cannot be two matrices B and C such that AB = I and AC = I
while B ≠ C.

There are several proofs of this claim. The one I’ll show relies on a technique called
proof by negation. That means that we try but fail to prove a false claim, thereby
proving the correct claim. In this case, we start with three assumptions: (1) matrix
A is invertible, (2) matrices B and C are inverses of A, and (3) matrices B and C
are distinct, meaning B ≠ C. Follow each expression from left to right, and notice
that each subsequent expression is based on adding or removing the identity matrix,
expressed as the matrix times its inverse:

C = CI = CAB = IB = B

All statements are equal, which means the first and final expressions are equal, which
means that our assumption of B ≠ C is false. The conclusion is that any two matrices
that claim to be the inverse of the same matrix are equal. In other words, an invertible
matrix has exactly one inverse.

Moore-Penrose Pseudoinverse
As I wrote earlier, it is simply impossible to transform a reduced-rank matrix into the
identity matrix via matrix multiplication. That means that reduced-rank matrices do
not have a full or a one-sided inverse. But singular matrices do have pseudoinverses.
Pseudoinverses are transformation matrices that bring a matrix close to the identity
matrix.

138 | Chapter 8: Matrix Inverse



The plural pseudoinverses was not a typo: although the full matrix inverse is unique,
the pseudoinverse is not unique. A reduced-rank matrix has an infinite number
of pseudoinverses. But some are better than others, and there is really only one
pseudoinverse worth discussing, because it is most likely the only one you’ll ever use.

That is called the Moore-Penrose pseudoinverse, sometimes abbreviated as the MP
pseudoinverse. But because this is by far the most commonly used pseudoinverse,
you can always assume that the term pseudoinverse refers to the Moore-Penrose
pseudoinverse.

The following matrix is the pseudoinverse of the singular matrix you saw earlier in
this chapter. The first line shows the pseudoinverse of the matrix, and the second line
shows the product of the matrix and its pseudoinverse:

1 4
2 8

†
= 1

85
1 2
4 8

1 4
2 8

1
85

1 2
4 8

=
.2 .4
.4 .8

(The scaling factor of 85 was extracted to facilitate visual inspection of the matrix.)

The pseudoinverse is indicated using a dagger, a plus sign, or an asterisk in the
superscript: A†, A+, or A*.

The pseudoinverse is implemented in Python using the function np.linalg.pinv.
The following code computes the pseudoinverse of the singular matrix for which
np.linalg.inv produced an error message:

A = np.array([ [1,4],[2,8] ])
Apinv = np.linalg.pinv(A)
A@Apinv

How is the pseudoinverse computed? The algorithm is either incomprehensible or
intuitive, depending on whether you understand the singular value decomposition. I
will explain the pseudoinverse computation briefly, but if you don’t understand it, then
please don’t worry: I promise it will be intuitive by the end of Chapter 13. To compute
the pseudoinverse, take the SVD of a matrix, invert the nonzero singular values without
changing the singular vectors, and reconstruct the matrix by multiplying UΣ+VT.

Numerical Stability of the Inverse
Computing the matrix inverse involves a lot of FLOPs (floating-point operations),
including many determinants. You learned in Chapter 6 that the determinant of a
matrix can be numerically unstable, and therefore computing many determinants can
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lead to numerical inaccuracies, which can accumulate and cause significant problems
when working with large matrices.

For this reason, the low-level libraries that implement numerical computations (for
example, LAPACK) generally strive to avoid explicitly inverting matrices when possi‐
ble, or they decompose matrices into the product of other matrices that are more
numerically stable (e.g., QR decomposition, which you will learn about in Chapter 9).

Matrices that have numerical values in roughly the same range tend to be more stable
(though this is not guaranteed), which is why random-numbers matrices are easy to
work with. But matrices with a large range of numerical values have a high risk of
numerical instability. The “range of numerical values” is more formally captured as the
condition number of a matrix, which is the ratio of the largest to smallest singular value.
You’ll learn more about condition number in Chapter 14; for now, suffice it to say that
the condition number is a measure of the spread of numerical values in a matrix.

An example of a numerically unstable matrix is a Hilbert matrix. Each element in a
Hilbert matrix is defined by the simple formula shown in Equation 8-1.

Equation 8-1. Formula to create a Hilbert matrix. i and j are row and column
indices.

ℎi, j = 1
i + j − 1

Here’s an example of a 3 × 3 Hilbert matrix:

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

As the matrix gets larger, the range of numerical values increases. As a consequence,
the computer-calculated Hilbert matrix quickly becomes rank-deficient. Even full-rank
Hilbert matrices have inverses in a very different numerical range. This is illustrated in
Figure 8-5, which shows a 5 × 5 Hilbert matrix, its inverse, and their product.
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Figure 8-5. A Hilbert matrix, its inverse, and their product

The product matrix certainly looks like the identity matrix, but in Exercise 8-9 you
will discover that looks can be deceiving, and rounding errors increase dramatically
with matrix size.

Geometric Interpretation of the Inverse
In Chapters 6 and 7, you learned how to conceptualize matrix-vector multiplication
as a geometric transformation of a vector or a set of points.

Following along these lines, we can think of the matrix inverse as undoing the
geometric transformation imposed by matrix multiplication. Figure 8-6 shows an
example that follows from Figure 7-8; I simply multiplied the transformed geometric
coordinates by the inverse of the transformation matrix.

Figure 8-6. The matrix inverse undoes a geometric transform. Code to produce this
figure is part of Exercise 8-8.
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2 There’s a witty analogy to Flatland somewhere here that I’m not quite able to eloquate. The point is: read the
book Flatland.

This geometric effect is unsurprising when inspecting the math. In the following
equations, P is the 2 × N  matrix of original geometric coordinates, T is the transfor‐
mation matrix, Q is the matrix of transformed coordinates, and U is the matrix of
back-transformed coordinates:

Q = TP

U = T−1Q

U = T−1TP

Although not a surprising result, I hope it helps build some geometric intuition
for the purpose of the matrix inverse: undoing the transform imposed by the matrix.
This interpretation will come in handy when you learn about diagonalizing a matrix
through eigendecomposition.

This geometric interpretation also provides some intuition for why a reduced-rank
matrix has no inverse: the geometric effect of transforming by a singular matrix is
that at least one dimension is flattened. Once a dimension is flattened, it cannot be
unflattened, just like you cannot see your back when facing a mirror.2

Summary
I really enjoyed writing this chapter, and I hope you enjoyed learning from it. Here is
a summary of the key take-home messages:

• The matrix inverse is a matrix that, through matrix multiplication, transforms a•
maximum-rank matrix into the identity matrix. The inverse has many purposes,
including moving matrices around in an equation (e.g., solve for x in Ax = b).

• A square full-rank matrix has a full inverse, a tall full column-rank matrix has a•
left-inverse, and a wide full row-rank matrix has a right-inverse. Reduced-rank
matrices cannot be linearly transformed into the identity matrix, but they do
have a pseudoinverse that transforms the matrix into another matrix that is closer
to the identity matrix.

• The inverse is unique—if a matrix can be linearly transformed into the identity•
matrix, there is only one way to do it.

• There are some tricks for computing the inverses of some kinds of matrices,•
including 2 × 2 and diagonal matrices. These shortcuts are simplifications of the
full formula for computing a matrix inverse.
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• Due to the risk of numerical precision errors, production-level algorithms try•
to avoid explicitly inverting matrices, or will decompose a matrix into other
matrices that can be inverted with greater numerical stability.

Code Exercises
Exercise 8-1.

The inverse of the inverse is the original matrix; in other words, A−1 −1
= A. This is

analgous to how 1/ 1/a = a. Illustrate this using Python.

Exercise 8-2.

Implement the full algorithm described in “Inverting Any Square Full-Rank Matrix”
on page 134 and reproduce Figure 8-3. Of course, your matrices will look different
from Figure 8-3 because of random numbers, although the grid and identity matrices
will be the same.

Exercise 8-3.

Implement the full-inverse algorithm by hand for a 2 × 2 matrix using matrix
elements a, b, c, and d. I don’t normally assign hand-solved problems in this book,
but this exercise will show you where the shortcut comes from. Remember that the
determinant of a scalar is its absolute value.

Exercise 8-4.

Derive the right-inverse for wide matrices by following the logic that allowed us to
discover the left-inverse. Then reproduce Figure 8-4 for a wide matrix. (Hint: start
from the code for the left-inverse and adjust as necessary.)

Exercise 8-5.

Illustrate in Python that the pseudoinverse (via np.linalg.pinv) equals the full
inverse (via np.linalg.inv) for an invertible matrix. Next, illustrate that the pseu‐
doinverse equals the left-inverse for a tall full column-rank matrix, and that it equals
the right-inverse for a wide full row-rank matrix.

Exercise 8-6.

The LIVE EVIL rule applies to the inverse of multiplied matrices. Test this in code
by creating two square full-rank matrices A and B, then use Euclidean distance to
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compare (1) AB −1, (2) A−1B−1, and (3) B−1A−1. Before starting to code, make a
prediction about which results will be equal. Print out your results using formatting
like the following (I’ve omitted my results so you won’t be biased!):

Distance between (AB)^-1 and (A^-1)(B^-1) is ___
Distance between (AB)^-1 and (B^-1)(A^-1) is ___

As an extra challenge, you can confirm that the LIVE EVIL rule applies to a longer
string of matrices, e.g., four matrices instead of two.

Exercise 8-7.

Does the LIVE EVIL rule also apply to the one-sided inverse? That is, does
TTT

−1
= T‐TT−1? As with the previous exercise, make a prediction and then test

it in Python.

Exercise 8-8.

Write code to reproduce Figure 8-6. Start by copying the code from Exercise 7-3.
After reproducing the figure, make the transformation matrix noninvertible by set‐
ting the lower-left element to 1. What else needs to be changed in the code to prevent
errors?

Exercise 8-9.

This and the next exercise will help you explore the matrix inverse and its risk of
numerical instability, using the Hilbert matrix. Start by creating a Hilbert matrix.
Write a Python function that takes an integer as input and produces a Hilbert matrix
as output, following Equation 8-1. Then reproduce Figure 8-5.

I recommend writing your Python function using a double for loop over the rows
and columns (i and j matrix indices), following the math formula. Once you con‐
firm that the function is accurate, you can optionally challenge yourself to rewrite
the function without any for loops (hint: outer product). You can confirm the
accuracy of your function by comparing it to the hilbert function, which is in the
scipy.linalg library.

Exercise 8-10.

Using your Hilbert matrix function, create a Hilbert matrix, then compute its inverse
using np.linalg.inv, and compute the product of the two matrices. That product
should equal the identity matrix, which means the Euclidean distance between that
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product and the true identity matrix produced by np.eye should be 0 (within com‐
puter rounding error). Compute that Euclidean distance.

Put this code into a for loop over a range of matrix sizes ranging from 3 × 3 to
12 × 12. For each matrix size, store the Euclidean distance and the condition number
of the Hilbert matrix. As I wrote earlier, the condition number is a measure of the
spread of numerical values in the matrix, and can be extracted using the function
np.linalg.cond.

Next, repeat the previous code, but using a Gaussian random-numbers matrix instead
of the Hilbert matrix.

Finally, plot all of the results as shown in Figure 8-7. I plotted the distance and
condition number in log scale to facilitate visual interpretation.

Figure 8-7. Results of Exercise 8-10

Please feel inspired to continue exploring linear algebra using this exercise! Try
plotting the Hilbert matrix times its inverse (consider adjusting the color scaling),
using larger matrices or different special matrices, extracting other properties of the
matrix like rank or norm, etc. You’re on an adventure in the wonderful land of linear
algebra, and Python is the magic carpet that whisks you across the landscape.
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CHAPTER 9

Orthogonal Matrices and QR Decomposition

You will learn five major decompositions in this book: orthogonal vector decomposi‐
tion, QR decomposition, LU decomposition, eigendecomposition, and singular value
decomposition. Those are not the only decompositions in linear algebra, but they are
the most important ones for data science and machine learning.

In this chapter, you will learn QR. And along the way, you’ll learn a new special type
of matrix (orthogonal). QR decomposition is a workhorse that powers applications
including the matrix inverse, least squares model fitting, and eigendecomposition.
Therefore, understanding and gaining familiarity with QR decomposition will help
you level up your linear algebra skills.

Orthogonal Matrices
I will begin by introducing you to orthogonal matrices. An orthogonal matrix is a
special matrix that is important for several decompositions, including QR, eigende‐
composition, and singular value decomposition. The letter Q is often used to indicate
orthogonal matrices. Orthogonal matrices have two properties:

Orthogonal columns
All columns are pair-wise orthogonal.

Unit-norm columns
The norm (geometric length) of each column is exactly 1.

We can translate those two properties into a mathematical expression (remember that
a,b  is an alternative notation for the dot product):

qi,qj =
0, if i ≠ j
1, if i = j
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1 This is further explored in Exercise 9-1.

What does that mean? It means that the dot product of a column with itself is 1 while
the dot product of a column with any other column is 0. That’s a lot of dot products
with only two possible outcomes. We can organize all of the dot products amongst
all pairs of columns by premultiplying the matrix by its transpose. Remember that
matrix multiplication is defined as dot products between all rows of the left matrix
with all columns of the right matrix; therefore, the rows of QT are the columns of Q.

The matrix equation expressing the two key properties of an orthogonal matrix is
simply marvelous:

QTQ = I

The expression QTQ = I is amazing. Really, it’s a big deal.

Why is it a big deal? Because QT is a matrix that multiplies Q to produce the identity
matrix. That’s the exact same definition as the matrix inverse. Thus, the inverse of
an orthogonal matrix is its transpose. That’s crazy cool, because the matrix inverse is
tedious and prone to numerical inaccuracies, whereas the matrix transpose is fast and
accurate.

Do such matrices really exist in the wild, or are they mere figments of a data scientist’s
imagination? Yes, they really do exist. In fact, the identity matrix is an example of an
orthogonal matrix. Here are another two:

1
2

1 −1
1 1

, 1
3

1 2 2
2 1 −2

−2 2 −1

Please take a moment to confirm that each column has unit length and is orthogonal
to other columns. Then we can confirm in Python:

Q1 = np.array([ [1,-1],[1,1] ]) / np.sqrt(2)
Q2 = np.array([ [1,2,2],[2,1,-2],[-2,2,-1] ]) / 3

print( Q1.T @ Q1 )
print( Q2.T @ Q2 )

Both outputs are the identity matrix (within rounding errors on the order of 10−15).
What happens if you compute QQT? Is that still the identity matrix? Try it to find out!1

Another example of an orthogonal matrix is the pure rotation matrices that you
learned about in Chapter 7. You can go back to that code and confirm that the
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2 The first column vector is not orthogonalized because there are no preceeding vectors; therefore, you begin
with the following normalization step.

transformation matrix times its transpose is the identity matrix, regardless of the
rotation angle (as long as the same rotation angle is used in all matrix elements).
Permutation matrices are also orthogonal. Permutation matrices are used to exchange
rows of a matrix; you’ll learn about them in the discussion of LU decomposition in
the next chapter.

How do you create such majestic marvels of mathematics? An orthogonal matrix can
be computed from a nonorthogonal matrix via QR decomposition, which is basically
a sophisticated version of Gram-Schmidt. And how does Gram-Schmidt work? That’s
basically the orthogonal vector decomposition that you learned about in Chapter 2.

Gram-Schmidt
The Gram-Schmidt procedure is a way to transform a nonorthogonal matrix into an
orthogonal matrix. Gram-Schmidt has high educational value, but unfortunately very
little application value. The reason is that—as you’ve now read several times before—
there are numerical instabilities resulting from many divisions and multiplications
by tiny numbers. Fortunately, there are more sophisticated and numerically stable
methods for QR decomposition, such as Householder reflections. The details of that
algorithm are outside the scope of this book, but they are handled by low-level
numerical computation libraries that Python calls.

Nevertheless, I’m going to describe the Gram-Schmidt procedure (sometimes abbre‐
viated to GS or G-S) because it shows an application of orthogonal vector decompo‐
sition, because you are going to program the algorithm in Python based on the
following math and description, and because GS is the right way to conceptualize
how and why QR decomposition works even if the low-level implementation is
slightly different.

A matrix V comprising columns v1 through vn is transformed into an orthogonal
matrix Q with columns qk according to the following algorithm.

For all column vectors in V starting from the first (leftmost) and moving systemati‐
cally to the last (rightmost):

1. Orthogonalize vk to all previous columns in matrix Q using orthogonal vector1.
decomposition. That is, compute the component of vk that is perpendicular to
qk − 1, qk − 2, and so on down to q1. The orthogonalized vector is called vk*.2

2. Normalize vk* to unit length. This is now qk, the kth column in matrix Q.2.
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3 Recovering R through matrix multiplication is possible because GS is a series of linear transformations.

Sounds simple, doesn’t it? Implementing this algorithm in code can be tricky because
of the repeated orthogonalizations. But with some perseverence, you can figure it out
(Exercise 9-2).

QR Decomposition
The GS procedure transforms a matrix into an orthogonal matrix Q. (As I wrote in
the previous section, Q is actually obtained using a series of vector-plane reflections
known as the Householder transformation, but that’s due to numerical issues; GS is a
great way to conceptualize how Q matrices are formed.)

What’s in a Sound?

The “QR” in QR decomposition is pronounced “queue are.” In my
opinion, that’s a real missed opportunity; linear algebra would be
more fun to learn if we pronounced it “QweRty decomposition.”
Or maybe we could have pronounced it “core decomposition” to
appeal to the fitness crowd. But, for better and for worse, modern
conventions are shaped by historical precedent.

Q is obviously different from the original matrix (assuming the original matrix
was not orthogonal). So we have lost information about that matrix. Fortunately,
that “lost” information can be easily retrieved and stored in another matrix R that
multiplies Q.3 That leads to the question of how we create R. In fact, creating R is
straightforward and comes right from the definition of QR:

A = QR

QTA = QTQR

QTA = R

Here you see the beauty of orthogonal matrices: we can solve matrix equations
without having to worry about computing the inverse.

The following Python code shows how to compute QR decomposition of a square
matrix, and Figure 9-1 illustrates the three matrices:

A = np.random.randn(6,6)
Q,R = np.linalg.qr(A)
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Figure 9-1. QR decomposition of a random-numbers matrix

Several important features of QR decomposition are visible in Figure 9-1, including
that A = QR (their difference is the zeros matrix) and that Q times its transpose gives
the identity matrix.

Check out the R matrix: it’s upper-triangular (all elements below the diagonal are
zero). That seems unlikely to have occurred by chance, considering we started from a
random matrix. In fact, the R matrix is always upper-triangular. To understand why,
you need to think about the GS algorithm and the organization of the dot products
in matrix multiplication. I will explain why R is upper-triangular in the next section;
before then, I want you to come up with an answer.

Sizes of Q and R
The sizes of Q and R depend on the size of the to-be-decomposed matrix A and on
whether the QR decomposition is “economy” (also called “reduced”) or “full” (also
called “complete”). Figure 9-2 shows an overview of all possible sizes.

Economy versus full QR decomposition applies only to tall matrices. The question
is this: for a tall matrix (M > N), do we create a Q matrix with N columns or M
columns? The former option is called economy or reduced, and gives a tall Q; and the
latter option is called full or complete, and gives a square Q.
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Figure 9-2. Sizes of Q and R depending on the size of A. The “?” indicates that the
matrix elements depend on the values in A, i.e., it is not the identity matrix.

It may seem surprising that Q can be square when A is tall (in other words, that Q can
have more columns than A): where do the extra columns come from? It is, in fact,
possible to craft orthogonal vectors “out of thin air.” Consider the following example
in Python:

A = np.array([ [1,-1] ]).T
Q,R = np.linalg.qr(A,'complete')
Q*np.sqrt(2) # scaled by sqrt(2) to get integers

>> array([[-1.,  1.],
          [ 1.,  1.]])

Notice the optional second input 'complete', which produces a full QR decomposi‐
tion. Setting that to 'reduced', which is the default, gives the economy-mode QR
decomposition, in which Q is the same size as A.

Because it is possible to craft more than M > N orthogonal vectors from a matrix
with N columns, the rank of Q is always the maximum possible rank, which is M for
all square Q matrices and N for the economy Q. The rank of R is the same as the
rank of A.
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The difference in rank between Q and A resulting from orthogonalization means that
Q spans all of ℝM  even if the column space of A is only a lower-dimensional subspace
of ℝM . That fact is central to why the singular value decomposition is so useful for
revealing properties of a matrix, including its rank and null space. Yet another reason
to look forward to learning about the SVD in Chapter 14!

A note about uniqueness: QR decomposition is not unique for all matrix sizes
and ranks. This means that it is possible to obtain A = Q1R1 and A = Q2R2 where
Q1 ≠ Q2. However, all QR decomposition results have the same properties described
in this section. QR decomposition can be made unique given additional constraints
(e.g., positive values on the diagonals of R), although this is not necessary in most
cases, and is not implemented in Python or MATLAB. You’ll see this nonuniqueness
when comparing GS to QR in Exercise 9-2.

Why R is upper triangular
I hope you gave this question some serious thought. It’s a tricky point about QR
decomposition, so if you couldn’t figure it out on your own, then please read the
following few paragraphs, and then look away from the book/screen and rederive the
argument.

I will start by reminding you of three facts:

• R comes from the formula QTA = R.•
• The lower triangle of a product matrix comprises dot products between later•

rows of the left matrix and earlier columns of the right matrix.

• The rows of QT are the columns of Q.•

Putting those together: because orthogonalization works column-wise from left to
right, later columns in Q are orthogonalized to earlier columns of A. Therefore, the
lower triangle of R comes from pairs of vectors that have been orthogonalized. In
contrast, earlier columns in Q are not orthogonalized to later columns of A, so we
would not expect their dot products to be zero.

Final comment: if columns i and j of A were already orthogonal, then the corre‐
sponding (i,j)th element in R would be zero. In fact, if you compute the QR decom‐
position of an orthogonal matrix, then R will be a diagonal matrix in which the
diagonal elements are the norms of each column in A. That means that if A = Q, then
R = I, which is obvious from the equation solved for R. You’ll get to explore this in
Exercise 9-3.
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QR and Inverses
QR decomposition provides a more numerically stable way to compute the matrix
inverse.

Let’s start by writing out the QR decomposition formula and inverting both sides of
the equation (note the application of the LIVE EVIL rule):

A = QR

A−1 = QR
−1

A−1 = R−1Q−1

A−1 = R−1QT

Thus, we can obtain the inverse of A as the inverse of R times the transpose of Q. Q is
numerically stable due to the Householder reflection algorithm, and R is numerically
stable because it simply results from matrix multiplication.

Now, we still need to invert R explicitly, but inverting triangular matrices is highly
numerically stable when done through a procedure called back substitution. You’ll
learn more about that in the next chapter, but the key point is this: an important
application of QR decomposition is providing a more numerically stable way to invert
matrices, compared to the algorithm presented in the previous chapter.

On the other hand, keep in mind that matrices that are theoretically invertible but
are close to singular are still very difficult to invert; QR decomposition may be more
numerically stable than the traditional algorithm presented in the previous chapter,
but that doesn’t guarantee a high-quality inverse. A rotten apple dipped in honey is
still rotten.

Summary
QR decomposition is great. It’s definitely on my list of the top five awesomest
matrix decompositions in linear algebra. Here are the key take-home messages of
this chapter:

• An orthogonal matrix has columns that are pair-wise orthogonal and with norm•
= 1. Orthogonal matrices are key to several matrix decompositions, including
QR, eigendecomposition, and singular value decomposition. Orthogonal matri‐
ces are also important in geometry and computer graphics (e.g., pure rotation
matrices).

• You can transform a nonorthogonal matrix into an orthogonal matrix via•
the Gram-Schmidt procedure, which involves applying orthogonal vector
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4 Take your time with this exercise; it’s quite challenging.

decomposition to isolate the component of each column that is orthogonal to
all previous columns (“previous” meaning left to right).

• QR decomposition is the result of Gram-Schmidt (technically, it is implemented•
by a more stable algorithm, but GS is still the right way to understand it).

Code Exercises
Exercise 9-1.

A square Q has the following equalities:

QTQ = QQT = Q‐1Q = QQ‐1 = I

Demonstrate this in code by computing Q from a random-numbers matrix, then
compute QT and Q−1. Then show that all four expressions produce the identity matrix.

Exercise 9-2.

Implement the Gram-Schmidt procedure as described earlier.4 Use a 4 × 4 random-
numbers matrix. Check your answer against Q from np.linalg.qr.

Important: there is a fundamental sign uncertainty in transformations like the
Householder reflection. This means that vectors can “flip” (be multiplied by −1)
depending on minor differences in algorithm and implementation. This feature exists
in many matrix decompositions including eigenvectors. I have a longer and more
in-depth discussion of why this is and what it means in Chapter 13. For now, the
upshot is this: subtract your Q from Python’s Q and add your Q and Python’s Q.
Nonzero columns in one will be zeros in the other.

Exercise 9-3.

In this exercise, you will find out what happens when you apply QR decomposition
to a matrix that is almost-but-not-quite orthogonal. First, create an orthogonal matrix,
called U, from the QR decomposition of a 6 × 6 random-numbers matrix. Compute
the QR decomposition of U, and confirm that R = I (and make sure you understand
why!).

Second, modify the norms of each column of U. Set the norms of columns 1–6 to be
10–15 (that is, the first column of U should have a norm of 10, the second column
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should have a norm of 11, and so on). Run that modulated U matrix through QR
decomposition and confirm that its R is a diagonal matrix with diagonal elements
equaling 10–15. What is QTQ for this matrix?

Third, break the orthogonality of U by setting element u1, 4 = 0. What happens to R
and why?

Exercise 9-4.

The purpose of this exercise is to compare the numerical errors using the “old-school”
inverse method you learned in the previous chapter to the QR-based inverse method.
We will use random-numbers matrices, keeping in mind that they tend to be numeri‐
cally stable and thus have accurate inverses.

Here’s what to do: copy the code from Exercise 8-2 into a Python function that takes a
matrix as input and provides its inverse as output. (You can also include a check that
the input matrix is square and full-rank.) I called this function oldSchoolInv. Next,
create a 5 × 5 random-numbers matrix. Compute its inverse using the old-school
method and the QR decomposition method introduced in this chapter (you can use
your “old-school method” to compute R−1). Compute the inverse-estimation error as
the Euclidean distance from the matrix times its inverse to the true identity matrix
from np.eye. Make a barplot of the results, showing the two methods on the x-axis
and the error (Euclidean distance to I) on the y-axis, as in Figure 9-3.

Figure 9-3. Results of Exercise 9-4

Run the code multiple times and inspect the barplot. You’ll find that sometimes
the old-school method is better while other times the QR method is better (smaller
numbers are better; in theory, the bars should have zero height). Try it again using

156 | Chapter 9: Orthogonal Matrices and QR Decomposition



a 30 × 30 matrix. Are the results more consistent? In fact, there is a lot of variance
from run to run. This means we should run an experiment where we repeat the
comparison many times. That’s the next exercise.

Exercise 9-5.

Put the code from the previous exercise into a for loop over a hundred iterations
in which you repeat the experiment, each time using a different random-numbers
matrix. Store the error (Euclidean distance) for each iteration, and make a plot like
Figure 9-4, which shows the average over all experiment runs (gray bar) and all
individual errors (black dots). Run the experiment for 5 × 5 and 30 × 30 matrices.

You can also try using np.linalg.inv to invert R instead of the old-school method to
see if that has an effect.

Figure 9-4. Results of Exercise 9-5. Note the difference in y-axis scaling between the left
and right panels.

Exercise 9-6.

An interesting property of square orthogonal matrices is that all of their singular
values (and their eigenvalues) are 1. That means that they have an induced 2-norm of
1 (the induced norm is the largest singular value), and they have a Frobenius norm of
M. The latter result is because the Frobenius norm equals the square root of the sum
of the squared singular values. In this exercise, you will confirm these properties.

Create an M ×M  orthogonal matrix as the QR decomposition of a random matrix.
Compute its induced 2-norm using np.linalg.norm and compute its Frobenius
norm using the equation you learned in Chapter 6, divided by the square root of
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5 Hint: write down the dot-product formula for the vector norm.

M. Confirm that both quantities are 1 (to within a reasonable tolerance of rounding
error). Check using several different values of M.

Next, explore the meaning of the induced norm using matrix-vector multiplication.
Create a random M-element column vector v. Then compute the norms of v and
Qv. Those norms should equal each other (although you wouldn’t expect them to
equal 1).

Finally, get a piece of paper and develop a proof of that empirical demonstration.
That proof is printed in the next paragraph, so don’t look down! But you can check
the footnote if you need a hint.5

I sincerely hope you are reading this to check your reasoning, not because you are
cheating! Anyway, the proof is that the vector norm ∥ v ∥ can be computed as vTv;
therefore, the vector norm ∥ Qv ∥ is computed as Qv T

Qv = vTQTQv. The QTQ
cancels to give the identity matrix, leaving the dot product of the vector with itself.
The conclusion is that orthogonal matrices can rotate but never scale a vector.

Exercise 9-7.

This exercise will highlight one feature of the R matrix that is relevant for under‐
standing how to use QR to implement least squares (Chapter 12): when A is tall
and full column-rank, the first N rows of R are upper-triangular, whereas rows N
+ 1 through M are zeros. Confirm this in Python using a random 10 × 4 matrix.
Make sure to use the complete (full) QR decomposition, not the economy (compact)
decomposition.

Of course, R is noninvertible because it is nonsquare. But (1) the submatrix compris‐
ing the first N rows is square and full-rank (when A is full column-rank) and thus
has a full inverse, and (2) the tall R has a pseudoinverse. Compute both inverses, and
confirm that the full inverse of the first N rows of R equals the first N columns of the
pseudoinverse of the tall R.
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CHAPTER 10

Row Reduction and LU Decomposition

Now we move to LU decomposition. LU, like QR, is one of the computational back‐
bones underlying data-science algorithms, including least squares model fitting and
the matrix inverse. This chapter is, therefore, pivotal to your linear algebra education.

The thing about LU decomposition is you cannot simply learn it immediately.
Instead, you first need to learn about systems of equations, row reduction, and
Gaussian elimination. And in the course of learning those topics, you’ll also learn
about echelon matrices and permutation matrices. Oh yes, dear reader, this will be an
exciting and action-packed chapter.

Systems of Equations
To understand LU decomposition and its applications, you need to understand row
reduction and Gaussian elimination. And to understand those topics, you need to
understand how to manipulate equations, convert them into a matrix equation, and
solve that matrix equation using row reduction.

Let’s start with a “system” of one equation:

2x = 8

As I’m sure you learned in school, you can do various mathematical manipulations to
the equation—as long as you do the same thing to both sides of the equation. That
means that the following equation is not the same as the previous one, but they are
related to each other by simple manipulations. More importantly, any solution to one
equation is a solution to the other:

5 2x − 3 = 5 8 − 3
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Now let’s move to a system of two equations:

x = 4 − y
y = x/2 + 2

In this system of equations, it is impossible to solve for unique values of x and y
from either of those equations alone. Instead, you need to consider both equations
simultaneously to derive the solution. If you try to solve that system now, you would
probably take the strategy of substituting y in the first equation with the right-hand
side of the second equation. After solving for x in the first equation, you plug that
value into the second equation to solve for y. This strategy is similar to (though not as
efficient as) back substitution, which I’ll define later.

An important feature of a system of equations is that you can add or subtract
individual equations to each other. In the following equations, I’ve added two times
the second equation to the first, and subtracted the first original equation from the
second (parentheses added for clarity):

x + 2y = 4 − y + x + 4
y − x = x/2 + 2 − 4 − y

I will let you work through the arithmetic, but the upshot is that x drops out of the
first equation while y drops out of the second equation. That makes the solution
much easier to calculate (x = 4/3, y = 8/3). Here’s the important point: scalar multiply‐
ing equations and adding them to other equations made the solution to the system
easier to find. Again, the modulated and original systems are not the same equations,
but their solutions are the same because the two systems are linked by a series of
linear operations.

This is the background knowledge you need to learn how to solve systems of equa‐
tions using linear algebra. But before learning that approach, you need to learn how
to represet a system of equations using matrices and vectors.

Converting Equations into Matrices
Converting systems of equations into a matrix-vector equation is used to solve sys‐
tems of equations, and it’s used to set up the formula for the general linear model in
statistics. Fortunately, translating equations into matrices is conceptually simple, and
involves two steps.

First, organize the equations so that the constants are on the right-hand side of the
equations. The constants are the numbers that are unattached to the variables (some‐
times called intercepts or offsets). The variables and their multiplying coefficients are
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on the left-hand side of the equation, in the same order (e.g., all equations should
have the x term first, then the y term, and so on). The following equations form the
system of equations we’ve been working with, in the proper organization:

x + y = 4
−x/2 + y = 2

Second, separate the coefficients (the numbers multiplying the variables; variables
that are missing from an equation have a coefficient of zero) into a matrix with one
row per equation. The variables are placed into a column vector that right-multiplies
the coefficients matrix. And the constants are placed into a column vector on the
right-hand side of the equation. Our example system has a matrix equation that looks
like this:

1 1
−1/2 1

x

y
=

4
2

And voilà! You’ve converted a system of equations into one matrix equation. We can
refer to this equation as Ax = b, where A is the matrix of coefficients, x is a vector of
unknown variables to solve for (in this case, x is the vector comprising [x y]), and b is
a vector of constants.

Please take a moment to make sure you understand how the matrix equation maps
onto the system of equations. In particular, work through the matrix-vector multipli‐
cation to demonstrate that it equals the original system of equations.

Working with Matrix Equations
You can manipulate matrix equations just like normal equations, including adding,
multiplying, transposing, etc., as long as the manipulations are valid (e.g., matrix
sizes match for addition) and all manipulations affect both sides of the equation. For
example, the following progression of equations is valid:

Ax = b
v + Ax = v + b

v + Ax T = v + b T

The main difference between working with matrix equations versus scalar equations
is that because matrix multiplication is side-dependent, you must multiply matrices in
the same way on both sides of the equation.

Systems of Equations | 161



1 Of course you know that order matters, but empirical demonstrations help build intuition. And I want you to
get in the habit of using Python as a tool to empirically confirm principles in mathematics.

For example, the following progression of equations is valid:

AX = B
CAX = CB

Notice that C premultiplies both sides of the equation. In contrast, the following
progression is not valid:

AX = B
AXC = CB

The problem here is that C postmultiplies in the left-hand side but premultiplies
in the right-hand side. To be sure, there will be a few exceptional cases where that
equation is valid (e.g., if C is the identity or zeros matrix), but in general that
progression is not valid.

Let’s see an example in Python. We will solve for the unknown matrix X in the
equation AX = B. The following code generates A and B from random numbers. You
already know that we can solve for X by using A−1. The question is whether the order
of multiplication matters.1

A = np.random.randn(4,4)
B = np.random.randn(4,4)

# solve for X
X1 = np.linalg.inv(A) @ B
X2 = B @ np.linalg.inv(A)

# residual (should be zeros matrix)
res1 = A@X1 - B
res2 = A@X2 - B

If matrix multiplication were commutative (meaning that the order doesn’t matter),
then res1 and res2 should both equal the zeros matrix. Let’s see:

res1:

[[-0.  0.  0.  0.]
 [-0. -0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0. -0. -0.]]

res2:
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[[-0.47851507  6.24882633  4.39977191  1.80312482]
 [ 2.47389146  2.56857366  1.58116135 -0.52646367]
 [-2.12244448 -0.20807188  0.2824044  -0.91822892]
 [-3.61085707 -3.80132548 -3.47900644 -2.372463  ]]

Now you know how to express a system of equations using one matrix equation.
I’m going to get back to this in a few sections; first, I need to teach you about row
reduction and the echelon form of a matrix.

Row Reduction
Row reduction is a topic that gets a lot of attention in traditional linear algebra,
because it is the time-honored way to solve systems of equations by hand. I seriously
doubt you’ll solve any systems of equations by hand in your career as a data scientist.
But row reduction is useful to know about, and it leads directly to LU decomposition,
which actually is used in applied linear algebra. So let’s begin.

Row reduction means iteratively applying two operations—scalar multiplication and
addition—to rows of a matrix. Row reduction relies on the same principle as adding
equations to other equations within a system.

Memorize this statement: The goal of row reduction is to transform a dense matrix into
an upper-triangular matrix.

Let’s start with a simple example. In the following dense matrix, we add the first row
to the second row, which knocks out the −2. And with that, we’ve transformed our
dense matrix into an upper-triangular matrix:

2 3
−2 2

R1 + R2
2 3
0 5

The upper-triangular matrix that results from row reduction is called the echelon
form of the matrix.

Formally, a matrix is in echelon form if (1) the leftmost nonzero number in a row
(which is called the pivot) is to the right of the pivot of rows above, and (2) any rows
of all zeros are below rows containing nonzeros.

Similar to manipulating equations in a system, the matrix after row reduction is
different from the matrix before row reduction. But the two matrices are linked by a
linear transform. And because linear transforms can be represented by matrices, we
can use matrix multiplication to express row reduction:

1 0
1 1

2 3
−2 2

=
2 3
0 5
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2 Spoiler alert: LU decomposition involves representing a matrix as the product of a lower-triangular and an
upper-triangular matrix.

I will call that matrix L−1 for reasons that will become clear when I introduce LU
decomposition.2 Thus, in the expression L−1A = U , L−1 is the linear transformation
that keeps track of the manipulations we’ve implemented through row reduction. For
now, you don’t need to focus on L−1—in fact, it’s often ignored during Gaussian elimi‐
nation. But the key point (slightly expanded from an earlier claim) is this: row reduction
involves transforming a matrix into an upper-triangular matrix via row manipulations,
which can be implemented as premultiplication by a transformation matrix.

Here’s another example of a 3 × 3 matrix. This matrix requires two steps to transform
into its echelon form:

1 2 2
−1 3 0

2 4 −3
−2R1 + R3

1 2 2
−1 3 0

0 0 −7

R1 + R2
1 2 2
0 5 2
0 0 −7

Row reduction is tedious (see “Is Row Reduction Always So Easy?”). Surely there
must be a Python function to do it for us! Well, there is and there isn’t. There is no
Python function that returns an echelon form like what I created in the two previous
examples. The reason is that the echelon form of a matrix is not unique. For example,
in the previous 3 × 3 matrix, you could multiply the second row by 2 to give a row
vector of [0 10 4]. That creates a perfectly valid—but different—echelon form of
the same original matrix. Indeed, there is an infinite number of echelon matrices
associated with that matrix.

That said, two echelon forms of a matrix are preferred over the infinite possible
echelon forms. Those two forms are unique given some constraints and are called the
reduced row echelon form and U from LU decomposition. I will introduce both later;
first, it’s time to learn how to use row reduction to solve systems of equations.

Is Row Reduction Always So Easy?
Row reducing a matrix to its echelon form is a skill that requires diligent practice
and learning several tricks with cool-sounding names like row swapping and partial
pivoting. Row reduction reveals several interesting properties of the row and column
spaces of the matrix. And although successfully row reducing a 5 × 6 matrix with row
swaps by hand brings a feeling of accomplishment and satisfaction, my opinion is that
your time is better spent on concepts in linear algebra that have more direct applica‐
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3 Please conjure into your imagination that Matrix meme with Morpheus proffering the red and blue pill,
corresponding to new knowledge versus sticking to what you know.

tion to data science. We are building toward understanding LU decomposition, and
this brief introduction to row reduction is sufficient for that goal.

Gaussian Elimination
At this point in the book, you know how to solve matrix equations using the matrix
inverse. What if I told you that you could solve a matrix equation without inverting
any matrices?3

This technique is called Gaussian elimination. Despite its name, the algorithm was
actually developed by Chinese mathematicians nearly two thousand years before
Gauss and then rediscovered by Newton hundreds of years before Gauss. But Gauss
made important contributions to the method, including the techniques that modern
computers implement.

Gaussian elimination is simple: augment the matrix of coefficients by the vector of
constants, row reduce to echelon form, and then use back substitution to solve for
each variable in turn.

Let’s start with the system of two equations that we solved earlier:

x = 4 − y
y = x/2 + 2

The first step is to convert this system of equations into a matrix equation. We’ve
already worked through this step; that equation is printed here as a reminder:

1 1
−1/2 1

x

y
=

4
2

Next, we augment the coefficients matrix with the constants vector:

1 1 4
−1/2 1 2

Then we row reduce that augmented matrix. Note that the column vector of con‐
stants will change during row reduction:
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1 1 4
−1/2 1 2

1/2R1 + R2
1 1 4
0 3/2 4

Once we have the matrix in its echelon form, we translate the augmented matrix back
into a system of equations. That looks like this:

x + y = 4
3/2y = 4

Gaussian elimination via row reduction removed the x term in the second equation,
which means that solving for y merely involves some arithmetic. Once you solve for
y = 8/3, plug that value into y in the first equation and solve for x. This procedure is
called back substitution.

In the previous section, I wrote that Python does not have a function to compute
the echelon form of a matrix because it is not unique. And then I wrote that there is
one unique echelon matrix, called the reduced row echelon form and often abbreviated
RREF, which Python will compute. Keep reading to learn more…

Gauss-Jordan Elimination
Let’s keep row reducing our example matrix with the goal of turning all the pivots
—the leftmost nonzero numbers in each row—into 1s. Once you have the echelon
matrix, you simply divide each row by its pivot. In this example, the first row already
has a 1 in the leftmost position, so we just need to adjust the second row. That gives
us the following matrix:

1 1 4
0 1 8/3

And now for the trick: we continue row reducing upward to eliminate all the elements
above each pivot. In other words, we want an echelon matrix in which each pivot is 1
and it’s the only nonzero number in its column.

1 1 4
0 1 8/3

−R2 + R1 1 0 4/3
0 1 8/3

That’s the RREF of our original matrix. You can see the identity matrix on the left
—RREF will always produce an identity matrix as a submatrix in the upper-left of
the original matrix. That’s a result of setting all pivots to 1 and using upward row
reduction to eliminate all elements above each pivot.
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Now we continue with Gaussian elimination by translating the matrix back into a
system of equations:

x = 4/3
y = 8/3

We no longer need back substitution, or even basic arithmetic: the modified Gaussian
elimination—which is called Gauss-Jordan elimination—decoupled the interwoven
variables in the system of equations, and laid bare the solutions to each variable.

Gauss-Jordan elimination was how people solved systems of equations by hand for
over a century before computers came along to help us with the number crunching.
In fact, computers still implement this exact same method, with only a few small
modifications to ensure numerical stability.

The RREF is unique, meaning that a matrix has exactly one associated RREF. NumPy
does not have a function to compute the RREF of a matrix, but the sympy library
does (sympy is the symbolic math library in Python and is a powerful engine for
“chalkboard math”):

import sympy as sym

# the matrix converted to sympy
M = np.array([ [1,1,4],[-1/2,1,2] ])
symMat = sym.Matrix(M)

# RREF
symMat.rref()[0]

>>
  [[1, 0, 1.33333333333333],
   [0, 1, 2.66666666666667]]

Matrix Inverse via Gauss-Jordan Elimination
The key insight from Gauss-Jordan elimination is that row reduction produces a
sequence of row manipulations that solves a set of equations. Those row manipula‐
tions are linear transformations.

Curiously, the description of Gauss-Jordan elimination is consistent with the descrip‐
tion of the matrix inverse: a linear transformation that solves a set of equations. But
wait, what “system of equations” does the matrix inverse solve? A fresh perspective on
the matrix inverse will provide some new insights. Consider this system of equations:

ax1 + by1 = 1
cx1 + dy1 = 0
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Translated into a matrix equation, we get:

a b

c d

x1

y1
=

1
0

Check out that constants vector—it is the first column of the 2 × 2 identity matrix!
That means that applying RREF to a square full-rank matrix augmented by the first
column of the identity matrix will reveal the linear transformation that brings the
matrix into the first column of the identity matrix. And that in turn means that the
vector [x1 y1]T is the first column of the matrix inverse.

We then repeat the procedure but solving for the second column of the inverse:

ax2 + by2 = 0
cx2 + dy2 = 1

RREF on that system gives the vector [x2 y2]T, which is the second column of the
matrix inverse.

I’ve separated the columns of the identity matrix to link back to the perspective of
solving systems of equations. But we can augment the entire identity matrix and solve
for the inverse with one RREF.

Here is the bird’s-eye view of obtaining the matrix inverse via Gauss-Jordan elimina‐
tion (the square brackets indicate augmented matrices with the vertical line separat‐
ing the two constituent matrices):

rref A I I A−1

This is interesting because it provides a mechanism for computing the matrix inverse
without computing determinants. On the other hand, row reduction does involve a
lot of division, which increases the risk of numerical precision errors. For example,
imagine we have two numbers that are essentially zero plus rounding error. If we
end up dividing those numbers during RREF, we could get the fraction 10−15/10−16,
which is really 0/0 but the answer will be 10.

The conclusion here is similar to what I discussed in the previous chapter about using
QR to compute the matrix inverse: using Gauss-Jordan elimination to compute the
matrix inverse is likely to be more numerically stable than the full algorithm for the
inverse, but a matrix that is close to singular or that has a high condition number is
difficult to invert, regardless of the algorithm used.
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LU Decomposition
The “LU” in LU decomposition stands for “lower upper,” as in lower-triangular, upper-
triangular. The idea is to decompose a matrix into the product of two triangular
matrices:

A = LU

Here’s a numerical example:

2 2 4
1 0 3
2 1 2

=
1 0 0

1/2 1 0
1 1 1

2 2 4
0 −1 1
0 0 −3

And here’s the corresponding Python code (note that the function for LU decomposi‐
tion is in the SciPy library):

import scipy.linalg # LU in scipy library
A = np.array([ [2,2,4], [1,0,3], [2,1,2] ])
_,L,U = scipy.linalg.lu(A)

# print them out
print('L: '), print(L)
print('U: '), print(U)

L:
[[1.  0.  0. ]
 [0.5 1.  0. ]
 [1.  1.  1. ]]

U:
[[ 2.  2.  4.]
 [ 0. -1.  1.]
 [ 0.  0. -3.]]

Where do these two matrices come from? In fact, you already know the answer:
row reduction can be expressed as L−1A = U, where L−1 contains the set of row
manipulations that transforms the dense A into upper-triangular (echelon) U.

Because the echelon form is not unique, LU decomposition is not necessarily unique.
That is, there is an infinite pairing of lower- and upper-triangular matrices that could
multiply to produce matrix A. However, adding the constraint that the diagonals of
L equal 1 ensures that LU decomposition is unique for a full-rank square matrix A
(you can see this in the previous example). The uniqueness of LU decompositions
of reduced-rank and nonsquare matrices is a longer discussion that I will omit here;
however, SciPy’s LU decomposition algorithm is determinstic, meaning that repeated
LU decompositions of a given matrix will be identical.
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Row Swaps via Permutation Matrices
Some matrices do not easily transform into an upper-triangular form. Consider the
following matrix:

3 2 1
0 0 5
0 7 2

It’s not in echelon form, but it would be if we swapped the second and third rows.
Row swaps are one of the tricks of row reduction, and are implemented through a
permutation matrix:

1 0 0
0 0 1
0 1 0

3 2 1
0 0 5
0 7 2

=
3 2 1
0 7 2
0 0 5

Permutation matrices are often labeled P. Thus, the full LU decomposition actually
takes the following form:

PA = LU

A = PTLU

Remarkably, permutation matrices are orthogonal, and so P−1 = PT. Briefly, the
reason is that all elements of a permutation matrix are either 0 or 1, and because
rows are swapped only once, each column has exactly one nonzero element (indeed,
all permutation matrices are identity matrices with row swaps). Therefore, the dot
product of any two columns is 0 while the dot product of a column with itself is 1,
meaning PTP = I.

Important: the formulas I wrote above provide the mathematical description of
LU decomposition. Scipy actually returns A = PLU, which we could also write as
PTA = LU. Exercise 10-4 provides the opportunity to explore this point of confusion.

Figure 10-1 shows an example of LU decomposition applied to a random matrix.
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Figure 10-1. Visualization of LU decomposition

LU decomposition is used in several applications, including computing the determi‐
nant and the matrix inverse. In the next chapter, you’ll see how LU decomposition is
used in the least squares computation.

Summary
I opened this chapter by promising an action-packed educational adventure. I hope
you experienced several adrenaline rushes while learning new perspectives on alge‐
braic equations, matrix decompositions, and the matrix inverse. Here are the key
take-home messages of this chapter:

• Systems of equations can be translated into a matrix equation. In addition to•
providing a compact representation, this allows for sophisticated linear algebra
solutions to solving systems of equations.

• When working with matrix equations, remember that manipulations must be•
applied to both sides of the equation, and remember that matrix multiplication is
noncommutative.

• Row reduction is a procedure in which the rows of matrix A are scalar multiplied•
and added, until the matrix is linearly transformed into an upper-triangular
matrix U. The set of linear transformations can be stored in another matrix L−1

that left-multiplies A to produce the expression L−1A = U.
• Row reduction has been used for centuries to solve systems of equations, includ‐•

ing the matrix inverse, by hand. We still use row reduction, although computers
take care of the arithmetic.

• Row reduction is also used to implement LU decomposition. LU decomposition•
is unique under some constraints, which are incorporated into the lu() function
in SciPy.
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4 These are among the myriad aspects of linear algbera that you would learn in a traditional linear algebra
textbook; they are interesting in their own right but less directly relevant to data science.

Code Exercises
Exercise 10-1.

LU decomposition can be computationally intensive, although it is more efficient
than other decompositions such as QR. Interestingly, LU decomposition is often
used as a benchmark to compare computation times between operating systems,
hardware processors, computer languages (e.g., C versus Python versus MATLAB),
or implementation algorithms. Out of curiousity, I tested how long it took Python
and MATLAB to run LU decomposition on a thousand matrices of size 100 × 100. On
my laptop, MATLAB took around 300 ms while Python took around 410 ms. Python
on Google Colab took around 1,000 ms. Test how long this takes on your computer.

Exercise 10-2.

Use the matrix-multiplication method to make a 6 × 8 rank-3 matrix. Take its LU
decomposition, and show the three matrices with their ranks in the title, as in
Figure 10-2. Notice the ranks of the three matrices and that L has all 1s on the
diagonal. Feel free to explore the ranks of matrices with other sizes and ranks.

Figure 10-2. Results of Exercise 10-2

Exercise 10-3.

One application of LU decomposition is computing the determinant. Here are two
properties of the determinant:4 the determinant of a triangular matrix is the product
of the diagonals, and the determinant of a product matrix equals the product of
the determinants (that is, det AB = det A det B ). Putting these two facts together,
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you can compute the determinant of a matrix as the product of the diagonals of L
times the product of the diagonals of U. On the other hand, because the diagonals
of L are all 1 (when implemented in Python to ensure uniqueness of the decomposi‐
tion), then the determinant of a matrix A is simply the product of the diagonals of
U. Try it in Python—and compare to the result of np.linalg.det(A)—multiple times
with different random matrices, before reading the next paragraph.

Did you get the same result as Python? I assume you found that the determinants
match in magnitude but that the signs would seemingly randomly differ. Why did
that happen? It happened because I omitted the permutation matrix in the instruc‐
tions. The determinant of a permutation matrix is +1 for an even number of row
swaps and −1 for an odd number of row swaps. Now go back to your code and
include the determinant of P in your computations.

Exercise 10-4.

Following the formula from the section “LU Decomposition” on page 169, the inverse
of a matrix can be expressed as:

A = PTLU

A−1 = PTLU
−1

A−1 = U−1L−1P

Implement that third equation directly using the output from scipy.linalg.lu on
a 4 × 4 random-numbers matrix. Is AA−1 the identity matrix? Sometimes it is and
sometimes it isn’t, depending on P. This discrepancy occurs because of what I wrote
about the output of scipy.linalg.lu. Adjust the code so that it follows SciPy’s
convention instead of the math convention.

Here is the take-home message from this exercise: the absence of error messages does
not necessarily mean your code is correct. Please sanity-check your mathematical
code as much as possible.

Exercise 10-5.

For matrix A = PLU (using Python’s ordering of the permutation matrix), ATA can
be computed as UTLTLU—without the permutation matrices. Why is it possible to
drop the permutation matrix? Answer the question and then confirm in Python using
random matrices that ATA = UTLTLU even when P ≠ I.
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CHAPTER 11

General Linear Models and Least Squares

The universe is a really big and really complicated place. All animals on Earth have
a natural curiousity to explore and try to understand their environment, but we
humans are privileged with the intelligence to develop scientific and statistical tools
to take our curiousity to the next level. That’s why we have airplanes, MRI machines,
rovers on Mars, vaccines, and, of course, books like this one.

How do we understand the universe? By developing mathematically grounded theo‐
ries, and by collecting data to test and improve those theories. And this brings us to
statistical models. A statistical model is a simplified mathematical representation of
some aspect of the world. Some statistical models are simple (e.g., predicting that the
stock market will increase over decades); others are much more sophisticated, like
the Blue Brain Project that simulates brain activity with such exquisite detail that one
second of simulated activity requires 40 minutes of computation time.

A key distinction of statistical models (as opposed to other mathematical models) is
that they contain free parameters that are fit to data. For example, I know that the
stock market will go up over time, but I don’t know by how much. Therefore, I allow
the change in stock market price over time (that is, the slope) to be a free parameter
whose numerical value is determined by data.

Crafting a statistical model can be difficult and requires creativity, experience, and
expertise. But finding the free parameters based on fitting the model to data is a
simple matter of linear algebra—in fact, you already know all the math you need for
this chapter; it’s just a matter of putting the pieces together and learning the statistics
terminology.
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General Linear Models
A statistical model is a set of equations that relates predictors (called independent
variables) to observations (called the dependent variable). In the model of the stock
market, the independent variable is time and the dependent variable is stock market
price (e.g., quantified as the S&P 500 index).

In this book I will focus on general linear models, which are abbreviated as GLM.
Regression is a type of GLM, for example.

Terminology
Statisticians use slightly different terminology than do linear algebraticians.
Table 11-1 shows the key letters and descriptions for vectors and matrices used in
the GLM.

Table 11-1. Table of terms in GLMs

LinAlg Stats Description
Ax = b Xβ = y General linear model (GLM)

A X Design matrix (columns = independent variables, predictors, regressors)

x β Regression coefficients or beta parameters

b y Dependent variable, outcome measure, data

Setting Up a General Linear Model
Setting up a GLM involves (1) defining an equation that relates the predictor vari‐
ables to the dependent variable, (2) mapping the observed data onto the equations,
(3) transforming the series of equations into a matrix equation, and (4) solving that
equation.

I’ll use a simple example to make the procedure concrete. I have a model that predicts
adult height based on weight and on parents’ height. The equation looks like this:

y = β0 + β1w + β2ℎ + ϵ

y is the height of an individual, w is their weight, and h is their parents’ height (the aver‐
age of mother and father). ϵ is an error term (also called a residual), because we cannot
reasonably expect that weight and parents’ height perfectly determines an individual’s
height; there are myriad factors that our model does not account for, and the variance
not attributable to weight and parents’ height will be absorbed by the residual.

My hypothesis is that weight and parents’ height are important for an individual’s
height, but I don’t know how important each variable is. Enter the β terms: they are
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the coefficients, or weights, that tell me how to combine weight and parents’ height to
predict an individual’s height. In other words, a linear weighted combination, where
the βs are the weights.

β0 is called an intercept (sometimes called a constant). The intercept term is a vector
of all 1s. Without an intercept term, the best-fit line is forced to pass through the
origin. I’ll explain why, and show a demonstration, toward the end of the chapter.

Now we have our equation, our model of the universe (well, one tiny part of it).
Next, we need to map the observed data onto the equations. For simplicity, I’m going
to make up some data in Table 11-2 (you may imagine that y and h have units of
centimeters and w has units of kilograms).

Table 11-2. Made-up data for our statistical model of height

y w h
175 70 177

181 86 190

159 63 180

165 62 172

Mapping the observed data onto our statistical model involves replicating the equa‐
tion four times (corresponding to four observations in our dataset), each time replac‐
ing the variables y, w, and h with the measured data:

175 = β0 + 70β1 + 177β2

181 = β0 + 86β1 + 190β2

159 = β0 + 63β1 + 180β2

165 = β0 + 62β1 + 172β2

I’m omitting the ϵ term for now; I’ll have more to say about the residuals later. We
now need to translate this system of equations into a matrix equation. I know that
you know how to do that, so I’ll print out the equation here only so you can confirm
what you already know from Chapter 10:

1 70 177
1 86 190
1 63 180
1 62 172

β0

β1

β2

=

175
181
159
165

And, of course, we can express this equation succinctly as Xβ = y.
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1 Admittedly, I’ve never seen this equation on a Tajikistani billboard, but the point is to keep an open mind.

Solving GLMs
I’m sure you already know the main idea of this section: to solve for the vector
of unknown coefficients β, simply left-multiply both sides of the equation by the
left-inverse of X, the design matrix. The solution looks like this:

Xβ = y

XTX
−1
XTXβ = XTX

−1
XTy

β = XTX
−1
XTy

Please stare at that final equation until it is permanently tattooed into your brain.
It is called the least squares solution and is one of the most important mathematical
equations in applied linear algebra. You’ll see it in research publications, textbooks,
blogs, lectures, docstrings in Python functions, billboards in Tajikistan,1 and many
other places. You might see different letters, or possibly some additions, like the
following:

b = HTWH + λLTL
−1
HTx

The meaning of that equation and the interpretation of the additional matrices are
not important (they are various ways of regularizing the model fitting); what is
important is that you are able to see the least squares formula embedded in that
complicated-looking equation (for example, imagine setting W = I and λ = 0).

The least squares solution via the left-inverse can be translated directly into Python
code (variable X is the design matrix and variable y is the data vector):

X_leftinv = np.linalg.inv(X.T@X) @ X.T

# solve for the coefficients
beta = X_leftinv @ y

I will show results from these models—and how to interpret them—later in this
chapter; for now I’d like you to focus on how the math formulas are translated into
Python code.
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Left-Inverse Versus NumPy’s Least Squares Solver

The code in this chapter is a direct translation of the math into
Python code. Explicitly computing the left-inverse is not the most
numerically stable way to solve the GLM (although it is accurate
for the simple problems in this chapter), but I want you to see that
the seemingly abstract linear algebra really works. There are more
numerically stable ways to solve the GLM, including QR decomposi‐
tion (which you will see later in this chapter) and Python’s more
numerically stable methods (which you will see in the next chapter).

Is the Solution Exact?
The equation Xβ = y is exactly solvable when y is in the column space of the design
matrix X. So the question is whether the data vector is guaranteed to be in the
column space of the statistical model. The answer is no, there is no such guarantee. In
fact, the data vector y is almost never in the column space of X.

To understand why not, let’s imagine a survey of university students in which the
researchers are trying to predict average GPA (grade point average) based on drink‐
ing behavior. The survey may contain data from two thousand students yet have only
three questions (e.g., how much alcohol do you consume; how often do you black
out; what is your GPA). The data is contained in a 2000 × 3 table. The column space
of the design matrix is a 2D subspace inside that 2000D ambient dimensionality, and
the data vector is a 1D subspace inside that same ambient dimensionality.

If the data is in the column space of the design matrix, it means that the model
accounts for 100% of the variance in the data. But this almost never happens: real-
world data contains noise and sampling variability, and the models are simplifications
that do not account for all of the variability (e.g., GPA is determined by myriad
factors that our model ignores).

The solution to this conundrum is that we modify the GLM equation to allow for
a discrepancy between the model-predicted data and the observed data. It can be
expressed in several equivalent (up to a sign) ways:

Xβ = y + ϵ
Xβ + ϵ = y

ϵ = Xβ − y

The interpretation of the first equation is that ϵ is a residual, or an error term, that
you add to the data vector so that it fits inside the column space of the design matrix.
The interpretation of the second equation is that the residual term is an adjustment
to the design matrix so that it fits the data perfectly. Finally, the interpretation
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of the third equation is that the residual is defined as the difference between the
model-predicted data and the observed data.

There is another, very insightful, interpretation, which approaches GLMs and least
squares from a geometric perspective. I’ll get back to this in the next section.

The point of this section is that the observed data is almost never inside the subspace
spanned by the regressors. For this reason, it is also common to see the GLM
expressed as X = βy where y = y + ϵ.

Therefore, the goal of the GLM is to find the linear combination of the regressors that
gets as close as possible to the observed data. More on this point later; I now want to
introduce you to the geometric perspective of least squares.

A Geometric Perspective on Least Squares
So far I’ve introduced the solution to the GLM from the algebraic perspective of
solving a matrix equation. There is also a geometric perspective to the GLM, which
provides an alternative perspective and helps reveal several important features of the
least squares solution.

Let’s consider that the column space of the design matrix C X  is a subspace of ℝM .
It’s typically a very low-dimensional subspace (that is, N << M), because statistical
models tend to have many more observations (rows) than predictors (columns). The
dependent variable is a vector y ∈ ℝM . The questions at hand are, is the vector y in
the column space of the design matrix, and if not, what coordinate inside the column
space of the design matrix is as close as possible to the data vector?

The answer to the first question is no, as I discussed in the previous section. The
second question is profound, because you already learned the answer in Chapter 2.
Consider Figure 11-1 while thinking about the solution.

Figure 11-1. The abstracted geometric view of GLM: find the point in the column space
of the design matrix that is as close as possible to the data vector
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So, our goal is to find the set of coefficients β such that the weighted combination
of columns in X minimizes the distance to data vector y. We can call that projection
vector ϵ. How do we find the vector ϵ and the coefficients β? We use orthogonal
vector projection, just like what you learned in Chapter 2. This means we can apply
the same approach as in Chapter 2, but using matrices instead of vectors. The key
insight is that the shortest distance between y and X is given by the projection vector
y − Xβ that meets X at a right angle:

XTϵ = 0

XT y − Xβ = 0

XTy − XTXβ = 0

XTXβ = XTy

β = XTX
−1
XTy

That progression of equations is remarkable: we started from thinking about the
GLM as a geometric projection of a data vector onto the column space of a design
matrix, applied the principle of orthogonal vector projection that you learned about
early on in the book, and voilà! We have rederived the same left-inverse solution that
we got from the algebraic approach.

Why Does Least Squares Work?
Why is it called “least squares”? What are these so-called squares, and why does this
method give us the least of them?

The “squares” here refers to squared errors between the predicted data and the
observed data. There is an error term for each ith predicted data point, which is
defined as ϵi = Xiβ − yi. Note that each data point is predicted using the same set
of coefficients (that is, the same weights for combining the predictors in the design
matrix). We can capture all errors in one vector:

ϵ = Xβ − y

If the model is a good fit to the data, then the errors should be small. Therefore, we
can say that the objective of model fitting is to choose the elements in β that minimize
the elements in ϵ. But just minimizing the errors would cause the model to predict
values toward negative infinity. Thus, instead we minimize the squared errors, which
correspond to their geometric squared distance to the observed data y, regardless of
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2 In case you were wondering, it is also possible to minimize the absolute distances instead of the squared
distances. Those two objectives can lead to different results; one advantage of squared distance is the
convenient derivative, which leads to the least squares solution.

3 If you are not comfortable with matrix calculus, then don’t worry about the equations; the point is that we
took the derivative with respect to β using the chain rule.

whether the prediction error itself is positive or negative.2 This is the same thing as
minimizing the squared norm of the errors. Hence the name “least squares.” That
leads to the following modification:

∥ ϵ ∥
2 = ∥ Xβ − y ∥ 2

We can now view this as an optimization problem. In particular, we want to find
the set of coefficients that minimizes the squared errors. That minimization can be
expressed as follows:

min
β

∥ Xβ − y ∥ 2

The solution to this optimization can be found by setting the derivative of the
objective to zero and applying a bit of differential calculus3 and a bit of algebra:

0 = d
dβ
∥ Xβ − y ∥ 2 = 2XT Xβ − y

0 = XTXβ − XTy

XTXβ = XTy

β = XTX
−1
XTy

Amazingly enough, we started from a different perspective—minimize the squared
distance between the model-predicted values and the observed values—and again we
rediscovered the same solution to least squares that we reached simply by using our
linear algebra intuition.

Figure 11-2 shows some observed data (black squares), their model-predicted values
(gray dots), and the distances between them (gray dashed lines). All model-predicted
values lie on a line; the goal of least squares is to find the slope and intercept of that
line that minimizes the distances from predicted to observed data.
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4 In case it’s not already clear enough: this is completely made-up data for this example; any resemblance to the
real world is coincidental.

Figure 11-2. Visual intuition for least squares

All Roads Lead to Least Squares
You’ve now seen three ways to derive the least squares solution. Remarkably, all
approaches lead to the same conclusion: left-multiply both sides of the GLM equation
by the left-inverse of the design matrix X. Different approaches have unique theoreti‐
cal perspectives that provide insight into the nature and optimality of least squares.
But it is a beautiful thing that no matter how you begin your adventure into linear
model fitting, you end up at the same conclusion.

GLM in a Simple Example
You will see several examples with real data in the next chapter; here I want to focus
on a simple example with fake data. The fake data comes from a fake experiment in
which I surveyed a random set of 20 of my fake students and asked them to report the
number of my online courses they have taken and their general satisfaction with life.4
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Table 11-3 shows the first 4 (out of 20) rows of the data matrix.

Table 11-3. Data table

Number of courses Life happiness
4 25

12 54

3 21

14 80

The data is easier to visualize in a scatterplot, which you see in Figure 11-3.

Figure 11-3. Fake data from a fake survey

Notice that the independent variable is plotted on the x-axis while the dependent
variable is plotted on the y-axis. That is common convention in statistics.

We need to create the design matrix. Because this is a simple model with only one
predictor, our design matrix is actually only one column vector. Our matrix equation
Xβ = y looks like this (again, only the first four data values):

25
54
21
80

β =

4
12
3

14
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The following Python code shows the solution. Variables numcourses and happiness
contain the data; they are both lists and therefore must be converted into multidi‐
mensional NumPy arrays:

X = np.array(numcourses,ndmin=2).T

# compute the left-inverse
X_leftinv = np.linalg.inv(X.T@X) @ X.T

# solve for the coefficients
beta = X_leftinv @ happiness

The least squares formula tells us that β = 5.95. What does this number mean? It is
the slope in our formula. In other words, for each additional course that someone
takes, their self-reported life happiness increases by 5.95 points. Let’s see how that
result looks in a plot. Figure 11-4 shows the data (black squares), the predicted
happiness values (gray dots connected by a line), and the residuals (dashed line
connecting each observed value to the predicted value).

Figure 11-4. Observed and predicted data (SSE = sum of squared errors)

If you experience a feeling of unease while looking at Figure 11-4, then that’s good—it
means you are thinking critically and noticed that the model doesn’t do a great job at
minimizing the errors. You can easily imagine pushing the left side of the best-fit line
up to get a better fit. What’s the problem here?

The problem is that the design matrix contains no intercept. The equation of the
best-fit line is y = mx, which means that when x = 0, y = 0. That constraint doesn’t
make sense for this problem—it would be a sad world if anyone who doesn’t take my
courses is completely devoid of life satisfaction. Instead, we want our line to have the
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form y = mx + b, where b is the intercept term that allows the best-fit line to cross
the y-axis at any value. The statistical interpretation of the intercept is the expected
numerical value of the observations when the predictors are set to zero.

Adding an intercept term to our design matrix gives the following modified equations
(again only showing the first four rows):

1 25
1 54
1 21
1 80

β1

β2
=

4
12
3

14

The code doesn’t change, with one exception of creating the design matrix:

X = np.hstack((np.ones((20,1)),np.array(numcourses,ndmin=2).T))

Now we find that β is the two-element vector [22.9,3.7]. The expected level of
happiness for someone who has taken zero courses is 22.9, and for each additional
course someone takes, their happiness increases by 3.7 points. I’m sure you will agree
that Figure 11-5 looks much better. And the SSE is around half of what it was when
we excluded the intercept.

Figure 11-5. Observed and predicted data, now with an intercept term

I will let you draw your own conclusions about the fake results from this fake study
based on fake data; the point is to see a numerical example of how to solve a system
of equations by building an appropriate design matrix and solving for the unknown
regressors using the left-inverse.
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Least Squares via QR
The left-inverse method is theoretically sound, but risks numerical instability. This
is partly because it requires computing the matrix inverse, which you already know
can be numerically unstable. But it turns out that the matrix XTX itself can introduce
difficulties. Multiplying a matrix by its transpose has implications for properties such
as the norm and the condition number. You will learn more about the condition
number in Chapter 14, but I’ve already mentioned that matrices with a high condi‐
tion number can be numerically unstable, and thus a design matrix with a high
condition number will become even less numerically stable when squared.

QR decomposition provides a more stable way to solve the least squares problem.
Observe the following sequence of equations:

Xβ = y
QRβ = y

Rβ = QTy

β = R−1QTy

These equations are slightly simplified from the actual low-level numerical imple‐
mentations. For example, R is the same shape as X, i.e., tall (and therefore noninver‐
tible), although only the first N rows are nonzero (as you discovered in Exercise 9-7),
which means that rows N + 1 through M do not contribute to the solution (in matrix
multiplication, rows of zeros produce results of zeros). Those rows can be removed
from R and from QTy. Secondly, row swaps (implemented via permutation matrices)
might be used to increase numerical stability.

But here’s the best part: it’s not even necessary to invert R—that matrix is upper-
triangular and therefore the solution can be obtained via back substitution. It’s the
same as solving a system of equations via the Gauss-Jordan method: augment the
coefficients matrix by the constants, row reduce to obtain the RREF, and extract the
solution from the final column of the augmented matrix.

The conclusion here is that QR decomposition solves the least squares problem
without squaring XTX and without explicitly inverting a matrix. The main risk of
numerical instability comes from computing Q, although this is fairly numerically
stable when implemented via Householder reflections.

Exercise 11-3 will walk you through this implementation.
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Summary
Many people think that statistics is hard because the underlying mathematics is hard.
To be sure, there are advanced statistical methods involving advanced mathematics.
But many of the commonly used statistical methods are built on linear algebra
principles that you now understand. That means you no longer have any excuses not
to master the statistical analyses used in data science!

The goal of this chapter was to introduce you to the terminology and math underly‐
ing the general linear model, the geometric interpretation, and the implications of
the math for minimizing the difference between model-predicated data and observed
data. I also showed an application of a regression in a simple toy example. In the next
chapter, you’ll see least squares implemented with real data, and you’ll see extensions
of least squares in regression, such as polynomial regression and regularization.

Here are the key take-home messages from this chapter:

• The GLM is a statistical framework for understanding our rich and beautiful•
universe. It works by setting up a system of equations, just like the systems of
equations you learned about in the previous chapter.

• The terms are somewhat different between linear algebra and statistics; once you•
learn the terminological mappings, statistics becomes easier because you already
know the math.

• The least squares method of solving equations via the left-inverse is the founda‐•
tion of many statistical analyses, and you will often see the least squares solution
“hidden” inside seemingly complicated formulas.

• The least squares formula can be derived via algebra, geometry, or calculus. This•
provides multiple ways of understanding and interpreting least squares.

• Multiplying the observed data vector by the left-inverse is conceptually the right•
way to think about least squares. In practice, other methods such as LU and
QR decomposition are more numerically stable. Fortunately, you don’t need to
worry about this because Python calls low-level libraries (mostly LAPACK) that
implement the most numerically stable algorithms.

Code Exercises
Exercise 11-1.

I explained that the residuals are orthogonal to the predicted data (in other words,
ϵTy = 0). Illustrate this in the toy dataset from this chapter. In particular, make a
scatterplot of the predicted data by the errors (as in Figure 11-6). Then compute
the dot product and the correlation coefficient between the residuals and the model-
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predicted data. In theory, both should be exactly zero, although there are some
rounding errors. Which of those two analyses (dot product or correlation) is smaller,
and why is that?

Figure 11-6. Solution to Exercise 11-1

Exercise 11-2.

The model-predicted happiness is merely one way of linearly combining the columns
of the design matrix. But the residuals vector isn’t only orthogonal to that one
linear weighted combination; instead, the residuals vector is orthogonal to the entire
subspace spanned by the design matrix. Demonstrate this in Python (hint: think of
the left-null space and rank).

Exercise 11-3.

You are now going to compute least squares via QR decomposition, as I explained
in “Least Squares via QR” on page 187. In particular, compute and compare the
following solution methods: (1) the left-inverse XTX

−1
XTy, (2) QR with the inverse

as R−1QTy, and (3) Gauss-Jordan elimination on the matrix R augmented with QTy.

Print out the beta parameters from the three methods as follows. (Rounding to three
digits after the decimal point is an optional extra coding challenge.)

Betas from left-inverse:
[23.13   3.698]

Betas from QR with inv(R):
[23.13   3.698]
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Betas from QR with back substitution:
[[23.13   3.698]]

Finally, print out the resulting matrices from the QR method as follows:

Matrix R:
[[ -4.472 -38.237]
 [  0.     17.747]]

Matrix R|Q'y:
[[  -4.472  -38.237 -244.849]
 [   0.      17.747   65.631]]

Matrix RREF(R|Q'y):
[[ 1.     0.    23.13 ]
 [ 0.     1.     3.698]]

Exercise 11-4.

Outliers are data values that are unusual or nonrepresentative. Outliers can cause sig‐
nificant problems in statistical models, and therefore can cause significant headaches
for data scientists. In this exercise, we will create outliers in the happiness data to
observe the effects on the resulting least squares solution.

In the data vector, change the first observed data point from 70 to 170 (simulating
a data-entry typo). Then recompute the least squares fit and plot the data. Repeat
this outlier simulation but change the final data point from 70 to 170 (and set the
first data point back to its original 70). Compare with the original data by creating a
visualization like Figure 11-7.

Figure 11-7. Solution to Exercise 11-4

Interestingly, the outlier was identical in the outcome variable (in both cases, the 70
turned into 170), but the effect on the fit of the model to the data was quite different
because of the corresponding x-axis value. This differential impact of outliers is called
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leverage and is something you would learn about in a deeper discussion of statistics
and model fitting.

Exercise 11-5.

In this exercise, you will compute the matrix inverse using least squares, following
the interpetation I introduced in the previous chapter. We will consider the equation
XB = Y, where X is the square full-rank matrix to invert, B is the matrix of unknown
coefficients (which will be the matrix inverse), and Y is the “observed data” (the
identity matrix).

You will compute B in three ways. First, use the left-inverse least squares method
to compute the matrix one column at a time. This is done by computing the least
squares fit between the matrix X and each column of Y in a for loop. Second, use
the left-inverse method to compute the entire B matrix in one line of code. Finally,
compute X−1 using the function np.linalg.inv(). Mutliply each of those B matrices
by X and show in a figure like Figure 11-8. Finally, test whether these three “different”
ways of computing the inverse are equivalent (they should be, because the matrix
inverse is unique).

Observation: it is rather strange (not to mention circular) to use the inverse of XTX
to compute the inverse of X. (Indeed, you should confirm with paper and pencil that
the left-inverse reduces to the full inverse for square full-rank X!) Needless to say,
this is not a computational method that would be implemented in practice. However,
this exercise reinforces the interpretation of the matrix inverse as the transformation
that projects a matrix onto the identity matrix, and that that projection matrix can
be obtained via least squares. Comparing the least squares solution to np.linalg.inv
also illustrates the numerical inaccuracies that can arise when computing the left-
inverse.

Figure 11-8. Solution to Exercise 11-5
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1 V E Sathishkumar, Jangwoo Park, and Yongyun Cho, “Using Data Mining Techniques for Bike Sharing
Demand Prediction in Metropolitan City,” Computer Communications, 153, (March 2020): 353–366, data
downloaded from https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand.

CHAPTER 12

Least Squares Applications

In this chapter, you will see a few applications of least squares model fitting in real
data. Along the way, you will learn how to implement least squares using several
different—and more numerically stable—Python functions, and you will learn some
new concepts in statistics and machine learning such as multicollinearity, polynomial
regression, and the grid search algorithm as an alternative to least squares.

By the end of this chapter, you will have a deeper understanding of how least squares
is used in applications, including the importance of numerically stable algorithms for
“difficult” situations involving reduced-rank design matrices. And you will see that
the analytic solution provided by least squares outperforms an empirical parameter
search method.

Predicting Bike Rentals Based on Weather
I’m a big fan of bicycles and a big fan of bibimbap (a Korean dish made with rice
and veggies or meat). Therefore, I was happy to find a publicly available dataset about
bike rentals in Seoul.1 The dataset contains nearly nine thousand observations of
data about the number of bikes that were rented in the city and variables about the
weather including temperature, humidity, rainfall, windspeed, and so on.

The purpose of the dataset is to predict the demand for bike sharing based on
weather and season. That is important because it will help bike rental companies and
local governments optimize the availability of healthier modes of transportation. It’s
a great dataset, there’s a lot that could be done with it, and I encourage you to spend
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time exploring it. In this chapter, I will focus on building relatively simple regression
models to predict bike rental counts based on a few features.

Although this is a book on linear algebra and not statistics, it is still important to
inspect the data carefully before applying and interpreting statistical analyses. The
online code has more details about importing and inspecting the data using the
pandas library. Figure 12-1 shows the data from bike count rentals (the dependent
variable) and rainfall (one of the independent variables).

Figure 12-1. Scatterplots of some data
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Notice that rainfall is a sparse variable—it’s mostly zeros with a relatively small
number of nonzero values. We’ll come back to this in the exercises.

Figure 12-2 shows a correlation matrix from four selected variables. Inspecting corre‐
lation matrices is always a good idea before starting statistical analyses, because it
will show which variables (if any) are correlated and can reveal errors in the data
(e.g., if two supposedly different variables are perfectly correlated). In this case, we
see that bike rental count is positively correlated with hour and temperature (people
rent more bikes later in the day and when the weather is warmer) and negatively
correlated with rainfall. (Note that I’m not showing statistical significance here, so
these interpretations are qualitative.)

Figure 12-2. Correlation matrix of four selected variables

In the first analysis, I want to predict bike rental counts based on rainfall and the
seasons. The seasons (winter, spring, summer, fall) are text labels in the dataset, and
we need to convert them to numbers for the analysis. We could translate the four
seasons into the numbers 1–4, but seasons are circular while regressions are linear.
There are a few ways to deal with this, including using an ANOVA instead of a
regression, using one-hot-encoding (used in deep learning models), or binarizing the
seasons. I’m going to take the latter approach and label autumn and winter “0” and
spring and summer “1”. The interpretation is that a positive beta coefficient indicates
more bike rentals in spring/summer compared to autumn/winter.

(Tangential note: on the one hand, I could have made things simpler by selecting only
continuous variables. But I want to stress that there is more to data science than just
applying a formula to a dataset; there are many nontrivial decisions that affect the
kinds of analyses you can do, and therefore the kinds of results you can obtain.)

Predicting Bike Rentals Based on Weather | 195



The left side of Figure 12-3 shows the design matrix visualized as an image. This is
a common representation of the design matrix, so make sure you are comfortable
interpreting it. The columns are regressors and the rows are observations. Columns
are sometimes normalized to facilitate visual interpretation if the regressors are in
very different numerical scales, although I didn’t do that here. You can see that
rainfall is sparse and that the dataset spans two autumn/winter periods (black areas
in the middle column) and one spring/summer period (white area in the middle).
The intercept is, of course, solid white, because it takes the same value for every
observation.

Figure 12-3. Design matrix and some data

The right side of Figure 12-3 shows the data, plotted as rainfall by bikes rented
separately for the two seasons. Clearly, the data do not lie on a line, because there
are many values at or close to zero on both axes. In other words, visually inspecting
the data suggests that the relationships amongst the variables are nonlinear, which
means that a linear modeling approach might be suboptimal. Again, this highlights
the importance of visually inspecting data and carefully selecting an appropriate
statistical model.

Nonetheless, we will forge ahead using a linear model fit to the data using least
squares. The following code shows how I created the design matrix (variable data is a
pandas dataframe):
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# Create a design matrix and add an intercept
desmat = data[['Rainfall(mm)','Seasons']].to_numpy()
desmat = np.append(desmat,np.ones((desmat.shape[0],1)),axis=1)

# extract DV
y = data[['Rented Bike Count']].to_numpy()

# fit the model to the data using least squares
beta = np.linalg.lstsq(desmat,y,rcond=None)

The beta values for rainfall and season are, respectively, −80 and 369. These numbers
indicate that there are fewer bike rentals when it rains and that there are more bike
rentals in the spring/summer compared to autumn/winter.

Figure 12-4 shows the predicted versus the observed data, separated for the two
seasons. If the model were a perfect fit to the data, the dots would lie on a diagonal
line with a slope of 1. Clearly, that’s not the case, meaning that the model did not
fit the data very well. Indeed, the R2 is a paltry 0.097 (in other words, the statistical
model accounts for around 1% of the variance in the data). Futhermore, you can see
that the model predicts negative bike rentals, which is not interpretable—bike rental
counts are strictly nonnegative numbers.

Figure 12-4. Scatterplot of predicted by observed data

Thus far in the code, we have received no warnings or errors; we have done nothing
wrong in terms of math or coding. However, the statistical model we used is not the
most appropriate for this research question. You will have the opportunity to improve
it in Exercise 12-1 and Exercise 12-2.
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Regression Table Using statsmodels
Without getting too deep into the statistics, I want to show you how to create
a regression table using the statsmodels library. This library works with pandas
dataframes instead of NumPy arrays. The following code shows how to set up and
compute the regression model (OLS stands for ordinary least squares):

import statsmodels.api as sm

# extract data (staying with pandas dataframes)
desmat_df  = data[['Rainfall(mm)','Seasons']]
obsdata_df = data['Rented Bike Count']

# create and fit the model (must explicitly add intercept)
desmat_df = sm.add_constant(desmat_df)
model = sm.OLS(obsdata_df,desmat_df).fit()
print( model.summary() )

The regression table contains a lot of information. It’s OK if you don’t understand all
of it; the key items you can look for are the R2 and the regression coefficients (coef)
for the regressors:

==============================================================================
Dep. Variable:      Rented Bike Count   R-squared:                       0.097
Model:                            OLS   Adj. R-squared:                  0.097
Method:                 Least Squares   F-statistic:                     468.8
Date:                Wed, 26 Jan 2022   Prob (F-statistic):          3.80e-194
Time:                        08:40:31   Log-Likelihood:                -68654.
No. Observations:                8760   AIC:                         1.373e+05
Df Residuals:                    8757   BIC:                         1.373e+05
Df Model:                           2
Covariance Type:            nonrobust
================================================================================
                   coef    std err          t      P>|t|      [0.025      0.975]
================================================================================
const          530.4946      9.313     56.963      0.000     512.239     548.750
Rainfall(mm)   -80.5237      5.818    -13.841      0.000     -91.928     -69.120
Seasons        369.1267     13.127     28.121      0.000     343.395     394.858
==============================================================================
Omnibus:                     1497.901   Durbin-Watson:                   0.240
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             2435.082
Skew:                           1.168   Prob(JB):                         0.00
Kurtosis:                       4.104   Cond. No.                         2.80
==============================================================================
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Multicollinearity
If you’ve taken a statistics course, you might have heard of the term multicollinearity.
The Wikipedia definition is “one predictor variable in a multiple regression model
can be linearly predicted from the others with a substantial degree of accuracy.”2

This means that there are linear dependencies in the design matrix. In the parlance of
linear algebra, multicollinearity is just a fancy term for linear dependence, which is the
same thing as saying that the design matrix is reduced-rank or that it is singular.

A reduced-rank design matrix does not have a left-inverse, which means that the
least squares problem cannot be solved analytically. You will see the implications of
multicollinearity in Exercise 12-3.

Solving GLMs with Multicollinearity
It is, in fact, possible to derive solutions for GLMs that have a reduced-rank design
matrix. This is done using a modification to the QR procedure in the previous
chapter and using the MP pseudoinverse. In the case of reduced-rank design matrix,
there is no unique solution, but we can select the solution with the minimum error.
This is called the minimum norm solution, or simply min-norm, and is used often, for
example in biomedical imaging. Special applications notwithstanding, a design matrix
with linear dependencies usually indicates a problem with the statistical model and
should be investigated (data entry mistakes and coding bugs are common sources of
multicollinearity).

Regularization
Regularization is an umbrella term that refers to various ways of modifying a statis‐
tical model, with the goal of improving numerical stability, transforming singular
or ill-conditioned matrices to full-rank (and thus invertible), or improving generaliz‐
ability by reducing overfitting. There are several forms of regularization depending
on the nature of the problem and the goal of regularizing; some specific techniques
you might have heard of include Ridge (a.k.a. L2), Lasso (a.k.a. L1), Tikhonov, and
shrinkage.

Different regularization techniques work in different ways, but many regularizers
“shift” the design matrix by some amount. You will recall from Chapter 5 that shifting
a matrix means adding some constant to the diagonal as A + λI, and from Chapter 6
that shifting a matrix can transform a reduced-rank matrix into a full-rank matrix.
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In this chapter, we will regularize the design matrix by shifting it according to some
proportion of its Frobenius norm. This modifies the least squares solution Equation
12-1.

Equation 12-1. Regularization

β = XTX + γ ∥ X ∥ F
2
I

−1
XTy

The key parameter is γ (Greek letter gamma), which determines the amount of
regularization (observe that γ = 0 corresponds to no regularization). Choosing an
appropriate γ parameter is nontrivial, and is often done through statistical techniques
like cross-validation.

The most obvious effect of regularization is that if the design matrix is reduced-rank,
then the regularized squared design matrix is full-rank. Regularization also decreases
the condition number, which measures the “spread” of information in the matrix
(it’s the ratio of the largest to the smallest singular value; you’ll learn about this in
Chapter 14). This increases the numerical stability of the matrix. The statistical impli‐
cation of regularization is to “smooth out” the solution by reducing the sensitivity of
the model to individual data points that might be outliers or nonrepresentative, and
therefore less likely to be observed in new datasets.

Why do I scale by the squared Frobenius norm? Consider that a specified value
of γ, say, γ = .01, can have a huge or a negligible impact on the design matrix
depending on the range of numerical values in the matrix. Therefore, we scale to
the numerical range of the matrix, which means we interpret the γ parameter as
the proportion of regularization. The reason for squaring the Frobenius norm is that
∥ X ∥ F

2 = ∥ XTX ∥ F . In other words, the squared norm of the design matrix equals
the norm of the design matrix times its transpose.

It’s actually more common to use the average of the eigenvalues of the design matrix
instead of the Frobenius norm. After learning about eigenvalues in Chapter 13, you’ll
be able to compare the two regularization methods.

Implementing regularization in code is the focus of Exercise 12-4.

Polynomial Regression
A polynomial regression is like a normal regression but the independent variables are
the x-axis values raised to higher powers. That is, each column i of the design matrix
is defined as xi, where x is typically time or space but can be other variables such as
medication dosage or population. The mathematical model looks like this:

y = β0x
0 + β1x

1 + . . . + βnxn
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Note that x0 = 1, giving us the intercept of the model. Otherwise, it’s still a regular
regression—the goal is to find the β values that minimize the squared differences
between the predicted and observed data.

The order of the polynomial is the largest power i. For example, a fourth order
polynomial regression has terms up to x4 (if there is no x3 term, then it’s still a fourth
order model with β3 = 0).

Figure 12-5 shows an example of the individual regressors and the design matrix
of a third order polynomial (keep in mind that an nth order polynomial has n + 1
regressors including the intercept). The polynomial functions are the basis vectors for
modeling the observed data.

Figure 12-5. Design matrix of a polynomial regression

Other than the special design matrix, a polynomial regression is exactly the same
as any other regression: use the left-inverse (or more computationally stable alter‐
natives) to obtain the set of coefficients such that the weighted combination of
regressors (i.e., the predicted data) best matches the observed data.

Polynomial regressions are used in curve fitting and in approximating nonlinear
functions. Applications include time series modeling, population dynamics, dose-
response functions in medical research, and physical stresses on structural support
beams. Polynomials can also be expressed in 2D, which are used to model spatial
structure such as earthquake propagation and brain activity.
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3 Max Roser, Hannah Ritchie, and Esteban Ortiz-Ospina, “World Population Growth,” OurWorldInData.org,
2013, https://ourworldindata.org/world-population-growth.

Enough background. Let’s work through an example. The dataset I picked is from a
model of human population doubling. The question is “How long does it take for the
population of humanity to double (e.g., from five hundred million to one billion)?”
If the rate of population increase is itself increasing (because more people have more
babies, who grow up to have even more babies), then the doubling time will decrease
with each doubling. On the other hand, if the population growth slows (people have
fewer babies), then the doubling time will increase over successive doublings.

I found a relevant dataset online.3 It’s a small dataset, so all the numbers are available in
the online code and shown in Figure 12-6. This dataset includes both actual measured
data and projections to the year 2100. These projections into the future are based on a
number of assumptions, and no one really knows how the future will play out (that’s
why you should find a balance between preparing for the future and enjoying the
moment). Regardless, the data thus far shows that the human population doubled with
increasing frequency over the past five hundred years (at least), and the authors of the
dataset predict that the doubling rate will increase slightly over the next century.

Figure 12-6. Plot of the data

I chose a third order polynomial to fit the data, and created and fit the model
using the following code (variable year contains the x-axis coordinates and variable
doubleTime contains the dependent variable):
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# design matrix
X = np.zeros((N,4))
for i in range(4):
  X[:,i] = np.array(year)**i

# fit the model and compute the predicted data
beta = np.linalg.lstsq(X,doubleTime, rcond=None)
yHat = X@beta[0]

Figure 12-7 shows the predicted data using the polynomial regression created by that
code.

Figure 12-7. Plot of the data

The model captures both the downward trend and the projected upswing in the
data. Without further statistical analysis, we cannot say that this is the best model or
that the model is a statistically significantly good fit to the data. But it is clear that
polynomial regressions are well suited for fitting curves. You will continue exploring
this model and the data in Exercise 12-5, but I encourage you to play around with the
code that produces Figure 12-7 by testing different order parameters.

Polynomial regressions are commonly used, and NumPy has dedicated functions to
create and fit such models:

beta = np.polyfit(year,doubleTime,3) # 3rd order
yHat = np.polyval(beta,year)
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Grid Search to Find Model Parameters
Least squares via the left-inverse is a brilliant way to fit models to data. Least squares
is accurate, fast, and deterministic (meaning that each time you rerun the code, you’ll
get the same result). But it works only for linear model fitting, and not all models can
be fit using linear methods.

In this section, I will introduce you to another optimization method used to identify
model parameters, known as grid search. A grid search works by sampling the param‐
eter space, computing the model fit to the data with each parameter value, and then
selecting the parameter value that gave the best model fit.

As a simple example, let’s take the function y = x2. We want to find the minimum of
that function. Of course, we already know that the minimum is at x = 0; this helps us
understand and evaluate the results of the grid search method.

In the grid search technique, we start with a predefined set of x values to test. Let’s
use the set (−2, −1, 0, 1, 2). That’s our “grid.” Then we compute the function at each of
those grid values to obtain y = (4, 1, 0, 1, 4). And we find that the minimum y occurs
when x = 0. In this case, the grid-based solution is the same as the true solution.

But grid search is not guaranteed to give the optimal solution. For example, imagine
our grid was (−2, −.5, 1, 2.5); the function values would be y = (4, .25, 1, 6.25), and
we would conclude that x = −.5 is the parameter value that minimizes the function
y = x2. That conclusion is “kind of correct” because it is the best solution within
the specified grid. Grid-search failures can also arise from a poorly chosen range of
values. Imagine, for example, that our grid was (−1000, −990, −980, −970); we would
conclude that y = x2 is minimized when x = −970.

The point is that both the range and the resolution (the spacing between grid
points) are important, because they determine whether you will obtain the best
solution, a pretty good solution, or an awful solution. In the toy example above, the
appropriate range and resolution are easy to detemine. In complicated, multivariate,
nonlinear models, appropriate grid search parameters might take some more work
and exploration.

I ran a grid search on the “happy student” data from the previous chapter (as a
reminder: it was fake data from a fake survey showing that people who enrolled in
more of my courses had higher life satisfaction). The model of those data has two
parameters—intercept and slope—and so we evaluate that function at each point on a
2D grid of possible parameter pairings. Results are shown in Figure 12-8.

What does that graph mean, and how do we interpret it? The two axes correspond
to values of parameters, and therefore each coordinate in that graph creates a model
with those corresponding parameter values. Then, the fit of each of those models to
the data is calculated and stored, and visualized as an image.
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The coordinate with the best fit to the data (the smallest sum of squared errors) is
the optimal parameter set. Figure 12-8 also shows the analytic solution using the
least squares approach. They are close but not exactly overlapping. In Exercise 12-6,
you will have the opportunity to implement this grid search as well as to explore the
importance of the grid resolution on the accuracy of the results.

Figure 12-8. Results from a grid search on the “happy student” dataset. The intensity
shows the sum of squared errors fit to the data.

Why would anyone use grid search when least squares is better and faster? Well,
you should never use a grid search method when least squares is a viable solution.
Grid search is a useful technique for finding parameters in nonlinear models and is
often used, for example, to identify hyperparameters in deep learning models (hyper‐
parameters are model architecture design features that are selected by the researcher,
not learned from data). Grid search can be time-consuming for large models, but
parallelization can make grid search more feasible.

The conclusion is that grid search is a nonlinear method for fitting models to data
when linear methods cannot be applied. Along your journey into data science and
machine learning, you will also learn about additional nonlinear methods, including
simplex and the famous gradient descent algorithm that powers deep learning.
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Summary
I hope you enjoyed reading about applications of least squares and the comparison to
other model-fitting approaches. The following exercises are the most important part
of this chapter, so I don’t want to take up your time with a long summary. Here are
the important points:

• Visual inspection of data is important for selecting the right statistical models•
and interpreting statistical results correctly.

• Linear algebra is used for quantitative assessments of datasets, including correla‐•
tion matrices.

• The matrix visualization methods you learned in Chapter 5 are useful for inspect‐•
ing design matrices.

• Mathematical concepts are sometimes given different names in different fields.•
An example in this chapter is multicollinearity, which means linear dependences
in the design matrix.

• Regularization involves “shifting” the design matrix by some small amount,•
which can increase numerical stability and likelihood of generalizing the new
data.

• Having a deep understanding of linear algebra can help you select the most•
appropriate statistical analyses, interpret the results, and anticipate potential
problems.

• A polynomial regression is the same as a “regular” regression, but the columns•
in the design matrix are defined as the x-axis values raised to increasing powers.
Polynomial regressions are used for curve fitting.

• Grid search is a nonlinear method of model fitting. Linear least squares is the•
optimal approach when the model is linear.

Code Exercises
Bike Rental Exercises

Exercise 12-1.

Perhaps part of the problem with negative bike rentals in Figure 12-4 can be alleviated
by eliminating the no-rainfall days. Repeat the analysis and graph for this analysis,
but select only the data rows that have zero rainfall. Do the results improve, in terms
of higher R2 and positive predicted rental counts?
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4 If you encounter Python errors, you might need to rerun previous code then re-create the design matrix
variables.

Exercise 12-2.

Because seasons is a categorical variable, an ANOVA would actully be a more appro‐
priate statistical model than a regression. Maybe the binarized seasons lacks the
sensitivity to predict bike rentals (for example, there can be warm sunny days in
autumn and cold rainy days in spring), and therefore temperature might be a better
predictor.

Replace seasons with temperature in the design matrix and rerun the regression (you
can use all days, not only the no-rainfall days from the previous exercise), and
reproduce Figure 12-9. There is still the issue with predicting negative rentals (this is
because of the linearity of the model), but the R2 is higher and the prediction appears
qualitatively better.

Figure 12-9. Results of Exercise 12-2

Multicollinearity Exercise

Exercise 12-3.

This exercise continues with the model from Exercise 12-2.4 This model contains
three regressors, including the intercept. Create a new design matrix that contains
a fourth regressor defined as some linear weighted combination of temperature and
rainfall. Give this design matrix a different variable name, because you will need it in
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the next exercise. Confirm that the design matrix has four columns yet a rank of 3,
and compute the correlation matrix of the design matrix.

Note that depending on the weightings of the two variables, you wouldn’t expect a
correlation of 1 even with linear dependencies; you also wouldn’t expect to reproduce
the exact correlations here:

Design matrix size: (8760, 4)
Design matrix rank: 3

Design matrix correlation matrix:
[[1.      0.05028     nan 0.7057 ]
 [0.05028 1.          nan 0.74309]
 [    nan     nan     nan     nan]
 [0.7057  0.74309     nan 1.     ]]

Fit the model using three different coding approaches: (1) the direct implementation
with the left-inverse as you learned in the previous chapter, (2) using NumPy’s
lstsqr function, and (3) using statsmodels. For all three methods, compute R2 and
the regression coefficients. Print the results as follows. The numerical instability of
np.linalg.inv on a reduced-rank design matrix is apparent.

MODEL FIT TO DATA:
  Left-inverse: 0.0615
  np lstsqr   : 0.3126
  statsmodels : 0.3126

BETA COEFFICIENTS:
  Left-inverse: [[-1528.071   11.277   337.483   5.537 ]]
  np lstsqr   : [[  -87.632    7.506   337.483   5.234 ]]
  statsmodels : [   -87.632    7.506   337.483   5.234 ]

Side note: no errors or warning messages were given; Python simply gave outputs
even though there is clearly something wrong with the design matrix. We can debate
the merits of this, but this example highlights—yet again—that understanding the
linear algebra of data science is important, and that proper data science is about more
than just knowing the math.

Regularization Exercise

Exercise 12-4.

Here you will explore the effects of regularization on the reduced-rank design
matrix that you created in the previous exercise. Start by implementing
XTX + γ ∥ X ∥ F

2
I

−1, using γ = 0 and γ = .01. Print out the size and rank of the
two matrices. Here are my results (it’s interesting to see that the rank-3 design matrix
is so numerically unstable that its “inverse” is actually rank-2):
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inv(X'X + 0.0*I) size: (4, 4)
inv(X'X + 0.0*I) rank: 2

inv(X'X + 0.01*I) size: (4, 4)
inv(X'X + 0.01*I) rank: 4

Now for the experiment. The goal here is to explore the effects of regularization on
the fit of the model to the data. Write code that will compute the fit to the data as
R2 using least squares with regularization on the design matrices with and without
multicollinearity. Put that code into a for loop that implements a range of γ values
between 0 and .2. Then show the results in a figure like Figure 12-10.

By the way, it is trivial that the model fit decreases with increasing regularization
for full-rank design matrices—indeed, the purpose of regularization is to make the
model less sensitive to the data. The important question is whether regularization
improves the fit to a test dataset or validation fold that was excluded when fitting the
model. If the regularization is beneficial, you would expect the generalizability of the
regularized model to increase up to some γ and then decrease again. That’s a level of
detail you’d learn about in a dedicated statistics or machine learning book, although
you will get to code cross-validation in Chapter 15.

Figure 12-10. Results of Exercise 12-4
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Polynomial Regression Exercise

Exercise 12-5.

The purpose of this exercise is to fit the polynomial regression using a range of
orders, from zero to nine. In a for loop, recompute the regression and the predicted
data values. Show the results like in Figure 12-11.

Figure 12-11. Results of Exercise 12-5

This exercise highlights the problems with underfitting and overfitting. The model with
too few parameters does a poor job at predicting the data. On the other hand, the
model with many parameters fits the data too well and risks being overly sensitive to
noise and failing to generalize to new data. Strategies for finding the balance between
under- and overfitting include cross-validation and Bayes information criterion; these
are topics that you would learn about in a machine learning or statistics book.

Grid Search Exercises

Exercise 12-6.

Your goal here is simple: reproduce Figure 12-8 following the instructions presented
in the text around that figure. Print out the regression coefficients to compare. For
example, the following results were obtained using the grid resolution parameter set
to 50:

Analytic result:
   Intercept: 23.13, slope: 3.70

Empirical result:
   Intercept: 22.86, slope: 3.67

Once you have working code, try a few different resolution parameters. I made
Figure 12-8 using a resolution of 100; you should also try other values, e.g., 20 or
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500. Also note the computation time for higher resolution values—and this is only a
two-parameter model! An exhaustive high-resolution grid search for a 10-parameter
model is extremely computationally intensive.

Exercise 12-7.

You have seen two different methods for evaluating the fit of a model to data: sum of
squared errors and R2. In the previous exercise, you used the sum of squared errors
to evaluate the model fit to data; in this exercise, you will determine whether R2 is
equally viable.

The coding part of this exercise is simple: modify the code from the previous exercise
to compute R2 instead of SSE (make sure to modify a copy of the code instead of
overwriting the previous exercise).

Now for the challenging part: you will find that R2 is terrible! It gives a completely
wrong answer. Your job is to figure out why that is (the online code solution contains
a discussion on this point). Hint: store the predicted data from each parameter pair so
you can inspect the predicted values, and then compare against the observed data.
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CHAPTER 13

Eigendecomposition

Eigendecomposition is a pearl of linear algebra. What is a pearl? Let me quote directly
from the book 20,000 Leagues Under the Sea:

For poets, a pearl is a tear from the sea; for Orientals, it’s a drop of solidified dew; for
the ladies it’s a jewel they can wear on their fingers, necks, and ears that’s oblong in
shape, glassy in luster, and formed from mother-of-pearl; for chemists, it’s a mixture
of calcium phosphate and calcium carbonate with a little gelatin protein; and finally,
for naturalists, it’s a simple festering secretion from the organ that produces mother-of-
pearl in certain bivalves.

—Jules Verne

The point is that the same object can be seen in different ways depending on its use.
So it is with eigendecomposition: eigendecomposition has a geometric interpretation
(axes of rotational invariance), a statistical interpetation (directions of maximal cova‐
riance), a dynamical-systems interpretation (stable system states), a graph-theoretic
interpretation (the impact of a node on its network), a financial-market interpreta‐
tion (identifying stocks that covary), and many more.

Eigendecomposition (and the SVD, which, as you’ll learn in the next chapter, is
closely related to eigendecomposition) is among the most important contributions of
linear algebra to data science. The purpose of this chapter is to provide you an intu‐
itive understanding of eigenvalues and eigenvectors—the results of eigendecomposi‐
tion of a matrix. Along the way, you’ll learn about diagonalization and more special
properties of symmetric matrices. After extending eigendecomposition to the SVD in
Chapter 14, you’ll see a few applications of eigendecomposition in Chapter 15.
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1 Approximately −.6 and 1.6.

Just for Squares
Eigendecomposition is defined only for square matrices. It is not possible to eigende‐
compose an M × N  matrix unless M = N . Nonsquare matrices can be decomposed
using the SVD. Every square matrix of size M ×M  has M eigenvalues (scalars) and M
corresponding eigenvectors. The purpose of eigendecomposition is to reveal those M
vector-scalar pairs.

Interpretations of Eigenvalues and Eigenvectors
There are several ways of interpreting eigenvalues/vectors that I will describe in
the next sections. Of course, the math is the same regardless, but having mutliple
perspectives can facilitate intuition, which in turn will help you understand how and
why eigendecomposition is important in data science.

Geometry
I’ve actually already introduced you to the geometric concept of eigenvectors in
Chapter 5. In Figure 5-5, we discovered that there was a special combination of a
matrix and a vector such that the matrix stretched—but did not rotate—that vector.
That vector is an eigenvector of the matrix, and the amount of stretching is the
eigenvalue.

Figure 13-1 shows vectors before and after multiplication by a 2 × 2 matrix. The
two vectors in the left plot (v1 and v2) are eigenvectors whereas the two vectors in
the right plot are not. The eigenvectors point in the same direction before and after
postmultiplying the matrix. The eigenvalues encode the amount of stretching; try to
guess the eigenvalues based on visual inspection of the plot. The answers are in the
footnote.1

That’s the geometric picture: an eigenvector means that matrix-vector multiplication
acts like scalar-vector multiplication. Let’s see if we can write that down in an equa‐
tion (we can, and it’s printed in Equation 13-1).

Equation 13-1. Eigenvalue equation

Av = λv
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2 “Open Letter to Kansas School Board,” Church of the Flying Spaghetti Monster, spaghettimonster.org/about/
open-letter.

Be careful with interpreting that equation: it does not say that the matrix equals the
scalar; it says that the effect of the matrix on the vector is the same as the effect of the
scalar on that same vector.

Figure 13-1. Geometry of eigenvectors

This is called the eigenvalue equation, and it’s another key formula in linear algebra
that is worth memorizing. You’ll see it throughout this chapter, you’ll see a slight var‐
iation of it in the following chapter, and you’ll see it many times when learning about
multivariate statistics, signal processing, optimization, graph theory, and a myriad
of other applications where patterns are identified across multiple simultaneously
recorded features.

Statistics (Principal Components Analysis)
One of the reasons why people apply statistics is to identify and quantify relationships
between variables. For example, the rise of global temperatures correlates with the
decline in the number of pirates,2 but how strong is that relationship? Of course,
when you have only two variables, a simple correlation (like what you learned in
Chapter 4) is sufficient. But in a multivariate dataset that includes dozens or hun‐
dreds of variables, bivariate correlations cannot reveal global patterns.

Let’s make this more concrete with an example. Cryptocurrencies are digital stores of
value that are encoded in a blockchain, which is a system for keeping track of transac‐
tions. You’ve probably heard of Bitcoin and Ethereum; there are tens of thousands
of other cryptocoins that have various purposes. We can ask whether the entirety of
the cryptospace operates as a single system (meaning that the value of all coins go
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up and down together), or whether there are independent subcategories within that
space (meaning that some coins or groups of coins change in value independently of
the value of other coins).

We can test this hypothesis by performing a principal components analysis on a
dataset that contains the prices of various cryptocoins over time. If the entire cryp‐
tomarket operates as a single entity, then the scree plot (a graph of the eigenvalues
of the dataset’s covariance matrix) would reveal that one component accounts for
most of the variance of the system, and all other components account for very little
variance (graph A in Figure 13-2). In contrast, if the cryptomarket had, say, three
major subcategories with independent price movements, then we would expect to see
three large eigenvalues (graph B in Figure 13-2).

Figure 13-2. Simulated scree plots of multivariate datasets (data is simulated to illustrate
outcome possibilities)

Noise Reduction
Most datasets contain noise. Noise refers to variance in a dataset that is either unex‐
plained (e.g., random variation) or unwanted (e.g., electrical line noise artifacts in
radio signals). There are many ways to attenuate or eliminate noise, and the optimal
noise-reduction strategy depends on the nature and origin of the noise and on the
characteristics of the signal.

One method of reducing random noise is to identify the eigenvalues and eigenvectors
of a system, and “project out” directions in the data space associated with small eigen‐
values. The assumption is that random noise makes a relatively small contribution to
the total variance. “Projecting out” a data dimension means to reconstruct a dataset
after setting some eigenvalues that are below some threshold to zero.

You’ll see an example of using eigendecomposition to reduce noise in Chapter 15.
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Dimension Reduction (Data Compression)
Information communications technologies like phones, internet, and TV create and
transmit a huge amount of data, such as pictures and videos. Transmitting data can
be time-consuming and expensive, and it is beneficial to compress the data before
transmitting it. Compression means to reduce the size of the data (in terms of bytes)
while having minimal impact on the quality of the data. For example, a TIFF format
image file might be 10 MB, while the JPG converted version might be .1 MB while
still retaining reasonably good quality.

One way to dimension-reduce a dataset is to take its eigendecomposition, drop
the eigenvalues and eigenvectors associated with small directions in the data space,
and then transmit only the relatively larger eigenvector/value pairs. It is actually
more common to use the SVD for data compression (and you’ll see an example in
Chapter 15), although the principle is the same.

Modern data compression algorithms are actually faster and more efficient than the
method previously described, but the idea is the same: decompose the dataset into
a set of basis vectors that capture the most important features of the data, and then
reconstruct a high-quality version of the original data.

Finding Eigenvalues
To eigendecompose a square matrix, you first find the eigenvalues, and then use each
eigenvalue to find its corresponding eigenvector. The eigenvalues are like keys that
you insert into the matrix to unlock the mystical eigenvector.

Finding the eigenvalues of a matrix is super easy in Python:

matrix = np.array([
             [1,2],
             [3,4]
             ])

# get the eigenvalues
evals = np.linalg.eig(matrix)[0]

The two eigenvalues (rounded to the nearest hundredth) are −0.37 and 5.37.

But the important question isn’t which function returns the eigenvalues; instead, the
important question is how are the eigenvalues of a matrix identified?
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3 As I wrote in Chapter 5, Python will return a result, but that is the scalar broadcast subtracted, which is not a
linear algebra operation.

To find the eigenvalues of a matrix, we start with the eigenvalue equation shown in
Equation 13-1 and do some simple arithemetic, as shown in Equation 13-2.

Equation 13-2. Eigenvalue equation, reorganized

Av = λv
Av − λv = 0
A − λI v = 0

The first equation is an exact repeat of the eigenvalue equation. In the second
equation, we simply subtracted the right-hand side to set the equation to the zeros
vector.

The transition from the second to the third equation requires some explanation. The
left-hand side of the second equation has two vector terms, both of which involve v.
So we factor out the vector. But that leaves us with the subtraction of a matrix and a
scalar (A − λ), which is not a defined operation in linear algebra.3 So instead, we shift
the matrix by λ. That brings us to the third equation. (Side note: the expression λI is
sometimes called a scalar matrix.)

What does that third equation mean? It means that the eigenvector is in the null space
of the matrix shifted by its eigenvalue.

If it helps you understand the concept of the eigenvector as the null-space vector of
the shifted matrix, you can think of adding two additional equations:

A = A − λI
Av = 0

Why is that statement so insightful? Remember that we ignore trivial solutions in
linear algebra, so we do not consider v = 0 to be an eigenvector. And that means that
the matrix shifted by its eigenvalue is singular, because only singular matrices have a
nontrivial null space.

And what else do we know about singular matrices? We know that their determinant
is zero. Hence:

A − λI = 0
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Believe it or not, that’s the key to finding eigenvalues: shift the matrix by the
unknown eigenvalue λ, set its determinant to zero, and solve for λ. Let’s see how
this looks for a 2 × 2 matrix:

a b

c d
− λ

1 0
0 1

= 0

a − λ b

c d − λ
= 0

a − λ d − λ − bc = 0

λ
2 − a + d λ + ad − bc = 0

You could apply the quadratic formula to solve for the two λ values. But the answer
itself isn’t important; the important thing is to see the logical progression of mathe‐
matical concepts established earlier in this book:

• The matrix-vector multiplication acts like scalar-vector multiplication (the eigen‐•
value equation).

• We set the eigenvalue equation to the zeros vector, and factor out common terms.•
• This reveals that the eigenvector is in the null space of the matrix shifted by•

the eigenvalue. We do not consider the zeros vector to be an eigenvector, which
means the shifted matrix is singular.

• Therefore, we set the determinant of the shifted matrix to zero and solve for the•
unknown eigenvalue.

The determinant of an eigenvalue-shifted matrix set to zero is called the characteristic
polynomial of the matrix.

Notice that in the previous example, we started with a 2 × 2 matrix and got a λ2 term,
which means this is a second-order polynomial equation. You might remember from
your high-school algebra class that an nth order polynomial has n solutions, some of
which might be complex-valued (this is called the fundamental theorem of algebra).
So, there will be two values of λ that can satisfy the equation.

The matching 2s are no coincidence: the characteristic polynomial of an M ×M
matrix will have a λM  term. That is the reason why an M ×M  matrix will have M
eigenvalues.
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Tedious Practice Problems

At this point in a traditional linear algebra textbook, you would
be tasked with finding the eigenvalues of dozens of 2 × 2 and
3 × 3 matrices by hand. I have mixed feelings about these kinds of
exercises: on the one hand, solving problems by hand really helps
internalize the mechanics of finding eigenvalues; but on the other
hand, I want to focus this book on concepts, code, and applications,
without getting bogged down by tedious arithmetic. If you feel
inspired to solve eigenvalue problems by hand, then go for it! You
can find myriad such problems in traditional textbooks or online.
But I took the bold (and perhaps controversial) decision to avoid
hand-solved problems in this book, and instead to have exercises
that focus on coding and comprehension.

Finding Eigenvectors
As with eigenvalues, finding eigenvectors is super-duper easy in Python:

evals,evecs = np.linalg.eig(matrix)
print(evals), print(evecs)

    [-0.37228132  5.37228132]

    [[-0.82456484 -0.41597356]
     [ 0.56576746 -0.90937671]]

The eigenvectors are in the columns of the matrix evecs and are in the same order as
the eigenvalues (that is, the eigenvector in the first column of matrix evecs is paired
with the first eigenvalue in vector evals). I like to use the variable names evals and
evecs, because they are short and meaningful. You might also see people use variable
names L and V or D and V. The L is for Λ (the capital of λ) and the V is for V,
the matrix in which each column i is eigenvector vi. The D is for diagonal, because
eigenvalues are often stored in a diagonal matrix, for reasons I will explain later in
this chapter.

Eigenvectors in the Columns, Not the Rows!

The most important thing to keep in mind about eigenvectors
when coding is that they are stored in the columns of the matrix,
not the rows! Such dimensional-indexing errors are easy to make
with square matrices (because you might not get Python errors),
but accidentally using the rows instead of the columns of the eigen‐
vectors matrix can have disastrous consequences in applications.
When in doubt, remember the discussion from Chapter 2 that
common convention in linear algebra is to assume that vectors are
in column orientation.
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OK, but again, the previous code shows how to get a NumPy function to return
the eigenvectors of a matrix. You could have learned that from the np.linalg.eig
docstring. The important question is Where do eigenvectors come from, and how do we
find them?

Actually, I’ve already written how to find eigenvectors: find the vector v that is in the
null space of the matrix shifted by λ. In other words:

vi ∈ N A − λiI

Let’s see a numerical example. Follwing is a matrix and its eigenvalues:

1 2
2 1

λ1 = 3, λ2 = −1

Let’s focus on the first eigenvalue. To reveal its eigenvector, we shift the matrix by 3
and find a vector in its null space:

1 − 3 2
2 1 − 3

=
−2 2

2 −2
−2 2

2 −2
1
1

=
0
0

This means that [1 1] is an eigenvector of the matrix associated with an eigenvalue of 3.

I found that null space vector just by looking at the matrix. How are the null space
vectors (that is, the eigenvectors of the matrix) actually identified in practice?

Null space vectors can be found by using Gauss-Jordan to solve a system of equations,
where the coefficients matrix is the λ-shifted matrix and the constants vector is the
zeros vector. That’s a good way to conceptualize the solution. In implementation,
more stable numerical methods are applied for finding eigenvalues and eigenvectors,
including QR decomposition and a procedure called the power method.

Sign and Scale Indeterminacy of Eigenvectors
Let me return to the numerical example in the previous section. I wrote that [1 1] was
an eigenvector of the matrix because that vector is a basis for the null space of the
matrix shifted by its eigenvalue of 3.

Look back at the shifted matrix and ask yourself, is [1 1] the only possible basis vector
for the null space? Not even close! You could also use [4 4] or [−5.4 −5.4] or…I
think you see where this is going: any scaled version of vector [1 1] is a basis for that
null space. In other words, if v is an eigenvector of a matrix, then so is αv for any
real-valued α except zero.
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4 To quell suspense: it makes the eigenvectors matrix an orthogonal matrix.

Indeed, eigenvectors are important because of their direction, not because of their
magnitude.

The infinity of possible null space basis vectors leads to two questions:

• Is there one “best” basis vector? There isn’t a “best” basis vector per se, but it•
is convenient to have eigenvectors that are unit normalized (a Euclidean norm
of 1). This is particularly useful for symmetric matrices for reasons that will be
explained later in this chapter.4

• What is the “correct” sign of an eigenvector? There is none. In fact, you can get•
different eigenvector signs from the same matrix when using different versions of
NumPy—as well as different software such as MATLAB, Julia, or Mathematica.
Eigenvector sign indeterminacy is just a feature of life in our universe. In applica‐
tions such as PCA, there are principled ways for assigning a sign, but that’s just
common convention to facilitate interpretation.

Diagonalizing a Square Matrix
The eigenvalue equation that you are now familiar with lists one eigenvalue and one
eigenvector. This means that an M ×M  matrix has M eigenvalue equations:

Av1 = λ1v1

⋮

AvM = λMvM

There’s nothing really wrong with that series of equations, but it is kind of ugly, and
ugliness violates one of the principles of linear algebra: make equations compact and
elegant. Therefore, we transform this series of equations into one matrix equation.

The key insight for writing out the matrix eigenvalue equation is that each column
of the eigenvectors matrix is scaled by exactly one eigenvalue. We can implement this
through postmultiplication by a diagonal matrix (as you learned in Chapter 6).

So instead of storing the eigenvalues in a vector, we store the eigenvalues in the
diagonal of a matrix. The following equation shows the form of diagonalization for a
3 × 3 matrix (using @ in place of numerical values in the matrix). In the eigenvectors
matrix, the first subscript number corresponds to the eigenvector, and the second
subscript number corresponds to the eigenvector element. For example, v12 is the
second element of the first eigenvector:
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@ @ @
@ @ @
@ @ @

v11 v21 v31

v12 v22 v32

v13 v23 v33

=
v11 v21 v31

v12 v22 v32

v13 v23 v33

λ1 0 0
0 λ2 0
0 0 λ3

=
λ1v11 λ2v21 λ3v31

λ1v12 λ2v22 λ3v32

λ1v13 λ2v23 λ3v33

Please take a moment to confirm that each eigenvalue scales all elements of its
corresponding eigenvector, and not any other eigenvectors.

More generally, the matrix eigenvalue equation—a.k.a. the diagonalization of a square
matrix—is:

AV = VΛ

NumPy’s eig function returns eigenvectors in a matrix and eigenvalues in a vector.
This means that diagonalizing a matrix in NumPy requires a bit of extra code:

evals,evecs = np.linalg.eig(matrix)
D = np.diag(evals)

By the way, it’s often interesting and insightful in mathematics to rearrange equations
by solving for different variables. Consider the following list of equivalent declara‐
tions:

AV = VΛ

A = VΛV−1

Λ = V−1AV

The second equation shows that matrix A becomes diagonal inside the space of V
(that is, V moves us into the “diagonal space,” and then V−1 gets us back out of the
diagonal space). This can be interpreted in the context of basis vectors: the matrix A
is dense in the standard basis, but then we apply a set of transformations (V) to rotate
the matrix into a new set of basis vectors (the eigenvectors) in which the information
is sparse and represented by a diagonal matrix. (At the end of the equation, we need
to get back into the standard basis space, hence the V−1.)
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The Special Awesomeness of Symmetric Matrices
You already know from earlier chapters that symmetric matrices have special proper‐
ties that make them great to work with. Now you are ready to learn two more special
properties that relate to eigendecomposition.

Orthogonal Eigenvectors
Symmetric matrices have orthogonal eigenvectors. That means that all eigenvectors of
a symmetric matrix are pair-wise orthogonal. Let me start with an example, then I’ll
discuss the implications of eigenvector orthogonality, and finally I’ll show the proof:

# just some random symmetric matrix
A = np.random.randint(-3,4,(3,3))
A = A.T@A

# its eigendecomposition
L,V = np.linalg.eig(A)

# all pairwise dot products
print( np.dot(V[:,0],V[:,1]) )
print( np.dot(V[:,0],V[:,2]) )
print( np.dot(V[:,1],V[:,2]) )

The three dot products are all zero (within computer rounding errors on the order
of 10−16. (Notice that I’ve created symmetric matrices as a random matrix times its
transpose.)

The orthogonal eigenvector property means that the dot product between any pair
of eigenvectors is zero, while the dot product of an eigenvector with itself is nonzero
(because we do not consider the zeros vector to be an eigenvector). This can be
written as VTV = D, where D is a diagonal matrix with the diagonals containing the
norms of the eigenvectors.

But we can do even better than just a diagonal matrix: recall that eigenvectors are
important because of their direction, not because of their magnitude. So an eigenvec‐
tor can have any magnitude we want (except, obviously, for a magnitude of zero).

Let’s scale all eigenvectors so they have unit length. Question for you: if all eigen‐
vectors are orthogonal and have unit length, what happens when we multiply the
eigenvectors matrix by its transpose?

Of course you know the answer:

VTV = I
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In other words, the eigenvectors matrix of a symmetric matrix is an orthogonal
matrix! This has multiple implications for data science, including that the eigenvec‐
tors are super easy to invert (because you simply transpose them). There are other
implications of orthogonal eigenvectors for applications such as principal compo‐
nents analysis, which I will discuss in Chapter 15.

I wrote in Chapter 1 that there are relatively few proofs in this book. But orthogonal
eigenvectors of symmetric matrices is such an important concept that you really need
to see this claim proven.

The goal of this proof is to show that the dot product between any pair of eigenvec‐
tors is zero. We start from two assumptions: (1) matrix A is symmetric, and (2) λ1
and λ2 are distinct eigenvalues of A (distinct meaning they cannot equal each other),
with v1 and v2 as their corresponding eigenvectors. Try to follow each equality step
from left to right of Equation 13-3.

Equation 13-3. Proof of eigenvector orthogonality for symmetric matrices

λ1v1
Tv2 = Av1

T
v2 = v1

TATv2 = v1
Tλ2v2 = λ2v1

Tv2

The terms in the middle are just transformations; pay attention to the first and last
terms. They are rewritten in Equation 13-4, and then subtracted to set to zero.

Equation 13-4. Continuing the eigenvector orthogonality proof…

λ1v1
Tv2 = λ2v1

Tv2

λ1v1
Tv2 − λ2v1

Tv2 = 0

Both terms contain the dot product v1
Tv2, which can be factored out. This brings us to

the final part of the proof, which is shown in Equation 13-5.

Equation 13-5. Eigenvector orthogonality proof, part 3

λ1 − λ2 v1
Tv2 = 0

This final equation says that two quantities multiply to produce 0, which means that
one or both of those quantities must be zero. λ1 − λ2  cannot equal zero because
we began from the assumption that they are distinct. Therefore, v1

Tv2 must equal
zero, which means that the two eigenvectors are orthogonal. Go back through the
equations to convince yourself that this proof fails for nonsymmetric matrices, when
AT ≠ A. Thus, the eigenvectors of a nonsymmetric matrix are not constrained to be
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5 By “straightforward” I mean mathematically expected; interpreting complex solutions in eigendecomposition
is far from straightforward.

orthogonal (they will be linearly independent for all distinct eigenvalues, but I will
omit that discussion and proof).

Real-Valued Eigenvalues
A second special property of symmetric matrices is that they have real-valued eigen‐
values (and therefore real-valued eigenvectors).

Let me start by showing that matrices—even with all real-valued entries—can have
complex-valued eigenvalues:

A = np.array([[-3, -3, 0],
              [ 3, -2, 3],
              [ 0,  1, 2]])

# its eigendecomposition
L,V = np.linalg.eig(A)
L.reshape(-1,1) # print as column vector

>> array([[-2.744739  +2.85172624j],
          [-2.744739  -2.85172624j],
          [ 2.489478  +0.j        ]])

(Be careful with interpreting that NumPy array; it is not a 3 × 2 matrix; it is a 3 × 1
column vector that contains complex numbers. Note the j and the absence of a
comma between numbers.)

The 3 × 3 matrix A has two complex eigenvalues and one real-valued eigenvalue. The
eigenvectors coupled to the complex-valued eigenvalues will themselves be complex-
valued. There is nothing special about that particular matrix; I literally generated it
from random integers between −3 and +3. Interestingly, complex-valued solutions
come in conjugate pairs. That means that if there is a λj = a + ib, then there is a λk = a
− ib. Their corresponding eigenvectors are also complex conjugate pairs.

I don’t want to go into detail about complex-valued solutions, except to show you that
complex solutions to eigendecomposition are straightforward.5

Symmetric matrices are guaranteed to have real-valued eigenvalues, and therefore
also real-valued eigenvectors. Let me start by modifying the previous example to
make the matrix symmetric:

A = np.array([[-3, -3, 0],
              [-3, -2, 1],
              [ 0,  1, 2]])

# its eigendecomposition
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L,V = np.linalg.eig(A)
L.reshape(-1,1) # print as column vector

>> array([[-5.59707146],
         [  0.22606174],
         [  2.37100972]])

This is just one specific example; maybe we got lucky here? I recommend taking a
moment to explore this yourself in the online code; you can create random symmet‐
ric matrices (by creaing a random matrix and eigendecomposing ATA) of any size to
confirm that the eigenvalues are real-valued.

Guaranteed real-valued eigenvalues from symmetric matrices is fortunate because
complex numbers are often confusing to work with. Lots of matrices used in data
science are symmetric, and so if you see complex eigenvalues in your data science
applications, it’s possible that there is a problem with the code or with the data.

Leveraging Symmetry

If you know that you are working with a symmetric matrix, you
can use np.linalg.eigh instead of np.linalg.eig (or SciPy’s eigh
instead of eig). The h is for “Hermitian,” which is the complex
version of a symmetric matrix. eigh can be faster and more numer‐
ically stable than eig, but works only on symmetric matrices.

Eigendecomposition of Singular Matrices
I included this section here because I find that students often get the idea that
singular matrices cannot be eigendecomposed, or that the eigenvectors of a singular
matrix must be unusual somehow.

That idea is completely wrong. Eigendecomposition of singular matrices is perfectly
fine. Here is a quick example:

# a singular matrix
A = np.array([[1,4,7],
              [2,5,8],
              [3,6,9]])

# its eigendecomposition
L,V = np.linalg.eig(A)

The rank, eigenvalues, and eigenvectors of this matrix are printed here:

print( f'Rank = {np.linalg.matrix_rank(A)}\n' )
print('Eigenvalues: '), print(L.round(2)), print(' ')
print('Eigenvectors:'), print(V.round(2))

>> Rank = 2
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Eigenvalues:
[16.12 -1.12 -0.  ]

Eigenvectors:
[[-0.46 -0.88  0.41]
 [-0.57 -0.24 -0.82]
 [-0.68  0.4   0.41]]

This rank-2 matrix has one zero-valued eigenvalue with a nonzeros eigenvector. You
can use the online code to explore the eigendecomposition of other reduced-rank
random matrices.

There is one special property of the eigendecomposition of singular matrices, which
is that at least one eigenvalue is guaranteed to be zero. That doesn’t mean that the
number of nonzero eigenvalues equals the rank of the matrix—that’s true for singular
values (the scalar values from the SVD) but not for eigenvalues. But if the matrix is
singular, then at least one eigenvalue equals zero.

The converse is also true: every full-rank matrix has zero zero-valued eigenvalues.

One explanation for why this happens is that a singular matrix already has a non‐
trivial null space, which means λ = 0 provides a nontrivial solution to the equation
A − λI v = 0. You can see this in the previous example matrix: the eigenvector

associated with λ = 0 is the normalized vector [1 −2 1], which is the linear weighted
combination of the columns (or rows) that produces the zeros vector.

The main take-homes of this section are (1) eigendecomposition is valid for reduced-
rank matrices, and (2) the presence of at least one zero-valued eigenvalue indicates a
reduced-rank matrix.

Quadratic Form, Definiteness, and Eigenvalues
Let’s face it: quadratic form and definiteness are intimidating terms. But don’t worry
—they are both straightforward concepts that provide a gateway to advanced linear
algebra and applications such as principal components analysis and Monte Carlo
simulations. And better still: integrating Python code into your learning will give you
a huge advantage over learning about these concepts compared to traditional linear
algebra textbooks.

The Quadratic Form of a Matrix
Consider the following expression:

wTAw = α
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6 In the interest of brevity, I am omitting some subtlety here about rare cases where the eigenvectors matrix
does not span the entire M-dimensional subspace.

In other words, we pre- and postmultiply a square matrix by the same vector w and
get a scalar. (Notice that this multiplication is valid only for square matrices.)

This is called the quadratic form on matrix A.

Which matrix and which vector do we use? The idea of the quadratic form is to
use one specific matrix and the set of all possible vectors (of appropriate size). The
important question concerns the signs of α for all possible vectors. Let’s see an
example:

x y
2 4
0 3

x

y
= 2x2 + 0 + 4 xy + 3y2

For this particular matrix, there is no possible combination of x and y that can give
a negative answer, because the squared terms (2x2 and 3y2) will always overpower the
cross-term (4xy) even when x or y is negative. Furthermore, α can be nonpositive
only when x = y = 0.

That is not a trivial result of the quadratic form. For example, the following matrix
can have a positive or negative α depending on the values of x and y:

x y
−9 4
3 9

x

y
= − 9x2 + 3 + 4 xy + 9y2

You can confirm that setting [x y] to [−1 1] gives a negative quadratic form result,
while [−1 −1] gives a positive result.

How can you possibly know whether the quadratic form will produce a positive
(or negative, or zero-valued) scalar for all possible vectors? The key comes from
considering that a full-rank eigenvectors matrix spans all of ℝM , and therefore that
every vector in ℝM  can be expressed as some linear weighted combination of the
eigenvectors.6 Then we start from the eigenvalue equation and left-multiply by an
eigenvector to return to the quadratic form:

Av = λv

vTAv = λvTv

vTAv = λ ∥ v ∥ 2
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The final equation is key. Note that ∥ vTv ∥ is strictly positive (vector magnitudes
cannot be negative, and we ignore the zeros vector), which means that the sign of the
right-hand side of the equation is determined entirely by the eigenvalue λ.

That equation uses only one eigenvalue and its eigenvector, but we need to know
about any possible vector. The insight is to consider that if the equation is valid for
each eigenvector-eigenvalue pair, then it is valid for any combination of eigenvector-
eigenvalue pairs. For example:

v1
TAv1 = λ1 ∥ v1 ∥

2

v2
TAv2 = λ2 ∥ v2 ∥

2

v1 + v2
T
A v1 + v2 = λ1 + λ2 ∥ v1 + v2 ∥

2

uTAu = ζ ∥ u ∥ 2

In other words, we can set any vector u to be some linear combination of eigenvec‐
tors, and some scalar ζ  to be that same linear combination of eigenvalues. Anyway, it
doesn’t change the principle that the sign of the right-hand side—and therefore also
the sign of the quadratic form—is determined by the sign of the eigenvalues.

Now let’s think about these equations under different assumptions about the signs of
the λs:

All eigenvalues are positive
The right-hand side of the equation is always positive, meaning that vTAv is
always positive for any vector v.

Eigenvalues are positive or zero
vTAv is nonnegative and will equal zero when λ = 0 (which happens when the
matrix is singular).

Eigenvalues are negative or zero
The quadratic form result will be zero or negative.

Eigenvalues are negative
The quadratic form result will be negative for all vectors.

Definiteness
Definiteness is a characteristic of a square matrix and is defined by the signs of the
eigenvalues of the matrix, which is the same thing as the signs of the quadratic
form results. Definiteness has implications for the invertibility of a matrix as well
as advanced data analysis methods such as generalized eigendecomposition (used in
multivariate linear classifiers and signal processing).
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There are five categories of definiteness, as shown in Table 13-1; the + and − signs
indicate the signs of the eigenvalues.

Table 13-1. Definiteness categories

Category Quadratic form Eigenvalues Invertible
Positive definite Positive + Yes

Positive semidefinite Nonnegative + and 0 No

Indefinite Positive and negative + and − Depends

Negative semidefinite Nonpositive − and 0 No

Negative definite Negative − Yes

“Depends” in the table means that the matrix can be invertible or singular depending
on the numbers in the matrix, not on the definiteness category.

ATA Is Positive (Semi)definite
Any matrix that can be expressed as the product of a matrix and its transpose
(that is, S = ATA) is guaranteed to be positive definite or positive semidefinite. The
combination of these two categories is often written as “positive (semi)definite.”

All data covariance matrices are positive (semi)definite, because they are defined as
the data matrix times its transpose. This means that all covariance matrices have
nonnegative eigenvalues. The eigenvalues will be all positive when the data matrix is
full-rank (full column-rank if the data is stored as observations by features), and there
will be at least one zero-valued eigenvalue if the data matrix is reduced-rank.

The proof that S is positive (semi)definite comes from writing out its quadratic form
and applying some algebraic manipulations. (Observe that the transition from the
first to the second equation simply involves moving parentheses around; such “proof
by parentheses” is common in linear algebra.)

wTSw = wT ATA w

= wTAT Aw

= Aw
T
Aw

= ∥ Aw ∥
2

The point is that the quadratic form of ATA equals the squared magnitude of a matrix
times a vector. Magnitudes cannot be negative, and can be zero only when the vector
is zero. And if Aw = 0 for a nontrival w, then A is singular.
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Keep in mind that although all ATA matrices are symmetric, not all symmetric
matrices can be expressed as ATA. In other words, matrix symmetry on its own does
not guarantee positive (semi)definiteness, because not all symmetric matrices can be
expressed as the product of a matrix and its transpose.

Who Cares About the Quadratic Form and Definiteness?
Positive definiteness is relevant for data science because there are some linear alge‐
bra operations that apply only to such well-endowed matrices, including Cholesky
decomposition, used to create correlated datasets in Monte Carlo simulations. Posi‐
tive definite matrices are also important for optimization problems (e.g., gradient
descent), because there is a guaranteed minimum to find. In your never-ending quest
to improve your data science prowess, you might encounter technical papers that use
the abbreviation SPD: symmetric positive definite.

Generalized Eigendecomposition
Consider that the following equation is the same as the fundamental eigenvalue
equation:

Av = λIv

This is obvious because Iv = v. Generalized eigendecomposition involves replacing
the identity matrix with another matrix (not the identity or zeros matrix):

Av = λBv

Generalized eigendecomposition is also called simultaneous diagonalization of two
matrices. The resulting (λ, v) pair is not an eigenvalue/vector of A alone nor of B
alone. Instead, the two matrices share eigenvalue/vector pairs.

Conceptually, you can think of generalized eigendecomposition as the “regular”
eigendecomposition of a product matrix:

C = AB−1

Cv = λv

This is just conceptual; in practice, generalized eigendecomposition does not require
B to be invertible.
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It is not the case that any two matrices can be simultaneously diagonalized. But this
diagonalization is possible if B is positive (semi)definite.

NumPy does not compute generalized eigendecomposition, but SciPy does. If you
know that the two matrices are symmetric, you can use the function eigh, which is
more numerically stable:

# create correlated matrices
A = np.random.randn(4,4)
A = A@A.T
B = np.random.randn(4,4)
B = B@B.T + A/10

# GED
from scipy.linalg import eigh
evals,evecs = eigh(A,B)

Be mindful of the order of inputs: the second input is the one that is conceptually
inverted.

In data science, generalized eigendecomposition is used in classification analysis. In
particular, Fisher’s linear discriminant analysis is based on the generalized eigende‐
composition of two data covariance matrices. You’ll see an example in Chapter 15.

The Myriad Subtleties of Eigendecomposition
There is a lot more that could be said about the properties of eigendecomposition.
A few examples: the sum of the eigenvalues equals the trace of the matrix, while the
product of the eigenvalues equals the determinant; not all square matrices can be
diagonalized; some matrices have repeated eigenvalues, which has implications for
their eigenvectors; complex eigenvalues of real-valued matrices are inside a circle in
the complex plane. The mathematical knowledge of eigenvalues runs deep, but this
chapter provides the essential foundational knowledge for working with eigendecom‐
position in applications.

Summary
That was quite a chapter! Here is a reminder of the key points:

• Eigendecomposition identifies M scalar/vector pairs of an M ×M  matrix. Those•
pairs of eigenvalue/eigenvector reflect special directions in the matrix and have
myriad applications in data science (principal components analysis being a com‐
mon one), as well as in geometry, physics, computational biology, and myriad
other technical disciplines.
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• Eigenvalues are found by assuming that the matrix shifted by an unknown scalar•
λ is singular, setting its determinant to zero (called the characteristic polynomial),
and solving for the λs.

• Eigenvectors are found by finding the basis vector for the null space of the•
λ-shifted matrix.

• Diagonalizing a matrix means to represent the matrix as V−1ΛV, where V is•
a matrix with eigenvectors in the columns and Λ is a diagonal matrix with
eigenvalues in the diagonal elements.

• Symmetric matrices have several special properties in eigendecomposition; the•
most relevant for data science is that all eigenvectors are pair-wise orthogonal.
This means that the matrix of eigenvectors is an orthogonal matrix (when the
eigenvectors are unit normalized), which in turn means that the inverse of the
eigenvectors matrix is its transpose.

• The definiteness of a matrix refers to the signs of its eigenvalues. In data science,•
the most relevant categories are positive (semi)definite, which means that all
eigenvalues are either nonnegative or positive.

• A matrix times its transpose is always positive (semi)definite, which means all•
covariance matrices have nonnegative eigenvalues.

• The study of eigendecomposition is rich and detailed, and many fascinating•
subtleties, special cases, and applications have been discovered. I hope that the
overview in this chapter provides a solid grounding for your needs as a data
scientist, and may have inspired you to learn more about the fantastic beauty of
eigendecomposition.

Code Exercises
Exercise 13-1.

Interestingly, the eigenvectors of A−1 are the same as the eigenvectors of A while the
eigenvalues are λ−1. Prove that this is the case by writing out the eigendecomposition
of A and A−1. Then illustrate it using a random full-rank 5 × 5 symmetric matrix.

Exercise 13-2.

Re-create the left-side panel of Figure 13-1, but using the rows of V instead of
columns. Of course you know that this is a coding error, but the results are insightful:
it fails the geometry test that the matrix times its eigenvector only stretches.
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7 I often use symmetric matrices in exercises because they have real-valued eigenvalues, but that doesn’t change
the principle or the math; it merely facilitates visual inspection of the solutions.

Exercise 13-3.

The goal of this exercise is to demonstrate that eigenvalues are inextricably coupled
to their eigenvectors. Diagonalize a symmetric random-integers matrix7 created using
the additive method (see Exercise 5-9), but randomly reorder the eigenvalues (let’s
call this matrix Λ) without reordering the eigenvectors.

First, demonstrate that you can reconstruct the original matrix as VΛV−1. You can
compute reconstruction accuracy as the Frobenius distance between the original and
reconstructed matrix. Next, attempt to reconstruct the matrix using Λ. How close is
the reconstructed matrix to the original? What happens if you only swap the two
largest eigenvalues instead of randomly reordering them? How about the two smallest
eigenvalues?

Finally, create a bar plot showing the Frobenius distances to the original matrix for
the different swapping options (Figure 13-3). (Of course, because of the random
matrices—and thus, random eigenvalues—your plot won’t look exactly like mine.)

Figure 13-3. Results of Exercise 13-3

Exercise 13-4.

One interesting property of random matrices is that their complex-valued eigenvalues
are distributed in a circle with a radius proportional to the size of the matrix. To
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demonstrate this, compute 123 random 42 × 42 matrices, extract their eigenvalues,
divide by the square root of the matrix size (42), and plot the eigenvalues on the
complex plane, as in Figure 13-4.

Figure 13-4. Results of Exercise 13-4

Exercise 13-5.

This exercise will help you better understand that an eigenvector is the basis for
the null space of the eigenvalue-shifted matrix—and it will also reveal the risks of
numerical precision errors. Eigendecompose a random 3 × 3 symmetric matrix. Then
for each eigenvalue, use scipy.linalg.null_space() to find a basis vector for the
null space of each shifted matrix. Are those vectors the same as the eigenvectors?
Note that you might need to take into consideration the norms and the sign indeter‐
minacies of eigenvectors.

When you run the code multiple times for different random matrices, you are likely
to get Python errors. The error comes from an empty null space for the λ-shifted
matrix, which, upon investigation, comes from the shifted matrix being full rank.
(Don’t take my word for it; confirm this yourself!) That is not supposed to happen,
which highlights—yet again—that (1) finite-precision math on computers does not
always conform to chalkboard math and (2) you should use the targeted and more
numerically stable functions instead of trying to make direct translations of formulas
into code.
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8 The first two were the multiplicative and additive methods.

Exercise 13-6.

I’m going to teach you a third method to create random symmetric matrices.8 Start
by creating a 4 × 4 diagonal matrix with positive numbers on the diagonals (they can
be, for example, the numbers 1, 2, 3, 4). Then create a 4 × 4 Q matrix from the QR
decomposition of a random-numbers matrix. Use these matrices as the eigenvalues
and eigenvectors, and multiply them appropriately to assemble a matrix. Confirm
that the assembled matrix is symmetric, and that its eigenvalues equal the eigenvalues
you specified.

Exercise 13-7.

Let’s revisit Exercise 12-4. Redo that exercise but use the average of the eigenvalues
instead of the squared Frobenius norm of the design matrix (this is known as
shrinkage regularization). How does the resulting figure compare with that from
Chapter 12?

Exercise 13-8.

This and the following exercise are closely linked. We will create surrogate data with
a specified correlation matrix (this exercise), and then remove the correlation (next
exercise). The formula to create data with a specified correlation structure is:

Y = VΛ1/2X

where V and Λ are the eigenvectors and eigenvalues of a correlation matrix, and X is
an N × T  matrix of uncorrelated random numbers (N channels and T time points).

Apply that formula to create a 3 × 10,000 data matrix Y with the following correlation
structure:

R =
1 .2 .9
.2 1 .3
.9 .3 1

Then compute the empirical correlation matrix of the data matrix X. It won’t exactly
equal R because we are randomly sampling a finite dataset. But it should be fairly
close (e.g., within .01).
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9 The reason why the product of two symmetric matrices is not symmetric is the same as the reason why R
from QR decomposition has zeros on the lower-diagonal.

Exercise 13-9.

Now let’s remove those imposed correlations by whitening. Whitening is a term in
signal and image processing to remove correlations. A multivariate time series can be
whitened by implementing the following formula:

Y = YTVΛ−1/2

Apply that formula to the data matrix from the previous exercise, and confirm that
the correlation matrix is the identity matrix (again, within some tolerance for random
sampling).

Exercise 13-10.

In generalized eigendecomposition, the eigenvectors are not orthogonal, even when
both matrices are symmetric. Confirm in Python that V−1 ≠ VT. This happens
because although both A and B are symmetric, C = AB is not symmetric.9

However, the eigenvectors are orthogonal with respect to B, which means that
VTBV = I. Confirm these properties by performing a generalized eigendecomposi‐
tion on two symmetric matrices, and producing Figure 13-5.

Figure 13-5. Results of Exercise 13-10
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Exercise 13-11.

Let’s explore the scaling of eigenvectors. Start by creating a 4 × 4 matrix of random
integers drawn between −14 and +14. Diagonalize the matrix and empirically confirm
that A = VΛV−1. Confirm that the Euclidean norm of each eigenvector equals 1. Note
that the square of a complex number is computed as that number times its complex
conjugate (hint: use np.conj()).

Next, multiply the eigenvectors matrix by any nonzero scalar. I used π for no particu‐
larly good reason other than it was fun to type. Does this scalar affect the accuracy of
the reconstructed matrix and/or the norms of the eigenvectors? Why or why not?

Finally, repeat this but use a symmetric matrix, and replace V−1 with VT. Does this
change the conclusion?

Code Exercises | 239





1 The SVD is not the same as eigendecomposition for all square matrices; more on this later.

CHAPTER 14

Singular Value Decomposition

The previous chapter was really dense! I tried my best to make it comprehensible and
rigorous, without getting too bogged down in details that have less relevance for data
science.

Fortunately, most of what you learned about eigendecomposition applies to the SVD.
That means that this chapter will be easier and shorter.

The purpose of the SVD is to decompose a matrix into the product of three matrices,
called the left singular vectors (U), the singular values (Σ), and the right singular
vectors (V):

A = UΣVT

This decomposition should look similar to eigendecomposition. In fact, you can
think of the SVD as a generalization of eigendecomposition to nonsquare matrices—
or you can think of eigendecomposition as a special case of the SVD for square
matrices.1

The singular values are comparable to eigenvalues, while the singular vectors matrices
are comparable to eigenvectors (these two sets of quantities are the same under some
circumstances that I will explain later).

The Big Picture of the SVD
I want to introduce you to the idea and interpretation of the matrices, and then later
in the chapter I will explain how to compute the SVD.

241



Figure 14-1 shows the overview of the SVD.

Figure 14-1. The big picture of the SVD

Many important features of the SVD are visible in this diagram; I will go into these
features in more detail throughout this chapter, but to put them into a list:

• Both U and V are square matrices, even when A is nonsquare.•

• The matrices of singular vectors U and V are orthogonal, meaning UTU = I and•
VTV = I. As a reminder, this means that each column is orthogonal to each other
column, and any subset of columns is orthogonal to any other (nonoverlapping)
subset of columns.

• The first r columns of U provide orthogonal basis vectors for the column space of•
the matrix A, while the rest of the columns provide orthogonal basis vectors for
the left-null space (unless r = M, in which case the matrix is full column-rank and
the left-null space is empty).

• The first r rows of VT (which are the columns of V) provide orthogonal basis•
vectors for the row space, while the rest of the rows provide orthogonal basis
vectors for the null space.

• The singular values matrix is a diagonal matrix of the same size as A. The•
singular values are always sorted from largest (top-left) to smallest (lower-right).

• All singular values are nonnegative and real-valued. They cannot be complex or•
negative, even if the matrix contains complex-valued numbers.

• The number of nonzero singular values equals the matrix rank.•

Perhaps the most amazing thing about the SVD is that it reveals all four subspaces of
the matrix: the column space and left-null space are spanned by the first r and last
M − r through M columns of U, while the row space and null space are spanned by
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the first r and last N − r through N rows of VT. For a rectangular matrix, if r = M,
then the left-null space is empty, and if r = N, then the null space is empty.

Singular Values and Matrix Rank
The rank of a matrix is defined as the number of nonzero singular values. The reason
comes from the previous discussion that the column space and the row space of
the matrix are defined as the left and right singular vectors that are scaled by their
corresponding singular values to have some “volume” in the matrix space, whereas
the left and right null spaces are defined as the left and right singular vectors that
are scaled to zeros. Thus, the dimensionality of the column and row spaces are
determined by the number of nonzero singular values.

In fact, we can peer into the NumPy function np.linalg.matrix_rank to see how
Python computes matrix rank (I’ve edited the code slightly to focus on the key
concepts):

S = svd(M,compute_uv=False) # return only singular values
tol = S.max() * max(M.shape[-2:]) * finfo(S.dtype).eps
return count_nonzero(S > tol)

The returned value is the number of singular values that exceed the value of tol.
What is tol? That’s a tolerance level that accounts for possible rounding errors. It
is defined as the machine precision for this data type (eps), scaled by the largest
singular value and the size of the matrix.

Thus, we yet again see the difference between “chalkboard math” and precision math
implemented on computers: the rank of the matrix is not actually computed as the
number of nonzero singular values, but instead as the number of singular values
that are larger than some small number. There is a risk that small but truly nonzero
singular values are ignored, but that outweighs the risk of incorrectly inflating the
rank of the matrix when truly zero-valued singular values appear nonzero due to
precision errors.

SVD in Python
The SVD is fairly straightforward to compute in Python:

U,s,Vt = np.linalg.svd(A)

There are two features of NumPy’s svd function to keep in mind. First, the singular
values are returned as a vector, not a matrix of the same size as A. This means that
you need some extra code to get the Σ matrix:

S = np.zeros(np.shape(A))
np.fill_diagonal(S,s)
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You might initially think of using np.diag(s), but that only produces the correct
singular values matrix for a square matrix A. Therefore, I first create the correctly
sized matrix of zeros, and then fill in the diagonal with the singular values.

The second feature is that NumPy returns the matrix VT, not V. This may be
confusing for readers coming from a MATLAB background, because the MATLAB
svd function returns the matrix V. The hint is in the docstring, which describes
matrix vh, where the h is for Hermitian, the name of a symmetric complex-valued
matrix.

Figure 14-2 shows the outputs of the svd function (with the singular values converted
into a matrix).

Figure 14-2. The big picture of the SVD shown for an example matrix

SVD and Rank-1 “Layers” of a Matrix
The first equation I showed in the previous chapter was the vector-scalar version
of the eigenvalue equation (Av = λv). I opened this chapter with the matrix SVD
equation (A = UΣVT); what does that equation look like for one vector? We can write
it in two different ways that highlight different features of the SVD:

Av = uσ

uTA = σvT

Those equations are kind of similar to the eigenvalue equation except that there are
two vectors instead of one. The interpretations are, therefore, slightly more nuanced:
in general, those equations say that the effect of the matrix on one vector is the same
as the effect of a scalar on a different vector.

Notice that the first equation means that u is in the column space of A, with v provid‐
ing the weights for combining the columns. Same goes for the second equation, but v
is in the row space of A with u providing the weights.
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2 There is no point in summing the zero-valued singular values, because that’s just adding zeros matrices.

But that’s not what I want to focus on in this section; I want to consider what happens
when you multiply one left singular vector by one right singular vector. Because the
singular vectors are paired with the same singular value, we need to multiply the ith
left singular vector by the ith singular value by the ith right singular vector.

Note the orientations in this vector-vector multiplication: column on the left, row on
the right (Figure 14-3). That means that the result will be an outer product of the
same size as the original matrix. Furthermore, that outer product is a rank-1 matrix
whose norm is determined by the singular value (because the singular vectors are
unit-length):

u1σ1v1
T = A1

Figure 14-3. Outer product of singular vectors creates a matrix “layer”

The subscripted 1 in the equation indicates using the first singular vectors and first
(largest) singular value. I call the result A1 because it’s not the original matrix A;
instead, it’s a rank-1 matrix of the same size as A. And not just any rank-1 matrix—it
is the most important “layer” of the matrix. It’s the most important because it has the
largest singular value (more on this point in a later section).

With this in mind, we can reconstruct the original matrix by summing all SVD
“layers” associated with σ > 02:

A = ∑
i = 1

r
uiσivi

T

The point of showing this summation is that you don’t necessarily need to use all r
layers; instead, you can reconstruct some other matrix, let’s call it A, which contains
the first k < r layers. This is called a low-rank approximation of matrix A—in this case,
a rank-k approximation.
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Low-rank approximations are used, for example, in data cleaning. The idea is that
information associated with small singular values makes little contribution to the
total variance of the dataset, and therefore might reflect noise that can be removed.
More on this in the next chapter.

SVD from EIG
OK, at this point in the chapter you know the basics of understanding and interpret‐
ing the SVD matrices. I’m sure you are wondering what this magical formula is
to produce the SVD. Perhaps it’s so incredibly complicated that only Gauss could
understand it? Or maybe it would take so long to explain that it doesn’t fit into one
chapter?

Wrong!

In fact, the SVD is really easy (conceptually; performing an SVD by hand is another
matter). It simply comes from computing the eigendecomposition of the matrix times
its transpose. The following equations show how to derive the singular values and the
left singular vectors:

AAT = UΣVT UΣVT T

= UΣVTVΣTUT

= UΣ2UT

In other words, the eigenvectors of AAT are the left-singular vectors of A, and the
squared eigenvalues of AAT are the singular values of A.

This insight reveals three features of the SVD: (1) singular values are nonnegative
because squared numbers cannot be negative, (2) singular values are real-valued
because symmetric matrices have real-valued eigenvalues, and (3) singular vectors are
orthogonal because the eigenvectors of a symmetric matrix are orthogonal.

The right-singular values come from premultiplying the matrix transpose:

ATA = UΣVT T
UΣVT

= VΣTUTUΣVT

= VΣ2VT
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3 The proof of this statement is in Exercise 14-3.

In fact, you can rearrange the SVD equation to solve for the right-singular vectors
without having to compute the eigendecomposition of ATA:

VT = Σ−1UTA

Of course, there is a complementary equation for deriving U if you already know V.

SVD of ATA

Briefly, if a matrix can be expressed as S = ATA, then its left- and right-singular
vectors are equal. In other words:

S = UΣVT = VΣUT = UΣUT = VΣVT

The proof of this claim comes from writing out the SVD of S and ST, then consider‐
ing the implication of S = ST. I’m leaving this one for you to explore on your own!
And I also encourage you to confirm it in Python using random symmetric matrices.

In fact, for a symmetric matrix, SVD is the same thing as eigendecomposition. This
has implications for principal components analysis, because PCA can be performed
using eigendecomposition of the data covariance matrix, the SVD of the covariance
matrix, or the SVD of the data matrix.

Converting Singular Values to Variance, Explained
The sum of the singular values is the total amount of “variance” in the matrix. What
does that mean? If you think of the information in the matrix as being contained in a
bubble, then the sum of the singular values is like the volume of that bubble.

The reason why all the variance is contained in the singular values is that the singular
vectors are normalized to unit magnitude, which means they provide no magnitude
information (that is, ∥ Uw ∥ = ∥ w ∥).3 In other words, the singular vectors point,
and the singular values say how far.

The “raw” singular values are in the numerical scale of the matrix. That means that
if you multiply the data by a scalar, then the singular values will increase. And this
in turn means that the singular values are difficult to interpret, and are basically
impossible to compare across different datasets.
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For this reason, it is often useful to convert the singular values to percent total
variance explained. The formula is simple; each singular value i is normalized as
follows:

σi =
100σi

∑σ

This normalization is common in principal components analysis, for example, to
determine the number of components that account for 99% of the variance. That can
be interpreted as an indicator of system complexity.

Importantly, this normalization does not affect the relative distances between singular
values; it merely changes the numerical scale into one that is more readily intepretable.

Condition Number
I’ve hinted several times in this book that the condition number of a matrix is used to
indicate the numerical stability of a matrix. Now that you know about singular values,
you can better appreciate how to compute and interpret the condition number.

The condition number of a matrix is defined as the ratio of the largest to the smallest
singular value. It’s often given the letter κ (Greek letter kappa):

κ =
σmax
σmin

The condition number is often used in statistics and machine learning to evaluate the
stability of a matrix when computing its inverse and when using it to solve systems
of equations (e.g., least squares). Of course, a noninvertible matrix has a condition
number of NaN because σ/0 =‽.

But a numerically full-rank matrix with a large condition number can still be unsta‐
ble. Though theoretically invertible, in practice the matrix inverse may be unreliable.
Such matrices are called ill-conditioned. You might have seen that term in warning
messages in Python, sometimes accompanied by phrases like “result is not guaranteed
to be accurate.”

What’s the problem with an ill-conditioned matrix? As the condition number increa‐
ses, the matrix tends toward being singular. Therefore, an ill-conditioned matrix is
“almost singular” and its inverse becomes untrustworthy due to increased risk of
numerical errors.

There are a few ways to think about the impact of an ill-conditioned matrix. One is
as the decrease in the precision of a solution due to round-off errors. For example, a
condition number on the order of 105 means that the solution (e.g., the matrix inverse
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or least squares problem) loses five significant digits (this would mean, for example,
going from a precision of 10−16 to 10−11).

A second interpretation, related to the previous, is as an amplification factor for
noise. If you have a matrix with a condition number on the order of 104, then noise
could impact the solution to a least squares problem by 104. That might sound like a
lot, but it could be an insigificant amplification if your data has a precision of 10−16.

Thirdly, the condition number indicates the sensitivity of a solution to perturbations
in the data matrix. A well-conditioned matrix can be perturbed (more noise added)
with minimal change in the solution. In contrast, adding a small amount of noise to
an ill-conditioned matrix can lead to wildly different solutions.

What is the threshold for a matrix to be ill-conditioned? There is none. There is
no magic number that separates a well-conditioned from an ill-conditioned matrix.
Different algorithms will apply different thresholds that depend on the numerical
values in the matrix.

This much is clear: take warning messages about ill-conditioned matrices seriously.
They usually indicate that something is wrong and the results should not be trusted.

What to Do About Ill-Conditioned Matrices?
That’s unfortunately not a question I can give a specific answer to. The right thing
to do when you have an ill-conditioned matrix depends a lot on the matrix and
on the problem you’re trying to solve. To be clear: ill-conditioned matrices are not
intrinsically bad, and you should never flippantly discard a matrix simply because
of its condition number. An ill-conditioned matrix is only potentially problematic
for certain operations, and therefore is only relevant for certain matrices, such as
statistical design matrices or covariance matrices.

Treatment options for an ill-conditioned matrix include regularization, dimensional‐
ity reduction, and improving data quality or feature extraction.

SVD and the MP Pseudoinverse
The SVD of a matrix inverse is quite elegant. Assuming the matrix is square and
invertible, we get:

A−1 = UΣVT −1

= VΣ−1U−1

= VΣ−1UT
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In other words, we only need to invert Σ, because U−1 = UT. Furthermore, because Σ
is a diagonal matrix, its inverse is obtained simply by inverting each diagonal element.
On the other hand, this method is still subject to numerical instabilities, because tiny
singular values that might reflect precision errors (e.g., 10−15) become galatically large
when inverted.

Now for the algorithm to compute the MP pseudoinverse. You’ve waited many
chapters for this; I appreciate your patience.

The MP pseudoinverse is computed almost exactly as the full inverse shown in the
previous example; the only modification is to invert the nonzero diagonal elements
in Σ instead of trying to to invert all diagonal elements. (In practice, “nonzero” is
implemented as above a threshold to account for precision errors.)

And that’s it! That’s how the pseudoinverse is computed. You can see that it’s very
simple and intuitive, but requires a considerable amount of background knowledge
about linear algebra to understand.

Even better: because the SVD works on matrices of any size, the MP pseudoinverse
can be applied to nonsquare matrices. In fact, the MP pseudoinverse of a tall matrix
equals its left-inverse, and the MP pseudoinverse of a wide matrix equals its right-
inverse. (Quick reminder that the pseudoinverse is indicated as A+, A*, or A†.)

You’ll gain more experience with the pseudoinverse by implementing it yourself in
the exercises.

Summary
I hope you agree that after putting in the effort to learn about eigendecomposition, a
little bit of extra effort goes a long way toward understanding the SVD. The SVD is
arguably the most important decomposition in linear algebra, because it reveals rich
and detailed information about the matrix. Here are the key points:

• SVD decomposes a matrix (of any size and rank) into the product of three•
matrices, termed left singular vectors U, singular values Σ, and right singular
vectors VT.

• The first r (where r is the matrix rank) left singular vectors provide an orthonor‐•
mal basis set for the column space of the matrix, while the later singular vectors
provide an orthonormal basis set for the left-null space.

• It’s a similar story for the right singular vectors: the first r vectors provide an•
orthonormal basis set for the row space, while the later vectors provide an
orthonormal basis set for the null space. Be mindful that the right singular
vectors are actually the rows of V, which are the columns of VT.
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• The number of nonzero singular values equals the rank of the matrix. In practice,•
it can be difficult to distinguish between very small nonzero singular values
versus precision errors on zero-valued singular values. Programs like Python will
use a tolerance threshold to make this distinction.

• The outer product of the kth left singular vector and the kth right singular vector,•
scalar multiplied by the kth singular value, produces a rank-1 matrix that can be
interpreted as a “layer” of the matrix. Reconstructing a matrix based on layers has
many applications, including denoising and data compression.

• Conceptually, the SVD can be obtained from the eigendecomposition of AAT.•
• The super-duper important Moore-Penrose pseudoinverse is computed as•
VΣ+UT, where Σ+ is obtained by inverting the nonzero singular values on the
diagonal.

Code Exercises
Exercise 14-1.

You learned that for a symmetric matrix, the singular values and the eigenvalues are
the same. How about the singular vectors and eigenvectors? Use Python to answer
this question using a random 5 × 5 ATA matrix. Next, try it again using the additive
method for creating a symmetric matrix (AT + A). Pay attention to the signs of the
eigenvalues of AT + A.

Exercise 14-2.

Python can optionally return the “economy” SVD, which means that the singular
vectors matrices are truncated at the smaller of M or N. Consult the docstring to
figure out how to do this. Confirm with tall and wide matrices. Note that you would
typically want to return the full matrices; economy SVD is mainly used for really large
matrices and/or really limited computational power.

Exercise 14-3.

One of the important features of an orthogonal matrix (such as the left and right
singular vectors matrices) is that they rotate, but do not scale, a vector. This means
that the magnitude of a vector is preserved after multiplication by an orthogonal
matrix. Prove that ∥ Uw ∥ = ∥ w ∥. Then demonstrate this empirically in Python
by using a singular vectors matrix from the SVD of a random matrix and a random
vector.
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4 Yes, that’s another reference to Hitchhiker’s Guide to the Galaxy.

Exercise 14-4.

Create a random tall matrix with a specified condition number. Do this by creating
two random square matrices to be U and V, and a rectangular Σ. Confirm that
the empirical condition number of UΣVT is the same as the number you specified.
Visualize your results in a figure like Figure 14-4. (I used a condition number of 42.4)

Figure 14-4. Results of Exercise 14-3

Exercise 14-5.

Your goal here is simple: write code to reproduce Figure 14-5. What does this figure
show? Panel A shows a 30 × 40 random matrix that I created by smoothing random
numbers (implemented as the 2D convolution between a 2D Gaussian and random
numbers; if you are not familiar with image processing and filtering, then please
feel free to copy the code to create this matrix from my code solution). The rest
of panel A shows the SVD matrices. It’s interesting to note that the earlier singular
vectors (associated with the larger singular values) are smoother while the later ones
are more rugged; this comes from the spatial filtering.

Panel B shows a “scree plot,” which is the singular values normalized to percent
variance explained. Notice that the first few components account for most of the
variance in the image, while the later components each account for relatively little
variance. Confirm that the sum over all normalized singular values is 100. Panel C
shows the first four “layers”—rank-1 matrices defined as uiσiviT—on the top row and
the cumulative sum of those layers on the bottom row. You can see that each layer
adds more information to the matrix; the lower-right image (titled “L 0:3”) is a rank-4
matrix and yet appears visually very similar to the original rank-30 matrix in panel A.

252 | Chapter 14: Singular Value Decomposition



Figure 14-5. Results of Exercise 14-5

Exercise 14-6.

Implement the MP pseduoinverse based on the description in this chapter. You’ll
need to define a tolerance to ignore tiny-but-nonzero singular values. Please don’t
look up NumPy’s implementation—and don’t check back to earlier code in this
chapter—but instead use your knowledge of linear algebra to come up with your own
tolerance.

Test your code on a 5 × 5 rank-3 matrix. Compare your result against the output of
NumPy’s pinv function. Finally, inspect the source code for np.linalg.pinv to make
sure you understand the implementation.

Exercise 14-7.

Demonstrate that the MP pseudoinverse equals the left-inverse for a full column-rank
matrix by computing the explicit left-inverse of a tall full matrix ( ATA

−1
AT) and the

pseudoinverse of A. Repeat for the right inverse with a wide full row-rank matrix.
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Example 14-8.

Consider the eigenvalue equation Av = λv. Now that you know about the pseudoin‐
verse, you can play around with that equation a bit. In particular, use the 2 × 2 matrix
used at the outset of Chapter 13 to compute v+ and confirm that vv+ = 1. Next,
confirm the following identities:

v+Av = λv+v

Avv+ = λvv+
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CHAPTER 15

Eigendecomposition and SVD Applications

Eigendecomposition and SVD are gems that linear algebra has bestowed upon
modern human civilization. Their importance in modern applied mathematics can‐
not be understated, and their applications are uncountable and spread across myriad
disciplines.

In this chapter, I will highlight three applications that you are likely to come across
in data science and related fields. My main goal is to show you that seemingly
complicated data science and machine learning techniques are actually quite sensible
and easily understood, once you’ve learned the linear algebra topics in this book.

PCA Using Eigendecomposition and SVD
The purpose of PCA is to find a set of basis vectors for a dataset that point in the
direction that maximizes covariation across the variables.

Imagine that an N-D dataset exists in an N-D space, with each data point being a
coordinate in that space. This is sensible when you think about storing the data in a
matrix with N observations (each row is an observation) of M features (each column
is a feature, also called variable or measurement); the data live in ℝM  and comprise N
vectors or coordinates.

An example in 2D is shown in Figure 15-1. The left-side panel shows the data in its
original data space, in which each variable provides a basis vector for the data. Clearly
the two variables (the x- and y-axes) are related to each other, and clearly there is a
direction in the data that captures that relation better than either of the feature basis
vectors.
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Figure 15-1. Graphical overview of PCA in 2D

The goal of PCA is to find a new set of basis vectors such that the linear relationships
across the variables are maximally aligned with the basis vectors—that’s what the
right-side panel of Figure 15-1 shows. Importantly, PCA has the constraint that
the new basis vectors are orthogonal rotations of the original basis vectors. In the
exercises, you will see the implications of this constraint.

In the next section, I will introduce the math and procedures for computing PCA; in
the exercises, you will have the opportunity to implement PCA using eigendecompo‐
sition and SVD, and compare your results against Python’s implementation of PCA.

The Math of PCA
PCA combines the statistical concept of variance with the linear algebra concept of
linear weighted combination. Variance, as you know, is a measure of the dispersion of
a dataset around its average value. PCA makes the assumption that variance is good,
and directions in the data space that have more variance are more important (a.k.a.
“variance = relevance”).

But in PCA, we’re not just interested in the variance within one variable; instead, we
want to find the linear weighted combination across all variables that maximizes var‐
iance of that component (a component is a linear weighted combination of variables).

Let’s write this down in math. Matrix X is our data matrix (a tall full column-rank
matrix of observations by features), and w is the vector of weights. Our goal in PCA
is to find the set of weights in w such that Xw has maximal variance. Variance is a
scalar, so we can write that down as:
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1 The online code demonstrates this point.

λ = ∥ Xw ∥
2

The squared vector norm is actually the same thing as variance when the data is
mean-centered (that is, each data variable has a mean of zero);1 I’ve omitted a scaling
factor of 1/(N − 1), because it does not affect the solution to our optimization goal.

The problem with that equation is you can simply set w to be HUGE numbers; the
bigger the weights, the larger the variance. The solution is to scale the norm of the
weighted combination of data variables by the norm of the weights:

λ = ∥ Xw ∥
2

∥ w ∥
2

Now we have a ratio of two vector norms. We can expand those norms into dot
products to gain some insight into the equation:

λ = w
TXTXw

wTw

C = XTX

λ = w
TCw

wTw

We’ve now discovered that the solution to PCA is the same as the solution to finding
the directional vector that maximizes the normalized quadratic form (the vector
norm is the normalization term) of the data covariance matrix.

That’s all fine, but how do we actually find the elements in vector w that maximize λ?

The linear algebra approach here is to consider not just a single vector solution but
an entire set of solutions. Thus, we rewrite the equation using matrix W instead of
vector w. That would give a matrix in the denominator, which is not a valid operation
in linear algebra; therefore, we multiply by the inverse:

Λ = WTW
−1
WTCW
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From here, we apply some algebra and see what happens:

Λ = WTW
−1
WTCW

Λ = W−1W−TWTCW

Λ = W−1CW

WΛ = CW

Remarkably, we’ve discovered that the solution to PCA is to perform an eigendecom‐
position on the data covariance matrix. The eigenvectors are the weights for the data
variables, and their corresponding eigenvalues are the variances of the data along
each direction (each column of W).

Because covariance matrices are symmetric, their eigenvectors—and therefore princi‐
pal components—are orthogonal. This has important implications for the appropri‐
ateness of PCA for data analysis, which you will discover in the exercises.

PCA Proof
I’m going to write out the proof that eigendecomposition solves the PCA optimiza‐
tion goal. If you are not familiar with calculus and Lagrange multipliers, then please
feel free to skip this box; I include it here in the interest of completeness, not because
you need to understand it to solve the exercises or use PCA in practice.

Our goal is to maximize wTCw subject to the constraint that wTw = 1. We can
express this optimization using a Lagrange multiplier:

L w, λ = wTCw − λ wTw − 1

0 = d
dw

wTCw − λ wTw − 1

0 = Cw − λw
Cw = λw

Briefly, the idea is that we use the Lagrange multiplier to balance the optimization
with the constraint, take the derivative with respect to the weights vector, set the
derivative to zero, differentiate with respect to w, and discover that w is an eigenvec‐
tor of the covariance matrix.
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2 In Exercise 15-3, you will also learn how to implement PCA using the Python scikit-learn library.

The Steps to Perform a PCA
With the math out of the way, here are the steps to implement a PCA:2

1. Compute the covariance matrix of the data. The resulting covariance matrix will1.
be features-by-features. Each feature in the data must be mean-centered prior to
computing covariance.

2. Take the eigendecomposition of that covariance matrix.2.
3. Sort the eigenvalues descending by magnitude, and sort the eigenvectors accord‐3.

ingly. Eigenvalues of the PCA are sometimes called latent factor scores.
4. Compute the “component scores” as the weighted combination of all data fea‐4.

tures, where the eigenvector provides the weights. The eigenvector associated
with the largest eigenvalue is the “most important” component, meaning the one
with the largest variance.

5. Convert the eigenvalues to percent variance explained to facilitate interpretation.5.

PCA via SVD
PCA can equivalently be performed via eigendecomposition as previously described
or via SVD. There are two ways to perform a PCA using SVD:

• Take the SVD of the covariance matrix. The procedure is identical to that previ‐•
ously described, because SVD and eigendecomposition are the same decomposi‐
tion for covariance matrices.

• Take the SVD of the data matrix directly. In this case, the right singular vec‐•
tors (matrix V) are equivalent to the eigenvectors of the covariance matrix
(it would be the left singular vectors if the data matrix is stored as features-by-
observations). The data must be mean-centered before computing the SVD.
The square root of the singular values is equivalent to the eigenvalues of the
covariance matrix.

Should you use eigendecomposition or SVD to perform a PCA? You might think
that SVD is easier because it does not require the covariance matrix. That’s true
for relatively small and clean datasets. But larger or more complicated datasets may
require data selection or may be too memory intensive to take the SVD of the
entire data matrix. In these cases, computing the covariance matrix first can increase
analysis flexibility. But the choice of eigendecomposition versus SVD is often a matter
of personal preference.
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3 Indeed, linear discriminant analysis is also called Fisher’s discriminant analysis.

Linear Discriminant Analysis
Linear discriminant analysis (LDA) is a multivariate classification technique that is
often used in machine learning and statistics. It was initially developed by Ronald
Fisher,3 who is often considered the “grandfather” of statistics for his numerous and
important contributions to the mathematical foundations of statistics.

The goal of LDA is to find a direction in the data space that maximally separates
categories of data. An example problem dataset is shown in graph A in Figure 15-2.
It is visually obvious that the two categories are separable, but they are not separable
on either of the data axes alone—that is clear from visual inspection of the marginal
distributions.

Enter LDA. LDA will find basis vectors in the data space that maximally separate
the two categories. Graph B in Figure 15-2 shows the same data but in the LDA
space. Now the classification is simple—observations with negative values on axis-1
are labeled category “0” and any observations with positive values on axis 1 are
labeled category “1.” The data is completely inseparable on axis 2, indicating that one
dimension is sufficient for accurate categorization in this dataset.

Figure 15-2. Example 2D problem for LDA
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4 I won’t go through the calculus-laden proof, but it’s just a minor variant of the proof given in the PCA section.

Sounds great, right? But how does such a marvel of mathematics work? It’s actually
fairly straightforward and based on generalized eigendecomposition, which you
learned about toward the end of Chapter 13.

Let me begin with the objective function: our goal is to find a set of weights such
that the weighted combination of variables maximally separates the categories. That
objective function can be written similarly as with the PCA objective function:

λ =
∥ XBw ∥

2

∥ XWw ∥
2

In English: we want to find a set of feature weights w that maximizes the ratio of the
variance of data feature XB, to the variance of data feature XW . Notice that the same
weights are applied to all data observations. (I’ll write more about data features B and
W after discussing the math.)

The linear algebra solution comes from following a similar argument as described in
the PCA section. First, expand ∥ XBw ∥

2 to wTXB
TXBw and express this as wTCBw;

second, consider a set of solutions instead of one solution; third, replace the division
with multiplication of the inverse; and finally, do some algebra and see what happens:

Λ = WTCWW
−1
WTCBW

Λ = W−1CW
−1W−TWTCBW

Λ = W−1CW
−1CBW

WΛ = CW
−1CBW

CWWΛ = CBW

In other words, the solution to LDA comes from a generalized eigendecomposition
on two covariance matrices. The eigenvectors are the weights, and the generalized
eigenvalues are the variance ratios of each component.4

With the math out of the way, which data features are used to construct XB and XW?
Well, there are different ways of implementing that formula, depending on the nature
of the problem and the specific goal of the analysis. But in a typical LDA model,
the XB comes from the between-category covariance while the XW  comes from the
within-category covariance.

Linear Discriminant Analysis | 261



The within-category covariance is simply the average of the covariances of the data
samples within each class. The between-category covariance comes from creating
a new data matrix comprising the feature averages within each class. I will walk
you through the procedure in the exercises. If you are familiar with statistics, then
you’ll recognize this formulation as analogous to the ratio of between-group to
within-group sum of squared errors in ANOVA models.

Two final comments: The eigenvectors of a generalized eigendecomposition are not
constrained to be orthogonal. That’s because CW

−1CB is generally not a symmetric
matrix even though the two covariance matrices are themselves symmetric. Nonsym‐
metric matrices do not have the orthogonal-eigenvector constraint. You’ll see this in
the exercises.

Finally, LDA will always find a linear solution (duh, that’s right in the name LDA),
even if the data is not linearly separable. Nonlinear separation would require a trans‐
formation of the data or the use of a nonlinear categorization method like artificial
neural networks. LDA will still work in the sense of producing a result; it’s up to you
as the data scientist to determine whether that result is appropriate and interpretable
for a given problem.

Low-Rank Approximations via SVD
I explained the concept of low-rank approximations in the previous chapter (e.g.,
Exercise 14-5). The idea is to take the SVD of a data matrix or image, and then
reconstruct that data matrix using some subset of SVD components.

You can achieve this by setting selected σs to equal zero or by creating new SVD
matrices that are rectangular, with the to-be-rejected vectors and singular values
removed. This second approach is preferred because it reduces the sizes of the data
to be stored, as you will see in the exercises. In this way, the SVD can be used to
compress data down to a smaller size.

Do Computers Use SVD to Compress Images?
The short answer is no, they don’t.

Algorithms underlying common image compression formats like JPG involve block-
wise compression that incorporates principles of human perception (including, for
example, how we perceive contrast and spatial frequencies), allowing them to achieve
better results with less computational power, compared to taking one SVD of the
entire image.

Nonetheless, the principle is the same as with SVD-based compression: identify a
small number of basis vectors that preserves the important features of an image such
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that the low-rank reconstruction is an accurate approximation of the full-resolution
original.

That said, SVD for data compression is commonly used in other areas of science,
including biomedical imaging.

SVD for Denoising
Denoising via SVD is simply an application of low-rank approximation. The only
difference is that SVD components are selected for exclusion based on them repre‐
senting noise as opposed to making small contributions to the data matrix.

The to-be-removed components might be layers associated with the smallest singular
values—that would be the case for low-amplitude noise associated with small equipment
imperfections. But larger sources of noise that have a stronger impact on the data might
have larger singular values. These noise components can be identified by an algorithm
based on their characteristics or by visual inspection. In the exercises, you will see an
example of using SVD to separate a source of noise that was added to an image.

Summary
You’ve made it to the end of the book (except for the exercises below)! Congrats! Take
a moment to be proud of yourself and your commitment to learning and investing in
your brain (it is, after all, your most precious resource). I am proud of you, and if we
would meet in person, I’d give you a high five, fist bump, elbow tap, or whatever is
socially/medically appropriate at the time.

I hope you feel that this chapter helped you see the incredible importance of eigen‐
decomposition and singular value decomposition to applications in statistics and
machine learning. Here’s a summary of the key points that I am contractually obliga‐
ted to include:

• The goal of PCA is to find a set of weights such that the linear weighted combi‐•
nation of data features has maximal variance. That goal reflects the assumption
underlying PCA, which is that “variance equals relevance.”

• PCA is implemented as the eigendecomposition of a data covariance matrix.•
The eigenvectors are the feature weightings, and the eigenvalues can be scaled to
encode percent variance accounted for by each component (a component is the
linear weighted combination).

• PCA can be equivalently implemented using the SVD of the covariance matrix or•
the data matrix.
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5 Data citation: Akbilgic, Oguz. (2013). Istanbul Stock Exchange. UCI Machine Learning Repository. Data
source website: https://archive-beta.ics.uci.edu/ml/datasets/istanbul+stock+exchange.

• Linear discriminant analysis (LDA) is used for linear categorization of multivari‐•
able data. It can be seen as an extension of PCA: whereas PCA maximizes
variance, LDA maximizes the ratio of variances between two data features.

• LDA is implemented as a generalized eigendecomposition on two covariance•
matrices that are formed from two different data features. The two data features
are often the between-class covariance (to maximize) and the within-class cova‐
riance (to minimize).

• Low-rank approximations involve reproducing a matrix from a subset of singular•
vectors/values and are used for data compression and denoising.

• For data compression, the components associated with the smallest singular val‐•
ues are removed; for data denoising, components that capture noise or artifacts
are removed (their corresponding singular values could be small or large).

Exercises
PCA
I love Turkish coffee. It’s made with very finely ground beans and no filter. The whole
ritual of making it and drinking it is wonderful. And if you drink it with a Turk,
perhaps you can have your fortune read.

This exercise is not about Turkish coffee, but it is about doing a PCA on a dataset5

that contains time series data from the Istanbul stock exchange, along with stock
exchange data from several other stock indices in different countries. We could use
this dataset to ask, for example, whether the international stock exchanges are driven
by one common factor, or whether different countries have independent financial
markets.

Exercise 15-1.

Before performing a PCA, import and inspect the data. I made several plots of the
data shown in Figure 15-3; you are welcome to reproduce these plots and/or use
different methods to explore the data.
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Figure 15-3. Some investigations of the international stock exchange dataset

Now for the PCA. Implement the PCA using the five steps outlined earlier in this
chapter. Visualize the results as in Figure 15-4. Use code to demonstrate several
features of PCA:

1. The variance of the component time series (using np.var) equals the eigenvalue1.
associated with that component. You can see the results for the first two compo‐
nents here:

Variance of first two components:
[0.0013006  0.00028585]

First two eigenvalues:
[0.0013006  0.00028585]

2. The correlation between principal components (that is, the weighted combina‐2.
tions of the stock exchanges) 1 and 2 is zero, i.e., orthogonal.
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3. Visualize the eigenvector weights for the first two components. The weights show3.
how much each variable contributes to the component.

Figure 15-4. Results of PCA on the Instanbul Stock Exchange dataset

Discussion: The scree plot strongly suggests that the international stock exchanges
are driven by a common factor of the global economy: there is one large component
that accounts for around 64% of the variance in the data, while the other components
each account for less than 15% of the variance (in a purely random dataset we would
expect each component to account for 100/9 = 11% of the variance, plus/minus
noise).

A rigorous evaluation of the statistical significance of these components is outside the
scope of this book, but based on visual inspection of the scree plot, we are not really
justified to interpret the components after the first one; it appears that most of the
variance in this dataset fits neatly into one dimension.

From the perspective of dimensionality reduction, we could reduce the entire dataset
to the component associated with the largest eigenvalue (this is often called the top
component), thereby representing this 9D dataset using a 1D vector. Of course, we
lose information—36% of the information in the dataset is removed if we focus only
on the top component—but hopefully, the important features of the signal are in
the top component while the less important features, including random noise, are
ignored.
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Exercise 15-2.

Reproduce the results using (1) the SVD of the data covariance matrix and (2) the
SVD of the data matrix itself. Remember that the eigenvalues of XTX are the squared
singular values of X; furthermore, the scaling factor on the covariance matrix must be
applied to the singular values to find equivaluence.

Exercise 15-3.

Compare your “manual” PCA with the output of Python’s PCA routine. You’ll have
to do some online research to figure out how to run a PCA in Python (this is one of
the most important skills in Python programming!), but I’ll give you a hint: it’s in the
sklearn.decomposition library.

sklearn or Manual Implementation of PCA?

Should you compute PCA by writing code to compute and eigen‐
decompose the covariance matrix or use sklearn’s implementation?
There is always a trade-off between using your own code to max‐
imize customization versus using prepackaged code to maximize
ease. One of the myriad and amazing benefits of understanding the
math behind data science analyses is that you can custom tailor
analyses to suit your needs. In my own research, I find that imple‐
menting PCA on my own gives me more freedom and flexibility.

Exercise 15-4.

Now you will perform a PCA on simulated data, which will highlight one of the
potential limitations of PCA. The goal is to create a dataset comprising two “streams”
of data and plot the principal components on top, like in Figure 15-5.
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Figure 15-5. Results from Exercise 15-4

Here’s how to create the data:

1. Create a 1,000 × 2 matrix of random numbers drawn from a normal (Gaussian)1.
distribution in which the second column is scaled down by .05.

2. Create a 2 × 2 pure rotation matrix (see Chapter 7).2.
3. Stack two copies of the data vertically: once with the data rotated by θ = −π/6,3.

and once with the data rotated by θ = −π/3. The resulting data matrix will be of
size 2,000 × 2.

Use SVD to implement the PCA. I scaled the singular vectors by a factor of 2 for
visual inspection.

Discussion: PCA is excellent for reducing dimensionality of a high-dimensional
dataset. This can facilitate data compression, data cleaning, and numerical stability
issues (e.g., imagine that a 200-dimensional dataset with a condition number of 1010

is reduced to the largest 100 dimensions with a condition number of 105). But the
dimensions themselves may be poor choices for feature extraction, because of the
orthogonality constraint. Indeed, the principal directions of variance in Figure 15-5
are correct in a mathematical sense, but I’m sure you have the feeling that those are
not the best basis vectors to capture the features of the data.
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Linear Discriminant Analyses

Exercise 15-5.

You are going to perform an LDA on simulated 2D data. Simulated data is advanta‐
geous because you can manipulate the effects sizes, amount and nature of noise,
number of categories, and so on.

The data you will create was shown in Figure 15-2. Create two sets of normally
distributed random numbers, each of size 200 × 2, with the second dimension being
added onto the first (this imposes a correlation between the variables). Then add an
xy offset of [2 −1] to the first set of numbers. It will be convenient to create a 400 × 2
matrix that contains both data classes, as well as a 400-element vector of class labels (I
used 0s for the first class and 1s for the second class).

Use sns.jointplot and plot_joint to reproduce graph A in Figure 15-2.

Exercise 15-6.

Now for the LDA. Write code in NumPy and/or SciPy instead of using a built-in
library such as sklearn (we’ll get to that later).

The within-class covariance matrix CW  is created by computing the covariance of
each class separately and then averaging those covariance matrices. The between-
class covariance matrix CB is created by computing the means of each data feature
(in this case, the xy-coordinates) within each class, concatenating those feature-mean
vectors for all classes (that will create a 2 × 2 matrix for two features and two classes),
and then computing the covariance matrix of that concatenated matrix.

Remember from Chapter 13 that generalized eigendecomposition is implemented
using SciPy’s eigh function.

The data projected into the LDA space is computed as XV, where X contains the
concatenated data from all classes, mean-centered per feature, and V is the matrix of
eigenvectors.

Compute the classification accuracy, which is simply whether each data sample has a
negative (“class 0”) or positive (“class 1”) projection onto the first LDA component.
Graph C in Figure 15-6 shows the predicted class label for each data sample.

Finally, show the results as shown in Figure 15-6.
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Figure 15-6. Results from Exercise 15-6

Exercise 15-7.

I claimed in Chapter 13 that for a generalized eigendecomposition, the matrix of
eigenvectors V is not orthogonal, but it is orthogonal in the space of the “denomina‐
tor” matrix. Your goal here is to demonstrate that empirically.

Compute and inspect the results of VTV and VTCWV. Ignoring tiny precision errors,
which one produces the identity matrix?
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Exercise 15-8.

Now to reproduce our results using Python’s sklearn library. Use the LinearDiscri
minantAnalysis function in sklearn.discriminant_analysis. Produce a plot like
Figure 15-7 and confirm that the overall prediction accuracy matches results from
your “manual” LDA analysis in the previous exercise. This function allows for several
different solvers; use the eigen solver to match the previous exercise, and also to
complete the following exercise.

Plot the predicted labels from your “manual” LDA on top; you should find that the
predicted labels are the same from both approaches.

Figure 15-7. Results from Exercise 15-8

Exercise 15-9.

Let’s use sklearn to explore the effects of shrinkage regularization. As I wrote in Chap‐
ters 12 and 13, it is trivial that shrinkage will reduce performance on training data;
the important question is whether the regularization improves prediction accuracy
on unseen data (sometimes called a validation set or test set). Therefore, you should
write code to implement train/test splits. I did this by randomly permuting sample
indices between 0 and 399, training on the first 350, and then testing on the final 50.
Because this is a small number of samples to average, I repeated this random selection
50 times and took the average accuracy to be the accuracy per shrinkage amount in
Figure 15-8.

Exercises | 271



Figure 15-8. Results from Exercise 15-9

Discussion: Shrinkage generally had a negative impact on validation performance.
Although it looks like the performance improved with some shrinkage, repeating
the code multiple times showed that these were just some random fluctuations. A
deeper dive into regularization is more appropriate for a dedicated machine learning
book, but I wanted to highlight here that many “tricks” that have been developed in
machine learning are not necessarily advantageous in all cases.

SVD for Low-Rank Approximations

Exercise 15-10.

Igor Stravinsky was one of the greatest music composers of all time (IMHO)—cer‐
tainly one of the most influential of the 20th century. He also made many thought-
provoking statements on the nature of art, media, and criticism, including one of
my favorite quotes: “The more art is limited, the more it is free.” There is a famous
and captivating drawing of Stravinsky by none other than the great Pablo Picasso. An
image of this drawing is available on Wikipedia, and we are going to work with this
picture in the next several exercises. Like with other images we’ve worked with in this
book, it is natively a 3D matrix (640 × 430 × 3), but we will convert it to grayscale
(2D) for convenience.
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The purpose of this exercise is to repeat Exercise 14-5, in which you re-created a close
approximation to a smooth-noise image based on four “layers” from the SVD (please
look back at that exercise to refresh your memory). Produce a figure like Figure 15-9
using the Stravinsky image. Here is the main question: does reconstructing the image
using the first four components give a good result like it did in the previous chapter?

Figure 15-9. Results from Exercise 15-10

Exercise 15-11.

Well, the answer to the question at the end of the previous exercise is a resounding
“No!” The rank-4 approximation is terrible! It looks nothing like the original image.
The goal of this exercise is to reconstruct the image using more layers so that the
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6 There is some ambiguity about whether one megabyte is 1,0002 or 1,0242 bytes; I used the latter, but it doesn’t
affect the compression ratio.

low-rank approximation is reasonably accurate—and then compute the amount of
compression obtained.

Start by producing Figure 15-10, which shows the original image, the reconstructed
image, and the error map, which is the squared difference between the original and
the approximation. For this figure, I chose k = 80 components, but I encourage you to
explore different values (that is, different rank approximations).

Figure 15-10. Results from Exercise 15-11

Next, compute the compression ratio, which is the percentage of the number of bytes
used by the low-rank approximation versus the number of bytes used by the original
image. My results for k = 80 are shown here.6 Keep in mind that with low-rank
approximations, you don’t need to store the full image or the full SVD matrices!

      Original is 2.10 mb
Reconstruction is 2.10 mb
Recon vectors are 0.65 mb (using k=80 comps.)

Compression of 31.13%

Exercise 15-12.

Why did I choose k = 80 and not, e.g., 70 or 103? It was quite arbitrary, to be
honest. The goal of this exercise is to see whether it’s possible to use the error map to
determine an appropriate rank parameter.

In a for loop over reconstruction ranks between 1 and the number of singular values,
create the low-rank approximation and compute the Frobenius distance between the

274 | Chapter 15: Eigendecomposition and SVD Applications



original and k-rank approximation. Then make a plot of the error as a function of
rank, as in Figure 15-11. The error certainly decreases with increasing rank, but there
is no clear rank that seems best. Sometimes in optimization algorithms, the derivative
of the error function is more informative; give that a try!

Figure 15-11. Results from Exercise 15-12

Final thought for this exercise: the reconstruction error for k = 430 (i.e., the full
SVD) should be exactly 0. Is it? Obviously the answer is no; otherwise, I wouldn’t
have written the question. But you should confirm this yourself. This is yet another
demonstration of precision errors in applied linear algebra.

SVD for Image Denoising

Exercise 15-13.

Let’s see if we can extend the concept of low-rank approximation to denoise the
Stravinsky picture. The goal of this exercise is to add noise and inspect the SVD
results, and then the following exercise will involve “projecting out” the corruption.

The noise here will be a spatial sine wave. You can see the noise and corrupted image
in Figure 15-12.
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Figure 15-12. Preparation for Exercise 15-13

I will now describe how to create a 2D sine wave (also called a sine grating). This is a
good opportunity to practice your math-to-code translation skills. The formula for a
2D sine grating is:

Z = sin 2πf X cos θ +Y sin θ

In this formula, f is the frequency of the sine wave, θ is a rotation parameter, and π
is the constant 3.14…. X and Y are grid locations on which the function is evaluated,
which I set to be integers from −100 to 100 with the number of steps set to match the
size of the Stravinsky picture. I set f  = .02 and θ = π/6.

Before moving on to the rest of the exercise, I encourage you to spend some time
with the sine grating code by exploring the effects of changing the parameters on the
resulting image. However, please use the parameters I wrote previously to make sure
you can reproduce my results that follow.

Next, corrupt the Stravinsky picture by adding the noise to the image. You should
first scale the noise to a range of 0 to 1, then add the noise and the original picture
together, and then rescale. Scaling an image between 0 and 1 is achieved by applying
the following formula:

R = R − min R
max R − min R

OK, now you have your noise-corrupted image. Reproduce Figure 15-13, which is the
same as Figure 15-6 but using the noisy image.
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7 The likely explanation is that this is a 2D singular plane, not a pair of singular vectors; any two linearly
independent vectors on this plane could be basis vectors, and Python selected an orthogonal pair.

Figure 15-13. Results from Exercise 15-13

Discussion: It’s interesting to compare Figure 15-13 with Figure 15-9. Although we
created the noise based on one feature (the sine wave grating), the SVD separated
the grating into two components of equal importance (roughly equal singular val‐
ues).7 Those two components are not sine gratings but instead are vertically oriented
patches. Their sum, however, produces the diagonal bands of the grating.
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Exercise 15-14.

Now for the denoising. It appears that the noise is contained in the second and third
components, so your goal now is to reconstruct the image using all components
except for those two. Produce a figure like Figure 15-14.

Figure 15-14. Results from Exercise 15-14

Discussion: The denoising is decent but certainly not perfect. One of the reasons for
the imperfection is that the noise is not entirely contained in two dimensions (notice
that the middle panel of Figure 15-14 does not perfectly match the noise image).
Furthermore, the noise projection (the image made from components 1 and 2) has
negative values and is distributed around zero, even though the sine grating had no
negative values. (You can confirm this by plotting a histogram of the noise image,
which I show in the online code.) The rest of the image needs to have fluctuations in
values to account for this so that the full reconstruction has only positive values.
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CHAPTER 16

Python Tutorial

As I explained in Chapter 1, this chapter is a crash course on Python programming. It
is designed to get you up to speed quickly to follow along with the code in the rest of
the book, but it is not designed to be a complete source for Python mastery. If you’re
looking for a dedicated Python book, then I recommend Learning Python by Mark
Lutz (O’Reilly).

While working through this chapter, please have a Python session open. (I’ll explain
how to do that later.) You are not going to learn Python just by reading the chapter;
you need to read, type into Python, change and test the code, and so on.

Also, in this chapter you should manually key in all the code you see printed here.
The code for all other chapters in this book is available online, but I want you to
type in the code for this chapter manually. Once you are more familiar with Python
coding, then manually typing in lots of code is a tedious waste of time. But when
you are first learning to code, you need to code—that is, use your fingers to type in
everything. Don’t just look at code on a page.

Why Python, and What Are the Alternatives?
Python is designed to be a general-purpose programming language. You can use
Python to do text analysis, process web forms, create algorithms, and myriad other
applications. Python is also widely used in data science and machine learning; for
these applications, Python is basically just a calculator. Well, it’s an extremely power‐
ful and versatile calculator, but we use Python because we (humans) are not quite
smart enough to do all of the numerical calculations in our heads or with pen
and paper.

Python is currently (in the year 2022) the most commonly used numerical processing
program for data science (other contenders include R, MATLAB, Julia, JavaScript,
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SQL, and C). Will Python remain the dominant language for data science? I have no
idea, but I doubt it. The history of computer science is ripe with “final languages” that
purportedly would last forever. (Have you ever programmed in FORTRAN, COBOL,
IDL, Pascal, etc?) But Python is very popular now, and you are learning applied linear
algebra now. Anyway, the good news is that programming languages have strong
transfer learning, which means that building Python proficiency will help you learn
other languages. In other words, time spent learning Python is invested, not wasted.

IDEs (Interactive Development Environments)
Python is the programming language, and you can run Python in many different
applications, which are called environments. Different environments are created by
different developers with different preferences and needs. Some common IDEs that
you might encounter include Visual Studio, Spyder, PyCharm, and Eclipse. Perhaps
the most commonly used IDE for learning Python is called Jupyter notebooks.

I wrote the code for this book using Google’s Colab Jupyter environment (more on
this in the next section). Once you gain familiarity with Python via Jupyter, you
can spend some time trying out other IDEs to see if they better suit your needs
and preferences. However, I recommend using Jupyter here, because it will help you
follow along and reproduce the figures.

Using Python Locally and Online
Because Python is free and lightweight, it can be run on a variety of operating
systems, either on your computer or in a cloud server:

Running Python locally
You can install Python on any major operating system (Windows, Mac, Linux).
If you are comfortable with installing programs and packages, then you can
install libraries as you need them. For this book, you will mostly need NumPy,
matplotlib, SciPy, and sympy.

But if you are reading this, then your Python skills are probably limited. In that
case, I recommend installing Python via the Anaconda software package. It is
free and easy to install, and Anaconda will automatically install all of the libraries
you’ll need for this book.

Running Python online
While going through this book, I recommend running Python on the web.
Advantages of cloud-located Python include that you don’t need to install any‐
thing locally, you don’t need to use your own computing resources, and you
can access your code from any browser on any computer and any operating
system. I have grown to prefer Google’s Colaboratory environment because it
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syncs with my Google Drive. That allows me to keep my Python code files on my
Google Drive and then open them from https://colab.research.google.com. There
are several other cloud-based Python environments that you can use if you are
avoiding Google services (although I’m not sure that’s even possible).

Google Colab is free to use. You’ll need a Google account to access it, but that’s
also free. Then you can simply upload the code files to your Google Drive and
open them in Colab.

Working with Code Files in Google Colab
I will now explain how to download and access the Python notebook files for this
book. As I wrote earlier, there are no code files for this chapter.

There are two ways to get the book code onto your Google Drive:

• Go to https://github.com/mikexcohen/LinAlg4DataScience, click on the green but‐•
ton that says “Code,” and then click on “Download ZIP” (Figure 16-1). This will
download the code repository, and you can then upload those files onto your
Google Drive. Now, from your Google Drive, you can double-click on a file, or
you can right-click and select “Open With” and then “Google Colaboratory.”

• Go directly to https://colab.research.google.com, select the “GitHub” tab, and•
search for “mikexcohen” in the search bar. You’ll find all of my public GitHub
repositories; you want the one called “LinAlg4DataScience.” From there, you can
click on one of the files to open the notebook.
Note that this is a read-only copy of this notebook; any changes you make will
not be saved. Therefore, I recommend copying that file into your Google Drive.

Figure 16-1. Getting the code from GitHub (left) into Colab (right)

Now that you know how to import the book’s code files into Google Colab, it’s time
to start with a fresh notebook to begin working on this chapter. Click on the menu
option “File” and then “New Notebook” to create a new notebook. It will be called
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“Untitled1.ipynb” or something similar. (The extension ipynb stands for “interactive
Python notebook.”) I recommend changing the name of the file by clicking on the
filename at the top-left of the screen. By default, new files are placed in your Google
Drive in the “Colab Notebooks” folder.

Variables
You can use Python as a calculator. Let’s try it; type the following into a code cell:

4 + 5.6

Nothing happens when you type that code into a cell. You need to tell Python to run
that code. You do that by pressing Ctrl-Enter (Command-Enter on a Mac) on your
keyboard while that cell is active (a code cell is active if you see the cursor blinking
inside the cell). There are also menu options for running the code in a cell, but coding
is easier and faster when using keyboard shortcuts.

Take a moment to explore the arithmetic. You can use different numbers, parentheses
for grouping, and different operations like -, /, and *. Also notice that the spacing
does not affect the result: 2*3 is the same thing as 2 * 3. (Spacing is important for
other aspects of Python coding; we’ll get to that later.)

Working with individual numbers is not scalable for applications. That’s why we have
variables. A variable is a name that refers to data stored in memory. It’s analogous
to how languages use words to refer to objects in the real world. For example, my
name is Mike, but I am not Mike; I am a human being composed of trillions of cells
that somehow are capable of walking, talking, eating, dreaming, telling bad jokes, and
myriad other things. But that’s way too complicated to explain, so for convenience
people call me “Mike X Cohen.” So, a variable in Python is simply a convenient
reference to stored data such as a number, an image, a database, etc.

We create variables in Python by assigning a value to them. Type in the following:

var1 = 10
var2 = 20.4
var3 = 'hello, my name is Mike'

Running that cell will create the variables. Now you can start to use them! For
example, in a new cell, run the following code:

var1 + var2

>> 30.4
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Outputs

The >> you see in code blocks is the result of running the code
cell. The text thereafter is what you see on your screen when you
evaluate the code in a cell.

Now try this:

var1 + var3

Ahh, you just got your first Python error! Welcome to the club :) Don’t worry, coding
errors are extremely common. In fact, the difference between a good coder and a bad
coder is that good coders learn from their mistakes whereas bad coders think that good
coders never make mistakes.

Errors in Python can be difficult to make sense of. Below is the error message on my
screen:

TypeError                                 Traceback (most recent call last)
<ipython-input-3-79613d4a2a16> in <module>()
      3 var3 = 'hello, my name is Mike'
      4
----> 5 var1 + var3

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Python indicates the offending line with an arrow. The error message, which will
hopefully help us understand what went wrong and how to fix it, is printed at the
bottom. In this case, the error message is a TypeError. What does that mean, and
what are “types”?

Data Types
It turns out that variables have types that describe the kind of data those variables
store. Having different types makes computing more efficient, because operations
work differently on different kinds of data.

There are many data types in Python. I will introduce four here, and you’ll learn more
data types as you progress through the book:

Integers
These are called int and are whole numbers, like −3, 0, 10, and 1,234.

Floating-point numbers
These are called float, but that’s just a fancy term for a number with a decimal
point, like −3.1, 0.12345, and 12.34. Be mindful that floats and ints may look
the same to us humans, but they are treated differently by Python functions. For
example, 3 is an int, whereas 3.0 is a float.
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Strings
These are called str and are text. Here, too, be mindful of the distinction
between 5 (a string corresponding to the character 5) and 5 (an int correspond‐
ing to the number 5).

Lists
A list is a collection of items, each of which can have a different data type.

Lists are quite handy, and are ubiquitous in Python programming. The following
code illustrates three important features of lists: (1) they are indicated using square
brackets [ ], (2) commas separate list items, and (3) individual list items can have
different data types:

list1 = [ 1,2,3 ]
list2 = [ 'hello',123.2,[3,'qwerty'] ]

The second list shows that lists may contain other lists. In other words, the third
element of list2 is itself a list.

What if you want to access only the second element of list2? Individual list elements
are extracted using indexing, which I will teach you about in the next section.

You can determine the data type using the function type. For example, evaluate the
following in a new cell:

type(var1)

Hey, wait, what is a “function”? You can look forward to learning about using and
creating functions in the next-next section; first I want to return to the topic of
indexing.

What to Call My Variables?

There are a few hard rules about naming variables. Variable names
cannot start with numbers (though they may contain numbers),
nor can they include spaces or nonalphanumeric characters like !
@#$%^&*(). Underscores _ are allowed.
There are also guidelines for naming variables. The most important
guideline is to make variable names meaningful and interpretable.
For example, rawDataMatrix is a much better variable name than
q. You might end up creating dozens of variables in your code, and
you want to be able to infer the data referenced by a variable from
the variable name.

Indexing
Indexing means accessing a specific element in a list (and related data types, including
vectors and matrices). Here’s how you extract the second element of a list:
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aList = [ 19,3,4 ]
aList[1]

>> 3

Notice that indexing is done using square brackets after the variable name, and then
the number you want to index.

But wait a minute—I wrote that we want the second element; why does the code
access element 1? That’s not a typo! Python is a 0-based indexing language, which
means that index 0 is the first element (in this case, the number 19), index 1 is the
second element, and so on.

If you are new to 0-based coding languages, then this will seem weird and confusing.
I completely sympathize. I wish I could write that it will become second nature
after some practice, but the truth is that 0-based indexing will always be a source of
confusion and errors. It’s just something you have to be mindful of.

How do you access the number 4 in aList? You could index it directly as aList[2].
But Python indexing has a neat feature whereby you can index list elements back‐
ward. To access the last element of a list, you type aList[-1]. You can think of -1
as wrapping around to the end of the list. Likewise, the penultimate list element is
aList[-2], and so on.

Functions
A function is a collection of code that you can run without having to type in all the
individual pieces of code over and over again. Some functions are short and comprise
only a few lines of code, while others have hundreds or thousands of lines of code.

Functions are indicated in Python using parentheses immediately after the function
name. Here are a few common functions:

type()  # returns the data type
print() # prints text information to the notebook
sum()   # adds numbers together

Comments
Comments are pieces of code that are ignored by Python. Comments help you and
others interpret and understand the code. Comments in Python are indicated using
the # symbol. Any text after the # is ignored. You can have comments in their own
lines or to the right of a piece of code.
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Functions may take inputs and may provide outputs. The general anatomy of a
Python function looks like this:

output1,output2 = functionname(input1,input2,input3)

Going back to the previous functions:

dtype = type(var1)
print(var1+var2)
total = sum([1,3,5,4])

>> 30.4

print() is a very useful function. Python only prints output of the final line in a cell,
and only when that line does not involve a variable assignment. For example, write
the following code:

var1+var2
total = var1+var2
print(var1+var2)
newvar = 10

>> 30.4

There are four lines of code, so you might have expected Python to give four outputs.
But only one output is given, corresponding to the print() function. The first two
lines do not print their output because they are not the final line, while the final line
does not print its output because it is a variable assignment.

Methods as Functions
A method is a function that is called directly on a variable. Different data types have
different methods, meaning that a method that works on lists may not work on
strings.

The list data type, for example, has a method called append that adds an extra element
to an existing list. Here’s an example:

aSmallList = [ 'one','more' ]
print(aSmallList)

aSmallList.append( 'time' )
print(aSmallList)

>> ['one','more']
['one','more','time']

Note the syntax formatting: methods are similar to functions in that they have
parentheses and (for some methods) input arguments. But methods are attached to
the variable name with a period, and can directly change the variable without an
explicit output.
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1 Some IDEs accept two or four spaces; others accept only four spaces. I think two spaces looks cleaner.

Take a moment to change the code to use a different data type—for example, a string
instead of a list. Rerunning the code will generate the following error message:

AttributeError: 'str' object has no attribute 'append'

This error message means that the string data type does recognize the append func‐
tion (an attribute is a property of a variable; a method is one such attribute).

Methods are a core part of object-oriented programming and classes. These are
aspects of Python that would be covered in a dedicated Python book, but don’t worry
—you don’t need a full understanding of object-oriented programming to learn linear
algebra with this book.

Writing Your Own Functions
There are many functions available in Python. Too many to count. But there will
never be that perfect function that does exactly what you need. So you will end up
writing your own functions.

Creating your own functions is easy and convenient; you use the built-in keyword
def to define the function (a keyword is a reserved name that cannot be redefined
as a variable or function), then state the function name and any possible inputs, and
end the line with a colon. Any lines thereafter are included in the function if they are
indented with two spaces.1 Python is very particular about spacing at the beginning
of the line (but not particular about spacing elsewhere in the line). Any outputs are
indicated by the return keyword.

Let’s start with a simple example:

def add2numbers(n1,n2):
  total = n1+n2
  print(total)
  return total

This function takes two inputs and computes, prints, and outputs their sum. Now it’s
time to call the function:

s = add2numbers(4,5)
print(s)

>> 9
9

Why did the number 9 appear twice? It was printed once because the print()
function was called inside the function, and then it was printed a second time when I
called print(s) after the function. To confirm this, try changing the line after calling
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2 If you installed Python via Anaconda or if you are using Google’s Colab environment, you won’t need to
download any libraries for this book, but you will need to import them.

the function to print(s+1). (Modifying code to see the effect on the output is a great
way to learn Python; just make sure to undo your changes.)

Notice that the variable name assigned to be the output inside the function (total)
can be different from the variable name I used when calling the function (s).

Writing custom functions allows for a lot of flexibility—for example, setting optional
inputs and default parameters, checking inputs for data type and consistency, and so
on. But a basic understanding of functions will suffice for this book.

When to Write Functions?
If you have some lines of code that need to be run dozens, hundreds, or maybe
billions of times, then writing a function is definitely the way to go. Some people
really like writing functions and will write dedicated functions even if they are called
only once.

My preference is to create a function only when it will be called multiple times in
different contexts or parts of the code. But you are the master of your own code, and
as you gain more coding experience, you can choose when to put code into functions.

Libraries
Python is designed to be easy and fast to install and run. But the downside is that the
basic install of Python comes with a small number of built-in functions.

Developers therefore create collections of functions focused on a specific topic, which
are called libraries. Once you import a library into Python, you can access all the
functions, variable types, and methods that are available in that library.

According to a Google search, there are over 130,000 libraries for Python. Don’t
worry, you won’t need to memorize all of them! In this book, we will use only a
few libraries that are designed for numerical processing and data visualization. The
most important library for linear algebra is called NumPy, which is a pormanteau of
“numerical Python.”

Python libraries are separate from the basic Python installation, which means you
need to download them from the web and then import them into Python. That makes
them available to use inside Python. You need to download them only once, but you
need to reimport them into Python in each Python session.2
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NumPy
To import the NumPy library into Python, type:

import numpy as np

Notice the general formulation of importing libraries: import libraryname as

abbreviation. The abbreviation is a convenient shortcut. To access functions in a
library, you write the abbreviated name of the library, a period, and the name of the
function. For example:

average = np.mean([1,2,3])
sorted1 = np.sort([2,1,3])
theRank = np.linalg.matrix_rank([[1,2],[1,3]])

The third line of code shows that libraries can have sublibraries, or modules, nested
inside them. In this case, NumPy has many functions, and then there is a library
inside NumPy called linalg, which contains many more functions specifically related
to linear algebra.

NumPy has its own data type called a NumPy array. NumPy arrays initially seem
similar to lists in that they both store collections of information. But NumPy arrays
store only numbers and have attributes that are useful for mathematical coding. The
following code shows how to create a NumPy array:

vector = np.array([ 9,8,1,2 ])

Indexing and Slicing in NumPy
I’d like to return to the discussion of accessing a single element within a variable.
You can access one element of a NumPy array using indexing, exactly the same as
how you index a list. In the following code block, I’m using the function np.arange
to create an array of integers from −4 to 4. That’s not a typo in the code—the
second input is +5, but the returned values end at 4. Python often uses exclusive
upper bounds, meaning that Python counts up to—but not including—the final
number you specify:

ary = np.arange(-4,5)
print(ary)
print(ary[5])

>> [-4 -3 -2 -1  0  1  2  3  4]
1

That’s all well and good, but what if you want to access, for example, the first three
elements? Or every second element? It’s time to proceed from indexing to slicing.

Slicing is simple: specify the start and end indices with a colon in between. Just
remember that Python ranges have exclusive upper bounds. Thus, to get the first
three elements of our array, we slice up to index 3 + 1 = 4, but then we need to
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account for the 0-based indexing, which means the first three elements have indices
0, 1, and 2, and we slice them using 0:3:

ary[0:3]

>> array([-4, -3, -2])

You can index every second element using the skip operator:

ary[0:5:2]

>> array([-4, -2, 0])

The formulation of indexing with skipping is [start:stop:skip]. You can run
through the entire array backward by skipping by −1, like this: ary[::-1].

I know, it’s a bit confusing. I promise it will get easier with practice.

Visualization
Many concepts in linear algebra—and most other areas of mathematics—are best
understood by seeing them on your computer screen.

Most data visualization in Python is handled by the matplotlib library. Some aspects
of graphical displays are IDE dependent. However, all the code in this book works
as-is in any Jupyter environment (via Google Colab, another cloud server, or a local
installation). If you use a different IDE, then you might need to make a few minor
adjustments.

Typing matplotlib.pyplot gets really tedious, and so it’s common to abbreviate this
library as plt. You can see that in the next code block.

Let’s begin with plotting dots and lines. See if you can understand how the following
code maps onto Figure 16-2:

import matplotlib.pyplot as plt
import numpy as np

plt.plot(1,2,'ko') # 1) plot a black circle
plt.plot([0,2],[0,4],'r--') # 2) plot a line
plt.xlim([-4,4]) # 3) set the x-axis limits
plt.ylim([-4,4]) # 4) set the y-axis limits
plt.title('The graph title') # 5) graph title
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Figure 16-2. Visualizing data, part 1

Did you manage to decode the code? Code line #1 says to plot a black circle (ko—the
k is for black and the o is for circle) at XY location 1,2. Code line #2 provides lists
of numbers instead of individual numbers. This specifies a line that starts at XY
coordinate (0, 0) and ends at coordinate (2, 4). The r-- specifies a red dashed line.
Code lines #3 and #4 set the x-axis and y-axis limits, and, of course, line #5 creates a
title.

Before moving forward, take a moment to explore this code. Draw some additional
dots and lines, try different markers (hint: explore the letters o, s, and p) and different
colors (try r, k, b, y, g, and m).

The next code block introduces subplots and images. A subplot is a way of dividing
the graphics area (called the figure) into a grid of separate axes into which you
can draw different visualizations. As with the previous code block, see if you can
understand how this code produces Figure 16-3 before reading my description:

_,axs = plt.subplots(1,2,figsize=(8,5)) # 1) create subplots
axs[0].plot(np.random.randn(10,5)) # 2) line plot on the left
axs[1].imshow(np.random.randn(10,5)) # 3) image on the right
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Figure 16-3. Visualizing data, part 2

Code line #1 creates the subplots. The first two inputs into the plt.subplots func‐
tion specify the grid geometry—in this case, a 1 × 2 matrix of subplots, which means
one row and two columns, which means two plots next to each other. The first input
specifies the total size of the figure, with the two elements in that tuple corresponding
to width and then height in inches. (The sizes are always listed as width,height. A
mnemonic for remembering the order is WH for “White House.”) The plt.subplots
function provides two outputs. The first is a handle to the entire figure, which we
don’t need, so I used an underscore in lieu of a variable name. The second output is a
NumPy array that contains handles to each axis. A handle is a special type of variable
that points to an object in the figure.

Now for code line #2. This should look familiar to the previous code block; the two
new concepts are plotting to the specific axis instead of the entire figure (using plt.)
and inputting a matrix instead of individual numbers. Python creates a separate line
for each column of the matrix, which is why you see five lines in Figure 16-3.

Finally, code line #3 shows how to create an image. Matrices are often visualized as
images, as you learned in Chapter 5. The color of each little block in the image is
mapped onto a numerical value in the matrix.

Well, there’s a lot more that could be said about creating graphics in Python. But I
hope this introduction is enough to get you started.
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Translating Formulas to Code
Translating mathematical equations into Python code is sometimes straightforward
and sometimes difficult. But it is an important skill, and you will improve with
practice. Let’s start with a simple example in Equation 16-1.

Equation 16-1. An equation

y = x2

You might think that the following code would work:

y = x**2

But you’d get an error message (NameError: name x is not defined). The problem
is that we are trying to use a variable x before defining it. So how do we define x?
In fact, when you look at the mathematical equation, you defined x without really
thinking about it: x goes from negative infinity to positive infinity. But you don’t draw
the function out that far—you would probably choose a limited range to draw that
function, perhaps −4 to +4. That range is what we to specify in Python:

x = np.arange(-4,5)
y = x**2

Figure 16-4 shows the plot of the function, created using plt.plot(x,y,'s-').

Figure 16-4. Visualizing data, part 3
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It looks OK, but I think it’s too choppy; I would like the line to look smoother. We
can accomplish this by increasing the resolution, which means having more points
between −4 and +4. I’ll use the function np.linspace(), which takes three inputs: the
start value, the stop value, and the number of points in between:

x = np.linspace(-4,4,42)
y = x**2
plt.plot(x,y,'s-')

Now we have 42 points linearly (evenly) spaced between −4 and +4. That makes the
plot smoother (Figure 16-5). Note that np.linspace outputs a vector that ends at +4.
This function has inclusive bounds. It is a little confusing to know which functions
have inclusive and which have exclusive bounds. Don’t worry, you’ll get the hang of it.

Figure 16-5. Visualizing data, part 4

Let’s try another function-to-code translation. I will also use this opportunity to
introduce you to a concept called soft coding, which means creating variables for
parameters that you might want to change later.

Please translate the following mathematical function into code and generate a plot
before looking at my code that follows:

f x = α

1 + e−βx

α = 1.4
β = 2
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3 I’m told that this is millenial lingo for “in my humble opinion.”

This function is called a sigmoid and is used often in applied math, for example as
a nonlinear activation function in deep learning models. α and β are parameters
of the equation. Here I’ve set them to specific values. But once you have the code
working, you can explore the effects of changing those parameters on the resulting
graph. In fact, using code to understand math is, IMHO,3 the absolute best way to
learn mathematics.

There are two ways you can code this function. One is to put the numerical values
for α and β directly into the function. This is an example of hard coding because the
parameter values are directly implemented in the function.

An alternative is to set Python variables to the two parameters, and then use those
parameters when creating the mathematical function. This is soft coding, and it makes
your code easier to read, modify, and debug:

x = np.linspace(-4,4,42)
alpha = 1.4
beta  = 2

num = alpha # numerator
den = 1 + np.exp(-beta*x) # denominator
fx  = num / den
plt.plot(x,fx,'s-');

Notice that I’ve split up the function creation into three lines of code that specify the
numerator and denominator, and then their ratio. This makes your code cleaner and
easier to read. Always strive to make your code easy to read, because it (1) reduces the
risk of errors and (2) facilitates debugging.

Figure 16-6 shows the resulting sigmoid. Take a few moments to play with the code:
change the x variable limits and resolution, change the alpha and beta parameter
values, maybe even change the function itself. Mathematics is beautiful, Python is your
canvas, and code is your paintbrush!
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Figure 16-6. Visualizing data, part 5

Print Formatting and F-Strings
You already know how to print out variables using the print() function. But that’s
just for printing out one variable with no other text. F-strings give you more control
over the output format. Observe:

var1 = 10.54
print(f'The variable value is {var1}, which makes me happy.')

>> The variable value is 10.54, which makes me happy.

Note the two key features of the f-string: the initial f before the first quote mark and
the curly brackets {} encasing variable names that get replaced with variable values.

The next code block further highlights the flexibility of f-strings:

theList = ['Mike',7]
print(f'{theList[0]} eats {theList[1]*100} grams of chocolate each day.')

>> Mike eats 700 grams of chocolate each day.

Two key points to learn from this example: (1) don’t worry, I don’t actually eat that
much chocolate (well, not every day), and (2) you can use indexing and code inside
the curly brackets, and Python will print out the result of the computation.

One final feature of f-string formatting:

pi = 22/7
print(f'{pi}, {pi:.3f}')
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>> 3.142857142857143, 3.143

The key addition in that code is the :.3f, which controls the formatting of the
output. This code tells Python to print out three numbers after the decimal point. See
what happens when you change the 3 to another integer and what happens when you
include an integer before the colon.

There are many other formatting options—and other ways to have flexible text
outputs—but the basic implementation of f-strings is all you need to know for this
book.

Control Flow
The power and flexibility of programming come from endowing your code with the
ability to adapt its behavior depending on the state of certain variables or user inputs.
Dynamism in code comes from control flow statements.

Comparators
Comparators are special characters that allow you to compare different values. The
outcome of a comparator is a data type called a Boolean, which takes one of two
values: True or False. Here are a few examples:

print( 4<5 ) # 1
print( 4>5 ) # 2
print( 4==5 ) # 3

The outputs of these lines are True for #1 and False for #2 and #3.

That third statement contains a double-equals sign. It’s very different from a single
equals sign, which you already know is used to assign values to a variable.

Two more comparators are <= (less than or equal to) and >= (greater than or
equal to).

If Statements
If statements are intuitive because you use them all the time: If I’m tired, then I will
rest my eyes.

The basic if statement has three parts: the if keyword, the conditional statement,
and the code content. A conditional statement is a piece of code that evaluates to true
or false, followed by a colon (:). If the conditional is true, then all the code beneath
and indented is run; if the conditional is false, none of the indented code is run, and
Python will continue running code that is not indented.
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Here is an example:

var = 4
if var==4:
  print(f'{var} equals 4!')

print("I'm outside the +for+ loop.")

>> 4 equals 4!
I'm outside the +for+ loop.

And here is another example:

var = 4
if var==5:
  print(f'{var} equals 5!')

print("I'm outside the +for+ loop.")

>> I'm outside the +for+ loop.

The first message is skipped because 4 does not equal 5; therefore, the conditional
statement is false, and therefore Python ignores all of the indented code.

elif and else

Those two examples show the basic if statement form. If statements can include
additional conditionals to increase the sophistication of the flow of information.
Before reading my explanation of the following code and before typing this into
Python on your computer, try to understand the code and make a prediction about
what messages will print out:

var = 4

if var==5:
  print('var is 5') # code 1
elif var>5:
  print('var > 5') # code 2
else:
  print('var < 5') # code 3

print('Outside the if-elif-else')

When Python encounters a code statement like this, it proceeds from top to bottom.
So, Python will start with the first conditional after the if. If that conditional is true,
Python will run code 1 and then skip all following conditionals. That is, as soon as
Python encounters a true conditional, the indented code is run and the if statement
ends. It doesn’t matter if subsequent conditionals are also true; Python won’t check
them or run their indented code.
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If the first conditional is false, Python will proceed to the next conditional, which is
elif (short for “else if ”). Again, Python will run the subsequent indented code if the
conditional is true, or it will skip the indented code if the conditional is false. This
code example shows one elif statement, but you can have multiple such statements.

The final else statement has no conditional. This is like the “plan B” of the if
statement: it is run if all the previous conditionals are false. If at least one of the
conditionals is true, then the else code is not evaluated.

The output of this code example is:

var <5
Outside the if-elif-else

Multiple conditions

You can combine conditionals using and and or. It’s the coding analog to “If it rains
and I need to walk, then I’ll bring an umbrella.” Here are a few examples:

if 4==4 and 4<10:
  print('Code example 1.')

if 4==5 and 4<10:
  print('Code example 2.')

if 4==5 or 4<10:
  print('Code example 3.')

>> Code example 1.
Code example 3.

The text Code example 2 did not print because 4 does not equal 5. However, when
using or, then at least one of the conditionals is true, so the subsequent code was run.

For Loops
Your Python skills are now sufficient to print out the numbers 1–10. You could use
the following code:

print(1)
print(2)
print(3)

And so on. But that is not a scalable strategy—what if I asked you to print out
numbers up to a million?

Repeating code in Python is done through loops. The most important kind of loop is
called a for loop. To create a for loop, you specify an iterable (an iterable is a variable
used to iterate over each element in that variable; a list can be used as an iterable) and
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then any number of lines of code that should be run inside the for loop. I’ll start with
a very simple example, and then we’ll build on that:

for i in range(0,10):
  print(i+1)

Running that code will output the numbers 0 through 10. The function range()
creates an iterable object with its own data type called range, which is often used
in for loops. The range variable contains integers from 0 through 9. (Exclusive
upper bound! Also, if you start counting at 0, then you don’t need the first input,
so range(10) is the same as range(0,10)). But my instructions were to print the
numbers 1 through 10, so we need to add 1 inside the print function. This example
also highlights that you can use the iteration variable as a regular numerical variable.

for loops can iterate over other data types. Consider the following example:

theList = [ 2,'hello',np.linspace(0,1,14) ]
for item in theList:
  print(item)

Now we’re iterating over a list, and the looping variable item is set to each item in the
list at each iteration.

Nested Control Statements
Nesting flow-control statements inside other flow-control statements gives your code
an additional layer of flexibility. Try to figure out what the code does and make a
prediction for its output. Then type it into Python and test your hypothesis:

powers = [0]*10

for i in range(len(powers)):
  if i%2==0 and i>0:
    print(f'{i} is an even number')

  if i>4:
    powers[i] = i**2

print(powers)

I haven’t yet taught you about the % operator. That’s called the modulus operator,
and it returns the remainder after division. So 7%3 = 1, because 3 goes into 7 twice
with a remainder of 1. Likewise, 6%2 = 0 because 2 goes into 6 three times with
a remainder of 0. In fact, k%2 = 0 for all even numbers and k%2 = 1 for all odd
numbers. Therefore, a statement like i%2==0 is a way to test whether the numeric
variable i is even or odd.
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Measuring Computation Time
When writing and evaluating code, you will often want to know how long the
computer takes to run certain pieces of code. There are several ways to measure
elapsed time in Python; one simple method is shown here, using the time library:

import time

clockStart = time.time()
# some code here...
compTime = time.time() - clockStart

The idea is to query the operating system’s local time twice (this is the output of the
function time.time()): once before running some code or functions, and once after
running the code. The difference in clock times is the computation time. The result
is the elapsed time in seconds. It’s often handy to multiply the result by 1,000 to print
the results in milliseconds (ms).

Getting Help and Learning More
I’m sure you’ve heard the phrase “Math is not a spectator sport.” Same goes for coding:
the only way to learn to code is by coding. You will make lots of mistakes, get frustrated
because you can’t figure out how to get Python to do what you want, see lots of
errors and warning messages that you can’t decipher, and just get really irritated at the
universe and everything in it. (Yeah, you know the feeling I’m referring to.)

What to Do When Things Go Awry
Please allow me the indulgence to tell a joke: four engineers get into a car, but the car
won’t start. The mechanical engineer says, “It’s probably a problem with the timing
belt.” The chemical engineer says, “No, I think the problem is the gas/air mixture.”
The electrical engineer says, “It sounds to me like the spark plugs are faulty.” Finally,
the software engineer says, “Let’s just get out of the car and get back in again.”

The moral of the story is that when you encounter some unexplainable issues in your
code, you can try restarting the kernel, which is the engine running Python. That
won’t fix coding errors, but it may resolve errors due to variables being overwritten
or renamed, memory overloads, or system failures. In Jupyter notebooks, you can
restart the kernel through the menu options. Be aware that restarting the kernel clears
out all of the variables and environment settings. You may need to rerun the code
from the beginning.

If the error persists, then search the internet for the error message, the name of
the function you’re using, or a brief description of the problem you’re trying to
solve. Python has a huge international community, and there is a multitude of online
forums where people discuss and resolve Python coding issues and confusions.
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Summary
Mastering a programming language like Python takes years of dedicated study and
practice. Even achieving a good beginner’s level takes weeks to months. I hope this
chapter provided you with enough skills to complete this book. But as I wrote in
Chapter 1, if you find that you understand the math but struggle with the code, then
you might want to put this book down, get some more Python training, and then
come back.

On the other hand, you should also see this book as a way to improve your Python
coding skills. So if you don’t understand some code in the book, then learning linear
algebra is the perfect excuse to learn more Python!
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mathematical proofs versus intuition from cod‐

ing, 4
mathematics

attitudes toward learning, 3
on the chalkboard versus implemented in

code, 8
learning, mathematical proofs versus intu‐

ition from coding, 4
matplotlib (Python), 62, 290
matrices, 1, 75

about, 61
applications, 113-128

geometric transforms via matrix-vector
multiplication, 116-120

image feature detection, 120-123
multivariate data covariance matrices,

113-116
converting equations into, 160
creating and visualizing in NumPy, 61-65

special matrices, 63
visualizing, indexing and slicing matri‐

ces, 61-63
math, 65-67

addition and subtraction of matrices, 65
scalar and Hadamard multiplication, 67
shifting a matrix, 66

operations
LIVE EVIL, order of operations acro‐

nym, 73
transpose, 72, 73

quadratic form of, 228-230
special, 75

standard multiplication, 67-72
matrix multiplication, 69
rules for matrix multiplication validity,

68
symmetric, 74

creating from nonsymmetric matrices,
74

transposing, 15
matrix equations, 129

for a covariance matrix, 114
working with, 161, 171

matrix inverse, 129-145, 187
computing, 131-138

for diagonal matrix, 133
inverse of 2 X 2 matrix, 131
one-sided inverses, 136

via Gauss-Jordan elimination, 167
geometric interpretation of, 141
inverse of an orthogonal matrix, 148
Moore-Penrose pseudoinverse, 138
numerical stability of the inverse, 139-141
QR decomposition and, 154
types of inverses and conditions for inverti‐

bility, 130
uniqueness of, 138

matrix rank (see rank)
matrix-vector multiplication, 70-72

geometric transforms, 71
geometric transforms via, 116-120
linear weighted combinations, 71

mean centering, 50
methods, 286
minimum norm solution (min-norm), 199
minors matrix, 134
Monte Carlo simulations, 232
Moore-Penrose pseudoinverse, 138, 199

singular value decomposition and, 249
MP pseudoinverse (see Moore-Penrose pseu‐

doinverse)
multicollinearity, 199
multiplication

geometry of vector-scalar multiplication, 15
matrix multiplication and vector dot prod‐

uct, 20
methods other than dot product for vectors,

22
cross and triple products, 24
Hadamard multiplication, 22
outer product, 23
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multiplying matrices, 76
scalar and Hadamard multiplication of

matrices, 67
scalar-vector multiplication and addition, 34
standard matrix multiplication, 67-72
vector dot product, 19
vector-scalar, 13

multiplication operator in Python (*), 23
multiplying matrices, 67

multiplicative method (creating symmetric
matrices), 75

multivariate data covariance matrices, 113-116

N
nested flow-control statements, 300
noise

ill-conditioned matrix as amplification fac‐
tor, 249

using SVD for denoising, 263
noise reduction, 216
noninvertible matrices, 130
nonlinear independence, 38
nonsquare matrices, 74

having one-sided inverse, 130
Moore-Penrose pseudoinverse applied to,

250
square matrices versus, 63

norm (vectors), 17
ratio of two norms, 257

normalizations for correlation coefficient, 50
normalized quadratic form, 257
np.argmin function, 55
np.diag function, 64
np.dot function, 19, 24
np.eye function, 64
np.min function, 55
np.multiply function, 67
np.outer function, 24
np.random function, 63
np.sum function, 55
np.tril function, 64
np.triu function, 64
null space vectors (eigenvectors), 221
numerical stability of matrix inverse, 139-141
NumPy

diagonalizing a matrix in, 223
importing into Python, 289
indexing and slicing in, 289
polynomial regression functions, 203

svd function, 243

O
offsets, 160
one-sided inverse, 130

computing, 136
ordered list of numbers, 10

(see also vectors)
ordinary least squares (OLS), 198
orientation (vectors), 7

in addition of vectors, 12
orientationless arrays, 9
orthogonal eigenvectors, 224

orthogonality proof, 225
orthogonal matrices, 117, 147-149

matrices of singular vectors, 242
orthogonal columns and unit-norm col‐

umns, 147
permutation matrices, 170
transforming nonorthogonal matrices to

using Gram-Schmidt, 149
using QR decomposition, 150-154

orthogonal projection, 26
orthogonal vector decomposition, 13, 24-28
orthogonal vector projection, 181
orthogonal vectors, zero dot product, 22
outer product, 23

versus broadcasting, 24
in matrix-vector multiplication, 73

P
pandas dataframes, 196
parallel component (orthogonal vector decom‐

position), 27
Pearson correlation coefficient, 20

versus cosine similarity, 51
expressed in linear algebra terms, 51
formula for, 50

permutation matrices, 149, 187
row swaps via, 170

perpendicular component (orthogonal vector
decomposition), 27

pivots, 163
in Gauss-Jordan elimination, 166

polynomial regression, 200
positive (semi)definite, 231, 234
positive definite, 231
predicting bike rentals based on weather

(example), 193-200
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creating regression table using statsmodels,
198

multicollinearity, 199
predicted versus observed data, 197
regularization of the matrix, 199

prime factorization, 25
principal components analysis (PCA), 43, 215

using eigendecomposition and SVD,
255-259
math of PCA, 256
PCA via SVD, 259
proof that eigendecomposition solves

PCA optimization goal, 258
steps in performing PCA, 259

print formatting and f-strings, 296
projecting out a data dimension, 216
proof by negation, 138
proportion of regularization, 200
pseudoinverse, 130

Moore-Penrose pseudoinverse, 138
pure rotation matrix, 116, 148
Python, 3

creating data animations in, 116-120
IDEs, 5
least squares solution via left-inverse trans‐

lated into code, 178
SciPy library, function for LU decomposi‐

tion, 169
singular value decomposition in, 243
sympy library, computation of RREF, 167
terminology differences from chalkboard

linear algebra, 17
tutorial, 279-302

control flow, 297-300
functions, 285-290
getting help and learning more, 301
IDEs, 280
measuring computation time, 301
print formatting and f-strings, 296
translating formulas to code, 293-296
use cases and alternatives, 279
using Python locally and online, 280
variables, 282-285
visualizations, 290-292

vectors in, 9

Q
QR decomposition, 149, 150-154

QR and inverses, 154

sizes of Q and R, 151
solving least squares via, 187

quadratic form of a matrix, 228-230
normalized quadratic form of data cova‐

riance matrix, 257

R
random numbers matrices, 63

LU decomposition applied to, 171
range type, 300
rank (matrices)

from eigendecomposition of singular
matrix, 228

singular value decomposition and rank-1
layers of a matrix, 244-246

singular values and, 243
rank-deficient matrices, 131
real-valued eigenvalues, 226
rectangular matrices, 63

left-null space and null space, 243
reduced or economy QR decomposition, 151
reduced rank matrices, 131

eigendecomposition of, 228
not invertible, 133

reduced row echelon form (RREF), 164, 166
regression

creating regression table using statsmodels,
198

polynomial, 200
regressors, 195

regression coefficients for, 198
regularization, 199
right singular vectors, 241
right-inverse, 130
rotation matrices, 116
row orientation (vectors), 7
row reduction, 163-168, 171

Gauss-Jordan elimination, 166
Gaussian elimination, 165
goal of, 163
matrix inverse via Gauss-Jordan elimina‐

tion, 167
row swaps, 170
row, column index (matrix elements), 16
RREF (reduced row echelon form), 166

S
scalar equations versus matrix equations, 161
scalar inverse, 131
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scalar matrices, 218
scalar-matrix multiplication, 67
scalars

negative, changing direction of vectors, 15
scalar-vector addition, 14
scalar-vector multiplication and addition, 34
vector-scalar multiplication, 13

SciPy library (Python), 169
computation of generalized eigendecompo‐

sition, 233
scree plots, 216
self-learners, how to use this book, 6
shape (vectors in Python), 8
shifting a matrix, 66, 76, 199

by its eigenvalue, 218
sigmoid function, 295
sign and scale indeterminacy of eigenvectors,

221
similarity between vectors, 20
simultaneous diagonalization of two matrices,

232
singular matrices, 130, 218

eigendecomposition of, 227
singular value decomposition, 241-254

applications of eigendecomposition and
SVD, 255-278
principal components analysis via SVD,

259
big picture of, 241-243

important features, 242
singular values and matrix rank, 243

computing from eigendecomposition,
246-247
SVD of AtA, 247

key points, 250
low-rank approximations via, 262
and the Moore-Penrose pseudoinverse, 249
in Python, 243
and rank-1 layers of a matrix, 244-246
using for denoising, 263

singular values, 241
converting to variance, 247
important properties of, 246
and matrix rank, 243

singular vectors, 259, 268
orthogonal nature of, 246

slicing (in NumPy), 289
slicing a matrix, 62
soft coding, 295

soft proofs, 4
span, 38

(see also subspace and span)
sparse variables, 195
square matrices, 74

definiteness, 230
diagonalizing, 222-223
eigendecomposition for, 214
full rank, computing inverse of, 134
full rank, unique LU decomposition for, 169
versus nonsquare matrices, 63

squared errors between predicted data and
observed data, 181

standard basis set, 42
standard matrix multiplication, 67

(see also matrices)
standard position (vectors), 10
statistical models, 175, 176

(see also general linear models)
regularization, 199

statistics
correlation in, 49
general linear model, 70
principal components analysis, 215
shifting a matrix, 66
solving inverse problems in, 25
variance, 114

statsmodels library, using to create regression
table, 198

str (string) type, 284
stretching eigenvector of the matrix, 214
submatrices, 62
subspace and span (vector), 38-41, 46

basis and, 44
subtracting vectors, 11

geometry of vector subtraction, 12
in linear weighted combination, 34

SVD (see singular value decomposition)
symmetric matrices, 74

creating from nonsymmetric, 74
positive (semi)definiteness and, 232
special properties relating to eigendecompo‐

sition, 224-227, 234
orthogonal eigenvectors, 224
real-valued eigenvalues, 226

sympy library (Python), 167

T
tall matrices, 63
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computing left-inverse, 136
economy versus full QR decomposition, 151

teachers, how to use this book, 6
tensors, 123
time series filtering, 52
transforms

geometric transforms in matrix-vector mul‐
tiplication, 71

matrix inverse undoing geometric trans‐
form, 141

transpose operations, 9, 15
on matrices, 72
order of operations with matrices, LIVE

EVIL rule, 73
symmetric matrix equals its transpose, 74
transposing left matrix in covariance matrix,

115
triangular matrices, 64

lower-triangular, upper-triangular (LU)
decomposition, 169

triple product, 24
trivial solution, 14
type function, 284

U
uniqueness

linear independence guaranteeing, 45
of QR decomposition, 153

unit vectors, 17
creating from nonunit vectors, 18

unit-norm columns (orthogonal matrices), 147
upper triangular matrices, 64, 153, 187

transforming dense matrix into, using row
reduction, 163

V
variables (Python), 282-285

data types, 283
indexing, 284
naming, 284

variance, 114
combined with linear weighted combination

in PCA, 256
converting singular values to, 247

vector sets, 33, 46
linear independence, 36

vectors, 1

applications, 49-60
correlation and cosine similarity, 49-52
k-means clustering, 53-56
time series filtering and feature detec‐

tion, 52
creating and visualizing in NumPy, 7-10
dot product, 18

distributive nature of, 20
geometry of, 21

linear independence, 35-38
linear weighted combination, 34
magnitude and unit vectors, 17
matrix-vector multiplication, 70-72
multiplication methods other than dot

product, 22
cross and triple products, 24
Hadamard multiplication, 22
outer product, 23

multiplication of left singular vector by right
singular vector, 245

operations on, 11-17
adding two vectors, 11
averaging vectors, 15
geometry of vector addition and sub‐

traction, 12
geometry of vector-scalar multiplication,

15
transpose operation, 15
vector broadcasting in Python, 16
vector-scalar multiplication, 13

subspace and span, 38-41
visualizations

in Python, 290-292
visualizing matrices, 61

W
weighted combination, 34

(see also linear weighted combination)
wide matrices, 63

right-inverse for wide full row-rank matrix,
130

Z
zeros matrix, 64
zeros vector, 14

eigenvalue equation set to, 219
linear independence and, 37, 38
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